Successful Web Learning Environments: New Design Guidelines.
ERIC Educational Resources Information Center
Martinez, Margaret
The Web offers the perfect technology and environment for precision learning because learners can be uniquely identified, relevant content can be specifically personalized, and subsequent response and progress can be monitored, supported, and assessed. Technologically, researchers are making rapid progress realizing the personalized learning dream…
Catching up: The rise of the Chinese wind turbine industry
NASA Astrophysics Data System (ADS)
Lefevre-Marton, Nicolas
This thesis argues that Chinese firms can catch up with the technological frontier in the scope of new climate friendly energy technologies and provides a detailed study of the case of wind power. Chapter 2 assesses the nature and extent of wind turbine technology catch-up. Firstly, it uses various wind turbine technology indicators to detail the convergence of trends of leading Chinese firms with firms at the technological frontier. Secondly, the chapter assesses the evolution of technological capabilities among leading Chinese turbine manufacturers. It shows that Chinese firms were progressively introducing turbine technologies similar to those produced by frontier firms and had rapidly improved their capabilities, allowing them to increasingly rely on independent technology development efforts. Chapter 3 describes how the Chinese wind power technology development system, characterized by the presence of a powerful and proactive government, provided the necessary conditions for Chinese wind turbine manufacturers to make rapid technological progress. In particular, it highlights the policies introduced by the government to create a large and rapidly growing wind power market in China and the steps taken by the government to ensure that Chinese firms entered and progressively dominated the domestic turbine manufacturing market. The competition which ensued among domestic turbine manufacturers was arguably the main driver of technology development efforts. The most significant challenge to the continued progress of the industry was whether the Chinese system could transition from a model of technology development based on technology transfer to one based on its own innovation efforts. Chapter 4 shows that due to limited government support over the years in both Europe and the United States, the wind power technology frontier has evolved relatively slowly, making it easier for Chinese firms to catch up. Firstly, using patenting rates as indicators of knowledge development, the chapter shows a strong correlation between changes in government wind power support policies and patenting activity. Secondly, using both technology penetration rates and patenting trends, the chapter shows that the evolution of the wind power frontier was slow compared to most other technology sectors globally.
Changing technology in transportation : automated vehicles in freight.
DOT National Transportation Integrated Search
2017-06-27
The world of transportation is on the verge of undergoing an impactful transformation. Over the past decade, automotive computing technology has progressed far more rapidly than anticipated. Most major auto manufacturers integrated automated features...
Driving Extreme Efficiency to Market
NASA Astrophysics Data System (ADS)
Garbesi, Karina
2014-03-01
The rapid development of extremely energy efficient appliances and equipment is essential to curtail catastrophic climate disruption. This will require the on-going development of products that apply all best-practices and that take advantage of the synergies of hybridization and building integration. Beyond that, it requires the development of new disruptive technologies and concepts. To facilitate these goals, in 2011 the Lawrence Berkeley National Laboratory and the U.S. Department of Energy launched the Max Tech and Beyond Design Competition for Ultra-Low-Energy-Use Appliances and Equipment. Now in its third year, the competition supports faculty-lead student design teams at U.S. universities to develop and test new technology prototypes. This talk describes what the competition and the Max Tech Program are doing to drive such rapid technology progress and to facilitate the entry to the market of successful Max Tech prototypes. The talk also initiates a discussion of physicists' unique role in driving that technology progress faster and farther. Emerging Technologies, Building Technologies Office, U.S. Department of Energy.
Fulldome Video: An Emerging Technology for Education
ERIC Educational Resources Information Center
Law, Linda E.
2006-01-01
This article talks about fulldome video, a new technology which has been adopted fairly extensively by the larger, well-funded planetariums. Fulldome video, also called immersive projection, can help teach subjects ranging from geology to history to chemistry. The rapidly advancing progress of projection technology has provided high-resolution…
ERIC Educational Resources Information Center
Kulmagambetova, Svetlana S.; Iskindirova, Saltanat K.; Kazhiakparova, Zhadyra S.; Bainiyeva, Kulyash T.; Pandya, Chimay
2016-01-01
The present rapid technological progress and the post-crisis period determine the increasing demand for revision of existing concepts and strategies aimed at maintaining global development. This article describes pedagogical technologies, indicates the need to reform the outdated education systems or to reject them completely in order to improve…
Genetic Insights in Barrett’s Esophagus and Esophageal Adenocarcinoma
Reid, Brian J.; Paulson, Thomas G.; Li, Xiaohong
2015-01-01
Beginning in the 1980s, an alarming rise in the incidence of esophageal adenocarcinoma (EA) led to screening of patients with reflux to detect Barrett’s esophagus (BE) and surveillance of BE to detect early EA. This strategy, based on linear progression disease models, resulted in selective detection of BE that does not progress to EA over a lifetime (overdiagnosis) and missed BE that rapidly progresses to EA (underdiagnosis). Here we review the historical thought processes that resulted in this undesired outcome and the transformation in our understanding of genetic and evolutionary principles governing neoplastic progression that has come from application of modern genomic technologies to cancers and their precursors. This new synthesis provides improved strategies for prevention and early detection of EA by addressing the environmental and mutational processes that can determine “windows of opportunity” in time to detect rapidly progressing BE and distinguish it from slowly or non-progressing BE. PMID:26208895
A Rapid Auto-Indexing Technology for Designing Readable E-Learning Content
ERIC Educational Resources Information Center
Yu, Pao-Ta; Liao, Yuan-Hsun; Su, Ming-Hsiang; Cheng, Po-Jen; Pai, Chun-Hsuan
2012-01-01
A rapid scene indexing method is proposed to improve retrieval performance for students accessing instructional videos. This indexing method is applied to anchor suitable indices to the instructional video so that students can obtain several small lesson units to gain learning mastery. The method also regulates online course progress. These…
Managerial Problems in the Use of Educational Technology in Primary Education Schools
ERIC Educational Resources Information Center
Hosgorur, Vural
2013-01-01
Rapid progress in science and technology also changes understanding, wishes and expectations, processes, operations and organisational structures. Such developments positively affect the structure of educational systems as well as learning-teaching activities in instructional environments. The problem of this research is to define managerial…
Progress in silicon carbide semiconductor technology
NASA Technical Reports Server (NTRS)
Powell, J. A.; Neudeck, P. G.; Matus, L. G.; Petit, J. B.
1992-01-01
Silicon carbide semiconductor technology has been advancing rapidly over the last several years. Advances have been made in boule growth, thin film growth, and device fabrication. This paper wi11 review reasons for the renewed interest in SiC, and will review recent developments in both crystal growth and device fabrication.
Engineering of Semiconductor Nanocrystals for Light Emitting Applications
Todescato, Francesco; Fortunati, Ilaria; Minotto, Alessandro; Signorini, Raffaella; Jasieniak, Jacek J.; Bozio, Renato
2016-01-01
Semiconductor nanocrystals are rapidly spreading into the display and lighting markets. Compared with liquid crystal and organic LED displays, nanocrystalline quantum dots (QDs) provide highly saturated colors, wide color gamut, resolution, rapid response time, optical efficiency, durability and low cost. This remarkable progress has been made possible by the rapid advances in the synthesis of colloidal QDs and by the progress in understanding the intriguing new physics exhibited by these nanoparticles. In this review, we provide support to the idea that suitably engineered core/graded-shell QDs exhibit exceptionally favorable optical properties, photoluminescence and optical gain, while keeping the synthesis facile and producing QDs well suited for light emitting applications. Solid-state laser emitters can greatly profit from QDs as efficient gain materials. Progress towards fabricating low threshold, solution processed DFB lasers that are optically pumped using one- and two-photon absorption is reviewed. In the field of display technologies, the exploitation of the exceptional photoluminescence properties of QDs for LCD backlighting has already advanced to commercial levels. The next big challenge is to develop the electroluminescence properties of QD to a similar state. We present an overview of QLED devices and of the great perspectives for next generation display and lighting technologies. PMID:28773794
1988-01-29
Hungarian founders are the Microelectronics Enterprise and the Communications Technology Cooperative. The Soviet founders are the Union of Nauchniy Centr...selection, growing and breeding of new plant and animal species, and the development of manufacturing technology for the food industry. Direct...the reforms our economy still has not undergone a rapid enough technological modernization. We have, for example, failed to make any progress in the
ERIC Educational Resources Information Center
Roman, Harry T.
2012-01-01
Nanotechnology is now making it possible to create radically new tiny machines and sensors on par with the size of dust motes. This technology is rapidly progressing and will make profound impacts on the nation's global competitiveness. It promises to be a most pervasive technological advance, comparable to what computers did for an individual's…
ERIC Educational Resources Information Center
Austin, Katherine A.
2009-01-01
In the wake of the information explosion and rapidly progressing technology [Mayer, R. E. (2001). "Multimedia learning". Cambridge: University Press] formulated a theory that focused on human cognition, rather than technology capacity and features. By measuring the effect of cognitive individual differences and display design manipulations on…
Old knowledge and new technologies allow rapid development of model organisms
Cook, Charles E.; Chenevert, Janet; Larsson, Tomas A.; Arendt, Detlev; Houliston, Evelyn; Lénárt, Péter
2016-01-01
Until recently the set of “model” species used commonly for cell biology was limited to a small number of well-understood organisms, and developing a new model was prohibitively expensive or time-consuming. With the current rapid advances in technology, in particular low-cost high-throughput sequencing, it is now possible to develop molecular resources fairly rapidly. Wider sampling of biological diversity can only accelerate progress in addressing cellular mechanisms and shed light on how they are adapted to varied physiological contexts. Here we illustrate how historical knowledge and new technologies can reveal the potential of nonconventional organisms, and we suggest guidelines for selecting new experimental models. We also present examples of nonstandard marine metazoan model species that have made important contributions to our understanding of biological processes. PMID:26976934
[Sequencing technology in gene diagnosis and its application].
Yibin, Guo
2014-11-01
The study of gene mutation is one of the hot topics in the field of life science nowadays, and the related detection methods and diagnostic technology have been developed rapidly. Sequencing technology plays an indispensable role in the definite diagnosis and classification of genetic diseases. In this review, we summarize the research progress in sequencing technology, evaluate the advantages and disadvantages of 1(st) ~3(rd) generation of sequencing technology, and describe its application in gene diagnosis. Also we made forecasts and prospects on its development trend.
ERIC Educational Resources Information Center
Capraro, Mary Margaret
An electronic portfolio is a collection of work captured by electronic means that serves as an exhibit of individual efforts, progress, and achievements in one or more areas. Due to rapid growth and updates in technology, keeping electronic portfolios is becoming increasingly common in a variety of educational settings. In fall 2002 at one large…
ERIC Educational Resources Information Center
Capraro, Mary Margaret
2006-01-01
Electronic portfolios are a "collection of work captured by electronic means, that serves as an exhibit of individual efforts, progress, and achievements in one or more areas" (Weidmer, 1998, p. 586). Because of the rapid growth and updates in technology, keeping electronic portfolios is becoming increasingly common in a variety of educational…
NASA Technical Reports Server (NTRS)
1975-01-01
Rapidly changing societal and individual values impact the course of man's future with accompanying conflict, tension and alienation. Conflict and fear over the impacts of science and technology may retard, or may hasten, societal progress. The broadening of the concept of equality of opportunity to an equality of outcome manifests itself by distributing the rewards of society based not on performance but simply on membership in the society. It is concluded that institutional failure caused by organizational and bureaucratic ineffectiveness inhibits change necessary for the solution of societal problems.
Health information technology: strategic initiatives, real progress.
Kolodner, Robert M; Cohn, Simon P; Friedman, Charles P
2008-01-01
We fully agree with Carol Diamond and Clay Shirky that deployment of health information technology (IT) is necessary but not sufficient for transforming U.S. health care. However, the recent work to advance health IT is far from an exercise in "magical thinking." It has been strategic thinking. To illustrate this, we highlight recent initiatives and progress under four focus areas: adoption, governance, privacy and security, and interoperability. In addition, solutions exist for health IT to advance rapidly without adversely affecting future policy choices. A broad national consensus is emerging in support of advancing health IT to enable the transformation of health and care.
Essential Structures of C2 Subsystems and Interaction Logics to Agility
2014-06-01
participant’s internal flows and transactions, with the potential for 8 information overload derived from the fourth megatrend (data deluge...2012) that can be used in military operations. 4 The OS refers to the industrial -age hierarchical organizations as well as the information-age...connected followed with the information revolution . The rapid progress of communication technology, such as communicating satellite, and the rapid
Nanomaterial-enabled Rapid Detection of Water Contaminants.
Mao, Shun; Chang, Jingbo; Zhou, Guihua; Chen, Junhong
2015-10-28
Water contaminants, e.g., inorganic chemicals and microorganisms, are critical metrics for water quality monitoring and have significant impacts on human health and plants/organisms living in water. The scope and focus of this review is nanomaterial-based optical, electronic, and electrochemical sensors for rapid detection of water contaminants, e.g., heavy metals, anions, and bacteria. These contaminants are commonly found in different water systems. The importance of water quality monitoring and control demands significant advancement in the detection of contaminants in water because current sensing technologies for water contaminants have limitations. The advantages of nanomaterial-based sensing technologies are highlighted and recent progress on nanomaterial-based sensors for rapid water contaminant detection is discussed. An outlook for future research into this rapidly growing field is also provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Suzuki, Hidetsugu; Asahara, Hiroshi
2015-08-01
Genome editing is a genetic technology by which any DNA sequence is inserted, replaced or deleted. Genome editing has been making rapid progress recently, with the development of new techniques such as ZFN, TALEN and CRISPR/Cas9. Genome editing can be applied to various fields ranging from the production of knock out animals to gene therapy. This section summarizes these new genome editing technologies and its applications.
DOT National Transportation Integrated Search
2017-12-01
Visions of self-driving vehicles abound in popular science and entertainment. Many programs are at work to make a reality catch of this imagination. Vehicle automation has progressed rapidly in recent years, from simple driver assistance technologies...
Taylor-Robinson, Andrew W; Walton, Simon; Swain, David L; Walsh, Kerry B; Vajta, Gábor
2014-08-01
Recent advances in embryology and related research offer considerable possibilities to accelerate genetic improvement in cattle breeding. Such progress includes optimization and standardization of laboratory embryo production (in vitro fertilization - IVF), introduction of a highly efficient method for cryopreservation (vitrification), and dramatic improvement in the efficiency of somatic cell nuclear transfer (cloning) in terms of required effort, cost, and overall outcome. Handmade cloning (HMC), a simplified version of somatic cell nuclear transfer, offers the potential for relatively easy and low-cost production of clones. A potentially modified method of vitrification used at a centrally located laboratory facility could result in cloned offspring that are economically competitive with elite animals produced by more traditional means. Apart from routine legal and intellectual property issues, the main obstacle that hampers rapid uptake of these technologies by the beef cattle industry is a lack of confidence from scientific and commercial sources. Once stakeholder support is increased, the combined application of these methods makes a rapid advance toward desirable traits (rapid growth, high-quality beef, optimized reproductive performance) a realistic goal. The potential impact of these technologies on genetic advancement in beef cattle herds in which improvement of stock is sought, such as in northern Australia, is hard to overestimate. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Research status and development of application fields in enzyme technology
NASA Astrophysics Data System (ADS)
Ji, Y. B.; Wang, S. W.; Yu, M.; Ru, X.; Wei, C.; Zhu, H. J.; Li, Z. Y.; Zhao, H.; Qiao, A. N.; Guo, S. Z.; Lu, L.
2018-01-01
Biological enzymes are catalyzed by living cells, most of which are proteins, and very few are RNA. Biological engineering as a new high-tech has been rapid development, Enzyme manufacturing and application areas are gradually expanding, In this paper, the status and progress of the application of enzyme technology are reviewed by reviewing the literature. and aims to provide reference for the application of enzyme technology and provide scientific basis for its future research and development in new field.
Emerging Science and Technology Trends: 2017-2047
2017-11-21
genomics, coupled with the exponentially declining cost of gene editing techniques such as CRISPR , has created fertile ground for rapid technological...sequences from scratch. Falling costs and new gene editing tools like CRISPR are accelerating progress, and the global market is expected to reach...by the Bill & Melinda Gates foundation, is reengineering the bacteria found in the human gut to fight disease.121 eGensis is using CRISPR gene
The OPTICON technology roadmap for optical and infrared astronomy
NASA Astrophysics Data System (ADS)
Cunningham, Colin; Melotte, David; Molster, Frank
2010-07-01
The Key Technology Network (KTN) within the OPTICON programme has been developing a roadmap for the technology needed to meet the challenges of optical and infrared astronomy over the next few years, with particular emphasis on the requirements of Extremely Large Telescopes. The process and methodology so far will be described, along with the most recent roadmap. The roadmap shows the expected progression of ground-based astronomy facilities and the technological developments which will be required to realise these new facilities. The roadmap highlights the key stages in the development of these technologies. In some areas, such as conventional optics, gradual developments in areas such as light-weighting of optics will slowly be adopted into future instruments. In other areas, such as large area IR detectors, more rapid progress can be expected as new processing techniques allow larger and faster arrays. Finally, other areas such as integrated photonics have the potential to revolutionise astronomical instrumentation. Future plans are outlined, in particular our intention to look at longer term development and disruptive technologies.
Maintaining Adequate CO2 Washout for an Advanced EMU via a New Rapid Cycle Amine Technology
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Conger, Bruce
2012-01-01
Over the past several years, NASA has realized tremendous progress in Extravehicular Activity (EVA) technology development. This has been evidenced by the progressive development of a new Rapid Cycle Amine (RCA) system for the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support Subsystem (PLSS). The PLSS is responsible for the life support of the crew member in the spacesuit. The RCA technology is responsible for carbon dioxide (CO2) and humidity control. Another aspect of the RCA is that it is on-back vacuum-regenerable, efficient, and reliable. The RCA also simplifies the PLSS schematic by eliminating the need for a condensing heat exchanger for humidity control in the current EMU. As development progresses on the RCA, it is important that the sizing be optimized so that the demand on the PLSS battery is minimized. As well, maintaining the CO2 washout at adequate levels during an EVA is an absolute requirement of the RCA and associated ventilation system. Testing has been underway in-house at NASA Johnson Space Center and analysis has been initiated to evaluate whether the technology provides exemplary performance in ensuring that the CO2 is removed sufficiently and the ventilation flow is adequate for maintaining CO2 washout in the AEMU spacesuit helmet of the crew member during an EVA. This paper will review the recent developments of the RCA unit, testing planned in-house with a spacesuit simulator, and the associated analytical work along with insights from the medical aspect on the testing. 1
Technological advances in precision medicine and drug development.
Maggi, Elaine; Patterson, Nicole E; Montagna, Cristina
New technologies are rapidly becoming available to expand the arsenal of tools accessible for precision medicine and to support the development of new therapeutics. Advances in liquid biopsies, which analyze cells, DNA, RNA, proteins, or vesicles isolated from the blood, have gained particular interest for their uses in acquiring information reflecting the biology of tumors and metastatic tissues. Through advancements in DNA sequencing that have merged unprecedented accuracy with affordable cost, personalized treatments based on genetic variations are becoming a real possibility. Extraordinary progress has been achieved in the development of biological therapies aimed to even further advance personalized treatments. We provide a summary of current and future applications of blood based liquid biopsies and how new technologies are utilized for the development of biological therapeutic treatments. We discuss current and future sequencing methods with an emphasis on how technological advances will support the progress in the field of precision medicine.
Robotics in general surgery: an evidence-based review.
Baek, Se-Jin; Kim, Seon-Hahn
2014-05-01
Since its introduction, robotic surgery has been rapidly adopted to the extent that it has already assumed an important position in the field of general surgery. This rapid progress is quantitative as well as qualitative. In this review, we focus on the relatively common procedures to which robotic surgery has been applied in several fields of general surgery, including gastric, colorectal, hepato-biliary-pancreatic, and endocrine surgery, and we discuss the results to date and future possibilities. In addition, the advantages and limitations of the current robotic system are reviewed, and the advanced technologies and instruments to be applied in the near future are introduced. Such progress is expected to facilitate the widespread introduction of robotic surgery in additional fields and to solve existing problems.
Empowering Learners with Mobile Open-Access Learning Initiatives
ERIC Educational Resources Information Center
Mills, Michael, Ed.; Wake, Donna, Ed.
2017-01-01
Education has been progressing at a rapid pace ever since educators have been able to harness the power of mobile technology. Open-access learning techniques provide more students with the opportunity to engage in educational opportunities that may have been previously restricted. "Empowering Learners with Mobile Open-Access Learning…
The Rapid Rise in the Cost of Replenishment Spare Parts: Are We Making Progress?
1985-09-01
Replenishment Spare Parts, Unpublished Master’s Thesis, Air Force Institute of Technology, Wright-Patterson AFB OH, 1984. 2. Brost , Edward J. A...and P. George Benson. Statistics for Business and Economics (Second Edition). San Francisco: Dellen Publishing Company, 1982. 14. Office of Federal
Antisense oligonucleotide technologies in drug discovery.
Aboul-Fadl, Tarek
2006-09-01
The principle of antisense oligonucleotide (AS-OD) technologies is based on the specific inhibition of unwanted gene expression by blocking mRNA activity. It has long appeared to be an ideal strategy to leverage new genomic knowledge for drug discovery and development. In recent years, AS-OD technologies have been widely used as potent and promising tools for this purpose. There is a rapid increase in the number of antisense molecules progressing in clinical trials. AS-OD technologies provide a simple and efficient approach for drug discovery and development and are expected to become a reality in the near future. This editorial describes the established and emerging AS-OD technologies in drug discovery.
Enabling Technologies for the Future of Chemical Synthesis.
Fitzpatrick, Daniel E; Battilocchio, Claudio; Ley, Steven V
2016-03-23
Technology is evolving at breakneck pace, changing the way we communicate, travel, find out information, and live our lives. Yet chemistry as a science has been slower to adapt to this rapidly shifting world. In this Outlook we use highlights from recent literature reports to describe how progresses in enabling technologies are altering this trend, permitting chemists to incorporate new advances into their work at all levels of the chemistry development cycle. We discuss the benefits and challenges that have arisen, impacts on academic-industry relationships, and future trends in the area of chemical synthesis.
NASA Astrophysics Data System (ADS)
Rehse, Steven; Trojand, Daniel; Putnam, Russell; Gillies, Derek; Woodman, Ryan; Sheikh, Khadija; Daabous, Andrew
2013-05-01
There is a well-known and urgent need in the fields of medicine, environmental health and safety, food-processing, and defense/security to develop new 21st Century technologies for the rapid and sensitive identification of bacterial pathogens. In only the last five years, the use of a real-time elemental (atomic) analysis performed with laser-induced breakdown spectroscopy (LIBS) has made tremendous progress in becoming a viable technology for rapid bacterial pathogen detection and identification. In this talk we will show how this laser-based optical emission spectroscopic technique is able to sensitively assay the elemental composition of bacterial cells in situ. We will also present the latest achievements of our lab to fully develop LIBS-based bacterial sensing including simulation of a rapid urinary tract infection diagnosis and investigation of a variety of autonomous multivariate analysis algorithms. Lastly, we will show how this technology is now ready to be transitioned from the laboratory to field-portable and potentially man-portable instrumentation. The introduction of such a technology into popular use could very well transform the field of bacterial biosensing - a market valued at approximately 10 billion/year world-wide. Funding for this project was provided in part by a Natural Sciences and Engineering Research Council of Canada Discovery Grant.
[Telemedicine in dermatological practice: teledermatology].
Danis, Judit; Forczek, Erzsébet; Bari, Ferenc
2016-03-06
Technological advances in the fields of information and telecommunication technologies have affected the health care system in the last decades, and lead to the emergence of a new discipline: telemedicine. The appearance and rise of internet and smart phones induced a rapid progression in telemedicine. Several new applications and mobile devices are published every hour even for medical purposes. Parallel to these changes in the technical fields, medical literature about telemedicine has grown rapidly. Due to its visual nature, dermatology is ideally suited to benefit from this new technology and teledermatology became one of the most dynamically evolving fields of telemedicine by now. Teledermatology is not routinely practiced in Hungary yet, however, it promises the health care system to become better, cheaper and faster, but we have to take notice on the experience and problems faced in teledermatologic applications so far, summarized in this review.
Recent Progress in Genome Editing Approaches for Inherited Cardiovascular Diseases.
Kaur, Balpreet; Perea-Gil, Isaac; Karakikes, Ioannis
2018-06-02
This review describes the recent progress in nuclease-based therapeutic applications for inherited heart diseases in vitro, highlights the development of the most recent genome editing technologies and discusses the associated challenges for clinical translation. Inherited cardiovascular disorders are passed from generation to generation. Over the past decade, considerable progress has been made in understanding the genetic basis of inherited heart diseases. The timely emergence of genome editing technologies using engineered programmable nucleases has revolutionized the basic research of inherited cardiovascular diseases and holds great promise for the development of targeted therapies. The genome editing toolbox is rapidly expanding, and new tools have been recently added that significantly expand the capabilities of engineered nucleases. Newer classes of versatile engineered nucleases, such as the "base editors," have been recently developed, offering the potential for efficient and precise therapeutic manipulation of the human genome.
Integration of 3D printing and additive manufacturing in the interventional pulmonologist's toolbox.
Guibert, Nicolas; Mhanna, Laurent; Didier, Alain; Moreno, Benjamin; Leyx, Pierre; Plat, Gavin; Mazieres, Julien; Hermant, Christophe
2018-01-01
New 3D technologies are rapidly entering into the surgical landscape, including in interventional pulmonology. The transition of 2D restricted data into a physical model of pathological airways by three-dimensional printing (3DP) allows rapid prototyping and fabrication of complex and patient-specific shapes and can thus help the physician to plan and guide complex procedures. Furthermore, computer-assisted designed (CAD) patient-specific devices have already helped surgeons overcome several therapeutic impasses and are likely to rapidly cover a wider range of situations. We report herein with a special focus on our clinical experience: i) how additive manufacturing is progressively integrated into the management of complex central airways diseases; ii) the appealing future directions of these new technologies, including the potential of the emerging technique of bioprinting; iii) the main pitfalls that could delay its introduction into routine care. Copyright © 2017. Published by Elsevier Ltd.
Information Loss from Technological Progress
NASA Astrophysics Data System (ADS)
Townsend, P. D.
2014-12-01
Progress in electronics and optics offers faster computers, and rapid communication via the internet that is matched by ever larger and evolving storage systems. Instinctively one assumes that this must be totally beneficial. However advances in software and storage media are progressing in ways which are frequently incompatible with earlier systems and the economics and commercial pressures rarely guarantee total compatibility with earlier systems. Instead, the industries actively choose to force the users to purchase new systems and software. Thus we are moving forward with new technological variants that may have access to only the most recent systems and we will have lost earlier alternatives. The reality is that increased processing speed and storage capacity are matched by an equally rapid decline in the access and survival lifetime of older information. This pattern is not limited to modern electronic systems but is evident throughout history from writing on stone and clay tablets to papyrus and paper. It is equally evident in image systems from painting, through film, to magnetic tapes and digital cameras. In sound recording we have variously progressed from wax discs to vinyl, magnetic tape and CD formats. In each case the need for better definition and greater capacity has forced the earlier systems into oblivion. Indeed proposed interactive music systems could similarly relegate music CDs to specialist collections. The article will track some of the examples and discuss the consequences as well as noting that this information loss is further compounded by developments in language and changes in cultural views of different societies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, W.P.; Bushaw, B.A.; McCarthy, M.I.
1996-10-01
The Department of Energy is undertaking the enormous task of remediating defense wastes and environmental insults which have occurred over 50 years of nuclear weapons production. It is abundantly clear that significant technology advances are needed to characterize, process, and store highly radioactive waste and to remediate contaminated zones. In addition to the processing and waste form issues, analytical technologies needed for the characterization of solids, and for monitoring storage tanks and contaminated sites do not exist or are currently expensive labor-intensive tasks. This report describes progress in developing sensitive, rapid, and widely applicable laser-based mass spectrometry techniques for analysismore » of mixed chemical wastes and contaminated soils.« less
Space activities - A review and a look ahead
NASA Technical Reports Server (NTRS)
Durrani, S. H.
1984-01-01
The paper reviews the progress made in manned and unmanned space programs during the last 25 years and names several major accomplishments. The ingredients of success are identified as good engineering, good technology, and good management of a very complex enterprise. An argument is made that the pace of progress will be governed not by technological advances, which can be very rapid, but rather by future institutional arrangements, which are much slower to evolve. It is predicted that the most likely space activities for the next 20 years will be those relating to space commercialization, and several examples are cited. A hope is expressed that policy makers and entrepreneurs will match the spirit of adventure and risk-taking exhibited by engineers in exploring uncharted territory.
How to Build a Quantum Computer
NASA Astrophysics Data System (ADS)
Sanders, Barry C.
2017-11-01
Quantum computer technology is progressing rapidly with dozens of qubits and hundreds of quantum logic gates now possible. Although current quantum computer technology is distant from being able to solve computational problems beyond the reach of non-quantum computers, experiments have progressed well beyond simply demonstrating the requisite components. We can now operate small quantum logic processors with connected networks of qubits and quantum logic gates, which is a great stride towards functioning quantum computers. This book aims to be accessible to a broad audience with basic knowledge of computers, electronics and physics. The goal is to convey key notions relevant to building quantum computers and to present state-of-the-art quantum-computer research in various media such as trapped ions, superconducting circuits, photonics and beyond.
ERIC Educational Resources Information Center
Chen, Hong-Ren; Chiang, Chih-Hao; Lin, Wen-Shan
2013-01-01
With the rapid progress in information technology, interactive whiteboards have become IT-integrated in teaching activities. The theory of multiple intelligences argues that every person possesses multiple intelligences, emphasizing learners' cognitive richness and the possible role of these differences in enhanced learning. This study is the…
Teachers' Use of PowerPoint in Kindergarten: An Empirical Investigation in China
ERIC Educational Resources Information Center
Liu, Xia; Xu, Yunrong; Pange, Jenny
2016-01-01
Nowadays, with the rapid progress of Information and Communication Technologies (ICTs), the integration of ICTs in education has attracted more and more attention of educators and researchers. However, there are different situations between developed and less-developed nations both in ICT application and in ICT research. PowerPoint is a readily…
Current advances and future perspectives in extrusion-based bioprinting.
Ozbolat, Ibrahim T; Hospodiuk, Monika
2016-01-01
Extrusion-based bioprinting (EBB) is a rapidly growing technology that has made substantial progress during the last decade. It has great versatility in printing various biologics, including cells, tissues, tissue constructs, organ modules and microfluidic devices, in applications from basic research and pharmaceutics to clinics. Despite the great benefits and flexibility in printing a wide range of bioinks, including tissue spheroids, tissue strands, cell pellets, decellularized matrix components, micro-carriers and cell-laden hydrogels, the technology currently faces several limitations and challenges. These include impediments to organ fabrication, the limited resolution of printed features, the need for advanced bioprinting solutions to transition the technology bench to bedside, the necessity of new bioink development for rapid, safe and sustainable delivery of cells in a biomimetically organized microenvironment, and regulatory concerns to transform the technology into a product. This paper, presenting a first-time comprehensive review of EBB, discusses the current advancements in EBB technology and highlights future directions to transform the technology to generate viable end products for tissue engineering and regenerative medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Status of molten carbonate fuel cell technology development
NASA Astrophysics Data System (ADS)
Parsons, E. L., Jr.; Williams, M. C.; George, T. J.
The MCFC technology has been identified by the DOE as a promising product for commercialization. Development of the MCFC technology supports the National Energy Strategy. Review of the status of the MCFC technology indicates that the MCFC technology developers are making rapid and significant progress. Manufacturing facility development and extensive testing is occurring. Improvements in performance (power density), lower costs, improved packaging, and scale up to full height are planned. MCFC developers need to continue to be responsive to end-users in potential markets. It will be market demands for the correct product definition which will ultimately determine the character of MCFC power plants. There is a need for continued MCFC product improvement and multiple product development tests.
[RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING TECHNIQUE FOR SPINAL IMPLANTS].
Lu, Qi; Yu, Binsheng
2016-09-08
To summarize the current research progress of three-dimensional (3D) printing technique for spinal implants manufacture. The recent original literature concerning technology, materials, process, clinical applications, and development direction of 3D printing technique in spinal implants was reviewed and analyzed. At present, 3D printing technologies used to manufacture spinal implants include selective laser sintering, selective laser melting, and electron beam melting. Titanium and its alloys are mainly used. 3D printing spinal implants manufactured by the above materials and technology have been successfully used in clinical. But the problems regarding safety, related complications, cost-benefit analysis, efficacy compared with traditional spinal implants, and the lack of relevant policies and regulations remain to be solved. 3D printing technique is able to provide individual and customized spinal implants for patients, which is helpful for the clinicians to perform operations much more accurately and safely. With the rapid development of 3D printing technology and new materials, more and more 3D printing spinal implants will be developed and used clinically.
Yamamoto, Takashi
Programmable site-specific nuclease mediated-genome editing is an emerging biotechnology for precise manipulation of target genes. In genome editing, gene-knockout as well as gene-knockin are possible in various organisms and cultured cells. CRISPR-Cas9, which was developed in 2012, is a convenient and efficient programmable site-specific nuclease and the use spreads around the world rapidly. For this, it is important for the progress of life science research to introduce the genome editing technology.
INFLUENCE OF AEROSPACE MEDICINE ACHIEVEMENTS ON THE DEVELOPMENT OF SPORT MEDICINE METHODOLOGY.
R Yashina, E R; Kurashvili, V A; Turzin, P S
Modern technologies of aerospace medicine develop at rapid pace pulling on its orbit all spheres of the human activity, including sport. Innovations play a major role in the progress of sport medicine areas related to the biomedical support of precontest training. Overview of the most important aerospace medicine achievements and their methodical implications for sport medicine is presented. Discussion is devoted to how the aerospace medicine technologies can raise effectiveness of the biomedical support to different sectors of sport and fitness.
Enabling Technologies for the Future of Chemical Synthesis
2016-01-01
Technology is evolving at breakneck pace, changing the way we communicate, travel, find out information, and live our lives. Yet chemistry as a science has been slower to adapt to this rapidly shifting world. In this Outlook we use highlights from recent literature reports to describe how progresses in enabling technologies are altering this trend, permitting chemists to incorporate new advances into their work at all levels of the chemistry development cycle. We discuss the benefits and challenges that have arisen, impacts on academic–industry relationships, and future trends in the area of chemical synthesis. PMID:27163040
Using the tools of science to teach science
NASA Astrophysics Data System (ADS)
Wieman, C.
2005-12-01
Much of the rapid progress of modern science comes from its solid foundation on objective quantitative data, the rapid widespread dissemination and duplication of ideas, results, and successful approaches, and the rapid utilization of technological developments to achieve new capabilities. Unfortunately, scientists usually abandon these powerful tools in their approach to the teaching of science and instead rely on an approach that would be considered little more than individual superstition if used in the context of actual science. Choices of content and presentation in teaching are usually based on tradition or totally subjective judgments of the instructor. I will discuss my efforts to approach teaching physics much as I have done experimental physics. This includes: collecting and utilizing data (both my own and that from the research of others), developing a strategy for dealing with numerous degrees of freedom that one cannot control nearly as well as one would like (whether they are atomic interactions or student attitudes), optimizing the use of the time and money available, and taking advantage of useful new technology. The latter discussion will include some specifics on using technology that allows real time measurement of student learning and engagement in a large class and the development and use of interactive simulations to facilitate conceptual understanding. Achieving true understanding and appreciation of physics by introductory students is a major challenge. Fortunately, there is sufficient room for improvement in the current educational system that one can fall far short of that ideal and still be making major progress. Work supported by NSF and the Kavli Operating Institute
ERIC Educational Resources Information Center
Goh, Shu Li
2016-01-01
The rapid progress of technology has revolutionized learning and in the field of computer assisted language learning, the use of digital games has expanded significantly. One type of game that has been attracting interest is massively multiplayer online role-playing games (henceforth MMORPGs). Recent research has drawn attention to the potential…
ERIC Educational Resources Information Center
Vernon-Feagans, Lynne; Kainz, Kirsten; Hedrick, Amy; Ginsberg, Marnie; Amendum, Steve
2013-01-01
This study evaluated whether the Targeted Reading Intervention (TRI), a classroom teacher professional development program delivered through webcam technology literacy coaching, could provide rural classroom teachers with the instructional skills to help struggling readers progress rapidly in early reading. Fifteen rural schools were randomly…
ERIC Educational Resources Information Center
Chen, Chih-Ming; Wang, Jung-Ying; Yu, Chih-Ming
2017-01-01
Rapid progress in information and communication technologies (ICTs) has fueled the popularity of e-learning. However, an e-learning environment is limited in that online instructors cannot monitor immediately whether students remain focus during online autonomous learning. Therefore, this study tries to develop a novel attention aware system (AAS)…
ERIC Educational Resources Information Center
STOLLER, DAVID S.
AN INTERNATIONAL GROUP FOR THE ORGANIZATION FOR ECONOMIC COOPERATION AND DEVELOPMENT (OECD) MET TO EXCHANGE METHODS OF EDUCATIONAL PLANNING, TECHNIQUES, AND PROGRESS, AND TO DISCUSS MEANS OF MAKING EDUCATION AVAILABLE TO ALL SOCIOECONOMIC LEVELS OF SOCIETY. RAPIDLY EXPANDING INDUSTRIAL, TECHNOLOGICAL, MILITARY, AND ADMINISTRATIVE PROGRAMS IN ALL…
The Use of Nudges and Other Behavioural Approaches in Education. EENEE Analytical Report No. 29
ERIC Educational Resources Information Center
Damgaard, Mette Trier; Nielsen, Helena Skyt
2017-01-01
Globalisation and rapid technological progress have increased the focus on efficient investment in high-quality skills across the European Union (EU) countries. One issue that is high on the political agenda is the persistent underachievement among youths in many European countries meaning that approximately 20 percent of Europe's 15 year olds…
Polymer microarray technology for stem cell engineering
Coyle, Robert; Jia, Jia; Mei, Ying
2015-01-01
Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. During the past decade, significant progress has been made in developing soluble factors (e.g., small molecules and growth factors) to direct stem cells into a desired phenotype. However, the current lack of suitable synthetic materials to regulate stem cell activity has limited the realization of the enormous potential of stem cells. This can be attributed to a large number of materials properties (e.g., chemical structures and physical properties of materials) that can affect stem cell fate. This makes it challenging to design biomaterials to direct stem cell behavior. To address this, polymer microarray technology has been developed to rapidly identify materials for a variety of stem cell applications. In this article, we summarize recent developments in polymer array technology and their applications in stem cell engineering. Statement of significance Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. In the last decade, significant progress has been made in developing chemically defined media to direct stem cells into a desired phenotype. However, the current lack of the suitable synthetic materials to regulate stem cell activities has been limiting the realization of the potential of stem cells. This can be attributed to the number of variables in material properties (e.g., chemical structures and physical properties) that can affect stem cells. Polymer microarray technology has shown to be a powerful tool to rapidly identify materials for a variety of stem cell applications. Here we summarize recent developments in polymer array technology and their applications in stem cell engineering. PMID:26497624
Innovating aging: promises and pitfalls on the road to life extension
Vijg, Jan; de Grey, Aubrey D.N.J.
2014-01-01
One of the main benefits from the dramatic technological progress over the last two centuries is the enormous increase in human life expectancy, which has now reached record highs. After conquering most childhood diseases and a fair fraction of the diseases that plague adulthood, medical technology is now mainly pre-occupied by age-related disorders. Further progress is dependent on circumventing the traditional medical focus on individual diseases and instead targeting aging as a whole as the ultimate cause of the health problems that affect humankind at old age. In principle, a major effort to control the gradual accumulation of molecular and cellular damage – considered by many as the ultimate cause of intrinsic aging – may rapidly lead to interventions for regenerating aged and worn-out tissues and organs. While considered impossible by many, there really is no reason to reject this as scientifically implausible. However, as we discuss, it is not only scientific progress that is currently a limiting factor, but societal factors that hinder and may ultimately prevent further progress in testing and adopting the many possible interventions to cure aging. PMID:24732067
Progress in Infrared Photodetectors Since 2000
Downs, Chandler; Vandervelde, Thomas E.
2013-01-01
The first decade of the 21st-century has seen a rapid development in infrared photodetector technology. At the end of the last millennium there were two dominant IR systems, InSb- and HgCdTe-based detectors, which were well developed and available in commercial systems. While these two systems saw improvements over the last twelve years, their change has not nearly been as marked as that of the quantum-based detectors (i.e., QWIPs, QDIPs, DWELL-IPs, and SLS-based photodetectors). In this paper, we review the progress made in all of these systems over the last decade plus, compare the relative merits of the systems as they stand now, and discuss where some of the leading research groups in these fields are going to take these technologies in the years to come. PMID:23591965
Progress In Fresnel-Köhler Concentrators
NASA Astrophysics Data System (ADS)
Mohedano, Rubén; Cvetković, Aleksandra; Benítez, Pablo; Chaves, Julio; Miñano, Juan C.; Zamora, Pablo; Hernandez, Maikel; Vilaplana, Juan
2011-12-01
The Fresnel Köhler (FK) concentrator was first presented in 2008. Since then, various CPV companies have adopted this technology as base for their future commercial product. The key for this rapid penetration is a mixture of simplicity (the FK is essentially a Fresnel lens concentrator, a technology that dominates the market) and excellent performance: high concentration without giving up large manufacturing/aiming tolerances, enabling high efficiency even at the array level. All these features together have a great potential to lower energy costs. This work shows recent results and progress regarding this device, covering new design features, measurements and tests along with first performance achievements at the array level (pilot 6.5 Kwp plant). The work also discusses the potential impact of the FK enhanced performance on the Levelized Cost Of Electricity (LCOE).
NASA Astrophysics Data System (ADS)
Learned, John G.
This meeting, as the reader sees in the preceding written contributions, represented an exciting new step in a budding revolution in extremely high energy cosmic ray and neutrino physics. The focus upon acoustic and radio detection techniques, reveals a rapidly expanding interest and real progress. Most of the basic ideas have been known for many years, but it is only now that they are at last beginning to be exploited. The reasons for this are several, ranging from the advance of technology to scientific focus of the community. The former comes largely from electronics and communications technology progress. The latter comes about due to the "neutrino revolution" and the campaign to understand the highest energy (GZK) cosmic rays. At least 25 projects are in various stages of dreaming through construction. Positive detections would seem not far in the future.
Recent technological advancements in tuberculosis diagnostics - A review.
Gupta, Shagun; Kakkar, Vipan
2018-09-15
Early diagnosis and on-time effective treatment are indispensable for Tuberculosis (TB) control - a life threatening infectious communicable disease. The conventional techniques for diagnosing TB normally take two to three weeks. This delay in diagnosis and further increase in detection complexity due to the emerging risks of XDR-TB (Extensively drug Resistant-TB) and MDR-TB (Multidrug Resistant-TB) are evoking interest of researchers in the field of developing rapid TB detection techniques such as biosensing and other point-of-care (POC) techniques. Biosensing technologies along with the collaboration with nanotechnology have enormous potential to boost the MTB detection and for overall management in clinical diagnosis. A diverse range of portable, sensitive and rapid biosensors based on different signal transducer principles and with different biomarkers detection capabilities have been developed for TB detection in the early stages. Further, a lot of progress has been achieved over the years in developing various point-of-care diagnostic tools including non-molecular methods and molecular techniques. The objective of this study is to present a succinct review of the available TB detection techniques that are either in use or under development. The focus of this review is on the current developments occurred in nano-biosensing technologies. A synopsis of ameliorations in different non-molecular diagnostic tools and progress in the field of molecular techniques along with the role of emerging Lab-on-Chip technology for diagnosing and mitigating the TB consequences have also been presented. Copyright © 2018 Elsevier B.V. All rights reserved.
Metal-halide perovskites for photovoltaic and light-emitting devices.
Stranks, Samuel D; Snaith, Henry J
2015-05-01
Metal-halide perovskites are crystalline materials originally developed out of scientific curiosity. Unexpectedly, solar cells incorporating these perovskites are rapidly emerging as serious contenders to rival the leading photovoltaic technologies. Power conversion efficiencies have jumped from 3% to over 20% in just four years of academic research. Here, we review the rapid progress in perovskite solar cells, as well as their promising use in light-emitting devices. In particular, we describe the broad tunability and fabrication methods of these materials, the current understanding of the operation of state-of-the-art solar cells and we highlight the properties that have delivered light-emitting diodes and lasers. We discuss key thermal and operational stability challenges facing perovskites, and give an outlook of future research avenues that might bring perovskite technology to commercialization.
Nonclassical light sources for silicon photonics
NASA Astrophysics Data System (ADS)
Bajoni, Daniele; Galli, Matteo
2017-09-01
Quantum photonics has recently attracted a lot of attention for its disruptive potential in emerging technologies like quantum cryptography, quantum communication and quantum computing. Driven by the impressive development in nanofabrication technologies and nanoscale engineering, silicon photonics has rapidly become the platform of choice for on-chip integration of high performing photonic devices, now extending their functionalities towards quantum-based applications. Focusing on quantum Information Technology (qIT) as a key application area, we review recent progress in integrated silicon-based sources of nonclassical states of light. We assess the state of the art in this growing field and highlight the challenges that need to be overcome to make quantum photonics a reliable and widespread technology.
Legal interfaces in telemedicine technology.
Lott, C M
1996-05-01
Telemedicine, an emerging technology which seeks to use advanced telecommunications equipment to enhance medical care, is progressing rapidly in the Department of Defense health care delivery system. This paper recommends that a cautious, preventive law approach be simultaneously initiated to ensure that the technology does not abridge patients' rights to confidentiality or security of medical records, and that agreement on practice parameters be developed. Seven interfaces, in the areas of informed consent, physician liability, non-physician liability, costs, practice parameters, physician-patient relationships, and ergonomics, are discussed in the context of telemedicine. The author recommends that telemedicine pioneers include the legal community's early input in the application of telemedicine technology to help avoid needless litigation.
Sindhu, Annu; Arora, Pooja; Chaudhury, Ashok
2012-07-01
A novel laboratory revolution for disease therapy, the RNA interference (RNAi) technology, has adopted a new era of molecular research as the next generation "Gene-targeted prophylaxis." In this review, we have focused on the chief technological challenges associated with the efforts to develop RNAi-based therapeutics that may guide the biomedical researchers. Many non-curable maladies, like neurodegenerative diseases and cancers have effectively been cured using this technology. Rapid advances are still in progress for the development of RNAi-based technologies that will be having a major impact on medical research. We have highlighted the recent discoveries associated with the phenomenon of RNAi, expression of silencing molecules in mammals along with the vector systems used for disease therapeutics.
Tissue Engineering and Regenerative Medicine 2017: A Year in Review.
Park, Kyung Min; Shin, Young Min; Kim, Kyobum; Shin, Heungsoo
2018-04-26
In 2017, a new paradigm change caused by artificial intelligence and big data analysis resulted in innovation in each field of science and technology, and also significantly influenced progress in tissue engineering and regenerative medicine (TERM). TERM has continued to make technological advances based on interdisciplinary approaches and has contributed to the overall field of biomedical technology, including cancer biology, personalized medicine, development biology, and cell-based therapeutics. While researchers are aware that there is still a long way to go until TERM reaches the ultimate goal of patient treatment through clinical translation, the rapid progress in convergence studies led by technological improvements in TERM has been encouraging. In this review, we highlighted the significant advances made in TERM in 2017 (with an overlap of 5 months in 2016). We identified major progress in TERM in a manner similar to previous reviews published in the last few years. In addition, we carefully considered all four previous reviews during the selection process and chose main themes that minimize the duplication of the topics. Therefore, we have identified three areas that have been the focus of most journal publications in the TERM community in 2017: (i) advanced biomaterials and three-dimensional (3D) cell printing, (ii) exosomes as bioactive agents for regenerative medicine, and (iii) 3D culture in regenerative medicine.
Report of the Panel on Computer and Information Technology
NASA Technical Reports Server (NTRS)
Lundstrom, Stephen F.; Larsen, Ronald L.
1984-01-01
Aircraft have become more and more dependent on computers (information processing) for improved performance and safety. It is clear that this activity will grow, since information processing technology has advanced by a factor of 10 every 5 years for the past 35 years and will continue to do so. Breakthroughs in device technology, from vacuum tubes through transistors to integrated circuits, contribute to this rapid pace. This progress is nearly matched by similar, though not as dramatic, advances in numerical software and algorithms. Progress has not been easy. Many technical and nontechnical challenges were surmounted. The outlook is for continued growth in capability but will require surmounting new challenges. The technology forecast presented in this report has been developed by extrapolating current trends and assessing the possibilities of several high-risk research topics. In the process, critical problem areas that require research and development emphasis have been identified. The outlook assumes a positive perspective; the projected capabilities are possible by the year 2000, and adequate resources will be made available to achieve them. Computer and information technology forecasts and the potential impacts of this technology on aeronautics are identified. Critical issues and technical challenges underlying the achievement of forecasted performance and benefits are addressed.
Photogrammetry for rapid prototyping: development of noncontact 3D reconstruction technologies
NASA Astrophysics Data System (ADS)
Knyaz, Vladimir A.
2002-04-01
An important stage of rapid prototyping technology is generating computer 3D model of an object to be reproduced. Wide variety of techniques for 3D model generation exists beginning with manual 3D models generation and finishing with full-automated reverse engineering system. The progress in CCD sensors and computers provides the background for integration of photogrammetry as an accurate 3D data source with CAD/CAM. The paper presents the results of developing photogrammetric methods for non-contact spatial coordinates measurements and generation of computer 3D model of real objects. The technology is based on object convergent images processing for calculating its 3D coordinates and surface reconstruction. The hardware used for spatial coordinates measurements is based on PC as central processing unit and video camera as image acquisition device. The original software for Windows 9X realizes the complete technology of 3D reconstruction for rapid input of geometry data in CAD/CAM systems. Technical characteristics of developed systems are given along with the results of applying for various tasks of 3D reconstruction. The paper describes the techniques used for non-contact measurements and the methods providing metric characteristics of reconstructed 3D model. Also the results of system application for 3D reconstruction of complex industrial objects are presented.
Grewal, Dilraj S; Tanna, Angelo P
2013-03-01
With the rapid adoption of spectral domain optical coherence tomography (SDOCT) in clinical practice and the recent advances in software technology, there is a need for a review of the literature on glaucoma detection and progression analysis algorithms designed for the commercially available instruments. Peripapillary retinal nerve fiber layer (RNFL) thickness and macular thickness, including segmental macular thickness calculation algorithms, have been demonstrated to be repeatable and reproducible, and have a high degree of diagnostic sensitivity and specificity in discriminating between healthy and glaucomatous eyes across the glaucoma continuum. Newer software capabilities such as glaucoma progression detection algorithms provide an objective analysis of longitudinally obtained structural data that enhances our ability to detect glaucomatous progression. RNFL measurements obtained with SDOCT appear more sensitive than time domain OCT (TDOCT) for glaucoma progression detection; however, agreement with the assessments of visual field progression is poor. Over the last few years, several studies have been performed to assess the diagnostic performance of SDOCT structural imaging and its validity in assessing glaucoma progression. Most evidence suggests that SDOCT performs similarly to TDOCT for glaucoma diagnosis; however, SDOCT may be superior for the detection of early stage disease. With respect to progression detection, SDOCT represents an important technological advance because of its improved resolution and repeatability. Advancements in RNFL thickness quantification, segmental macular thickness calculation and progression detection algorithms, when used correctly, may help to improve our ability to diagnose and manage glaucoma.
Takahashi, Keigo; Sato, Hideki; Hattori, Hidenori; Takao, Masaki; Takahashi, Shinichi; Suzuki, Norihiro
2017-09-30
A 28-year-old Japanese male without a significant past medical history presented with new-onset generalized clonic seizure and headache. A brain MRI revealed multiple enhanced lesions on both cerebral hemispheres. Laboratory exams showed no evidence of systemic inflammation or auto-immune antibodies such as ANCAs. Despite four courses of high-dose methylprednisolone pulse therapy and five treatments with plasmapheresis, his symptoms worsened and the MRI lesions progressed rapidly. During these treatments, we performed a targeted brain biopsy, that revealed histological findings consistent with a predominant angiitis of parenchymal and subdural small vessels. He was provided with diagnosis of central nervous system vasculitis (CNSV). Subsequent cyclophosphamide pulse therapy enabled a progressive successful improvement of his symptoms. While diagnostic methods for CNSV remain controversial, histological findings are thought to be more useful in obtaining a more definitive diagnosis than findings in image studies, such as MRI and angiography. We suggest that a brain biopsy should be considered during the early period of cases with suspected CNSV and rapid clinical deterioration. We also detected human herpesvirus 7 (HHV-7) using PCR technology in brain biopsy specimens, however the relationship between CNSV and HHV-7 infection is unknow.
A case study exploring the current issues faced by diploma-prepared nurses.
Droskinis, Amy
2013-01-01
Nursing is a dynamic and rapidly progressing field. As the profession changes over time, it is vital to study how these transformations influence the workforce. In this study, the aim was to explore how diploma-prepared nurses are functioning in the acute care setting and how modifications in educational requirements and technological advancement have affected their nursing practice.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
This report addresses an opportunity to accelerate progress in virtually every branch of science and engineering concurrently, while also boosting the American economy as business firms also learn to exploit these new capabilities. The successful rapid advancement in both science and technology creates its own challenges, four of which are…
ERIC Educational Resources Information Center
Palit, Sukanchan
2016-01-01
Scientific vision and scientific understanding in today's world are in the path of new glory. Chemical Engineering science is witnessing drastic and rapid changes. The metamorphosis of human civilization in this century is faced with vicious challenges. Progress of Chemical Engineering science, the vision of technology and the broad chemical…
NASA Technical Reports Server (NTRS)
Warmflash, D.; Larios-Sanz, M.; Fox, G. E.; McKay, D. S.
2002-01-01
To demonstrate the feasibility of two promising technologies, we have applied Enzyme-Linked Immunosorbent Assay (ELISA) as well as probes that target the 16S rRNA molecule to search for life in terrestrial soil samples, known to contain numerous life forms. Additional information is contained in the original extended abstract.
PERT/CPM and Supplementary Analytical Techniques. An Analysis of Aerospace Usage
1978-09-01
of a number of new...rapid pace of technological progress in the last 75 years has spawned the development of a. number of very interesting managorial tools, and one of ...support of the oversll effort. PR L g. At one time, use of PERT was mandatory on all major L]OD acquioition contracts . Since that time, the use of
The Influence of Self-Efficacies on Readers' Intention to Use E-Reading Devices: An Empirical Study
ERIC Educational Resources Information Center
Tsai, Bor-Yuan; Yen, Jung-Nan
2014-01-01
E-books and e-Reading Devices (E-RDs) markets have been enlarged due to the rapid progress of digital technologies. What are the possible factors to increase readers' willingness to use electronic devices? To improve the predictive value of the original TAM model, this study incorporates three additional constructs to form e-Reading Device…
ERIC Educational Resources Information Center
Hwang, Gwo-Haur; Chu, Hui-Chun; Chen, Beyin; Cheng, Zheng Shan
2014-01-01
The rapid progress of wireless communication, sensing, and mobile technologies has enabled students to learn in an environment that combines learning resources from both the real world and the digital world. It can be viewed as a new learning style which has been called context-aware ubiquitous learning. Most context-aware ubiquitous learning…
Status and prospects for LiDAR remote sensing of forested ecosystems
M. A. Wulder; N. C. Coops; A. T. Hudak; F. Morsdorf; R. Nelson; G. Newnham; M. Vastaranta
2013-01-01
The science associated with the use of airborne and satellite Light Detection and Ranging (LiDAR) to remotely sense forest structure has rapidly progressed over the past decade. LiDAR has evolved from being a poorly understood, potentially useful tool to an operational technology in a little over a decade, and these instruments have become a major success story in...
The present and future role of microfluidics in biomedical research.
Sackmann, Eric K; Fulton, Anna L; Beebe, David J
2014-03-13
Microfluidics, a technology characterized by the engineered manipulation of fluids at the submillimetre scale, has shown considerable promise for improving diagnostics and biology research. Certain properties of microfluidic technologies, such as rapid sample processing and the precise control of fluids in an assay, have made them attractive candidates to replace traditional experimental approaches. Here we analyse the progress made by lab-on-a-chip microtechnologies in recent years, and discuss the clinical and research areas in which they have made the greatest impact. We also suggest directions that biologists, engineers and clinicians can take to help this technology live up to its potential.
Liang, Y; Wei, H; Yu, X; Huang, W; Luo, X P
2017-02-02
Objective: To explore the clinical characteristics of diagnosis and treatment in patients with Turner syndrome and rapidly progressive puberty. Method: A rare case of rapidly progressive puberty in Turner syndrome with a mosaic karyotype of 45, X/46, X, del(X)(p21)(80%/20%)was diagnosed at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology in January. 2015. Clinical characteristics and the related literature were reviewed. Original papers on precocious puberty or rapidly progressive puberty in Turner syndrome, published until Apr. 2016 were retrieved at PubMed and CNKI databases by the use of the key words "Turner syndrome" , "precocious puberty" and "rapidly progressive puberty" . Result: The patient was born at term with birth weight of 2 450 g and was diagnosed with SGA at 3 years of age for the first evaluating of growth and development. Then recombined human growth hormone (rhGH )was given at 4 years of age due to short stature (height<3 percentile) and low growth velocity(<5.0 cm/year) as well. However, rhGH treatment was discontinued after 9 months because of economic burdens. Breast development was noted at 9 years and 3 months. The patient was followed up at 3 months intervals. Physical examination revealed a Tanner stage Ⅲ breast development at 10.33 years , the bone age was 11.6 years. Then, gonadotropin-releasing hormone analogs treatment was added to slow pubertal progression and to preserve maximum adult height. The growth rate decreased with therapy from 7.5 cm/year to 4.4 cm/year. The patient was reevaluated, and the chromosome analysis of peripheral blood revealed a mosaic karyotype 45, X/46, X, del(X)(p21)(80%/ 20%). To date, only 10 cases have been reported in the literature. Six of them showing mosaic TS, three karyotypes with structural abnormality of short arm of X chromosome, one with the karyotype 45, X. Conclusion: It is the first time that rapidly progressive puberty in a 45, X/46, X, del(X)(p21) mosaic Turner syndrome is reported. Although short stature and ovarian dysgenesis are common in TS, precocious puberty may occur in TS, which is liable to cause delayed diagnosis and misdiagnosis. Careful examination is recommended for patients with unusual growth pattern, even though girls have normal height in accord with standard growth curve or spontaneous puberty. Evaluation for TS and subsequent investigation should be prompted.
Remotely piloted aircraft in the civil environment
NASA Technical Reports Server (NTRS)
Gregory, T. J.; Nelms, W. P.; Karmarkar, J. S.
1977-01-01
Remotely piloted aircraft (RPA's) are of increasing interest to the military and others, as evidenced by a number of technology and development programs that are currently funded or planned. These programs have led to a number of test aircraft with significant capabilities, and future remotely piloted aircraft are forecast to become even more capable as the technology in a number of important subsystem areas is progressing at a rapid rate. As the size, weight and cost of RPA's is reduced, the prospect of using them for civilian applications becomes more likely.
Building the future an atom at a time: Realizing feynman's vision
NASA Astrophysics Data System (ADS)
Madia, William J.
2006-10-01
Since Feynman’s 1959 lecture, “There’s Plenty of Room at the Bottom,” and particularly in the last 15 years, advances in instrumentation have permitted us to observe and characterize materials at atomic scale. New and even more powerful capabilities are rapidly becoming available. At the same time, our theoretical understanding and ability to model complex systems have matured to a level that enables us to begin making useful predictions in many areas, with the promise of further progress as we approach petascale computing. Progress in making and structuring nanoscale materials in commercially useful quantities is also being made, albeit more selectively. Exploiting chemistry and biochemistry to mimic nature’s accomplishments in living systems is a promising approach that is opening new possibilities. The remarkable progress of the last few years is already producing technological advances, and more can be expected as investments in nanoscience and nanotechnology increase. Just as advances in information technology during the second half of the 20th century produced dramatic technological, economic, and societal changes, so the coming nanoscale revolution will affect virtually every aspect of life in the 21st century.
Building the future an atom at a time: Realizing Feynman's vision
NASA Astrophysics Data System (ADS)
Madia, William J.
2006-10-01
Since Feynman’s 1959 lecture, “There’s Plenty of Room at the Bottom,” and particularly in the last 15 years, advances in instrumentation have permitted us to observe and characterize materials at atomic scale. New and even more powerful capabilities are rapidly becoming available. At the same time, our theoretical understanding and ability to model complex systems have matured to a level that enables us to begin making useful predictions in many areas, with the promise of further progress as we approach petascale computing. Progress in making and structuring nanoscale materials in commercially useful quantities is also being made, albeit more selectively. Exploiting chemistry and biochemistry to mimic nature’s accomplishments in living systems is a promising approach that is opening new possibilities. The remarkable progress of the last few years is already producing technological advances, and more can be expected as investments in nanoscience and nanotechnology increase. Just as advances in information technology during the second half of the 20th century produced dramatic technological, economic, and societal changes, so the coming nanoscale revolution will affect virtually every aspect of life in the 21st century.
The progress on time & frequency during the past 5 decades
NASA Astrophysics Data System (ADS)
Wang, Zheng-Ming
2002-06-01
The number and variety of applications using precise timing are astounding and increasing along with the new technology in communication, computer science, space science as well as in other fields. The world has evolved into the information age, and precise timing is at the heart of managing the flow of that information, which prompts the progress on precise timing itself rapidly. The development of time scales, UT1 determination, frequency standards, time transfer and the time dissemination for the past half century in the world and in China are described in this paper. The expectation in this field is discussed.
Rehse, S J; Salimnia, H; Miziolek, A W
2012-02-01
The recent progress made in developing laser-induced breakdown spectroscopy (LIBS) has transformed LIBS from an elemental analysis technique to one that can be applied for the reagentless analysis of molecularly complex biological materials or clinical specimens. Rapid advances in the LIBS technology have spawned a growing number of recently published articles in peer-reviewed journals which have consistently demonstrated the capability of LIBS to rapidly detect, biochemically characterize and analyse, and/or accurately identify various biological, biomedical or clinical samples. These analyses are inherently real-time, require no sample preparation, and offer high sensitivity and specificity. This overview of the biomedical applications of LIBS is meant to summarize the research that has been performed to date, as well as to suggest to health care providers several possible specific future applications which, if successfully implemented, would be significantly beneficial to humankind.
[OMICS AND BIG DATA, MAJOR ADVANCES TOWARDS PERSONALIZED MEDICINE OF THE FUTURE?].
Scheen, A J
2015-01-01
The increasing interest for personalized medicine evolves together with two major technological advances. First, the new-generation, rapid and less expensive, DNA sequencing method, combined with remarkable progresses in molecular biology leading to the post-genomic era (transcriptomics, proteomics, metabolomics). Second, the refinement of computing tools (IT), which allows the immediate analysis of a huge amount of data (especially, those resulting from the omics approaches) and, thus, creates a new universe for medical research, that of analyzed by computerized modelling. This article for scientific communication and popularization briefly describes the main advances in these two fields of interest. These technological progresses are combined with those occurring in communication, which makes possible the development of artificial intelligence. These major advances will most probably represent the grounds of the future personalized medicine.
Rapid diagnostic tests for malaria
Daily, Jennifer; Hotte, Nora; Dolkart, Caitlin; Cunningham, Jane; Yadav, Prashant
2015-01-01
Abstract Maintaining quality, competitiveness and innovation in global health technology is a constant challenge for manufacturers, while affordability, access and equity are challenges for governments and international agencies. In this paper we discuss these issues with reference to rapid diagnostic tests for malaria. Strategies to control and eliminate malaria depend on early and accurate diagnosis. Rapid diagnostic tests for malaria require little training and equipment and can be performed by non-specialists in remote settings. Use of these tests has expanded significantly over the last few years, following recommendations to test all suspected malaria cases before treatment and the implementation of an evaluation programme to assess the performance of the malaria rapid diagnostic tests. Despite these gains, challenges exist that, if not addressed, could jeopardize the progress made to date. We discuss recent developments in rapid diagnostic tests for malaria, highlight some of the challenges and provide suggestions to address them. PMID:26668438
Computer Vision Malaria Diagnostic Systems-Progress and Prospects.
Pollak, Joseph Joel; Houri-Yafin, Arnon; Salpeter, Seth J
2017-01-01
Accurate malaria diagnosis is critical to prevent malaria fatalities, curb overuse of antimalarial drugs, and promote appropriate management of other causes of fever. While several diagnostic tests exist, the need for a rapid and highly accurate malaria assay remains. Microscopy and rapid diagnostic tests are the main diagnostic modalities available, yet they can demonstrate poor performance and accuracy. Automated microscopy platforms have the potential to significantly improve and standardize malaria diagnosis. Based on image recognition and machine learning algorithms, these systems maintain the benefits of light microscopy and provide improvements such as quicker scanning time, greater scanning area, and increased consistency brought by automation. While these applications have been in development for over a decade, recently several commercial platforms have emerged. In this review, we discuss the most advanced computer vision malaria diagnostic technologies and investigate several of their features which are central to field use. Additionally, we discuss the technological and policy barriers to implementing these technologies in low-resource settings world-wide.
NASA's aircraft icing technology program
NASA Technical Reports Server (NTRS)
Reinmann, John J.
1991-01-01
NASA' Aircraft Icing Technology program is aimed at developing innovative technologies for safe and efficient flight into forecasted icing. The program addresses the needs of all aircraft classes and supports both commercial and military applications. The program is guided by three key strategic objectives: (1) numerically simulate an aircraft's response to an in-flight icing encounter, (2) provide improved experimental icing simulation facilities and testing techniques, and (3) offer innovative approaches to ice protection. Our research focuses on topics that directly support stated industry needs, and we work closely with industry to assure a rapid and smooth transfer of technology. This paper presents selected results that illustrate progress towards the three strategic objectives, and it provides a comprehensive list of references on the NASA icing program.
Single-cell sequencing in stem cell biology.
Wen, Lu; Tang, Fuchou
2016-04-15
Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.
Space and transatmospheric propulsion technology
NASA Technical Reports Server (NTRS)
Merkle, Charles; Stangeland, Maynard L.; Brown, James R.; Mccarty, John P.; Povinelli, Louis A.; Northam, G. Burton; Zukoski, Edward E.
1994-01-01
This report focuses primarily on Japan's programs in liquid rocket propulsion and propulsion for spaceplane and related transatmospheric areas. It refers briefly to Japan's solid rocket programs and to new supersonic air-breathing propulsion efforts. The panel observed that the Japanese had a carefully thought-out plan, a broad-based program, and an ambitious but achievable schedule for propulsion activity. Japan's overall propulsion program is behind that of the United States at the time of this study, but the Japanese are gaining rapidly. The Japanese are at the forefront in such key areas as advanced materials, enjoying a high level of project continuity and funding. Japan's space program has been evolutionary in nature, while the U.S. program has emphasized revolutionary advances. Projects have typically been smaller in Japan than in the United States, focusing on incremental advances in technology, with an excellent record of applying proven technology to new projects. This evolutionary approach, coupled with an ability to take technology off the shelf from other countries, has resulted in relatively low development costs, rapid progress, and enhanced reliability. Clearly Japan is positioned to be a world leader in space and transatmospheric propulsion technology by the year 2000.
Human Genome Editing in the Clinic: New Challenges in Regulatory Benefit-Risk Assessment.
Abou-El-Enein, Mohamed; Cathomen, Toni; Ivics, Zoltán; June, Carl H; Renner, Matthias; Schneider, Christian K; Bauer, Gerhard
2017-10-05
As genome editing rapidly progresses toward the realization of its clinical promise, assessing the suitability of current tools and processes used for its benefit-risk assessment is critical. Although current regulations may initially provide an adequate regulatory framework, improvements are recommended to overcome several existing technology-based safety and efficacy issues. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Rias, Riaza Mohd; Zaman, Halimah Badioze
2011-01-01
Higher learning based instruction may be primarily concerned in most cases with the content of their academic lessons, and not very much with their instructional delivery. However, the effective application of learning theories and technology in higher education has an impact on student performance. With the rapid progress in the computer and…
ERIC Educational Resources Information Center
Cakir, Nevin Kozcu
2017-01-01
Today, with the development of science and technology and its rapid progress, the importance attached to science education has increased. This increase in interest has led to the development of the methods, techniques, and approaches that enable the students to be active, question and construct knowledge. The 5E learning model is one of them, and…
Rapid-Learning System for Cancer Care
Abernethy, Amy P.; Etheredge, Lynn M.; Ganz, Patricia A.; Wallace, Paul; German, Robert R.; Neti, Chalapathy; Bach, Peter B.; Murphy, Sharon B.
2010-01-01
Compelling public interest is propelling national efforts to advance the evidence base for cancer treatment and control measures and to transform the way in which evidence is aggregated and applied. Substantial investments in health information technology, comparative effectiveness research, health care quality and value, and personalized medicine support these efforts and have resulted in considerable progress to date. An emerging initiative, and one that integrates these converging approaches to improving health care, is “rapid-learning health care.” In this framework, routinely collected real-time clinical data drive the process of scientific discovery, which becomes a natural outgrowth of patient care. To better understand the state of the rapid-learning health care model and its potential implications for oncology, the National Cancer Policy Forum of the Institute of Medicine held a workshop entitled “A Foundation for Evidence-Driven Practice: A Rapid-Learning System for Cancer Care” in October 2009. Participants examined the elements of a rapid-learning system for cancer, including registries and databases, emerging information technology, patient-centered and -driven clinical decision support, patient engagement, culture change, clinical practice guidelines, point-of-care needs in clinical oncology, and federal policy issues and implications. This Special Article reviews the activities of the workshop and sets the stage to move from vision to action. PMID:20585094
ANALYSIS: mobile phones integrated into diabetes management: a logical progression.
Malasanos, Toree
2008-01-01
In this issue of Journal of Diabetes Science and Technology, the intervention described by D. Katz, "Novel Interactive Cell-Phone Technology for Health Enhancement," uses cell phones to provide the rapid communication necessary for the support of intensive management of diabetes. Mobile technology is widely accepted in today's society and can be an effective tool for this cause. There have been numerous interventions using various communication tools, including cell phones, to manage chronic disease, which all propose that improved communication and feedback to patients would improve health status. Dr. Katz has taken the next step by giving semiautomated, real-time, immediate feedback on each data point all transmitted by cell phone.
Genetic tumor profiling and genetically targeted cancer therapy.
Goetsch, Cathleen M
2011-02-01
To discuss how understanding and manipulation of tumor genetics information and technology shapes cancer care today and what changes might be expected in the near future. Published articles, web resources, clinical practice. Advances in our understanding of genes and their regulation provide a promise of more personalized cancer care, allowing selection of the most safe and effective therapy in an individual situation. Rapid progress in the technology of tumor profiling and targeted cancer therapies challenges nurses to keep up-to-date to provide quality patient education and care. Copyright © 2011 Elsevier Inc. All rights reserved.
Forecasting Ecological Genomics: High-Tech Animal Instrumentation Meets High-Throughput Sequencing
Shafer, Aaron B. A.; Northrup, Joseph M.; Wikelski, Martin; Wittemyer, George; Wolf, Jochen B. W.
2016-01-01
Recent advancements in animal tracking technology and high-throughput sequencing are rapidly changing the questions and scope of research in the biological sciences. The integration of genomic data with high-tech animal instrumentation comes as a natural progression of traditional work in ecological genetics, and we provide a framework for linking the separate data streams from these technologies. Such a merger will elucidate the genetic basis of adaptive behaviors like migration and hibernation and advance our understanding of fundamental ecological and evolutionary processes such as pathogen transmission, population responses to environmental change, and communication in natural populations. PMID:26745372
Vicini, P; Fields, O; Lai, E; Litwack, E D; Martin, A-M; Morgan, T M; Pacanowski, M A; Papaluca, M; Perez, O D; Ringel, M S; Robson, M; Sakul, H; Vockley, J; Zaks, T; Dolsten, M; Søgaard, M
2016-02-01
High throughput molecular and functional profiling of patients is a key driver of precision medicine. DNA and RNA characterization has been enabled at unprecedented cost and scale through rapid, disruptive progress in sequencing technology, but challenges persist in data management and interpretation. We analyze the state-of-the-art of large-scale unbiased sequencing in drug discovery and development, including technology, application, ethical, regulatory, policy and commercial considerations, and discuss issues of LUS implementation in clinical and regulatory practice. © 2015 American Society for Clinical Pharmacology and Therapeutics.
Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival
Henkel, Jenny S; Beers, David R; Wen, Shixiang; Rivera, Andreana L; Toennis, Karen M; Appel, Joan E; Zhao, Weihua; Moore, Dan H; Powell, Suzanne Z; Appel, Stanley H
2013-01-01
In amyotrophic lateral sclerosis (ALS) mice, regulatory T-lymphocytes (Tregs) are neuroprotective, slowing disease progression. To address whether Tregs and FoxP3, a transcription factor required for Treg function, similarly influence progression rates of ALS patients, T-lymphocytes from patients were assessed by flow cytometry. Both numbers of Tregs and their FoxP3 protein expressions were reduced in rapidly progressing ALS patients and inversely correlated with progression rates. The mRNA levels of FoxP3, TGF-β, IL4 and Gata3, a Th2 transcription factor, were reduced in rapidly progressing patients and inversely correlated with progression rates. Both FoxP3 and Gata3 were accurate indicators of progression rates. No differences in IL10, Tbx21, a Th1 transcription factor or IFN-γ expression were found between slow and rapidly progressing patients. A 3.5-year prospective study with a second larger cohort revealed that early reduced FoxP3 levels were indicative of progression rates at collection and predictive of future rapid progression and attenuated survival. Collectively, these data suggest that Tregs and Th2 lymphocytes influence disease progression rates. Importantly, early reduced FoxP3 levels could be used to identify rapidly progressing patients. PMID:23143995
Review: Semen sexing - current state of the art with emphasis on bovine species.
Vishwanath, R; Moreno, J F
2018-06-01
It is approaching three decades since the first public evidence of sex-sorting of semen. The technology has progressed considerably since then with a number of institutions and researchers collaborating to eventually bring this to application. The technical challenges have been quite substantial and in the early years the application was limited to only heifer inseminations. Comparable fertility of sex-sorted semen with conventional semen has been an aspirational benchmark for the industry for many years. Significant investment in research in the primary biology of sex-sorted sperm and associated sorting equipment ensured steady progress over the years and current methods particularly the new SexedULTRA-4M™ seems to have now mostly bridged this fertility gap. The dairy and beef industry have adopted this technology quite rapidly. Other animal industries are progressively testing it for application in their specific niches and environments. The current state of the art in the fundamentals of sex-sorting, the biology of the process as well as new developments in machinery are described in this review.
Identifying Indicators of Progress in Thermal Spray Research Using Bibliometrics Analysis
NASA Astrophysics Data System (ADS)
Li, R.-T.; Khor, K. A.; Yu, L.-G.
2016-12-01
We investigated the research publications on thermal spray in the period of 1985-2015 using the data from Web of Science, Scopus and SciVal®. Bibliometrics analysis was employed to elucidate the country and institution distribution in various thermal spray research areas and to characterize the trends of topic change and technology progress. Results show that China, USA, Japan, Germany, India and France were the top countries in thermal spray research, and Xi'an Jiaotong University, Universite de Technologie Belfort-Montbeliard, Shanghai Institute of Ceramics, ETH Zurich, National Research Council of Canada, University of Limoges were among the top institutions that had high scholarly research output during 2005-2015. The terms of the titles, keywords and abstracts of the publications were analyzed by the Latent Dirichlet Allocation model and visually mapped using the VOSviewer software to reveal the progress of thermal spray technology. It is found that thermal barrier coating was consistently the main research area in thermal spray, and high-velocity oxy-fuel spray and cold spray developed rapidly in the last 10 years.
A Heuristic Model of Consciousness with Applications to the Development of Science and Society
NASA Technical Reports Server (NTRS)
Curreri, Peter A.
2010-01-01
A working model of consciousness is fundamental to understanding of the interactions of the observer in science. This paper examines contemporary understanding of consciousness. A heuristic model of consciousness is suggested that is consistent with psycophysics measurements of bandwidth of consciousness relative to unconscious perception. While the self reference nature of consciousness confers a survival benefit by assuring the all points of view regarding a problem are experienced in sufficiently large population, conscious bandwidth is constrained by design to avoid chaotic behavior. The multiple hypotheses provided by conscious reflection enable the rapid progression of science and technology. The questions of free will and the problem of attention are discussed in relation to the model. Finally the combination of rapid technology growth with the assurance of many unpredictable points of view is considered in respect to contemporary constraints to the development of society.
Rapid Prototyping of Application Specific Signal Processors (RASSP) program - Study Phase
1992-10-12
in the quantitative evaluaion of desip ltenatlves. To make sysmms such as IDAS mor effective for...steps, and should invest in the standardization of data models that meet these needs. PDES and CFI are likely to offer the most payoff for such an...provides a bigger picture of the ATR roadmap. It attempts to lay out the projected progress of the ATR technologies and applications, both in the
NASA Astrophysics Data System (ADS)
Gen, Mitsuo; Kawakami, Hiroshi; Tsujimura, Yasuhiro; Handa, Hisashi; Lin, Lin; Okamoto, Azuma
As efficient utilization of computational resources is increasing, evolutionary technology based on the Genetic Algorithm (GA), Genetic Programming (GP), Evolution Strategy (ES) and other Evolutionary Computations (ECs) is making rapid progress, and its social recognition and the need as applied technology are increasing. This is explained by the facts that EC offers higher robustness for knowledge information processing systems, intelligent production and logistics systems, most advanced production scheduling and other various real-world problems compared to the approaches based on conventional theories, and EC ensures flexible applicability and usefulness for any unknown system environment even in a case where accurate mathematical modeling fails in the formulation. In this paper, we provide a comprehensive survey of the current state-of-the-art in the fundamentals and applications of evolutionary technologies.
Enabling MEMS technologies for communications systems
NASA Astrophysics Data System (ADS)
Lubecke, Victor M.; Barber, Bradley P.; Arney, Susanne
2001-11-01
Modern communications demands have been steadily growing not only in size, but sophistication. Phone calls over copper wires have evolved into high definition video conferencing over optical fibers, and wireless internet browsing. The technology used to meet these demands is under constant pressure to provide increased capacity, speed, and efficiency, all with reduced size and cost. Various MEMS technologies have shown great promise for meeting these challenges by extending the performance of conventional circuitry and introducing radical new systems approaches. A variety of strategic MEMS structures including various cost-effective free-space optics and high-Q RF components are described, along with related practical implementation issues. These components are rapidly becoming essential for enabling the development of progressive new communications systems technologies including all-optical networks, and low cost multi-system wireless terminals and basestations.
ORNL superconducting technology program for electric power systems
NASA Astrophysics Data System (ADS)
Hawsey, R. A.
1994-04-01
The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are conductor development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1993 Annual Program Review held July 28--29, 1993. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor)
2004-01-01
MSST2004, the Twelfth NASA Goddard / Twenty-first IEEE Conference on Mass Storage Systems and Technologies has as its focus long-term stewardship of globally-distributed storage. The increasing prevalence of e-anything brought about by widespread use of applications based, among others, on the World Wide Web, has contributed to rapid growth of online data holdings. A study released by the School of Information Management and Systems at the University of California, Berkeley, estimates that over 5 exabytes of data was created in 2002. Almost 99 percent of this information originally appeared on magnetic media. The theme for MSST2004 is therefore both timely and appropriate. There have been many discussions about rapid technological obsolescence, incompatible formats and inadequate attention to the permanent preservation of knowledge committed to digital storage. Tutorial sessions at MSST2004 detail some of these concerns, and steps being taken to alleviate them. Over 30 papers deal with topics as diverse as performance, file systems, and stewardship and preservation. A number of short papers, extemporaneous presentations, and works in progress will detail current and relevant research on the MSST2004 theme.
Future of the transdermal drug delivery market--have we barely touched the surface?
Watkinson, Adam C; Kearney, Mary-Carmel; Quinn, Helen L; Courtenay, Aaron J; Donnelly, Ryan F
2016-01-01
Transdermal drug delivery is the movement of drugs across the skin for absorption into the systemic circulation. Transfer of the drug can occur via passive or active means; passive transdermal products do not disrupt the stratum corneum to facilitate delivery whereas active technologies do. Due to the very specific physicochemical properties necessary for successful passive transdermal drug delivery, this sector of the pharmaceutical industry is relatively small. There are many well-documented benefits of this delivery route however, and as a result there is great interest in increasing the number of therapeutic substances that can be delivered transdermally. This review discusses the various transdermal products that are currently/have been marketed, and the paths that led to their success, or lack of. Both passive and active transdermal technologies are considered with the advantages and limitations of each highlighted. In addition to marketed products, technologies that are in the investigative stages by various pharmaceutical companies are reviewed. Passive transdermal drug delivery has made limited progress in recent years, however with the ongoing intense research into active technologies, there is great potential for growth within the transdermal delivery market. A number of active technologies have already been translated into marketed products, with other platforms including microneedles, rapidly progressing towards commercialisation.
Rapid Thermal Processing (RTP) of semiconductors in space
NASA Technical Reports Server (NTRS)
Anderson, T. J.; Jones, K. S.
1993-01-01
The progress achieved on the project entitled 'Rapid Thermal Processing of Semiconductors in Space' for a 12 month period of activity ending March 31, 1993 is summarized. The activity of this group is being performed under the direct auspices of the ROMPS program. The main objective of this program is to develop and demonstrate the use of advanced robotics in space with rapid thermal process (RTP) of semiconductors providing the test technology. Rapid thermal processing is an ideal processing step for demonstration purposes since it encompasses many of the characteristics of other processes used in solid state device manufacturing. Furthermore, a low thermal budget is becoming more important in existing manufacturing practice, while a low thermal budget is critical to successful processing in space. A secondary objective of this project is to determine the influence of microgravity on the rapid thermal process for a variety of operating modes. In many instances, this involves one or more fluid phases. The advancement of microgravity processing science is an important ancillary objective.
Botulinum neurotoxin: where are we with detection technologies?
Singh, Ajay K; Stanker, Larry H; Sharma, Shashi K
2013-02-01
Because of its high toxicity, botulinum neurotoxin (BoNT) poses a significant risk to humans and it represents a possible biological warfare agent. Nevertheless, BoNT serotypes A and B are considered an effective treatment for a variety of neurological disorders. The growing applicability of BoNT as a drug, and its potential use as a biological threat agent, highlight the urgent need to develop sensitive detection assays and therapeutic counter measures. In the last decade, significant progress has been made in BoNT detection technologies but none have fully replaced the mouse lethality assay, the current "gold standard". Recently, new advances in robotics and the availability of new reagents have allowed development of methods for rapid toxin analysis. These technologies while promising need further refinement.
Innovative Competencies of Mining engineers in Transition to the Sustainable Development
NASA Astrophysics Data System (ADS)
Krechetov, Andrey; Khoreshok, Alexey; Blumenstein, Valery
2017-11-01
The transition to the sustainable development posed new challenges to the system of mining higher education. They are determined by the acceleration of scientific and technological progress and widespread introduction of innovations, convergence of technologies from various industries. On the one hand, globalization and rapid technology development are constantly increasing quality requirements for the labor resources of the mineral and raw materials complex and constant improvement of their skills. On the other hand, the transition to the sustainable development provides the necessity for rational use of raw materials and environmental protection. This requires the improvement of staff support system for mining operations and the interaction of enterprises with universities training mining engineers, aimed at the innovative competencies development of future miners.
Dopamine: Just the Right Medicine for Membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Hao-Cheng; Waldman, Ruben Z.; Wu, Ming-Bang
Mussel-inspired chemistry has attracted widespread interest in membrane science and technology. Demonstrating the rapid growth of this field over the past several years, substantial progress has been achieved in both mussel-inspired chemistry and membrane surface engineering based on mussel-inspired coatings. At this stage, it is valuable to summarize the most recent and distinctive developments, as well as to frame the challenges and opportunities remaining in this field. In this review, recent advances in rapid and controllable deposition of mussel-inspired coatings, dopamine-assisted codeposition technology, and photoinitiated grafting directly on mussel-inspired coatings are presented. Some of these technologies have not yet beenmore » employed directly in membrane science. Beyond discussing advances in conventional membrane processes, emerging applications of mussel-inspired coatings in membranes are discussed, including as a skin layer in nanofiltration, interlayer in metal-organic framework based membranes, hydrophilic layer in Janus membranes, and protective layer in catalytic membranes. Finally, some critical unsolved challenges are raised in this field and some potential pathways are proposed to address them.« less
Dopamine: Just the Right Medicine for Membranes
Yang, Hao-Cheng; Waldman, Ruben Z.; Wu, Ming-Bang; ...
2018-01-09
Mussel-inspired chemistry has attracted widespread interest in membrane science and technology. Demonstrating the rapid growth of this field over the past several years, substantial progress has been achieved in both mussel-inspired chemistry and membrane surface engineering based on mussel-inspired coatings. At this stage, it is valuable to summarize the most recent and distinctive developments, as well as to frame the challenges and opportunities remaining in this field. In this review, recent advances in rapid and controllable deposition of mussel-inspired coatings, dopamine-assisted codeposition technology, and photoinitiated grafting directly on mussel-inspired coatings are presented. Some of these technologies have not yet beenmore » employed directly in membrane science. Beyond discussing advances in conventional membrane processes, emerging applications of mussel-inspired coatings in membranes are discussed, including as a skin layer in nanofiltration, interlayer in metal-organic framework based membranes, hydrophilic layer in Janus membranes, and protective layer in catalytic membranes. Finally, some critical unsolved challenges are raised in this field and some potential pathways are proposed to address them.« less
Rapid SAR and GPS Measurements and Models for Hazard Science and Situational Awareness
NASA Astrophysics Data System (ADS)
Owen, S. E.; Yun, S. H.; Hua, H.; Agram, P. S.; Liu, Z.; Moore, A. W.; Rosen, P. A.; Simons, M.; Webb, F.; Linick, J.; Fielding, E. J.; Lundgren, P.; Sacco, G. F.; Polet, J.; Manipon, G.
2016-12-01
The Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards is focused on rapidly generating higher level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. Space-based geodetic measurement techniques such as Interferometric Synthetic Aperture Radar (InSAR), Differential Global Positioning System (DGPS), SAR-based change detection, and image pixel tracking have recently become critical additions to our toolset for understanding and mapping the damage caused by earthquakes, volcanic eruptions, landslides, and floods. Analyses of these data sets are still largely handcrafted following each event and are not generated rapidly and reliably enough for response to natural disasters or for timely analysis of large data sets. The ARIA project, a joint venture co-sponsored by California Institute of Technology (Caltech) and by NASA through the Jet Propulsion Laboratory (JPL), has been capturing the knowledge applied to these responses and building it into an automated infrastructure to generate imaging products in near real-time that can improve situational awareness for disaster response. In addition, the ARIA project is developing the capabilities to provide automated imaging and analysis capabilities necessary to keep up with the imminent increase in raw data from geodetic imaging missions planned for launch by NASA, as well as international space agencies. We will present the progress we have made on automating the analysis of SAR data for hazard monitoring and response using data from Sentinel 1a/b as well as continuous GPS stations. Since the beginning of our project, our team has imaged events and generated response products for events around the world. These response products have enabled many conversations with those in the disaster response community about the potential usefulness of rapid SAR and GPS-based information. We will present progress on our data system technology that enables rapid and reliable production of imagery, as well as lessons learned from our engagement with FEMA and others in the hazard response community on the important actionable information that they need.
Metabolomics and Metabolic Diseases: Where Do We Stand?
Newgard, Christopher B
2017-01-10
Metabolomics, or the comprehensive profiling of small molecule metabolites in cells, tissues, or whole organisms, has undergone a rapid technological evolution in the past two decades. These advances have led to the application of metabolomics to defining predictive biomarkers for incident cardiometabolic diseases and, increasingly, as a blueprint for understanding those diseases' pathophysiologic mechanisms. Progress in this area and challenges for the future are reviewed here. Copyright © 2017 Elsevier Inc. All rights reserved.
[Development and perspective of bio-based chemical fiber industry].
Li, Zengjun
2016-06-25
Bio-based fiber is environment friendly, reproducible, easily biodegradable. Therefore, rapid development of bio-based fiber industry is an obvious in progress to replace petrochemical resources, develop sustainable economy, build resource saving and environment friendly society. This article describes the current development of bio-based fiber industry, analyzes existing problems, indicates the trends and objectives of bio-based fiber materials technology innovation and recommends developing bio-based fibers industry of our country.
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Tu, Nien-Ting; Wang, Xiao-Ming
2018-01-01
With the rapid progress of technology, the popularity of tablet computers and the development of e-book applications have brought the use of e-books as a learning tool under the spotlight. In the meantime, the aim of school education lies not only in providing students with knowledge but also in encouraging them to construct knowledge actively.…
NASA Technical Reports Server (NTRS)
Cath, Tzahi Y.; Adams, Dean V.; Childress, Amy; Gormly, Sherwin; Flynn, Michael
2005-01-01
Direct osmotic concentration (DOC) has been identified as a high potential technology for recycling of wastewater to drinking water in advanced life support (ALS) systems. As a result the DOC process has been selected for a NASA Rapid Technology Development Team (RTDT) effort. The existing prototype system has been developed to a Technology Readiness Level (TRL) 3. The current project focuses on advancing the development of this technology from TRL 3 to TRL 6 (appropriate for human rated testing). A new prototype of a DOC system is been designed and fabricated that addresses the deficiencies encountered during the testing of the original system and allowing the new prototype to achieve TRL 6. Background information is provided about the technologies investigated and their capabilities, results from preliminary tests, and the milestones plan and activities for the RTDT program intended to develop a second generation prototype of the DOC system.
Wireless technology in disease management and medicine.
Clifford, Gari D; Clifton, David
2012-01-01
Healthcare information, and to some extent patient management, is progressing toward a wireless digital future. This change is driven partly by a desire to improve the current state of medicine using new technologies, partly by supply-and-demand economics, and partly by the utility of wireless devices. Wired technology can be cumbersome for patient monitoring and can restrict the behavior of the monitored patients, introducing bias or artifacts. However, wireless technologies, while mitigating some of these issues, have introduced new problems such as data dropout and "information overload" for the clinical team. This review provides an overview of current wireless technology used for patient monitoring and disease management. We identify some of the major related issues and describe some existing and possible solutions. In particular, we discuss the rapidly evolving fields of telemedicine and mHealth in the context of increasingly resource-constrained healthcare systems.
Research on the application in disaster reduction for using cloud computing technology
NASA Astrophysics Data System (ADS)
Tao, Liang; Fan, Yida; Wang, Xingling
Cloud Computing technology has been rapidly applied in different domains recently, promotes the progress of the domain's informatization. Based on the analysis of the state of application requirement in disaster reduction and combining the characteristics of Cloud Computing technology, we present the research on the application of Cloud Computing technology in disaster reduction. First of all, we give the architecture of disaster reduction cloud, which consists of disaster reduction infrastructure as a service (IAAS), disaster reduction cloud application platform as a service (PAAS) and disaster reduction software as a service (SAAS). Secondly, we talk about the standard system of disaster reduction in five aspects. Thirdly, we indicate the security system of disaster reduction cloud. Finally, we draw a conclusion the use of cloud computing technology will help us to solve the problems for disaster reduction and promote the development of disaster reduction.
A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments
Ghamari, Mohammad; Janko, Balazs; Sherratt, R. Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna
2016-01-01
Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments. PMID:27338377
Liquid Tunable Microlenses based on MEMS techniques
Zeng, Xuefeng; Jiang, Hongrui
2013-01-01
The recent rapid development in microlens technology has provided many opportunities for miniaturized optical systems, and has found a wide range of applications. Of these microlenses, tunable-focus microlenses are of special interest as their focal lengths can be tuned using micro-scale actuators integrated with the lens structure. Realization of such tunable microlens generally relies on the microelectromechanical system (MEMS) technologies. Here, we review the recent progress in tunable liquid microlenses. The underlying physics relevant to these microlenses are first discussed, followed by description of three main categories of tunable microlenses involving MEMS techniques, mechanically driven, electrically driven, and those integrated within microfluidic systems. PMID:24163480
Gur, Ilan
2018-01-16
An overview presentation about ARPA-E's AMPED program. AMPED projects seek to develop advanced sensing, control, and power management technologies that redefine the way we think about battery management. Energy storage can significantly improve U.S. energy independence, efficiency, and security by enabling a new generation of electric vehicles. While rapid progress is being made in new battery materials and storage technologies, few innovations have emerged in the management of advanced battery systems. AMPED aims to unlock enormous untapped potential in the performance, safety, and lifetime of today's commercial battery systems exclusively through system-level innovations, and is thus distinct from existing efforts to enhance underlying battery materials and architectures.
A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments.
Ghamari, Mohammad; Janko, Balazs; Sherratt, R Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna
2016-06-07
Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments.
High throughput screening technologies for ion channels
Yu, Hai-bo; Li, Min; Wang, Wei-ping; Wang, Xiao-liang
2016-01-01
Ion channels are involved in a variety of fundamental physiological processes, and their malfunction causes numerous human diseases. Therefore, ion channels represent a class of attractive drug targets and a class of important off-targets for in vitro pharmacological profiling. In the past decades, the rapid progress in developing functional assays and instrumentation has enabled high throughput screening (HTS) campaigns on an expanding list of channel types. Chronologically, HTS methods for ion channels include the ligand binding assay, flux-based assay, fluorescence-based assay, and automated electrophysiological assay. In this review we summarize the current HTS technologies for different ion channel classes and their applications. PMID:26657056
Progress along the E-ELT instrumentation roadmap
NASA Astrophysics Data System (ADS)
Ramsay, Suzanne; Casali, Mark; Cirasuolo, Michele; Egner, Sebastian; Gray, Peter; Gonzáles Herrera, Juan Carlos; Hammersley, Peter; Haupt, Christoph; Ives, Derek; Jochum, Lieselotte; Kasper, Markus; Kerber, Florian; Lewis, Steffan; Mainieri, Vincenzo; Manescau, Antonio; Marchetti, Enrico; Oberti, Sylvain; Padovani, Paolo; Schmid, Christian; Schimpelsberger, Johannes; Siebenmorgen, Ralf; Szecsenyi, Orsolya; Tamai, Roberto; Vernet, Joël.
2016-08-01
A suite of seven instruments and associated AO systems have been planned as the "E-ELT Instrumentation Roadmap". Following the E-ELT project approval in December 2014, rapid progress has been made in organising and signing the agreements for construction with European universities and institutes. Three instruments (HARMONI, MICADO and METIS) and one MCAO module (MAORY) have now been approved for construction. In addition, Phase-A studies have begun for the next two instruments - a multi-object spectrograph and high-resolution spectrograph. Technology development is also ongoing in preparation for the final instrument in the roadmap, the planetary camera and spectrograph. We present a summary of the status and capabilities of this first set of instruments for the E-ELT.
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.
2003-01-01
The SAE G-11 RMSL Division and Probabilistic Methods Committee meeting sponsored by the Picatinny Arsenal during March 1-3, 2004 at Westin Morristown, will report progress on projects for probabilistic assessment of Army system and launch an initiative for probabilistic education. The meeting features several Army and industry Senior executives and Ivy League Professor to provide an industry/government/academia forum to review RMSL technology; reliability and probabilistic technology; reliability-based design methods; software reliability; and maintainability standards. With over 100 members including members with national/international standing, the mission of the G-11s Probabilistic Methods Committee is to enable/facilitate rapid deployment of probabilistic technology to enhance the competitiveness of our industries by better, faster, greener, smarter, affordable and reliable product development.
The use of hypermedia to increase the productivity of software development teams
NASA Technical Reports Server (NTRS)
Coles, L. Stephen
1991-01-01
Rapid progress in low-cost commercial PC-class multimedia workstation technology will potentially have a dramatic impact on the productivity of distributed work groups of 50-100 software developers. Hypermedia/multimedia involves the seamless integration in a graphical user interface (GUI) of a wide variety of data structures, including high-resolution graphics, maps, images, voice, and full-motion video. Hypermedia will normally require the manipulation of large dynamic files for which relational data base technology and SQL servers are essential. Basic machine architecture, special-purpose video boards, video equipment, optical memory, software needed for animation, network technology, and the anticipated increase in productivity that will result for the introduction of hypermedia technology are covered. It is suggested that the cost of the hardware and software to support an individual multimedia workstation will be on the order of $10,000.
Scheel, Christina M.; Samayoa, Blanca; Herrera, Alejandro; Lindsley, Mark D.; Benjamin, Lynette; Reed, Yvonne; Hart, John; Lima, Sandra; Rivera, Blanca E.; Raxcaco, Gabriella; Chiller, Tom; Arathoon, Eduardo; Gómez, Beatriz L.
2009-01-01
Histoplasma capsulatum infection causes significant morbidity and mortality in human immunodeficiency virus-infected individuals, particularly those in countries with limited access to rapid diagnostics or antiretroviral therapies. The fungus easily disseminates in persons with AIDS, resulting in progressive disseminated histoplasmosis (PDH), which can progress rapidly to death if undiagnosed. The availability of a simple, rapid method to detect H. capsulatum infection in less developed countries where the infection is endemic would dramatically decrease the time to diagnosis and treatment of PDH. We have developed an antigen-capture enzyme-linked immunosorbent assay (ELISA) to detect PDH antigenuria in infected patients. The assay uses polyclonal antibodies against H. capsulatum as both capture and detection reagents, and a standard reference curve is included to quantify antigenuria and ensure reproducibility. We evaluated this assay using specimens collected from patients with AIDS and culture-proven histoplasmosis in a Guatemalan clinic (n = 48), from healthy persons (n = 83), and from patients with other, nonhistoplasmosis diseases (n = 114). The ELISA demonstrated a sensitivity of 81% and a specificity of 95% in detecting H. capsulatum antigen in urine. This assay relies on simple technology that can be performed in institutions with limited resources. Use of this test will facilitate rapid diagnosis of PDH in countries where mortality is high, expediting treatment and likely reducing PDH-related mortality. PMID:19357311
Design and Development Comparison of Rapid Cycle Amine 1.0, 2.0, and 3.0
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Campbell, Colin; Papale, William; Murray, Sean; Wichowski, Robert; Conger, Bruce; McMillin, Summer
2016-01-01
The development of the Rapid Cycle Amine (RCA) swing-bed technology for carbon dioxide (CO2) removal has been in progress since favorable results were published in 1996. Shortly thereafter, a prototype was designed, developed, and tested successfully and delivered to Johnson Space Center in 1999. An improved prototype (RCA 1.0) was delivered to NASA in 2006 and sized for the extravehicular activity (EVA). The RCA swing-bed technology is a regenerative system which employs two alternating solid-amine sorbent beds to remove CO2 and water. The two-bed design employs a chemisorption process whereby the beds alternate between adsorption and desorption. This process provides for an efficient RCA operation that enables one bed to be in adsorb (uptake) mode, while the other is in the desorb (regeneration) mode. The RCA has progressed through several iterations of technology readiness levels. Test articles have now been designed, developed, and tested for the advanced space suit portable life support system (PLSS) including RCA 1.0, RCA 2.0, and RCA 3.0. The RCA 3.0 was the most recent RCA fabrication and was delivered to NASA-JSC in June 2015. The RCA 1.0 test article was designed with a pneumatically actuated linear motion spool valve. The RCA 2.0 and 3.0 test articles were designed with a valve assembly which allows for switching between uptake and regeneration modes while minimizing gas volume losses to the vacuum source. RCA 2.0 and 3.0 also include an embedded controller design to control RCA operation and provide the capability of interfacing with various sensors and other ventilation loop components. The RCA technology is low power, small, and has fulfilled all test requirements levied upon the technology during development testing thus far. This paper will provide an overview of the design and development of RCA 1.0, 2.0 and 3.0 including detail differences between the design specifications of each. Nomenclature.
Design and Development Comparison of Rapid Cycle Amine 1.0, 2.0, and 3.0
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Campbell, Colin; Papale, William; Murray, Sean; Wichowski, Robert; Conger, Bruce; McMillin, Summer
2016-01-01
The development of the Rapid Cycle Amine (RCA) swing-bed technology for carbon dioxide (CO2) removal has been in progress since favorable results were published in 1996. Shortly thereafter, a prototype was designed, developed, and tested successfully and delivered to Johnson Space Center in 1999. An improved prototype was delivered to NASA in 2006 and was notated as RCA 1.0 and sized for the extravehicular activity (EVA). The new RCA swing-bed technology is a regenerative system which employs two alternating solid-amine sorbent beds to remove CO2 and water. The two- bed design employs a chemisorption process whereby the beds alternate between adsorbtion and desorbsion. This process provides for an efficient operation of the RCA so that while one bed is in adsorb (uptake) mode, the other is in the desorb (regeneration) mode. The RCA has now progressed through several iterations of technology readiness levels. Test articles have now been designed, developed, and tested for the advanced space suit portable life support system (PLSS) including RCA 1.0, RCA 2.0, and RCA 3.0. The RCA 3.0 was the most recent RCA fabrication and was delivered to NASA-JSC in June 2015. The RCA 1.0 test article was designed with a pneumatically actuated linear motion spool valve. The RCA 2.0 and 3.0 test articles were designed with a valve assembly which allows for switching between uptake and regeneration modes while minimizing gas volume losses to the vacuum source. RCA 2.0 and 3.0 also include an embedded controller design to control RCA operation and provide the capability of interfacing with various sensors and other ventilation loop components. The RCA technology is low power, small, and has fulfilled all test requirements levied upon the technology during development testing thus far. This paper will provide an overreview of the design and development of RCA 1.0, 2.0 and 3.0 including detail differences between the design specifications of each.
Progress in video immersion using Panospheric imaging
NASA Astrophysics Data System (ADS)
Bogner, Stephen L.; Southwell, David T.; Penzes, Steven G.; Brosinsky, Chris A.; Anderson, Ron; Hanna, Doug M.
1998-09-01
Having demonstrated significant technical and marketplace advantages over other modalities for video immersion, PanosphericTM Imaging (PI) continues to evolve rapidly. This paper reports on progress achieved since AeroSense 97. The first practical field deployment of the technology occurred in June-August 1997 during the NASA-CMU 'Atacama Desert Trek' activity, where the Nomad mobile robot was teleoperated via immersive PanosphericTM imagery from a distance of several thousand kilometers. Research using teleoperated vehicles at DRES has also verified the exceptional utility of the PI technology for achieving high levels of situational awareness, operator confidence, and mission effectiveness. Important performance enhancements have been achieved with the completion of the 4th Generation PI DSP-based array processor system. The system is now able to provide dynamic full video-rate generation of spatial and computational transformations, resulting in a programmable and fully interactive immersive video telepresence. A new multi- CCD camera architecture has been created to exploit the bandwidth of this processor, yielding a well-matched PI system with greatly improved resolution. While the initial commercial application for this technology is expected to be video tele- conferencing, it also appears to have excellent potential for application in the 'Immersive Cockpit' concept. Additional progress is reported in the areas of Long Wave Infrared PI Imaging, Stereo PI concepts, PI based Video-Servoing concepts, PI based Video Navigation concepts, and Foveation concepts (to merge localized high-resolution views with immersive views).
NASA Astrophysics Data System (ADS)
Ono, Satoru; Watanabe, Takashi
In recent years, the rapid progress in the development of hardware and software technologies enables tiny and low cost information devices hereinafter referred to as Machine to be widely available. M2M (Machine to Machine) has been of much attention where many tiny machines are connected to each other through networks with minimal human intervention to provide smooth and intelligent management. M2M is a promising core technology providing timely, flexible, efficient and comprehensive service at low cost. M2M has wide variety of applications including energy management system, environmental monitoring system, intelligent transport system, industrial automation system and other applications. M2M consists of terminals and networks that connect them. In this paper, we mainly focus on M2M networking and mention the future direction of the technology.
Single-Cell Sequencing Technologies for Cardiac Stem Cell Studies.
Liu, Tiantian; Wu, Hongjin; Wu, Shixiu; Wang, Charles
2017-11-01
Today with the rapid advancements in stem cell studies and the promising potential of using stem cells in clinical therapy, there is an increasing demand for in-depth comprehensive analysis on individual cell transcriptome and epigenome, as they play critical roles in a number of cell functions such as cell differentiation, growth, and reprogramming. The development of single-cell sequencing technologies has helped in revealing some exciting new perspectives in stem cells and regenerative medicine research. Among the various potential applications, single-cell analysis for cardiac stem cells (CSCs) holds tremendous promises in understanding the mechanisms of heart development and regeneration, which might light up the path toward cell therapy for cardiovascular diseases. This review briefly highlights the recent progresses in single-cell sequencing analysis technologies and their applications in CSC research.
Lange, Belinda
2015-01-01
In the past 2 decades, researchers have demonstrated the potential for virtual reality (VR) technologies to provide engaging and motivating environments for stroke rehabilitation interventions. Much of the research has been focused on the exploratory phase, and jumps to intervention efficacy trials and scale-up evaluation have been made with limited understanding of the active ingredients in a VR intervention for stroke. The rapid pace of technology development is an additional challenge for this emerging field, providing a moving target for researchers developing and evaluating potential VR technologies. Recent advances in customized games and cutting-edge technology used for VR are beginning to allow for researchers to understand and control aspects of the intervention related to motivation, engagement, and motor control and learning. This article argues for researchers to take a progressive, step-wise approach through the stages of intervention development using evidence-based principles, take advantage of the data that can be obtained, and utilize measurement tools to design effective VR interventions for stroke rehabilitation that can be assessed through carefully designed efficacy and effectiveness trials. This article is motivated by the recent calls in the field of rehabilitation clinical trials research for carefully structured clinical trials that have progressed through the phases of research. PMID:25343960
Proffitt, Rachel; Lange, Belinda
2015-03-01
In the past 2 decades, researchers have demonstrated the potential for virtual reality (VR) technologies to provide engaging and motivating environments for stroke rehabilitation interventions. Much of the research has been focused on the exploratory phase, and jumps to intervention efficacy trials and scale-up evaluation have been made with limited understanding of the active ingredients in a VR intervention for stroke. The rapid pace of technology development is an additional challenge for this emerging field, providing a moving target for researchers developing and evaluating potential VR technologies. Recent advances in customized games and cutting-edge technology used for VR are beginning to allow for researchers to understand and control aspects of the intervention related to motivation, engagement, and motor control and learning. This article argues for researchers to take a progressive, step-wise approach through the stages of intervention development using evidence-based principles, take advantage of the data that can be obtained, and utilize measurement tools to design effective VR interventions for stroke rehabilitation that can be assessed through carefully designed efficacy and effectiveness trials. This article is motivated by the recent calls in the field of rehabilitation clinical trials research for carefully structured clinical trials that have progressed through the phases of research. © 2015 American Physical Therapy Association.
From Cleanroom to Desktop: Emerging Micro-Nanofabrication Technology for Biomedical Applications
Wang, Wei
2010-01-01
This review is motivated by the growing demand for low-cost, easy-to-use, compact-size yet powerful micro-nanofabrication technology to address emerging challenges of fundamental biology and translational medicine in regular laboratory settings. Recent advancements in the field benefit considerably from rapidly expanding material selections, ranging from inorganics to organics and from nanoparticles to self-assembled molecules. Meanwhile a great number of novel methodologies, employing off-the-shelf consumer electronics, intriguing interfacial phenomena, bottom-up self-assembly principles, etc., have been implemented to transit micro-nanofabrication from a cleanroom environment to a desktop setup. Furthermore, the latest application of micro-nanofabrication to emerging biomedical research will be presented in detail, which includes point-of-care diagnostics, on-chip cell culture as well as bio-manipulation. While significant progresses have been made in the rapidly growing field, both apparent and unrevealed roadblocks will need to be addressed in the future. We conclude this review by offering our perspectives on the current technical challenges and future research opportunities. PMID:21161384
From cleanroom to desktop: emerging micro-nanofabrication technology for biomedical applications.
Pan, Tingrui; Wang, Wei
2011-02-01
This review is motivated by the growing demand for low-cost, easy-to-use, compact-size yet powerful micro-nanofabrication technology to address emerging challenges of fundamental biology and translational medicine in regular laboratory settings. Recent advancements in the field benefit considerably from rapidly expanding material selections, ranging from inorganics to organics and from nanoparticles to self-assembled molecules. Meanwhile a great number of novel methodologies, employing off-the-shelf consumer electronics, intriguing interfacial phenomena, bottom-up self-assembly principles, etc., have been implemented to transit micro-nanofabrication from a cleanroom environment to a desktop setup. Furthermore, the latest application of micro-nanofabrication to emerging biomedical research will be presented in detail, which includes point-of-care diagnostics, on-chip cell culture as well as bio-manipulation. While significant progresses have been made in the rapidly growing field, both apparent and unrevealed roadblocks will need to be addressed in the future. We conclude this review by offering our perspectives on the current technical challenges and future research opportunities.
Patterson, Michael; Poussard, Allison; Taylor, Katherine; Seregin, Alexey; Smith, Jeanon; Peng, Bi-Hung; Walker, Aida; Linde, Jenna; Smith, Jennifer; Salazar, Milagros; Paessler, Slobodan
2011-11-21
Rapid and accurate identification of disease progression are key factors in testing novel vaccines and antivirals against encephalitic alphaviruses. Typical efficacy studies utilize a large number of animals and severe morbidity or mortality as an endpoint. New technologies provide a means to reduce and refine the animal use as proposed in Hume's 3Rs (replacement, reduction, refinement) described by Russel and Burch. In vivo imaging systems (IVIS) and bioluminescent enzyme technologies accomplish the reduction of animal requirements while shortening the experimental time and improving the accuracy in localizing active virus replication. In the case of murine models of viral encephalitis in which central nervous system (CNS) viral invasion occurs rapidly but the disease development is relatively slow, we visualized the initial brain infection and enhance the data collection process required for efficacy studies on antivirals or vaccines that are aimed at preventing brain infection. Accordingly, we infected mice through intranasal inoculation with the genetically modified pathogen, Venezuelan equine encephalitis, which expresses a luciferase gene. In this study, we were able to identify the invasion of the CNS at least 3 days before any clinical signs of disease, allowing for reduction of animal morbidity providing a humane means of disease and vaccine research while obtaining scientific data accurately and more rapidly. Based on our data from the imaging model, we confirmed the usefulness of this technology in preclinical research by demonstrating the efficacy of Ampligen, a TLR-3 agonist, in preventing CNS invasion. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lamarche, Kimberley; Park, Caroline; Fraser, Shawn; Rich, Mariann; MacKenzie, Susan
2016-01-01
The use of mobile devices by nurse practitioners (NPs) to meet an evolving technological landscape is expanding rapidly. A longitudinal study of the ways NP students "normalize" the use of mobile devices in clinical education was completed. This study used researcher-designed survey tools, including sociodemographic questions, and the numerical picture was augmented and interpreted in light of the textual data in the form of selected interviews. Data indicate that mobile technology is normalized in the social realm but still developing in the clinical realm. Progress is hindered by non-modelling by faculty, inconsistent healthcare policy and lack of understanding of the affordances available through this technology. Overall, mobile technology is utilized and normalized in practice; this in turn has influenced their ability to prepare students for practice. Data presented can assist educators and clinicians alike in developing a more fulsome understanding on how to appropriately incorporate mobile technology into education and practice.
Serum metabolomics of slow vs. rapid motor progression Parkinson's disease: a pilot study.
Roede, James R; Uppal, Karan; Park, Youngja; Lee, Kichun; Tran, Vilinh; Walker, Douglas; Strobel, Frederick H; Rhodes, Shannon L; Ritz, Beate; Jones, Dean P
2013-01-01
Progression of Parkinson's disease (PD) is highly variable, indicating that differences between slow and rapid progression forms could provide valuable information for improved early detection and management. Unfortunately, this represents a complex problem due to the heterogeneous nature of humans in regards to demographic characteristics, genetics, diet, environmental exposures and health behaviors. In this pilot study, we employed high resolution mass spectrometry-based metabolic profiling to investigate the metabolic signatures of slow versus rapidly progressing PD present in human serum. Archival serum samples from PD patients obtained within 3 years of disease onset were analyzed via dual chromatography-high resolution mass spectrometry, with data extraction by xMSanalyzer and used to predict rapid or slow motor progression of these patients during follow-up. Statistical analyses, such as false discovery rate analysis and partial least squares discriminant analysis, yielded a list of statistically significant metabolic features and further investigation revealed potential biomarkers. In particular, N8-acetyl spermidine was found to be significantly elevated in the rapid progressors compared to both control subjects and slow progressors. Our exploratory data indicate that a fast motor progression disease phenotype can be distinguished early in disease using high resolution mass spectrometry-based metabolic profiling and that altered polyamine metabolism may be a predictive marker of rapidly progressing PD.
Recent technological updates and clinical applications of induced pluripotent stem cells.
Diecke, Sebastian; Jung, Seung Min; Lee, Jaecheol; Ju, Ji Hyeon
2014-09-01
Induced pluripotent stem cells (iPSCs) were first described in 2006 and have since emerged as a promising cell source for clinical applications. The rapid progression in iPSC technology is still ongoing and directed toward increasing the efficacy of iPSC production and reducing the immunogenic and tumorigenic potential of these cells. Enormous efforts have been made to apply iPSC-based technology in the clinic, for drug screening approaches and cell replacement therapy. Moreover, disease modeling using patient-specific iPSCs continues to expand our knowledge regarding the pathophysiology and prospective treatment of rare disorders. Furthermore, autologous stem cell therapy with patient-specific iPSCs shows great propensity for the minimization of immune reactions and the provision of a limitless supply of cells for transplantation. In this review, we discuss the recent updates in iPSC technology and the use of iPSCs in disease modeling and regenerative medicine.
Tsurumaki, M; Kotake, M; Iwasaki, M; Saito, M; Tanaka, K; Aw, W; Fukuda, S; Tomita, M
2015-01-01
Inulin, a natural renewable polysaccharide resource produced by various plants in nature, has been reported to possess a significant number of diverse pharmaceutical and food applications. Recently, there has been rapid progress in high-throughput technologies and platforms to assay global mRNA, proteins, metabolites and gut microbiota. In this review, we will describe the current status of utilizing omics technologies of elucidating the impact of inulin and inulin-containing prebiotics at the transcriptome, proteome, metabolome and gut microbiome levels. Although many studies in this review have addressed the impact of inulin comprehensively, these omics technologies only enable us to understand physiological information at each different stage of mRNA, protein, metabolite and gut microbe. We believe that a synergistic approach is vital in order to fully illustrate the intricate beauty behind the relatively modest influence of food factors like inulin on host health. PMID:26619369
eHealth in cardiovascular medicine: A clinical update.
Saner, Hugo; van der Velde, Enno
2016-10-01
Demographic changes, progress in medicine technology and regional problems in providing healthcare to low density populations are posing great challenges to our healthcare systems. Rapid progress in computer sciences and information technologies have a great impact on the way healthcare will be delivered in the near future. This article describes opportunities and challenges of eHealth and telemedicine in the framework of our health systems and, in particular, in the context of today's cardiology services. The most promising applications of eHealth and telemedicine include: (a) prevention and lifestyle interventions; (b) chronic disease management including hypertension, diabetes and heart failure; (c) arrhythmia detection including early detection of atrial fibrillation and telemonitoring of devices such as pacemaker, internal cardioverter defibrillators and implantable rhythm monitoring devices; (d) telerehabilitation. Major obstacles to the integration of eHealth and telemedicine into daily clinical practice include limited large-scale evidence, in particular, for cost-effectiveness, as well as lack of interoperability, inadequate or fragmented legal frameworks and lack of reimbursement. An important challenge for those involved in these new technologies will be to keep the main focus on patient's individual needs and to carefully evaluate the evidence behind the practice. © The European Society of Cardiology 2016.
Ubiquitous Health in Korea: Progress, Barriers, and Prospects
Lee, Yountae
2012-01-01
Objectives Korea has one of the most advanced information technology (IT) infrastructures in the world, and the application of IT in health systems is rapidly progressing from computerization to information systems, ubiquitous systems, and smart systems. This study aims to analyze Korean environments in regards to the development of their u-Health industry and propose directions for u-Healthcare services based on this analysis. Methods This paper reviews the background, progress history, and current status of u-Health in Korea, and suggests strategies for the u-Health industry based on an analysis of its barriers and obstacles. Results When u-Health was introduced to Koreans, their policies and approaches focused mainly on environmental factors, yet these efforts have not progressed further to impact the u-Healthcare service industry itself. To develop the u-Healthcare industry, four points need to be considered: the development and support of the practical service model, institutional support, support of core technology and industry, and the institutionalization of health management service. Conclusions Korea is at a strategic point to start building u-Healthcare service delivery models. u-Healthcare is a healthcare service that provides added value through u-Health environments. By identifying critical success factors in u-Healthcare, we can strengthen the u-Health industry and implement policies to coordinate our efforts in the process of value chains to which we belong. PMID:23346474
Microbial fuel cells - Applications for generation of electrical power and beyond.
Mathuriya, Abhilasha Singh; Yakhmi, J V
2016-01-01
A Microbial Fuel Cell is a bioelectrochemical device that exploits metabolic activities of living microorganisms for generation of electric current. The usefulness and unique and exclusive architecture of this device has received wide attention recently of engineers and researchers of various disciplines such as microbiologists, chemical engineers, biotechnologists, environment engineers and mechanical engineers, and the subject of MFCs has thereby progressed as a well-developed technology. Sustained innovations and continuous development efforts have established the usefulness of MFCs towards many specialized and value-added applications beyond electricity generation, such as wastewater treatment and implantable body devices. This review is an attempt to provide an update on this rapidly growing technology.
Evanescent wave fluorescence biosensors: Advances of the last decade
Taitt, Chris Rowe; Anderson, George P.; Ligler, Frances S.
2015-01-01
Biosensor development has been a highly dynamic field of research and has progressed rapidly over the past two decades. The advances have accompanied the breakthroughs in molecular biology, nanomaterial sciences, and most importantly computers and electronics. The subfield of evanescent wave fluorescence biosensors has also matured dramatically during this time. Fundamentally, this review builds on our earlier 2005 review. While a brief mention of seminal early work will be included, this current review will focus on new technological developments as well as technology commercialized in just the last decade. Evanescent wave biosensors have found a wide array applications ranging from clinical diagnostics to biodefense to food testing; advances in those applications and more are described herein. PMID:26232145
Invited review article: Large ring lasers for rotation sensing.
Schreiber, Karl Ulrich; Wells, Jon-Paul R
2013-04-01
Over the last two decades a series of large ring laser gyroscopes have been built having an unparalleled scale factor. These upscaled devices have improved the sensitivity and stability for rotation rate measurements by six orders of magnitude when compared to previous commercial developments. This progress has made possible entirely new applications of ring laser gyroscopes in the fields of geophysics, geodesy, and seismology. Ring lasers are currently the only viable measurement technology, which is directly referenced to the instantaneous rotation axis of the Earth. The sensor technology is rapidly developing. This is evidenced by the first experimentally viable proposals to make terrestrial tests of general relativistic effects such as the frame dragging of the rotating Earth.
Engineering Approaches to Illuminating Brain Structure and Dynamics
Deisseroth, Karl; Schnitzer, Mark J.
2017-01-01
Historical milestones in neuroscience have come in diverse forms, ranging from the resolution of specific biological mysteries via creative experimentation to broad technological advances allowing neuroscientists to ask new kinds of questions. The continuous development of tools is driven with a special necessity by the complexity, fragility, and inaccessibility of intact nervous systems, such that inventive technique development and application drawing upon engineering and the applied sciences has long been essential to neuroscience. Here we highlight recent technological directions in neuroscience spurred by progress in optical, electrical, mechanical, chemical, and biological engineering. These research areas are poised for rapid growth and will likely be central to the practice of neuroscience well into the future. PMID:24183010
Bringing DNA vaccines closer to commercial use.
Carvalho, Joana A; Prazeres, Duarte M F; Monteiro, Gabriel A
2009-10-01
Progress in the application of DNA vaccines as an immunization protocol is evident from the increasing number of such vaccines under evaluation in clinical trials and by the recent approval of several DNA vaccine products for veterinary applications. DNA vaccine technology offers important therapeutic and commercial advantages compared with conventional approaches, including the opportunity to target pathogens characterized by significant genetic diversity using a safe immunization platform, and the ability to use a simple, rapid and well-characterized production method. However, further optimization of DNA vaccine technology through the use of improved constructs, delivery systems and immunization protocols is necessary to clinically achieve the promising results that have been demonstrated in preclinical models.
Yang, Yonggang; Sun, Guoping; Xu, Meiying
2010-07-01
Microbial fuel cells (MFCs) are bio-electrochemical reactors that have the capacity to convert chemical energy of biodegradable organic chemicals to electrical energy, and developed rapidly in the past few years. With an increasing concern for energy crisis and environment pollution, MFCs has became a promising technology in the researches of environment pollution treatments and biology electricity. In this paper, we offered a comprehensive review of the recent research progress of MFCs in environment pollution treatment, includes denitrification, desufurization, organic pollutants degradation, heavy metal reduction and landfill leachate treatment. Also, we pointed out the challenges and problems which were bottle necks for a wide application of MFCs and the potential future development.
Progression: things we need to remember but often forget to think about.
Artes, Paul H
2008-06-01
Detecting progression, and estimating the rate of change, are among the most important challenges in the care of patients with glaucoma. With rapidly developing technology, there is a need to rethink what we mean to measure, why we measure it, and how we think about these measurements and how they relate to the disease. This article outlines, informally, a small number of issues that may be important to clinicians and researchers alike but are not often discussed in the literature. It is intended to be useful as a highly selective minireview of recent work and a stimulus for future research. It is organized under three main headings that sum up the main message of each section.
Leijtens, Tomas; Giovenzana, Tommaso; Habisreutinger, Severin N; Tinkham, Jonathan S; Noel, Nakita K; Kamino, Brett A; Sadoughi, Golnaz; Sellinger, Alan; Snaith, Henry J
2016-03-09
Solar cells based on organic-inorganic perovskite semiconductor materials have recently made rapid improvements in performance, with the best cells performing at over 20% efficiency. With such rapid progress, questions such as cost and solar cell stability are becoming increasingly important to address if this new technology is to reach commercial deployment. The moisture sensitivity of commonly used organic-inorganic metal halide perovskites has especially raised concerns. Here, we demonstrate that the hygroscopic lithium salt commonly used as a dopant for the hole transport material in perovskite solar cells makes the top layer of the devices hydrophilic and causes the solar cells to rapidly degrade in the presence of moisture. By using novel, low cost, and hydrophobic hole transporters in conjunction with a doping method incorporating a preoxidized salt of the respective hole transporters, we are able to prepare efficient perovskite solar cells with greatly enhanced water resistance.
Transgenic Wheat, Barley and Oats: Production and Characterization
NASA Astrophysics Data System (ADS)
Lazzeri, Paul A.; Jones, Huw D.
Ever since the first developments in plant transformation technology using model plant species in the early 1980s, there has been a body of plant science research devoted to adapting these techniques to the transformation of crop plants. For some crop species progress was relatively rapid, but in other crop groups such as the small grain cereals, which were not readily amenable to culture in vitro and were not natural hosts to Agrobacterium, it has taken nearly two decades to develop reliable and robust transformation methods.
NASA Astrophysics Data System (ADS)
Bouma, Brett E.
1998-09-01
The pace of technological advancement of Optical Coherence Tomography (OCT) over the last several years has been extremely rapid. The field has progressed from one-dimensional low-coherence ranging to full three-dimensional imaging with individual two-dimensional images aquired at near video rate in a span of less than eight years. Imaging applications have included polymers and advanced composites, Ophthalmology, Developmental Biology, Gastroenterology, Urology, Cardiology, Neurology, and Gynecology. These preliminary studies indicate the great potential for OCT to make a significant impact, especially in clinical medicine.
NASA Astrophysics Data System (ADS)
Cole, M.
2017-12-01
Advanced technology plays a key role in enabling future Earth-observing missions needed for global monitoring and climate research. Rapid progress over the past decade and anticipated for the coming decades have diminished the size of some satellites while increasing the amount of data and required pace of integration and analysis. Sensor web developments provide correlations to constellations of smallsats. Reviewing current advances in sensor webs and requirements for constellations will improve planning, operations, and data management for future architectures of multiple satellites with a common mission goal.
1978-10-17
because of the rapid progress made in laser technology to date. The use of the Laser Microprobe in spectrochemical analysis of the elements is based on...spectroscopy to vaporize microscopic amounts of samples for elemental analysis . On the other hand, the intense, highly monochromatic laser beam is being...employed as a light source for Raman spectroscopy to study molecular structure. These two uses of lasers in spectroscopic analysis have been sucessful
Cheng, Lina; Sun, Da-Wen; Zhu, Zhiwei; Zhang, Zi
2017-03-04
Freezing plays an important role in food preservation and the emergence of rapid freezing technologies can be highly beneficial to the food industry. This paper reviews some novel food freezing technologies, including high-pressure freezing (HPF), ultrasound-assisted freezing (UAF), electrically disturbed freezing (EF) and magnetically disturbed freezing (MF), microwave-assisted freezing (MWF), and osmo-dehydro-freezing (ODF). HPF and UAF can initiate ice nucleation rapidly, leading to uniform distribution of ice crystals and the control of their size and shape. Specifically, the former is focused on increasing the degree of supercooling, whereas the latter aims to decrease it. Direct current electric freezing (DC-EF) and alternating current electric freezing (AC-EF) exhibit different effects on ice nucleation. DC-EF can promote ice nucleation and AC-EF has the opposite effect. Furthermore, ODF has been successfully used for freezing various vegetables and fruit. MWF cannot control the nucleation temperature, but can decrease supercooling degree, thus decreasing the size of ice crystals. The heat and mass transfer processes during ODF have been investigated experimentally and modeled mathematically. More studies should be carried out to understand the effects of these technologies on food freezing process.
Weiss, Patrice L Tamar; Kedar, Rochelle; Shahar, Meir
2006-04-01
The application of virtual reality (VR) to rehabilitation is a young, interdisciplinary field where clinical implementation very rapidly follows scientific discovery and technological advancement. Implementation is often so rapid that demonstration of intervention efficacy by investigators, and establishment of research and development priorities by funding bodies tend to be more reactive than proactive. An examination of the dynamic unfolding of the history of our young discipline may help us recognize the facilitators of current practice and identify the barriers that limit greater progress. This paper presents a first step towards the examination of the past and future growth of VR-based rehabilitation by presenting the use of concept maps to explore the publication history of application of VR to rehabilitation.
Recent progress on thin-film encapsulation technologies for organic electronic devices
NASA Astrophysics Data System (ADS)
Yu, Duan; Yang, Yong-Qiang; Chen, Zheng; Tao, Ye; Liu, Yun-Fei
2016-03-01
Among the advanced electronic devices, flexible organic electronic devices with rapid development are the most promising technologies to customers and industries. Organic thin films accommodate low-cost fabrication and can exploit diverse molecules in inexpensive plastic light emitting diodes, plastic solar cells, and even plastic lasers. These properties may ultimately enable organic materials for practical applications in industry. However, the stability of organic electronic devices still remains a big challenge, because of the difficulty in fabricating commercial products with flexibility. These organic materials can be protected using substrates and barriers such as glass and metal; however, this results in a rigid device and does not satisfy the applications demanding flexible devices. Plastic substrates and transparent flexible encapsulation barriers are other possible alternatives; however, these offer little protection to oxygen and water, thus rapidly degrading the devices. Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation into the flexible devices. Because of these (and other) reasons, there has been an intense interest in developing transparent barrier materials with much lower permeabilities, and their market is expected to reach over 550 million by 2025. In this study, the degradation mechanism of organic electronic devices is reviewed. To increase the stability of devices in air, several TFE technologies were applied to provide efficient barrier performance. In this review, the degradation mechanism of organic electronic devices, permeation rate measurement, traditional encapsulation technologies, and TFE technologies are presented.
State-Level Cancer Quality Assessment and Research
Lipscomb, Joseph; Gillespie, Theresa W.
2016-01-01
Over a decade ago, the Institute of Medicine called for a national cancer data system in the United States to support quality-of-care assessment and improvement, including research on effective interventions. Although considerable progress has been achieved in cancer quality measurement and effectiveness research, the nation still lacks a population-based data infrastructure for accurately identifying cancer patients and tracking services and outcomes over time. For compelling reasons, the most effective pathway forward may be the development of state-level cancer data systems, in which central registry data are linked to multiple public and private secondary sources. These would include administrative/claims files from Medicare, Medicaid, and private insurers. Moreover, such a state-level system would promote rapid learning by encouraging adoption of near-real-time reporting and feedback systems, such as the Commission on Cancer’s new Rapid Quality Reporting System. The groundwork for such a system is being laid in the state of Georgia, and similar work is advancing in other states. The pace of progress depends on the successful resolution of issues related to the application of information technology, financing, and governance. PMID:21799333
From Crop Domestication to Super-domestication
Vaughan, D. A.; Balázs, E.; Heslop-Harrison, J. S.
2007-01-01
Research related to crop domestication has been transformed by technologies and discoveries in the genome sciences as well as information-related sciences that are providing new tools for bioinformatics and systems' biology. Rapid progress in archaeobotany and ethnobotany are also contributing new knowledge to understanding crop domestication. This sense of rapid progress is encapsulated in this Special Issue, which contains 18 papers by scientists in botanical, crop sciences and related disciplines on the topic of crop domestication. One paper focuses on current themes in the genetics of crop domestication across crops, whereas other papers have a crop or geographic focus. One feature of progress in the sciences related to crop domestication is the availability of well-characterized germplasm resources in the global network of genetic resources centres (genebanks). Germplasm in genebanks is providing research materials for understanding domestication as well as for plant breeding. In this review, we highlight current genetic themes related to crop domestication. Impressive progress in this field in recent years is transforming plant breeding into crop engineering to meet the human need for increased crop yield with the minimum environmental impact – we consider this to be ‘super-domestication’. While the time scale of domestication of 10 000 years or less is a very short evolutionary time span, the details emerging of what has happened and what is happening provide a window to see where domestication might – and can – advance in the future. PMID:17940074
Non-US electrodynamic launchers research and development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, J.V.; Batteh, J.H.; Greig, J.R.
Electrodynamic launcher research and development work of scientists outside the United States is analyzed and assessed by six internationally recognized US experts in the field of electromagnetic and electrothermal launchers. The assessment covers five broad technology areas: (1) Experimental railguns; (2) Railgun theory and design; (3) Induction launchers; (4) Electrothermal guns; (5) Energy storage and power supplies. The overall conclusion is that non-US work on electrodynamic launchers is maturing rapidly after a relatively late start in many countries. No foreign program challenges the US efforts in scope, but it is evident that the United States may be surpassed in somemore » technologies within the next few years. Until recently, published Russian work focused on hypervelocity for research purposes. Within the last two years, large facilities have been described where military-oriented development has been underway since the mid-1980s. Financial support for these large facilities appears to have collapsed, leaving no effective effort to develop practical launchers for military or civilian applications. Electrodynamic launcher research in Europe is making rapid progress by focusing on a single application, tactical launchers for the military. Four major laboratories, in Britain, France, Germany, and the Netherlands, are working on this problem. Though narrower in scope than the US effort, the European work enjoys a continuity of support that has accelerated its progress. The next decade will see the deployment of electrodynamic launcher technology, probably in the form of an electrothermal-chemical upgrade for an existing gun system. The time scale for deployment of electromagnetic launchers is entirely dependent on the level of research-and-development effort. If resources remain limited, the advantage will lie with cooperative efforts that have reasonably stable funding such as the present French-German program.« less
NASA Astrophysics Data System (ADS)
Schattenburg, Mark
Development of a Critical Angle Transmission Grating Spectrometer With APRA and SAT support, MIT has developed a unique blazed soft x-ray diffraction grating called the critical-angle transmission (CAT) grating. This device combines the high diffraction efficiency and resolving power of blazed reflection gratings with the low mass, low power, compact packaging and simple alignment of transmission gratings. We have shown that a spectrometer based on CAT gratings represents a huge leap forward in instrument scientific performance compared to previous missions, leading to much increased collecting area and spectral resolving power, which in turn results in orders-ofmagnitude improvement in figures-of-merit for emission and absorption line spectroscopy. MIT proposes to bring CAT x-ray grating spectrometer (CATXGS) technology to a higher Technology Readiness Level (TRL). We will increase fabrication yield and grating performance, and develop bonding techniques for grating membranes and alignment techniques for grating arrays. We will build and test robust grating arrays for space deployment, and perform thorough environmental testing. We are very close to achieving TRL4 and ready to move on to TRL5, which we can achieve within the period covered by this proposal. Our rapid progress over the last year was made possible by significant prior investments in our infrastructure, but further progress will require further investments. Since 2007 we have - with NASA support - demonstrated the CAT grating principle, and prototypes of increasing quality and size have verified theoretical predictions, putting the technology at a solid TRL3. Recent NASA and MIT investments in fabrication and metrology infrastructure has been justified by our rapid progress during the last year: the fabrication of practically defect-free CAT gratings with record diffraction efficiency, the demonstration of extended bandpass CAT gratings using conformal deposition of thin metal films via atomic layer deposition (ALD), and the demonstration of record-setting resolving power for an XGS on the order of R = 10,000, which exceeds the requirements for all currently proposed mission concepts. Grating fabrication still consumes the lion's share of our efforts and time. In order to maintain momentum and continue progress towards TRL5 in an efficient manner we need to improve our fabrication infrastructure further to accelerate grating fabrication and increase yield, so we can devote more resources to the new work required for reaching TRL5.
Internet-based computer technology on radiotherapy.
Chow, James C L
2017-01-01
Recent rapid development of Internet-based computer technologies has made possible many novel applications in radiation dose delivery. However, translational speed of applying these new technologies in radiotherapy could hardly catch up due to the complex commissioning process and quality assurance protocol. Implementing novel Internet-based technology in radiotherapy requires corresponding design of algorithm and infrastructure of the application, set up of related clinical policies, purchase and development of software and hardware, computer programming and debugging, and national to international collaboration. Although such implementation processes are time consuming, some recent computer advancements in the radiation dose delivery are still noticeable. In this review, we will present the background and concept of some recent Internet-based computer technologies such as cloud computing, big data processing and machine learning, followed by their potential applications in radiotherapy, such as treatment planning and dose delivery. We will also discuss the current progress of these applications and their impacts on radiotherapy. We will explore and evaluate the expected benefits and challenges in implementation as well.
Microfluidics for genome-wide studies involving next generation sequencing
Murphy, Travis W.; Lu, Chang
2017-01-01
Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine. PMID:28396707
Biosensors for Sustainable Food Engineering: Challenges and Perspectives.
Neethirajan, Suresh; Ragavan, Vasanth; Weng, Xuan; Chand, Rohit
2018-03-12
Current food production faces tremendous challenges from growing human population, maintaining clean resources and food qualities, and protecting climate and environment. Food sustainability is mostly a cooperative effort resulting in technology development supported by both governments and enterprises. Multiple attempts have been promoted in tackling challenges and enhancing drivers in food production. Biosensors and biosensing technologies with their applications, are being widely applied to tackling top challenges in food production and its sustainability. Consequently, a growing demand in biosensing technologies exists in food sustainability. Microfluidics represents a technological system integrating multiple technologies. Nanomaterials, with its technology in biosensing, is thought to be the most promising tool in dealing with health, energy, and environmental issues closely related to world populations. The demand of point of care (POC) technologies in this area focus on rapid, simple, accurate, portable, and low-cost analytical instruments. This review provides current viewpoints from the literature on biosensing in food production, food processing, safety and security, food packaging and supply chain, food waste processing, food quality assurance, and food engineering. The current understanding of progress, solution, and future challenges, as well as the commercialization of biosensors are summarized.
Digital health is a cultural transformation of traditional healthcare.
Meskó, Bertalan; Drobni, Zsófia; Bényei, Éva; Gergely, Bence; Győrffy, Zsuzsanna
2017-01-01
Under the term "digital health", advanced medical technologies, disruptive innovations and digital communication have gradually become inseparable from providing best practice healthcare. While the cost of treating chronic conditions is increasing and doctor shortages are imminent worldwide, the needed transformation in the structure of healthcare and medicine fails to catch up with the rapid progress of the medical technology industry. This transition is slowed down by strict regulations; the reluctance of stakeholders in healthcare to change; and ignoring the importance of cultural changes and the human factor in an increasingly technological world. With access and adoption of technology getting higher, the risk of patients primarily turning to an accessible, but unregulated technological solution for their health problem is likely to increase. In this paper, we discuss how the old paradigm of the paternalistic model of medicine is transforming into an equal level partnership between patients and professionals and how it is aided and augmented by disruptive technologies. We attempt to define what digital health means and how it affects the status quo of care and also the study design in implementing technological innovations into the practice of medicine.
NASA Astrophysics Data System (ADS)
Wade, Jessica; Hollis, Joseph Razzell; Wood, Sebastian
2018-04-01
The combination of printing technology with manufacturing electronic devices enables a new paradigm of printable electronics, where 'smart' functionality can be readily incorporated into almost any product at low cost. Over recent decades, rapid progress has been made in this field, which is now emerging into the industrial andcommercial realm. However, successful development and commercialisation on a large scale presents some significant technical challenges. For fully-printable electronic systems, all the component parts must be deposited from solutions (inks), requiring the development of new inorganic, organic and hybrid materials.A variety of traditional printing techniques are being explored and adapted forprinting these new materials in ways that result in the best performing electronicdevices. Whilst printed electronics research has initially focused on traditional typesof electronic device such as light-emitting diodes, transistors, and photovoltaics, it is increasingly apparent that a much wider range of applications can be realised. The soft and stretchable nature of printable materials makes them perfect candidates forbioelectronics, resulting in a wealth of research looking at biocompatible printable inks and biosensors. Regardless of application, the properties of printed electronicmaterials depend on the chemical structures, processing conditions, device architecture,and operational conditions, the complex inter-relationships of which aredriving ongoing research. We focus on three particular 'hot topics', where attention is currently focused: novel materials, characterisation techniques, and device stability. With progress advancing very rapidly, printed electronics is expected to grow over the next decade into a key technology with an enormous economic and social impact.
NASA Technical Reports Server (NTRS)
1971-01-01
Investigations were performed at the national economic level to explore the aggregate effects of technological progress on economic growth. Inadequacies in existing marco-economic yardsticks forced the study to focus on the cost savings effects achieved through technological progress. The central questions discussed in this report cover: (1) role of technological progress in economic growth, (2) factors determining the rate of economic growth due to technological progress; (3) quantitative measurements of relationships between technological progress, its determinants, and subsequent economic growth; and (4) effects of research and development activities of the space program. For Part 2, see N72-32174.
Augmented reality for personalized nanomedicines.
Lee, Yugyung; Lee, Chi H
As our understanding of onset and progress of diseases at the genetic and molecular level rapidly progresses, the potential of advanced technologies, such as 3D-printing, Socially-Assistive Robots (SARs) or augmented reality (AR), that are applied to personalized nanomedicines (PNMs) to alleviate pathological conditions, has become more prominent. Among advanced technologies, AR in particular has the greatest potential to address those challenges and facilitate the translation of PNMs into formidable clinical application of personalized therapy. As AR is about to adapt additional new methods, such as speech, voice recognition, eye tracing and motion tracking, to enable interaction with host response or biological systems in 3-D space, a combination of multiple approaches to accommodate varying environmental conditions, such as public noise and atmosphere brightness, will be explored to improve its therapeutic outcomes in clinical applications. For instance, AR glasses still being developed by Facebook or Microsoft will serve as new platform that can provide people with the health information they are interested in or various measures through which they can interact with medical services. This review has addressed the current progress and impact of AR on PNMs and its application to the biomedical field. Special emphasis is placed on the application of AR based PNMs to the treatment strategies against senior care, drug addiction and medication adherence. Published by Elsevier Inc.
Day, Gregory S; Tang-Wai, David F
2014-01-01
Making a diagnosis of rapidly progressive dementia requires practical adaptation of the skills used to assess patients with chronic causes of cognitive impairment. An expedited assessment, commensurate with the accelerated pace of the disease, is required to identify the cause of symptoms amidst a myriad of possibilities. Features upon history, physical examination and cognitive assessment that support specific diagnoses are reviewed, and a stratified approach to testing is presented. The use of readily-accessible investigations is prioritized, acknowledging the implications and applications of novel diagnostic tests. The coordinated use of clinical and laboratory measures are promoted as a means of facilitating rapid evaluation, with the ultimate goal of identifying patients with potentially reversible causes of rapidly progressive dementia.
Maintaining Adequate CO2 Washout for an Advanced EMU via a New Rapid Cycle Amine Technology
NASA Technical Reports Server (NTRS)
Chullen, Cinda
2011-01-01
Over the past several years, NASA has realized tremendous progress in Extravehicular Activity (EVA) technology development. This has been evidenced by the progressive development of a new Rapic Cycle Amine (RCA) system for the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support Subsystem (PLSS). The PLSS is responsible for the life support of the crew member in the spacesuit. The RCA technology is responsible for carbon dioxide (CO2) and humidity control. Another aspect of the RCA is that it is on-back vacuum-regenerable, efficient, and reliable. The RCA also simplifies the PLSS schematic by eliminating the need for a condensing heat exchanger for humidity control in the current EMU. As development progresses on the RCA, it is important that the sizing be optimized so that the demand on the PLSS battery is minimized. As well, maintaining the CO2 washout at adequate levels during an EVA is an absolute requirement of the RCA and associated ventilation system. Testing has been underway in-house at NASA Johnson Space Center and analysis has been initiated to evaluate whether the technology provides exemplary performance in ensuring that the CO2 is removed sufficiently enough and the ventilation flow is adequate enough to maintain CO2 1 Project Engineer, Space Suit and Crew Survival Systems Branch, Crew and Thermal Systems Division, 2101 NASA Parkway, Houston, TX 77058/EC5. washout in the AEMU spacesuit helmet of the crew member during an EVA. This paper will review the recent developments of the RCA unit, the testing results performed in-house with a spacesuit simulator, and the associated analytical work along with insights from the medical aspect on the testing.
Rossos, P G; St-Cyr, O; Purdy, B; Toenjes, C; Masino, C; Chmelnitsky, D
2015-01-01
Despite decades of international experience with the use of information and communication technologies in healthcare delivery, widespread telehealth adoption remains limited and progress slow. Escalating health system challenges related to access, cost and quality currently coincide with rapid advancement of affordable and reliable internet based communication technologies creating unprecedented opportunities and incentives for telehealth. In this paper, we will describe how Human Factors Engineering (HFE) and user-centric elements have been incorporated into the establishment of telehealth within a large academic medical center to increase acceptance and sustainability. Through examples and lessons learned we wish to increase awareness of HFE and its importance in the successful implementation, innovation and growth of telehealth programs.
Advances in the biological effects of terahertz wave radiation.
Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun
2014-01-01
The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.
Patient centric formulations for paediatrics and geriatrics: Similarities and differences.
Hanning, Sara M; Lopez, Felipe L; Wong, Ian C K; Ernest, Terry B; Tuleu, Catherine; Orlu Gul, Mine
2016-10-30
Paediatrics and geriatrics both represent highly heterogenous populations and require special consideration when developing appropriate dosage forms. This paper discusses similarities, differences and considerations with respect to the development of appropriate medicine formulations for paediatrics and geriatrics. Arguably the most significant compliance challenge in older people is polypharmacy, whereas for children the largest barrier is taste. Pharmaceutical technology has progressed rapidly and technologies including FDCs, multi-particulates and orodispersible dosage forms provide unprecedented opportunities to develop novel and appropriate formulations for both old and new drugs. However, it is important for the formulation scientists to work closely with patients, carers and clinicians to develop such formulations for both the paediatric and geriatric population. Copyright © 2016 Elsevier B.V. All rights reserved.
Gapinske, Michael; Tague, Nathan; Winter, Jackson; Underhill, Gregory H; Perez-Pinera, Pablo
2018-01-01
Gene editing technologies are revolutionizing fields such as biomedicine and biotechnology by providing a simple means to manipulate the genetic makeup of essentially any organism. Gene editing tools function by introducing double-stranded breaks at targeted sites within the genome, which the host cells repair preferentially by Non-Homologous End Joining. While the technologies to introduce double-stranded breaks have been extensively optimized, this progress has not been matched by the development of methods to integrate heterologous DNA at the target sites or techniques to detect and isolate cells that harbor the desired modification. We present here a technique for rapid introduction of vectors at target sites in the genome that enables efficient isolation of successfully edited cells.
Engineering approaches to illuminating brain structure and dynamics.
Deisseroth, Karl; Schnitzer, Mark J
2013-10-30
Historical milestones in neuroscience have come in diverse forms, ranging from the resolution of specific biological mysteries via creative experimentation to broad technological advances allowing neuroscientists to ask new kinds of questions. The continuous development of tools is driven with a special necessity by the complexity, fragility, and inaccessibility of intact nervous systems, such that inventive technique development and application drawing upon engineering and the applied sciences has long been essential to neuroscience. Here we highlight recent technological directions in neuroscience spurred by progress in optical, electrical, mechanical, chemical, and biological engineering. These research areas are poised for rapid growth and will likely be central to the practice of neuroscience well into the future. Copyright © 2013 Elsevier Inc. All rights reserved.
Flow cytogenetics and chromosome sorting.
Cram, L S
1990-06-01
This review of flow cytogenetics and chromosome sorting provides an overview of general information in the field and describes recent developments in more detail. From the early developments of chromosome analysis involving single parameter or one color analysis to the latest developments in slit scanning of single chromosomes in a flow stream, the field has progressed rapidly and most importantly has served as an important enabling technology for the human genome project. Technological innovations that advanced flow cytogenetics are described and referenced. Applications in basic cell biology, molecular biology, and clinical investigations are presented. The necessary characteristics for large number chromosome sorting are highlighted. References to recent review articles are provided as a starting point for locating individual references that provide more detail. Specific references are provided for recent developments.
Pant, Saumya; Weiner, Russell; Marton, Matthew J.
2014-01-01
Over the past decade, next-generation sequencing (NGS) technology has experienced meteoric growth in the aspects of platform, technology, and supporting bioinformatics development allowing its widespread and rapid uptake in research settings. More recently, NGS-based genomic data have been exploited to better understand disease development and patient characteristics that influence response to a given therapeutic intervention. Cancer, as a disease characterized by and driven by the tumor genetic landscape, is particularly amenable to NGS-based diagnostic (Dx) approaches. NGS-based technologies are particularly well suited to studying cancer disease development, progression and emergence of resistance, all key factors in the development of next-generation cancer Dxs. Yet, to achieve the promise of NGS-based patient treatment, drug developers will need to overcome a number of operational, technical, regulatory, and strategic challenges. Here, we provide a succinct overview of the state of the clinical NGS field in terms of the available clinically targeted platforms and sequencing technologies. We discuss the various operational and practical aspects of clinical NGS testing that will facilitate or limit the uptake of such assays in routine clinical care. We examine the current strategies for analytical validation and Food and Drug Administration (FDA)-approval of NGS-based assays and ongoing efforts to standardize clinical NGS and build quality control standards for the same. The rapidly evolving companion diagnostic (CDx) landscape for NGS-based assays will be reviewed, highlighting the key areas of concern and suggesting strategies to mitigate risk. The review will conclude with a series of strategic questions that face drug developers and a discussion of the likely future course of NGS-based CDx development efforts. PMID:24860780
Progress in ultrafast laser processing and future prospects
NASA Astrophysics Data System (ADS)
Sugioka, Koji
2017-03-01
The unique characteristics of ultrafast lasers have rapidly revolutionized materials processing after their first demonstration in 1987. The ultrashort pulse width of the laser suppresses heat diffusion to the surroundings of the processed region, which minimizes the formation of a heat-affected zone and thereby enables ultrahigh precision micro- and nanofabrication of various materials. In addition, the extremely high peak intensity can induce nonlinear multiphoton absorption, which extends the diversity of materials that can be processed to transparent materials such as glass. Nonlinear multiphoton absorption enables three-dimensional (3D) micro- and nanofabrication by irradiation with tightly focused femtosecond laser pulses inside transparent materials. Thus, ultrafast lasers are currently widely used for both fundamental research and practical applications. This review presents progress in ultrafast laser processing, including micromachining, surface micro- and nanostructuring, nanoablation, and 3D and volume processing. Advanced technologies that promise to enhance the performance of ultrafast laser processing, such as hybrid additive and subtractive processing, and shaped beam processing are discussed. Commercial and industrial applications of ultrafast laser processing are also introduced. Finally, future prospects of the technology are given with a summary.
The hospital tech laboratory: quality innovation in a new era of value-conscious care.
Keteyian, Courtland K; Nallamothu, Brahmajee K; Ryan, Andrew M
2017-08-01
For decades, the healthcare industry has been incentivized to develop new diagnostic technologies, but this limitless progress fueled rapidly growing expenditures. With an emphasis on value, the future will favor information synthesis and processing over pure data generation, and hospitals will play a critical role in developing these systems. A Michigan Medicine, IBM, and AirStrip partnership created a robust streaming analytics platform tasked with creating predictive algorithms for critical care with the potential to support clinical decisions and deliver significant value.
The role of intracochlear drug delivery devices in the management of inner ear disease.
Ayoob, Andrew M; Borenstein, Jeffrey T
2015-03-01
Diseases of the inner ear include those of the auditory and vestibular systems, and frequently result in disabling hearing loss or vertigo. Despite a rapidly expanding pipeline of potential cochlear therapeutics, the inner ear remains a challenging organ for targeted drug delivery, and new technologies are required to deliver these therapies in a safe and efficacious manner. In addition to traditional approaches for direct inner ear drug delivery, novel microfluidics-based systems are under development, promising improved control over pharmacokinetics over longer periods of delivery, ultimately with application towards hair cell regeneration in humans. Advances in the development of intracochlear drug delivery systems are reviewed, including passive systems, active microfluidic technologies and cochlear prosthesis-mediated delivery. This article provides a description of novel delivery systems and their potential future clinical applications in treating inner ear disease. Recent progresses in microfluidics and miniaturization technologies are enabling the development of wearable and ultimately implantable drug delivery microsystems. Progress in this field is being spurred by the convergence of advances in molecular biology, microfluidic flow control systems and models for drug transport in the inner ear. These advances will herald a new generation of devices, with near-term applications in preclinical models, and ultimately with human clinical use for a range of diseases of the inner ear.
Nanosatellites for quantum science and technology
NASA Astrophysics Data System (ADS)
Oi, Daniel K. L.; Ling, Alex; Grieve, James A.; Jennewein, Thomas; Dinkelaker, Aline N.; Krutzik, Markus
2017-01-01
Bringing quantum science and technology to the space frontier offers exciting prospects for both fundamental physics and applications such as long-range secure communication and space-borne quantum probes for inertial sensing with enhanced accuracy and sensitivity. But despite important terrestrial pathfinding precursors on common microgravity platforms and promising proposals to exploit the significant advantages of space quantum missions, large-scale quantum test beds in space are yet to be realised due to the high costs and lead times of traditional 'Big Space' satellite development. But the 'small space' revolution, spearheaded by the rise of nanosatellites such as CubeSats, is an opportunity to greatly accelerate the progress of quantum space missions by providing easy and affordable access to space and encouraging agile development. We review space quantum science and technology, CubeSats and their rapidly developing capabilities and how they can be used to advance quantum satellite systems.
MEMS for optical switching: technologies, applications, and perspectives
NASA Astrophysics Data System (ADS)
Lin, Lih-Y.; Goldstein, Evan L.
1999-09-01
Micro-electro-mechanical-systems (MEMS), due to their unique ability to integrate electrical, mechanical, and optical elements on a single chip, have recently begun to exhibit great potential for realizing optical components and subsystems in compact, lowcost form. Recently, this technology has been applied to wavelength-division-multiplexed (WDM) networks, and resulted in advances in several network elements, including switches, filters, modulators, and wavelength-add/drop multiplexers. Due largely to the exploding capacity demand arising from data traffic, the transmission capacity demanded of and available from WDM networks is anticipated to increase rapidly. For managing such networks, optical switching is of particular interest due to the fact that its complexity is essentially immune to steady advances in the per-channel bit-rate. We will review various micromachined optical-switching technologies, emphasizing studies of their reliability. We then summarizing recent progress in the free-space MEMS optical switch we have demonstrated.
MEMS for optical switching: technologies, applications, and perspectives
NASA Astrophysics Data System (ADS)
Lin, Lih-Yuan; Goldstein, Evan L.
1999-09-01
Micro-electro-mechanical-systems (MEMS), due to their unique ability to integrate electrical, mechanical, and optical elements on a single chip, have recently begun to exhibit great potential for realizing optical components and subsystems in compact, low-cost form. Recently, this technology has been applied to wavelength-division-multiplexed (WDM) networks, and resulted in advances in several network elements, including switches, filters, modulators, and wavelength-add/drop multiplexers. Due largely to the exploding capacity demand arising from data traffic, the transmission capacity demanded of and available from WDM networks is anticipated to increase rapidly. For managing such networks, optical switching is of particular interest due to the fact that its complexity is essentially immune to steady advances in the per-channel bit-rate. We will review various micromachined optical-switching technologies, emphasizing studies of their reliability. We then summarizing recent progress in the free-space MEMS optical switch we have demonstrated.
Nursing and the primacy of technological progress.
Barnard, A
1999-12-01
This article identifies assumptions common to interpreting technological progress in contemporary nursing practice. Technology is described in terms of its characteristics and progress is identified as an ideological assumption influencing the way we think about, practice, and explain technology in contemporary nursing. Arguments associated with linear development, the elimination of scarcity, the technological imperative, the advancement of nursing, and technology as a neutral phenomenon are examined. It is argued that understanding progress assists us to develop insight into the relationship between technology and nursing.
Ferret and pig models of cystic fibrosis: prospects and promise for gene therapy.
Yan, Ziying; Stewart, Zoe A; Sinn, Patrick L; Olsen, John C; Hu, Jim; McCray, Paul B; Engelhardt, John F
2015-03-01
Large animal models of genetic diseases are rapidly becoming integral to biomedical research as technologies to manipulate the mammalian genome improve. The creation of cystic fibrosis (CF) ferrets and pigs is an example of such progress in animal modeling, with the disease phenotypes in the ferret and pig models more reflective of human CF disease than mouse models. The ferret and pig CF models also provide unique opportunities to develop and assess the effectiveness of gene and cell therapies to treat affected organs. In this review, we examine the organ disease phenotypes in these new CF models and the opportunities to test gene therapies at various stages of disease progression in affected organs. We then discuss the progress in developing recombinant replication-defective adenoviral, adeno-associated viral, and lentiviral vectors to target genes to the lung and pancreas in ferrets and pigs, the two most affected organs in CF. Through this review, we hope to convey the potential of these new animal models for developing CF gene and cell therapies.
Robot-assisted vitreoretinal surgery: current perspectives
Roizenblatt, Marina; Edwards, Thomas L; Gehlbach, Peter L
2018-01-01
Vitreoretinal microsurgery is among the most technically challenging of the minimally invasive surgical techniques. Exceptional precision is required to operate on micron scale targets presented by the retina while also maneuvering in a tightly constrained and fragile workspace. These challenges are compounded by inherent limitations of the unassisted human hand with regard to dexterity, tremor and precision in positioning instruments. The limited human ability to visually resolve targets on the single-digit micron scale is a further limitation. The inherent attributes of robotic approaches therefore, provide logical, strategic and promising solutions to the numerous challenges associated with retinal microsurgery. Robotic retinal surgery is a rapidly emerging technology that has witnessed an exponential growth in capabilities and applications over the last decade. There is now a worldwide movement toward evaluating robotic systems in an expanding number of clinical applications. Coincident with this expanding application is growth in the number of laboratories committed to “robotic medicine”. Recent technological advances in conventional retina surgery have also led to tremendous progress in the surgeon’s capabilities, enhanced outcomes, a reduction of patient discomfort, limited hospitalization and improved safety. The emergence of robotic technology into this rapidly advancing domain is expected to further enhance important aspects of the retinal surgery experience for the patients, surgeons and society. PMID:29527537
Robot-assisted vitreoretinal surgery: current perspectives.
Roizenblatt, Marina; Edwards, Thomas L; Gehlbach, Peter L
2018-01-01
Vitreoretinal microsurgery is among the most technically challenging of the minimally invasive surgical techniques. Exceptional precision is required to operate on micron scale targets presented by the retina while also maneuvering in a tightly constrained and fragile workspace. These challenges are compounded by inherent limitations of the unassisted human hand with regard to dexterity, tremor and precision in positioning instruments. The limited human ability to visually resolve targets on the single-digit micron scale is a further limitation. The inherent attributes of robotic approaches therefore, provide logical, strategic and promising solutions to the numerous challenges associated with retinal microsurgery. Robotic retinal surgery is a rapidly emerging technology that has witnessed an exponential growth in capabilities and applications over the last decade. There is now a worldwide movement toward evaluating robotic systems in an expanding number of clinical applications. Coincident with this expanding application is growth in the number of laboratories committed to "robotic medicine". Recent technological advances in conventional retina surgery have also led to tremendous progress in the surgeon's capabilities, enhanced outcomes, a reduction of patient discomfort, limited hospitalization and improved safety. The emergence of robotic technology into this rapidly advancing domain is expected to further enhance important aspects of the retinal surgery experience for the patients, surgeons and society.
Genome assembly from synthetic long read clouds
Kuleshov, Volodymyr; Snyder, Michael P.; Batzoglou, Serafim
2016-01-01
Motivation: Despite rapid progress in sequencing technology, assembling de novo the genomes of new species as well as reconstructing complex metagenomes remains major technological challenges. New synthetic long read (SLR) technologies promise significant advances towards these goals; however, their applicability is limited by high sequencing requirements and the inability of current assembly paradigms to cope with combinations of short and long reads. Results: Here, we introduce Architect, a new de novo scaffolder aimed at SLR technologies. Unlike previous assembly strategies, Architect does not require a costly subassembly step; instead it assembles genomes directly from the SLR’s underlying short reads, which we refer to as read clouds. This enables a 4- to 20-fold reduction in sequencing requirements and a 5-fold increase in assembly contiguity on both genomic and metagenomic datasets relative to state-of-the-art assembly strategies aimed directly at fully subassembled long reads. Availability and Implementation: Our source code is freely available at https://github.com/kuleshov/architect. Contact: kuleshov@stanford.edu PMID:27307620
Christie, Katherine S.; Gilbert, Sophie L.; Brown, Casey L.; Hatfield, Michael; Hanson, Leanne
2016-01-01
Unmanned aircraft systems (UAS) – also called unmanned aerial vehicles (UAVs) or drones – are an emerging tool that may provide a safer, more cost-effective, and quieter alternative to traditional research methods. We review examples where UAS have been used to document wildlife abundance, behavior, and habitat, and illustrate the strengths and weaknesses of this technology with two case studies. We summarize research on behavioral responses of wildlife to UAS, and discuss the need to understand how recreational and commercial applications of this technology could disturb certain species. Currently, the widespread implementation of UAS by scientists is limited by flight range, regulatory frameworks, and a lack of validation. UAS are most effective when used to examine smaller areas close to their launch sites, whereas manned aircraft are recommended for surveying greater distances. The growing demand for UAS in research and industry is driving rapid regulatory and technological progress, which in turn will make them more accessible and effective as analytical tools.
Chino, Haruka; Sekine, Akimasa; Baba, Tomohisa; Iwasawa, Tae; Okudela, Koji; Takemura, Tamiko; Itoh, Harumi; Sato, Shinji; Suzuki, Yasuo; Ogura, Takashi
2016-01-01
We herein present the first case of rapidly progressive interstitial lung disease (RP-ILD) with anti-melanoma differentiation-associated protein 5 (MDA5) antibody evaluated by surgical lung biopsy (SLB). High-resolution CT scan revealed perilobular opacities, which rapidly became thicker and formed consolidation, resulting in remarkable loss of lung volume. Specimens taken from SLB revealed membranous organization with alveolar occlusion, dilation of alveolar ducts, and sacs with collapsed alveoli, which are typical features of diffuse alveolar damage (DAD). Rapidly progressive perilobular opacities may be characteristic of RP-ILD with anti-MDA5 antibody and DAD.
Daily monitoring of 30 m crop condition over complex agricultural landscapes
NASA Astrophysics Data System (ADS)
Sun, L.; Gao, F.; Xie, D.; Anderson, M. C.; Yang, Y.
2017-12-01
Crop progress provides information necessary for efficient irrigation, scheduling fertilization and harvesting operations at optimal times for achieving higher yields. In the United States, crop progress reports are released online weekly by US Department of Agriculture (USDA) - National Agricultural Statistics Service (NASS). However, the ground data collection is time consuming and subjective, and these reports are provided at either district (multiple counties) or state level. Remote sensing technologies have been widely used to map crop conditions, to extract crop phenology, and to predict crop yield. However, for current satellite-based sensors, it is difficult to acquire both high spatial resolution and frequent coverage. For example, Landsat satellites are capable to capture 30 m resolution images, while the long revisit cycles, cloud contamination further limited their use in detecting rapid surface changes. On the other hand, MODIS can provide daily observations, but with coarse spatial resolutions range from 250 to 1000 m. In recent years, multi-satellite data fusion technology such as the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) has been used to combine the spatial resolution of Landsat with the temporal frequency of MODIS. It has been found that this synthetic dataset could provide more valuable information compared to the images acquired from only one single sensor. However, accuracy of STARFM depends on heterogeneity of landscape and available clear image pairs of MODIS and Landsat. In this study, a new fusion method was developed using the crop vegetation index (VI) timeseries extracted from "pure" MODIS pixels and Landsat overpass images to generate daily 30 m VI for crops. The fusion accuracy was validated by comparing to the original Landsat images. Results show that the relative error in non-rapid growing period is around 3-5% and in rapid growing period is around 6-8% . The accuracy is much better than that of STARFM which is 4-9% in non-rapid growing period and 10-16% in rapid growing period based on 13 image pairs. The predicted VI from this approach looks consistent and smooth in the SLC-off gap stripes of Landsat 7 ETM+ image. The new fusion results will be used to map crop phenology and to predict crop yield at field scale in the complex agricultural landscapes.
Recent Progress in Electronic Skin
Wang, Xiandi; Dong, Lin; Zhang, Hanlu; Yu, Ruomeng; Wang, Zhong Lin
2015-01-01
The skin is the largest organ of the human body and can sense pressure, temperature, and other complex environmental stimuli or conditions. The mimicry of human skin's sensory ability via electronics is a topic of innovative research that could find broad applications in robotics, artificial intelligence, and human–machine interfaces, all of which promote the development of electronic skin (e‐skin). To imitate tactile sensing via e‐skins, flexible and stretchable pressure sensor arrays are constructed based on different transduction mechanisms and structural designs. These arrays can map pressure with high resolution and rapid response beyond that of human perception. Multi‐modal force sensing, temperature, and humidity detection, as well as self‐healing abilities are also exploited for multi‐functional e‐skins. Other recent progress in this field includes the integration with high‐density flexible circuits for signal processing, the combination with wireless technology for convenient sensing and energy/data transfer, and the development of self‐powered e‐skins. Future opportunities lie in the fabrication of highly intelligent e‐skins that can sense and respond to variations in the external environment. The rapidly increasing innovations in this area will be important to the scientific community and to the future of human life. PMID:27980911
NASA Technical Reports Server (NTRS)
Papale, William; Chullen, Cinda; Campbell, Colin; Conger, Bruce; McMillin, Summer; Jeng, Frank
2014-01-01
Development activities related to the Rapid Cycle Amine (RCA) Carbon Dioxide (CO2) and Humidity control system have progressed to the point of integrating the RCA into an advanced Primary Life Support System (PLSS 2.0) to evaluate the interaction of the RCA among other PLSS components in a ground test environment. The RCA 2.0 assembly (integrated into PLSS 2.0) consists of a valve assembly with commercial actuator motor, a sorbent canister, and a field-programmable gate array (FPGA)-based process node controller. Continued design and development activities for RCA 3.0 have been aimed at optimizing the canister size and incorporating greater fidelity in the valve actuator motor and valve position feedback design. Further, the RCA process node controller is envisioned to incorporate a higher degree of functionality to support a distributed PLSS control architecture. This paper will describe the progression of technology readiness levels of RCA 1.0, 2.0 and 3.0 along with a review of the design and manufacturing successes and challenges for 2.0 and 3.0 units. The anticipated interfaces and interactions with the PLSS 2.0/2.5/3.0 assemblies will also be discussed.
A review of safety-focused mechanical modeling of commercial lithium-ion batteries
NASA Astrophysics Data System (ADS)
Zhu, Juner; Wierzbicki, Tomasz; Li, Wei
2018-02-01
We are rapidly approaching an inflection point in the adoption of electric vehicles on the roads. All major automotive companies are having well-funded plans for mass market affordable branded EV product line models, which can open the floodgates. A rapid growth of battery energy density, accompanied by an aggressive progress of reduction of costs of lithium-ion batteries, brings safety concerns. While more energy stored in the battery pack of an EV translates to a longer range, the downside is that accidents will be more violent due to battery inevitable explosion. With today's technology, severe crashes involving intrusion into the battery pack will potentially result in a thermal runaway, fire, and explosion. Most of research on lithium-ion batteries have been concerned with the electrochemistry of cells. However, in most cases failure and thermal runaway is caused by mechanical loading due to crash events. There is a growing need to summarize the already published results on mechanical loading and response of batteries and offer a critical evaluation of work in progress. The objective of this paper is to present such review with a discussion of many outstanding issues and outline of a roadmap for future research.
Pöllänen, Petra M; Lempainen, Johanna; Laine, Antti-Pekka; Toppari, Jorma; Veijola, Riitta; Vähäsalo, Paula; Ilonen, Jorma; Siljander, Heli; Knip, Mikael
2017-07-01
In this study, we aimed to characterise rapid progressors to type 1 diabetes among children recruited from the general population, on the basis of HLA-conferred disease susceptibility. We monitored 7410 HLA-predisposed children participating in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study for the development of beta cell autoimmunity and type 1 diabetes from birth over a median follow-up time of 16.2 years (range 0.9-21.1 years). Islet cell antibodies (ICA) and autoantibodies to insulin (IAA), GAD (GADA) and islet antigen 2 (IA-2A) were assessed as markers of beta cell autoimmunity. Rapid progression was defined as progression to clinical type 1 diabetes within 1.5 years of autoantibody seroconversion. We analysed the association between rapid progression and demographic and autoantibody characteristics as well as genetic markers, including 25 non-HLA SNPs predisposing to type 1 diabetes. Altogether, 1550 children (21%) tested positive for at least one diabetes-associated autoantibody in at least two samples, and 248 (16%) of seroconverters progressed to type 1 diabetes by the end of 2015. The median time from seroconversion to diagnosis was 0.51 years in rapid progressors (n = 42, 17%) and 5.4 years in slower progressors. Rapid progression was observed both among young (<5 years) and early pubertal children (>7 years), resulting in a double-peak distribution of seroconversion age. Compared with slower progressors, rapid progressors had a higher frequency of positivity for multiple (≥2) autoantibodies and had higher titres of ICA, IAA and IA-2A at seroconversion, and there was a higher prevalence of the secretor genotype in the FUT2 gene among those carrying the high-risk HLA genotype. Compared with autoantibody-positive non-progressors, rapid progressors were younger, were more likely to carry the high-risk HLA genotype and a predisposing SNP in the PTPN22 gene, had higher frequency of ICA, IAA, GADA and IA-2A positivity and multipositivity, and had higher titres of all four autoantibodies at seroconversion. At seroconversion, individuals with rapid progression to type 1 diabetes were characterised by a younger age, higher autoantibody titres, positivity for multiple autoantibodies and higher prevalence of a FUT2 SNP. The double-peak profile for seroconversion age among the rapid progressors demonstrates for the first time that rapid progression may take place not only in young children but also in children in early puberty. Rapid progressors might benefit from careful clinical follow-up and early preventive measures.
Biosensors for Sustainable Food Engineering: Challenges and Perspectives
Ragavan, Vasanth; Weng, Xuan; Chand, Rohit
2018-01-01
Current food production faces tremendous challenges from growing human population, maintaining clean resources and food qualities, and protecting climate and environment. Food sustainability is mostly a cooperative effort resulting in technology development supported by both governments and enterprises. Multiple attempts have been promoted in tackling challenges and enhancing drivers in food production. Biosensors and biosensing technologies with their applications, are being widely applied to tackling top challenges in food production and its sustainability. Consequently, a growing demand in biosensing technologies exists in food sustainability. Microfluidics represents a technological system integrating multiple technologies. Nanomaterials, with its technology in biosensing, is thought to be the most promising tool in dealing with health, energy, and environmental issues closely related to world populations. The demand of point of care (POC) technologies in this area focus on rapid, simple, accurate, portable, and low-cost analytical instruments. This review provides current viewpoints from the literature on biosensing in food production, food processing, safety and security, food packaging and supply chain, food waste processing, food quality assurance, and food engineering. The current understanding of progress, solution, and future challenges, as well as the commercialization of biosensors are summarized. PMID:29534552
Digital health is a cultural transformation of traditional healthcare
Drobni, Zsófia; Bényei, Éva; Gergely, Bence; Győrffy, Zsuzsanna
2017-01-01
Under the term “digital health”, advanced medical technologies, disruptive innovations and digital communication have gradually become inseparable from providing best practice healthcare. While the cost of treating chronic conditions is increasing and doctor shortages are imminent worldwide, the needed transformation in the structure of healthcare and medicine fails to catch up with the rapid progress of the medical technology industry. This transition is slowed down by strict regulations; the reluctance of stakeholders in healthcare to change; and ignoring the importance of cultural changes and the human factor in an increasingly technological world. With access and adoption of technology getting higher, the risk of patients primarily turning to an accessible, but unregulated technological solution for their health problem is likely to increase. In this paper, we discuss how the old paradigm of the paternalistic model of medicine is transforming into an equal level partnership between patients and professionals and how it is aided and augmented by disruptive technologies. We attempt to define what digital health means and how it affects the status quo of care and also the study design in implementing technological innovations into the practice of medicine. PMID:29184890
[Research progress of in vivo bioreactor as vascularization strategies in bone tissue engineering].
Zhang, Haifeng; Han, Dong
2014-09-01
To review the application and research progress of in vivo bioreactor as vascularization strategies in bone tissue engineering. The original articles about in vivo bioreactor that can enhance vascularization of tissue engineered bone were extensively reviewed and analyzed. The in vivo bioreactor can be created by periosteum, muscle, muscularis membrane, and fascia flap as well as biomaterials. Using in vivo bioreactor can effectively promote the establishment of a microcirculation in the tissue engineered bones, especially for large bone defects. However, main correlative researches, currently, are focused on animal experiments, more clinical trials will be carried out in the future. With the rapid development of related technologies of bone tissue engineering, the use of in vivo bioreactor will to a large extent solve the bottleneck limitations and has the potential values for clinical application.
A history of ventricular neuroendoscopy.
Decq, Philippe; Schroeder, Henry W S; Fritsch, Michael; Cappabianca, Paolo
2013-02-01
To describe the history of neuroendoscopy through the history of the major neurosurgeons who worked and published in the field. All relevant data described in publications before 1980 about the history of neuroendoscopy and found through OVID MEDLINE searches and related references are reported. Contributions of 14 neurosurgeons who were pioneers in neuroendoscopy are described in chronologic order: Lespinasse, Dandy, Payr, Mixter, Fay, Grant, Volkmann, Putnam, Dereymacker, Scarff, Feld, Guiot, Fukushima, and Griffith. An historical review of ventricular neuroendoscopy remains by essence incomplete. Medical technical progress proceeds by leaps and bounds, related to the ingenuity of surgeons able to understand rapidly the value of a technical change to improve their surgical procedure. The ability to remain attentive to patients and evolving pathologies as well as the evolution of modern technology is required to make further progress in neuroendoscopy. Copyright © 2013 Elsevier Inc. All rights reserved.
The emergence and policy implications of converging new technologies integrated from the nanoscale
NASA Astrophysics Data System (ADS)
Roco, M. C.
2005-06-01
Science based on the unified concepts on matter at the nanoscale provides a new foundation for knowledge creation, innovation, and technology integration. Convergent new technologies refers to the synergistic combination of nanotechnology, biotechnology, information technology and cognitive sciences (NBIC), each of which is currently progressing at a rapid rate, experiencing qualitative advancements, and interacting with the more established fields such as mathematics and environmental technologies (Roco & Bainbridge, 2002). It is expected that converging technologies will bring about tremendous improvements in transforming tools, new products and services, enable human personal abilities and social achievements, and reshape societal relationships. After a brief overview of the general implications of converging new technologies, this paper focuses on its effects on R&D policies and business models as part of changing societal relationships. These R&D policies will have implications on investments in research and industry, with the main goal of taking advantage of the transformative development of NBIC. Introduction of converging technologies must be done with respect of immediate concerns (privacy, toxicity of new materials, etc.) and longer-term concerns including human integrity, dignity and welfare. The efficient introduction and development of converging new technologies will require new organizations and business models, as well as solutions for preparing the economy, such as multifunctional research facilities, integrative technology platforms, and global risk governance.
Dental laboratory technology education in China: current situation and challenges.
Zheng, Liwei; Yue, Li; Zhou, Min; Yu, Haiyang
2013-03-01
Modern dentistry and dental education in China were first introduced from abroad by Dr. Lindsay in 1907. However, advancements in the field of dental laboratory technology did not occur to the same degree in specialties such as prosthodontics and orthodontics. Since the 1990s, orders from abroad demanding dental appliances surged as the image of China as the "world's factory" strengthened. The assembly line model, in which technicians work like simple procedure workers, was rapidly applied to denture production, while the traditional education system and apprenticeship systems demonstrated little progress in these years. The lack of advancement in dental laboratory technology education caused insufficient development in China's dental technology industry. In order to alter the situation, a four-year dental laboratory technology undergraduate educational program was established in 2005 by West China School of Stomatology, Sichuan University (WCSS, SCU). This program was based on SCU's undergraduate education and WCSS's junior college education systems. The program introduced scientific methods in relevant subjects into laboratory technicians' training and made many improvements in the availability of trained faculty, textbooks, laboratory facilities, and curriculum.
DS-MAC: differential service medium access control design for wireless medical information systems.
Yuan, Xiaojing; Bagga, Sumegha; Shen, Jian; Balakrishnan, M; Benhaddou, D
2008-01-01
The integration of wireless networking technologies with medical information systems (telemedicine) have a significant impact on healthcare services provided to our society. Applications of telemedicine range from personalized medicine to affordable healthcare for underserved population. Though wireless technologies and medical informatics are individually progressing rapidly, wireless networking for healthcare systems is still at a very premature stage. In this paper we first present our open architecture for medical information systems that integrates both wired and wireless networked data acquisition systems. We then present the implementation at the physical layer and differential service MAC design that adapts channel provisioning based on the information criticality. Performance evaluation using analytical modeling and simulation shows that our DS-MAC provides differentiated services for emergency, warning, and normal traffic.
Reig, Candid; Cubells-Beltran, María-Dolores; Muñoz, Diego Ramírez
2009-01-01
The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR), from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among other subjects, the applications, the sensor design, the modelling and the electronic interfaces, focusing on electrical current sensing applications. PMID:22408486
Organ printing: from bioprinter to organ biofabrication line.
Mironov, Vladimir; Kasyanov, Vladimir; Markwald, Roger R
2011-10-01
Organ printing, or the layer by layer additive robotic biofabrication of functional three-dimensional tissue and organ constructs using self-assembling tissue spheroid building blocks, is a rapidly emerging technology that promises to transform tissue engineering into a commercially successful biomedical industry. It is increasingly obvious that similar well-established industries implement automated robotic systems on the path to commercial translation and economic success. The use of robotic bioprinters alone however is not sufficient for the development of large industrial scale organ biofabrication. The design and development of a fully integrated organ biofabrication line is imperative for the commercial translation of organ printing technology. This paper presents recent progress and challenges in the development of the essential components of an organ biofabrication line. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kelley, Shana O.; Mirkin, Chad A.; Walt, David R.; Ismagilov, Rustem F.; Toner, Mehmet; Sargent, Edward H.
2015-01-01
Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices. PMID:25466541
NASA Astrophysics Data System (ADS)
Kelley, Shana O.; Mirkin, Chad A.; Walt, David R.; Ismagilov, Rustem F.; Toner, Mehmet; Sargent, Edward H.
2014-12-01
Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices.
Will anyone rmember us? Thoughts on information loss caused by progress
NASA Astrophysics Data System (ADS)
Townsend, Peter
2010-10-01
speed, fibre optic communication or cost per CCD pixel often follow a smooth logarithmic improvement per year. This seems desirable, but progress is frequently only achievable by introduction of new software, different types of storage media or new operating conditions. Consequently technologies become outdated. For transient information this is unimportant, but for long term storage and archiving of information, images, photographs etc, there is an inevitable loss of earlier records. This is not a new phenomenon as even information on stone or clay tablets has decayed or been lost, either by physical decay of storage materials or loss of understanding because of changing language and cultural nuances. Examples emphasise how technological progress has speeded up information decay and loss. Since logarithmic "laws" have been proposed to describe the trends for electronic improvements, one may consider if equivalent trends apply to information loss. It appears that one may propose that the product of three factors is roughly constant. These are the time needed to write the new information; the quantity of information stored, and the average survival time of the information before the storage medium has decayed or is obsolete. The reality of such a "law" is that, whereas we may currently have records and photographs from many earlier generations, our rapidly stored electronic data may be lost within a few years, and certainly will have vanished in a readable form for the next generation.
Sedhom, Ramy; Hu, Sophia; Ohri, Anupam; Infantino, Dorian; Lubitz, Sara
2016-10-12
Malignant steroid cell tumors of the ovary are rare and frequently associated with hormonal abnormalities. There are no guidelines on how to treat rapidly progressive Cushing's syndrome, a medical emergency. A 67-year-old white woman presented to our hospital with rapidly developing signs and symptoms of Cushing's syndrome secondary to a steroid-secreting tumor. Her physical and biochemical manifestations of Cushing's syndrome progressed, and she was not amenable to undergoing conventional chemotherapy secondary to the debilitating effects of high cortisol. Her rapidly progressive Cushing's syndrome ultimately led to her death, despite aggressive medical management with spironolactone, ketoconazole, mitotane, and mifepristone. We report an unusual and rare case of Cushing's syndrome secondary to a malignant steroid cell tumor of the ovary. The case is highlighted to discuss the complications of rapidly progressive Cushing's syndrome, an underreported and often unrecognized endocrine emergency, and the best available evidence for treatment.
Sugimoto, Chie; Merino, Kristen M; Hasegawa, Atsuhiko; Wang, Xiaolei; Alvarez, Xavier A; Wakao, Hiroshi; Mori, Kazuyasu; Kim, Woong-Ki; Veazey, Ronald S; Didier, Elizabeth S; Kuroda, Marcelo J
2017-09-01
Infant humans and rhesus macaques infected with the human or simian immunodeficiency virus (HIV or SIV), respectively, express higher viral loads and progress more rapidly to AIDS than infected adults. Activated memory CD4 + T cells in intestinal tissues are major primary target cells for SIV/HIV infection, and massive depletion of these cells is considered a major cause of immunodeficiency. Monocytes and macrophages are important cells of innate immunity and also are targets of HIV/SIV infection. We reported previously that a high peripheral blood monocyte turnover rate was predictive for the onset of disease progression to AIDS in SIV-infected adult macaques. The purpose of this study was to determine if earlier or higher infection of monocytes/macrophages contributes to the more rapid progression to AIDS in infants. We observed that uninfected infant rhesus macaques exhibited higher physiologic baseline monocyte turnover than adults. Early after SIV infection, the monocyte turnover further increased, and it remained high during progression to AIDS. A high percentage of terminal deoxynucleotidyltransferase dUTP nick end label (TUNEL)-positive macrophages in the lymph nodes (LNs) and intestine corresponded with an increasing number of macrophages derived from circulating monocytes (bromodeoxyuridine positive [BrdU + ] CD163 + ), suggesting that the increased blood monocyte turnover was required to rapidly replenish destroyed tissue macrophages. Immunofluorescence analysis further demonstrated that macrophages were a significant portion of the virus-producing cells found in LNs, intestinal tissues, and lungs. The higher baseline monocyte turnover in infant macaques and subsequent macrophage damage by SIV infection may help explain the basis of more rapid disease progression to AIDS in infants. IMPORTANCE HIV infection progresses much more rapidly in pediatric cases than in adults; however, the mechanism for this difference is unclear. Using the rhesus macaque model, this work was performed to address why infants infected with SIV progress more quickly to AIDS than do adults. Earlier we reported that in adult rhesus macaques, increasing monocyte turnover reflected tissue macrophage damage by SIV and was predictive of terminal disease progression to AIDS. Here we report that uninfected infant rhesus macaques exhibited a higher physiological baseline monocyte turnover rate than adults. Furthermore, once infected with SIV, infants displayed further increased monocyte turnover that may have facilitated the accelerated progression to AIDS. These results support a role for monocytes and macrophages in the pathogenesis of SIV/HIV and begin to explain why infants are more prone to rapid disease progression. Copyright © 2017 American Society for Microbiology.
Sugimoto, Chie; Merino, Kristen M.; Hasegawa, Atsuhiko; Wang, Xiaolei; Alvarez, Xavier A.; Wakao, Hiroshi; Kim, Woong-Ki; Veazey, Ronald S.; Didier, Elizabeth S.
2017-01-01
ABSTRACT Infant humans and rhesus macaques infected with the human or simian immunodeficiency virus (HIV or SIV), respectively, express higher viral loads and progress more rapidly to AIDS than infected adults. Activated memory CD4+ T cells in intestinal tissues are major primary target cells for SIV/HIV infection, and massive depletion of these cells is considered a major cause of immunodeficiency. Monocytes and macrophages are important cells of innate immunity and also are targets of HIV/SIV infection. We reported previously that a high peripheral blood monocyte turnover rate was predictive for the onset of disease progression to AIDS in SIV-infected adult macaques. The purpose of this study was to determine if earlier or higher infection of monocytes/macrophages contributes to the more rapid progression to AIDS in infants. We observed that uninfected infant rhesus macaques exhibited higher physiologic baseline monocyte turnover than adults. Early after SIV infection, the monocyte turnover further increased, and it remained high during progression to AIDS. A high percentage of terminal deoxynucleotidyltransferase dUTP nick end label (TUNEL)-positive macrophages in the lymph nodes (LNs) and intestine corresponded with an increasing number of macrophages derived from circulating monocytes (bromodeoxyuridine positive [BrdU+] CD163+), suggesting that the increased blood monocyte turnover was required to rapidly replenish destroyed tissue macrophages. Immunofluorescence analysis further demonstrated that macrophages were a significant portion of the virus-producing cells found in LNs, intestinal tissues, and lungs. The higher baseline monocyte turnover in infant macaques and subsequent macrophage damage by SIV infection may help explain the basis of more rapid disease progression to AIDS in infants. IMPORTANCE HIV infection progresses much more rapidly in pediatric cases than in adults; however, the mechanism for this difference is unclear. Using the rhesus macaque model, this work was performed to address why infants infected with SIV progress more quickly to AIDS than do adults. Earlier we reported that in adult rhesus macaques, increasing monocyte turnover reflected tissue macrophage damage by SIV and was predictive of terminal disease progression to AIDS. Here we report that uninfected infant rhesus macaques exhibited a higher physiological baseline monocyte turnover rate than adults. Furthermore, once infected with SIV, infants displayed further increased monocyte turnover that may have facilitated the accelerated progression to AIDS. These results support a role for monocytes and macrophages in the pathogenesis of SIV/HIV and begin to explain why infants are more prone to rapid disease progression. PMID:28566378
NASA Astrophysics Data System (ADS)
Rehse, Steven J.; Miziolek, Andrzej W.
2012-06-01
Laser-induced breakdown spectroscopy (LIBS) has made tremendous progress in becoming a viable technology for rapid bacterial pathogen detection and identification. The significant advantages of LIBS include speed (< 1 sec analysis), portability, robustness, lack of consumables, little to no need for sample preparation, lack of genetic amplification, and the ability to identify all bacterial pathogens without bias (including spore-forms and viable but nonculturable specimens). In this manuscript, we present the latest advances achieved in LIBS-based bacterial sensing including the ability to uniquely identify species from more than five bacterial genera with high-sensitivity and specificity. Bacterial identifications are completely unaffected by environment, nutrition media, or state of growth and accurate diagnoses can be made on autoclaved or UV-irradiated specimens. Efficient discrimination of bacteria at the strain level has been demonstrated. A rapid urinary tract infection diagnosis has been simulated with no sample preparation and a one second diagnosis of a pathogen surrogate has been demonstrated using advanced chemometric analysis with a simple "stop-light" user interface. Stand-off bacterial identification at a 20-m distance has been demonstrated on a field-portable instrument. This technology could be implemented in doctors' offices, clinics, or hospital laboratories for point-of-care medical specimen analysis; mounted on military medical robotic platforms for in-the- field diagnostics; or used in stand-off configuration for remote sensing and detection.
Search for Life Beyond the Solar System. Exoplanets, Biosignatures & Instruments
NASA Astrophysics Data System (ADS)
Apai, Daniel; Gabor, Pavel
2014-03-01
Motivated by the rapidly increasing number of known Earth-sized planets, the increasing range of extreme conditions in which life on Earth can persist, and the progress toward a technology that will ultimately enable the search for life on exoplanets, the Vatican Observatory and the Steward Observatory announce a major conference entitled The Search for Life Beyond the Solar System: Exoplanets, Biosignatures & Instruments. The goal of the conference is to bring together the interdisciplinary community required to address this multi-faceted challenge: experts on exoplanet observations, early and extreme life on Earth, atmospheric biosignatures, and planet-finding telescopes.
[Progress in research of mobile health intervention].
Huang, Z; Ning, P S; Cheng, P X; Hu, G Q
2016-10-10
With the rapid development of mobile communication technology and the growing popularity of smartphones worldwide, mobile health has become an extension of e-Health and Tele-Health, and is of value in the research and practice of public health. In this paper, we systematically assessed research literature of mobile health' s application on disease prevention and control as well as health promotion. Based on the characteristics of current literature, this paper focused on the application of mobile health in maternal health promotion, chronic disease management, and communicable disease prevention and control to provide reference for the mobile health intervention research in China.
Progress and opportunities in high-voltage microactuator powering technology towards one-chip MEMS
NASA Astrophysics Data System (ADS)
Mita, Yoshio; Hirakawa, Atsushi; Stefanelli, Bruno; Mori, Isao; Okamoto, Yuki; Morishita, Satoshi; Kubota, Masanori; Lebrasseur, Eric; Kaiser, Andreas
2018-04-01
In this paper, we address issues and solutions for micro-electro-mechanical-systems (MEMS) powering through semiconductor devices towards one-chip MEMS, especially those with microactuators that require high voltage (HV, which is more than 10 V, and is often over 100 V) for operation. We experimentally and theoretically demonstrated that the main reason why MEMS actuators need such HV is the tradeoff between resonant frequency and displacement amplitude. Indeed, the product of frequency and displacement is constant regardless of the MEMS design, but proportional to the input energy, which is the square of applied voltage in an electrostatic actuator. A comprehensive study on the principles of HV device technology and associated circuit technologies, especially voltage shifter circuits, was conducted. From the viewpoint of on-chip energy source, series-connected HV photovoltaic cells have been discussed. Isolation and electrical connection methods were identified to be key enabling technologies. Towards future rapid development of such autonomous devices, a technology to convert standard 5 V CMOS devices into HV circuits using SOI substrate and a MEMS postprocess is presented. HV breakdown experiments demonstrated this technology can hold over 700 to 1000 V, depending on the layout.
Subacute sclerosing panencephalitis presenting as rapidly progressive young-onset dementia.
Chakor, Rahul Tryambak; Santosh, Nandanavana Subbareddy
2013-07-01
Onset of dementia before 65 years of age is termed as young-onset dementia (YOD). Very little literature exists regarding the clinical features and diagnoses of dementia in younger individuals. We present a case series of four patients of age 10 to 23 years with severe dementia within 18 months of clinical onset (rapidly progressive dementia). Three patients had generalised periodic complexes typical of subacute sclerosing panencephalitis (SSPE) on electroencephalogram (EEG). All patients had elevated cerebrospinal fluid (CSF) IgG measles antibodies. Our case series highlights that SSPE is an important cause of rapidly progressive YOD in developing countries like India.
Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections
Shen, Hui-Min; Hu, Liang; Fu, Xin
2018-01-01
With the extensive applications of biomagnetic signals derived from active biological tissue in both clinical diagnoses and human-computer-interaction, there is an increasing need for approachable weak biomagnetic sensing technology. The inherent merits of giant magnetoresistance (GMR) and its high integration with multiple technologies makes it possible to detect weak biomagnetic signals with micron-sized, non-cooled and low-cost sensors, considering that the magnetic field intensity attenuates rapidly with distance. This paper focuses on the state-of-art in integrated GMR technology for approachable biomagnetic sensing from the perspective of discipline fusion between them. The progress in integrated GMR to overcome the challenges in weak biomagnetic signal detection towards high resolution portable applications is addressed. The various strategies for 1/f noise reduction and sensitivity enhancement in integrated GMR technology for sub-pT biomagnetic signal recording are discussed. In this paper, we review the developments of integrated GMR technology for in vivo/vitro biomagnetic source imaging and demonstrate how integrated GMR can be utilized for biomagnetic field detection. Since the field sensitivity of integrated GMR technology is being pushed to fT/Hz0.5 with the focused efforts, it is believed that the potential of integrated GMR technology will make it preferred choice in weak biomagnetic signal detection in the future. PMID:29316670
Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections.
Shen, Hui-Min; Hu, Liang; Fu, Xin
2018-01-07
With the extensive applications of biomagnetic signals derived from active biological tissue in both clinical diagnoses and human-computer-interaction, there is an increasing need for approachable weak biomagnetic sensing technology. The inherent merits of giant magnetoresistance (GMR) and its high integration with multiple technologies makes it possible to detect weak biomagnetic signals with micron-sized, non-cooled and low-cost sensors, considering that the magnetic field intensity attenuates rapidly with distance. This paper focuses on the state-of-art in integrated GMR technology for approachable biomagnetic sensing from the perspective of discipline fusion between them. The progress in integrated GMR to overcome the challenges in weak biomagnetic signal detection towards high resolution portable applications is addressed. The various strategies for 1/ f noise reduction and sensitivity enhancement in integrated GMR technology for sub-pT biomagnetic signal recording are discussed. In this paper, we review the developments of integrated GMR technology for in vivo/vitro biomagnetic source imaging and demonstrate how integrated GMR can be utilized for biomagnetic field detection. Since the field sensitivity of integrated GMR technology is being pushed to fT/Hz 0.5 with the focused efforts, it is believed that the potential of integrated GMR technology will make it preferred choice in weak biomagnetic signal detection in the future.
Lundkvist, Johan; Halldin, Magnus M; Sandin, Johan; Nordvall, Gunnar; Forsell, Pontus; Svensson, Samuel; Jansson, Liselotte; Johansson, Gunilla; Winblad, Bengt; Ekstrand, Jonas
2014-01-01
Alzheimer's Disease (AD) is the most common form of dementia, affecting approximately 36 million people worldwide. To date there is no preventive or curative treatment available for AD, and in absence of major progress in therapeutic development, AD manifests a concrete socioeconomic threat. The awareness of the growing problem of AD is increasing, exemplified by the recent G8 Dementia Summit, a meeting held in order to set the stage and steer the compass for the future. Simultaneously, and paradoxically, we have seen key players in the pharmaceutical industry that have recently closed or significantly decreased their R&D spending on AD and other CNS disorders. Given the pressing need for new treatments in this area, other actors need to step-in and enter this drug discovery arena complementing the industrial efforts, in order to turn biological and technological progress into novel therapeutics. In this article, we present an example of a novel drug discovery initiative that in a non-profit setting, aims to integrate with both preclinical and clinical academic groups and pharmaceutical industry to explore the therapeutic potential of new concepts in patients, using novel biology, state of the art technologies and rapid concept testing.
Suspitsin, Evgeny N.; Imyanitov, Evgeny N.
2016-01-01
Bardet-Biedl syndrome (BBS) is a rare autosomal recessive genetic disorder. It is characterized by heterogeneous clinical manifestations including primary features of the disease (rod-cone dystrophy, polydactyly, obesity, genital abnormalities, renal defects, and learning difficulties) and secondary BBS characteristics (developmental delay, speech deficit, brachydactyly or syndactyly, dental defects, ataxia or poor coordination, olfactory deficit, diabetes mellitus, congenital heart disease, etc.); most of these symptoms may not be present at birth but appear and progressively worsen during the first and second decades of life. At least 20 BBS genes have already been identified, and all of them are involved in primary cilia functioning. Genetic diagnosis of BBS is complicated due to lack of gene-specific disease symptoms; however, it is gradually becoming more accessible with the invention of multigene sequencing technologies. Clinical management of BBS is largely limited to a symptomatic treatment. Mouse experiments demonstrate that the most debilitating complication of BBS, blindness, can be rescued by topical gene therapy. There is a published case report describing the delay of BBS symptoms by nutritional compensation of the disease-related biochemical deficiencies. Progress in DNA testing technologies is likely to rapidly resolve all limitations in BBS diagnosis; however, much slower improvement is expected with regard to BBS treatment. PMID:27385962
Complement research in the 18th-21st centuries: Progress comes with new technology.
Sim, R B; Schwaeble, W; Fujita, T
2016-10-01
The complement system has been studied for about 120 years. Progress in defining this large and complex system has been dependent on the research technologies available, but since the introduction of protein chromatography, electrophoresis, and antibody-based assay methods in the 1950s and 60s, and sequencing of proteins and DNA in the 70s and 80s, there has been very rapid accumulation of data. With more recent improvements in 3D structure determination (nmr and X-ray crystallography), the structures of most of the complement proteins have now been solved. Complement research since 1990 has been greatly stimulated by the discoveries of the multiple proteins in the lectin pathway, the strong association of Factor H, C3, Factor B allelic variants with adult macular degeneration and atypical haemolytic uremic syndrome, and the introduction of the anti-C5 monoclonal antibody as a therapy for paroxysmal nocturnal hemoglobinuria and atypical haemolytic uremic syndrome. Potential new roles for complement in tissue development and the search for novel therapeutics suggest a very active future for complement research. Copyright © 2016 Elsevier GmbH. All rights reserved.
[Short introduction to the history of otorhinolaryngology and craniofacial surgery].
Mudry, Albert
2015-01-01
OHNS is a medical specialty born at the end of the 19th century. It is the congruence of otology and laryngology, rapidly associated with rhinology. It went through three chronological steps: construction in the second part of the 19th century, consolidation in the first part of 20th century and extension in the second part of the 20th and beginning of the 21st century. Scientifically, OHNS was set out into five partially layered phases: bedside teaching, introduction of anatomopathology, invention of clinic experiments, expansion of surgery, and use of highly technological advances. The increase of knowledge became progressively exponential due to concomitant progress. It lead to a renewal of the subdivision of the specialty into otology, rhinology, laryngology, head and neck surgery, pediatric OHNS, otoneurology, facioplastic surgery, and phoniatry in the last decades of the 20th century.
Quantitative biological surface science: challenges and recent advances.
Höök, Fredrik; Kasemo, Bengt; Grunze, Michael; Zauscher, Stefan
2008-12-23
Biological surface science is a broad, interdisciplinary subfield of surface science, where properties and processes at biological and synthetic surfaces and interfaces are investigated, and where biofunctional surfaces are fabricated. The need to study and to understand biological surfaces and interfaces in liquid environments provides sizable challenges as well as fascinating opportunities. Here, we report on recent progress in biological surface science that was described within the program assembled by the Biomaterial Interface Division of the Science and Technology of Materials, Interfaces and Processes (www.avs.org) during their 55th International Symposium and Exhibition held in Boston, October 19-24, 2008. The selected examples show that the rapid progress in nanoscience and nanotechnology, hand-in-hand with theory and simulation, provides increasingly sophisticated methods and tools to unravel the mechanisms and details of complex processes at biological surfaces and in-depth understanding of biomolecular surface interactions.
Too easily lead? Health effects of gasoline additives.
Menkes, D B; Fawcett, J P
1997-01-01
Octane-enhancing constituents of gasoline pose a number of health hazards. This paper considers the relative risks of metallic (lead, manganese), aromatic (e.g., benzene), and oxygenated additives in both industrialized and developing countries. Technological advances, particularly in industrialized countries, have allowed the progressive removal of lead from gasoline and the increased control of exhaust emissions. The developing world, by contrast, has relatively lax environmental standards and faces serious public health problems from vehicle exhaust and the rapid increase in automobile use. Financial obstacles to the modernization of refineries and vehicle fleets compound this problem and the developing world continues to import large quantities of lead additives and other hazardous materials. Progress in decreasing environmental health problems depends both on the adoption of international public health standards as well as efforts to decrease dependence on the private automobile for urban transport. Images Figure 1. Figure 2. PMID:9171982
In Vivo Biomarkers for Targeting Colorectal Neoplasms
Hsiung, Pei-Lin; Wang, Thomas
2011-01-01
Summary Colorectal carcinoma continues to be a leading cause of cancer morbidity and mortality despite widespread adoption of screening methods. Targeted detection and therapy using recent advances in our knowledge of in vivo cancer biomarkers promise to significantly improve methods for early detection, risk stratification, and therapeutic intervention. The behavior of molecular targets in transformed tissues is being comprehensively assessed using new techniques of gene expression profiling and high throughput analyses. The identification of promising targets is stimulating the development of novel molecular probes, including significant progress in the field of activatable and peptide probes. These probes are being evaluated in small animal models of colorectal neoplasia and recently in the clinic. Furthermore, innovations in optical imaging instrumentation are resulting in the scaling down of size for endoscope compatibility. Advances in target identification, probe development, and novel instruments are progressing rapidly, and the integration of these technologies has a promising future in molecular medicine. PMID:19126961
The life of Rudolf Nissen: advancing surgery through science and principle.
Fults, D W; Taussky, P
2011-06-01
Rudolf Nissen (1896-1981) was a surgeon whose career began in Germany during the first third of the 20th century, a period of rapid progress in biomedical technology, during which neurosurgery, anesthesiology, and other specialties emerged. A protégé and later close colleague of thoracic surgery pioneer Ferdinand Sauerbruch (1875-1951), Nissen resigned from the Berlin Charité Clinic and left Germany in 1933, in response to the rise of Nazi fascism. Throughout his subsequent career in Istanbul, Turkey, the American cities of Boston and New York, and finally Basel, Switzerland, Nissen developed innovative surgical techniques, advocated for patient-centered medical education, and promoted surgical subspecialization. A lifelong proponent of clear scientific writing, Nissen expressed, in extensively published work, his philosophy that progress in surgery depends critically on rigorously applying the scientific method, upholding professional integrity, and respecting human dignity.
The role of model organisms in the history of mitosis research.
Yanagida, Mitsuhiro
2014-09-02
Mitosis is a cell-cycle stage during which condensed chromosomes migrate to the middle of the cell and segregate into two daughter nuclei before cytokinesis (cell division) with the aid of a dynamic mitotic spindle. The history of mitosis research is quite long, commencing well before the discovery of DNA as the repository of genetic information. However, great and rapid progress has been made since the introduction of recombinant DNA technology and discovery of universal cell-cycle control. A large number of conserved eukaryotic genes required for the progression from early to late mitotic stages have been discovered, confirming that DNA replication and mitosis are the two main events in the cell-division cycle. In this article, a historical overview of mitosis is given, emphasizing the importance of diverse model organisms that have been used to solve fundamental questions about mitosis. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.
Microbial genome mining for accelerated natural products discovery: is a renaissance in the making?
Bachmann, Brian O; Van Lanen, Steven G; Baltz, Richard H
2014-02-01
Microbial genome mining is a rapidly developing approach to discover new and novel secondary metabolites for drug discovery. Many advances have been made in the past decade to facilitate genome mining, and these are reviewed in this Special Issue of the Journal of Industrial Microbiology and Biotechnology. In this Introductory Review, we discuss the concept of genome mining and why it is important for the revitalization of natural product discovery; what microbes show the most promise for focused genome mining; how microbial genomes can be mined; how genome mining can be leveraged with other technologies; how progress on genome mining can be accelerated; and who should fund future progress in this promising field. We direct interested readers to more focused reviews on the individual topics in this Special Issue for more detailed summaries on the current state-of-the-art.
Progress in superconductivity: The Indian Scenario
NASA Technical Reports Server (NTRS)
Multani, Manu; Mishra, V. K.
1995-01-01
India has made rapid progress in the field of high temperature superconductivity, beginning at the time of publication of the Zeitschrift fur Physik paper by Bednorz and Muller. Phase 1 of the program was conceived by the Department of Science & Technology of the Government of India. It consisted of 42 projects in the area of basic research, 23 projects in applications and 4 short-term demonstration studies. The second phase started in October 1991 and will run through March 1995. It consists of 50 basic research programs and 24 application programs. The total investment, mainly consisting of infrastructural development to supplement existing facilities and hiring younger people, has amounted to about Indian Rupees 40 crores, equivalent to about US$ 13 million. The expenditure for the period 1992-1997 shall be up to about Rs. 27 crores, equivalent to about US$ 9 million. The basic idea is to keep pace with developments around the world.
Status and future perspective of applications of high temperature superconductors
NASA Astrophysics Data System (ADS)
Tanaka, Shoji
The material research on the high temperature superconductivity for the past ten years gave us sufficient information on the new phenomena of these new materials. It seems that new applications in a very wide range of industries are increasing rapidly. In this report three main topics of the applications are given ; [a] progress of the superconducting bulk materials and their applications to the flywheel electricity storage system and others, [b] progress in the development of superconducting tapes and their applications to power cables, the high field superconducting magnet for the SMES and for the pulling system of large silicon single crystal, and [c] development of new superconducting electronic devices (SFQ) and the possiblity of the application to next generation supercomputers. These examples show the great capability of the superconductivity technology and it is expected that the real superconductivity industry will take off around the year of 2005.
The Role of Model Organisms in the History of Mitosis Research
Yanagida, Mitsuhiro
2014-01-01
Mitosis is a cell-cycle stage during which condensed chromosomes migrate to the middle of the cell and segregate into two daughter nuclei before cytokinesis (cell division) with the aid of a dynamic mitotic spindle. The history of mitosis research is quite long, commencing well before the discovery of DNA as the repository of genetic information. However, great and rapid progress has been made since the introduction of recombinant DNA technology and discovery of universal cell-cycle control. A large number of conserved eukaryotic genes required for the progression from early to late mitotic stages have been discovered, confirming that DNA replication and mitosis are the two main events in the cell-division cycle. In this article, a historical overview of mitosis is given, emphasizing the importance of diverse model organisms that have been used to solve fundamental questions about mitosis. PMID:25183827
Sustainable Development vs. Post-Industrial Transformation: Possibilities for Russia
NASA Astrophysics Data System (ADS)
Zhironkin, Sergey; Gasanov, Magerram; Barysheva, Galina; Gasanov, Eyvaz; Zhironkina, Olga; Kayachev, Gennady
2017-11-01
Today the theory of postindustrial society is one of the most widespread concepts which allow adequately comprehending the largescale changes that have occurred in the ecological consciousness of Western societies for the last thirty years. Offered in the late 1960s and early 1970s by American and European researchers in the field of economics, social philosophy, and ecology, the integrated idea of sustainable development in postindustrial era incorporated the best elements of the scientific tradition dating back to the Age of Enlightenment. The article emphasizes that the key to modern social progress is the rapid technological development based on the transformation of science into a direct productive force. The measure of such progress is a shift from pure economic growth to the sustainable development. The authors describe the ways of changing Russian Government's attitude to economy regulation in postindustrial development to achieve the goals of sustainable development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammons, T.
The 1994 World Electricity Conference was held in London, England, November 7--8, 1994. This year it shifted its focus to an examination of the firm advance in power sector restructuring across Europe, from Scandinavia to the Mediterranean and the Iberian Peninsula. Its speakers examined the rapid progress being made in the introduction of cooperation and competition within the continent`s electricity supply industry. Delegates heard news from Eastern Europe on the drive to improve energy efficiency across the region as part of the region`s program of priorities for the power industry. In North America, California`s progressive deregulation program was highlighted, andmore » the opening up of the power equipment supply market in both the US and Europe post-GATT was discussed. The meeting also featured papers on new fuels and new technologies in power generation where developments in superconductivity, biomass, combined heat and power, and in fuel cells were evaluated.« less
Czech, Brian
2008-12-01
The conflict between economic growth and biodiversity conservation is understood in portions of academia and sometimes acknowledged in political circles. Nevertheless, there is not a unified response. In political and policy circles, the environmental Kuznets curve (EKC) is posited to solve the conflict between economic growth and environmental protection. In academia, however, the EKC has been deemed fallacious in macroeconomic scenarios and largely irrelevant to biodiversity. A more compelling response to the conflict is that it may be resolved with technological progress. Herein I review the conflict between economic growth and biodiversity conservation in the absence of technological progress, explore the prospects for technological progress to reconcile that conflict, and provide linguistic suggestions for describing the relationships among economic growth, technological progress, and biodiversity conservation. The conflict between economic growth and biodiversity conservation is based on the first two laws of thermodynamics and principles of ecology such as trophic levels and competitive exclusion. In this biophysical context, the human economy grows at the competitive exclusion of nonhuman species in the aggregate. Reconciling the conflict via technological progress has not occurred and is infeasible because of the tight linkage between technological progress and economic growth at current levels of technology. Surplus production in existing economic sectors is required for conducting the research and development necessary for bringing new technologies to market. Technological regimes also reflect macroeconomic goals, and if the goal is economic growth, reconciliatory technologies are less likely to be developed. As the economy grows, the loss of biodiversity may be partly mitigated with end-use innovation that increases technical efficiency, but this type of technological progress requires policies that are unlikely if the conflict between economic growth and biodiversity conservation (and other aspects of environmental protection) is not acknowledged.
ERIC Educational Resources Information Center
Gorski, Paul C.
2009-01-01
In the United States, where technological progress is portrayed as humanistic progress, computer technologies often are hailed as the great equalizers. Even within progressive education movements, such as multicultural education, the conversation about instructional technology tends to center more on this or that wonderful Web site or piece of…
Physiological stratification in electricity-producing biofilms of Geobacter sulfurreducens.
Schrott, Germán David; Ordoñez, María Victoria; Robuschi, Luciana; Busalmen, Juan Pablo
2014-02-01
The elucidation of mechanisms and limitations in electrode respiration by electroactive biofilms is significant for the development of rapidly emerging clean energy production and wastewater treatment technologies. In Geobacter sulfurreducens biofilms, the controlling steps in current production are thought to be the metabolic activity of cells, but still remain to be determined. By quantifying the DNA, RNA, and protein content during the long-term growth of biofilms on polarized graphite electrodes, we show in this work that current production becomes independent of DNA accumulation immediately after a maximal current is achieved. Indeed, the mean respiratory rate of biofilms rapidly decreases after this point, which indicates the progressive accumulation of cells that do not contribute to current production or contribute to a negligible extent. These results support the occurrence of physiological stratification within biofilms as a consequence of respiratory limitations imposed by limited biofilm conductivity. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The promise and challenge of high-throughput sequencing of the antibody repertoire
Georgiou, George; Ippolito, Gregory C; Beausang, John; Busse, Christian E; Wardemann, Hedda; Quake, Stephen R
2014-01-01
Efforts to determine the antibody repertoire encoded by B cells in the blood or lymphoid organs using high-throughput DNA sequencing technologies have been advancing at an extremely rapid pace and are transforming our understanding of humoral immune responses. Information gained from high-throughput DNA sequencing of immunoglobulin genes (Ig-seq) can be applied to detect B-cell malignancies with high sensitivity, to discover antibodies specific for antigens of interest, to guide vaccine development and to understand autoimmunity. Rapid progress in the development of experimental protocols and informatics analysis tools is helping to reduce sequencing artifacts, to achieve more precise quantification of clonal diversity and to extract the most pertinent biological information. That said, broader application of Ig-seq, especially in clinical settings, will require the development of a standardized experimental design framework that will enable the sharing and meta-analysis of sequencing data generated by different laboratories. PMID:24441474
Digital detection of endonuclease mediated gene disruption in the HIV provirus
Sedlak, Ruth Hall; Liang, Shu; Niyonzima, Nixon; De Silva Feelixge, Harshana S.; Roychoudhury, Pavitra; Greninger, Alexander L.; Weber, Nicholas D.; Boissel, Sandrine; Scharenberg, Andrew M.; Cheng, Anqi; Magaret, Amalia; Bumgarner, Roger; Stone, Daniel; Jerome, Keith R.
2016-01-01
Genome editing by designer nucleases is a rapidly evolving technology utilized in a highly diverse set of research fields. Among all fields, the T7 endonuclease mismatch cleavage assay, or Surveyor assay, is the most commonly used tool to assess genomic editing by designer nucleases. This assay, while relatively easy to perform, provides only a semi-quantitative measure of mutation efficiency that lacks sensitivity and accuracy. We demonstrate a simple droplet digital PCR assay that quickly quantitates a range of indel mutations with detection as low as 0.02% mutant in a wild type background and precision (≤6%CV) and accuracy superior to either mismatch cleavage assay or clonal sequencing when compared to next-generation sequencing. The precision and simplicity of this assay will facilitate comparison of gene editing approaches and their optimization, accelerating progress in this rapidly-moving field. PMID:26829887
Jiang, Yang; Ju, Meiting; Li, Weizun; Ren, Qingbin; Liu, Le; Chen, Yu; Yang, Qian; Hou, Qidong; Liu, Yiliang
2015-12-01
Keep composting matrix in continuous collision and friction under a relatively high-temperature can significantly accelerate the progress of composting. A bioreactor was designed according to the novel process. Using this technology, organic fertilizer could be produced within 96h. The electric conductivity (EC) and pH value reached to a stable value of 2.35mS/cm and 7.7 after 96h of fermentation. The total carbon/total nitrogen (TC/TN) and dissolved carbon/dissolved nitrogen (DC/DN) ratio was decrease from 27.3 and 36.2 to 17.4 and 7.6 respectively. In contrast, it needed 24days to achieve the similar result in traditional static composting (TSC). Compost particles with different size were analyzed to explore the rapid degradation mechanism of food waste. The evidence of anaerobic fermentation was firstly discovered in aerobic composting. Copyright © 2015 Elsevier Ltd. All rights reserved.
Recent Progress on Integrated Energy Conversion and Storage Systems.
Luo, Bin; Ye, Delai; Wang, Lianzhou
2017-09-01
Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.
Recent Progress on Integrated Energy Conversion and Storage Systems
Luo, Bin; Ye, Delai
2017-01-01
Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future. PMID:28932673
Kawai, Tadashi
2015-10-01
Continuous advances in medical laboratory technology have driven major changes in the practice of laboratory medicine over the past two decades. The importance of the overall quality of a medical laboratory has been ever-increasing in order to improve and ensure the quality and safety of clinical practice by physicians in any type of medical facility. Laboratory physicians and professional staff should challenge themselves more than ever in various ways to cooperate and contribute with practicing physicians for the appropriate utilization of laboratory testing. This will certainly lead to a decrease in inappropriate or unnecessary laboratory testing, resulting in reducing medical costs. In addition, not only postgraduate, but also undergraduate medical education/training systems must be markedly innovated, considering recent rapid progress in electronic information and communication technologies.
McCoy, Lise; Pettit, Robin K; Lewis, Joy H; Bennett, Thomas; Carrasco, Noel; Brysacz, Stanley; Makin, Inder Raj S; Hutman, Ryan; Schwartz, Frederic N
2015-04-01
Growing up in an era of video games and Web-based applications has primed current medical students to expect rapid, interactive feedback. To address this need, the A.T. Still University-School of Osteopathic Medicine in Arizona (Mesa) has developed and integrated a variety of approaches using technology-enhanced active learning for medical education (TEAL-MEd) into its curriculum. Over the course of 3 years (2010-2013), the authors facilitated more than 80 implementations of games and virtual patient simulations into the education of 550 osteopathic medical students. The authors report on 4 key aspects of the TEAL-MEd initiative, including purpose, portfolio of tools, progress to date regarding challenges and solutions, and future directions. Lessons learned may be of benefit to medical educators at academic and clinical training sites who wish to implement TEAL-MEd activities.
Potential applications of advanced aircraft in developing countries
NASA Technical Reports Server (NTRS)
Maddalon, D. V.
1978-01-01
An investigation sponsored by NASA indicates that air transportation can play an important role in the economic progress of developing countries. By the turn of the century, the rapid economic growth now occurring in many developing countries should result in a major redistribution of the world's income. Some countries now classified as 'developing' will become 'developed' and are likely to become far more important to the world's civil aviation industry. Developing countries will be increasingly important buyers of conventional subsonic long-haul jet passenger aircraft but not to the point of significant influence on the design or technological content of future aircraft of this type. However, the technological content of more specialized aircraft may be influenced by developing country requirements and reflected in designs which fill a need concerning specialized missions, related to short-haul, low-density, rough runways, and natural resource development.
From linear to nonlinear control means: a practical progression.
Gao, Zhiqiang
2002-04-01
With the rapid advance of digital control hardware, it is time to take the simple but effective proportional-integral-derivative (PID) control technology to the next level of performance and robustness. For this purpose, a nonlinear PID and active disturbance rejection framework are introduced in this paper. It complements the existing theory in that (1) it actively and systematically explores the use of nonlinear control mechanisms for better performance, even for linear plants; (2) it represents a control strategy that is rather independent of mathematical models of the plants, thus achieving inherent robustness and reducing design complexity. Stability analysis, as well as software/hardware test results, are presented. It is evident that the proposed framework lends itself well in seeking innovative solutions to practical problems while maintaining the simplicity and the intuitiveness of the existing technology.
Privacy and Security in Mobile Health (mHealth) Research.
Arora, Shifali; Yttri, Jennifer; Nilse, Wendy
2014-01-01
Research on the use of mobile technologies for alcohol use problems is a developing field. Rapid technological advances in mobile health (or mHealth) research generate both opportunities and challenges, including how to create scalable systems capable of collecting unprecedented amounts of data and conducting interventions-some in real time-while at the same time protecting the privacy and safety of research participants. Although the research literature in this area is sparse, lessons can be borrowed from other communities, such as cybersecurity or Internet security, which offer many techniques to reduce the potential risk of data breaches or tampering in mHealth. More research into measures to minimize risk to privacy and security effectively in mHealth is needed. Even so, progress in mHealth research should not stop while the field waits for perfect solutions.
Privacy and Security in Mobile Health (mHealth) Research
Arora, Shifali; Yttri, Jennifer; Nilsen, Wendy
2014-01-01
Research on the use of mobile technologies for alcohol use problems is a developing field. Rapid technological advances in mobile health (or mHealth) research generate both opportunities and challenges, including how to create scalable systems capable of collecting unprecedented amounts of data and conducting interventions—some in real time—while at the same time protecting the privacy and safety of research participants. Although the research literature in this area is sparse, lessons can be borrowed from other communities, such as cybersecurity or Internet security, which offer many techniques to reduce the potential risk of data breaches or tampering in mHealth. More research into measures to minimize risk to privacy and security effectively in mHealth is needed. Even so, progress in mHealth research should not stop while the field waits for perfect solutions. PMID:26259009
High Speed Digital Camera Technology Review
NASA Technical Reports Server (NTRS)
Clements, Sandra D.
2009-01-01
A High Speed Digital Camera Technology Review (HSD Review) is being conducted to evaluate the state-of-the-shelf in this rapidly progressing industry. Five HSD cameras supplied by four camera manufacturers participated in a Field Test during the Space Shuttle Discovery STS-128 launch. Each camera was also subjected to Bench Tests in the ASRC Imaging Development Laboratory. Evaluation of the data from the Field and Bench Tests is underway. Representatives from the imaging communities at NASA / KSC and the Optical Systems Group are participating as reviewers. A High Speed Digital Video Camera Draft Specification was updated to address Shuttle engineering imagery requirements based on findings from this HSD Review. This draft specification will serve as the template for a High Speed Digital Video Camera Specification to be developed for the wider OSG imaging community under OSG Task OS-33.
Siddaiah-Subramanya, Manjunath; Tiang, Kor Woi; Nyandowe, Masimba
2017-10-01
Minimally invasive surgery (MIS) continues to play an important role in general surgery as an alternative to traditional open surgery as well as traditional laparoscopic techniques. Since the 1980s, technological advancement and innovation have seen surgical techniques in MIS rapidly grow as it is viewed as more desirable. MIS, which includes natural orifice transluminal endoscopic surgery (NOTES) and single-incision laparoscopic surgery (SILS), is less invasive and has better cosmetic results. The technological growth and adoption of NOTES and SILS by clinicians in the last decade has however not been uniform. We look at the differences in new developments and advancement in the different techniques in the last 10 years. We also aim to explain these differences as well as the implications in general surgery for the future.
[The laboratory of tomorrow. Particular reference to hematology].
Cazal, P
1985-01-01
A serious prediction can only be an extrapolation of recent developments. To be exact, the development has to continue in the same direction, which is only a probability. Probable development of hematological technology: Progress in methods. Development of new labelling methods: radio-elements, antibodies. Monoclonal antibodies. Progress in equipment: Cell counters and their adaptation to routine hemograms is a certainty. From analyzers: a promise that will perhaps become reality. Coagulometers: progress still to be made. Hemagglutination detectors and their application to grouping: good achievements, but the market is too limited. Computerization and automation: What form will the computerizing take? What will the computer do? Who will the computer control? What should the automatic analyzers be? Two current levels. Relationships between the automatic analysers and the computer. rapidity, fidelity and above all, reliability. Memory: large capacity and easy access. Disadvantages: conservatism and technical dependency. How can they be avoided? Development of the environment: Laboratory input: outside supplies, electricity, reagents, consumables. Samples and their identification. Output: distribution of results and communication problems. Centralization or decentralization? What will tomorrow's laboratory be? 3 hypotheses: optimistic, pessimistic, and balanced.
Ferret and Pig Models of Cystic Fibrosis: Prospects and Promise for Gene Therapy
Yan, Ziying; Stewart, Zoe A.; Sinn, Patrick L.; Olsen, John C.; Hu, Jim; McCray, Paul B.
2015-01-01
Abstract Large animal models of genetic diseases are rapidly becoming integral to biomedical research as technologies to manipulate the mammalian genome improve. The creation of cystic fibrosis (CF) ferrets and pigs is an example of such progress in animal modeling, with the disease phenotypes in the ferret and pig models more reflective of human CF disease than mouse models. The ferret and pig CF models also provide unique opportunities to develop and assess the effectiveness of gene and cell therapies to treat affected organs. In this review, we examine the organ disease phenotypes in these new CF models and the opportunities to test gene therapies at various stages of disease progression in affected organs. We then discuss the progress in developing recombinant replication-defective adenoviral, adeno-associated viral, and lentiviral vectors to target genes to the lung and pancreas in ferrets and pigs, the two most affected organs in CF. Through this review, we hope to convey the potential of these new animal models for developing CF gene and cell therapies. PMID:25675143
Thomas, Andreas; Heinemann, Lutz; Ramírez, Araceli; Zehe, Alfred
2016-05-01
Nowadays nanotechnology has many applications in products used in various areas of daily life; however, this technology has also an option in modern medicine and pharmacy. Therefore, this technology is also an attractive option for the field of diagnosis and treatment of diabetes. Many people with diabetes measure their blood glucose levels regularly to determine the insulin dose. Ideally glucose values would be measured noninvasively (NI). However, none of all the NI approaches studied in the past decades enabled reliable NI measurements under all daily life conditions. Particularly an unfavorable signal-to-noise ratio turned out to be problematic. Based on the known physical possibilities for NI glucose monitoring the focus of this review is on nanotechnology approaches. Functional prototypes exist for some of these that showed promising results under defined laboratory conditions, indicating a good sensitivity and selectivity for glucose. On the second hand is to optimize the technological process of manufacturing. In view of the rapid progress in micro- and nanoelectronics hopefully NI glucose monitoring systems can be developed in the near future. © 2015 Diabetes Technology Society.
Replacing a technology - The Large Space Telescope and CCDs
NASA Astrophysics Data System (ADS)
Smith, R. W.; Tatarewicz, J. H.
1985-07-01
The technological improvements, design choices and mission goals which led to the inclusion of CCD detectors in the wide field camera of the Large Space Telescope (LST) to be launched by the STS are recounted. Consideration of CCD detectors began before CCDs had seen wide astronomical applications. During planning for the ST, in the 1960s, photographic methods and a vidicon were considered, and seemed feasible provided that periodic manual maintenance could be performed. The invention of CCDs was first reported in 1970 and by 1973 the CCDs were receiving significant attention as potential detectors instead of a vidicon, which retained its own technological challenges. The CCD format gained new emphasis when success was achieved in developments for planetary-imaging spacecraft. The rapidity of progress in CCD capabilities, coupled with the continued shortcomings of the vidicon, resulted in a finalized choice for a CCD device by 1977. The decision was also prompted by continuing commercial and military interest in CCDs, which was spurring the development of the technology and improving the sensitivities and reliability while lowering the costs.
The new frontiers of multimodality and multi-isotope imaging
NASA Astrophysics Data System (ADS)
Behnam Azad, Babak; Nimmagadda, Sridhar
2014-06-01
Technological advances in imaging systems and the development of target specific imaging tracers has been rapidly growing over the past two decades. Recent progress in "all-in-one" imaging systems that allow for automated image coregistration has significantly added to the growth of this field. These developments include ultra high resolution PET and SPECT scanners that can be integrated with CT or MR resulting in PET/CT, SPECT/CT, SPECT/PET and PET/MRI scanners for simultaneous high resolution high sensitivity anatomical and functional imaging. These technological developments have also resulted in drastic enhancements in image quality and acquisition time while eliminating cross compatibility issues between modalities. Furthermore, the most cutting edge technology, though mostly preclinical, also allows for simultaneous multimodality multi-isotope image acquisition and image reconstruction based on radioisotope decay characteristics. These scientific advances, in conjunction with the explosion in the development of highly specific multimodality molecular imaging agents, may aid in realizing simultaneous imaging of multiple biological processes and pave the way towards more efficient diagnosis and improved patient care.
25th anniversary article: a decade of organic/polymeric photovoltaic research.
Dou, Letian; You, Jingbi; Hong, Ziruo; Xu, Zheng; Li, Gang; Street, Robert A; Yang, Yang
2013-12-10
Organic photovoltaic (OPV) technology has been developed and improved from a fancy concept with less than 1% power conversion efficiency (PCE) to over 10% PCE, particularly through the efforts in the last decade. The significant progress is the result of multidisciplinary research ranging from chemistry, material science, physics, and engineering. These efforts include the design and synthesis of novel compounds, understanding and controlling the film morphology, elucidating the device mechanisms, developing new device architectures, and improving large-scale manufacture. All of these achievements catalyzed the rapid growth of the OPV technology. This review article takes a retrospective look at the research and development of OPV, and focuses on recent advances of solution-processed materials and devices during the last decade, particular the polymer version of the materials and devices. The work in this field is exciting and OPV technology is a promising candidate for future thin film solar cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel Biomaterials Used in Medical 3D Printing Techniques.
Tappa, Karthik; Jammalamadaka, Udayabhanu
2018-02-07
The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.
Principles of gene microarray data analysis.
Mocellin, Simone; Rossi, Carlo Riccardo
2007-01-01
The development of several gene expression profiling methods, such as comparative genomic hybridization (CGH), differential display, serial analysis of gene expression (SAGE), and gene microarray, together with the sequencing of the human genome, has provided an opportunity to monitor and investigate the complex cascade of molecular events leading to tumor development and progression. The availability of such large amounts of information has shifted the attention of scientists towards a nonreductionist approach to biological phenomena. High throughput technologies can be used to follow changing patterns of gene expression over time. Among them, gene microarray has become prominent because it is easier to use, does not require large-scale DNA sequencing, and allows for the parallel quantification of thousands of genes from multiple samples. Gene microarray technology is rapidly spreading worldwide and has the potential to drastically change the therapeutic approach to patients affected with tumor. Therefore, it is of paramount importance for both researchers and clinicians to know the principles underlying the analysis of the huge amount of data generated with microarray technology.
Engineering microbial fuels cells: recent patents and new directions.
Biffinger, Justin C; Ringeisen, Bradley R
2008-01-01
Fundamental research into how microbes generate electricity within microbial fuel cells (MFCs) has far outweighed the practical application and large scale development of microbial energy harvesting devices. MFCs are considered alternatives to standard commercial polymer electrolyte membrane (PEM) fuel cell technology because the fuel supply does not need to be purified, ambient operating temperatures are maintained with biologically compatible materials, and the biological catalyst is self-regenerating. The generation of electricity during wastewater treatment using MFCs may profoundly affect the approach to anaerobic treatment technologies used in wastewater treatment as a result of developing this energy harvesting technology. However, the materials and engineering designs for MFCs were identical to commercial fuel cells until 2003. Compared to commercial fuel cells, MFCs will remain underdeveloped as long as low power densities are generated from the best systems. The variety of designs for MFCs has expanded rapidly in the last five years in the literature, but the patent protection has lagged behind. This review will cover recent and important patents relating to MFC designs and progress.
Research progress of on-the-go soil parameter sensors based on NIRS
NASA Astrophysics Data System (ADS)
An, Xiaofei; Meng, Zhijun; Wu, Guangwei; Guo, Jianhua
2014-11-01
Both the ever-increasing prices of fertilizer and growing ecological concern over chemical run-off into sources of drinking water have brought the issues of precision agriculture and site-specific management to the forefront of present technological development within agriculture and ecology. Soil is an important and basic element in agriculture production. Acquisition of soil information plays an important role in precision agriculture. The soil parameters include soil total nitrogen, phosporus, potassium, soil organic matter, soil moisture, electrical conductivity and pH value and so on. Field rapid acquisition to all the kinds of soil physical and chemical parameters is one of the most important research directions. And soil parameter real-time monitoring is also the trend of future development in precision agriculture. While developments in precision agriculture and site-specific management procedures have made significant in-roads on these issues and many researchers have developed effective means to determine soil properties, routinely obtaining robust on-the-go measurements of soil properties which are reliable enough to drive effective fertilizer application remains a challenge. NIRS technology provides a new method to obtain soil parameter with low cost and rapid advantage. In this paper, research progresses of soil on-the-go spectral sensors at domestic and abroad was combed and analyzed. There is a need for the sensing system to perform at least six key indexes for any on-the-go soil spectral sensor to be successful. The six indexes are detection limit, specificity, robustness, accuracy, cost and easy-to-use. Both the research status and problems were discussed. Finally, combining the national conditions of china, development tendency of on-the-go soil spectral sensors was proposed. In the future, on-the-go soil spectral sensors with reliable enough, sensitive enough and continuous detection would become popular in precision agriculture.
Imaging and the completion of the omics paradigm in breast cancer.
Leithner, D; Horvat, J V; Ochoa-Albiztegui, R E; Thakur, S; Wengert, G; Morris, E A; Helbich, T H; Pinker, K
2018-06-08
Within the field of oncology, "omics" strategies-genomics, transcriptomics, proteomics, metabolomics-have many potential applications and may significantly improve our understanding of the underlying processes of cancer development and progression. Omics strategies aim to develop meaningful imaging biomarkers for breast cancer (BC) by rapid assessment of large datasets with different biological information. In BC the paradigm of omics technologies has always favored the integration of multiple layers of omics data to achieve a complete portrait of BC. Advances in medical imaging technologies, image analysis, and the development of high-throughput methods that can extract and correlate multiple imaging parameters with "omics" data have ushered in a new direction in medical research. Radiogenomics is a novel omics strategy that aims to correlate imaging characteristics (i. e., the imaging phenotype) with underlying gene expression patterns, gene mutations, and other genome-related characteristics. Radiogenomics not only represents the evolution in the radiology-pathology correlation from the anatomical-histological level to the molecular level, but it is also a pivotal step in the omics paradigm in BC in order to fully characterize BC. Armed with modern analytical software tools, radiogenomics leads to new discoveries of quantitative and qualitative imaging biomarkers that offer hitherto unprecedented insights into the complex tumor biology and facilitate a deeper understanding of cancer development and progression. The field of radiogenomics in breast cancer is rapidly evolving, and results from previous studies are encouraging. It can be expected that radiogenomics will play an important role in the future and has the potential to revolutionize the diagnosis, treatment, and prognosis of BC patients. This article aims to give an overview of breast radiogenomics, its current role, future applications, and challenges.
Progress in the molecular and genetic modification breeding of beef cattle in China.
Tong, Bin; Zhang, Li; Li, Guang-Peng
2017-11-20
The studies of beef cattle breeding in China have been greatly improved with the rapid development of the international beef cattle industrialization. The beef cattle breeding technologies have rapidly transformed from traditional breeding to molecular marker-assisted breeding, genomic selection and genetic modification breeding. Hundreds of candidate genes and molecular markers associated with growth, meat quality, reproduction performance and diseases resistance have been identified, and some of them have already been used in cattle breeding. Genes and molecular markers associated with growth and development are focused on the growth hormone, muscle regulatory factors, myostatin and insulin-like growth factors. Meat quality is mediated by fatty acid transport and deposition related signals, calpains and calpain system, muscle regulatory factors and muscle growth regulation pathways. Reproduction performance is regulated by GnRH-FSH-LH, growth differentiation factor 9, prolactin receptor and forkhead box protein O1. Disease resistance is modulated by the major histocompatibility complex gene family, toll-like receptors, mannose-binding lectin and interferon gene signals. In this review, we summarize the most recent progress in beef cattle breeding in marker-assisted selection, genome-wide selection and genetic modification breeding, aiming to provide a reference for further genetic breeding research of beef cattle in China.
The burden of proof: The current state of atrial fibrillation prevention and treatment trials
Zakeri, Rosita; Van Wagoner, David R.; Calkins, Hugh; Wong, Tom; Ross, Heather M.; Heist, E. Kevin; Meyer, Timothy E.; Kowey, Peter R.; Mentz, Robert J.; Cleland, John G.; Pitt, Bertram; Zannad, Faiez; Linde, Cecilia
2017-01-01
Atrial fibrillation (AF) is an age-related arrhythmia of enormous socioeconomic significance. In recent years, our understanding of the basic mechanisms that initiate and perpetuate AF has evolved rapidly, catheter ablation of AF has progressed from concept to reality, and recent studies suggest lifestyle modification may help prevent AF recurrence. Emerging developments in genetics, imaging, and informatics also present new opportunities for personalized care. However, considerable challenges remain. These include a paucity of studies examining AF prevention, modest efficacy of existing antiarrhythmic therapies, diverse ablation technologies and practice, and limited evidence to guide management of high-risk patients with multiple comorbidities. Studies examining the long-term effects of AF catheter ablation on morbidity and mortality outcomes are not yet completed. In many ways, further progress in the field is heavily contingent on the feasibility, capacity, and efficiency of clinical trials to incorporate the rapidly evolving knowledge base and to provide substantive evidence for novel AF therapeutic strategies. This review outlines the current state of AF prevention and treatment trials, including the foreseeable challenges, as discussed by a unique forum of clinical trialists, scientists, and regulatory representatives in a session endorsed by the Heart Rhythm Society at the 12th Global CardioVascular Clinical Trialists Forum in Washington, DC, December 3–5, 2015. PMID:28161513
Progress and profit through microtechnologies: commercial applications of MEMS/MOEMS
NASA Astrophysics Data System (ADS)
Ehrfeld, Wolfgang; Ehrfeld, Ursula
2001-09-01
Micro technology deals with miniaturization and integration in all areas of technology outside of microelectronics like micro mechanics, micro optics, micro acoustics, micro fluid technology, micro reaction technology and further disciplines which are focused on technical components and systems with characteristic dimensions in the micrometer range. Within a period of about ten years a multi-billion dollar market has been set up with many products for daily life. The growth rate of the market of micro technology will remain on a high level for the years to come. Mega trends resulting from fundamental human wishes for health, information, mobility and sustainable development are creating a further growing basis for micro technical products. A broad spectrum of production processes and materials has been developed to meet the requirements of a strongly diversified range of applications. For the development of new components and systems the importance of software tools for simulation of functional properties, production processes and comprehensive optimization is growing rapidly. Micro devices are meanwhile used extensively in information, automotive, and medical technologies. In addition, micro technology is generating a completely novel basis for chemical engineering, life sciences, industrial automation and optical communication, to mention only a few disciplines where future innovation will be dominated by miniaturization.
Comparative advantage strategy for rapid pollution mitigation in China.
Xu, Yuan
2013-09-03
Due to its sheer size and growth trend, no other country is facing more daunting challenges than China in reducing its pollutant emissions. A critical but inadequately addressed question is how rapidly China could feasibly achieve such mitigation. The stake is high not only about how much worse China's environmental quality could become but also about how the world can prevent catastrophic climate change. Through examining sulfur dioxide (SO2) mitigation in coal-fired power plants and wind energy development for carbon dioxide (CO2) mitigation, this article proposes a comparative advantage strategy for overcoming high barriers to fast pollution mitigation. On the demand side, China could first make progress in the deployment of more pollution control facilities and then improve their operational performance. The resulting low technological market entry barriers could help to build enough industrial capacity to meet the huge demand with prices under control. The strategy in the current practice could be improved to establish not only a large supply industry but also a strong one to enable other countries to move more rapidly in pollution mitigation.
Kang, Jungho; Kim, Mansik; Park, Jong Hyuk
2016-01-01
With the ICT technology making great progress in the smart home environment, the ubiquitous environment is rapidly emerging all over the world, but problems are also increasing proportionally to the rapid growth of the smart home market such as multiplatform heterogeneity and new security threats. In addition, the smart home sensors have so low computing resources that they cannot process complicated computation tasks, which is required to create a proper security environment. A service provider also faces overhead in processing data from a rapidly increasing number of sensors. This paper aimed to propose a scheme to build infrastructure in which communication entities can securely authenticate and design security channel with physically unclonable PUFs and the TTP that smart home communication entities can rely on. In addition, we analyze and evaluate the proposed scheme for security and performance and prove that it can build secure channels with low resources. Finally, we expect that the proposed scheme can be helpful for secure communication with low resources in future smart home multiplatforms. PMID:27399699
Kang, Jungho; Kim, Mansik; Park, Jong Hyuk
2016-07-05
With the ICT technology making great progress in the smart home environment, the ubiquitous environment is rapidly emerging all over the world, but problems are also increasing proportionally to the rapid growth of the smart home market such as multiplatform heterogeneity and new security threats. In addition, the smart home sensors have so low computing resources that they cannot process complicated computation tasks, which is required to create a proper security environment. A service provider also faces overhead in processing data from a rapidly increasing number of sensors. This paper aimed to propose a scheme to build infrastructure in which communication entities can securely authenticate and design security channel with physically unclonable PUFs and the TTP that smart home communication entities can rely on. In addition, we analyze and evaluate the proposed scheme for security and performance and prove that it can build secure channels with low resources. Finally, we expect that the proposed scheme can be helpful for secure communication with low resources in future smart home multiplatforms.
Benigni, Romualdo; Battistelli, Chiara Laura; Bossa, Cecilia; Tcheremenskaia, Olga; Crettaz, Pierre
2013-07-01
Currently, the public has access to a variety of databases containing mutagenicity and carcinogenicity data. These resources are crucial for the toxicologists and regulators involved in the risk assessment of chemicals, which necessitates access to all the relevant literature, and the capability to search across toxicity databases using both biological and chemical criteria. Towards the larger goal of screening chemicals for a wide range of toxicity end points of potential interest, publicly available resources across a large spectrum of biological and chemical data space must be effectively harnessed with current and evolving information technologies (i.e. systematised, integrated and mined), if long-term screening and prediction objectives are to be achieved. A key to rapid progress in the field of chemical toxicity databases is that of combining information technology with the chemical structure as identifier of the molecules. This permits an enormous range of operations (e.g. retrieving chemicals or chemical classes, describing the content of databases, finding similar chemicals, crossing biological and chemical interrogations, etc.) that other more classical databases cannot allow. This article describes the progress in the technology of toxicity databases, including the concepts of Chemical Relational Database and Toxicological Standardized Controlled Vocabularies (Ontology). Then it describes the ISSTOX cluster of toxicological databases at the Istituto Superiore di Sanitá. It consists of freely available databases characterised by the use of modern information technologies and by curation of the quality of the biological data. Finally, this article provides examples of analyses and results made possible by ISSTOX.
New phenomena in non-equilibrium quantum physics
NASA Astrophysics Data System (ADS)
Kitagawa, Takuya
From its beginning in the early 20th century, quantum theory has become progressively more important especially due to its contributions to the development of technologies. Quantum mechanics is crucial for current technology such as semiconductors, and also holds promise for future technologies such as superconductors and quantum computing. Despite of the success of quantum theory, its applications have been mostly limited to equilibrium or static systems due to 1. lack of experimental controllability of non-equilibrium quantum systems 2. lack of theoretical frameworks to understand non-equilibrium dynamics. Consequently, physicists have not yet discovered too many interesting phenomena in non-equilibrium quantum systems from both theoretical and experimental point of view and thus, non-equilibrium quantum physics did not attract too much attentions. The situation has recently changed due to the rapid development of experimental techniques in condensed matter as well as cold atom systems, which now enables a better control of non-equilibrium quantum systems. Motivated by this experimental progress, we constructed theoretical frameworks to study three different non-equilibrium regimes of transient dynamics, steady states and periodically drives. These frameworks provide new perspectives for dynamical quantum process, and help to discover new phenomena in these systems. In this thesis, we describe these frameworks through explicit examples and demonstrate their versatility. Some of these theoretical proposals have been realized in experiments, confirming the applicability of the theories to realistic experimental situations. These studies have led to not only the improved fundamental understanding of non-equilibrium processes in quantum systems, but also suggested entirely different venues for developing quantum technologies.
Employing health information technology in the real world to transform delivery.
Gold, Marsha
2013-11-01
Strong leadership and a supportive culture are critical to effective organizational transformation, but organizations pursuing change also need the infrastructure and tools to do so effectively. As policy makers seek to transform healthcare systems-specifically the delivery of care-we explore the real-world connection between health information technology (HIT) and the transformation of care delivery. This study is based on interviews with diverse federal and health system leaders and federal officials. The work was funded by the Office of the National Coordinator for Health Information Technology as part of a global assessment of the Health Information Technology for Economic and Clinical Health Act. The functionalities supported by HIT are integral to creating the information flow required for innovations such as medical homes, accountable care organizations, and bundled payment. However, such functionalities require much more than the presence of electronic health records; the data must also be liquid, integrated into the work flow, and used for analysis. Even in advanced systems, it takes years to create HIT infrastructure. Building this infrastructure and transforming delivery simultaneously is difficult, although probably unavoidable, for most providers. Progress will likely be slow and will require creative strategies that take into account the real-world environment of organizations and communities. While the rapid transformation of delivery and infrastructure is appealing, both types of change will take time and will progress unevenly across the nation. Policy makers serious about transforming the delivery of healthcare can benefit by recognizing these realities and developing practical strategies to deal with them over a relatively long period of time.
He, Qiu-ju; Wang, Li-qin
2016-02-01
As the birthplace of Silk Road, China has a long dyeing history. The valuable information about the production time, the source of dyeing material, dyeing process and preservation status were existed in organic dyestuff deriving from cultural relics and artifacts. However, because of the low contents, complex compositions and easily degraded of dyestuff, it is always a challenging task to identify the dyestuff in relics analyzing field. As a finger-print spectrum, Raman spectroscopy owns unique superiorities in dyestuff identification. Thus, the principle, characteristic, limitation, progress and development direction of micro-Raman spectroscopy (MRS/µ-Raman), near infrared reflection and Fourier transform Raman spectroscopy (NIR-FT-Raman), surface-enhanced Raman spectroscopy (SERS) and resonance raman spectroscopy (RRS) have been introduced in this paper. Furthermore, the features of Raman spectra of gardenia, curcumin and other natural dyestuffs were classified by MRS technology, and then the fluorescence phenomena of purpurin excitated with different wavelength laser was compared and analyzed. At last, gray green silver colloidal particles were made as the base, then the colorant of madder was identified combining with thin layer chromatography (TLC) separation technology and SERS, the result showed that the surface enhancement effect of silver colloidal particles could significantly reduce fluorescence background of the Raman spectra. It is pointed out that Raman spectroscopy is a rapid and convenient molecular structure qualitative methodology, which has broad application prospect in dyestuff analysis of cultural relics and artifacts. We propose that the combination of multi-Raman spectroscopy, separation technology and long distance transmission technology are the development trends of Raman spectroscopy.
Biomarkers in bladder cancer: present status and perspectives.
Kim, Wun-Jae; Park, Soongang; Kim, Yong-June
2007-03-27
Bladder cancers are a mixture of heterogeneous cell populations, and numerous factors are likely to be involved in dictating their recurrence, progression and the patient's survival. For any candidate prognostic marker to have considerable clinical relevance, it must add some predictive capacity beyond that offered by conventional clinical and pathologic parameters. Here, the current situation in bladder cancer research with respect to identification of suitable prognostic markers is reviewed. A number of individual molecular markers that might predict bladder cancer recurrence and progression have been identified but many are not sufficiently sensitive or specific for the whole spectrum of bladder cancer diseases seen in routine clinical practice. These limitations have led to interest in other molecular parameters that could enable more accurate prognosis for bladder cancer patients. Of particular interest is the epigenetic silencing of tumor suppressor genes. Since the methylation of these genes can correlate with a poor prognosis, the methylation profile may represent a new bio-marker that indicates the risk of transitional cell carcinoma development. In addition, bladder cancer research is likely to be revolutionized by high-throughput molecular technologies, which allow rapid and global gene expression analysis of thousands of tumor samples. Initial studies employing these technologies have considerably expanded our ability to classify bladder cancers with respect to their survivability. Future microarray analyses are likely to reveal particular gene expression signatures that predict the likelihood of bladder cancer progression and recurrence, as well as patient's survival and responsiveness to different anti-cancer therapies, with great specificity and sensitivity.
The future scalability of pH-based genome sequencers: A theoretical perspective
NASA Astrophysics Data System (ADS)
Go, Jonghyun; Alam, Muhammad A.
2013-10-01
Sequencing of human genome is an essential prerequisite for personalized medicine and early prognosis of various genetic diseases. The state-of-art, high-throughput genome sequencing technologies provide improved sequencing; however, their reliance on relatively expensive optical detection schemes has prevented wide-spread adoption of the technology in routine care. In contrast, the recently announced pH-based electronic genome sequencers achieve fast sequencing at low cost because of the compatibility with the current microelectronics technology. While the progress in technology development has been rapid, the physics of the sequencing chips and the potential for future scaling (and therefore, cost reduction) remain unexplored. In this article, we develop a theoretical framework and a scaling theory to explain the principle of operation of the pH-based sequencing chips and use the framework to explore various perceived scaling limits of the technology related to signal to noise ratio, well-to-well crosstalk, and sequencing accuracy. We also address several limitations inherent to the key steps of pH-based genome sequencers, which are widely shared by many other sequencing platforms in the market but remained unexplained properly so far.
[Economic evaluation of health technologies: theory and practice].
Abadi-Korek, Ifat; Shemer, Joshua
2008-06-01
Health care systems are committed to maintain and improve the health of their citizens in an effective, fair and accessible way. New medical technologies that offer improvement upon existing alternatives are progressing at a rapid pace. These new sophisticated health technologies are high priced and have been viewed as a significant factor in increasing the cost of healthcare expenditures. The abundance of new medical alternatives, combined with scarcity of resources, has led to the need for priority setting in a way that maximizes the health benefit of those insured. Economic evaluation of medical technologies is the analysis which compares the costs and consequences of alternative healthcare interventions. Economic evaluation of medical technologies can be used by policy makers as a tool to aid in resource allocation decisions. The inclusion of an economic perspective in the evaluation of health and health care has become an increasingly accepted component of health policy and planning. The health care system in Israel has come to acknowledge the advantages of this method. There is still a need for more suitable and structured guidelines to conducting economic evaluation in order to make this emergent and welcome process and its products useable.
Use of technological aids and interpretation services among children and adults with hearing loss.
Dammeyer, Jesper; Lehane, Christine; Marschark, Marc
2017-10-01
The technological development of communication aids for people with hearing loss has progressed rapidly over the last decades. Quality has improved and the number of different types of aids has increased. However, few studies have examined the prevalence of technology use and interpreting services use among people with hearing loss as they relate to demographic characteristics of this population. This study reports from national surveys of children and adults with hearing loss. Use of hearing aids, cochlear implants, other aids and interpreting services were analysed with regard to gender, age, degree of hearing loss, mode of communication, having an additional disability, level of educational achievement among adults, and whether or not children lived together with both of their parents. 269 children (0-15 years of age) and 839 adults (16-65 years of age). Differences in technology and service use were associated with age, degree of hearing loss, and mode of communication among children and adults, and gender and level of educational achievement among adults. Individual and social factors have an impact on technological hearing aid and interpreter use. More research about individual differences and clinical implications of support services is needed.
Olar, Adriana; Raghunathan, Aditya; Albarracin, Constance T; Aldape, Kenneth D; Cahill, Daniel P; Powell, Suzanne Z; Goodman, J Clay; Fuller, Gregory N
2012-06-01
Advanced age and contrast enhancement portend a poor prognosis in diffuse glioma (DG). Diffuse glioma may present as nonenhancing tumors that rapidly progress in weeks to months to a pattern of ring enhancement, characteristic of glioblastoma (GBM). Mutations involving isocitrate dehydrogenase 1 (IDH1) have recently emerged as important diagnostic and prognostic markers in DG. R132H is the most common mutation, expressed in more than 80% of DG and secondary GBM but in less than 10% of primary GBM. Adults older than 50 years with nonenhancing, rapidly progressing DG were identified. A comparison group comprised randomly selected, age-matched patients with nonenhancing, nonprogressing DG. Isocitrate dehydrogenase 1 status was evaluated using anti-IDH1-R132H antibodies (Dianova, Hamburg, Germany). The results were correlated with the clinical outcomes. We identified 4 patients who presented with nonenhancing DG that rapidly progressed to ring-enhancing lesions that were subsequently diagnosed on surgical resection as GBM. This group showed absent IDH1-R132H expression, which is characteristic of primary GBM. The comparison group of 5 patients presented with nonenhancing, nonprogressing DG, and all 5 tumors showed IDH1-R132H expression. In conclusion, negative IDH1-R132H mutation status in nonenhancing DG of older adults is a poor prognostic factor associated with rapid progression to ring-enhancing GBM. The shorter interval of progression and negative IDH1-R132H mutation status suggest a similar molecular pathway as seen in primary GBM. Copyright © 2012 Elsevier Inc. All rights reserved.
Crosscutting Technology Development at the Center for Advanced Separation Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher E. Hull
2006-09-30
This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.
CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher E. Hull
2006-05-15
This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.
UK medicines regulation: responding to current challenges
Richards, Natalie
2016-01-01
The medicines regulatory environment is evolving rapidly in response to the changing environment. Advances in science and technology have led to a vast field of increasingly complicated pharmaceutical and medical device products; increasing globalization of the pharmaceutical industry, advances in digital technology and the internet, changing patient populations, and shifts in society also affect the regulatory environment. In the UK, the Medicines and Healthcare products Regulatory Agency (MHRA) regulates medicines, medical devices and blood products to protect and improve public health, and supports innovation through scientific research and development. It works closely with other bodies in a single medicines network across Europe and takes forward UK health priorities. This paper discusses the range of initiatives in the UK and across Europe to support innovation in medicines regulation. The MHRA leads a number of initiatives, such as the Innovation Office, which helps innovators to navigate the regulatory processes to progress their products or technologies; and simplification of the Clinical Trials Regulations and the Early Access to Medicines Scheme, to bring innovative medicines to patients faster. The Accelerated Access Review will identify reforms to accelerate access for National Health Service patients to innovative medicines and medical technologies. PRIME and Adaptive Pathways initiatives are joint endeavours within the European regulatory community. The MHRA runs spontaneous reporting schemes and works with INTERPOL to tackle counterfeiting and substandard products sold via the internet. The role of the regulator is changing rapidly, with new risk‐proportionate, flexible approaches being introduced. International collaboration is a key element of the work of regulators, and is set to expand. PMID:27580254
UK medicines regulation: responding to current challenges.
Richards, Natalie; Hudson, Ian
2016-12-01
The medicines regulatory environment is evolving rapidly in response to the changing environment. Advances in science and technology have led to a vast field of increasingly complicated pharmaceutical and medical device products; increasing globalization of the pharmaceutical industry, advances in digital technology and the internet, changing patient populations, and shifts in society also affect the regulatory environment. In the UK, the Medicines and Healthcare products Regulatory Agency (MHRA) regulates medicines, medical devices and blood products to protect and improve public health, and supports innovation through scientific research and development. It works closely with other bodies in a single medicines network across Europe and takes forward UK health priorities. This paper discusses the range of initiatives in the UK and across Europe to support innovation in medicines regulation. The MHRA leads a number of initiatives, such as the Innovation Office, which helps innovators to navigate the regulatory processes to progress their products or technologies; and simplification of the Clinical Trials Regulations and the Early Access to Medicines Scheme, to bring innovative medicines to patients faster. The Accelerated Access Review will identify reforms to accelerate access for National Health Service patients to innovative medicines and medical technologies. PRIME and Adaptive Pathways initiatives are joint endeavours within the European regulatory community. The MHRA runs spontaneous reporting schemes and works with INTERPOL to tackle counterfeiting and substandard products sold via the internet. The role of the regulator is changing rapidly, with new risk-proportionate, flexible approaches being introduced. International collaboration is a key element of the work of regulators, and is set to expand. © 2016 The British Pharmacological Society.
Profibrogenic chemokines and viral evolution predict rapid progression of hepatitis C to cirrhosis
Farci, Patrizia; Wollenberg, Kurt; Diaz, Giacomo; Engle, Ronald E.; Lai, Maria Eliana; Klenerman, Paul; Purcell, Robert H.; Pybus, Oliver G.; Alter, Harvey J.
2012-01-01
Chronic hepatitis C may follow a mild and stable disease course or progress rapidly to cirrhosis and liver-related death. The mechanisms underlying the different rates of disease progression are unknown. Using serial, prospectively collected samples from cases of transfusion-associated hepatitis C, we identified outcome-specific features that predict long-term disease severity. Slowly progressing disease correlated with an early alanine aminotransferase peak and antibody seroconversion, transient control of viremia, and significant induction of IFN-γ and MIP-1β, all indicative of an effective, albeit insufficient, adaptive immune response. By contrast, rapidly progressive disease correlated with persistent and significant elevations of alanine aminotransferase and the profibrogenic chemokine MCP-1 (CCL-2), greater viral diversity and divergence, and a higher rate of synonymous substitution. This study suggests that the long-term course of chronic hepatitis C is determined early in infection and that disease severity is predicted by the evolutionary dynamics of hepatitis C virus and the level of MCP-1, a chemokine that appears critical to the induction of progressive fibrogenesis and, ultimately, the ominous complications of cirrhosis. PMID:22829669
Profibrogenic chemokines and viral evolution predict rapid progression of hepatitis C to cirrhosis.
Farci, Patrizia; Wollenberg, Kurt; Diaz, Giacomo; Engle, Ronald E; Lai, Maria Eliana; Klenerman, Paul; Purcell, Robert H; Pybus, Oliver G; Alter, Harvey J
2012-09-04
Chronic hepatitis C may follow a mild and stable disease course or progress rapidly to cirrhosis and liver-related death. The mechanisms underlying the different rates of disease progression are unknown. Using serial, prospectively collected samples from cases of transfusion-associated hepatitis C, we identified outcome-specific features that predict long-term disease severity. Slowly progressing disease correlated with an early alanine aminotransferase peak and antibody seroconversion, transient control of viremia, and significant induction of IFN-γ and MIP-1β, all indicative of an effective, albeit insufficient, adaptive immune response. By contrast, rapidly progressive disease correlated with persistent and significant elevations of alanine aminotransferase and the profibrogenic chemokine MCP-1 (CCL-2), greater viral diversity and divergence, and a higher rate of synonymous substitution. This study suggests that the long-term course of chronic hepatitis C is determined early in infection and that disease severity is predicted by the evolutionary dynamics of hepatitis C virus and the level of MCP-1, a chemokine that appears critical to the induction of progressive fibrogenesis and, ultimately, the ominous complications of cirrhosis.
[Rapidly progressive glomerulonephritis: a diagnostic and therapeutic emergency].
Halfon, Matthieu; Teta, Daniel; Rotman, Samuel; Pruijm, Menno; Humbert, Antoine
2014-02-26
Rapidly progressive glomerulonephritis (RPG) is a rare clinical syndrome characterized by kidney damage that can lead to irreversible kidney failure. RPG can be caused by primary glomerular disease or can be part of a systemic autoimmune disorder. All RPG have a similar pathophysiology (proliferation of cells in Bowman's capsule and formation of crescents) and clinical evolution (rapidly progressive kidney failure with proteinuria and an active urine sediment). Immunosuppressive therapy and sometimes plasma exchanges are required. Overall- and kidney survival are closely linked to the blood creatinine level at presentation, the percentage of damaged glomeruli, and to the underlying cause. RPG is therefore a diagnostic and therapeutic emergency that needs quick referral to a nephrologist.
Interconnected magnetic tunnel junctions for spin-logic applications
NASA Astrophysics Data System (ADS)
Manfrini, Mauricio; Vaysset, Adrien; Wan, Danny; Raymenants, Eline; Swerts, Johan; Rao, Siddharth; Zografos, Odysseas; Souriau, Laurent; Gavan, Khashayar Babaei; Rassoul, Nouredine; Radisic, Dunja; Cupak, Miroslav; Dehan, Morin; Sayan, Safak; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.; Mocuta, Dan; Radu, Iuliana P.
2018-05-01
With the rapid progress of spintronic devices, spin-logic concepts hold promises of energy-delay conscious computation for efficient logic gate operations. We report on the electrical characterization of domain walls in interconnected magnetic tunnel junctions. By means of spin-transfer torque effect, domains walls are produced at the common free layer and its propagation towards the output pillar sensed by tunneling magneto-resistance. Domain pinning conditions are studied quasi-statically showing a strong dependence on pillar size, ferromagnetic free layer width and inter-pillar distance. Addressing pinning conditions are detrimental for cascading and fan-out of domain walls across nodes, enabling the realization of domain-wall-based logic technology.
The research on electronic commerce security payment system based on set protocol
NASA Astrophysics Data System (ADS)
Guo, Hongliang
2012-04-01
With the rapid development of network technology, online transactions have become more and more common. In this paper, we firstly introduce the principle and the basic principal and technical foundation of SET, and then we analyze the progress of designing a system in the foundation of the procedure of the electronic business based on SET. On this basis, we design a system of the Payment System for Electronic Business. It will not only take on crucial realism signification for large-scale, medium-sized and mini-type corporations, but also provide guide meaning with programmer and design-developer to realize Electronic Commerce (EC).
Construction of IT Based Learning System at University Level
NASA Astrophysics Data System (ADS)
Akiyama, Hidenori; Kozono, Kazutake
Rapid progress of information and communication technologies has been changing the education method. In Japan, online lectures have been recognized as the credits for graduation by the change of a law since 2001. One trial to construct an IT based learning system has been done for the development of IT based higher education and training. Educational effect of online lecture taken anytime and anywhere is evaluated, and then an authoring software for online lectures is developed for educators who are not familiar to IT. A learning management system begins to be operated for whole lectures, and a wireless LAN system is equipped in whole campus of Kumamoto University.
Institutional Oversight of Occupational Health and Safety for Research Programs Involving Biohazards
Dyson, Melissa C; Carpenter, Calvin B; Colby, Lesley A
2017-01-01
Research with hazardous biologic materials (biohazards) is essential to the progress of medicine and science. The field of microbiology has rapidly advanced over the years, partially due to the development of new scientific methods such as recombinant DNA technology, synthetic biology, viral vectors, and the use of genetically modified animals. This research poses a potential risk to personnel as well as the public and the environment. Institutions must have appropriate oversight and take appropriate steps to mitigate the risks of working with these biologic hazards. This article will review responsibilities for institutional oversight of occupational health and safety for research involving biologic hazards. PMID:28662748
High throughput detection of antibody self-interaction by bio-layer interferometry.
Sun, Tingwan; Reid, Felicia; Liu, Yuqi; Cao, Yuan; Estep, Patricia; Nauman, Claire; Xu, Yingda
2013-01-01
Self-interaction of an antibody may lead to aggregation, low solubility or high viscosity. Rapid identification of highly developable leads remains challenging, even though progress has been made with the introduction of techniques such as self-interaction chromatography (SIC) and cross-interaction chromatography (CIC). Here, we report a high throughput method to detect antibody clone self-interaction (CSI) using bio-layer interferometry (BLI) technology. Antibodies with strong self-interaction responses in the CSI-BLI assay also show delayed retention times in SIC and CIC. This method allows hundreds of candidates to be screened in a matter of hours with minimal material consumption.
Health care: economic impact of caring for geriatric patients.
Rich, Preston B; Adams, Sasha D
2015-02-01
National health care expenditures constitute a continuously expanding component of the US economy. Health care resources are distributed unequally among the population, and geriatric patients are disproportionately represented. Characterizing this group of individuals that accounts for the largest percentage of US health spending may facilitate the introduction of targeted interventions in key high-impact areas. Changing demographics, an increasing incidence of chronic disease and progressive disability, rapid technological advances, and systemic market failures in the health care sector combine to drive cost. A multidisciplinary approach will become increasingly necessary to balance the delicate relationship between our constrained supply and increasing demand. Copyright © 2015 Elsevier Inc. All rights reserved.
Lipid-polymer hybrid nanoparticle-mediated therapeutics delivery: advances and challenges.
Bose, Rajendran J C; Ravikumar, Rramaswamy; Karuppagounder, Vengadeshprabu; Bennet, Devasier; Rangasamy, Sabarinathan; Thandavarayan, Rajarajan A
2017-08-01
With rapid advances in nanomedicine, lipid-polymer hybrid nanoparticles (LPHNPs) have emerged as promising nanocarriers for several biomedical applications, including therapeutics delivery and biomedical imaging. Significant research has been dedicated to biomimetic or targeting functionalization, as well as controlled and image-guided drug-release capabilities. Despite this research, the clinical translation of LPHNP-mediated therapeutics delivery has progressed incrementally. In this review, we discuss the recent advances in and challenges to the development and application of LPHNPs, present examples to demonstrate the advantages of LPHNPs in therapeutics delivery and imaging applications, and discuss the translational obstacles to LPHNP technology. Copyright © 2017. Published by Elsevier Ltd.
Dyson, Melissa C; Carpenter, Calvin B; Colby, Lesley A
2017-06-01
Research with hazardous biologic materials (biohazards) is essential to the progress of medicine and science. The field of microbiology has rapidly advanced over the years, partially due to the development of new scientific methods such as recombinant DNA technology, synthetic biology, viral vectors, and the use of genetically modified animals. This research poses a potential risk to personnel as well as the public and the environment. Institutions must have appropriate oversight and take appropriate steps to mitigate the risks of working with these biologic hazards. This article will review responsibilities for institutional oversight of occupational health and safety for research involving biologic hazards.
Space-division multiplexing in optical fibres
NASA Astrophysics Data System (ADS)
Richardson, D. J.; Fini, J. M.; Nelson, L. E.
2013-05-01
Optical communication technology has been advancing rapidly for several decades, supporting our increasingly information-driven society and economy. Much of this progress has been in finding innovative ways to increase the data-carrying capacity of a single optical fibre. To achieve this, researchers have explored and attempted to optimize multiplexing in time, wavelength, polarization and phase. Commercial systems now utilize all four dimensions to send more information through a single fibre than ever before. The spatial dimension has, however, remained untapped in single fibres, despite it being possible to manufacture fibres supporting hundreds of spatial modes or containing multiple cores, which could be exploited as parallel channels for independent signals.
[Recombinase Polymerase Amplification and its Applications in Parasite Detection].
ZHENG, Wen-bin; WU, Yao-dong; MA, Jian-gang; ZHU, Xing-quan; ZHOU, Dong-hui
2015-10-01
Recombinase polymerase amplification (RPA) is a recently -developed isothermal nucleic-acid-amplification technology that is based on the nucleic acid replication mechanism in T4 bacteriophage. With this technique, nucleic-acid templates can be amplified to measurable levels within 20 min at 37-42 °C. The. RPA process has high sensitivity and specificity, and is simple to operate, thus nucleic acids can be detected rapidly in non-laboratory conditions. Since its development in 2006, the RPA technique has been applied in agriculture, food safety, medicine, transgene detection, etc. In this review, we will give an overview on the research progress of RPA and its application in parasite detection.
Hypertensive chronic kidney disease in African Americans: Strategies for improving care
MARTINS, DAVID; AGODOA, LAWRENCE; NORRIS, KEITH C.
2013-01-01
African Americans have a disproportionate burden of chronic kidney disease (CKD), which tends to have an earlier onset and a more rapid progression in this population. Many of the factors responsible for the rapid progression of CKD in African Americans are detectable by screening and are modifiable with prompt therapy. PMID:23027732
Bioresorbable Scaffolds: Current Evidences in the Treatment of Coronary Artery Disease
2016-01-01
Percutaneous coronary revascularization strategies have gradually progressed over a period of last few decades. The advent of newer generation drug-eluting stents has significantly improved the outcomes of Percutaneous Coronary Intervention (PCI) by substantially reducing in-stent restenosis and stent thrombosis. However, vascular inflammation, restenosis, thrombosis, and neoatherosclerosis due to the permanent presence of a metallic foreign body within the artery limit their usage in complex Coronary Artery Disease (CAD). Bioresorbable Scaffolds (BRS) represent a novel approach in coronary stent technology. Complete resorption of the scaffold liberates the treated vessel from its cage and restores pulsatility, cyclical strain, physiological shear stress, and mechanotransduction. In this review article, we describe the advances in this rapidly evolving technology, present the evidence from the pre-clinical and clinical evaluation of these devices, and provide an overview of the ongoing clinical trials that were designed to examine the effectiveness of BRS in the clinical setting. PMID:27891384
Present status of metrology of electro-optical surveillance systems
NASA Astrophysics Data System (ADS)
Chrzanowski, K.
2017-10-01
There has been a significant progress in equipment for testing electro-optical surveillance systems over the last decade. Modern test systems are increasingly computerized, employ advanced image processing and offer software support in measurement process. However, one great challenge, in form of relative low accuracy, still remains not solved. It is quite common that different test stations, when testing the same device, produce different results. It can even happen that two testing teams, while working on the same test station, with the same tested device, produce different results. Rapid growth of electro-optical technology, poor standardization, limited metrology infrastructure, subjective nature of some measurements, fundamental limitations from laws of physics, tendering rules and advances in artificial intelligence are major factors responsible for such situation. Regardless, next decade should bring significant improvements, since improvement in measurement accuracy is needed to sustain fast growth of electro-optical surveillance technology.
Control of coherent information via on-chip photonic-phononic emitter-receivers.
Shin, Heedeuk; Cox, Jonathan A; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T
2015-03-05
Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon-phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics--which supports GHz frequencies--we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.
Endoscopes with latest technology and concept.
Gotoh
2003-09-01
Endoscopic imaging systems that perform as the "eye" of the operator during endoscopic surgical procedures have developed rapidly due to various technological developments. In addition, since the most recent turn of the century robotic surgery has increased its scope through the utilization of systems such as Intuitive Surgical's da Vinci System. To optimize the imaging required for precise robotic surgery, a unique endoscope has been developed, consisting of both a two dimensional (2D) image optical system for wider observation of the entire surgical field, and a three dimensional (3D) image optical system for observation of the more precise details at the operative site. Additionally, a "near infrared radiation" endoscopic system is under development to detect the sentinel lymph node more readily. Such progress in the area of endoscopic imaging is expected to enhance the surgical procedure from both the patient's and the surgeon's point of view.
From transistor to trapped-ion computers for quantum chemistry.
Yung, M-H; Casanova, J; Mezzacapo, A; McClean, J; Lamata, L; Aspuru-Guzik, A; Solano, E
2014-01-07
Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.
Environmental release of living modified organisms: current approaches and case studies.
Thomas, E; Nickson, Ph D
2005-01-01
Agricultural biotechnology is being rapidly adopted as evidenced by the acreage of genetically modified (GM) crops planted and tonnes of product (grain and fiber) harvested. Concurrent with this technological progress, is a growing concern that the worlds biological diversity is coming under increasing threat from human activities. As such, ecological risk assessment approaches are being developed for GM crop plants as international agreements regulating the transboundary movements of these products are being implemented. This paper reviews the ecological risk assessment approach that has been used to date to approve GM crops to date. The process has been case-by-case, using a comparative, science-based approach balancing the potential risks and benefits of the new technology versus those present with the currently accepted practices. The approach used to evaluate and approve these products is consistent with the conditions and requirements outlined in the Cartagena Protocol.
NASA Astrophysics Data System (ADS)
Walton, A. L.
2015-12-01
In 2016, the National Science Foundation (NSF) will support a portfolio of activities and investments focused upon challenges in data access, interoperability, and sustainability. These topics are fundamental to science questions of increasing complexity that require multidisciplinary approaches and expertise. Progress has become tractable because of (and sometimes complicated by) unprecedented growth in data (both simulations and observations) and rapid advances in technology (such as instrumentation in all aspects of the discovery process, together with ubiquitous cyberinfrastructure to connect, compute, visualize, store, and discover). The goal is an evolution of capabilities for the research community based on these investments, scientific priorities, technology advances, and policies. Examples from multiple NSF directorates, including investments by the Advanced Cyberinfrastructure Division, are aimed at these challenges and can provide the geosciences research community with models and opportunities for participation. Implications for the future are highlighted, along with the importance of continued community engagement on key issues.
Hemispherical array of sensors with contractively wrapped polymer petals for flow sensing
NASA Astrophysics Data System (ADS)
Kanhere, Elgar; Wang, Nan; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Triantafyllou, Michael
2017-11-01
Hemispherical arrays have inherent advantages that allow simultaneous detection of flow speed and direction due to their shape. Though MEMS technology has progressed leaps and bounds, fabrication of array of sensors on a hemispherical surface is still a challenge. In this work, a novel approach of constructing hemispherical array is presented which employs a technique of contractively wrapping a hemispherical surface with flexible liquid crystal polymer petals. This approach also leverages the offerings from rapid prototyping technology and established standard MEMS fabrication processes. Hemispherical arrays of piezoresistive sensors are constructed with two types of petal wrappings, 4-petals and 8-petals, on a dome. The flow sensing and direction detection abilities of the dome are evaluated through experiments in wind tunnel. Experimental results demonstrate that a dome equipped with a dense array of sensors can provide information pertaining to the stimulus, through visualization of output profile over the entire surface.
Chemicapacitors as a versatile platform for miniature gas and vapor sensors
NASA Astrophysics Data System (ADS)
Blue, Robert; Uttamchandani, Deepak
2017-02-01
Recent years have seen the rapid growth in the need for sensors throughout all areas of society including environmental sensing, health-care, public safety and manufacturing quality control. To meet this diverse need, sensors have to evolve from specialized and bespoke systems to miniaturized, low-power, low-cost (almost disposable) ubiquitous platforms. A technology that has been developed which gives a route to meet these challenges is the chemicapacitor sensor. To date the commercialization of these sensors has largely been restricted to humidity sensing, but in this review we examine the progress over recent years to expand this sensing technology to a wide range of gases and vapors. From sensors interrogated with laboratory instrumentation, chemicapacitor sensors have evolved into miniaturized units integrated with low power readout electronics that can selectively detect target molecules to ppm and sub-ppm levels within vapor mixtures.
Screening for Barrett’s Esophagus
di Pietro, Massimiliano; Chan, Daniel; Fitzgerald, Rebecca C.; Wang, Kenneth K.
2015-01-01
The large increase in the incidence of esophageal adeno-carcinoma in the West during the past 30 years has stimulated interest in screening for Barrett’s esophagus (BE), a precursor to esophageal cancer. Effective endoscopic treatments for dysplasia and intramucosal cancer, coupled with screening programs to detect BE, could help reverse the increase in the incidence of esophageal cancer. However, there are no accurate, cost-effective, minimally invasive techniques available to screen for BE, reducing the enthusiasm of gastroenterologists. Over the past 5 years, there has been significant progress in the development of screening technologies. We review existing and developing technologies, new minimally invasive imaging techniques, nonendoscopic devices for cell collection, and biomarkers that can be measured in blood or stool samples. We discuss the status of these approaches, data from clinical studies of their effects, and their anticipated strengths and weaknesses in screening. The area is rapidly evolving, and new tools will soon be ready for prime time. PMID:25701083
NASA Technical Reports Server (NTRS)
Kerr, J. R.; Haskins, J. F.
1980-01-01
Implementation of metal and resin matrix composites into supersonic vehicle usage is contingent upon accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive service data, laboratory replication of the flight service will provide the most rapid method of documenting the airworthiness of advanced composite systems. A program in progress to determine the time temperature stress capabilities of several high temperature composite materials includes thermal aging, environmental aging, fatigue, creep, fracture, and tensile tests as well as real time flight simulation exposure. The program has two parts. The first includes all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continues these tests up to 50,000 cumulative hours. Results are presented of the 10,000 hour phase, which has now been completed.
Optical Atomic Clock for Fundamental Physics and Precision Metrology in Space
NASA Astrophysics Data System (ADS)
Williams, Jason; Le, Thanh; Kulas, Sascha; Yu, Nan
2017-04-01
The maturity of optical atomic clocks (OC), which operate at optical frequencies for higher quality-factor as compared to their microwave counterparts, has rapidly progressed to the point where lab-based systems now outperform the record cesium clocks by orders of magnitude in both accuracy and stability. We will present our efforts to develop a strontium optical clock testbed at JPL, aimed towards extending the exceptional performance demonstrated by OCs from state-of-the-art laboratory designs to a transportable instrument that can fit within the space and power constraints of e.g. a single express rack onboard the International Space Station. The overall technology will find applications for future fundamental physics research, both on ground and in space, precision time keeping, and NASA/JPL time and frequency test capabilities. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
From transistor to trapped-ion computers for quantum chemistry
Yung, M.-H.; Casanova, J.; Mezzacapo, A.; McClean, J.; Lamata, L.; Aspuru-Guzik, A.; Solano, E.
2014-01-01
Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology. PMID:24395054
Consolidation of molecular testing in clinical virology.
Scagnolari, Carolina; Turriziani, Ombretta; Monteleone, Katia; Pierangeli, Alessandra; Antonelli, Guido
2017-04-01
The development of quantitative methods for the detection of viral nucleic acids have significantly improved our ability to manage disease progression and to assess the efficacy of antiviral treatment. Moreover, major advances in molecular technologies during the last decade have allowed the identification of new host genetic markers associated with antiviral drug response but have also strongly revolutionized the way we see and perform virus diagnostics in the coming years. Areas covered: In this review, we describe the history and development of virology diagnostic methods, dedicating particular emphasis on the gradual evolution and recent advances toward the introduction of multiparametric platforms for the syndromic diagnosis. In parallel, we outline the consolidation of viral genome quantification practice in different clinical settings. Expert commentary: More rapid, accurate and affordable molecular technology can be predictable with particular emphasis on emerging techniques (next generation sequencing, digital PCR, point of care testing and syndromic diagnosis) to simplify viral diagnosis in the next future.
Rapidly Progressive Quadriplegia and Encephalopathy.
Wynn, DonRaphael; McCorquodale, Donald; Peters, Angela; Juster-Switlyk, Kelsey; Smith, Gordon; Ansari, Safdar
2016-11-01
A woman aged 77 years was transferred to our neurocritical care unit for evaluation and treatment of rapidly progressive motor weakness and encephalopathy. Examination revealed an ability to follow simple commands only and abnormal movements, including myoclonus, tongue and orofacial dyskinesias, and opsoclonus. Imaging study findings were initially unremarkable, but when repeated, they demonstrated enhancement of the cauda equina nerve roots, trigeminal nerve, and pachymeninges. Cerebrospinal fluid examination revealed mildly elevated white blood cell count and protein levels. Serial electrodiagnostic testing demonstrated a rapidly progressive diffuse sensory motor axonopathy, and electroencephalogram findings progressed from generalized slowing to bilateral periodic lateralized epileptiform discharges. Critical details of her recent history prompted a diagnostic biopsy. Over time, the patient became completely unresponsive with no further abnormal movements and ultimately died. The differential diagnosis, pathological findings, and diagnosis are discussed with a brief review of a well-known yet rare diagnosis.
Marcinkiewicz, Andrzej; Cybart, Adam; Chromińska-Szosland, Dorota
2002-01-01
The rapid development of science, technology, economy and the society has one along with the wide recognition of lifelong education and learning society concepts. Scientific centres worldwide conduct research how the access to the information and multimedia technology could bring about positive changes in our lives including improvement in education and the learning environment. Mankind development in conformity with social progress and sustainable development faces a new educational concept of learning society and open education in the information age, supported with multimedia and data processing technology. Constrains in resources availability for broadening the access to education had led to search for alternative, more time and cost-effective systems of education. One of them is distance learning, applied with success in many countries. The benefits of distance learning are well proven and can be extended to occupational medicine. Major advantages include: the integration of studies with work experience, flexibility, allowing studies to be matched to work requirements, perceived work and leisure timing, continuity of career progression. Likewise is in Poland this form of education becomes more and more popular. The distance education systems have been seen as an investment in human resource development. The vast variety of courses and educational stages makes possible the modern method of knowledge to be easily accessible. Experience of the School of Public Health in Łódź in distance learning had shown remarkable benefits of the method with comparable quality of intramural and distance learning in respect of the knowledge and experience gained by students.
Shaikhouni, Ammar; Elder, J Bradley
2012-11-01
At the turn of the twentieth century, the only computational device used in neurosurgical procedures was the brain of the surgeon. Today, most neurosurgical procedures rely at least in part on the use of a computer to help perform surgeries accurately and safely. The techniques that revolutionized neurosurgery were mostly developed after the 1950s. Just before that era, the transistor was invented in the late 1940s, and the integrated circuit was invented in the late 1950s. During this time, the first automated, programmable computational machines were introduced. The rapid progress in the field of neurosurgery not only occurred hand in hand with the development of modern computers, but one also can state that modern neurosurgery would not exist without computers. The focus of this article is the impact modern computers have had on the practice of neurosurgery. Neuroimaging, neuronavigation, and neuromodulation are examples of tools in the armamentarium of the modern neurosurgeon that owe each step in their evolution to progress made in computer technology. Advances in computer technology central to innovations in these fields are highlighted, with particular attention to neuroimaging. Developments over the last 10 years in areas of sensors and robotics that promise to transform the practice of neurosurgery further are discussed. Potential impacts of advances in computers related to neurosurgery in developing countries and underserved regions are also discussed. As this article illustrates, the computer, with its underlying and related technologies, is central to advances in neurosurgery over the last half century. Copyright © 2012 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Carnabuci, Gianluca
2010-01-01
We show that the progress of technological knowledge is an inherently ecological process, wherein the growth rate of each technology domain depends on dynamics occurring in "other" technology domains. We identify two sources of ecological interdependence among technology domains. First, there are symbiotic interdependencies, implying…
Applying the tools of physics to teaching physics
NASA Astrophysics Data System (ADS)
Wieman, Carl
2003-05-01
The strengths of modern AMO physics are its solid foundation on objective quantitative data, the rapid widespread dissemination and duplication of ideas, results, and successful approaches, and the rapid utilization of technological developments to achieve new capabilities. Unfortunately AMO physicists usually abandon these powerful tools in their approach to the teaching of physics and instead rely on an approach that would be considered little more than individual superstition if used in the context of actual AMO science. Choices of content and presentation in teaching are usually based on tradition or totally subjective judgments of the instructor. I will discuss my efforts to approach teaching physics much as I have done experimental physics. This includes: collecting and utilizing data (both my own and that from the research of others), developing a strategy for dealing with numerous degrees of freedom that one cannot control nearly as well as one would like (whether they are atomic interactions or student attitudes), optimizing the use of the time and money available, and taking advantage of useful new technology. The latter discussion will include some specifics on using technology that allows real time measurement of student learning and engagement in a large class and the development and use of interactive applets to facilitate conceptual understanding. Achieving true understanding and appreciation of physics by introductory students is a major challenge. Fortunately, there is sufficient room for improvement in the current educational system that one can fall far short of that ideal and still be making major progress.
3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes.
Vijayavenkataraman, S; Lu, W F; Fuh, J Y H
2016-09-08
The skin is the largest organ of the body, having a complex multi-layered structure and guards the underlying muscles, bones, ligaments, and internal organs. It serves as the first line of defence to any external stimuli, hence it is the most vulnerable to injury and warrants the need for rapid and reliable regeneration methods. Tissue engineered skin substitutes help overcome the limitations of traditional skin treatment methods, in terms of technology, time, and cost. While there is commendable progress in the treating of superficial wounds and injuries with skin substitutes, treatment of full-thickness injuries, especially with third or fourth degree burns, still looks murkier. Engineering multi-layer skin architecture, conforming to the native skin structure is a tougher goal to achieve with the current tissue engineering methods, if not impossible, restoring all the functions of the native skin. The testing of drugs and cosmetics is another area, where engineered skins are very much needed, with bans being imposed on product testing on animals. Given this greater need, 3D bioprinting is a promising technology that can achieve rapid and reliable production of biomimetic cellular skin substitutes, satisfying both clinical and industrial needs. This paper reviews all aspects related to the 3D bioprinting of skin, right from imaging the injury site, 3D model creation, biomaterials that are used and their suitability, types of cells and their functions, actual bioprinting technologies, along with the challenges and future prospects.
Slotnick, Jeffrey P.; Khodadoust, Abdollah; Alonso, Juan J.; Darmofal, David L.; Gropp, William D.; Lurie, Elizabeth A.; Mavriplis, Dimitri J.; Venkatakrishnan, Venkat
2014-01-01
As global air travel expands rapidly to meet demand generated by economic growth, it is essential to continue to improve the efficiency of air transportation to reduce its carbon emissions and address concerns about climate change. Future transports must be ‘cleaner’ and designed to include technologies that will continue to lower engine emissions and reduce community noise. The use of computational fluid dynamics (CFD) will be critical to enable the design of these new concepts. In general, the ability to simulate aerodynamic and reactive flows using CFD has progressed rapidly during the past several decades and has fundamentally changed the aerospace design process. Advanced simulation capabilities not only enable reductions in ground-based and flight-testing requirements, but also provide added physical insight, and enable superior designs at reduced cost and risk. In spite of considerable success, reliable use of CFD has remained confined to a small region of the operating envelope due, in part, to the inability of current methods to reliably predict turbulent, separated flows. Fortunately, the advent of much more powerful computing platforms provides an opportunity to overcome a number of these challenges. This paper summarizes the findings and recommendations from a recent NASA-funded study that provides a vision for CFD in the year 2030, including an assessment of critical technology gaps and needed development, and identifies the key CFD technology advancements that will enable the design and development of much cleaner aircraft in the future. PMID:25024413
Advantages of utilizing DMD based rapid manufacturing systems in mass customization applications
NASA Astrophysics Data System (ADS)
El-Siblani, A.
2010-02-01
The Use of DMD based Rapid Manufacturing Systems has proven to be very advantageous in the production of highly accurate plastic based components for use in mass customization market such as hearing aids, and dental markets. The voxelization process currently afforded with the DLP technology eliminates any layering effect associated with all existing additive Rapid Manufacturing technologies. The smooth accurate surfaces produced in an additive process utilizing DLP technology, through the voxelization approach, allow for the production of custom finished products. The implementation of DLP technology in rapid prototyping and rapid manufacturing systems allow for the usage of highly viscous photopolymer based liquid and paste composites for rapid manufacturing that could not be used in any other additive process prior to implementation of DLP technology in RP and RM systems. It also allowed for the greater throughput in production without sacrificing quality and accuracy.
High Throughput Sequencing for Detection of Foodborne Pathogens
Sekse, Camilla; Holst-Jensen, Arne; Dobrindt, Ulrich; Johannessen, Gro S.; Li, Weihua; Spilsberg, Bjørn; Shi, Jianxin
2017-01-01
High-throughput sequencing (HTS) is becoming the state-of-the-art technology for typing of microbial isolates, especially in clinical samples. Yet, its application is still in its infancy for monitoring and outbreak investigations of foods. Here we review the published literature, covering not only bacterial but also viral and Eukaryote food pathogens, to assess the status and potential of HTS implementation to inform stakeholders, improve food safety and reduce outbreak impacts. The developments in sequencing technology and bioinformatics have outpaced the capacity to analyze and interpret the sequence data. The influence of sample processing, nucleic acid extraction and purification, harmonized protocols for generation and interpretation of data, and properly annotated and curated reference databases including non-pathogenic “natural” strains are other major obstacles to the realization of the full potential of HTS in analytical food surveillance, epidemiological and outbreak investigations, and in complementing preventive approaches for the control and management of foodborne pathogens. Despite significant obstacles, the achieved progress in capacity and broadening of the application range over the last decade is impressive and unprecedented, as illustrated with the chosen examples from the literature. Large consortia, often with broad international participation, are making coordinated efforts to cope with many of the mentioned obstacles. Further rapid progress can therefore be prospected for the next decade. PMID:29104564
YOSHINO, TIMOTHY P.; DINGUIRARD, NATHALIE; DE MORAES MOURÃO, MARINA
2013-01-01
SUMMARY With rapid developments in DNA and protein sequencing technologies, combined with powerful bioinformatics tools, a continued acceleration of gene identification in parasitic helminths is predicted, potentially leading to discovery of new drug and vaccine targets, enhanced diagnostics and insights into the complex biology underlying host-parasite interactions. For the schistosome blood flukes, with the recent completion of genome sequencing and comprehensive transcriptomic datasets, there has accumulated massive amounts of gene sequence data, for which, in the vast majority of cases, little is known about actual functions within the intact organism. In this review we attempt to bring together traditional in vitro cultivation approaches and recent emergent technologies of molecular genomics, transcriptomics and genetic manipulation to illustrate the considerable progress made in our understanding of trematode gene expression and function during development of the intramolluscan larval stages. Using several prominent trematode families (Schistosomatidae, Fasciolidae, Echinostomatidae), we have focused on the current status of in vitro larval isolation/cultivation as a source of valuable raw material supporting gene discovery efforts in model digeneans that include whole genome sequencing, transcript and protein expression profiling during larval development, and progress made in the in vitro manipulation of genes and their expression in larval trematodes using transgenic and RNA interference (RNAi) approaches. PMID:19961646
Lundkvist, Johan; Halldin, Magnus M.; Sandin, Johan; Nordvall, Gunnar; Forsell, Pontus; Svensson, Samuel; Jansson, Liselotte; Johansson, Gunilla; Winblad, Bengt; Ekstrand, Jonas
2014-01-01
Alzheimer’s Disease (AD) is the most common form of dementia, affecting approximately 36 million people worldwide. To date there is no preventive or curative treatment available for AD, and in absence of major progress in therapeutic development, AD manifests a concrete socioeconomic threat. The awareness of the growing problem of AD is increasing, exemplified by the recent G8 Dementia Summit, a meeting held in order to set the stage and steer the compass for the future. Simultaneously, and paradoxically, we have seen key players in the pharmaceutical industry that have recently closed or significantly decreased their R&D spending on AD and other CNS disorders. Given the pressing need for new treatments in this area, other actors need to step-in and enter this drug discovery arena complementing the industrial efforts, in order to turn biological and technological progress into novel therapeutics. In this article, we present an example of a novel drug discovery initiative that in a non-profit setting, aims to integrate with both preclinical and clinical academic groups and pharmaceutical industry to explore the therapeutic potential of new concepts in patients, using novel biology, state of the art technologies and rapid concept testing. PMID:24847271
Howell, J; Sawhney, R; Angus, P; Fink, M; Jones, R; Wang, B Z; Visvanathan, K; Crowley, P; Gow, P
2013-12-01
Hepatitis C virus (HCV) recurrence post liver transplant is universal, with a subgroup of patients developing rapid hepatic fibrosis. Various clinical definitions of rapid fibrosis (RF) have been used to identify risks for rapid progression, but their comparability and efficacy at predicting adverse outcomes has not been determined. Retrospective data analysis was conducted on 100 adult patients with HCV who underwent liver transplantation at a single center. We measured year 1 fibrosis progression (RF defined as METAVIR F score ≥ 1 at 1-year liver biopsy), time to METAVIR F2-stage fibrosis, and fibrosis rate (calculated using liver biopsies graded by METAVIR scoring F0-4; fibrosis rate = fibrosis stage/year post transplant). RF was defined as ≥ 0.5 units/year. Multivariate analysis revealed that donor age and peak HCV viral load were significant risks for RF, when fibrosis rate was used to define RF. Advanced donor age was a risk for rapid progression to F2-stage fibrosis, whereas genotype 2 or 3 HCV infection was protective. Fibrosis rate had the strongest correlation with time to cirrhosis development (P < 0.0001, r = -0.76) and was the most accurate predictor of rapid graft cirrhosis (P < 0.0001, area under the curve 0.979, sensitivity 100%, specificity 94%). Different measures of RF progression identify different risks for RF and are not directly comparable. Fibrosis rate was the most accurate predictor of rapid graft cirrhosis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Design and fabrication of the progressive addition lenses
NASA Astrophysics Data System (ADS)
Qin, Linling; Qian, Lin; Yu, Jingchi
2011-11-01
The use of progressive addition lenses (PALs) for the correction of presbyopia has increased dramatically in recent years. These lenses are now being used as the preferred alternative to bifocal and trifocal lenses in many parts of the world. Progressive addition lenses are a kind of opthalmic lenses with freeform surface. The surface curvature of the Progressive addition lenses varies gradually from a minimum value in the upper area, to a maximum value in the lower area. Thus a PAL has a surface with three zones which have very small astigmatism: far-view zone, near-view zone, and intermediate zone. The far view zone and near view zone have relatively constant powers and connected by the intermediate zone with power varies progressively. The design and fabrication technologies of progressive addition lenses have fast progresses because of the massive development of the optical simulation software, multi-axis ultraprecision machining technologies and CNC machining technologies. The design principles of progressive addition lenses are discussed in a historic review. Several kinds of design methods are illustrated, and their advantages and disadvantages are also represented. In the current study, it is shown that the optical characteristics of the different progressive addition lenses designs are significantly different from one another. The different fabrication technologies of Progressive addition lenses are also discussed in the paper. Plastic injection molding and precision-machine turning are the common fabrication technologies for exterior PALs and Interior PALs respectively.
Economic Perspectives of Technological Progress: New Dimensions for Forecasting Technology
ERIC Educational Resources Information Center
Twiss, Brian
1976-01-01
Discusses the causal relationship between the allocation of financial resources and technological growth. Argues that economic constraints are becoming an important determinant of technological progress that must be incorporated into technology forecasting techniques. (Available from IPC (America) Inc., 205 East 42 Street, New York, NY 10017;…
Developing an Inclusive System in a Rapidly Changing European Society
ERIC Educational Resources Information Center
Drudy, Sheelagh; Kinsella, William
2009-01-01
This paper uses Ireland--one of Europe's most rapidly changing societies--as a case study and examines progress towards an inclusive education system. It explores policy and progress on developing an inclusive system under a number of key headings: social class, ethnicity, gender and disability. On the basis of analysis of official statistics and…
NASA Astrophysics Data System (ADS)
Jain, Manu; Rajadhyaksha, Milind; Nehal, Kishwer
2016-03-01
Confocal mosaicing microscopy (CMM) enables rapid imaging of large areas of fresh tissue ex vivo without the processing that is necessary for conventional histology. When performed with fluorescence mode using acridine orange (nuclear specific dye) it enhances nuclei-to-dermis contrast that enables detection of all types of BCCs including thin strands of infiltrative basal cell carcinomas (BCCs). Thus far, this technique has been mostly validated in research setting for the analysis of BCC tumor margins. Recently, CMM has been adopted and implemented in real clinical settings by some surgeons as an alternative tool to frozen section (FS) during Mohs surgery. In this review article we summarize the development of CMM guided imaging of ex vivo tissues from bench to bedside. We also present its current state of application in routine clinical workflow not only for the assessment of BCC margin but also for other skin cancers such as melanoma, SCC, and some infectious diseases where FS is not routinely performed. Lastly, we also discuss the potential limitations of this technology as well as future developments. As this technology advances further, it may serve as an adjunct to standard histology and enable rapid surgical pathology of skin cancers at the bedside.
NASA Astrophysics Data System (ADS)
Cao, Y. B.; Hua, Y. X.; Zhao, J. X.; Guo, S. M.
2013-11-01
With China's rapid economic development and comprehensive national strength growing, Border work has become a long-term and important task in China's diplomatic work. How to implement rapid plotting, real-time sharing and mapping surrounding affairs has taken great significance for government policy makers and diplomatic staff. However, at present the already exists Boundary information system are mainly have problems of Geospatial data update is heavily workload, plotting tools are in a state of serious lack of, Geographic events are difficult to share, this phenomenon has seriously hampered the smooth development of the border task. The development and progress of Geographic information system technology especially the development of Web GIS offers the possibility to solve the above problems, this paper adopts four layers of B/S architecture, with the support of Google maps service, uses the free API which is offered by Google maps and its features of openness, ease of use, sharing characteristics, highresolution images to design and implement the surrounding transaction plotting and management system based on the web development technology of ASP.NET, C#, Ajax. The system can provide decision support for government policy makers as well as diplomatic staff's real-time plotting and sharing of surrounding information. The practice has proved that the system has good usability and strong real-time.
NASA Astrophysics Data System (ADS)
Jain, Manu; Rajadhyaksha, Milind; Nehal, Kishwer
2017-02-01
Confocal mosaicking microscopy (CMM) enables rapid imaging of large areas of fresh tissue ex vivo without the processing that is necessary for conventional histology. When performed in fluorescence mode using acridine orange (nuclear specific dye), it enhances nuclei-to-dermis contrast that enables detection of all types of basal cell carcinomas (BCCs), including micronodular and thin strands of infiltrative types. So far, this technique has been mostly validated in research settings for the detection of residual BCC tumor margins with high sensitivity of 89% to 96% and specificity of 99% to 89%. Recently, CMM has advanced to implementation and testing in clinical settings by "early adopter" Mohs surgeons, as an adjunct to frozen section during Mohs surgery. We summarize the development of CMM guided imaging of ex vivo skin tissues from bench to bedside. We also present its current state of application in routine clinical workflow not only for the assessment of residual BCC margins in the Mohs surgical setting but also for some melanocytic lesions and other skin conditions in clinical dermatology settings. Last, we also discuss the potential limitations of this technology as well as future developments. As this technology advances further, it may serve as an adjunct to standard histology and enable rapid surgical pathology of skin cancers at the bedside.
Nanotechnology: Scientific challenges and societal benefits and risks
NASA Astrophysics Data System (ADS)
Romig, A. D.
2004-12-01
The field of nanotechnology is developing rapidly, as are its practical application in society. In this article, we give examples that demonstrate the enormous potential that exists for this new class of materials, and for devices with critical dimensions of less than 100 nm. We also identify some of the challenges that need to be faced in order to fully realize the practical benefits of nanotechnology, and discuss possible risks that may come with this new technology. In all cases, the unique advantage of nanotechnology can be traced back to nanoscale physical and chemical properties that are quite different from those encountered in more traditional microscopic (micro) or macroscopic (macro) materials and devices. Unique nanoscale properties and behaviors are already being used to increase energy efficiency, improve healthcare, and strengthen national security. However, while progress is rapid, many challenges remain. These include manufacturing at the nanoscale, integration of nanoscale materials and devices with more conventional technology, and predictive modeling that will allow nanotechnology to be engineered reliably into useful applications and products. Nanotechnology can be expected to have an increasing impact on human lives and society at large. As we strive to use nanotechnology to improve human life through better healthcare, cleaner environment, and improved national security, we must also work to detect and assess the negative impacts that nanotechnology science (or any new technology) might bring. We suggest that the conduct of should be allowed to proceed unimpeded, so that we can fully understand and appreciate the rules of nature at the nanometer scale. That said, scientific pursuits that involve self-replication in synthetic systems, encryption, defense technology, or the enhancement of human intelligence should be reviewed. The development of new technology from fundamental science and the process of deciding what new technology is to be created for what purpose are topics for reasoned debate among the general public as well as in the forums of scientific peer review and political decision making.
Rapid Cycle Amine (RCA) 3.0 System Development
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Campbell, Colin; Papale, William; Hawes, Kevin; Wichowski, Robert
2015-01-01
The Rapid Cycle Amine (RCA) 3.0 system is currently under development by NASA, the Lyndon B. Johnson Space Center (JSC) in conjunction with United Technologies Corporation Aerospace Systems (UTAS). The RCA technology is a new carbon dioxide (CO2) and humidity removal system that has been baselined for the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System. The evolution of the RCA development has progressed through several iterations of technology readiness levels including RCA 1.0, RCA 2.0, and RCA 3.0 test articles. The RCA is an advancement over currently technologies due to its unique regeneration capability. The RCA is capable of simultaneously removing CO2 and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. The RCA technology uses two solid amine sorbent beds in an alternating fashion to adsorb CO2 and water (uptake mode) and desorb CO2 and water (regeneration mode) at the same time. The two beds operate in an efficient manner so that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. The RCA 2.0 and 3.0 test articles were designed with a novel valve assembly which allows for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The RCA technology also is low power, small, and has performed extremely well in all development testing thus far. A final design was selected for the RCA 3.0, fabricated, assembled, and performance tested in 2014 with delivery to NASAJSC in January 2015. This paper will provide an overview on the RCA 3.0 system design and results of pre-delivery testing with references to the development of RCA 1.0 and RCA 2.0.
NASA Technical Reports Server (NTRS)
Miller, James G.
1994-01-01
In this Progress Report, we describe our continuing research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the inspection and characterization of complex composite structures. We explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. As an initial step toward the application of linear array imaging technology to the interrogation of a wide range of complex composite structures, we present images obtained using an unmodified medical ultrasonic imaging system of two epoxy-bonded aluminum plate specimens, each with intentionally disbonded regions. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to assess whether these images can detect disbonded regions and provide information regarding the nature of the disbonded region. We present a description of a standoff/delay fixture which has been designed, constructed, and implemented on a Hewlett-Packard SONOS 1500 medical imaging system. This standoff/delay fixture, when attached to a 7.5 MHz linear array probe, greatly enhances our ability to interrogate flat plate specimens. The final section of this Progress Report describes a woven composite plate specimen that has been specially machined to include intentional flaws. This woven composite specimen will allow us to assess the feasibility of applying linear array imaging technology to the inspection and characterization of complex textile composite materials. We anticipate the results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology.
Adaptation of existing infrared technologies to unanticipated applications
NASA Astrophysics Data System (ADS)
Peng, Philip
2005-01-01
Radiation thermometry is just but one of many applications, both potential and realized, of infrared technology. During the SARS (Severe Acute Respiratory Syndromes) global crisis in 2003, the technology was utilized as a preliminary screening method for infected persons as a defense against a major outbreak, as the primary symptom of this disease is elevated body temperature. ATC timely developed a product designed specifically for mass volume crowd screening of febrile individuals. For this application, the machine must register temperature of subjects rapidly and efficiently, with a certain degree of accuracy, and function for extended periods of time. The equipment must be safe to use, easily deployed, and function with minimum maintenance needed. The ATIR-303 model satisfies all of the above and other pre-requisite conditions amicably. Studies on the correlation between the maximum temperature registered among individual's facial features, as measured under the conditions of usage, and the core temperature of individuals were performed. The results demonstrated that ATIR-303 is very suitable for this application. Other applications of the infrared technology in various areas, like medical diagnosis, non-destructive testing, security, search and rescue, and others, are also interest areas of ATC. The progress ATC has achieved in these areas is presented also.
Vendrell, Xavier; Bautista-Llácer, Rosa
2012-12-01
The genetic diagnosis and screening of preimplantation embryos generated by assisted reproduction technology has been consolidated in the prenatal care framework. The rapid evolution of DNA technologies is tending to molecular approaches. Our intention is to present a detailed methodological view, showing different diagnostic strategies based on molecular techniques that are currently applied in preimplantation genetic diagnosis. The amount of DNA from one single, or a few cells, obtained by embryo biopsy is a limiting factor for the molecular analysis. In this sense, genetic laboratories have developed molecular protocols considering this restrictive condition. Nevertheless, the development of whole-genome amplification methods has allowed preimplantation genetic diagnosis for two or more indications simultaneously, like the selection of histocompatible embryos plus detection of monogenic diseases or aneuploidies. Moreover, molecular techniques have permitted preimplantation genetic screening to progress, by implementing microarray-based comparative genome hybridization. Finally, a future view of the embryo-genetics field based on molecular advances is proposed. The normalization, cost-effectiveness analysis, and new technological tools are the next topics for preimplantation genetic diagnosis and screening. Concomitantly, these additions to assisted reproduction technologies could have a positive effect on the schedules of preimplantation studies.
Public Attitudes to Technological Progress.
ERIC Educational Resources Information Center
Marshall, Eliot
1979-01-01
Discusses the probable changes in public attitudes toward science and technology as a result of the engineering accidents of 1979. Results of national polls conducted to identify public confidence in technological progress are included. (HM)
Wang, Shuhong; Song, Malin
2017-10-01
As a newly appeared trade mode in recent years, reverse outsourcing has made a great impact on traditional trade modes. This paper researched the influences of reverse outsourcing on green technological progress from the perspective of a global supply chain by using micro-data of enterprises. It worked out the rate of green technological progress from two innovative concepts: potential production technology and practical production technology. The empirical analysis results indicated that reverse outsourcing stimulates, and enterprise size and ownership type potentially affects, green technological progress. State-owned or foreign enterprises with high income levels would pay more attention to environmental protection, energy saving, and emission reduction, while small and micro enterprises with low incomes would choose to ignore environmental protection. Copyright © 2017 Elsevier B.V. All rights reserved.
A Forest Fire Sensor Web Concept with UAVSAR
NASA Astrophysics Data System (ADS)
Lou, Y.; Chien, S.; Clark, D.; Doubleday, J.; Muellerschoen, R.; Zheng, Y.
2008-12-01
We developed a forest fire sensor web concept with a UAVSAR-based smart sensor and onboard automated response capability that will allow us to monitor fire progression based on coarse initial information provided by an external source. This autonomous disturbance detection and monitoring system combines the unique capabilities of imaging radar with high throughput onboard processing technology and onboard automated response capability based on specific science algorithms. In this forest fire sensor web scenario, a fire is initially located by MODIS/RapidFire or a ground-based fire observer. This information is transmitted to the UAVSAR onboard automated response system (CASPER). CASPER generates a flight plan to cover the alerted fire area and executes the flight plan. The onboard processor generates the fuel load map from raw radar data, used with wind and elevation information, predicts the likely fire progression. CASPER then autonomously alters the flight plan to track the fire progression, providing this information to the fire fighting team on the ground. We can also relay the precise fire location to other remote sensing assets with autonomous response capability such as Earth Observation-1 (EO-1)'s hyper-spectral imager to acquire the fire data.
Metabolomic profiling in perinatal asphyxia: a promising new field.
Denihan, Niamh M; Boylan, Geraldine B; Murray, Deirdre M
2015-01-01
Metabolomics, the latest "omic" technology, is defined as the comprehensive study of all low molecular weight biochemicals, "metabolites" present in an organism. As a systems biology approach, metabolomics has huge potential to progress our understanding of perinatal asphyxia and neonatal hypoxic-ischaemic encephalopathy, by uniquely detecting rapid biochemical pathway alterations in response to the hypoxic environment. The study of metabolomic biomarkers in the immediate neonatal period is not a trivial task and requires a number of specific considerations, unique to this disease and population. Recruiting a clearly defined cohort requires standardised multicentre recruitment with broad inclusion criteria and the participation of a range of multidisciplinary staff. Minimally invasive biospecimen collection is a priority for biomarker discovery. Umbilical cord blood presents an ideal medium as large volumes can be easily extracted and stored and the sample is not confounded by postnatal disease progression. Pristine biobanking and phenotyping are essential to ensure the validity of metabolomic findings. This paper provides an overview of the current state of the art in the field of metabolomics in perinatal asphyxia and neonatal hypoxic-ischaemic encephalopathy. We detail the considerations required to ensure high quality sampling and analysis, to support scientific progression in this important field.
Metabolomic Profiling in Perinatal Asphyxia: A Promising New Field
Denihan, Niamh M.; Boylan, Geraldine B.; Murray, Deirdre M.
2015-01-01
Metabolomics, the latest “omic” technology, is defined as the comprehensive study of all low molecular weight biochemicals, “metabolites” present in an organism. As a systems biology approach, metabolomics has huge potential to progress our understanding of perinatal asphyxia and neonatal hypoxic-ischaemic encephalopathy, by uniquely detecting rapid biochemical pathway alterations in response to the hypoxic environment. The study of metabolomic biomarkers in the immediate neonatal period is not a trivial task and requires a number of specific considerations, unique to this disease and population. Recruiting a clearly defined cohort requires standardised multicentre recruitment with broad inclusion criteria and the participation of a range of multidisciplinary staff. Minimally invasive biospecimen collection is a priority for biomarker discovery. Umbilical cord blood presents an ideal medium as large volumes can be easily extracted and stored and the sample is not confounded by postnatal disease progression. Pristine biobanking and phenotyping are essential to ensure the validity of metabolomic findings. This paper provides an overview of the current state of the art in the field of metabolomics in perinatal asphyxia and neonatal hypoxic-ischaemic encephalopathy. We detail the considerations required to ensure high quality sampling and analysis, to support scientific progression in this important field. PMID:25802843
Monitoring multiple myeloma by idiotype-specific peptide binders of tumor-derived exosomes.
Iaccino, Enrico; Mimmi, Selena; Dattilo, Vincenzo; Marino, Fabiola; Candeloro, Patrizio; Di Loria, Antonio; Marimpietri, Danilo; Pisano, Antonio; Albano, Francesco; Vecchio, Eleonora; Ceglia, Simona; Golino, Gaetanina; Lupia, Antonio; Fiume, Giuseppe; Quinto, Ileana; Scala, Giuseppe
2017-10-13
Tumor-derived exosomes (TDEs) play a pivotal role in tumor establishment and progression, and are emerging biomarkers for tumor diagnosis in personalized medicine. To date, there is a lack of efficient technology platforms for exosome isolation and characterization. Multiple myeloma (MM) is an incurable B-cell malignancy due to the rapid development of drug-resistance. MM-released exosomes express the immunoglobulin B-cell receptor (Ig-BCR) of the tumor B-cells, which can be targeted by Idiotype-binding peptides (Id-peptides). In this study, we analyzed the production of MM-released exosomes in the murine 5T33MM multiple myeloma model as biomarkers of tumor growth. To this end, we selected Id-peptides by screening a phage display library using as bait the Ig-BCR expressed by 5T33MM cells. By FACS, the FITC-conjugated Id-peptides detected the MM-released exosomes in the serum of 5T33MM-engrafted mice, levels of which are correlated with tumor progression at an earlier time point compared to serum paraprotein. These results indicate that Id-peptide-based recognition of MM-released exosomes may represent a very sensitive diagnostic approach for clinical evaluation of disease progression.
The molecular biology of WHO grade I astrocytomas.
Marko, Nicholas F; Weil, Robert J
2012-12-01
World Health Organization (WHO) grade I astrocytomas include pilocytic astrocytoma (PA) and subependymal giant cell astrocytoma (SEGA). As technologies in pharmacologic neo-adjuvant therapy continue to progress and as molecular characteristics are progressively recognized as potential markers of both clinically significant tumor subtypes and response to therapy, interest in the biology of these tumors has surged. An updated review of the current knowledge of the molecular biology of these tumors is needed. We conducted a Medline search to identify published literature discussing the molecular biology of grade I astrocytomas. We then summarized this literature and discuss it in a logical framework through which the complex biology of these tumors can be clearly understood. A comprehensive review of the molecular biology of WHO grade I astrocytomas is presented. The past several years have seen rapid progress in the level of understanding of PA in particular, but the molecular literature regarding both PA and SEGA remains nebulous, ambiguous, and occasionally contradictory. In this review we provide a comprehensive discussion of the current understanding of the chromosomal, genomic, and epigenomic features of both PA and SEGA and provide a logical framework in which these data can be more readily understood.
The burden of proof: The current state of atrial fibrillation prevention and treatment trials.
Zakeri, Rosita; Van Wagoner, David R; Calkins, Hugh; Wong, Tom; Ross, Heather M; Heist, E Kevin; Meyer, Timothy E; Kowey, Peter R; Mentz, Robert J; Cleland, John G; Pitt, Bertram; Zannad, Faiez; Linde, Cecilia
2017-05-01
Atrial fibrillation (AF) is an age-related arrhythmia of enormous socioeconomic significance. In recent years, our understanding of the basic mechanisms that initiate and perpetuate AF has evolved rapidly, catheter ablation of AF has progressed from concept to reality, and recent studies suggest lifestyle modification may help prevent AF recurrence. Emerging developments in genetics, imaging, and informatics also present new opportunities for personalized care. However, considerable challenges remain. These include a paucity of studies examining AF prevention, modest efficacy of existing antiarrhythmic therapies, diverse ablation technologies and practice, and limited evidence to guide management of high-risk patients with multiple comorbidities. Studies examining the long-term effects of AF catheter ablation on morbidity and mortality outcomes are not yet completed. In many ways, further progress in the field is heavily contingent on the feasibility, capacity, and efficiency of clinical trials to incorporate the rapidly evolving knowledge base and to provide substantive evidence for novel AF therapeutic strategies. This review outlines the current state of AF prevention and treatment trials, including the foreseeable challenges, as discussed by a unique forum of clinical trialists, scientists, and regulatory representatives in a session endorsed by the Heart Rhythm Society at the 12th Global CardioVascular Clinical Trialists Forum in Washington, DC, December 3-5, 2015. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Yokosawa, Michiko; Hayashi, Toshiaki; Shirane, Reizo; Tominaga, Teiji
2014-01-01
Moyamoya disease can be associated with a rapidly progressive course in young patients. This report describes a patient with moyamoya disease who experienced rapid disease progression, resulting in cerebral infarction and a wide area of diminished cerebral perfusion. Double superficial temporal artery (STA)-middle cerebral artery (MCA) anastomoses were utilized to immediately increase cerebral perfusion in the affected area. This case involved a 5-year-old girl who had been diagnosed with moyamoya disease and had undergone STA-MCA anastomosis with indirect bypass in the right hemisphere at the age of 3. At the time of presentation, magnetic resonance (MR) imaging showed cerebral infarction at the left frontal lobe, and MR angiography showed rapidly progressive narrowing of the left MCA that had not been present 3 months prior. N-isopropyl-p-[I123] iodoamphetamine single-photon emission computed tomography (IMP-SPECT) showed markedly decreased uptake in the left hemisphere. She underwent emergent STA-MCA double anastomoses with indirect bypass on the left side. IMP-SPECT showed marked increase in uptake in the left hemisphere. The anterior cerebral artery (ACA) territory adjacent to the cerebral infarction also showed increased uptake on the SPECT. Postoperatively, there were no clinical or radiographic indications of ischemic or hemorrhagic complications. Double anastomoses are effective in quickly and significantly increasing blood flow. The postoperative course in this case was uneventful. Double anastomoses are a surgical option for patients with moyamoya disease who show rapid disease progression, even in those in the acute phase of cerebral infarction.
YOKOSAWA, Michiko; HAYASHI, Toshiaki; SHIRANE, Reizo; TOMINAGA, Teiji
2014-01-01
Moyamoya disease can be associated with a rapidly progressive course in young patients. This report describes a patient with moyamoya disease who experienced rapid disease progression, resulting in cerebral infarction and a wide area of diminished cerebral perfusion. Double superficial temporal artery (STA)-middle cerebral artery (MCA) anastomoses were utilized to immediately increase cerebral perfusion in the affected area. This case involved a 5-year-old girl who had been diagnosed with moyamoya disease and had undergone STA-MCA anastomosis with indirect bypass in the right hemisphere at the age of 3. At the time of presentation, magnetic resonance (MR) imaging showed cerebral infarction at the left frontal lobe, and MR angiography showed rapidly progressive narrowing of the left MCA that had not been present 3 months prior. N-isopropyl-p-[I123] iodoamphetamine single-photon emission computed tomography (IMP-SPECT) showed markedly decreased uptake in the left hemisphere. She underwent emergent STA-MCA double anastomoses with indirect bypass on the left side. IMP-SPECT showed marked increase in uptake in the left hemisphere. The anterior cerebral artery (ACA) territory adjacent to the cerebral infarction also showed increased uptake on the SPECT. Postoperatively, there were no clinical or radiographic indications of ischemic or hemorrhagic complications. Double anastomoses are effective in quickly and significantly increasing blood flow. The postoperative course in this case was uneventful. Double anastomoses are a surgical option for patients with moyamoya disease who show rapid disease progression, even in those in the acute phase of cerebral infarction. PMID:24584280
Treating type 1 diabetes: from strategies for insulin delivery to dual hormonal control
McCall, A. L.; Farhy, L. S.
2014-01-01
Type 1 diabetes is a disorder where slow destruction of pancreatic β-cells occurs through autoimmune mechanisms. The result is a progressive and ultimately complete lack of endogenous insulin. Due to β-cell lack, secondary abnormalities in glucagon and likely in incretins occur. These multiple hormonal abnormalities cause metabolic instability and extreme glycemic variability, which is the primary phenotype. As the disease progresses patients often develop hypoglycemia unawareness and defects in their counterregulatory defenses. Intensive insulin therapy may thus lead to 3-fold excess of severe hypoglycemia and severely hinder the effective and safe control of hyperglycemia. The main goal of the therapy for type 1 diabetes has long been physiological mimicry of normal insulin secretion based on monitoring which requires considerable effort and understanding of the underlying physiology. Attainment of this goal is challenged by the nature of the disease and our current lack of means to fully repair the abnormal endocrine pancreas interactive functions. As a result, various insulin preparations has been developed to partially compensate for the inability to deliver timely exogenous insulin directly to the portal/intrapancreatic circulation. It remains an ongoing task to identify the ideal routes and regimens of their delivery and potentially that of other hormones to restore the deficient and disordered hormonal environment of the pancreas to achieve a near normal metabolic state. Several recent technological advances help addressing these goals, including the rapid progress in insulin pumps, continuous glucose sensors, and ultimately the artificial pancreas closed-loop technology and the recent start of dual-hormone therapies. PMID:23732369
Recent advances of microbial breeding via heavy-ion mutagenesis at IMP.
Hu, W; Li, W; Chen, J
2017-10-01
Nowadays, the value of heavy-ion mutagenesis has been accepted as a novel powerful mutagen technique to generate new microbial mutants due to its high linear energy transfer and high relative biological effectiveness. This paper briefly reviews recent progress in developing a more efficient mutagenesis technique for microbial breeding using heavy-ion mutagenesis, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou. Then, new insights into microbial biotechnology via heavy-ion mutagenesis are also further explored. We hope that our concerns will give deep insight into microbial breeding biotechnology via heavy-ion mutagenesis. We also believe that heavy-ion mutagenesis breeding will greatly contribute to the progress of a comprehensive study industrial strain engineering for bioindustry in the future. There is currently a great interest in developing rapid and diverse microbial mutation tool for strain modification. Heavy-ion mutagenesis has been proved as a powerful technology for microbial breeding due to its broad spectrum of mutation phenotypes with high efficiency. In order to deeply understand heavy-ion mutagenesis technology, this paper briefly reviews recent progress in microbial breeding using heavy-ion mutagenesis at IMP, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou (HIRFL) as well as new insights into microbial biotechnology via heavy-ion mutagenesis. Thus, this work can provide the guidelines to promote the development of novel microbial biotechnology cross-linking heavy-ion mutagenesis breeding that could make breeding process more efficiently in the future. © 2017 The Society for Applied Microbiology.
Developments in label-free microfluidic methods for single-cell analysis and sorting.
Carey, Thomas R; Cotner, Kristen L; Li, Brian; Sohn, Lydia L
2018-04-24
Advancements in microfluidic technologies have led to the development of many new tools for both the characterization and sorting of single cells without the need for exogenous labels. Label-free microfluidics reduce the preparation time, reagents needed, and cost of conventional methods based on fluorescent or magnetic labels. Furthermore, these devices enable analysis of cell properties such as mechanical phenotype and dielectric parameters that cannot be characterized with traditional labels. Some of the most promising technologies for current and future development toward label-free, single-cell analysis and sorting include electronic sensors such as Coulter counters and electrical impedance cytometry; deformation analysis using optical traps and deformation cytometry; hydrodynamic sorting such as deterministic lateral displacement, inertial focusing, and microvortex trapping; and acoustic sorting using traveling or standing surface acoustic waves. These label-free microfluidic methods have been used to screen, sort, and analyze cells for a wide range of biomedical and clinical applications, including cell cycle monitoring, rapid complete blood counts, cancer diagnosis, metastatic progression monitoring, HIV and parasite detection, circulating tumor cell isolation, and point-of-care diagnostics. Because of the versatility of label-free methods for characterization and sorting, the low-cost nature of microfluidics, and the rapid prototyping capabilities of modern microfabrication, we expect this class of technology to continue to be an area of high research interest going forward. New developments in this field will contribute to the ongoing paradigm shift in cell analysis and sorting technologies toward label-free microfluidic devices, enabling new capabilities in biomedical research tools as well as clinical diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices. © 2018 Wiley Periodicals, Inc.
Synthetic biology for CO2 fixation.
Gong, Fuyu; Cai, Zhen; Li, Yin
2016-11-01
Recycling of carbon dioxide (CO 2 ) into fuels and chemicals is a potential approach to reduce CO 2 emission and fossil-fuel consumption. Autotrophic microbes can utilize energy from light, hydrogen, or sulfur to assimilate atmospheric CO 2 into organic compounds at ambient temperature and pressure. This provides a feasible way for biological production of fuels and chemicals from CO 2 under normal conditions. Recently great progress has been made in this research area, and dozens of CO 2 -derived fuels and chemicals have been reported to be synthesized by autotrophic microbes. This is accompanied by investigations into natural CO 2 -fixation pathways and the rapid development of new technologies in synthetic biology. This review first summarizes the six natural CO 2 -fixation pathways reported to date, followed by an overview of recent progress in the design and engineering of CO 2 -fixation pathways as well as energy supply patterns using the concept and tools of synthetic biology. Finally, we will discuss future prospects in biological fixation of CO 2 .
Why medical research needs a new specialty of 'pure medical science'.
Charlton, Bruce G
2006-01-01
Sciences tend to go through boom and bust phases. Following decades of rapid expansion, medical science is now due for a collapse in overall funding. Furthermore, there has been a decline in the rate of therapeutic innovation, with fewer significant breakthroughs and little progress in several major areas of medicine such as oncology, psychiatry and autoimmune disorders. Mainstream medical research has gradually evolved into a form similar to industrial research and development (R&D), aiming at steady, reliable, predictable progress by ringing minor variations on existing approaches. Where this risk-averse approach is failing, a more speculative strategy is indicated. A new research specialty of 'pure medical science' would aim to seek radical new theories, technologies and therapies, and subject these to professional evaluation to the point where they can be applied in practice by more mainstream 'applied' medical scientists. A specialty of 'pure medical science' might be launched by financial support from patrons who wish to be associated with an elite new medical research discipline.
Hierarchically Nanostructured Transition Metal Oxides for Lithium‐Ion Batteries
Zheng, Mingbo; Tang, Hao; Li, Lulu; Hu, Qin; Zhang, Li; Xue, Huaiguo
2018-01-01
Abstract Lithium‐ion batteries (LIBs) have been widely used in the field of portable electric devices because of their high energy density and long cycling life. To further improve the performance of LIBs, it is of great importance to develop new electrode materials. Various transition metal oxides (TMOs) have been extensively investigated as electrode materials for LIBs. According to the reaction mechanism, there are mainly two kinds of TMOs, one is based on conversion reaction and the other is based on intercalation/deintercalation reaction. Recently, hierarchically nanostructured TMOs have become a hot research area in the field of LIBs. Hierarchical architecture can provide numerous accessible electroactive sites for redox reactions, shorten the diffusion distance of Li‐ion during the reaction, and accommodate volume expansion during cycling. With rapid research progress in this field, a timely account of this advanced technology is highly necessary. Here, the research progress on the synthesis methods, morphological characteristics, and electrochemical performances of hierarchically nanostructured TMOs for LIBs is summarized and discussed. Some relevant prospects are also proposed. PMID:29593962
Gaussian vs. Bessel light-sheets: performance analysis in live large sample imaging
NASA Astrophysics Data System (ADS)
Reidt, Sascha L.; Correia, Ricardo B. C.; Donnachie, Mark; Weijer, Cornelis J.; MacDonald, Michael P.
2017-08-01
Lightsheet fluorescence microscopy (LSFM) has rapidly progressed in the past decade from an emerging technology into an established methodology. This progress has largely been driven by its suitability to developmental biology, where it is able to give excellent spatial-temporal resolution over relatively large fields of view with good contrast and low phototoxicity. In many respects it is superseding confocal microscopy. However, it is no magic bullet and still struggles to image deeply in more highly scattering samples. Many solutions to this challenge have been presented, including, Airy and Bessel illumination, 2-photon operation and deconvolution techniques. In this work, we show a comparison between a simple but effective Gaussian beam illumination and Bessel illumination for imaging in chicken embryos. Whilst Bessel illumination is shown to be of benefit when a greater depth of field is required, it is not possible to see any benefits for imaging into the highly scattering tissue of the chick embryo.
Progress toward establishing a US national laboratory on the International Space Station
NASA Astrophysics Data System (ADS)
Uhran, Mark L.
2010-01-01
The International Space Station (ISS) is rapidly approaching the long-awaited completion of assembly. All United States (US) core elements have been integrated and tested on-orbit and the principle elements of the European and Japanese laboratories were successfully deployed in 2008. The fully envisioned configuration is on schedule to be completed as planned by the end of US government fiscal year 2010. Section 507 of the NASA Authorization Act of 2005 designated the US segment of the ISS as a " national laboratory", thereby opening up its use to other US government agencies, US private firms and US non-profit institutions. This paper reports on progress toward identifying and entering into agreements with entities outside of NASA that plan to use the ISS in the post-assembly timeframe. The original 1984 vision of a robust, multi-mission space station serving as a platform for the advancement of US science, technology and industry will soon be achieved.
Progress and biotechnological prospects in fish transgenesis.
Tonelli, Fernanda M P; Lacerda, Samyra M S N; Tonelli, Flávia C P; Costa, Guilherme M J; de França, Luiz Renato; Resende, Rodrigo R
2017-11-01
The history of transgenesis is marked by milestones such as the development of cellular transdifferentiation, recombinant DNA, genetic modification of target cells, and finally, the generation of simpler genetically modified organisms (e.g. bacteria and mice). The first transgenic fish was developed in 1984, and since then, continuing technological advancements to improve gene transfer have led to more rapid, accurate, and efficient generation of transgenic animals. Among the established methods are microinjection, electroporation, lipofection, viral vectors, and gene targeting. Here, we review the history of animal transgenesis, with an emphasis on fish, in conjunction with major developments in genetic engineering over the past few decades. Importantly, spermatogonial stem cell modification and transplantation are two common techniques capable of revolutionizing the generation of transgenic fish. Furthermore, we discuss recent progress and future biotechnological prospects of fish transgenesis, which has strong applications for the aquaculture industry. Indeed, some transgenic fish are already available in the current market, validating continued efforts to improve economically important species with biotechnological advancements. Copyright © 2017. Published by Elsevier Inc.
Mixture block coding with progressive transmission in packet video. Appendix 1: Item 2. M.S. Thesis
NASA Technical Reports Server (NTRS)
Chen, Yun-Chung
1989-01-01
Video transmission will become an important part of future multimedia communication because of dramatically increasing user demand for video, and rapid evolution of coding algorithm and VLSI technology. Video transmission will be part of the broadband-integrated services digital network (B-ISDN). Asynchronous transfer mode (ATM) is a viable candidate for implementation of B-ISDN due to its inherent flexibility, service independency, and high performance. According to the characteristics of ATM, the information has to be coded into discrete cells which travel independently in the packet switching network. A practical realization of an ATM video codec called Mixture Block Coding with Progressive Transmission (MBCPT) is presented. This variable bit rate coding algorithm shows how a constant quality performance can be obtained according to user demand. Interactions between codec and network are emphasized including packetization, service synchronization, flow control, and error recovery. Finally, some simulation results based on MBCPT coding with error recovery are presented.
Weber, Georg F; Warren, Jeremy; Shoma, Hitoshi; Chen, Tao; Halim, Abdel; Chakravarty, Geetika
2012-08-01
Biomarkers are biological agents used as indicators of biological states. In clinical applications, biomarkers reflect the presence, severity, or progression of disease states. They may also predict risk or responsiveness of a disease to a given treatment. There has been increasingly intense research interest in biomarkers, yet their translation into routine clinical use is lagging. To stimulate communication and cross-fertilization, the 2nd World Congress on Biomarkers & Clinical Research was held in Baltimore, MD, USA in 2011. The symposium covered a broad range of basic and applied biomarker research with the intent to facilitate bench-to-bedside developments. Sessions discussed DNA-based, proteomic, and blood-borne markers. The presentations covered biomarkers for cancer, other various diseases, and toxicological agents. Other topics included biomarker data assimilation, validation, standardization and quality control, as well as molecular imaging and informatics. New high-throughput assays, model systems and emerging technologies give reasons to hope for further rapid progress in the field.
Hierarchically Nanostructured Transition Metal Oxides for Lithium-Ion Batteries.
Zheng, Mingbo; Tang, Hao; Li, Lulu; Hu, Qin; Zhang, Li; Xue, Huaiguo; Pang, Huan
2018-03-01
Lithium-ion batteries (LIBs) have been widely used in the field of portable electric devices because of their high energy density and long cycling life. To further improve the performance of LIBs, it is of great importance to develop new electrode materials. Various transition metal oxides (TMOs) have been extensively investigated as electrode materials for LIBs. According to the reaction mechanism, there are mainly two kinds of TMOs, one is based on conversion reaction and the other is based on intercalation/deintercalation reaction. Recently, hierarchically nanostructured TMOs have become a hot research area in the field of LIBs. Hierarchical architecture can provide numerous accessible electroactive sites for redox reactions, shorten the diffusion distance of Li-ion during the reaction, and accommodate volume expansion during cycling. With rapid research progress in this field, a timely account of this advanced technology is highly necessary. Here, the research progress on the synthesis methods, morphological characteristics, and electrochemical performances of hierarchically nanostructured TMOs for LIBs is summarized and discussed. Some relevant prospects are also proposed.
Wang, Hsiang-Chen; Nguyen, Ngoc-Viet; Lin, Rui-Yi; Jen, Chun-Ping
2017-05-06
Analysis of cancerous cells allows us to provide useful information for the early diagnosis of cancer and to monitor treatment progress. An approach based on electrical principles has recently become an attractive technique. This study presents a microdevice that utilizes a dielectrophoretic impedance measurement method for the identification of cancerous cells. The proposed biochip consists of circle-on-line microelectrodes that are patterned using a standard microfabrication processes. A sample of various cell concentrations was introduced in an open-top microchamber. The target cells were collectively concentrated between the microelectrodes using dielectrophoresis manipulation, and their electrical impedance properties were also measured. Different stages of human esophageal squamous cell carcinoma lines could be distinguished. This result is consistent with findings using hyperspectral imaging technology. Moreover, it was observed that the distinguishing characteristics change in response to the progression of cancer cell invasiveness by Raman spectroscopy. The device enables highly efficient cell collection and provides rapid, sensitive, and label-free electrical measurements of cancerous cells.
Rapid Prototyping Technologies for Manufacturing and Maintenance Activities
NASA Astrophysics Data System (ADS)
Pfeifer, Marcel Rolf
2017-12-01
The paper deals with the direct application of Rapid Prototyping technologies for parts and spare parts production in production companies and the economic effect by making use of this technology. Traditional production technologies are technologies such as forging, cutting, machining, etc. These technologies are widely accepted and the teething troubles are solved. Rapid Prototyping technologies such as 3D printing on the other hand came into the focus in the recent years when the technologies and the produced quality gradually advanced. Providing flexibility and time efficiency the technology should also have a practical application in production. This paper has the aim to provide a case-study based on existing cost figures to show that these technologies are not limited to prototype developments.
ERIC Educational Resources Information Center
Winthrop, Rebecca; McGivney, Eileen
2017-01-01
Today, examples of rapid, non-linear progress--sometimes called leapfrogging--are evident in a number of sectors. Often, these instances are most obvious in the developing world, where in telecommunications or banking, for example, whole phases of infrastructure and institution-building that other countries had to go through have been by-passed by…
Identification of species with DNA-based technology: current progress and challenges.
Pereira, Filipe; Carneiro, João; Amorim, António
2008-01-01
One of the grand challenges of modern biology is to develop accurate and reliable technologies for a rapid screening of DNA sequence variation. This topic of research is of prime importance for the detection and identification of species in numerous fields of investigation, such as taxonomy, epidemiology, forensics, archaeology or ecology. Molecular identification is also central for the diagnosis, treatment and control of infections caused by different pathogens. In recent years, a variety of DNA-based approaches have been developed for the identification of individuals in a myriad of taxonomic groups. Here, we provide an overview of most commonly used assays, with emphasis on those based on DNA hybridizations, restriction enzymes, random PCR amplifications, species-specific PCR primers and DNA sequencing. A critical evaluation of all methods is presented focusing on their discriminatory power, reproducibility and user-friendliness. Having in mind that the current trend is to develop small-scale devices with a high-throughput capacity, we briefly review recent technological achievements for DNA analysis that offer great potentials for the identification of species.
Novel Biomaterials Used in Medical 3D Printing Techniques
Tappa, Karthik; Jammalamadaka, Udayabhanu
2018-01-01
The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail. PMID:29414913
Implementation and new insights in molecular diagnostics for HIV infection.
Tsang, Hin-Fung; Chan, Lawrence Wing-Chi; Tong, Jennifer Chiu-Hung; Wong, Heong-Ting; Lai, Christopher Koon-Chi; Au, Thomas Chi-Chuen; Chan, Amanda Kit-Ching; Ng, Lawrence Po-Wah; Cho, William Chi-Shing; Wong, Sze-Chuen Cesar
2018-05-01
Acquired immunodeficiency syndrome (AIDS) is a kind of acquired disease that breaks down the immune system. Human immunodeficiency virus (HIV) is the causative agent of AIDS. By the end of 2016, there were 36.7 million people living with HIV worldwide. Early diagnosis can alert infected individuals to risk behaviors in order to control HIV transmission. Infected individuals are also benefited from proper treatment and management upon early diagnosis. Thanks to the public awareness of the disease, the annual increase of new HIV infections has been slowly declining over the past decades. The advent of molecular diagnostics has allowed early detection and better management of HIV infected patients. Areas covered: In this review, the authors summarized and discussed the current and future technologies in molecular diagnosis as well as the biomarkers developed for HIV infection. Expert Commentary: A simple and rapid detection of viral load is important for patients and doctors to monitor HIV progression and antiretroviral treatment efficiency. In the near future, it is expected that new technologies such as digital PCR and CRISPR-based technology will play more important role in HIV detection and patient management.
Materials and processing science: Limits for microelectronics
NASA Astrophysics Data System (ADS)
Rosenberg, R.
1988-09-01
The theme of this talk will be to illustrate examples of technologies that will drive materials and processing sciences to the limit and to describe some of the research being pursued to understand materials interactions which are pervasive to projected structure fabrication. It is to be expected that the future will see a progression to nanostructures where scaling laws will be tested and quantum transport will become more in evidence, to low temperature operation for tighter control and improved performance, to complex vertical profiles where 3D stacking and superlattices will produce denser packing and device flexibility, to faster communication links with optoelectronics, and to compatible packaging technologies. New low temperature processing techniques, such as epitaxy of silicon, PECVD of dielectrics, low temperature high pressure oxidation, silicon-germanium heterostructures, etc., must be combined with shallow metallurgies, new lithographic technologies, maskless patterning, rapid thermal processing (RTP) to produce needed profile control, reduce process incompatibilities and develop new device geometries. Materials interactions are of special consequence for chip substrates and illustrations of work in metal-ceramic and metal-polymer adhesion will be offered.
A Concise Atlas of Thyroid Cancer Next-Generation Sequencing Panel ThyroSeq v.2
Alsina, Jorge; Alsina, Raul; Gulec, Seza
2017-01-01
The next-generation sequencing technology allows high out-put genomic analysis. An innovative assay in thyroid cancer, ThyroSeq® was developed for targeted mutation detection by next generation sequencing technology in fine needle aspiration and tissue samples. ThyroSeq v.2 next generation sequencing panel offers simultaneous sequencing and detection in >1000 hotspots of 14 thyroid cancer-related genes and for 42 types of gene fusions known to occur in thyroid cancer. ThyroSeq is being increasingly used to further narrow the indeterminate category defined by cytology for thyroid nodules. From a surgical perspective, genomic profiling also provides prognostic and predictive information and closely relates to determination of surgical strategy. Both the genomic analysis technology and the informatics for the cancer genome data base are rapidly developing. In this paper, we have gathered existing information on the thyroid cancer-related genes involved in the initiation and progression of thyroid cancer. Our goal is to assemble a glossary for the current ThyroSeq genomic panel that can help elucidate the role genomics play in thyroid cancer oncogenesis. PMID:28117295
QUANTITATIVE MASS SPECTROMETRIC ANALYSIS OF GLYCOPROTEINS COMBINED WITH ENRICHMENT METHODS
Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin
2015-01-01
Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc. Rapid Commun. Mass Spec Rev 34:148–165, 2015. PMID:24889823
NASA Astrophysics Data System (ADS)
Huang, Zan; Chen, Hsinchun; Yip, Alan; Ng, Gavin; Guo, Fei; Chen, Zhi-Kai; Roco, Mihail C.
2003-08-01
Nanoscale science and engineering (NSE) and related areas have seen rapid growth in recent years. The speed and scope of development in the field have made it essential for researchers to be informed on the progress across different laboratories, companies, industries and countries. In this project, we experimented with several analysis and visualization techniques on NSE-related United States patent documents to support various knowledge tasks. This paper presents results on the basic analysis of nanotechnology patents between 1976 and 2002, content map analysis and citation network analysis. The data have been obtained on individual countries, institutions and technology fields. The top 10 countries with the largest number of nanotechnology patents are the United States, Japan, France, the United Kingdom, Taiwan, Korea, the Netherlands, Switzerland, Italy and Australia. The fastest growth in the last 5 years has been in chemical and pharmaceutical fields, followed by semiconductor devices. The results demonstrate potential of information-based discovery and visualization technologies to capture knowledge regarding nanotechnology performance, transfer of knowledge and trends of development through analyzing the patent documents.
Options for the Development of Noninvasive Glucose Monitoring
Thomas, Andreas; Heinemann, Lutz; Ramírez, Araceli; Zehe, Alfred
2015-01-01
Nowadays nanotechnology has many applications in products used in various areas of daily life; however, this technology has also an option in modern medicine and pharmacy. Therefore, this technology is also an attractive option for the field of diagnosis and treatment of diabetes. Many people with diabetes measure their blood glucose levels regularly to determine the insulin dose. Ideally glucose values would be measured noninvasively (NI). However, none of all the NI approaches studied in the past decades enabled reliable NI measurements under all daily life conditions. Particularly an unfavorable signal-to-noise ratio turned out to be problematic. Based on the known physical possibilities for NI glucose monitoring the focus of this review is on nanotechnology approaches. Functional prototypes exist for some of these that showed promising results under defined laboratory conditions, indicating a good sensitivity and selectivity for glucose. On the second hand is to optimize the technological process of manufacturing. In view of the rapid progress in micro- and nanoelectronics hopefully NI glucose monitoring systems can be developed in the near future. PMID:26581879
Parsons, M B; Reid, D H; Green, C W
1996-01-01
Shortcomings in the technology for training support staff in methods of teaching people with severe disabilities recently have resulted in calls to improve the technology. We evaluated a program for training basic teaching skills within one day. The program entailed classroom-based verbal and video instruction, practice, and feedback followed by on-the-job feedback. In Study I, four undergraduate interns participated in the program, and all four met the mastery criterion for teaching skills. Three teacher aides participated in Study 2, with results indicating that when the staff applied their newly acquired teaching skills, students with profound disabilities made progress in skill acquisition. Clinical replications occurred in Study 3, involving 17 staff in school classrooms, group homes, and an institution. Results of Studies 2 and 3 also indicated staff were accepting of the program and improved their verbal skills. Results are discussed regarding advantages of training staff in one day. Future research suggestions are offered, focusing on identifying means of rapidly training other teaching skills in order to develop the most effective, acceptable, and efficient technology for staff training.
[Application of medical imaging to general thoracic surgery].
Oizumi, Hiroyuki
2014-07-01
Medical imaging technology is rapidly progressing. Positron emission tomography (PET) has played major role in the staging and choice of treatment modality in lung cancer patients. Magnetic resonance imaging (MRI) is now routinely used for mediastinal tumors and the use of diffusion-weighted images (DWI) may help in the diagnosis of malignancies including lung cancers. The benefits of medical imaging technology are not limited to diagnostics, and include simulation or navigation for complex lung resection and other procedures. Multidetector row computed tomography (MDCT) shortens imaging time to obtain detailed and precise volume data, which improves diagnosis of small-sized lung cancers. 3-dimensional reconstruction of the volume data allows the safe performance of thoracoscopic surgery. For lung lobectomy, identification of the branching structures, diameter, and length of the arteries is useful in selecting the procedure for blood vessel treatment. For lung segmentectomy, visualization of venous branches in the affected segments and intersegmental veins has facilitated the preoperative determination of the anatomical intersegmental plane. Therefore, the application of medical imaging technology is useful in general thoracic surgery.
Advances in computer imaging/applications in facial plastic surgery.
Papel, I D; Jiannetto, D F
1999-01-01
Rapidly progressing computer technology, ever-increasing expectations of patients, and a confusing medicolegal environment requires a clarification of the role of computer imaging/applications. Advances in computer technology and its applications are reviewed. A brief historical discussion is included for perspective. Improvements in both hardware and software with the advent of digital imaging have allowed great increases in speed and accuracy in patient imaging. This facilitates doctor-patient communication and possibly realistic patient expectations. Patients seeking cosmetic surgery now often expect preoperative imaging. Although society in general has become more litigious, a literature search up to 1998 reveals no lawsuits directly involving computer imaging. It appears that conservative utilization of computer imaging by the facial plastic surgeon may actually reduce liability and promote communication. Recent advances have significantly enhanced the value of computer imaging in the practice of facial plastic surgery. These technological advances in computer imaging appear to contribute a useful technique for the practice of facial plastic surgery. Inclusion of computer imaging should be given serious consideration as an adjunct to clinical practice.
Mega-prizes in medicine: big cash awards may stimulate useful and rapid therapeutic innovation.
Charlton, Bruce G
2007-01-01
Following Horrobin's suggestion of 1986, I argue that offering very large prizes (tens of millions of US dollars, or more) for solving specific therapeutic problems, would be an excellent strategy for promoting the rapid development of effective new treatments. The two mainstream ways of paying for medical research are funding the process with grants or funding the outcome via patent protection. When grants are used to fund the process of research the result tends to be 'pure' science, guided by intrinsic scientific objectives. Practical results, such as useful therapeutic advances, are a by-product. Patent-seeking research, by contrast, is more focused on technology than science. It seeks practical results; and aims to pay for itself (and make a profit) in the long term by generating a patentable product or procedure. Prize-seeking research is subject to different incentives and applicable to different situations than either process-funded or patent-seeking research. Prize seeking researchers have a strong incentive to solve the specified problem as rapidly as possible, but the problem may be solved using old ideas that are scientifically mundane or unpatentable technologies and methods. Prizes therefore seem to generate solutions which are incremental extensions, new applications or novel combinations of already-existing technologies. The main use of mega-prizes in medicine would be to accelerate therapeutic progress in stagnant fields of research and to address urgent problems. For example, medical charities focused on specific diseases should consider accumulating their resources until they can offer a mega-prize for solving a clinical problem of special concern to their patients. Prize money should be big enough to pay for the research and development, the evaluation of the new treatment in a clinical trial, and with a large profit left-over to compensate for the intrinsic risk of competing. Sufficiently large amounts of money, and the prestige and publicity derived from winning a mega-prize, could rapidly mobilize research efforts to discover a whole range of scientifically un-glamorous but clinically-useful therapeutic breakthroughs.
An In-Depth Review on Direct Additive Manufacturing of Metals
NASA Astrophysics Data System (ADS)
Azam, Farooq I.; Rani, Ahmad Majdi Abdul; Altaf, Khurram; Rao, T. V. V. L. N.; Aimi Zaharin, Haizum
2018-03-01
Additive manufacturing (AM), also known as 3D Printing, is a revolutionary manufacturing technique which has been developing rapidly in the last 30 years. The evolution of this precision manufacturing process from rapid prototyping to ready-to-use parts has significantly alleviated manufacturing constraints and design freedom has been outstandingly widened. AM is a non-conventional manufacturing technique which utilizes a 3D CAD model data to build parts by adding one material layer at a time, rather than removing it and fulfills the demand for manufacturing parts with complex geometric shapes, great dimensional accuracy, and easy to assemble parts. Additive manufacturing of metals has become the area of extensive research, progressing towards the production of final products and replacing conventional manufacturing methods. This paper provides an insight to the available metal additive manufacturing technologies that can be used to produce end user products without using conventional manufacturing methods. The paper also includes the comparison of mechanical and physical properties of parts produced by AM with the parts manufactured using conventional processes.
Genetic dissection of cardiac growth control pathways
NASA Technical Reports Server (NTRS)
MacLellan, W. R.; Schneider, M. D.
2000-01-01
Cardiac muscle cells exhibit two related but distinct modes of growth that are highly regulated during development and disease. Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle irreversibly soon after birth, following which the predominant form of growth shifts from hyperplastic to hypertrophic. Much research has focused on identifying the candidate mitogens, hypertrophic agonists, and signaling pathways that mediate these processes in isolated cells. What drives the proliferative growth of embryonic myocardium in vivo and the mechanisms by which adult cardiac myocytes hypertrophy in vivo are less clear. Efforts to answer these questions have benefited from rapid progress made in techniques to manipulate the murine genome. Complementary technologies for gain- and loss-of-function now permit a mutational analysis of these growth control pathways in vivo in the intact heart. These studies have confirmed the importance of suspected pathways, have implicated unexpected pathways as well, and have led to new paradigms for the control of cardiac growth.
Parsons, D.R.; Jackson, P.R.; Czuba, J.A.; Engel, F.L.; Rhoads, B.L.; Oberg, K.A.; Best, J.L.; Mueller, D.S.; Johnson, K.K.; Riley, J.D.
2013-01-01
The use of acoustic Doppler current profilers (ADCP) for discharge measurements and three-dimensional flow mapping has increased rapidly in recent years and has been primarily driven by advances in acoustic technology and signal processing. Recent research has developed a variety of methods for processing data obtained from a range of ADCP deployments and this paper builds on this progress by describing new software for processing and visualizing ADCP data collected along transects in rivers or other bodies of water. The new utility, the Velocity Mapping Toolbox (VMT), allows rapid processing (vector rotation, projection, averaging and smoothing), visualization (planform and cross-section vector and contouring), and analysis of a range of ADCP-derived datasets. The paper documents the data processing routines in the toolbox and presents a set of diverse examples that demonstrate its capabilities. The toolbox is applicable to the analysis of ADCP data collected in a wide range of aquatic environments and is made available as open-source code along with this publication.
Rapidly Progressive Maxillary Atelectasis.
Elkhatib, Ahmad; McMullen, Kyle; Hachem, Ralph Abi; Carrau, Ricardo L; Mastros, Nicholas
2017-07-01
Report of a patient with rapidly progressive maxillary atelectasis documented by sequential imaging. A 51-year-old man, presented with left periorbital and retro-orbital pain associated with left nasal obstruction. An initial computed tomographic (CT) scan of the paranasal sinuses failed to reveal any significant abnormality. A subsequent CT scan, indicated for recurrence of symptoms 11 months later, showed significant maxillary atelectasis. An uncinectomy, maxillary antrostomy, and anterior ethmoidectomy resulted in a complete resolution of the symptoms. Chronic maxillary atelectasis is most commonly a consequence of chronic rhinosinusitis. All previous reports have indicated a chronic process but lacked documentation of the course of the disease. This report documents a patient of rapidly progressive chronic maxillary atelectasis with CT scans that demonstrate changes in the maxillary sinus (from normal to atelectatic) within 11 months.
Education and career progression of imaging administrators.
South-Winter, Carole
2014-01-01
The advancement into leadership positions for many administrators began as staff technologists moving up via interim management opportunities. New managers must develop supervisory skills while simultaneously assuming responsibility for the operation of the department. Mobility today is based primarily on a formal educational background. A transferable set of skills must be augmented with higher education. Those in the imaging sciences realize that an administrative position requires business and management acumen as well as technical skills. A shortage of imaging administrators is predicted due to an aging population and the rapid advancement of technology in healthcare. Institutes of higher education need to address and support the curricula and programs needed, which includes the CRA credential, for this growing field.
Construction of In-house Databases in a Corporation
NASA Astrophysics Data System (ADS)
Dezaki, Kyoko; Saeki, Makoto
Rapid progress in advanced informationalization has increased need to enforce documentation activities in industries. Responding to it Tokin Corporation has been engaged in database construction for patent information, technical reports and so on accumulated inside the Company. Two results are obtained; One is TOPICS, inhouse patent information management system, the other is TOMATIS, management and technical information system by use of personal computers and all-purposed relational database software. These systems aim at compiling databases of patent and technological management information generated internally and externally by low labor efforts as well as low cost, and providing for comprehensive information company-wide. This paper introduces the outline of these systems and how they are actually used.
Nanomaterials for renewable energy production and storage.
Chen, Xiaobo; Li, Can; Grätzel, Michaël; Kostecki, Robert; Mao, Samuel S
2012-12-07
Over the past decades, there have been many projections on the future depletion of the fossil fuel reserves on earth as well as the rapid increase in green-house gas emissions. There is clearly an urgent need for the development of renewable energy technologies. On a different frontier, growth and manipulation of materials on the nanometer scale have progressed at a fast pace. Selected recent and significant advances in the development of nanomaterials for renewable energy applications are reviewed here, and special emphases are given to the studies of solar-driven photocatalytic hydrogen production, electricity generation with dye-sensitized solar cells, solid-state hydrogen storage, and electric energy storage with lithium ion rechargeable batteries.
Reading and assessing reports of treatment studies in oncology.
Simon, R
2000-04-01
Rapid advances in tumor biology, immunology, genomics, and technology give physicians great hopes for providing patients with better chances in the struggle against cancer. The pace of progress will be slowed, however, if we do not have clear answers regarding which treatments work and do not work. Such answers come from carefully designed, randomized, clinical trials. Such trials require infrastructure, commitment, cooperation, time, and money, and they provide little fame. They are, however, an invaluable contribution of the medical profession to their patients, to their next generation of colleagues, and to future patients. Randomized clinical trials that answer important medical questions definitively should be supported, participated in, and demanded by surgeons and oncologists.
Rice functional genomics research in China.
Han, Bin; Xue, Yongbiao; Li, Jiayang; Deng, Xing-Wang; Zhang, Qifa
2007-06-29
Rice functional genomics is a scientific approach that seeks to identify and define the function of rice genes, and uncover when and how genes work together to produce phenotypic traits. Rapid progress in rice genome sequencing has facilitated research in rice functional genomics in China. The Ministry of Science and Technology of China has funded two major rice functional genomics research programmes for building up the infrastructures of the functional genomics study such as developing rice functional genomics tools and resources. The programmes were also aimed at cloning and functional analyses of a number of genes controlling important agronomic traits from rice. National and international collaborations on rice functional genomics study are accelerating rice gene discovery and application.
Mobile Multicast in Hierarchical Proxy Mobile IPV6
NASA Astrophysics Data System (ADS)
Hafizah Mohd Aman, Azana; Hashim, Aisha Hassan A.; Mustafa, Amin; Abdullah, Khaizuran
2013-12-01
Mobile Internet Protocol Version 6 (MIPv6) environments have been developing very rapidly. Many challenges arise with the fast progress of MIPv6 technologies and its environment. Therefore the importance of improving the existing architecture and operations increases. One of the many challenges which need to be addressed is the need for performance improvement to support mobile multicast. Numerous approaches have been proposed to improve mobile multicast performance. This includes Context Transfer Protocol (CXTP), Hierarchical Mobile IPv6 (HMIPv6), Fast Mobile IPv6 (FMIPv6) and Proxy Mobile IPv6 (PMIPv6). This document describes multicast context transfer in hierarchical proxy mobile IPv6 (H-PMIPv6) to provide better multicasting performance in PMIPv6 domain.
Thirty years of critical care medicine
2010-01-01
Critical care medicine is a relatively young but rapidly evolving specialty. On the occasion of the 30th International Symposium on Intensive Care and Emergency Medicine, we put together some thoughts from a few of the leaders in critical care who have been actively involved in this field over the years. Looking back over the last 30 years, we reflect on areas in which, despite large amounts of research and technological and scientific advances, no major therapeutic breakthroughs have been made. We then look at the process of care and realize that, here, huge progress has been made. Lastly, we suggest how critical care medicine will continue to evolve for the better over the next 30 years. PMID:20550727
NASA Astrophysics Data System (ADS)
Horner, Joseph L.
1987-04-01
Progress in the fields of integrated optics and fiber optics is continuing at a rapid pace. Recognizing this trend, the goal of the author is to provide an introductory textbook on time-harmonic electromagnetic theory, with an emphasis on optical rather than microwave technologies. The book is appropriate for an upper-level undergraduate or graduate course. Each chapter includes examples of problems. The book focuses on several areas of prime importance to intergrated optics. These include dielectric waveguide analysis, couple-mode thoery, Bragg scattering, and prism coupling There is very little coverage of active components such as electro-optic modulators and switches. The author assumes the reader has a working knowledge of vector calculus and is familiar with Maxwell's equations.
Application of Interface Technology in Progressive Failure Analysis of Composite Panels
NASA Technical Reports Server (NTRS)
Sleight, D. W.; Lotts, C. G.
2002-01-01
A progressive failure analysis capability using interface technology is presented. The capability has been implemented in the COMET-AR finite element analysis code developed at the NASA Langley Research Center and is demonstrated on composite panels. The composite panels are analyzed for damage initiation and propagation from initial loading to final failure using a progressive failure analysis capability that includes both geometric and material nonlinearities. Progressive failure analyses are performed on conventional models and interface technology models of the composite panels. Analytical results and the computational effort of the analyses are compared for the conventional models and interface technology models. The analytical results predicted with the interface technology models are in good correlation with the analytical results using the conventional models, while significantly reducing the computational effort.
Rapidly progressive internal root resorption: a case report.
Keinan, David; Heling, Ilana; Stabholtz, Adam; Moshonov, Joshua
2008-10-01
The etiology of internal root resorption is not fully understandable, trauma and chronic pulpitis are considered the main risk factors. Usually the process is asymptomatic and diagnosed upon routine radiographic examination. This case report presents a rapid progression of internal resorption related directly to traumatic injury. A 16-year-old female arrived at the emergency room after a mild extrusion of the mandibular incisors. The initial treatment included repositioning and splinting of the teeth. Radiographs performed at repositioning and splinting demonstrated normal configuration of the incisor's roots. Ten months later progressive internal resorption of the left mandibular first incisor was diagnosed. While treating this tooth similar process was detected in the right mandibular second incisor and in the mandibular left second incisor. The lower right first incisor reacted inconsistently to vitality test. As a result of the severe and rapidly progressive nature of the process, root canal treatments were performed in all lower incisors. The follow-up radiographs demonstrate arrest of the internal resorption process.
Economic impact of stimulated technological activity: Bibliography
NASA Technical Reports Server (NTRS)
1971-01-01
This bibliography is divided into three parts and covers: (1) overall economic impact of technological progress and its measurement; (2) technological progress and commercialization of communications satellites; and (3) knowledge additions and earth links from space crew systems.
Contemporary Technologies...3...An Updated Plan for NIACC's Future.
ERIC Educational Resources Information Center
Hecht, Alfred R.; And Others
An update is provided on North Iowa Area Community College's (NIACC's) progress toward achieving its goals with respect to the use of contemporary technologies, along with plans for further progress. Part I examines the characteristics of contemporary technology and provides information on NIACC's Contemporary Technology Strategic Planning…
Computer Technology Standards of Learning for Virginia's Public Schools
ERIC Educational Resources Information Center
Virginia Department of Education, 2005
2005-01-01
The Computer/Technology Standards of Learning identify and define the progressive development of essential knowledge and skills necessary for students to access, evaluate, use, and create information using technology. They provide a framework for technology literacy and demonstrate a progression from physical manipulation skills for the use of…
NASA Technical Reports Server (NTRS)
1971-01-01
The economic impact of technological progress in communications satellites is considered, as well as how these impacts affect the firms involved. Influences, if any, on the three major inputs of a nation's economic output (capital, labor, and technology) is discussed.
Uremic Solutes in Chronic Kidney Disease and Their Role in Progression.
van den Brand, Jan A J G; Mutsaers, Henricus A M; van Zuilen, Arjan D; Blankestijn, Peter J; van den Broek, Petra H; Russel, Frans G M; Masereeuw, Rosalinde; Wetzels, Jack F M
2016-01-01
To date, over 150 possible uremic solutes have been listed, but their role in the progression of CKD is largely unknown. Here, the association between a selected panel of uremic solutes and progression in CKD patients was investigated. Patients from the MASTERPLAN study, a randomized controlled trial in CKD patients with a creatinine clearance between 20 and 70 ml/min per 1.73m2, were selected based on their rate of eGFR decline during the first five years of follow-up. They were categorized as rapid (decline >5 ml/min per year) or slow progressors. Concentrations of eleven uremic solutes were obtained at baseline and after one year of follow-up. Logistic regression was used to compare the odds for rapid to slow progression by uremic solute concentrations at baseline. Variability in uremic solute levels was assessed using scatter plots, and limits of variability were calculated. In total, 40 rapidly and 40 slowly progressing patients were included. Uremic solutes were elevated in all patients compared to reference values for healthy persons. The serum levels of uremic solutes were not associated with rapid progression. Moreover, we observed substantial variability in solute levels over time. Elevated concentrations of uremic solutes measured in this study did not explain differences in rate of eGFR decline in CKD patients, possibly due to lack of power as a result of the small sample size, substantial between patient variability, and variability in solute concentrations over time. The etiology of intra-individual variation in uremic solute levels remains to be elucidated.
Diao, Yingying; Geng, Wenqing; Fan, Xuejie; Cui, Hualu; Sun, Hong; Jiang, Yongjun; Wang, Yanan; Sun, Amy; Shang, Hong
2015-08-19
During early HIV-1 infection (EHI), the interaction between the immune response and the virus determines disease progression. Although CD1c + myeloid dendritic cells (mDCs) can trigger the immune response, the relationship between CD1c + mDC alteration and disease progression has not yet been defined. EHI changes in CD1c + mDC counts, surface marker (CD40, CD86, CD83) expression, and IL-12 secretion were assessed by flow cytometry in 29 patients. When compared with the normal controls, patients with EHI displayed significantly lower CD1c + mDC counts and IL-12 secretion and increased surface markers. CD1c + mDC counts were positively correlated with CD4+ T cell counts and inversely associated with viral loads. IL-12 secretion was only positively associated with CD4+ T cell counts. Rapid progressors had lower counts, CD86 expression, and IL-12 secretion of CD1c + mDCs comparing with typical progressors. Kaplan-Meier analysis and Cox regression models suggested patients with low CD1c + mDC counts (<10 cells/μL) had a 4-fold higher risk of rapid disease progression than those with high CD1c + mDC counts. However, no relationship was found between surface markers or IL-12 secretion and disease progression. During EHI, patients with low CD1c + mDC counts were more likely to experience rapid disease progression than those with high CD1c + mDC counts.
[Progress of gene editing technologies and prospect in traditional Chinese medicine].
Ma, Yan-Yan; Li, Jing-Zhe; Gao, Er-Ning; Qian, Dan; Zhong, Ju-Ying; Liu, Chang-Zhen
2017-01-01
Gene editing is a kind of technologies that makes precise modification to the genome. It can be used to knock out/in and replace the specific DNA fragment, and make accurate gene editing on the genome level. The essence of the technique is the DNA sequence change with use of non homologous end link repair and homologous recombination repair, combined with specific DNA target recognition and endonuclease.This technology has wide range of development prospects and high application value in terms of scientific research, agriculture, medical treatment and other fields. In the field of gene therapy, gene editing technology has achieved cross-time success in cancers such as leukemia, genetic disorders such as hemophilia, thalassemia, multiple muscle nutritional disorders and retrovirus associated infectious diseases such as AIDS and other diseases. The preparation work for new experimental methods and animal models combined with gene editing technology is under rapid development and improvement. Laboratories around the world have also applied gene editing technique in prevention of malaria, organ transplantation, biological pharmaceuticals, agricultural breeding improvement, resurrection of extinct species, and other research areas. This paper summarizes the application and development status of gene editing technique in the above fields, and also preliminarily explores the potential application prospect of the technology in the field of traditional Chinese medicine, and discusses the present controversy and thoughts. Copyright© by the Chinese Pharmaceutical Association.
Beerle, Corinne; Gelpke, Hans; Breitenstein, Stefan; Staerkle, Ralph F
2016-12-01
We report a case of a rare complication of acute appendicitis with perforation through the abdominal wall. The case points out that an intraabdominal origin should be considered in patients presenting with rapidly spreading soft tissue infections of the trunk. A 58-year-old European woman presented to our hospital with a 1-week history of severe abdominal pain accompanied by rapidly spreading erythema and emphysema of the lower abdomen. On admission, the patient was in septic shock with leukocytosis and elevation of C-reactive protein. Among other diagnoses, necrotizing fasciitis was suspected. Computed tomography showed a large soft tissue infection with air-fluid levels spreading through the lower abdominal wall. During the operation, we found a perforated appendicitis breaking through the fascia and causing a rapidly progressive soft tissue infection of the abdominal wall. Appendicitis was the origin of the soft tissue infection. The abdominal wall was only secondarily involved. Even though perforated appendicitis as an etiology of a rapidly progressive soft tissue infection of the abdominal wall is very rare, it should be considered in the differential diagnosis of abdominal wall cellulitis. The distinction between rapidly spreading subcutaneous infection with abscess formation and early onset of necrotizing fasciitis is often difficult and can be confirmed only by surgical intervention.
The role of top management in supporting the use of information technology in Australian hospitals.
Reeve, R; Rose, G
1999-01-01
The progressive use of information systems and information technology has the potential to transform the way complex organisations are managed and the way they operate. This article reports the findings of a study undertaken to examine the importance of various factors related to the progressive use of information technology in Australian hospitals. Our analysis of data from 84 hospitals shows that hospital size has a significant positive relationship with the progressive use of information technology, as does the chief executive officer's attitude to information technology; however chief executive officer participation in information technology activities does not. The implications of these findings for the role of top management are discussed.
Systematically disseminating technological information to potential users
NASA Technical Reports Server (NTRS)
Russell, J. D.
1976-01-01
Rapid technological information dissemination system related to the field of remote sensing is presented. The technology transfer staff systematically designed instructional materials and activities using the matrix as an organizer to meet the need of the students, scientists and users in a rapidly expanding technology.
ERIC Educational Resources Information Center
Strecker, Beth L.
2010-01-01
The purpose of this study was to explore the perceptions of academic librarians on two topics: the delivery of services to students and faculty in a time of rapid technological changes and an organizational structure appropriate for delivering services to students in a time of rapid technological changes. Several researchers agree that to…
Liao, Chun-De; Huang, Yi-Ching; Lin, Li-Fong; Chiu, Yen-Shuo; Tsai, Jui-Chen; Chen, Chun-Lung; Liou, Tsan-Hon
2016-08-01
This study evaluated the effects of continuous passive motion (CPM) on accelerated flexion after total knee arthroplasty (TKA) and whether CPM application measures (i.e. initial angle and daily increment) are associated with functional outcomes. A retrospective investigation was conducted at the rehabilitation centre of a university-based teaching hospital. Patients who received CPM therapy immediately after TKA surgery were categorized into rapid-, normal-, and slow-progress groups according to their response to CPM during their acute inpatient stay. Knee pain, passive knee flexion, and knee function-measured using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC)-were assessed preoperatively at discharge and at 3- and 6-month outpatient follow-up visits. A total of 354 patients were followed for 6 months after inpatient-stay discharge. The patients in the rapid-progress group (n = 119) exhibited significantly greater knee flexions than those in the slow-progress group did (n = 103) at the 3-month follow-up [mean difference (MD) = 10.3°, 95 % confidence interval (CI) 4.3°-16.3°, p < 0.001] and 6-month follow-up (MD = 10.9°, 95 % CI 6.3°-15.6°, p < 0.001). Significant WOMAC score differences between the rapid- and slow-progress groups were observed at the 3-month follow-up (MD = 7.2, 95 % CI 5.4-9.1, p < 0.001) and 6-month follow-up (MD = 16.1, 95 % CI 13.4-18.7, p < 0.001). CPM initial angles and rapid progress significantly predicted short- and long-term outcomes in knee flexion and WOMAC scores (p < 0.001). When CPM is used, early application with initial high flexion and rapid progress benefits knee function up to 6 months after TKA. II.
Stam, Daniel; Fernandez, Jennifer
2017-07-01
Diffuse axonal injury is a prominent cause of disablement post-traumatic brain injury. Utilization of the rapid expansion of our current scientific knowledge base combined with greater access to neurological and assistive technology as adjuncts to providing sensorimotor experience may yield innovative new approaches to rehabilitation based upon a dynamic model of brain response following injury. A 24-year-old female who sustained a traumatic brain injury, bilateral subdural hemorrhage, subarachnoid hemorrhage and severe diffuse axonal injury secondary to a motor vehicle collision. Evidence-based appraisal of present literature suggests a link between graded intensity of aerobic activity to facilitation of neuro-plastic change and up-regulation of neurotrophins essential to functional recovery post-diffuse axonal injury. Following resolution of paroxysmal autonomic instability with dystonia, aggressive early mobilization techniques were progressed utilizing robotic assistive gait technology in combination with conventional therapy. This approach allowed for arguably greater repetition and cardiovascular demands across a six-month inpatient rehabilitation stay. Outcomes in this case suggest that the use of assistive technology to adjunct higher level and intensity rehabilitation strategies may be a safe and effective means towards reduction of disablement following severe traumatic brain and neurological injury. Implications for Rehabilitation Functional recovery and neuroplasticity following diffuse neurological injury involves a complex process determined by the sensorimotor experience provided by rehabilitation clinicians. This process is in part modulated by intrinsic brain biochemical processes correlated to cardiovascular intensity of the activity provided. It is important that rehabilitation professionals monitor physiological response to higher intensity activities to provide an adaptive versus maladaptive response of central nervous system plasticity with activity. Identification of early mobilization parameters and skill acquisition may assist selection of gait assistive technology adjunct in progressing early optimal physical rehabilitation outcomes in the acute inpatient setting.
Factors Affecting Learning in Technology in the Early Years at School
ERIC Educational Resources Information Center
Mawson, Brent
2007-01-01
The nature of progression in technology is still a matter of debate in technology education. While there is a growing research-based literature exploring the elements of technological literacy that might be appropriate measures of progression, little has been written about the factors that may influence both group and individual development of…
Beers, David R; Zhao, Weihua; Wang, Jinghong; Zhang, Xiujun; Wen, Shixiang; Neal, Dan; Thonhoff, Jason R; Alsuliman, Abdullah S; Shpall, Elizabeth J; Rezvani, Katy; Appel, Stanley H
2017-03-09
Neuroinflammation is a pathological hallmark of ALS in both transgenic rodent models and patients, and is characterized by proinflammatory T lymphocytes and activated macrophages/microglia. In ALS mouse models, decreased regulatory T lymphocytes (Tregs) exacerbate the neuroinflammatory process, leading to accelerated motoneuron death and shortened survival; passive transfer of Tregs suppresses the neuroinflammation and prolongs survival. Treg numbers and FOXP3 expression are also decreased in rapidly progressing ALS patients. A key question is whether the marked neuroinflammation in ALS can be attributed to the impaired suppressive function of ALS Tregs in addition to their decreased numbers. To address this question, T lymphocyte proliferation assays were performed. Compared with control Tregs, ALS Tregs were less effective in suppressing responder T lymphocyte proliferation. Although both slowly and rapidly progressing ALS patients had dysfunctional Tregs, the greater the clinically assessed disease burden or the more rapidly progressing the patient, the greater the Treg dysfunction. Epigenetically, the percentage methylation of the Treg-specific demethylated region was greater in ALS Tregs. After in vitro expansion, ALS Tregs regained suppressive abilities to the levels of control Tregs, suggesting that autologous passive transfer of expanded Tregs might offer a novel cellular therapy to slow disease progression.
Rapid toxicity technologies can detect certain toxins and with testing it can be determined their susceptibility to interfering chemical in controlled experimental matrix. Rapid toxicity technologies do not identify or determine the concentrations of specific contaminants, but s...
Slotnick, Jeffrey P; Khodadoust, Abdollah; Alonso, Juan J; Darmofal, David L; Gropp, William D; Lurie, Elizabeth A; Mavriplis, Dimitri J; Venkatakrishnan, Venkat
2014-08-13
As global air travel expands rapidly to meet demand generated by economic growth, it is essential to continue to improve the efficiency of air transportation to reduce its carbon emissions and address concerns about climate change. Future transports must be 'cleaner' and designed to include technologies that will continue to lower engine emissions and reduce community noise. The use of computational fluid dynamics (CFD) will be critical to enable the design of these new concepts. In general, the ability to simulate aerodynamic and reactive flows using CFD has progressed rapidly during the past several decades and has fundamentally changed the aerospace design process. Advanced simulation capabilities not only enable reductions in ground-based and flight-testing requirements, but also provide added physical insight, and enable superior designs at reduced cost and risk. In spite of considerable success, reliable use of CFD has remained confined to a small region of the operating envelope due, in part, to the inability of current methods to reliably predict turbulent, separated flows. Fortunately, the advent of much more powerful computing platforms provides an opportunity to overcome a number of these challenges. This paper summarizes the findings and recommendations from a recent NASA-funded study that provides a vision for CFD in the year 2030, including an assessment of critical technology gaps and needed development, and identifies the key CFD technology advancements that will enable the design and development of much cleaner aircraft in the future. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
From 'Mung Ming' to 'Baby Gammy': a local history of assisted reproduction in Thailand.
Whittaker, Andrea
2016-06-01
This paper documents the rapidly changing history of IVF in Thailand since the birth of the first IVF conceived child there in 1987. The paper is based upon extensive Thai and English media material as well as interviews with leading reproductive specialists and is informed by long-term ethnographic research on IVF in Thailand. Assisted reproduction was quickly accepted in Thai society and associated with modernity and nationalist pride in Thai scientific progress. From its early beginnings in state-owned teaching hospitals, assisted reproduction rapidly expanded into the Thai private sector. Although Thai Medical Council guidelines were introduced in 1997, the loose regulatory regime saw the growth of an international trade in assisted reproductive technology services and medical facilitation companies brokering commercial surrogacies. From 2011, various controversies brought the industry into disrepute. These included: the trafficking of Vietnamese women as surrogates; non-medical sex selection and commercial ova donation and commercial surrogacy in breach of Thai Medical Council guidelines; the highly publicised case of a Japanese man commissioning 15 children with multiple surrogates; and the 'Baby Gammy' case involving the abandonment of a twin born with Down Syndrome. These cases exposed the exploitative downside of an assisted reproductive technology market that takes advantage of countries with little or no regulation in place and led Thai society to question the benefits of these technologies, their practitioners and the industry it has created. Since 2015, new legislation restricts clinical practices, limits eligibility for services and bans all commercial ova donation or surrogacy or its facilitation.
Ovum pick up and in vitro production in the bovine after use in several generations: a 2005 status.
van Wagtendonk-de Leeuw, A M
2006-03-15
The first In Vitro Produced (IVP) calf was born in 1981 and the non-surgical Ovum Pick Up (OPU) technique for the bovine was adapted from the human in 1987. Since then, considerable research has been aimed at improving both technologies in the bovine. Both OPU and IVP can now be seen as mature technologies. It can be estimated that more than 200,000 IVP calves have been born world wide to date, and when the two technologies are combined they are capable of producing over 50 calves per donor cow per year, albeit with a large variation between donors. Not many new breakthroughs are expected for OPU. For IVP however, automation and miniaturization as well as a greater understanding of the embryo through the application of gene based technologies such as micro-arrays, may provide an in vitro environment that is more in vivo-like than traditional micro drop/well systems. This improved environment should result in higher embryo developmental rates as well as improved quality and welfare of subsequent offspring. The application of OPU/IVP has progressed from treating infertile high genetic multiple ovulation and embryo transfer (MOET) cows in commercial situations to enhancing breeding scheme designs. With the bovine genome being rapidly sequenced and bovine genes for traits of economic interest becoming available in the coming years, OPU/IVP will prove invaluable in rapidly multiplying rare genes or Quantitative Trait Loci (QTL) of high value. In due course, it is anticipated that Marker Assisted Selection or Gene Assisted Selection (MAS/GAS) schemes will be more widely implemented. In addition, OPU, and particularly IVP, provide the basis for more advanced technologies such as cloning and transgenics. This paper is dedicated to celebrate and recognize the significant contributions made by Theo Kruip (1939-2003) to the wide area of bovine OPU and IVP.
NASA Astrophysics Data System (ADS)
Owen, S. E.; Simons, M.; Hua, H.; Yun, S. H.; Agram, P. S.; Milillo, P.; Sacco, G. F.; Webb, F.; Rosen, P. A.; Lundgren, P.; Milillo, G.; Manipon, G. J. M.; Moore, A. W.; Liu, Z.; Polet, J.; Cruz, J.
2014-12-01
ARIA is a joint JPL/Caltech project to automate synthetic aperture radar (SAR) and GPS imaging capabilities for scientific understanding, hazard response, and societal benefit. We have built a prototype SAR and GPS data system that forms the foundation for hazard monitoring and response capability, as well as providing imaging capabilities important for science studies. Together, InSAR and GPS have the ability to capture surface deformation in high spatial and temporal resolution. For earthquakes, this deformation provides information that is complementary to seismic data on location, geometry and magnitude of earthquakes. Accurate location information is critical for understanding the regions affected by damaging shaking. Regular surface deformation measurements from SAR and GPS are useful for monitoring changes related to many processes that are important for hazard and resource management such as volcanic deformation, groundwater withdrawal, and landsliding. Observations of SAR coherence change have a demonstrated use for damage assessment for hazards such as earthquakes, tsunamis, hurricanes, and volcanic eruptions. These damage assessment maps can be made from imagery taken day or night and are not affected by clouds, making them valuable complements to optical imagery. The coherence change caused by the damage from hazards (building collapse, flooding, ash fall) is also detectable with intelligent algorithms, allowing for rapid generation of damage assessment maps over large areas at fine resolution, down to the spatial scale of single family homes. We will present the progress and results we have made on automating the analysis of SAR data for hazard monitoring and response using data from the Italian Space Agency's (ASI) COSMO-SkyMed constellation of X-band SAR satellites. Since the beginning of our project with ASI, our team has imaged deformation and coherence change caused by many natural hazard events around the world. We will present progress on our data system technology that enables rapid and reliable production of imagery. Lastly, we participated in the March 2014 FEMA exercise based on a repeat of the 1964 M9.2 Alaska earthquake, providing simulated data products for use in this hazards response exercise. We will present lessons learned from this and other simulation exercises.
Rapidly progressive idiopathic lenticular astigmatism.
Tint, Naing L; Jayaswal, Rakesh; Masood, Imran; Maharajan, V Senthil
2007-02-01
A myopic 43-year-old woman with early nuclear sclerotic cataract developed more than 11.0 diopters (D) of astigmatism over a 6-month period. This was found to be lenticular in origin. Phacoemulsification with intraocular lens implantation was performed, resulting in residual astigmatism of 0.75 D. To our knowledge, this is the first case of rapidly progressive lenticular astigmatism in an otherwise healthy eye with early nuclear sclerotic cataract.
Proteomic Analysis of Cerebrospinal Fluid in a Fulminant Case of Multiple Sclerosis
Füvesi, Judit; Hanrieder, Jörg; Bencsik, Krisztina; Rajda, Cecilia; Kovács, S. Krisztián; Kaizer, László; Beniczky, Sándor; Vécsei, László; Bergquist, Jonas
2012-01-01
Multiple Sclerosis (MS) is a chronic disease, but in rare fulminant cases rapid progression may lead to death shortly after diagnosis. Currently there is no diagnostic test to predict disease course. The aim of this study was to identify potential biomarkers/proteins related to rapid progression. We present the case history of a 15-year-old male MS patient. Cerebrospinal fluid (CSF) was taken at diagnosis and at the time of rapid progression leading to the patient’s death. Using isobaric tag labeling and nanoflow liquid chromatography in conjunction with matrix assisted laser desorption/ionization time of flight tandem mass spectrometry we quantitatively analyzed the protein content of two CSF samples from the patient with fulminant MS as well as one relapsing-remitting (RR) MS patient and one control headache patient, whose CSF analysis was normal. Seventy-eight proteins were identified and seven proteins were found to be more abundant in both fulminant MS samples but not in the RR MS sample compared to the control. These proteins are involved in the immune response, blood coagulation, cell proliferation and cell adhesion. In conclusion, in this pilot study we were able to show differences in the CSF proteome of a rapidly progressing MS patient compared to a more typical clinical form of MS and a control subject. PMID:22837721
Photovoltaics program plan, FY 1991 - 1995
NASA Astrophysics Data System (ADS)
1991-10-01
This program plan describes the goals and philosophy of DOE National Photovoltaics Program and its major research and development activities for fiscal years (FY) 1991 through 1995. The plan represents a consensus among researchers and manufacturers, as well as current and potential users of photovoltaics (PV). It defines the activities that we believe are necessary to continue the rapid progress toward acceptance of photovoltaics as a serious candidate for cost-competitive electric power generation by the utility, transportation, buildings, and industrial sectors. A successful National Photovoltaics Program will help achieve many of our national priorities. The mission of the National Photovoltaics Program is to help US industry to develop photovoltaic technology for large-scale generation of economically competitive electric power in the United States, making PV a significant part of our national energy mix. To fully achieve this, we must continue to work toward the long-term goals established in our previous program plan: reducing the price of delivered electricity to 5 to 6 cents per kilowatt-hour (kWh), increasing lifetimes to 30 years, and increasing module efficiencies to 15 percent for flat-plate and 25 percent for concentrator technologies. If progress continues at its current pace, we expect that the PV industry will have installed at least 1000 megawatts (MW) of capacity in the United States and 500 MW internationally by the year 2000.
Progress in Genome Editing Technology and Its Application in Plants
Zhang, Kai; Raboanatahiry, Nadia; Zhu, Bin; Li, Maoteng
2017-01-01
Genome editing technology (GET) is a versatile approach that has progressed rapidly as a mechanism to alter the genotype and phenotype of organisms. However, conventional genome modification using GET cannot satisfy current demand for high-efficiency and site-directed mutagenesis, retrofitting of artificial nucleases has developed into a new avenue within this field. Based on mechanisms to recognize target genes, newly-developed GETs can generally be subdivided into three cleavage systems, protein-dependent DNA cleavage systems (i.e., zinc-finger nucleases, ZFN, and transcription activator-like effector nucleases, TALEN), RNA-dependent DNA cleavage systems (i.e., clustered regularly interspaced short palindromic repeats-CRISPR associated proteins, CRISPR-Cas9, CRISPR-Cpf1, and CRISPR-C2c1), and RNA-dependent RNA cleavage systems (i.e., RNA interference, RNAi, and CRISPR-C2c2). All these techniques can lead to double-stranded (DSB) or single-stranded breaks (SSB), and result in either random mutations via non-homologous end-joining (NHEJ) or targeted mutation via homologous recombination (HR). Thus, site-directed mutagenesis can be induced via targeted gene knock-out, knock-in, or replacement to modify specific characteristics including morphology-modification, resistance-enhancement, and physiological mechanism-improvement along with plant growth and development. In this paper, an non-comprehensive review on the development of different GETs as applied to plants is presented. PMID:28261237
Water footprint characteristic of less developed water-rich regions: Case of Yunnan, China.
Qian, Yiying; Dong, Huijuan; Geng, Yong; Zhong, Shaozhuo; Tian, Xu; Yu, Yanhong; Chen, Yihui; Moss, Dana Avery
2018-03-30
Rapid industrialization and urbanization pose pressure on water resources in China. Virtual water trade proves to be an increasingly useful tool in water stress alleviation for water-scarce regions, while bringing opportunities and challenges for less developed water-rich regions. In this study, Yunnan, a typical province in southwest China, was selected as the case study area to explore its potential in socio-economic development in the context of water sustainability. Both input-output analysis and structural decomposition analysis on Yunnan's water footprint for the period of 2002-2012 were performed at not only an aggregated level but also a sectoral level. Results show that although the virtual water content of all economic sectors decreased due to technological progress, Yunnan's total water footprint still increased as a result of economic scale expansion. From the sectoral perspective, sectors with large water footprints include construction sector, agriculture sector, food manufacturing & processing sector, and service sector, while metal products sector and food manufacturing & processing sector were the major virtual water exporters, and textile & clothing sector and construction sector were the major importers. Based on local conditions, policy suggestions were proposed, including economic structure and efficiency optimization, technology promotion and appropriate virtual water trade scheme. This study provides valuable insights for regions facing "resource curse" by exploring potential socio-economic progress while ensuring water security. Copyright © 2018 Elsevier Ltd. All rights reserved.
[Direct to consumer genetic testing: is it the moment?].
Lamoril, Jérôme; Bogard, Marc
2016-01-01
Since the development of new human genome sequencing technologies at the beginning of the 2000, commercial companies have developped direct to consumer genomic services, which means without medical prescription. From 2007 to 2013, many companies have offered services assesing associated risk with human public health in the world especially in the United States. This kind of company is forbidden in France. From 2009 to 2013, in United States, under the pressure of national or state health administrations, these companies have been progressively forbidden. However, in certain parts of the world, companies are still offering such services. The latter raise many different questions such as ethical, juridical, medical, scientific, educative, professional one. Many studies and debates have demonstrated their limit and the lack of usefulness and advantage in the field of human health for the time being. The commercialization of this type of services has arrived all too soon et is not yet ripe. In our time of globalization, with the lack of international rules controlling direct access to genetic services in the field of human health, there is an urgent need to regulate. International administrations and politicians must act fast. Inevitably, under the pressure of lobbies and citizens, companies (multinational or not) will develop especially as 1) new sequencing technologies evolve rapidly, 2) are cheaper from year to year, 3) scientific and medical knowledges are progressing quickly, 4) services are spreading faster through the web and other networks.
Hallmarks of cancer: The CRISPR generation.
Moses, Colette; Garcia-Bloj, Benjamin; Harvey, Alan R; Blancafort, Pilar
2018-04-01
The hallmarks of cancer were proposed as a logical framework to guide research efforts that aim to understand the molecular mechanisms and derive treatments for this highly complex disease. Recent technological advances, including comprehensive sequencing of different cancer subtypes, have illuminated how genetic and epigenetic alterations are associated with specific hallmarks of cancer. However, as these associations are purely descriptive, one particularly exciting development is the emergence of genome editing technologies, which enable rapid generation of precise genetic and epigenetic modifications to assess the consequences of these perturbations on the cancer phenotype. The most recently developed of these tools, the system of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), consists of an RNA-guided endonuclease that can be repurposed to edit both genome and epigenome with high specificity, and facilitates the functional interrogation of multiple loci in parallel. This system has the potential to dramatically accelerate progress in cancer research, whether by modelling the genesis and progression of cancer in vitro and in vivo, screening for novel therapeutic targets, conducting functional genomics/epigenomics, or generating targeted cancer therapies. Here, we discuss CRISPR research on each of the ten hallmarks of cancer, outline potential barriers for its clinical implementation and speculate on the advances it may allow in cancer research in the near future. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Laser-powered dielectric-structures for the production of high-brightness electron and x-ray beams
NASA Astrophysics Data System (ADS)
Travish, Gil; Yoder, Rodney B.
2011-05-01
Laser powered accelerators have been under intensive study for the past decade due to their promise of high gradients and leveraging of rapid technological progress in photonics. Of the various acceleration schemes under examination, those based on dielectric structures may enable the production of relativistic electron beams in breadbox sized systems. When combined with undulators having optical-wavelength periods, these systems could produce high brilliance x-rays which find application in, for instance, medical and industrial imaging. These beams also may open the way for table-top atto-second sciences. Development and testing of these dielectric structures faces a number of challenges including complex beam dynamics, new demands on lasers and optical coupling, beam injection schemes, and fabrication. We describe one approach being pursued at UCLA-the Micro Accelerator Platform (MAP). A structure similar to the MAP has also been designed which produces periodic deflections and acts as an undulator for radiation production, and the prospects for this device will be considered. The lessons learned from the multi-year effort to realize these devices will be presented. Challenges remain with acceleration of sub-relativistic beams, focusing, beam phase stability and extension of these devices to higher beam energies. Our progress in addressing these hurdles will be summarized. Finally, the demands on laser technology and optical coupling will be detailed.
Scientific and Technological Progress and Job Qualification.
ERIC Educational Resources Information Center
Ivanov, N. P.
Clarifying the influences determining how and to what extent highly qualified personnel are employed, this study discusses those sorts of economic and technological advances affecting employment potentials. Two main trends in scientific and technological progress--computerized industries and the high science-content of production--have so…
FY2013 Progress Report for Fuel & Lubricant Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2014-02-01
Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.
FY2014 Fuel & Lubricant Technologies Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stork, Kevin
2016-02-01
Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.
The Role of the Strutjet Engine in New Global and Space Markets
NASA Technical Reports Server (NTRS)
Siebenhaar, A.; Bulman, M. J.; Bonnar, D. K.
1998-01-01
The Strutjet, discussed in previous IAF papers, was originally introduced as an enabling propulsion concept for single stage to orbit applications. Recent design considerations indicate that this systems also provides benefits supportive of other commercial non-space applications. This paper describes the technical progress of the Strutjet since 1997 together with a rationale why Rocket Based Combined Cycle Engines in general, and the Strutjet in particular, lend themselves uniquely to systems having the ability to expand current space and open new global 'rapid delivery' markets. During this decade, Strutjet technology has been evaluated in over 1000 tests. Its design maturity has been continuously improved and desired features, like simple variable geometry and low drag flowpath resulting in high performance, have been verified. In addition, data is now available which allows the designer, who is challenged to maximize system operability and economic feasibility, to choose between hydrogen or hydrocarbon fuels for a variety of application. The ability exists now to apply this propulsion system to various vehicles with a multitude of missions. In this paper, storable hydrocarbon and gaseous hydrogen Strutjet RBCC test data as accomplished to date and as planned for the future is presented, and the degree of required technology maturity achieved so far is assessed. Two vehicles, using cryogenic propane fuel Strutjet engines, and specifically designed for rapid point-to-point cargo delivery between Pacific rim locations are introduced, discussed, and compared.
Jain, Manu; Rajadhyaksha, Milind; Nehal, Kishwer
2017-01-01
Abstract. Confocal mosaicking microscopy (CMM) enables rapid imaging of large areas of fresh tissue ex vivo without the processing that is necessary for conventional histology. When performed in fluorescence mode using acridine orange (nuclear specific dye), it enhances nuclei-to-dermis contrast that enables detection of all types of basal cell carcinomas (BCCs), including micronodular and thin strands of infiltrative types. So far, this technique has been mostly validated in research settings for the detection of residual BCC tumor margins with high sensitivity of 89% to 96% and specificity of 99% to 89%. Recently, CMM has advanced to implementation and testing in clinical settings by “early adopter” Mohs surgeons, as an adjunct to frozen section during Mohs surgery. We summarize the development of CMM guided imaging of ex vivo skin tissues from bench to bedside. We also present its current state of application in routine clinical workflow not only for the assessment of residual BCC margins in the Mohs surgical setting but also for some melanocytic lesions and other skin conditions in clinical dermatology settings. Last, we also discuss the potential limitations of this technology as well as future developments. As this technology advances further, it may serve as an adjunct to standard histology and enable rapid surgical pathology of skin cancers at the bedside. PMID:28199474
The Role of the Strutjet Engine in New Global and Space Markets
NASA Technical Reports Server (NTRS)
Siebenhaar, A.; Bonar, D.; Sarmont, E.
1998-01-01
The Strutjet, discussed in previous IAF papers, was originally introduced as an enabling propulsion concept for single stage to orbit applications. Recent design considerations indicate that this systems also provides benefits supportive of other commercial non-space applications. This paper describes the technical progress of the Strutjet since 1997 together with a rationale why Rocket Based Combined Cycle Engines in general, and the Strutjet in particular, lend themselves uniquely to systems having the ability to expand current space and open new global "rapid delivery" markets. During this decade, Strutjet technology has been evaluated in over 1000 tests. Its design maturity has been continuously improved and desired features, like simple variable geometry and low drag flowpath resulting in high performance, are verified. In addition, data is now available which allows the designer, who is challenged to maximize system operability and economic feasibility, to choose between hydrogen or hydrocarbon fuels for these application. The ability exists now to apply this propulsion system to various vehicles with a multitude of missions. In this paper, the previously presented earth-to-orbit hydrogen powered vehicle is up3ated and another vehicle, specifically designed for rapid point-to-point delivery, is introduced and discussed. High payoff propulsion technologies required for these vehicles are identified and laid out in a roadmap spanning over the next decade.
NASA Astrophysics Data System (ADS)
Hornborg, Alf
2017-02-01
For several centuries, the dominant worldview in industrial societies has held that various problems -such as those recently identified as relating to sustainability- can be solved through technological progress. Technological progress has been conceived as the fruits of engineering science, new knowledge, and innovation. While knowledge of the principles of physics is certainly a necessary condition for technological development, it is not a sufficient condition. Technology is not only a product of engineering, but, ultimately, also of asymmetric transfers of biophysical resources. In other words, the feasibility of technological progress is contingent on world market prices. The history of technology has been written from the perspective of advancing ingenuity, rather than that of unequal global exchange. The implicit world view underlying dominant historiography and economic science ignores the deepening global inequalities which are prerequisite to what some sectors of world society can celebrate as technological progress, including visions of replacing fossil fuels with biofuels and other renewable energy sources. This observation should prompt us to conceptualize technological progress as an inherently unequal capacity to locally save time and space at the expense of human time and natural space lost elsewhere. It implies that the physical agency of technology ultimately rests on prices, i.e. subjective human conceptions about the value of market commodities, and thus finally on the magical artifact we know as money. The purpose of this article is to show how current deliberations on biofuels illustrate the insufficiencies of mainstream understandings of the phenomenon of technology, and to indicate why an adequate understanding of technology must be interdisciplinary, combining insights on both Nature and Society.
Teamwork Reasoning and Multi-Satellite Missions
NASA Technical Reports Server (NTRS)
Marsella, Stacy C.; Plaunt, Christian (Technical Monitor)
2002-01-01
NASA is rapidly moving towards the use of spatially distributed multiple satellites operating in near Earth orbit and Deep Space. Effective operation of such multi-satellite constellations raises many key research issues. In particular, the satellites will be required to cooperate with each other as a team that must achieve common objectives with a high degree of autonomy from ground based operations. The multi-agent research community has made considerable progress in investigating the challenges of realizing such teamwork. In this report, we discuss some of the teamwork issues that will be faced by multi-satellite operations. The basis of the discussion is a particular proposed mission, the Magnetospheric MultiScale mission to explore Earth's magnetosphere. We describe this mission and then consider how multi-agent technologies might be applied in the design and operation of these missions. We consider the potential benefits of these technologies as well as the research challenges that will be raised in applying them to NASA multi-satellite missions. We conclude with some recommendations for future work.
The Building Blocks of Materials: Gathering Knowledge at the Molecular Level
NASA Technical Reports Server (NTRS)
2003-01-01
Two start-up positions were created within SD46 to pursue developments in the rapidly expanding areas of biomineralization and nano-technology. As envisioned by Dr. Sandor Lehoczy, the new laboratories to be developed must have the capacity to investigate not only processes associated with the self-assembly of molecules but also the examination of self-assembled structures. For these purposes, laboratories capable of performing the intended function, particularly light scattering spectroscopy and atomic force microscopy were created. What follows then are recent advances arising from the development of these new laboratories. With the implementation of the Atomic Force Microscopy Facility, examples of investigations that determine a correlation between the molecular structure of materials and their macroscopic physical properties are provided. In addition, examples of investigations with particular emphasis on the physical properties of protein crystals, at the molecular level, and subsequent macroscopic characteristics are as provided. Finally, progress in fabrication of technology at the nano-scale levels at the developmental stage is also presented.
Nanotechnology applications in hematological malignancies (Review).
Samir, Ahmed; Elgamal, Basma M; Gabr, Hala; Sabaawy, Hatem E
2015-09-01
A major limitation to current cancer therapies is the development of therapy-related side-effects and dose limiting complications. Moreover, a better understanding of the biology of cancer cells and the mechanisms of resistance to therapy is rapidly developing. The translation of advanced knowledge and discoveries achieved at the molecular level must be supported by advanced diagnostic, therapeutic and delivery technologies to translate these discoveries into useful tools that are essential in achieving progress in the war against cancer. Nanotechnology can play an essential role in this aspect providing a transforming technology that can translate the basic and clinical findings into novel diagnostic, therapeutic and preventive tools useful in different types of cancer. Hematological malignancies represent a specific class of cancer, which attracts special attention in the applications of nanotechnology for cancer diagnosis and treatment. The aim of the present review is to elucidate the emerging applications of nanotechnology in cancer management and describe the potentials of nanotechnology in changing the key fundamental aspects of hematological malignancy diagnosis, treatment and follow-up.
Biotechnology Challenges to In Vitro Maturation of Hepatic Stem Cells.
Chen, Chen; Soto-Gutierrez, Alejandro; Baptista, Pedro M; Spee, Bart
2018-04-01
The incidence of liver disease is increasing globally. The only curative therapy for severe end-stage liver disease, liver transplantation, is limited by the shortage of organ donors. In vitro models of liver physiology have been developed and new technologies and approaches are progressing rapidly. Stem cells might be used as a source of liver tissue for development of models, therapies, and tissue-engineering applications. However, we have been unable to generate and maintain stable and mature adult liver cells ex vivo. We review factors that promote hepatocyte differentiation and maturation, including growth factors, transcription factors, microRNAs, small molecules, and the microenvironment. We discuss how the hepatic circulation, microbiome, and nutrition affect liver function, and the criteria for considering cells derived from stem cells to be fully mature hepatocytes. We explain the challenges to cell transplantation and consider future technologies for use in hepatic stem cell maturation, including 3-dimensional biofabrication and genome modification. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Control of coherent information via on-chip photonic–phononic emitter–receivers
Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; ...
2015-03-05
We report that rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction,more » which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.« less
Cryopreservation of animal oocytes and embryos: Current progress and future prospects.
Mandawala, A A; Harvey, S C; Roy, T K; Fowler, K E
2016-10-15
Cryopreservation describes techniques that permit freezing and subsequent warming of biological samples without loss of viability. The application of cryopreservation in assisted reproductive technology encompasses the freezing of gametes, embryos, and primordial germ cells. Whilst some protocols still rely on slow-freezing techniques, most now use vitrification, or ultra-rapid freezing, for both oocytes and embryos due to an associated decreased risk of damage caused by the lack of ice crystal formation, unlike in slow-freezing techniques. Vitrification has demonstrated its use in many applications, not only following IVF procedures in human embryology clinics but also following in vitro production of embryos in agriculturally important, or endangered animal species, before embryo transfer. Here, we review the various cryopreservation and vitrification technologies that are used in both humans and other animals and discuss the most recent innovations in vitrification with a particular emphasis on their applicability to animal embryology. Copyright © 2016 Elsevier Inc. All rights reserved.
Nanotechnology applications in hematological malignancies (Review)
SAMIR, AHMED; ELGAMAL, BASMA M; GABR, HALA; SABAAWY, HATEM E
2015-01-01
A major limitation to current cancer therapies is the development of therapy-related side-effects and dose limiting complications. Moreover, a better understanding of the biology of cancer cells and the mechanisms of resistance to therapy is rapidly developing. The translation of advanced knowledge and discoveries achieved at the molecular level must be supported by advanced diagnostic, therapeutic and delivery technologies to translate these discoveries into useful tools that are essential in achieving progress in the war against cancer. Nanotechnology can play an essential role in this aspect providing a transforming technology that can translate the basic and clinical findings into novel diagnostic, therapeutic and preventive tools useful in different types of cancer. Hematological malignancies represent a specific class of cancer, which attracts special attention in the applications of nanotechnology for cancer diagnosis and treatment. The aim of the present review is to elucidate the emerging applications of nanotechnology in cancer management and describe the potentials of nanotechnology in changing the key fundamental aspects of hematological malignancy diagnosis, treatment and follow-up. PMID:26134389
Control of coherent information via on-chip photonic–phononic emitter–receivers
Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.
2015-01-01
Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes. PMID:25740405
Research on treatment of wastewater containing heavy metal by microbial fuel cell
NASA Astrophysics Data System (ADS)
Chen, Zixuan; Lu, Xun; Yin, Ruixia; Luo, Yunyi; Mai, Hanjian; Zhang, Nan; Xiong, Jingfang; Zhang, Hongguo; Tang, Jinfeng; Luo, Dinggui
2018-02-01
With rapid development of social economy, serious problem has been caused by wastewater containing heavy metals, which was difficult to be treated by many kinds of traditional treatment methods, such as complex processes, high cost or easy to cause secondary pollution. As a novel biological treatment technology, microbial fuel cells (MFC) can generate electric energy while dealing with wastewater, which was proposed and extensively studied. This paper introduced the working principle of MFC, the classification of cathode, and the research progress on the treatment of wastewater containing Cr(VI), Cu(II), Ag(I), Mn(II) and Cd(II) by MFC. The study found that different cathode, different heavy metals anddifferent hybrid systems would affect the performance of the system and removal effect for heavy metal in MFC. MFC was a highly potential pollution control technology. Until now, the research was still in the laboratory stage. Its industrial application for recovery of heavy metal ion, improving the energy recovery rate and improvement or innovation of system were worthy of further research.
Towards non- and minimally instrumented, microfluidics-based diagnostic devices†
Weigl, Bernhard; Domingo, Gonzalo; LaBarre, Paul; Gerlach, Jay
2009-01-01
In many health care settings, it is uneconomical, impractical, or unaffordable to maintain and access a fully equipped diagnostics laboratory. Examples include home health care, developing-country health care, and emergency situations in which first responders are dealing with pandemics or biowarfare agent release. In those settings, fully disposable diagnostic devices that require no instrument support, reagent, or significant training are well suited. Although the only such technology to have found widespread adoption so far is the immunochromatographic rapid assay strip test, microfluidics holds promise to expand the range of assay technologies that can be performed in formats similar to that of a strip test. In this paper, we review progress toward development of disposable, low-cost, easy-to-use microfluidics-based diagnostics that require no instrument at all. We also present examples of microfluidic functional elements—including mixers, separators, and detectors—as well as complete microfluidic devices that function entirely without any moving parts and external power sources. PMID:19023463
Biosensing with Paper-Based Miniaturized Printed Electrodes-A Modern Trend.
Silveira, Célia M; Monteiro, Tiago; Almeida, Maria Gabriela
2016-09-28
From the bench-mark work on microfluidics from the Whitesides's group in 2007, paper technology has experienced significant growth, particularly regarding applications in biomedical research and clinical diagnostics. Besides the structural properties supporting microfluidics, other advantageous features of paper materials, including their versatility, disposability and low cost, show off the great potential for the development of advanced and eco-friendly analytical tools. Consequently, paper was quickly employed in the field of electrochemical sensors, being an ideal material for producing custom, tailored and miniaturized devices. Stencil-, inkjet-, or screen-printing are the preferential techniques for electrode manufacturing. Not surprisingly, we witnessed a rapid increase in the number of publications on paper based screen-printed sensors at the turn of the past decade. Among the sensing strategies, various biosensors, coupling electrochemical detectors with biomolecules, have been proposed. This work provides a critical review and a discussion on the future progress of paper technology in the context of miniaturized printed electrochemical biosensors.
Biosensing with Paper-Based Miniaturized Printed Electrodes–A Modern Trend
Silveira, Célia M.; Monteiro, Tiago; Almeida, Maria Gabriela
2016-01-01
From the bench-mark work on microfluidics from the Whitesides’s group in 2007, paper technology has experienced significant growth, particularly regarding applications in biomedical research and clinical diagnostics. Besides the structural properties supporting microfluidics, other advantageous features of paper materials, including their versatility, disposability and low cost, show off the great potential for the development of advanced and eco-friendly analytical tools. Consequently, paper was quickly employed in the field of electrochemical sensors, being an ideal material for producing custom, tailored and miniaturized devices. Stencil-, inkjet-, or screen-printing are the preferential techniques for electrode manufacturing. Not surprisingly, we witnessed a rapid increase in the number of publications on paper based screen-printed sensors at the turn of the past decade. Among the sensing strategies, various biosensors, coupling electrochemical detectors with biomolecules, have been proposed. This work provides a critical review and a discussion on the future progress of paper technology in the context of miniaturized printed electrochemical biosensors. PMID:27690119
The future of quantum dots in drug discovery.
Lin, Guimiao; Yin, Feng; Yong, Ken-Tye
2014-09-01
The rapid development of drug discovery today is inseparable from the interaction of advanced particle technologies and new drug synthesis protocols. Quantum dots (QDs) are regarded as a unique class of fluorescent labels, with unique optical properties such as high brightness and long-term colloidal and optical stability; these are suitable for optical imaging, drug delivery and optical tracking, fluorescence immunoassay and other medicinal applications. More importantly, QD possesses a rich surface chemistry property that is useful for incorporating various drug molecules, targeting ligands, and additional contrast agents (e.g., MRI, PET, etc.) onto the nanoparticle surface for achieving targeted and traceable drug delivery therapy at both cellular and systemic levels. In recent times, the advancement of QD technology has promoted the use of functionalized nanocrystals for in vivo applications. Such research is paving the way for drug discovery using various bioconjugated QD formulations. In this editorial, the authors highlight the current research progress and future applications of QDs in drug discovery.
Endovascular Treatment of Various Aortic Pathologies: Review of the Latest Data and Technologies.
Maeda, Koji; Ohki, Takao; Kanaoka, Yuji
2018-06-01
The technologies and innovations applicable to endovascular treatment for complex aortic pathologies have progressed rapidly over the last two decades. Although the initial outcomes of an endovascular aortic repair have been excellent, as long-term data became available, complications including endoleaks, endograft migration, and endograft infection have become apparent and are of concern. Previously, the indication for endovascular therapy was restricted to descending thoracic aortic aneurysms and abdominal aortic aneurysms. However, its indication has expanded along with the improvement of techniques and devices, and currently, it has become possible to treat pararenal aortic aneurysms and Crawford type 4 thoracoabdominal aortic aneurysm (TAAA) using the off-the-shelf devices. Additionally, custom-made devices allow for the treatment of arch or more extensive TAAAs. Endovascular treatment is applied not only to aneurysms but also to acute/chronic dissections. However, long-term outcomes are still unclear. This article provides an overview of available devices and the results of endovascular treatment for various aortic pathologies.
Panda, Sandeep; Akcil, Ata; Pradhan, Nilotpala; Deveci, Haci
2015-11-01
Chalcopyrite is the primary copper mineral used for production of copper metal. Today, as a result of rapid industrialization, there has been enormous demand to profitably process the low grade chalcopyrite and "dirty" concentrates through bioleaching. In the current scenario, heap bioleaching is the most advanced and preferred eco-friendly technology for processing of low grade, uneconomic/difficult-to-enrich ores for copper extraction. This paper reviews the current status of chalcopyrite bioleaching. Advanced information with the attempts made for understanding the diversity of bioleaching microorganisms; role of OMICs based research for future applications to industrial sectors and chemical/microbial aspects of chalcopyrite bioleaching is discussed. Additionally, the current progress made to overcome the problems of passivation as seen in chalcopyrite bioleaching systems have been conversed. Furthermore, advances in the designing of heap bioleaching plant along with microbial and environmental factors of importance have been reviewed with conclusions into the future prospects of chalcopyrite bioleaching. Copyright © 2015 Elsevier Ltd. All rights reserved.
Defining Teachers' Technostress Levels: A Scale Development
ERIC Educational Resources Information Center
Çoklar, Ahmet Naci; Efilti, Erkan; Sahin, Levent
2017-01-01
With the integration of technology in recent years, use of technology has rapidly increased in educational system, and has become almost a must rather than an option. The use of technology in educational processes accompanies some adaptation issues due to the nature of technology (rapid development, cost, need for electricity, change of roles,…
Zhang, Zhong-yi; Li, Hong-lei; Lei, Zheng-jie
2006-12-01
Rapid expansion of supercritical solution (RESS), a new technology, has been developed in the recent years. Fundamental principle of RESS technology used to prepare fine pharmacal particles was summarized in this paper. A brief review of factors which influenced the process of RESS and application of RESS technology were introduced.
[Autopsy case of Lissauer's general paresis with rapidly progressive left hemiparesis].
Kato, Hiroko; Yoshida, Mari; Ando, Tetsuo; Sugiura, Makoto; Hashizume, Yoshio
2009-06-01
A 48-years-old man presented with slowly progressive bradykinesia, personality change and rapidly progressive left hemiparesis. On admission, he presented dementia, poor judgment, left hemiparesis. MRI revealed a widespread high intensity area in right hemisphere and MRA was almost normal. Serological tests of serum and CSF demonstrated high titers of antibodies to Treponema pallidum. He was treated for syphilis with daily penicillin injections without improvement. He died of sepsis eight months after admission. At autopsy, the brain weighed 1,100 g and the right cerebral hemisphere was atrophic, especially in frontal base, temporal, parietal, angular, and posterior regions covered by thickened, fibrotic leptomeninges. Microscopically, chronic meningoencephalitis was observed. Severe neuronal loss with gliosis was seen in the right cerebral cortices. Scattered rod-shaped microglia and inflammatory cell infiltration were visible in the cerebral parenchyma. The dorsal column of the spinal cord was not involved and meningovascular syphilis was unclear. The distribution of the encephalitic lesions was well correlated with the clinical and neuroradiological findings. This was a rare autopsy case presenting Lissauer's general paresis, clinically manifesting as rapidly progressive stroke-like episode.
Prospects and performance limitations for Cu-Zn-Sn-S-Se photovoltaic technology.
Mitzi, David B; Gunawan, Oki; Todorov, Teodor K; Barkhouse, D Aaron R
2013-08-13
While cadmium telluride and copper-indium-gallium-sulfide-selenide (CIGSSe) solar cells have either already surpassed (for CdTe) or reached (for CIGSSe) the 1 GW yr⁻¹ production level, highlighting the promise of these rapidly growing thin-film technologies, reliance on the heavy metal cadmium and scarce elements indium and tellurium has prompted concern about scalability towards the terawatt level. Despite recent advances in structurally related copper-zinc-tin-sulfide-selenide (CZTSSe) absorbers, in which indium from CIGSSe is replaced with more plentiful and lower cost zinc and tin, there is still a sizeable performance gap between the kesterite CZTSSe and the more mature CdTe and CIGSSe technologies. This review will discuss recent progress in the CZTSSe field, especially focusing on a direct comparison with analogous higher performing CIGSSe to probe the performance bottlenecks in Earth-abundant kesterite devices. Key limitations in the current generation of CZTSSe devices include a shortfall in open circuit voltage relative to the absorber band gap and secondarily a high series resistance, which contributes to a lower device fill factor. Understanding and addressing these performance issues should yield closer performance parity between CZTSSe and CdTe/CIGSSe absorbers and hopefully facilitate a successful launch of commercialization for the kesterite-based technology.
Gene Editing and Crop Improvement Using CRISPR-Cas9 System
Arora, Leena; Narula, Alka
2017-01-01
Advancements in Genome editing technologies have revolutionized the fields of functional genomics and crop improvement. CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat)-Cas9 is a multipurpose technology for genetic engineering that relies on the complementarity of the guideRNA (gRNA) to a specific sequence and the Cas9 endonuclease activity. It has broadened the agricultural research area, bringing in new opportunities to develop novel plant varieties with deletion of detrimental traits or addition of significant characters. This RNA guided genome editing technology is turning out to be a groundbreaking innovation in distinct branches of plant biology. CRISPR technology is constantly advancing including options for various genetic manipulations like generating knockouts; making precise modifications, multiplex genome engineering, and activation and repression of target genes. The review highlights the progression throughout the CRISPR legacy. We have studied the rapid evolution of CRISPR/Cas9 tools with myriad functionalities, capabilities, and specialized applications. Among varied diligences, plant nutritional improvement, enhancement of plant disease resistance and production of drought tolerant plants are reviewed. The review also includes some information on traditional delivery methods of Cas9-gRNA complexes into plant cells and incorporates the advent of CRISPR ribonucleoproteins (RNPs) that came up as a solution to various limitations that prevailed with plasmid-based CRISPR system. PMID:29167680
Gene Editing and Crop Improvement Using CRISPR-Cas9 System.
Arora, Leena; Narula, Alka
2017-01-01
Advancements in Genome editing technologies have revolutionized the fields of functional genomics and crop improvement. CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat)-Cas9 is a multipurpose technology for genetic engineering that relies on the complementarity of the guideRNA (gRNA) to a specific sequence and the Cas9 endonuclease activity. It has broadened the agricultural research area, bringing in new opportunities to develop novel plant varieties with deletion of detrimental traits or addition of significant characters. This RNA guided genome editing technology is turning out to be a groundbreaking innovation in distinct branches of plant biology. CRISPR technology is constantly advancing including options for various genetic manipulations like generating knockouts; making precise modifications, multiplex genome engineering, and activation and repression of target genes. The review highlights the progression throughout the CRISPR legacy. We have studied the rapid evolution of CRISPR/Cas9 tools with myriad functionalities, capabilities, and specialized applications. Among varied diligences, plant nutritional improvement, enhancement of plant disease resistance and production of drought tolerant plants are reviewed. The review also includes some information on traditional delivery methods of Cas9-gRNA complexes into plant cells and incorporates the advent of CRISPR ribonucleoproteins (RNPs) that came up as a solution to various limitations that prevailed with plasmid-based CRISPR system.
Reilly, Matthew T.; Harris, R. Adron; Noronha, Antonio
2012-01-01
Over the last 50 years, researchers have made substantial progress in identifying genetic variations that underlie the complex phenotype of alcoholism. Not much is known, however, about how this genetic variation translates into altered biological function. Genetic animal models recapitulating specific characteristics of the human condition have helped elucidate gene function and the genetic basis of disease. In particular, major advances have come from the ability to manipulate genes through a variety of genetic technologies that provide an unprecedented capacity to determine gene function in the living organism and in alcohol-related behaviors. Even newer genetic-engineering technologies have given researchers the ability to control when and where a specific gene or mutation is activated or deleted, allowing investigators to narrow the role of the gene’s function to circumscribed neural pathways and across development. These technologies are important for all areas of neuroscience, and several public and private initiatives are making a new generation of genetic-engineering tools available to the scientific community at large. Finally, high-throughput “next-generation sequencing” technologies are set to rapidly increase knowledge of the genome, epigenome, and transcriptome, which, combined with genetically engineered mouse mutants, will enhance insight into biological function. All of these resources will provide deeper insight into the genetic basis of alcoholism. PMID:23134044
Reilly, Matthew T; Harris, R Adron; Noronha, Antonio
2012-01-01
Over the last 50 years, researchers have made substantial progress in identifying genetic variations that underlie the complex phenotype of alcoholism. Not much is known, however, about how this genetic variation translates into altered biological function. Genetic animal models recapitulating specific characteristics of the human condition have helped elucidate gene function and the genetic basis of disease. In particular, major advances have come from the ability to manipulate genes through a variety of genetic technologies that provide an unprecedented capacity to determine gene function in the living organism and in alcohol-related behaviors. Even newer genetic-engineering technologies have given researchers the ability to control when and where a specific gene or mutation is activated or deleted, allowing investigators to narrow the role of the gene's function to circumscribed neural pathways and across development. These technologies are important for all areas of neuroscience, and several public and private initiatives are making a new generation of genetic-engineering tools available to the scientific community at large. Finally, high-throughput "next-generation sequencing" technologies are set to rapidly increase knowledge of the genome, epigenome, and transcriptome, which, combined with genetically engineered mouse mutants, will enhance insight into biological function. All of these resources will provide deeper insight into the genetic basis of alcoholism.
Let a sewage plant running smart
NASA Astrophysics Data System (ADS)
Yang, Shan-Shan; Pang, Ji-Wei; Jin, Xiao-Man; Wu, Zhong-Yang; Yang, Xiao-Yin; Guo, Wan-Qian; Zhao, Zhi-Qing; Ren, Nan-Qi
2018-03-01
Out-dated technical equipment, occlusive information communication, inadequate sanitation, low management level and some irrational distribution structures in the existing sewage plants bring about lower sewage treatment efficiency and poorer water quality, thereby permanently harming human health and severely damaging the environment. With the rapid development of scientific-technological progress and the vigorous support of the entire international community, the existing sewage plants call for more and more intelligent operation and management in the future. This review for the first time proposes the novel concept of the “smart” sewage plant, and gives a through interpretation of its special functions and attributes. We envision that the future smart sewage plant will became an “ambient intelligence” in all aspects in the sewage plants.
The technology roadmap for plant/crop-based renewable resources 2020
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaren, J.
1999-02-22
The long-term well-being of the nation and maintenance of a sustainable leadership position in agriculture, forestry, and manufacturing, clearly depend on current and near-term support of multidisciplinary research for the development of a reliable renewable resource base. This document sets a roadmap and priorities for that research. America needs leadership that will continue to recognize, support, and move rapidly to meet the need to expand the use of sustainable renewable resources. This roadmap has highlighted potential ways for progress and has identified goals in specific components of the system. Achieving success with these goals will provide the opportunity to hitmore » the vision target of a fivefold increase in renewable resource use by 2020.« less
The Technology Roadmap for Plant/Crop-Based Renewable Resources 2020
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1999-02-01
The long-term well-being of the nation and maintenance of a sustainable leadership position in agriculture, forestry, and manufacturing, clearly depend on current and near-term support of multidisciplinary research for the development of a reliable renewable resource base. This document sets a roadmap and priorities for that research. America needs leadership that will continue to recognize, support, and move rapidly to meet the need to expand the use of sustainable renewable resources. This roadmap has highlighted potential ways for progress and has identified goals in specific components of the system. Achieving success with these goals will provide the opportunity to hitmore » the vision target of a fivefold increase in renewable resource use by 2020.« less
[Research progress of functional magnetic resonance imaging in mechanism studies of tinnitus].
Ji, B B; Li, M; Zhang, J N
2018-02-07
Tinnitus is a subjective symptom of phantom sound in the ear or brain without sound or electrical stimulation in the environment. The mechanism of tinnitus is complicated and mostly unclear. Recent studies suggested that the abnormal peripheral auditory input lead to neuroplasticity changes in central nervous system followed by tinnitus. More research concerned on the tinnitus central mechanism. A rapid development of functional magnetic resonance imaging (fMRI) technique made it more widely used in tinnitus central mechanism research. fMRI brought new findings but also presented some shortages in technology and cognition in tinnitus study. This article summarized the outcomes of fMRI research on tinnitus in recent years, exploring its existing problems and application prospects.
Direct assembling methodologies for high-throughput bioscreening
Rodríguez-Dévora, Jorge I.; Shi, Zhi-dong; Xu, Tao
2012-01-01
Over the last few decades, high-throughput (HT) bioscreening, a technique that allows rapid screening of biochemical compound libraries against biological targets, has been widely used in drug discovery, stem cell research, development of new biomaterials, and genomics research. To achieve these ambitions, scaffold-free (or direct) assembly of biological entities of interest has become critical. Appropriate assembling methodologies are required to build an efficient HT bioscreening platform. The development of contact and non-contact assembling systems as a practical solution has been driven by a variety of essential attributes of the bioscreening system, such as miniaturization, high throughput, and high precision. The present article reviews recent progress on these assembling technologies utilized for the construction of HT bioscreening platforms. PMID:22021162
Design process of a photonics network for military platforms
NASA Astrophysics Data System (ADS)
Nelson, George F.; Rao, Nagarajan M.; Krawczak, John A.; Stevens, Rick C.
1999-02-01
Technology development in photonics is rapidly progressing. The concept of a Unified Network will provide re- configurable network access to platform sensors, Vehicle Management Systems, Stores and avionics. The re-configurable taps into the network will accommodate present interface standards and provide scaleability for the insertion of future interfaces. Significant to this development is the design and test of the Optical Backplane Interconnect System funded by Naval Air Systems Command and developed by Lockheed Martin Tactical Defense Systems - Eagan. OBIS results in the merging of the electrical backplane and the optical backplane, with interconnect fabric and card edge connectors finally providing adequate electrical and optical card access. Presently OBIS will support 1.2 Gb/s per fiber over multiples of 12 fibers per ribbon cable.
Electroosmotic pumps and their applications in microfluidic systems
Wang, Xiayan; Cheng, Chang; Wang, Shili; Liu, Shaorong
2009-01-01
Electroosmotic pumping is receiving increasing attention in recent years owing to the rapid development in micro total analytical systems. Compared with other micropumps, electroosmotic pumps (EOPs) offer a number of advantages such as creation of constant pulse-free flows and elimination of moving parts. The flow rates and pumping pressures of EOPs matches well with micro analysis systems. The common materials and fabrication technologies make it readily integrateable with lab-on-a-chip devices. This paper reviews the recent progress on EOP fabrications and applications in order to promote the awareness of EOPs to researchers interested in using micro- and nano-fluidic devices. The pros and cons of EOPs are also discussed, which helps these researchers in designing and constructing their micro platforms. PMID:20126306
Construction of In-house Databases in a Corporation
NASA Astrophysics Data System (ADS)
Koga, Kunitoshi; Kijima, Seiichi
The rapid technological innovation and alternation of the economical society have increased the importance of obtaining the accurate information promptly in order to make a timely decision. Therefore, UBE Industries Ltd. has developed “UMATIS”, an information manegement system, since July in 1985, where not only the technical but also manegerial information is accumulated and one can obtain it quickly as occasion demands. In addition to the brief introduction of an outline and the progress of the system, this gives the detailed description of the contents of the registered items, the indexing method, the utilization of retrieval, the manegerial method and so on in the main technical information system. The personal relation information system and the inorgnanic material data base system are also explained briefly.
Quantum Sensing for High Energy Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Bibber, Karl; Boshier, Malcolm; Demarteau, Marcel
The Coordinating Panel for Advanced Detectors (CPAD) of the APS Division of Particles and Fields organized a first workshop on Quantum Sensing for High Energy Physics (HEP) in early December 2017 at Argonne National Laboratory. Participants from universities and national labs were drawn from the intersecting fields of Quantum Information Science (QIS), high energy physics, atomic, molecular and optical physics, condensed matter physics, nuclear physics and materials science. Quantum-enabled science and technology has seen rapid technical advances and growing national interest and investments over the last few years. The goal of the workshop was to bring the various communities togethermore » to investigate pathways to integrate the expertise of these two disciplines to accelerate the mutual advancement of scientific progress.« less
Autonomous driving in urban environments: approaches, lessons and challenges.
Campbell, Mark; Egerstedt, Magnus; How, Jonathan P; Murray, Richard M
2010-10-13
The development of autonomous vehicles for urban driving has seen rapid progress in the past 30 years. This paper provides a summary of the current state of the art in autonomous driving in urban environments, based primarily on the experiences of the authors in the 2007 DARPA Urban Challenge (DUC). The paper briefly summarizes the approaches that different teams used in the DUC, with the goal of describing some of the challenges that the teams faced in driving in urban environments. The paper also highlights the long-term research challenges that must be overcome in order to enable autonomous driving and points to opportunities for new technologies to be applied in improving vehicle safety, exploiting intelligent road infrastructure and enabling robotic vehicles operating in human environments.
Machine learning: Trends, perspectives, and prospects.
Jordan, M I; Mitchell, T M
2015-07-17
Machine learning addresses the question of how to build computers that improve automatically through experience. It is one of today's most rapidly growing technical fields, lying at the intersection of computer science and statistics, and at the core of artificial intelligence and data science. Recent progress in machine learning has been driven both by the development of new learning algorithms and theory and by the ongoing explosion in the availability of online data and low-cost computation. The adoption of data-intensive machine-learning methods can be found throughout science, technology and commerce, leading to more evidence-based decision-making across many walks of life, including health care, manufacturing, education, financial modeling, policing, and marketing. Copyright © 2015, American Association for the Advancement of Science.
Structural genomics: keeping up with expanding knowledge of the protein universe.
Grabowski, Marek; Joachimiak, Andrzej; Otwinowski, Zbyszek; Minor, Wladek
2007-06-01
Structural characterization of the protein universe is the main mission of Structural Genomics (SG) programs. However, progress in gene sequencing technology, set in motion in the 1990s, has resulted in rapid expansion of protein sequence space--a twelvefold increase in the past seven years. For the SG field, this creates new challenges and necessitates a re-assessment of its strategies. Nevertheless, despite the growth of sequence space, at present nearly half of the content of the Swiss-Prot database and over 40% of Pfam protein families can be structurally modeled based on structures determined so far, with SG projects making an increasingly significant contribution. The SG contribution of new Pfam structures nearly doubled from 27.2% in 2003 to 51.6% in 2006.
Potential of Progressive Construction Systems in Slovakia
NASA Astrophysics Data System (ADS)
Kozlovska, Maria; Spisakova, Marcela; Mackova, Daniela
2017-10-01
Construction industry is a sector with rapid development. Progressive technologies of construction and new construction materials also called modern methods of construction (MMC) are developed constantly. MMC represent the adoption of construction industrialisation and the use of prefabrication of components in building construction. One of these modern methods is also system Varianthaus, which is based on, insulated concrete forms principle and provides complete production plant for wall, ceiling and roof elements for a high thermal insulation house construction. Another progressive construction system is EcoB, which represents an insulated precast concrete panel based on combination of two layers, insulation and concrete, produced in a factory as a whole. Both modern methods of construction are not yet known and wide-spread in the Slovak construction market. The aim of this paper is focused on demonstration of MMC using potential in Slovakia. MMC potential is proved based on comparison of the selected parameters of construction process - construction costs and construction time. The subject of this study is family house modelled in three material variants - masonry construction (as a representative of traditional methods of construction), Varianthaus and EcoB (as the representatives of modern methods of construction). The results of this study provide the useful information in decision-making process for potential investors of construction.
A Review of Research Progress on Dissimilar Laser Weld-Brazing of Automotive Applications
NASA Astrophysics Data System (ADS)
Krishnaja, Devireddy; Cheepu, Muralimohan; Venkateswarlu, D.
2018-03-01
In recent years, a rapidly growing demand for laser brazing in the transportation industry for automotive parts joining to improve the productivity, quality of the joints and cost efficiency reasons. Due to this, laser brazing technology is extensively used in the major manufacturing companies such as Volkswagen group, General Motors Europe, BMW and Ford manufacturing groups as their openingbulk production solicitation on various parts of vehicles. Laser brazing is different from the welding processes and it will block upanopeningamongst two substrates by mixture of a filler wire on condition that by a concentrated laser beam or any other heat source. Among the all joining processes, laser brazing technique is an alternative and in effect method for welding of dissimilar metals which have large difference in their melting points. It is important to understand therelationsof these phenomena of the fillers of brazing with the substrate surfaces to obtain a high quality joints. The aim of this study is to address the contemporaryenquiriesand its progress on laser-brazing, its importance to the industrial applications and to bring more awareness to the manufacturers about the research results of this technique from various research groups to enhance the research progress and developing new things from this review report.
Three-dimensional printing: review of application in medicine and hepatic surgery.
Yao, Rui; Xu, Gang; Mao, Shuang-Shuang; Yang, Hua-Yu; Sang, Xin-Ting; Sun, Wei; Mao, Yi-Lei
2016-12-01
Three-dimensional (3D) printing (3DP) is a rapid prototyping technology that has gained increasing recognition in many different fields. Inherent accuracy and low-cost property enable applicability of 3DP in many areas, such as manufacturing, aerospace, medical, and industrial design. Recently, 3DP has gained considerable attention in the medical field. The image data can be quickly turned into physical objects by using 3DP technology. These objects are being used across a variety of surgical specialties. The shortage of cadaver specimens is a major problem in medical education. However, this concern has been solved with the emergence of 3DP model. Custom-made items can be produced by using 3DP technology. This innovation allows 3DP use in preoperative planning and surgical training. Learning is difficult among medical students because of the complex anatomical structures of the liver. Thus, 3D visualization is a useful tool in anatomy teaching and hepatic surgical training. However, conventional models do not capture haptic qualities. 3DP can produce highly accurate and complex physical models. Many types of human or animal differentiated cells can be printed successfully with the development of 3D bio-printing technology. This progress represents a valuable breakthrough that exhibits many potential uses, such as research on drug metabolism or liver disease mechanism. This technology can also be used to solve shortage of organs for transplant in the future.
Three-dimensional printing: review of application in medicine and hepatic surgery
Yao, Rui; Xu, Gang; Mao, Shuang-Shuang; Yang, Hua-Yu; Sang, Xin-Ting; Sun, Wei; Mao, Yi-Lei
2016-01-01
Three-dimensional (3D) printing (3DP) is a rapid prototyping technology that has gained increasing recognition in many different fields. Inherent accuracy and low-cost property enable applicability of 3DP in many areas, such as manufacturing, aerospace, medical, and industrial design. Recently, 3DP has gained considerable attention in the medical field. The image data can be quickly turned into physical objects by using 3DP technology. These objects are being used across a variety of surgical specialties. The shortage of cadaver specimens is a major problem in medical education. However, this concern has been solved with the emergence of 3DP model. Custom-made items can be produced by using 3DP technology. This innovation allows 3DP use in preoperative planning and surgical training. Learning is difficult among medical students because of the complex anatomical structures of the liver. Thus, 3D visualization is a useful tool in anatomy teaching and hepatic surgical training. However, conventional models do not capture haptic qualities. 3DP can produce highly accurate and complex physical models. Many types of human or animal differentiated cells can be printed successfully with the development of 3D bio-printing technology. This progress represents a valuable breakthrough that exhibits many potential uses, such as research on drug metabolism or liver disease mechanism. This technology can also be used to solve shortage of organs for transplant in the future. PMID:28154775
Beers, David R.; Zhao, Weihua; Wang, Jinghong; Zhang, Xiujun; Wen, Shixiang; Neal, Dan; Thonhoff, Jason R.; Alsuliman, Abdullah S.; Shpall, Elizabeth J.; Rezvani, Katy
2017-01-01
Neuroinflammation is a pathological hallmark of ALS in both transgenic rodent models and patients, and is characterized by proinflammatory T lymphocytes and activated macrophages/microglia. In ALS mouse models, decreased regulatory T lymphocytes (Tregs) exacerbate the neuroinflammatory process, leading to accelerated motoneuron death and shortened survival; passive transfer of Tregs suppresses the neuroinflammation and prolongs survival. Treg numbers and FOXP3 expression are also decreased in rapidly progressing ALS patients. A key question is whether the marked neuroinflammation in ALS can be attributed to the impaired suppressive function of ALS Tregs in addition to their decreased numbers. To address this question, T lymphocyte proliferation assays were performed. Compared with control Tregs, ALS Tregs were less effective in suppressing responder T lymphocyte proliferation. Although both slowly and rapidly progressing ALS patients had dysfunctional Tregs, the greater the clinically assessed disease burden or the more rapidly progressing the patient, the greater the Treg dysfunction. Epigenetically, the percentage methylation of the Treg-specific demethylated region was greater in ALS Tregs. After in vitro expansion, ALS Tregs regained suppressive abilities to the levels of control Tregs, suggesting that autologous passive transfer of expanded Tregs might offer a novel cellular therapy to slow disease progression. PMID:28289705
Predicting the Rate of Cognitive Decline in Alzheimer Disease: Data From the ICTUS Study.
Canevelli, Marco; Kelaiditi, Eirini; Del Campo, Natalia; Bruno, Giuseppe; Vellas, Bruno; Cesari, Matteo
2016-01-01
Different rates of cognitive progression have been observed among Alzheimer disease (AD) patients. The present study aimed at evaluating whether the rate of cognitive worsening in AD may be predicted by widely available and easy-to-assess factors. Mild to moderate AD patients were recruited in the ICTUS study. Multinomial logistic regression analysis was performed to measure the association between several sociodemographic and clinical variables and 3 different rates of cognitive decline defined by modifications (after 1 year of follow-up) of the Mini Mental State Examination (MMSE) score: (1) "slow" progression, as indicated by a decrease in the MMSE score ≤1 point; (2) "intermediate" progression, decrease in the MMSE score between 2 and 5 points; and (3) "rapid" progression, decrease in the MMSE score ≥6 points. A total of 1005 patients were considered for the present analyses. Overall, most of the study participants (52%) exhibited a slow cognitive course. Higher ADAS-Cog scores at baseline were significantly associated with both "intermediate" and "rapid" decline. Conversely, increasing age was negatively associated with "rapid" cognitive worsening. A slow progression of cognitive decline is common among AD patients. The influence of age and baseline cognitive impairment should always be carefully considered when designing AD trials and defining study populations.
Next Generation Sequencing and ALS: known genes, different phenotyphes.
Campopiano, Rosa; Ryskalin, Larisa; Giardina, Emiliano; Zampatti, Stefania; Busceti, Carla L; Biagioni, Francesca; Ferese, Rosangela; Storto, Marianna; Gambardella, Stefano; Fornai, Francesco
2017-12-01
Amyotrophic lateral sclerosis (ALS) is fatal neurodegenerative disease clinically characterized by upper and lower motor neuron dysfunction resulting in rapidly progressive paralysis and death from respiratory failure. Most cases appear to be sporadic, but 5-10 % of cases have a family history of the disease, and over the last decade, identification of mutations in about 20 genes predisposing to these disorders has provided the means to better understand their pathogenesis. Next Generation sequencing (NGS) is an advanced high-throughput DNA sequencing technology which have rapidly contributed to an acceleration in the discovery of genetic risk factors for both familial and sporadic neurological and neurodegenerative diseases. These strategies allowed to rapidly identify disease-associated variants and genetic risk factors for both familial (fALS) and sporadic ALS (sALS), strongly contributing to the knowledge of the genetic architecture of ALS. Moreover, as the number of ALS genes grows, many of the proteins they encode are in intracellular processes shared with other known diseases, suggesting an overlapping of clinical and phatological features between different diseases. To emphasize this concept, the review focuses on genes coding for Valosin-containing protein (VPC) and two Heterogeneous nuclear RNA-binding proteins (HNRNPA1 and hnRNPA2B1), recently idefied through NGS, where different mutations have been associated in both ALS and other neurological and neurodegenerative diseases.
Lawn, Stephen D; Mwaba, Peter; Bates, Matthew; Piatek, Amy; Alexander, Heather; Marais, Ben J; Cuevas, Luis E; McHugh, Timothy D; Zijenah, Lynn; Kapata, Nathan; Abubakar, Ibrahim; McNerney, Ruth; Hoelscher, Michael; Memish, Ziad A; Migliori, Giovanni Battista; Kim, Peter; Maeurer, Markus; Schito, Marco; Zumla, Alimuddin
2015-01-01
Rapid progress has been made in the development of new diagnostic assays for tuberculosis in recent years. New technologies have been developed and assessed, and are now being implemented. The Xpert MTB/RIF assay, which enables simultaneous detection of Mycobacterium tuberculosis (MTB) and rifampicin (RIF) resistance, was endorsed by WHO in December, 2010. This assay was specifically recommended for use as the initial diagnostic test for suspected drug-resistant or HIV-associated pulmonary tuberculosis. By June, 2012, two-thirds of countries with a high tuberculosis burden and half of countries with a high multidrug-resistant tuberculosis burden had incorporated the assay into their national tuberculosis programme guidelines. Although the development of the Xpert MTB/RIF assay is undoubtedly a landmark event, clinical and programmatic effects and cost-effectiveness remain to be defined. We review the rapidly growing body of scientific literature and discuss the advantages and challenges of using the Xpert MTB/RIF assay in areas where tuberculosis is endemic. We also review other prospects within the developmental pipeline. A rapid, accurate point-of-care diagnostic test that is affordable and can be readily implemented is urgently needed. Investment in the tuberculosis diagnostics pipeline should remain a major priority for funders and researchers. PMID:23531388
2010 Precision Strike Annual Review Held in Springfield, Virginia on April 20-21, 2010
2010-04-21
Reaction Technology Office Fogg (Acting) Director, Rapid Fielding Wyatt PD - Riley Program Oversight Dipetto Program Guidance And Assessment TBD Director...warfighters Joint Rapid Acquisition Cell Mr Thomas P Dee Complex Systems Dr Charles W Perkins Rapid Reaction Technology Office Mr Glenn A Fogg (Acting
Update of patient-specific maxillofacial implant.
Owusu, James A; Boahene, Kofi
2015-08-01
Patient-specific implant (PSI) is a personalized approach to reconstructive and esthetic surgery. This is particularly useful in maxillofacial surgery in which restoring the complex three-dimensional (3D) contour can be quite challenging. In certain situations, the best results can only be achieved with implants custom-made to fit a particular need. Significant progress has been made over the past decade in the design and manufacture of maxillofacial PSIs. Computer-aided design (CAD)/computer-aided manufacturing (CAM) technology is rapidly advancing and has provided new options for fabrication of PSIs with better precision. Maxillofacial PSIs can now be designed using preoperative imaging data as input into CAD software. The designed implant is then fabricated using a CAM technique such as 3D printing. This approach increases precision and decreases or completely eliminates the need for intraoperative modification of implants. The use of CAD/CAM-produced PSIs for maxillofacial reconstruction and augmentation can significantly improve contour outcomes and decrease operating time. CAD/CAM technology allows timely and precise fabrication of maxillofacial PSIs. This approach is gaining increasing popularity in maxillofacial reconstructive surgery. Continued advances in CAD technology and 3D printing are bound to improve the cost-effectiveness and decrease the production time of maxillofacial PSIs.
Analysis of single mammalian cells on-chip.
Sims, Christopher E; Allbritton, Nancy L
2007-04-01
A goal of modern biology is to understand the molecular mechanisms underlying cellular function. The ability to manipulate and analyze single cells is crucial for this task. The advent of microengineering is providing biologists with unprecedented opportunities for cell handling and investigation on a cell-by-cell basis. For this reason, lab-on-a-chip (LOC) technologies are emerging as the next revolution in tools for biological discovery. In the current discussion, we seek to summarize the state of the art for conventional technologies in use by biologists for the analysis of single, mammalian cells, and then compare LOC devices engineered for these same single-cell studies. While a review of the technical progress is included, a major goal is to present the view point of the practicing biologist and the advances that might increase adoption by these individuals. The LOC field is expanding rapidly, and we have focused on areas of broad interest to the biology community where the technology is sufficiently far advanced to contemplate near-term application in biological experimentation. Focus areas to be covered include flow cytometry, electrophoretic analysis of cell contents, fluorescent-indicator-based analyses, cells as small volume reactors, control of the cellular microenvironment, and single-cell PCR.
Genome engineering in ophthalmology: Application of CRISPR/Cas to the treatment of eye disease.
Hung, Sandy S C; McCaughey, Tristan; Swann, Olivia; Pébay, Alice; Hewitt, Alex W
2016-07-01
The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) and CRISPR-associated protein (Cas) system has enabled an accurate and efficient means to edit the human genome. Rapid advances in this technology could results in imminent clinical application, and with favourable anatomical and immunological profiles, ophthalmic disease will be at the forefront of such work. There have been a number of breakthroughs improving the specificity and efficacy of CRISPR/Cas-mediated genome editing. Similarly, better methods to identify off-target cleavage sites have also been developed. With the impending clinical utility of CRISPR/Cas technology, complex ethical issues related to the regulation and management of the precise applications of human gene editing must be considered. This review discusses the current progress and recent breakthroughs in CRISPR/Cas-based gene engineering, and outlines some of the technical issues that must be addressed before gene correction, be it in vivo or in vitro, is integrated into ophthalmic care. We outline a clinical pipeline for CRISPR-based treatments of inherited eye diseases and provide an overview of the important ethical implications of gene editing and how these may influence the future of this technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Food security: contributions from science to a new and greener revolution
Beddington, John
2010-01-01
There is an intrinsic link between the challenge we face to ensure food security through the twenty-first century and other global issues, most notably climate change, population growth and the need to sustainably manage the world's rapidly growing demand for energy and water. Our progress in reducing global poverty and achieving the Millennium Development Goals will be determined to a great extent by how coherently these long-term challenges are tackled. A key question is whether we can feed a future nine billion people equitably, healthily and sustainably. Science and technology can make a major contribution, by providing practical solutions. Securing this contribution requires that high priority be attached both to research and to facilitating the real world deployment of existing and emergent technologies. Put simply, we need a new, ‘greener revolution’. Important areas for focus include: crop improvement; smarter use of water and fertilizers; new pesticides and their effective management to avoid resistance problems; introduction of novel non-chemical approaches to crop protection; reduction of post-harvest losses; and more sustainable livestock and marine production. Techniques and technologies from many disciplines, ranging from biotechnology and engineering to newer fields such as nanotechnology, will be needed. PMID:20008386
Nath, K; Najafpour, M M; Voloshin, R A; Balaghi, S E; Tyystjärvi, E; Timilsina, R; Eaton-Rye, J J; Tomo, T; Nam, H G; Nishihara, H; Ramakrishna, S; Shen, J-R; Allakhverdiev, S I
2015-12-01
Global energy demand is increasing rapidly and due to intensive consumption of different forms of fuels, there are increasing concerns over the reduction in readily available conventional energy resources. Because of the deleterious atmospheric effects of fossil fuels and the uncertainties of future energy supplies, there is a surge of interest to find environmentally friendly alternative energy sources. Hydrogen (H2) has attracted worldwide attention as a secondary energy carrier, since it is the lightest carbon-neutral fuel rich in energy per unit mass and easy to store. Several methods and technologies have been developed for H2 production, but none of them are able to replace the traditional combustion fuel used in automobiles so far. Extensively modified and renovated methods and technologies are required to introduce H2 as an alternative efficient, clean, and cost-effective future fuel. Among several emerging renewable energy technologies, photobiological H2 production by oxygenic photosynthetic microbes such as green algae and cyanobacteria or by artificial photosynthesis has attracted significant interest. In this short review, we summarize the recent progress and challenges in H2-based energy production by means of biological and artificial photosynthesis routes.
Kusko, Mihaela; Craciunoiu, Florea; Amuzescu, Bogdan; Halitzchi, Ferdinand; Selescu, Tudor; Radoi, Antonio; Popescu, Marian; Simion, Monica; Bragaru, Adina; Ignat, Teodora
2012-01-01
Recent progress in patterned microelectrode manufacturing technology and microfluidics has opened the way to a large variety of cellular and molecular biosensor-based applications. In this extremely diverse and rapidly expanding landscape, silicon-based technologies occupy a special position, given their statute of mature, consolidated, and highly accessible areas of development. Within the present work we report microfabrication procedures and workflows for 3D patterned gold-plated microelectrode arrays (MEA) of different shapes (pyramidal, conical and high aspect ratio), and we provide a detailed characterization of their physical features during all the fabrication steps to have in the end a reliable technology. Moreover, the electrical performances of MEA silicon chips mounted on standardized connector boards via ultrasound wire-bonding have been tested using non-destructive electrochemical methods: linear sweep and cyclic voltammetry, impedance spectroscopy. Further, an experimental recording chamber package suitable for in vitro electrophysiology experiments has been realized using custom-design electronics for electrical stimulus delivery and local field potential recording, included in a complete electrophysiology setup, and the experimental structures have been tested on newborn rat hippocampal slices, yielding similar performance compared to commercially available MEA equipments. PMID:23208555
Gold Nanoparticle Based Platforms for Circulating Cancer Marker Detection
Huang, Xiaohua; O'Connor, Ryan; Kwizera, Elyahb Allie
2017-01-01
Detection of cancer-related circulating biomarkers in body fluids has become a cutting-edge technology that has the potential to noninvasively screen cancer, diagnose cancer at early stage, monitor tumor progression, and evaluate therapy responses. Traditional molecular and cellular detection methods are either insensitive for early cancer intervention or technically costly and complicated making them impractical for typical clinical settings. Due to their exceptional structural and functional properties that are not available from bulk materials or discrete molecules, nanotechnology is opening new horizons for low cost, rapid, highly sensitive, and highly specific detection of circulating cancer markers. Gold nanoparticles have emerged as a unique nanoplatform for circulating biomarker detection owning to their advantages of easy synthesis, facile surface chemistry, excellent biocompatibility, and remarkable structure and environment sensitive optical properties. In this review, we introduce current gold nanoparticle-based technology platforms for the detection of four major classes of circulating cancer markers - circulating tumor cells, vesicles, nucleic acids, and proteins. The techniques will be summarized in terms of signal detection strategies. Distinctive examples are provided to highlight the state-of-the-art technologies that significantly advance basic and clinical cancer research. PMID:28217434
The Sequencing Bead Array (SBA), a Next-Generation Digital Suspension Array
Akhras, Michael S.; Pettersson, Erik; Diamond, Lisa; Unemo, Magnus; Okamoto, Jennifer; Davis, Ronald W.; Pourmand, Nader
2013-01-01
Here we describe the novel Sequencing Bead Array (SBA), a complete assay for molecular diagnostics and typing applications. SBA is a digital suspension array using Next-Generation Sequencing (NGS), to replace conventional optical readout platforms. The technology allows for reducing the number of instruments required in a laboratory setting, where the same NGS instrument could be employed from whole-genome and targeted sequencing to SBA broad-range biomarker detection and genotyping. As proof-of-concept, a model assay was designed that could distinguish ten Human Papillomavirus (HPV) genotypes associated with cervical cancer progression. SBA was used to genotype 20 cervical tumor samples and, when compared with amplicon pyrosequencing, was able to detect two additional co-infections due to increased sensitivity. We also introduce in-house software Sphix, enabling easy accessibility and interpretation of results. The technology offers a multi-parallel, rapid, robust, and scalable system that is readily adaptable for a multitude of microarray diagnostic and typing applications, e.g. genetic signatures, single nucleotide polymorphisms (SNPs), structural variations, and immunoassays. SBA has the potential to dramatically change the way we perform probe-based applications, and allow for a smooth transition towards the technology offered by genomic sequencing. PMID:24116138
Cascade laser applications: trends and challenges
NASA Astrophysics Data System (ADS)
d'Humières, B.; Margoto, Éric; Fazilleau, Yves
2016-03-01
When analyses need rapid measurements, cost effective monitoring and miniaturization, tunable semiconductor lasers can be very good sources. Indeed, applications like on-field environmental gas analysis or in-line industrial process control are becoming available thanks to the advantage of tunable semiconductor lasers. Advances in cascade lasers (CL) are revolutionizing Mid-IR spectroscopy with two alternatives: interband cascade lasers (ICL) in the 3-6μm spectrum and quantum cascade lasers (QCL), with more power from 3 to 300μm. The market is getting mature with strong players for driving applications like industry, environment, life science or transports. CL are not the only Mid-IR laser source. In fact, a strong competition is now taking place with other technologies like: OPO, VCSEL, Solid State lasers, Gas, SC Infrared or fiber lasers. In other words, CL have to conquer a share of the Mid-IR application market. Our study is a market analysis of CL technologies and their applications. It shows that improvements of components performance, along with the progress of infrared laser spectroscopy will drive the CL market growth. We compare CL technologies with other Mid-IR sources and estimate their share in each application market.
Sb-Based Double Heterojunction Bipolar Transistors (DHBTs) With Fmax 650GHz for 340GHz Transmitter
2008-12-01
PROPER IDENTIFICATION . NOT TO BE USED FOR INTERIM PROGRESS REPORTS SEE PAGE 2 FOR INTERIM PROGRESS REPORT INSTRUCTIONS MEMORANDUM OF TRANSMITTAL...conduction band lineup . These advantages have led to rapid progress in increasing device bandwidths, allowing competitive RF performance with established
ERIC Educational Resources Information Center
Bolt, Daniel M.; Ysseldyke, Jim; Patterson, Michael J.
2010-01-01
A three-level variance decomposition analysis was used to examine the sources of variability in implementation of a technology-enhanced progress monitoring system within each year of a 2-year study using a randomized-controlled design. We show that results of technology-enhanced progress monitoring are not necessarily a measure of student…
Progress in oral personalized medicine: contribution of 'omics'.
Glurich, Ingrid; Acharya, Amit; Brilliant, Murray H; Shukla, Sanjay K
2015-01-01
Precision medicine (PM), representing clinically applicable personalized medicine, proactively integrates and interprets multidimensional personal health data, including clinical, 'omics', and environmental profiles, into clinical practice. Realization of PM remains in progress. The focus of this review is to provide a descriptive narrative overview of: 1) the current status of oral personalized medicine; and 2) recent advances in genomics and related 'omic' and emerging research domains contributing to advancing oral-systemic PM, with special emphasis on current understanding of oral microbiomes. A scan of peer-reviewed literature describing oral PM or 'omic'-based research conducted on humans/data published in English within the last 5 years in journals indexed in the PubMed database was conducted using mesh search terms. An evidence-based approach was used to report on recent advances with potential to advance PM in the context of historical critical and systematic reviews to delineate current state-of-the-art technologies. Special focus was placed on oral microbiome research associated with health and disease states, emerging research domains, and technological advances, which are positioning realization of PM. This review summarizes: 1) evolving conceptualization of personalized medicine; 2) emerging insight into roles of oral infectious and inflammatory processes as contributors to both oral and systemic diseases; 3) community shifts in microbiota that may contribute to disease; 4) evidence pointing to new uncharacterized potential oral pathogens; 5) advances in technological approaches to 'omics' research that will accelerate PM; 6) emerging research domains that expand insights into host-microbe interaction including inter-kingdom communication, systems and network analysis, and salivaomics; and 7) advances in informatics and big data analysis capabilities to facilitate interpretation of host and microbiome-associated datasets. Furthermore, progress in clinically applicable screening assays and biomarker definition to inform clinical care are briefly explored. Advancement of oral PM currently remains in research and discovery phases. Although substantive progress has been made in advancing the understanding of the role of microbiome dynamics in health and disease and is being leveraged to advance early efforts at clinical translation, further research is required to discern interpretable constituency patterns in the complex interactions of these microbial communities in health and disease. Advances in biotechnology and bioinformatics facilitating novel approaches to rapid analysis and interpretation of large datasets are providing new insights into oral health and disease, potentiating clinical application and advancing realization of PM within the next decade.
Thin-Film Solar Cells on Metal Foil Substrates for Space Power
NASA Technical Reports Server (NTRS)
Raffaelle, Ryne P.; Hepp, Aloysius F.; Hoffman, David J.; Dhere, N.; Tuttle, J. R.; Jin, Michael H.
2004-01-01
Photovoltaic arrays have played a key role in power generation in space. The current technology will continue to evolve but is limited in the important mass specific power metric (MSP or power/weight ratio) because it is based on bulk crystal technology. The objective of this research is to continue development of an innovative photovoltaic technology for satellite power sources that could provide up to an order of magnitude saving in both weight and cost, and is inherently radiation-tolerant through use of thin film technology and thin foil substrates such as 5-mil thick stainless steel foil or 1-mil thick Ti. Current single crystal technology for space power can cost more than $300 per watt at the array level and weigh more than 1 kg/sq m equivalent to specific power of approx. 65 W/kg. Thin film material such as CuIn(1-x),Ga(x)S2, (CIGS2), CuIn(1-x), G(x)Se(2-y),S(y), (CIGSS) or amorphous hydrogenated silicon (a-Si:H) may be able to reduce both the cost and mass per unit area by an order of magnitude. Manufacturing costs for solar arrays are an important consideration for total spacecraft budget. For a medium sized 5kW satellite, for example, the array manufacturing cost alone may exceed $2 million. Moving to thin film technology could reduce this expense to less than $500 K. Previous work at FSEC demonstrated the potential of achieving higher efficiencies from CIGSS thin film solar cells on 5-mil thick stainless steel foil as well as initial stages of facility augmentation for depositing thin film solar cells on larger (6"x 4") substrates. This paper presents further progress in processing on metal foil substrates. Also, previous work at DayStar demonstrated the feasibility of flexible-thin-film copper-indium-gallium-diselenide (CIGS) solar cells with a power-to-weight ratio in excess of 1000 W/kg. We will comment on progress on the critical issue of scale-up of the solar cell absorber deposition process. Several important technical issues need to be resolved to realize the benefits of lightweight technologies for solar arrays, such as: monolithic interconnects, lightweight array structures, and new ultra-light support and deployment mechanisms. Once the technology has gained spaceflight certification it should find rapid acceptance in specific satellite markets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, K G
The spread of submarines and related technology is an end product of globalization. Globalization is not a new story. By one estimate, our ancestors first crossed out of Africa roughly 80,000 years ago, and began the process that they now call globalization. With the dispersion of people around the world came the development of culture and civilization as well as the spread of ideas, goods, and technology. The process of globalization then is a long-standing one, not an innovation of the late 20th and early 21st centuries. Over the millennia, this process has been an uneven one. Globalization has oftenmore » cuased great disruptions even to the societies that initiated various innovations in culture and civilization, including science and technology. Indeed, many cultures and civilizations have disappeared while some regions failed to advance as rapidly as others, so the process of globalization is not just one of continuing progress. Globalization in the current era seems to be penetrating the most remote corners of the world at a remarkable rate as a result of advances in science and technology, particularly information technology. The diffusion of science and technology is not necessarily a benign development. It could increase the potential for a global military industrial base that may have an adverse affect on world stability in the future. For example, the spread of key military capabilities, like submarines, could still have an impact, especially over the longer term, on the US capability to project power overseas.« less
Removal of dyes from textile wastewater by using nanofiltration polyetherimide membrane
NASA Astrophysics Data System (ADS)
Karisma, Doni; Febrianto, Gabriel; Mangindaan, Dave
2017-12-01
Followed by rapid development of the textile industries since 19th century the dyeing technology is thriving ever since. However, its progress is followed by lack of responsibility and knowledge in treating the dye-containing wastewater. There are some emerging technologies in treating such kind of wastewater, where membrane technology is one of those technologies that has uniqueness in the performance of separating dyes from wastewater, accompanied with small amount of energy. The development of membrane technology is one of several eco-engineering developments for sustainability in water resource management. However, there are a lot of rooms for improvement for this membrane technology, especially for the application in treating textile wastewater in Indonesia. Based on the demand in Indonesia for clean water and further treatment of dye-containing wastewater, the purpose of this research is to fabricate nanofiltration (NF) membranes to accommodate those problems. Furthermore, the fabricated NF membrane will be modified by interfacial polymerization to impart a new selective layer on top of NF membrane to improve the performance of the separation of the dyes from dye-containing wastewater. This research was conducted into two phases of experiments. In the first phase the formulation of polymeric dope solution of PEI/Acetone/NMP (N-methyl-pyrollidone), using the variation of 15/65/20, 16/64/20, and 17/63/20. This research show that many areas still can be explored in textile wastewater treatment using membrane in Indonesia.
Research progress of plant population genomics based on high-throughput sequencing.
Wang, Yun-sheng
2016-08-01
Population genomics, a new paradigm for population genetics, combine the concepts and techniques of genomics with the theoretical system of population genetics and improve our understanding of microevolution through identification of site-specific effect and genome-wide effects using genome-wide polymorphic sites genotypeing. With the appearance and improvement of the next generation high-throughput sequencing technology, the numbers of plant species with complete genome sequences increased rapidly and large scale resequencing has also been carried out in recent years. Parallel sequencing has also been done in some plant species without complete genome sequences. These studies have greatly promoted the development of population genomics and deepened our understanding of the genetic diversity, level of linking disequilibium, selection effect, demographical history and molecular mechanism of complex traits of relevant plant population at a genomic level. In this review, I briely introduced the concept and research methods of population genomics and summarized the research progress of plant population genomics based on high-throughput sequencing. I also discussed the prospect as well as existing problems of plant population genomics in order to provide references for related studies.
2015 Guidance on cancer immunotherapy development in early-phase clinical studies.
2015-12-01
The development of cancer immunotherapies is progressing rapidly with a variety of technological approaches. They consist of "cancer vaccines", which are based on the idea of vaccination, "effector cell therapy", classified as passive immunotherapy, and "inhibition of immunosuppression", which intends to break immunological tolerance to autoantigens or immunosuppressive environments characterizing antitumor immune responses. Recent reports showing clinical evidence of efficacy of immune checkpoint inhibitors and adoptive immunotherapies with tumor-infiltrating lymphocytes and tumor-specific receptor gene-modified T cells indicate the beginning of a new era for cancer immunotherapy. This guidance summarizes ideas that will be helpful to those who plan to develop cancer immunotherapy. The aims of this guidance are to discuss and offer important points in early phase clinical studies of innovative cancer immunotherapy, with future progress in this field, and to contribute to the effective development of cancer immunotherapy aligned with the scope of regulatory science. This guidance covers cancer vaccines, effector cell therapy, and inhibition of immunosuppression, including immune checkpoint inhibitors. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
Cell biomechanics and its applications in human disease diagnosis
NASA Astrophysics Data System (ADS)
Nematbakhsh, Yasaman; Lim, Chwee Teck
2015-04-01
Certain diseases are known to cause changes in the physical and biomechanical properties of cells. These include cancer, malaria, and sickle cell anemia among others. Typically, such physical property changes can result in several fold increases or decreases in cell stiffness, which are significant and can result in severe pathology and eventual catastrophic breakdown of the bodily functions. While there are developed biochemical and biological assays to detect the onset or presence of diseases, there is always a need to develop more rapid, precise, and sensitive methods to detect and diagnose diseases. Biomechanical property changes can play a significant role in this regard. As such, research into disease biomechanics can not only give us an in-depth knowledge of the mechanisms underlying disease progression, but can also serve as a powerful tool for detection and diagnosis. This article provides some insights into opportunities for how significant changes in cellular mechanical properties during onset or progression of a disease can be utilized as useful means for detection and diagnosis. We will also showcase several technologies that have already been developed to perform such detection and diagnosis.
Progress and opportunities in EELS and EDS tomography.
Collins, Sean M; Midgley, Paul A
2017-09-01
Electron tomography using energy loss and X-ray spectroscopy in the electron microscope continues to develop in rapidly evolving and diverse directions, enabling new insight into the three-dimensional chemistry and physics of nanoscale volumes. Progress has been made recently in improving reconstructions from EELS and EDS signals in electron tomography by applying compressed sensing methods, characterizing new detector technologies in detail, deriving improved models of signal generation, and exploring machine learning approaches to signal processing. These disparate threads can be brought together in a cohesive framework in terms of a model-based approach to analytical electron tomography. Models incorporate information on signal generation and detection as well as prior knowledge of structures in the spectrum image data. Many recent examples illustrate the flexibility of this approach and its feasibility for addressing challenges in non-linear or limited signals in EELS and EDS tomography. Further work in combining multiple imaging and spectroscopy modalities, developing synergistic data acquisition, processing, and reconstruction approaches, and improving the precision of quantitative spectroscopic tomography will expand the frontiers of spatial resolution, dose limits, and maximal information recovery. Copyright © 2017 Elsevier B.V. All rights reserved.
DeLisi, Lynn E.
2014-01-01
Technology in genetics and brain imaging has advanced so rapidly that it is difficult to be knowledgeable about all the new tools being used in the pursuit of progress toward understanding and treating mental illness. While findings from new studies remain promising, caution is needed with regard to their current applicability to clinical use, both to predict who is likely to become ill and who is likely to respond to medication. A perspective on the past, using schizophrenia as an example, illustrates important findings that were published, had much visibility, and caused a flurry of new related studies, but then slowly disappeared, either to be abandoned as an artifact of the assay or study design, an epiphenomenon, or as simply nonreplicated findings not leading to further progress. Remembering that good science is “the pursuit of the truth” and not joining the latest “bandwagon fad” of “believers” is an important principle to adhere to when participating in the politics of science. PMID:25733950
Progressive and Regressive Aspects of Information Technology in Society: A Third Sector Perspective
ERIC Educational Resources Information Center
Miller, Kandace R.
2009-01-01
This dissertation explores the impact of information technology on progressive and regressive values in society from the perspective of one international foundation and four of its technology-related programs. Through a critical interpretive approach employing an instrumental multiple-case method, a framework to help explain the influence of…
Progress Report on the State of Texas Master Plan for Educational Technology, 2000-2003.
ERIC Educational Resources Information Center
Texas Education Agency, Austin.
This progress report documents accomplishments and activities for September 2000 through August 2002 related to the State of Texas Master Plan for Educational Technology 2000-2003. The first section presents background, goals, and recommendations as adopted by the Education Technology Coordinating Council (ETCC) in December 1999. The second…
ERIC Educational Resources Information Center
Karp, William
The 74th Illinois General Assembly created the Illinois Commission on Automation and Technological Progress to study and analyze the economic and social effects of automation and other technological changes on industry, commerce, agriculture, education, manpower, and society in Illinois. Commission members visited industrial plants and business…
Progress update of NASA's free-piston Stirling space power converter technology project
NASA Technical Reports Server (NTRS)
Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald
1992-01-01
A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.
Hufnagel, Peter; Rabus, Ralf
2006-01-01
The rapidly developing proteomics technologies help to advance the global understanding of physiological and cellular processes. The lifestyle of a study organism determines the type and complexity of a given proteomic project. The complexity of this study is characterized by a broad collection of pathway-specific subproteomes, reflecting the metabolic versatility as well as the regulatory potential of the aromatic-degrading, denitrifying bacterium 'Aromatoleum' sp. strain EbN1. Differences in protein profiles were determined using a gel-based approach. Protein identification was based on a progressive application of MALDI-TOF-MS, MALDI-TOF-MS/MS and LC-ESI-MS/MS. This progression was result-driven and automated by software control. The identification rate was increased by the assembly of a project-specific list of background signals that was used for internal calibration of the MS spectra, and by the combination of two search engines using a dedicated MetaScoring algorithm. In total, intelligent bioinformatics could increase the identification yield from 53 to 70% of the analyzed 5,050 gel spots; a total of 556 different proteins were identified. MS identification was highly reproducible: most proteins were identified more than twice from parallel 2DE gels with an average sequence coverage of >50% and rather restrictive score thresholds (Mascot >or=95, ProFound >or=2.2, MetaScore >or=97). The MS technologies and bioinformatics tools that were implemented and integrated to handle this complex proteomic project are presented. In addition, we describe the basic principles and current developments of the applied technologies and provide an overview over the current state of microbial proteome research. Copyright (c) 2006 S. Karger AG, Basel.
Sood, Salej; Kumar, Anil; Babu, B Kalyana; Gaur, Vikram S; Pandey, Dinesh; Kant, Lakshmi; Pattnayak, Arunava
2016-01-01
The rapid strides in molecular marker technologies followed by genomics, and next generation sequencing advancements in three major crops (rice, maize and wheat) of the world have given opportunities for their use in the orphan, but highly valuable future crops, including finger millet [ Eleusine coracana (L.) Gaertn.]. Finger millet has many special agronomic and nutritional characteristics, which make it an indispensable crop in arid, semi-arid, hilly and tribal areas of India and Africa. The crop has proven its adaptability in harsh conditions and has shown resilience to climate change. The adaptability traits of finger millet have shown the advantage over major cereal grains under stress conditions, revealing it as a storehouse of important genomic resources for crop improvement. Although new technologies for genomic studies are now available, progress in identifying and tapping these important alleles or genes is lacking. RAPDs were the default choice for genetic diversity studies in the crop until the last decade, but the subsequent development of SSRs and comparative genomics paved the way for the marker assisted selection in finger millet. Resistance gene homologs from NBS-LRR region of finger millet for blast and sequence variants for nutritional traits from other cereals have been developed and used invariably. Population structure analysis studies exhibit 2-4 sub-populations in the finger millet gene pool with separate grouping of Indian and exotic genotypes. Recently, the omics technologies have been efficiently applied to understand the nutritional variation, drought tolerance and gene mining. Progress has also occurred with respect to transgenics development. This review presents the current biotechnological advancements along with research gaps and future perspective of genomic research in finger millet.
Sood, Salej; Kumar, Anil; Babu, B. Kalyana; Gaur, Vikram S.; Pandey, Dinesh; Kant, Lakshmi; Pattnayak, Arunava
2016-01-01
The rapid strides in molecular marker technologies followed by genomics, and next generation sequencing advancements in three major crops (rice, maize and wheat) of the world have given opportunities for their use in the orphan, but highly valuable future crops, including finger millet [Eleusine coracana (L.) Gaertn.]. Finger millet has many special agronomic and nutritional characteristics, which make it an indispensable crop in arid, semi-arid, hilly and tribal areas of India and Africa. The crop has proven its adaptability in harsh conditions and has shown resilience to climate change. The adaptability traits of finger millet have shown the advantage over major cereal grains under stress conditions, revealing it as a storehouse of important genomic resources for crop improvement. Although new technologies for genomic studies are now available, progress in identifying and tapping these important alleles or genes is lacking. RAPDs were the default choice for genetic diversity studies in the crop until the last decade, but the subsequent development of SSRs and comparative genomics paved the way for the marker assisted selection in finger millet. Resistance gene homologs from NBS-LRR region of finger millet for blast and sequence variants for nutritional traits from other cereals have been developed and used invariably. Population structure analysis studies exhibit 2–4 sub-populations in the finger millet gene pool with separate grouping of Indian and exotic genotypes. Recently, the omics technologies have been efficiently applied to understand the nutritional variation, drought tolerance and gene mining. Progress has also occurred with respect to transgenics development. This review presents the current biotechnological advancements along with research gaps and future perspective of genomic research in finger millet. PMID:27881984
Imaging at ultrahigh magnetic fields: History, challenges, and solutions.
Uğurbil, Kamil
2018-03-01
Following early efforts in applying nuclear magnetic resonance (NMR) spectroscopy to study biological processes in intact systems, and particularly since the introduction of 4 T human scanners circa 1990, rapid progress was made in imaging and spectroscopy studies of humans at 4 T and animal models at 9.4 T, leading to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has provided numerous technological solutions to challenges posed at these ultrahigh fields, and demonstrated the existence of significant advantages in signal-to-noise ratio and biological information content. Primary difference from lower fields is the deviation from the near field regime at the radiofrequencies (RF) corresponding to hydrogen resonance conditions. At such ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image non-uniformities for a given sample-coil configuration because of destructive and constructive interferences. These non-uniformities were initially considered detrimental to progress of imaging at high field strengths. However, they are advantageous for parallel imaging in signal reception and transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies and improvements in instrumentation and imaging methods, today ultrahigh fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shinar, Joseph; Shinar, Ruth
2008-07-01
The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of ~2 × 105 h (~23 yr) at ~150 Cd m-2 (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m-2). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor.
Advancing automation and robotics technology for the Space Station Freedom and for the U.S. economy
NASA Technical Reports Server (NTRS)
Lum, Henry, Jr.
1992-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fifteenth in a series of progress updates and covers the period between 27 Feb. - 17 Sep. 1992. The progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology is described. Emphasis was placed upon the Space Station Freedom program responses to specific recommendations made in ATAC Progress Report 14. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.
[Progress in stem cells and regenerative medicine].
Wang, Libin; Zhu, He; Hao, Jie; Zhou, Qi
2015-06-01
Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.
Numerical propulsion system simulation
NASA Technical Reports Server (NTRS)
Lytle, John K.; Remaklus, David A.; Nichols, Lester D.
1990-01-01
The cost of implementing new technology in aerospace propulsion systems is becoming prohibitively expensive. One of the major contributors to the high cost is the need to perform many large scale system tests. Extensive testing is used to capture the complex interactions among the multiple disciplines and the multiple components inherent in complex systems. The objective of the Numerical Propulsion System Simulation (NPSS) is to provide insight into these complex interactions through computational simulations. This will allow for comprehensive evaluation of new concepts early in the design phase before a commitment to hardware is made. It will also allow for rapid assessment of field-related problems, particularly in cases where operational problems were encountered during conditions that would be difficult to simulate experimentally. The tremendous progress taking place in computational engineering and the rapid increase in computing power expected through parallel processing make this concept feasible within the near future. However it is critical that the framework for such simulations be put in place now to serve as a focal point for the continued developments in computational engineering and computing hardware and software. The NPSS concept which is described will provide that framework.
Ecological and evolutionary genomics of marine photosynthetic organisms.
Coelho, Susana M; Simon, Nathalie; Ahmed, Sophia; Cock, J Mark; Partensky, Frédéric
2013-02-01
Environmental (ecological) genomics aims to understand the genetic basis of relationships between organisms and their abiotic and biotic environments. It is a rapidly progressing field of research largely due to recent advances in the speed and volume of genomic data being produced by next generation sequencing (NGS) technologies. Building on information generated by NGS-based approaches, functional genomic methodologies are being applied to identify and characterize genes and gene systems of both environmental and evolutionary relevance. Marine photosynthetic organisms (MPOs) were poorly represented amongst the early genomic models, but this situation is changing rapidly. Here we provide an overview of the recent advances in the application of ecological genomic approaches to both prokaryotic and eukaryotic MPOs. We describe how these approaches are being used to explore the biology and ecology of marine cyanobacteria and algae, particularly with regard to their functions in a broad range of marine ecosystems. Specifically, we review the ecological and evolutionary insights gained from whole genome and transcriptome sequencing projects applied to MPOs and illustrate how their genomes are yielding information on the specific features of these organisms. © 2012 Blackwell Publishing Ltd.
Blood-based analyses of cancer: Circulating myeloid-derived suppressor cells - is a new era coming?
Okla, Karolina; Wertel, Iwona; Wawruszak, Anna; Bobiński, Marcin; Kotarski, Jan
2018-06-21
Progress in cancer treatment made by the beginning of the 21st century has shifted the paradigm from one-size-fits-all to tailor-made treatment. The popular vision, to study solid tumors through the relatively noninvasive sampling of blood, is one of the most thrilling and rapidly advancing fields in global cancer diagnostics. From this perspective, immune-cell analysis in cancer could play a pivotal role in oncology practice. This approach is driven both by rapid technological developments, including the analysis of circulating myeloid-derived suppressor cells (cMDSCs), and by the increasing application of (immune) therapies, the success or failure of which may depend on effective and timely measurements of relevant biomarkers. Although the implementation of these powerful noninvasive diagnostic capabilities in guiding precision cancer treatment is poised to change the ways in which we select and monitor cancer therapy, challenges remain. Here, we discuss the challenges associated with the analysis and clinical aspects of cMDSCs and assess whether the problems in implementing tumor-evolution monitoring as a global tool in personalized oncology can be overcome.
Supply Chain Sustainability Analysis of Whole Algae Hydrothermal Liquefaction and Upgrading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pegallapati, Ambica Koushik; Dunn, Jennifer B.; Frank, Edward D.
2015-04-01
The Department of Energy's Bioenergy Technology Office (BETO) collaborates with a wide range of institutions towards the development and deployment of biofuels and bioproducts. To facilitate this effort, BETO and its partner national laboratories develop detailed techno-economic assessments (TEA) of biofuel production technologies as part of the development of design cases and state of technology (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand,more » an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand, an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand, an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available.« less