Science.gov

Sample records for rapid thermal chemical

  1. Model reduction and temperature uniformity control for rapid thermal chemical vapor deposition reactors

    NASA Astrophysics Data System (ADS)

    Theodoropoulou, Artemis-Georgia

    The consideration of Rapid Thermal Processing (RTP) in semiconductor manufacturing has recently been increasing. As a result, control of RTP systems has become of great importance since it is expected to help in addressing uniformity problems that, so far, have been obstructing the acceptance of the method. The spatial distribution appearing in RTP models necessitates the use of model reduction in order to obtain models of a size suitable for use in control algorithms. This dissertation addresses model reduction as well as control issues for RTP systems. A model of a three-zone Rapid Thermal Chemical Vapor Deposition (RTCVD) system is developed to study the effects of spatial wafer temperature patterns on polysilicon deposition uniformity. A sequence of simulated runs is performed, varying the lamp power profiles so that different wafer temperature modes are excited. The dominant spatial wafer thermal modes are extracted via Proper Orthogonal Decomposition and subsequently used as a set of trial functions to represent both the wafer temperature and deposition thickness. A collocation formulation of Galerkin's method is used to discretize the original modeling equations, giving a low-order model which loses little of the original, high-order model's fidelity. We make use of the excellent predictive capabilities of the reduced model to optimize power inputs to the lamp banks to achieve a desired polysilicon deposition thickness at the end of a run with minimal deposition spatial nonuniformity. Since the results illustrate that the optimization procedure benefits from the use of the reduced-order model, we further utilize the reduced order model for real time Model Based Control. The feedback controller is designed using the Internal Model Control (IMC) structure especially modified to handle systems described by ordinary differential and algebraic equations. The IMC controller is obtained using optimal control theory on singular arcs extended for multi input systems

  2. Temperature control and characterization of silicon-germanium growth by rapid thermal chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hwang, Sung-Bo

    Rapid thermal chemical vapor deposition (RTCVD) is an emerging technology to utilize low thermal budgets required to grow silicon-germanium alloys in a coherent way. However, the current state-of-the-art in RTCVD technique lacks some key elements required for acceptance of RTCVD in mainstream IC fabrication. These shortcomings include adequate control of wafer temperature during processing, and sufficient understanding of the growth kinetics. This dissertation describes and discusses the temperature control in RTCVD, the growth, and characterization of silicon-germanium alloys. The RTCVD system provides very reliable temperature-measurements, for a range of 480˜820°C, based on infrared-light (1.3 or 1.55mum) absorption in the silicon wafer during the growth of silicon-germanium alloys. A wafer heat transfer model developed using the view-factor analysis is used to investigate temperature distributions with respect to lamp configurations in RTCVD system. For a precise temperature control, a neural model-based controller in single-input-single-output (SISO) system is proposed, and compared with other controllers. Silicon-germanium alloys, in various semiconductor structures including dots, have been grown by RTCVD where temperature is well-controlled by the model-based controller. The structural and chemical properties of silicon-germanium alloys are characterized by X-ray diffraction, atomic force microscopy (AFM), transmission electron microscopy (TEM), and secondary ion mass spectrometry (SIMS). The different growth characteristics dominated by a silicon-source gas are exploited, and their process models are developed with the experimental data utilizing neural networks employed the Bayesian framework to accurately describe the process behaviors such as growth rate and Ge fraction in alloys with respect to process variables (to capture the process nonlinearity). By controlling growth rate and Ge fraction, a uniform and a grading Ge profile in silicon

  3. Rapid determination of the chemical oxygen demand of water using a thermal biosensor.

    PubMed

    Yao, Na; Wang, Jinqi; Zhou, Yikai

    2014-06-06

    In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD) of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L) and a low detection limit (1.84 mg/L). It could tolerate the presence of chloride ions in concentrations of 0.015 M without requiring a masking agent. The sensor was successfully used for detecting the COD values of actual samples. The COD values of water samples from various sources were correlated with those obtained by the standard dichromate method; the linear regression coefficient was found to be 0.996. The sensor is environmentally friendly, economical, and highly stable, and exhibits good reproducibility and accuracy. In addition, its response time is short, and there is no danger of hazardous emissions or external contamination. Finally, the samples to be tested do not have to be pretreated. These results suggest that the biosensor is suitable for the continuous monitoring of the COD values of actual wastewater samples.

  4. Rapid Determination of the Chemical Oxygen Demand of Water Using a Thermal Biosensor

    PubMed Central

    Yao, Na; Wang, Jinqi; Zhou, Yikai

    2014-01-01

    In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD) of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L) and a low detection limit (1.84 mg/L). It could tolerate the presence of chloride ions in concentrations of 0.015 M without requiring a masking agent. The sensor was successfully used for detecting the COD values of actual samples. The COD values of water samples from various sources were correlated with those obtained by the standard dichromate method; the linear regression coefficient was found to be 0.996. The sensor is environmentally friendly, economical, and highly stable, and exhibits good reproducibility and accuracy. In addition, its response time is short, and there is no danger of hazardous emissions or external contamination. Finally, the samples to be tested do not have to be pretreated. These results suggest that the biosensor is suitable for the continuous monitoring of the COD values of actual wastewater samples. PMID:24915178

  5. Chemical nature of silicon nitride-indium phosphide interface and rapid thermal annealing for InP MISFETs

    NASA Technical Reports Server (NTRS)

    Biedenbender, M. D.; Kapoor, V. J.

    1990-01-01

    A rapid thermal annealing (RTA) process in pure N2 or pure H2 was developed for ion-implanted and encapsulated indium phosphide compound semiconductors, and the chemical nature at the silicon nitride-InP interface before and after RTA was examined using XPS. Results obtained from SIMS on the atomic concentration profiles of the implanted silicon in InP before and after RTA are presented, together with electrical characteristics of the annealed implants. Using the RTA process developed, InP metal-insulator semiconductor FETs (MISFETS) were fabricated. The MISFETS prepared had threshold voltages of +1 V, transconductance of 27 mS/mm, peak channel mobility of 1200 sq cm/V per sec, and drain current drift of only 7 percent.

  6. Low thermal budget in situ removal of oxygen and carbon on silicon for silicon epitaxy in an ultrahigh vacuum rapid thermal chemical vapor deposition reactor

    NASA Astrophysics Data System (ADS)

    Sanganeria, Mahesh K.; Öztürk, Mehmet C.; Violette, Katherine E.; Harris, Gari; Lee, C. Archie; Maher, Dennis M.

    1995-03-01

    In this letter, we present experimental evidence on desorption of O and C from a Si surface resulting in impurity levels below the detection levels of secondary ion mass spectroscopy. We then propose a surface preperation method for silicon epitaxy that consists of an ex situ clean and an in situ low thermal budget prebake in an ultrahigh vacuum rapid thermal chemical vapor deposition (UHV-RTCVD) reactor. The ex situ clean consists of a standard RCA clean followed by a dilute HF dip and rinse in de-ionized water. The in situ clean is either carried out in vacuum or in a low partial pressure of 10% Si2H6 in H2. The experiments were conducted in an UHV-RTCVD reactor equipped with oil-free vacuum pumps. We propose that the responsible mechanism is desorption of oxygen and hydrocarbons from the Si surface due to the low partial pressures of these contaminants in the growth chamber. If Si2H6 is used during the prebake, a sufficiently low growth rate is required in order to provide sufficient time for desorption and avoid Si overgrowth on the O and C sites.

  7. Correlation between the Temperature Dependence of Intrsinsic Mr Parameters and Thermal Dose Measured by a Rapid Chemical Shift Imaging Technique

    PubMed Central

    Taylor, Brian A.; Elliott, Andrew M.; Hwang, Ken-Pin; Hazle, John D.; Stafford, R. Jason

    2011-01-01

    In order to investigate simultaneous MR temperature imaging and direct validation of tissue damage during thermal therapy, temperature-dependent signal changes in proton resonance frequency (PRF) shifts, R2* values, and T1-weighted amplitudes are measured from one technique in ex vivo tissue heated with a 980-nm laser at 1.5T and 3.0T. Using a multi-gradient echo acquisition and signal modeling with the Stieglitz-McBride algorithm, the temperature sensitivity coefficient (TSC) values of these parameters are measured in each tissue at high spatiotemporal resolutions (1.6×1.6×4mm3,≤5sec) at the range of 25-61 °C. Non-linear changes in MR parameters are examined and correlated with an Arrhenius rate dose model of thermal damage. Using logistic regression, the probability of changes in these parameters is calculated as a function of thermal dose to determine if changes correspond to thermal damage. Temperature calibrations demonstrate TSC values which are consistent with previous studies. Temperature sensitivity of R2* and, in some cases, T1-weighted amplitudes are statistically different before and after thermal damage occurred. Significant changes in the slopes of R2* as a function of temperature are observed. Logistic regression analysis shows that these changes could be accurately predicted using the Arrhenius rate dose model (Ω=1.01±0.03), thereby showing that the changes in R2* could be direct markers of protein denaturation. Overall, by using a chemical shift imaging technique with simultaneous temperature estimation, R2* mapping and T1-W imaging, it is shown that changes in the sensitivity of R2* and, to a lesser degree, T1-W amplitudes are measured in ex vivo tissue when thermal damage is expected to occur according to Arrhenius rate dose models. These changes could possibly be used for direct validation of thermal damage in contrast to model-based predictions. PMID:21721063

  8. Nucleation, Epitaxial Growth, and Characterization of Beta-Silicon Carbide Thin Films on Silicon by Rapid Thermal Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Li, Jiping

    The principal objective of this dissertation is to study monocrystalline epitaxial SiC thin film nucleation and growth on Si by rapid thermal vapor deposition (RTCVD). In addition to the actual growth process development, this has also included the characterization of the as-grown SiC films in terms of crystal structure, morphology, chemical composition, and electrical properties, as well as the fabrication of simple SiC/Si heterojunction diodes. The (100) Si substrate was first converted to SiC layer by carbonization at elevated temperatures in simple hydrocarbon ambients at both atmospheric and low pressures. The SiC films were evaluated by X-ray diffraction, FT-IR, ellipsometry, SEM, AFM, AES, and TEM analyses. The effects of flow rates, temperature, temperature ramp rate, and pressure were studied. The crystallinity, thickness, and morphology of SiC films were found to be a strong function of the hydrocarbon concentration in the gas stream and the growth pressure. Voids (hollow spaces) have been observed to exist in the Si substrate underneath the SiC film except for one condition: high hydrocarbon concentration in the gas stream under which an ultra-thin (~ 10 nm) void-free single crystal SiC film is formed. High -resolution TEM analysis of this film indicated that five SiC lattice planes aligned with four Si lattice planes. Optimum conditions in terms of crystallinity are: 1300 ^circC, 90 sec, 25-50^ circC/s temperature ramp, 13 sccm C _3H_8, 1.5 lpm H _2. The growth rate is in the range of 0.5 -1 nm/sec. Both X-ray diffraction and TEM analyses indicated that films grown under the optimum conditions were single -crystal epitaxial cubic SiC thin films. In addition, simple hydrocarbon gases such as propane, ethylene, acetylene, and methane showed similar behaviors when reacting with Si except for slight difference in reactivity. The evolution of SiC nucleation on Si was studied by combining the surface analysis capability of SEM and AFM with the excellent

  9. Rapid thermal processing by stamping

    SciTech Connect

    Stradins, Pauls; Wang, Qi

    2013-03-05

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  10. Low temperature selective silicon epitaxy by ultra high vacuum rapid thermal chemical vapor deposition using Si2H6, H2 and Cl2

    NASA Astrophysics Data System (ADS)

    Violette, Katherine E.; O'Neil, Patricia A.; Öztürk, Mehmet C.; Christensen, Kim; Maher, Dennis M.

    1996-01-01

    We present the use of the Si2H6/H2/CL2 chemistry for selective silicon epitaxy by rapid thermal chemical vapor deposition (RTCVD). The experiments were carried out in an ultrahigh vacuum rapid thermal chemical vapor deposition reactor. Epitaxial layers were grown selectively with growth rates above 150 nm/min at 800 °C and 24 mTorr using 10% Si2H6 and H2 and Cl2 with a minimum Si:Cl ratio of 1. Excellent selectivity with respect to SiO2 and Si3N4 was obtained indicating that very low Cl2 partial pressures are sufficient to preserve selectivity. In situ doping results with B2H6 show that sharp doping transitions and a wide range of B concentrations can be obtained with a slight B incorporation rate reduction with Cl2 addition. Our results indicate that UHV-RTCVD with the Si2H6/H2/Cl2 chemistry yields highly selective Si epitaxy with growth rates well within the practical throughput limits of single wafer manufacturing and with a potential to reduce the Cl content below the levels used in conventional SiH2Cl2 based selective epitaxy processes.

  11. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1994-01-01

    Thermal decomposition activation energies have been determined using two methods of Thermogravimetric Analysis (TGA), with good correlation being obtained between the two techniques. Initial heating curves indicated a two-component system for Coflon (i.e. polymer plus placticizer) but a single component system for Tefzel. Two widely differing activation energies were for Coflon supported this view, 15 kcl/mol being associated with plasticizer, and 40 kcal/mol with polymer degradation. With Tefzel, values were 40-45 kcal/mol, the former perhaps being associated with a low molecular weight fraction. Appropriate acceleration factors have been determined. Thermomechanical Analysis (TMA) has shown considerable dimensional change during temperature cycles. For unaged pipe sections heating to 100 C and then holding the temperature resulted in a stable thickness increase of 2%, whereas the Coflon thickness decreased continuously, reaching -4% in 2.7 weeks. Previously strained tensile bars of Tefzel expanded on cooling during TMA. SEM performed on H2S-aged Coflon samples showed significant changes in both physical and chemical nature. The first may have resulted from explosive decompression after part of the aging process. Chemically extensive dehydrofluorination was indicated, and sulfur was present as a result of the aging. These observations indicate that chemical attack of PVDF can occur in some circumstances.

  12. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.; Thornton, C. P.

    1996-01-01

    Work has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-Ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted changes in the molecular weight distribution of the Coflon material using a dual detector Gel Permeation Analysis. Again these changes may result in variation in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-Ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Thermogravimetric Analysis, and Differential Scanning Calorimetry. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. Pressurized tests were performed in a modified Fluid G, which we will call G2. In this case the ethylene diamine concentration was increased to 3 percent in methanol. Coflon pipe sections and powdered Coflon were exposed in pressure cells at 1700 psi at three separate test temperatures, 70 C, 110 C, and 130 C. The primary purpose of the pressure tests in Fluid G2 was to further elucidate the aging mechanism of PVDF degradation.

  13. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1997-01-01

    Work during the past three years has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-Ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted changes in the molecular weight distribution and the increased crosslinking of the Coflon material using Gel Permeation Chromatographic Analysis. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, and Differential Scanning Calorimetry. We investigated a plethora of aged samples of both Tefzel and Coflon that were forwarded from MERL. Pressurized tests were performed on powdered PVDF in a modified Fluid A, which we will call A-2. In this case the ethylene diamine concentration was increased to 3 percent in methanol. Coflon pipe sections and powdered Coflon were exposed in pressure cells at 1700 psi at three separate test temperatures.

  14. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1995-01-01

    During the past six months we have conducted significant research in several domains in order to clarify and understanding the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. We organized numerous analytical studies with methods including Fourier Transform Infrared Spectroscopy, Dynamic Mechanical Analysis, Differential Scanning Calorimetry, and Stress Relaxation experiments. In addition we have reanalyzed previous thermogravimetric data concerning the rate of deplasticization of Coflon pipe. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We conducted stress relaxation experiments of Coflon pipe at several temperatures and determined an activation energy. We also examined the dynamic mechanical response PVDF during deplasticization and during methanol plasticization. We performed numerous DSC analyses to research the changing crystalline morphology. We have noted significant changes in crystallinity upon aging for both PVDF and Tefzel. Little variation in elemental composition was noted for many of the aged Coflon and Tefzel samples tested.

  15. A deep-submicron single gate CMOS technology using in-situ boron-doped polycrystalline silicon-germanium gates formed by rapid thermal chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Li, Vivian Zhi-Qi

    This thesis presents a comprehensive study of in-situ boron doped polycrystalline-Sisb{1-x}Gesb{x} films deposited in a rapid thermal chemical vapor deposition system and used as the gate electrode in the deep submicron bulk CMOS technology. This work includes an investigation of the nucleation behavior of poly-Sisb{1-x}Gesb{x} films on the oxide surface, development of a deposition process using Sisb2Hsb6,\\ GeHsb4 and Bsb2Hsb6 gases in addition to using common gas mixture of SiHsb4,\\ GeHsb4 and Bsb2Hsb6 in a RTCVD system, characterization of the deposited film structure and its properties, examination of the electrical properties, extraction of the workfunction as a function of the Ge content in the film, development of the NMOS, PMOS and CMOS processes for in-situ boron doped poly-Sisb{1-x}Gesb{x} gate technology, assessment of the impact of poly-Sisb{1-x}Gesb{x} gate on the device performance through computer simulations. The process integration issues such as boron penetration, poly-depletion and gate oxide reliability, and characterization of deep submicron CMOS devices are also studied. One critical concern with the use of poly-Sisb{1-x}Gesb{x} gate materials is its partially selective deposition process on the SiOsb2. In this work, we demonstrated non-selective deposition processes for poly-Sisb{1-x}Gesb{x} without conventional Si pre-deposition onto oxide. One approach is by using in-situ boron doping method and another is by using Sisb2Hsb6 as the Si source gas. Also, it was found that the density of the nucleation sites at the initial stage of deposition increases with the increase of the Bsb2Hsb6 gas flow rate. The resulting continuous poly-Sisb{1-x}Gesb{x} films were attributed to the preferential adsorption of boron atoms onto the oxide surface providing the necessary nucleation sites for the subsequent Sisb{1-x}Gesb{x} film growth. For undoped poly-Sisb{1-x}Gesb{x} films, continuous films can be formed on the oxide using Sisb2Hsb6 and GeHsb4 gases

  16. Rapid thermal annealing effect on amorphous hydrocarbon film deposited by CH{sub 4}/Ar dielectric barrier discharge plasma on Si wafer: Surface morphology and chemical evaluation

    SciTech Connect

    Majumdar, Abhijit; Hippler, Rainer; Bhattacharayya, S. R.

    2009-05-01

    The effects of rapid thermal annealing (RTA) on amorphous hydrogenated carbon-coated film on Si wafer, deposited by CH{sub 4}/Ar dielectric barrier discharge plasma (at half of the atmospheric pressure), was examined. Bubbles-like structures were formed on the surface of the deposited carbon-coated film. The surface morphology studied by scanning electron microscopy (SEM), which showed that the effect of RTA on the film changing the morphological property drastically at 600 deg. C and most of the bubbles started evaporating above 200 deg. C. The inbuilt energy dispersive x-ray in SEM gives the quantitative analysis of the annealed surface. X-ray photoelectron spectroscopy results of the as-deposited films agree with the IR results in that the percent of Si-CH{sub 3}, Si-O-Si and C-O(H) stretching vibrational band in the film. Most of these bands disappeared as the sample was annealed at 600 deg. C in Ar medium.

  17. Rapid thermal conditioning of sewage sludge

    NASA Astrophysics Data System (ADS)

    Zheng, Jianhong

    Rapid thermal conditioning (RTC) is a developing technology recently applied to sewage sludge treatment. Sludge is heated rapidly to a reaction temperature (up to about 220sp°C) under sufficient pressure to maintain the liquid phase. Reaction is quenched after 10 to 30 seconds when the mixture of sludge and steam pass through a pressure let-down valve. This process reduces the amount of sludge requiring land disposal, eliminates the need for polymer coagulant, improves dewaterability, increases methane production, and further reduces the concentration of pathogens. The odor problem associated with traditional thermal conditioning processes is largely minimized. Ammonia removal is readily integrated with the process. For this research, a pilot unit was constructed capable of processing 90 liters of sludge per hour. Over 22 runs were made with this unit using sludge from New York City Water Pollution Control Plants (WPCP). Sludges processed in this equipment were tested to determine the effect of RTC operating conditions on sludge dewaterability, biodegradability, and other factors affecting the incorporation of RTC into wastewater treatment plants. Dewaterability of thermally conditioned sludge was assessed for cetrifugeability and filterability. Bench scale centrifugation was used for evaluating centrifugeability, pressure filtration and capillary suction time (CST) for filterability. A mathematical model developed for centrifuge dewatering was used to predict the effect of RTC on full scale centrifuge performance. Particle size distribution and solids density of raw and treated PDS were also analyzed. An observed increase in sludge solids density at least partially explains its improved centrifugeability. An investigation of thermally conditioned amino acids showed that the L-isomer is highly biodegradable while the D-isomers are generally less so. Glucose is highly biodegradable, but rapidly becomes refractory as thermal conditioning time is lengthened. This

  18. Rapid thermal outgassing of component samples

    SciTech Connect

    Beat, T G; Moffitt, K

    1999-03-26

    This paper/presentation describes the rapid thermal outgassing tests that were ran to provide an inventory of all gasses present in the weld channel during the weld. The component samples tested were of all materials that are exposed to the channel during the temperature excursion due to the welding operation. The temperature ramps were determined from previous weld tests. The test equipment, test procedures, and the data collection system is described. They present the data and their interpretation of it.

  19. Ceramic thermal barrier coating for rapid thermal cycling applications

    DOEpatents

    Scharman, Alan J.; Yonushonis, Thomas M.

    1994-01-01

    A thermal barrier coating for metal articles subjected to rapid thermal cycling includes a metallic bond coat deposited on the metal article, at least one MCrAlY/ceramic layer deposited on the bond coat, and a ceramic top layer deposited on the MCrAlY/ceramic layer. The M in the MCrAlY material is Fe, Ni, Co, or a mixture of Ni and Co. The ceramic in the MCrAlY/ceramic layer is mullite or Al.sub.2 O.sub.3. The ceramic top layer includes a ceramic with a coefficient of thermal expansion less than about 5.4.times.10.sup.-6 .degree.C.sup.-1 and a thermal conductivity between about 1 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1 and about 1.7 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1.

  20. Methods and compositions for rapid thermal cycling

    SciTech Connect

    Beer, Neil Reginald; Benett, William J.; Frank, James M.; Deotte, Joshua R.; Spadaccini, Christopher

    2015-10-27

    The rapid thermal cycling of a material is targeted. A microfluidic heat exchanger with an internal porous medium is coupled to tanks containing cold fluid and hot fluid. Fluid flows alternately from the cold tank and the hot tank into the porous medium, cooling and heating samples contained in the microfluidic heat exchanger's sample wells. A valve may be coupled to the tanks and a pump, and switching the position of the valve may switch the source and direction of fluid flowing through the porous medium. A controller may control the switching of valve positions based on the temperature of the samples and determined temperature thresholds. A sample tray for containing samples to be thermally cycled may be used in conjunction with the thermal cycling system. A surface or internal electrical heater may aid in heating the samples, or may replace the necessity for the hot tank.

  1. Thermal and chemical convection in planetary mantles

    NASA Technical Reports Server (NTRS)

    Dupeyrat, L.; Sotin, C.; Parmentier, E. M.

    1995-01-01

    Melting of the upper mantle and extraction of melt result in the formation of a less dense depleted mantle. This paper describes series of two-dimensional models that investigate the effects of chemical buoyancy induced by these density variations. A tracer particles method has been set up to follow as closely as possible the chemical state of the mantle and to model the chemical buoyant force at each grid point. Each series of models provides the evolution with time of magma production, crustal thickness, surface heat flux, and thermal and chemical state of the mantle. First, models that do not take into account the displacement of plates at the surface of Earth demonstrate that chemical buoyancy has an important effect on the geometry of convection. Then models include horizontal motion of plates 5000 km wide. Recycling of crust is taken into account. For a sufficiently high plate velocity which depends on the thermal Rayleigh number, the cell's size is strongly coupled with the plate's size. Plate motion forces chemically buoyant material to sink into the mantle. Then the positive chemical buoyancy yields upwelling as depleted mantle reaches the interface between the upper and the lower mantle. This process is very efficient in mixing the depleted and undepleted mantle at the scale of the grid spacing since these zones of upwelling disrupt the large convective flow. At low spreading rates, zones of upwelling develop quickly, melting occurs, and the model predicts intraplate volcanism by melting of subducted crust. At fast spreading rates, depleted mantle also favors the formation of these zones of upwelling, but they are not strong enough to yield partial melting. Their rapid displacement toward the ridge contributes to faster large-scale homogenization.

  2. Low Gravity Rapid Thermal Analysis of Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Ethridge, Edwin C.; Smith, Guy A.

    2004-01-01

    It has been observed by two research groups that ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) glass crystallization is suppressed in microgravity. The mechanism for this phenomenon is unknown at the present time. In order to better understand the mechanism, an experiment was performed on NASA's KC135 reduced gravity aircraft to obtain quantitative crystallization data. An apparatus was designed and constructed for performing rapid thermal analysis of milligram quantities of ZBLAN glass. The apparatus employs an ellipsoidal furnace allowing for rapid heating and cooling. Using this apparatus nucleation and crystallization kinetic data was obtained leading to the construction of time-temperature-transformation curves for ZBLAN in microgravity and unit gravity.

  3. Effects of rapid thermal annealing on structural, chemical, and electrical characteristics of atomic-layer deposited lanthanum doped zirconium dioxide thin film on 4H-SiC substrate

    NASA Astrophysics Data System (ADS)

    Lim, Way Foong; Quah, Hock Jin; Lu, Qifeng; Mu, Yifei; Ismail, Wan Azli Wan; Rahim, Bazura Abdul; Esa, Siti Rahmah; Kee, Yeh Yee; Zhao, Ce Zhou; Hassan, Zainuriah; Cheong, Kuan Yew

    2016-03-01

    Effects of rapid thermal annealing at different temperatures (700-900 °C) on structural, chemical, and electrical characteristics of lanthanum (La) doped zirconium oxide (ZrO2) atomic layer deposited on 4H-SiC substrates have been investigated. Chemical composition depth profiling analysis using X-ray photoelectron spectroscopy (XPS) and cross-sectional studies using high resolution transmission electron microscopy equipped with energy dispersive X-ray spectroscopy line scan analysis were insufficient to justify the presence of La in the investigated samples. The minute amount of La present in the bulk oxide was confirmed by chemical depth profiles of time-of-flight secondary ion mass spectrometry. The presence of La in the ZrO2 lattice led to the formation of oxygen vacancies, which was revealed through binding energy shift for XPS O 1s core level spectra of Zrsbnd O. The highest amount of oxygen vacancies in the sample annealed at 700 °C has yielded the acquisition of the highest electric breakdown field (∼ 6.3 MV/cm) and dielectric constant value (k = 23) as well as the highest current-time (I-t) sensor response towards oxygen gas. The attainment of both the insulating and catalytic properties in the La doped ZrO2 signified the potential of the doped ZrO2 as a metal reactive oxide on 4H-SiC substrate.

  4. Chemical Stockpile Disposal Program rapid accident assessment

    SciTech Connect

    Chester, C.V.

    1990-08-01

    This report develops a scheme for the rapid assessment of a release of toxic chemicals resulting from an accident in one of the most chemical weapon demilitarization plants or storage areas. The system uses such inputs as chemical and pressure sensors monitoring the plant and reports of accidents radioed to the Emergency Operations Center by work parties or monitoring personnel. A size of release can be estimated from previous calculations done in the risk analysis, from back calculation from an open-air chemical sensor measurement, or from an estimated percentage of the inventory of agent at the location of the release. Potential consequences of the estimated release are calculated from real-time meteorological data, surrounding population data, and properties of the agent. In addition to the estimated casualties, area coverage and no-death contours vs time would be calculated. Accidents are assigned to one of four categories: community emergencies, which are involve a threat to off-site personnel; on-post emergencies, which involve a threat only to on-site personnel; advisory, which involves a potential for threat to on-site personnel; and chemical occurrence, which can produce an abnormal operating condition for the plant but no immediate threat to on-site personnel. 9 refs., 20 tabs.

  5. Chemical preconcentrator with integral thermal flow sensor

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-01-01

    A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

  6. Rapidity-dependent chemical potentials in a statistical approach

    NASA Astrophysics Data System (ADS)

    Broniowski, Wojciech; Biedroń, Bartłomiej

    2008-04-01

    We present a single-freeze-out model with thermal and geometric parameters dependent on the position within the fireball and use it to describe the rapidity distribution and transverse-momentum spectra of pions, kaons, protons and antiprotons measured at RHIC at \\sqrt{s_NN}=200\\,\\, GeV by BRAHMS. THERMINATOR is used to perform the necessary simulation, which includes all resonance decays. The result of the fit to the data is the expected growth of the baryon and strange chemical potentials with the spatial rapidity αpar. The value of the baryon chemical potential at αpar ~ 3 is about 200 MeV, i.e. it lies in the range of the highest SPS energies. The chosen geometry of the fireball has a decreasing transverse size as the magnitude of αpar is increased, which also corresponds to decreasing transverse flow. The strange chemical potential obtained from the fit to the K+/K- ratio is such that the local strangeness density in the fireball is compatible with zero. The resulting rapidity distribution of net protons are described qualitatively within the statistical approach. As a result of our study, the knowledge of the 'topography' of the fireball is acquired, allowing for other analyses and predictions. Research supported by the Polish Ministry of Education and Science, grants N202 034 32/0918 and 2 P03B 02828.

  7. Rapid thermal processing of III-nitrides

    SciTech Connect

    Hong, J.; Lee, J.W.; Vartuli, C.B.; Abernathy, C.R.; MacKenzie, J.D.; Donovan, S.M.; Pearton, S.J.; Zolper, J.C.

    1997-05-01

    High-temperature annealing is necessary in a number of applications for III-nitrides, including activation of Si{sup +} or Mg{sup +} implants for doping, maximization of implant-isolated regions, and Ohmic contact sintering. We have compared two methods for protection against surface dissociation of GaN, AlN, InN, In{sub x}Ga{sub 1{minus}x}N, and In{sub x}Al{sub 1{minus}x}N during rapid thermal processing in N{sub 2} ambients. In the first method, AlN or InN powder is placed in the reservoirs of a SiC-coated graphite susceptor and provides a N{sub 2} overpressure for the nitride samples within the susceptor. In the second method, the nitrides are placed face down on other III{endash}V substrates during annealing. In both techniques N loss from the nitride surface is found to occur at {ge}1050{degree}C for GaN and {ge}1100{degree}C for AlN and {ge}InN, as measured by Auger electron spectroscopy. Real surface roughening is generally significant only for the In-containing materials, with GaN and AlN retaining smooth morphologies even up to 1150{degree}C unless H{sub 2} is present in the annealing ambient. When InN powder is used in the susceptor, there is In droplet condensation on the surfaces of all samples above {approximately}750{degree}C leading to higher root-mean-square surface roughness measured by atomic force microscopy. The N{sub 2}-deficient surfaces of the binary nitrides become strongly n type, while those of ternaries become less conducting. At temperature of 850{endash}900{degree}C, the In droplets on thermally degraded ternaries also begin to evaporate, leading to an apparent improvement in morphology. The presence of H{sub 2} or O{sub 2} in the annealing ambient lowers the dissociation temperature of each of the nitrides by 100{endash}200{degree}C, due to an enhancement in N{sub 2} removal. {copyright} {ital 1997 American Vacuum Society.}

  8. Adaptive spectroscopy for rapid chemical identification

    NASA Astrophysics Data System (ADS)

    Dinakarababu, Dineshbabu V.; Gehm, Michael E.

    2009-05-01

    Spectroscopic chemical identification is fundamentally a classification task where sensor measurements are compared to a library of known compounds with the hope of determining an unambiguous match. When the measurement signal-to-noise ratio (SNR) is very low (e.g. from short exposure times, weak analyte signatures, etc.), classification can become very challenging, requiring a multiple-measurement framework such as sequential hypothesis testing, and dramatically extending the time required to classify the sample. There are a wide variety of defense, security, and medical applications where rapid identification is essential, and hence such delays are disastrous. In this paper, we discuss an approach for adaptive spectroscopic detection where the introduction of a tunable spectral filter enables the system to measure the projection of the sample spectrum along arbitrary bases in the spectral domain. The net effect is a significant reduction in time-to-decision in low SNR cases. We describe the general operation of such an instrument, present results from initial simulations, and report on our experimental progress.

  9. Thermo-chemical dynamics and chemical quasi-equilibrium of plasmas in thermal non-equilibrium

    SciTech Connect

    Massot, Marc; Graille, Benjamin; Magin, Thierry E.

    2011-05-20

    We examine both processes of ionization by electron and heavy-particle impact in spatially uniform plasmas at rest in the absence of external forces. A singular perturbation analysis is used to study the following physical scenario, in which thermal relaxation becomes much slower than chemical reactions. First, electron-impact ionization is investigated. The dynamics of the system rapidly becomes close to a slow dynamics manifold that allows for defining a unique chemical quasi-equilibrium for two-temperature plasmas and proving that the second law of thermodynamics is satisfied. Then, all ionization reactions are taken into account simultaneously, leading to a surprising conclusion: the inner layer for short time scale (or time boundary layer) directly leads to thermal equilibrium. Global thermo-chemical equilibrium is reached within a short time scale, involving only chemical reactions, even if thermal relaxation through elastic collisions is assumed to be slow.

  10. Earth's interdependent thermal, structural, and chemical evolution

    NASA Astrophysics Data System (ADS)

    Hofmeister, A.; Criss, R. E.

    2012-12-01

    The popular view that 30-55% of Earth's global power is primordial, with deep layers emanating significant power, rests on misunderstandings and models that omit magmatism and outgassing. These processes link Earth's chemical and thermal evolution, while creating layers, mainly because magmas transport latent heat and radioactive isotopes rapidly upwards. We link chemistry to heat flow, measured and theoretical, to understand the interior layering and workings. Quasi-steady state conditions describe most of Earth's history: (1) Accretion was cold and was not a source of deep heat. (2) Friction during core formation cannot have greatly heated the interior (thermodynamics plus buoyancy). (3) Conduction is the governing microscopic mechanism in the deep Earth. (4) Using well-constrained values of thermal conductivity (k), we find that homogeneously distributed radionuclides provide extremely high internal temperature (T) under radial symmetry. Moreover, for any given global power, sequestering heat producing elements into the upper mantle reduces Earth's central temperature by a factor of 10 from a homogeneous distribution. Hence, (5) core formation was a major cooling event. From modern determinations of k(T) we provide a reference conductive geotherm. Present-day global power of 30 TW from heat flux measurements and sequestering of heat producing elements in the upper mantle and transition zone, produces nearly isothermal T = 5300 K below 670 km, which equals experimentally determined freezing of pure Fe0 at the inner core boundary. Core freezing buffers the interior temperatures, while the Sun constrains the surface temperature, providing steady state conditions: Earth's deep interior is isothermal due to these constraints, low flux and high k. Our geotherms point to a stagnant lower mantle and convection above 670 km. Rotational flattening cracks the brittle lithosphere, providing paths for buoyant magmas to ascend. Release of latent heat augments the conductive

  11. CHEMICAL REACTIVITY TEST: Assessing Thermal Stability and Chemical Compatibility

    SciTech Connect

    Koerner, J; Tran, T; Gagliardi, F; Fontes, A

    2005-04-21

    The thermal stability of high explosive (HE) and its compatibility with other materials are of critical importance in storage and handling practices. These properties are measured at Lawrence Livermore National Laboratory using the chemical reactivity test (CRT). The CRT measures the total amount of gas evolved from a material or combination of materials after being heat treated for a designated period of time. When the test result is compared to a threshold value, the relative thermal stability of an HE or the compatibility of an HE with other materials is determined. We describe the CRT testing apparatus, the experimental procedure, and the comparison methodology and provide examples and discussion of results.

  12. Rapid Thermal Processing (RTP) of semiconductors in space

    NASA Technical Reports Server (NTRS)

    Anderson, T. J.; Jones, K. S.

    1993-01-01

    The progress achieved on the project entitled 'Rapid Thermal Processing of Semiconductors in Space' for a 12 month period of activity ending March 31, 1993 is summarized. The activity of this group is being performed under the direct auspices of the ROMPS program. The main objective of this program is to develop and demonstrate the use of advanced robotics in space with rapid thermal process (RTP) of semiconductors providing the test technology. Rapid thermal processing is an ideal processing step for demonstration purposes since it encompasses many of the characteristics of other processes used in solid state device manufacturing. Furthermore, a low thermal budget is becoming more important in existing manufacturing practice, while a low thermal budget is critical to successful processing in space. A secondary objective of this project is to determine the influence of microgravity on the rapid thermal process for a variety of operating modes. In many instances, this involves one or more fluid phases. The advancement of microgravity processing science is an important ancillary objective.

  13. Thermal luminescence spectroscopy chemical imaging sensor.

    PubMed

    Carrieri, Arthur H; Buican, Tudor N; Roese, Erik S; Sutter, James; Samuels, Alan C

    2012-10-01

    The authors present a pseudo-active chemical imaging sensor model embodying irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. We elaborate on various optimizations, simulations, and animations of the integrated sensor design and apply it to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor must measure and process a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully. PMID:23033092

  14. Thermal, chemical, and mechanical cookoff modeling

    SciTech Connect

    Hobbs, M.L.; Baer, M.R.; Gross, R.J.

    1994-08-01

    A Thermally Reactive, Elastic-plastic eXplosive code, TREX, has been developed to analyze coupled thermal, chemical and mechanical effects associated with cookoff simulation of confined or unconfined energetic materials. In confined systems, pressure buildup precedes thermal runaway, and unconfined energetic material expands to relieve high stress. The model was developed based on nucleation, decomposition chemistry, and elastic/plastic mechanical behavior of a material with a distribution of internal defects represented as clusters of spherical inclusions. A local force balance, with mass continuity constraints, forms the basis of the model requiring input of temperature and reacted gas fraction. This constitutive material model has been incorporated into a quasistatic mechanics code SANTOS as a material module which predicts stress history associated with a given strain history. The thermal-chemical solver XCHEM has been coupled to SANTOS to provide temperature and reacted gas fraction. Predicted spatial history variables include temperature, chemical species, solid/gas pressure, solid/gas density, local yield stress, and gas volume fraction. One-Dimensional Time to explosion (ODTX) experiments for TATB and PBX 9404 (HMX and NC) are simulated using global multistep kinetic mechanisms and the reactive elastic-plastic constitutive model. Pressure explosions, rather than thermal runaway, result in modeling slow cookoff experiments of confined conventional energetic materials such as TATB. For PBX 9404, pressure explosions also occur at fast cookoff conditions because of low temperature reactions of nitrocellulose resulting in substantial pressurization. A demonstrative calculation is also presented for reactive heat flow in a hollow, propellant-filled, stainless steel cylinder, representing a rocket motor. This example simulation show

  15. Thermal energy harvesting plasmonic based chemical sensors.

    PubMed

    Karker, Nicholas; Dharmalingam, Gnanaprakash; Carpenter, Michael A

    2014-10-28

    Detection of gases such as H2, CO, and NO2 at 500 °C or greater requires materials with thermal stability and reliability. One of the major barriers toward integration of plasmonic-based chemical sensors is the requirement of multiple components such as light sources and spectrometers. In this work, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The combination of a plasmonic-based energy harvesting sensing paradigm with PCA analysis offers a novel path toward simplification and integration of plasmonic-based sensing methods. PMID:25280004

  16. Raman scattering from rapid thermally annealed tungsten silicide

    NASA Technical Reports Server (NTRS)

    Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.

    1987-01-01

    Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.

  17. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD).

    PubMed

    Böke, Frederik; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido; Fischer, Horst

    2016-07-20

    Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous

  18. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD).

    PubMed

    Böke, Frederik; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido; Fischer, Horst

    2016-07-20

    Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous

  19. Rapid thermal cycling of new technology solar array blanket coupons

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.

    1990-01-01

    NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.

  20. Rapid Charging of Thermal Energy Storage Materials through Plasmonic Heating

    PubMed Central

    Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao

    2014-01-01

    Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites. PMID:25175717

  1. Multidimensional thermal-chemical cookoff modeling

    SciTech Connect

    Baer, M.R.; Gross, R.J.; Gartling, D.K.; Hobbs, M.L.

    1994-08-01

    Multidimensional thermal/chemical modeling is an essential step in the development of a predictive capability for cookoff of energetic materials in systems subjected to abnormal thermal environments. COYOTE II is a state-of-the-art two- and three-dimensional finite element code for the solution of heat conduction problems including surface-to-surface thermal radiation heat transfer and decomposition chemistry. Multistep finite rate chemistry is incorporated into COYOTE II using an operator-splitting methodology; rate equations are solved element-by-element with a modified matrix-free stiff solver, CHEMEQ. COYOTE II is purposely designed with a user-oriented input structure compatible with the database, the pre-processing mesh generation, and the post-processing tools for data visualization shared with other engineering analysis codes available at Sandia National Laboratories. As demonstrated in a companion paper, decomposition during cookoff in a confined or semi-confined system leads to significant mechanical behavior. Although mechanical effect are not presently considered in COYOTE II, the formalism for including mechanics in multidimensions is under development.

  2. Rapid thermal processing of Czochralski silicon substrates: Defects, denuded zones, and minority carrier lifetime

    NASA Technical Reports Server (NTRS)

    Rozgonyi, G. S.; Yang, D. K.; Cao, Y. H.; Radzimski, Z.

    1986-01-01

    Rapid thermal processing (RTP) of Czochralski (Cz) silicon substrates is discussed with its attendant effects on defects, denuded zones, and minority carrier lifetime. Preferential chemical etching and X-ray topography was used to delineate defects which were subsequently correlated with minority carrier lifetime; determined by a pulse metallo-organic decompositon (MOD) test device. The X-ray delineation of grown-in defects was enhanced by a lithium decoration procedure. Results, thus far, show excellent correlation between process-induced defects.

  3. Energy analysis of thermal, chemical, and metallurgical processes

    SciTech Connect

    Szargut, J.; Morris, D.R.; Steward, F.R.

    1988-01-01

    This book consists of the following chapters: The exergy concept and exergy losses; Calculation of exergy; Physical and chemical exergy of typical substances; Exergy analysis of typical thermal and chemical processes; Cumulative exergy consumption and cumulative degree of perfection; Reduction of external exergy losses; Exergy analysis of major thermal and chemical processes; Thermoeconomic applications of exergy; and Ecological applications of exergy.

  4. Photo, thermal and chemical degradation of riboflavin

    PubMed Central

    Kazi, Sadia Hafeez; Ahmed, Sofia; Anwar, Zubair; Ahmad, Iqbal

    2014-01-01

    Summary Riboflavin (RF), also known as vitamin B2, belongs to the class of water-soluble vitamins and is widely present in a variety of food products. It is sensitive to light and high temperature, and therefore, needs a consideration of these factors for its stability in food products and pharmaceutical preparations. A number of other factors have also been identified that affect the stability of RF. These factors include radiation source, its intensity and wavelength, pH, presence of oxygen, buffer concentration and ionic strength, solvent polarity and viscosity, and use of stabilizers and complexing agents. A detailed review of the literature in this field has been made and all those factors that affect the photo, thermal and chemical degradation of RF have been discussed. RF undergoes degradation through several mechanisms and an understanding of the mode of photo- and thermal degradation of RF may help in the stabilization of the vitamin. A general scheme for the photodegradation of RF is presented. PMID:25246959

  5. Rapid evolution of thermal tolerance in the water flea Daphnia

    NASA Astrophysics Data System (ADS)

    Geerts, A. N.; Vanoverbeke, J.; Vanschoenwinkel, B.; van Doorslaer, W.; Feuchtmayr, H.; Atkinson, D.; Moss, B.; Davidson, T. A.; Sayer, C. D.; De Meester, L.

    2015-07-01

    Global climate is changing rapidly, and the degree to which natural populations respond genetically to these changes is key to predicting ecological responses. So far, no study has documented evolutionary changes in the thermal tolerance of natural populations as a response to recent temperature increase. Here, we demonstrate genetic change in the capacity of the water flea Daphnia to tolerate higher temperatures using both a selection experiment and the reconstruction of evolution over a period of forty years derived from a layered dormant egg bank. We observed a genetic increase in thermal tolerance in response to a two-year ambient +4 °C selection treatment and in the genotypes of natural populations from the 1960s and 2000s hatched from lake sediments. This demonstrates that natural populations have evolved increased tolerance to higher temperatures, probably associated with the increased frequency of heat waves over the past decades, and possess the capacity to evolve increased tolerance to future warming.

  6. Effect of Rapid Thermal Cooling on Mechanical Rock Properties

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Kemeny, John; Nickerson, Mark

    2014-11-01

    Laboratory tests have been conducted to investigate the effects of rapid thermal cooling on various rock specimens including igneous, sedimentary, and metamorphic rocks. At first, various types of thermal loading were conducted: heating up to 100, 200, and 300 °C, followed by rapid cooling with a fan. In addition, multiple cyclic thermal cooling (10, 15 and 20 cycles) with a maximum temperature of only 100 °C was conducted. Experiments included edge notched disc (END) tests to determine the Mode I fracture toughness, Brazilian disc tests to determine tensile strength, seismic tests to determine P-wave velocity, and porosity tests leading to meaningful results. Even though only small changes of temperature (rapid cooling from 100 °C to room temperature) were applied, the results showed that crack growth occurred in some rock types (granite, diabase with ore veins, and KVS) while crack healing occurred in other rock types (diabase without ore veins, quartzite, and skarn). To better understand the results, 3D transient thermo-mechanical analysis was conducted using the ANSYS program. The results indicated that there was a thin region near the outside of the specimen where large tensile stresses occur and microcracking would be expected, and that there was a large area in the middle of the specimen where lower magnitude compressive stresses occur and crack closure would be expected. It was found that the more heterogeneous and more coarse-grained rock types are more likely to exhibit crack growth, while less heterogeneous and more fine-grained rocks are more likely to exhibit crack healing.

  7. THERMAL AND CHEMICAL EVOLUTION OF COLLAPSING FILAMENTS

    SciTech Connect

    Gray, William J.; Scannapieco, Evan

    2013-05-10

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z Almost-Equal-To 0.1 Z{sub Sun} filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form a dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10{sup -3} Z{sub Sun} filaments, the collapse proceeds much more slowly. This is mostly due to the lower initial temperatures, which lead to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbursting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occurs. We find that we achieve similar accretion rates as NGC 5253 but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  8. Thermal and Chemical Evolution of Collapsing Filaments

    SciTech Connect

    Gray, William J.; Scannapieco, Evan

    2013-01-15

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10-3Z filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253 but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  9. Artocarpus hirsuta lectin. Differential modes of chemical and thermal denaturation.

    PubMed

    Gaikwad, Sushama M; Gurjar, Madhura M; Khan, M Islam

    2002-03-01

    Unfolding, inactivation and dissociation of the lectin from Artocarpus hirsuta seeds were studied by chemical (guanidine hydrochloride, GdnHCl) and thermal denaturation. Conformational transitions were monitored by intrinsic fluorescence and circular dichroism. The gradual red shift in the emission maxima of the native protein from 335 to 356 nm, change in the ellipticity at 218 nm and simultaneous decrease in the sugar binding activity were observed with increasing concentration of GdnHCl in the pH range between 4.0 and 9.0. The unfolding and inactivation by GdnHCl were partially reversible. Gel filtration of the lectin in presence of 1-6 m GdnHCl showed that the protein dissociates reversibly into partially unfolded dimer and then irreversibly into unfolded inactive monomer. Thermal denaturation was irreversible. The lectin loses activity rapidly above 45 degrees C. The exposure of hydrophobic patches, distorted secondary structure and formation of insoluble aggregates of the thermally inactivated protein probably leads to the irreversible denaturation.

  10. Rapid fingerprinting of milk thermal processing history by intact protein mass spectrometry with nondenaturing chromatography.

    PubMed

    Johnson, Phil; Philo, Mark; Watson, Andrew; Mills, E N Clare

    2011-12-14

    Thermal processing of foods results in proteins undergoing conformational changes, aggregation, and chemical modification notably with sugars via the Maillard reaction. This can impact their functional, nutritional, and allergenic properties. Native size-exclusion chromatography with online electrospray mass spectrometry (SEC-ESI-MS) was used to characterize processing-induced changes in milk proteins in a range of milk products. Milk products could be readily grouped into either pasteurized liquid milks, heavily processed milks, or milk powders by SEC behavior, particularly by aggregation of whey proteins by thermal processing. Maillard modification of all major milk proteins by lactose was observed by MS and was primarily present in milk powders. The method developed is a rapid tool for fingerprinting the processing history of milk and has potential as a quality control method for food ingredient manufacture. The method described here can profile milk protein oligomeric state, aggregation, and Maillard modification in a single shot, rapid analysis. PMID:22007861

  11. Rapid Determination of the Thermal Nociceptive Threshold in Diabetic Rats

    PubMed Central

    Alshahrani, Saeed; Fernandez-Conti, Filipe; Araujo, Amanda; DiFulvio, Mauricio

    2012-01-01

    Painful diabetic neuropathy (PDN) is characterized by hyperalgesia i.e., increased sensitivity to noxious stimulus, and allodynia i.e., hypersensitivity to normally innocuous stimuli1. Hyperalgesia and allodynia have been studied in many different rodent models of diabetes mellitus2. However, as stated by Bölcskei et al, determination of "pain" in animal models is challenging due to its subjective nature3. Moreover, the traditional methods used to determine behavioral responses to noxious thermal stimuli usually lack reproducibility and pharmacological sensitivity3. For instance, by using the hot-plate method of Ankier4, flinch, withdrawal and/or licking of either hind- and/or fore-paws is quantified as reflex latencies at constant high thermal stimuli (52-55 °C). However, animals that are hyperalgesic to thermal stimulus do not reproducibly show differences in reflex latencies using those supra-threshold temperatures3,5. As the recently described method of Bölcskei et al.6, the procedures described here allows for the rapid, sensitive and reproducible determination of thermal nociceptive thresholds (TNTs) in mice and rats. The method uses slowly increasing thermal stimulus applied mostly to the skin of mouse/rat plantar surface. The method is particularly sensitive to study anti-nociception during hyperalgesic states such as PDN. The procedures described bellow are based on the ones published in detail by Almási et al5 and Bölcskei et al3. The procedures described here have been approved the Laboratory Animal Care and Use Committee (LACUC), Wright State University. PMID:22643870

  12. Success of Rapid Continuous Thermal Demagnetization When Conventional Methods Failed

    NASA Astrophysics Data System (ADS)

    Coe, R. S.; Le Goff, M.

    2014-12-01

    Conventional stepwise thermal demagnetization of samples spanning a basalt flow erupted during a polarity transition at Steens Mountain, Oregon yielded scattered directions of high-temperature remanence, whereas the results of continuous thermal demagnetization cluster convincingly among the characteristic directions of the next several flows below. The continuous demagnetization was performed using the Triaxe1, a 3-axis vibrating sample magnetometer in which the directions of ~1 cm3 sub-samples were measured repeatedly as temperature increased during heated from 20 to 500-550°C in only 12-13 minutes. The demagnetization trajectories suggest that normal-polarity secondary magnetization, acquired both at room temperature in today's polarity chron and during modest reheating in a normal field during cooling of the overlying flow, was responsible for the failure of conventional thermal demagnetization. Our favored explanation is that alteration during ordinary thermal demagnetization raised the blocking temperature while preserving the direction of the overprint, thereby masking the primary component. The rapid heating (~40°C/min) during continuous demagnetization appears to have been fast enough to demagnetize the normal overprint before this masking could happen. Thermomagnetic cycles exhibit significant irreversibility starting around 300°C, both in air and in argon. Changes in room-temperature hysteresis parameters after heating in air to temperature T also start to change around T=300°C. Titanomagnetite of composition TM65-70, partially oxidized to titanomaghemite, plus a minor low-Ti, oxyexsolved phase are observed in thin section and inferred from thermomagnetic curves. Thus, inversion of secondary titanomaghemite that carries a normal overprint could be the masking mechanism. The failure of AF demagnetization, on the other hand, we attribute to overlapping coercivity spectra of primary and secondary magnetization. 1Le Goff and Gallet, 2004, Earth Planet

  13. Rapid identification of chemical genetic interactions in Saccharomyces cerevisiae.

    PubMed

    Dilworth, David; Nelson, Christopher J

    2015-04-05

    Determining the mode of action of bioactive chemicals is of interest to a broad range of academic, pharmaceutical, and industrial scientists. Saccharomyces cerevisiae, or budding yeast, is a model eukaryote for which a complete collection of ~6,000 gene deletion mutants and hypomorphic essential gene mutants are commercially available. These collections of mutants can be used to systematically detect chemical-gene interactions, i.e. genes necessary to tolerate a chemical. This information, in turn, reports on the likely mode of action of the compound. Here we describe a protocol for the rapid identification of chemical-genetic interactions in budding yeast. We demonstrate the method using the chemotherapeutic agent 5-fluorouracil (5-FU), which has a well-defined mechanism of action. Our results show that the nuclear TRAMP RNA exosome and DNA repair enzymes are needed for proliferation in the presence of 5-FU, which is consistent with previous microarray based bar-coding chemical genetic approaches and the knowledge that 5-FU adversely affects both RNA and DNA metabolism. The required validation protocols of these high-throughput screens are also described.

  14. Rapid thermal annealing of indium phosphide compound semiconductors

    NASA Technical Reports Server (NTRS)

    Biedenbender, Michael D.; Kapoor, Vik J.; Williams, W. D.

    1987-01-01

    The rapid thermal annealing (RTA) of indium phosphide (InP) substrates using a proximity contact method and silicon nitride encapsulation is investigated. The surface conditions of the InP substrates following cleaning with procedures A and B are analyzed. Procedure A involves using an iodic acid solution to remove work-damage InP surface layers and B is a degasssing process and hydrofluoric acid solution for native oxide removal. AES, XPS, and SIMS data of the proximity contact and silicon nitride encapsulated annealed samples are examined. The data reveal that RTA using proximity contact with silicon wafers does not provide adequate protection; however, the InP sample is successfully annealed when protected by a silicon nitride encapsulant.

  15. Rapid method for isolating targeted organic chemicals from biological matrices

    SciTech Connect

    Caton, J.E.; Griest, W.H.; Watson, A.P.; Buchanan, M.V. ); Hazen, K.H. )

    1994-01-01

    The initial development is reported for a novel countercurrent filtration/dialysis and solid phase extractant system for the rapid isolation of low molecular weight target compounds from biological media. Except for piperazine (a highly water-soluble drug), recoveries of 50 - 95% were achieved for chemical warfare agent simulants and anthelmintic drugs extracted from meat, grain, or milk. The results suggest the potential for broad applications to complex samples such as environmental media and physiological specimens which traditionally require extensive fractionation prior to analysis.

  16. Effects of Wafer Emissivity on Rapid Thermal Processing Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Chen, D. H.; DeWitt, D. P.; Tsai, B. K.; Kreider, K. G.; Kimes, W. A.

    2003-09-01

    Lightpipe radiation thermometers (LPRTs) are widely used to measure wafer temperatures in rapid thermal processing (RTP) tools. To use blackbody-calibrated LPRTs to infer the wafer temperature, it is necessary to build a model to predict the effective emissivity accounting for the wafer and chamber radiative properties as well as geometrical features of the chamber. The uncertainty associated with model-corrected temperatures can be investigated using test wafers instrumented with thin-film thermocouples (TFTCs) on which the LPRT target spot has been coated with films of different emissivity. A finite-element model of the wafer-chamber arrangement was used to investigate the effects of Pt spot (ɛs = 0.25) and Au spot (ɛs = 0.05) on the temperature distribution of test wafers with spectral emissivities of 0.65 and 0.84. The effects of the shield reflectivity and the cool lightpipe (LP) tip on the wafer temperature were evaluated. A radiance analysis method was developed, and a comparison of model-based predictions with experimental observations was made on a 200 mm diameter wafer in the NIST RTP test bed. The temperature rises caused by the low-emissivity spot were predicted and the cooling effect of the LP tip was determined. The results of the study are important for developing the model-based corrections for temperature measurements and related uncertainties using LPRTs in semiconductor thermal processes.

  17. Pore Size Control of Ultra-thin Silicon Membranes by Rapid Thermal Carbonization

    PubMed Central

    Fang, David Z.; Striemer, Christopher C.; Gaborski, Thomas R.; McGrath, James L.; Fauchet, Philippe M.

    2010-01-01

    Rapid thermal carbonization in a dilute acetylene (C2H2) atmosphere has been used to chemically modify and precisely tune the pore size of ultrathin porous nanocrystalline silicon (pnc-Si). The magnitude of size reduction was controlled by varying the process temperature and time. Under certain conditions, the carbon coating displayed atomic ordering indicative of graphene layer formation conformal to the pore walls. Initial experiments show that carbonized membranes follow theoretical predictions for hydraulic permeability and retain the precise separation capabilities of untreated membranes. PMID:20839831

  18. Rapid screening of environmental chemicals for estrogen receptor binding capacity.

    PubMed Central

    Bolger, R; Wiese, T E; Ervin, K; Nestich, S; Checovich, W

    1998-01-01

    Over the last few years, an increased awareness of endocrine disrupting chemicals (EDCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity in a wide range of environmental and industrial chemicals. While it is clear that in vivo methods will be required to identify adverse effects produced by these chemicals, in vitro assays can define particular mechanisms of action and have the potential to be employed as rapid and low-cost screens for use in large scale EDC screening programs. Traditional estrogen receptor (ER) binding assays are useful for characterizing a chemical's potential to be an estrogen-acting EDC, but they involve displacement of a radioactive ligand from crude receptor preparations at low temperatures. The usefulness of these assays for realistically determining the ER binding interactions of weakly estrogenic environmental and industrial compounds that have low aqueous solubility is unclear. In this report, we present a novel fluorescence polarization (FP) method that measures the capacity of a competitor chemical to displace a high affinity fluorescent ligand from purified, recombinant human ER-[alpha] at room temperature. The ER-[alpha] binding interactions generated for 15 natural and synthetic compounds were found to be similar to those determined with traditional receptor binding assays. We also discuss the potential to employ this FP technology to binding studies involving ER-ss and other receptors. Thus, the assay introduced in this study is a nonradioactive receptor binding method that shows promise as a high throughput screening method for large-scale testing of environmental and industrial chemicals for ER binding interactions. Images Figure 2 Figure 3 Figure 4 PMID:9721254

  19. Lunar Reconnaissance Orbiter (LRO) Rapid Thermal Design Development

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Cottingham, Christine; Garrison, Matthew; Melak, Tony; Peabody, Sharon; Powers, Dan

    2009-01-01

    The Lunar Reconnaissance Orbiter (LRO) project had a rapid development schedule starting with project conception in spring of 2004, instrument and launch vehicle selection late in 2005 and then launch in early 2009. The lunar thermal environment is one of the harshest in our solar system with the heavy infrared loading of the moon due to low albedo, lack of lunar atmosphere, and low effective regolith conduction. This set of constraints required a thermal design which maximized performance (minimized radiator area and cold control heater power) and minimized thermal hardware build at the orbiter level (blanketing, and heater service). The orbiter design located most of the avionics on an isothermalized heat pipe panel called the IsoThermal Panel (ITP). The ITP was coupled by dual bore heat pipes to an Optical Solar Reflector (OSR) covered heat pipe radiator. By coupling all of the avionics to one system, the hardware was simplified. The seven instruments were mainly heritage instruments which resulted in their desired radiators being located by their heritage design. This minimized instrument redesigns and therefore allowed them to be delivered earlier, though it resulted in a more complex orbiter level blanket and heater service design. Three of the instruments were mounted on a tight pointing M55J optical bench that needed to be covered in heaters to maintain pointing. Two were mounted to spacecraft controlled radiators. One was mounted to the ITP Dual Bores. The last was mounted directly to the bus structure on the moon facing panel. The propulsion system utilized four-20 pound insertion thrusters and eight-5 pound attitude control thrusters (ACS) in addition to 1000 kg of fuel in two large tanks. The propulsion system had a heater cylinder and a heated mounting deck for the insertion thrusters which coupled most of the propulsion design together simplifying the heater design. The High Gain Antenna System (HGAS) and Solar Array System (SAS) used dual axis

  20. Thermal Conductivity of Gas Mixtures in Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Brokaw, Richard S.

    1960-01-01

    The expression for the thermal conductivity of gas mixtures in chemical equilibrium is presented in a simpler and less restrictive form. This new form is shown to be equivalent to the previous equations.

  1. Jet quenching and holographic thermalization with a chemical potential

    NASA Astrophysics Data System (ADS)

    Caceres, Elena; Kundu, Arnab; Yang, Di-Lun

    2014-03-01

    We investigate jet quenching of virtual gluons and thermalization of a strongly-coupled plasma with a non-zero chemical potential via the gauge/gravity duality. By tracking a charged shell falling in an asymptotic AdS d+1 background for d = 3 and d = 4, which is characterized by the AdS-Reissner-Nordström-Vaidya (AdS-RN-Vaidya) geometry, we extract a thermalization time of the medium with a non-zero chemical potential. In addition, we study the falling string as the holographic dual of a virtual gluon in the AdS-RN-Vaidya spacetime. The stopping distance of the massless particle representing the tip of the falling string in such a spacetime could reveal the jet quenching of an energetic light probe traversing the medium in the presence of a chemical potential. We find that the stopping distance decreases when the chemical potential is increased in both AdS-RN and AdS-RN-Vaidya spacetimes, which correspond to the thermalized and thermalizing media respectively. Moreover, we find that the soft gluon with an energy comparable to the thermalization temperature and chemical potential in the medium travels further in the non-equilibrium plasma. The thermalization time obtained here by tracking a falling charged shell does not exhibit, generically, the same qualitative features as the one obtained studying non-local observables. This indicates that — holographically — the definition of thermalization time is observer dependent and there is no unambiguos definition.

  2. Chemical, thermal and mechanical stabilities of metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Howarth, Ashlee J.; Liu, Yangyang; Li, Peng; Li, Zhanyong; Wang, Timothy C.; Hupp, Joseph T.; Farha, Omar K.

    2016-03-01

    The construction of thousands of well-defined, porous, metal-organic framework (MOF) structures, spanning a broad range of topologies and an even broader range of pore sizes and chemical functionalities, has fuelled the exploration of many applications. Accompanying this applied focus has been a recognition of the need to engender MOFs with mechanical, thermal and/or chemical stability. Chemical stability in acidic, basic and neutral aqueous solutions is important. Advances over recent years have made it possible to design MOFs that possess different combinations of mechanical, thermal and chemical stability. Here, we review these advances and the associated design principles and synthesis strategies. We focus on how these advances may render MOFs effective as heterogeneous catalysts, both in chemically harsh condensed phases and in thermally challenging conditions relevant to gas-phase reactions. Finally, we briefly discuss future directions of study for the production of highly stable MOFs.

  3. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    SciTech Connect

    Hampikian, J.M.; Carter, W.B.

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  4. On-line DNA analysis system with rapid thermal cycling

    DOEpatents

    Swerdlow, H.P.; Wittwer, C.T.

    1999-08-10

    This application describes an apparatus particularly suited for subjecting biological samples to any necessary sample preparation tasks, subjecting the sample to rapid thermal cycling, and then subjecting the sample to subsequent on-line analysis using one or more of a number of analytical techniques. The apparatus includes a chromatography device including an injection means, a chromatography pump, and a chromatography column. In addition, the apparatus also contains a capillary electrophoresis device consisting of a capillary electrophoresis column with an inlet and outlet end, a means of injection, and means of applying a high voltage to cause the differential migration of species of interest through the capillary column. Effluent from the liquid chromatography column passes over the inlet end of the capillary electrophoresis column through a tee structure and when the loading of the capillary electrophoresis column is desired, a voltage supply is activated at a precise voltage and polarity over a specific duration to cause sample species to be diverted from the flowing stream to the capillary electrophoresis column. A laser induced fluorescence detector preferably is used to analyze the products separated while in the electrophoresis column. 6 figs.

  5. On-line DNA analysis system with rapid thermal cycling

    DOEpatents

    Swerdlow, Harold P.; Wittwer, Carl T.

    1999-01-01

    An apparatus particularly suited for subjecting biological samples to any necessary sample preparation tasks, subjecting the sample to rapid thermal cycling, and then subjecting the sample to subsequent on-line analysis using one or more of a number of analytical techniques. The apparatus includes a chromatography device including an injection means, a chromatography pump, and a chromatography column. In addition, the apparatus also contains a capillary electrophoresis device consisting of a capillary electrophoresis column with an inlet and outlet end, a means of injection, and means of applying a high voltage to cause the differential migration of species of interest through the capillary column. Effluent from the liquid chromatography column passes over the inlet end of the capillary electrophoresis column through a tee structure and when the loading of the capillary electrophoresis column is desired, a voltage supply is activated at a precise voltage and polarity over a specific duration to cause sample species to be diverted from the flowing stream to the capillary electrophoresis column. A laser induced fluorescence detector preferably is used to analyze the products separated while in the electrophoresis column.

  6. Next generation chemical proteomic tools for rapid enzyme profiling.

    PubMed

    Uttamchandani, Mahesh; Lu, Candy H S; Yao, Shao Q

    2009-08-18

    Sequencing of the human genome provided a wealth of information about the genomic blueprint of a cell. But genes do not tell the entire story of life and living processes; identifying the roles of enzymes and mapping out their interactions is also crucial. Enzymes catalyze virtually every cellular process and metabolic exchange. They not only are instrumental in sustaining life but also are required for its regulation and diversification. Diseases such as cancer can be caused by minor changes in enzyme activities. In addition, the unique enzymes of pathogenic organisms are ripe targets for combating infections. Consequently, nearly one-third of all current drug targets are enzymes. An estimated 18-29% of eukaryotic genes encode enzymes, but only a limited proportion of enzymes have thus far been characterized. Therefore, little is understood about the physiological roles, substrate specificity, and downstream targets of the vast majority of these important proteins. A key step toward the biological characterization of enzymes, as well as their adoption as drug targets, is the development of global solutions that bridge the gap in understanding these proteins and their interactions. We herein present technological advances that facilitate the study of enzymes and their properties in a high-throughput manner. Over the years, our group has introduced and developed a variety of such enabling platforms for many classes of enzymes, including kinases, phosphatases, and proteases. For each of these different types of enzymes, specific design considerations are required to develop the appropriate chemical tools to characterize each class. These tools include activity-based probes and chemical compound libraries, which are rapidly assembled using efficient combinatorial synthesis or "click chemistry" strategies. The resulting molecular assortments may then be screened against the target enzymes in high-throughput using microplates or microarrays. These techniques offer

  7. Thermal and chemical effects of turkey feathers pyrolysis.

    PubMed

    Kluska, Jacek; Kardaś, Dariusz; Heda, Łukasz; Szumowski, Mateusz; Szuszkiewicz, Jarosław

    2016-03-01

    This study examines the thermal and chemical effects of the pyrolysis of turkey feathers. Research of feathers pyrolysis is important because of their increasing production and difficulties of their utilization. The experiments were carried out by means of thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and two pyrolytic reactors. The experimental investigation indicated that the feather material liquefies at temperatures between 210 and 240°C. This liquefaction together with the agglomeration of various dispersed and porous elements of the feathers into larger droplets leads to the volume reduction. Moreover, this work presents characteristics of the composition of the solid, liquid and gaseous products of turkey feathers pyrolysis at different temperatures. The higher heating value (HHV) of gaseous products in temperature 900°C equals 19.28 MJ/Nm(3) making the gases suitable for use as a fuel. The thermochemical conversion of turkey feathers leads to the formation of poisonous compounds such as hydrogen cyanide (HCN) in the liquid (0.13%) and gaseous (88 mg/Nm(3)) products. The phenomenon of liquefaction of feathers is important because it can lead to rapid degradation of the walls of reactors, and the formation of deposits. PMID:26783100

  8. Comparison of chemical and heating methods to enhance latent fingerprint deposits on thermal paper.

    PubMed

    Bond, John W

    2014-03-01

    A comparison is made of proprietary methods to develop latent fingerprint deposits on the inked side of thermal paper using either chemical treatment (Thermanin) or the application of heat to the paper (Hot Print System). Results with a trial of five donors show that the application of heat produces statistically significantly more fingerprint ridge detail than the chemical treatment for both fingerprint deposits aged up to 4 weeks and for a nine sequence depletion series. Subjecting the thermal paper to heat treatment with the Hot Print System did not inhibit subsequent ninhydrin chemical development of fingerprint deposits on the noninked side of the paper. A further benefit of the application of heat is the rapid development of fingerprint deposits (less than a minute) compared with up to 12 h for the Thermanin chemical treatment. PMID:24673413

  9. Comparison of chemical and heating methods to enhance latent fingerprint deposits on thermal paper.

    PubMed

    Bond, John W

    2014-03-01

    A comparison is made of proprietary methods to develop latent fingerprint deposits on the inked side of thermal paper using either chemical treatment (Thermanin) or the application of heat to the paper (Hot Print System). Results with a trial of five donors show that the application of heat produces statistically significantly more fingerprint ridge detail than the chemical treatment for both fingerprint deposits aged up to 4 weeks and for a nine sequence depletion series. Subjecting the thermal paper to heat treatment with the Hot Print System did not inhibit subsequent ninhydrin chemical development of fingerprint deposits on the noninked side of the paper. A further benefit of the application of heat is the rapid development of fingerprint deposits (less than a minute) compared with up to 12 h for the Thermanin chemical treatment.

  10. Chemical enhancement of fingermark in blood on thermal paper.

    PubMed

    Hong, Sungwook; Seo, Jin Yi

    2015-12-01

    Chemical enhancement methods for fingermark in blood deposited on the surface of a thermal paper substrate were examined. The blood-sensitive reagents compared were LCV (leuco crystal violet), Amido black and Hungarian red. Fingermark in blood on the surface of thermal paper can be fixed with 2% 5-sulfosalicylic acid solution. LCV was found as an inadequate blood staining reagent because of bubbling, diffusion, and blurring on the surface of thermal paper. Hungarian red was also an inadequate blood staining reagent because excess Hungarian red on the surface of thermal paper was not washed away in the de-staining procedure. Amido black was the best staining reagent among three staining reagents compared. The maximum dilution ratio visible to the naked eye after Amido black staining was 1 in 80 for the thermally sensitive surface and 1 in 20 for the thermally non-sensitive surface.

  11. Rapid thermal conductivity measurements for combinatorial thin films.

    PubMed

    McDowell, Matthew G; Hill, Ian G

    2013-05-01

    A simple and inexpensive automated method for determining the thermal conductivity of a combinatorial library of thin films is demonstrated by measuring the thermal conductivity of a sputtered silicon dioxide film of varying thickness deposited on single crystal silicon. Using 3ω measurements, two methods for calculating the substrate thermal conductivity and two methods for determining the film thermal conductivity are demonstrated and compared. The substrate thermal conductivity was found to be 139 ± 3 W/m·K. Using the measured variation in film thickness, the film thermal conductivity was found to be 1.11 ± 0.05 W/m·K, in excellent agreement with published values for sputtered SiO2, demonstrating the accuracy of the method.

  12. Coupled thermal/chemical/mechanical modeling of insensitive explosives in thermal environments

    SciTech Connect

    Nichols, A.L. III

    1996-05-01

    The ability to predict the response of a weapon system that contains insensitive explosives to elevated temperatures is important in understanding its safety characteristics. To model such a system at elevated temperatures in a finite element computer code requires a variety of capabilities. These modeling capabilities include thermal diffusion and convection to transport the heat to the explosives in the weapon system, temperature based chemical reaction modeling of the decomposition of the explosive materials, and mechanical modeling of both the metal casing and the unreacted and decomposed explosive. The Chemical TOPAZ code has been developed to model coupled thermal/chemical problems where we do not need to model the mass motion. We have also developed the LYNX2D code, based on PALM2D and Chemical TOPAZ, which is an implicit, two-dimensional coupled thermal/chemical/mechanical finite element model computer code. Some representative examples are shown. {copyright} {ital 1996 American Institute of Physics.}

  13. Tracking thermal fronts with temperature-sensitive, chemically reactive tracers

    SciTech Connect

    Robinson, B.A.; Birdsell, S.A.

    1987-01-01

    Los Alamos is developing tracer techniques using reactive chemicals to track thermal fronts in fractured geothermal reservoirs. If a nonadsorbing tracer flowing from the injection to production well chemically reacts, its reaction rate will be a strong function of temperature. Thus the extent of chemical reaction will be greatest early in the lifetime of the system, and less as the thermal front progresses from the injection to production well. Early laboratory experiments identified tracers with chemical kinetics suitable for reservoirs in the temperature range of 75 to 100/sup 0/C. Recent kinetics studies have focused on the kinetics of hydrolysis of derivatives of bromobenzene. This class of reactions can be used in reservoirs ranging in temperature from 150 to 275/sup 0/C, which is of greater interest to the geothermal industry. Future studies will include laboratory adsorption experiments to identify possibly unwanted adsorption on granite, development of sensitive analytical techniques, and a field demonstration of the reactive tracer concept.

  14. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    SciTech Connect

    Hampikian, J.M.; Carter, W.B.

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  15. Rapid microfluidic thermal cycler for nucleic acid amplification

    DOEpatents

    Beer, Neil Reginald; Vafai, Kambiz

    2015-10-27

    A system for thermal cycling a material to be thermal cycled including a microfluidic heat exchanger; a porous medium in the microfluidic heat exchanger; a microfluidic thermal cycling chamber containing the material to be thermal cycled, the microfluidic thermal cycling chamber operatively connected to the microfluidic heat exchanger; a working fluid at first temperature; a first system for transmitting the working fluid at first temperature to the microfluidic heat exchanger; a working fluid at a second temperature, a second system for transmitting the working fluid at second temperature to the microfluidic heat exchanger; a pump for flowing the working fluid at the first temperature from the first system to the microfluidic heat exchanger and through the porous medium; and flowing the working fluid at the second temperature from the second system to the heat exchanger and through the porous medium.

  16. Rapid determination of drugs and semivolatile organics by direct thermal desorption ion trap mass spectrometry

    SciTech Connect

    Wise, M.B.; Ilgner, R.H.; Buchanan, M.V.; Guerin, M.R.

    1991-01-01

    Direct thermal desorption of analytes into an ion trap mass spectrometer (ITMS) is being investigated as a technique for the rapid screening of a wide variety of samples for target semivolatile organic compounds. This includes the direct detection of drugs in physiological fluids, semivolatile organic pollutants in water and waste samples, and air pollutants collected on sorbent cartridges. In order to minimize the analysis time, chromatographic separation is not performed on the sample prior to introduction into the ITMS. Instead, selective chemical ionization and tandem mass spectrometry (MS/MS) are used achieve the specificity required for the target analytes. Detection limits are typically 10--50 ppb using a 1 uL aliquot of a liquid sample without preconcentration. Sample turn-around time is 2 to 5 minutes and 3 to 5 target analytes can be quantitatively determined simultaneously. 6 figs.

  17. Fuels and chemicals from biomass using solar thermal energy

    NASA Technical Reports Server (NTRS)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-01-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  18. Fuels and chemicals from biomass using solar thermal energy

    NASA Astrophysics Data System (ADS)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-05-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  19. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    SciTech Connect

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  20. Chemical Changes in Carbohydrates Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Hoseney, R. Carl

    1984-01-01

    Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)

  1. Chemical Changes in Lipids Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Nawar, Wassef W.

    1984-01-01

    Describes heat effects on lipids, indicating that the chemical and physical changes that occur depend on the lipid's composition and conditions of treatment. Thermolytic and oxidation reactions, thermal/oxidative interaction of lipids with other food components and the chemistry of frying are considered. (JN)

  2. Chemical, Electrical and Thermal Characterization of Nanoceramic Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Martin, Hervie; Abunaemeh, Malek; Smith, Cydale; Muntele, Claudiu; Budak, Satilmish; Ila, Daryush

    2009-03-01

    Silicon carbide (SiC) is a lightweight high bandgap semiconductor material that can maintain dimensional and chemical stability in adverse environments and very high temperatures. These properties make it suitable for high temperature thermoelectric converters. At the Center for Irradiaton of Materials (CIM) we design, manufacture and fabricate nanoceramic SiC, and perform electrical, thermal and chemical characterization of the material using particle induced X-ray emission (PIXE), Rutherford backscattering spectroscopy (RBS), Seebeck coefficient, electrical conductivity, and thermal conductivity measurements to calculate its efficiency as a thermoelectric generator. We are looking to compare the electrical and thermal properties of SiC ceramics with some other materials used for the same purposes.

  3. Chemical Vapor Deposition of Turbine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Haven, Victor E.

    1999-01-01

    Ceramic thermal barrier coatings extend the operating temperature range of actively cooled gas turbine components, therefore increasing thermal efficiency. Performance and lifetime of existing ceram ic coatings are limited by spallation during heating and cooling cycles. Spallation of the ceramic is a function of its microstructure, which is determined by the deposition method. This research is investigating metalorganic chemical vapor deposition (MOCVD) of yttria stabilized zirconia to improve performance and reduce costs relative to electron beam physical vapor deposition. Coatings are deposited in an induction-heated, low-pressure reactor at 10 microns per hour. The coating's composition, structure, and response to the turbine environment will be characterized.

  4. RAPID SCREENING OF ENVIRONMENTAL CHEMICALS FOR ESTROGEN RECEPTOR BINDING CAPACITY

    EPA Science Inventory

    Over the last few years, an increased awareness of endocrine disrupting chemicals (EDCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity in a wide range of environmental and industrial chemical...

  5. Firearm suppressor having enhanced thermal management for rapid heat dissipation

    DOEpatents

    Moss, William C.; Anderson, Andrew T.

    2014-08-19

    A suppressor is disclosed for use with a weapon having a barrel through which a bullet is fired. The suppressor has an inner portion having a bore extending coaxially therethrough. The inner portion is adapted to be secured to a distal end of the barrel. A plurality of axial flow segments project radially from the inner portion and form axial flow paths through which expanding propellant gasses discharged from the barrel flow through. The axial flow segments have radially extending wall portions that define sections which may be filled with thermally conductive material, which in one example is a thermally conductive foam. The conductive foam helps to dissipate heat deposited within the suppressor during firing of the weapon.

  6. Subsampling phase retrieval for rapid thermal measurements of heated microstructures.

    PubMed

    Taylor, Lucas N; Talghader, Joseph J

    2016-07-15

    A subsampling technique for real-time phase retrieval of high-speed thermal signals is demonstrated with heated metal lines such as those found in microelectronic interconnects. The thermal signals were produced by applying a current through aluminum resistors deposited on soda-lime-silica glass, and the resulting refractive index changes were measured using a Mach-Zehnder interferometer with a microscope objective and high-speed camera. The temperatures of the resistors were measured both by the phase-retrieval method and by monitoring the resistance of the aluminum lines. The method used to analyze the phase is at least 60× faster than the state of the art but it maintains a small spatial phase noise of 16 nm, remaining comparable to the state of the art. For slowly varying signals, the system is able to perform absolute phase measurements over time, distinguishing temperature changes as small as 2 K. With angular scanning or structured illumination improvements, the system could also perform fast thermal tomography. PMID:27420492

  7. Subsampling phase retrieval for rapid thermal measurements of heated microstructures.

    PubMed

    Taylor, Lucas N; Talghader, Joseph J

    2016-07-15

    A subsampling technique for real-time phase retrieval of high-speed thermal signals is demonstrated with heated metal lines such as those found in microelectronic interconnects. The thermal signals were produced by applying a current through aluminum resistors deposited on soda-lime-silica glass, and the resulting refractive index changes were measured using a Mach-Zehnder interferometer with a microscope objective and high-speed camera. The temperatures of the resistors were measured both by the phase-retrieval method and by monitoring the resistance of the aluminum lines. The method used to analyze the phase is at least 60× faster than the state of the art but it maintains a small spatial phase noise of 16 nm, remaining comparable to the state of the art. For slowly varying signals, the system is able to perform absolute phase measurements over time, distinguishing temperature changes as small as 2 K. With angular scanning or structured illumination improvements, the system could also perform fast thermal tomography.

  8. Rapid Chemical Ordering in Supercooled Liquid Cu46Zr54

    SciTech Connect

    Wessels, Victor; Gangopadhyay, Anup; Sahu, K. K.; Hyers, R. W.; Canepari, S. M.; Rogers, J. R.; Kramer, Matthew J.; Goldman, Alan; Robinson, D.; Lee, Jae W; Morris, James R; Kelton, K. F.

    2011-01-01

    Evidence for abrupt chemical ordering in a supercooled Cu46Zr54 liquid, obtained from high energy x-ray diffraction in a containerless processing environment, is presented. Relatively sudden changes were observed in the topological and chemical short-range order near 850oC, a temperature significantly below the liquidus and above the glass transition temperatures. A peak in the specific heat was observed with supercooling, with an onset near 850oC, the same temperature as the onset of chemical ordering, and a maximum near 700oC, consistent with the prediction of a molecular dynamics calculation using embedded atom potentials. The dominant short-range order below 850oC is incompatible with that of the primary crystallizing phases. This, and the possible development of strongly bonded, chemically ordered clustersmay explain unlikely bulk metallic glass formation in Cu-Zr and other binary alloys.

  9. Modeling thermal/chemical/mechanical response of energetic materials

    SciTech Connect

    Baer, M.R.; Hobbs, M.L.; Gross, R.J.

    1995-07-01

    An overview of modeling at Sandia National Laboratories is presented which describes coupled thermal, chemical and mechanical response of energetic materials. This modeling addresses cookoff scenarios for safety assessment studies in systems containing energetic materials. Foundation work is discussed which establishes a method for incorporating chemistry and mechanics into multidimensional analysis. Finite element analysis offers the capabilities to simultaneously resolve reactive heat transfer and structural mechanics in complex geometries. Nonlinear conduction heat transfer, with multiple step finite-rate chemistry, is resolved using a thermal finite element code. Rate equations are solved element-by-element using a modified matrix-free stiff solver This finite element software was developed for the simulation of systems requiring large numbers of finite elements. An iterative implicit scheme, based on the conjugate gradient method, is used and a hemi-cube algorithm is employed for the determination of view factors in surface-to-surface radiation transfer The critical link between the reactive heat transfer and mechanics is the introduction of an appropriate constitutive material model providing a stress-strain relationship for quasi-static mechanics analysis. This model is formally derived from bubble nucleation theory, and parameter variations of critical model parameters indicate that a small degree of decomposition leads to significant mechanical response. Coupled thermal/chemical/mechanical analysis is presented which simulates experiments designed to probe cookoff thermal-mechanical response of energetic materials.

  10. Atmospheric chemical and thermal structure evolution after one Titan year

    NASA Astrophysics Data System (ADS)

    Coustenis, Athena; Bampasidis, Georgios; Achterberg, Richard; Lavvas, Panayiotis; Vinatier, Sandrine; Nixon, Conor; Jennings, Donald; Teanby, Nicolas; Flasar, F. Michael; Carlson, Ronald; Orton, Glenn; Romani, Paul; Guandique, Ever

    2013-04-01

    Our radiative transfer code (ARTT) was applied to Cassini Composite Infrared Spectrometer (CIRS) data taken during Titan flybys from 2004-2010 and to the 1980 Voyager 1 flyby values inferred from the re-analysis of the Infrared Radiometer Spectrometer (IRIS) spectra [1], as well as to the intervening ground- and space- based observations (such as with ISO, [2]), providing us with a new view of the stratospheric evolution over a Titanian year (V1 encounter Ls=9° was reached in mid-2010). CIRS nadir and limb spectral [3,4] show variations in temperature and chemical composition in the stratosphere during the Cassini mission, before and after the Northern Spring Equinox (NSE). We find indication for a weakening of the temperature gradient with warming of the stratosphere and cooling of the lower mesosphere. In addition, we infer precise concentrations for the trace gases and their main isotopologues and find that the chemical composition in Titan's stratosphere varied significantly with latitude during the 6 terrestrial years investigated here, with increased mixing ratios towards the northern latitudes. In particular, we find a maximum enhancement of several gases observed at northern latitudes up to 50°N around mid-2009, at the time of the NSE. We find that this raise is followed by a rapid decrease in chemical inventory in 2010 probably due to changes in the cross vortex mixing or northward migration of the vortex boundary [5,6,7] consistent with the weakening thermal gradient. The finding also ties into the location of the maximum temperature gradient, which appears to be moving northward over the winter/spring season. The return of today's abundances close to the Voyager values (at the same season) is an indication that, as for the Earth, the solar radiation dominates over the other energy sources even at 10AU [8]. Nevertheless, the differences observed for some complex hydrocarbons in the North pole indicate that the other processes could be at play as well

  11. Thermal-chemical Mantle Convection Models With Adaptive Mesh Refinement

    NASA Astrophysics Data System (ADS)

    Leng, W.; Zhong, S.

    2008-12-01

    In numerical modeling of mantle convection, resolution is often crucial for resolving small-scale features. New techniques, adaptive mesh refinement (AMR), allow local mesh refinement wherever high resolution is needed, while leaving other regions with relatively low resolution. Both computational efficiency for large- scale simulation and accuracy for small-scale features can thus be achieved with AMR. Based on the octree data structure [Tu et al. 2005], we implement the AMR techniques into the 2-D mantle convection models. For pure thermal convection models, benchmark tests show that our code can achieve high accuracy with relatively small number of elements both for isoviscous cases (i.e. 7492 AMR elements v.s. 65536 uniform elements) and for temperature-dependent viscosity cases (i.e. 14620 AMR elements v.s. 65536 uniform elements). We further implement tracer-method into the models for simulating thermal-chemical convection. By appropriately adding and removing tracers according to the refinement of the meshes, our code successfully reproduces the benchmark results in van Keken et al. [1997] with much fewer elements and tracers compared with uniform-mesh models (i.e. 7552 AMR elements v.s. 16384 uniform elements, and ~83000 tracers v.s. ~410000 tracers). The boundaries of the chemical piles in our AMR code can be easily refined to the scales of a few kilometers for the Earth's mantle and the tracers are concentrated near the chemical boundaries to precisely trace the evolvement of the boundaries. It is thus very suitable for our AMR code to study the thermal-chemical convection problems which need high resolution to resolve the evolvement of chemical boundaries, such as the entrainment problems [Sleep, 1988].

  12. Thermal effects in rapid directional solidification - Linear theory

    NASA Technical Reports Server (NTRS)

    Huntley, D. A.; Davis, S. H.

    1993-01-01

    We study the morphological instability of the planar solid/liquid interface for a unidirectionally-solidified dilute binary mixture. We use a model developed by Boettinger et al. (1985, 1986), Aziz (1982), and Jackson et al. (1980), which allows for nonequilibrium effects on the interface through velocity-dependent segregation and attachment kinetics. Two types of instabilities are found in the linear stability analysis: (1) a cellular instability, and (2) an oscillatory instability driven by disequilibrium effects. Merchant and Davis (1990) characterized these instabilities subject to the frozen-temperature approximation (FTA). The present work relaxes the FTA by including the effects of latent heat and the full temperature distribution. Thermal effects slightly postpone the onset of the cellular instability but dramatically postpone the onset of the oscillatory instability; however, the absolute-stability conditions, at which at high speed the cellular and oscillatory instabilities are suppressed, remain unchanged from the FTA.

  13. Micro Thermal and Chemical Systems for In Situ Resource Utilization on Mars

    NASA Technical Reports Server (NTRS)

    Wegeng, Robert S.; Sanders, Gerald

    2000-01-01

    Robotic sample return missions and postulated human missions to Mars can be greatly aided through the development and utilization of compact chemical processing systems that process atmospheric gases and other indigenous resources to produce hydrocarbon propellants/fuels, oxygen, and other needed chemicals. When used to reduce earth launch mass, substantial cost savings can result. Process Intensification and Process Miniaturization can simultaneously be achieved through the application of microfabricated chemical process systems, based on the rapid heat and mass transport in engineered microchannels. Researchers at NASA's Johnson Space Center (JSC) and the Department of Energy's Pacific Northwest National Laboratory (PNNL) are collaboratively developing micro thermal and chemical systems for NASA's Mission to Mars program. Preliminary results show that many standard chemical process components (e.g., heat exchangers, chemical reactors and chemical separations units) can be reduced in hardware volume without a corresponding reduction in chemical production rates. Low pressure drops are also achievable when appropriate scaling rules are applied. This paper will discuss current progress in the development of engineered microchemical systems for space and terrestrial applications, including fabrication methods, expected operating characteristics, and specific experimental results.

  14. Methods for the rapid detection of biological and chemical weapons

    SciTech Connect

    Castro, A.; Hemberger, P.H.; Swanson, B.I.

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This work undertook the development of technology for the detection of chemical and biological agents. The project consisted of three tasks: (1) modifying a transportable mass spectrometer for the detection of chemical gents; (2) demonstrating the detection of a specific bacterial DNA sequence using a fluorescence-based single- copy gene detector; and (3) upgrading a surface acoustic wave measurement station.

  15. Formation of highly n-doped gallium arsenide layers by rapid thermal oxidation followed by rapid thermal annealing of silicon-capped gallium arsenide

    NASA Astrophysics Data System (ADS)

    Sadana, D. K.; de Souza, J. P.; Cardone, F.

    1991-03-01

    Carrier concentrations at a level of ≳1×1019 cm-3 were achieved when Si-capped GaAs underwent rapid thermal oxidation (RTO) in Ar+0.1% O2 ambient at 850-1000 °C for 10-60 s followed by rapid thermal annealing (RTA) in Ar ambient at 850-950 °C. Carrier concentrations in the RTO only samples were in the range of 2-5×1018 cm-3. Kinetic data on the diffusion of Si under RTO and RTO+RTA conditions are presented. The enhancement in the electrical activation of the diffused Si during RTA appears to be partly due to its local atomic rearrangement and partly due to redistribution in the GaAs. Ohmic contacts to the doped layer were made using Au-Ge-Ni alloy and contact resistances of ≲0.1 Ω mm were obtained.

  16. Millimeter-wave imaging of thermal and chemical signatures.

    SciTech Connect

    Gopalsami, N.

    1999-03-30

    Development of a passive millimeter-wave (mm-wave) system is described for remotely mapping thermal and chemical signatures of process effluents with application to arms control and nonproliferation. Because a large amount of heat is usually dissipated in the air or waterway as a by-product of most weapons of mass destruction facilities, remote thermal mapping may be used to detect concealed or open facilities of weapons of mass destruction. We have developed a focal-plane mm-wave imaging system to investigate the potential of thermal mapping. Results of mm-wave images obtained with a 160-GHz radiometer system are presented for different target scenes simulated in the laboratory. Chemical and nuclear facilities may be identified by remotely measuring molecular signatures of airborne molecules emitted from these facilities. We have developed a filterbank radiometer to investigate the potential of passive spectral measurements. Proof of principle is presented by measuring the HDO spectral line at 80.6 GHz with a 4-channel 77-83 GHz radiometer.

  17. Experimental studies of thermal and chemical interactions between molten aluminum and water

    SciTech Connect

    Farahani, A.A.; Corradini, M.L.

    1995-09-01

    The possibility of rapid physical and chemical aluminum/water interactions during a core melt accident in a noncommercial reactor (e.g., HFIR, ATR) has resulted in extensive research to determine the mechanism by which these interactions occur and propagate on an explosive time scale. These events have been reported in nuclear testing facilities, i.e., during SPERT 1D experiment, and also in aluminum casting industries. Although rapid chemical reactions between molten aluminum and water have been subject of many studies, very few reliable measurements of the extent of the chemical reactions have thus far been made. We have modified an existing 1-D shock tube facility to perform experiments in order to determine the extent of the explosive thermal/chemical interactions between molton aluminum and water by measuring important physical quantities such as the maximum dynamic pressure and the amount of the generated hydrogen. Experimental results show that transient pressures greater than 69 MPa with a rise time of less than 125 {mu}sec can occur as the result of the chemical reaction of 4.2 grams of molton aluminum (approximately 15% of the total mass of the fuel of 28 grams) at 980 C with room temperature water.

  18. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  19. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  20. Thermal blurring of event-by-event fluctuations generated by rapidity conversion

    NASA Astrophysics Data System (ADS)

    Ohnishi, Yutaro; Kitazawa, Masakiyo; Asakawa, Masayuki

    2016-10-01

    We study the effect of thermal blurring caused by the use of (momentum-space) rapidity as a proxy of coordinate-space rapidity in experimental measurements of conserved-charge fluctuations in relativistic heavy-ion collisions. In theoretical studies assuming statistical mechanics, calculated fluctuations are those in a spatial volume. Experiments, on the other hand, can measure fluctuations only in a momentum space in the final state. In a standard argument to compare experimental results for a momentum space with theoretical studies for a coordinate space, rapidities of particles are implicitly regarded as equivalent to their coordinate-space rapidity. We show that the relation of two fluctuations is significantly altered by the existence of the thermal motion, i.e., thermal blurring. We discuss that the thermal blurring can be regarded as a part of the diffusion process, and the effect can be understood by studying the rapidity window dependences of fluctuations. Centrality dependence of the thermal blurring effect is also discussed.

  1. Chemical regulation on fire: rapid policy advances on flame retardants.

    PubMed

    Cordner, Alissa; Mulcahy, Margaret; Brown, Phil

    2013-07-01

    Chemicals that are widely used in consumer products offer challenges to product manufacturers, risk managers, environmental regulators, environmental scientists, and the interested public. However, the factors that cause specific chemicals to rise to the level of regulatory, scientific, and social movement concern and scrutiny are not well documented, and scientists are frequently unclear about exactly how their research impacts policy. Through a case study of advocacy around flame retardant chemicals, this paper traces the pathways through which scientific evidence and concern is marshaled by both advocacy groups and media sources to affect policy change. We focus our analysis around a broad coalition of environmental and public health advocacy organizations and an investigative journalism series published in 2012 in the Chicago Tribune. We demonstrate that the Tribune series both brought the issue to a wider public audience and precipitated government action, including state policy revisions and federal Senate hearings. We also show how a broad and successful flame retardant coalition developed, leveraged a media event, and influenced policy at multiple institutional levels. The analysis draws on over 110 in-depth interviews, literature and Web site reviews, and observations at a flame retardant manufacturing company, government offices, and scientific and advocacy conferences.

  2. Dumping pump and treat: rapid cleanups using thermal technology

    SciTech Connect

    Newmark, R.L.; Aines, R.D.

    1997-03-11

    Underground spills of volatile hydrocarbons are often difficult to clean up, especially if the contaminants are present in or below the water table as a separate liquid-organic phase. Excavating and treating the contaminated soil may not be practical or even possible if the affected zone is relatively deep. Merely pumping groundwater has proven to be ineffective because huge amounts of water must be flushed through the contaminated area to clean it; even then the contaminants may not be completely removed. Due to the low solubility of most common contaminants, such pump and treat systems can be expected to take decades to centuries to actually clean a site. Today, many sites are required to pump and treat contaminated groundwater even though there is no expectation that the site will be cleaned. In these cases, the pumps simply control the spread of the contaminant, while requiring a continuous flow of money, paperwork, and management attention. Although pump and treat systems are relatively inexpensive to operate, they represent along term cost. Most importantly, they rarely remove enough contaminant to change the property`s status. Although a pump and treat system can offer compliance in a regulatory sense, it doesn`t solve the site`s liability problem. Thermal methods promise to solve this dilemma by actually cleaning a property in a short time period, thus limiting the period of liability. This may involve cleaning a site to closure during the initial contaminant-removal phase, or removal of the majority of the contaminant so that natural processes such as bioremediation can return the site to pristine condition over a period of years, without further owner intervention. Today`s regulatory environment encourages this approach through efforts such as the brownfields initiatives. In either case, this requires a strong commitment on the part of the site owner. Most if not all the cleanup occurs within the first year or so, and nearly all the cost. In our

  3. Sunburn, Thermal, and Chemical Injuries to the Skin.

    PubMed

    Monseau, Aaron J; Reed, Zebula M; Langley, Katherine Jane; Onks, Cayce

    2015-12-01

    Sunburn, thermal, and chemical injuries to the skin are common in the United States and worldwide. Initial management is determined by type and extent of injury with special care to early management of airway, breathing, and circulation. Fluid management has typically been guided by the Parkland formula, whereas some experts now question this. Each type of skin injury has its own pathophysiology and resultant complications. All primary care physicians should have at least a basic knowledge of management of acute and chronic skin injuries. PMID:26612374

  4. Sunburn, Thermal, and Chemical Injuries to the Skin.

    PubMed

    Monseau, Aaron J; Reed, Zebula M; Langley, Katherine Jane; Onks, Cayce

    2015-12-01

    Sunburn, thermal, and chemical injuries to the skin are common in the United States and worldwide. Initial management is determined by type and extent of injury with special care to early management of airway, breathing, and circulation. Fluid management has typically been guided by the Parkland formula, whereas some experts now question this. Each type of skin injury has its own pathophysiology and resultant complications. All primary care physicians should have at least a basic knowledge of management of acute and chronic skin injuries.

  5. Chemical and thermal constraints on models of Thermal Springs Valley of Ten Thousand Smokes, Alaska

    NASA Astrophysics Data System (ADS)

    Lowell, R. P.; Keith, T. E. C.

    1991-08-01

    Thermal (15-30°C) springs issuing from 1912 ash-flow tuff in the mid-valley region of the Valley of Ten Thousand Smokes consist of meteoric water that may have been heated by an incompletely cooled lens of welded tuff upvalley from the springs. Conductive cooling of the thermal waters along the flow path is the likely cause for the difference between the observed spring temperatures and the source temperature inferred from chemical geothermometry. Conductive cooling alone can not easily account for the seasonal fluctuations in spring temperatures, however. Mixing of the thermal waters with cold meteoric waters would seem a likely possibility; but thermal water chemistry is constant, indicating that mixing does not occur after the water leaves the zone of heating. Even if mixing occurred, simple mixing models do not account totally for the observed temperature differences of the springs from late spring to summer. The geochemical and thermal data argue for a complex hydrological and thermal regime.

  6. Comparison of rapid screening assays using organic chemicals

    SciTech Connect

    Beach, S.A.; Robideau, R.R.

    1994-12-31

    In a continuation of a study presented last year using metals, the sensitivity of short term toxicity tests is examined using common organic chemicals. In toxicity testing, the focus has shifted from the traditional long-term studies utilizing the mortality of complex, multicellular eukaryotic organisms as the endpoint towards short-term studies in which transformation of biochemical pathways are monitored. The relative sensitivity of aquatic screening techniques are compared to the standardized 48-hr Daphnia magna and Ceriodaphnia dubia, 96-hr fathead minnow and 96-hr algal acute assays. The short-term test procedures investigated are: dehydrogenase enzyme activity assays utilizing triphenyltetrazolium chloride (TTC) and resazurin as the calorimetric indicators; TOXI-Chromotest, inhibition of {beta}-galactosidase; reduction in bioluminescence output utilizing the Microtox{reg_sign} test; nitrification inhibition assays with a commercial preparation of nitrifying bacteria (Nitroseed{trademark}) and municipal activated sludge; respiration inhibition assays with a commercial preparation of heterotrophic bacteria (Polytox{reg_sign}) and activated sludge; inhibition of root growth in terrestrial plants; and galactosidase inhibition through the use of a fluorometrically tagged substrate with the Daphnia magna IQ{trademark} test. Toxicity values generated by this laboratory on commonly used organic chemicals are compared.

  7. Ultrasensitive hybrid SERS substrate for rapid detection of trace chemicals

    NASA Astrophysics Data System (ADS)

    Wang, Chaoguang; Xiao, Rui; Wu, Xuezhong; Dong, Peitao; Rong, Zhen; Chen, Jian; Wang, Shengqi

    2014-04-01

    We demonstrate here a simple and effective approach for fabricating surface-enhanced Raman spectroscopy substrates by hybridizing Au films with silver particle clusters. A trace amount of aqueous chemical is dropped on the Au film covered substrate, followed by the addition of colloidal Ag nanoparticles (Ag NPs). The combination of Ag clusters and Au film promotes the enhancement ability of the substrate, as confirmed by a finite difference time domain simulation. The electromagnetic field tends to concentrate at the junctions between the Ag NPs and the flat Au film, and yields additional ‘hot spots’. The detect limitation of the hybrid substrate is 10 pM, with an enhancement factor about 1.5 × 107 when rhodamine 6G is employed as the probe molecule. The hybrid substrate showed good homogeneity, with a relative standard deviation about 10.7%. Moreover, the hybrid substrate is utilized for melamine detection with a detection limit of 10 nM (1.2 ppb). The simple procedure, high sensitivity, and good homogeneity make the hybrid substrate a promising tool for trace chemical detection.

  8. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    SciTech Connect

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  9. Rapid determination of nicotine in urine by direct thermal desorption ion trap mass spectrometry

    SciTech Connect

    Wise, M.B.; Ilgner, R.H.; Guerin, M.R.

    1990-01-01

    The measurement of nicotine and cotinine in physiological fluids (urine, blood serum, and saliva) is widely used as a means of assessing human exposure to environmental tobacco smoke (ETS). Although numerous analytical methods exist for these measurements, they generally involve extensive sample preparation which increases cost and decreases sample throughput. We report the use of thermal desorption directly into an ion trap mass spectrometer (ITMS) for the rapid determination of nicotine and cotinine in urine. A 1{mu}L aliquot of urine is injected into a specially designed inlet and flash vaporized directly into an ITMS through an open-split capillary restrictor interface. Isobutane chemical ionization is used to generate (M+H){sup +} ions of the analytes and collision induced dissociation is used to generate characteristic fragment ions which are used to confirm their identity. Quantification is achieved by integrating the ion current for the characteristic ions and comparing with an external working curve. Detection limits are approximately 50 pg per analyte and the sample turnaround time is approximately 3 minutes without the need for extensive sample preparation. 12 refs., 5 figs.

  10. Thermal and chemical degradation of inorganic membrane materials. Topical report

    SciTech Connect

    Krishnan, G.N.; Sanjurjo, A.; Wood, B.J.; Lau, K.H.

    1994-04-01

    This report describes the results of a literature review to evaluate the long-term thermal and chemical degradation of inorganic membranes that are being developed to separate gaseous products produced by the gasification or combustion of coal in fixed-, fluidized-, and entrained-bed gasifiers, direct coal-fired turbines, and pressurized-fluidized-bed combustors. Several impurities, such as H{sub 2}S, NH{sub 3}, SO{sub 2}, NO{sub x}, and trace metal compounds are generated during coal conversion, and they must be removed from the coal gas or the combustor flue gas to meet environmental standards. The use of membranes to separate these noxious gases is an attractive alternative to their removal by sorbents such as zinc titanate or calcium oxide. Inorganic membranes that have a high separation efficiency and exhibit both thermal and chemical stability would improve the economics of power generation from coal. The U.S. Department of Energy is supporting investigations to develop inorganic membranes for separating hydrogen from coal gas streams and noxious impurities from hot coal- and flue-gas streams. Membrane materials that have been investigated in the past include glass (silica), alumina, zirconia, carbon, and metals (Pd and Pt).

  11. High purity chemical etching and thermal passivation process for Ge(001) as nanostructure template.

    PubMed

    Blumenstein, Christian; Meyer, Sebastian; Ruff, Andreas; Schmid, Benjamin; Schäfer, Jörg; Claessen, Ralph

    2011-08-14

    An advanced two-step cleaning process of the Ge(001) surface for nanoscience requirements is presented. First, wet-chemical etching with a variant of the Piranha solution (H(2)SO(4), H(2)O(2), H(2)O) is used to remove contaminants as well as the native oxide layer. Second, passivation of the surface is achieved by a rapid thermal oxidation step, leading to a homogeneous protective oxide layer. The thickness of the oxide layer is tuned to be thick enough to protect the surface, yet thin enough to be completely removed by thermal treatment in ultra-high vacuum. The application of this recipe results in an outstandingly clean and atomically flat surface, with carbon contamination at the detection limit of x-ray photoelectron spectroscopy. Scanning tunneling microscopy and electron diffraction reveal a long range ordered surface with typical terrace diameters of ~100 nm, suitable for the growth of atomic-scale nanostructures.

  12. Rapid computation of chemical equilibrium composition - An application to hydrocarbon combustion

    NASA Technical Reports Server (NTRS)

    Erickson, W. D.; Prabhu, R. K.

    1986-01-01

    A scheme for rapidly computing the chemical equilibrium composition of hydrocarbon combustion products is derived. A set of ten governing equations is reduced to a single equation that is solved by the Newton iteration method. Computation speeds are approximately 80 times faster than the often used free-energy minimization method. The general approach also has application to many other chemical systems.

  13. A self-adaptive thermal switch array for rapid temperature stabilization under various thermal power inputs

    NASA Astrophysics Data System (ADS)

    Geng, Xiaobao; Patel, Pragnesh; Narain, Amitabh; Desheng Meng, Dennis

    2011-08-01

    A self-adaptive thermal switch array (TSA) based on actuation by low-melting-point alloy droplets is reported to stabilize the temperature of a heat-generating microelectromechanical system (MEMS) device at a predetermined range (i.e. the optimal working temperature of the device) with neither a control circuit nor electrical power consumption. When the temperature is below this range, the TSA stays off and works as a thermal insulator. Therefore, the MEMS device can quickly heat itself up to its optimal working temperature during startup. Once this temperature is reached, TSA is automatically turned on to increase the thermal conductance, working as an effective thermal spreader. As a result, the MEMS device tends to stay at its optimal working temperature without complex thermal management components and the associated parasitic power loss. A prototype TSA was fabricated and characterized to prove the concept. The stabilization temperatures under various power inputs have been studied both experimentally and theoretically. Under the increment of power input from 3.8 to 5.8 W, the temperature of the device increased only by 2.5 °C due to the stabilization effect of TSA.

  14. Degradation of Teflon(tm) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Powers, Charles E.; Viens, Michael J.; Ayres-Treusdell, Mary T.; Munoz, Bruno

    1998-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon' FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon FEP.

  15. Degradation of Teflon(trademark) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline; Powers, Charles; Viens, Michael; Ayres-Treusdell, Mary; Munoz, Bruno

    1999-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon(trademark) FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(trademark) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(trademark) FEP.

  16. Degradation of Teflon(tm) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Powers, Charles E.; Viens, Michael J.; Ayres-Treusdell, Mary T.; Munoz, Bruno F.

    1998-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon' FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(registered trademark) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(registered trademark) FEP.

  17. Degradation of Teflon(tm) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline; Powers, Charles; Viens, Michael; Ayres-Treusdell, Mary; Munoz, Bruno

    1998-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon(R) FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(R) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(R) FEP.

  18. Computational thermal, chemical, fluid, and solid mechanics for geosystems management.

    SciTech Connect

    Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu

    2011-09-01

    This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

  19. Rapid, facile microwave-assisted synthesis of xanthan gum grafted polyaniline for chemical sensor.

    PubMed

    Pandey, Sadanand; Ramontja, James

    2016-08-01

    Grafting method, through microwave radiation procedure is extremely productive in terms of time consumption, cost effectiveness and environmental friendliness. In this study, conductive and thermally stable composite (mwXG-g-PANi) was synthesized by grafting of aniline (ANi) on to xanthan gum (XG) using catalytic weight of initiator, ammonium peroxydisulfate in the process of microwave irradiation in an aqueous medium. The synthesis of mwXG-g-PANi were confirm by FTIR, XRD, TGA, and SEM. The influence of altering the microwave power, exposure time of microwave, concentration of monomer and the amount of initiator of graft polymerization were studied over the grafting parameters, for example, grafting percentage (%G) and grafting efficiency (%E). The maximum %G and %E achieved was 172 and 74.13 respectively. The outcome demonstrates that the microwave irradiation strategy can increase the reaction rate by 72 times over the conventional method. Electrical conductivity of XG and mwXG-g-PANi composite film was performed. The fabricated grafted sample film were then examined for the chemical sensor. The mwXG-g-PANi, effectively integrated and handled, are NH3 sensitive and exhibit a rapid sensing in presence of NH3 vapor. Chemiresistive NH3 sensors with superior room temperature sensing performance were produced with sensor response of 905 at 1ppb and 90% recovery within few second. PMID:27118045

  20. Coupled Thermal-Chemical-Mechanical Modeling of Validation Cookoff Experiments

    SciTech Connect

    ERIKSON,WILLIAM W.; SCHMITT,ROBERT G.; ATWOOD,A.I.; CURRAN,P.D.

    2000-11-27

    The cookoff of energetic materials involves the combined effects of several physical and chemical processes. These processes include heat transfer, chemical decomposition, and mechanical response. The interaction and coupling between these processes influence both the time-to-event and the violence of reaction. The prediction of the behavior of explosives during cookoff, particularly with respect to reaction violence, is a challenging task. To this end, a joint DoD/DOE program has been initiated to develop models for cookoff, and to perform experiments to validate those models. In this paper, a series of cookoff analyses are presented and compared with data from a number of experiments for the aluminized, RDX-based, Navy explosive PBXN-109. The traditional thermal-chemical analysis is used to calculate time-to-event and characterize the heat transfer and boundary conditions. A reaction mechanism based on Tarver and McGuire's work on RDX{sup 2} was adjusted to match the spherical one-dimensional time-to-explosion data. The predicted time-to-event using this reaction mechanism compares favorably with the validation tests. Coupled thermal-chemical-mechanical analysis is used to calculate the mechanical response of the confinement and the energetic material state prior to ignition. The predicted state of the material includes the temperature, stress-field, porosity, and extent of reaction. There is little experimental data for comparison to these calculations. The hoop strain in the confining steel tube gives an estimation of the radial stress in the explosive. The inferred pressure from the measured hoop strain and calculated radial stress agree qualitatively. However, validation of the mechanical response model and the chemical reaction mechanism requires more data. A post-ignition burn dynamics model was applied to calculate the confinement dynamics. The burn dynamics calculations suffer from a lack of characterization of the confinement for the flaw

  1. Thermal chemical-mechanical reactive flow model of shock initiation in solid explosives

    SciTech Connect

    Nicholls, A L., III; Tarver, C M

    1998-08-26

    The three dimensional Arbitrary Lagrange Eulerian hydrodynamic computer code ALE3D with fully coupled thermal-chemical-mechanical material models provides the framework for the development of a physically realistic model of shock initiation and detonation of solid explosives. The processes of hot spot formation during shock compression, subsequent ignition of reaction or failure to react, growth of reaction in individual hot spots, and coalescence of reacting hot spots during the transition to detonation can now be modeled using Arrhenius chemical kinetic rate laws and heat transfer to propagate the reactive flow. This paper discusses the growth rates of reacting hot spots in HMX and TATB and their coalescence during shock to detonation transition. Hot spot deflagration rates are found to be fast enough to consume explosive particles less than 10 mm in diameter during typical shock duration times, but larger particles must fragment and create more reactive surface area in order to be rapidly consumed.

  2. A hybrid computer program for rapidly solving flowing or static chemical kinetic problems involving many chemical species

    NASA Technical Reports Server (NTRS)

    Mclain, A. G.; Rao, C. S. R.

    1976-01-01

    A hybrid chemical kinetic computer program was assembled which provides a rapid solution to problems involving flowing or static, chemically reacting, gas mixtures. The computer program uses existing subroutines for problem setup, initialization, and preliminary calculations and incorporates a stiff ordinary differential equation solution technique. A number of check cases were recomputed with the hybrid program and the results were almost identical to those previously obtained. The computational time saving was demonstrated with a propane-oxygen-argon shock tube combustion problem involving 31 chemical species and 64 reactions. Information is presented to enable potential users to prepare an input data deck for the calculation of a problem.

  3. Coupled thermal/chemical/mechanical modeling of energetic materials in ALE3D

    SciTech Connect

    Nichols, A.L.; Couch, R.; Maltby, J.D.; McCallen, R.C.; Otero, I.; Sharp, R.

    1996-10-01

    We must improve our ability to model the response of energetic ma@ to thmnal stimuli and the processes involved m the energetic response. Traditionally, the analyses of energeuc have mvolved coupled thermal chemical reaction codes. This provides only a reasonable estimate of the dw and location of ensuing rapid reaction. To predict the violence of the reaction, the m cal motion must be included in the wide range of time scales as with the th@ hazard. Ile ALE3D code has been modified to the hazards associated with heaung energetic ma@ in weapons. We have merged the thermal models from TOPAZ3D and the chemistry models &vel@ in Chemical TOPAZ into ALE3D. We have developed and use an impMt time step option to efficiently and accurately compute the hours that the energetic material can take to react. Since on these longer fim scales materials can be expected to have signifimt motion, it is even more important to provide high- ordcr advection for all components, including the chemical species. We will show an example cook-off problem to illustrate these capabilities.

  4. Thermal and chemical stability of reflowed-photoresist microlenses

    NASA Astrophysics Data System (ADS)

    Han, Myung-Geun; Park, Yoon-Jung; Kim, Seoung-Hoe; Yoo, Byueng-Su; Park, Hyo-Hoon

    2004-03-01

    We have investigated the effect of heat treatment on the thermal and chemical stability of photoresist microlenses which were made by a reflow method. The microlenses were formed by patterning a novolac-based photoresist (PR) to pillar shapes and by reflowing it at 140 °C. After reflowing, the microlenses were heat treated at a relatively high temperature between 250 °C and 350 °C. After the heat treatment, the fundamental functions as a lens were maintained for infrared laser beams with wavelengths above 800 nm, except volume shrinkage and increment of the refractive index. The heat-treated microlenses also were not attacked by methanol and acetone. Our results suggest wide application of the PR as a simple, cost effective and stable lens medium.

  5. Thermal energy storage. [by means of chemical reactions

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.

    1975-01-01

    The principles involved in thermal energy storage by sensible heat, chemical potential energy, and latent heat of fusion are examined for the purpose of evolving selection criteria for material candidates in the low ( 0 C) and high ( 100 C) temperature ranges. The examination identifies some unresolved theoretical considerations and permits a preliminary formulation of an energy storage theory. A number of candidates in the low and high temperature ranges are presented along with a rating of candidates or potential candidates. A few interesting candidates in the 0 to 100 C region are also included. It is concluded that storage by means of reactions whose reversibility can be controlled either by product removal or by catalytic means appear to offer appreciable advantages over storage with reactions whose reversability cannot be controlled. Among such advantages are listed higher heat storage capacities and more favorable options regarding temperatures of collection, storage, and delivery. Among the disadvantages are lower storage efficiencies.

  6. Quantum instanton approximation for thermal rate constants of chemical reactions

    NASA Astrophysics Data System (ADS)

    Miller, William H.; Zhao, Yi; Ceotto, Michele; Yang, Sandy

    2003-07-01

    A quantum mechanical theory for chemical reaction rates is presented which is modeled after the [semiclassical (SC)] instanton approximation. It incorporates the desirable aspects of the instanton picture, which involves only properties of the (SC approximation to the) Boltzmann operator, but corrects its quantitative deficiencies by replacing the SC approximation for the Boltzmann operator by the quantum Boltzmann operator, exp(-βĤ). Since a calculation of the quantum Boltzmann operator is feasible for quite complex molecular systems (by Monte Carlo path integral methods), having an accurate rate theory that involves only the Boltzmann operator could be quite useful. The application of this quantum instanton approximation to several one- and two-dimensional model problems illustrates its potential; e.g., it is able to describe thermal rate constants accurately (˜10-20% error) from high to low temperatures deep in the tunneling regime, and applies equally well to asymmetric and symmetric potentials.

  7. Chemical and microstructural characterization of thermally grown alumina scales

    SciTech Connect

    Natesan, K.; Richier, C.; Veal, B.W.

    1995-09-01

    An experimental program has been initiated to evaluate the chemical, microstructural, and mechanical integrity of thermally grown oxide scales to establish requirements for improved corrosion performance in terms of composition, structure, and properties. Iron aluminides of several compositions were selected for the study. Oxidation studies were conducted in air and oxygen environments at 1000{degrees}C. The results showed that the scaling kinetics followed a parabolic rate law but that the rates in early stages of oxidation were significantly greater than in later stages; the difference could be attributed to the presence of fast-growing transient iron oxides in the layer during the early stages. Further, scale failure occurred via gross spallation, scale cracking, and nodule formation and was influenced by alloy composition. Auger electron spectroscopy of Ar-exposed specimens of ternary Fe-Cr-Al alloy showed sulfur on the gas/scale side of the interface; the sulfur decreased as the exposure time increased. Raman spectroscopy and ruby fluorescence were used to examine the scale development as a function of oxidation temperature. Ruby-line shift is used to examine phase transformations in alumina and to calculate compressive strains in thermally grown scales.

  8. Chemical characteristics of the major thermal springs of Montana

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1976-01-01

    Twenty-one thermal springs in western Montana were sampled for chemical, isotope, and gas compositions. Most of the springs issue dilute to slightly saline sodium-bicarbonate waters of neutral to slightly alkaline pH. A few of the springs issue sodium-mixed anion waters of near neutral pH. Fluoride concentrations are high in most of the thermal waters, up to 18 milligramsper litre, while F/Cl ratios range from 3/1 in the dilute waters to 1/10 in the slightly saline waters. Most of the springs are theoretically in thermodynamic equilibrium with respect to calcite and fluorite. Nitrogen is the major gas escaping from most of the hot springs; however, Hunters Hot Springs issue principally methane. The deuterium content of the hot spring waters is typical of meteoric water in western Montana. Geothermal calculations based on silica concentrations and Na-K-Ca ratios indicate that most of the springs are associated with low temperature aquifers (less than 100?C). Chalcedony may be controlling the silica concentrations in these low temperature aquifers even in 'granitic' terranes.

  9. A rapid heating and cooling rate dilatometer for measuring thermal expansion in dental porcelain.

    PubMed

    Twiggs, S W; Searle, J R; Ringle, R D; Fairhurst, C W

    1989-09-01

    Herein we describe a dilatometer that consists of a low-mass infrared furnace for rapid heating or cooling, an optical pyrometer, and a laser interferometer. The dilatometer facilitates observations of thermal expansion at rates comparable with those in dental laboratory practice over the temperature range necessary for comparison of thermal expansion of dental porcelain and alloy. Examples of thermal expansion data obtained at a 600 degrees C/min heating rate on NIST SRM 710 glass and dental porcelain are reported. To a limited extent, thermal expansion data above the glass-transition temperature range of dental porcelain were obtained. A shift of the glass-transition temperature range to higher temperatures was observed for both materials, compared with data obtained at 20 degrees C/min. PMID:2778175

  10. Scientific Basis for a Coupled Thermal-Hydrological-Mechanical-Chemical-Biological Experimental Facility at DUSEL Homestake

    NASA Astrophysics Data System (ADS)

    Sonnenthal, E. L.; Elsworth, D.; Lowell, R. P.; Maher, K.; Mailloux, B. J.; Uzunlar, N.; Freifeld, B. M.; Keimowitz, A. R.; Wang, J. S.

    2009-12-01

    Most natural and engineered earth system processes involve strong coupling of thermal, mechanical, chemical, and sometimes biological processes in rocks that are heterogeneous at a wide range of spatial scales. One of the most pervasive processes in the Earth’s crust is that of fluids (primarily water, but also CO2, hydrocarbons, volcanic gases, etc.) flowing through fractured heated rock under stress. A preliminary design is being formulated for a large-scale subsurface experimental facility to investigate coupled Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) processes in fractured rock at depth. The experiment would be part of the proposed Deep Underground Science and Engineering Laboratory (DUSEL) in the Homestake Mine, South Dakota. Fundamental geochemical, isotopic, microbiological, laboratory THMC experiments, and numerical modeling will be used to guide the experimental design and evaluation of the time and spatial scales of the coupled THMCB processes. Although we sometimes analyze rocks and fluids for physical and chemical properties, it is difficult to create quantitative numerical models based on fundamental physics and chemistry that can capture the dynamic changes that have occurred or may yet take place. Initial conditions and history are only known roughly at best, and the boundary conditions have likely varied over time as well. Processes such as multicomponent chemical and thermal diffusion, multiphase flow, advection, and thermal expansion/contraction, are taking place simultaneously in rocks that are structurally and chemically complex—heterogeneous assemblages of mineral grains, pores, and fractures—and visually opaque. The only way to fully understand such processes is to carry out well-controlled experiments at a range of scales (grain/pore-scale to decimeter-scale) that can be interrogated and modeled. The THMCB experimental facility is also intended to be a unique laboratory for testing hypotheses regarding effects of

  11. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2003-04-29

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  12. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2002-01-01

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  13. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2003-05-13

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  14. Effect of Back Contact and Rapid Thermal Processing Conditions on Flexible CdTe Device Performance

    SciTech Connect

    Mahabaduge, Hasitha; Meysing, D. M.; Rance, Will L.; Burst, James M.; Reese, Matthew O.; Wolden, C. A.; Gessert, Timothy A.; Metzger, Wyatt K.; Garner, S.; Barnes, Teresa M.

    2015-06-14

    Flexible CdTe solar cells on ultra-thin glass substrates can enable new applications that require high specific power, unique form-factors, and low manufacturing costs. To be successful, these cells must be cost competitive, have high efficiency, and have high reliability. Here we present back contact processing conditions that enabled us to achieve over 16% efficiency on flexible Corning (R) Willow (R) Glass substrates. We used co-evaporated ZnTe:Cu and Au as our back contact and used rapid thermal processing (RTP) to activate the back contact. Both the ZnTe to Cu ratio and the RTP activation temperature provide independent control over the device performance. We have investigated the influence of various RTP conditions to Cu activation and distribution. Current density-voltage, capacitance-voltage measurements along with device simulations were used to examine the device performance in terms of ZnTe to Cu ratio and rapid thermal activation temperature.

  15. Rapid thermal annealing of Si 1- xGe x layers formed by germanium ion implantation

    NASA Astrophysics Data System (ADS)

    Xia, Z.; Saarilahti, J.; Ronkainen, H.; Eränen, S.; Suni, I.; Molarius, J.; Kuivalainen, P.; Ristolainen, E.; Tuomi, T.

    1994-05-01

    (100) Si samples, amorphized by implanting with 50, 70 and 100 keV 74Ge + ions at doses of the order of 1 × 10 16cm -2, have been recrystallized by rapid thermal annealing (RTA) with different temperature-time ( T- t) combinations. Monte Carlo calculations using TRIM-91 computer program were performed to estimate the depth of amorphized regions, implanted Ge distributions and recoil-implanted O depth profiles. The RBS channeling measurements show that fully epitaxial regrowth of implanted layers can be reached with proper rapid thermal processing. An empirical guide is presented for regrowing the implanted SiGe layers with RTA. The recoil-implanted oxygen in the implanted layers was measured by 16O(α,α) 16O RBS resonance channeling and SIMS.

  16. Rapid thermal annealing of Amorphous Hydrogenated Carbon (a-C:H) films

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Pouch, John J.; Warner, Joseph D.

    1987-01-01

    Amorphous hydrogenated carbon (a-C:H) films were deposited on silicon and quartz substrates by a 30 kHz plasma discharge technique using methane. Rapid thermal processing of the films was accomplished in nitrogen gas using tungsten halogen light. The rapid thermal processing was done at several fixed temperatures (up to 600 C), as a function of time (up to 1800 sec). The films were characterized by optical absorption and by ellipsometry in the near UV and the visible. The bandgap, estimated from extrapolation of the linear part of a Tauc plot, decreases both with the annealing temperature and the annealing time, with the temperature dependence being the dominating factor. The density of states parameter increases up to 25 percent and the refractive index changes up to 20 percent with temperature increase. Possible explanations of the mechanisms involved in these processes are discussed.

  17. Multicycle rapid thermal annealing optimization of Mg-implanted GaN: Evolution of surface, optical, and structural properties

    SciTech Connect

    Greenlee, Jordan D.; Feigelson, Boris N.; Anderson, Travis J.; Hite, Jennifer K.; Mastro, Michael A.; Eddy, Charles R.; Hobart, Karl D.; Kub, Francis J.; Tadjer, Marko J.

    2014-08-14

    The first step of a multi-cycle rapid thermal annealing process was systematically studied. The surface, structure, and optical properties of Mg implanted GaN thin films annealed at temperatures ranging from 900 to 1200 °C were investigated by Raman spectroscopy, photoluminescence, UV-visible spectroscopy, atomic force microscopy, and Nomarski microscopy. The GaN thin films are capped with two layers of in-situ metal organic chemical vapor deposition -grown AlN and annealed in 24 bar of N{sub 2} overpressure to avoid GaN decomposition. The crystal quality of the GaN improves with increasing annealing temperature as confirmed by UV-visible spectroscopy and the full widths at half maximums of the E{sub 2} and A{sub 1} (LO) Raman modes. The crystal quality of films annealed above 1100 °C exceeds the quality of the as-grown films. At 1200 °C, Mg is optically activated, which is determined by photoluminescence measurements. However, at 1200 °C, the GaN begins to decompose as evidenced by pit formation on the surface of the samples. Therefore, it was determined that the optimal temperature for the first step in a multi-cycle rapid thermal anneal process should be conducted at 1150 °C due to crystal quality and surface morphology considerations.

  18. Thermal and chemical diffusion within conduits of sinking metal-silicate plumes during core formation events.

    NASA Astrophysics Data System (ADS)

    Weeraratne, D. S.; Olson, P. L.

    2008-12-01

    Early and rapid core formation is suggested by recent isotopic studies. Accumulation of a short lived liquid metal pond at the base of a magma ocean during early impacts may provide a model for chemical diffusion of silicates and liquid metal to produce the observed abundances of siderophile elements in the Earth's mantle. Here we present results from laboratory fluid experiments of liquid gallium in high viscosity stratified corn syrup solutions to model the physical dynamics of core formation processes in the early Earth. Experiments are designed to consider the instability of a dense liquid metal pond as single droplets, Rayleigh-Taylor instability, and evolution of a liquid metal emulsion layer. We find that in all cases, a wide trailing conduit develops behind rapidly descending metallic plumes which entrains low density fluid to the base of the fluid box. We propose a model where the conduit itself provides a vehicle for thermal and chemical equilibration between metals and silicates at high pressures and temperatures during its path through the lower mantle. Diffusion processes contribute to the formation of this new entrained fluid layer at the base of the fluid box which is buoyant and evolves into a new type of thermo-chemical plume which subsequently rises. Using a range of viscosity and buoyancy ratios, experimental results will constrain the time scales for instability of a liquid metal pond, descent and upwelling times of this unique type of plume, as well as the nature and dynamics of conduit formation. This model provides a high pressure/temperature environment for metal- silicate equilibration consistent with petrologic and isotopic studies, is consistent with rapid core formation, and may also connect core formation to ancient hotspot activity on terrestrial planets.

  19. Evolution of nano-structures of silver due to rapid thermal annealing

    SciTech Connect

    Mondal, Shyamal Bhattacharyya, S. R.

    2014-04-24

    This report deals with rapid thermal annealing (RTA) effect on continuous silver film on Si(100) substrate. For this purpose silver films of different thicknesses were deposited and subsequently annealed at 500 and 800 °C. The as-deposited and annealed samples were investigated by scanning electron microscope (SEM). Formations of different nano-structures have been observed. Fragmentation of formed nanoislands also observed at temperature below melting temperature.

  20. Ablation Thermal Protection Systems: Suitability of ablation systems to thermal protection depends on complex physical and chemical processes.

    PubMed

    Ungar, E W

    1967-11-10

    The performance of ablation thermal protection systems is intimately related to the mass transfer, heat transfer, and chemical reactions which occur within the gas boundary layer. Production of a liquid layer and phase change or chemical reaction heat sinks greatly improve materials performance. Materials are available which achieve many goals for thermal protection. However, advanced materials which are now being developed provide hope of further reductions in the weight of heat-shielding structures. PMID:17732614

  1. A rapid method for the computation of equilibrium chemical composition of air to 15000 K

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.; Erickson, Wayne D.

    1988-01-01

    A rapid computational method has been developed to determine the chemical composition of equilibrium air to 15000 K. Eleven chemically reacting species, i.e., O2, N2, O, NO, N, NO+, e-, N+, O+, Ar, and Ar+ are included. The method involves combining algebraically seven nonlinear equilibrium equations and four linear elemental mass balance and charge neutrality equations. Computational speeds for determining the equilibrium chemical composition are significantly faster than the often used free energy minimization procedure. Data are also included from which the thermodynamic properties of air can be computed. A listing of the computer program together with a set of sample results are included.

  2. Rapid thermal cycling of solar array blanket coupons for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Smith, Bryan K.

    1991-01-01

    The NASA Lewis Research Center has been conducting rapid thermal cycling on blanket coupons for Space Station Freedom. This testing includes two designs (8 coupons total) of the solar array. Four coupons were fabricated as part of the Photovoltaic Array Environmental Protection Program (PAEP), NAS3-25079, at Lockheed Missiles and Space Company. These coupons began cycling in early 1989 and have completed 172,000 thermal cycles. Four other coupons were fabricated a year later and included several design changes; cycling of these began in early 1990 and has reached 90,000 cycles. The objective of this testing is to demonstrate the durability or operational lifetime (15 yrs.) of the welded interconnects within a low earth orbit (LEO) thermal cycling environment. The blanket coupons, design changes, test description, status to date including performance and observed anomalies, and any insights related to the testing of these coupons are described. The description of a third design is included.

  3. Novel developments in rapid thermal processing (RTP) temperature measurement and control

    NASA Astrophysics Data System (ADS)

    Adams, B. E.; Hunter, A. M.

    2013-09-01

    Since the development of integrated circuits in the 1960's, the semiconductor industry has continued to see the reduction of transistor size in accordance with Moore's law. Rapid thermal processing (RTP) has been an enabling technology for the continued evolution of these ultra-small devices. As thermal budgets have progressively dropped, equipment manufacturers have greatly increased the thermal ramp rates and reduced temperatures for many key processes. Lamp heated technology has developed sub-second dwell times and laser based systems have reduced processing time to milliseconds and shorter. This paper will highlight the key development in RTP temperature measurement and control for two distinct applications. The first is the development of temperature measurements of laser heated substrates. The work will discuss the unique challenges and requirements in this rapidly expanding processing space. These challenges arise from the very high background radiation from the laser sources, the extremely short dwell times, and the high processing temperatures. The second area under discussion is a solution to very low temperature silicon processes-primarily driven by Ni and NiPt silicides that have constrained thermal budgets, thus requiring high ramp rates and short dwell times, but in temperatures below the fundamental limits of standard radiation pyrometry. In particular, this work describes a novel system capable of measuring temperature down to room temperature in a state of the art RTP system.

  4. RAPID SPATIAL MAPPING OF CHEMICALS DISPERSED ACROSS SURFACES USING AN AUTOSAMPLER/DART/TOFMS

    EPA Science Inventory

    Rapid identification and semi-quantitation of chemicals spatially dispersed and

    deposited on surfaces by accidental, deliberate, or weather-related events requires analysis of

    hundreds of samples, usually obtained by sampling with wipes. Hand-held devices used on-si...

  5. Rapid Prototyping of Chemical Microsensors Based on Molecularly Imprinted Polymers Synthesized by Two-Photon Stereolithography.

    PubMed

    Gomez, Laura Piedad Chia; Spangenberg, Arnaud; Ton, Xuan-Anh; Fuchs, Yannick; Bokeloh, Frank; Malval, Jean-Pierre; Tse Sum Bui, Bernadette; Thuau, Damien; Ayela, Cédric; Haupt, Karsten; Soppera, Olivier

    2016-07-01

    Two-photon stereolithography is used for rapid prototyping of submicrometre molecularly imprinted polymer-based 3D structures. The structures are evaluated as chemical sensing elements and their specific recognition properties for target molecules are confirmed. The 3D design capability is exploited and highlighted through the fabrication of an all-organic molecularly imprinted polymeric microelectromechanical sensor.

  6. Rapid Semi-Quantitative Surface Mapping of Airborne-Dispersed Chemicals Using Mass Spectrometry

    EPA Science Inventory

    Chemicals can be dispersed accidentally, deliberately, or by weather-related events. Rapid mapping of contaminant distributions is necessary to assess exposure risks and to plan remediation, when needed. Ten pulverized aspirin or NoDozTM tablets containing caffeine wer...

  7. Rapid Prototyping of Chemical Microsensors Based on Molecularly Imprinted Polymers Synthesized by Two-Photon Stereolithography.

    PubMed

    Gomez, Laura Piedad Chia; Spangenberg, Arnaud; Ton, Xuan-Anh; Fuchs, Yannick; Bokeloh, Frank; Malval, Jean-Pierre; Tse Sum Bui, Bernadette; Thuau, Damien; Ayela, Cédric; Haupt, Karsten; Soppera, Olivier

    2016-07-01

    Two-photon stereolithography is used for rapid prototyping of submicrometre molecularly imprinted polymer-based 3D structures. The structures are evaluated as chemical sensing elements and their specific recognition properties for target molecules are confirmed. The 3D design capability is exploited and highlighted through the fabrication of an all-organic molecularly imprinted polymeric microelectromechanical sensor. PMID:27145145

  8. Leaf thermal and hydraulic capacitances - structural safeguards for rapid ambient fluctuations

    NASA Astrophysics Data System (ADS)

    Schymanski, S. J.; Or, D.; Zwieniecki, M.

    2011-12-01

    Leaves may be subjected to rapidly fluctuating irradiation or thermal conditions due to motion of sun flecks and clouds or passage of warm and dry wind gusts. Given a stomatal characteristic time scale (~5 min) for adjusting transpiration flux, fluctuations of environmental conditions at shorter time scales (~1 min) could push leaf hydraulic and thermal status beyond its operational limits resulting in xylem cavitation or overheating. As active stomatal protection may not be adequate, we propose that leaf thermal and hydraulic capacitances and hence leaf specific mass (hydrated thickness) provide passive protection and play a critical role for autonomous and intrinsic capacitive-based responses to rapid fluctuations. For example, a simple variable leaf mass per unit area can affect both thermal and hydraulic capacitances. Thus a thin leaf (0.2 mm) exposed to a sunfleck can experience an increase in leaf temperature by 20K in the order of 3 minutes, i.e. before stomata can activate evaporative cooling. Increasing leaf thickness can be an effective measure to increase the buffer for such environmental fluctuations, so that slower regulatory measures such as stomatal adjustments can take over before detrimental effects take place. Systematic measurements of thermal changes in response to step changes in radiation conditions were obtained using laser illumination and infra-red thermal imaging of leaf laser-illuminated area across a wide range of leaf morphologies from major plant divisions (ferns, gymnosperms and angiosperms). Results confirm inverse relationships between leaf thickness and temperature rise (measured as steady state temperature increase). Hydraulic impacts of such structural capacitance on xylem function will be discussed.

  9. Thermally induced dispersion mechanisms for aluminum-based plate-type fuels under rapid transient energy deposition

    SciTech Connect

    Georgevich, V.; Taleyarkham, R.P.; Navarro-Valenti, S.; Kim, S.H.

    1995-12-31

    A thermally induced dispersion model was developed to analyze for dispersive potential and determine onset of fuel plate dispersion for Al-based research and test reactor fuels. Effect of rapid energy deposition in a fuel plate was simulated. Several data types for Al-based fuels tested in the Nuclear Safety Research Reactor in Japan and in the Transient Reactor Test in Idaho were reviewed. Analyses of experiments show that onset of fuel dispersion is linked to a sharp rise in predicted strain rate, which futher coincides with onset of Al vaporization. Analysis also shows that Al oxidation and exothermal chemical reaction between the fuel and Al can significantly affect the energy deposition characteristics, and therefore dispersion onset connected with Al vaporization, and affect onset of vaporization.

  10. A Novel Thermal Sensor for the Sensitive Measurement of Chemical Oxygen Demand.

    PubMed

    Yao, Na; Liu, Zhuan; Chen, Ying; Zhou, Yikai; Xie, Bin

    2015-08-19

    A novel rapid methodology for determining the chemical oxygen demand (COD) based on a thermal sensor with a flow injection analysis system was proposed and experimentally validated. The ability of this sensor to detect and monitor COD was based on the degree of enthalpy increase when sodium hypochlorite reacted with the organic content in water samples. The measurement results were correlated with COD and were compared against the conventional method using potassium dichromate. The assay required only 5-7 min rather than the 2 h required for evaluation by potassium dichromate. The linear range was 5-1000 mg/L COD, and the limit of detection was very low, 0.74 mg/L COD. Moreover, this method exhibited high tolerance to chloride ions; 0.015 mol/L chloride ions had no influence on the response. Finally, the sensor was used to detect the COD of different water samples; the results were verified by the standard dichromate method.

  11. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, John; Escher, Claus

    1988-01-01

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction.

  12. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  13. Conversion of concentrated solar thermal energy into chemical energy.

    PubMed

    Tamaura, Yutaka

    2012-01-01

    When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500-2500 kW/m(2) is absorbed by an excess Frenkel defect formation. This non-equilibrium state defect is generated not by heating at a low heating-rate (30 K/min), but by irradiating high flux energy of concentrated solar beam rapidly at a high heating rate (200 K/min). The defect can be spontaneously converted to chemical energy of a cation-excess spinel structure (reduced-oxide form) at the temperature around 1773 K. Thus, the O(2) releasing reaction (α-O(2) releasing reaction) proceeds in two-steps; (1) high flux energy of concentrated solar beam absorption by formation of the non-equilibrium Frenkel defect and (2) the O(2) gas formation from the O(2-) in the Frenkel defect even in air atmosphere. The 2nd step proceeds without the solar radiation. We may say that the 1st step is light reaction, and 2nd step, dark reaction, just like in photosynthesis process.

  14. A Rapid and Low-Cost PCR Thermal Cycler for Low Resource Settings

    PubMed Central

    Wong, Grace; Wong, Isaac; Chan, Kamfai; Hsieh, Yicheng; Wong, Season

    2015-01-01

    Background Many modern molecular diagnostic assays targeting nucleic acids are typically confined to developed countries or to the national reference laboratories of developing-world countries. The ability to make technologies for the rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a revolutionary step forward in global health. Many molecular assays are also developed based on polymerase chain reactions (PCR), which require thermal cyclers that are relatively heavy (>20 pounds) and need continuous electrical power. The temperature ramping speed of most economical thermal cyclers are relatively slow (2 to 3°C/s) so a polymerase chain reaction can take 1 to 2 hours. Most of all, these thermal cyclers are still too expensive ($2k to $4k) for low-resource setting uses. Methodology/Principal Findings In this article, we demonstrate the development of a low-cost and rapid water bath based thermal cycler that does not require active temperature control or continuous power supply during PCR. This unit costs $130 to build using commercial off-the-shelf items. The use of two or three vacuum-insulated stainless-steel Thermos food jars containing heated water (for denaturation and annealing/extension steps) and a layer of oil on top of the water allow for significantly stabilized temperatures for PCR to take place. Using an Arduino-based microcontroller, we automate the “archaic” method of hand-transferring PCR tubes between water baths. Conclusions/Significance We demonstrate that this innovative unit can deliver high speed PCR (17 s per PCR cycle) with the potential to go beyond the 1,522 bp long amplicons tested in this study and can amplify from templates down to at least 20 copies per reaction. The unit also accepts regular PCR tubes and glass capillary tubes. The PCR efficiency of our thermal cycler is not different from other commercial thermal cyclers. When combined with a rapid nucleic acid detection approach

  15. Chemical Changes in Proteins Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Dutson, T. R.; Orcutt, M. W.

    1984-01-01

    Discusses effects of thermal processing on proteins, focusing on (1) the Maillard reaction; (2) heat denaturation of proteins; (3) aggregation, precipitation, gelation, and degradation; and (4) other thermally induced protein reactions. Also discusses effects of thermal processing on muscle foods, egg proteins, fruits and vegetables, and cereal…

  16. Advanced deposition model for thermal activated chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  17. Minimisation of excess sludge production in a WWTP by coupling thermal hydrolysis and rapid anaerobic digestion.

    PubMed

    Chauzy, J; Graja, S; Gerardin, F; Crétenot, D; Patria, L; Fernandes, P

    2005-01-01

    In many cases, reducing sludge production could be the solution for wastewater treatment plants (WWTP) that here difficulty evacuating the residuals of wastewater treatment. The aim of this study was to test the possibility of minimising the excess sludge production by coupling a thermal hydrolysis stage and an anaerobic digestion with a very short HRT. The tests were carried out on a 2,500 p.e. pilot plant installed on a recycling loop between the clarifier and the actived sludge basin. The line equipped with the full scale pilot plant produced 38% TSS less than the control line during a 10 week period. Moreover, the rapid anaerobic digestion removed, on average, more than 50% of the total COD load with a hydraulic retention time (HRT) of 3 days. Lastly, the dryness of the remaining excess sludge, sanitised by the thermal hydrolysis, was more than 35% with an industrial centrifuge. This combination of thermal hydrolysis and rapid anaerobic digestion equally permits a significant gain of compactness compared to traditional anaerobic digesters.

  18. Thermal and Chemical Stability of Thiol Bonding on Gold Nanostars.

    PubMed

    Borzenkov, Mykola; Chirico, Giuseppe; D'Alfonso, Laura; Sironi, Laura; Collini, Maddalena; Cabrini, Elisa; Dacarro, Giacomo; Milanese, Chiara; Pallavicini, Piersandro; Taglietti, Angelo; Bernhard, Claire; Denat, Franck

    2015-07-28

    The stability of thiol bonding on the surface of star-shaped gold nanoparticles was studied as a function of temperature in water and in a set of biologically relevant conditions. The stability was evaluated by monitoring the release of a model fluorescent dye, Bodipy-thiol (BDP-SH), from gold nanostars (GNSs) cocoated with poly(ethylene glycol) thiol (PEG-SH). The increase in the BDP-SH fluorescence emission, quenched when bound to the GNSs, was exploited to this purpose. A maximum 15% dye release in aqueous solution was found when the bulk temperature of gold nanostars solutions was increased to T = 42 °C, the maximum physiological temperature. This fraction reduces 3-5% for temperatures lower than 40 °C. Similar results were found when the temperature increase was obtained by laser excitation of the near-infrared (NIR) localized surface plasmon resonance of the GNSs, which are photothermally responsive. Besides the direct impact of temperature, an increased BDP-SH release was observed upon changing the chemical composition of the solvent from pure water to phosphate-buffered saline and culture media solutions. Moreover, also a significant fraction of PEG-SH was released from the GNS surface due to the increase in temperature. We monitored it with a different approach, that is, by using a coating of α-mercapto-ω-amino PEG labeled with tetramethylrhodamine isothiocyanate on the amino group, that after heating was separated from GNS by ultracentrifugation and the released PEG was determined by spectrofluorimetric techniques on the supernatant solution. These results suggest some specific limitations in the use of the gold-thiolate bond for coating of nanomaterials with organic compounds in biological environments. These limitations come from the duration and the intensity of the thermal treatment and from the medium composition and could also be exploited in biological media to modulate the in vivo release of drugs.

  19. Thermal and chemical evolution of The Geysers geothermal system, California

    SciTech Connect

    Moore, J.N.

    1992-01-01

    Fluid inclusions and mineral assemblages provide a reward of the thermal and chemical changes that occurred during the evolution of The Geysers geothermal system. The data document the presence of an extensive liquid dominated geothermal system that developed in response to felsite intrusion and its evolution to a vapor-dominated regime. Temperatures within the early liquid-dominated system ranged from 175 C at a distance of 7200 feet from the felsite to more than 350 C near the contact while salinities varied from 5 equivalent weight percent NaCl (at a distance of 5500 feet) to more than 26 weight percent NaCl. As temperatures around the felsite declined, the liquid-dominated system collapsed upon itself. Downward migration of the low salinity waters resulted in dilution of the fluids present in regions now occupied by the caprock and normal vapor-dominated reservoir. In contrast, dilution was minor in rocks now hosting the high-temperature vapor-dominated reservoir. This suggests that low permeabilities are the primary reason for the development of the high-temperature reservoir. Boiling within the caprock produced late-stage veins of calcite and quartz. As the fluid boiled off, condensate was trapped as low salinity fluid inclusions. Within the main body of the reservoir, a liquid phase with salinities of up to 7 equivalent weight percent NaCl persisted to temperatures between 250 and 270 C. However, except for the presence of vapor-rich inclusions, little evidence of boiling within the reservoir rocks was preserved.

  20. DEAD ZONES AS THERMAL BARRIERS TO RAPID PLANETARY MIGRATION IN PROTOPLANETARY DISKS

    SciTech Connect

    Hasegawa, Yasuhiro; Pudritz, Ralph E. E-mail: pudritz@physics.mcmaster.ca

    2010-02-20

    Planetary migration in standard models of gaseous protoplanetary disks is known to be very rapid ({approx}10{sup 5} years), jeopardizing the existence of planetary systems. We present a new mechanism for significantly slowing rapid planetary migration, discovered by means of radiative transfer calculations of the thermal structure of protoplanetary disks irradiated by their central stars. Rapid dust settling in a disk's dead zone-a region with very little turbulence-leaves a dusty wall at its outer edge. We show that the back-heating of the dead zone by this irradiated wall produces a positive gradient of the disk temperature, which acts as a thermal barrier to planetary migration which persists for the disk lifetime. Although we analyze in detail the migration of a super-Earth in a low-mass disk around an M star, our findings can apply to a wide variety of young planetary systems. We compare our findings with other potentially important stopping mechanisms and show that there are large parameter spaces for which dead zones are likely to play the most important role for reproducing the observed mass-period relation in longer planetary periods.

  1. [Rapid identification of chemical composition in safflower with UHPLC-LTQ-Orbitrap].

    PubMed

    Wang, Song-song; Ma, Yan; Zhang, Yi; Li, De-feng; Yang, Hong-jun; Liang, Ri-xin

    2015-04-01

    The UHPLC-LTQ-Orbitrap high resolution mass spectrometer was used to explore the chemical compositions in safflower. The rapid separation of the compositions was conducted by the UHPLC, following by high resolution full scan and MS2 scan, under the positive and negative ion mode. The chemical formula of compositions were deduced by full scan data in less than 5, then the potential structures were confirmed by the MS2 data. Forty-nine compounds were detected, of which 26 was identified, and 5 compounds was validated by the standard substances. PMID:26281560

  2. Influence of rapid thermal vacuum annealing and high temperature treatment on the properties of PSG films

    NASA Astrophysics Data System (ADS)

    Beschkov, G.; Bakardjieva, V.; Alexieva, Z.

    2008-05-01

    The effect is presented of rapid thermal annealing (RTA) in vacuum and thermal annealing in water vapor at 850 °C on the properties of phosphosilicate glass (PSG) films deposited in PECVD and μPCVD reactors. The films were characterized by etch rates and XPS and AES analyses. The RTA was carried out at 800 - 1400 °C at annealing times varying from 15 to 180 sec. The RTA caused a significant decrease in the etch rate, which is indicative of structural changes. The XPS and AES analyses showed that the PECVD PSG films contain excess Si due to the lower oxidation activity of N2O. The excess Si can be oxidized in water vapor at high temperatures. The excess Si leads to a decrease in the etching rate of the PECVD PSG layers as compared to that of the μPCVD films.

  3. Rapid microplate, green method for high-throughput evaluation of vinegar acidity using thermal infrared enthalpimetry.

    PubMed

    Tischer, Bruna; Oliveira, Alessandra Stangherlin; Ferreira, Daniele de Freitas; Menezes, Cristiano Ragagnin; Duarte, Fábio Andrei; Wagner, Roger; Barin, Juliano Smanioto

    2017-01-15

    Infrared thermal imaging was combined with disposable microplates to perform enthalpimetric analysis using an infrared camera to monitor temperature without contact. The proposed thermal infrared enthalpimetry (TIE) method was used to determine the total, fixed and volatile acidities of vinegars. Sample preparation and analysis were performed in the same vessel, avoiding excessive sample handling and reducing energy expenditure by more than ten times. The results agreed with those of the conventional method for different kinds of vinegars, with values of 1.7%, and 2.3% for repeatability and intermediate precision, respectively. A linear calibration curve was obtained from 0.040 to 1.30molL(-1). The proposed method provided rapid results (within 10s) for four samples simultaneously, a sample throughput of up to 480 samples per hour. In addition, the method complies with at least eight of twelve recommendations for green analytical chemistry, making TIE a promising tool for routine vinegar analysis.

  4. Rapid microplate, green method for high-throughput evaluation of vinegar acidity using thermal infrared enthalpimetry.

    PubMed

    Tischer, Bruna; Oliveira, Alessandra Stangherlin; Ferreira, Daniele de Freitas; Menezes, Cristiano Ragagnin; Duarte, Fábio Andrei; Wagner, Roger; Barin, Juliano Smanioto

    2017-01-15

    Infrared thermal imaging was combined with disposable microplates to perform enthalpimetric analysis using an infrared camera to monitor temperature without contact. The proposed thermal infrared enthalpimetry (TIE) method was used to determine the total, fixed and volatile acidities of vinegars. Sample preparation and analysis were performed in the same vessel, avoiding excessive sample handling and reducing energy expenditure by more than ten times. The results agreed with those of the conventional method for different kinds of vinegars, with values of 1.7%, and 2.3% for repeatability and intermediate precision, respectively. A linear calibration curve was obtained from 0.040 to 1.30molL(-1). The proposed method provided rapid results (within 10s) for four samples simultaneously, a sample throughput of up to 480 samples per hour. In addition, the method complies with at least eight of twelve recommendations for green analytical chemistry, making TIE a promising tool for routine vinegar analysis. PMID:27542445

  5. A rapid and simple method to draw polyethylene nanofibers with enhanced thermal conductivity

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Zhang, Qian; Zhang, Yin; Zhou, Lei; Yang, Juekuan; Ni, Zhonghua

    2016-07-01

    We report on a rapid and simple method to fabricate polyethylene (PE) nanofibers by one-step drawing from PE solution. The diameter of the fiber prepared with this method can be as small as 40 nm. The thermal conductivity of the drawn PE nanofiber was measured with suspended microdevices, and the highest value obtained is 8.8 W m-1 K-1, which is very close to that of electrospun PE nanofibers, and over 20 times higher than bulk value. Raman spectra of these drawn PE nanofibers indicate that molecular chains in these fibers can be as well aligned as that in electrospun fibers, which results in the enhanced thermal conductivity of the drawn PE nanofibers.

  6. Asymmetric thermal acclimation responses allow sheepshead minnow Cyprinodon variegatus to cope with rapidly changing temperatures.

    PubMed

    Fangue, Nann A; Wunderly, Martin A; Dabruzzi, Theresa F; Bennett, Wayne A

    2014-01-01

    Thermal acclimation responses in sheepshead minnow Cyprinodon variegatus were quantified by transfer and reciprocal transfer of fish between 11.1° and 18.2°C, between 18.2° and 25.7°C, or between 25.7° and 32.8°C. Changes in thermal acclimation status were assessed by posttransfer time series determinations of thermal tolerance (i.e., critical thermal minima and maxima). In general, heat tolerance gain and loss were complete in 20 and 25 d, respectively. Cold tolerance gain was achieved ca. 24 d posttransfer, but attrition was complete after only 12-13 d. Heat tolerance was gained asymmetrically, with fish acquiring approximately one-half of their accruable tolerance at the lowest transfer temperature. Likewise, the majority of cold tolerance accruement occurred during the warmest temperature transfer. Relatively uniform losses of heat and cold tolerance were seen in reciprocal transfers. Acclimation patterns were related to initial acclimation temperature, final acclimation temperature, and acclimation time and could be accurately modeled by multiple linear regression. The results suggest that sheepshead minnow accrue a majority of their high- or low-temperature tolerance early in the acclimation process well before potential damaging temperatures are likely to occur. This novel pattern of asymmetric heat and cold tolerance acquisition in sheepshead minnow may be a key adaptation for surviving rapid and unpredictable water temperature changes commonly encountered in their natural environment. PMID:25461645

  7. Thin film poly-crystalline silicon fabrication based on Rapid Thermal Annealing (RTA) process

    NASA Astrophysics Data System (ADS)

    Qian, Jun; Li, Jirong; Liao, Yang; Shi, Weimin; Kuang, Huahui; Ming, Xiuchun; Liu, Jin; Jin, Jing; Qin, Juan

    2013-12-01

    Rapid Thermal Annealing (RTA) process was introduced to the experiment of Aluminum-induced crystallization of a-Si, based on sputtering method, on low cost glass substrate. A stack of glass/Al (150 nm)/Si (220 nm) was deposited by sputtering sequentially. Samples were annealed under RTA process, then annealed in the tube annealing furnace at 400 °C for 5 h. The grain crystallization was inspected by optical microscopy (OM), ,Raman spectroscopy, X-ray diffraction (XRD),and energy dispersive spectroscopy (EDS). The preferential orientation (111) was observed, with a Raman Peak at 520.8cm-1, Different annealing periods were discussed.

  8. N + doping of gallium arsenide by rapid thermal oxidation of a silicon cap

    NASA Astrophysics Data System (ADS)

    Sadana, D. K.; de Souza, J. P.; Cardone, F.

    1990-10-01

    Shallow (<200 nm) Si profiles with doping levels in excess of 2×1018 cm-3 were reproducively obtained in GaAs by rapid thermal oxidation (RTO) of Si caps (50 or 160 nm) in 0.1% O2/Ar ambient at 850-1050 °C. The doping level as well as distribution of the diffused Si can be controlled by the thickness of the Si cap, RTO temperature, RTO time, and oxygen level in the annealing ambient. It appears that the generation of Si interstitials at the oxidizing surface of the Si cap during RTO is responsible for the Si diffusion into the underlying GaAs substrate.

  9. Hydro-chemical specifications of thermal waters from different geographical regions in Turkey

    NASA Astrophysics Data System (ADS)

    Seker, D. Z.; Aydin, S.; Sivri, N.; Bitik, E.; Cakir, Z.

    2014-12-01

    In many countries thermal springs are utilized for a variety of purposes, such as the generation of power, direct space heating, industrial processes, aquaculture and many more. The optimal use of a thermal spring is largely dependent upon its physical and chemical characteristics. The physical and chemical parameters of groundwater play a significant role in classifying and assessing water quality. Major ions constitute the most significant part of the total dissolved solids present in the groundwater and the concentration of these ions in ground water depends mainly on the hydro chemical processes that place in the aquifer system. This article focuses on the thermal and chemical features of 21 thermal springs located in the overall of the Turkey. Field data and water samples were collected for analysis of physical and chemical parameters. Thermal springs and thermal wells have temperatures ranging from 35 to 95°C. The pH values of the thermal waters change between 6.3 and 9.6. A Piper trilinear diagram and Schoeller diagram show that all the thermal waters are characterized by the dominance of anion-cation. Thermal waters display various chemical compositions and high temperature waters have Na-SO4, Na-HCO3, Na-Cl, Ca-SO4, Ca-HCO3 type. The springs are associated with faults and impermeable dykes and are assumed to be of meteoric origin. The mineral composition of the thermal waters reflects the geological formations found at the depth of origin. All thermal water springs are suitable for use in terms balneology since they contain high levels of mineral content and temperature. At the same time, some samples can be consumed by humans as soda water and mineral water. However, it is important to keep such limitations in mind when determining the ultimate use of the thermal springs.

  10. Effect of rapid thermal annealing on the noise properties of InAs/GaAs quantum dot structures

    SciTech Connect

    Arpatzanis, N.; Tsormpatzoglou, A.; Dimitriadis, C. A.; Song, J. D.; Choi, W. J.; Lee, J. I.; Charitidis, C.

    2007-09-01

    Self-assembled InAs quantum dots (QDs) were grown by molecular beam epitaxy (MBE) on n{sup +}-GaAs substrates, capped between 0.4 {mu}m thick n-type GaAs layers with electron concentration of 1x10{sup 16} cm{sup -3}. The effect of rapid thermal annealing at 700 deg. C for 60 s on the noise properties of the structure has been investigated using Au/n-GaAs Schottky diodes as test devices. In the reference sample without containing QDs, the noise spectra show a generation-recombination (g-r) noise behavior due to a discrete energy level located about 0.51 eV below the conduction band edge. This trap is ascribed to the M4 (or EL3) trap in GaAs MBE layers, related to a chemical impurity-native defect complex. In the structure with embedded QDs, the observed g-r noise spectra are due to a midgap trap level ascribed to the EL2 trap in GaAs, which is related to the InAs QDs dissolution due to the thermal treatment.

  11. Fermi-level unpinning in Pt/Al2O3/GaSb PMOS capacitors by sulphurization and rapid thermal annealing of GaSb surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Seongkyung; Yoo, Sijung; Lim, Hajin; Kim, Joon-Rae; Jeong, Jae Kyeong; Kim, Hyeong Joon

    2016-08-01

    A facile route to mitigate the Fermi-level pinning between a p-type GaSb semiconductor and an Al2O3 dielectric is proposed. Combination of the sulphurization of the GaSb surface and the subsequent rapid thermal annealing allowed for high quality GaSb/Al2O3 interfacial characteristics; the interfacial trap density value was ≤2.0 × 1012 cm-2 eV-1 in an energy range of 0.05 ≤ ET - Ev ≤ 0.45 eV for the PMOS capacitor via rapid thermal annealing at 575 °C. A physical rationale was given on the basis of the thermo-chemical conversion of Ga2O into Ga2O3 and the conformal elimination of Sb related elements and oxides on the GaSb surface.

  12. Rapid detection of chemical hazards (toxins, dioxins, and PCBs) in seafood.

    PubMed

    Arvanitoyannis, Ioannis S; Kotsanopoulos, Konstantinos V; Papadopoulou, Anna

    2014-01-01

    Among the various hazards occurring in fish and seafood chemical hazards and in particular toxins (ciguatera, scombroid fish poisoning, paralytic shellfish poisoning, neurotoxic (brevetoxic) shellfish poisoning, puffer fish poisoning, diarrhetic shellfish poisoning) have an important place in food poisoning cases. On the other hand, some of the chemical hazards are often due to the pollution of the environment (heavy metals, dioxins, polychlorinated biphenyls, and halogenated aromatic hydrocarbons) and their detection is neither rapid nor facile. As a result there was a great need for developing new rapid and effective methods toward the chemical hazards determination mainly because of their high toxicity. The aim of this review is to provide the information about the new up-to-date detection techniques (Immunological, Chemical and Biochemical, and Molecular assays) in conjunction with detection limits. The latter is made possible by means of inclusion of seven comprehensive and, in most case cases, very extended tables. A reference is also made on the risk characterization of toxins as regards their importance to food contamination or poisoning.

  13. Improved Si/SiOx interface passivation by ultra-thin tunneling oxide layers prepared by rapid thermal oxidation

    NASA Astrophysics Data System (ADS)

    Gad, Karim M.; Vössing, Daniel; Balamou, Patrice; Hiller, Daniel; Stegemann, Bert; Angermann, Heike; Kasemann, Martin

    2015-10-01

    We analyze the influence of different oxidation methods on the chemical passivation quality of silicon oxide-nanolayers on crystalline silicon wafers with surface photo voltage and quasi-steady-state photo conductance measurements. We present a simple method by means of rapid thermal oxidation (RTO) and subsequent annealing in forming gas, which requires no complex surface pre-treatment or surface pre-conditioning after cleaning. This technique allows a reproducible preparation of high-quality ultra-thin oxide-nanolayers (1.3-1.6 nm) with a nearly intrinsic energetic distribution of interface states and a defect density of states of only 1 × 1012 cm-2 eV-1 at the minimum of the distribution. These results are compared with silicon oxide-nanolayers prepared by wet chemical oxidation and plasma oxidation where only a slight reduction of the interface defect density is achieved by subsequent anneal in forming gas environment. Furthermore, it is shown that applying the RTO oxide-nanolayer as an intermediate layer between Si and an a-SiNx:H layer, leads to a significant improvement of the surface passivation quality.

  14. Petrographic, Chemical and Spectroscopic Data on Thermally Metamorphosed Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Tonui, E. K.; Zolensky, M. E.; Hiroi, T.; Wang, M.-S.; Lipschutz, M. E.

    2002-03-01

    First comprehensive description of aqueous alteration and thermal metamorphism in carbonaceous chondrites. Petrographic evidence has been checked against labile trace element temperatures. Spectroscopic data reveals the level of dehydration and possible relationship to primitive asteroids.

  15. Effective control of photomask surface chemical residuals through thermal treatment

    NASA Astrophysics Data System (ADS)

    Kang, Han-Byul; Kim, Jong-Min; Kim, Yong-Dae; Cho, Hyun-Joon; Choi, Sang-Soo

    2005-05-01

    We investigated the control of residual ions on the mask surface and the phase/transmission change rate by using thermal treatment after a conventional cleaning process. We hypothesized that the remaining sulfuric ions on the mask surface could combine with other ions and produce compounds during the thermal treatment. These compounds are easily removed by a hot D.I water rinse. Our study shows that the amount of remaining sulfuric ions is 250ng/mask when the mask has been thermally treated. The amount of sulfuric ions is substantially reduced compared to the results of other cleaning processes. Additionally we have found that the thermal treatment can be reduced varying the phase/trans value according to the cleaning cycle and the variation was stable even with a higher concentration of SC-1 solution.

  16. The Rotary Zone Thermal Cycler: A Low-Power System Enabling Automated Rapid PCR

    PubMed Central

    Bartsch, Michael S.; Renzi, Ronald F.; Van de Vreugde, James L.; Kim, Hanyoup; Knight, Daniel L.; Sinha, Anupama; Branda, Steven S.; Patel, Kamlesh D.

    2015-01-01

    Advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology (e.g., aliquoting, centrifuging, mixing, and thermal cycling) to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system that uses low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between-run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, we present preliminary results for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis. PMID:25826708

  17. The rotary zone thermal cycler: A low-power system enabling automated rapid PCR

    SciTech Connect

    Bartsch, Michael S.; Edwards, Harrison S.; Lee, Daniel; Moseley, Caroline E.; Tew, Karen E.; Renzi, Ronald F.; Van de Vreugde, James L.; Kim, Hanyoup; Knight, Daniel L.; Sinha, Anupama; Branda, Steven S.; Patel, Kamlesh D.; Wanunu, Meni

    2015-03-31

    In this study, advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, portable, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology such as aliquoting, centrifuging, mixing, and thermal cycling to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We further demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system using low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, preliminary results are presented for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis.

  18. The rotary zone thermal cycler: A low-power system enabling automated rapid PCR

    DOE PAGES

    Bartsch, Michael S.; Edwards, Harrison S.; Gas Transmission Systems, Walnut Creek, CA; Lee, Daniel; California State Univ., Los Angeles, CA; Moseley, Caroline E.; Tew, Karen E.; Utah State Univ., Logan, UT; Renzi, Ronald F.; Van de Vreugde, James L.; et al

    2015-03-31

    In this study, advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, portable, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology such as aliquoting, centrifuging, mixing, and thermal cycling to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks intomore » contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We further demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system using low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, preliminary results are presented for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis.« less

  19. Chemical and thermal freeze-out of identified hadrons at the LHC

    NASA Astrophysics Data System (ADS)

    Zhu, Xiangrong; Song, Huichao

    2016-01-01

    This proceedings contribution briefly summarizes our recent VISHNU hybrid model investigations on the chemical and thermal freeze-out of various hadrons species in 2.76 A TeV Pb+Pb collisions. Detailed analysis on the evolution of particle yields and the last elastic collisions distributions during the hadronic evolution reveals that the two multi-strange hadrons, Ξ and Ω, experience early chemical and thermal freeze-out when compared with other hadron species.

  20. A Rapid and Low-Cost PCR Thermal Cycler for Infectious Disease Diagnostics

    PubMed Central

    Chan, Kamfai; Wong, Pui-Yan; Yu, Peter; Hardick, Justin; Wong, Kah-Yat; Wilson, Scott A.; Wu, Tiffany; Hui, Zoe; Gaydos, Charlotte; Wong, Season S.

    2016-01-01

    The ability to make rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a great step forward in global health. Many molecular diagnostic assays are developed based on using thermal cyclers to carry out polymerase chain reaction (PCR) and reverse-transcription PCR for DNA and RNA amplification and detection, respectively. Unfortunately, most commercial thermal cyclers are expensive and need continuous electrical power supply, so they are not suitable for uses in low-resource settings. We have previously reported a low-cost and simple approach to amplify DNA using vacuum insulated stainless steel thermoses food cans, which we have named it thermos thermal cycler or TTC. Here, we describe the use of an improved set up to enable the detection of viral RNA targets by reverse-transcription PCR (RT-PCR), thus expanding the TTC’s ability to identify highly infectious, RNA virus-based diseases in low resource settings. The TTC was successful in demonstrating high-speed and sensitive detection of DNA or RNA targets of sexually transmitted diseases, HIV/AIDS, Ebola hemorrhagic fever, and dengue fever. Our innovative TTC costs less than $200 to build and has a capacity of at least eight tubes. In terms of speed, the TTC’s performance exceeded that of commercial thermal cyclers tested. When coupled with low-cost endpoint detection technologies such as nucleic acid lateral-flow assay or a cell-phone-based fluorescence detector, the TTC will increase the availability of on-site molecular diagnostics in low-resource settings. PMID:26872358

  1. A Rapid and Low-Cost PCR Thermal Cycler for Infectious Disease Diagnostics.

    PubMed

    Chan, Kamfai; Wong, Pui-Yan; Yu, Peter; Hardick, Justin; Wong, Kah-Yat; Wilson, Scott A; Wu, Tiffany; Hui, Zoe; Gaydos, Charlotte; Wong, Season S

    2016-01-01

    The ability to make rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a great step forward in global health. Many molecular diagnostic assays are developed based on using thermal cyclers to carry out polymerase chain reaction (PCR) and reverse-transcription PCR for DNA and RNA amplification and detection, respectively. Unfortunately, most commercial thermal cyclers are expensive and need continuous electrical power supply, so they are not suitable for uses in low-resource settings. We have previously reported a low-cost and simple approach to amplify DNA using vacuum insulated stainless steel thermoses food cans, which we have named it thermos thermal cycler or TTC. Here, we describe the use of an improved set up to enable the detection of viral RNA targets by reverse-transcription PCR (RT-PCR), thus expanding the TTC's ability to identify highly infectious, RNA virus-based diseases in low resource settings. The TTC was successful in demonstrating high-speed and sensitive detection of DNA or RNA targets of sexually transmitted diseases, HIV/AIDS, Ebola hemorrhagic fever, and dengue fever. Our innovative TTC costs less than $200 to build and has a capacity of at least eight tubes. In terms of speed, the TTC's performance exceeded that of commercial thermal cyclers tested. When coupled with low-cost endpoint detection technologies such as nucleic acid lateral-flow assay or a cell-phone-based fluorescence detector, the TTC will increase the availability of on-site molecular diagnostics in low-resource settings. PMID:26872358

  2. Microbial quality and physical-chemical characteristics of thermal springs.

    PubMed

    Fazlzadeh, Mehdi; Sadeghi, Hadi; Bagheri, Pari; Poureshg, Yusef; Rostami, Roohollah

    2016-04-01

    Microbial quality and physical-chemical properties of recreational spas were surveyed to investigate the health aspect of the spas' water. A total of 195 samples were collected from pools and springs of the spas in five sites from Ardebil Province of Iran. The effects of an independent factor defined as 'condition' and its component sub-factors (i.e., sampling point, location, and sampling date) on microbial quality and physical-chemical properties of the spas were studied by applying path analysis. The influence of physical-chemical properties on microbial quality was also considered. The percentage of samples exceeding the ISIRI (Swimming pool water microbiological specifications (vol 9412), Institute of Standards and Industrial Research of Iran, Tehran, 2007) limits for Staphylococcus (spp.) was up to 55.8 in the springs and 87.8 in the pools, 58.1 and 99.2 for HPC, 90.7 and 97.8 for total coliform and fecal coliform, and 9.3 and 34.4 for Pseudomonas aeruginosa, respectively. There were significant differences between the pools and springs for both physical-chemical properties and microbial quality. From the path analysis, sampling point was the most effective sub-factor of 'condition' on both the physical-chemical properties and microbial quality. Among the physical-chemical properties, water color had the most enhancing or additive influence on microbial pollution, while EC indicated a reducing or subtractive effect.

  3. Development of thermal desorption gas chromatography/mass spectrometry as a rapid method for ambient particulate characterization

    NASA Astrophysics Data System (ADS)

    Sheya, Sue Anne N.

    A direct thermal desorption gas chromatography/mass spectrometry (TD GC/MS) method for air particulate matter (PM) analysis of volatile and semivolatile organic compounds was investigated. This technique uses a specially designed microdesorption GC inlet utilizing an inductively heated ferromagnetic foil with a Curie point temperature suitable for desorption, which can accommodate microgram amounts of material deposited on a thin strip of quartz fiber filter. Liquid or solid samples can be rapidly desorbed within 10 s at 315°C, followed by 30--40 min of chromatography time. The results obtained by this technique were found to be statistically equivalent to those obtained by the conventional solvent extraction gas chromatography/mass spectrometry (SX GC/MS) method for analysis of aromatic and n alkane standards, single source soot particles, and PM 10 filter samples. Correlations between injecting an extract, desorbing an extract, and desorbing particles averaged R = 0.94, with a three way correlation averaging R = 0.97. High volume sampling conducted at 12 spatially distributed sites located along the US/Mexican border of the El Paso/Juarez metroplex supplied 24h PM 10 filters for an investigation combining thermal desorption with a rapid online chemical derivatization procedure, and multivariate methods of source attribution using principal component and canonical correlation analysis of the resultant chemical markers. Four major combustion related PM emission sources were revealed at these sites: automotive, waste burning, biomass burning and meat cooking. A second investigation conducted in the same area used mediumvolume sampling to collect 2 h timeresolved PM 10 receptor samples for TD GC/MS analysis. Additionally, 2 h samples for inorganic analysis, multichannel particle size distribution measurements, and meteorological data were collected enabling generation of circadian PM multicharacterization profiles. Factor analysis based receptor modeling using

  4. EFFECTS OF THERMAL TREATMENTS ON THE CHEMICAL REACTIVITY OF TRICHLOROETHYLENE

    EPA Science Inventory

    A series of experiments was completed to investigate abiotic degradation and reaction product formation of trichloroethylene (TCE) when heated. A quartz-tube apparatus was used to study short residence time and high temperature conditions that are thought to occur during thermal ...

  5. Characterization and Calibration of Lightpipe Radiation Thermometers for Use in Rapid Thermal Processing

    NASA Astrophysics Data System (ADS)

    Tsai, B. K.; DeWitt, D. P.

    2003-09-01

    Lightpipe radiation thermometers (LPRTs) are the sensor of choice for temperature measurements in Rapid Thermal Processing (RTP) applications. At the National Institute of Standards and Technology (NIST), we have developed protocols for calibrating and characterizing LPRTs for use in RTP and other applications. In this paper, the LPRTs and the sodium heat pipe blackbody (Na-HPBB) used in the calibration process at NIST will be introduced. The calibration and characterization methods (spatial response, spectral response, temporal response, and optical inspection) of the LPRTs will be described also. Finally, a discussion of the application of LPRTs in an environment outside of the calibration laboratory, along with a list of recommendations for proper use of LPRTs, will be presented.

  6. Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles.

    PubMed

    Arnob, Md Masud Parvez; Zhao, Fusheng; Zeng, Jianbo; Santos, Greggy M; Li, Ming; Shih, Wei-Chuan

    2014-11-01

    A novel laser rapid thermal annealing (LRTA) technique is reported to tune the plasmonic resonance of disk-shaped nanoporous gold (NPG) nanoparticles for the first time. LRTA alters both the external and internal geometrical parameters of NPG nanoparticles at temperatures significantly lower than the melting temperature of bulk gold or non-porous gold nanoparticles. With increasing annealing laser intensity, the average pore size increases, while the mean disk diameter decreases. These morphological changes lead to blueshifting of the localized surface plasmon resonance (LSPR), which subsequently fine-tunes the SERS performance by better aligning the excitation laser and Raman scattering wavelengths with the LSPR peak. This technique can provide an effective means to optimize NPG nanoparticles for various plasmonic applications such as photothermal conversion, light-gated molecular release, and molecular sensing.

  7. Formation of MOS gates by rapid thermal/microwave remote plasma multiprocessing

    NASA Astrophysics Data System (ADS)

    Moslehi, Mehrdad M.; Saraswat, Krishna C.

    A novel cold wall single wafer lamp heated Rapid Thermal/Microwave Remote Plasma Multiprocessing (RTMRPM) reactor has been developed for multilayer in-situ growth and deposition of dielectrics, silicon, and metals. This equipment is the result of an attempt to enhance semiconductor processing equipment versatility, to improve process reproducibility and uniformity, to increase growth and deposition rates at reduced processing temperatures, and to achieve in situ multiprocessing in conjunction with real time process monitoring and automation. For high performance MOS VLSI applications, a variety of selective and nonselective tungsten deposition processes were investigated in this work. The tungsten gate MOS devices fabricated using the remote plasma multiprocessing techniques exhibited negligible plasma damage and near ideal electrical characteristics. The flexibility of the reactor allows optimization of each process step yet allows multiprocessing.

  8. Hydrogels with Rapid Thermal-Responsibility by Using Liquid Crystallite as Template

    NASA Astrophysics Data System (ADS)

    Zhang, Qingsong; Chen, Kun; Zhao, Yiping; Li, Chen

    2011-06-01

    To improve temperature-sensitivity of conventional poly(N-isopropylacrylamide) (PNIPAM) hydrogel, a kind of lyotropic liquid crystal based on polyoxyethylene 20 cetyl ether (Brij 58, C16E20) was used as template to prepare nanostructured hydrogel. The structure, morphology swelling behavior and temperature-sensitivity of confined PNIPAM hydrogel were characterized. SEM images showed that polymerization of N-isopropylacrylamide (NIPAM) in Brij 58 solution formed hydrogel with honeycomb structure. Compared to pure PNIPAM hydrogel, the swelling rate increases. The time for losing water was greatly shortened. The thermal-responsibility measured by differential scanning calorimeters (DSC) was improved remarkably. Finally, as for oscillatory swelling/deswelling behaviors, rapid recovering could be found by alternating temperature from 20 to 37°C.

  9. Codon randomization for rapid exploration of chemical space in thiopeptide antibiotic variants

    PubMed Central

    Young, Travis S; Dorrestein, Pieter C; Walsh, Christopher T

    2012-01-01

    SUMMARY Thiopeptide antibiotics exhibit a profound level of chemical diversity that is installed through cascades of posttranslational modifications on ribosomal peptides. Here we present a technique to rapidly explore the chemical space of the thiopeptide GE37468 through codon randomization, yielding insights into thiopeptide maturation as well as structure and activity relationships. In this incarnation of the methodology, we randomized 7 residues of the prepeptide coding region, enabling the generation of 133 potential thiopeptide variants. Variant libraries were subsequently queried in two ways. First, high through-put MALDI-TOF mass spectrometry was applied to colony-level expressions to sample mutants which permitted full maturation of the antibiotic. Second, the activity of producing mutants was detected in an antibiotic overlay assay. In total, 29 of the 133 variants were found to produce mature compound, 12 of which retained antibiotic activity and one which had improved activity against Methicillin-resistant Staphylococcus aureus (MRSA). PMID:23261603

  10. Shock initiated thermal and chemical responses of HMX crystal from ReaxFF molecular dynamics simulation.

    PubMed

    Zhou, Tingting; Song, Huajie; Liu, Yi; Huang, Fenglei

    2014-07-21

    To gain an atomistic-level understanding of the thermal and chemical responses of condensed energetic materials under thermal shock, we developed a thermal shock reactive dynamics (TS-RD) computational protocol using molecular dynamics simulation coupled with ReaxFF force field. β-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) was selected as a a target explosive due to its wide usage in the military and industry. The results show that a thermal shock initiated by a large temperature gradient between the "hot" region and the "cold" region results in thermal expansion of the particles and induces a thermal-mechanical wave propagating back and forth in the system with an averaged velocity of 3.32 km s(-1). Heat propagating along the direction of thermal shock leads to a temperature increment of the system and thus chemical reaction initiation. Applying a continuum reactive heat conduction model combined with the temperature distribution obtained from the RD simulation, a heat conduction coefficient is derived as 0.80 W m(-1) K(-1). The chemical reaction mechanisms during thermal shock were analyzed, showing that the reaction is triggered by N-NO2 bond breaking followed by HONO elimination and ring fission. The propagation rates of the reaction front and reaction center are obtained to be 0.069 and 0.038 km s(-1), based on the time and spatial distribution of NO2. The pressure effect on the thermal shock was also investigated by employing uniaxial compression before the thermal shock. We find that compression significantly accelerates thermal-mechanical wave propagation and heat conduction, resulting in higher temperature and more excited molecules and thus earlier initiation and faster propagation of chemical reactions. PMID:24899535

  11. Shock initiated thermal and chemical responses of HMX crystal from ReaxFF molecular dynamics simulation.

    PubMed

    Zhou, Tingting; Song, Huajie; Liu, Yi; Huang, Fenglei

    2014-07-21

    To gain an atomistic-level understanding of the thermal and chemical responses of condensed energetic materials under thermal shock, we developed a thermal shock reactive dynamics (TS-RD) computational protocol using molecular dynamics simulation coupled with ReaxFF force field. β-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) was selected as a a target explosive due to its wide usage in the military and industry. The results show that a thermal shock initiated by a large temperature gradient between the "hot" region and the "cold" region results in thermal expansion of the particles and induces a thermal-mechanical wave propagating back and forth in the system with an averaged velocity of 3.32 km s(-1). Heat propagating along the direction of thermal shock leads to a temperature increment of the system and thus chemical reaction initiation. Applying a continuum reactive heat conduction model combined with the temperature distribution obtained from the RD simulation, a heat conduction coefficient is derived as 0.80 W m(-1) K(-1). The chemical reaction mechanisms during thermal shock were analyzed, showing that the reaction is triggered by N-NO2 bond breaking followed by HONO elimination and ring fission. The propagation rates of the reaction front and reaction center are obtained to be 0.069 and 0.038 km s(-1), based on the time and spatial distribution of NO2. The pressure effect on the thermal shock was also investigated by employing uniaxial compression before the thermal shock. We find that compression significantly accelerates thermal-mechanical wave propagation and heat conduction, resulting in higher temperature and more excited molecules and thus earlier initiation and faster propagation of chemical reactions.

  12. An experimental study of pyroxene crystallization during rapid cooling in a thermal gradient: application to komatiites

    NASA Astrophysics Data System (ADS)

    Bouquain, S.; Arndt, N. T.; Faure, F.; Libourel, G.

    2014-07-01

    To investigate the crystallization of pyroxene in spinifex-textured komatiites, we undertook a series of experiments in which compositions in the CaO-MgO-Al2O3-SiO2 CMAS system were cooled rapidly in a thermal gradient. Cooling rates were generally between 5 and 10 °C h-1, but some runs were made at 100-200 °C h-1; thermal gradients were between 10 and 20 °C cm-1. These conditions reproduced those at various depths in the crust of komatiite lava flow. The starting composition was chosen to have pigeonite on the liquidus, and most of the experimental charges crystallized zoned pigeonite-diopside crystals like those in komatiite lavas. An intriguing aspect of the experimental results was their lack of reproducibility. Some experiments crystallized forsterite, whereas others that were run under similar conditions crystallized two pyroxenes and no forsterite; some experiments were totally glassy, but others crystallized entirely to pyroxene. The degree of supercooling at the onset of pyroxene crystallization was variable, from less than 25 °C to more than 110 °C. We attribute these results to the difficulty of nucleation of pyroxene under the conditions of the experiments. In some cases forsterite crystallized metastably and modified the liquid composition to inhibit pyroxene crystallization; in others no nucleation took place until a large degree of supercooling was achieved, and then pyroxene crystallized rapidly. Pigeonite crystallized under a wide range of conditions, at cooling rates from 3 to 100 °C h-1. The notion that this mineral only forms at low cooling rates is not correct.

  13. Large area super-resolution chemical imaging via rapid dithering of a nanoprobe

    NASA Astrophysics Data System (ADS)

    Languirand, Eric R.; Cullum, Brian M.

    2015-05-01

    Super-resolution chemical imaging via Raman spectroscopy provides a significant ability to simultaneously or pseudosimultaneously monitor numerous label-free analytes while elucidating their spatial distribution on the surface of the sample. However, spontaneous Raman is an inherently weak phenomenon making trace detection and thus superresolution imaging extremely difficult, if not impossible. To circumvent this and allow for trace detection of the few chemical species present in any sub-diffraction limited resolution element of an image, we have developed a surface enhanced Raman scattering (SERS) coherent fiber-optic imaging bundle probe consisting of 30,000 individual fiber elements. When the probes are tapered, etched and coated with metal, they provide circular Raman chemical images of a sample with a field of view of approximately 20μm (i.e. diameter) via the array of 30,000 individual 50 nm fiber elements. An acousto-optic tunable filter is used to rapidly scan or select discrete frequencies for multi- or hyperspectral analysis. Although the 50nm fiber element dimensions of this probe inherently provide spatial resolutions of approximately 100nm, further increases in the spatial resolution can be achieved by using a rapid dithering process. Using this process, additional images are obtained one-half fiber diameter translations in the x- and y- planes. A piezostage drives the movement, providing the accurate and reproducible shifts required for dithering. Optimal probability algorithms are then used to deconvolute the related images producing a final image with a three-fold increase in spatial resolution. This paper describes super-resolution chemical imaging using these probes and the dithering method as well as its potential applications in label-free imaging of lipid rafts and other applications within biology and forensics.

  14. Rapid Electrochemical Detection and Identification of Microbiological and Chemical Contaminants for Manned Spaceflight Project

    NASA Technical Reports Server (NTRS)

    Pierson, Duane; Botkin, Douglas; Gazda, Daniel

    2014-01-01

    Microbial control in the spacecraft environment is a daunting task, especially in the presence of human crew members. Currently, assessing the potential crew health risk associated with a microbial contamination event requires return of representative environmental samples that are analyzed in a ground-based laboratory. It is therefore not currently possible to quickly identify microbes during spaceflight. This project addresses the unmet need for spaceflight-compatible microbial identification technology. The electrochemical detection and identification platform is expected to provide a sensitive, specific, and rapid sample-to-answer capability for in-flight microbial monitoring that can distinguish between related microorganisms (pathogens and non-pathogens) as well as chemical contaminants. This will dramatically enhance our ability to monitor the spacecraft environment and the health risk to the crew. Further, the project is expected to eliminate the need for sample return while significantly reducing crew time required for detection of multiple targets. Initial work will focus on the optimization of bacterial detection and identification. The platform is designed to release nucleic acids (DNA and RNA) from microorganisms without the use of harmful chemicals. Bacterial DNA or RNA is captured by bacteria-specific probe molecules that are bound to a microelectrode, and that capture event can generate a small change in the electrical current (Lam, et al. 2012. Anal. Chem. 84(1): 21-5.). This current is measured, and a determination is made whether a given microbe is present in the sample analyzed. Chemical detection can be accomplished by directly applying a sample to the microelectrode and measuring the resulting current change. This rapid microbial and chemical detection device is designed to be a low-cost, low-power platform anticipated to be operated independently of an external power source, characteristics optimal for manned spaceflight and areas where power

  15. Rapid Life-History Diversification of an Introduced Fish Species across a Localized Thermal Gradient

    PubMed Central

    Zhu, Fengyue; Rypel, Andrew L.; Murphy, Brian R.; Li, Zhongjie; Zhang, Tanglin; Yuan, Jing; Guo, Zhiqiang; Tang, Jianfeng; Liu, Jiashou

    2014-01-01

    Climatic variations are known to engender life-history diversification of species and populations at large spatial scales. However, the extent to which microgeographic variations in climate (e.g., those occurring within a single large ecosystem) can also drive life-history divergence is generally poorly documented. We exploited a spatial gradient in water temperatures at three sites across a large montane lake in southwest China (Lake Erhai) to examine the extent to which life histories of a short-lived fish species (icefish, Neosalanx taihuensis) diversified in response to thermal regime following introduction 25 y prior. In general, warmwater icefish variants grew faster, had larger adult body size and higher condition and fecundity, but matured at smaller sizes. Conversely, coldwater variants had smaller adult body size and lower condition, but matured at larger sizes and had larger eggs. These life-history differences strongly suggest that key ecological trade-offs exist for icefish populations exposed to different thermal regimes, and these trade-offs have driven relatively rapid diversification in the life histories of icefish within Lake Erhai. Results are surprisingly concordant with current knowledge on life-history evolution at macroecological scales, and suggest that improved conservation management might be possible by focusing on patterns operating at microgeographical, including, within-ecosystem scales. PMID:24505366

  16. Rapid life-history diversification of an introduced fish species across a localized thermal gradient.

    PubMed

    Zhu, Fengyue; Rypel, Andrew L; Murphy, Brian R; Li, Zhongjie; Zhang, Tanglin; Yuan, Jing; Guo, Zhiqiang; Tang, Jianfeng; Liu, Jiashou

    2014-01-01

    Climatic variations are known to engender life-history diversification of species and populations at large spatial scales. However, the extent to which microgeographic variations in climate (e.g., those occurring within a single large ecosystem) can also drive life-history divergence is generally poorly documented. We exploited a spatial gradient in water temperatures at three sites across a large montane lake in southwest China (Lake Erhai) to examine the extent to which life histories of a short-lived fish species (icefish, Neosalanx taihuensis) diversified in response to thermal regime following introduction 25 y prior. In general, warmwater icefish variants grew faster, had larger adult body size and higher condition and fecundity, but matured at smaller sizes. Conversely, coldwater variants had smaller adult body size and lower condition, but matured at larger sizes and had larger eggs. These life-history differences strongly suggest that key ecological trade-offs exist for icefish populations exposed to different thermal regimes, and these trade-offs have driven relatively rapid diversification in the life histories of icefish within Lake Erhai. Results are surprisingly concordant with current knowledge on life-history evolution at macroecological scales, and suggest that improved conservation management might be possible by focusing on patterns operating at microgeographical, including, within-ecosystem scales.

  17. Evolution of lateral ordering in symmetric block copolymer thin films upon rapid thermal processing.

    PubMed

    Ceresoli, Monica; Ferrarese Lupi, Federico; Seguini, Gabriele; Sparnacci, Katia; Gianotti, Valentina; Antonioli, Diego; Laus, Michele; Boarino, Luca; Perego, Michele

    2014-07-11

    This work reports experimental findings about the evolution of lateral ordering of lamellar microdomains in symmetric PS-b-PMMA thin films on featureless substrates. Phase separation and microdomain evolution are explored in a rather wide range of temperatures (190-340 °C) using a rapid thermal processing (RTP) system. The maximum processing temperature that enables the ordering of block copolymers without introducing any significant degradation of macromolecules is identified. The reported results clearly indicate that the range of accessible temperatures in the processing of these self-assembling materials is mainly limited by the thermal instability of the grafted random copolymer layer, which starts to degrade at T > 300 °C, inducing detachment of the block copolymer thin film. For T ⩽ 290 °C, clear dependence of correlation length (ξ) values on temperature is observed. The highest level of lateral order achievable in the current system in a quasi-equilibrium condition was obtained at the upper processing temperature limit after an annealing time as short as 60 s.

  18. Rapid changes in cell physiology as a result of acute thermal stress house sparrows, Passer domesticus.

    PubMed

    Jimenez, Ana G; Williams, Joseph B

    2014-12-01

    Given that our climate is rapidly changing, Physiological Ecologists have the critical task of identifying characteristics of species that make them either resilient or susceptible to changes in their natural air temperature regime. Because climate change models suggest that heat events will become more common, and in some places more extreme, it is important to consider how extreme heat events might affect the physiology of a species. The implications of more frequent heat wave events for birds have only recently begun to be addressed, however, the impact of these events on the cellular physiology of a species is difficult to assess. We have developed a novel approach using dermal fibroblasts to explore how short-term thermal stress at the whole animal level might affect cellular rates of metabolism. House sparrows, Passer domesticus were separated into a "control group" and a "heat shocked" group, the latter acclimated to 43°C for 24h. We determined the plasticity of cellular thermal responses by assigning a "recovery group" that was heat shocked as above, but then returned to room temperature for 24h. Primary dermal fibroblasts were grown from skin of all treatment groups and the pectoralis muscle was collected. We found that glycolysis (ECAR) and oxygen consumption rates (OCR), measured using a Seahorse XF 96 analyzer, were significantly higher in the fibroblasts from the heat shocked group of House sparrows compared with their control counterparts. Additionally, muscle fiber diameters decreased and, in turn, Na(+)-K(+)-ATPase maximal activity in the muscle significantly increased in heat shocked sparrows compared with birds in the control group. All of these physiological alterations due to short-term heat exposure were reversible within 24h of recovery at room temperature. These results show that acute exposure to heat stress significantly alters the cellular physiology of sparrows, but that this species is plastic enough to recover from such a thermal

  19. Rapid changes in cell physiology as a result of acute thermal stress house sparrows, Passer domesticus.

    PubMed

    Jimenez, Ana G; Williams, Joseph B

    2014-12-01

    Given that our climate is rapidly changing, Physiological Ecologists have the critical task of identifying characteristics of species that make them either resilient or susceptible to changes in their natural air temperature regime. Because climate change models suggest that heat events will become more common, and in some places more extreme, it is important to consider how extreme heat events might affect the physiology of a species. The implications of more frequent heat wave events for birds have only recently begun to be addressed, however, the impact of these events on the cellular physiology of a species is difficult to assess. We have developed a novel approach using dermal fibroblasts to explore how short-term thermal stress at the whole animal level might affect cellular rates of metabolism. House sparrows, Passer domesticus were separated into a "control group" and a "heat shocked" group, the latter acclimated to 43°C for 24h. We determined the plasticity of cellular thermal responses by assigning a "recovery group" that was heat shocked as above, but then returned to room temperature for 24h. Primary dermal fibroblasts were grown from skin of all treatment groups and the pectoralis muscle was collected. We found that glycolysis (ECAR) and oxygen consumption rates (OCR), measured using a Seahorse XF 96 analyzer, were significantly higher in the fibroblasts from the heat shocked group of House sparrows compared with their control counterparts. Additionally, muscle fiber diameters decreased and, in turn, Na(+)-K(+)-ATPase maximal activity in the muscle significantly increased in heat shocked sparrows compared with birds in the control group. All of these physiological alterations due to short-term heat exposure were reversible within 24h of recovery at room temperature. These results show that acute exposure to heat stress significantly alters the cellular physiology of sparrows, but that this species is plastic enough to recover from such a thermal

  20. Apparatus for thermally evolving chemical analytes from a removable substrate

    DOEpatents

    Linker, Kevin L.; Hannum, David W.

    2003-06-03

    Method and apparatus suited to convenient field use for heating a porous metallic substrate swiped on the surface of an article possibly bearing residue of contraband or other target chemical substances. The preferred embodiment of the device includes means for holding the swiped substrate between electrodes bearing opposite electrical charges, thereby completing an electrical circuit in which current can flow through the porous metallic substrate. Resistance causes the substrate to heat, thus driving adherent target chemicals, if present, into a space from which they are carried via gas flow into a detector such as a portable IMS for analysis.

  1. Thermal Emissivity-Based Chemical Spectroscopy through Evanescent Tunneling.

    PubMed

    Poole, Zsolt L; Ohodnicki, Paul R

    2016-04-01

    A new spectroscopic technique is presented, with which environmentalchemistry-induced thermal emissivity changes of thin films are extracted with high isolation through evanescent tunneling. With this method the hydrogen-induced emissivity changes of films of TiO2 , Pd-TiO2 , and Au-TiO2 , with properties of high conductivity, hydrogen chemisorption, and plasmonic activity, are characterized in the UV-vis and NIR wavelength ranges, at 1073 K.

  2. A Novel Thermal Sensor for the Sensitive Measurement of Chemical Oxygen Demand

    PubMed Central

    Yao, Na; Liu, Zhuan; Chen, Ying; Zhou, Yikai; Xie, Bin

    2015-01-01

    A novel rapid methodology for determining the chemical oxygen demand (COD) based on a thermal sensor with a flow injection analysis system was proposed and experimentally validated. The ability of this sensor to detect and monitor COD was based on the degree of enthalpy increase when sodium hypochlorite reacted with the organic content in water samples. The measurement results were correlated with COD and were compared against the conventional method using potassium dichromate. The assay required only 5–7 min rather than the 2 h required for evaluation by potassium dichromate. The linear range was 5–1000 mg/L COD, and the limit of detection was very low, 0.74 mg/L COD. Moreover, this method exhibited high tolerance to chloride ions; 0.015 mol/L chloride ions had no influence on the response. Finally, the sensor was used to detect the COD of different water samples; the results were verified by the standard dichromate method. PMID:26295397

  3. Structure-Property Evaluation of Thermally and Chemically Gelling Injectable Hydrogels for Tissue Engineering

    PubMed Central

    Ekenseair, Adam K.; Boere, Kristel W. M.; Tzouanas, Stephanie N.; Vo, Tiffany N.; Kasper, F. Kurtis; Mikos, Antonios G.

    2012-01-01

    The impact of synthesis and solution formulation parameters on the swelling and mechanical properties of a novel class of thermally and chemically gelling hydrogels combining poly(N-isopropylacrylamide)-based thermogelling macromers containing pendant epoxy rings with polyamidoamine-based hydrophilic and degradable diamine crosslinking macromers was evaluated. Through variation of network hydrophilicity and capacity for chain rearrangement, the often problematic tendency of thermogelling hydrogels to undergo significant syneresis was addressed. The demonstrated ability to easily tune post-formation dimensional stability at both the synthesis and formulation stages represents a significant novel contribution towards efforts to utilize poly(N-isopropylacrylamide)-based polymers as injectable biomaterials. Furthermore, the cytocompatibility of the hydrogel system under relevant conditions was established, while demonstrating time- and dose-dependent cytotoxicity at high solution osmolality. Such injectable in situ forming degradable hydrogels with tunable water content are promising candidates for many tissue engineering applications, particularly for cell delivery to promote rapid tissue regeneration in non-load-bearing defects. PMID:22881074

  4. Structure-property evaluation of thermally and chemically gelling injectable hydrogels for tissue engineering.

    PubMed

    Ekenseair, Adam K; Boere, Kristel W M; Tzouanas, Stephanie N; Vo, Tiffany N; Kasper, F Kurtis; Mikos, Antonios G

    2012-09-10

    The impact of synthesis and solution formulation parameters on the swelling and mechanical properties of a novel class of thermally and chemically gelling hydrogels combining poly(N-isopropylacrylamide)-based thermogelling macromers containing pendant epoxy rings with polyamidoamine-based hydrophilic and degradable diamine cross-linking macromers was evaluated. Through variation of network hydrophilicity and capacity for chain rearrangement, the often problematic tendency of thermogelling hydrogels to undergo significant syneresis was addressed. The demonstrated ability to tune postformation dimensional stability easily at both the synthesis and formulation stages represents a significant novel contribution toward efforts to utilize poly(N-isopropylacrylamide)-based polymers as injectable biomaterials. Furthermore, the cytocompatibility of the hydrogel system under relevant conditions was established while demonstrating time- and dose-dependent cytotoxicity at high solution osmolality. Such injectable in situ forming degradable hydrogels with tunable water content are promising candidates for many tissue-engineering applications, particularly for cell delivery to promote rapid tissue regeneration in non-load-bearing defects.

  5. Experimental analysis of the tube life problem with pulse thermal, chemical, and mechanical actions

    NASA Astrophysics Data System (ADS)

    Fan, Lei; Liu, Wei Ming; Jun, Zhao; Xu, Cheng

    2008-11-01

    In this paper, a life testing system of a gun barrel was set up and a set of experiment was used for the diagnostics of gun barrel erosion in rapid-fire condition. The progressive erosion micrographs of the bore surface of a gun tube are obtained by means of a special optical method. Muzzle velocity and the progressive change of the loss of the muzzle velocity in the life time are measured by projectile velocity measurement system. The progressive change of the bore dimensions of the test barrel is monitored. Surface temperature distribution of the gun barrel is measured by the thermocouples. A thermal-solid coupled model of a gun barrel in cyclic firing condition is built and transient temperature field is presented. Theoretical calculations and experimental measurements indicate that heat is transferred from the pulse hot gas to the bore surface by forced convection, further raising the bore surface temperature, which not only reduces the gun mechanical strength, but also promotes chemical interactions. It is one of the key factors of the gun barrel erosion life. New understanding of performance decay and its mechanisms of a machine gun barrel in lifetime are presented.

  6. Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)

    SciTech Connect

    Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H.; Barhen, J.

    1997-04-01

    A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

  7. An ab initio study of the nickel-catalyzed transformation of amorphous carbon into graphene in rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Chen, Shuang; Xiong, Wei; Zhou, Yun Shen; Lu, Yong Feng; Zeng, Xiao Cheng

    2016-05-01

    Ab initio molecular dynamics (AIMD) simulations are employed to investigate the chemical mechanism underlying the Ni-catalyzed transformation of amorphous carbon (a-C) into graphene in the rapid thermal processing (RTP) experiment to directly grow graphene on various dielectric surfaces via the evaporation of surplus Ni and C at 1100 °C (below the melting point of bulk Ni). It is found that the a-C-to-graphene transformation entails the metal-induced crystallization and layer exchange mechanism, rather than the conventional dissolution/precipitation mechanism typically involved in Ni-catalyzed chemical vapor deposition (CVD) growth of graphene. The multi-layer graphene can be tuned by changing the relative thicknesses of deposited a-C and Ni thin films. Our AIMD simulations suggest that the easy evaporation of surplus Ni with excess C is likely attributed to the formation of a viscous-liquid-like Ni-C solution within the temperature range of 900-1800 K and to the faster diffusion of C atoms than that of Ni atoms above 600 K. Even at room temperature, sp3-C atoms in a-C are quickly converted to sp2-C atoms in the course of the simulation, and the graphitic C formation can occur at low temperature. When the temperature is as high as 1200 K, the grown graphitic structures reversely dissolve into Ni. Because the rate of temperature increase is considerably faster in the AIMD simulations than in realistic experiments, defects in the grown graphitic structures are kinetically trapped. In this kinetic growth stage, the carbon structures grown from sp3-carbon or from sp2-carbon exhibit marked differences.Ab initio molecular dynamics (AIMD) simulations are employed to investigate the chemical mechanism underlying the Ni-catalyzed transformation of amorphous carbon (a-C) into graphene in the rapid thermal processing (RTP) experiment to directly grow graphene on various dielectric surfaces via the evaporation of surplus Ni and C at 1100 °C (below the melting point of bulk

  8. An ab initio study of the nickel-catalyzed transformation of amorphous carbon into graphene in rapid thermal processing.

    PubMed

    Chen, Shuang; Xiong, Wei; Zhou, Yun Shen; Lu, Yong Feng; Zeng, Xiao Cheng

    2016-05-14

    Ab initio molecular dynamics (AIMD) simulations are employed to investigate the chemical mechanism underlying the Ni-catalyzed transformation of amorphous carbon (a-C) into graphene in the rapid thermal processing (RTP) experiment to directly grow graphene on various dielectric surfaces via the evaporation of surplus Ni and C at 1100 °C (below the melting point of bulk Ni). It is found that the a-C-to-graphene transformation entails the metal-induced crystallization and layer exchange mechanism, rather than the conventional dissolution/precipitation mechanism typically involved in Ni-catalyzed chemical vapor deposition (CVD) growth of graphene. The multi-layer graphene can be tuned by changing the relative thicknesses of deposited a-C and Ni thin films. Our AIMD simulations suggest that the easy evaporation of surplus Ni with excess C is likely attributed to the formation of a viscous-liquid-like Ni-C solution within the temperature range of 900-1800 K and to the faster diffusion of C atoms than that of Ni atoms above 600 K. Even at room temperature, sp(3)-C atoms in a-C are quickly converted to sp(2)-C atoms in the course of the simulation, and the graphitic C formation can occur at low temperature. When the temperature is as high as 1200 K, the grown graphitic structures reversely dissolve into Ni. Because the rate of temperature increase is considerably faster in the AIMD simulations than in realistic experiments, defects in the grown graphitic structures are kinetically trapped. In this kinetic growth stage, the carbon structures grown from sp(3)-carbon or from sp(2)-carbon exhibit marked differences.

  9. Electrical and thermal conductivities of rapidly crystallized Cu-Zr alloys: The effect of anharmonicity

    NASA Astrophysics Data System (ADS)

    Uporov, S.; Bykov, V.; Estemirova, S.

    2016-10-01

    We present a comprehensive study of electrical and thermal conductivities, specific heat and magnetic susceptibility of rapidly crystallized Cu100-xZrx (x = 20-90) alloys. X-ray diffraction analysis has revealed that all the prepared compositions had strongly textured and distorted crystal structures. Different monoclinic and other non-equilibrium phases were detected in the case of glass-forming samples, whereas the alloys without a tendency to form glassy state show almost equilibrium phase content. Metallic type of electrical conductivity and the Kondo anomaly were observed for all the examined samples. It was found that the electrical resistance data cannot be adequately described within the standard Bloch-Grüneisen theory. We use the Debye characteristic temperature as a linear function to fit the electrical conductivity accurately. The composition dependence of the electron density of states at the Fermi level (DOS) has been extracted from room temperature magnetic susceptibility. We found that the glass-forming alloys are characterized by abnormally large values of DOS, which are comparable to those of glassy analogues. Noticeable anharmonic contribution in total specific heat has been revealed for all the studied compositions. In order to estimate the effect of anharmonicity in the system under consideration, we analyzed composition and temperature dependencies of the studied thermal characteristics related to the Grüneisen coefficient. Basing on the results obtained in this study we propose a phenomenological concept to explain abnormal behavior of physical properties of glass-forming Cu-Zr alloys within the standard solid state theory taking into account anharmonic effects.

  10. Stomatal Control and Leaf Thermal and Hydraulic Capacitances under Rapid Environmental Fluctuations

    PubMed Central

    Schymanski, Stanislaus J.; Or, Dani; Zwieniecki, Maciej

    2013-01-01

    Leaves within a canopy may experience rapid and extreme fluctuations in ambient conditions. A shaded leaf, for example, may become exposed to an order of magnitude increase in solar radiation within a few seconds, due to sunflecks or canopy motions. Considering typical time scales for stomatal adjustments, (2 to 60 minutes), the gap between these two time scales raised the question whether leaves rely on their hydraulic and thermal capacitances for passive protection from hydraulic failure or over-heating until stomata have adjusted. We employed a physically based model to systematically study effects of short-term fluctuations in irradiance on leaf temperatures and transpiration rates. Considering typical amplitudes and time scales of such fluctuations, the importance of leaf heat and water capacities for avoiding damaging leaf temperatures and hydraulic failure were investigated. The results suggest that common leaf heat capacities are not sufficient to protect a non-transpiring leaf from over-heating during sunflecks of several minutes duration whereas transpirative cooling provides effective protection. A comparison of the simulated time scales for heat damage in the absence of evaporative cooling with observed stomatal response times suggested that stomata must be already open before arrival of a sunfleck to avoid over-heating to critical leaf temperatures. This is consistent with measured stomatal conductances in shaded leaves and has implications for water use efficiency of deep canopy leaves and vulnerability to heat damage during drought. Our results also suggest that typical leaf water contents could sustain several minutes of evaporative cooling during a sunfleck without increasing the xylem water supply and thus risking embolism. We thus submit that shaded leaves rely on hydraulic capacitance and evaporative cooling to avoid over-heating and hydraulic failure during exposure to typical sunflecks, whereas thermal capacitance provides limited protection

  11. Rapidly Rotating Rayleigh-Benard Convection: Approaching the Asymptotic Limit of Quasigeostrophic Thermal Convection.

    NASA Astrophysics Data System (ADS)

    Julien, K. A.

    2014-12-01

    Current models and simulations of rotating fluid turbulence in the atmosphere and oceans, and planetary interiors are conducted in parameter regimes that are typically far removed from realistic values. Addressing this problem with present day models through improvements in computing power via Moore's law (giving a doubling of resolution in each direction every six years for three-dimensional problems) will produce slow advances at best. Advances may also occur through new model development and associated simulations utilizing extreme parameter values in an asymptotic manner. Such an approach will require a body of knowledge gained from large-scale direct numerical simulations and laboratory experiments that explore the nature of extreme values in controlled settings. In this talk I will present and discuss results obtained from simulations of the asymptotic PDEs relevant for rapidly rotating Rayleigh-Benard convection. A particular strength of the reduced model PDE's is that they filter fast inertial waves and relax the need to resolve thin viscous (Ekman) boundary layers. This approach identifies four distinct flow morphologies (cellular convection, convective Taylor columns, plume convection and geostrophic turbulence) that remain challenging for laboratory experiments and DNS to capture in its entirety. Despite this challenge experiments and DNS offer an important benchmark for validation of the asymptotic theory. In comparison with laboratory experiments and DNS we show that the asymptotic model provides a good description of the fluid interior. However, in the presence of no-slip boundaries it is demonstrated that Ekman boundary layers can destabilize thermal boundary layers and result in significant enhancement in heat transport throughout the layer. We argue that this always occurs at some point on the rotationally constrained branch of thermal convection and thus of potential importance to geophysical and astrophysical scenarios. We show that the effect of

  12. Rapid establishment of chemical and mechanical properties during lamellar bone formation.

    PubMed

    Busa, B; Miller, L M; Rubin, C T; Qin, Y-X; Judex, S

    2005-12-01

    The development of prophylaxes and treatments of bone diseases that can effectively increase the strength of bone as a structure necessitates a better understanding of the time course by which chemical properties define the stiffness of the material during primary and secondary mineralization. It was hypothesized that these processes would be relatively slow in the actively growing skeleton. Seven-week-old Sprague-Dawley female rats (n = 8) were injected with multiple fluorochrome labels over a time span of 3 weeks and killed. Chemical and mechanical properties of the tibial mid-diaphysis were spatially characterized between the endocortical and periosteal surface by in situ infrared microspectroscopy and nanoindentation. The phosphate-to-protein ratio of bone 2-6 days old was 20% smaller at the periosteal surface and 22% smaller at the endocortical surface (P < 0.05 each) compared to older intracortical regions. The ratios of carbonate to protein, crystallinity, type A/type B carbonate, collagen cross-linking, and bone elastic modulus did not differ significantly between bone 2-6, 10-14, and 8-22 days old and intracortical regions. Intracortical properties of 10-week-old rats, except for the carbonate-to-protein ratio which was 23% smaller (P < 0.01), were not significantly different from intracortical matrix properties of young adult rats (5 months, n = 4). Spatially, the phosphate-to-protein ratio (R(2) = 0.33) and the phosphate-to-carbonate ratio (R(2) = 0.55) were significantly correlated with bone material stiffness, while the combination of all chemical parameters raised the R(2) value to 0.83. These data indicate that lamellar bone has the ability to quickly establish its mechanical and chemical tissue properties during primary and secondary mineralization even when the skeleton experiences rapid growth.

  13. Rapid Establishment of Chemical and Mechanical Properties During Lamellar Bone Formation

    SciTech Connect

    Busa,B.; Miller, L.; Rubin, C.; Qin, Y.; Judex, S.

    2005-01-01

    The development of prophylaxes and treatments of bone diseases that can effectively increase the strength of bone as a structure necessitates a better understanding of the time course by which chemical properties define the stiffness of the material during primary and secondary mineralization. It was hypothesized that these processes would be relatively slow in the actively growing skeleton. Seven-week-old Sprague-Dawley female rats (n = 8) were injected with multiple fluorochrome labels over a time span of 3 weeks and killed. Chemical and mechanical properties of the tibial mid-diaphysis were spatially characterized between the endocortical and periosteal surface by in situ infrared microspectroscopy and nanoindentation. The phosphate-to-protein ratio of bone 2-6 days old was 20% smaller at the periosteal surface and 22% smaller at the endocortical surface (P < 0.05 each) compared to older intracortical regions. The ratios of carbonate to protein, crystallinity, type A/type B carbonate, collagen cross-linking, and bone elastic modulus did not differ significantly between bone 2-6, 10-14, and 8-22 days old and intracortical regions. Intracortical properties of 10-week-old rats, except for the carbonate-to-protein ratio which was 23% smaller (P < 0.01), were not significantly different from intracortical matrix properties of young adult rats (5 months, n = 4). Spatially, the phosphate-to-protein ratio (R{sup 2} = 0.33) and the phosphate-to-carbonate ratio (R{sup 2} = 0.55) were significantly correlated with bone material stiffness, while the combination of all chemical parameters raised the R{sup 2} value to 0.83. These data indicate that lamellar bone has the ability to quickly establish its mechanical and chemical tissue properties during primary and secondary mineralization even when the skeleton experiences rapid growth.

  14. Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste.

    PubMed

    Liu, Xiao; Wang, Wei; Gao, Xingbao; Zhou, Yingjun; Shen, Renjie

    2012-02-01

    The effects of thermal pretreatment on the physical and chemical properties of three typical municipal biomass wastes (MBWs), kitchen waste (KW), vegetable/fruit residue (VFR), and waste activated sludge (WAS) were investigated. The results show that thermal pretreatment at 175 °C/60 min significantly decreases viscosity, improves the MBW dewatering performance, as well as increases soluble chemical oxygen demand, soluble sugar, soluble protein, and especially organic compounds with molecular weights >10 kDa. For KW, VFR and WAS, 59.7%, 58.5% and 25.2% of the organic compounds can be separated in the liquid phase after thermal treatment. WAS achieves a 34.8% methane potential increase and a doubled methane production rate after thermal pretreatment. In contrast, KW and VFR show 7.9% and 11.7% methane decrease because of melanoidin production. PMID:22030278

  15. Correlation of chemical, structural and thermal properties of natural fibres for their sustainable exploitation.

    PubMed

    Moriana, Rosana; Vilaplana, Francisco; Karlsson, Sigbritt; Ribes, Amparo

    2014-11-01

    The potential of lignocellulosic natural fibres as renewable resources for thermal conversion and material reinforcement is largely dependent on the correlation between their chemical composition, crystalline structure and thermal decomposition properties. Significant differences were observed in the chemical composition of cotton, flax, hemp, kenaf and jute natural fibres in terms of cellulose, hemicellulose and lignin content, which influence their morphology, thermal properties and pyrolysis product distribution. A suitable methodology to study the kinetics of the thermal decomposition process of lignocellulosic fibres is proposed combining different models (Friedman, Flynn-Wall-Ozawa, Criado and Coats-Redfern). Cellulose pyrolysis can be modelled with similar kinetic parameters for all the natural fibres whereas the kinetic parameters for hemicellulose pyrolysis show intrinsic differences that can be assigned to the heterogeneous hemicellulose sugar composition in each natural fibre. This study provides the ground to critically select the most promising fibres to be used either for biofuel or material applications. PMID:25129763

  16. Proteolysis approach without chemical modification for a simple and rapid analysis of disulfide bonds using thermostable protease-immobilized microreactors.

    PubMed

    Yamaguchi, Hiroshi; Miyazaki, Masaya; Maeda, Hideaki

    2010-08-01

    Disulfide bonds in proteins are important not only for the conformational stability of the protein but also for the regulation of oxidation-reduction in signal transduction. The conventional method for the assignment of disulfide bond by chemical cleavage and/or proteolysis is a time-consuming multi-step procedure. In this study, we report a simple and rapid analysis of disulfide bond from protein digests that were prepared by the thermostable protease-immobilized microreactors. The feasibility and performance of this approach were evaluated by digesting lysozyme and BSA at several temperatures. The proteins which stabilize their conformations by disulfide bonds were thermally denatured during proteolysis and were efficiently digested by the immobilized protease but not by free protease. The digests were directly analyzed by ESI-TOF MS without any purification or concentration step. All four disulfide bonds on lysozyme and 10 of 17 on BSA were assigned from the digests by the trypsin-immobilized microreactor at 50 degrees C. The procedure for proteolysis and the assignment were achieved within 2 h without any reduction and alkylation procedure. From the present results, the proteolysis approach by the thermostable protease-immobilized microreactor provides a strategy for the high-throughput analysis of disulfide bond in proteomics.

  17. Chemical Properties of Carbon Nanotubes Prepared Using Camphoric Carbon by Thermal-CVD

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Rusop, M.

    2010-03-01

    Chemical properties and surface study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The chemical properties of the CNTs were conducted using FTIR spectroscopy and PXRD analysis. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs.

  18. Chemical Properties of Carbon Nanotubes Prepared Using Camphoric Carbon by Thermal-CVD

    SciTech Connect

    Azira, A. A.; Rusop, M.

    2010-03-11

    Chemical properties and surface study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The chemical properties of the CNTs were conducted using FTIR spectroscopy and PXRD analysis. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs.

  19. Comparison of rapid methods for chemical analysis of milligram samples of ultrafine clays.

    USGS Publications Warehouse

    Rettig, S.L.; Marinenko, J.W.; Khoury, H.N.; Jones, B.F.

    1983-01-01

    Two rapid methods for the decomposition and chemical analysis of clays were adapted for use with 20-40mg size samples, typical amounts of ultrafine products (< 0.5 micrometer diameter) obtained from modern separation methods for clay minrals. The results of these methods were compared with those of 'classical' rock analyses. The two methods consisted of mixed lithium metaborate fusion and heated decomposition with HF in a closed vessel. The latter technique was modified to include subsequent evaporation with concentrated H2SO4 and re-solution in HCl, which reduced the interference of the fluoride ion in the determination of Al, Fe, Ca, Mg, Na, and K.-from Authors

  20. Monitoring chemical degradation of thermally cycled glass-fibre composites using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Papadakis, V. M.; Müller, B.; Hagenbeek, M.; Sinke, J.; Groves, R. M.

    2016-04-01

    Nowadays, the application of glass-fibre composites in light-weight structures is growing. Although mechanical characterizations of those structures are commonly performed in testing, chemical changes of materials under stresses have not yet been well documented. In the present work coupon tests and Hyperspectral Imaging (HSI) have been used to categorise possible chemical changes of glass-fibre reinforced polymers (GFRP) which are currently used in the aircraft industry. HSI is a hybrid technique that combines spectroscopy with imaging. It is able to detect chemical degradation of surfaces and has already been successfully applied in a wide range of fields including astronomy, remote sensing, cultural heritage and medical sciences. GFRP specimens were exposed to two different thermal loading conditions. One thermal loading condition was a continuous thermal exposure at 120°C for 24h, 48 h and 96h, i.e. ageing at a constant temperature. The other thermal loading condition was thermal cycling with three different numbers of cycles (4000, 8000, 12000) and two temperature ranges (0°C to 120°C and -25°C to 95°C). The effects of both conditions were measured using both HSI and interlaminar shear (ILSS) tests. No significant changes of the physical properties of the thermally cycled GFRP specimens were detected using interlaminar shear strength tests and optical microscopy. However, when using HIS, differences of the surface conditions were detected. The results showed that the different thermal loading conditions could be successfully clustered in different colours, using the HSI linear unmixing technique. Each different thermal loading condition showed a different chemical degradation level on its surface which was indicated using different colours.

  1. Thermal, chemical, and optical properties of Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, G.L.; Hoffman, R.L.; McIntire, D.C.; Buktenica, M.W.; Girdner, S.F.

    2007-01-01

    Crater Lake covers the floor of the Mount Mazama caldera that formed 7700 years ago. The lake has a surface area of 53 km2 and a maximum depth of 594 m. There is no outlet stream and surface inflow is limited to small streams and springs. Owing to its great volume and heat, the lake is not covered by snow and ice in winter unlike other lakes in the Cascade Range. The lake is isothermal in winter except for a slight increase in temperature in the deep lake from hyperadiabatic processes and inflow of hydrothermal fluids. During winter and spring the water column mixes to a depth of about 200-250 m from wind energy and convection. Circulation of the deep lake occurs periodically in winter and spring when cold, near-surface waters sink to the lake bottom; a process that results in the upwelling of nutrients, especially nitrate-N, into the upper strata of the lake. Thermal stratification occurs in late summer and fall. The maximum thickness of the epilimnion is about 20 m and the metalimnion extends to a depth of about 100 m. Thus, most of the lake volume is a cold hypolimnion. The year-round near-bottom temperature is about 3.5??C. Overall, hydrothermal fluids define and temporally maintain the basic water quality characteristics of the lake (e.g., pH, alkalinity and conductivity). Total phosphorus and orthophosphate-P concentrations are fairly uniform throughout the water column, where as total Kjeldahl-N and ammonia-N are highest in concentration in the upper lake. Concentrations of nitrate-N increase with depth below 200 m. No long-term changes in water quality have been detected. Secchi disk (20-cm) clarity varied seasonally and annually, but was typically highest in June and lowest in August. During the current study, August Secchi disk clarity readings averaged about 30 m. The maximum individual clarity reading was 41.5 m in June 1997. The lowest reading was 18.1 m in July 1995. From 1896 (white-dinner plate) to 2003, the average August Secchi disk reading was

  2. Chemical compositions and classifica tion of five thermally altered carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Noronha, Bianca A.; Friedrich, Jon M.

    2014-08-01

    To establish the chemical group provenance of the five thermally altered carbonaceous chondrites Asuka (A-) 881551, Asuka-882113, Elephant Moraine (EET) 96026, Mulga (west), and Northwest Africa (NWA) 3133, we quantified 44 trace elements in each of them. We also analyzed Larkman Nunatak (LAR) 04318 (CK4), Miller Range (MIL) 090001 (CR2), Roberts Massif (RBT) 03522 (CK5) as reference samples as their chemical group affinity is already recognized. We conclude that Asuka-881551, Asuka-882113, and Mulga (west) are thermally metamorphosed CK chondrites. Compositionally, Elephant Moraine 96026 most resembles the CV chondrites. NWA 3133 is the most significantly thermally altered carbonaceous chondrite in our suite of samples. It is completely recrystallized (no chondrules or matrix remain), but its bulk composition is consistent with a CV-CK clan provenance. The thermally labile element (e.g., Se, Te, Zn, and Bi) depletion in NWA 3133 indicates a chemically open system during the heating episode. It remains unclear if the heat necessary for its thermal alteration of NWA 3133 was due to the decay of 26Al or was impact related. Finally, we infer that MIL 090001, Mulga (west), and NWA 3133 show occasional compositional signatures indicative of terrestrial alteration. The alteration is especially evident within the elements Sr, Ba, La, Ce, Th, U, and possibly Sb. Despite the alteration, we can still confidently place each of the altered chondrites within an established chemical group or clan.

  3. Origins of large igneous provinces: Thermal or chemical? (Invited)

    NASA Astrophysics Data System (ADS)

    Korenaga, J.

    2010-12-01

    Large igneous provinces such as continental flood basalts and oceanic plateaus are commonly believed to be caused by massive thermal anomalies in the mantle, or more specifically, mantle plume heads possibly rising from the core-mantle boundary. The existence of such plume heads is more elusive than that of mantle plumes, because there is no currently ongoing formation of continental flood basalt or oceanic plateau, so potential evidence for plume heads must come from the detailed analysis of their fossil traces, i.e., their melting products represented as igneous crust. Compared to petrological and geochemical inference based on surface lavas, seismological studies on large igneous provinces have the advantage of probing the entire crustal section, thereby providing potentially more robust constraints on primary melt composition and the nature of the source mantle. In this talk, I will review the debates over the North Atlantic igneous province, which includes the Iceland hotspot, as well as discuss the prospects of studying oceanic plateaus for providing key information to resolve the origins of large igneous provinces.

  4. Rapidly Thermal Annealed Si-Doped In2O3 Films for Organic Photovoltaics.

    PubMed

    Lee, Hye-Min; Kim, Han-Ki

    2015-10-01

    We report the electrical, optical, and structural properties of Si-doped In2O3 (ISO) films prepared using co-sputtering system with multi cathode guns for use in organic photovoltaics (OPVs). We investigated the effect of Si doping power on the electrical, optical, and structural properties of ISO film that was rapidly thermally annealed at a temperature of 400 °C. Due to the high Lewis acid strength (8.096) of the Si dopant, the ISO films showed high mobility and low resistivity despite the low Si doping concentration. Low resistivity of the annealed ISO films indicated that Si(4+) acts as an effective dopant of an In2O3 matrix by substitution with the In(3+) site. At a Si doping power of 50 W, ISO film showed a sheet resistance of 19.7 Ohm/square and optical transparency of 76.7%, which are acceptable values for fabrication of OPVs. Successful operation of OPV cells fabricated on transparent ISO film indicates that ISO is a promising high mobility transparent electrode material and alternative to conventional ITO films.

  5. Dynamics of metal-induced crystallization of ultrathin Ge films by rapid thermal annealing

    SciTech Connect

    Liao, Yuanxun; Huang, Shujuan; Shrestha, Santosh; Conibeer, Gavin

    2015-12-07

    Though Ge crystallization has been widely studied, few works investigate metal-induced crystallization of ultrathin Ge films. For 2 nm Ge films in oxide matrix, crystallization becomes challenging due to easy oxidation and low mobility of Ge atoms. Introducing metal atoms may alleviate these problems, but the functions and the behaviours of metal atoms need to be clarified. This paper investigates the crystallization dynamics of a multilayer structure 1.9 nm Ge/0.5 nm Al/1.5 nm Al{sub 2}O{sub 3} under rapid thermal annealing (RTA). The functions of metal atoms, like effective anti-oxidation, downshifting Raman peaks, and incapability to decrease crystallization temperature, are found and explained. The metal behaviours, such as inter-diffusion and defect generation, are supported with direct evidences, Al-Ge nanobicrystals, and Al cluster in Ge atoms. With these understandings, a two-step RTA process achieves high-quality 2 nm nanocrystal Ge films with Raman peak at 298 cm{sup −1} of FWHM 10.3 cm{sup −1} and atomic smooth interfaces.

  6. Influence of temperature and backside roughness on the emissivity of Si wafers during rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Vandenabeele, Peter; Maex, Karen

    1992-12-01

    The influence of temperature and roughness on the backside emissivity of Si wafers was studied. In situ measurements were done in two commercial rapid thermal processing systems. An experimental setup was built for in situ emissivity measurements of wafers with a polished or nonpolished backside. The emissivity of double-side polished wafers was measured for temperatures ranging from 300 to 700 °C and at wavelengths of 1.7 and 3.4 μm. It was found that the absorption coefficient α of lightly doped silicon is described by the equation α=4.15×10-5λ1.51T2.95 exp(-7000/T) cm-1, for wavelengths λ ranging from 1.5 to 5 μm and temperatures T ranging from 673 to 973 K (λ in μm, T in K). The backside emissivity of Si wafers with different roughnesses was measured. At temperatures above 600-700 °C the wafers are opaque and the emissivity is only slightly dependent on backside roughness. At lower temperatures the wafers are partially transparent and the emissivity is strongly dependent on the backside roughness of the wafer due to light trapping in the bulk of the wafer. For the latter case a new model was developed to simulate the emissivity of wafers with a rough backside at low temperatures.

  7. Dynamics of metal-induced crystallization of ultrathin Ge films by rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Liao, Yuanxun; Huang, Shujuan; Shrestha, Santosh; Conibeer, Gavin

    2015-12-01

    Though Ge crystallization has been widely studied, few works investigate metal-induced crystallization of ultrathin Ge films. For 2 nm Ge films in oxide matrix, crystallization becomes challenging due to easy oxidation and low mobility of Ge atoms. Introducing metal atoms may alleviate these problems, but the functions and the behaviours of metal atoms need to be clarified. This paper investigates the crystallization dynamics of a multilayer structure 1.9 nm Ge/0.5 nm Al/1.5 nm Al2O3 under rapid thermal annealing (RTA). The functions of metal atoms, like effective anti-oxidation, downshifting Raman peaks, and incapability to decrease crystallization temperature, are found and explained. The metal behaviours, such as inter-diffusion and defect generation, are supported with direct evidences, Al-Ge nanobicrystals, and Al cluster in Ge atoms. With these understandings, a two-step RTA process achieves high-quality 2 nm nanocrystal Ge films with Raman peak at 298 cm-1 of FWHM 10.3 cm-1 and atomic smooth interfaces.

  8. Non linear Quasi-Geostrophic thermal convection and dynamo in a rapidly rotating sphere

    NASA Astrophysics Data System (ADS)

    Cardin, P.; Guervilly, C.

    2009-12-01

    Using a combination of a quasi-geostrophic (QG) model for the velocity field and a classical spectral 3D code for the temperature field, we compute thermal convective motions in a rapidly rotating full sphere. The QG flow is computed in the equatorial plane, whereas the temperature field is calculated within the full sphere. The coupling terms are evaluated by interpolating onto the 2D (equatorial) and 3D coarse grids. Our hybrid approach allows us to compute simulations at low Ekman numbers, low Prandtl numbers and explore the strongly non-linear regime currently inaccessible with purely 3D codes. We pay particular attention to the zonal winds generated by non-linear interactions between the convection columns. Understanding these zonal winds is especially relevant for the study of atmospheric layers of planets such as Jupiter and Saturn [1] and dynamo generation in convective dynamos. Moreover the 2D/3D approach has already been used successfully to obtain dynamos driven by a QG flow with a mechanical boundary forcing [2]. Following these ideas, we solve the magnetic induction equation in 3D to obtain dynamos for low Ekman, Prandtl and magnetic Prandtl numbers. [1] Heimpel, M.H., Aurnou, J.M., Wicht, J., 2005. Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438, 193-196. [2] Schaeffer, N. and Cardin, P., 2006. Quasi-geostrophic kinematic dynamos at low magnetic Prandtl number. Earth Planet. Sci. Lett., 245, 595-604.

  9. Simultaneous formation of emitter and passivation layer in a single rapid thermal cycle

    SciTech Connect

    Kopp, J.; Lachiq, A.; Slaoui, A.; Ventura, L.; Muller, J.C.; Siffert, P.; Lautenschlager, H.

    1994-12-31

    In this paper the authors investigate the simultaneous processing of the emitter junction and the emitter surface passivation by rapid thermal annealing (RTA) from a doped spin-on glass (SOG). Test structures and solar cells of different emitter profiles and surface concentrations were made by diluting two different doped spin-on glass liquids with methanol. By this procedure, oxide thickness and doping can be controlled. RTA was performed in an argon atmosphere in the temperature range of 850--1,000 C for 5--60 sec. The results show that emitter surface doping concentration between 1 {times} 10{sup 19} cm{sup {minus}3} and 3 {times} 10{sup 20} cm{sup {minus}3} and junction depth from 0.1 {micro}m could be obtained. Sheet resistances lower than 150 {Omega}/{open_square} could be easily reached. External quantum efficiency measurements from solar cells, made from CZ and FZ p-type silicon wafers, demonstrate the passivation effect of the remaining SOG-film. The highest efficiency obtained with this ohmic back contacted cells, which had an oxide thickness of about 70 nm, are 12.8%.

  10. Rapid thermal processing of high-efficiency silicon solar cells with controlled in-situ annealing

    SciTech Connect

    Doshi, P.; Rohatgi, A.; Ropp, M.; Chen, Z.; Ruby, D.; Meier, D.L.

    1995-01-01

    Silicon solar cell efficiencies of 17.1%, 16.4%, 14.8%, and 14.9% have been achieved on FZ, Cz, multicrystalline (mc-Si), and dendritic web (DW) silicon, respectively, using simplified, cost-effective rapid thermal processing (RTP). These represent the highest reported efficiencies for solar cells processed with simultaneous front and back diffusion with no conventional high-temperature furnace steps. Appropriate diffusion temperature coupled with the added in-situ anneal resulted in suitable minority-carrier lifetime and diffusion profiles for high-efficiency cells. The cooling rate associated with the in-situ anneal can improve the lifetime and lower the reverse saturation current density (J{sub 0}), however, this effect is material and base resistivity specific. PECVD antireflection (AR) coatings provided low reflectance and efficient front surface and bulk defect passivation. Conventional cells fabricated on FZ silicon by furnace diffusions and oxidations gave an efficiency of 18.8% due to greater short wavelength response and lower J{sub 0}.

  11. Rapid thermal processing chamber for in-situ x-ray diffraction

    SciTech Connect

    Ahmad, Md. Imteyaz; Van Campen, Douglas G.; Yu, Jiafan; Pool, Vanessa L.; Van Hest, Maikel F. A. M.; Toney, Michael F.; Fields, Jeremy D.; Parilla, Philip A.; Ginley, David S.

    2015-01-15

    Rapid thermal processing (RTP) is widely used for processing a variety of materials, including electronics and photovoltaics. Presently, optimization of RTP is done primarily based on ex-situ studies. As a consequence, the precise reaction pathways and phase progression during the RTP remain unclear. More awareness of the reaction pathways would better enable process optimization and foster increased adoption of RTP, which offers numerous advantages for synthesis of a broad range of materials systems. To achieve this, we have designed and developed a RTP instrument that enables real-time collection of X-ray diffraction data with intervals as short as 100 ms, while heating with ramp rates up to 100 °Cs{sup −1}, and with a maximum operating temperature of 1200 °C. The system is portable and can be installed on a synchrotron beamline. The unique capabilities of this instrument are demonstrated with in-situ characterization of a Bi{sub 2}O{sub 3}-SiO{sub 2} glass frit obtained during heating with ramp rates 5 °C s{sup −1} and 100 °C s{sup −1}, revealing numerous phase changes.

  12. Atmospheric Pressure-Thermal Desorption (AP-TD)/Electrospray Ionization-Mass Spectrometry for the Rapid Analysis of Bacillus Spores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A technique is described where an atmospheric pressure-thermal desorption (AP-TD) device and electrospray ionization (ESI)-mass spectrometry are coupled and used for the rapid analysis of Bacillus spores in complex matrices. The resulting AP-TD/ESI-MS technique combines the generation of volatile co...

  13. Rapid and Adaptable Measurement of Protein Thermal Stability by Differential Scanning Fluorimetry: Updating a Common Biochemical Laboratory Experiment

    ERIC Educational Resources Information Center

    Johnson, R. Jeremy; Savas, Christopher J.; Kartje, Zachary; Hoops, Geoffrey C.

    2014-01-01

    Measurement of protein denaturation and protein folding is a common laboratory technique used in undergraduate biochemistry laboratories. Differential scanning fluorimetry (DSF) provides a rapid, sensitive, and general method for measuring protein thermal stability in an undergraduate biochemistry laboratory. In this method, the thermal…

  14. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents.

    PubMed

    Li, Jinxing; Singh, Virendra V; Sattayasamitsathit, Sirilak; Orozco, Jahir; Kaufmann, Kevin; Dong, Renfeng; Gao, Wei; Jurado-Sanchez, Beatriz; Fedorak, Yuri; Wang, Joseph

    2014-11-25

    Threats of chemical and biological warfare agents (CBWA) represent a serious global concern and require rapid and efficient neutralization methods. We present a highly effective micromotor strategy for photocatalytic degradation of CBWA based on light-activated TiO2/Au/Mg microspheres that propel autonomously in natural water and obviate the need for external fuel, decontaminating reagent, or mechanical agitation. The activated TiO2/Au/Mg micromotors generate highly reactive oxygen species responsible for the efficient destruction of the cell membranes of the anthrax simulant Bacillus globigii spore, as well as rapid and complete in situ mineralization of the highly persistent organophosphate nerve agents into nonharmful products. The water-driven propulsion of the TiO2/Au/Mg micromotors facilitates efficient fluid transport and dispersion of the photogenerated reactive oxidative species and their interaction with the CBWA. Coupling of the photocatalytic surface of the micromotors and their autonomous water-driven propulsion thus leads to a reagent-free operation which holds a considerable promise for diverse "green" defense and environmental applications.

  15. Rapid detection of drugs in biofluids using atmospheric pressure chemi/chemical ionization mass spectrometry.

    PubMed

    Chen, Lee Chuin; Hashimoto, Yutaka; Furuya, Hiroko; Takekawa, Kenichi; Kubota, Takeo; Hiraoka, Kenzo

    2009-02-01

    We have demonstrated that, with simple pH adjustment, volatile drugs such as methamphetamine, amphetamine, 3,4-methylenedioxymethamphetamine (MDMA), ketamine, and valproic acid could be analyzed rapidly from raw biofluid samples (e.g. urine and serum) without dilution, or extraction, using atmospheric pressure ionization. The ion source was a variant type of atmospheric pressure chemical ionization (APCI) that used a dielectric barrier discharge (DBD) to generate the metastable helium gas and reagent ions. The sample solution was loaded in a disposable glass pipette, and the volatile compounds were purged by nitrogen gas to be reacted with the metastable helium gas. The electrodes of the DBD were arranged in such a way that the generated glow discharge was confined within the discharge tube and was not exposed to the analytes. A needle held at 100-500 V was placed between the ion-sampling orifice and the discharge tube to guide the analyte ions into the mass spectrometer. After pH adjustment of the biofluid sample, the amphiphilic drugs were in the form of a water-insoluble oil, which could be concentrated on the liquid surface. By gentle heating of the sample to increase the evaporation rate, rapid and sensitive detection of these drugs in raw urine and serum samples could be achieved in less than 2 min for each sample. PMID:19125420

  16. A portable photoelectrochemical probe for rapid determination of chemical oxygen demand in wastewaters.

    PubMed

    Zhang, Shanqing; Li, Lihong; Zhao, Huijun

    2009-10-15

    A photoelectrochemical probe for rapid determination of chemical oxygen demand (COD) is developed using a nanostructured mixed-phase TiO2 photoanode, namely PeCOD probe. A UV-LED light source and a USB mircroelectrochemical station are powered and controlled by a laptop computer, which makes the probe portable for onsite COD analyses. The photoelectrochemical measurement of COD was optimized in terms of light intensity, applied bias, and pH. Under the optimized conditions, the net steady state currents originated from the oxidation of organic compounds were found to be directly proportional to COD concentrations. A practical detection limit of 0.2 ppm COD and a linear range of 0-120 ppm COD were achieved. The analytical method using the portable PeCOD probe has the advantages of being rapid, low cost, robust, user-friendly, and environmental friendly. It has been successfully applied to determine the COD values of the synthetic samples consisting of potassium hydrogen phthalate, D-glucose, glutamic acid, glutaric acid, succinic acid, and malonic acid, and real samples from various industries, such as bakery, oil and grease manufacturer, poultry, hotel, fine food factory, and fresh food producer, commercial bread manufacturer. Excellent agreement between the proposed method and the conventional COD method (dichromate) was achieved. PMID:19921898

  17. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents.

    PubMed

    Li, Jinxing; Singh, Virendra V; Sattayasamitsathit, Sirilak; Orozco, Jahir; Kaufmann, Kevin; Dong, Renfeng; Gao, Wei; Jurado-Sanchez, Beatriz; Fedorak, Yuri; Wang, Joseph

    2014-11-25

    Threats of chemical and biological warfare agents (CBWA) represent a serious global concern and require rapid and efficient neutralization methods. We present a highly effective micromotor strategy for photocatalytic degradation of CBWA based on light-activated TiO2/Au/Mg microspheres that propel autonomously in natural water and obviate the need for external fuel, decontaminating reagent, or mechanical agitation. The activated TiO2/Au/Mg micromotors generate highly reactive oxygen species responsible for the efficient destruction of the cell membranes of the anthrax simulant Bacillus globigii spore, as well as rapid and complete in situ mineralization of the highly persistent organophosphate nerve agents into nonharmful products. The water-driven propulsion of the TiO2/Au/Mg micromotors facilitates efficient fluid transport and dispersion of the photogenerated reactive oxidative species and their interaction with the CBWA. Coupling of the photocatalytic surface of the micromotors and their autonomous water-driven propulsion thus leads to a reagent-free operation which holds a considerable promise for diverse "green" defense and environmental applications. PMID:25289459

  18. Predicting Formation Damage in Aquifer Thermal Energy Storage Systems Utilizing a Coupled Hydraulic-Thermal-Chemical Reservoir Model

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali

    2014-05-01

    In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to

  19. A rapid chemical odour profiling method for the identification of rhinoceros horns.

    PubMed

    Ueland, Maiken; Ewart, Kyle; Troobnikoff, Amanda N; Frankham, Greta; Johnson, Rebecca N; Forbes, Shari L

    2016-09-01

    Illegal poaching causes great harm to species diversity and conservation. A vast amount of money is involved in the trade of illegal or forged animal parts worldwide. In many cases, the suspected animal part is unidentifiable and requires costly and invasive laboratory analysis such as isotopic fingerprinting or DNA testing. The lack of rapid and accurate methods to identify wildlife parts at the point of detection represents a major hindrance in the enforcement and prosecution of wildlife trafficking. The ability of wildlife detector dogs to alert to different wildlife species demonstrates that there is a detectable difference in scent profile of illegally traded animal parts. This difference was exploited to develop a rapid, non-invasive screening method for distinguishing rhinoceros horns of different species. The method involved the collection of volatile organic compounds (VOC) by headspace solid-phase microextraction (HS-SPME) and analysis by comprehensive two-dimensional gas chromatography - time-of-flight mass spectrometry (GC×GC-TOFMS). It was hypothesised that the use of the specific odour profile as a screening method could separate and differentiate geographic origin or exploit the difference in diets of different species within a family (such as white rhinoceros and black rhinoceros from the Rhinocerotidae family). Known black and white rhinoceros horn samples were analysed using HS-SPME-GC×GC-TOFMS and multivariate statistics were applied to identify groupings in the data set. The black rhinoceros horn samples were distinctly different from the white rhinoceros horn samples. This demonstrated that seized rhinoceros horn samples can be identified based on their distinct odour profiles. The chemical odour profiling method has great potential as a rapid and non-invasive screening method in order to combat and track illegal trafficking of wildlife parts.

  20. A rapid chemical odour profiling method for the identification of rhinoceros horns.

    PubMed

    Ueland, Maiken; Ewart, Kyle; Troobnikoff, Amanda N; Frankham, Greta; Johnson, Rebecca N; Forbes, Shari L

    2016-09-01

    Illegal poaching causes great harm to species diversity and conservation. A vast amount of money is involved in the trade of illegal or forged animal parts worldwide. In many cases, the suspected animal part is unidentifiable and requires costly and invasive laboratory analysis such as isotopic fingerprinting or DNA testing. The lack of rapid and accurate methods to identify wildlife parts at the point of detection represents a major hindrance in the enforcement and prosecution of wildlife trafficking. The ability of wildlife detector dogs to alert to different wildlife species demonstrates that there is a detectable difference in scent profile of illegally traded animal parts. This difference was exploited to develop a rapid, non-invasive screening method for distinguishing rhinoceros horns of different species. The method involved the collection of volatile organic compounds (VOC) by headspace solid-phase microextraction (HS-SPME) and analysis by comprehensive two-dimensional gas chromatography - time-of-flight mass spectrometry (GC×GC-TOFMS). It was hypothesised that the use of the specific odour profile as a screening method could separate and differentiate geographic origin or exploit the difference in diets of different species within a family (such as white rhinoceros and black rhinoceros from the Rhinocerotidae family). Known black and white rhinoceros horn samples were analysed using HS-SPME-GC×GC-TOFMS and multivariate statistics were applied to identify groupings in the data set. The black rhinoceros horn samples were distinctly different from the white rhinoceros horn samples. This demonstrated that seized rhinoceros horn samples can be identified based on their distinct odour profiles. The chemical odour profiling method has great potential as a rapid and non-invasive screening method in order to combat and track illegal trafficking of wildlife parts. PMID:27240958

  1. Rapid thermal annealing: An efficient method to improve the electrical properties of tellurium compensated Interfacial Misfit GaSb/GaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Aziz, Mohsin; Felix, Jorlandio F.; Jameel, Dler; Al Saqri, Noor; Al Mashary, Faisal S.; Alghamdi, Haifaa M.; Albalawi, Hind M. A.; Taylor, David; Henini, Mohamed

    2015-12-01

    The effect of thermal annealing on Te compensated Interfacial Misfit GaSb/GaAs heterostructures is investigated by using two different thermal annealing procedures, namely rapid thermal annealing and furnace annealing. The electrical properties of the devices are studied by using Current-Voltage, Capacitance-Voltage and Deep Level Transient Spectroscopy techniques. It is observed that rapid thermal annealing treatment is superior in terms of improvement of the electrical characteristics compared to furnace annealing treatment. The lowest leakage current and defect concentration are obtained when rapid thermal annealing is employed.

  2. Extractive Atmospheric Pressure Photoionization (EAPPI) Mass Spectrometry: Rapid Analysis of Chemicals in Complex Matrices

    NASA Astrophysics Data System (ADS)

    Liu, Chengyuan; Yang, Jiuzhong; Wang, Jian; Hu, Yonghua; Zhao, Wan; Zhou, Zhongyue; Qi, Fei; Pan, Yang

    2016-07-01

    Extractive atmospheric pressure photoionization (EAPPI) mass spectrometry was designed for rapid qualitative and quantitative analysis of chemicals in complex matrices. In this method, an ultrasonic nebulization system was applied to sample extraction, nebulization, and vaporization. Mixed with a gaseous dopant, vaporized analytes were ionized through ambient photon-induced ion-molecule reactions, and were mass-analyzed by a high resolution time-of-flight mass spectrometer (TOF-MS). After careful optimization and testing with pure sample solution, EAPPI was successfully applied to the fast screening of capsules, soil, natural products, and viscous compounds. Analysis was completed within a few seconds without the need for preseparation. Moreover, the quantification capability of EAPPI for matrices was evaluated by analyzing six polycyclic aromatic hydrocarbons (PAHs) in soil. The correlation coefficients (R 2 ) for standard curves of all six PAHs were above 0.99, and the detection limits were in the range of 0.16-0.34 ng/mg. In addition, EAPPI could also be used to monitor organic chemical reactions in real time.

  3. Extractive Atmospheric Pressure Photoionization (EAPPI) Mass Spectrometry: Rapid Analysis of Chemicals in Complex Matrices

    NASA Astrophysics Data System (ADS)

    Liu, Chengyuan; Yang, Jiuzhong; Wang, Jian; Hu, Yonghua; Zhao, Wan; Zhou, Zhongyue; Qi, Fei; Pan, Yang

    2016-10-01

    Extractive atmospheric pressure photoionization (EAPPI) mass spectrometry was designed for rapid qualitative and quantitative analysis of chemicals in complex matrices. In this method, an ultrasonic nebulization system was applied to sample extraction, nebulization, and vaporization. Mixed with a gaseous dopant, vaporized analytes were ionized through ambient photon-induced ion-molecule reactions, and were mass-analyzed by a high resolution time-of-flight mass spectrometer (TOF-MS). After careful optimization and testing with pure sample solution, EAPPI was successfully applied to the fast screening of capsules, soil, natural products, and viscous compounds. Analysis was completed within a few seconds without the need for preseparation. Moreover, the quantification capability of EAPPI for matrices was evaluated by analyzing six polycyclic aromatic hydrocarbons (PAHs) in soil. The correlation coefficients ( R 2 ) for standard curves of all six PAHs were above 0.99, and the detection limits were in the range of 0.16-0.34 ng/mg. In addition, EAPPI could also be used to monitor organic chemical reactions in real time.

  4. Extractive Atmospheric Pressure Photoionization (EAPPI) Mass Spectrometry: Rapid Analysis of Chemicals in Complex Matrices.

    PubMed

    Liu, Chengyuan; Yang, Jiuzhong; Wang, Jian; Hu, Yonghua; Zhao, Wan; Zhou, Zhongyue; Qi, Fei; Pan, Yang

    2016-10-01

    Extractive atmospheric pressure photoionization (EAPPI) mass spectrometry was designed for rapid qualitative and quantitative analysis of chemicals in complex matrices. In this method, an ultrasonic nebulization system was applied to sample extraction, nebulization, and vaporization. Mixed with a gaseous dopant, vaporized analytes were ionized through ambient photon-induced ion-molecule reactions, and were mass-analyzed by a high resolution time-of-flight mass spectrometer (TOF-MS). After careful optimization and testing with pure sample solution, EAPPI was successfully applied to the fast screening of capsules, soil, natural products, and viscous compounds. Analysis was completed within a few seconds without the need for preseparation. Moreover, the quantification capability of EAPPI for matrices was evaluated by analyzing six polycyclic aromatic hydrocarbons (PAHs) in soil. The correlation coefficients (R (2) ) for standard curves of all six PAHs were above 0.99, and the detection limits were in the range of 0.16-0.34 ng/mg. In addition, EAPPI could also be used to monitor organic chemical reactions in real time. Graphical Abstract ᅟ. PMID:27460208

  5. Learning to Rapidly Re-Contact the Lost Plume in Chemical Plume Tracing

    PubMed Central

    Cao, Meng-Li; Meng, Qing-Hao; Wang, Jia-Ying; Luo, Bing; Jing, Ya-Qi; Ma, Shu-Gen

    2015-01-01

    Maintaining contact between the robot and plume is significant in chemical plume tracing (CPT). In the time immediately following the loss of chemical detection during the process of CPT, Track-Out activities bias the robot heading relative to the upwind direction, expecting to rapidly re-contact the plume. To determine the bias angle used in the Track-Out activity, we propose an online instance-based reinforcement learning method, namely virtual trail following (VTF). In VTF, action-value is generalized from recently stored instances of successful Track-Out activities. We also propose a collaborative VTF (cVTF) method, in which multiple robots store their own instances, and learn from the stored instances, in the same database. The proposed VTF and cVTF methods are compared with biased upwind surge (BUS) method, in which all Track-Out activities utilize an offline optimized universal bias angle, in an indoor environment with three different airflow fields. With respect to our experimental conditions, VTF and cVTF show stronger adaptability to different airflow environments than BUS, and furthermore, cVTF yields higher success rates and time-efficiencies than VTF. PMID:25825974

  6. Learning to rapidly re-contact the lost plume in chemical plume tracing.

    PubMed

    Cao, Meng-Li; Meng, Qing-Hao; Wang, Jia-Ying; Luo, Bing; Jing, Ya-Qi; Ma, Shu-Gen

    2015-01-01

    Maintaining contact between the robot and plume is significant in chemical plume tracing (CPT). In the time immediately following the loss of chemical detection during the process of CPT, Track-Out activities bias the robot heading relative to the upwind direction, expecting to rapidly re-contact the plume. To determine the bias angle used in the Track-Out activity, we propose an online instance-based reinforcement learning method, namely virtual trail following (VTF). In VTF, action-value is generalized from recently stored instances of successful Track-Out activities. We also propose a collaborative VTF (cVTF) method, in which multiple robots store their own instances, and learn from the stored instances, in the same database. The proposed VTF and cVTF methods are compared with biased upwind surge (BUS) method, in which all Track-Out activities utilize an offline optimized universal bias angle, in an indoor environment with three different airflow fields. With respect to our experimental conditions, VTF and cVTF show stronger adaptability to different airflow environments than BUS, and furthermore, cVTF yields higher success rates and time-efficiencies than VTF. PMID:25825974

  7. Learning to rapidly re-contact the lost plume in chemical plume tracing.

    PubMed

    Cao, Meng-Li; Meng, Qing-Hao; Wang, Jia-Ying; Luo, Bing; Jing, Ya-Qi; Ma, Shu-Gen

    2015-03-27

    Maintaining contact between the robot and plume is significant in chemical plume tracing (CPT). In the time immediately following the loss of chemical detection during the process of CPT, Track-Out activities bias the robot heading relative to the upwind direction, expecting to rapidly re-contact the plume. To determine the bias angle used in the Track-Out activity, we propose an online instance-based reinforcement learning method, namely virtual trail following (VTF). In VTF, action-value is generalized from recently stored instances of successful Track-Out activities. We also propose a collaborative VTF (cVTF) method, in which multiple robots store their own instances, and learn from the stored instances, in the same database. The proposed VTF and cVTF methods are compared with biased upwind surge (BUS) method, in which all Track-Out activities utilize an offline optimized universal bias angle, in an indoor environment with three different airflow fields. With respect to our experimental conditions, VTF and cVTF show stronger adaptability to different airflow environments than BUS, and furthermore, cVTF yields higher success rates and time-efficiencies than VTF.

  8. Extractive Atmospheric Pressure Photoionization (EAPPI) Mass Spectrometry: Rapid Analysis of Chemicals in Complex Matrices.

    PubMed

    Liu, Chengyuan; Yang, Jiuzhong; Wang, Jian; Hu, Yonghua; Zhao, Wan; Zhou, Zhongyue; Qi, Fei; Pan, Yang

    2016-10-01

    Extractive atmospheric pressure photoionization (EAPPI) mass spectrometry was designed for rapid qualitative and quantitative analysis of chemicals in complex matrices. In this method, an ultrasonic nebulization system was applied to sample extraction, nebulization, and vaporization. Mixed with a gaseous dopant, vaporized analytes were ionized through ambient photon-induced ion-molecule reactions, and were mass-analyzed by a high resolution time-of-flight mass spectrometer (TOF-MS). After careful optimization and testing with pure sample solution, EAPPI was successfully applied to the fast screening of capsules, soil, natural products, and viscous compounds. Analysis was completed within a few seconds without the need for preseparation. Moreover, the quantification capability of EAPPI for matrices was evaluated by analyzing six polycyclic aromatic hydrocarbons (PAHs) in soil. The correlation coefficients (R (2) ) for standard curves of all six PAHs were above 0.99, and the detection limits were in the range of 0.16-0.34 ng/mg. In addition, EAPPI could also be used to monitor organic chemical reactions in real time. Graphical Abstract ᅟ.

  9. Thermal-work strain in law enforcement personnel during chemical, biological, radiological, and nuclear (CBRN) training

    PubMed Central

    Yokota, M; Karis, A J; Tharion, W J

    2014-01-01

    Background: Thermal safety standards for the use of chemical, biological, radiological, and nuclear (CBRN) ensembles have been established for various US occupations, but not for law enforcement personnel. Objectives: We examined thermal strain levels of 30 male US law enforcement personnel who participated in CBRN field training in Arizona, Florida, and Massachusetts. Methods: Physiological responses were examined using unobtrusive heart rate (HR) monitors and a simple thermoregulatory model to predict core temperature (Tc) using HR and environment. Results: Thermal strain levels varied by environments, activity levels, and type of CBRN ensemble. Arizona and Florida volunteers working in hot-dry and hot-humid environment indicated high heat strain (predicted max Tc>38.5°C). The cool environment of Massachusetts reduced thermal strain although thermal strains were occasionally moderate. Conclusions: The non-invasive method of using physiological monitoring and thermoregulatory modeling could improve law enforcement mission to reduce the risk of heat illness or injury. PMID:24999847

  10. Single-domain chemical, thermochemical and thermal remanences in a basaltic rock

    NASA Astrophysics Data System (ADS)

    Draeger, Ulrike; Prévot, Michel; Poidras, Thierry; Riisager, Janna

    2006-07-01

    Tiny basaltic samples containing finely grained titanomagnetite with Curie temperature less than 100°C were heated in air in weak field (25-100μT) at temperatures between 400°C and 560°C for times as long as 32 hr. Oxyexsolution of titanomagnetite resulted in the crystallization of interacting single domain particles with Curie point close to 540°C and the concomitant development of one of two types chemical remanence, depending upon thermal treatment: isothermal chemical remanence (CRM) or thermochemical remanence (TCRM), the latter acquired under the combined effects of chemical change and temperature decrease. CRM and TCRM acquired under various conditions were subjected to Thellier-type experiments. All these treatments were carried out using a vibrating sample thermomagnetometer allowing the continuous recording of magnetization and a very precise temperature control. All CRM-TRM and TCRM-TRM plots were found to be linear over almost the entire TRM blocking temperature range, whether pTRM checks are positive or not. An apparent strength of the acquisition field of CRM or TCRM could thus be obtained and divided by the actually applied field to obtain a ratio R, which is representative of the CRM/TRM or TCRM/TRM ratios over most of the unblocking/blocking temperature spectrum. For CRM, it is found that R is less than 1 and increases rapidly with acquisition temperature (0.36 +/- 0.07 at 400°C, 0.66 +/- 0.02 at 450°C, and 0.90 +/- 0.02 at 500°C), in qualitative agreement with expressions derived from the theory of non-interacting single domain grains. Thus, very large underestimate of geomagnetic field palaeostrength can occur when a natural CRM is not recognized as such and is believed to be a natural TRM. Palaeointensity data obtained from geological material prone to the development of secondary minerals, as for example baked contacts and volcanic glasses have, therefore, to be considered with caution. In an attempt to mimic deuteric oxyexsolution in

  11. Chemical and thermal modulation of molecular motor activities

    NASA Astrophysics Data System (ADS)

    Hong, Weili

    Molecular motors of kinesin and dynein families are responsible for various intracellular activities, from long distance movement of organelles, vesicles, protein complexes, and mRNAs to powering mitotic processes. They can take nanometer steps using chemical energy from the hydrolysis of ATP (adenosine triphosphate), and their dysfunction is involved in many neurodegenerative diseases that require long distance transport of cargos. Here I report on the study of the properties of molecular motors at a single-molecule level using optical trappings. I first studied the inhibition properties of kinesin motors by marine natural compound adociasulfates. I showed that adociasulfates compete with microtubules for binding to kinesins and thus inhibit kinesins' activity. Although adociasulfates are a strong inhibitor for all kinesin members, they show a much higher inhibition effect for conventional kinesins than for mitotic kinesins. Thus adociasulfates can be used to specifically inhibit conventional kinesins. By comparing the inhibition of kinesins by two structurally similar adociasulfates, one can see that the negatively charged sulfate residue of adociasulfates can be replaced by other negative residues and thus make it possible for adociasulfate-derived compounds to be more cell permeable. Kinesins and dyneins move cargos towards opposite directions along a microtubule. Cargos with both kinesins and dyneins attached often move bidirectionally due to undergoing a tug-of-war between the oppositely moving kinesin and dynein motors. Here I studied the effect of temperature on microtubule-based kinesin and dynein motor transport. While kinesins' and dyneins' velocities are closely matched above 15 °C, below this temperature the dyneins' velocity decreases much faster than the kinesins'. The kinesins' and dyneins' forces do not measurably change with temperature. The results suggest that temperature has significant effects on bidirectional transport and can be used to

  12. Chemical and thermal cross-linking of collagen and elastin hydrolysates.

    PubMed

    Sionkowska, A; Skopinska-Wisniewska, J; Gawron, M; Kozlowska, J; Planecka, A

    2010-11-01

    Chemical and thermal cross-linking of collagen soluble in acetic acid and elastin hydrolysates soluble in water have been studied. Solutions of collagen and elastin hydrolysates were treated using variable concentrations of 1-ethyl-3(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Moreover, diepoxypropylether (DEPE) has been used as cross-linking agent. Films made of collagen and elastin hydrolysates were also treated with temperature at 60°C and 100°C to get additional cross-links. The effect of cross-linking has been studied using FTIR spectroscopy, thermal analysis, AFM and SEM microscopy. Mechanical and surface properties of materials have been studied after cross-linking. It was found that thermal and mechanical properties of collagen and elastin materials have been altered after thermal treatment and after the reactions with EDC/NHS and/or DEPE. Surface properties of collagen materials after chemical cross-linking have been modified. Thermal and chemical cross-linking of collagen films lead to alteration of polarity of the surface.

  13. Effect of rapid product desiccation or hydration on thermal resistance of Salmonella enterica serovar enteritidis PT 30 in wheat flour.

    PubMed

    Smith, Danielle F; Marks, Bradley P

    2015-02-01

    Salmonella is able to survive in low-moisture environments and is known to be more heat resistant as product water activity (aw) decreases. However, it is unknown how rapidly the resistance changes if product aw is altered rapidly, as can occur in certain processes. Therefore, the objective was to determine the effect of rapid product desiccation or hydration on Salmonella thermal resistance. Two dynamic moisture treatments were compared with two static moisture treatments to determine the effect of time-at-moisture on the thermal resistance of Salmonella enterica serovar Enteritidis phage type 30 (PT 30) in wheat flour. After inoculation, two static moisture groups were equilibrated to 0.3 and 0.6 aw over 4 to 7 days, and two dynamic moisture groups then were rapidly (<4 min) desiccated from 0.6 to 0.3 aw or hydrated from 0.3 to 0.6 aw. Samples then were subjected to isothermal (80°C) heat treatments, and Salmonella thermal resistance was compared via decimal reduction times (i.e., D80°C-values). The D80°C-value in flour that was rapidly desiccated from 0.6 to 0.3 aw was statistically equivalent (P > 0.05) to the D80°C-value in flour previously equilibrated to 0.3 aw, but both were greater (P < 0.05) than the D80°C-value in flour previously equilibrated to 0.6 aw. Similarly, the D80°C-value in flour rapidly hydrated from 0.3 to 0.6 aw was statistically equivalent (P > 0.05) to the D80°C-value in flour previously equilibrated to 0.6 aw, and both were less than the D80°C-value in flour previously equilibrated to 0.3 aw. Therefore, Salmonella in the rapidly desiccated flour (0.3 aw) was as thermally resistant as that which previously had been equilibrated to 0.3 aw, and Salmonella in the rapidly hydrated flour (0.6 aw) responded similarly to that in the flour previously equilibrated to 0.6 aw. These results suggest that the response period to new aw is negligible, which is critically important in applying thermal resistance data or parameters to industrial

  14. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE THERMAL DESORPTION UNIT - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    ELI ECO Logic International, Inc.'s Thermal Desorption Unit (TDU) is specifically designed for use with Eco Logic's Gas Phase Chemical Reduction Process. The technology uses an externally heated bath of molten tin in a hydrogen atmosphere to desorb hazardous organic compounds fro...

  15. Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study. Executive summary

    NASA Technical Reports Server (NTRS)

    Merino, F.; Wakabayashi, I.; Pleasant, R. L.; Hill, M.

    1982-01-01

    Preferred techniques for providing abort pressurization and engine feed system net positive suction pressure (NPSP) for low thrust chemical propulsion systems (LTPS) were determined. A representative LTPS vehicle configuration is presented. Analysis tasks include: propellant heating analysis; pressurant requirements for abort propellant dump; and comparative analysis of pressurization techniques and thermal subcoolers.

  16. DEMONSTRATION BULLETIN: X*TRAX MODEL 200 THERMAL DESORPTION SYSTEMS - CHEMICAL WASTE MANAGEMENT, INC.

    EPA Science Inventory

    The X*TRAX™ Mode! 200 Thermal Desorption System developed by Chemical Waste Management, Inc. (CWM), is a low-temperature process designed to separate organic contaminants from soils, sludges, and other solid media. The X*TRAX™ Model 200 is fully transportable and consists of thre...

  17. New class of thermosetting plastics has improved strength, thermal and chemical stability

    NASA Technical Reports Server (NTRS)

    Burns, E. A.; Dubrow, B.; Lubowitz, H. R.

    1967-01-01

    New class of thermosetting plastics has high hydrocarbon content, high stiffness, thermal stability, humidity resistance, and workability in the precured state. It is designated cyclized polydiene urethane, and is applicable as matrices to prepare chemically stable ablative materials for rocket nose cones of nozzles.

  18. CAES 2014 Chemical Analyses of Thermal Wells and Springs in Southeastern Idaho

    DOE Data Explorer

    Baum, Jeffrey

    2014-03-10

    This dataset contains chemical analyses for thermal wells and springs in Southeastern Idaho. Data includes all major cations, major anions, pH, collection temperature, and some trace metals, These samples were collected in 2014 by the Center for Advanced Energy Studies (CAES), and are part of a continuous effort to analyze the geothermal potential of Southeastern Idaho.

  19. Thermal and chemical processing of the outermost layer of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Campins, Humberto; Krider, E. Philip

    1989-01-01

    A non-equilibrium mechanism that may produce substantial thermal and chemical processing of the outermost layer of cometary nuclei is proposed. If this phenomenon does occur, its effects will impact the interpretation of results from the CNSR and CRAF missions.

  20. Effects of Lightpipe Proximity on Si Wafer Temperature in Rapid Thermal Processing Tools

    NASA Astrophysics Data System (ADS)

    Kreider, K. G.; Chen, D. H.; DeWitt, D. P.; Kimes, W. A.; Tsai, B. K.

    2003-09-01

    Lightpipe radiation thermometers (LPRTs) are used as temperature monitoring sensors in most rapid thermal processing (RTP) tools for semiconductor fabrication. These tools are used for dopant anneal, gate oxide formation, and other high temperature processing. In order to assure uniform wafer temperatures during processing these RTP tools generally have highly reflecting chamber walls to promote a uniform heat flux on the wafer. Therefore, only minimal disturbances in the chamber reflectivity are permitted for the sensors, and the small 2 mm diameter sapphire lightpipe is generally the temperature sensor of choice. This study was undertaken to measure and model the effect of LPRT proximity on the wafer temperature. Our experiments were performed in the NIST RTP test bed using a NIST thin-film thermocouple (TFTC) calibration wafer. We measured the spectral radiance temperature with the center lightpipe and compared these with the TFTC junctions and with the three LPRTs at the mid-radius of the wafer. We measured LPRT outputs from a position flush with the reflecting plate to within 2 mm of the stationary wafer under steady-state conditions with wafer-to-cold plate separation distances of 6 mm, 10 mm and 12.5 mm. Depressions in the wafer temperature up to 25 °C were observed. A finite-element radiation model of the wafer-chamber-lightpipe was developed to predict the temperature depression as a function of proximity distance and separation distance. The experimental results were compared with those from a model that accounts for lightpipe geometry and radiative properties, wafer emissivity and chamber cold plate reflectivity.

  1. Detection of indoor PCB contamination by thermal desorption of dust. A rapid screening method?

    PubMed

    Wilkins, Ken; Bøwadt, Søren; Larsen, Kjeld; Sporring, Sune

    2002-01-01

    Although PCB in caulking materials has been forbidden for many years in most of Europe, including Denmark, there has been continued interest to measure PCB levels in the air of contaminated buildings and blood of the occupants (Mengon and Schlatter 1993, Fromme et al. 1996, Ewers et al. 1998, Currado and Harrad 1998, Gabrio et al. 2000). The relatively low priority for investigations of this contamination is probably due to the small quantities inhaled compared to exposure via food, and the rapid metabolism of the most volatile congeners demonstrated by low concentrations of all congeners in the blood of exposed persons (Ewers et al. 1998, Gabrio et al. 2000). There is, however, evidence that PCB containing caulking materials have been used even during the '90s (Fromme et al. 1996). In Denmark, it is estimated that 75 t PCB is still in buildings (Organization of Sealant Branch's Manufacturers and Distributors 2000). During an investigation of dust from buildings with excessive microbial growth (including 35 rooms from 9 buildings), the analysis of semivolatile compounds by thermal desorption-GC/MS of samples from a single building surprisingly revealed large amounts of PCBs containing 3, 4 and 5 chlorine atoms, 10-20 times the amounts found in samples from other buildings. Extraction of the dust by SFE followed by GC/ECD analysis for 12 PCB congeners showed that there was approximately 20 times the total PCB concentrations in dust from the polluted building compared to the levels in the other buildings. Subsequent headspace analysis of caulking material from the polluted building revealed this to be the source. Shelf dust functions as a passive sampling medium and, thus, can be used as a screening method to detect PCB and other semivolatile pollution indoors.

  2. Bentonite alteration due to thermal-hydro-chemical processes during the early thermal period in a nuclear waste repository

    SciTech Connect

    Xu, T.; Senger, R.; Finsterle, S.

    2011-02-01

    After closure of an underground nuclear waste repository, the decay of radionuclides will raise temperature in the repository, and the bentonite buffer will resaturate by water inflow from the surrounding host rock. The perturbations from these thermal and hydrological processes are expected to dissipate within hundreds to a few thousand years. Here, we investigate coupled thermal-hydro-chemical processes and their effects on the short-term performance of a potential nuclear waste repository located in a clay formation. Using a simplified geometric configuration and abstracted hydraulic parameters of the clayey formation, we examine geochemical processes, coupled with thermo-hydrologic phenomena, and potential changes in porosity near the waste container during the early thermal period. The developed models were used for evaluating the mineral alterations and potential changes in porosity of the buffer, which can affect the repository performance. The results indicate that mineral alteration and associated changes in porosity induced by early thermal and hydrological processes are relatively small and are expected to not significantly affect flow and transport properties. Chlorite precipitation was obtained in all simulation cases. A maximum of one percent volume fraction of chlorite could be formed, whose process may reduce swelling and sorption capacity of bentonite clay, affecting the performance of the repository. llitisation process was not obtained from the present simulations.

  3. Chemical-decomposition models for the thermal explosion of confined HMX, TATB, RDX, and TNT explosives

    SciTech Connect

    McGuire, R.R.; Tarver, C.M.

    1981-03-26

    Chemical decomposition models have been deduced from the available chemical kinetic data on the thermal decomposition of HMX, TATB, RDX, and TNT. A thermal conduction model is used in which the thermal conductivity of the reacting explosive decreases linearly with the mass fraction reacted to that of the gaseous products. These reactive heat flow models are used to predict the time to explosion versus reciprocal temperature curves from several heavily confined explosive tests. Good agreement is obtained between experimental and calculated explosion times for the pure explosives HMX, TATB, RDX, and TNT, mixtures such as RX-26-AF (HMX/TATB), Octol (HMX/TNT), and Comp B (RDX/TNT), and for PBX 9404, an HMX-based explosive containing an energetic nitrocellulose binder.

  4. Rapid population divergence in thermal reaction norms for an invading species: breaking the temperature-size rule.

    PubMed

    Kingsolver, J G; Massie, K R; Ragland, G J; Smith, M H

    2007-05-01

    The temperature-size rule is a common pattern of phenotypic plasticity in which higher temperature during development results in a smaller adult body size (i.e. a thermal reaction norm with negative slope). Examples and exceptions to the rule are known in multiple groups of organisms, but rapid population differentiation in the temperature-size rule has not been explored. Here we examine the genetic and parental contributions to population differentiation in thermal reaction norms for size, development time and survival in the Cabbage White Butterfly Pieris rapae, for two geographical populations that have likely diverged within the past 150 years. We used split-sibship experiments with two temperature treatments (warm and cool) for P. rapae from Chapel Hill, NC, and from Seattle, WA. Mixed-effect model analyses demonstrate significant genetic differences between NC and WA populations for adult size and for thermal reaction norms for size. Mean adult mass was 12-24% greater in NC than in WA populations for both temperature treatments; mean size was unaffected or decreased with temperature (the temperature-size rule) for the WA population, but size increased with temperature for the NC population. Our study shows that the temperature-size rule and related thermal reaction norms can evolve rapidly within species in natural field conditions. Rapid evolutionary divergence argues against the existence of a simple, general mechanistic constraint as the underlying cause of the temperature-size rule.

  5. Improvement of band gap profile in Cu(InGa)Se{sub 2} solar cells through rapid thermal annealing

    SciTech Connect

    Chen, D.S.; Yang, J.; Yang, Z.B.; Xu, F.; Du, H.W.; Ma, Z.Q.

    2014-06-01

    Highlights: • Proper RTA treatment can effectively optimize band gap profile to more expected level. • Inter-diffusion of atoms account for the improvement of the graded band gap profile. • The variation of the band gap profile created an absolute gain in the efficiency by 1.22%. - Abstract: In the paper, the effect of rapid thermal annealing on non-optimal double-graded band gap profiles was investigated by using X-ray photoelectron spectroscopy and capacitance–voltage measurement techniques. Experimental results revealed that proper rapid thermal annealing treatment can effectively improve band gap profile to more optimal level. The annealing treatment could not only reduce the values of front band gap and minimum band gap, but also shift the position of the minimum band gap toward front electrode and enter into space charge region. In addition, the thickness of Cu(InGa)Se{sub 2} thin film decreased by 25 nm after rapid thermal annealing treatment. All of these modifications were attributed to the inter-diffusion of atoms during thermal treatment process. Simultaneously, the variation of the band gap profile created an absolute gain in the efficiency by 1.22%, short-circuit current density by 2.16 mA/cm{sup 2} and filled factor by 3.57%.

  6. Detailed Chemical Kinetic Reaction Mechanisms for Autoignition of Isomers of Heptane Under Rapid Compression

    SciTech Connect

    Westbrook, C K; Pitz, W J; Boercker, J E; Curran, H J; Griffiths, J F; Mohamed, C; Ribaucour, M

    2001-12-17

    Detailed chemical kinetic reaction mechanisms are developed for combustion of all nine isomers of heptane (C{sub 7}H{sub 16}), and these mechanisms are tested by simulating autoignition of each isomer under rapid compression machine conditions. The reaction mechanisms focus on the manner in which the molecular structure of each isomer determines the rates and product distributions of possible classes of reactions. The reaction pathways emphasize the importance of alkylperoxy radical isomerizations and addition reactions of molecular oxygen to alkyl and hydroperoxyalkyl radicals. A new reaction group has been added to past models, in which hydroperoxyalkyl radicals that originated with abstraction of an H atom from a tertiary site in the parent heptane molecule are assigned new reaction sequences involving additional internal H atom abstractions not previously allowed. This process accelerates autoignition in fuels with tertiary C-H bonds in the parent fuel. In addition, the rates of hydroperoxyalkylperoxy radical isomerization reactions have all been reduced so that they are now equal to rates of analogous alkylperoxy radical isomerizations, significantly improving agreement between computed and experimental ignition delay times in the rapid compression machine. Computed ignition delay times agree well with experimental results in the few cases where experiments have been carried out for specific heptane isomers, and predictive model calculations are reported for the remaining isomers. The computed results fall into three general groups; the first consists of the most reactive isomers, including n-heptane, 2-methyl hexane and 3-methyl hexane. The second group consists of the least reactive isomers, including 2,2-dimethyl pentane, 3,3-dimethyl pentane, 2,3-dimethyl pentane, 2,4-dimethyl pentane and 2,2,3-trimethyl butane. The remaining isomer, 3-ethyl pentane, was observed computationally to have an intermediate level of reactivity. These observations are generally

  7. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD

    PubMed Central

    2011-01-01

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fused quartz, glass, muscovite, c- and a-plane sapphire (Al2O3), gold, titanium, and polyimide. X-ray diffraction indicates the grains of as-deposited ZnO to be highly textured, with the fastest growth occurring along the c-axis. The individual grains are observed to be faceted by (103) planes which are the slowest growth planes. ZnO nanocrystalline films of nominal thicknesses of 200 nm are deposited at substrate temperatures of 330°C and 160°C on metal/ceramic substrates and polymer substrates, respectively. In addition, 20-nm- and 200-nm-thick films are also deposited on quartz substrates for optical characterization. At optical spectra above 375 nm, the measured optical transmittance of a 200-nm-thick ZnO film is greater than 80%, while that of a 20-nm-thick film is close to 100%. For a 200-nm-thick ZnO film with an average grain size of 100 nm, a four-point probe measurement shows electrical conductivity of up to 910 S/m. Annealing of 200-nm-thick ZnO films in 300 sccm pure argon at temperatures ranging from 750°C to 950°C (at homologous temperatures between 0.46 and 0.54) alters the textures and morphologies of the thin film. Based on scanning electron microscope images, higher annealing temperatures appear to restructure the ZnO nanocrystalline films to form nanorods of ZnO due to a combination of grain boundary diffusion and bulk diffusion. PACS: films and coatings, 81.15.-z; nanocrystalline materials, 81.07.Bc; II-VI semiconductors, 81.05.Dz. PMID:22040295

  8. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

    2003-04-01

    The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.

  9. Geophysical inferences of thermal-chemical structures in the lower mantle

    NASA Technical Reports Server (NTRS)

    Yuen, D. A.; Cadek, O.; Chopelas, A.; Matyska, C.

    1993-01-01

    Lateral variations of the temperature field in the lower mantle have been reconstructed using new results in mineral physics and seismic tomographic data. We show that, with the application of high-pressure experimental values of thermal expansivity and of sound velocities, the slow seismic anomalies in the lower mantle under the Pacific and Africa can be converted into realistic-looking plume structures with large dimensions of 0(1000 km). The outer fringes of the plumes have an excess temperature of around 400 K. In the core of the plumes are found tonguelike structures with extremely high thermal anomalies. These values can exceed 1200 K and are too high to be explained on the basis of thermal anomalies alone. We suggest that these major plumes in the deep mantle may be driven by both thermal and chemical buoyancies or that enhanced conductive heat-transfer may be important there.

  10. Thermal expansion of laminated, woven, continuous ceramic fiber/chemical-vapor-infiltrated silicon carbide matrix composites

    NASA Technical Reports Server (NTRS)

    Eckel, Andrew J.; Bradt, Richard C.

    1990-01-01

    Thermal expansions of three two-dimensional laminate, continuous fiber/chemical-vapor-infiltrated silicon carbide matrix composites reinforced with either FP-Alumina (alumina), Nextel (mullite), or Nicalon (Si-C-O-N) fibers are reported. Experimental thermal expansion coefficients parallel to a primary fiber orientation were comparable to values calculated by the conventional rule-of-mixtures formula, except for the alumina fiber composite. Hysteresis effects were also observed during repeated thermal cycling of that composite. Those features were attributed to reoccurring fiber/matrix separation related to the micromechanical stresses generated during temperature changes and caused by the large thermal expansion mismatch between the alumina fibers and the silicon carbide matrix.

  11. Multiparametric fat–water separation method for fast chemical-shift imaging guidance of thermal therapies

    PubMed Central

    Lin, Jonathan S.; Hwang, Ken-Pin; Jackson, Edward F.; Hazle, John D.; Jason Stafford, R.; Taylor, Brian A.

    2013-01-01

    Purpose: A k-means-based classification algorithm is investigated to assess suitability for rapidly separating and classifying fat/water spectral peaks from a fast chemical shift imaging technique for magnetic resonance temperature imaging. Algorithm testing is performed in simulated mathematical phantoms and agar gel phantoms containing mixed fat/water regions. Methods: Proton resonance frequencies (PRFs), apparent spin-spin relaxation (T2*) times, and T1-weighted (T1-W) amplitude values were calculated for each voxel using a single-peak autoregressive moving average (ARMA) signal model. These parameters were then used as criteria for k-means sorting, with the results used to determine PRF ranges of each chemical species cluster for further classification. To detect the presence of secondary chemical species, spectral parameters were recalculated when needed using a two-peak ARMA signal model during the subsequent classification steps. Mathematical phantom simulations involved the modulation of signal-to-noise ratios (SNR), maximum PRF shift (MPS) values, analysis window sizes, and frequency expansion factor sizes in order to characterize the algorithm performance across a variety of conditions. In agar, images were collected on a 1.5T clinical MR scanner using acquisition parameters close to simulation, and algorithm performance was assessed by comparing classification results to manually segmented maps of the fat/water regions. Results: Performance was characterized quantitatively using the Dice Similarity Coefficient (DSC), sensitivity, and specificity. The simulated mathematical phantom experiments demonstrated good fat/water separation depending on conditions, specifically high SNR, moderate MPS value, small analysis window size, and low but nonzero frequency expansion factor size. Physical phantom results demonstrated good identification for both water (0.997 ± 0.001, 0.999 ± 0.001, and 0.986 ± 0.001 for DSC, sensitivity, and specificity, respectively

  12. Simultaneous rapid chemical synthesis of over one hundred oligonucleotides on a microscale

    PubMed Central

    Matthes, Hans W.D.; Zenke, W. Martin; Grundström, Thomas; Staub, Adrien; Wintzerith, Marguerite; Chambon, Pierre

    1984-01-01

    An inexpensive, extremely rapid manual method for simultaneous synthesis of large numbers of oligodeoxyribonucleotides on 50 or 150 nanomole scale is described. The oligonucleotides are assembled in parallel by the phosphotriester method on small cellulose paper disks in a simple gas pressure-controlled continuous-flow system. For each addition of a nucleotide the disks are sorted into four sets which are placed in four columns for addition of A, C, G and T, respectively. During one 2-week period, three rounds of synthesis by this method yielded 254 oligomers (8- to 22-mers), many of which were also purified during this time. Using 50 nanomole scale reactions the yields for 17-mers, for example, were in the range of 0.5 O.D.260 units (˜5 nmol, i.e., ˜10% yield), an amount sufficient for most purposes. The equipment required is relatively inexpensive and for the most part usually already available in molecular biology laboratories. All chemicals are commercially available and the current reagent cost per oligonucleotide (25 μg, average length 17-mer) is ˜3 US dollars. ImagesFig. 1.Fig. 3.Fig. 4.Fig. 5. PMID:16453516

  13. Chemical and isotopic data for water from thermal springs and wells of Oregon

    SciTech Connect

    Mariner, R.H.; Swanson, J.R.; Orris, G.J.; Presser, T.S.; Evans, W.C.

    1981-01-01

    The thermal springs of Oregon range in composition from dilute NaHCO/sub 3/ waters to moderately saline CO/sub 2/-charged NaCl-NaHCO/sub 3/ waters. Most of the thermal springs are located in southeastern or southcentral Oregon, with a few in northeastern Oregon and near the contact of the Western Cascades with the High Cascades. Thermal springs in the central and northern parts of the Cascades generally issue moderately saline NaCl waters. Farther south in the Cascades, the thermal waters are high in CO/sub 2/ as well as chloride. Most thermal springs in northeastern Oregon issue dilute NaHCO/sub 3/ waters of high pH (>8.5). These waters are similar to the thermal waters which issue from the Idaho batholith, farther east. Most of the remaining thermal waters are Na mixed-anion waters. Based on the chemical geothermometers, Mickey Srpings, Hot Borax Lake, Alvord Hot Springs, Neal Hot Springs, Vale Hot Springs, Crump Well, Hunters (Lakeview) Hot Springs, and perhaps some of the springs in the Cascades are associated with the highest temperature systems (>150/sup 0/C).

  14. Manipulating thermal conductance at metal-graphene contacts via chemical functionalization.

    PubMed

    Hopkins, Patrick E; Baraket, Mira; Barnat, Edward V; Beechem, Thomas E; Kearney, Sean P; Duda, John C; Robinson, Jeremy T; Walton, Scott G

    2012-02-01

    Graphene-based devices have garnered tremendous attention due to the unique physical properties arising from this purely two-dimensional carbon sheet leading to tremendous efficiency in the transport of thermal carriers (i.e., phonons). However, it is necessary for this two-dimensional material to be able to efficiently transport heat into the surrounding 3D device architecture in order to fully capitalize on its intrinsic transport capabilities. Therefore, the thermal boundary conductance at graphene interfaces is a critical parameter in the realization of graphene electronics and thermal solutions. In this work, we examine the role of chemical functionalization on the thermal boundary conductance across metal/graphene interfaces. Specifically, we metalize graphene that has been plasma functionalized and then measure the thermal boundary conductance at Al/graphene/SiO(2) contacts with time domain thermoreflectance. The addition of adsorbates to the graphene surfaces are shown to influence the cross plane thermal conductance; this behavior is attributed to changes in the bonding between the metal and the graphene, as both the phonon flux and the vibrational mismatch between the materials are each subject to the interfacial bond strength. These results demonstrate plasma-based functionalization of graphene surfaces is a viable approach to manipulate the thermal boundary conductance.

  15. Anomalously high thermal conductivity of amorphous Si deposited by hot-wire chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yang, Ho-Soon; Cahill, David G.; Liu, X.; Feldman, J. L.; Crandall, R. S.; Sperling, B. A.; Abelson, J. R.

    2010-03-01

    The thermal conductivities of thin films of amorphous Si (a-Si) deposited by hot-wire chemical vapor deposition (HWCVD) are measured by time-domain thermoreflectance (TDTR). Amorphous Si samples prepared at the National Renewable Energy Laboratory (NREL) show an anomalous enhancement in thermal conductivity compared to other forms of a-Si and compared to the prediction of the model of the minimum thermal conductivity. The thermal conductivity of the NREL HWCVD a-Si samples also decreases with increasing frequency of the temperature fields used in the experiment. This frequency dependence of the thermal conductivity is nearly identical to the results of our previous studies of crystalline semiconductor alloys; a comparison of the frequency dependence to a phonon-scattering model suggests that Rayleigh-type scattering controls the mean-free path of ˜5meV phonons in this material. Amorphous Si films prepared at University of Illinois (U. Illinois) do not show an enhanced thermal conductivity even though Raman vibrational spectra of the U. Illinois and NREL samples are nearly identical. Thus, the thermal conductivity of a-Si depends on details of the microstructure that are not revealed by vibrational spectroscopy and measurements by TDTR provide a convenient method of identifying novel microstructures in amorphous materials.

  16. Holographic thermalization with a chemical potential from Born-Infeld electrodynamics

    NASA Astrophysics Data System (ADS)

    Camilo, Giancarlo; Cuadros-Melgar, Bertha; Abdalla, Elcio

    2015-02-01

    The problem of holographic thermalization in the framework of Einstein gravity coupled to Born-Infeld nonlinear electrodynamics is investigated. We use equal time two-point correlation functions and expectation values of Wilson loop operators in the boundary quantum field theory as probes of thermalization, which have dual gravity descriptions in terms of geodesic lengths and minimal area surfaces in the bulk spacetime. The full range of values of the chemical potential per temperature ratio μ/T on the boundary is explored. The numerical results show that the effect of the charge on the thermalization time is similar to the one obtained with Maxwell electrodynamics, namely the larger the charge the later thermalization occurs. The Born-Infeld parameter, on the other hand, has the opposite effect: the more nonlinear the theory is, the sooner it thermalizes. We also study the thermalization velocity and how the parameters affect the phase transition point separating the thermalization process into an accelerating phase and a decelerating phase.

  17. Deposition of thermal and hot-wire chemical vapor deposition copper thin films on patterned substrates.

    PubMed

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    In this work we study the hot-wire chemical vapor deposition (HWCVD) of copper films on blanket and patterned substrates at high filament temperatures. A vertical chemical vapor deposition reactor was used in which the chemical reactions were assisted by a tungsten filament heated at 650 degrees C. Hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) vapors were used, directly injected into the reactor with the aid of a liquid injection system using N2 as carrier gas. Copper thin films grown also by thermal and hot-wire CVD. The substrates used were oxidized silicon wafers on which trenches with dimensions of the order of 500 nm were formed and subsequently covered with LPCVD W. HWCVD copper thin films grown at filament temperature of 650 degrees C showed higher growth rates compared to the thermally ones. They also exhibited higher resistivities than thermal and HWCVD films grown at lower filament temperatures. Thermally grown Cu films have very uniform deposition leading to full coverage of the patterned substrates while the HWCVD films exhibited a tendency to vertical growth, thereby creating gaps and incomplete step coverage. PMID:22097561

  18. Chemical analyses of thermal and nonthermal springs in Lassen Volcanic National Park and vicinity, California

    USGS Publications Warehouse

    Thompson, J.M.

    1983-01-01

    Most thermal waters issuing in Lassen Volcanic National Park (LVNP) are acidic (pH =3.5), low-Cl (concentrations =30 mg/L) hot springs which are characteristic of vapor-dominated hydrothermal systems and, as such, are not useful for liquid chemical geothermometry. Thermal waters at Drakesbad and in Little Hot Springs Valley, hot spring localities characterized by neutral pH and low Cl containing water, may have equilibrated in shallow aquifers so that temperatures estimated by both the Na-K-Ca and Na-Li geothermometers approach the measured spring temperatures of 65? to 95?C. Waters rich in chloride (>2000 mg/L), such as those at Growler Hot Spring and Morgan Hot Springs, situated south of LVNP, are the most appropriate springs for liquid chemical geothermometry and indicate subsurface temperatures between 220? and 230?C. The chemical and thermal characteristics of these springs may result either from boiling at depth and subsequent mixing with meteoric water or from conductive cooling during lateral flow. In either case ~220? to 230?C thermal water probably originates inside LVNP and flows south to Morgan Hot Springs.

  19. Tunable photoluminescence of self-assembled GeSi quantum dots by B{sup +} implantation and rapid thermal annealing

    SciTech Connect

    Chen, Yulu; Wu, Shan; Ma, Yinjie; Fan, Yongliang; Yang, Xinju; Zhong, Zhenyang; Jiang, Zuimin

    2014-06-21

    The layered GeSi quantum dots (QDs) are grown on (001) Si substrate by molecular beam epitaxy. The photoluminescence (PL) peak of the as-grown GeSi quantum dots has obvious blue shift and enhancement after processed by ion implantation and rapid thermal annealing. It is indicated that the blue shift is originated from the interdiffusion of Ge and Si at the interface between QDs and the surrounding matrix. The dependence of PL intensity on the excitation power shows that there are the nonradiative centers of shallow local energy levels from the point defects caused by the ion implantation, but not removed by the rapid thermal annealing. The tunable blue shift of the PL position from the 1300 nm to 1500 nm region may have significant application value in the optical communication.

  20. Redistribution of constituent elements in Pd/Ge contacts to n-type GaAs using rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Lai, Jiun Tsuen; Lee, Joseph Ya-Min

    1994-08-01

    Pd/Ge contact to n-type GaAs is performed by using electron-beam evaporation and rapid thermal annealing. The rapid thermal annealing is performed at 400-500 C for various time durations. Low specific contact resistivity on the order of 10(exp -6) Ohm, sq cm is obtained from measurements based on the transmission line model method. The contact depth profiles are analyzed by secondary ion mass spectrometry (SIMS). A very shallow ohmic contact is achieved. The redistribution of constituent elements after heat treatment is examined. A gallium SIMS signal bump is detected in the contact layer and is correlated with good ohmic contact behavoir. A model based on Ga vacanies is utilized to fabricate GaAs/AlGaAs and GaAs/InGaAs/AlGaAs negative resistance field-effect transistors, for which shallow ohmic contact is critical.

  1. The influence of wavelength-dependent radiation in simulation of lamp-heated rapid thermal processing systems

    SciTech Connect

    Ting, A.

    1994-08-01

    Understanding the thermal response of lamp-heated rapid thermal processing (RTP) systems requires understanding relatively complex radiation exchange among opaque and partially transmitting surfaces and materials. The objective of this paper is to investigate the influence of wavelength-dependent radiative properties. The examples used for the analysis consider axisymmetric systems of the kind that were developed by Texas Instruments (TI) for the Microelectronics Manufacturing Science and Technology (MMST) Program and illustrate a number of wavelength-dependent (spectral) effects. The models execute quickly on workstation class computing flatforms, and thus permit rapid comparison of alternative reactor designs and physical models. The fast execution may also permit the incorporation of these models into real-time model-based process control algorithms.

  2. Fourier transform infrared spectroscopic analysis of spin-on dopant layers used in proximity rapid thermal diffusion

    NASA Astrophysics Data System (ADS)

    Romero-Borja, Fernando; Grabiec, Piotr B.; Zagozdzon-Wasik, Wanda; Wood, Lowell L.

    1994-01-01

    A new rapid thermal diffusion (proximity RTD) method, utilizing spin-on dopant (SOD) layers, was reported recently. This technique is based on an evaporation-gas phase diffusion- adsorption-surface reaction-diffusion in Si scheme. In this paper we use FTIR spectroscopy to investigate a relationship between the SOD layer structure/composition and its doping efficiency, as determined by sheet resistance (RS) measurements, for a phosphorus diffusion case.

  3. Characteristics of Lateral Heterogeneities with Thermal and Chemical Origins in the Pyrolitic Lower Mantle

    SciTech Connect

    Li, B.

    2009-01-01

    The relative changes between shear and compressional velocities (R{sub SP} = {partial_derivative} ln V{sub S}/{partial_derivative} ln V{sub P}), bulk sound and shear velocities (R{sub CS} = {partial_derivative} ln V{sub C}/{partial_derivative} ln V{sub S}), and density versus shear wave velocity (R{sub {rho}S} = {partial_derivative} ln {rho}/{partial_derivative} ln V{sub S}) in response to thermal and chemical variations were investigated for the pyrolitic lower mantle. For heterogeneities with thermal origins, R{sub SP} increases from 1.7 to 2.0 together with R{sub {rho}S} decreasing from 0.4 to 0.2 and R{sub CS} = 0.27 from the top to the bottom of the lower mantle. In comparison, chemical variations (bulk iron or silica contents) are characterized by R{sub SP} < 1.5 and R{sub CS} > 0.5 at lower mantle depths. Negative values of R{sub {rho}S} and R{sub CS} are indicative of chemical anomalies in the lower mantle, but a combination of thermal and chemical heterogeneities may be required to produce velocity and density anomalies at the magnitudes observed in seismic data. Further refinement of these characteristics requires data on the higher order pressure and temperature derivatives of the elastic moduli of the constituent phases.

  4. Models of thermal/chemical boundary layer convection: Potential application to Venus

    NASA Technical Reports Server (NTRS)

    Lenardic, A.; Kaula, W. M.

    1993-01-01

    The upper boundary layer of Venus is comprised of at least two distinct chemical components, mantle and crust. Fluid dynamical models of convection within Venus' mantle were primarily of the thermal boundary layer type. Models assessing the ability of convective mantle flows to deform the crust were undertaken, but models exploring the effects of a variable thickness crust on mantle convection were largely lacking. A Venusian crust of variable thickness could couple back into, and alter, the mantle flow patterns that helped create it, leading to deformation mechanisms not predicted by purely thermal boundary layer convection models. This possibility is explored through a finite element model of thermal/chemical boundary layer convection. Model results suggest that a crust of variable thickness can serve as a mantle flow driver by perturbing lateral temperature gradients in the upper mantle. Resulting mantle flow is driven by the combination of free convective and nonuniform crustal distribution. This combination can lead to a flow instability manifest in the occurrence of episodic mantle lithosphere subduction initiated at the periphery of a crustal plateau. The ability of a light, near surface, chemical layer to potentially alter mantle flow patterns suggest that mantle convection and the creation and/or deformation of such a chemical layer may be highly nonseparable problems on time scales of 10(exp 8) years.

  5. Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals

    DOEpatents

    Peters, William A.; Howard, Jack B.; Modestino, Anthony J.; Vogel, Fredreric; Steffin, Carsten R.

    2009-02-24

    A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

  6. Formation of nanocrystalline GeSn thin film on Si substrate by sputtering and rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Mahmodi, H.; Hashim, M. R.; Hashim, U.

    2016-10-01

    Nanocrystalline Ge1-xSnx thin films have been formed after rapid thermal annealing of sputtered GeSn layers. The alloy films were deposited onto the Silicon (100) substrate via low cost radio frequency magnetron sputtering. Then, the films were annealed by rapid thermal annealing at 350 °C, 400 °C, and 450 °C for 10 s. The morphological, structural, and optical properties of the layers were investigated with field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and high-resolution X-ray diffraction (HR-XRD). The Raman analysis showed that the only observed phonon mode is attributed to Ge-Ge vibrations. Raman phonon intensities of GeSn thin films were enhanced with increasing the annealing temperature. The results clearly revealed that by increasing the annealing temperature the crystalline quality of the films were improved. The XRD measurements revealed the nanocrystalline phase formation in the annealed films with (111) preferred orientation. The results showed the potentiality of using the sputtering technique and rapid thermal anneal to produce crystalline GeSn layer.

  7. Thermal dewetting with a chemically heterogeneous nano-template for self-assembled L10 FePt nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Wang, Liang-Wei; Cheng, Chung-Fu; Liao, Jung-Wei; Wang, Chiu-Yen; Wang, Ding-Shuo; Huang, Kuo-Feng; Lin, Tzu-Ying; Ho, Rong-Ming; Chen, Lih-Juann; Lai, Chih-Huang

    2016-02-01

    A design for the fabrication of metallic nanoparticles is presented by thermal dewetting with a chemically heterogeneous nano-template. For the template, we fabricate a nanostructured polystyrene-b-polydimethylsiloxane (PS-b-PDMS) film on a Si|SiO2 substrate, followed by a thermal annealing and reactive ion etching (RIE) process. This gives a template composed of an ordered hexagonal array of SiOC hemispheres emerging in the polystyrene matrix. After the deposition of a FePt film on this template, we utilize the rapid thermal annealing (RTA) process, which provides in-plane stress, to achieve thermal dewetting and structural ordering of FePt simultaneously. Since the template is composed of different composition surfaces with periodically varied morphologies, it offers more tuning knobs to manipulate the nanostructures. We show that both the decrease in the area of the PS matrix and the increase in the strain energy relaxation transfer the dewetted pattern from the randomly distributed nanoparticles into a hexagonal periodic array of L10 FePt nanoparticles. Transmission electron microscopy with the in situ heating stage reveals the evolution of the dewetting process, and confirms that the positions of nanoparticles are aligned with those of the SiOC hemispheres. The nanoparticles formed by this template-dewetting show an average diameter and center-to-center distance of 19.30 +/- 2.09 nm and 39.85 +/- 4.80 nm, respectively. The hexagonal array of FePt nanoparticles reveals a large coercivity of 1.5 T, much larger than the nanoparticles fabricated by top-down approaches. This approach offers an efficient pathway toward self-assembled nanostructures in a wide range of material systems.A design for the fabrication of metallic nanoparticles is presented by thermal dewetting with a chemically heterogeneous nano-template. For the template, we fabricate a nanostructured polystyrene-b-polydimethylsiloxane (PS-b-PDMS) film on a Si|SiO2 substrate, followed by a thermal

  8. Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding

    NASA Astrophysics Data System (ADS)

    Chen, Xueye; Shen, Jienan; Zhou, Mengde

    2016-10-01

    A smart design method to transform the original two-layer microfluidic chip into a four-layer 3D microfluidic chip is proposed. A novel fabrication method is established to rapidly and effectively produce a four-layer microfluidic chip device made entirely from polymethylmethacrylate (PMMA). Firstly, the CO2-laser cuts the PMMA sheets by melting and blowing away vaporized material from the parent material to obtain high-quality channels of the microfluidic chip. An orthogonal experimental method is used to study its processing stability. In addition, a simple, rapid thermal bonding technique is successfully applied in fabricating the four-layer microfluidic chip, which has a bond strength of 1.3 MPa. A wooden pole is used to improve the accuracy of the alignment. Finally, a mixing experiment with blue ink and water is carried out, which proves that this smart design method and rapid manufacturing technology are successful.

  9. Mechano-chemical signaling maintains the rapid movement of Dictyostelium cells

    SciTech Connect

    Lombardi, M.L.; Knecht, D.A.; Lee, J.

    2008-05-01

    The survival of Dictyostelium cells depends on their ability to efficiently chemotax, either towards food or to form multicellular aggregates. Although the involvement of Ca{sup 2+} signaling during chemotaxis is well known, it is not clear how this regulates cell movement. Previously, fish epithelial keratocytes have been shown to display transient increases in intracellular calcium ([Ca{sup 2+}]{sub i}) that are mediated by stretch-activated calcium channels (SACs), which play a role in retraction of the cell body [J. Lee, A. Ishihara, G. Oxford, B. Johnson, and K. Jacobson, Regulation of cell movement is mediated by stretch-activated calcium channels. Nature, 1999. 400(6742): p. 382-6.]. To investigate the involvement of SACs in Dictyostelium movement we performed high resolution calcium imaging in wild-type (NC4A2) Dictyostelium cells to detect changes in [Ca{sup 2+}]{sub i}. We observed small, brief, Ca{sup 2+} transients in randomly moving wild-type cells that were dependent on both intracellular and extracellular sources of calcium. Treatment of cells with the SAC blocker gadolinium (Gd{sup 3+}) inhibited transients and decreased cell speed, consistent with the involvement of SACs in regulating Dictyostelium motility. Additional support for SAC activity was given by the increase in frequency of Ca{sup 2+} transients when Dictyostelium cells were moving on a more adhesive substratum or when they were mechanically stretched. We conclude that mechano-chemical signaling via SACs plays a major role in maintaining the rapid movement of Dictyostelium cells.

  10. Design of rapid medical evacuation system for trauma patients resulting from biological and chemical terrorist attacks.

    PubMed

    Frieder, Russell S; Kumaresan, Srirangam; Sances, Anthony; Renfroe, David; Myers, Will J; Harvey, L Williams

    2006-01-01

    In the event of a large scale, biological or chemical terrorist attack it is unlikely that local emergency response organizations will have sufficient quantities of dedicated ambulances to evacuate all of the affected victims. As a potential solution to this problem, we have developed a device that can be retrofitted to a variety of government or civilian utility vehicles in order to convert them for emergency medical transport (US Pat. 7,028,351). Each installed device allows the host vehicle to safely transport either a single patient on a stretcher or multiple ambulatory patients. Additionally, each device provides a means for temporary or permanent attachment of emergency medical equipment. When not in use, the device can be collapsed to improve ease and efficiency of storage. Preliminary analyses of certain highly loaded structures on the device were carried out using known principles of solid mechanics. The analyses were carried out assuming the highest reasonable loading condition. This condition was determined to occur when the device is configured for the transport three 95(th) percentile males and 20 kg of medical equipment. This loading condition was assumed to be more severe than any that might occur due to an attendant performing CPR, or any other medical procedures, on a single supine patient. The base sections of the load bearing stretcher supports were then modeled using 3D CAD software and run through a finite element analysis (FEA) as a means to more accurately simulate the stresses that are likely to occur in the actual parts. As the device must be highly mobile, these analyses were used to confirm that the load bearing structures can be manufactured from low cost materials and still be light enough to be easily transported. Future work will include sizing and installation studies to ensure that the production version of the device can be rapidly implemented in a wide variety of private, commercial, and government utility vehicles.

  11. Chemical and optical properties of thermally evaporated manganese oxide thin films

    SciTech Connect

    Al-Kuhaili, M. F.

    2006-09-15

    Manganese oxide thin films were deposited using thermal evaporation from a tungsten boat. Films were deposited under an oxygen atmosphere, and the effects of thickness, substrate temperature, and deposition rate on their properties were investigated. The chemical properties of the films were studied using x-ray photoelectron spectroscopy and x-ray fluorescence. The optical properties were determined from normal-incidence transmittance and reflectance. Based on the chemical and optical characterizations, the optimum conditions for the deposition of the films were investigated. Subsequently, the optical properties (refractive index, extinction coefficient, and band gap) of these films were determined.

  12. Non-chemically Pure Magnetites Produced from Thermal Decomposition of Ankerites

    NASA Astrophysics Data System (ADS)

    Jiménez López, C.; Romanek, C.; Rodríguez-Navarro, A.; Pérez-González, T.; Rodríguez Navarro, C.

    2008-12-01

    It has been claimed that chemically pure magnetites (Fe3O4) can be obtained from thermal decomposition of (Fe, Mg, Ca)CO3 (Golden et al., 2004). Such an observation is critical, since it opens the possibility of an inorganic way of formation of the magnetites found on Martian meteorite ALH84001. Such a chemical purity is one of the parameters used, so far, to recognize bacterial origin of natural magnetites (Thomas-Keptra et al., 2001), since it has been demonstrated that biologically-controlled magnetites are chemically pure (Bazylinski and Frankel, 2004) . However, while Golden et al. (2004) obtained pure magnetite from an almost pure precursor, the ankerite cores in ALH84001 in which magnetites are embedded are far from being chemically pure, since they contain considerable amounts of Ca and Mg (Kopp and Humayun, 2003). In this study we have performed several experiments to analyze the chemical purity of magnetites produced by thermal decomposition of four ankerite samples sinthetized in the laboratory, and containing different amounts of Ca, Fe and Mg. Such a thermal decomposition was achieved by two procedures: (1) by heating the samples at 470°C under CO2 pressure and (2) by decomposing the ankerite "in situ" under the TEM (Transmission electron Microscopy) electron beam. Magnetite produced by the first procedure was analyzed by XRD to determine whether or not the resulting solid was a mixture of oxides or rather a solid solution of (Ca, Fe and Mg)oxide. Magnetites formed by the two methods were studied by High Resolution TEM. The chemical composition of about 20 crystals of each experiment was analyzed by EDAX. Under our experimental conditions, ankerites decomposed in magnetite crystals of about 5 nanometers in size. Magentite crystals arranged to keep the morphology of the precursor. Our results confirm that any of these magnetites is chemically pure, but rather, each one of them is a solid solution of Ca and Mg. Therefore, chemically pure magnetites

  13. A review of thermal-chemical conversion of lignocellulosic biomass in China.

    PubMed

    Ma, Longlong; Wang, Tiejun; Liu, Qiying; Zhang, Xinghua; Ma, Wenchao; Zhang, Qi

    2012-01-01

    Biomass, a renewable, sustainable and carbon dioxide neutral resource, has received widespread attention in the energy market as an alternative to fossil fuels. Thermal-chemical conversion of biomass to produce biofuels is a promising technology with many commercial applications. This paper reviewed the state-of-the-art research and development of thermal-chemical conversion of biomass in China with a special focus on gasification, pyrolysis, and catalytic transformation technologies. The advantages and disadvantages, potential of future applications, and challenges related to these technologies are discussed. Conclusively, these transformation technologies for the second-generation biofuels with using non-edible lignocellulosic biomass as feedstocks show prosperous perspective for commercial applications in near future. PMID:22306330

  14. Application of a reversible chemical reaction system to solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Hanseth, E. J.; Won, Y. S.; Seibowitz, L. P.

    1980-01-01

    Three distributed dish solar thermal power systems using various applications of SO2/SO3 chemical energy storage and transport technology were comparatively assessed. Each system features various roles for the chemical system: (1) energy storage only, (2) energy transport, or (3) energy transport and storage. These three systems were also compared with the dish-Stirling, using electrical transport and battery storage, and the central receiver Rankine system, with thermal storage, to determine the relative merit of plants employing a thermochemical system. As an assessment criterion, the busbar energy costs were compared. Separate but comparable solar energy cost computer codes were used for distributed receiver and central receiver systems. Calculations were performed for capacity factors ranging from 0.4 to 0.8. The results indicate that SO2/SO3 technology has the potential to be more cost effective in transporting the collected energy than in storing the energy for the storage capacity range studied (2-15 hours)

  15. NSR&D FY15 Final Report. Modeling Mechanical, Thermal, and Chemical Effects of Impact

    SciTech Connect

    Long, Christopher Curtis; Ma, Xia; Zhang, Duan Zhong

    2015-11-02

    The main goal of this project is to develop a computer model that explains and predicts coupled mechanical, thermal and chemical responses of HE under impact and friction insults. The modeling effort is based on the LANL-developed CartaBlanca code, which is implemented with the dual domain material point (DDMP) method to calculate complex and coupled thermal, chemical and mechanical effects among fluids, solids and the transitions between the states. In FY 15, we have implemented the TEPLA material model for metal and performed preliminary can penetration simulation and begun to link with experiment. Currently, we are working on implementing a shock to detonation transition (SDT) model (SURF) and JWL equation of state.

  16. Inelastic light scattering spectroscopy in Si/SiGe nanostructures: Strain, chemical composition and thermal properties

    NASA Astrophysics Data System (ADS)

    Tsybeskov, L.; Mala, S. A.; Wang, X.; Baribeau, J.-M.; Wu, X.; Lockwood, D. J.

    2016-11-01

    We present a review of recent studies of inelastic light scattering spectroscopy in two types of Si/SiGe nanostructures: planar superlattices and cluster (dot) multilayers including first- and second-order Raman scattering, polarized Raman scattering and low-frequency inelastic light scattering associated with folded acoustic phonons. The results are used in semi-quantitative analysis of chemical composition, strain and thermal conductivity in these technologically important materials for electronic and optoelectronic devices.

  17. Gravity Effects in Carbon Nanotube Growth by Thermal Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Zhu, S.; Su, C. H.; Cochrane, J. C.; Lehoczky, S. L.; Cui, Y.; Burger, A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Carbon nanotubes are synthesized using thermal chemical vapor deposition. The sizes of these carbon nanotubes (CNT) are quite uniform and the length of the tube is up to several tens of micrometers. With the substrate surface normal either along or against the gravity vector, different growth orientations of CNT are observed by scanning electron microscopy although the Raman spectra are similar for samples synthesized at different locations. These results suggest the gravitation effects in the growth of long and small diameter CNT.

  18. Distinguishing solid bitumens formed by thermochemical sulfate reduction and thermal chemical alteration

    USGS Publications Warehouse

    Kelemen, S.R.; Walters, C.C.; Kwiatek, P.J.; Afeworki, M.; Sansone, M.; Freund, H.; Pottorf, R.J.; Machel, H.G.; Zhang, T.; Ellis, G.S.; Tang, Y.; Peters, K.E.

    2008-01-01

    Insoluble solid bitumens are organic residues that can form by the thermal chemical alteration (TCA) or thermochemical sulfate reduction (TSR) of migrated petroleum. TCA may actually encompass several low temperature processes, such as biodegradation and asphaltene precipitation, followed by thermal alteration. TSR is an abiotic redox reaction where petroleum is oxidized by sulfate. It is difficult to distinguish solid bitumens associated with TCA of petroleum from those associated with TSR when both processes occur at relatively high temperature. The focus of the present work was to characterize solid bitumen samples associated with TCA or TSR using X-ray photoelectron spectroscopy (XPS). XPS is a surface analysis conducted on either isolated or in situ (>25 ??m diameter) solid bitumen that can provide the relative abundance and chemical speciation of carbon, organic and inorganic heteroatoms (NSO). In this study, naturally occurring solid bitumens from three locations, Nisku Fm. Brazeau River area (TSR-related), LaBarge Field Madison Fm. (TSR-related), and the Alaskan Brooks range (TCA-related), are compared to organic solids generated during laboratory simulation of the TSR and TCA processes. The abundance and chemical nature of organic nitrogen and sulfur in solid bitumens can be understood in terms of the nature of (1) petroleum precursor molecules, (2) the concentration of nitrogen by way of thermal stress and (3) the mode of sulfur incorporation. TCA solid bitumens originate from polar materials that are initially rich in sulfur and nitrogen. Aromaticity and nitrogen increase as thermal stress cleaves aliphatic moieties and condensation reactions take place. Organic sulfur in TCA organic solids remains fairly constant with increasing maturation (3.5 to ???17 sulfur per 100 carbons) into aromatic structures and to the low levels of nitrogen in their hydrocarbon precursors. Hence, XPS results provide organic chemical composition information that helps to

  19. Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite

    NASA Astrophysics Data System (ADS)

    Sharma, Manjula; Sharma, Vimal

    2016-02-01

    In the present study, the chemical and mechanical properties and the thermal expansion of a carbon nanotube (CNT)-based crystalline nano-aluminum (nano Al) composite were reported. The properties of nanocomposites were tailored by incorporating CNTs into the nano Al matrix using a physical mixing method. The elastic moduli and the coefficient of thermal expansion (CTE) of the nanocomposites were also estimated to understand the effects of CNT reinforcement in the Al matrix. Microstructural characterization of the nanocomposite reveals that the CNTs are dispersed and embedded in the Al matrix. The experimental results indicate that the incorporation of CNTs into the nano Al matrix results in the increase in hardness and elastic modulus along with a concomitant decrease in the coefficient of thermal expansion. The hardness and elastic modulus of the nanocomposite increase by 21% and 20%, respectively, upon CNT addition. The CTE of CNT/Al nanocomposite decreases to 70% compared with that of nano Al.

  20. Metallographic examination of TD-nickel base alloys. [thermal and chemical etching technique evaluation

    NASA Technical Reports Server (NTRS)

    Kane, R. D.; Petrovic, J. J.; Ebert, L. J.

    1975-01-01

    Techniques are evaluated for chemical, electrochemical, and thermal etching of thoria dispersed (TD) nickel alloys. An electrochemical etch is described which yielded good results only for large grain sizes of TD-nickel. Two types of thermal etches are assessed for TD-nickel: an oxidation etch and vacuum annealing of a polished specimen to produce an etch. It is shown that the first etch was somewhat dependent on sample orientation with respect to the processing direction, the second technique was not sensitive to specimen orientation or grain size, and neither method appear to alter the innate grain structure when the materials were fully annealed prior to etching. An electrochemical etch is described which was used to observe the microstructures in TD-NiCr, and a thermal-oxidation etch is shown to produce better detail of grain boundaries and to have excellent etching behavior over the entire range of grain sizes of the sample.

  1. Degradation Of Environmental Barrier Coatings (EBC) Due To Chemical and Thermal Expansion Incompatibility

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; King, Deboran (Technical Monitor)

    2001-01-01

    Current environmental barrier coatings (EBCs) consist of multiple layers, with each layer having unique properties to meet the various requirements for successful EBCs. As a result, chemical and thermal expansion compatibility between layers becomes an important issue to maintaining durability. Key constituents in current EBCs are mullite (3Al2O3-2SiO2), BSAS (BaO(1-x)-SrO(x)-Al2O3-2SiO2), and YSZ (ZrO2-8 wt.% Y2O3). The mullite-BSAS combination appears benign although significant diffusion occurs. Mullite-YSZ and BSAS-YSZ combinations do not react up to 1500 C. Thermally grown SiO2- BSAS and mullite-BSAS-YSZ combinations are most detrimental, forming low melting glasses. Thermal expansion mismatch between YSZ and mullite or BSAS causes severe cracking and delamination.

  2. A new technique to assess dermal absorption of volatile chemicals in vitro by thermal gravimetric analysis.

    PubMed

    Rauma, Matias; Isaksson, Tina S; Johanson, Gunnar

    2006-10-01

    Potential health hazards of dermal exposure, variability in reported dermal absorption rates and potential losses from the skin by evaporation indicate a need for a simple, inexpensive and standardized procedure to measure dermal absorption and desorption of chemical substances. The aim of this study was to explore the possibility to measure dermal absorption and desorption of volatile chemicals using a new gravimetric technique, namely thermal gravimetric analysis (TGA), and trypsinated stratum corneum from pig. Changes in skin weight were readily detected before, during and after exposure to vapours of water, 2-propanol, methanol and toluene. The shape and height of the weight curves differed between the four chemicals, reflecting differences in diffusivity and partial pressure and skin:air partitioning, respectively. As the skin weight is highly sensitive to the partial pressure of volatile chemicals, including water, this technique requires carefully controlled conditions with respect to air flow, temperature, chemical vapour generation and humidity. This new technique may help in the assessment of dermal uptake of volatile chemicals. Only a small piece of skin is needed and skin integrity is not necessary, facilitating the use of human samples. The high resolution weight-time curves obtained may also help to elucidate the characteristics of absorption, desorption and diffusion of chemicals in skin.

  3. Simulating Thermal-Hydrologic-Mechanical-Chemical Evolution Surrounding Fluid Injection in a Fractured Porous Geothermal Reservoir

    NASA Astrophysics Data System (ADS)

    Taron, J.; Min, K.; Elsworth, D.

    2006-12-01

    Computational analysis is conducted on the coupled thermal-hydrologic-mechanical-chemical (THMC) behavior of a stimulated EGS geothermal reservoir. Numerical analyses utilize a newly developed simulator capable of examining THMC processes in fractured porous geologic media. The simulator links the thermal-hydrologic- chemical (THC) computational code TOUGHREACT with the mechanical (M) capability of FLAC3D, where the response of pore fluid pressure to mechanical disturbance is treated as an undrained system and mineral precipitation/dissolution generates porosity and permeability change within each dual-permeability continuum. Non-linear permeability response to thermal-hydrologic-mechanical (THM) mechanisms is accommodated via embryonic mechanical and transport constitutive laws, and is considered to act in union with permeability changes associated with the removal or addition of minerals within the system. This construct is applied to the geometry of an injector-withdrawal doublet within the Coso Geothermal field, where in situ stress conditions, thermal state, and mineralogical composition at 3000m depth are extracted from recorded field data. Initial results for feasible parametric settings show that permeability reduction in the vicinity of a cool (80°C) injection well may be significant, within an order of magnitude, and accompanied by large (MPa) changes in the stress field throughout the reservoir for imposed boundary conditions of constant stress.

  4. Strong suppression of near-surface thermal transport by metal-assisted chemical etching of Si

    NASA Astrophysics Data System (ADS)

    Feser, Joseph; Cahill, David

    2013-03-01

    Recently, we reported that the thermal conductivity of Si nanowire arrays roughened by metal-assisted chemical etching (MAC-etch) is strongly correlated to both the magnitude of the roughness and a broadening of the one-phonon Raman linewidth. We hypothesized that microstructural disorder induced by the etching chemistry leads to changes in the Raman linewidth and reduced thermal conductivity. Here, we simplify the study of such effects by chemically roughening Si wafers instead of nanowires. We have studied the effects of various roughening procedures on the near-surface thermal transport properties using time-domain thermoreflectance. We find that the thermal conductance of the near-surface region is systematically reduced by the MAC-etch process, despite the expectation that pristine roughened surfaces should have increased conductance due to enhanced surface area. In addition, highly roughened surfaces show strong picosecond acoustic echoes with reflection coefficient indicative of a soft interface. These features are consistent with the presence of strong disorder or nanoporosity in the near-surface region created by the MAC-etch process.

  5. Experiment on the thermal conductivity and permeability of physical and chemical compound adsorbents for sorption process

    NASA Astrophysics Data System (ADS)

    Jin, Z. Q.; Wang, L. W.; Jiang, L.; Wang, R. Z.

    2013-08-01

    For the adsorbents in the application of refrigeration, the density of the material inside the adsorber changes because the adsorption/desorption of the refrigerant inside the adsorbents. Consequently the thermal conductivity and permeability of the adsorbents also change. In order to investigate the heat and mass transfer performance of consolidated compound adsorbent under the different equilibrium state of adsorption/desorption, the thermal conductivity and permeability test system is set up using the guarded hot plate measuring method and the principle of Ergun equation. Then various mass ratios between adsorbent and matrix of consolidated physical and chemical compound adsorbents are developed and tested under different ammonia adsorption quantity. Result shows that the thermal conductivity and permeability have strong dependence with the ratios and consolidated density of the compound adsorbent. Meanwhile, the thermal conductivity and permeability of the chemical compound adsorbents vary significantly with different adsorption quantity of ammonia, and the values for the physical compound adsorbents almost maintain a constant value with different values of adsorption quantity.

  6. An analytic model of axisymmetric mantle plume due to thermal and chemical diffusion

    NASA Technical Reports Server (NTRS)

    Liu, Mian; Chase, Clement G.

    1990-01-01

    An analytic model of axisymmetric mantle plumes driven by either thermal diffusion or combined diffusion of both heat and chemical species from a point source is presented. The governing equations are solved numerically in cylindrical coordinates for a Newtonian fluid with constant viscosity. Instead of starting from an assumed plume source, constraints on the source parameters, such as the depth of the source regions and the total heat input from the plume sources, are deduced using the geophysical characteristics of mantle plumes inferred from modelling of hotspot swells. The Hawaiian hotspot and the Bermuda hotspot are used as examples. Narrow mantle plumes are expected for likely mantle viscosities. The temperature anomaly and the size of thermal plumes underneath the lithosphere can be sensitive indicators of plume depth. The Hawaiian plume is likely to originate at a much greater depth than the Bermuda plume. One suggestive result puts the Hawaiian plume source at a depth near the core-mantle boundary and the source of the Bermuda plume in the upper mantle, close to the 700 km discontinuity. The total thermal energy input by the source region to the Hawaiian plume is about 5 x 10(10) watts. The corresponding diameter of the source region is about 100 to 150 km. Chemical diffusion from the same source does not affect the thermal structure of the plume.

  7. Thermal effects and vibrational corrections to transition metal NMR chemical shifts.

    PubMed

    Grigoleit, Sonja; Bühl, Michael

    2004-10-25

    Both zero-point and classical thermal effects on the chemical shift of transition metals have been calculated at appropriate levels of density functional theory for a number of complexes of titanium, vanadium, manganese and iron. The zero-point effects were computed by applying a perturbational approach, whereas classical thermal effects were probed by Car-Parrinello molecular dynamics simulations. The systematic investigation shows that both procedures lead to a deshielding of the magnetic shielding constants evaluated at the GIAO-B3 LYP level, which in general also leads to a downfield shift in the relative chemical shifts, delta. The effect is small for the titanium and vanadium complexes, where it is typically on the order of a few dozen ppm, and is larger for the manganese and iron complexes, where it can amount to several hundred ppm. Zero-point corrections are usually smaller than the classical thermal effect. The pronounced downfield shift is due to the sensitivity of the shielding of the metal centre with regard to the metal-ligand bond length, which increase upon vibrational averaging. Both applied methods improve the accuracy of the chemical shifts in some cases, but not in general.

  8. Comparison of chemical and thermal protein denaturation by combination of computational and experimental approaches. II

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Christiansen, Alexander; Samiotakis, Antonios; Wittung-Stafshede, Pernilla; Cheung, Margaret S.

    2011-11-01

    Chemical and thermal denaturation methods have been widely used to investigate folding processes of proteins in vitro. However, a molecular understanding of the relationship between these two perturbation methods is lacking. Here, we combined computational and experimental approaches to investigate denaturing effects on three structurally different proteins. We derived a linear relationship between thermal denaturation at temperature Tb and chemical denaturation at another temperature Tu using the stability change of a protein (ΔG). For this, we related the dependence of ΔG on temperature, in the Gibbs-Helmholtz equation, to that of ΔG on urea concentration in the linear extrapolation method, assuming that there is a temperature pair from the urea (Tu) and the aqueous (Tb) ensembles that produces the same protein structures. We tested this relationship on apoazurin, cytochrome c, and apoflavodoxin using coarse-grained molecular simulations. We found a linear correlation between the temperature for a particular structural ensemble in the absence of urea, Tb, and the temperature of the same structural ensemble at a specific urea concentration, Tu. The in silico results agreed with in vitro far-UV circular dichroism data on apoazurin and cytochrome c. We conclude that chemical and thermal unfolding processes correlate in terms of thermodynamics and structural ensembles at most conditions; however, deviations were found at high concentrations of denaturant.

  9. Extended-Boussinesq thermal-chemical convection with moving heat sources and variable viscosity

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Yuen, D. A.

    2000-03-01

    We have studied with an aspect-ratio four box the thermal-chemical convective evolution with strongly temperature- and depth-dependent viscosity and moving heat sources within the extended-Boussinesq framework, in which both adiabatic and viscous heating are included and a depth-dependent thermal expansivity is assumed in the equation of state. Our focus is to show how this type of mantle evolution with an averaged Ra of 0(10 6) may develop with a linear chemical stratification and a uniformly hot mantle as an initial condition. The effects of extended-Boussinesq and depth-dependent thermal expansivity are to prevent the effective destruction of the chemical heterogeneities. Our results show that this initial condition would, after the age of the Earth, lead to a 'lava lamp' mode consisting of a thick chemically stratified and intensely internally heated layer with a thickness of around a quarter of the whole mantle thickness. However, in this isolated internally convecting layer, exceedingly high temperatures greater than 4500 K would be reached in the deep mantle. Plumes can be launched from the top of this thick denser layer. This 'lava lamp' stage would give way to the formation of denser hill-like structures at the core-mantle boundary. Then upwellings with deep lower mantle origins can be induced by the interaction of the downwellings with the D″ layer. Our simulations show the possibility for some long-range mass transfer interaction between these widely separated chemical hills promoted by the fast horizontal flow induced by the sinking currents along the low-viscosity zone due to temperature-dependent rheology at the core-mantle boundary.

  10. Petrographic, chemical and spectroscopic evidence for thermal metamorphism in carbonaceous chondrites I: CI and CM chondrites

    NASA Astrophysics Data System (ADS)

    Tonui, Eric; Zolensky, Mike; Hiroi, Takahiro; Nakamura, Tomoki; Lipschutz, Michael E.; Wang, Ming-Sheng; Okudaira, Kyoko

    2014-02-01

    We present a comprehensive description of petrologic, chemical and spectroscopic features of thermally metamorphosed CI-like and CM (and CM-like) chondrites. Only two such CI chondrites have so far been discovered i.e. Y-86029 and Y-82162. Thermal metamorphism in these chondrites is apparent in their low contents of H2O, C and the most thermally labile trace elements, partial dehydration of matrix phyllosilicates and abundance of thermally decomposed Ca-Mg-Fe-Mn carbonates, which apparently resulted from heating of Mg-Fe carbonate precursors. The CM chondrites exhibit a wide range of aqueous and thermal alteration characteristics. This alteration was almost complete in Y-86720 and Y-86789, which also escaped alternating episodes of oxidation and sulfidization experienced by the others. Thermal metamorphism in the CM chondrites is apparent in loss of thermally labile trace elements and also in partial to almost complete dehydration of matrix phyllosilicates: heating was less uniform in them than in CI chondrites. This dehydration is also evident in strength and shapes of integrated intensities of the 3 μm bands except in PCA 91008, which experienced extensive terrestrial weathering. Tochilinite is absent in all but Y-793321 probably due to heating. Textural evidence for thermal metamorphism is conspicuous in blurring or integration/fusion of chondrules with matrix in the more extensively heated (⩾600 °C) CM chondrites like PCA 91008 and B-7904. TEM and XRD analyses reveal that phyllosilicate transformation to anhydrous phases proceeds via poorly crystalline, highly desiccated and disordered 'intermediate' phases in the least and moderately heated (400-600 °C) carbonaceous chondrites like WIS 91600, PCA 91008 and Y-86029. These findings are significant in that they confirm that these phases occur in meteorites as well as terrestrial samples. Thermal alteration in these meteorites can be used to identify other carbonaceous chondrites that were thermally

  11. Comparing rapid-screening and standard toxicity assays to assess known chemical contamination at a hazardous waste site

    SciTech Connect

    Martino, L.; Swigert, J.; Roberts, C.

    1995-12-31

    The thrust to streamline the Superfund site investigation/remediation program makes it critical for site investigators to utilize rapid screening methodologies to facilitate decision-making. However, screening methodologies providing information upon which decision-making is based must not only be rapid but also scientifically valid. This presentation compares and contrasts two rapid screening toxicity assessments, the Daphnia magna IQ Toxicity Test {trademark} and Microtox{trademark}, to a battery of standard aquatic toxicity tests using Lemna, Rana, Pimephales, Selenastruni and Ceriodaphnia. Chemical analysis of test water samples provided evidence of potential toxicological risk associated with the test samples. The study site was J-Field, Aberdeen Proving Ground, Maryland, a federal facility listed on the National Priority List that used to test and/or dispose of high explosives and chemical warfare agents in open pits or fields. Surface water samples from 20 sites were collected and used in the toxicity assessments. Water samples also were analyzed for explosives, chemical surety degradation compounds, Target Analyte List (inorganics), Target Compound List (organics) and selected pesticides and PCBs. The Microtox{trademark} assay did not reveal any toxicity present in the samples analyzed. Correlation analyses showed only slight correlation between the Daphnia magna IQ{trademark} assay and the standard 48-hour toxicity test. No correlation existed between the Microtox{trademark} assay and the aquatic toxicity tests. Results are discussed in light of the expected risk of the chemicals known to be present and the outcome of the toxicity tests.

  12. Thin Silicon-Dioxide Films Grown on Silicon by Low Temperature Plasma Anodization and Rapid Thermal Processing: AN Electrostructural Analysis.

    NASA Astrophysics Data System (ADS)

    Nelson, Scott Alan

    1988-06-01

    Capacitance-voltage (CV) techniques and x-ray photoelectron spectroscopy (XPS) have been used to study the electrical and structural properties of thin (< 200A) SiO_2 films grown on silicon by two reduced thermal load (RTL) processes, RF plasma anodization and rapid thermal processing (RTP), and compare them to furnace oxides. The electrical quality and structural characteristics of the thin films have been monitored as a function of process conditions and parameters. In particular, the plasma process has been studied and an optimal process configuration established which produces oxides with midgap interface state densities of 1 times 10^{11} eV^{-1} cm^ {-2}, Q_{ox} values of 1 times 10 ^{11} cm^{ -2}, and breakdown fields of 13 MV/cm. X-ray photoelectron spectroscopy has been used to compare the average SiO_4 tetrahedral ring structures and the suboxide content of the ~3 nm thick interfacial region of the plasma and rapid thermal oxides and significant structural differences have been identified. By correlating these structural differences with measured electrical differences the structural causes of some of the electrical characteristics found to be particularly prominent in plasma and RTP oxides have been identified. In plasma oxides larger amounts of silicon dangling bonds, P_{b} centers at the Si-SiO_2 interface have been identified as the source of a localized peak of interface states found at 0.3 eV above the silicon valence band. The larger P_{b} center density is probably caused by radiation damage from hot electrons and photons from the plasma, as evidenced by increased numbers of P_{b} centers in oxides grown in higher power and higher voltage plasmas, and by incomplete oxidation of the interface, as evidenced by a decreased P_{b} center density with increased oxidant flux via increased bias current density. Low temperature, 800-850C, rapid thermal annealing of the plasma oxides relieves localized compressive interfacial strain, apparently by allowing

  13. Thermal/chemical degradation of ceramic cross-flow filter materials

    SciTech Connect

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  14. Rapid warming at the Palaeocene-Eocene Thermal Maximum drives rapid hydrate dissociation but only modest and delayed methane release to the ocean

    NASA Astrophysics Data System (ADS)

    Minshull, Tim; Marin-Moreno, Hector; Wilson, Paul; Armstrong McKay, David

    2016-04-01

    During the Palaeocene-Eocene Thermal Maximum (PETM), the carbon isotopic signature δ13C of the ocean-atmosphere system decreased abruptly - the record in deep sea benthic foraminifera shows an excursion of at least 2.5 to 3.0 ‰ VPDB. This global carbon isotope excursion (CIE) has been attributed to large-scale methane hydrate dissociation in response to rapid ocean warming. There is increasing evidence for warming-induced hydrate dissociation in the modern ocean and the PETM may represent an analogue for this process. We ran a thermohydraulic modeling code to simulate hydrate dissociation due to ocean warming for a range of possible PETM scenarios. Our results show that hydrate dissociation in response to such warming is rapid but methane release to the ocean is modest, and delayed by hundreds to thousands of years by transport processes through the hydrate stability field. In our simulations most of the dissociated hydrate methane remains beneath the seabed, either in solution or as free gas below the irreducible gas saturation, and the small fraction (≤0.13) released to the ocean is delivered over several kyr. We conclude that hydrate dissociation cannot have been largely responsible for the CIE unless the late Palaeocene hydrate inventory greatly exceeded most current estimates.

  15. Monitoring bisphenol A and estrogenic chemicals in thermal paper with yeast-based bioreporter assay.

    PubMed

    Rajasärkkä, Johanna; Koponen, Jani; Airaksinen, Riikka; Kiviranta, Hannu; Virta, Marko

    2014-09-01

    Bioluminescent Saccharomyces cerevisiae yeast-based bioreporters were used to monitor bisphenol A and other estrogenic chemicals in thermal paper samples collected mainly from Finland on two occasions in 2010/2011, and 2013. The bisphenol A-targeted (BPA-R) and the human oestrogen receptor (hERα) bioreporters were applied to analyse both non-treated and extracted paper samples. Bisphenol A was readily bioavailable to the yeast bioreporters on the non-treated paper samples without any pre-treatment. Detected concentrations ranged from a detection limit of 9-142 μg/g to over 20 mg/g of bisphenol A equivalents in the thermal papers. Low bisphenol A like activities were detected in many samples, and were considered to be caused by residual bisphenol A or other types of bisphenols, such as bisphenol S. Most of the thermal paper samples were toxic to the yeast bioreporters. The toxicity did not, however, depend on the bisphenol A concentration of the samples. The yeast bioreporters were demonstrated to be a robust and cost-efficient method to monitor thermal paper samples for their bisphenol A content and estrogenicity. Thermal paper was considered as a potential BPA source for both human exposure and environmental emission.

  16. Thermal stability of Trichoderma reesei c30 cellulase and aspergillus niger; -glucosidase after ph and chemical modification

    SciTech Connect

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  17. High Temperature Nanocomposites For Nuclear Thermal Propulsion and In-Space Fabrication by Hyperbaric Pressure Laser Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Maxwell, J. L.; Webb, N. D.; Espinoza, M.; Cook, S.; Houts, M.; Kim, T.

    Nuclear Thermal Propulsion (NTP) is an indispensable technology for the manned exploration of the solar system. By using Hyperbaric Pressure Laser Chemical Vapor Deposition (HP-LCVD), the authors propose to design and build a promising next-generation fuel element composed of uranium carbide UC embedded in a latticed matrix of highly refractory Ta4HfC5 for an NTP rocket capable of sustaining temperatures up to 4000 K, enabling an Isp of up to 1250 s. Furthermore, HP-LCVD technology can also be harnessed to enable 3D rapid prototyping of a variety of materials including metals, ceramics and composites, opening up the possibility of in-space fabrication of components, replacement parts, difficult-to-launch solar sails and panels and a variety of other space structures. Additionally, rapid prototyping with HP-LCVD makes a feasible "live off the land" strategy of interplanetary and interstellar exploration ­ the precursors commonly used in the technology are found, often in abundance, on other solar system bodies either as readily harvestable gas (e.g. methane) or as a raw material that could be converted into a suitable precursor (e.g. iron oxide into ferrocene on Mars).

  18. Food availability promotes rapid recovery from thermal stress in a scleractinian coral

    NASA Astrophysics Data System (ADS)

    Connolly, S. R.; Lopez-Yglesias, M. A.; Anthony, K. R. N.

    2012-12-01

    Bleaching in corals due to environmental stress represents a loss of energy intake often leading to an increase in mortality risk. Successful coral recovery from severe bleaching events may depend on the rate of replenishment of algal symbiont populations following the period of thermal stress, the supply of an alternative food source, or both. Here, we explore the role of food availability in promoting the survival and recovery of a common coral ( Acropora intermedia) following acute experimentally induced thermal stress. Fed corals were provided with live rotifers daily, to maintain densities of zooplankton in tanks that are typical of coral reefs. After a 6-week acclimation phase, heated corals were subjected to a +4 °C thermal anomaly for a 7-day period (bleaching phase) then temperatures were returned to normal for a further 2 weeks (recovery phase). Results demonstrated that heated corals had higher survival when they were provided with heterotrophic food. Fed corals experienced reduced loss of chlorophyll a, relative to unfed corals. During the recovery phase, both fed and unfed corals recovered within a few days; however, fed corals recovered to pre-bleaching phase levels of chlorophyll a, whereas unfed corals stabilized approximately one-third below this level. Protein levels of fed corals declined markedly during the bleaching phase, but recovered all of their losses by the end of the recovery phase. In contrast, unfed corals had low protein levels that were maintained throughout the experiment. To the extent that these results are representative of corals' responses to thermal anomalies in nature, the findings imply that availability of particulate food matter has the potential to increase corals' capacity to survive thermally induced bleaching and to ameliorate its sub-lethal effects. They also support the hypothesis that different rates of heterotrophy are an important determinant of variation in resilience to thermal stress among reef environments.

  19. How Irreversible Heat Transport Processes Drive Earth's Interdependent Thermal, Structural, and Chemical Evolution Providing a Strongly Heterogeneous, Layered Mantle

    NASA Astrophysics Data System (ADS)

    Hofmeister, A.; Criss, R. E.

    2013-12-01

    Because magmatism conveys radioactive isotopes plus latent heat rapidly upwards while advecting heat, this process links and controls the thermal and chemical evolution of Earth. We present evidence that the lower mantle-upper mantle boundary is a profound chemical discontinuity, leading to observed heterogeneities in the outermost layers that can be directly sampled, and construct an alternative view of Earth's internal workings. Earth's beginning involved cooling via explosive outgassing of substantial ice (mainly CO) buried with dust during accretion. High carbon content is expected from Solar abundances and ice in comets. Reaction of CO with metal provided a carbide-rich core while converting MgSiO3 to olivine via oxidizing reactions. Because thermodynamic law (and buoyancy of hot particles) indicates that primordial heat from gravitational segregation is neither large nor carried downwards, whereas differentiation forced radioactive elements upwards, formation of the core and lower mantle greatly cooled the Earth. Reference conductive geotherms, calculated using accurate and new thermal diffusivity data, require that heat-producing elements are sequestered above 670 km which limits convection to the upper mantle. These irreversible beginnings limit secular cooling to radioactive wind-down, permiting deduction of Earth's inventory of heat-producing elements from today's heat flux. Coupling our estimate for heat producing elements with meteoritic data indicates that Earth's oxide content has been underestimated. Density sorting segregated a Si-rich, peridotitic upper mantle from a refractory, oxide lower mantle with high Ca, Al and Ti contents, consistent with diamond inclusion mineralogy. Early and rapid differentiation means that internal temperatures have long been buffered by freezing of the inner core, allowing survival of crust as old as ca.4 Ga. Magmatism remains important. Melt escaping though stress-induced fractures in the rigid lithosphere imparts a

  20. Characterization and photo-chemical applications of nano-ZnO prepared by wet chemical and thermal decomposition methods

    SciTech Connect

    Mousa, M.A.; Bayoumy, W.A.A.; Khairy, M.

    2013-11-15

    Graphical abstract: - Highlights: • Nano-ZnO particles were synthesized by soft-wet precipitation and dry methods. • ZnO nanoparticle with different morphologies was obtained. • Nano ZnO samples showed a high photocatalytic activity. • ZnO nanoparticle showed strong ultraviolet emission at room temperature. • The samples showed high biological activity depending on their synthetic method. - Abstract: Nano-crystalline ZnO particles were synthesized using two different routes: soft-wet and dry methods. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to identify the particles structures and morphologies, while X-ray diffraction (XRD) was used for verifying the particles crystal structure. The thermal stabilities of the particles were examined through thermal gravimetric analysis technique and their surface areas were calculated using BET method. Moreover, the photocatalytic activities were evaluated using UV–vis spectroscopy and photoluminescence (PL) characterization. The results showed that all the prepared ZnO samples possess a hexagonal wurtzite structure with high purity. Different particle sizes and morphologies of spheres, rods and wires were obtained depending on the preparation method used. Particle sizes obtained by the dry method are smaller than that found by the wet chemical method. The effects of both particle size and morphology on each of surface as well as optical properties, photocatalytic activity, dye/ZnO solar cell efficiency and biological activity have been studied and discussed.

  1. Rapid estimation of glucosinolate thermal degradation rate constants in leaves of Chinese kale and broccoli (Brassica oleracea) in two seasons.

    PubMed

    Hennig, Kristin; Verkerk, Ruud; Bonnema, Guusje; Dekker, Matthijs

    2012-08-15

    Kinetic modeling was used as a tool to quantitatively estimate glucosinolate thermal degradation rate constants. Literature shows that thermal degradation rates differ in different vegetables. Well-characterized plant material, leaves of broccoli and Chinese kale plants grown in two seasons, was used in the study. It was shown that a first-order reaction is appropriate to model glucosinolate degradation independent from the season. No difference in degradation rate constants of structurally identical glucosinolates was found between broccoli and Chinese kale leaves when grown in the same season. However, glucosinolate degradation rate constants were highly affected by the season (20-80% increase in spring compared to autumn). These results suggest that differences in glucosinolate degradation rate constants can be due to variation in environmental as well as genetic factors. Furthermore, a methodology to estimate rate constants rapidly is provided to enable the analysis of high sample numbers for future studies.

  2. Structural Characterization of Sputtered Silicon Thin Films after Rapid Thermal Annealing for Active-Matrix Organic Light Emitting Diode

    NASA Astrophysics Data System (ADS)

    Mugiraneza, Jean de Dieu; Miyahira, Tomoyuki; Sakamoto, Akinori; Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Itoh, Taketsugu

    2010-12-01

    The microcrystalline phase obtained by adopting a two-step rapid thermal annealing (RTA) process for rf-sputtered silicon films deposited on thermally durable glass was characterized. The optical properties, surface morphology, and internal stress of the annealed Si films are investigated. As the thermally durable glass substrate allows heating of the deposited films at high temperatures, micro-polycrystalline silicon (micro-poly-Si) films of uniform grain size with a smooth surface and a low internal stress could be obtained after annealing at 750 °C. The thermal stress in the Si films was 100 times lower than that found in the films deposited on conventional glass. Uniform grains with an average grain size of 30 nm were observed by transmission electron microscopy (TEM) in the films annealed at 800 °C. These micro-poly-Si films have potential application for fabrication of uniform and reliable thin film transistors (TFTs) for large scale active-matrix organic light emitting diode (AMOLED) displays.

  3. Influence of post-growth rapid thermal annealing on the transport and lasing characteristics of terahertz quantum-cascade lasers

    NASA Astrophysics Data System (ADS)

    Sharma, R.; Schrottke, L.; Wienold, M.; Biermann, K.; Tahraoui, A.; Grahn, H. T.

    2013-07-01

    We investigate the effect of post-growth rapid thermal annealing (RTA) on the transport and lasing characteristics of terahertz quantum-cascade lasers (THz QCLs) operating in a frequency range between 4.88 and 4.94 THz. The emission frequencies are blue shifted by about 80 GHz after RTA, which is attributed to a shift of the gain maximum to higher frequencies due to composition grading at the interfaces between the quantum wells and barriers of the annealed wafer pieces. The optical output power of the annealed THz QCLs is reduced, which is explained by a broadening of the levels due to the annealing process.

  4. Application of the rapid thermal process: Sintering the sputtered aluminum/silicon contact in silicon detector fabrication

    SciTech Connect

    Chen, Wei; Li, Zheng; Kraner, H.W.

    1991-11-01

    Rapid thermal process (RTP) sintering has been used in p{sup +}{minus}n junction detector fabrication. For the same thickness of aluminum film and at the same RTP sintering condition, the leakage current of the p{sup +}{minus}n junction detector with sputtered Al gate showed at least a 50% improvement and no spiking phenomena were observed. RTP sintering in 4% H{sub 2}/N{sub 2} ambient passivates the defects introduced by sputtering and the damage caused by the {sup 60}Co irradiation.

  5. Thermal and chemical degradation of inorganic membrane materials. Final report, August 1992--May 1995

    SciTech Connect

    Damle, A.S.; Krishnan, G.N.; Sanjurjo, A.; Wood, B.J.; Lau, K.H.

    1995-05-01

    SRI International conducted a theoretical and experimental program to evaluate the long-term thermal and chemical degradation of inorganic membranes that are being developed to separate the gaseous products of coal gasification. A variety of developmental efforts are underway, including a number of projects sponsored by the US Department of Energy (DOE), to improve the selectivity and permeability of porous inorganic membranes. DOE is also sponsoring efforts to extend the use of metallic membranes to new applications. Most developmental efforts have focused on hydrogen separation by inorganic membranes, which may be used to maximize hydrogen production from coal gas or to remove H{sub 2}S and NH{sub 3} contaminants via thermal or catalytic decomposition in integrated-gasification combined-cycle (IGCC) systems. Inorganic membranes that have a high separation efficiency and exhibit both thermal and chemical stability would improve the economics of power generation from coal. Membrane materials that have been investigated include glass (silica), alumina, carbon, and metals (Pd and Pt). This report describes inorganic membrane materials, long term membrane exposure tests, membrane permeation tests, coal gasifier exposure tests, conclusions, and recommendations.

  6. Methods for separation/purification utilizing rapidly cycled thermal swing sorption

    DOEpatents

    Tonkovich, Anna Lee Y.; Monzyk, Bruce F.; Wang, Yong; VanderWiel, David P.; Perry, Steven T.; Fitzgerald, Sean P.; Simmons, Wayne W.; McDaniel, Jeffrey S.; Weller, Jr., Albert E.

    2004-11-09

    The present invention provides apparatus and methods for separating fluid components. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of fluid components separated in short times using relatively compact hardware.

  7. Complete characterization by Raman spectroscopy of the structural properties of thin hydrogenated diamond-like carbon films exposed to rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Rose, Franck; Wang, Na; Smith, Robert; Xiao, Qi-Fan; Inaba, Hiroshi; Matsumura, Toru; Saito, Yoko; Matsumoto, Hiroyuki; Dai, Qing; Marchon, Bruno; Mangolini, Filippo; Carpick, Robert W.

    2014-09-01

    We have demonstrated that multi-wavelength Raman and photoluminescence spectroscopies are sufficient to completely characterize the structural properties of ultra-thin hydrogenated diamond-like carbon (DLC:H) films subjected to rapid thermal annealing (RTA, 1 s up to 659 °C) and to resolve the structural differences between films grown by plasma-enhanced chemical vapor deposition, facing target sputtering and filtered cathodic vacuum arc with minute variations in values of mass density, hydrogen content, and sp3 fraction. In order to distinguish unequivocally between films prepared with different density, thickness, and RTA treatment, a new method for analysis of Raman spectra was invented. This newly developed analysis method consisted of plotting the position of the Raman G band of carbon versus its full width at half maximum. Moreover, we studied the passivation of non-radiative recombination centers during RTA by performing measurements of the increase in photoluminescence in conjunction with the analysis of DLC:H networks simulated by molecular dynamics. The results show that dangling bond passivation is primarily a consequence of thermally-induced sp2 clustering rather than hydrogen diffusion in the film.

  8. Changes in the Chemical Composition and Decay Resistance of Thermally-Modified Hevea brasiliensis Wood.

    PubMed

    Severo, Elias Taylor Durgante; Calonego, Fred Willians; Sansígolo, Cláudio Angeli; Bond, Brian

    2016-01-01

    In this study the effect of thermal treatment on the equilibrium moisture content, chemical composition and biological resistance to decay fungi of juvenile and mature Hevea brasiliensis wood (rubber wood) was evaluated. Samples were taken from a 53-year-old rubber wood plantation located in Tabapuã, Sao Paulo, Brazil. The samples were thermally-modified at 180°C, 200°C and 220°C. Results indicate that the thermal modification caused: (1) a significant increase in the extractive content and proportional increase in the lignin content at 220°C; (2) a significant decrease in the equilibrium moisture content, holocelluloses, arabinose, galactose and xylose content, but no change in glucose content; and (3) a significant increase in wood decay resistance against both Pycnoporus sanguineus (L.) Murrill and Gloeophyllum trabeum (Pers.) Murrill decay fungi. The greatest decay resistance was achieved from treatment at 220°C which resulted in a change in wood decay resistance class from moderately resistant to resistant. Finally, this study also demonstrated that the influence of thermal treatment in mature wood was lower than in juvenile wood.

  9. Changes in the Chemical Composition and Decay Resistance of Thermally-Modified Hevea brasiliensis Wood.

    PubMed

    Severo, Elias Taylor Durgante; Calonego, Fred Willians; Sansígolo, Cláudio Angeli; Bond, Brian

    2016-01-01

    In this study the effect of thermal treatment on the equilibrium moisture content, chemical composition and biological resistance to decay fungi of juvenile and mature Hevea brasiliensis wood (rubber wood) was evaluated. Samples were taken from a 53-year-old rubber wood plantation located in Tabapuã, Sao Paulo, Brazil. The samples were thermally-modified at 180°C, 200°C and 220°C. Results indicate that the thermal modification caused: (1) a significant increase in the extractive content and proportional increase in the lignin content at 220°C; (2) a significant decrease in the equilibrium moisture content, holocelluloses, arabinose, galactose and xylose content, but no change in glucose content; and (3) a significant increase in wood decay resistance against both Pycnoporus sanguineus (L.) Murrill and Gloeophyllum trabeum (Pers.) Murrill decay fungi. The greatest decay resistance was achieved from treatment at 220°C which resulted in a change in wood decay resistance class from moderately resistant to resistant. Finally, this study also demonstrated that the influence of thermal treatment in mature wood was lower than in juvenile wood. PMID:26986200

  10. Changes in the Chemical Composition and Decay Resistance of Thermally-Modified Hevea brasiliensis Wood

    PubMed Central

    2016-01-01

    In this study the effect of thermal treatment on the equilibrium moisture content, chemical composition and biological resistance to decay fungi of juvenile and mature Hevea brasiliensis wood (rubber wood) was evaluated. Samples were taken from a 53-year-old rubber wood plantation located in Tabapuã, Sao Paulo, Brazil. The samples were thermally-modified at 180°C, 200°C and 220°C. Results indicate that the thermal modification caused: (1) a significant increase in the extractive content and proportional increase in the lignin content at 220°C; (2) a significant decrease in the equilibrium moisture content, holocelluloses, arabinose, galactose and xylose content, but no change in glucose content; and (3) a significant increase in wood decay resistance against both Pycnoporus sanguineus (L.) Murrill and Gloeophyllum trabeum (Pers.) Murrill decay fungi. The greatest decay resistance was achieved from treatment at 220°C which resulted in a change in wood decay resistance class from moderately resistant to resistant. Finally, this study also demonstrated that the influence of thermal treatment in mature wood was lower than in juvenile wood. PMID:26986200

  11. Characterisation of waste derived biochar added biocomposites: chemical and thermal modifications.

    PubMed

    Das, Oisik; Sarmah, Ajit K; Zujovic, Zoran; Bhattacharyya, Debes

    2016-04-15

    A step towards sustainability was taken by incorporating waste based pyrolysed biochar in wood and polypropylene biocomposites. The effect of biochar particles on the chemistry and thermal makeup of the composites was determined by characterising them through an array of characterisation techniques such as 3D optical profiling, X-ray diffraction, transmission electron microscopy, electron spin/nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. It was observed that addition of biochar increased the presence of free radicals in the composite while also improving its thermal conductivity. Biochar particles did not interfere with the melting behaviour of polymer in the thermal regime. However, wood and biochar acted as nucleation agents consequently increasing the crystallisation temperature. The crystal structure of polypropylene was not disrupted by biochar inclusion in composite. Transmission electron microscopy images illustrated the aggregated nature of the biochar particles at higher loading levels. Nuclear magnetic resonance studies revealed the aromatic nature of biochar and the broadening of peak intensities of composites with increasing biochar levels due to its amorphous nature and presence of free radicals. Thus, this insight into the chemical and thermal modification of biochar added composites would allow effective engineering to optimise their properties while simultaneously utilising wastes.

  12. Thermal and Chemical Structures at the Core-Mantle Boundary: Implications for the Mantle Dynamics

    NASA Astrophysics Data System (ADS)

    Stein, C.; Mertens, M.; Hansen, U.

    2013-12-01

    The core-mantle boundary (CMB) represents the lower boundary layer of the actively convecting Earth's mantle and is structurally very complex. For example, large low shear wave velocity provinces (LLSVPs) but also small-scale ultra-low velocity zones (ULVZs) have been detected seismically. Thermal and chemical structures such as thermal plumes and thermochemical piles have been considered to explain the complexities. Both affect the dynamics of the Earth's mantle and its temporal evolution. But also the surface plates are an essential aspect of mantle convection that strongly influence the dynamics of the interior. Cold subducting slabs penetrating the lower boundary layer will also affect the CMB topography. To study the structure and dynamics of the lower mantle we use numerical thermochemical models of mantle convection with a complex rheological approach, including a strong temperature-, stress- and pressure-dependent viscosity. This allows for the investigation of thermal plumes and thermochemical piles in combination with plate-like surface motion and deep subduction. In thermochemical convection dense material is viscously trapped by the flow and piled beneath plumes. The presence of the dense layer reduces the mobility of the surface plates but during plate evolution we find a variety of plume classes (plumes, thermals, line-plumes) leaving a complex structure in the CMB topography.

  13. Characterisation of waste derived biochar added biocomposites: chemical and thermal modifications.

    PubMed

    Das, Oisik; Sarmah, Ajit K; Zujovic, Zoran; Bhattacharyya, Debes

    2016-04-15

    A step towards sustainability was taken by incorporating waste based pyrolysed biochar in wood and polypropylene biocomposites. The effect of biochar particles on the chemistry and thermal makeup of the composites was determined by characterising them through an array of characterisation techniques such as 3D optical profiling, X-ray diffraction, transmission electron microscopy, electron spin/nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. It was observed that addition of biochar increased the presence of free radicals in the composite while also improving its thermal conductivity. Biochar particles did not interfere with the melting behaviour of polymer in the thermal regime. However, wood and biochar acted as nucleation agents consequently increasing the crystallisation temperature. The crystal structure of polypropylene was not disrupted by biochar inclusion in composite. Transmission electron microscopy images illustrated the aggregated nature of the biochar particles at higher loading levels. Nuclear magnetic resonance studies revealed the aromatic nature of biochar and the broadening of peak intensities of composites with increasing biochar levels due to its amorphous nature and presence of free radicals. Thus, this insight into the chemical and thermal modification of biochar added composites would allow effective engineering to optimise their properties while simultaneously utilising wastes. PMID:26808404

  14. RAPID COMMUNICATION: The dissipative effect of thermal radiation loss in high-temperature dense plasmas

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Zhang, H. Q.

    1996-08-01

    A dynamical model based on the two-fluid dynamical equations with energy generation and loss is obtained and used to investigate the self-generated magnetic fields in high-temperature dense plasmas such as the solar core. The self-generation of magnetic fields might be looked at as a self-organization-type behaviour of stochastic thermal radiation fields, as expected for an open dissipative system according to Prigogine's theory of dissipative structures.

  15. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence

    PubMed Central

    Flynn, Padrig B.; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P.; Elliott, Christopher T.; Laverty, Garry; Gorman, Sean P.; Graham, William G.; Gilmore, Brendan F.

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30–60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  16. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence.

    PubMed

    Flynn, Padrig B; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P; Elliott, Christopher T; Laverty, Garry; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2016-05-31

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30-60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa.

  17. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence.

    PubMed

    Flynn, Padrig B; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P; Elliott, Christopher T; Laverty, Garry; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30-60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  18. Vertical graphene nanosheets synthesized by thermal chemical vapor deposition and the field emission properties

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Qin, Shengchun; Bai, Shuai; Yue, Hongwei; Li, Yali; Chen, Qiang; Li, Junshuai; He, Deyan

    2016-09-01

    In this paper, we explored synthesis of vertical graphene nanosheets (VGNs) by thermal chemical vapor deposition (CVD). Through optimizing the experimental condition, growth of well aligned VGNs with uniform morphologies on nickel-coated stainless steel (SS) was realized for the first time by thermal CVD. In the meantime, influence of growth parameters on the VGN morphology was understood based on the balancing between the concentration and kinetic energy of carbon-containing radicals. Structural characterizations demonstrate that the achieved VGNs are normally composed of several graphene layers and less corrugated compared to the ones synthesized by other approaches, e.g. plasma enhanced (PE) CVD. The field emission measurement indicates that the VGNs exhibit relatively stable field emission and a field enhancement factor of about 1470, which is comparable to the values of VGNs prepared by PECVD can be achieved.

  19. Assessment of chemical lumbar sympathectomy in critical limb ischaemia using thermal imaging.

    PubMed

    Greenstein, D; Brown, T F; Kester, R C

    1994-02-01

    Objective assessment of chemical lumbar sympathectomy (CLS) is lacking. Its success is usually judged in terms of the patient's clinical improvement. We have thermographically measured the immediate temperature changes of the lower limb following CLS using a thermal imager (SAN-EI Thermotracer 6T61). Seven patients with critical limb ischaemia and one patient with Raynaud's phenomenon underwent unilateral ablation of the lumbar sympathetic chain using 5% phenol. Four patients were diabetic, two of whom had undergone previous sympathectomy on the same side. Within fifteen minutes of injection, all patients showed a rise in skin temperature in parts of the sock distribution of between 0.8 degrees C and 8.5 degrees C. We conclude that the haemodynamic effects of CLS are immediate and can be objectively measured with thermal imaging. PMID:8195656

  20. Thermal history, chemical composition and relationship of comets to the origin of life

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Leschine, S. B.; Schloerb, F. P.

    1980-01-01

    The role of thermal processes in determining the chemical composition of comets is considered, and implications of possible cometary constituents for the origin and evolution of life on earth are discussed. It is shown that the inclusion of short-lived Al-26 from a nearby supernova explosion into cometary nuclei could lead to comets with surfaces cool enough to retain H2O and interiors warm enough for thermal processing to occur, with the production of complex organic molecules such as amino acids and nucleic acid bases. It is thus suggested that comets may have played a part in seeding the primitive earth with biological polymers capable of self-replication or of evolving towards that capability, and may even be responsible for the subsequent introduction of organic material capable of infecting already existing cells.

  1. Rapid Hydrogen Peroxide release from the coral Stylophora pistillata during feeding and in response to chemical and physical stimuli

    PubMed Central

    Armoza-Zvuloni, Rachel; Schneider, Avi; Sher, Daniel; Shaked, Yeala

    2016-01-01

    Corals make use of different chemical compounds during interactions with prey, predators and aggressors. Hydrogen Peroxide (H2O2) is produced and released by a wide range of organisms as part of their defense against grazers or pathogens. In coral reefs, the large fluxes and relatively long half-life of H2O2, make it a potentially important info-chemical or defense molecule. Here we describe a previously unstudied phenomenon of rapid H2O2 release from the reef-building coral Stylophora pistillata during feeding on zooplankton and in response to chemical and physical stimuli. Following stimuli, both symbiotic and bleached corals were found to rapidly release H2O2 to the surrounding water for a short period of time (few minutes). The H2O2 release was restricted to the site of stimulus, and an increase in physical stress and chemical stimuli concentration resulted in elevated H2O2 release. Omission of calcium (a key regulator of exocytotic processes) from the experimental medium inhibited H2O2 release. Hence we suggest that H2O2 is actively released in response to stimuli, rather than leaking passively from the coral tissue. We estimate that at the site of stimulus H2O2 can reach concentrations potentially high enough to deter predators or motile, potentially pathogenic, bacteria. PMID:26875833

  2. Exploring Potential Chemical Transformation by Chemical Profiling Approach for Rapidly Evaluating Chemical Consistency between Sun-Dried and Sulfur-Fumigated Radix Paeoniae Alba Using Ultraperformance Liquid Chromatography Coupled with Time-of-Flight Mass Spectrometry

    PubMed Central

    Zhang, Jida; Cai, Hao; Cao, Gang; Liu, Xiao; Wen, Chengping; Fan, Yongsheng

    2013-01-01

    Ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-QTOF/MS) based on a chemical profiling method was applied to rapidly evaluate the chemical consistency between sun-dried and sulfur-fumigated Radix Paeoniae Alba. By virtue of the high resolution, high speed of UPLC, and the accurate mass measurement of TOFMS coupled with reliable MarkerLynx software, five newly assigned monoterpene glycoside sulfonates were found and identified in sulfur-fumigated Radix Paeoniae Alba samples. This method could be applied for rapid quality evaluation of different kinds of sulfur-fumigated Radix Paeoniae Alba among commercial samples. PMID:24381637

  3. Chemical Modification of Cellulose Nanofibers for the Production of Highly Thermal Resistant and Optically Transparent Nanopaper for Paper Devices.

    PubMed

    Yagyu, Hitomi; Saito, Tsuguyuki; Isogai, Akira; Koga, Hirotaka; Nogi, Masaya

    2015-10-01

    Optically transparent cellulose nanopaper is one of the best candidate substrates for flexible electronics. Some types of cellulose nanopaper are made of mechanically or chemically modified cellulose nanofibers. Among these, nanopapers produced from chemically modified cellulose nanofibers are the most promising substrate because of their lower power consumption during fabrication and higher optical transparency (lower haze). However, because their thermal durability is as low as plastics, paper devices using chemically modified nanopaper often do not have sufficiently high performance. In this study, by decreasing the carboxylate content in the cellulose nanofibers, the thermal durability of chemically modified nanopaper was drastically improved while maintaining high optical transparency, low coefficient of thermal expansion, and low power consumption during fabrication. As a result, light-emitting diode lights illuminated on the chemically modified nanopaper via highly conductive lines, which were obtained by printing silver nanoparticle inks and high-temperature heating. PMID:26402324

  4. Review article: effects of oil pollution, chemically treated oil, and cleaning on thermal balance of birds.

    PubMed

    Jenssen, B M

    1994-01-01

    The acute effect of oil pollution on birds is on their thermal balance. Oil adheres to the plumage and causes a reduction in water repellant properties of the plumage, causing water to penetrate into the plumage to displace the insulating layer of air. The effect of oil on the plumage insulation is dose-dependent. The effect of oiling is greatly enhanced when the oil is spread in the plumage due to preening. In water, plumage oiling may cause the heat loss to exceed the bird's heat production capacity, resulting in hypothermia. If the oiled bird is ashore, with a dry plumage, it may have a normal thermal insulation. Bird species dependent upon feeding in water (such as diving birds) are therefore much more susceptible to the harmful effects of oil pollution than are semi-aquatic species that can feed ashore. It is possible to restore the water-repelling and insulative properties of the plumage by the process of cleaning if all the oil and soap is removed, and if the plumage is completely dry. Chemical treatment of oil has been suggested as a way to reduce the impact of oil spills on avian life. However, very few reports seem to have addressed the effects of chemically treated oil on the thermal balance of birds, and the results from one study actually indicate that oil treated with dispersants may be more harmful to birds than oil. The urgent need for more information about the effects of chemically treated oil on aquatic birds is therefore stressed. PMID:15091638

  5. Review article: effects of oil pollution, chemically treated oil, and cleaning on thermal balance of birds.

    PubMed

    Jenssen, B M

    1994-01-01

    The acute effect of oil pollution on birds is on their thermal balance. Oil adheres to the plumage and causes a reduction in water repellant properties of the plumage, causing water to penetrate into the plumage to displace the insulating layer of air. The effect of oil on the plumage insulation is dose-dependent. The effect of oiling is greatly enhanced when the oil is spread in the plumage due to preening. In water, plumage oiling may cause the heat loss to exceed the bird's heat production capacity, resulting in hypothermia. If the oiled bird is ashore, with a dry plumage, it may have a normal thermal insulation. Bird species dependent upon feeding in water (such as diving birds) are therefore much more susceptible to the harmful effects of oil pollution than are semi-aquatic species that can feed ashore. It is possible to restore the water-repelling and insulative properties of the plumage by the process of cleaning if all the oil and soap is removed, and if the plumage is completely dry. Chemical treatment of oil has been suggested as a way to reduce the impact of oil spills on avian life. However, very few reports seem to have addressed the effects of chemically treated oil on the thermal balance of birds, and the results from one study actually indicate that oil treated with dispersants may be more harmful to birds than oil. The urgent need for more information about the effects of chemically treated oil on aquatic birds is therefore stressed.

  6. A HYBRID THERMAL VIDEO AND FTTR SPECTROMETER FOR RAPIDLY LOCATING AND CHARACTERIZING GAS LEAKS

    EPA Science Inventory

    Undiscovered gas leaks, known as fugitive emissions, in chemical plants and refinery operations can impact regional air quality as well as being a public health problem. Surveying a facility for potential gas leaks can be a daunting task. An efficient, accurate and cost-effecti...

  7. P80 SRM low torque flex-seal development - thermal and chemical modeling of molding process

    NASA Astrophysics Data System (ADS)

    Descamps, C.; Gautronneau, E.; Rousseau, G.; Daurat, M.

    2009-09-01

    The development of the flex-seal component of the P80 nozzle gave the opportunity to set up new design and manufacturing process methods. Due to the short development lead time required by VEGA program, the usual manufacturing iterative tests work flow, which is usually time consuming, had to be enhanced in order to use a more predictive approach. A newly refined rubber vulcanization description was built up and identified on laboratory samples. This chemical model was implemented in a thermal analysis code. The complete model successfully supports the manufacturing processes. These activities were conducted with the support of ESA/CNES Research & Technologies and DGA (General Delegation for Armament).

  8. Rapid thermal anneal in InP, GaAs and GaAs/GaAlAs

    NASA Astrophysics Data System (ADS)

    Descouts, B.; Duhamel, N.; Godefroy, S.; Krauz, P.

    Ion implantation in semiconductors provides a doping technique with several advantages over more conventional doping methods and is now extensively used for device applications, e.g. field effect transistors (MESFET GaAs, MIS (InP), GaAs/GaAlAs heterojunction bipolar transistors (HBT). Because of the lattice disorder produced by the implantation, the dopant must be made electrically active by a postimplant anneal. As the device performances are very dependent on its electrical characteristics, the anneal is a very important stage of the process. Rapid anneal is known to provide less exodiffusion and less induffusion of impurities compared to conventional furnace anneal, so this technique has been used in this work to activate an n-type dopant (Si) in InP and a p-type dopant (Mg) in GaAs and GaAs/GaAIAs. These two ions have been chosen to realize implanted MIS InP and the base contacts for GaAs/GaAlAs HBTs. The experimental conditions to obtain the maximum electrical activity in these two cases will be detailed. For example, although we have not been able to obtain a flat profile in Mg + implanted GaAs/GaAlAs heterostructure by conventional thermal anneal, rapid thermal anneal gives a flat hole profile over a depth of 0.5 μm with a concentration of 1 x 10 19 cm -3.

  9. Thermal stresses in chemically hardening elastic media with application to the molding process

    NASA Technical Reports Server (NTRS)

    Levitsky, M.; Shaffer, B. W.

    1974-01-01

    A method has been formulated for the determination of thermal stresses in materials which harden in the presence of an exothermic chemical reaction. Hardening is described by the transformation of the material from an inviscid liquid-like state into an elastic solid, where intermediate states consist of a mixture of the two, in a ratio which is determined by the degree of chemical reaction. The method is illustrated in terms of an infinite slab cast between two rigid mold surfaces. It is found that the stress component normal to the slab surfaces vanishes in the residual state, so that removal of the slab from the mold leaves the remaining residual stress unchanged. On the other hand, the residual stress component parallel to the slab surfaces does not vanish. Its distribution is described as a function of the parameters of the hardening process.

  10. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Gupta, Roop N.; Shinn, Judy L.

    1989-01-01

    The conservation equations for simulating hypersonic flows in thermal and chemical nonequilibrium and details of the associated physical models are presented. These details include the curve fits used for defining thermodynamic properties of the 11 species air model, curve fits for collision cross sections, expressions for transport properties, the chemical kinetics models, and the vibrational and electronic energy relaxation models. The expressions are formulated in the context of either a two or three temperature model. Greater emphasis is placed on the two temperature model in which it is assumed that the translational and rotational energy models are in equilibrium at the translational temperature, T, and the vibrational, electronic, and electron translational energy modes are in equilibrium at the vibrational temperature, T sub v. The eigenvalues and eigenvectors associated with the Jacobian of the flux vector are also presented in order to accommodate the upwind based numerical solutions of the complete equation set.

  11. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient.

    PubMed

    Roxy, Mathew Koll; Ritika, Kapoor; Terray, Pascal; Murtugudde, Raghu; Ashok, Karumuri; Goswami, B N

    2015-06-16

    There are large uncertainties looming over the status and fate of the South Asian summer monsoon, with several studies debating whether the monsoon is weakening or strengthening in a changing climate. Our analysis using multiple observed datasets demonstrates a significant weakening trend in summer rainfall during 1901-2012 over the central-east and northern regions of India, along the Ganges-Brahmaputra-Meghna basins and the Himalayan foothills, where agriculture is still largely rain-fed. Earlier studies have suggested an increase in moisture availability and land-sea thermal gradient in the tropics due to anthropogenic warming, favouring an increase in tropical rainfall. Here we show that the land-sea thermal gradient over South Asia has been decreasing, due to rapid warming in the Indian Ocean and a relatively subdued warming over the subcontinent. Using long-term observations and coupled model experiments, we provide compelling evidence that the enhanced Indian Ocean warming potentially weakens the land-sea thermal contrast, dampens the summer monsoon Hadley circulation, and thereby reduces the rainfall over parts of South Asia.

  12. Solar photo-thermal catalytic reactions to produce high value chemicals

    SciTech Connect

    Prengle, H.W. Jr.; Wentworth, W.E. )

    1992-04-01

    This report presents a summary of the research work accomplished to date on the utilization of solar photo-thermal energy to convert low cost chemical feedstocks into high $-value chemical products. The rationale is that the solar IR-VIS-UV spectrum is unique, supplying endothermic reaction energy as well as VIS-UV for photochemical activation. Chemical market analysis and product price distribution focused attention on speciality chemicals with prices >$1.00/lb, and a synthesis sequence of n-paraffins to aromatics to partial oxidized products. The experimental work has demonstrated that enhanced reaction effects result from VIS-UV irradiation of catalytically active V2O5/SiO2. Experiments of the past year have been on dehydrogenation and dehydrocyclization of n-paraffins to olefins and aromatics with preference for the latter. Recent results using n-hexane produced 95% conversion with 56% benzene; it is speculated that aromatic yield should reach {approximately}70% by further optimization. Pilot- and commercial-scale reactor configurations have been examined; the odds-on-favorite being a shallow fluid-bed of catalyst with incident radiation from the top. Sequencing for maximum cost effectiveness would be day-time endothermic followed by night-time exothermic reactions to produce the products.

  13. ESTE: Verification of Portable Optical and Thermal Imaging Devices for Leak Detection at Petroleum Refineries and Chemical Plants

    EPA Science Inventory

    This is an ESTE project summary brief. EPA’s Environmental Technology Verification Program (ETV) is verifying the performance of portable optical and thermal imaging devices for leak detection at petroleum refineries and chemical plans. Industrial facilities, such as chemical p...

  14. Rapid formulation assessment of filgrastim therapeutics by a thermal stress test.

    PubMed

    Alebouyeh, Mahmoud; Tahzibi, Abbas; Yaghoobzadeh, Sareh; Zahedy, Elnaz Tamaskany; Kiumarsi, Shiva; Soltanabad, Mojtaba Hadi; Shahbazi, Saleh; Amini, Hossein

    2016-05-01

    The biosimilar versions of recombinant methionyl human granulocyte colony-stimulating factor (rh-Met-G-CSF, filgrastim) are now widely available. Because changes to the formulation often lead to subtle differences, there is a critical need to define techniques to test and insure the quality of these products. The present study was designed to compare formulation and thermal stress stability of filgrastim products. The formulation ingredients including acetate, polysorbate 80, and sorbitol were determined using state-of-the-art validated analytical methods. The formulation pH and osmolality were also measured. Moreover, the stability profiles of 8 filgrastim products using thermal stress at 57 °C for 4 h were assessed by size-exclusion high-performance liquid chromatography (SE-HPLC) and in vitro biological assay. The products had different stability profiles. More stable products were within the specification for formulation and less stable products were beyond the specification limits. Altogether, the results suggest that a short-time stress study at 57 °C and analysis of filgrastim by SE-HPLC could unveil formulation problems and is potentially useful for comparability studies.

  15. Synthesis Gas Production by Rapid Solar Thermal Gasification of Corn Stover

    SciTech Connect

    Perkins, C. M.; Woodruff, B.; Andrews, L.; Lichty, P.; Lancaster, B.; Weimer, A. W.; Bingham, C.

    2008-03-01

    Biomass resources hold great promise as renewable fuel sources for the future, and there exists great interest in thermochemical methods of converting these resources into useful fuels. The novel approach taken by the authors uses concentrated solar energy to efficiently achieve temperatures where conversion and selectivity of gasification are high. Use of solar energy removes the need for a combustion fuel and upgrades the heating value of the biomass products. The syngas product of the gasification can be transformed into a variety of fuels useable with today?s infrastructure. Gasification in an aerosol reactor allows for rapid kinetics, allowing efficient utilization of the incident solar radiation and high solar efficiency.

  16. A simple, rapid, inexpensive assay for toxic chemicals using a bacterial indicator

    SciTech Connect

    Botsford, J.L.; Hillaker, T.; Robertson, B.; Gonzales, M.; Benavidez, M.; Jones, B.; Baker, R.; Steen, W.; Pacheco, F.; Homer, V.; Lucero, O.; Matthews, M.; Koehler, V.

    1996-12-31

    A simple test for toxic chemicals has been developed. Rhizobium meliloti is combined with the toxic chemical. A tetrazolium dye, MTT (3-[4,5-Dimethylthiazol-2-yl]2,5-diphenyl-tetrazolium bromide) is added. The bacterium reduces this dye, causing the optical absorbance to increase dramatically. The increase can be determined with a simple spectrophotometer. Toxic chemicals and minerals inhibit the reduction of the dye. Presumably the dye serves as a terminal electron acceptor for electron transport. Toxic substances presumably damage the electron transport system. The results compare favorably with published results of tests using the Microtox{trademark} assay and with the Polytox{trademark} assay. This assay is simpler and requires no specialized equipment. It should be possible to use this assay in a third world situation.

  17. Probing Seismically Melting Induced Mantle Heterogeneities in Thermal-chemical Convection Models

    NASA Astrophysics Data System (ADS)

    Heck, H. V.; Davies, H.; Nowacki, A.; Wookey, J. M.

    2015-12-01

    Two regions at the base of the Earth's mantle (the Large Low-Shear Velocity Provinces) pose a fundamental problem in understanding large-scale mantle dynamics and history. Are they dense piles of (possibly primordial) material separated from mantle circulation, or large-scale thermal features which are part of global mantle convection? Or some combination of the two? We use our numerical 3D spherical mantle convection code to perform simulations of the Earths mantle dynamical evolution. We drive the surface velocity of the model according to 200 Ma plate motion reconstructions, to arrive at Earth-like structures in the mantle at present day. Variations in bulk chemistry will be tracked in two ways: 1) by starting the calculations with a (primordial) dense layer at the base of the mantle, and 2) by tracking basalt fraction which is fractionated upon melting close to the surface. The resulting distribution of chemical heterogeneity and temperature will be converted to seismic velocities. This will be done with a thermodynamical database (Stixrude & Lithgow-Bertelloni, GJI, 2005, 2011), allowing us to compare the model with previous observations of triplications and waveform complexity near the margins of the LLSVPs. These observations have been taken as proof that strong chemical variations are present; our simulations can be used to show whether this is true, or if purely thermal convection can also cause these features. We simulate finite-frequency, 3D seismograms at ~5 s period and compare these with previous studies.

  18. Chemical and thermal impacts of sprite streamers in the Earth's mesosphere

    NASA Astrophysics Data System (ADS)

    Parra-Rojas, F. C.; Luque, A.; Gordillo-Vázquez, F. J.

    2015-10-01

    A one-dimensional self-consistent model has been developed to study the chemical and thermal effects of a single sprite streamer in the Earth's mesosphere. We have used sprite streamer profiles with three different driving current durations (5 ms, 50 ms, and 100 ms) between 50 and 80 km of altitude and considering a kinetic scheme of air with more than 90 chemical species. Our model predicts strong increases in practically all the concentrations of the species studied at the moment of the streamer head passage. Moreover, their densities remain high during the streamer afterglow phase. The concentration of electrons can reach values of up to 108 cm-3 in the three cases analyzed. The model also predicts an important enhancement, of several orders of magnitude above ambient values, of nitrogen oxides and several metastables species. On the other hand, we found that the 4.26 μm IR emission brightness of CO2 can reach 10 GR at low altitudes (< 65 km) for the cases of intermediate (50 ms) and long (100 ms) driving currents. These results suggest the possibility of detecting sprite IR emissions from space with the appropriate instrumentation. Finally, we found that the thermal impact of sprites in the Earth's mesosphere is proportional to the driving current duration. This produces variations of more than 40 K (in the extreme case of a 100 ms driving current) at low altitudes (< 55 km) and at about 10 s after the streamer head.

  19. Biocomposites from waste derived biochars: Mechanical, thermal, chemical, and morphological properties.

    PubMed

    Das, Oisik; Sarmah, Ajit K; Bhattacharyya, Debes

    2016-03-01

    To identify a route for organic wastes utilisation, biochar made from various feedstocks (landfill pine saw dust, sewage sludge, and poultry litter) and at diverse pyrolysis conditions, were collected. These biochars were used to fabricate wood and polypropylene biocomposites with a loading level of 24 mass%. The composites were tested for their mechanical, chemical, thermal, morphological, and fire properties. The poultry litter biochar biocomposite, with highest ash content, was found to have high values of tensile/flexural strength, tensile/flexural modulus, and impact strength, compared to other composites. In general, addition of all the biochars enhanced the tensile/flexural moduli of the composites. The crystal structure of polypropylene in the composite was intact after the incorporation of all the biochars. The final chemical and crystal structure of the composite were an additive function of the individual components. The biochar particles along with wood acted as nucleating agents for the recrystallization of polypropylene in composite. Each component in the composites was found to decompose individually under thermal regime. The electron microscopy revealed the infiltration of polypropylene into the biochar pores and a general good dispersion in most composites. The poultry litter composite was found to have lower heat release rate under combustion regime. PMID:26724232

  20. Silver-mediated base pairings: towards dynamic DNA nanostructures with enhanced chemical and thermal stability

    NASA Astrophysics Data System (ADS)

    Swasey, Steven M.; Gwinn, Elisabeth G.

    2016-04-01

    The thermal and chemical fragility of DNA nanomaterials assembled by Watson-Crick (WC) pairing constrain the settings in which these materials can be used and how they can be functionalized. Here we investigate use of the silver cation, Ag+, as an agent for more robust, metal-mediated self-assembly, focusing on the simplest duplex building blocks that would be required for more elaborate Ag+-DNA nanostructures. Our studies of Ag+-induced assembly of non-complementary DNA oligomers employ strands of 2-24 bases, with varied base compositions, and use electrospray ionization mass spectrometry to determine product compositions. High yields of duplex products containing narrowly distributed numbers of Ag+ can be achieved by optimizing solution conditions. These Ag+-mediated duplexes are stable to at least 60 mM Mg2+, higher than is necessary for WC nanotechnology schemes such as tile assemblies and DNA origami, indicating that sequential stages of Ag+-mediated and WC-mediated assembly may be feasible. Circular dichroism spectroscopy suggests simple helical structures for Ag+-mediated duplexes with lengths to at least 20 base pairs, and further indicates that the structure of cytosine-rich duplexes is preserved at high urea concentrations. We therefore propose an approach towards dynamic DNA nanomaterials with enhanced thermal and chemical stability through designs that combine sturdy silver-mediated ‘frames’ with WC paired ‘pictures’.

  1. Structure, chemical ordering and thermal stability of Pt-Ni alloy nanoclusters.

    PubMed

    Cheng, Daojian; Yuan, Shuai; Ferrando, Riccardo

    2013-09-01

    Equilibrium structures, chemical ordering and thermal properties of Pt-Ni nanoalloys are investigated by using basin hopping-based global optimization, Monte Carlo (MC) and molecular dynamics (MD) methods, based on the second-moment approximation of the tight-binding potentials (TB-SMA). The TB-SMA potential parameters for Pt-Ni nanoalloys are fitted to reproduce the results of density functional theory calculations for small clusters. The chemical ordering in cuboctahedral (CO) Pt-Ni nanoalloys with 561 and 923 atoms is obtained from the so called semi-grand-canonical ensemble MC simulation at 100 K. Two ordered phases of L12 (PtNi3) and L10 (PtNi) are found for the CO561 and CO923 Pt-Ni nanoalloys, which is in good agreement with the experimental phase diagram of the Pt-Ni bulk alloy. In addition, the order-disorder transition and thermal properties of these nanoalloys are studied by using MC and MD methods, respectively. It is shown that the typical perfect L10 PtNi structure is relatively stable, showing high order-disorder transition temperature and melting point among these CO561 and CO923 Pt-Ni nanoalloys.

  2. Fabricating vertically aligned sub-20 nm Si nanowire arrays by chemical etching and thermal oxidation

    NASA Astrophysics Data System (ADS)

    Li, Luping; Fang, Yin; Xu, Cheng; Zhao, Yang; Zang, Nanzhi; Jiang, Peng; Ziegler, Kirk J.

    2016-04-01

    Silicon nanowires (SiNWs) are appealing building blocks in various applications, including photovoltaics, photonics, and sensors. Fabricating SiNW arrays with diameters <100 nm remains challenging through conventional top-down approaches. In this work, chemical etching and thermal oxidation are combined to fabricate vertically aligned, sub-20 nm SiNW arrays. Defect-free SiNWs with diameters between 95 and 200 nm are first fabricated by nanosphere (NS) lithography and chemical etching. The key aspects for defect-free SiNW fabrication are identified as: (1) achieving a high etching selectivity during NS size reduction; (2) retaining the circular NS shape with smooth sidewalls; and (3) using a directional metal deposition technique. SiNWs with identical spacing but variable diameters are demonstrated by changing the reactive ion etching power. The diameter of the SiNWs is reduced by thermal oxidation, where self-limiting oxidation is encountered after oxidizing the SiNWs at 950 °C for 1 h. A second oxidation is performed to achieve vertically aligned, sub-20 nm SiNW arrays. Si/SiO2 core/shell NWs are obtained before removing the oxidized shell. HRTEM imaging shows that the SiNWs have excellent crystallinity.

  3. A TRPA1 channel that senses thermal stimulus and irritating chemicals in Helicoverpa armigera.

    PubMed

    Wei, J J; Fu, T; Yang, T; Liu, Y; Wang, G R

    2015-08-01

    Sensing and responding to changes in the external environment is important for insect survival. Transient receptor potential (TRP) channels are crucial for various sensory modalities including olfaction, vision, hearing, thermosensation and mechanosensation. Here, we identified and characterized a transient receptor potential gene named as HarmTRPA1 in Helicoverpa armigera antennae. HarmTRPA1 was abundantly expressed in the antennae and labial palps. Transcripts of HarmTRPA1 could also be detected in the head and proboscis. Furthermore, functional analyses of HarmTRPA1 were conducted in the Xenopus Oocyte system. The results showed that the HarmTRPA1 channel could be activated by increasing the temperature from 20 to 45 °C. No significant adaptation was observed when the stimulus was repeated. In addition to thermal stimuli, pungent natural compounds including allyl isothiocyanate, cinnamaldehyde and citronellal also activated HarmTRPA1. Taken together, we infer that HarmTRPA1 may function as both a thermal sensor involved in peripheral temperature detection and as a chemical sensor detecting irritating chemicals in vivo. Our data provide valuable insight into the TRPA1 channel in this moth and lay the foundation for developing novel strategies for pest control.

  4. A thermal and chemical degradation approach to decipher pristane and phytane precursors in sedimentary organic matter

    USGS Publications Warehouse

    Koopmans, M.P.; Rijpstra, W.I.C.; Klapwijk, M.M.; De Leeuw, J. W.; Lewan, M.D.; Sinninghe, Damste J.S.

    1999-01-01

    A thermal and chemical degradation approach was followed to determine the precursors of pristane (Pr) and phytane (Ph) in samples from the Gessoso-solfifera, Ghareb and Green River Formations. Hydrous pyrolysis of these samples yields large amounts of Pr and Ph carbon skeletons, indicating that their precursors are predominantly sequestered in high-molecular-weight fractions. However, chemical degradation of the polar fraction and the kerogen of the unheated samples generally does not release large amounts of Pr and Ph. Additional information on the precursors of Pr and Ph is obtained from flash pyrolysis analyses of kerogens and residues after hydrous pyrolysis and after chemical degradation. Multiple precursors for Pr and Ph are recognised in these three samples. The main increase of the Pr/Ph ratio with increasing maturation temperature, which is associated with strongly increasing amounts of Pr and Ph, is probably due to the higher amount of precursors of Pr compared to Ph, and not to the different timing of generation of Pr and Ph.A thermal and chemical degradation approach was followed to determine the precursors of pristane (Pr) and phytane (Ph) in samples from the Gessoso-solfifera, Ghareb and Green River Formations. Hydrous pyrolysis of these samples yields large amounts of Pr and Ph carbon skeletons, indicating that their precursors are predominantly sequestered in high-molecular-weight fractions. However, chemical degradation of the polar fraction and the kerogen of the unheated samples generally does not release large amounts of Pr and Ph. Additional information on the precursors of Pr and Ph is obtained from flash pyrolysis analyses of kerogens and residues after hydrous pyrolysis and after chemical degradation. Multiple precursors for Pr and Ph are recognised in these three samples. The main increase of the Pr/Ph ratio with increasing maturation temperature, which is associated with strongly increasing amounts of Pr and Ph, is probably due to the

  5. Low resistive p-type GaN using two-step rapid thermal annealing processes

    SciTech Connect

    Scherer, M.; Schwegler, V.; Seyboth, M.; Kirchner, C.; Kamp, M.; Pelzmann, A.; Drechsler, M.

    2001-06-15

    Two-step thermal annealing processes were investigated for electrical activation of magnesium- doped galliumnitride layers. The samples were studied by room-temperature Hall measurements and photoluminescence spectroscopy at 16 K. After an annealing process consisting of a short-term step at 960{degree}C followed by a 600{degree}C dwell step for 5 min a resistivity as low as 0.84 {Omega}cm is achieved for the activated sample, which improves the results achieved by standard annealing (800{degree}C for 10 min) by 25% in resistivity and 100% in free hole concentration. Photoluminescence shows a peak centered at 3.0 eV, which is typical for Mg-doped samples with high free hole concentrations.{copyright} 2001 American Institute of Physics.

  6. Changes in the color, chemical stability and antioxidant capacity of thermally treated anthocyanin aqueous solution over storage.

    PubMed

    Sui, Xiaonan; Bary, Solène; Zhou, Weibiao

    2016-02-01

    Many anthocyanin-containing foods are thermally processed to ensure their safety, and stored for some time before being consumed. However, the combination of thermal processing and subsequent storage has a significant impact on anthocyanins. This study aimed to investigate the color, chemical stability, and antioxidant capacity of thermally treated anthocyanin aqueous solutions during storage at 4, 25, 45, and 65 °C, respectively. Anthocyanin aqueous solutions were thermally treated before storage. Results showed that the degradation rate of anthocyanins in aqueous solutions was much faster than those in real food. The color of the anthocyanin aqueous solutions changed dramatically during storage. The anthocyanin aqueous solutions stored at 4 °C showed the best chemical stability. Interestingly, the antioxidant capacity of the anthocyanin aqueous solutions stored at lower temperatures remained the same; however, the antioxidant capacity of those thermally treated at 120 or 140 °C and stored at 45 or 65 °C significantly decreased.

  7. Chemical and isotopic composition of water from thermal and mineral springs of Washington

    SciTech Connect

    Mariner, R.H.; Presser, T.S.; Evans, W.C.

    1982-02-01

    Waters from the thermal springs of Washington range in chemical composition from dilute Na-HCO/sub 3/ to moderately saline CO/sub 2/-charged Na-HCO/sub 3/-Cl type waters. St. Martin's Hot Spring which discharges a slightly saline Na-Cl water, is the notable exception. The dilute Na-HCO/sub 3/ waters are generally associated with granitic intrusions; the warm to hot CO/sub 2/-charged waters issue on or near the large stratovolcanoes. The dilute waters have oxygen-isotopic compositions that indicate relatively little water-rock exchange. The CO/sub 2/-charged waters are usually more enriched in oxygen-18 due to more extensive water-rock reaction. The carbon-13 in the CO/sub 2/-charged thermal waters is more depleted (-10 to -12 %) than in the cold CO/sub 2/-charged soda springs (-2 to -8%) which are also scattered throughout the Cascades. The hot and cold CO/sub 2/-charged waters are supersaturated with respect to CaCO/sub 3/, but only the hot springs are actively depositing CaCO/sub 3/. Baker, Gamma, Sulphur, and Ohanapecosh hot springs seem to be associated with thermal aquifers of more than 100/sup 0/C. As these springs occur as individual springs or in small clusters, the respective aquifers are probably of restricted size.

  8. Chemical and isotopic composition of water from thermal springs and mineral springs of Washington

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1982-01-01

    Water from thermal springs of Washington range in chemical composition from dilute NaHC03, to moderately saline C02-charged NaHC03-Cl waters. St. Martin 's Hot Spring which discharges a slightly saline NaCl water, is the notable exception. Mineral springs generally discharge a moderately saline C02-charged NaHC03-Cl water. The dilute Na-HC03 waters are generally associated with granite. The warm to hot waters charged with C02 issue on or near the large stratovolcanoes and many of the mineral springs also occur near the large volcanoes. The dilute waters have oxygen isotopic compositions which indicate relatively little water-rock exchange. The C02-charged waters are usually more enriched in oxygen-18 due to more extensive water-rock reaction. Carbon-13 in the C02-charged thermal waters is more depleted (-10 to -12 permil) than in the cold C02-charged soda springs (-2 to -8 permil) which are also scattered throughout the Cascades. The hot and cold C02-charged waters are supersaturated with respect to CaC03, but only the hot springs are actively depositing CaC03. Baker, Gamma, Sulphur , and Ohanapecosh seem to be associated with thermal aquifers of more than 100C. (USGS)

  9. Characterization of solid bitumens originating from thermal chemical alteration and thermochemical sulfate reduction

    NASA Astrophysics Data System (ADS)

    Kelemen, Simon R.; Walters, Clifford C.; Kwiatek, Peter J.; Freund, Howard; Afeworki, Mobae; Sansone, Michael; Lamberti, William A.; Pottorf, Robert J.; Machel, Hans G.; Peters, Kenneth E.; Bolin, Trudy

    2010-09-01

    Solid bitumen can arise from several reservoir processes acting on migrated petroleum. Insoluble solid organic residues can form by oxidative processes associated with thermochemical sulfate reduction (TSR) as well as by thermal chemical alteration (TCA) of petroleum. TCA may follow non-thermal processes, such as biodegradation and asphaltene precipitation, that produce viscous fluids enriched in polar compounds that are then altered into solid bitumens. It is difficult to distinguish solid bitumen formed by TCA from TSR since both processes occur under relatively high temperatures. The focus of the present work is to characterize solid bitumen samples associated with TSR- or TCA-processes using a combination of solid-state X-ray Photoelectron Spectroscopy (XPS), Sulfur X-ray Absorption Near Edge Structure Spectroscopy (S-XANES), and 13C NMR. Naturally occurring solid bitumens from three locations, Nisku Formation, Brazeau River area (TSR-related); La Barge Field, Madison Formation (TSR-related); and, the Alaskan North Slope, Brooks Range (TCA-related), are compared to solid bitumens generated in laboratory simulations of TSR and TCA. The chemical nature of solid bitumens with respect to organic nitrogen and sulfur can be understood in terms of (1) the nature of hydrocarbon precursor molecules, (2) the mode of sulfur incorporation, and (3) their concentration during thermal stress. TSR-solid bitumen is highly aromatic, sulfur-rich, and nitrogen-poor. These heteroatom distributions are attributed to the ability of TSR to incorporate copious amounts of inorganic sulfur (S/C atomic ratio >0.035) into aromatic structures and to initial low levels of nitrogen in the unaltered petroleum. In contrast, TCA-solid bitumen is derived from polar materials that are initially rich in sulfur and nitrogen. Aromaticity and nitrogen increase as thermal stress cleaves aliphatic moieties and condensation reactions take place. TCA-bitumens from the Brooks Range have <75% aromatic

  10. SCREENING FOR TOXIC INDUSTRIAL CHEMICALS USING SEMIPERMEABLE MEMBRANE DEVICES WITH RAPID TOXICITY ASSAYS

    EPA Science Inventory

    A time-integrated sampling device interfaced with two toxicity-based assays is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethylsulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  11. MICROWAVE-INDUCED RAPID CHEMICAL FUNCTIONALIZATION OF SINGLE-WALLED CARBON NANOTUBES (R830901)

    EPA Science Inventory


    Abstract

    The microwave-induced chemical functionalization of single-walled carbon nanotubes (SWNTs) is reported. The major advantage of this high-energy procedure is that it reduced the reaction time to the order of minutes and the number of steps in the reac...

  12. Predicting Rapid Relapse Following Treatment for Chemical Dependence: A Matched-Subjects Design.

    ERIC Educational Resources Information Center

    Svanum, Soren; McAdoo, William George

    1989-01-01

    Persons who underwent residential treatment for chemical dependency were identified as three-month treatment failures (N=52) or successes (N=52). Subjects were matched on Minnesota Multiphasic Personality Inventory (MMPI) scores. Found posttreatment depression, anxiety, and sleep problems strongly related to failure among psychiatric MMPI group;…

  13. Influence of sprite streamers in the mesospheric chemical and thermal balance

    NASA Astrophysics Data System (ADS)

    Parra-Rojas, Francisco C.; Luque, Alejandro; Gordillo-Vázquez, Francisco J.

    2015-04-01

    We present new results to contribute to the fundamental understanding of the chemistry of non-equilibrium plasmas produced by nighttime sprite streamers in the mesosphere and their influence on the chemical composition and thermal evolution of the upper atmosphere. This contribution describes the kinetic model used and the time evolution of the concentration of many important species for the sprite and its afterglow through an upgrade of previous TLE kinetic models [1], [2]. A one-dimensional self-consistent model has been developed to study the chemical and thermal effects of a single sprite streamer in the Earth mesosphere. We have used sprite streamer profiles with three different driving current durations (5 ms, 50 ms and 100 ms) between 50 and 80 km of altitude and considering a kinetic scheme of air with 20 chemical species. Our model predicts strong increases in practically all the concentrations of the species studied at the moment of the streamer head passage. Moreover, their densities remain high during the streamer afterglow phase. The electron concentration can reach values of up to 108 cm-3 in the three cases analyzed. The model also predicts an important enhancement, of several orders of magnitude above ambient values, of nitrogen oxides (NOx and N2O) and the considered metastables species (N2(A), O2(a), O2(b)). Metastables are capable of storing energy for relatively long time (hundreds of seconds). On the other hand, we found that the 4.26 μm IR emission brightness of CO2 can exceed in 4 orders of magnitude the threshold of visibility (1 MR) at low altitudes (< 65 km) for the cases of intermediate (50 ms) and long (100 ms) driving currents. These results suggest the possibility of detecting sprite IR emissions from space with the appropriate instrumentation. Moreover, according to our model, the Meinel emission brightness of N2+ could also reach the threshold of visibility below 50 km. Finally, we found that the thermal impact of sprites in the

  14. Rapid Detection of Biological and Chemical Threat Agents Using Physical Chemistry, Active Detection, and Computational Analysis

    SciTech Connect

    Chung, Myung; Dong, Li; Fu, Rong; Liotta, Lance; Narayanan, Aarthi; Petricoin, Emanuel; Ross, Mark; Russo, Paul; Zhou, Weidong; Luchini, Alessandra; Manes, Nathan; Chertow, Jessica; Han, Suhua; Kidd, Jessica; Senina, Svetlana; Groves, Stephanie

    2007-01-01

    Basic technologies have been successfully developed within this project: rapid collection of aerosols and a rapid ultra-sensitive immunoassay technique. Water-soluble, humidity-resistant polyacrylamide nano-filters were shown to (1) capture aerosol particles as small as 20 nm, (2) work in humid air and (3) completely liberate their captured particles in an aqueous solution compatible with the immunoassay technique. The immunoassay technology developed within this project combines electrophoretic capture with magnetic bead detection. It allows detection of as few as 150-600 analyte molecules or viruses in only three minutes, something no other known method can duplicate. The technology can be used in a variety of applications where speed of analysis and/or extremely low detection limits are of great importance: in rapid analysis of donor blood for hepatitis, HIV and other blood-borne infections in emergency blood transfusions, in trace analysis of pollutants, or in search of biomarkers in biological fluids. Combined in a single device, the water-soluble filter and ultra-sensitive immunoassay technique may solve the problem of early warning type detection of aerosolized pathogens. These two technologies are protected with five patent applications and are ready for commercialization.

  15. Thermal inactivation of Listeria monocytogenes during rapid and slow heating in sous vide cooked beef.

    PubMed

    Hansen, T B; Knøchel, S

    1996-06-01

    Heating at slowly rising temperatures is suspected to enhance thermotolerance in Listeria monocytogenes and, since anaerobic environments have been shown to facilitate resuscitation of heat-injured cells of this micro-organism, concern may arise about the possibility of L. monocytogenes surviving in minimally preserved products. The effect of rapid ( > 10 degrees C min-1) and slow (0.3 and 0.6 degrees C min-1) heating on survival of L. monocytogenes in sous vide cooked beef was therefore examined at mild processing temperatures of 56 degrees, 60 degrees and 64 degrees C. No statistically significant difference (P = 0.70) was observed between the tested heating regimes. Since the average pH of beef was low (5.6), and little or no effect was observed, a pH-dependency of heat shock-induced thermotolerance in L. monocytogenes is suggested to account for this result. PMID:8695067

  16. Rapid chemical synthesis of the barium ferrate super-iron Fe (VI) compound, BaFeO 4

    NASA Astrophysics Data System (ADS)

    Licht, Stuart; Naschitz, Vera; Wang, Baohui

    An alternate rapid synthesis of BaFeO 4 is demonstrated. Fe(VI) salts, including BaFeO 4, are energetic cathode materials in super-iron batteries ranging from primary to secondary, and including aqueous and non-aqueous cells. Of the Fe(VI) salts, BaFeO 4 sustains unusually facile charge transfer, of importance to the high power domain of alkaline batteries. Unlike previous syntheses, BaFeO 4 preparation is demonstrated from all solid state room temperature reactants. This eliminates several synthetic procedural steps and improves stability to approach that of the rigorously stable chemically synthesized K 2FeO 4 salt.

  17. GaN nanorod light emitting diodes with suspended graphene transparent electrodes grown by rapid chemical vapor deposition

    SciTech Connect

    Xu, Kun; Xu, Chen Deng, Jun; Zhu, Yanxu; Guo, Weiling; Mao, Mingming; Xun, Meng; Chen, Maoxing; Zheng, Lei; Xie, Yiyang; Sun, Jie

    2013-11-25

    Ordered and dense GaN light emitting nanorods are studied with polycrystalline graphene grown by rapid chemical vapor deposition as suspended transparent electrodes. As the substitute of indium tin oxide, the graphene avoids complex processing to fill up the gaps between nanorods and subsequent surface flattening and offers high conductivity to improve the carrier injection. The as-fabricated devices have 32% improvement in light output power compared to conventional planar GaN-graphene diodes. The suspended graphene remains electrically stable up to 300 °C in air. The graphene can be obtained at low cost and high efficiency, indicating its high potential in future applications.

  18. Variability of biomass chemical composition and rapid analysis using FT-NIR techniques

    SciTech Connect

    Liu, Lu; Ye, Philip; Womac, A.R.; Sokhansanj, Shahabaddine

    2010-04-01

    A quick method for analyzing the chemical composition of renewable energy biomass feedstock was developed by using Fourier transform near-infrared (FT-NIR) spectroscopy coupled with multivariate analysis. The study presents the broad-based model hypothesis that a single FT-NIR predictive model can be developed to analyze multiple types of biomass feedstock. The two most important biomass feedstocks corn stover and switchgrass were evaluated for the variability in their concentrations of the following components: glucan, xylan, galactan, arabinan, mannan, lignin, and ash. A hypothesis test was developed based upon these two species. Both cross-validation and independent validation results showed that the broad-based model developed is promising for future chemical prediction of both biomass species; in addition, the results also showed the method's prediction potential for wheat straw.

  19. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis.

    PubMed

    Ahola, Susanna; Zhivonitko, Vladimir V; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V; Telkki, Ville-Veikko

    2015-09-18

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR.

  20. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    PubMed Central

    Ahola, Susanna; Zhivonitko, Vladimir V; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M.; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V.; Telkki, Ville-Veikko

    2015-01-01

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR. PMID:26381101

  1. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    NASA Astrophysics Data System (ADS)

    Ahola, Susanna; Zhivonitko, Vladimir V.; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M.; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V.; Telkki, Ville-Veikko

    2015-09-01

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR.

  2. Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum.

    PubMed

    Wright, James D; Schaller, Morgan F

    2013-10-01

    The Paleocene/Eocene thermal maximum (PETM) and associated carbon isotope excursion (CIE) are often touted as the best geologic analog for the current anthropogenic rise in pCO2. However, a causal mechanism for the PETM CIE remains unidentified because of large uncertainties in the duration of the CIE's onset. Here, we report on a sequence of rhythmic sedimentary couplets comprising the Paleocene/Eocene Marlboro Clay (Salisbury Embayment). These couplets have corresponding δ(18)O cycles that imply a climatic origin. Seasonal insolation is the only regular climate cycle that can plausibly account for δ(18)O amplitudes and layer counts. High-resolution stable isotope records show 3.5‰ δ(13)C decrease over 13 couplets defining the CIE onset, which requires a large, instantaneous release of (13)C-depleted carbon. During the CIE, a clear δ(13)C gradient developed on the shelf with the largest excursions in shallowest waters, indicating atmospheric δ(13)C decreased by ~20‰. Our observations and revised release rate are consistent with an atmospheric perturbation of 3,000-gigatons of carbon (GtC). PMID:24043840

  3. Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum.

    PubMed

    Wright, James D; Schaller, Morgan F

    2013-10-01

    The Paleocene/Eocene thermal maximum (PETM) and associated carbon isotope excursion (CIE) are often touted as the best geologic analog for the current anthropogenic rise in pCO2. However, a causal mechanism for the PETM CIE remains unidentified because of large uncertainties in the duration of the CIE's onset. Here, we report on a sequence of rhythmic sedimentary couplets comprising the Paleocene/Eocene Marlboro Clay (Salisbury Embayment). These couplets have corresponding δ(18)O cycles that imply a climatic origin. Seasonal insolation is the only regular climate cycle that can plausibly account for δ(18)O amplitudes and layer counts. High-resolution stable isotope records show 3.5‰ δ(13)C decrease over 13 couplets defining the CIE onset, which requires a large, instantaneous release of (13)C-depleted carbon. During the CIE, a clear δ(13)C gradient developed on the shelf with the largest excursions in shallowest waters, indicating atmospheric δ(13)C decreased by ~20‰. Our observations and revised release rate are consistent with an atmospheric perturbation of 3,000-gigatons of carbon (GtC).

  4. Thermal Conductivities in Solids from First Principles: Accurate Computations and Rapid Estimates

    NASA Astrophysics Data System (ADS)

    Carbogno, Christian; Scheffler, Matthias

    In spite of significant research efforts, a first-principles determination of the thermal conductivity κ at high temperatures has remained elusive. Boltzmann transport techniques that account for anharmonicity perturbatively become inaccurate under such conditions. Ab initio molecular dynamics (MD) techniques using the Green-Kubo (GK) formalism capture the full anharmonicity, but can become prohibitively costly to converge in time and size. We developed a formalism that accelerates such GK simulations by several orders of magnitude and that thus enables its application within the limited time and length scales accessible in ab initio MD. For this purpose, we determine the effective harmonic potential occurring during the MD, the associated temperature-dependent phonon properties and lifetimes. Interpolation in reciprocal and frequency space then allows to extrapolate to the macroscopic scale. For both force-field and ab initio MD, we validate this approach by computing κ for Si and ZrO2, two materials known for their particularly harmonic and anharmonic character. Eventually, we demonstrate how these techniques facilitate reasonable estimates of κ from existing MD calculations at virtually no additional computational cost.

  5. Thermal model development and validation for rapid filling of high pressure hydrogen tanks

    DOE PAGES

    Johnson, Terry A.; Bozinoski, Radoslav; Ye, Jianjun; Sartor, George; Zheng, Jinyang; Yang, Jian

    2015-06-30

    This paper describes the development of thermal models for the filling of high pressure hydrogen tanks with experimental validation. Two models are presented; the first uses a one-dimensional, transient, network flow analysis code developed at Sandia National Labs, and the second uses the commercially available CFD analysis tool Fluent. These models were developed to help assess the safety of Type IV high pressure hydrogen tanks during the filling process. The primary concern for these tanks is due to the increased susceptibility to fatigue failure of the liner caused by the fill process. Thus, a thorough understanding of temperature changes ofmore » the hydrogen gas and the heat transfer to the tank walls is essential. The effects of initial pressure, filling time, and fill procedure were investigated to quantify the temperature change and verify the accuracy of the models. In this paper we show that the predictions of mass averaged gas temperature for the one and three-dimensional models compare well with the experiment and both can be used to make predictions for final mass delivery. Furthermore, due to buoyancy and other three-dimensional effects, however, the maximum wall temperature cannot be predicted using one-dimensional tools alone which means that a three-dimensional analysis is required for a safety assessment of the system.« less

  6. Thermal model development and validation for rapid filling of high pressure hydrogen tanks

    SciTech Connect

    Johnson, Terry A.; Bozinoski, Radoslav; Ye, Jianjun; Sartor, George; Zheng, Jinyang; Yang, Jian

    2015-06-30

    This paper describes the development of thermal models for the filling of high pressure hydrogen tanks with experimental validation. Two models are presented; the first uses a one-dimensional, transient, network flow analysis code developed at Sandia National Labs, and the second uses the commercially available CFD analysis tool Fluent. These models were developed to help assess the safety of Type IV high pressure hydrogen tanks during the filling process. The primary concern for these tanks is due to the increased susceptibility to fatigue failure of the liner caused by the fill process. Thus, a thorough understanding of temperature changes of the hydrogen gas and the heat transfer to the tank walls is essential. The effects of initial pressure, filling time, and fill procedure were investigated to quantify the temperature change and verify the accuracy of the models. In this paper we show that the predictions of mass averaged gas temperature for the one and three-dimensional models compare well with the experiment and both can be used to make predictions for final mass delivery. Furthermore, due to buoyancy and other three-dimensional effects, however, the maximum wall temperature cannot be predicted using one-dimensional tools alone which means that a three-dimensional analysis is required for a safety assessment of the system.

  7. Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum

    PubMed Central

    Wright, James D.; Schaller, Morgan F.

    2013-01-01

    The Paleocene/Eocene thermal maximum (PETM) and associated carbon isotope excursion (CIE) are often touted as the best geologic analog for the current anthropogenic rise in pCO2. However, a causal mechanism for the PETM CIE remains unidentified because of large uncertainties in the duration of the CIE’s onset. Here, we report on a sequence of rhythmic sedimentary couplets comprising the Paleocene/Eocene Marlboro Clay (Salisbury Embayment). These couplets have corresponding δ18O cycles that imply a climatic origin. Seasonal insolation is the only regular climate cycle that can plausibly account for δ18O amplitudes and layer counts. High-resolution stable isotope records show 3.5‰ δ13C decrease over 13 couplets defining the CIE onset, which requires a large, instantaneous release of 13C-depleted carbon. During the CIE, a clear δ13C gradient developed on the shelf with the largest excursions in shallowest waters, indicating atmospheric δ13C decreased by ∼20‰. Our observations and revised release rate are consistent with an atmospheric perturbation of 3,000-gigatons of carbon (GtC). PMID:24043840

  8. RASP: rapid and robust backbone chemical shift assignments from protein structure.

    PubMed

    MacRaild, Christopher A; Norton, Raymond S

    2014-03-01

    Chemical shift prediction has an unappreciated power to guide backbone resonance assignment in cases where protein structure is known. Here we describe Resonance Assignment by chemical Shift Prediction (RASP), a method that exploits this power to derive protein backbone resonance assignments from chemical shift predictions. Robust assignments can be obtained from a minimal set of only the most sensitive triple-resonance experiments, even for spectroscopically challenging proteins. Over a test set of 154 proteins RASP assigns 88 % of residues with an accuracy of 99.7 %, using only information available from HNCO and HNCA spectra. Applied to experimental data from a challenging 34 kDa protein, RASP assigns 90 % of manually assigned residues using only 40 % of the experimental data required for the manual assignment. RASP has the potential to significantly accelerate the backbone assignment process for a wide range of proteins for which structural information is available, including those for which conventional assignment strategies are not feasible. PMID:24445369

  9. Direct chemical oxidation: a non-thermal technology for the destruction of organic wastes

    SciTech Connect

    Balazs, G.B.; Cooper, J. F.; Lewis, P. R.; Adamson, M. G.

    1998-02-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment and chemical demilitarization and decontamination at LLNL since 1992, and is applicable to the destruction of virtually all solid or liquid organics, including: chlorosolvents, oils and greases, detergents, organic-contaminated soils or sludges, explosives, chemical and biological warfare agents, and PCB's. [1-15] The process normally operates at 80-100 C, a heating requirement which increases the difficulty of surface decontamination of large objects or, for example, treatment of a wide area contaminated soil site. The driver for DCO work in FY98 was thus to investigate the use of catalysts to demonstrate the effectiveness of the technology for organics destruction at temperatures closer to ambient. In addition, DCO is at a sufficiently mature stage of development that technology transfer to a commercial entity was a logical next step, and was thus included in FY98 tasks.

  10. Development of Chemically and Thermally Robust Lithium Fast Ion Conducting Chalcogenide Glasses

    NASA Technical Reports Server (NTRS)

    Martin, Steve W.; Hagedorn, Norman (Technical Monitor)

    2002-01-01

    In this project, a new research thrust into the development of an entirely new class of FIC glasses has begun that may lead to a new set of optimized thin-film lithium ion conducting materials. New chemically robust FIC glasses are being prepared that are expected to exhibit unusually high chemical and electrochemical stability. New thermally robust FIC glasses are being prepared that exhibit softening points in excess of 500 C which will dramatically expand the usable operating temperature range of batteries, fuel-cells, and sensors using such electrolytes. Glasses are being explored in the general compositional series xLi2S+ yGa2S3 + (1-x-y)GeS2. Li2S is added as the source of the conductive lithium ions. GeS2 is the base glass-forming phase and the trivalent sulfides, Ga2S3, is added to increase the "refractoniness" of the glass, that is to significantly increase the softening point of the glass as well as its chemical stability. By optimizing the composition of the glass, new glasses and glass-ceramic FIC materials have been prepared with softening points in excess of 500 C and conductivities above 10(exp -3)/Ohm cm at room temperature. These latter attributes are currently not available in any FIC glasses to date.

  11. Characterization of GaAs solar cells made by ion implantation and rapid thermal annealing using selective photoetching

    SciTech Connect

    van Sark, W.G.J.H.M.; Weyher, J.L.; Giling, L.J. ); de Potter, M.; van Rossum, M. )

    1990-05-01

    Shallow {ital n}-{ital p} GaAs solar cells have been made by implantation of Si into Zn-doped ({ital p}-type) GaAs substrates followed by rapid thermal annealing. The structure of the GaAs crystal has been determined by the DSL photoetching method (Diluted Sirtl-like etchants used with Light). It was found that implantation-induced-damage (revealed by DSL as microroughness and craters) was not removed after annealing for energies exceeding 60 keV. This leads to substrates that contain many precipitates, which appears to be disastrous for the fabrication of good solar cells. In addition, good cell performance is hampered by compensation effects in the {ital n}-{ital p} transition region and in the {ital n}-type layer itself.

  12. High-efficiency screen-printed silicon ribbon solar cells by effective defect passivation and rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Rohatgi, Ajeet; Jeong, Ji-Weon

    2003-01-01

    A conversion efficiency of 15.9% has been achieved on low-cost edge-defined film-fed grown silicon ribbon solar cells. This represents an improvement over the previously reported efficiencies for silicon ribbon solar cells with manufacturable screen-printed contacts and single layer silicon nitride (SiNx) antireflection coating. Two separate rapid thermal processing cycles with fast ramp-up and cooling rates contributed to the enhancement in cell efficiency. The fast ramp-up rate improved the quality of back surface field and contacts; and a short firing time with a fast cooling rate improved contacts and the SiNx-induced hydrogen passivation of defects, resulting in bulk lifetime enhancement from ˜2 to ˜50 μs.

  13. An experimental study of pyroxene crystallization during rapid cooling in a thermal gradient; applications to komatiites and chondrites

    NASA Astrophysics Data System (ADS)

    Bouquain, S.; Arndt, N. T.; Faure, F.; Libourel, G.

    2013-03-01

    To investigate the crystallization of pyroxene in spinifex-textured komatiites and in chondrites we undertook a series of experiments in which compositions in the CMAS system were cooling rapidly in a thermal gradient. Cooling rates were generally between 5 to 10 °C h-1 but some runs were made at 100-200 °C h-1; thermal gradients were between 10 and 20 °C cm-1. These conditions reproduced those at various levels in the crust of komatiitic lava flow. The starting composition was chosen to have pigeonite on the liquidus and a majority of the experiments crystallized zoned pigeonite-diopside crystals like those in komatiite lavas. A~conspicuous aspect of the experimental results was their lack of reproduceability. Some experiments crystallized forsterite whereas others that were run under similar conditions crystallized two pyroxenes and no forsterite; some experiments were totally glassy but others totally crystallized to pyroxene. The degree of supercooling at the onset of pyroxene crystallization was variable, from less than 25 °C to more than 110 °C. We attribute these results to the difficulty of nucleation of pyroxene. In some cases forsterite crystallized metastably and modified the liquid composition to inhibit pyroxene crystallization; in others no nucleation took place until a large degree of supercooling was achieved, then pyroxene crystallized rapidly. Pigeonite crystallized under a wide range of conditions, at cooling rates from 3 to 100 °C h-1. The notion that this mineral only forms at low cooling rates is not correct.

  14. Rapid stress system drives chemical transfer of fear from sender to receiver.

    PubMed

    de Groot, Jasper H B; Smeets, Monique A M; Semin, Gün R

    2015-01-01

    Humans can register another person's fear not only with their eyes and ears, but also with their nose. Previous research has demonstrated that exposure to body odors from fearful individuals elicited implicit fear in others. The odor of fearful individuals appears to have a distinctive signature that can be produced relatively rapidly, driven by a physiological mechanism that has remained unexplored in earlier research. The apocrine sweat glands in the armpit that are responsible for chemosignal production contain receptors for adrenalin. We therefore expected that the release of adrenalin through activation of the rapid stress response system (i.e., the sympathetic-adrenal medullary system) is what drives the release of fear sweat, as opposed to activation of the slower stress response system (i.e., hypothalamus-pituitary-adrenal axis). To test this assumption, sweat was sampled while eight participants prepared for a speech. Participants had higher heart rates and produced more armpit sweat in the fast stress condition, compared to baseline and the slow stress condition. Importantly, exposure to sweat from participants in the fast stress condition induced in receivers (N = 31) a simulacrum of the state of the sender, evidenced by the emergence of a fearful facial expression (facial electromyography) and vigilant behavior (i.e., faster classification of emotional facial expressions).

  15. Rapid Synthesis and Screening of Chemically Activated Transcription Factors with GFP-based Reporters

    PubMed Central

    Botstein, David; Noyes, Marcus B.

    2013-01-01

    Synthetic biology aims to rationally design and build synthetic circuits with desired quantitative properties, as well as provide tools to interrogate the structure of native control circuits. In both cases, the ability to program gene expression in a rapid and tunable fashion, with no off-target effects, can be useful. We have constructed yeast strains containing the ACT1 promoter upstream of a URA3 cassette followed by the ligand-binding domain of the human estrogen receptor and VP16. By transforming this strain with a linear PCR product containing a DNA binding domain and selecting against the presence of URA3, a constitutively expressed artificial transcription factor (ATF) can be generated by homologous recombination. ATFs engineered in this fashion can activate a unique target gene in the presence of inducer, thereby eliminating both the off-target activation and nonphysiological growth conditions found with commonly used conditional gene expression systems. A simple method for the rapid construction of GFP reporter plasmids that respond specifically to a native or artificial transcription factor of interest is also provided. PMID:24300440

  16. Rapid and field-deployable biological and chemical Raman-based identification

    NASA Astrophysics Data System (ADS)

    Botonjic-Sehic, Edita; Paxon, Tracy L.; Boudries, Hacene

    2011-06-01

    Pathogen detection using Raman spectroscopy is achieved through the use of a sandwich immunoassay. Antibody-modified magnetic beads are used to capture and concentrate target analytes in solution and surface-enhanced Raman spectroscopy (SERS) tags are conjugated with antibodies and act as labels to enable specific detection of biological pathogens. The rapid detection of biological pathogens is critical to first responders, thus assays to detect E.Coli and Anthrax have been developed and will be reported. The problems associated with pathogen detection resulting from the spectral complexity and variability of microorganisms are overcome through the use of SERS tags, which provide an intense, easily recognizable, and spectrally consistent Raman signal. The developed E. coli assay has been tested with 5 strains of E. coli and shows a low limit of detection, on the order of 10 and 100 c.f.u. per assay. Additionally, the SERS assay utilizes magnetic beads to collect the labeled pathogens into the focal point of the detection laser beam, making the assay robust to commonly encountered white powder interferants such as flour, baking powder, and corn starch. The reagents were also found to be stable at room temperature over extended periods of time with testing conducted over a one year period. Finally, through a specialized software algorithm, the assays are interfaced to the Raman instrument, StreetLab Mobile, for rapid-field-deployable biological identification.

  17. Rapid Stress System Drives Chemical Transfer of Fear from Sender to Receiver

    PubMed Central

    de Groot, Jasper H. B.; Smeets, Monique A. M.; Semin, Gün R.

    2015-01-01

    Humans can register another person’s fear not only with their eyes and ears, but also with their nose. Previous research has demonstrated that exposure to body odors from fearful individuals elicited implicit fear in others. The odor of fearful individuals appears to have a distinctive signature that can be produced relatively rapidly, driven by a physiological mechanism that has remained unexplored in earlier research. The apocrine sweat glands in the armpit that are responsible for chemosignal production contain receptors for adrenalin. We therefore expected that the release of adrenalin through activation of the rapid stress response system (i.e., the sympathetic-adrenal medullary system) is what drives the release of fear sweat, as opposed to activation of the slower stress response system (i.e., hypothalamus-pituitary-adrenal axis). To test this assumption, sweat was sampled while eight participants prepared for a speech. Participants had higher heart rates and produced more armpit sweat in the fast stress condition, compared to baseline and the slow stress condition. Importantly, exposure to sweat from participants in the fast stress condition induced in receivers (N = 31) a simulacrum of the state of the sender, evidenced by the emergence of a fearful facial expression (facial electromyography) and vigilant behavior (i.e., faster classification of emotional facial expressions). PMID:25723720

  18. Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption.

    PubMed

    Lee, Dae-Sik; Park, Se Ho; Yang, Haesik; Chung, Kwang-Hyo; Yoon, Tae Hwan; Kim, Sung-Jin; Kim, Kyuwon; Kim, Youn Tae

    2004-08-01

    The current paper describes the design, fabrication, and testing of a micromachined submicroliter-volume polymerase chain reaction (PCR) chip with a fast thermal response and very low power consumption. The chip consists of a bulk-micromachined Si component and hot-embossed poly(methyl methacrylate)(PMMA) component. The Si component contains an integral microheater and temperature sensor on a thermally well-isolated membrane, while the PMMA component contains a submicroliter-volume PCR chamber, valves, and channels. The micro hot membrane under the submicroliter-volume chamber is a silicon oxide/silicon nitride/silicon oxide (O/N/O) diaphragm with a thickness of 1.9 microm, resulting in a very low thermal mass. In experiments, the proposed chip only required 45 mW to heat the reaction chamber to 92 degrees C, the denaturation temperature of DNA, plus the heating and cooling rates are about 80 degrees C s(-1) and 60 degrees C s(-1), respectively. We validated, from the fluorescence results from DNA stained with SYBR Green I, that the proposed chip amplified the DNA from vector clone, containing tumor suppressor gene BRCA 1 (127 base pairs at 11th exon), after 30 thermal cycles of 3 s, 5 s, and 5 s at 92 degrees C, 55 degrees C, and 72 degrees C, respectively, in a 200 nL-volume chamber. As for specificity of DNA products, owing to difficulty in analyzing the very small volume PCR results from the micro chip, we vicariously employed the larger volume PCR products after cycling with the same sustaining temperatures as with the micro chip but with much slower ramping rates (3.3 degrees C s(-1) when rising, 2.5 degrees C s(-1) when cooling) within circa 20 minutes on a commercial PCR machine and confirmed the specificity to BRCA 1 (127 base pairs) with agarose gel electrophoresis. Accordingly, the fabricated micro chip demonstrated a very low power consumption and rapid thermal response, both of which are crucial to the development of a fully integrated and battery

  19. THERMAL AND CHEMICAL STRUCTURE VARIATIONS IN TITAN'S STRATOSPHERE DURING THE CASSINI MISSION

    SciTech Connect

    Bampasidis, Georgios; Coustenis, A.; Vinatier, S.; Achterberg, R. K.; Lavvas, P.; Nixon, C. A.; Jennings, D. E.; Flasar, F. M.; Carlson, R. C.; Romani, P. N.; Guandique, E. A.; Teanby, N. A.; Moussas, X.; Preka-Papadema, P.; Stamogiorgos, S.

    2012-12-01

    We have developed a line-by-line Atmospheric Radiative Transfer for Titan code that includes the most recent laboratory spectroscopic data and haze descriptions relative to Titan's stratosphere. We use this code to model Cassini Composite Infrared Spectrometer data taken during the numerous Titan flybys from 2006 to 2012 at surface-intercepting geometry in the 600-1500 cm{sup -1} range for latitudes from 50 Degree-Sign S to 50 Degree-Sign N. We report variations in temperature and chemical composition in the stratosphere during the Cassini mission, before and after the Northern Spring Equinox (NSE). We find indication for a weakening of the temperature gradient with warming of the stratosphere and cooling of the lower mesosphere. In addition, we infer precise concentrations for the trace gases and their main isotopologues and find that the chemical composition in Titan's stratosphere varies significantly with latitude during the 6 years investigated here, with increased mixing ratios toward the northern latitudes. In particular, we monitor and quantify the amplitude of a maximum enhancement of several gases observed at northern latitudes up to 50 Degree-Sign N around mid-2009, at the time of the NSE. We find that this rise is followed by a rapid decrease in chemical inventory in 2010 probably due to a weakening north polar vortex with reduced lateral mixing across the vortex boundary.

  20. Global depression in gene expression as a response to rapid thermal changes in vent mussels.

    PubMed

    Boutet, Isabelle; Tanguy, Arnaud; Le Guen, Dominique; Piccino, Patrice; Hourdez, Stéphane; Legendre, Pierre; Jollivet, Didier

    2009-09-01

    Hydrothermal vent mussels belonging to the genus Bathymodiolus are distributed worldwide and dominate communities at shallow Atlantic hydrothermal sites. While organisms inhabiting coastal ecosystems are subjected to predictable oscillations of physical and chemical variables owing to tidal cycles, the vent mussels sustain pronounced temperature changes over short periods of time, correlated to the alternation of oxic/anoxic phases. In this context, we focused on the short-term adaptive response of mussels to temperature change at a molecular level. The mRNA expression of 23 genes involved in various cell functions of the vent mussel Bathymodiolus azoricus was followed after heat shocks for either 30 or 120 min, at 25 and 30 degrees C over a 48 h recovery period at 5 degrees C. Mussels were genotyped at 10 enzyme loci to explore a relationship between natural genetic variation, gene expression and temperature adaptation. Results indicate that the mussel response to increasing temperature is a depression in gene expression, such a response being genotypically correlated at least for the Pgm-1 locus. This suggests that an increase in temperature could be a signal triggering anaerobiosis for B. azoricus or this latter alternatively behaves more like a 'cold' stenotherm species, an attribute more related to its phylogenetic history, a cold seeps/wood fall origin.

  1. Calibration of Radiation Thermometers in Rapid Thermal Processing Tools Using Si Wafers with Thin-film Thermocouples

    NASA Astrophysics Data System (ADS)

    Kreider, K. G.; Kimes, W. A.; Meyer, C. W.; Ripple, D. C.; Tsai, B. K.; Chen, D. H.; DeWitt, D. P.

    2003-09-01

    Rapid thermal processing (RTP) tools are currently monitored and controlled with lightpipe radiation thermometers (LPRTs) which have been calibrated with thermocouple instrumented wafers. We have developed a thin-film thermocouple wafer that enables more accurate calibration of the LPRTs. The NIST thin-film thermocouple calibration wafer uses Pt/Pd wire thermocouples welded to thin-film Rh/Pt thermocouples to reduce the uncertainty of the wafer temperature measurement in situ. We present the results of testing these thin-film thermocouple calibration wafers in the NIST RTP test bed at temperatures ranging from 650 °C to 830 °C together with a discussion of the materials limitations and capabilities. The difference between the thermocouple junction temperatures and the radiance temperatures indicated by the blackbody-calibrated LPRT can be attributed to the effective emissivity of the wafer, the parameter that accounts for the geometry and radiative properties of the wafer-chamber configuration. An analysis of the uncertainty, u = 1.3 K (k =1), of the wafer surface temperature measurements in the NIST RTP test bed is presented. Confirmation of this value was partially hampered by thermal gradients in the chamber and some problems with the weld pads at high temperature. In addition, we discuss the determination of the Seebeck coefficient of the thin-film thermocouples used on the wafers.

  2. Rapid quantitative chemical mapping of surfaces with sub-2 nm resolution.

    PubMed

    Lai, Chia-Yun; Perri, Saverio; Santos, Sergio; Garcia, Ricardo; Chiesa, Matteo

    2016-05-01

    We present a theory that exploits four observables in bimodal atomic force microscopy to produce maps of the Hamaker constant H. The quantitative H maps may be employed by the broader community to directly interpret the high resolution of standard bimodal AFM images as chemical maps while simultaneously quantifying chemistry in the non-contact regime. We further provide a simple methodology to optimize a range of operational parameters for which H is in the closest agreement with the Lifshitz theory in order to (1) simplify data acquisition and (2) generalize the methodology to any set of cantilever-sample systems.

  3. Rapid quantitative chemical mapping of surfaces with sub-2 nm resolution

    NASA Astrophysics Data System (ADS)

    Lai, Chia-Yun; Perri, Saverio; Santos, Sergio; Garcia, Ricardo; Chiesa, Matteo

    2016-05-01

    We present a theory that exploits four observables in bimodal atomic force microscopy to produce maps of the Hamaker constant H. The quantitative H maps may be employed by the broader community to directly interpret the high resolution of standard bimodal AFM images as chemical maps while simultaneously quantifying chemistry in the non-contact regime. We further provide a simple methodology to optimize a range of operational parameters for which H is in the closest agreement with the Lifshitz theory in order to (1) simplify data acquisition and (2) generalize the methodology to any set of cantilever-sample systems.We present a theory that exploits four observables in bimodal atomic force microscopy to produce maps of the Hamaker constant H. The quantitative H maps may be employed by the broader community to directly interpret the high resolution of standard bimodal AFM images as chemical maps while simultaneously quantifying chemistry in the non-contact regime. We further provide a simple methodology to optimize a range of operational parameters for which H is in the closest agreement with the Lifshitz theory in order to (1) simplify data acquisition and (2) generalize the methodology to any set of cantilever-sample systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00496b

  4. Thermal metalorganic chemical vapor deposition of Ti-Si-N films for diffusion barrier applications

    SciTech Connect

    Custer, J.S.; Smith, P.M.; Jones, R.V.; Maverick, A.W.; Roberts, D.A.; Norman, J.A.T.; Hochberg, A.K.

    1996-04-01

    Structurally disordered refractory ternary films such as titanium silicon nitride (Ti-Si-N) have potential as advanced diffusion barriers in future ULSI metallization schemes. Here the authors present results on purely thermal metalorganic chemical vapor deposition (CVD) of Ti-Si-N. At temperatures between 300 and 450 C, tetrakis(diethylamido)titanium (TDEAT), silane, and ammonia react to grow Ti-Si-N films with Si contents of 0--20 at.%. Typical impurity contents are 5--10 at.%H and 0.5 to 1.5 at.% C, with no O or other impurities detected in the bulk of the film. Although the film resistivity increases with increasing Si content, it remains below 1,000 {micro}{Omega}-cm for films with less than 5 at.% Si. These films are promising candidates for advanced diffusion barriers.

  5. A chemically triggered and thermally switched dielectric constant transition in a metal cyanide based crystal.

    PubMed

    Shi, Chao; Zhang, Xi; Cai, Ying; Yao, Ye-Feng; Zhang, Wen

    2015-05-18

    A dielectric constant transition is chemically triggered and thermally switched in (HPy)2[Na(H2O)Co(CN)6] (2, HPy=pyridinium cation) by single-crystal-to-single-crystal transformation and structural phase transition, respectively. Upon dehydration, (HPy)2[Na(H2O)2Co(CN)6] (1) transforms to its semi-hydrated form 2, accompanying a transition from a low-dielectric state to a high-dielectric state, and vice versa. This dielectric switch is also realized by a structural phase transition in 2 that occurs between room- and low-temperature phases, and which corresponds to high- and low-dielectric states, respectively. The switching property is due to the variation in the environment surrounding the HPy cation, that is, the hydrogen-bonding interactions and the crystal packing, which exert predominant influences on the dynamics of the cations that transit between the static and motional states.

  6. Growth of FePt encapsulated carbon nanotubes by thermal chemical vapor deposition

    SciTech Connect

    Fujiwara, Yuji Kaneko, Tetsuya; Hori, Kenta; Takase, Sho; Sato, Hideki; Maeda, Kohji; Kobayashi, Tadashi; Kato, Takeshi; Iwata, Satoshi; Jimbo, Mutsuko

    2014-03-15

    FePt encapsulated carbon nanotubes (CNTs) were grown by thermal chemical vapor deposition using an Fe/Pt bilayer catalyst. The CNTs were grown according to the base growth model. Selected area electron diffraction results revealed that the encapsulated particles were A1-FePt, L1{sub 0}-FePt, and Fe{sub 3}PtC. The crystal structures of particles found at the root parts of CNTs were not able to be identified, however. The layered structure of catalytic films seemed to be responsible for the difference in Pt content between particles found at tip and root parts of CNTs. Approximately 60% of CNTs grown at 800 °C had particles at their tip parts, compared to only 30% when the growth temperature was 700 °C, indicating that higher process temperatures promote particle encapsulation in CNTs.

  7. Premixed CH4/O2-enriched air combustion: Identification of thermal, chemical and aerodynamic effects

    NASA Astrophysics Data System (ADS)

    Most, J.-M.; Dahikar, S.; Pal, S.; Claverie, A.; Denis, D.; Pillier, L.; de Persis, S.

    2012-11-01

    This work contributes to the evaluation of a new innovative process focused on the reduction of the cost of a post-combustion capture of CO2 in a Carbon Capture and Storage system (CCS). The process based on the separation of dried fumes composed mainly by CO2 and N2 by using membranes, which should lead to a lower energetic separation cost than amines. But the membranes become efficient if the upstream CO2 concentration is higher than 30% at their entrance that requires enriching the oxidizer flow by O2. To maintain the exhaust temperature compatible with materials thermal resistance, the reactants are diluted by a recirculation of a part of the flue gases (like N2/O2/CO2). But, the chemical kinetic, the energetic efficiencies, the radiation transfer, the transport and thermal properties of the flow can be affected by CO2. The objective of this work will be to identify the behaviour of the combustion of premixed CH4/O2-enriched air, both diluted in N2 and CO2 and to determine the combustion parameters. This allows to recover the CH4/air conditions in terms of CO2 concentration in reactants, O2 excess, dilution rate, temperature of the reactants, etc. Experiments are performed on the laminar premixed flame using counterflow burner. To characterize the combustion behaviour, the flammability limits are determined and flame thickness and position are measured from PLIF-OH diagnostic. Further, CHEMKIN simulations are performed to check the validity of the GRI3.0 chemical kinetic mechanism for premixed CH4/air synthetic combustion and identify the leading phenomena.

  8. Physical and chemical methods for enhancing rapid detection of viruses and other agents.

    PubMed Central

    Hughes, J H

    1993-01-01

    Viral replication events can be enhanced by physical, chemical, or heat treatment of cells. The centrifugation of cells can stimulate them to proliferate, reduce their generation times, and activate gene expression. Human endothelial cells can be activated to release cyclo-oxygenase metabolites after rocking for 5 min, and mechanical stress can stimulate endothelial cells to proliferate. Centrifugation of virus-infected cultures can increase cytopathic effects (CPE), enhance the number of infected cells, increase viral yields, and reduce viral detection times and may increase viral isolation rates. The rolling of virus-infected cells also has an effect similar to that of centrifugation. The continuous rolling of virus-infected cultures at < or = 2.0 rpm can enhance enterovirus, rhinovirus, reovirus, rotavirus, paramyxovirus, herpesvirus, and vaccinia virus CPE or yields or both. For some viruses, the continuous rolling of infected cell cultures at 96 rpm (1.9 x g) is superior to rolling at 2.0 rpm for viral replication or CPE production. In addition to centrifugation and rolling, the treatment of cells with chemicals or heat can also enhance viral yields or CPE. For example, the treatment of virus-infected cells with dimethyl sulfoxide can enhance viral transformation, increase plaque numbers and plaque size, increase the number of cells producing antigens, and increase viral yields. The infectivity of fowl plague virus is increased by 80-fold when 4% dimethyl sulfoxide is added to culture medium immediately after infection. The heat shocking of virus-infected cells also has been shown to have a stimulatory effect on the replication events of cytomegalovirus, Epstein-Barr virus, and human immunodeficiency virus. The effects of motion, chemicals, or heat treatments on viral replication are not well understood. These treatments apparently activate cells to make them more permissive to viral infection and viral replication. Perhaps heat shock proteins or stress

  9. Influence of boundary slip effect on thermal environment in thermo-chemical non-equilibrium flow

    NASA Astrophysics Data System (ADS)

    Miao, Wenbo; Zhang, Liang; Li, Junhong; Cheng, Xiaoli

    2014-12-01

    A kind of new hypersonic vehicle makes long-time flight in transitional flow regime where boundary slip effect caused by low gas density will have an important influence on the thermal environment around the vehicles. Numerical studies on the boundary slip effect as hypersonic vehicles fly in high Mach number has been carried out. The method for solving non-equilibrium flows considering slip boundary, surface catalysis and chemical reactions has been built up, and been validated by comparing the thermal environment results with STS-2 flight test data. The mechanism and rules of impact on surface heat flux by different boundary slip level (Knudsen number from 0.01 to 0.05) has been investigated in typical hypersonic flow conditions. The results show that the influence mechanisms of boundary slip effect are different on component diffusion heat flux and convective heat flux; slip boundary increases the near wall temperature which diminish the convective heat; whereas enhances the near wall gas diffusion heat because of the internal energy's growing. Component diffusion heat flux takes a smaller portion of the total heat flux, so the slip boundary reduces the total wall heat flux. As Knudsen number goes up, the degree of rarefaction increases, the influences of slip boundary on convective and component diffusion heat flux are both enhanced, total heat flux grows by a small margin, and boundary slip effect is more distinct.

  10. Chemical differentiation, thermal evolution, and catastrophic overturn on Venus: Predictions and geologic observations

    NASA Technical Reports Server (NTRS)

    Head, James W.; Parmentier, E. M.; Hess, P. C.

    1993-01-01

    Observations from Magellan show that: (1) the surface of Venus is generally geologically young, (2) there is no evidence for widespread recent crustal spreading or subduction, (3) the crater population permits the hypothesis that the surface is in production, and (4) relatively few impact craters appear to be embayed by volcanic deposits suggesting that the volcanic flux has drastically decreased as a function of time. These observations have led to consideration of hypotheses suggesting that the geological history of Venus may have changed dramatically as a function of time due to general thermal evolution, and/or thermal and chemical evolution of a depleted mantle layer, perhaps punctuated by catastrophic overturn of upper layers or episodic plate tectonics. We have previously examined the geological implications of some of these models, and here we review the predictions associated with two periods of Venus history. Stationary thick lithosphere and depleted mantle layer, and development of regional to global development of regional to global instabilities, and compare these predictions to the geological characteristics of Venus revealed by Magellan.

  11. Cellulose nanobiocomposites with reinforcement of boron nitride: study of thermal, oxygen barrier and chemical resistant properties.

    PubMed

    Swain, Sarat K; Dash, Satyabrata; Behera, Chandini; Kisku, Sudhir K; Behera, Lingaraj

    2013-06-20

    A series of cellulose based nanobiocomposites (cellulose/BN) were prepared with incorporation of various percentage of nano boron nitride (BN). The interaction between cellulose and boron nitride was studied by Fourier transform infrared spectroscopy (FTIR). The structure of cellulose/BN nanobiocomposites was investigated by XRD, FESEM, and HRTEM. It was observed that the boron nitride nanoparticles were dispersed within cellulose matrix due to intercalation and partial exfoliation. The quantitative identification of nanobiocomposites was investigated by selected area electron diffraction (SAED). Thermal stabilities of the prepared nanobiocomposites were measured by thermo gravimetric analysis (TGA) and it was found that thermal stability of the nanobiocomposites was higher than the virgin cellulose. The oxygen barrier property of cellulose/BN nanobiocomposites was measured using a gas permeameter and a substantial reduction in oxygen permeability due to increase in boron nitride loading was observed. Further it was noticed that the chemical resistance of the nanobiocomposites was more than the virgin cellulose. Hence, the prepared nanobiocomposite may be widely used for insulating and temperature resistant packaging materials. PMID:23648034

  12. Effects of Thermal and Pressure Histories on the Chemical Strengthening of Sodium Aluminosilicate Glass

    NASA Astrophysics Data System (ADS)

    Svenson, Mouritz; Thirion, Lynn; Youngman, Randall; Mauro, John; Bauchy, Mathieu; Rzoska, Sylwester; Bockowski, Michal; Smedskjaer, Morten

    2016-03-01

    Glasses can be chemically strengthened through the ion exchange process, wherein smaller ions in the glass (e.g., Na+) are replaced by larger ions from a salt bath (e.g., K+). This develops a compressive stress (CS) on the glass surface, which, in turn, improves the damage resistance of the glass. The magnitude and depth of the generated CS depends on the thermal and pressure histories of the glass prior to ion exchange. In this study, we investigate the ion exchange-related properties (mutual diffusivity, CS, and hardness) of a sodium aluminosilicate glass, which has been densified through annealing below the initial fictive temperature of the glass or through pressure-quenching from the glass transition temperature at 1 GPa prior to ion exchange. We show that the rate of alkali interdiffusivity depends only on the density of the glass, rather than on the applied densification method. However, we also demonstrate that for a given density, the increase in CS and increase in hardness induced by ion exchange strongly depends on the densification method. Specifically, at constant density, the CS and hardness values achieved through thermal annealing are larger than those achieved through pressure-quenching. These results are discussed in relation to the structural changes in the environment of the network-modifier and the overall network densification.

  13. Examinations of Chemical Resistance and Thermal Behaviour of Ceramic Filter Materials for Hot-Gas Cleaning

    SciTech Connect

    Angermann, J.; Meyer, B.; Horlbeck, W.

    2002-09-19

    Increasing prosperity and the steady growth of the world population lead to a strongly rising energy requirement. Therefore the saving of the available resources as well as the limitation of CO{sub 2}-emission are the main reasons for developing highly efficient power stations. The use of combined cycle technology for advanced coal fired power plants allow a significantly higher conversion efficiency than it is possible in an only steam power plant. In order to increase the gas turbine inlet temperature, the filtration of fine particles is necessary. Therefore the filtration unit is one of the key components of the circulating pressurized fluidized bed combustion technology (PFBC). To use this technology more effectively, gas cleaning at high temperatures or in an reducing atmosphere is necessary. A possibility of the effective gas cleaning at high temperatures is the use of porous ceramic candle filters. The structure of such filter elements usually consists of a highly porous sup port which ensures the mechanical strength and a layer which operates as the functional part for the particle removal. To ensure a guaranteed lifetime of about 16000 h the effect of combustion or gasification atmosphere and temperature on the thermal and mechanical properties of the filter material has to be studied. The examinations and results, described in this article, are part of some previous work. This paper focuses especially on the chemical resistance and the thermal behaviour of the used ceramic filter materials.

  14. A structural and electrical comparison of thin SiO2 films grown on silicon by plasma anodization and rapid thermal processing to furnace oxidation

    NASA Astrophysics Data System (ADS)

    Nelson, S. A.; Hallen, H. D.; Buhrman, R. A.

    1988-05-01

    We have used capacitance-voltage (C-V) techniques and x-ray photoelectron spectroscopy (XPS) to study for the first time the electrical and structural properties of thin SiO2 films grown on silicon by plasma anodization and rapid thermal processes (RTO) and then compared them to furnace oxides. We have compared the SiO4 tetrahedral ring structure and the suboxide content of the ˜3-nm-thick interfacial region of these oxides and have found significant structural differences. By correlating these differences with measured electrical differences, we have identified the structural causes of some of the electrical characteristics of the plasma and RTO oxides. In plasma oxides we see larger amounts of silicon dangling bonds, Pb centers, at the Si-SiO2 interface and have identified these dangling bonds as the source of a localized peak of interface states found at 0.3 eV above the silicon valence band. Low-temperature rapid thermal annealing of the plasma oxides relieves localized compressive interfacial strain, apparently by allowing the completion of oxidation at the interface, and reduces the amount of dangling bonds. However, this strain relief simultaneously increases the average SiO4 ring structure at the interface. A larger interfacial SiO4 ring structure is also seen in rapid thermal oxides and has been attributed to the very rapid cooling which takes place at the end of the rapid thermal process. Post-growth thermal processing has been shown to reduce the average ring structure by relieving localized tensile interfacial stress, but this stress relief is accompanied by the appearance of a peak of interface states at about 0.8 eV above the valence band which is attributed to Si-O bonds broken during the anneal. Long furnace anneals of rapid thermal oxides remove these states and give interface state densities comparable to those of furnace oxides.

  15. Synthesis and characterization of thermally and chemically gelling injectable hydrogels for tissue engineering.

    PubMed

    Ekenseair, Adam K; Boere, Kristel W M; Tzouanas, Stephanie N; Vo, Tiffany N; Kasper, F Kurtis; Mikos, Antonios G

    2012-06-11

    Novel, injectable hydrogels were developed that solidify through a physical and chemical dual-gelation mechanism upon preparation and elevation of temperature to 37 °C. A thermogelling, poly(N-isopropylacrylamide)-based macromer with pendant epoxy rings and a hydrolytically degradable polyamidoamine-based diamine cross-linker were synthesized, characterized, and combined to produce in situ forming hydrogel constructs. Network formation through the epoxy-amine reaction was shown to be rapid and facile, and the progressive incorporation of the hydrophilic polyamidoamine cross-linker into the hydrogel was shown to mitigate the often problematic tendency of thermogelling materials to undergo significant postformation gel syneresis. The results suggest that this novel class of injectable hydrogels may be attractive substrates for tissue engineering applications due to the synthetic versatility of the component materials and beneficial hydrogel gelation kinetics and stability.

  16. Synthesis and Characterization of Thermally and Chemically Gelling Injectable Hydrogels for Tissue Engineering

    PubMed Central

    Ekenseair, Adam K.; Boere, Kristel W. M.; Tzouanas, Stephanie N.; Vo, Tiffany N.; Kasper, F. Kurtis; Mikos, Antonios G.

    2012-01-01

    Novel, injectable hydrogels were developed that solidify through a dual-gelation, physical and chemical, mechanism upon preparation and elevation of temperature to 37°C. A thermogelling, poly(N-isopropylacrylamide)-based macromer with pendant epoxy rings and a hydrolytically-degradable polyamidoamine-based diamine crosslinker were synthesized, characterized, and combined to produce in situ forming hydrogel constructs. Network formation through the epoxy-amine reaction was shown to be rapid and facile, and the progressive incorporation of the hydrophilic polyamidoamine crosslinker into the hydrogel was shown to mitigate the often problematic tendency of thermogelling materials to undergo significant post-formation gel syneresis. The results suggest that this novel class of injectable hydrogels may be attractive substrates for tissue engineering applications due to the synthetic versatility of the component materials and beneficial hydrogel gelation kinetics and stability. PMID:22554407

  17. Application of chemical and thermal analysis methods for studying cellulose ester plastics.

    PubMed

    Schilling, Michael; Bouchard, Michel; Khanjian, Herant; Learner, Tom; Phenix, Alan; Rivenc, Rachel

    2010-06-15

    Cellulose acetate, developed about 100 years ago as a versatile, semisynthetic plastic material, is used in a variety of applications and is perhaps best known as the basis of photographic film stock. Objects made wholly or partly from cellulose acetate are an important part of modern and contemporary cultural heritage, particularly in museum collections. Given the potential instability of the material, however, it is imperative to understand the aging mechanisms and deterioration pathways of cellulose ester plastics to mitigate decomposition and formulate guidelines for storage, exhibition, and conservation. One important aspect of this process is the ability to fully characterize the plastic, because variations in composition affect its aging properties and ultimate stability. In this Account, we assess the potential of a range of analytical techniques for plastics made from cellulose acetate, cellulose propionate, and cellulose butyrate. Comprehensive characterization of cellulose ester plastics is best achieved by applying several complementary analytical techniques. Fourier-transform IR (FTIR) and Raman spectroscopy provide rapid means for basic characterization of plastic objects, which can be useful for quick, noninvasive screening of museum collections with portable instruments. Pyrolysis GC/MS is capable of differentiating the main types of cellulose ester polymers but also permits a richly detailed compositional analysis of additives. Thermal analysis techniques provide a wealth of compositional information and thermal behavior. Thermogravimetry (TG) allows for quantitative analysis of thermally stable volatile additives, and weight-difference curves offer a novel means for assessing oxidative stability. The mechanical response to temperature, such as the glass transition, can be measured with dynamic mechanical analysis (DMA), but results from other thermal analysis techniques such as TG, differential scanning calorimetry (DSC), and dynamic load

  18. A Tree Based Method for the Rapid Screening of Chemical Fingerprints

    NASA Astrophysics Data System (ADS)

    Kristensen, Thomas G.; Nielsen, Jesper; Pedersen, Christian N. S.

    The fingerprint of a molecule is a bitstring based on its structure, constructed such that structurally similar molecules will have similar fingerprints. Molecular fingerprints can be used in an initial phase for identifying novel drug candidates by screening large databases for molecules with fingerprints similar to a query fingerprint. In this paper, we present a method which efficiently finds all fingerprints in a database with Tanimoto coefficient to the query fingerprint above a user defined threshold. The method is based on two novel data structures for rapid screening of large databases: the kD grid and the Multibit tree. The kD grid is based on splitting the fingerprints into k shorter bitstrings and utilising these to compute bounds on the similarity of the complete bitstrings. The Multibit tree uses hierarchical clustering and similarity within each cluster to compute similar bounds. We have implemented our method and tested it on a large data set from the industry. Our experiments show that our method yields a three-fold speed-up over previous methods.

  19. Optimization of microwave-induced chemical etching for rapid development of neutron-induced recoil tracks in CR-39 detectors

    NASA Astrophysics Data System (ADS)

    Sahoo, G. S.; Tripathy, S. P.; Bandyopadhyay, T.

    2014-03-01

    A systematic investigation is carried out to optimize the recently established microwave-induced chemical etching (MICE) parameters for rapid development of neutron-induced recoil tracks in CR-39 detectors. Several combinations of all available microwave powers with different etching durations were analysed to determine the most suitable etching condition. The etching duration was found to reduce with increasing microwave power and the tracks were observed at about 18, 15, 12, and 6 min for 300, 450, 600 and 900 W of microwave powers respectively compared to a few hours in chemical etching (CE) method. However, for complete development of tracks the etching duration of 30, 40, 50 and 60 min were found to be suitable for the microwave powers of 900, 600, 450 and 300 W, respectively. Temperature profiles of the etchant for all the available microwave powers at different etching durations were generated to regulate the etching process in a controlled manner. The bulk etch rates at different microwave powers were determined by 2 methods, viz., gravimetric and removed thickness methods. A logarithmic expression was used to fit the variation of bulk etch rate with microwave power. Neutron detection efficiencies were obtained for all the cases and the results on track parameters obtained with MICE technique were compared with those obtained from another detector processed with chemical etching.

  20. Rapid Cross-Metathesis for Reversible Protein Modifications via Chemical Access to Se-Allyl-selenocysteine in Proteins

    PubMed Central

    2013-01-01

    Cross-metathesis (CM) has recently emerged as a viable strategy for protein modification. Here, efficient protein CM has been demonstrated through biomimetic chemical access to Se-allyl-selenocysteine (Seac), a metathesis-reactive amino acid substrate, via dehydroalanine. On-protein reaction kinetics reveal a rapid reaction with rate constants of Seac-mediated-CM comparable or superior to off-protein rates of many current bioconjugations. This use of Se-relayed Seac CM on proteins has now enabled reactions with substrates (allyl GlcNAc, N-allyl acetamide) that were previously not possible for the corresponding sulfur analogue. This CM strategy was applied to histone proteins to install a mimic of acetylated lysine (KAc, an epigenetic marker). The resulting synthetic H3 was successfully recognized by antibody that binds natural H3-K9Ac. Moreover, Cope-type selenoxide elimination allowed this putative marker (and function) to be chemically expunged, regenerating an H3 that can be rewritten to complete a chemically enabled “write (CM)–erase (ox)–rewrite (CM)” cycle. PMID:23889088

  1. Thermal, Mechanical and Chemical Analysis for VELOX -Verification Experiments for Lunar Oxygen Production

    NASA Astrophysics Data System (ADS)

    Lange, Caroline; Ksenik, Eugen; Braukhane, Andy; Richter, Lutz

    One major aspect for the development of a long-term human presence on the moon will be sustainability and autonomy of any kind of a permanent base. Important resources, such as breathable air and water for the survival of the crew on the lunar surface will have to be extracted in-situ from the lunar regolith, the major resource on the Moon, which covers the first meter of the lunar surface and contains about 45 At the DLR Bremen we are interested in a compact and flexible lab experimenting facility, which shall demonstrate the feasibility of this process by extracting oxygen out of lunar Regolith, respectively soil simulants and certain minerals in the laboratory case. For this purpose, we have investigated important boundary conditions such as temperatures during the process, chemical reaction characteristics and material properties for the buildup of the facility and established basic requirements which shall be analyzed within this paper. These requirements have been used for the concept development and outline of the facility, which is currently under construction and will be subject to initial tests in the near future. This paper will focus mainly on the theoretical aspects of the facility development. Great effort has been put into the thermal and mechanical outline and pre-analysis of components and the system in a whole. Basic aspects that have been investigated are: 1. Selection of suitable materials for the furnace chamber configuration to provide a high-temperature capable operating mode. 2. Theoretical heat transfer analysis of the designed furnace chamber assembly with subsequent validation with the aid of measured values of the constructed demonstration plant. 3. Description of chemical conversion processes for Hydrogen reduction of Lunar Regolith with corresponding analysis of thermal and reaction times under different boundary conditions. 4. Investigation of the high-temperature mechanical behavior of the constructed furnace chamber with regard to

  2. Chemical Characterization and Thermal Stressing Studies of Perfluorohexane Fluids for Space-Based Applications

    NASA Technical Reports Server (NTRS)

    Arnold, William A.; Hartman, Thomas G.; McQuillen, John

    2006-01-01

    Perfluorohexane (PFH), C6F14, is a perfluorocarbon fluid. Several PFH fluids with different isomer concentrations were evaluated for use in an upcoming NASA space experiment. Samples tested included two commercially obtained high-purity n-perfluorohexane (n-PFH) fluids and a technical grade mixture of C6F14 branched and linear isomers (FC-72(TradeMark)). These fluids were evaluated for exact chemical composition, impurity purity and high temperature degradation behavior (pyrolysis). Our investigation involved simulated thermal stressing studies of PFH fluids under conditions likely to occur in the event of an atmospheric breach within the International Space Station (ISS) and subsequent exposure of the vapors to the high temperature and catalyst present in its Trace Contaminant Control Subsystem (TCCS). Exposure to temperatures in the temperature range of 200-450 C in an inert or oxidizing atmosphere, with and without the presence of catalyst was investigated. The most aggressive conditions studied were exposure of PFH vapors to 450 C in air and in the presence of TCCS (palladium) catalyst. Gas chromatography-mass spectrometry (GC-MS) and gas chromatography (GC) analyses were conducted on the perfluorohexane samples before and after pyrolysis. The FC-72 and n-PFH samples showed no significant degradation following pyrolysis even under the most aggressive study conditions. Some trace level impurities associated with the PFH samples such as linear perfluorocarbon monohydrides or monoiodides were destroyed by pyrolysis at the upper limit. Other trace level impurities such as olefinic or cycloolefinic perfluorocarbons were converted into oxidation products by pyrolysis. The purity of PFH following pyrolysis actually increased slightly as a consequence since these trace contaminants were effectively scrubbed from the samples. However, since the initial concentrations of the thermally-impacted impurities were so low, the net effect was trivial. A potential byproduct of

  3. Zig-Zag Thermal-Chemical 3-D Instabilities in the Mantle Wedge: Numerical Study

    NASA Astrophysics Data System (ADS)

    Zhu, G.; Gerya, T. V.; Arcay, D.; Yuen, D. A.

    2008-12-01

    To understand the plume initiation and propagation it is important to understand whether small-scale convection is occurring under the back-arc in the Low Viscosity Wedge(LVW) and its implication on the island-arc volcanism. Honda et al. [Honda and Saito, 2003; Honda, et al., 2007]) already deployed small- scale convection in the Low Viscosity Wedge (LVW) above a subducting slab with kinematically imposed velocity boundary condition. They have suggested that a roll (finger)-like pattern of hot and cold anomalies emerges in the mantle wedge above the subducting slab. Here, we perform three-dimensional coupled petrological-thermomechanical numerical simulations of intraoceanic one-sided subduction with spontaneously bending retreating slab characterized by weak hydrated upper interface by using multigrid approach combined with characteristics-based marker-in-cell method with conservative finite difference schemes[Gerya and Yuen, 2003a], to investigate the 3D instabilities above the slab and lateral variation along the arc. Our results show that water released from subducting slab through dehydration reactions may lower the viscosity of the mantle. It allows the existence of wave-like small-scale convection in the LVW, which is shown as roll-like structure in 2D petrological-thermomechanical numerical experiments [Gorczyk et al., 2006] using in-situ rock properties computed on the basis of Gibbs free energy minimization. However, in our 3D cases, the rolls aligning with the arc mainly occur earlier , while zig-zag small-scale thermal-chemical instabilities may episodically form above the slab at later stages, which is different from the aligning finger-like pattern in purely thermal models (Honda et al,2003;2007). Also in contrast to thermal convection chemically buoyant hydrated plumes rising from the slab in our models are actually colder then the mantle wedge [Gerya and Yuen 2003b] which also strongly modify both the convection pattern and the seismic structure in

  4. Effects of thermal treatment on chemical, mechanical and colour traits in Norway spruce wood.

    PubMed

    Kačíková, Danica; Kačík, František; Cabalová, Iveta; Durkovič, Jaroslav

    2013-09-01

    In several different branches of the wood industry heat treatment is a growing application as it changes the chemical, mechanical, physical and biological properties of wood. Investigations using wet chemical analyses, Fourier transform infrared spectroscopy, size exclusion chromatography, and CIELab colour system have been conducted to study the changes in Norway spruce wood subjected to temperature up to 270°C over a 30 min time period. The results showed that mass loss (ML), total crystallinity index (TCI) of cellulose, total colour difference (ΔE*), and the content of lignin and extractives increased with the temperature, whereas degree of polymerization (DP) of cellulose, modulus of rupture (MOR), modulus of elasticity (MOE), lightness difference (ΔL*), and the content of holocellulose, cellulose and hemicelluloses all decreased with the thermal treatment. Relationships between temperature and the examined wood traits were all fitted by exponential curves. Power law relationships were found to fit the trends for DP of cellulose with ΔE*, ΔL*, and TCI of cellulose. Also found were power law regressions for the content of hemicelluloses with MOE, MOR, ΔL*, and ML. Temperatures ranging from 20 to 187°C formed a compact cluster, clearly separated from the higher examined temperatures in the multivariate wood trait space.

  5. Upper Limits for Power Yield in Thermal, Chemical, and Electrochemical Systems

    NASA Astrophysics Data System (ADS)

    Sieniutycz, Stanislaw

    2010-03-01

    We consider modeling and power optimization of energy converters, such as thermal, solar and chemical engines and fuel cells. Thermodynamic principles lead to expressions for converter's efficiency and generated power. Efficiency equations serve to solve the problems of upgrading or downgrading a resource. Power yield is a cumulative effect in a system consisting of a resource, engines, and an infinite bath. While optimization of steady state systems requires using the differential calculus and Lagrange multipliers, dynamic optimization involves variational calculus and dynamic programming. The primary result of static optimization is the upper limit of power, whereas that of dynamic optimization is a finite-rate counterpart of classical reversible work (exergy). The latter quantity depends on the end state coordinates and a dissipation index, h, which is the Hamiltonian of the problem of minimum entropy production. In reacting systems, an active part of chemical affinity constitutes a major component of the overall efficiency. The theory is also applied to fuel cells regarded as electrochemical flow engines. Enhanced bounds on power yield follow, which are stronger than those predicted by the reversible work potential.

  6. Aerosols near by a coal fired thermal power plant: chemical composition and toxic evaluation.

    PubMed

    Jayasekher, T

    2009-06-01

    Industrial processes discharge fine particulates containing organic as well as inorganic compounds into the atmosphere which are known to induce damage to cell and DNA, both in vitro and in vivo. Source and area specific studies with respect to the chemical composition, size and shape of the particles, and toxicity evaluations are very much limited. This study aims to investigate the trace elements associated with the aerosol particles distributed near to a coal burning thermal power plant and to evaluate their toxicity through Comet assay. PM(10) (particles determined by mass passing an inlet with a 50% cut-off efficiency having a 10-microm aerodynamic diameter) samples were collected using respirable dust samplers. Twelve elements (Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, Se, Hg, and As) were analyzed using ICP-AES. Comet assay was done with the extracts of aerosols in phosphate buffered saline (PBS). Results show that Fe and Zn were found to be the predominant elements along with traces of other analyzed elements. Spherical shaped ultrafine particles of <1 microm aerodynamic diameter were detected through scanning electron microscope. PM(10) particles near to the coal burning power plant produced comets indicating their potential to induce DNA damage. DNA damage property is found to be depending upon the chemical characteristics of the components associated with the particles besides the physical properties such as size and shape.

  7. Control of Chemical, Thermal, and Gas Transport Properties in Dense Phosphazene Polymer Membranes.

    SciTech Connect

    Christopher J. Orme; Frederick F. Stewart; Mark L. Stone; Mason K. Harrup; Thomas A. Luther; Eric S. Peterson

    2005-10-01

    Polyphosphazenes are hybrid polymers having organic pendant groups attached to an inorganic backbone. Phosphazene polymers can be tailored to specific applications through the attachment of a variety of different pendant groups to the phosphazene backbone. Applications for which these polymers have proven useful include solid polymer electrolytes for batteries and fuel cells, as well as, membranes for gas and liquid separations. In past work, phosphazene polymers have been synthesized using mixtures of pendant groups with differing chemical affinities. Specific ratios of hydrophobic and hydrophilic pendant groups were placed on the phosphazene backbone with a goal of demonstrating control of solubility, and therefore chemical selectivity. In this work, a series of phosphazene homo-polymers were synthesized having varying amounts of hydrophobic and hydrophilic character on each individual pendant group. Polymers were synthesized having a hydrophilic portion next to the polymer backbone and the hydrophobic portion on the terminal end of the pendant group. The effects of these combined hydrophobic/hydrophilic pendant groups on polymer morphology and gas transport properties are presented. The following data will be addressed: thermal characterization, pure gas permeability on seven gases (Ar, H2, O2, N2, CO2, and CH4 ), and ideal selectivity for the gas pairs: O2/N2, H2/CO2, CO2/H2, CO2/CH4 and CO2/N2.

  8. The use of thermal desorption in monitoring for the chemical weapons demilitarization program.

    PubMed

    Harper, Martin

    2002-10-01

    Under international treaty, the United States and Russia are disposing of their aging stockpile of chemical weapons. Incineration and chemical neutralization are options for sites in the United States, although Russia prefers the latter. The storage and disposal of bulk and chemical agents and weapons involve unique hazards of handling extremely toxic materials. There are three major areas of concern--the storage stockpile, the disposal area, and the discovery and destruction of "found" material not considered part of the stockpile. Methods have been developed to detect the presence of chemical agents in the air, and these are used to help assure worker protection and the safety of the local population. Exposure limits for all chemical agents are low, sometimes nanograms per cubic meter for worker control limits and picograms per cubic meter for general population limits. There are three types of monitoring used in the USA: alarm, confirmation, and historical. Alarm monitors are required to give relatively immediate real-time responses to agent leaks. They are simple to operate and rugged, and provide an alarm in near real-time (generally a few minutes). Alarm monitors for the demilitarization program are based on sorbent pre-concentration followed by thermal desorption and simple gas chromatography. Alarms may need to be confirmed by another method, such as sample tubes collocated with the alarm monitor and analyzed in a laboratory by more sophisticated chromatography. Sample tubes are also used for historical perimeter monitoring, with sample periods typically of 12 h. The most common detector is the flame photometric detector, in sulfur or phosphorous mode, although others, such as mass-selective detectors, also have been used. All agents have specific problems with collection, chromatography and detection. Monitoring is not made easier by interferences from pesticide spraying, busy roadways or military firing ranges. Exposure limits drive the requirements for

  9. Thermal-hydrodynamic-chemical (THC) modeling based on geothermal field data

    SciTech Connect

    Kiryukhin, Alexey; Xu, Tianfu; Pruess, Karsten; Apps, John; Slovtsov, Igor

    2002-01-01

    Data on fluid chemistry and rock mineralogy are evaluated for a number of geothermal fields located in the volcanic arc of Japan and Kamchatka, Russia, Common chemical characteristics are identified and used to define scenarios for detailed numerical modeling of coupled thermal hydrodynamic chemical (THC) processes. The following scenarios of parental geothermal fluid upflow were studied: (1) single-phase conditions, 260 C at the bottom ( Ogiri type); (2) two-phase conditions, 300 C at the bottom ( Hatchobaru type); and (3) heat pipe conditions, 260 C at the bottom ( Matsukawa type). THC modeling for the single-phase upflow scenario shows wairakite, quartz, K-feld spar and chlorite formed as the principal secondary minerals in the production zone, and illite-smectite formed below 230 C. THC modeling of the two-phase upflow shows that quartz, K-feldspar (microcline), wairakite and calcite precipitate in the model as principal secondary minerals in the production zone. THC modeling of heat pipe conditions shows no significant secondary deposition of minerals (quartz, K-feldspar, zeolites) in the production zone. The influence of thermodynamic and kinetic parameters of chemical interaction, and of mass fluxes on mineral phase changes, was found to be significant, depending on the upflow regime. It was found that no parental geothermal fluid inflow is needed for zeolite precipitation, which occurs above 140 C in saturated andesite, provided that the porosity is greater than 0.001. In contrast, quartz and K-feldspar precipitation may result in a significant porosity reduction over a hundred-year time scale under mass flux conditions, and complete fracture sealing will occur given sufficient time under either single-phase or two-phase upflow scenarios. A heat pipe scenario shows no significant porosity reduction due to lack of secondary mineral phase deposition.

  10. Chemical and isotope compositions of nitric thermal water of Baikal rift zone

    NASA Astrophysics Data System (ADS)

    Plyusnin, A. M.; Chernyavsky, M. K.; Peryazeva, E. G.

    2010-05-01

    Three types of hydrotherms (nitric, carbonaceous and methane) are distinguished within the Baikal Rift Zone. The unloading sites of nitric therms are mostly located in the central and north-eastern parts of the Rift. Several chemical types are found among nitric therms (Pinneker, Pisarsky, Lomonosov, 1968; Lomonosov, 1974, etc.). The formation of terms being various in chemical compositions is associated with effect of several factors, i.e. various chemical, mineralogical compositions of rocks, various temperatures, extent of interaction in water-rock system, etc. The ratio data of water oxygen and hydrogen isotopes of the studied thermal springs indicate that water is largely of meteoric origin. All established ratios of oxygen (δ18OSMOW = -19.5‰ - -17.5‰) and hydrogen (δDSMOW = -155‰ - - 130‰) isotopes are along the line of meteoric waters. Oxygen values from -20‰ to -5‰ are characteristic of the current meteoric and surface waters in the region. The average value equals -16.5‰ in Lake Baikal. By our data, a large group with oxygen lighter isotope composition that corresponds to isotope ratio being specific for glaciers is revealed in fissure-vein waters. Significant shift toward the oxygen getting heavier is observed in some springs. It is mostly observed in the springs that form chemical composition within the area of the intrusive and metamorphic rock distribution. As a result of hydrolysis reaction of alumosilicates, heavy isotope passes from rocks into water molecule, whereas oxygen heavy isotope passes from rocks into solutes during decomposition of carbonates. High contents of fluoride and sulfate-ions are specific feature of the Baikal Rift Zone most nitric therms. Water is tapped in one of the drill holes, where fluoride-ion dominates in its anion composition (46.7 mg/dm3) and pH reaches 10, 12. The sulphate sulphur isotope composition studies carried out allow to conclude that its heavy isotope (δ34SCDT = +25‰ - +30‰) prevails in

  11. Simple, rapid zebrafish larva bioassay for assessing the potential of chemical pollutants and drugs to disrupt thyroid gland function.

    PubMed

    Raldúa, Demetrio; Babin, Patrick J

    2009-09-01

    Thyroid function may be altered by a very large number of chemicals routinely found in the environment Research evaluating potential thyroid disruption is ongoing, but there are thousands of synthetic and naturally occurring drugs and chemicals to be considered. European and United States policies call for the development of simple methodologies for screening endocrine-disrupting chemicals. Zebrafish are widely used as a model organism for assessing drug effects because of their small size, high fecundity, rapid organogenesis, morphological and physiological similarities to mammals, and easewithwhich large-scale phenotypic screening is performed. A zebrafish-based short-duration screening method was developed to detect the potential effect of chemicals and drugs on thyroid function. This method used a T4 immunofluorescence quantitative disruption test (TIQDT) to measure thyroid function. The 3 day exposure window protocol, from day 2 to day 5 postfertilization (dpf), avoided any potential side effects on thyroid gland morphogenesis. Methimazole, propylthiouracil, and potassium perchlorate, three well-known goitrogens, totally abolished T4 immunoreactivity in thyroid follicles in a dose-specific manner. Amiodarone, a human pharmaceutical with a reported cytotoxic effect on thyroid follicular cells, also decreased T4 levels. Moreover, exposure to 50 nM 3,3',5-triiodothyronine induced a significant decrease in T4 immunoreactivity as did DDT, 2,4-D, and 4-nonylphenol. In conclusion, these data indicated that TIQDT may be useful for obtaining initial information about the ability of environmental pollutants and drugs to impair thyroid gland function as well as assessing the combined effects of endocrine disruptors. PMID:19764258

  12. Rapid low-temperature processing of metal-oxide thin film transistors with combined far ultraviolet and thermal annealing

    SciTech Connect

    Leppäniemi, J. Ojanperä, K.; Kololuoma, T.; Huttunen, O.-H.; Majumdar, H.; Alastalo, A.; Dahl, J.; Tuominen, M.; Laukkanen, P.

    2014-09-15

    We propose a combined far ultraviolet (FUV) and thermal annealing method of metal-nitrate-based precursor solutions that allows efficient conversion of the precursor to metal-oxide semiconductor (indium zinc oxide, IZO, and indium oxide, In{sub 2}O{sub 3}) both at low-temperature and in short processing time. The combined annealing method enables a reduction of more than 100 °C in annealing temperature when compared to thermally annealed reference thin-film transistor (TFT) devices of similar performance. Amorphous IZO films annealed at 250 °C with FUV for 5 min yield enhancement-mode TFTs with saturation mobility of ∼1 cm{sup 2}/(V·s). Amorphous In{sub 2}O{sub 3} films annealed for 15 min with FUV at temperatures of 180 °C and 200 °C yield TFTs with low-hysteresis and saturation mobility of 3.2 cm{sup 2}/(V·s) and 7.5 cm{sup 2}/(V·s), respectively. The precursor condensation process is clarified with x-ray photoelectron spectroscopy measurements. Introducing the FUV irradiation at 160 nm expedites the condensation process via in situ hydroxyl radical generation that results in the rapid formation of a continuous metal-oxygen-metal structure in the film. The results of this paper are relevant in order to upscale printed electronics fabrication to production-scale roll-to-roll environments.

  13. Rapid screening of N-oxides of chemical warfare agents degradation products by ESI-tandem mass spectrometry.

    PubMed

    Sridhar, L; Karthikraj, R; Lakshmi, V V S; Raju, N Prasada; Prabhakar, S

    2014-08-01

    Rapid detection and identification of chemical warfare agents and related precursors/degradation products in various environmental matrices is of paramount importance for verification of standards set by the chemical weapons convention (CWC). Nitrogen mustards, N,N-dialkylaminoethyl-2-chlorides, N,N-dialkylaminoethanols, N-alkyldiethanolamines, and triethanolamine, which are listed CWC scheduled chemicals, are prone to undergo N-oxidation in environmental matrices or during decontamination process. Thus, screening of the oxidized products of these compounds is also an important task in the verification process because the presence of these products reveals alleged use of nitrogen mustards or precursors of VX compounds. The N-oxides of aminoethanols and aminoethylchlorides easily produce [M + H](+) ions under electrospray ionization conditions, and their collision-induced dissociation spectra include a specific neutral loss of 48 u (OH + CH2OH) and 66 u (OH + CH2Cl), respectively. Based on this specific fragmentation, a rapid screening method was developed for screening of the N-oxides by applying neutral loss scan technique. The method was validated and the applicability of the method was demonstrated by analyzing positive and negative samples. The method was useful in the detection of N-oxides of aminoethanols and aminoethylchlorides in environmental matrices at trace levels (LOD, up to 500 ppb), even in the presence of complex masking agents, without the use of time-consuming sample preparation methods and chromatographic steps. This method is advantageous for the off-site verification program and also for participation in official proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons (OPCW), the Netherlands. The structure of N-oxides can be confirmed by the MS/MS experiments on the detected peaks. A liquid chromatography-mass spectrometry (LC-MS) method was developed for the separation of isomeric N-oxides of aminoethanols and

  14. Atomistic Simulations of Chemical Reactivity of TATB Under Thermal and Shock Conditions

    SciTech Connect

    Manaa, M R; Reed, E J; Fried, L E

    2009-09-23

    The study of chemical transformations that occur at the reactive shock front of energetic materials provides important information for the development of predictive models at the grain-and continuum scales. A major shortcoming of current high explosives models is the lack of chemical kinetics data of the reacting explosive in the high pressure and temperature regimes. In the absence of experimental data, long-time scale atomistic molecular dynamics simulations with reactive chemistry become a viable recourse to provide an insight into the decomposition mechanism of explosives, and to obtain effective reaction rate laws. These rates can then be incorporated into thermo-chemical-hydro codes (such as Cheetah linked to ALE3D) for accurate description of the grain and macro scales dynamics of reacting explosives. In this talk, I will present quantum simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) crystals under thermal decomposition (high density and temperature) and shock compression conditions. This is the first time that condensed phase quantum methods have been used to study the chemistry of insensitive high explosives. We used the quantum-based, self-consistent charge density functional tight binding method (SCC{_}DFTB) to calculate the interatomic forces for reliable predictions of chemical reactions, and to examine electronic properties at detonation conditions for a relatively long time-scale on the order of several hundreds of picoseconds. For thermal decomposition of TATB, we conducted constant volume-temperature simulations, ranging from 0.35 to 2 nanoseconds, at {rho} = 2.87 g/cm{sup 3} at T = 3500, 3000, 2500, and 1500 K, and {rho} = 2.9 g/cm{sup 3} and 2.72 g/cm{sup 3}, at T = 3000 K. We also simulated crystal TATB's reactivity under steady overdriven shock compression using the multi-scale shock technique. We conducted shock simulations with specified shock speeds of 8, 9, and 10 km/s for up to 0.43 ns duration, enabling us to track the

  15. Rapid Monitoring of Mercury in Air from an Organic Chemical Factory in China Using a Portable Mercury Analyzer

    PubMed Central

    Yasutake, Akira; Cheng, Jin Ping; Kiyono, Masako; Uraguchi, Shimpei; Liu, Xiaojie; Miura, Kyoko; Yasuda, Yoshiaki; Mashyanov, Nikolay

    2011-01-01

    A chemical factory, using a production technology of acetaldehyde with mercury catalysis, was located southeast of Qingzhen City in Guizhou Province, China. Previous research showed heavy mercury pollution through an extensive downstream area. A current investigation of the mercury distribution in ambient air, soils, and plants suggests that mobile mercury species in soils created elevated mercury concentrations in ambient air and vegetation. Mercury concentrations of up to 600 ng/m3 in air over the contaminated area provided evidence of the mercury transformation to volatile Hg(0). Mercury analysis of soil and plant samples demonstrated that the mercury concentrations in soil with vaporized and plant-absorbable forms were higher in the southern area, which was closer to the factory. Our results suggest that air monitoring using a portable mercury analyzer can be a convenient and useful method for the rapid detection and mapping of mercury pollution in advanced field surveys. PMID:22125423

  16. Lessons Learned: Using Low Cost, Uncooled Infrared Cameras for the Rapid Liquid Level Assessment of Chemical UXO and Storage Vessels

    SciTech Connect

    Young, Kevin Larry

    2002-09-01

    During the fall of 2001, the U.S. Army used low-cost infrared cameras provided by the INEEL to image 3190 aging ton shipping containers to determine if any contained liquid, possibly trace amounts of hazardous mustard agent. The purpose of the scan was to provide quick, "hands-off" assessment of the water-heater-sized containers before moving them with a crane. If the thermal images indicated a possible liquid level, extra safety precautions would be taken prior to moving the container. The technique of using infrared cameras to determine liquid levels in large storage tanks is well documented, but the application of this technique to ton shipping containers (45 to 1036 liters) and even smaller individual chemical munitions (2 to 4 liters) is unique and presents some interesting challenges. This paper describes the lessons learned, problems encountered and success rates associated with using low-cost infrared cameras to look for liquid levels within ton shipping containers and individual chemical munitions.

  17. Multicolor Quantum Dot-Based Chemical Nose for Rapid and Array-Free Differentiation of Multiple Proteins.

    PubMed

    Xu, Qinfeng; Zhang, Yihong; Tang, Bo; Zhang, Chun-yang

    2016-02-16

    Nanomaterial-based differential sensors (e.g., chemical nose) have shown great potential for identification of multiple proteins because of their modulatable recognition and transduction capability but with the limitation of array separation, single-channel read-out, and long incubation time. Here, we develop a multicolor quantum dot (QD)-based multichannel sensing platform for rapid identification of multiple proteins in an array-free format within 1 min. A protein-binding dye of bromophenol blue (BPB) is explored as an efficient reversible quencher of QDs, and the mixture of BPB with multicolor QDs may generate the quenched QD-BPB complexes. The addition of proteins will disrupt the QD-BPB complexes as a result of the competitive protein-BPB binding, inducing the separation of BPB from the QDs and the generation of distinct fluorescence patterns. The multicolor patterns may be collected at a single-wavelength excitation and differentiated by a linear discriminant analysis (LDA). This multichannel sensing platform allows for the discrimination of ten proteins and seven cell lines with the fastest response rate reported to date, holding great promise for rapid and high-throughput medical diagnostics. PMID:26759896

  18. Multicolor Quantum Dot-Based Chemical Nose for Rapid and Array-Free Differentiation of Multiple Proteins.

    PubMed

    Xu, Qinfeng; Zhang, Yihong; Tang, Bo; Zhang, Chun-yang

    2016-02-16

    Nanomaterial-based differential sensors (e.g., chemical nose) have shown great potential for identification of multiple proteins because of their modulatable recognition and transduction capability but with the limitation of array separation, single-channel read-out, and long incubation time. Here, we develop a multicolor quantum dot (QD)-based multichannel sensing platform for rapid identification of multiple proteins in an array-free format within 1 min. A protein-binding dye of bromophenol blue (BPB) is explored as an efficient reversible quencher of QDs, and the mixture of BPB with multicolor QDs may generate the quenched QD-BPB complexes. The addition of proteins will disrupt the QD-BPB complexes as a result of the competitive protein-BPB binding, inducing the separation of BPB from the QDs and the generation of distinct fluorescence patterns. The multicolor patterns may be collected at a single-wavelength excitation and differentiated by a linear discriminant analysis (LDA). This multichannel sensing platform allows for the discrimination of ten proteins and seven cell lines with the fastest response rate reported to date, holding great promise for rapid and high-throughput medical diagnostics.

  19. Facile and rapid generation of 3D chemical gradients within hydrogels for high-throughput drug screening applications.

    PubMed

    Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Obregón, Raquel; Shiku, Hitoshi; Matsue, Tomokazu

    2014-09-15

    We propose a novel application of dielectrophoresis (DEP) to make three-dimensional (3D) methacrylated gelatin (GelMA) hydrogels with gradients of micro- and nanoparticles. DEP forces were able to manipulate micro- and nanoparticles of different sizes and materials (i.e., C2C12 myoblasts, polystyrene beads, gold microparticles, and carbon nanotubes) within GelMA hydrogels in a rapid and facile way and create 3D gradients of these particles in a microchamber. Immobilization of drugs, such as fluorescein isothiocyanate-dextran (FITC-dextran) and 6-hydroxydopamine (6-OHDA), on gold microparticles allowed us to investigate the high-throughput release of these drugs from GelMA-gold microparticle gradient systems. The latter gradient constructs were incubated with C2C12 myoblasts for 24h to examine the cell viability through the release of 6-OHDA. The drug was released from the microparticles in a gradient manner, inducing a cell viability gradient. This novel approach to create 3D chemical gradients within hydrogels is scalable to any arbitrary length scale. It is useful for making anisotropic biomimetic materials and high-throughput platforms to investigate cell-microenvironment interactions in a rapid, simple, cost-effective, and reproducible manner.

  20. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting

    PubMed Central

    Torres-Climent, A.; Gomis, P.; Martín-Mata, J.; Bustamante, M. A.; Marhuenda-Egea, F. C.; Pérez-Murcia, M. D.; Pérez-Espinosa, A.; Paredes, C.; Moral, R.

    2015-01-01

    The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio. PMID:26418458

  1. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting.

    PubMed

    Torres-Climent, A; Gomis, P; Martín-Mata, J; Bustamante, M A; Marhuenda-Egea, F C; Pérez-Murcia, M D; Pérez-Espinosa, A; Paredes, C; Moral, R

    2015-01-01

    The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio.

  2. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting.

    PubMed

    Torres-Climent, A; Gomis, P; Martín-Mata, J; Bustamante, M A; Marhuenda-Egea, F C; Pérez-Murcia, M D; Pérez-Espinosa, A; Paredes, C; Moral, R

    2015-01-01

    The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio. PMID:26418458

  3. Thermal, Chemical and pH Induced Unfolding of Turmeric Root Lectin: Modes of Denaturation

    PubMed Central

    Biswas, Himadri; Chattopadhyaya, Rajagopal

    2014-01-01

    Curcuma longa rhizome lectin, of non-seed origin having antifungal, antibacterial and α-glucosidase inhibitory activities, forms a homodimer with high thermal stability as well as acid tolerance. Size exclusion chromatography and dynamic light scattering show it to be a dimer at pH 7, but it converts to a monomer near pH 2. Circular dichroism spectra and fluorescence emission maxima are virtually indistinguishable from pH 7 to 2, indicating secondary and tertiary structures remain the same in dimer and monomer within experimental error. The tryptophan environment as probed by acrylamide quenching data yielded very similar data at pH 2 and pH 7, implying very similar folding for monomer and dimer. Differential scanning calorimetry shows a transition at 350.3 K for dimer and at 327.0 K for monomer. Thermal unfolding and chemical unfolding induced by guanidinium chloride for dimer are both reversible and can be described by two-state models. The temperatures and the denaturant concentrations at which one-half of the protein molecules are unfolded, are protein concentration-dependent for dimer but protein concentration-independent for monomer. The free energy of unfolding at 298 K was found to be 5.23 Kcal mol−1 and 14.90 Kcal mol−1 for the monomer and dimer respectively. The value of change in excess heat capacity upon protein denaturation (ΔCp) is 3.42 Kcal mol−1 K−1 for dimer. The small ΔCp for unfolding of CLA reflects a buried hydrophobic core in the folded dimeric protein. These unfolding experiments, temperature dependent circular dichroism and dynamic light scattering for the dimer at pH 7 indicate its higher stability than for the monomer at pH 2. This difference in stability of dimeric and monomeric forms highlights the contribution of inter-subunit interactions in the former. PMID:25140525

  4. New hybrid organic-zincophosphate frameworks: single-crystal-to-single-crystal structural transformation and remarkable thermal and chemical stabilities.

    PubMed

    Chang, Tsung-Yuan; Yan, Zhao-Nan; Wang, Chun-Chi; Li, Hsing-Chun; Lin, Hsiu-Mei; Wang, Chih-Min

    2016-05-01

    This research is the first example of a hybrid metal phosphate that undergoes an SCSC structural transformation and provides a new route for the synthesis of organic-inorganic hybrid materials with high stabilities via the introduction of nitrogen-donor ligands into a metal-phosphate system. The synthesis, structural diversity, and thermal and chemical stabilities are also discussed.

  5. Accelerated screening methods for determining chemical and thermal stability of refrigerant-lubricant mixtures, Part 1: Method assessment. Final report

    SciTech Connect

    Kauffman, R.

    1993-04-01

    This report presents results of a literature search performed to identify analytical techniques suitable for accelerated screening of chemical and thermal stabilities of different refrigerant/lubricant combinations. Search focused on three areas: Chemical stability data of HFC-134a and other non-chlorine containing refrigerant candidates; chemical stability data of CFC-12, HCFC-22, and other chlorine containing refrigerants; and accelerated thermal analytical techniques. Literature was catalogued and an abstract was written for each journal article or technical report. Several thermal analytical techniques were identified as candidates for development into accelerated screening tests. They are easy to operate, are common to most laboratories, and are expected to produce refrigerant/lubricant stability evaluations which agree with the current stability test ANSI/ASHRAE (American National Standards Institute/American Society of Heating, Refrigerating, and Air-Conditioning Engineers) Standard 97-1989, ``Sealed Glass Tube Method to Test the Chemical Stability of Material for Use Within Refrigerant Systems.`` Initial results of one accelerated thermal analytical candidate, DTA, are presented for CFC-12/mineral oil and HCFC-22/mineral oil combinations. Also described is research which will be performed in Part II to optimize the selected candidate.

  6. Effect of rapid thermal annealing temperature on the dispersion of Si nanocrystals in SiO{sub 2} matrix

    SciTech Connect

    Saxena, Nupur Kumar, Pragati; Gupta, Vinay

    2015-05-15

    Effect of rapid thermal annealing temperature on the dispersion of silicon nanocrystals (Si-NC’s) embedded in SiO{sub 2} matrix grown by atom beam sputtering (ABS) method is reported. The dispersion of Si NCs in SiO{sub 2} is an important issue to fabricate high efficiency devices based on Si-NC’s. The transmission electron microscopy studies reveal that the precipitation of excess silicon is almost uniform and the particles grow in almost uniform size upto 850 °C. The size distribution of the particles broadens and becomes bimodal as the temperature is increased to 950 °C. This suggests that by controlling the annealing temperature, the dispersion of Si-NC’s can be controlled. The results are supported by selected area diffraction (SAED) studies and micro photoluminescence (PL) spectroscopy. The discussion of effect of particle size distribution on PL spectrum is presented based on tight binding approximation (TBA) method using Gaussian and log-normal distribution of particles. The study suggests that the dispersion and consequently emission energy varies as a function of particle size distribution and that can be controlled by annealing parameters.

  7. Interpretation of rapid rises in hard X-rays and microwaves with the thermal conduction front model

    NASA Technical Reports Server (NTRS)

    Batchelor, D. A.

    1986-01-01

    Impulsive hard X-ray and microwave bursts with rise times from 0.1 to 10 seconds are discussed. Source areas calculated by the method of Crannell et al. (1978) were compared with source areas determined from Hinotori and the Hard X-ray Imaging Spectrometer (HXIS) images. The agreement strongly suggests that the method is valid. If the thermal conduction front model for the hard X-ray and microwave source is adopted, then the method enables derivation of area, density, magnetic field, and rise time from hard X-ray and microwave spectral observations. This approach was used to derive these parameters for several rapid impulsive rises in the flares of July 1, 1980, and May 21, 1984. It is shown that the model provides a consistent interpretation of the observations of these impulsive increases. Indeed, the model provides a way to calculate rise times from spectra alone (to within a factor of about three) over more than two orders of magnitude.

  8. Rapid, in Situ Synthesis of High Capacity Battery Anodes through High Temperature Radiation-Based Thermal Shock.

    PubMed

    Chen, Yanan; Li, Yiju; Wang, Yanbin; Fu, Kun; Danner, Valencia A; Dai, Jiaqi; Lacey, Steven D; Yao, Yonggang; Hu, Liangbing

    2016-09-14

    High capacity battery electrodes require nanosized components to avoid pulverization associated with volume changes during the charge-discharge process. Additionally, these nanosized electrodes need an electronically conductive matrix to facilitate electron transport. Here, for the first time, we report a rapid thermal shock process using high-temperature radiative heating to fabricate a conductive reduced graphene oxide (RGO) composite with silicon nanoparticles. Silicon (Si) particles on the order of a few micrometers are initially embedded in the RGO host and in situ transformed into 10-15 nm nanoparticles in less than a minute through radiative heating. The as-prepared composites of ultrafine Si nanoparticles embedded in a RGO matrix show great performance as a Li-ion battery (LIB) anode. The in situ nanoparticle synthesis method can also be adopted for other high capacity battery anode materials including tin (Sn) and aluminum (Al). This method for synthesizing high capacity anodes in a RGO matrix can be envisioned for roll-to-roll nanomanufacturing due to the ease and scalability of this high-temperature radiative heating process.

  9. Investigations of rapid thermal annealing induced structural evolution of ZnO: Ge nanocomposite thin films via GISAXS

    NASA Astrophysics Data System (ADS)

    Ceylan, Abdullah; Ozcan, Yusuf; Orujalipoor, Ilghar; Huang, Yen-Chih; Jeng, U.-Ser; Ide, Semra

    2016-06-01

    In this work, we present in depth structural investigations of nanocomposite ZnO: Ge thin films by utilizing a state of the art grazing incidence small angle x-ray spectroscopy (GISAXS) technique. The samples have been deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively, on single crystal Si(100) substrates. Transformation of Ge layers into Ge nanoparticles (Ge-np) has been initiated by ex-situ rapid thermal annealing of asprepared thin film samples at 600 °C for 30, 60, and 90 s under forming gas atmosphere. A special attention has been paid on the effects of reactive and nonreactive growth of ZnO layers on the structural evolution of Ge-np. GISAXS analyses have been performed via cylindrical and spherical form factor calculations for different nanostructure types. Variations of the size, shape, and distributions of both ZnO and Ge nanostructures have been determined. It has been realized that GISAXS results are not only remarkably consistent with the electron microscopy observations but also provide additional information on the large scale size and shape distribution of the nanostructured components.

  10. Amorphization and thermal stability of aluminum-based nanoparticles prepared from the rapid cooling of nanodroplets: effect of iron addition.

    PubMed

    Xiao, Shifang; Li, Xiaofan; Deng, Huiqiu; Deng, Lei; Hu, Wangyu

    2015-03-01

    Despite an intensive investigation on bimetallic nanoparticles, little attention has been paid to their amorphization in the past few decades. The study of amorphization on a nanoscale is of considerable significance for the preparation of amorphous nanoparticles and bulk metallic glass. Herein, we pursue the amorphization process of Al-based nanoparticles with classic molecular dynamics simulations and local structural analysis techniques. By a comparative study of the amorphization of pure Al and Fe-doped Al-based nanodroplets in the course of rapid cooling, we find that Fe addition plays a very important role in the vitrification of Al-based nanodroplets. Owing to the subsurface segregated Fe atoms with their nearest neighbors tending to form relatively stable icosahedral (ICO) clusters, the Fe-centred cluster network near the surface effectively suppresses the crystallization of droplets from surface nucleation and growth as the concentration of Fe attains a certain value. The glass formation ability of nanodroplets is suggested to be enhanced by the high intrinsic inner pressure as a result of small size and surface tension, combined with the dopant-inhibited surface nucleation. In addition, the effect of the size and the added concentration of nanoparticles on amorphization and the thermal stability of the amorphous nanoparticles are discussed. Our findings reveal the amorphization mechanism in Fe-doped Al-based nanoparticles and provide a theoretical guidance for the design of amorphous materials.

  11. Lab tests on the biodegradation of chemically dispersed oil should consider the rapid dilution that occurs at sea.

    PubMed

    Lee, Kenneth; Nedwed, Tim; Prince, Roger C; Palandro, David

    2013-08-15

    Most crude oils spread on open water to an average thickness as low as 0.1 mm. The application of dispersants enhances the transport of oil as small droplets into the water column, and when combined with the turbulence of 1 m waves will quickly entrain oil into the top 1 m of the water column, where it rapidly dilutes to concentrations less than 100 ppm. In less than 24 h, the dispersed oil is expected to mix into the top 10 m of the water column and be diluted to concentrations well below 10 ppm, with dilution continuing as time proceeds. Over the multiple weeks that biodegradation takes place, dispersed oil concentrations are expected to be below 1 ppm. Measurements from spills and wave basin studies support these calculations. Published laboratory studies focused on the quantification of contaminant biodegradation rates have used concentrations orders of magnitude greater than this, as it was necessary to ensure the concentrations of hydrocarbons and other chemicals were higher than the detection limits of chemical analysis. However, current analytical methods can quantify individual alkanes and PAHs (and their alkyl homologues) at ppb and ppm levels. To simulate marine biodegradation of dispersed oil at dilute concentrations commonly encountered in the field, laboratory studies should be conducted at similarly low hydrocarbon concentrations. PMID:23809292

  12. Rapid chemical decontamination of infectious CJD and scrapie particles parallels treatments known to disrupt microbes and biofilms.

    PubMed

    Botsios, Sotirios; Tittman, Sarah; Manuelidis, Laura

    2015-01-01

    Neurodegenerative human CJD and sheep scrapie are diseases caused by several different transmissible encephalopathy (TSE) agents. These infectious agents provoke innate immune responses in the brain, including late-onset abnormal prion protein (PrP-res) amyloid. Agent particles that lack detectable PrP sequences by deep proteomic analysis are highly infectious. Yet these agents, and their unusual resistance to denaturation, are often evaluated by PrP amyloid disruption. To reexamine the intrinsic resistance of TSE agents to denaturation, a paradigm for less resistant viruses and microbes, we developed a rapid and reproducible high yield agent isolation procedure from cultured cells that minimized PrP amyloid and other cellular proteins. Monotypic neuronal GT1 cells infected with the FU-CJD or 22L scrapie agents do not have complex brain changes that can camouflage infectious particles and prevent their disruption, and there are only 2 reports on infectious titers of any human CJD strain treated with chemical denaturants. Infectious titers of both CJD and scrapie were reduced by >4 logs with Thiourea-urea, a treatment not previously tested. A mere 5 min exposure to 4M GdnHCl at 22°C reduced infectivity by >5 logs. Infectious 22L particles were significantly more sensitive to denaturation than FU-CJD particles. A protocol using sonication with these chemical treatments may effectively decontaminate complicated instruments, such as duodenoscopes that harbor additional virulent microbes and biofilms associated with recent iatrogenic infections.

  13. Equilibrium unfolding of A. niger RNase: pH dependence of chemical and thermal denaturation.

    PubMed

    Kumar, Gundampati Ravi; Sharma, Anurag; Kumari, Moni; Jagannadham, Medicherla V; Debnath, Mira

    2011-08-01

    Equilibrium unfolding of A. niger RNase with chemical denaturants, for example GuHCl and urea, and thermal unfolding have been studied as a function of pH using fluorescence, far-UV, near-UV, and absorbance spectroscopy. Because of their ability to affect electrostatic interactions, pH and chemical denaturants have a marked effect on the stability, structure, and function of many globular proteins. ANS binding studies have been conducted to enable understanding of the folding mechanism of the protein in the presence of the denaturants. Spectroscopic studies by absorbance, fluorescence, and circular dichroism and use of K2D software revealed that the enzyme has α + β type secondary structure with approximately 29% α-helix, 24% β-sheet, and 47% random coil. Under neutral conditions the enzyme is stable in urea whereas GuHCl-induced equilibrium unfolding was cooperative. A. niger RNase has little ANS binding even under neutral conditions. Multiple intermediates were populated during the pH-induced unfolding of A. niger RNase. Urea and temperature-induced unfolding of A. niger RNase into the molten globule-like state is non-cooperative, in contrast to the cooperativity seen with the native protein, suggesting the presence of two parts/domains, in the molecular structure of A. niger RNase, with different stability that unfolds in steps. Interestingly, the GuHCl-induced unfolding of the A state (molten globule state) of A. niger RNase is unique, because a low concentration of denaturant not only induces structural change but also facilitates transition from one molten globule like state (A(MG1)) into another (I(MG2)).

  14. Chemical and stable-radiogenic isotope compositions of Polatlı-Haymana thermal waters (Ankara, Turkey)

    NASA Astrophysics Data System (ADS)

    Akilli, Hafize; Mutlu, Halim

    2016-04-01

    Complex tectono-magmatic evolution of the Anatolian land resulted in development of numerous geothermal areas through Turkey. The Ankara region in central Anatolia is surrounded by several basins which are filled with upper Cretaceous-Tertiary sediments. Overlying Miocene volcanics and step faulting along the margins of these basins played a significant role in formation of a number of low-enthalpy thermal waters. In this study, chemical and isotopic compositions of Polatlı and Haymana geothermal waters in the Ankara region are investigated. The Polatlı-Haymana waters with a temperature range of 24 to 43 °C are represented by Ca-(Na)-HCO3 composition implying derivation from carbonate type reservoir rocks. Oxygen-hydrogen isotope values of the waters are conformable with the Global Meteoric Water Line and point to a meteoric origin. The carbon isotopic composition in dissolved inorganic carbon (DIC) of the studied waters is between -21.8 and -1.34 permil (vs. VPDB). Marine carbonates and organic rocks are the main sources of carbon. There is a high correlation between oxygen (3.7 to 15.0 permil; VSMOW) and sulfur (-9.2 to 19.5 permil; VCDT) isotope compositions of sulfate in waters. The mixing of sulfate from dissolution of marine carbonates and terrestrial evaporite units is the chief process behind the observed sulfate isotope systematics of the samples. 87Sr/86Sr ratios of waters varying from 0.705883 to 0.707827 are consistent with those of reservoir rocks. The temperatures calculated by SO4-H2O isotope geothermometry are between 81 and 138 °C nearly doubling the estimates from chemical geothermometers.

  15. Chemical origin of the native ESR signals in thermally treated enamel and dentin

    NASA Astrophysics Data System (ADS)

    Bachmann, Luciano; Baffa, Oswaldo; Gomes, Anderson S. L.; Zezell, Denise M.

    2004-06-01

    Heating, crushing and exposure of dental enamel to sunlight and UV radiation can introduce paramagnetic signals similar to those following exposure to ionizing radiation. The objective of this work is to use infrared and electron spin resonance (ESR) spectra to study thermally treated enamel and dentin, and identify the chemical radical or mechanisms that produce these ambiguous ESR signals. Non-irradiated bovine teeth were used. ESR spectroscopy was performed in the X band and the infrared spectroscopy was performed on a FTIR spectrometer operating between 4000 cm -1 and 400 cm -1. The results show ESR signals in dentin heated at temperatures between 100°C and 1000°C and in enamel heated at temperatures ranging from 250°C to 1000°C. The ESR signal formed after heat treatment below 400°C could be assigned to degradation products of the organic material, while the ESR signals that predominate in tissues heated between 500°C and 900°C show a maximum amplitude at 750°C and could be assigned to the cyanate ion (NCO -).

  16. Semiconducting Properties of Nanostructured Amorphous Carbon Thin Films Incorporated with Iodine by Thermal Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Kamaruzaman, Dayana; Ahmad, Nurfadzilah; Annuar, Ishak; Rusop, Mohamad

    2013-11-01

    Nanostructured iodine-post doped amorphous carbon (a-C:I) thin films were prepared from camphor oil using a thermal chemical vapor deposition (TCVD) technique at different doping temperatures. The structural properties of the films were studied by field-emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDS), Raman, and Fourier transform infrared (FTIR) studies. FESEM and EDS studies showed successful iodine doping. FTIR and Raman studies showed that the a-C:I thin films consisted of a mixture of sp2- and sp3-bonded carbon atoms. The optical and electrical properties of a-C:I thin films were determined by UV-vis-NIR spectroscopy and current-voltage (I-V) measurement respectively. The optical band gap of a-C thin films decreased upon iodine doping. The highest electrical conductivity was found at 400 °C doping. Heterojunctions are confirmed by rectifying the I-V characteristics of an a-C:I/n-Si junction.

  17. Chemical-thermal quantitative methodology for carbon speciation in damage layers on building surfaces.

    PubMed

    Ghedini, Nadia; Sabbioni, Cristina; Bonazza, Alessandra; Gobbi, Giancarlo

    2006-02-01

    The issue of environment protection, including the conservation of the monumental heritage worldwide, is related to atmospheric pollution, and its future therefore depends on air pollutant reduction. Carbonaceous particles emitted by combustion processes are the main factors responsible for the blackening of buildings. The identification and evaluation of the carbon species constituting the noncarbonate fraction of total carbon in damage layers, particularly in urban areas, are required in orderto investigate atmospheric deposition on building surfaces. Since noncarbonate carbon contains organic and elemental carbon originating from various human activities, its measurement and speciation are crucial to the protection and conservation of monuments and ancient masonry, playing an important role both in the proposal of mitigation strategies and in the definition of conservation treatments. The availability of a correct, accurate, and reproducible analytical method for a complete carbon balance is essential in studying the effects of atmospheric pollutants on the environment, including those affecting cultural heritage. A chemical-thermal methodology was set up, and its sensitivity, accuracy, repeatability, and reproducibility were tested on appropriate standard samples of composition similar to the black crusts on stones and mortars. The results indicate thatthe technique satisfactorily distinguishes among carbon species, particularly those of anthropogenic origin, allowing a reliable evaluation of their quantities in damage layers. In view of the difficulties encountered in applying the thermo-optical methods adopted for the measurement of carbon filters, the proposed methodology contributes to filling the current gap in suitable and reliable analytical procedures in the field of cultural heritage protection. PMID:16509340

  18. [Recommendations for acute treatment for chemical and thermal burns of eyes and lids].

    PubMed

    Schrage, N F; Struck, H G; Gerard, M

    2011-10-01

    With these recommendations the authors want to improve the acute therapy of eye burns based on the literature and clinical experience. Due to the lack of studies with high evidential value we base these recommendations on the results of experimental work and reports of successfully treated eye burns. A development of this document by systematic research is necessary. Despite the limited knowledge, the collated facts are the current state of the art of treatment according to the knowledge and research of the authors. The most important clinical recommendation is to rinse a chemically or thermally burnt eye as soon and as extensively as possible. Any delay worsens the prognosis. Substances on the market for first aid have different levels of clinical evidence. Thus saline and amphoteric diphoterine have been evaluated in a prospective clinical study showing an advantage for the amphoter. Water, borate buffer, phosphate buffers and derivatives have never been proven to work in clinical applications. Nevertheless, they are recommended. Within experimental work in vitro we could show the value of polyvalent decontamination. Side-effects of phosphate buffers have been demonstrated in retrospective clinical and prospective experimental studies so that even in cases of beneficial effects on pH we cannot recommend these substances which propagate corneal calcification. Special types of burns, such as hydrofluoric acid need special treatment but as clinical studies are lacking only experimental data can offer suitable recommendations. PMID:22037724

  19. Chemical and Thermal Nonequilibrium Heat-Transfer Analysis for Hypervelocity, Low Reynolds Number Flow

    NASA Technical Reports Server (NTRS)

    Brown, Kevin G.

    1986-01-01

    Chemical and thermal nonequilibrium phenomena are studied in the stagnation region of a hypervelocity blunt body. This investigation is motivated by the need to predict the heat-transfer rate to the leading edge of aeromaneuvering orbital transfer vehicles. Flight speeds of approximately 10 km/s at altitudes of approximately 80 km are considered for body radii of 1-50 cm. The analysis is based on continuum theory and is applicable to the viscous and incipient merged layer regimes of rarefied flow. A two-species, two-temperature gas model is assumed. Comparisons are made with previous theories, experimental data, and results based on the thermodynamic equilibrium assumption. The equation accounting for vibrational nonequilibrium is presented and its effects on flow properties are discussed. Parameters requiring further investigation are identified. Preliminary results indicate that the inclusion of vibrational relaxation has little effect on the heat-transfer rate for a fully catalytic surface. However, vibrational nonequilibrium may increase the heat-transfer rate to a noncatalytic surface, depending on the degree of nonequilibrium.

  20. Chemical and thermal nonequilibrium heat transfer analysis for hypervelocity, low Reynolds number flow

    NASA Technical Reports Server (NTRS)

    Brown, K. G.

    1985-01-01

    Chemical and thermal nonequilibrium phenomena are studied in the stagnation region of a hypervelocity blunt body. This investigation is motivated by the need to predict the heat transfer rate to the leading edge of Aeromaneuvering Orbital Transfer Vehicles. Flight speeds of approximately 10 km/s at altitudes of approximately 80 km are considered for body radii of 1 to 50 cm. The analysis is based on continuum theory and is applicable to the viscous-layer and incipient-merged-layer rarefied-flow regimes. A two-species, two-temperature gas model is assumed. Comparisons are made with previous theories, experimental data, and results based on the thermodynamic equilibrium assumption. The equation accounting for vibrational nonequilibrium is presented and its effects on flow properties are discussed. Parameters which require further investigation are identified. Preliminary results indicate that the inclusion of vibrational relaxation has little effect on heat transfer rate for a catalytic surface. However, vibrational nonequilibrium may increase the heat transfer rate to a noncatalytic surface, depending on the degree of nonequilibrium.

  1. Thermal chemical vapor deposition (T-CVD) growth of carbon nanotubes on different metallic underlayers

    NASA Astrophysics Data System (ADS)

    Kim, S. M.; Gangloff, L.

    2011-06-01

    The synthesis of carbon nanotubes (CNTs) on various substrates by thermal chemical vapor deposition (T-CVD) (500-800 °C) is described. C 2H 2 (98% purity) is used as the carbon feedstock and the metallic underlayers, i.e., AlCu, Cu, Ag, Ta, and NiV are used. A crucial component is the insertion (or inclusion) of an Al layer between the metal and the catalyst, which then leads to the effective growth of CNTs. The types of CNTs (single or multi walled) could be dependent on the diameter of Al xO y nanoparticles that are formed during the annealing process. In situ mass spectroscopy reveals that the increase in CO 2 and H 2O with temperature, during the growth, could be correlated to the formation of longer CNTs (∼2 μm) on NiV and Ta due to their etching effects (i.e. C+CO 2→2CO and C+H 2O→CO+H 2).

  2. An approach to modeling coupled thermal-hydraulic-chemical processes in geothermal systems

    USGS Publications Warehouse

    Palguta, Jennifer; Williams, Colin F.; Ingebritsen, Steven E.; Hickman, Stephen H.; Sonnenthal, Eric

    2011-01-01

    Interactions between hydrothermal fluids and rock alter mineralogy, leading to the formation of secondary minerals and potentially significant physical and chemical property changes. Reactive transport simulations are essential for evaluating the coupled processes controlling the geochemical, thermal and hydrological evolution of geothermal systems. The objective of this preliminary investigation is to successfully replicate observations from a series of hydrothermal laboratory experiments [Morrow et al., 2001] using the code TOUGHREACT. The laboratory experiments carried out by Morrow et al. [2001] measure permeability reduction in fractured and intact Westerly granite due to high-temperature fluid flow through core samples. Initial permeability and temperature values used in our simulations reflect these experimental conditions and range from 6.13 × 10−20 to 1.5 × 10−17 m2 and 150 to 300 °C, respectively. The primary mineralogy of the model rock is plagioclase (40 vol.%), K-feldspar (20 vol.%), quartz (30 vol.%), and biotite (10 vol.%). The simulations are constrained by the requirement that permeability, relative mineral abundances, and fluid chemistry agree with experimental observations. In the models, the granite core samples are represented as one-dimensional reaction domains. We find that the mineral abundances, solute concentrations, and permeability evolutions predicted by the models are consistent with those observed in the experiments carried out by Morrow et al. [2001] only if the mineral reactive surface areas decrease with increasing clay mineral abundance. This modeling approach suggests the importance of explicitly incorporating changing mineral surface areas into reactive transport models.

  3. Yellowstone as an Analog for Thermal-Hydrological-Chemical Processes at Yucca Mountain

    SciTech Connect

    P. F. Dobson; T. J. Kneafsey; A. Simmons; J. Hulen

    2001-05-29

    Enhanced water-rock interaction resulting from the emplacement of heat-generating nuclear waste in the potential geologic repository at Yucca Mountain, Nevada, may result in changes to fluid flow (resulting from mineral dissolution and precipitation in condensation and boiling zones, respectively). Studies of water-rock interaction in active and fossil geothermal systems (natural analogs) provide evidence for changes in permeability and porosity resulting from thermal-hydrological-chemical (THC) processes. The objective of this research is to document the effects of coupled THC processes at Yellowstone and then examine how differences in scale could influence the impact that these processes may have on the Yucca Mountain system. Subsurface samples from Yellowstone National Park, one of the largest active geothermal systems in the world, contain some the best examples of hydrothermal self-sealing found in geothermal systems. We selected core samples from two USGS research drill holes from the transition zone between conductive and convective portions of the geothermal system (where sealing was reported to occur). We analyzed the core, measuring the permeability, porosity, and grain density of selected samples to evaluate how lithology, texture, and degree of hydrothermal alteration influence matrix and fracture permeability.

  4. Improving the Resistance of a Eukaryotic β-Barrel Protein to Thermal and Chemical Perturbation

    PubMed Central

    Gessmann, Dennis; Mager, Frauke; Naveed, Hammad; Arnold, Thomas; Weirich, Sara; Linke, Dirk; Liang, Jie; Nussberger, Stephan

    2013-01-01

    Beta-barrel membrane proteins have regular structures with extensive hydrogen bonding networks between their transmembrane (TM) β-strands, which stabilize their protein fold. Nevertheless, weakly stable TM regions exist, which are important for the protein function and interaction with other proteins. Here, we report on the apparent stability of human Tom40A, a member of the ‘mitochondrial porin family’ and main constituent of the mitochondrial protein-conducting channel TOM. Using a physical interaction model TmSIP for β-barrel membrane proteins, we have identified three β-strands unfavorable in the TM domain of the protein. Substitution of key residues inside these strands with hydrophobic amino acids results in a decreased sensitivity of the protein to chemical and/or thermal denaturation. The apparent melting temperature observed when denatured at a rate of one degree per minute, is shifted from 73 to 84 °C. Moreover, the sensitivity of the protein to denaturant agents is significantly lowered. Further, we find a reduced tendency for the mutated protein to form dimers. We propose that the identified weakly stable β-strands 1, 2 and 9 of human Tom40A play an important role in quaternary protein-protein interactions within the mammalian TOM machinery. Our results show that the use of empirical energy functions to model the apparent stability of β-barrel membrane proteins may be a useful tool in the field of nanopore bioengineering. PMID:21835183

  5. Improving the resistance of a eukaryotic β-barrel protein to thermal and chemical perturbations.

    PubMed

    Gessmann, Dennis; Mager, Frauke; Naveed, Hammad; Arnold, Thomas; Weirich, Sara; Linke, Dirk; Liang, Jie; Nussberger, Stephan

    2011-10-14

    β-Barrel membrane proteins have regular structures with extensive hydrogen-bond networks between their transmembrane (TM) β-strands, which stabilize their protein fold. Nevertheless, weakly stable TM regions, which are important for the protein function and interaction with other proteins, exist. Here, we report on the apparent stability of human Tom40A, a member of the "mitochondrial porin family" and main constituent of the mitochondrial protein-conducting channel TOM (translocase of the outer membrane). Using a physical interaction model, TmSIP, for β-barrel membrane proteins, we have identified three unfavorable β-strands in the TM domain of the protein. Substitution of key residues inside these strands with hydrophobic amino acids results in a decreased sensitivity of the protein to chemical and/or thermal denaturation. The apparent melting temperature observed when denatured at a rate of 1 °C per minute is shifted from 73 to 84 °C. Moreover, the sensitivity of the protein to denaturant agents is significantly lowered. Further, we find a reduced tendency for the mutated protein to form dimers. We propose that the identified weakly stable β-strands 1, 2 and 9 of human Tom40A play an important role in quaternary protein-protein interactions within the mammalian TOM machinery. Our results show that the use of empirical energy functions to model the apparent stability of β-barrel membrane proteins may be a useful tool in the field of nanopore bioengineering.

  6. Experimental studies of thermal and chemical interactions between oxide and silicide nuclear fuels with water

    SciTech Connect

    farahani, A.A.; Corradini, M.L.

    1995-09-01

    Given some transient power/cooling mismatch is a nuclear reactor and its inability to establish the necessary core cooling, energetic fuel-coolant interactions (FCI`s commonly called `vapor explosions`) could occur as a result of the core melting and coolant contact. Although a large number of studies have been done on energetic FCI`s, very few experiments have been performed with the actual fuel materials postulated to be produced in severe accidents. Because of the scarcity of well-characterized FCI data for uranium allows in noncommercial reactors (cermet and silicide fuels), we have conducted a series of experiments to provide a data base for the foregoing materials. An existing 1-D shock-tube facility was modified to handle depleted radioactive materials (U{sub 3}O{sub 8}-Al, and U{sub 3}Si{sub 2}-Al). Our objectives have been to determine the effects of the initial fuel composition and temperature and the driving pressure (triggering) on the explosion work output, dynamic pressures, transient temperatures, and the hydrogen production. Experimental results indicate limited energetics, mainly thermal interactions, for these fuel materials as compared to aluminum where more chemical reactions occur between the molten aluminum and water.

  7. Structural, compositional, and photoluminescence characterization of thermal chemical vapor deposition-grown Zn₃N₂ microtips

    SciTech Connect

    Wei, Pai-Chun E-mail: tsengcm@phys.sinica.edu.tw; Chang, Chung-Chieh; Hsu, Chia-Hao; Tong, Shih-Chang; Shen, Ji-Lin; Tseng, Chuan-Ming E-mail: tsengcm@phys.sinica.edu.tw

    2014-10-14

    The catalytic growth of Zn₃N₂ using guided-stream thermal chemical vapor deposition has been investigated within the parameter range of acicular growth to obtain uniform microtips with a high crystalline quality. The cubic anti-bixbyite crystal structure of Zn₃N₂ microtips and its related phonon mode are revealed by X-ray diffraction and Raman spectroscopy, respectively. The surface morphologies of pure and surface-oxidized Zn₃N₂ microtips are depicted by scanning electron microscopy and show the crack formation on the surface-oxidized Zn₃N₂ microtips. The spatial element distribution map confirms the VLS growth mechanism for Zn₃N₂ microtips and reveals the depth profile of zinc, nitrogen, oxygen, and nickel elements. Photoluminescence (PL) spectra of Zn₃N₂ microtips show a sharp infrared band-to-band emission peak at 1.34 eV with a full width at half maximum of ~100 meV and a very broad oxygen-related defect band emission peak centered at ~0.85 eV.

  8. Chemical-thermal quantitative methodology for carbon speciation in damage layers on building surfaces.

    PubMed

    Ghedini, Nadia; Sabbioni, Cristina; Bonazza, Alessandra; Gobbi, Giancarlo

    2006-02-01

    The issue of environment protection, including the conservation of the monumental heritage worldwide, is related to atmospheric pollution, and its future therefore depends on air pollutant reduction. Carbonaceous particles emitted by combustion processes are the main factors responsible for the blackening of buildings. The identification and evaluation of the carbon species constituting the noncarbonate fraction of total carbon in damage layers, particularly in urban areas, are required in orderto investigate atmospheric deposition on building surfaces. Since noncarbonate carbon contains organic and elemental carbon originating from various human activities, its measurement and speciation are crucial to the protection and conservation of monuments and ancient masonry, playing an important role both in the proposal of mitigation strategies and in the definition of conservation treatments. The availability of a correct, accurate, and reproducible analytical method for a complete carbon balance is essential in studying the effects of atmospheric pollutants on the environment, including those affecting cultural heritage. A chemical-thermal methodology was set up, and its sensitivity, accuracy, repeatability, and reproducibility were tested on appropriate standard samples of composition similar to the black crusts on stones and mortars. The results indicate thatthe technique satisfactorily distinguishes among carbon species, particularly those of anthropogenic origin, allowing a reliable evaluation of their quantities in damage layers. In view of the difficulties encountered in applying the thermo-optical methods adopted for the measurement of carbon filters, the proposed methodology contributes to filling the current gap in suitable and reliable analytical procedures in the field of cultural heritage protection.

  9. [Recommendations for acute treatment for chemical and thermal burns of eyes and lids].

    PubMed

    Schrage, N F; Struck, H G; Gerard, M

    2011-10-01

    With these recommendations the authors want to improve the acute therapy of eye burns based on the literature and clinical experience. Due to the lack of studies with high evidential value we base these recommendations on the results of experimental work and reports of successfully treated eye burns. A development of this document by systematic research is necessary. Despite the limited knowledge, the collated facts are the current state of the art of treatment according to the knowledge and research of the authors. The most important clinical recommendation is to rinse a chemically or thermally burnt eye as soon and as extensively as possible. Any delay worsens the prognosis. Substances on the market for first aid have different levels of clinical evidence. Thus saline and amphoteric diphoterine have been evaluated in a prospective clinical study showing an advantage for the amphoter. Water, borate buffer, phosphate buffers and derivatives have never been proven to work in clinical applications. Nevertheless, they are recommended. Within experimental work in vitro we could show the value of polyvalent decontamination. Side-effects of phosphate buffers have been demonstrated in retrospective clinical and prospective experimental studies so that even in cases of beneficial effects on pH we cannot recommend these substances which propagate corneal calcification. Special types of burns, such as hydrofluoric acid need special treatment but as clinical studies are lacking only experimental data can offer suitable recommendations.

  10. Vesta and Mercury: Predictive Models for Bulk Chemical Composition and Thermal and Physical Structure

    NASA Astrophysics Data System (ADS)

    Prentice, A. J.

    2011-12-01

    I present theoretical models for the bulk chemical composition and internal thermal and physical structure of Mercury and Vesta that can be tested by the NASA Messenger and Dawn spacecraft. The models are based on the modern Laplacian theory of solar system origin, according to which the planetary system condensed from a concentric family of orbiting gas rings (Prentice 1978 Moon and Planets 19 34; 2006 Publ. Astron. Soc. Australia 23 1; 2008 39th LPSC 1945.pdf - URL below). A key feature of this gas ring model is that the outer planets formed before the inner planets. This is because the gas rings are shed successively from the equator of the gravitationally contracting proto-solar cloud [PSC]. The initial physical size of the PSC matches the orbital radius of Neptune. Most likely, therefore, it was Jupiter which prevented the asteroids from accreting gravitationally to form a single body. If the PSC contracts homologously, the orbital distances of the rings Rn (n = 0,1,2, ... form a geometric sequence and their temperatures vary as Tn ˜ 1/Rn. The gas pressures on the mean orbits vary as pn ˜ 1/Rn4. The constants of proportionality for these relationships are chosen so that (i) the orbital spacings of the gas rings matches the observed mean orbital planetary spacings, and (ii) an iron-silicate fractionation process in the condensation at Mercury's orbit yields a condensate metal mass fraction Xmetal = 0.671 which accounts for Mercury's uncompressed density of 5.30 g/cm3. A numerical model for the radiogenic thermal evolution of a 2-zone differentiated (metal/rock) model of Mercury has been constructed on the basis of an adjusted metal mass fraction Xmetal = 0.7072. This ensures a compressed planet mean density which matches the observed value 5.426 g/cm3. The metal core is assumed to be initially molten with central temperature 2800 K. The Th and U abundances of the mantle are 0.75 ppm and 0.2 ppm. The Mg/Si atom ratio is 0.78. Al is tied up mostly in

  11. Chemical and thermal stability of refrigerant-lubricant mixture with metal

    SciTech Connect

    Huttenlocher, D.F. )

    1992-03-31

    This report presents completed sealed tube stability test results for the R-123/mineral oil mixture and preliminary results for seven of the eighteen contracted refrigerant-lubricant mixtures. The R-123 mixture was tested at 105, 150, and 175{degrees}C. The results obtained indicate that prolonged exposure to temperatures of about 150{degree}C and higher will lead to rapid chemical deterioration of the R-123/mineral oil system. Chlorotrifluoroethane (R-133a) and trifluoroethane (R-143a) have been identified as decomposition products of R-123. Testing at 150 and 175{degrees}C have been completed for the HCFC refrigerants R-22, R-124, and R-142b with either mineral oil or alkylbenzene lubricants. These mixtures were very stable at the indicated temperatures. Testing at a higher temperature level will be necessary to define their upper temperature limits. Similarily, partial test results are available for HFC refrigerants R-32, R-125, R-134a (two esters), and R-143a with pentaerythritol ester lubricants at the 150 and 175{degrees}C temperature levels. Again, all five mixtures were found to be extremely stable at the test temperatures and additional testing will be needed to establish their upper temperature limits.

  12. Vaporization or Chemical Reaction: Which controls the fate of contaminants treated by in situ thermal remediation?

    EPA Science Inventory

    Thermal remediation technologies, which includes steam enhanced extraction, electrical resistance heating, and thermal conductive heating, have been developed based on technologies employed by the enhanced oil recovery industry. Although mobilization and/or volatilization of con...

  13. Effects of rapid thermal annealing conditions on GaInNAs band gap blueshift and photoluminescence intensity

    SciTech Connect

    Liverini, V.; Rutz, A.; Keller, U.; Schoen, S.

    2006-06-01

    We have studied the effects of various conditions of rapid thermal annealing (RTA) on 10 nm GaInNAs/GaAs single quantum wells (SQWs) with fixed indium concentration and increasing nitrogen content to obtain photoluminescence (PL) in the telecom wavelength regime of 1.3 and 1.5 {mu}m. Specifically, we analyzed the results of annealing for a fixed short time but at different temperatures and for longer times at a fixed temperature. In all experiments, InGaAs SQWs with the same In concentration were used as references. For both RTA conditions, the well-known blueshift of the band gap energy and the PL intensity improvement show trends that reveal that these are unrelated effects. At high RTA temperatures the PL efficiency reaches a maximum and then drops independently of N content. On the contrary, the blueshift experiences a rapid increase up to 700 deg. C (strong blueshift regime) and it saturates above this temperature (weak blueshift regime). Both these blueshift regimes are related to the nitrogen content in the SQWs but in different ways. In the strong blueshift regime, we could obtain activation energy for the blueshift process in the range of 1.25 eV, which increases with N content. Analysis with high-resolution x-ray diffraction (HRXRD) shows that the blueshift experienced in this regime is not due to a stoichiometric change in the QW. In the weak blueshift regime, the blueshift, which is only partly due to In outdiffusion, saturates more slowly the higher the N content. Annealing at the same temperature (600 deg. C) for a longer time shows that the blueshift saturates earlier than the PL intensity and that samples with higher nitrogen experience a larger blueshift. Only a small In outdiffusion for annealing at high temperatures (>650 deg. C) and long duration was observed. However, this modest stoichiometric change does not explain the large blueshift experienced by the GaInNAs SQWs. We conclude that the mechanism responsible for the drastic blueshift after

  14. A Laboratory to Demonstrate the Effect of Thermal History on Semicrystalline Polymers Using Rapid Scanning Rate Differential Scanning Calorimetry

    ERIC Educational Resources Information Center

    Badrinarayanan, Prashanth; Kessler, Michael R.

    2010-01-01

    A detailed understanding of the effect of thermal history on the thermal properties of semicrystalline polymers is essential for materials scientists and engineers. In this article, we describe a materials science laboratory to demonstrate the effect of parameters such as heating rate and isothermal annealing conditions on the thermal behavior of…

  15. Effects of rapid thermal annealing on the structural and local atomic properties of ZnO: Ge nanocomposite thin films

    SciTech Connect

    Ceylan, Abdullah Ozcan, Sadan; Rumaiz, Abdul K.; Caliskan, Deniz; Ozbay, Ekmel; Woicik, J. C.

    2015-03-14

    We have investigated the structural and local atomic properties of Ge nanocrystals (Ge-ncs) embedded ZnO (ZnO: Ge) thin films. The films were deposited by sequential sputtering of ZnO and Ge thin film layers on z-cut quartz substrates followed by an ex-situ rapid thermal annealing (RTA) at 600 °C for 30, 60, and 90 s under forming gas atmosphere. Effects of RTA time on the evolution of Ge-ncs were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), hard x-ray photoelectron spectroscopy (HAXPES), and extended x-ray absorption fine structure (EXAFS). XRD patterns have clearly shown that fcc diamond phase Ge-ncs of sizes ranging between 18 and 27 nm are formed upon RTA and no Ge-oxide peak has been detected. However, cross-section SEM images have clearly revealed that after RTA process, Ge layers form varying size nanoclusters composed of Ge-ncs regions. EXAFS performed at the Ge K-edge to probe the local atomic structure of the Ge-ncs has revealed that as prepared ZnO:Ge possesses Ge-oxide but subsequent RTA leads to crystalline Ge structure without the oxide layer. In order to study the occupied electronic structure, HAXPES has been utilized. The peak separation between the Zn 2p and Ge 3d shows no significant change due to RTA. This implies little change in the valence band offset due to RTA.

  16. Rapid, Efficient and Versatile Strategies for Functionally Sophisticated Polymers and Nanoparticles: Degradable Polyphosphoesters and Anisotropic Distribution of Chemical Functionalities

    NASA Astrophysics Data System (ADS)

    Zhang, Shiyi

    conjugate by densely attaching the polyphosphoester block with azide-functionalized Paclitaxel by azide-alkyne Huisgen cycloaddition. This Paclitaxel drug conjugate provides a powerful platform for combinational cancer therapy and bioimaging due to its ultra-high Paclitaxel loading (> 65 wt%), high water solubility (>6.2 mg/mL for PTX) and easy functionalization. Another polyphosphoester-based nanoparticle system has been developed by a programmable process for the rapid and facile preparation of a family of nanoparticles with different surface charges and functionalities. The non-ionic, anionic, cationic and zwitterionic nanoparticles with hydrodynamic diameters between 13 nm to 21 nm and great size uniformity could be rapidly prepared from small molecules in 6 h or 2 days. The anionic and zwitterionic nanoparticles were designed to load silver ions to treat pulmonary infections, while the cationic nanoparticles are being applied to regulate lung injuries by serving as a degradable iNOS inhibitor conjugates. In addition, a direct synthesis of acid-labile polyphosphoramidate by organobase-catalyzed ring-opening polymerization and an improved two-step preparation of polyphosphoester ionomer by acid-assisted cleavage of phosphoramidate bonds on polyphosphoramidate were developed. Polyphosphoramidate and polyphosphoester ionomers may be applied to many applications, due to their unique chemical and physical properties.

  17. Chemical and hydrologic data for selected thermal-water wells and nonthermal springs in the Boise Area, southwesten Idaho

    USGS Publications Warehouse

    Young, H.W.; Parliman, D.J.; Mariner, R.H.

    1988-01-01

    Data were collected during January to July 1988 from 37 thermal-water wells and 3 nonthermal springs in the Boise area, southwestern Idaho. Included are well and spring locations; well-construction, water-level, and water-use information; hydrographs of water levels in 3 wells; chemical and isotopic analyses of water from 18 thermal-water wells and 3 nonthermal springs; and drillers ' logs from 23 wells. The purpose of the report is to make these data conveniently available to the public. (USGS)

  18. Changes in stratospheric thermal structure and chemical composition during a major stratwarm event of 2013

    NASA Astrophysics Data System (ADS)

    Nath, O.

    2015-12-01

    Ozone mass mixing ratio obtained from both European Centre for Medium Range Weather Forecasting (ECMWF) Reanalysis (ERA)-Interim and Sounding of Atmosphere by Broadband Emission Radiometry (SABER) instrument onboard Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite shows large values in the equatorial upper stratosphere during the occurrence of a major sudden stratospheric warming (SSW) in January 2013 preceded by a large reduction of planetary wave activity. However surprisingly equatorial temperature is found to decrease at pressure levels where the ozone mixing ratio is larger. The computed radiative heating rate using SBDART model also shows positive heating rate indicating that the temperature should increase in response to the ozone accumulation over equator. In addition to radiative heating due to ozone, heating rate due to the other dominant factors, namely, ascending motion and convergence of meridional heat flux which could influence the thermal structure of the equatorial stratosphere, are estimated. It is found that the observed low temperature during the SSW is mainly due to large upward motions. The estimated heating rates agree reasonably well with the observed heating rates at 10-8 hPa indicating the dominance of transport at lower stratosphere. The large discrepancy between the estimated and observed heating rates in the upper stratosphere may be due to the dominance of photochemistry. To study the variations of chemical constituents during the SSW, we investigated the volume mixing ratios (VMR) of different chemical components obtained from Microwave Limb Sounder onboard Aura satellite which show distinct variations at high and low latitudes in the upper stratosphere (30-50 km) during the occurrence of SSW in January 2013. In this study, it is being observed that zonally averaged H2O VMR (WVMR) is decreasing over equatorial region with the onset of the warming event. Oxidation of methane (CH4) is the primary source of

  19. Complete Numerical Simulation of Subcooled Flow Boiling in the Presence of Thermal and Chemical Interactions

    SciTech Connect

    V.K. Dhir

    2003-04-28

    At present, guidelines for fuel cycle designs to prevent axial offset anomalies (AOA) in pressurized water reactor (PWR) cores are based on empirical data from several operating reactors. Although the guidelines provide an ad-hoc solution to the problem, a unified approach based on simultaneous modeling of thermal-hydraulics, chemical, and nuclear interactions with vapor generation at the fuel cladding surface does not exist. As a result, the fuel designs are overly constrained with a resulting economic penalty. The objective of present project is to develop a numerical simulation model supported by laboratory experiments that can be used for fuel cycle design with respect to thermal duty of the fuel to avoid economic penalty, as well as, AOA. At first, two-dimensional numerical simulation of the growth and departure of a bubble in pool boiling with chemical interaction is considered. A finite difference scheme is used to solve the equations governing conservation of mass, momentum, energy, and species concentration. The Level Set method is used to capture the evolving liquid-vapor interface. A dilute aqueous boron solution is considered in the simulation. From numerical simulations, the dynamic change in concentration distribution of boron during the bubble growth shows that the precipitation of boron can occur near the advancing and receding liquid-vapor interface when the ambient boron concentration level is 3,000 ppm by weight. Secondly, a complete three-dimensional numerical simulation of inception, growth and departure of a single bubble subjected to forced flow parallel to the heater surface was developed. Experiments on a flat plate heater with water and with boron dissolved in the water were carried out. The heater was made out of well-polished silicon wafer. Numbers of nucleation sites and their locations were well controlled. Bubble dynamics in great details on an isolated nucleation site were obtained while varying the wall superheat, liquid subcooling

  20. CHEMICALLY VAPOR DEPOSITED YTTRIA-STABILIZED ZIRCONIA (YSZ) FOR THERMAL AND ENVIRONMENTAL BARRIER COATING

    SciTech Connect

    Varanasi, V.G.; Besmann, T.M.; Lothian, J.L.; Xu, W.; Starr, T.L.

    2003-04-22

    Yttria-stabilized zirconia (YSZ) is used as a thermal barrier coating (TBC) to protect super-alloy blades such as Mar-M247 or Rene-N5 during engine operation. The current method for YSZ fabrication for TBC applications is by air-plasma spraying (APS) or electron beam physical vapor deposition (EB-PVD) (Haynes 1997). APS gives reasonable deposition rates, but has a limited life and aging effects due to its porous and lamellar structure. The EB-PVD coatings are more stable and can accommodate thermomechanical stresses due to their characteristic strain-tolerant, columnar microstructure. EB-PVD, however, is primarily line-of-sight, which often leaves ''hidden areas'' uncoated, has low throughput, and has high capital cost. The process of metal-organic chemical vapor deposition (MOCVD) is investigated here as an economical alternative to EB-PVD and APS, with the potential for better overall coverage as well as the ability to produce thick (100-250 {micro}m), strain-tolerant, columnar coatings. MOCVD of YSZ involves the use of zirconium and yttrium organometallic precursors reacting with an oxygen source. Previous researchers have used diketonate or chloride precursors and oxygen (Wahl et al. 2001a, Wahl et al. 2001b, Yamane and Harai 1989). These precursors have low transport rates due to their low carrier solvent solubility (Varanasi et al. 2003). Solvated zirconium and yttrium butoxide precursors were investigated here due to their higher vapor pressures and high solvent solubility. This work uses predictive equilibrium modeling and experiments involving butoxide precursors for tetragonal YSZ fabrication.

  1. Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods

    NASA Astrophysics Data System (ADS)

    Popescu, Maria-Cristina; Popescu, Carmen-Mihaela; Lisa, Gabriela; Sakata, Yusaku

    2011-03-01

    The aim of this study is to find the most convenient procedure to make an easy differentiation between various kinds of wood. The wood samples used were: fir (Acer alba), poplar (Populus tremula), lime (Tillia cordata), sycamore (Acer pseudoplatanus), sweet cherry (Prunus avium), hornbeam (Carpinus betulus), walnut (Juglans regia), beech (Fagus sylvatica), oak (Quercus robur). The methods of investigation used were FT-IR spectroscopy, X-ray diffraction and thermogravimetry. By FT-IR spectroscopy, was observed that the ratio values of lignin/carbohydrate IR bands for wood decreases with increasing the average wood density, showing a decrease in lignin content. Also, the calculated values of lignin percentage from the FT-IR spectra are in very good correlation with the values from literature. Following the deconvolution process of the X-ray diffraction patterns, it was found that the degree of crystallinity, the apparent lateral crystallite size, the proportion of crystallite interior chains and cellulose fraction tend to increase with increasing of the wood density. Thermal analysis is able to give information about degradation temperatures for the principal components of different wood samples. The shape of DTG curves depends on the wood species that cause the enlargement of the peaks or the maxima of the decomposition step varies at larger or smaller temperatures ranges. The temperatures and weight loss percentage are particular for each kind of wood. This study showed that analytical methods used have the potential to be important sources of information for a quick evaluation of the chemical composition of wood samples.

  2. Benefits analysis for the production of fuels and chemicals using solar thermal energy. Final report

    SciTech Connect

    1982-05-01

    Numerous possibilities exist for using high temperature solar thermal energy in the production of various chemicals and fuels (Sun Fuels). Research and development activities have focused on the use of feedstocks such as coal and biomass to provide synthesis gas, hydrogen, and a variety of other end-products. A Decision Analysis technique geared to the analysis of Sun Fuels options was developed. Conventional scoring methods were combined with multi-attribute utility analysis in a new approach called the Multi-Attribute Preference Scoring (MAPS) system. MAPS calls for the designation of major categories of attributes which describe critical elements of concern for the processes being examined. The six major categories include: Process Demonstration; Full-Scale Process, Feedstock; End-Product Market; National/Social Considerations; and Economics. MAPS calls for each attribute to be weighted on a simple scale for all of the candidate processes. Next, a weight is assigned to each attribute, thus creating a multiplier to be used with each individual value to derive a comparative weighting. Last, each of the categories of attributes themselves are weighted, thus creating another multiplier, for use in developing an overall score. With sufficient information and industry input, each process can be ultimately compared using a single figure of merit. After careful examination of available information, it was decided that only six of the 20 candidate processes were adequately described to allow a complete MAPS analysis which would allow direct comparisons for illustrative purposes. These six processes include three synthesis gas processes, two hydrogen and one ammonia. The remaining fourteen processes were subjected to only a partial MAPS assessment.

  3. Thermal and chemical denaturation of the BRCT functional module of human 53BP1.

    PubMed

    Thanassoulas, Angelos; Nomikos, Michail; Theodoridou, Maria; Stavros, Philemon; Mastellos, Dimitris; Nounesis, George

    2011-10-01

    BRCTs are protein-docking modules involved in eukaryotic DNA repair. They are characterized by low sequence homology with generally well-conserved structure organization. In a considerable number of proteins, a pair of BRCT structural repeats occurs, connected with inter-BRCT linkers, variable in length, sequence and structure. Linkers may separate and control the relative position of BRCT domains as well as protect and stabilize the hydrophobic inter-BRCT interface region. Their vital role in protein function has been demonstrated by recent findings associating missense mutations in the inter-repeat linker region of the BRCT domain of BRCA1 (BRCA1-BRCT) to hereditary breast/ovarian cancer. The interaction of 53BP1 with the core domain of the p53 tumor suppressor involves the C-terminal BRCT repeat as well as the inert-BRCT linker of the tandem BRCT domain of 53BP1 (53BP1-BRCT). High-accuracy differential scanning calorimetry (DSC) and circular dichroism (CD) have been employed to characterize the heat-induced unfolding of 53BP1-BRCT domain. The calorimetric results provide evidence for unfolding to an intermediate, only partly unfolded state, which, based on the CD results, retains the secondary structural characteristics of the native protein. A direct comparison with the corresponding thermal processes for BRAC1-BRCT and BARD1-BRCT provides evidence that the observed behavior is analogous to BRCA1-BRCT even though the two domains differ substantially in the linker structure. Moreover, chemical denaturation experiments of the untagged 53BP1-BRCT and comparison with BRCA1 and BARD1 BRCTs show that no clear association can be drawn between the structural organization of the inter-BRCT linkers and the overall stability of the BRCT domains.

  4. Thermal/chemical degradation of ceramic candle filter materials. Final report, September 1988--October 1994

    SciTech Connect

    1995-01-01

    High-temperature ceramic candle filters are being developed for use in advanced power generation systems such as the Integrated Gasification Combined Cycle (IGCC), Pressurized Fluidized-Bed Combustor (PFBC), and Direct Coal-Fired Turbine (DCFT). The direct firing of coal produces particulate matter which must be removed to meet both environmental and process limitations. The ceramic candles increase the efficiency of the advanced power generation systems and protect downstream equipment from erosion and impingement of particulate matter in the hot exhaust gases. Ceramic candle filters are rigid, closed-ended (capped on one side) porous cylinders which generally have a flange on the open-ended side. The flange at the open end allows the candle to be suspended by a tubesheet in the filter vessel. Candle filters have shown promise, but have also encountered durability problems during use in hostile, high-temperature environments. Limitations in the candle lifetime lower the economic advantages of using candle filters for this application. Candles typically fail by cracking at the flange or in the body of the candle. The objective of this project was to test and analyze ceramic candle filter materials and to evaluate the degradation mechanisms. The tests were conducted such that the effects of each degradation mechanism could be examined. Separately. The overall objective of the project was to: (a) develop a better understanding of the thermal and chemical degradation mechanisms of ceramic candle filter materials in advanced coal utilization projects, (b) develop test procedures, and (c) recommend changes to increase filter lifetime. 15 refs., 67 figs., 17 tabs.

  5. Thermal Decomposition of NCN: Shock-Tube Study, Quantum Chemical Calculations, and Master-Equation Modeling.

    PubMed

    Busch, Anna; González-García, Núria; Lendvay, György; Olzmann, Matthias

    2015-07-16

    The thermal decomposition of cyanonitrene, NCN, was studied behind reflected shock waves in the temperature range 1790-2960 K at pressures near 1 and 4 bar. Highly diluted mixtures of NCN3 in argon were shock-heated to produce NCN, and concentration-time profiles of C atoms as reaction product were monitored with atomic resonance absorption spectroscopy at 156.1 nm. Calibration was performed with methane pyrolysis experiments. Rate coefficients for the reaction (3)NCN + M → (3)C + N2 + M (R1) were determined from the initial slopes of the C atom concentration-time profiles. Reaction R1 was found to be in the low-pressure regime at the conditions of the experiments. The temperature dependence of the bimolecular rate coefficient can be expressed with the following Arrhenius equation: k1(bim) = (4.2 ± 2.1) × 10(14) exp[-242.3 kJ mol(-1)/(RT)] cm(3) mol(-1) s(-1). The rate coefficients were analyzed by using a master equation with specific rate coefficients from RRKM theory. The necessary molecular data and energies were calculated with quantum chemical methods up to the CCSD(T)/CBS//CCSD/cc-pVTZ level of theory. From the topography of the potential energy surface, it follows that reaction R1 proceeds via isomerization of NCN to CNN and subsequent C-N bond fission along a collinear reaction coordinate without a tight transition state. The calculations reproduce the magnitude and temperature dependence of the rate coefficient and confirm that reaction R1 is in the low-pressure regime under our experimental conditions.

  6. A rapid transcriptional activation is induced by the dormancy-breaking chemical hydrogen cyanamide in kiwifruit (Actinidia deliciosa) buds.

    PubMed

    Walton, Eric F; Wu, Rong-Mei; Richardson, Annette C; Davy, Marcus; Hellens, Roger P; Thodey, Kate; Janssen, Bart J; Gleave, Andrew P; Rae, Georgina M; Wood, Marion; Schaffer, Robert J

    2009-01-01

    Budbreak in kiwifruit (Actinidia deliciosa) can be poor in locations that have warm winters with insufficient winter chilling. Kiwifruit vines are often treated with the dormancy-breaking chemical hydrogen cyanamide (HC) to increase and synchronize budbreak. This treatment also offers a tool to understand the processes involved in budbreak. A genomics approach is presented here to increase our understanding of budbreak in kiwifruit. Most genes identified following HC application appear to be associated with responses to stress, but a number of genes appear to be associated with the reactivation of growth. Three patterns of gene expression were identified: Profile 1, an HC-induced transient activation; Profile 2, an HC-induced transient activation followed by a growth-related activation; and Profile 3, HC- and growth-repressed. One group of genes that was rapidly up-regulated in response to HC was the glutathione S-transferase (GST) class of genes, which have been associated with stress and signalling. Previous budbreak studies, in three other species, also report up-regulated GST expression. Phylogenetic analysis of these GSTs showed that they clustered into two sub-clades, suggesting a strong correlation between their expression and budbreak across species.

  7. Thermal and chemical unfolding pathways of PaSdsA1 sulfatase, a homo-dimer with topologically interlinked chains.

    PubMed

    Aguirre, César; Goto, Yuji; Costas, Miguel

    2016-01-01

    Understanding the mechanisms as to how interlinked proteins entangle and fold is a challenge. PaSdsA1 sulfatase is a homo-dimer containing two zinc atoms per monomer. The monomer chains are interlinked in a dimerization domain. To study the unfolding pathways denaturation experiments were performed. In the native protein three forms coexist in chemical equilibrium, each with a different number of zinc atoms. In the chemical unfolding of the holo-dimers the entanglement of the chains is preserved and acts as a 'folding seed', allowing the unfolding process to be reversible. Thermal irreversible unfolding of the holo-dimers favours dissociation, producing monomers that are SDS-stabilized. The thermal unfolding of these monomers is reversible. However, it is not possible to form dimers from unfolded monomers.

  8. An alternative empirical model for the relationship between the bond valence and the thermal expansion rate of chemical bonds.

    PubMed

    Sidey, Vasyl

    2015-08-01

    The relationship between the bond valence s and the thermal expansion rate of chemical bonds (dr/dT) has been closely approximated by using the alternative three-parameter empirical model (dr/dT) = (u + vs)(-1/w), where u, v and w are the refinable parameters. Unlike the s-(dr/dT) model developed by Brown et al. [(1997), Acta Cryst. B53, 750-761], this alternative model can be optimized for particular s-(dr/dT) datasets in the least-squares refinement procedure. For routine calculations of the thermal expansion rates of chemical bonds, the alternative model with the parameters u = -63.9, v = 2581.0 and w = 0.647 can be recommended.

  9. Influence of thermal pretreatment on physical and chemical properties of kitchen waste and the efficiency of anaerobic digestion.

    PubMed

    Jin, Yiying; Li, Yangyang; Li, Jinhui

    2016-09-15

    The effects of thermal pretreatment at moderate temperatures (70, 80 and 90 °C) and high temperatures (120, 140 and 160 °C) over heating durations of 10-120 min on the physical and chemical properties of kitchen waste and on anaerobic digestion were investigated. The results show that thermal pretreatment significantly enhances the solubilisation of organic compounds (chemical oxygen demand, crude proteins, crude fats and volatile fatty acids) and their biodegradability during subsequent anaerobic digestion. High temperature and long heating duration are beneficial for the release and reduction of organic compounds, and the efficiency of subsequent anaerobic digestion is improved markedly under these conditions. Moreover, both the methane production rate and methane yield were observed to increase significantly at moderate treatment temperatures when the anaerobic digestion time was longer than 50 h. PMID:27240205

  10. Mountain-Scale Coupled Thermal-Hydrological-Chemical Processes Around the Potential Nuclear Waste Repository at Yucca Mountain

    SciTech Connect

    E. Sonnenthal; C. Haukwa; N. Spycher

    2001-06-04

    The objectives of this study were to evaluate the thermal-hydrological-chemical (THC) effects on flow and geochemistry in the unsaturated zone (UZ) at Yucca Mountain at a mountain scale. The major THC processes important in the UZ are (1) mineral precipitation/dissolution affecting flow and transport to and from the potential repository, and (2) changes in the compositions of gas and liquid that may seep into drifts.

  11. Impact of ex situ rapid thermal annealing on magneto-optical properties and oscillator strength of In(Ga)As quantum dots

    NASA Astrophysics Data System (ADS)

    Braun, T.; Betzold, S.; Lundt, N.; Kamp, M.; Höfling, S.; Schneider, C.

    2016-04-01

    We discuss the influence of a rapid thermal annealing step on the magneto-optical emission properties of In(Ga)As/GaAs quantum dots. We map out a strong influence of the growth and annealing parameters on the excitons' effective Landé g factors and in particular on their diamagnetic coefficients, which we directly correlate with the modification of the emitters' shape and material composition. In addition, we study the excitons' spontaneous emission lifetime as a function of the annealing temperature and the dot height and observe a strong increase of the emission rate with the quantum dot volume. The corresponding increase in oscillator strength yields fully consistent results with the analysis of the diamagnetic behavior. Specifically, we demonstrate that a rapid thermal annealing step of 850 ∘C can be employed to increase the oscillator strength of as-grown InAs/GaAs QDs by more than a factor of 2.

  12. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis.

    PubMed

    Zheng, Liange; Samper, Javier; Montenegro, Luis

    2011-09-25

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO(2)(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO(3)(-) and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

  13. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    SciTech Connect

    Zheng, L.; Samper, J.; Montenegro, L.

    2011-04-01

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO{sub 2}(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO{sub 3}{sup -} and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

  14. Thermal decomposition study of monovarietal extra virgin olive oil by simultaneous thermogravimetry/differential scanning calorimetry: relation with chemical composition.

    PubMed

    Vecchio, Stefano; Cerretani, Lorenzo; Bendini, Alessandra; Chiavaro, Emma

    2009-06-10

    Thermal decomposition of 12 monovarietal extra virgin olive oils from different geographical origins (eight from Italy, two from Spain, and the others from Tunisia) was evaluated by simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC) analyses. All extra virgin olive oils showed a complex multistep decomposition pattern with the first step that exhibited a quite different profile among samples. Thermal properties of the two peaks obtained by the deconvolution of the first step of decomposition by DSC were related to the chemical composition of the samples (triacylglycerols, fatty acids, total phenols and antioxidant activity). Onset temperatures of the thermal decomposition transition and T(p) values of both deconvoluted peaks as well as the sum of enthalpy were found to exhibit statistically significant correlations with chemical components of the samples, in particular palmitic and oleic acids and related triacylglycerols. Activation energy values of the second deconvoluted peak obtained by the application of kinetic procedure to the first step of decomposition were also found to be highly statistically correlated to the chemical composition, and a stability scale among samples was proposed on the basis of its values.

  15. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis.

    PubMed

    Zheng, Liange; Samper, Javier; Montenegro, Luis

    2011-09-25

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO(2)(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO(3)(-) and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions. PMID:21783271

  16. Thermal and Chemical Characterization of Composite Materials. MSFC Center Director's Discretionary Fund Final Report, Project No. ED36-18

    NASA Technical Reports Server (NTRS)

    Stanley, D. C.; Huff, T. L.

    2003-01-01

    The purpose of this research effort was to: (1) provide a concise and well-defined property profile of current and developing composite materials using thermal and chemical characterization techniques and (2) optimize analytical testing requirements of materials. This effort applied a diverse array of methodologies to ascertain composite material properties. Often, a single method of technique will provide useful, but nonetheless incomplete, information on material composition and/or behavior. To more completely understand and predict material properties, a broad-based analytical approach is required. By developing a database of information comprised of both thermal and chemical properties, material behavior under varying conditions may be better understood. THis is even more important in the aerospace community, where new composite materials and those in the development stage have little reference data. For example, Fourier transform infrared (FTIR) spectroscopy spectral databases available for identification of vapor phase spectra, such as those generated during experiments, generally refer to well-defined chemical compounds. Because this method renders a unique thermal decomposition spectral pattern, even larger, more diverse databases, such as those found in solid and liquid phase FTIR spectroscopy libraries, cannot be used. By combining this and other available methodologies, a database specifically for new materials and materials being developed at Marshall Space Flight Center can be generated . In addition, characterizing materials using this approach will be extremely useful in the verification of materials and identification of anomalies in NASA-wide investigations.

  17. Abolished thermal and mechanical antinociception but retained visceral chemical antinociception induced by butorphanol in mu-opioid receptor knockout mice.

    PubMed

    Ide, Soichiro; Minami, Masabumi; Ishihara, Kumatoshi; Uhl, George R; Satoh, Masamichi; Sora, Ichiro; Ikeda, Kazutaka

    2008-06-01

    Butorphanol is hypothesized to induce analgesia via opioid pathways, although the precise mechanisms for its effects remain unknown. In this study, we investigated the role of the mu-opioid receptor (MOP) in thermal, mechanical, and visceral chemical antinociception induced by butorphanol using MOP knockout (KO) mice. Butorphanol-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice compared with wildtype mice. The results obtained from our butorphanol-induced mechanical antinociception experiments, assessed by the Randall-Selitto test, were similar to the results obtained from the thermal antinociception experiments in these mice. Interestingly, however, butorphanol retained its ability to induce significant visceral chemical antinociception, assessed by the writhing test, in homozygous MOP-KO mice. The butorphanol-induced visceral chemical antinociception that was retained in homozygous MOP-KO mice was completely blocked by pretreatment with nor-binaltorphimine, a kappa-opioid receptor (KOP) antagonist. In vitro binding and cyclic adenosine monophosphate assays also showed that butorphanol possessed higher affinity for KOPs and MOPs than for delta-opioid receptors. These results molecular pharmacologically confirmed previous studies implicating MOPs, and partially KOPs, in mediating butorphanol-induced analgesia. PMID:18417173

  18. Investigation into the chemical, thermal and radiological changes of organic chemicals added to the underground storage tanks at Hanford

    SciTech Connect

    Samuels, W.D.; Camaioni, D.M.; Clauss, S.A.; Linehan, J.C.

    1996-10-01

    Uranium and plutonium production at the Hanford site produced large quantities of radioactive by-products and contaminated process chemicals that are presently stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of salt cakes, metal oxide sludges, and saturated aqueous brine solutions. Those waste storage tanks containing organic process chemicals mixed with nitrate/nitrite salt wastes are thought to be at risk for fuel-nitrate combustion accidents. To support resolution of this potential hazard, we are studying how organic chemicals added to the tanks may have {open_quotes}aged{close_quotes} or changed under storage conditions. Simulated wastes have been irradiated with gamma rays at temperatures between ambient and 90{degrees}C and subsequently analyzed quantitatively. The presentation will report findings on the rates and products of organic degradation. Reaction mechanisms and implications of the findings will be discussed.

  19. International Research Project on the Effects of Chemical Ageing of Polymers on Performance Properties: Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1996-01-01

    Work during the past six months has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted small changes in the molecular weight distribution. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Ultra- Violet Scanning Analysis, GC/Mass Spectrometry, Differential Scanning Calorimetry and Thermomechanical Analysis. In the ultra-violet analysis we noted the presence of an absorption band indicative of triene formation. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We also cast films at SWT and subjected these films to a refluxing methanol 1% ethylene diamine solution. An updated literature search was conducted using Dialog and DROLLS to identify any new papers that may have been published in the open literature since the start of this project. The updated literature search and abstracts are contained in the Appendix section of this report.

  20. Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces.

    PubMed

    Foley, Brian M; Hernández, Sandra C; Duda, John C; Robinson, Jeremy T; Walton, Scott G; Hopkins, Patrick E

    2015-08-12

    The high mobility exhibited by both supported and suspended graphene, as well as its large in-plane thermal conductivity, has generated much excitement across a variety of applications. As exciting as these properties are, one of the principal issues inhibiting the development of graphene technologies pertains to difficulties in engineering high-quality metal contacts on graphene. As device dimensions decrease, the thermal and electrical resistance at the metal/graphene interface plays a dominant role in degrading overall performance. Here we demonstrate the use of a low energy, electron-beam plasma to functionalize graphene with oxygen, fluorine, and nitrogen groups, as a method to tune the thermal and electrical transport properties across gold-single layer graphene (Au/SLG) interfaces. We find that while oxygen and nitrogen groups improve the thermal boundary conductance (hK) at the interface, their presence impairs electrical transport leading to increased contact resistance (ρC). Conversely, functionalization with fluorine has no impact on hK, yet ρC decreases with increasing coverage densities. These findings indicate exciting possibilities using plasma-based chemical functionalization to tailor the thermal and electrical transport properties of metal/2D material contacts. PMID:26125524