Science.gov

Sample records for rapid thermal oxides

  1. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2002-01-01

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  2. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2003-04-29

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  3. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2003-05-13

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  4. Rapid thermal cycling of metal-supported solid oxide fuel cellmembranes

    SciTech Connect

    Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

    2004-01-02

    Solid oxide fuel cell (SOFC) membranes were developed in which zirconia-based electrolyte thin films were supported by a composite metal/ceramic electrode, and were subjected to rapid thermal cycling between 200 and 800 C. The effects of this cycling on membrane performance were evaluated. The membranes, not yet optimized for performance, showed a peak power density of 350mW/cm2at 900 C in laboratory-sized SOFCs that was not affected by the thermal cycling. This resistance to cycling degradation is attributed to the close matching of thermal expansion coefficient of the cermet support electrode with that of the zirconia electrolyte.

  5. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion

    NASA Astrophysics Data System (ADS)

    Wickman, B.; Bastos Fanta, A.; Burrows, A.; Hellman, A.; Wagner, J. B.; Iandolo, B.

    2017-01-01

    Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes considerably. Herein, we present hematite thin films fabricated via one-step oxidation of Fe by rapid thermal processing (RTP). In particular, we investigate the effect of oxidation temperature on the PEC properties of hematite. Films prepared at 750 °C show the highest activity towards water oxidation. These films show the largest average grain size and the highest charge carrier density, as determined from electron microscopy and impedance spectroscopy analysis. We believe that the fast processing enabled by RTP makes this technique a preferred method for investigation of novel materials and architectures, potentially also on nanostructured electrodes, where retaining high surface area is crucial to maximize performance.

  6. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion

    PubMed Central

    Wickman, B.; Bastos Fanta, A.; Burrows, A.; Hellman, A.; Wagner, J. B.; Iandolo, B.

    2017-01-01

    Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes considerably. Herein, we present hematite thin films fabricated via one-step oxidation of Fe by rapid thermal processing (RTP). In particular, we investigate the effect of oxidation temperature on the PEC properties of hematite. Films prepared at 750 °C show the highest activity towards water oxidation. These films show the largest average grain size and the highest charge carrier density, as determined from electron microscopy and impedance spectroscopy analysis. We believe that the fast processing enabled by RTP makes this technique a preferred method for investigation of novel materials and architectures, potentially also on nanostructured electrodes, where retaining high surface area is crucial to maximize performance. PMID:28091573

  7. Copper silicide formation by rapid thermal processing and induced room-temperature Si oxide growth

    NASA Astrophysics Data System (ADS)

    Setton, M.; Van der Spiegel, J.; Rothman, B.

    1990-07-01

    The growth of copper silicide has been studied by rapid thermal processing (RTP) of 500 Å of Cu on Si substrates. Interaction between the diffusing metal and Si starts at 250-300 °C. Annealing at higher temperatures yields complete silicidation to Cu3Si. This leads to strong modifications of the Auger line shapes of both Si and Cu. A plasmon peak located 20 eV below the main peak is the fingerprint in the Cu spectrum. Strong features at 80, 85.6, 89.2, and 93.2 eV as well as a 1 eV shift of the 90.4 eV peak appear in the Si L2,3VV spectrum. Whether for Cu films annealed in nitrogen or in vacuum, exposure of the silicide to air results in the growth of silicon oxide at room temperature and continues until the silicide layer is totally converted. This repeatable and controllable oxidation of silicon is accompanied by changes in resistivity and color reflecting the extent of the process. For Cu/CoSi2/Si structures, the cobalt silicide acts as a transport medium for the growth of the copper silicide and also serves as a cap preventing the oxidation of the final CoSi2/Cu3Si/Si contacts

  8. Physico-chemical and electrical properties of rapid thermal oxides on Ge-rich SiGe heterolayers

    NASA Astrophysics Data System (ADS)

    Das, R.; Bera, M. K.; Chakraborty, S.; Saha, S.; Woitok, J. F.; Maiti, C. K.

    2006-11-01

    Rapid thermal oxidation of high-Ge content (Ge-rich) Si 1- xGe x ( x = 0.85) layers in dry O 2 ambient has been investigated. High-resolution X-ray diffraction (HRXRD) and strain-sensitive two-dimensional reciprocal space mapping X-ray diffractometry (2D-RSM) are employed to investigate strain relaxation and composition of as-grown SiGe alloy layers. Characterizations of ultra thin oxides (˜6-8 nm) have been performed using Fourier transform infrared spectroscopy (FTIR) and high-resolution X-ray photoelectron spectroscopy (HRXPS). Formation of mixed oxide i.e., (SiO 2 + GeO 2) and pile-up of Ge at the oxide/Si 1- xGe x interface have been observed. Enhancement in Ge segregation and reduction of oxide thickness with increasing oxidation temperature are reported. Interface properties and leakage current behavior of the rapid thermal oxides have been studied by capacitance-voltage (C-V) and current-voltage (J-V) techniques using metal-oxide-semiconductor capacitor (MOSCAP) structures and the results are reported.

  9. Rapid low-temperature processing of metal-oxide thin film transistors with combined far ultraviolet and thermal annealing

    NASA Astrophysics Data System (ADS)

    Leppäniemi, J.; Ojanperä, K.; Kololuoma, T.; Huttunen, O.-H.; Dahl, J.; Tuominen, M.; Laukkanen, P.; Majumdar, H.; Alastalo, A.

    2014-09-01

    We propose a combined far ultraviolet (FUV) and thermal annealing method of metal-nitrate-based precursor solutions that allows efficient conversion of the precursor to metal-oxide semiconductor (indium zinc oxide, IZO, and indium oxide, In2O3) both at low-temperature and in short processing time. The combined annealing method enables a reduction of more than 100 °C in annealing temperature when compared to thermally annealed reference thin-film transistor (TFT) devices of similar performance. Amorphous IZO films annealed at 250 °C with FUV for 5 min yield enhancement-mode TFTs with saturation mobility of ˜1 cm2/(V.s). Amorphous In2O3 films annealed for 15 min with FUV at temperatures of 180 °C and 200 °C yield TFTs with low-hysteresis and saturation mobility of 3.2 cm2/(V.s) and 7.5 cm2/(V.s), respectively. The precursor condensation process is clarified with x-ray photoelectron spectroscopy measurements. Introducing the FUV irradiation at 160 nm expedites the condensation process via in situ hydroxyl radical generation that results in the rapid formation of a continuous metal-oxygen-metal structure in the film. The results of this paper are relevant in order to upscale printed electronics fabrication to production-scale roll-to-roll environments.

  10. Rapid low-temperature processing of metal-oxide thin film transistors with combined far ultraviolet and thermal annealing

    SciTech Connect

    Leppäniemi, J. Ojanperä, K.; Kololuoma, T.; Huttunen, O.-H.; Majumdar, H.; Alastalo, A.; Dahl, J.; Tuominen, M.; Laukkanen, P.

    2014-09-15

    We propose a combined far ultraviolet (FUV) and thermal annealing method of metal-nitrate-based precursor solutions that allows efficient conversion of the precursor to metal-oxide semiconductor (indium zinc oxide, IZO, and indium oxide, In{sub 2}O{sub 3}) both at low-temperature and in short processing time. The combined annealing method enables a reduction of more than 100 °C in annealing temperature when compared to thermally annealed reference thin-film transistor (TFT) devices of similar performance. Amorphous IZO films annealed at 250 °C with FUV for 5 min yield enhancement-mode TFTs with saturation mobility of ∼1 cm{sup 2}/(V·s). Amorphous In{sub 2}O{sub 3} films annealed for 15 min with FUV at temperatures of 180 °C and 200 °C yield TFTs with low-hysteresis and saturation mobility of 3.2 cm{sup 2}/(V·s) and 7.5 cm{sup 2}/(V·s), respectively. The precursor condensation process is clarified with x-ray photoelectron spectroscopy measurements. Introducing the FUV irradiation at 160 nm expedites the condensation process via in situ hydroxyl radical generation that results in the rapid formation of a continuous metal-oxygen-metal structure in the film. The results of this paper are relevant in order to upscale printed electronics fabrication to production-scale roll-to-roll environments.

  11. Thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  12. Effects of Rapid Thermal Annealing and Different Oxidants on the Properties of LaxAlyO Nanolaminate Films Deposited by Atomic Layer Deposition.

    PubMed

    Fei, Chenxi; Liu, Hongxia; Wang, Xing; Zhao, Lu; Zhao, Dongdong; Feng, Xingyao

    2017-12-01

    A comparative study of different sequences of two metal precursors [trimethylaluminum (TMA) and Tris(isopropylcyclopentadienyl) lanthanum (La((i)PrCp)3)] for atomic layer deposition (ALD) lanthanum aluminum oxide (LaxAlyO) films is carried out. The percentage compositions of C and N impurity of LaxAlyO films were investigated using in situ X-ray photoelectron spectroscopy (XPS). The effects of different oxidants on the physical and chemical properties and electrical characteristics of LaxAlyO films are studied before and after annealing. Preliminary testing results indicate that the impurity level of LaxAlyO films grown with different oxidants can be well controlled before and after annealing. Analysis indicates the rapid thermal annealing (RTA) and kinds of oxidants have significant effects on the equivalent oxide thickness (EOT), dielectric constant, electrical properties, and stability of LaxAlyO films. Additionally, the change of chemical bond types of rapid thermal annealing effects on the properties of LaxAlyO films are grown with different oxidants also investigated by XPS.

  13. Rapid thermal processing by stamping

    DOEpatents

    Stradins, Pauls; Wang, Qi

    2013-03-05

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  14. UV Sensing Properties of ZnO Nanowires Grown on Glass by Rapid Thermal Oxidation of Zinc Films

    NASA Astrophysics Data System (ADS)

    Mihailova, I.; Gerbreders, V.; Sļedevskis, Ē.; Bulanovs, A.; Paškevičs, V.

    2014-08-01

    The nanostructured ZnO thin films were successfully synthesized by rapid thermal oxidation of metallic zinc films without catalysts or additives. On the surface of thin films the formation of ZnO nanowires was observed. In the work, the optical and electrical parameters and photoresponses of the obtained ZnO thin films were investigated. Nanostructured thin films of the type have a promising potential for the use in optoelectronics, sensor technique and biomedical sciences Šī darba galvenais mērķis bija izpētīt UV fotodetektora izgatavošanas iespējamību uz nanostrukturētu ZnO plāno kārtiņu bāzes, kas sintezētas termiski oksidējot Zn plānās kārtiņas. Termiskās oksidēšanas rezultātā tika novērota adatveidīgu ZnO nanostruktūru formēšanās uz kārtiņu virsmas. Izpētītas iegūto paraugu optiskās un elektriskās īpašības, kā arī fotoreakcija. Tika konstatēts, ka iegūto nanostrukturēto ZnO kārtiņu elektriskā vadītspēja ir ārkārtīgi jutīga pret UV starojumu, taču, apstarojot ar redzamo gaismu, strāva paliek gandrīz nemainīga. Kārtiņu elektriskās vadītspējas fotoreakcija ir atkarīga arī no nanostruktūru daudzuma uz virsmas. Visaugstākā UV fotovadītspēja tika novērota paraugam ar vislielāko ZnO nanoadatu koncentrāciju. UV gaismas inducētais vadītspējas pieaugums ļauj ZnO nanoadatas reversīvi pārslēgt starp stāvokļiem "ieslēgts" un "izslēgts". Līdz ar to, šīs fotojutīgās nanoadatas var tikt izmantotas UV gaismas detektoros un optiskajos slēdžos. Šādas nanostrukturētas plānās kārtiņas var tikt pielietotas arī ķīmiskajos un bioloģiskajos sensoros, pjezoelektriskajās ierīcēs, saules elementos utt. Turklāt, šādu nanostrukturēto ZnO plāno kārtiņu sintēzes process ir salīdzinoši lēts un vienkāršs, dodot iespēju liela mēroga produkcijas ražošanai

  15. Surface morphology and electrical transport of rapid thermal annealed chromium-doped indium zinc oxides: The influence of zinc interstitials and out-diffusion

    SciTech Connect

    Hsu, C. Y.

    2013-12-09

    We investigate the complex impedance (CI) spectra of chromium-doped indium zinc oxide (CIZO) films with different rapid thermal annealing (RTA) temperatures. The CI spectra drawn from the impedance contributions of Zn-O and In-O bondings in CIZO films were analyzed by two sets of parallel resistance and capacitance components in series. The result demonstrates that zinc interstitials controls electron concentration and transition of electrical transport from semiconducting to metallic. At higher RTA temperature, high-density zinc interstitial promotes Zn atom diffusion from the surface, modifying surface morphology.

  16. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD.

    PubMed

    Pedersen, Joachim D; Esposito, Heather J; Teh, Kwok Siong

    2011-10-31

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fused quartz, glass, muscovite, c- and a-plane sapphire (Al2O3), gold, titanium, and polyimide. X-ray diffraction indicates the grains of as-deposited ZnO to be highly textured, with the fastest growth occurring along the c-axis. The individual grains are observed to be faceted by (103) planes which are the slowest growth planes. ZnO nanocrystalline films of nominal thicknesses of 200 nm are deposited at substrate temperatures of 330°C and 160°C on metal/ceramic substrates and polymer substrates, respectively. In addition, 20-nm- and 200-nm-thick films are also deposited on quartz substrates for optical characterization. At optical spectra above 375 nm, the measured optical transmittance of a 200-nm-thick ZnO film is greater than 80%, while that of a 20-nm-thick film is close to 100%. For a 200-nm-thick ZnO film with an average grain size of 100 nm, a four-point probe measurement shows electrical conductivity of up to 910 S/m. Annealing of 200-nm-thick ZnO films in 300 sccm pure argon at temperatures ranging from 750°C to 950°C (at homologous temperatures between 0.46 and 0.54) alters the textures and morphologies of the thin film. Based on scanning electron microscope images, higher annealing temperatures appear to restructure the ZnO nanocrystalline films to form nanorods of ZnO due to a combination of grain boundary diffusion and bulk diffusion.PACS: films and coatings, 81.15.-z; nanocrystalline materials, 81.07.Bc; II-VI semiconductors, 81.05.Dz.

  17. RTDS: A continuous, rapid, thermal synthesis mode

    SciTech Connect

    Matson, D.W.; Linehan, J.C.; Darab, J.D.; Buehler, M.F.; Phelps, M.R.; Neuenschwander, G.G.

    1995-04-01

    The Rapid Thermal Decomposition of precursors in Solution (RTDS) Process is a flow-through hydrothermal powder synthesis method capable of producing nanophase oxide and oxyhydroxide catalysts and catalyst precursors. The RTDS technique utilizes a brief exposure of dissolved precursors to high pressure/high temperature aqueous conditions to initiate crystallite nucleation. The resulting nanocrystalline suspension is removed from the hydrothermal environment through a pressure let-down device before significant crystallite growth can occur. The RTDS process is discussed as a method to produce nanocrystalline iron oxide and oxyhydroxide powders that exhibit high activity as carbon-carbon bond cleavage catalyst precursors. Nanocrystalline TiO{sub 2} and ZrO{sub 2} powders having prospective catalytic applications are also produced by the RTDS process.

  18. Fabrication and Characterization of NOR-Type Tri-Gate Flash Memory with Improved Inter-Poly Dielectric Layer by Rapid Thermal Oxidation

    NASA Astrophysics Data System (ADS)

    Kamei, Takahiro; Liu, Yongxun; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Ishikawa, Yuki; Hayashida, Tetsuro; Sakamoto, Kunihiro; Ogura, Atsushi; Masahara, Meishoku

    2012-06-01

    Floating-gate (FG)-type tri-gate flash memories with an improved inter-poly dielectric (IPD) layer have been successfully fabricated by introducing a newly developed rapid thermal oxidation (RTO) process, and their NOR-mode operation including threshold voltage (Vt) variations before and after one program/erase (P/E) cycle have been systematically investigated. It was experimentally confirmed that the gate breakdown voltage (BVg) is greatly increased from 12 to 19 V by introducing the RTO process thanks to the high quality and thin thermal silicon dioxide (SiO2) formation on the FG surface and etched edge regions, which effectively blocks the leakage pass of the IPD layer. A source-drain (SD) breakdown voltage (BVDS) as high as 4.5 V was obtained even when the gate length (Lg) was as small as 117 nm. It was also experimentally confirmed that the memory window increases with increasing gate voltage (Vg) in NOR-mode programming thanks to the increased efficiency of channel hot electron (CHE) injection. The developed tri-gate flash memory with improved IPD layer is useful for the further scaling of NOR-type flash memory.

  19. Rapid thermal reduced graphene oxide/Pt-TiO2 nanotube arrays for enhanced visible-light-driven photocatalytic reduction of CO2

    NASA Astrophysics Data System (ADS)

    Sim, Lan Ching; Leong, Kah Hon; Saravanan, Pichiah; Ibrahim, Shaliza

    2015-12-01

    In this study, a complicate natural photosynthesis process was prototyped through a photocatalysis process by reducing CO2 to light hydrocarbon, CH4. The composite photocatalyst employed for this study utilized Pt nanoparticles (Pt NPs) and rapid thermal reduced graphene oxide (RGO) deposited over the surface of the TiO2 nanotube arrays (TNTs). The existence and contribution of both Pt NPs and RGO in the composite was confirmed through various analytical techniques including XRD, HRTEM, FESEM, Raman, FTIR, XPS, UV-DRS and photoluminescence (PL) analysis. The TNTs in the composite exhibited pure anatase phase. The absorption bands at around 450 nm obtained from UV-DRS spectrum supported the existence of LSPR phenomenon of Pt NPs. The promising lower work function of RGO promoted the electrons transfer from TNTs to RGO efficiently. The successful depositions of Pt and RGO onto the surface of TNTs contributed for the improved photocatalytic activity (total CH4 yield of 10.96 μmol m-2) in the reduction of CO2 over TNTs and Pt-TNTs. Both of RGO and Pt NPs are equally important to exert a significant impact on the improvement of CH4 production rates.

  20. Rapid Solidification of Magnetic Oxides

    NASA Technical Reports Server (NTRS)

    Kalonji, G.; Deguire, M. R.

    1985-01-01

    The enhanced control over microstructural evolution inherent in rapid solidification processing techniques are exploited to create novel ceramic magnetic materials. The great sensitivity of magnetic properties to local structure provides a powerful probe both for the study of structure and of microscopic solidification mechanisms. The first system studied is the SrO-Fe2O3 binary, which contains the commercially important hard magnetic compound strontium hexaferrite. The products were analyzed by transmission electron microscopy, Mossbauer spectroscopy, magnetic measurements, and differential thermal analysis. As-quenched ribbons contain high concentrations of super-paramagnetic particles, 80 to 250 Angstroms in diameter, in a glassy matrix. This suggests the possibility of crystallizing monodomain strontium hexaferrite during subsequent heat treatment, with a resulting increase in coercivity over conventionally processed ferrite magnets. That magnetic properties can be controlled in solidification processing by varying the quench rate is demonstrated.

  1. Rapid thermal conditioning of sewage sludge

    NASA Astrophysics Data System (ADS)

    Zheng, Jianhong

    Rapid thermal conditioning (RTC) is a developing technology recently applied to sewage sludge treatment. Sludge is heated rapidly to a reaction temperature (up to about 220sp°C) under sufficient pressure to maintain the liquid phase. Reaction is quenched after 10 to 30 seconds when the mixture of sludge and steam pass through a pressure let-down valve. This process reduces the amount of sludge requiring land disposal, eliminates the need for polymer coagulant, improves dewaterability, increases methane production, and further reduces the concentration of pathogens. The odor problem associated with traditional thermal conditioning processes is largely minimized. Ammonia removal is readily integrated with the process. For this research, a pilot unit was constructed capable of processing 90 liters of sludge per hour. Over 22 runs were made with this unit using sludge from New York City Water Pollution Control Plants (WPCP). Sludges processed in this equipment were tested to determine the effect of RTC operating conditions on sludge dewaterability, biodegradability, and other factors affecting the incorporation of RTC into wastewater treatment plants. Dewaterability of thermally conditioned sludge was assessed for cetrifugeability and filterability. Bench scale centrifugation was used for evaluating centrifugeability, pressure filtration and capillary suction time (CST) for filterability. A mathematical model developed for centrifuge dewatering was used to predict the effect of RTC on full scale centrifuge performance. Particle size distribution and solids density of raw and treated PDS were also analyzed. An observed increase in sludge solids density at least partially explains its improved centrifugeability. An investigation of thermally conditioned amino acids showed that the L-isomer is highly biodegradable while the D-isomers are generally less so. Glucose is highly biodegradable, but rapidly becomes refractory as thermal conditioning time is lengthened. This

  2. Ceramic thermal barrier coating for rapid thermal cycling applications

    DOEpatents

    Scharman, Alan J.; Yonushonis, Thomas M.

    1994-01-01

    A thermal barrier coating for metal articles subjected to rapid thermal cycling includes a metallic bond coat deposited on the metal article, at least one MCrAlY/ceramic layer deposited on the bond coat, and a ceramic top layer deposited on the MCrAlY/ceramic layer. The M in the MCrAlY material is Fe, Ni, Co, or a mixture of Ni and Co. The ceramic in the MCrAlY/ceramic layer is mullite or Al.sub.2 O.sub.3. The ceramic top layer includes a ceramic with a coefficient of thermal expansion less than about 5.4.times.10.sup.-6 .degree.C.sup.-1 and a thermal conductivity between about 1 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1 and about 1.7 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1.

  3. Methods and compositions for rapid thermal cycling

    DOEpatents

    Beer, Neil Reginald; Benett, William J.; Frank, James M.; Deotte, Joshua R.; Spadaccini, Christopher

    2015-10-27

    The rapid thermal cycling of a material is targeted. A microfluidic heat exchanger with an internal porous medium is coupled to tanks containing cold fluid and hot fluid. Fluid flows alternately from the cold tank and the hot tank into the porous medium, cooling and heating samples contained in the microfluidic heat exchanger's sample wells. A valve may be coupled to the tanks and a pump, and switching the position of the valve may switch the source and direction of fluid flowing through the porous medium. A controller may control the switching of valve positions based on the temperature of the samples and determined temperature thresholds. A sample tray for containing samples to be thermally cycled may be used in conjunction with the thermal cycling system. A surface or internal electrical heater may aid in heating the samples, or may replace the necessity for the hot tank.

  4. C-V and DLTS Characterization of Rapid Thermal Oxides on Si0.887Ge0.113 and Si0.8811Ge0.113C0.0059 Alloys

    NASA Astrophysics Data System (ADS)

    Feng, W.; Choi, W. K.; Bera, L. K.; Mi, J.; YANG, C. Y.

    Capacitance versus voltage (C-V) and deep level transient spectroscopy (DLTS) characterization was performed on rapid thermal oxides (RTO) on Si0.887Ge0.113 and Si0.8811Ge0.113C0.0059 alloys. A high interface trap density (~ 1012 eV-1 cm-2) and a high apparent doping level were obtained for the SiO2/Si0.8811Ge0.113C0.0059 samples. The C-V results at different temperatures showed that the high apparent doping levels of the SiO2/Si0.8811Ge0.113C0.0059 samples might be due to the formation of SiC-related defects introduced by the high temperature oxidation process.

  5. Low Gravity Rapid Thermal Analysis of Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Ethridge, Edwin C.; Smith, Guy A.

    2004-01-01

    It has been observed by two research groups that ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) glass crystallization is suppressed in microgravity. The mechanism for this phenomenon is unknown at the present time. In order to better understand the mechanism, an experiment was performed on NASA's KC135 reduced gravity aircraft to obtain quantitative crystallization data. An apparatus was designed and constructed for performing rapid thermal analysis of milligram quantities of ZBLAN glass. The apparatus employs an ellipsoidal furnace allowing for rapid heating and cooling. Using this apparatus nucleation and crystallization kinetic data was obtained leading to the construction of time-temperature-transformation curves for ZBLAN in microgravity and unit gravity.

  6. Separation medium containing thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Herrera-Alonso, Margarita (Inventor)

    2012-01-01

    A separation medium, such as a chromatography filling or packing, containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g, wherein the thermally exfoliated graphite oxide has a surface that has been at least partially functionalized.

  7. RAPID ARSENITE OXIDATION BY THERMUS AQUATICUS AND THERMUS THERMOPHILUS: FIELD AND LABORATORY INVESTIGATIONS. (R826189)

    EPA Science Inventory

    Thermus aquaticus and Thermus thermophilus, common inhabitants of terrestrial hot springs and thermally polluted domestic and industrial waters, have been found to rapidly oxidize arsenite to arsenate. Field investigations at a hot spring in Yellowstone National Park revealed ...

  8. Rapid PCR thermocycling using microscale thermal convection.

    PubMed

    Muddu, Radha; Hassan, Yassin A; Ugaz, Victor M

    2011-03-05

    Many molecular biology assays depend in some way on the polymerase chain reaction (PCR) to amplify an initially dilute target DNA sample to a detectable concentration level. But the design of conventional PCR thermocycling hardware, predominantly based on massive metal heating blocks whose temperature is regulated by thermoelectric heaters, severely limits the achievable reaction speed(1). Considerable electrical power is also required to repeatedly heat and cool the reagent mixture, limiting the ability to deploy these instruments in a portable format. Thermal convection has emerged as a promising alternative thermocycling approach that has the potential to overcome these limitations(2-9). Convective flows are an everyday occurrence in a diverse array of settings ranging from the Earth's atmosphere, oceans, and interior, to decorative and colorful lava lamps. Fluid motion is initiated in the same way in each case: a buoyancy driven instability arises when a confined volume of fluid is subjected to a spatial temperature gradient. These same phenomena offer an attractive way to perform PCR thermocycling. By applying a static temperature gradient across an appropriately designed reactor geometry, a continuous circulatory flow can be established that will repeatedly transport PCR reagents through temperature zones associated with the denaturing, annealing, and extension stages of the reaction (Figure 1). Thermocycling can therefore be actuated in a pseudo-isothermal manner by simply holding two opposing surfaces at fixed temperatures, completely eliminating the need to repeatedly heat and cool the instrument. One of the main challenges facing design of convective thermocyclers is the need to precisely control the spatial velocity and temperature distributions within the reactor to ensure that the reagents sequentially occupy the correct temperature zones for a sufficient period of time(10,11). Here we describe results of our efforts to probe the full 3-D velocity and

  9. Monitoring by Control Technique - Thermal Oxidizer

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about thermal oxidizer control techniques used to reduce pollutant emissions.

  10. Tire containing thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A tire, tire lining or inner tube, containing a polymer composite, made of at least one rubber and/or at least one elastomer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g.

  11. Rapid Thermal Processing (RTP) of semiconductors in space

    NASA Technical Reports Server (NTRS)

    Anderson, T. J.; Jones, K. S.

    1993-01-01

    The progress achieved on the project entitled 'Rapid Thermal Processing of Semiconductors in Space' for a 12 month period of activity ending March 31, 1993 is summarized. The activity of this group is being performed under the direct auspices of the ROMPS program. The main objective of this program is to develop and demonstrate the use of advanced robotics in space with rapid thermal process (RTP) of semiconductors providing the test technology. Rapid thermal processing is an ideal processing step for demonstration purposes since it encompasses many of the characteristics of other processes used in solid state device manufacturing. Furthermore, a low thermal budget is becoming more important in existing manufacturing practice, while a low thermal budget is critical to successful processing in space. A secondary objective of this project is to determine the influence of microgravity on the rapid thermal process for a variety of operating modes. In many instances, this involves one or more fluid phases. The advancement of microgravity processing science is an important ancillary objective.

  12. Thermal and thermal-oxidative stability of trichloroethanol sulfide

    SciTech Connect

    Kalyavina, S.I.; Borshchevskii, S.B.; Medvedovskaya, I.I.; Stepanova, O.N.; Veselovskaya, L.F.; Zorina, E.F.

    1984-03-01

    This article reports on an investigation of the thermal and thermal-oxidative stability of bis(2,2,2-trichloro-1-hydroxyethyl) sulfide CCl/sub 3/-CHOHO-S-CHOH-CCl/sub 3/, which contains trichloromethyl and sulfide groups. The antiscoring effectiveness of this compound in TSp-14.5 oil is considerably better than that given by oils with the presently used commercial additives. The thermal stabilities of the sulfide additive and the IS-45 oil were tested in a stream of nitrogen at 100-150/sup 0/C, analyzing the reaction products by iodometric and mercurimetric titration to determine the quantities of sulfur and chlorine ions and the degree to which the additive had been converted to these ions. The thermal decomposition of the additive begins at 118/sup 0/C and increases with increasing temperature, whether it is tested by itself or in a 1.25% solution in IS-45 oil. The additive and the hydrocarbon oil with and without the additive were oxidized with atmospheric oxygen in a thin layer in a series of sealed ampuls, which were removed sequentially from the thermostat at predetermined time intervals for analysis of the gas phase by gas chromatography. It is concluded that the sulfide, which was studied as an extreme-pressure additive, when blended in IS-45 oil, has a lower thermal stability but a higher thermaloxidative stability in comparison with the straight hydrocarbon oil IS-45.

  13. Raman scattering from rapid thermally annealed tungsten silicide

    NASA Technical Reports Server (NTRS)

    Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.

    1987-01-01

    Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.

  14. Rapidly Solidified Oxidation Resistant Niobium Base Alloys

    DTIC Science & Technology

    1992-03-01

    107 Figure 4.25 Graph showing the weight change / area versus time for Nb-Ti alioys, commercial Nb alloys and Rene ’ 41 during the 800’C...properties with better oxidation resistance than Nb alloys ............................. J09 Figure 4.29 Cross sectional optical micrographs of Rene ’ 41 ...186 Figure 5.58 Optical cross sectional micrographs of etched Rene ’ 41 after 760*C cyclic oxidation and hardness testing. A

  15. Rapid charging of thermal energy storage materials through plasmonic heating.

    PubMed

    Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao

    2014-09-01

    Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites.

  16. Rapid Charging of Thermal Energy Storage Materials through Plasmonic Heating

    PubMed Central

    Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao

    2014-01-01

    Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites. PMID:25175717

  17. Selective thermal oxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2000-01-01

    A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  18. Thermal Emission Light-Curves of Rapidly Rotating Asteroids

    NASA Astrophysics Data System (ADS)

    Rozitis, Ben; Emery, Joshua; Lowry, Stephen; Rozek, Agata; Wolters, Stephen; Snodgrass, Colin; Green, Simon

    2014-12-01

    We propose to use Spitzer/IRAC to obtain simultaneous 3 and 4 um light-curves of 23 rapidly rotating asteroids (rotation periods of less than 3 hrs) to determine thermal inertia and surface roughness spatial variations. These observations will probe asteroid geophysics and constrain the origin of their rapid rotation. Rapidly rotating asteroids are unusual bodies where their own self-gravity is balanced or exceeded by rotational centrifugal forces, and are thought to have acquired their fast rotation rates through the YORP effect - a radiative torque induced by exposure to sunlight. For each target asteroid, we will measure thermal flux in both IRAC bands for a full rotation. When combined with shapes and spin axes derived from our ground-based programme, and a thermophysical model, we will be able to identify any temperature variations resulting from thermal inertia and/or surface roughness variation, and be able to constrain theoretical predictions of YORP rotational acceleration. The thermal property variations will be compared against models of surface gravity in order to provide insights into the physical processes by which asteroids retain and lose surface material. 16 of our target asteroids are being observed at optical wavelengths in a European Southern Observatory (ESO) Large Programme (LP) awarded 82 nights to constrain rotation period changes induced by the YORP effect (PI Stephen Lowry; Program IDs 185.C-1033, 185.C-1034). Approximately 80 additional nights on a range of other facilities has also been awarded for this programme. The ESO LP will support the Spitzer programme by providing shape and spin axis information necessary to search for surface property variations in the thermal emission light-curves of these asteroids. Likewise, the Spitzer/IRAC thermal emission light-curves will allow us to derive the physical properties that drive the YORP effect on the ESO LP asteroids.

  19. Flameless thermal oxidation. Innovative technology summary report

    SciTech Connect

    1995-09-01

    The Flameless Thermal Oxidizer (FTO) is a commercial technology offered by Thermatrix, Inc. The FTO has been demonstrated to be an effective destructive technology for process and waste stream off-gas treatment of volatile organic compounds (VOCs), and in the treatment of VOC and chlorinated volatile organic compounds (CVOCs) off-gases generated during site remediation using either baseline or innovative in situ environmental technologies. The FTO process efficiently converts VOCs and CVOCs to carbon dioxide, water, and hydrogen chloride. When FTO is coupled with a baseline technology, such as soil vapor extraction (SVE), an efficient in situ soil remediation system is produced. The innovation is in using a simple, reliable, scalable, and robust technology for the destruction of VOC and CVOC off-gases based on a design that generates a uniform thermal reaction zone that prevents flame propagation and efficiently oxidizes off-gases without forming products of incomplete combustion (PICs).

  20. Flameless Thermal Oxidation. Innovative Technology Summary Report

    SciTech Connect

    1995-09-01

    The Flameless Thermal Oxidizer (FTO) is a commercial technology offered by Thermatrix, Inc. The FTO has been demonstrated to be an effective destructive technology for process and waste stream off-gas treatment of volatile organic compounds (VOCs), and in the treatment of VOC and chlorinated volatile organic compounds (CVOCs) off-gases generated during site remediation using either baseline or innovative in situ environmental technologies. The FTO process efficiently converts VOCs and CVOCs to carbon dioxide, water, and hydrogen chloride. When FTO is coupled with a baseline technology, such as soil vapor extraction (SVE), an efficient in situ soil remediation system is produced. The innovation is in using a simple, reliable, scalable, and robust technology for the destruction of VOC and CVOC off-gases based on a design that generates a uniform thermal reaction zone that prevents flame propagation and efficiently oxidizes off-gases without forming products of incomplete combustion (Plcs ).

  1. Thermal oxidative degradation reactions of perfluoroalkylethers

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Ito, T. I.; Kratzer, R. H.

    1981-01-01

    The mechanisms operative in thermal oxidative degradation of Fomblin Z and hexafluoropropene oxide derived fluids and the effect of alloys and additives upon these processes are investigated. The nature of arrangements responsible for the inherent thermal oxidative instability of the Fomblin Z fluids is not established. It was determined that this behavior is not associated with hydrogen end groups or peroxy linkages. The degradation rate of these fluids at elevated temperatures in oxidizing atmospheres is dependent on the surface/volume ratio. Once a limiting ratio is reached, a steady rate appears to be attained. Based on elemental analysis and oxygen consumption data, CF2OCF2CF2O2, no. CF2CF2O, is one of the major arrangements present. The action of the M-50 and Ti(4 Al, 4 Mn) alloys is much more drastic in the case of Fomblin Z fluids than that observed for the hexafluoropropene derived materials. The effectiveness of antioxidation anticorrosion additives, P-3 and phospha-s-triazine, in the presence of metal alloys is very limited at 316 C; at 288 C the additives arrested almost completely the fluid degradation. The phospha-s-triazine appears to be at least twice as effective as the P-3 compound; it also protected the coupon better. The Ti(4 Al, 4 Mn) alloy degraded the fluid mainly by chain scission processes this takes place to a much lesser degree with M-50.

  2. Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments

    SciTech Connect

    Cuypers, C.; Grotenhuis, T.; Joziasse, J.; Rulkens, W.

    2000-05-15

    Persulfate oxidation was validated as a method to predict polycyclic aromatic hydrocarbon (PAH) bioavailability in soils and sediments. It was demonstrated for 14 field contaminated soils and sediments that residual PAH concentrations after a short (3 h) persulfate oxidation correspond well to residual PAH concentrations after 21 days of biodegradation. Persulfate oxidation of samples that had first been subjected to biodegradation yielded only limited additional PAH oxidation. This implies that oxidation and biodegradation removed approximately the same PAH fraction. Persulfate oxidation thus provides a good and rapid method for the prediction of PAH bioavailability. Thermogravimetric analysis of oxidized and untreated samples showed that persulfate oxidation primarily affected expanded organic matter. The results indicate that this expanded organic matter contained mainly readily bioavailable PAHs.

  3. Thermal Inactivation of Bacillus anthracis Spores Using Rapid Resistive Heating

    DTIC Science & Technology

    2016-03-24

    microbiological study sought to obtain a correlation between exposure time, temperature , and spore viability. This information is invaluable when...of the spores were found using rapid resistive heating at short duration exposure times from 0.26 to 7 seconds at temperatures ranging from 73.5 to...ranging from 0.1 to 10 seconds. Higher temperatures were needed to thermally inactivate the B.a. spores as exposure times decreased. vi

  4. Enzymatic hydrolysis of fractionated products from oil thermally oxidated

    SciTech Connect

    Yashida, H.; Alexander, J.C.

    1983-01-01

    Enzymatic hydrolysis of the acylglycerol products obtained from thermally oxidized vegetable oils was studied. Corn, sunflower and soybean oils were heated in the laboratory at 180/sup 0/C for 50, 70 and 100 hr with aeration and directly fractionated by silicic acid column chromatography. By successive elution with 20%, then 60% isopropyl ether in n-hexane, and diethyl ether, the thermally oxidized oils were separated into three fractions: the nonpolar fraction (monomeric compounds), slightly polar fraction (dimeric compounds), and polar fraction comprising oligomeric compounds. Enzymatic hydrolysis with pancreatic lipase showed that the monomers were hydrolyzed as rapidly as the corresponding unheated oils, the dimers much more slowly, and the oligomeric compounds barely at all. Overall, the hydrolysis of the dimers was less than 23% of that for the monomers, with small differences among the oils. Longer heating periods resulted in greater reductions in hydrolysis of the dimeric compounds. These results suggest that the degree of enzymatic hydrolysis of the fractionated acylglycerol compounds is related to differences in the thermal oxidative deterioration, and amounts of polar compounds in the products. (33 Refs.)

  5. Non-thermal Plasma and Oxidative Stress

    NASA Astrophysics Data System (ADS)

    Toyokuni, Shinya

    2015-09-01

    Thermal plasmas and lasers have been used in medicine to cut and ablate tissues and for coagulation. Non-equilibrium atmospheric pressure plasma (NEAPP; non-thermal plasma) is a recently developed, non-thermal technique with possible biomedical applications. Although NEAPP reportedly generates reactive oxygen/nitrogen species, electrons, positive ions, and ultraviolet radiation, few research projects have been conducted to merge this technique with conventional free radical biology. Recently, Prof. Masaru Hori's group (Plasma Nanotechnology Research Center, Nagoya University) developed a NEAPP device with high electron density. Here electron spin resonance revealed hydroxyl radicals as a major product. To merge non-thermal plasma biology with the preexisting free radical biology, we evaluated lipid peroxidation and DNA modifications in various in vitro and ex vivo experiments. Conjugated dienes increased after exposure to linoleic and alfa-linolenic acids. An increase in 2-thiobarbituric acid-reactive substances was also increased after exposure to phosphatidylcholine, liposomes or liver homogenate. Direct exposure to rat liver in medium produced immunohistochemical evidence of 4-hydroxy-2-nonenal- and acrolein-modified proteins. Exposure to plasmid DNA induced dose-dependent single/double strand breaks and increased the amounts of 8-hydroxy-2'-deoxyguanosine and cyclobutane pyrimidine dimers. These results indicate that oxidative biomolecular damage by NEAPP is dose-dependent and thus can be controlled in a site-specific manner. Simultaneous oxidative and UV-specific DNA damage may be useful in cancer treatment. Other recent advancements in the related studies of non-thermal plasma in Nagoya University Graduate School of Medicine will also be discussed.

  6. Thermal and Electrical Transport in Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Ravichandran, Jayakanth

    This dissertation presents a study of thermal and electrical transport phenomena in heterostructures of transition metal oxides, with specific interest in understanding and tailoring thermoelectricity in these systems. Thermoelectric energy conversion is a promising method for waste heat recovery and the efficiency of such an engine is directly related to a material dependent figure of merit, Z, given as S2sigma/kappa, where S is thermopower and sigma and kappa are electrical and thermal conductivity respectively. Achieving large figure of merit has been hampered by the coupling between these three thermoelectric coefficients, and the primary aim of this study is to understand the nature of thermoelectricity in complex oxides and identify mechanisms which can allow tuning of one or more thermoelectric coefficients in a favorable manner. Unlike the heavily studied conventional thermoelectric semiconductors, transition metals based complex oxides show conduction band characteristics dominated by d-bands, with much larger effective masses and varying degrees of electron correlations. These systems provide for exotic thermoelectric effects which are typically not explained by conventional theories and hence provide an ideal platform for exploring the limits of thermoelectricity. Meanwhile, oxides are composed of earth abundant elements and have excellent high temperature stability, thus providing compelling technological possibilities for thermoelectrics based power generation. In this dissertation, we address specific aspects of thermoelectricity in model complex oxide systems such as perovskite titanates and layered cobaltates to understand thermal and thermoelectric behavior and explore the tunability of thermoelectricity in these systems. The demonstration of band engineering as a viable method to tune physical properties of materials is explored. The model system used for this case is strontium titanate, where two dopants such as La on the Sr-site and oxygen

  7. Combining reactive sputtering and rapid thermal processing for synthesis and discovery of metal oxynitrides

    SciTech Connect

    Zhou, Lan; Suram, Santosh K.; Becerra-Stasiewicz, Natalie; Mitrovic, Slobodan; Kan, Kevin; Jones, Ryan J. R.; Gregoire, John M.

    2015-05-27

    Recent efforts have demonstrated enhanced tailoring of material functionality with mixed-anion materials, yet exploratory research with mixed-anion chemistries is limited by the sensitivity of these materials to synthesis conditions. In order to synthesize a particular metal oxynitride compound by traditional reactive annealing we require specific, limited ranges of both oxygen and nitrogen chemical potentials in order to establish equilibrium between the solid-state material and a reactive atmosphere. While using Ta-O-N as an example system, we describe a combination of reactive sputter deposition and rapid thermal processing for synthesis of mixed-anion inorganic materials. Heuristic optimization of reactive gas pressures to attain a desired anion stoichiometry is discussed, and the ability of rapid thermal processing to enable amorphous to crystalline transitions without preferential anion loss is demonstrated through the controlled synthesis of nitride, oxide and oxynitride phases.

  8. Combining reactive sputtering and rapid thermal processing for synthesis and discovery of metal oxynitrides

    DOE PAGES

    Zhou, Lan; Suram, Santosh K.; Becerra-Stasiewicz, Natalie; ...

    2015-05-27

    Recent efforts have demonstrated enhanced tailoring of material functionality with mixed-anion materials, yet exploratory research with mixed-anion chemistries is limited by the sensitivity of these materials to synthesis conditions. In order to synthesize a particular metal oxynitride compound by traditional reactive annealing we require specific, limited ranges of both oxygen and nitrogen chemical potentials in order to establish equilibrium between the solid-state material and a reactive atmosphere. While using Ta-O-N as an example system, we describe a combination of reactive sputter deposition and rapid thermal processing for synthesis of mixed-anion inorganic materials. Heuristic optimization of reactive gas pressures to attainmore » a desired anion stoichiometry is discussed, and the ability of rapid thermal processing to enable amorphous to crystalline transitions without preferential anion loss is demonstrated through the controlled synthesis of nitride, oxide and oxynitride phases.« less

  9. Rapid evolution of thermal tolerance in the water flea Daphnia

    NASA Astrophysics Data System (ADS)

    Geerts, A. N.; Vanoverbeke, J.; Vanschoenwinkel, B.; van Doorslaer, W.; Feuchtmayr, H.; Atkinson, D.; Moss, B.; Davidson, T. A.; Sayer, C. D.; De Meester, L.

    2015-07-01

    Global climate is changing rapidly, and the degree to which natural populations respond genetically to these changes is key to predicting ecological responses. So far, no study has documented evolutionary changes in the thermal tolerance of natural populations as a response to recent temperature increase. Here, we demonstrate genetic change in the capacity of the water flea Daphnia to tolerate higher temperatures using both a selection experiment and the reconstruction of evolution over a period of forty years derived from a layered dormant egg bank. We observed a genetic increase in thermal tolerance in response to a two-year ambient +4 °C selection treatment and in the genotypes of natural populations from the 1960s and 2000s hatched from lake sediments. This demonstrates that natural populations have evolved increased tolerance to higher temperatures, probably associated with the increased frequency of heat waves over the past decades, and possess the capacity to evolve increased tolerance to future warming.

  10. Effect of Rapid Thermal Cooling on Mechanical Rock Properties

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Kemeny, John; Nickerson, Mark

    2014-11-01

    Laboratory tests have been conducted to investigate the effects of rapid thermal cooling on various rock specimens including igneous, sedimentary, and metamorphic rocks. At first, various types of thermal loading were conducted: heating up to 100, 200, and 300 °C, followed by rapid cooling with a fan. In addition, multiple cyclic thermal cooling (10, 15 and 20 cycles) with a maximum temperature of only 100 °C was conducted. Experiments included edge notched disc (END) tests to determine the Mode I fracture toughness, Brazilian disc tests to determine tensile strength, seismic tests to determine P-wave velocity, and porosity tests leading to meaningful results. Even though only small changes of temperature (rapid cooling from 100 °C to room temperature) were applied, the results showed that crack growth occurred in some rock types (granite, diabase with ore veins, and KVS) while crack healing occurred in other rock types (diabase without ore veins, quartzite, and skarn). To better understand the results, 3D transient thermo-mechanical analysis was conducted using the ANSYS program. The results indicated that there was a thin region near the outside of the specimen where large tensile stresses occur and microcracking would be expected, and that there was a large area in the middle of the specimen where lower magnitude compressive stresses occur and crack closure would be expected. It was found that the more heterogeneous and more coarse-grained rock types are more likely to exhibit crack growth, while less heterogeneous and more fine-grained rocks are more likely to exhibit crack healing.

  11. A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment.

    PubMed

    Hii, Kevin; Baroutian, Saeid; Parthasarathy, Raj; Gapes, Daniel J; Eshtiaghi, Nicky

    2014-03-01

    With rapid world population growth and strict environmental regulations, increasingly large volumes of sludge are being produced in today's wastewater treatment plants (WWTP) with limited disposal routes. Sludge treatment has become an essential process in WWTP, representing 50% of operational costs. Sludge destruction and resource recovery technologies are therefore of great ongoing interest. Hydrothermal processing uses unique characteristics of water at elevated temperatures and pressures to deconstruct organic and inorganic components of sludge. It can be broadly categorized into wet oxidation (oxidative) and thermal hydrolysis (non-oxidative). While wet air oxidation (WAO) can be used for the final sludge destruction and also potentially producing industrially useful by-products such as acetic acid, thermal hydrolysis (TH) is mainly used as a pre-treatment method to improve the efficiency of anaerobic digestion. This paper reviews current hydrothermal technologies, roles of wet air oxidation and thermal hydrolysis in sludge treatment, and challenges faced by these technologies.

  12. Development of a Thermal Oxidizer for Distributed Microturbine Based Generation

    SciTech Connect

    Tom Barton

    2009-03-01

    This project concerns the replacement of the catalytic bed in a microturbine with a thermal oxidizer. The advantage of a thermal oxidizer over a traditional combustion chamber is that the length and temperature of the device allows the volatile species to oxidize relatively slowly and without a flame front. With no flame, the temperature increase throughout the unit is spread over a much larger volume so there is no hot spot for thermal NO{sub x} formation, and the gas Btu level does not have to be above the ignition concentration. Project specific objectives included assessment of the materials and performance requirements of the thermal oxidizer, design the thermal oxidizer system, fabrication of the thermal oxidizer, testing of the oxidizer's performance in concert with the microturbine and comparison of the performance of the oxidizer with catalytic beds and traditional combustion chambers. The thermal oxidizer was designed and fabricated with the assistance of High Country Fabrication of Casper, Wyoming. The design consists of a long set of tubes surrounded by a packed bed of loose ceramic material. The outer vessel containing the tubes and packing is a 3-foot diameter steel shell with multiple layers of thermal insulation. After the metal components were fabricated, the vessel was shipped to Denver where the insulation was poured. The unit was shipped to the cosponsor site for integration with the 100 kW microturbine device. Connection of the thermal oxidizer to the Elliot microturbine turned out to be problematic. The high flow rate of gas tended to push the hot zone out of the oxidizer as assembled. The research team identified several approaches to improve the oxidizer performance including a longer gas path, increased residence time, higher surface area packing material and improved combustion catalysts. The cosponsor is working with an engineering form with oxidizer experience to reconfigure the hardware before moving to a field trial on landfill gas.

  13. Microwave and thermal interactions with oxidative hemolysis

    SciTech Connect

    Kiel, J.L.; Erwin, D.N.

    1984-01-01

    The influence of microwave radiation (2450 MHz, 3,333 pulses per second, duty factor of 0.02, and average specific absorption rate of 0.4 W/kg) on spontaneous hemolysis of human erythrocytes was examined. Cells were exposed to microwave radiation for 20 minutes at 37 degrees, 42 degrees, or 48 degrees C. Some of these cells were sensitized to oxidative damage by treatment with 1-chloro-2,4-dinitrobenzene (CDNB) and/or by coating with wheat germ agglutinin-horseradish peroxidase (WGA-HRP) conjugate. Microwave radiation significantly decreased spontaneous hemolysis of untreated cells at 42 degrees C but had no effect at 37 degrees or 48 degrees C. Microwave exposure significantly enhanced a CDNB membrane stabilizing effect at 42 degrees C but had no effect at 37 or 48 degrees C. At 42 degrees C, microwave exposure increased hemolysis of WGA-HRP coated cells. Cells treated with both WGA-HRP and CDNB showed no change in fragility at 42 degrees C and increased fragility at 48 degrees C without a microwave effect. The microwave effects observed appear to involve perturbation of the thermal threshold for oxidative hyperthermic hemolysis.

  14. RAPID MEASUREMENTS OF NEPTUNIUM OXIDATION STATES USING CHROMATOGRAPHIC RESINS

    SciTech Connect

    Diprete, D; C Diprete, C; Mira Malek, M; Eddie Kyser, E

    2009-03-24

    The Savannah River Site's (SRS) H-Canyon facility uses ceric ammonium nitrate (CAN) to separate impure neptunium (Np) from a high sulfate feed stream. The material is processed using a two-pass solvent extraction purification which relies on CAN to oxidize neptunium to Np(VI) during the first pass prior to extraction. Spectrophotometric oxidation-state analyses normally used to validate successful oxidation to Np(VI) prior to extraction were compromised by this feed stream matrix. Therefore, a rapid chromatographic method to validate successful Np oxidation was developed using Eichrom Industries TRU and TEVA{reg_sign} resins. The method was validated and subsequently transferred to existing operations in the process analytical laboratories.

  15. Liquid hydrogen turbopump rapid start program. [thermal preconditioning using coatings

    NASA Technical Reports Server (NTRS)

    Wong, G. S.

    1973-01-01

    This program was to analyze, test, and evaluate methods of achieving rapid-start of a liquid hydrogen feed system (inlet duct and turbopump) using a minimum of thermal preconditioning time and propellant. The program was divided into four tasks. Task 1 includes analytical studies of the testing conducted in the other three tasks. Task 2 describes the results from laboratory testing of coating samples and the successful adherence of a KX-635 coating to the internal surfaces of the feed system tested in Task 4. Task 3 presents results of testing an uncoated feed system. Tank pressure was varied to determine the effect of flowrate on preconditioning. The discharge volume and the discharge pressure which initiates opening of the discharge valve were varied to determine the effect on deadhead (no through-flow) start transients. Task 4 describes results of testing a similar, internally coated feed system and illustrates the savings in preconditioning time and propellant resulting from the coatings.

  16. A review of liquid lubricant thermal/oxidative degradation

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1983-01-01

    The fundamental processes occurring during the thermal and oxidative degradation of hydrocarbons are reviewed. Particular emphasis is given to various classes of liquid lubricants such as mineral oils, esters, polyphenyl ethers, C-ethers, and fluorinated polyethers. Experimental techniques for determining thermal and oxidative stabilities of lubricants are discussed. The role of inhibitors and catalysis is also covered.

  17. Characterizing thermal sweeping: a rapid disc dispersal mechanism

    NASA Astrophysics Data System (ADS)

    Owen, James E.; Hudoba de Badyn, Mathias; Clarke, Cathie J.; Robins, Luke

    2013-12-01

    We consider the properties of protoplanetary discs that are undergoing inside-out clearing by photoevaporation. In particular, we aim to characterize the conditions under which a protoplanetary disc may undergo `thermal sweeping', a rapid (≲104 years) disc destruction mechanism proposed to occur when a clearing disc reaches sufficiently low surface density at its inner edge and where the disc is unstable to runaway penetration by the X-rays. We use a large suite of 1D radiation-hydrodynamic simulations to probe the observable parameter space, which is unfeasible in higher dimensions. These models allow us to determine the surface density at which thermal sweeping will take over the disc's evolution and to evaluate this critical surface density as a function of X-ray luminosity, stellar mass and inner hole radius. We find that this critical surface density scales linearly with X-ray luminosity, increases with inner hole radius and decreases with stellar mass, and we develop an analytic model that reproduces these results. This surface density criterion is then used to determine the evolutionary state of protoplanetary discs at the point that they become unstable to destruction by thermal sweeping. We find that transition discs created by photoevaporation will undergo thermal sweeping when their inner holes reach 20-40 au, implying that transition discs with large holes and no accretion (which were previously a predicted outcome of the later stages of all flavours of the photoevaporation model) will not form. Thermal sweeping thus avoids the production of large numbers of large, non-accreting holes (which are not observed) and implies that the majority of holes created by photoevaporation should still be accreting. We emphasize that the surface density criteria that we have developed apply to all situations where the disc develops an inner hole that is optically thin to X-rays. It thus applies not only to the case of holes originally created by photoevaporation but

  18. Lunar Reconnaissance Orbiter (LRO) Rapid Thermal Design Development

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Cottingham, Christine; Garrison, Matthew; Melak, Tony; Peabody, Sharon; Powers, Dan

    2009-01-01

    The Lunar Reconnaissance Orbiter (LRO) project had a rapid development schedule starting with project conception in spring of 2004, instrument and launch vehicle selection late in 2005 and then launch in early 2009. The lunar thermal environment is one of the harshest in our solar system with the heavy infrared loading of the moon due to low albedo, lack of lunar atmosphere, and low effective regolith conduction. This set of constraints required a thermal design which maximized performance (minimized radiator area and cold control heater power) and minimized thermal hardware build at the orbiter level (blanketing, and heater service). The orbiter design located most of the avionics on an isothermalized heat pipe panel called the IsoThermal Panel (ITP). The ITP was coupled by dual bore heat pipes to an Optical Solar Reflector (OSR) covered heat pipe radiator. By coupling all of the avionics to one system, the hardware was simplified. The seven instruments were mainly heritage instruments which resulted in their desired radiators being located by their heritage design. This minimized instrument redesigns and therefore allowed them to be delivered earlier, though it resulted in a more complex orbiter level blanket and heater service design. Three of the instruments were mounted on a tight pointing M55J optical bench that needed to be covered in heaters to maintain pointing. Two were mounted to spacecraft controlled radiators. One was mounted to the ITP Dual Bores. The last was mounted directly to the bus structure on the moon facing panel. The propulsion system utilized four-20 pound insertion thrusters and eight-5 pound attitude control thrusters (ACS) in addition to 1000 kg of fuel in two large tanks. The propulsion system had a heater cylinder and a heated mounting deck for the insertion thrusters which coupled most of the propulsion design together simplifying the heater design. The High Gain Antenna System (HGAS) and Solar Array System (SAS) used dual axis

  19. Investigation on the Thermal Crack Evolution and Oxidation Effect of Compacted Graphite Iron Under Thermal Shock

    NASA Astrophysics Data System (ADS)

    Wang, Xiaosong; Zhang, Weizheng; Guo, Bingbin

    2015-09-01

    For a better understanding of the thermal fatigue behavior in compacted graphite cast iron (CGI), the cyclic thermal shock test is carried out through alternating induction heating and water quenching. The optical and scanning electron microscopy observations are used to examine the cracks and oxidation behavior on the cross section and heating surface of the material specimen, respectively. The results show that the thermal cracks in CGI initiate at the graphite phases mostly, and the multi-sourced thermal cracks would result in stable cracks morphology finally through crack shielding effect. In the oxidation analysis, it is found that the oxidation of graphite is selective, and the graphite is the potential channels for oxygen diffusion from the outside into the matrix, resulting in local oxidation of matrix around graphite and continuous oxygen diffusion paths in the microstructure. Thermal cracks nucleate from the oxidation holes at graphite caused by decarburization, and they prefer to propagate and coalesce by penetrating the oxide bridges.

  20. Thermal Shock Behavior of Single Crystal Oxide Refractive Concentrators for High Temperatures Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium-aluminum-garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) have been considered as refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermal mechanical reliability of the oxide components in severe thermal environments during space mission sun/shade transitions is of great concern. In this paper, critical mechanical properties of these oxide crystals are determined by the indentation technique. Thermal shock resistance of the oxides is evaluated using a high power CO, laser under high temperature-high thermal gradients. Thermal stress fracture behavior and failure mechanisms of these oxide materials are investigated under various temperature and heating conditions.

  1. Kinetics of thermally oxidation of Ge(100) surface

    NASA Astrophysics Data System (ADS)

    Sahari, S. K.; Ohta, A.; Matsui, M.; Mishima, K.; Murakami, H.; Higashi, S.; Miyazaki, S.

    2013-03-01

    Thermal oxidation of a Ge(100) surface was investigated by using spectroscopic ellipsometry (SE) and x-ray photoelectron spectroscopy (XPS). Ge oxide was grown in the temperature range of 375 to 550°C in dry-O2 ambience at atmospheric pressure. Although the Ge-oxide growth rate shows a linear relationship in a log-log plot at a fixed temperature, and the slope indicates an enhancement of GeO desorption at oxidation temperatures over 490°C. The GeO desorption was also confirmed from the XPS analysis of the Si surface which was oxidized simultaneously with the Ge(100) surface. Thus, the Ge thermal oxidation at atmospheric pressure cannot be explained simply by the Deal-Grove model, in which the contribution of thermal desorption of Ge monoxide must be taken into account.

  2. On-line DNA analysis system with rapid thermal cycling

    DOEpatents

    Swerdlow, Harold P.; Wittwer, Carl T.

    1999-01-01

    An apparatus particularly suited for subjecting biological samples to any necessary sample preparation tasks, subjecting the sample to rapid thermal cycling, and then subjecting the sample to subsequent on-line analysis using one or more of a number of analytical techniques. The apparatus includes a chromatography device including an injection means, a chromatography pump, and a chromatography column. In addition, the apparatus also contains a capillary electrophoresis device consisting of a capillary electrophoresis column with an inlet and outlet end, a means of injection, and means of applying a high voltage to cause the differential migration of species of interest through the capillary column. Effluent from the liquid chromatography column passes over the inlet end of the capillary electrophoresis column through a tee structure and when the loading of the capillary electrophoresis column is desired, a voltage supply is activated at a precise voltage and polarity over a specific duration to cause sample species to be diverted from the flowing stream to the capillary electrophoresis column. A laser induced fluorescence detector preferably is used to analyze the products separated while in the electrophoresis column.

  3. On-line DNA analysis system with rapid thermal cycling

    DOEpatents

    Swerdlow, H.P.; Wittwer, C.T.

    1999-08-10

    This application describes an apparatus particularly suited for subjecting biological samples to any necessary sample preparation tasks, subjecting the sample to rapid thermal cycling, and then subjecting the sample to subsequent on-line analysis using one or more of a number of analytical techniques. The apparatus includes a chromatography device including an injection means, a chromatography pump, and a chromatography column. In addition, the apparatus also contains a capillary electrophoresis device consisting of a capillary electrophoresis column with an inlet and outlet end, a means of injection, and means of applying a high voltage to cause the differential migration of species of interest through the capillary column. Effluent from the liquid chromatography column passes over the inlet end of the capillary electrophoresis column through a tee structure and when the loading of the capillary electrophoresis column is desired, a voltage supply is activated at a precise voltage and polarity over a specific duration to cause sample species to be diverted from the flowing stream to the capillary electrophoresis column. A laser induced fluorescence detector preferably is used to analyze the products separated while in the electrophoresis column. 6 figs.

  4. Nitrogen oxides and methane treatment by non-thermal plasma

    NASA Astrophysics Data System (ADS)

    Alva, E.; Pacheco, M.; Colín, A.; Sánchez, V.; Pacheco, J.; Valdivia, R.; Soria, G.

    2015-03-01

    Non thermal plasma was used to treat nitrogen oxides (NOx) and methane (CH4), since they are important constituents of hydrocarbon combustion emissions processes and, both gases, play a key role in the formation of tropospheric ozone. These gases are involved in environmental problems like acid rain and some diseases such as bronchitis and pneumonia. In the case of methane is widely known its importance in the global climate change, and currently accounts for 30% of global warming. There is a growing concern for methane leaks, associated with a rapid expansion of unconventional oil and gas extraction techniques as well as a large-scale methane release from Arctic because of ice melting and the subsequent methane production of decaying organic matter. Therefore, methane mitigation is a key to avoid dangerous levels of global warming. The research, here reported, deals about the generation of non-thermal plasma with a double dielectric barrier (2DBD) at atmospheric pressure with alternating current (AC) for NOx and CH4 treatment. The degradation efficiencies and their respective power consumption for different reactor configurations (cylindrical and planar) are also reported. Qualitative and quantitative analysis of gases degradation are reported before and after treatment with cold plasma. Experimental and theoretical results are compared obtaining good removal efficiencies, superior to 90% and to 20% respectively for NOx and CH4.

  5. The coefficient of thermal expansion of nuclear graphite with increasing thermal oxidation

    NASA Astrophysics Data System (ADS)

    Hacker, Paul J.; Neighbour, Gareth B.; McEnaney, Brian

    2000-04-01

    Two grades of nuclear graphite, an isotropic graphite (GCMB) and an anisotropic graphite (PGA), were thermally oxidized to high weight losses. Average values of the coefficient of thermal expansion (CTE) in the temperature range 20-600 °C for GCMB and PGA in the parallel direction were unaffected by thermal oxidation up to 60% and 50% weight loss, respectively. The average CTE values for the PGA samples in the perpendicular direction were also unaffected by oxidation in the range 10-50% weight loss, although a slight increase in the CTE in the early stages of oxidation was observed. A new model based upon a continuous network of material, able to transmit thermal strains, which persists after oxidation, was proposed to explain the insensitivity of the CTE to oxidation. The transmission of thermal strains in the continuous network model was considered as a percolation phenomenon. Application of percolation theory to the effect of thermal oxidation on electrical conductivity of oxidized GCMB graphite suggests that the percolation threshold occurs at very high levels of oxidation that are in excess of 95% weight loss.

  6. Rapid Microwave Synthesis of Perovskite Oxide Nanostructures with Enhanced Functionality

    NASA Astrophysics Data System (ADS)

    Salazar, Gregory; Datta, Anuja; Mukherjee, Pritish

    2015-03-01

    Perovskite oxides are an important class of materials having high dielectric and piezoelectric coefficients, switchable ferroelectric (FE) polarization and interesting optical and electrical properties. Realization of functional devices based on classic perovskite oxides such as Pb(Zr0.52Ti0.48) O3 (PZT), and emerging Pb-free noncentrosymmetric (NCS) oxides, such as, ZnSnO3, ZnTiO3 and CaTiO3 have reinforced the investigation of these materials in multiple dimensions and length scales. However, large-scale synthesis and integration of ordered low-dimensional structures is a challenge, due to their complicated methodologies, high-cost and difficulties with phase stability. We discuss a generalized, cost-effective, rapid microwave synthesis route for size and shape selective nanostructure growth of these functional perovskite oxides on industrially viable flexible and hard substrates, stabilized by an enhanced ionic covalence. The rational synthesis approach allowed improved tunability of the size, shape, and orientation of the structures with improved electrical and FE properties. The facile fabrication route of these nanostructures may expand the outreach of probes for understanding the structure-property relationships in these hitherto unexplored and technologically important materials.

  7. Mass production of two-dimensional oxides by rapid heating of hydrous chlorides

    NASA Astrophysics Data System (ADS)

    Zhao, Chunsong; Zhang, Haitian; Si, Wenjie; Wu, Hui

    2016-09-01

    Two-dimensional (2D) nanoscale oxides have attracted research interest owing to their electronic, magnetic optical and catalytic properties. If they could be manufactured on a large scale, 2D oxides would be attractive for applications ranging from electronics to energy conversion and storage. Herein, we report facile fabrication of oxide nanosheets by rapid thermal annealing of corresponding hydrous-chloride compounds. By heating CrCl3.6H2O, ZrOCl2.8H2O, AlCl3.6H2O and YCl3.6H2O crystals as precursors, we immediately collect large quantities of ultrathin Cr2O3, ZrO2, Al2O3 and Y2O3 nanosheets, respectively. The formation of layered nanosheets relies on exfoliation driven by rapid evaporation of water and/or other gas molecules generated under annealing. Our route allows simple, efficient and inexpensive production of 2D oxides. As a demonstration, we evaluate Cr2O3 nanosheets prepared by our method as anodes in lithium-ion batteries and find superior performance in comparison with their microcrystalline counterparts.

  8. Mass production of two-dimensional oxides by rapid heating of hydrous chlorides

    PubMed Central

    Zhao, Chunsong; Zhang, Haitian; Si, Wenjie; Wu, Hui

    2016-01-01

    Two-dimensional (2D) nanoscale oxides have attracted research interest owing to their electronic, magnetic optical and catalytic properties. If they could be manufactured on a large scale, 2D oxides would be attractive for applications ranging from electronics to energy conversion and storage. Herein, we report facile fabrication of oxide nanosheets by rapid thermal annealing of corresponding hydrous-chloride compounds. By heating CrCl3·6H2O, ZrOCl2·8H2O, AlCl3·6H2O and YCl3·6H2O crystals as precursors, we immediately collect large quantities of ultrathin Cr2O3, ZrO2, Al2O3 and Y2O3 nanosheets, respectively. The formation of layered nanosheets relies on exfoliation driven by rapid evaporation of water and/or other gas molecules generated under annealing. Our route allows simple, efficient and inexpensive production of 2D oxides. As a demonstration, we evaluate Cr2O3 nanosheets prepared by our method as anodes in lithium-ion batteries and find superior performance in comparison with their microcrystalline counterparts. PMID:27610589

  9. Salmonella Rapidly Regulates Membrane Permeability To Survive Oxidative Stress

    PubMed Central

    van der Heijden, Joris; Reynolds, Lisa A.; Deng, Wanyin; Mills, Allan; Scholz, Roland; Imami, Koshi; Foster, Leonard J.; Duong, Franck

    2016-01-01

    ABSTRACT The outer membrane (OM) of Gram-negative bacteria provides protection against toxic molecules, including reactive oxygen species (ROS). Decreased OM permeability can promote bacterial survival under harsh circumstances and protects against antibiotics. To better understand the regulation of OM permeability, we studied the real-time influx of hydrogen peroxide in Salmonella bacteria and discovered two novel mechanisms by which they rapidly control OM permeability. We found that pores in two major OM proteins, OmpA and OmpC, could be rapidly opened or closed when oxidative stress is encountered and that the underlying mechanisms rely on the formation of disulfide bonds in the periplasmic domain of OmpA and TrxA, respectively. Additionally, we found that a Salmonella mutant showing increased OM permeability was killed more effectively by treatment with antibiotics. Together, these results demonstrate that Gram-negative bacteria regulate the influx of ROS for defense against oxidative stress and reveal novel targets that can be therapeutically targeted to increase bacterial killing by conventional antibiotics. PMID:27507830

  10. Automotive body panel containing thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Adamson, Douglas (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    An automotive body panel containing a polymer composite formed of at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  11. Nuclear magnetic resonance study of thermal oxidation of polyisoprene

    NASA Technical Reports Server (NTRS)

    Golub, M. A.; Hsu, M. S.

    1975-01-01

    An investigation was conducted concerning the microstructural changes occurring in cis- and trans-1,4-polyisoprenes during uncatalized thermal oxidation in the solid phase. The investigation made use of approaches based on proton and carbon-13 NMR spectroscopy. The oxidation of squalene and dihydromyrcene in the liquid phase was also studied. The studies provide the first NMR spectroscopic evidence for the presence of epoxy and peroxide, hydroperoxide, and alcohol groups within the oxidized polyisoprene chain.

  12. Dynamics of metal-induced crystallization of ultrathin Ge films by rapid thermal annealing

    SciTech Connect

    Liao, Yuanxun; Huang, Shujuan; Shrestha, Santosh; Conibeer, Gavin

    2015-12-07

    Though Ge crystallization has been widely studied, few works investigate metal-induced crystallization of ultrathin Ge films. For 2 nm Ge films in oxide matrix, crystallization becomes challenging due to easy oxidation and low mobility of Ge atoms. Introducing metal atoms may alleviate these problems, but the functions and the behaviours of metal atoms need to be clarified. This paper investigates the crystallization dynamics of a multilayer structure 1.9 nm Ge/0.5 nm Al/1.5 nm Al{sub 2}O{sub 3} under rapid thermal annealing (RTA). The functions of metal atoms, like effective anti-oxidation, downshifting Raman peaks, and incapability to decrease crystallization temperature, are found and explained. The metal behaviours, such as inter-diffusion and defect generation, are supported with direct evidences, Al-Ge nanobicrystals, and Al cluster in Ge atoms. With these understandings, a two-step RTA process achieves high-quality 2 nm nanocrystal Ge films with Raman peak at 298 cm{sup −1} of FWHM 10.3 cm{sup −1} and atomic smooth interfaces.

  13. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum.

    PubMed

    Zachos, James C; Röhl, Ursula; Schellenberg, Stephen A; Sluijs, Appy; Hodell, David A; Kelly, Daniel C; Thomas, Ellen; Nicolo, Micah; Raffi, Isabella; Lourens, Lucas J; McCarren, Heather; Kroon, Dick

    2005-06-10

    The Paleocene-Eocene thermal maximum (PETM) has been attributed to the rapid release of approximately 2000 x 10(9) metric tons of carbon in the form of methane. In theory, oxidation and ocean absorption of this carbon should have lowered deep-sea pH, thereby triggering a rapid (<10,000-year) shoaling of the calcite compensation depth (CCD), followed by gradual recovery. Here we present geochemical data from five new South Atlantic deep-sea sections that constrain the timing and extent of massive sea-floor carbonate dissolution coincident with the PETM. The sections, from between 2.7 and 4.8 kilometers water depth, are marked by a prominent clay layer, the character of which indicates that the CCD shoaled rapidly (<10,000 years) by more than 2 kilometers and recovered gradually (>100,000 years). These findings indicate that a large mass of carbon (>2000 x 10(9) metric tons of carbon) dissolved in the ocean at the Paleocene-Eocene boundary and that permanent sequestration of this carbon occurred through silicate weathering feedback.

  14. The role of thermal shock in cyclic oxidation

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Deadmore, D. L.

    1978-01-01

    The effect of thermal shock on the spalling of oxides from the surfaces of several commercial alloys was determined. The average cooling rate was varied from approximately 240 C per second to less than 1.0 C per second during cyclic oxidation tests in air. The tests consisted of one hundred cycles of one hour at the maximum temperature (1100 or 1200 C). The alloys were HOS-875, TD-Ni, TD-NiCrAl, IN-601, IN-702, and B-1900 plus Hf. All of these alloys exhibited partial spalling within the oxide rather than total oxide loss down to bare metal. Thermal shock resulted in deformation of the metal which in turn resulted, in most cases, in changing the oxide failure mode from compressive to tensile. Tensile failures were characterized by cracking of the oxide and little loss, while compressive failures were characterized by explosive loss of platelets of oxide. This behavior was confirmed by examination of mechanically stressed oxide scales. The thermally shocked oxides spalled less than the slow cooled samples with the exception of TD-NiCrAl. This material failed in a brittle manner rather than by plastic deformation.

  15. Electron-collecting oxide layers in inverted polymer solar cells via oxidation of thermally evaporated titanium

    NASA Astrophysics Data System (ADS)

    Zampetti, A.; Salamandra, L.; Brunetti, F.; Reale, A.; Di Carlo, A.; Brown, T. M.

    2016-10-01

    A simple and intuitive deposition technique is discussed to obtain titanium oxide used as an electron collecting layer in polymer solar cells based on the thermal evaporation of pristine titanium and further thermal treatment to convert the metal in oxide. Since the degradation of indium-doped tin oxide at high temperatures is an issue, we demonstrate that the combination of glass/fluorine tin oxide and high temperatures represents a promising approach in the fabrication of inverted polymer solar cells with such a titanium oxide electron collecting layer.

  16. Regenerative thermal oxidation and alternative technologies for VOC control

    SciTech Connect

    Biedell, E.L.

    1995-12-31

    Thermal oxidation technologies have been used successfully to control VOC`s for many years but the recent 1990 Clean Air Act Amendments have spurred improvements in the established processes and development of economic alternatives. The combination of the regulatory maze and confusion in the selection of the best technology for a particular application has created a potential nightmare for those companies facing a need to reduce their VOC EMISSIONS. The relative advantages and disadvantages of regenerative, recuperative and catalytic oxidizers will be reviewed, with an emphasis on the economic justification for regenerative thermal oxidation (RTO). Control efficiencies of more than 99% have been demonstrated for RTO`s on a multitude of industrial process exhaust streams. Lowest evaluated cost over a fifteen to twenty year effective equipment life is a key selection criteria. This paper describes the underlying principles of thermal oxidation, and discusses the applicability of these and other emerging technologies for VOC control.

  17. Rapid microfluidic thermal cycler for nucleic acid amplification

    DOEpatents

    Beer, Neil Reginald; Vafai, Kambiz

    2015-10-27

    A system for thermal cycling a material to be thermal cycled including a microfluidic heat exchanger; a porous medium in the microfluidic heat exchanger; a microfluidic thermal cycling chamber containing the material to be thermal cycled, the microfluidic thermal cycling chamber operatively connected to the microfluidic heat exchanger; a working fluid at first temperature; a first system for transmitting the working fluid at first temperature to the microfluidic heat exchanger; a working fluid at a second temperature, a second system for transmitting the working fluid at second temperature to the microfluidic heat exchanger; a pump for flowing the working fluid at the first temperature from the first system to the microfluidic heat exchanger and through the porous medium; and flowing the working fluid at the second temperature from the second system to the heat exchanger and through the porous medium.

  18. Thermal Properties of Oxides With Magnetoplumbite Structure for Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam

    2007-01-01

    Oxides having magnetoplumbite structure are promising candidate materials for applications as high temperature thermal barrier coatings because of their high thermal stability, high thermal expansion, and low thermal conductivity. In this study, powders of LaMgAl11O19, GdMgAl11O19, SmMgAl11O19, and Gd0.7Yb0.3MgAl11O19 magnetoplumbite oxides were synthesized by citric acid sol-gel method and hot pressed into disk specimens. The thermal expansion coefficients (CTE) of these oxide materials were measured from room temperature to 1500 C. The average CTE value was found to be approx.9.6x10(exp -6)/C. Thermal conductivity of these magnetoplumbite-based oxide materials was also evaluated using steady-state laser heat flux test method. The effects of doping on thermal properties were also examined. Thermal conductivity of the doped Gd0.7Yb0.3MgAl11O19 composition was found to be lower than that of the undoped GdMgAl11O19. In contrast, thermal expansion coefficient was found to be independent of the oxide composition and appears to be controlled by the magnetoplumbite crystal structure. Thermal conductivity testing of LaMgAl11O19 and LaMnAl11O19 magnetoplumbite oxide coatings plasma sprayed on NiCrAlY/Rene N5 superalloy substrates indicated resistance of these coatings to sintering even at temperatures as high as 1600 C.

  19. Thermal oxidative degradation reactions of linear perfluoroalky lethers

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Paciorek, K. J. L.; Ito, T. I.; Kratzer, R. H.

    1982-01-01

    Thermal and thermal oxidative stability studies were performed on linear perfluoro alkyl ether fluids. The effect on degradation by metal catalysts and degradation inhibitors are reported. The liner perfluoro alkylethers are inherently unstable at 316 C in an oxidizing atmosphere. The metal catalysts greatly increased the rate of degradation in oxidizing atmospheres. In the presence of these metals in an oxidizing atmosphere, the degradation inhibitors were highly effective in arresting degradation at 288 C. However, the inhibitors had only limited effectiveness at 316 C. The metals promote degradation by chain scission. Based on elemental analysis and oxygen consumption data, the linear perfluoro alkylether fluids have a structural arrangement based on difluoroformyl and tetrafluoroethylene oxide units, with the former predominating.

  20. Thermal oxidative degradation reactions of linear perfluoroalkyl ethers

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Paclorek, K. J. L.; Ito, T. I.; Kratzer, R. H.

    1983-01-01

    Thermal and thermal oxidative stability studies were performed on linear perfluoroalkyl ether fluids. The effect on degradation by metal catalysts and degradation inhibitors is reported. The linear perfluoroalkyl ethers are inherently unstable at 316 C in an oxidizing atmosphere. The metal catalysts greatly increased the rate of degradation in oxidizing atmospheres. In the presence of these metals in an oxidizing atmosphere, the degradation inhibitors were highly effective in arresting degradation at 288 C. However, the inhibitors had only limited effectiveness at 316 C. The metals promote degradation by chain scission. Based on elemental analysis and oxygen consumption data, the linear perfluoroalkyl ether fluids have a structural arrangement based on difluoroformyl and tetrafluoroethylene oxide units, with the former predominating. Previously announced in STAR as N82-26468

  1. Surface etching and roughening in integrated processing of thermal oxides

    NASA Astrophysics Data System (ADS)

    Offenberg, M.; Liehr, M.; Rubloff, G. W.

    1991-04-01

    A multichamber UHV processing and analysis system has been used to study integrated thermal oxide processing, in which the final precleaning process and the thermal oxidation process are integrated by employing transfer of the wafers through ultraclean, inert ambients (purified, dry N2 and then ultrahigh vacuum). The Al-gate MOS capacitors show high breakdown fields (approximately 12 MV/cm) when a thin oxide passivation layer is present prior to oxidation, but low fields (less than 6 MV/cm) when the Si surface is initially oxygen free. This contrasting behavior is caused by the etching of Si surfaces which occurs at elevated temperature in the presence of trace concentration (approximately 100 ppb) of oxygen (e.g., 2 Si + O2 yields 2SiO2), leading to surface roughening and then field enhancement at asperities in the structure. Oxide surface passivation prevents etching and assures the dielectric integrity of the structure.

  2. Insertion of oxidized nucleotide triggers rapid DNA polymerase opening

    PubMed Central

    Kim, Taejin; Freudenthal, Bret D.; Beard, William A.; Wilson, Samuel H.; Schlick, Tamar

    2016-01-01

    A novel mechanism is unveiled to explain why a pro-mutagenic nucleotide lesion (oxidized guanine, 8-oxoG) causes the mammalian DNA repair polymerase-β (pol-β) to rapidly transition to an inactive open conformation. The mechanism involves unexpected features revealed recently in time-lapse crystallography. Specifically, a delicate water network associated with a lesion-stabilizing auxilliary product ion Mg(p) triggers a cascade of events that leads to poor active site geometry and the rupture of crucial molecular interactions between key residues in both the anti(8-oxoG:C) and syn(8-oxoG:A) systems. Once the base pairs in these lesioned systems are broken, dislocation of both Asp192 (a metal coordinating ligand) and the oxoG phosphate group (PO4) interfere with the hydrogen bonding between Asp192 and Arg258, whose rotation toward Asp192 is crucial to the closed-to-open enzyme transition. Energetically, the lesioned open states are similar in energy to those of the corresponding closed complexes after chemistry, in marked contrast to the unlesioned pol-β anti(G:C) system, whose open state is energetically higher than the closed state. The delicate surveillance system offers a fundamental protective mechanism in the cell that triggers DNA repair events which help deter insertion of oxidized lesions. PMID:27034465

  3. Anisotropic thermal conductivity of thin polycrystalline oxide samples

    SciTech Connect

    Tiwari, A.; Boussois, K.; Nait-Ali, B.; Smith, D. S.; Blanchart, P.

    2013-11-15

    This paper reports about the development of a modified laser-flash technique and relation to measure the in-plane thermal diffusivity of thin polycrystalline oxide samples. Thermal conductivity is then calculated with the product of diffusivity, specific heat and density. Design and operating features for evaluating in-plane thermal conductivities are described. The technique is advantageous as thin samples are not glued together to measure in-plane thermal conductivities like earlier methods reported in literature. The approach was employed to study anisotropic thermal conductivity in alumina sheet, textured kaolin ceramics and montmorillonite. Since it is rare to find in-plane thermal conductivity values for such anisotropic thin samples in literature, this technique offers a useful variant to existing techniques.

  4. Comparison of thermal oxidation and plasma oxidation of 4H-SiC (0001) for surface flattening

    SciTech Connect

    Deng, Hui; Endo, Katsuyoshi; Yamamura, Kazuya

    2014-03-10

    The thermal oxidation and water vapor plasma oxidation of 4H-SiC (0001) were investigated. The initial oxidation rate of helium-based atmospheric-pressure plasma oxidation was six times higher than that of thermal oxidation. The oxide-SiC interface generated by plasma oxidation became flatter with increasing thickness of the oxide, whereas the interface generated by thermal oxidation was atomically flat regardless of the oxide thickness. Many pits were generated on the thermally oxidized surface, whereas few pits were observed on the surface oxidized by plasma. After the oxide layer generated plasma oxidation was removed, an atomically flat and pit-free SiC surface was obtained.

  5. Modeling Oxidation Induced Stresses in Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ferguson, B. L.; Freborg, A. M.; Petrus, G. J.; Brindley, William J.

    1998-01-01

    The use of thermal barrier coatings (TBC's) in gas turbines has increased dramatically in recent years, due mainly to the need for component protection from ever increasing service temperatures. Oxidation of the bond coat has been identified as an important contributing factor to spallation of the ceramic top coat during service. Additional variables found to influence TBC thermal cycle life include bond coat coefficient of thermal expansion, creep behavior of both the ceramic and bond coat layers, and modulus of elasticity. The purpose of this work was to characterize the effects of oxidation on the stress states within the TBC system, as well as to examine the interaction of oxidation with other factors affecting TBC life.

  6. Effects of Doping on Thermal Conductivity of Pyrochlore Oxides for Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam

    2006-01-01

    Pyrochlore oxides of general composition, A2B2O7, where A is a 3(+) cation (La to Lu) and B is a 4(+) cation (Zr, Hf, Ti, etc.) have high melting point, relatively high coefficient of thermal expansion, and low thermal conductivity which make them suitable for applications as high-temperature thermal barrier coatings. The effect of doping at the A site on the thermal conductivity of a pyrochlore oxide La2Zr2O7, has been investigated. Oxide powders of various compositions La2Zr2O7, La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 were synthesized by the citric acid sol-gel method. These powders were hot pressed into discs and used for thermal conductivity measurements using a steady-state laser heat flux test technique. The rare earth oxide doped pyrochlores La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 had lower thermal conductivity than the un-doped La2Zr2O7. The Gd2O3 and Yb2O3 co-doped composition showed the lowest thermal conductivity.

  7. Impact of rapid cooling process in ultrahigh-temperature oxidation of 4H-SiC(0001)

    NASA Astrophysics Data System (ADS)

    Sometani, Mitsuru; Nagai, Daisuke; Katsu, Yoshihito; Hosoi, Takuji; Shimura, Takayoshi; Takei, Manabu; Yonezawa, Yoshiyuki; Watanabe, Heiji

    2017-04-01

    We conducted a rapid water-quenching procedure with ultrahigh-temperature oxidation to avoid degradation of the high-quality SiO2/SiC interface formed by ultrahigh-temperature oxidation during the cooling process. A reduction in the interface state density was observed for the SiO2/4H-SiC(0001) interface formed by ultrahigh-temperature oxidation in dry O2 ambient using the water-quenching process, compared with other natural cooling processes. The oxidation temperature dependence of interface state density for the thermally grown SiO2/SiC structures formed using the water-quenching process revealed that degradation of the interface properties occurred not only during the cooling process but also during the continuous oxidation process at exceedingly high temperatures, above 1500 °C, in 100% dry O2 ambient at 1 atm.

  8. Depth profiles of oxygen precipitates in nitride-coated silicon wafers subjected to rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Voronkov, V. V.; Falster, R.; Kim, TaeHyeong; Park, SoonSung; Torack, T.

    2013-07-01

    Silicon wafers, coated with a silicon nitride layer and subjected to high temperature Rapid Thermal Annealing (RTA) in Ar, show—upon a subsequent two-step precipitation anneal cycle (such as 800 °C + 1000 °C)—peculiar depth profiles of oxygen precipitate densities. Some profiles are sharply peaked near the wafer surface, sometimes with a zero bulk density. Other profiles are uniform in depth. The maximum density is always the same. These profiles are well reproduced by simulations assuming that precipitation starts from a uniformly distributed small oxide plates originated from RTA step and composed of oxygen atoms and vacancies ("VO2 plates"). During the first step of the precipitation anneal, an oxide layer propagates around this core plate by a process of oxygen attachment, meaning that an oxygen-only ring-shaped plate emerges around the original plate. These rings, depending on their size, then either dissolve or grow during the second part of the anneal leading to a rich variety of density profiles.

  9. The effective thermal conductivity of an adsorbent - Praseodymium cerium oxide

    NASA Technical Reports Server (NTRS)

    Secary, J. J.; Tong, T. W.

    1992-01-01

    The results of an experimental study to determine the effective thermal conductivity of praseodymium cerium oxide are reported. Praseodymium cerium oxide is an adsorbent used in the development of adsorption compressors for spaceborne refrigeration systems. A guarded-hot-plate apparatus was built for this study. Measurements were carried out for mean temperatures ranging from 300 to 600 C under a vacuum of 10 exp -5 torr. For the temperature range studied, the effective thermal conductivity increased from 0.14 to 0.76 W/m per C with increasing temperature, while displaying a cubic temperature dependency.

  10. Evaluation of Oxidation Damage in Thermal Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1996-01-01

    A method based on the technique of dilatometry has been established to quantitatively evaluate the interfacial damage due to the oxidation in a thermal barrier coating system. Strain isolation and adhesion coefficients have been proposed to characterize the thermal barrier coating (TBC) performance based on its thermal expansion behavior. It has been found that, for a thermal barrier coating system consisting of ZrO2-8%Y2O3/FeCrAlY/4140 steel substrate, the oxidation of the bond coat and substrate significantly reduced the ceramic coating adherence, as inferred from the dilatometry measurements. The in-situ thermal expansion measurements under 30 deg C to 700 deg C thermal cycling in air showed that the adhesion coefficient, A(sub i) decreased by 25% during the first 35 oxidation cycles. Metallography showed that delamination occurred at both the ceramic/bond coat and bond coat/substrate interfaces. In addition, the strain isolation effect has been improved by increasing the FeCrAlY bond coat thickness. The strain isolation coefficient, Si, increased from about 0.04 to 0.25, as the bond coat thickness changed from 0.1 mm to 1.0 mm. It may be possible to design optimum values of strain isolation and interface adhesion coefficients to achieve the best TBC performance.

  11. Photo- and thermal-oxidation studies on methyl and phenyl linoleate: anti-oxidant behaviour and rates of reaction.

    PubMed

    Chacón, J N; Gaggini, P; Sinclair, R S; Smith, F J

    2000-09-01

    Photo-peroxidation of methyl and phenyl linoleate in methanol solutions at 25 degrees C, in the presence of methylene blue or 5,10,15,20-tetra(4-pyridyl)-porphyrin (TPP) as sensitisers of singlet oxygen, was found to proceed at more than 30 times the rate of the same polyunsaturated fatty acid (PUFA) ester species undergoing thermal-peroxidation in the bulk phase at 50 degrees C. The addition of anti-oxidants such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) quench the thermal-oxidation effectively but appear to only partially inhibit the photosensitized peroxidation reactions. The kinetics of the overall peroxidation reactions were followed by ultraviolet spectroscopy, measurements of hydroperoxide concentration and by high performance liquid chromatography (HPLC). The photo-peroxidation reaction proceeds more rapidly in chloroform solution as the lifetime of singlet oxygen is shown to be over ten times longer in chloroform than methanol. The initial fast reaction kinetics of the photo-peroxidation reactions were evaluated using a pulsed laser technique to show that singlet oxygen reacts competitively with both the anti-oxidants and the polyunsaturated fatty acid ester. Second order kinetic rate constants (in the range 10(5)-10(7) dm(3) mol(-1) s(-1)) were evaluated for the reactivity of singlet oxygen with a range of anti-oxidants and a singlet oxygen quencher, and the results used to explain the effect of anti-oxidants at different concentrations on the rate of the linoleate photo-peroxidation reaction.

  12. Oxidation of sulfides and rapid weathering in recent landslides

    NASA Astrophysics Data System (ADS)

    Emberson, Robert; Hovius, Niels; Galy, Albert; Marc, Odin

    2016-09-01

    Linking together the processes of rapid physical erosion and the resultant chemical dissolution of rock is a crucial step in building an overall deterministic understanding of weathering in mountain belts. Landslides, which are the most volumetrically important geomorphic process at these high rates of erosion, can generate extremely high rates of very localised weathering. To elucidate how this process works we have taken advantage of uniquely intense landsliding, resulting from Typhoon Morakot, in the T'aimali River and surrounds in southern Taiwan. Combining detailed analysis of landslide seepage chemistry with estimates of catchment-by-catchment landslide volumes, we demonstrate that in this setting the primary role of landslides is to introduce fresh, highly labile mineral phases into the surface weathering environment. There, rapid weathering is driven by the oxidation of pyrite and the resultant sulfuric-acid-driven dissolution of primarily carbonate rock. The total dissolved load correlates well with dissolved sulfate - the chief product of this style of weathering - in both landslides and streams draining the area (R2 = 0.841 and 0.929 respectively; p < 0.001 in both cases), with solute chemistry in seepage from landslides and catchments affected by significant landsliding governed by the same weathering reactions. The predominance of coupled carbonate-sulfuric-acid-driven weathering is the key difference between these sites and previously studied landslides in New Zealand (Emberson et al., 2016), but in both settings increasing volumes of landslides drive greater overall solute concentrations in streams. Bedrock landslides, by excavating deep below saprolite-rock interfaces, create conditions for weathering in which all mineral phases in a lithology are initially unweathered within landslide deposits. As a result, the most labile phases dominate the weathering immediately after mobilisation and during a transient period of depletion. This mode of

  13. Firearm suppressor having enhanced thermal management for rapid heat dissipation

    DOEpatents

    Moss, William C.; Anderson, Andrew T.

    2014-08-19

    A suppressor is disclosed for use with a weapon having a barrel through which a bullet is fired. The suppressor has an inner portion having a bore extending coaxially therethrough. The inner portion is adapted to be secured to a distal end of the barrel. A plurality of axial flow segments project radially from the inner portion and form axial flow paths through which expanding propellant gasses discharged from the barrel flow through. The axial flow segments have radially extending wall portions that define sections which may be filled with thermally conductive material, which in one example is a thermally conductive foam. The conductive foam helps to dissipate heat deposited within the suppressor during firing of the weapon.

  14. Rapid thermal co-annihilation through bound states in QCD

    NASA Astrophysics Data System (ADS)

    Kim, Seyong; Laine, M.

    2016-07-01

    The co-annihilation rate of heavy particles close to thermal equilibrium, which plays a role in many classic dark matter scenarios, can be "simulated" in QCD by considering the pair annihilation rate of a heavy quark and antiquark at a temperature of a few hundred MeV. We show that the so-called Sommerfeld factors, parameterizing the rate, can be defined and measured non-perturbatively within the NRQCD framework. Lattice measurements indicate a modest suppression in the octet channel, in reasonable agreement with perturbation theory, and a large enhancement in the singlet channel, much above the perturbative prediction. The additional enhancement is suggested to originate from bound state formation and subsequent decay. Making use of a Green's function based method to incorporate thermal corrections in perturbative co-annihilation rate computations, we show that qualitative agreement with lattice data can be found once thermally broadened bound states are accounted for. We suggest that our formalism may also be applicable to specific dark matter models which have complicated bound state structures.

  15. Crystallization of sputtered lead zirconate titanate films by rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Vasant Kumar, C. V. R.; Pascual, R.; Sayer, M.

    1992-01-01

    A rapid thermal annealing (RTA) technique has been employed to process lead zirconate titanate (PZT) films prepared by reactive magnetron sputtering. The films were fabricated by dc sputtering a multielement metal target in an oxygen ambient at a substrate temperature of 200 °C. A subsequent postdeposition RTA at 600 °C for 5 s crystallizes the films into a perovskite-type structure through various intermediate phases. Due to the short postdeposition processing times inherent in the RTA method, the initial nature of the as-grown films has a critical influence on the crystallization kinetics. The reaction sequence in the formation of perovskite PZT from the films deposited at low substrate temperatures by the sputtering technique has been evaluated, and various key factors influencing the crystallization of PZT have been identified. As-grown films are constituted of polycrystalline orthorhombic lead oxide in an amorphous matrix of titania and zirconia. During annealing lead oxide transforms into a cubic phase, and the lead oxide stoichiometry determines the processing route to PZT. In the case of lead-rich films, intermediate compounds of lead with titania and zirconia are observed, which react during the final stage of annealing at 600 °C to form PZT. In lead-deficient films, the formation of a pyrochlore phase has been observed, which crystallizes into perovskite at 750 °C. The Zr/Ti ratio also influences the crystallization sequence. In the case of Ti-rich PZT, the intermediate compounds initially involve a zirconium-rich rhombohedral PZT, with which residual titanium reacts to form tetragonal PZT. The films showed good ferroelectric and other electrical properties with a remanent polarization of 24 μC/cm2, coercive field of 32 kV/cm, ɛ'=950, tan δ=0.02, and σdc (300 K)=10-12 Ω-1 cm-1 with an activation energy between 0.9 and 1.4 eV.

  16. Synthesis of Lithium Metal Oxide Nanoparticles by Induction Thermal Plasmas

    PubMed Central

    Tanaka, Manabu; Kageyama, Takuya; Sone, Hirotaka; Yoshida, Shuhei; Okamoto, Daisuke; Watanabe, Takayuki

    2016-01-01

    Lithium metal oxide nanoparticles were synthesized by induction thermal plasma. Four different systems—Li–Mn, Li–Cr, Li–Co, and Li–Ni—were compared to understand formation mechanism of Li–Me oxide nanoparticles in thermal plasma process. Analyses of X-ray diffractometry and electron microscopy showed that Li–Me oxide nanoparticles were successfully synthesized in Li–Mn, Li–Cr, and Li–Co systems. Spinel structured LiMn2O4 with truncated octahedral shape was formed. Layer structured LiCrO2 or LiCoO2 nanoparticles with polyhedral shapes were also synthesized in Li–Cr or Li–Co systems. By contrast, Li–Ni oxide nanoparticles were not synthesized in the Li–Ni system. Nucleation temperatures of each metal in the considered system were evaluated. The relationship between the nucleation temperature and melting and boiling points suggests that the melting points of metal oxides have a strong influence on the formation of lithium metal oxide nanoparticles. A lower melting temperature leads to a longer reaction time, resulting in a higher fraction of the lithium metal oxide nanoparticles in the prepared nanoparticles.

  17. Carbon monoxide oxidation rates computed for automobile thermal reactor conditions

    NASA Technical Reports Server (NTRS)

    Brokaw, R. S.; Bittker, D. A.

    1972-01-01

    Carbon monoxide oxidation rates in thermal reactors for exhaust manifolds are computed by integrating differential equations for system of twenty-nine reversible chemical reactions. Reactors are noncatalytic replacements for conventional exhaust manifolds and are a system for reducing carbon monoxide and hydrocarbons in automobile exhausts.

  18. Wettability of biomimetic thermally grown aluminum oxide coatings.

    PubMed

    Samad, Jadid E; Nychka, John A

    2011-03-01

    In this paper, wettability behavior of a rough but intrinsically hydrophilic oxide ceramic, formed via simple thermal oxidation of a commercial metallic alloy in laboratory air, has been analyzed. Drop shape analysis (DSA) revealed static water contact angles for the rough ceramic surfaces up to 128° (greater than for Teflon™). We propose the high apparent contact angles to be a result of surface roughening via the morphological changes of the oxide scale with oxidation conditions. The surface morphological changes occurring during the growth of the oxide film resulted in the formation of vertical platelets that ably shifted the wetting behavior from a Wenzel to an unstable Cassie-Baxter state. The platelet morphology of the ceramic resembles the structure of epicuticular waxes on certain species of superhydrophobic leaves. Moreover, surface textures for very short oxidation times were also found to increase hydrophilicity in the scale and reduce the contact angle by imparting a Wenzel state. Various characterization techniques (XRD, XPS, and SEM) were performed in order to detect the crystallographic phases in the scales, analyze carbon content and determine the morphology of the oxide layer. Morphological features of the oxide platelets were quantified and platelet width, spacing and height were found to correlate well with the apparent contact angle trend as a function of oxidation time.

  19. In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    Olowojoba, Ganiu B.; Eslava, Salvador; Gutierrez, Eduardo S.; Kinloch, Anthony J.; Mattevi, Cecilia; Rocha, Victoria G.; Taylor, Ambrose C.

    2016-10-01

    Graphene has excellent mechanical, thermal, optical and electrical properties and this has made it a prime target for use as a filler material in the development of multifunctional polymeric composites. However, several challenges need to be overcome to take full advantage of the aforementioned properties of graphene. These include achieving good dispersion and interfacial properties between the graphene filler and the polymeric matrix. In the present work, we report the thermal and mechanical properties of reduced graphene oxide/epoxy composites prepared via a facile, scalable and commercially viable method. Electron micrographs of the composites demonstrate that the reduced graphene oxide (rGO) is well dispersed throughout the composite. Although no improvements in glass transition temperature, tensile strength and thermal stability in air of the composites were observed, good improvements in thermal conductivity (about 36 %), tensile and storage moduli (more than 13 %) were recorded with the addition of 2 wt% of rGO.

  20. Ultrasonic characterization of thermally grown oxide in thermal barrier coating by reflection coefficient amplitude spectrum.

    PubMed

    Ma, Zhiyuan; Zhao, Yang; Luo, Zhongbing; Lin, Li

    2014-04-01

    The thermally grown oxide (TGO) growth at the interface of ceramic coating/bond coating in thermal barrier coatings (TBCs) was evaluated by ultrasonic reflection coefficient amplitude spectrum (URCAS). A theoretical analysis was performed about the influence of acoustic impedance match relationship between the ceramic coating and its adjacent media on URCAS. The immersion ultrasonic narrow pulse echo method was carried out on the TBC specimen before and after oxidation under 1050°C×1h for 15cycles. The resonant peaks of URCAS obtained before and after oxidation showed that TGO which generated between the ceramic coating and bond coating due to the oxidation, changed the acoustic impedance match between the ceramic coating and its adjacent media. This method is able to nondestructively characterize the generation of TGO in TBCs, and is important to practical engineering application.

  1. Thermal imaging of solid oxide fuel cell anode processes

    NASA Astrophysics Data System (ADS)

    Pomfret, Michael B.; Steinhurst, Daniel A.; Kidwell, David A.; Owrutsky, Jeffrey C.

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H 2 and carbon deposition lead to the fragment cooling by 5 ± 2 °C and 16 ± 1 °C, respectively. When air is flowed over the fragments, the temperature rises 24 ± 1 °C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 ± 0.1 °C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a Δ T of +2.2 ± 0.2 °C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial (∼0.1 mm) and temperature (∼0.1 °C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs.

  2. Nitrate-reducing, sulfide-oxidizing bacteria as microbial oxidants for rapid biological sulfide removal.

    PubMed

    De Gusseme, Bart; De Schryver, Peter; De Cooman, Michaël; Verbeken, Kim; Boeckx, Pascal; Verstraete, Willy; Boon, Nico

    2009-01-01

    The emission of hydrogen sulfide into the atmosphere of sewer systems induces the biological production of sulfuric acid, causing severe concrete corrosion. As a possible preventive solution, a microbial consortium of nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) was enriched in a continuously stirred tank reactor in order to develop a biological technique for the removal of dissolved sulfide. The consortium, dominated by Arcobacter sp., was capable of removing 99% of sulfide. Stable isotope fractioning of the sulfide indicated that the oxidation was a biological process. The capacity of the NR-SOB consortium for rapid removal of sulfide was demonstrated by using it as an inoculum in synthetic and real sewage. Removal rates up to 52 mg sulfide-S g VSS(-1) h(-1) were achieved, to our knowledge the highest removal rate reported so far for freshwater species in the absence of molecular oxygen. Further long-term incubation experiments revealed the capacity of the bacteria to oxidize sulfide without the presence of nitrate, suggesting that an oxidized redox reserve is present in the culture.

  3. Anisotropic turbulent thermal diffusion and thermal convection in a rapidly rotating fluid sphere

    NASA Astrophysics Data System (ADS)

    Ivers, D. J.; Phillips, C. G.

    2012-01-01

    Estimates of the molecular values of magnetic, viscous and thermal diffusion suggest that the state of the Earth's core is turbulent and that complete numerical simulation of the geodynamo is not realizable at present. Large eddy simulation of the geodynamo with modelling of the sub-grid scale turbulence must be used. Current geodynamo models effectively model the sub-grid scale turbulence with isotropic diffusivities larger than the molecular values appropriate for the core. In the Braginsky and Meytlis (1990) picture of core turbulence the thermal and viscous diffusivities are enhanced up to the molecular magnetic diffusivity in the directions of the rotation axis and mean magnetic field. We neglect the mean magnetic field herein to isolate the effects of anisotropic thermal diffusion, enhanced or diminished along the rotation axis, and explore the instability of a steady conductive basic state with zero mean flow in the Boussinesq approximation. This state is found to be more stable (less stable) as the thermal diffusion parallel to the rotation axis is increased (decreased), if the transverse thermal diffusion is fixed. To examine the effect of simultaneously varying the diffusion along and transverse to the rotation axis, the Frobenius norm is used to control for the total thermal diffusion. When the Frobenius norm of the thermal diffusion tensor is fixed, it is found that increasing the thermal diffusion parallel to the rotation axis is destabilising. This result suggests that, for a fixed total thermal diffusion, geodynamo codes with anisotropic thermal diffusion may operate at lower modified Rayleigh numbers.

  4. Micro solid oxide fuel cell fabricated on porous stainless steel: a new strategy for enhanced thermal cycling ability

    NASA Astrophysics Data System (ADS)

    Kim, Kun Joong; Park, Byung Hyun; Kim, Sun Jae; Lee, Younki; Bae, Hongyeul; Choi, Gyeong Man

    2016-03-01

    Miniaturized solid oxide fuel cells (micro-SOFCs) are being extensively studied as a promising alternative to Li batteries for next generation portable power. A new micro-SOFC is designed and fabricated which shows enhanced thermal robustness by employing oxide-based thin-film electrode and porous stainless steel (STS) substrate. To deposit gas-tight thin-film electrolyte on STS, nano-porous composite oxide is proposed and applied as a new contact layer on STS. The micro-SOFC fabricated on composite oxide- STS dual layer substrate shows the peak power density of 560 mW cm‑2 at 550 °C and maintains this power density during rapid thermal cycles. This cell may be suitable for portable electronic device that requires high power-density and fast thermal cycling.

  5. Micro solid oxide fuel cell fabricated on porous stainless steel: a new strategy for enhanced thermal cycling ability.

    PubMed

    Kim, Kun Joong; Park, Byung Hyun; Kim, Sun Jae; Lee, Younki; Bae, Hongyeul; Choi, Gyeong Man

    2016-03-01

    Miniaturized solid oxide fuel cells (micro-SOFCs) are being extensively studied as a promising alternative to Li batteries for next generation portable power. A new micro-SOFC is designed and fabricated which shows enhanced thermal robustness by employing oxide-based thin-film electrode and porous stainless steel (STS) substrate. To deposit gas-tight thin-film electrolyte on STS, nano-porous composite oxide is proposed and applied as a new contact layer on STS. The micro-SOFC fabricated on composite oxide- STS dual layer substrate shows the peak power density of 560 mW cm(-2) at 550 °C and maintains this power density during rapid thermal cycles. This cell may be suitable for portable electronic device that requires high power-density and fast thermal cycling.

  6. Micro solid oxide fuel cell fabricated on porous stainless steel: a new strategy for enhanced thermal cycling ability

    PubMed Central

    Kim, Kun Joong; Park, Byung Hyun; Kim, Sun Jae; Lee, Younki; Bae, Hongyeul; Choi, Gyeong Man

    2016-01-01

    Miniaturized solid oxide fuel cells (micro-SOFCs) are being extensively studied as a promising alternative to Li batteries for next generation portable power. A new micro-SOFC is designed and fabricated which shows enhanced thermal robustness by employing oxide-based thin-film electrode and porous stainless steel (STS) substrate. To deposit gas-tight thin-film electrolyte on STS, nano-porous composite oxide is proposed and applied as a new contact layer on STS. The micro-SOFC fabricated on composite oxide- STS dual layer substrate shows the peak power density of 560 mW cm−2 at 550 °C and maintains this power density during rapid thermal cycles. This cell may be suitable for portable electronic device that requires high power-density and fast thermal cycling. PMID:26928921

  7. Sea buckthorn seed oil protects against the oxidative stress produced by thermally oxidized lipids.

    PubMed

    Zeb, Alam; Ullah, Sana

    2015-11-01

    Thermally oxidized vegetable ghee was fed to the rabbits for 14 days with specific doses of sea buckthorn seed oil (SO). The ghee and SO were characterized for quality parameters and fatty acid composition using GC-MS. Rabbits serum lipid profile, hematology and histology were investigated. Major fatty acids were palmitic acid (44%) and oleic acid (46%) in ghee, while SO contains oleic acid (56.4%) and linoleic acid (18.7%). Results showed that oxidized vegetable ghee increases the serum total cholesterol, LDL-cholesterols, triglycerides and decrease the serum glucose. Oxidized ghee produced toxic effects in the liver and hematological parameters. Sea buckthorn oil supplementation significantly lowered the serum LDL-cholesterols, triglycerides and increased serum glucose and body weight of the animals. Sea buckthorn oil was found to reduce the toxic effects and degenerative changes in the liver and thus provides protection against the thermally oxidized lipids induced oxidative stress.

  8. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    SciTech Connect

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  9. Rapid thermal processing of high-efficiency silicon solar cells with controlled in-situ annealing

    SciTech Connect

    Doshi, P.; Rohatgi, A.; Ropp, M.; Chen, Z.; Ruby, D.; Meier, D.L.

    1995-01-01

    Silicon solar cell efficiencies of 17.1%, 16.4%, 14.8%, and 14.9% have been achieved on FZ, Cz, multicrystalline (mc-Si), and dendritic web (DW) silicon, respectively, using simplified, cost-effective rapid thermal processing (RTP). These represent the highest reported efficiencies for solar cells processed with simultaneous front and back diffusion with no conventional high-temperature furnace steps. Appropriate diffusion temperature coupled with the added in-situ anneal resulted in suitable minority-carrier lifetime and diffusion profiles for high-efficiency cells. The cooling rate associated with the in-situ anneal can improve the lifetime and lower the reverse saturation current density (J{sub 0}), however, this effect is material and base resistivity specific. PECVD antireflection (AR) coatings provided low reflectance and efficient front surface and bulk defect passivation. Conventional cells fabricated on FZ silicon by furnace diffusions and oxidations gave an efficiency of 18.8% due to greater short wavelength response and lower J{sub 0}.

  10. Lock-in thermography as a rapid and reproducible thermal characterization method for magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lemal, Philipp; Geers, Christoph; Monnier, Christophe A.; Crippa, Federica; Daum, Leopold; Urban, Dominic A.; Rothen-Rutishauser, Barbara; Bonmarin, Mathias; Petri-Fink, Alke; Moore, Thomas L.

    2017-04-01

    Lock-in thermography (LIT) is a sensitive imaging technique generally used in engineering and materials science (e.g. detecting defects in composite materials). However, it has recently been expanded for investigating the heating power of nanomaterials, such as superparamagnetic iron oxide nanoparticles (SPIONs). Here we implement LIT as a rapid and reproducible method that can evaluate the heating potential of various sizes of SPIONs under an alternating magnetic field (AMF), as well as the limits of detection for each particle size. SPIONs were synthesized via thermal decomposition and stabilized in water via a ligand transfer process. Thermographic measurements of SPIONs were made by stimulating particles of varying sizes and increasing concentrations under an AMF. Furthermore, a commercially available SPION sample was included as an external reference. While the size dependent heating efficiency of SPIONs has been previously described, our objective was to probe the sensitivity limits of LIT. For certain size regimes it was possible to detect signals at concentrations as low as 0.1 mg Fe/mL. Measuring at different concentrations enabled a linear regression analysis and extrapolation of the limit of detection for different size nanoparticles.

  11. Thermal oxidation of Ge-implanted Si: Role of defects

    NASA Astrophysics Data System (ADS)

    Dedyulin, S. N.; Goncharova, L. V.

    2012-02-01

    Thermal oxidation of Ge-implanted Si (SiGe) was carried out in dry O at 1073, 1173, and 1273 K for various times. Rutherford backscattering spectrometry in random and channeling geometry was used to characterize the SiO thickness and composition of the Si (dry oxidation) [3,4,8,9,13-17] or by bubbling N/O through HO (wet oxidation) [5-7,9-12,18]. In these studies SiGe thin films were obtained by different growth techniques such as chemical vapor deposition (CVD) [4-6,19,12], molecular beam epitaxy (MBE) [7,8,14,19,21-23], physical evaporation [3,18] as well as Ge ion implantation in Si [9-11,13,15-17]. Despite the great differences in the preparation of SiGe samples and oxidation procedures, the main features of SiGe thermal oxidation may be summarized by the following: Pure SiO was formed during oxidation: Ge atoms that were rejected from the growing silicon oxide piled up at the interface. This was observed in all cases, unless the temperature was low enough (⩽973 K)[24], or the oxidation pressure was high [6,19], or the Ge concentration, x, in the alloy satisfied x⩾0.5[7,8], or the oxidation time was very short [22,23]. All these conditions prevent Ge diffusion away from the reacting interface. The oxidation rate of SiGe in a wet atmosphere was enhanced in comparison to pure Si [4,5,9-12,18,25], while there was no enhancement in the dry O[9,16,22,25] (unless the sample was first pre-enriched with Ge to form approximately one monolayer of Ge at the interface [9]). Oxidation rate enhancement occurs during an initial linear regime of oxide growth [10]. SiGe oxidation rate enhancement has been explained by: (i) the weaker Si-Ge bond [11], (ii) Ge catalytic role for oxidation reaction [12], and (iii) changes in defect generation at the reacting interface [12]. It was shown for Ge ion implanted samples that the Deal and Grove model (DG model) for Si oxidation can still be applied with the linear B/ A constant modified to take into account enhanced oxidation

  12. Ultrasound assisted, thermally activated persulfate oxidation of coal tar DNAPLs.

    PubMed

    Peng, Libin; Wang, Li; Hu, Xingting; Wu, Peihui; Wang, Xueqing; Huang, Chumei; Wang, Xiangyang; Deng, Dayi

    2016-11-15

    The feasibility of ultrasound assisted, thermally activated persulfate for effective oxidation of twenty 2-6 ringed coal tar PAHs in a biphasic tar/water system and a triphasic tar/soil/water system were investigated and established. The results indicate that ultrasonic assistance, persulfate and elevated reaction temperature are all required to achieve effective oxidation of coal tar PAHs, while the heating needed can be provided by ultrasonic induced heating as well. Further kinetic analysis reveals that the oxidation of individual PAH in the biphasic tar/water system follows the first-order kinetics, and individual PAH oxidation rate is primary determined by the mass transfer coefficients, tar/water interfacial areas, the aqueous solubility of individual PAH and its concentration in coal tar. Based on the kinetic analysis and experimental results, the contributions of ultrasound, persulfate and elevated reaction temperature to PAHs oxidation were characterized, and the effects of ultrasonic intensity and oxidant dosage on PAHs oxidation efficiency were investigated. In addition, the results indicate that individual PAH degradability is closely related to its reactivity as well, and the high reactivity of 4-6 ringed PAHs substantially improves their degradability.

  13. Dumping pump and treat: rapid cleanups using thermal technology

    SciTech Connect

    Newmark, R.L.; Aines, R.D.

    1997-03-11

    Underground spills of volatile hydrocarbons are often difficult to clean up, especially if the contaminants are present in or below the water table as a separate liquid-organic phase. Excavating and treating the contaminated soil may not be practical or even possible if the affected zone is relatively deep. Merely pumping groundwater has proven to be ineffective because huge amounts of water must be flushed through the contaminated area to clean it; even then the contaminants may not be completely removed. Due to the low solubility of most common contaminants, such pump and treat systems can be expected to take decades to centuries to actually clean a site. Today, many sites are required to pump and treat contaminated groundwater even though there is no expectation that the site will be cleaned. In these cases, the pumps simply control the spread of the contaminant, while requiring a continuous flow of money, paperwork, and management attention. Although pump and treat systems are relatively inexpensive to operate, they represent along term cost. Most importantly, they rarely remove enough contaminant to change the property`s status. Although a pump and treat system can offer compliance in a regulatory sense, it doesn`t solve the site`s liability problem. Thermal methods promise to solve this dilemma by actually cleaning a property in a short time period, thus limiting the period of liability. This may involve cleaning a site to closure during the initial contaminant-removal phase, or removal of the majority of the contaminant so that natural processes such as bioremediation can return the site to pristine condition over a period of years, without further owner intervention. Today`s regulatory environment encourages this approach through efforts such as the brownfields initiatives. In either case, this requires a strong commitment on the part of the site owner. Most if not all the cleanup occurs within the first year or so, and nearly all the cost. In our

  14. Rapid thermal processing in the manufacturing technology of contacts to InP-based photonic devices

    NASA Astrophysics Data System (ADS)

    Katz, Avishay

    1991-04-01

    Rapid thermal alloying and sintering of metal ohmic contacts such as AuBe PtTFi and W to InP-based materials is shown to perform with better electrical properties than the same contacts heated by means of conventional furnace. The metalsemiconductor interfacial reactions induced by the rapid thermal processing were much shallower than those formed during the conventional heating cycle at the same temperature however with a negligible influence on the overall stresses developed in the film. These results demonstrate the superiority of the rapid thermal processing over the conventional furnace heating in sintering the metal electrical contacts and its potential while integrated into the overall manufacturing process sequence of the InP based photonic devices.

  15. Rapid curing of solution-processed zinc oxide films by pulse-light annealing for thin-film transistor applications

    NASA Astrophysics Data System (ADS)

    Kim, Dong Wook; Park, Jaehoon; Hwang, Jaeeun; Kim, Hong Doo; Ryu, Jin Hwa; Lee, Kang Bok; Baek, Kyu Ha; Do, Lee-Mi; Choi, Jong Sun

    2015-01-01

    In this study, a pulse-light annealing method is proposed for the rapid fabrication of solution-processed zinc oxide (ZnO) thinfilm transistors (TFTs). Transistors that were fabricated by the pulse-light annealing method, with the annealing being carried out at 90℃ for 15 s, exhibited a mobility of 0.05 cm2/Vs and an on/off current ratio of 106. Such electrical properties are quite close to those of devices that are thermally annealed at 165℃ for 40 min. X-ray photoelectron spectroscopy analysis of ZnO films showed that the activation energy required to form a Zn-O bond is entirely supplied within 15 s of pulse-light exposure. We conclude that the pulse-light annealing method is viable for rapidly curing solution-processable oxide semiconductors for TFT applications.

  16. Regenerative thermal oxidation for non-conventional applications

    SciTech Connect

    Gosselin, G.; Gravel, J.J.O.

    1999-07-01

    Regenerative Thermal Oxidation has been applied by Biothermica to treat non-conventional emissions. These emissions include pollutants as VOC, COC, TRS, PAH, PCB, HCl and odors. In the kraft pulping industry, environmental requirements for reduced emissions of total reduced sulfur (TRS) and volatile organic compounds (VOC) from pulping operations are leading to incinerators of high destruction efficiency and thermal performance. The first installation in Canada of a Regenerative Thermal Oxidation (RTO) was placed in service early in 1997 at a kraft pulp mill in the province of Quebec. Tests have shown a TRS reduction of 99.6% with a thermal efficiency of 88.5% in the RTO. It can be considered the best method to comply with the new norms for TRS atmospheric emissions in the pulp and paper industry. In the primary aluminum process, a marked improvement in anode properties can be gained by preparing the paste at high temperature, followed by cooling with a water addition in an intensive mixer. However, the addition of cooling water results in a large increase in the emissions of VOC and PAH which can prejudice the process. A number of emission control processes were evaluated. An improved Regenerative Thermal Oxidation (RTO) unit was installed in a modern aluminum plant in Canada. The emissions of VOCs and PAHs from an EIRICH intensive mixer-cooler were reduced by more than 99.9% while all troublesome deposits in the fumes collection system were eliminated. This enabled the plant to remain well within the emission levels allowed by the environmental authority while enjoying considerable benefits from improved anode qualities. In the asphalt roofing industry, RTO was applied to treat the VOC and COC emissions and several units have been in operation since 1990. In the United States two units were installed in asphalt shingle plants and new features in the process show a VOC and COC reduction of 99%.

  17. New perspectives on thermal and hyperthermal oxidation of silicon surfaces

    NASA Astrophysics Data System (ADS)

    Khalilov, Umedjon

    The growth of (ultra)thin silica (SiO2) layers on crystalline silicon (c-Si) and controlling the thickness of SiO2 is an important issue in the fabrication of microelectronics and photovoltaic devices (e.g., MOSFETs, solar cells, optical fibers etc.). Such ultrathin oxide can be grown and tuned even at low temperature (including room temperature), by hyperthermal oxidation or when performed on non-planar Si surfaces (e.g., Si nanowires or spheres). However, hyperthermal silica growth as well as small Si-NW oxidation in general and the initial stages in particular have not yet been investigated in full detail. This work is therefore devoted to controlling ultrathin silica thickness on planar and non-planar Si surfaces, which can open new perspectives in nanodevice fabrication. The simulation of hyperthermal (1-100 eV) Si oxidation demonstrate that at low impact energy (<10 eV), oxygen does not damage the Si surface and this energy region could thus beneficially be used for Si oxidation. In contrast to thermal oxidation, 10 eV species can directly oxidize Si subsurface layers. A transition temperature of about 700 K was found: below this temperature, the oxide thickness only depends on the impact energy of the impinging species. Above this temperature, the oxide thickness depends on the impact energy, type of oxidant and the surface temperature. The results show that control over the ultrathin oxide (a-SiO2) thickness is possible by hyperthermal oxidation of silicon surfaces at temperatures below the transition temperature. In small Si-NWs, oxidation is a self-limiting process that occurs at low temperature, resulting in small Si core - SiO2 shell (semiconductor + dielectric) or c-Si|SiOx| a-SiO2 nanowire, which has also being envisaged to be used as nanowire field-effect transistors and photovoltaic devices in near-future nanotechnology. Above the transition temperature such core-shell nanowires are completely converted to a-SiO2 nanowires. It can be concluded that

  18. Hyper-Rapid thermal defect annealing during grinding of ZnO powders

    NASA Astrophysics Data System (ADS)

    Kakazey, M. G.; Vlasova, M.; Dominguez-Patino, M.; Dominguez-Patino, G.; Gonzalez-Rodriguez, G.; Salazar-Hernandez, B.

    2002-11-01

    We report on the changes in the defect structure of ZnO particles that take place during the grinding of pure ZnO powders and mixtures ZnO-SnO2 and ZnO-TiO2 powders. The qualitative differences in the electron paramagnetic resonance spectra for different specimens were discussed in the context of the hyper-rapid high-temperature spikes created in ZnO particles during mechanical treatment. The thermal spikes cause the defect structure to undergo annealing. The spike duration of the hyper-rapid thermal defects annealing was dependent on the heat conductivity of the ZnO particle environment.

  19. Thermal fatigue and oxidation data for alloy/braze combinations

    NASA Technical Reports Server (NTRS)

    Hill, V. L.; Humphreys, V. E.

    1977-01-01

    Thermal fatigue and oxidation data were obtained for 62 brazed specimens of 3 iron-, 3 nickel-, and 1 cobalt-base alloy. Fluidized bed thermal cycling was conducted over the range 740/25 C employing 10 cm long single-edge wedge specimens. Immersion time was always 4 minutes in each bed. Types of test specimens employed in the program include those with brazed overlays on the specimen radius, those butt brazed at midspan and those with a brazed foil overlay on the specimen radius. Of the 18 braze overlay specimens, 5 generated fatigue cracks by 7000 cycles. Thermal cracking of butt brazed specimens occurred exclusively through the butt braze. Of the 23 butt brazed specimens, 7 survived 11,000 thermal cycles without cracking. Only 2 of the 21 foil overlaid specimens exhibiting cracking in 7,000 cycles. Blistering of the foil did occur for 2 alloys by 500 cycles. Oxidation of the alloy/braze combination was limited at the test maximum test temperature of 740 C.

  20. Rapid PCR protocols for forensic DNA typing on six thermal cycling platforms.

    PubMed

    Butts, Erica L R; Vallone, Peter M

    2014-11-01

    Rapid PCR protocols for the amplification of typing STR multiplexes were evaluated on six different thermal cyclers. Through the use of a faster DNA polymerase coupled with the use of rapid thermal cyclers the amplification cycling times were reduced down to as little as 14 min using PCR primers from the commercially available multiplex STR typing kit Identifiler. Previously described two-step and three-step thermal cycling protocols were evaluated for the six thermal cyclers on 95 unique single-source DNA extracts. CE characterization of the PCR products indicates good peak balance between loci (median values greater than 0.84), and N minus four stutter ratios on averages were 30 to 40% higher than for standard Identifiler PCR conditions. Nonspecific amplification artifacts were observed, but were not observed to migrate within the allele calling bins. With the exception of one locus (D18S51) in a single sample, genotyping results were concordant with manufacturer's recommended amplification conditions utilizing standard thermal cycling procedures. Assay conditions were robust enough to routinely amplify 250 to 500 pg of template DNA. This work describes the protocols for the rapid PCR amplification of STR multiplexes on various PCR thermal cyclers with the future intent to support validation for typing single-source samples in a database laboratory.

  1. Graphene oxide immobilized enzymes show high thermal and solvent stability

    NASA Astrophysics Data System (ADS)

    Hermanová, Soňa; Zarevúcká, Marie; Bouša, Daniel; Pumera, Martin; Sofer, Zdeněk

    2015-03-01

    The thermal and solvent tolerance of enzymes is highly important for their industrial use. We show here that the enzyme lipase from Rhizopus oryzae exhibits exceptionally high thermal stability and high solvent tolerance and even increased activity in acetone when immobilized onto a graphene oxide (GO) nanosupport prepared by Staudenmaier and Brodie methods. We studied various forms of immobilization of the enzyme: by physical adsorption, covalent attachment, and additional crosslinking. The activity recovery was shown to be dependent on the support type, enzyme loading and immobilization procedure. Covalently immobilized lipase showed significantly better resistance to heat inactivation (the activity recovery was 65% at 70 °C) in comparison with the soluble counterpart (the activity recovery was 65% at 40 °C). Physically adsorbed lipase achieved over 100% of the initial activity in a series of organic solvents. These findings, showing enhanced thermal stability and solvent tolerance of graphene oxide immobilized enzyme, will have a profound impact on practical industrial scale uses of enzymes for the conversion of lipids into fuels.The thermal and solvent tolerance of enzymes is highly important for their industrial use. We show here that the enzyme lipase from Rhizopus oryzae exhibits exceptionally high thermal stability and high solvent tolerance and even increased activity in acetone when immobilized onto a graphene oxide (GO) nanosupport prepared by Staudenmaier and Brodie methods. We studied various forms of immobilization of the enzyme: by physical adsorption, covalent attachment, and additional crosslinking. The activity recovery was shown to be dependent on the support type, enzyme loading and immobilization procedure. Covalently immobilized lipase showed significantly better resistance to heat inactivation (the activity recovery was 65% at 70 °C) in comparison with the soluble counterpart (the activity recovery was 65% at 40 °C). Physically adsorbed

  2. Degradation of Teflon(trademark) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline; Powers, Charles; Viens, Michael; Ayres-Treusdell, Mary; Munoz, Bruno

    1999-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon(trademark) FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(trademark) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(trademark) FEP.

  3. Degradation of Teflon(tm) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Powers, Charles E.; Viens, Michael J.; Ayres-Treusdell, Mary T.; Munoz, Bruno F.

    1998-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon' FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(registered trademark) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(registered trademark) FEP.

  4. Degradation of Teflon(tm) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Powers, Charles E.; Viens, Michael J.; Ayres-Treusdell, Mary T.; Munoz, Bruno

    1998-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon' FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon FEP.

  5. Examining rapid onset drought development using the thermal infrared based evaporative stress index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reliable indicators of rapid drought onset are necessary to improve the utility of drought early warning systems. In this study, the Evaporative Stress Index (ESI), which uses remotely-sensed thermal infrared imagery to estimate evapotranspiration (ET), is compared to meteorological data and United...

  6. Rheological characterization of thermal, thermo-oxidative and photo-oxidative degradation of LDPE

    NASA Astrophysics Data System (ADS)

    Rolón-Garrido, Víctor Hugo; Wagner, Manfred Hermann

    2015-04-01

    Rheology has been used to study thermal degradation (V. H. Rolón-Garrido et al., Rheol. Acta 50, 519-535, 2011), thermo-oxidative degradation (V. H. Rolón-Garrido et al., Rheol. Acta 50, 519-535, 2011; V. H. Rolón-Garrido et al., J. Rheol. 57, 105-129, 2013) and photo-oxidative degradation (V. H. Rolón-Garrido and M. H. Wagner, Polym. Degrad. Stab. 99, 136-145, 2014; V. H. Rolón-Garrido and M. H. Wagner, J. Rheol. 58, 199-22 2, 2014; V. H. Rolón-Garrido et al., Polym. Degrad. Stab. 111, 46-54, 2015) of low-density polyethylene (LDPE). This contribution presents the analogies and differences between these types of degradations of LDPE on the linear (by use of van-Gurp Palmen plots) and non-linear viscoelastic properties (by use of the parameters of the MSF model, fmax2 and β), as well as on the failure mode of the samples (through the maximum strain and stress achieved experimentally). In contrast to thermal and thermo-oxidative degradation, the linear viscoelastic properties of photo-oxidated samples were more affected by degradation. In the non-linear regime, for thermal and thermo-oxidative treated samples, the elongational measurements elucidated the role of chain scission and long-chain branching (LCB) formation, while for photo-oxidated LDPE even the competition between chain scission, LCB formation, and gel formation was demonstrated. The failure behavior was found to be determined by a constant maximum strain in thermo-oxidative degradation, if the LDPE has high content in branching points, or in photo-oxidative degraded LDPE, if a considerable portion of gel structure is present. Otherwise, either the maximum strain or stress measured was found to be strain-rate dependent.

  7. Mechanical and tribological properties of oxide layers obtained on titanium in the thermal oxidation process

    NASA Astrophysics Data System (ADS)

    Aniołek, K.; Kupka, M.; Barylski, A.; Dercz, G.

    2015-12-01

    The paper presents the results of tests concerning a modification to the surface of titanium Grade 2 in the thermal oxidation process. It describes the oxidation kinetics of the tested material in the temperature range of 600-800 °C, with a duration from 20 min to 72 h. The greatest increase in mass was found in specimens oxidised at a temperature of 800 °C. The morphology of the obtained oxide layers was determined. The particles of oxides formed were noticeably larger after oxidation at a temperature of 600 °C. Raising temperature resulted in the formation of fine compact particles in the oxide layer. A phase analysis of oxidation products showed that TiO2 in the crystallographic form of rutile and Ti3O are the prevalent types of oxide at a temperature of 600 and 700 °C. On the other hand, only rutile formed at a temperature of 800 °C. Tribological tests showed that the presence of an oxide layer on the surface of titanium significantly improved resistance to abrasive wear. It was found that volumetric wear had decreased by 48% for a specimen oxidised at a temperature of 600 °C and by more than 60% for a specimen subjected to isothermal soaking at a temperature of 700 °C.

  8. Enhanced thermal oxidation stability of reduced graphene oxide by nitrogen doping.

    PubMed

    Sandoval, Stefania; Kumar, Nitesh; Sundaresan, A; Rao, C N R; Fuertes, Amparo; Tobias, Gerard

    2014-09-15

    Nitrogen-doped reduced graphene oxide (N-doped RGO) samples with a high level of doping, up to 13 wt. %, have been prepared by annealing graphene oxide under a flow of pure ammonia. The presence of nitrogen within the structure of RGO induces a remarkable increase in the thermal stability against oxidation by air. The thermal stability is closely related with the temperature of synthesis and the nitrogen content. The combustion reaction of nitrogen in different coordination environments (pyridinic, pyrrolic, and graphitic) is analyzed against a graphene fragment (undoped) from a thermodynamic point of view. In agreement with the experimental observations, the combustion of undoped graphene turns out to be more spontaneous than when nitrogen atoms are present.

  9. Rapid screening of pharmaceutical drugs using thermal desorption - SALDI mass spectrometry

    NASA Astrophysics Data System (ADS)

    Grechnikov, A. A.; Kubasov, A. E.; Georgieva, V. B.; Borodkov, A. S.; Nikiforov, S. M.; Simanovsky, Ya O.; Alimpiev, S. S.

    2012-12-01

    A novel approach to the rapid screening of pharmaceutical drugs by surface assisted laser desorption-ionization (SALDI) mass spectrometry with the rotating ball interface coupled with temperature programmed thermal desorption has been developed. Analytes were thermally desorbed and deposited onto the surface of amorphous silicon substrate attached to the rotating ball. The ball was rotated and the deposited analytes were analyzed using SALDI. The effectiveness of coupling SALDI mass spectrometry with thermal desorption was evaluated by the direct and rapid analysis of tablets containing lidocaine, diphenhydramine and propranolol without any sample pretreatment. The overall duration of the screening procedure was 30÷40 sec. Real urine samples were studied for drug analysis. It is shown that with simple preparation steps, urine samples can be quantitatively analyzed using the proposed technique with the detection limits in the range of 0.2÷0.5 ng/ml.

  10. Upgrading non-oxidized carbon nanotubes by thermally decomposed hydrazine

    NASA Astrophysics Data System (ADS)

    Wang, Pen-Cheng; Liao, Yu-Chun; Liu, Li-Hung; Lai, Yu-Ling; Lin, Ying-Chang; Hsu, Yao-Jane

    2014-06-01

    We found that the electrical properties of conductive thin films based on non-oxidized carbon nanotubes (CNTs) could be further improved when the CNTs consecutively underwent a mild hydrazine adsorption treatment and then a sufficiently effective thermal desorption treatment. We also found that, after several rounds of vapor-phase hydrazine treatments and baking treatments were applied to an inferior single-CNT field-effect transistor device, the device showed improvement in Ion/Ioff ratio and reduction in the extent of gate-sweeping hysteresis. Our experimental results indicate that, even though hydrazine is a well-known reducing agent, the characteristics of our hydrazine-exposed CNT samples subject to certain treatment conditions could become more graphenic than graphanic, suggesting that the improvement in the electrical and electronic properties of CNT samples could be related to the transient bonding and chemical scavenging of thermally decomposed hydrazine on the surface of CNTs.

  11. Substituted Cyclohexene Endcaps for Polymers with Thermal-Oxidative Stability

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This invention relates to polyimides having improved thermal-oxidative stability, to the process of preparing said polyimides, and the use of polyimide prepolymers in the preparation of prepregs and composites. The polyimides are particularly usefull in the preparation of fiber-reinforced, high-temperature composites for use in various engine parts including inlets, fan ducts, exit flaps and other parts of high speed aircraft. The polyimides are derived from the polymerization of effective amounts of at least one tetracarboxylic dianhydride, at least one polyamine and a novel dicarboxylic endcap having the formula presented.

  12. Thermal deoxygenation of graphite oxide at low temperature

    NASA Astrophysics Data System (ADS)

    Kampars, V.; Legzdina, M.

    2015-03-01

    Synthesis of graphene via the deoxygenation of the graphite oxide (GO) is a method for the large-scale production of this nanomaterial possessing exceptional mechanical, electrical and translucent properties. Graphite oxide sheet contains at least four different oxygen atoms connected to the Csp3 and Csp2 atoms of the sheet in the form of hydroxyl, epoxy, carboxyl or carbonyl groups. Some of these functional groups are located at the surface but others situated at the edges of the platelets. To obtain the graphene nanoplatelets or the few-layer graphene the oxygen functionalities must be removed. Exfoliation and deoxygenation can be accomplished by the use of chemical reductants or heat. Thermal deoxygenation as greener and simpler approach is more preferable over chemical reduction approach. Usually a considerable mass loss of GO observed upon heating at temperatures starting at 200 °C and is attributed to the deoxygenation process. In order to avoid the defects of the obtained graphene sheets it is very important to find the methods for lowering the deoxygenation temperature of GO. Herein, we have investigated the way treatment of the Hummer's synthesis product with acetone and methyl tert-butyl ether under ultrasonication in order to lower the thermal stability of the graphite oxide and its deoxygenation temperature. The obtained results indicate that treatment of the graphite oxide with solvents mentioned above substantially reduces the reduction and exfoliation temperature (130 °C) under ambient atmosphere. The investigation of the composition of evolved gases by hyphenated Pyr/GC/MS method at different experimental conditions under helium atmosphere shows that without the expected H2O, CO and CO2 also sulphur dioxide and acetone has been released.

  13. Rapid deposition of oxidized biogenic compounds to a temperate forest

    NASA Astrophysics Data System (ADS)

    Nguyen, Tran B.; Crounse, John D.; Teng, Alex P.; St. Clair, Jason M.; Paulot, Fabien; Wolfe, Glenn M.; Wennberg, Paul O.

    2015-02-01

    We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (∼1 nmol m-2ṡs-1). GEOS-Chem, a widely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS-Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases.

  14. Rapid deposition of oxidized biogenic compounds to a temperate forest

    PubMed Central

    Nguyen, Tran B.; Crounse, John D.; Teng, Alex P.; St. Clair, Jason M.; Paulot, Fabien; Wolfe, Glenn M.; Wennberg, Paul O.

    2015-01-01

    We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (∼1 nmol m−2⋅s−1). GEOS−Chem, a widely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS−Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases. PMID:25605913

  15. Rapid Deposition of Oxidized Biogenic Compounds to a Temperate Forest

    NASA Technical Reports Server (NTRS)

    Nguyen, Tran B.; Crounse, John D.; Teng, Alex P.; St. Clair, Jason M.; Paulot, Fabien; Wolfe, Glenn M.; Wennberg, Paul O.

    2015-01-01

    We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (approx. 1 nmol m(exp.-2)·s(exp.-1)). GEOS-Chem, awidely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS-Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases.

  16. Stress generation in thermally grown oxide films. [oxide scale spalling from superalloy substrates

    NASA Technical Reports Server (NTRS)

    Kumnick, A. J.; Ebert, L. J.

    1981-01-01

    A three dimensional finite element analysis was conducted, using the ANSYS computer program, of the stress state in a thin oxide film thermally formed on a rectangular piece of NiCrAl alloy. The analytical results indicate a very high compressive stress in the lateral directions of the film (approximately 6200 MPa), and tensile stresses in the metal substrate that ranged from essentially zero to about 55 MPa. It was found further that the intensity of the analytically determined average stresses could be approximated reasonably well by the modification of an equation developed previously by Oxx for stresses induced into bodies by thermal gradients.

  17. Thermally reduced kaolin-graphene oxide nanocomposites for gas sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Renyun; Alecrim, Viviane; Hummelgård, Magnus; Andres, Britta; Forsberg, Sven; Andersson, Mattias; Olin, Håkan

    2015-01-01

    Highly sensitive graphene-based gas sensors can be made using large-area single layer graphene, but the cost of large-area pure graphene is high, making the simpler reduced graphene oxide (rGO) an attractive alternative. To use rGO for gas sensing, however, require a high active surface area and slightly different approach is needed. Here, we report on a simple method to produce kaolin-graphene oxide (GO) nanocomposites and an application of this nanocomposite as a gas sensor. The nanocomposite was made by binding the GO flakes to kaolin with the help of 3-Aminopropyltriethoxysilane (APTES). The GO flakes in the nanocomposite were contacting neighboring GO flakes as observed by electron microscopy. After thermal annealing, the nanocomposite become conductive as showed by sheet resistance measurements. Based on the conductance changes of the nanocomposite films, electrical gas sensing devices were made for detecting NH3 and HNO3. These devices had a higher sensitivity than thermally annealed multilayer GO films. This kaolin-GO nanocomposite might be useful in applications that require a low-cost material with large conductive surface area including the demonstrated gas sensors.

  18. MERCURY OXIDIZATION IN NON-THERMAL PLASMA BARRIER DISCHARGE SYSTEM

    SciTech Connect

    V.K. Mathur

    2003-02-01

    In the past decade, the emission of toxic elements from human activities has become a matter of great public concern. Hg, As, Se and Cd typically volatilize during a combustion process and are not easily caught with conventional air pollution control techniques. In addition, there is no pollution prevention technique available now or likely be available in the foreseeable future that can prevent the emission of these trace elements. These trace elements pose additional scientific challenge as they are present at only ppb levels in large gas streams. Mercury, in particular, has attracted significant attention due to its high volatility, toxicity and potential threat to human health. In the present research work, a non-thermal plasma dielectric barrier discharge technique has been used to oxidize Hg{sup 0}(g) to HgO. The basic premise of this approach is that Hg{sup 0} in vapor form cannot be easily removed in an absorption tower whereas HgO as a particulate is amiable to water scrubbing. The work presented in this report consists of three steps: (1) setting-up of an experimental apparatus to generate mercury vapors at a constant rate and modifying the existing non-thermal plasma reactor system, (2) solving the analytical challenge for measuring mercury vapor concentration at ppb level, and (3) conducting experiments on mercury oxidation under plasma conditions to establish proof of concept.

  19. Rapid sintering of silicon nitride foams decorated with one-dimensional nanostructures by intense thermal radiation

    NASA Astrophysics Data System (ADS)

    Li, Duan; Guzi de Moraes, Elisângela; Guo, Peng; Zou, Ji; Zhang, Junzhan; Colombo, Paolo; Shen, Zhijian

    2014-08-01

    Silicon nitride foams were prepared by direct foaming and subsequent rapid sintering at 1600 °C. The intense thermal radiation generated under the pressureless spark plasma sintering condition facilitated necking of Si3N4 grains. The prepared foams possessed a porosity of ˜80 vol% and a compressive strength of ˜10 MPa, which required only ˜30 min for the entire sintering processes. Rapid growth of one-dimensional SiC nanowires from the cell walls was also observed. Thermodynamic calculations indicated that the vapor-liquid-solid model is applicable to the formation of SiC nanowires under vacuum.

  20. Rapid sintering of silicon nitride foams decorated with one-dimensional nanostructures by intense thermal radiation.

    PubMed

    Li, Duan; Guzi de Moraes, Elisângela; Guo, Peng; Zou, Ji; Zhang, Junzhan; Colombo, Paolo; Shen, Zhijian

    2014-08-01

    Silicon nitride foams were prepared by direct foaming and subsequent rapid sintering at 1600 °C. The intense thermal radiation generated under the pressureless spark plasma sintering condition facilitated necking of Si3N4 grains. The prepared foams possessed a porosity of ∼80 vol% and a compressive strength of ∼10 MPa, which required only ∼30 min for the entire sintering processes. Rapid growth of one-dimensional SiC nanowires from the cell walls was also observed. Thermodynamic calculations indicated that the vapor-liquid-solid model is applicable to the formation of SiC nanowires under vacuum.

  1. "Thermal Stability of Anodic Hafnium Oxide Nanotube Arrays"

    SciTech Connect

    Qiu, Xiaofeng; Howe, Jane Y; Mayer, Harry A; Paranthaman, Mariappan Parans; Tuncer, Enis

    2011-01-01

    Thermal stability of highly ordered Hafnium oxide, HfO2 nanotube arrays prepared through electrochemical anodization approach in the presence of ammonium fluoride is investigated in a temperature range of room temperature to 900 C in flowing Argon atmosphere. The formation of the HfO2 nanotube arrays was monitored by current density transient characteristics during anodization of hafnium metal foil. Morphologies of the as grown and post-annealed HfO2 nanotube arrays were analyzed by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). Although monoclinic HfO2 is thermally stable up to 2000K in bulk, the morphology HfO2 nanotube arrays degraded at 900 C. Detailed X-ray photoelectron spectroscopy (XPS) study revealed that the thermal treatment significantly impact the composition and chemical environment of the core elements (Hf, O and F) of HfO2. Possible reasons for the degradation of the nanotube morphology were discussed based on XPS study and possible future improvements were suggested briefly.

  2. Effect of Back Contact and Rapid Thermal Processing Conditions on Flexible CdTe Device Performance

    SciTech Connect

    Mahabaduge, Hasitha; Meysing, D. M.; Rance, Will L.; Burst, James M.; Reese, Matthew O.; Wolden, C. A.; Gessert, Timothy A.; Metzger, Wyatt K.; Garner, S.; Barnes, Teresa M.

    2015-06-14

    Flexible CdTe solar cells on ultra-thin glass substrates can enable new applications that require high specific power, unique form-factors, and low manufacturing costs. To be successful, these cells must be cost competitive, have high efficiency, and have high reliability. Here we present back contact processing conditions that enabled us to achieve over 16% efficiency on flexible Corning (R) Willow (R) Glass substrates. We used co-evaporated ZnTe:Cu and Au as our back contact and used rapid thermal processing (RTP) to activate the back contact. Both the ZnTe to Cu ratio and the RTP activation temperature provide independent control over the device performance. We have investigated the influence of various RTP conditions to Cu activation and distribution. Current density-voltage, capacitance-voltage measurements along with device simulations were used to examine the device performance in terms of ZnTe to Cu ratio and rapid thermal activation temperature.

  3. Evolution of nano-structures of silver due to rapid thermal annealing

    SciTech Connect

    Mondal, Shyamal Bhattacharyya, S. R.

    2014-04-24

    This report deals with rapid thermal annealing (RTA) effect on continuous silver film on Si(100) substrate. For this purpose silver films of different thicknesses were deposited and subsequently annealed at 500 and 800 °C. The as-deposited and annealed samples were investigated by scanning electron microscope (SEM). Formations of different nano-structures have been observed. Fragmentation of formed nanoislands also observed at temperature below melting temperature.

  4. Thermal conductivities of nanostructured magnesium oxide coatings deposited on magnesium alloys by plasma electrolytic oxidation.

    PubMed

    Shen, Xinwei; Nie, Xueyuan; Hu, Henry

    2014-10-01

    The resistances of magnesium alloys to wear, friction and corrosion can be effectively improved by depositing coatings on their surfaces. However, the coatings can also reduce the heat transfer from the coated components to the surroundings (e.g., coated cylinder bores for internal combustion of engine blocks). In this paper, nanostructured magnesium oxides were produced by plasma electrolytic oxidation (PEO) process on the magnesium alloy AJ62 under different current densities. The guarded comparative heat flow method was adopted to measure the thermal conductivities of such coatings which possess gradient nanoscale grain sizes. The aim of the paper is to explore how the current density in the PEO process affects the thermal conductivity of the nanostructured magnesium coatings. The experimental results show that, as the current density rises from 4 to 20 A/mm2, the thermal conductivity has a slight increase from 0.94 to 1.21 W/m x K, which is significantly smaller than that of the corresponding bulk magnesium oxide materials (29.4 W/m x K). This mostly attributed to the variation of the nanoscale grain sizes of the PEO coatings.

  5. Tensile stress and creep in thermally grown oxide.

    PubMed

    Veal, Boyd W; Paulikas, Arvydas P; Hou, Peggy Y

    2006-05-01

    Structural components that operate at high temperatures (for example, turbine blades) rely on thermally grown oxide (TGO), commonly alumina, for corrosion protection. Strains that develop in TGOs during operation can reduce the protectiveness of the TGO. However, the occurrence of growth strains in TGOs, and mechanisms that cause them, are poorly understood. It is accepted that compressive strains can develop as oxygen and metal atoms meet to form new growth within constrained oxide. More controversial is the experimental finding that large tensile stresses, close to 1 GPa, develop during isothermal growth conditions in alumina TGO formed on a FeCrAlY alloy. Using a novel technique based on synchrotron radiation, we have confirmed these previous results, and show that the tensile strain develops as the early oxide, (Fe,Cr,Al)(2)O(3), converts to alpha-Al2O3 during the growth process. This allows us to model the strain behaviour by including creep and this diffusion-controlled phase change.

  6. Packaging material and flexible medical tubing containing thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A packaging material or flexible medical tubing containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  7. Anti-oxidative effects of rooibos tea extract on autoxidation and thermal oxidation of lipids.

    PubMed

    Fukasawa, Ryo; Kanda, Ayato; Hara, Setsuko

    2009-01-01

    Powdered rooibos tea extract (RTE), which is rich in polyphenols, is made from rooibos tea by freeze-drying. "Rooibos" is Afrikaans for "red bush," and the scientific name is "Aspalathus linearis." It is a broom-like member of the legume family of plants and is used to make an herbal tea which has been popular in South Africa for generations and is now consumed in many countries. In the present work, the anti-oxidative effect of RTE on oils and fats in autoxidation or thermal oxidation was studied, and it was confirmed that RTE has a very strong anti-oxidative effect on emulsifying oils owing to the water-soluble polyphenols such as rutin and quercetin contained in RTE. RTE was found to have a strong ability to quench radicals generated in the water phase, and to confer higher thermal stability against deep fat frying than tocopherol. But RTE showed little anti-oxidative effect on frying oil because of its lower oil-solubility.

  8. Leaf thermal and hydraulic capacitances - structural safeguards for rapid ambient fluctuations

    NASA Astrophysics Data System (ADS)

    Schymanski, S. J.; Or, D.; Zwieniecki, M.

    2011-12-01

    Leaves may be subjected to rapidly fluctuating irradiation or thermal conditions due to motion of sun flecks and clouds or passage of warm and dry wind gusts. Given a stomatal characteristic time scale (~5 min) for adjusting transpiration flux, fluctuations of environmental conditions at shorter time scales (~1 min) could push leaf hydraulic and thermal status beyond its operational limits resulting in xylem cavitation or overheating. As active stomatal protection may not be adequate, we propose that leaf thermal and hydraulic capacitances and hence leaf specific mass (hydrated thickness) provide passive protection and play a critical role for autonomous and intrinsic capacitive-based responses to rapid fluctuations. For example, a simple variable leaf mass per unit area can affect both thermal and hydraulic capacitances. Thus a thin leaf (0.2 mm) exposed to a sunfleck can experience an increase in leaf temperature by 20K in the order of 3 minutes, i.e. before stomata can activate evaporative cooling. Increasing leaf thickness can be an effective measure to increase the buffer for such environmental fluctuations, so that slower regulatory measures such as stomatal adjustments can take over before detrimental effects take place. Systematic measurements of thermal changes in response to step changes in radiation conditions were obtained using laser illumination and infra-red thermal imaging of leaf laser-illuminated area across a wide range of leaf morphologies from major plant divisions (ferns, gymnosperms and angiosperms). Results confirm inverse relationships between leaf thickness and temperature rise (measured as steady state temperature increase). Hydraulic impacts of such structural capacitance on xylem function will be discussed.

  9. Thermal NF3 fluorination/oxidation of cobalt, yttrium, zirconium, and selected lanthanide oxides

    SciTech Connect

    Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.; Kozelisky, Anne E.; Neiner, Doinita

    2013-02-01

    This paper presents results of our continuing investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. This article focuses on fission products that do not have volatile fluorides or oxyfluorides at expected operations temperatures. Our thermodynamic calculations show that nitrogen trifluoride has the potential to completely fluorinate fission product oxides to their fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of cobalt, zirconium, and the lanthanides are fluorinated but do not form volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550°C. Our studies of gadolinium-doped commercial nuclear fuel indicate that nitrogen trifluoride can extract uranium from the non-volatile gadolinium.

  10. Therapeutic role of Cuminum cyminum on ethanol and thermally oxidized sunflower oil induced toxicity.

    PubMed

    Aruna, K; Rukkumani, R; Varma, P Suresh; Menon, Venugopal P

    2005-05-01

    Ethanol is one of the most widely used and abused drugs, increasing lipid levels in humans and experimental animals. Heating of oil rich in polyunsaturated fatty acids (PUFA) produces various lipid peroxidative end products that can aggravate the pathological changes produced by ethanol. In the present communication, the effect of Cuminum cyminum was investigated on alcohol and thermally oxidized oil induced hyperlipidaemia. The results showed increased activity of aspartate transaminase (AST), alkaline phosphatase (ALP) and gamma glutamyl transferase (GGT) and increased levels of cholesterol, triglycerides and phospholipids in the plasma of rats given alcohol, thermally oxidized oil and alcohol+thermally oxidized oil when compared with the normal control group. The levels of tissue (liver and kidney) cholesterol and triglycerides were increased significantly in rats groups given alcohol, thermally oxidized oil and alcohol+thermally oxidized oil when compared with the normal control rats. The levels were decreased when cumin was given along with alcohol and thermally oxidized oil. The level of phospholipids decreased significantly in the liver and kidney of groups given alcohol, thermally oxidized oil and alcohol+thermally oridized oil when compared with the normal control rats. The level increased when cumin was administered along with alcohol and thermally oxidized oil. The activity of phospholipase A and C increased significantly in the liver of groups given alcohol, thermally oxidized oil and alcohol+thermally oxidized oil when compared with the normal control rats, whereas the activity was decreased with the cumin treatment. The results obtained indicate that cumin can decrease the lipid levels in alcohol and thermally oxidized oil induced hepatotoxicity.

  11. Sonochemical approach for rapid growth of zinc oxide nanowalls

    NASA Astrophysics Data System (ADS)

    Nayak, Avinash P.; Katzenmeyer, Aaron M.; Gosho, Yasuhiro; Tekin, Bayram; Islam, M. Saif

    2012-06-01

    The sonochemical process drives chemical reactions with sound fields by creating extraordinarily high density of energy, pressure and temperatures. The process resulted in a number of unexpected chemical species and thought-provoking results in the recent past. In this paper, we present a new sonochemical approach to synthesize ZnO (zinc oxide) nanowalls (NWalls) on aluminum and alumina coated substrates at room ambient conditions. We achieved highly dense and uniform ZnO NWalls in areas that are coated with Al or Al2O3 (alumina). The synthesis process was shown not to occur on Si, SiO2, Cr, or Ag surfaces. A series of experiments on understanding the growth kinetics offers detailed insight into the growth dynamics over time. Photoluminescence (PL) measurements, UV Vis spectroscopy, and SEM-EDS results confirm NWalls composed of crystalline ZnO that are formed via Al assisted growth induced by phase transformations under extraordinary pressure, temperature, and chemical growth kinetics. The chemical growth method as reported here, is applicable to arbitrary substrates coated with an Al thin film. We demonstrate the applications of the as-formed NWalls in UV photoconductors and gas sensors.

  12. A Rapid and Low-Cost PCR Thermal Cycler for Low Resource Settings

    PubMed Central

    Wong, Grace; Wong, Isaac; Chan, Kamfai; Hsieh, Yicheng; Wong, Season

    2015-01-01

    Background Many modern molecular diagnostic assays targeting nucleic acids are typically confined to developed countries or to the national reference laboratories of developing-world countries. The ability to make technologies for the rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a revolutionary step forward in global health. Many molecular assays are also developed based on polymerase chain reactions (PCR), which require thermal cyclers that are relatively heavy (>20 pounds) and need continuous electrical power. The temperature ramping speed of most economical thermal cyclers are relatively slow (2 to 3°C/s) so a polymerase chain reaction can take 1 to 2 hours. Most of all, these thermal cyclers are still too expensive ($2k to $4k) for low-resource setting uses. Methodology/Principal Findings In this article, we demonstrate the development of a low-cost and rapid water bath based thermal cycler that does not require active temperature control or continuous power supply during PCR. This unit costs $130 to build using commercial off-the-shelf items. The use of two or three vacuum-insulated stainless-steel Thermos food jars containing heated water (for denaturation and annealing/extension steps) and a layer of oil on top of the water allow for significantly stabilized temperatures for PCR to take place. Using an Arduino-based microcontroller, we automate the “archaic” method of hand-transferring PCR tubes between water baths. Conclusions/Significance We demonstrate that this innovative unit can deliver high speed PCR (17 s per PCR cycle) with the potential to go beyond the 1,522 bp long amplicons tested in this study and can amplify from templates down to at least 20 copies per reaction. The unit also accepts regular PCR tubes and glass capillary tubes. The PCR efficiency of our thermal cycler is not different from other commercial thermal cyclers. When combined with a rapid nucleic acid detection approach

  13. Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption.

    PubMed

    Lee, Dae-Sik; Park, Se Ho; Yang, Haesik; Chung, Kwang-Hyo; Yoon, Tae Hwan; Kim, Sung-Jin; Kim, Kyuwon; Kim, Youn Tae

    2004-08-01

    The current paper describes the design, fabrication, and testing of a micromachined submicroliter-volume polymerase chain reaction (PCR) chip with a fast thermal response and very low power consumption. The chip consists of a bulk-micromachined Si component and hot-embossed poly(methyl methacrylate)(PMMA) component. The Si component contains an integral microheater and temperature sensor on a thermally well-isolated membrane, while the PMMA component contains a submicroliter-volume PCR chamber, valves, and channels. The micro hot membrane under the submicroliter-volume chamber is a silicon oxide/silicon nitride/silicon oxide (O/N/O) diaphragm with a thickness of 1.9 microm, resulting in a very low thermal mass. In experiments, the proposed chip only required 45 mW to heat the reaction chamber to 92 degrees C, the denaturation temperature of DNA, plus the heating and cooling rates are about 80 degrees C s(-1) and 60 degrees C s(-1), respectively. We validated, from the fluorescence results from DNA stained with SYBR Green I, that the proposed chip amplified the DNA from vector clone, containing tumor suppressor gene BRCA 1 (127 base pairs at 11th exon), after 30 thermal cycles of 3 s, 5 s, and 5 s at 92 degrees C, 55 degrees C, and 72 degrees C, respectively, in a 200 nL-volume chamber. As for specificity of DNA products, owing to difficulty in analyzing the very small volume PCR results from the micro chip, we vicariously employed the larger volume PCR products after cycling with the same sustaining temperatures as with the micro chip but with much slower ramping rates (3.3 degrees C s(-1) when rising, 2.5 degrees C s(-1) when cooling) within circa 20 minutes on a commercial PCR machine and confirmed the specificity to BRCA 1 (127 base pairs) with agarose gel electrophoresis. Accordingly, the fabricated micro chip demonstrated a very low power consumption and rapid thermal response, both of which are crucial to the development of a fully integrated and battery

  14. Rapidly reversible redox transformation in nanophase manganese oxides at room temperature triggered by changes in hydration

    PubMed Central

    Birkner, Nancy; Navrotsky, Alexandra

    2014-01-01

    Chemisorption of water onto anhydrous nanophase manganese oxide surfaces promotes rapidly reversible redox phase changes as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Surface reduction of bixbyite (Mn2O3) to hausmannite (Mn3O4) occurs in nanoparticles under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Additionally, transformation does not occur on nanosurfaces passivated by at least 2% coverage of what is likely an amorphous manganese oxide layer. The transformation is due to thermodynamic control arising from differences in surface energies of the two phases (Mn2O3 and Mn3O4) under wet and dry conditions. Such reversible and rapid transformation near room temperature may affect the behavior of manganese oxides in technological applications and in geologic and environmental settings. PMID:24733903

  15. Hole Trapping in Thermal Oxides Grown under Various Oxidation Conditions Using Avalanche Injection in Poly-Silicon Gate Structures

    DTIC Science & Technology

    2014-05-01

    Hole Trapping in Thermal Oxides Grown under Vaious Oxidation Conditions Using Avalanche Injection in Poly-Silicon Gate Structures Contractor... Avalanche In ection in Poly-Silicon Gate Structureac 12. PERSONAL AUTHOR(S) K.V. Anand, B.R. Cairns, R.J. Strain 13a. TYPE OF REPORT 13b. TIME...Trapping, Oxidation Conditions, Avalanche Injection, Poly-Silicon Gates, Oxide Traps 19. ABSTRACT (Continue on reverse If necenry W Identify by block

  16. Method for the rapid synthesis of large quantities of metal oxide nanowires at low temperatures

    DOEpatents

    Sunkara, Mahendra Kumar; Vaddiraju, Sreeram; Mozetic, Miran; Cvelbar, Uros

    2009-09-22

    A process for the rapid synthesis of metal oxide nanoparticles at low temperatures and methods which facilitate the fabrication of long metal oxide nanowires. The method is based on treatment of metals with oxygen plasma. Using oxygen plasma at low temperatures allows for rapid growth unlike other synthesis methods where nanomaterials take a long time to grow. Density of neutral oxygen atoms in plasma is a controlling factor for the yield of nanowires. The oxygen atom density window differs for different materials. By selecting the optimal oxygen atom density for various materials the yield can be maximized for nanowire synthesis of the metal.

  17. Advanced Multi-Component Defect Cluster Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1990-01-01

    The advantages of using ceramic thermal barrier coatings in gas turbine engine hot sections include increased fuel efficiency and improved engine reliability. However, current thermal barrier coatings will not have the low thermal conductivity and necessary sintering resistance under higher operating temperatures and thermal gradients required by future advanced ultra-efficient and low-emission aircraft engines. In this paper, a novel oxide defect cluster design approach is described for achieving low thermal conductivity and excellent thermal stability of the thermal barrier coating systems. This approach utilizes multi-component rare earth and other metal cluster oxide dopants that are incorporated in the zirconia-yttria based systems, thus significantly reducing coating thermal conductivity and sintering resistance by effectively promoting the formation of thermodynamically stable, essentially immobile defect clusters and/or nanoscale phases. The performance of selected plasma-sprayed cluster oxide thermal barrier coating systems has been evaluated. The advanced multi-component thermal barrier coating systems were found to have significantly lower initial and long-term thermal conductivities, and better high temperature stability. The effect of oxide cluster dopants on coating thermal conductivity, sintering resistance, oxide grain growth behavior and durability will be discussed.

  18. Advanced Multi-Component Defect Cluster Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The advantages of using ceramic thermal barrier coatings in gas turbine engine hot sections include increased fuel efficiency and improved engine reliability. However, current thermal barrier coatings will not have the low thermal conductivity and necessary sintering resistance under higher operating temperatures and thermal gradients required by future advanced ultra efficient and low emission aircraft engines. In this paper, a novel oxide defect cluster design approach is described for achieving low thermal conductivity and excellent thermal stability of the thermal barrier coating systems. This approach utilizes multi-component rare earth and other metal cluster oxide dopants that are incorporated in the zirconia-yttna based systems, thus significantly reducing coating thermal conductivity and sintering resistance by effectively promoting the formation of thermodynamically stable, essentially immobile defect clusters and/or nanoscale phases. The performance of selected plasma-sprayed cluster oxide thermal barrier coating systems has been evaluated. The advanced multi-component thermal barrier coating systems were found to have significantly lower initial and long-term thermal conductivities, and better high temperature stability. The effect of oxide cluster dopants on coating thermal conductivity, sintering resistance, oxide grain growth behavior and durability will be discussed.

  19. DEAD ZONES AS THERMAL BARRIERS TO RAPID PLANETARY MIGRATION IN PROTOPLANETARY DISKS

    SciTech Connect

    Hasegawa, Yasuhiro; Pudritz, Ralph E. E-mail: pudritz@physics.mcmaster.ca

    2010-02-20

    Planetary migration in standard models of gaseous protoplanetary disks is known to be very rapid ({approx}10{sup 5} years), jeopardizing the existence of planetary systems. We present a new mechanism for significantly slowing rapid planetary migration, discovered by means of radiative transfer calculations of the thermal structure of protoplanetary disks irradiated by their central stars. Rapid dust settling in a disk's dead zone-a region with very little turbulence-leaves a dusty wall at its outer edge. We show that the back-heating of the dead zone by this irradiated wall produces a positive gradient of the disk temperature, which acts as a thermal barrier to planetary migration which persists for the disk lifetime. Although we analyze in detail the migration of a super-Earth in a low-mass disk around an M star, our findings can apply to a wide variety of young planetary systems. We compare our findings with other potentially important stopping mechanisms and show that there are large parameter spaces for which dead zones are likely to play the most important role for reproducing the observed mass-period relation in longer planetary periods.

  20. Preparation and modification of VO2 thin film on R-sapphire substrate by rapid thermal process

    NASA Astrophysics Data System (ADS)

    Zhu, Nai-Wei; Hu, Ming; Xia, Xiao-Xu; Wei, Xiao-Ying; Liang, Ji-Ran

    2014-04-01

    The VO2 thin film with high performance of metal-insulator transition (MIT) is prepared on R-sapphire substrate for the first time by magnetron sputtering with rapid thermal process (RTP). The electrical characteristic and THz transmittance of MIT in VO2 film are studied by four-point probe method and THz time domain spectrum (THz-TDS). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and search engine marketing (SEM) are employed to analyze the crystalline structure, valence state, surface morphology of the film. Results indicate that the properties of VO2 film which is oxidized from the metal vanadium film in oxygen atmosphere are improved with a follow-up RTP modification in nitrogen atmosphere. The crystallization and components of VO2 film are improved and the film becomes compact and uniform. A better phase transition performance is shown that the resistance changes nearly 3 orders of magnitude with a 2-°C hysteresis width and the THz transmittances are reduced by 64% and 60% in thermal and optical excitation respectively.

  1. Effect of Rapid Thermal Annealing on the Electrical Characteristics of ZnO Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Remashan, Kariyadan; Hwang, Dae-Kue; Park, Seong-Ju; Jang, Jae-Hyung

    2008-04-01

    Thin-film transistors (TFTs) with a bottom-gate configuration were fabricated with an RF magnetron sputtered undoped zinc oxide (ZnO) channel layer and plasma-enhanced chemical vapor deposition (PECVD) grown silicon nitride as a gate dielectric. Postfabrication rapid thermal annealing (RTA) and subsequent nitrous oxide (N2O) plasma treatment were employed to improve the performance of ZnO TFTs in terms of on-current and on/off current ratio. The RTA treatment increases the on-current of the TFT significantly, but it also increases its off-current. The off-current of 2×10-8 A and on/off current ratio of 3×103 obtained after the RTA treatment were improved to 10-10 A and 105, respectively, by the subsequent N2O plasma treatment. The better device performance can be attributed to the reduction of oxygen vacancies at the top region of the channel due to oxygen incorporation from the N2O plasma. X-ray photoelectron spectroscopy (XPS) analysis of the TFT samples showed that the RTA-treated ZnO surface has more oxygen vacancies than as-deposited samples, which results in the increased drain current. The XPS study also showed that the subsequent N2O plasma treatment reduces oxygen vacancies only at the surface of ZnO so that the better off-current and on/off current ratio can be obtained.

  2. Rapid microplate, green method for high-throughput evaluation of vinegar acidity using thermal infrared enthalpimetry.

    PubMed

    Tischer, Bruna; Oliveira, Alessandra Stangherlin; Ferreira, Daniele de Freitas; Menezes, Cristiano Ragagnin; Duarte, Fábio Andrei; Wagner, Roger; Barin, Juliano Smanioto

    2017-01-15

    Infrared thermal imaging was combined with disposable microplates to perform enthalpimetric analysis using an infrared camera to monitor temperature without contact. The proposed thermal infrared enthalpimetry (TIE) method was used to determine the total, fixed and volatile acidities of vinegars. Sample preparation and analysis were performed in the same vessel, avoiding excessive sample handling and reducing energy expenditure by more than ten times. The results agreed with those of the conventional method for different kinds of vinegars, with values of 1.7%, and 2.3% for repeatability and intermediate precision, respectively. A linear calibration curve was obtained from 0.040 to 1.30molL(-1). The proposed method provided rapid results (within 10s) for four samples simultaneously, a sample throughput of up to 480 samples per hour. In addition, the method complies with at least eight of twelve recommendations for green analytical chemistry, making TIE a promising tool for routine vinegar analysis.

  3. Damp and dry heat degradation of thermal oxide passivation of p+ silicon

    NASA Astrophysics Data System (ADS)

    Thomson, Andrew; Gardner, Matthew; McIntosh, Keith; Shalav, Avi; Bullock, James

    2014-03-01

    Thermal SiO2 passivates both moderately and heavily doped silicon surfaces irrespective of the dopant type, which is advantageous in high-efficiency solar cell designs. Commercial photovoltaic cells are submitted to accelerated ageing tests, such as damp-heat exposure, to ensure they maintain their performance for at least 20 yr. We find damp-heat exposure causes a severe and rapid degradation of thermal SiO2 passivation on p+ silicon surfaces. The reaction is so severe that the diffused-region recombination in the degraded state is limited by the diffusion of minority carriers to the Si-SiO2 interface not the density of interface defects Dit. Certainly, this effect renders the thermal-oxide passivation useless if employed on a solar cell. To study the cause of the degradation, we also test the effects of storage in dry heat and room ambient conditions. Examination of the rate of degradation in the tested storage conditions in comparison with modelled diffusion of moisture in SiO2, we find a significant correlation between the time dependent J0e and moisture supplied to the interface, leading us to the conclusion that moisture ingression and subsequent reaction at the SiO2-Si interface are the cause of both damp-heat and room- ambient degradation.

  4. Pt/Ti/n-InP nonalloyed ohmic contacts formed by rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Katz, A.; Weir, B. E.; Chu, S. N. G.; Thomas, P. M.; Soler, M.; Boone, T.; Dautremont-Smith, W. C.

    1990-04-01

    Low resistance nonalloyed ohmic contacts of e-gun evaporated Pt/Ti to S doped n-InP 5×1017, 1×1018, and 5×1018 cm-3 have been fabricated by rapid thermal processing. The contacts to the lower doped substrates (5×1017 and 1×1018 cm-3) were rectifying as-deposited as well as after heat treatment at temperatures lower than 350 °C. Higher processing temperatures stimulated the Schottky to ohmic contact conversion with minimum specific contact resistance of 1.5×10-5 and 5×10-6 Ω cm2, respectively, as a result of rapid thermal processing at 450 °C for 30 s. Heating at a temperature of 550 °C again yielded a Schottky contact. The contact to the 5×1018 cm-3 InP was ohmic as deposited with a specific contact resistance value of 1.1×10-4 Ω cm2. Supplying heat treatment to the contact caused a decrease of the specific contact resistance to a minimum of 8×10-7 Ω cm2 as a result of rapid thermal processing at 450 °C for 30 s. In all cases, this heat treatment caused a limited interfacial reactions between the Ti and the InP, and resulted in an almost abrupt interface. Heating at temperatures higher than 500 °C resulted in an interfacial intermixing and a mutual migration and reaction of the Ti and the semiconductor elements. The Pt/Ti bilayer structure was highly tensile as deposited (5×109 dyn cm-2) and became stress-free as a result of the interfacial reactions which took place while heating the samples to temperature of 400 °C or higher.

  5. Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide.

    PubMed

    Ahn, Yumi; Jeong, Youngjun; Lee, Youngu

    2012-12-01

    Solution-processable silver nanowire-reduced graphene oxide (AgNW-rGO) hybrid transparent electrode was prepared in order to replace conventional ITO transparent electrode. AgNW-rGO hybrid transparent electrode exhibited high optical transmittance and low sheet resistance, which is comparable to ITO transparent electrode. In addition, it was found that AgNW-rGO hybrid transparent electrode exhibited highly enhanced thermal oxidation and chemical stabilities due to excellent gas-barrier property of rGO passivation layer onto AgNW film. Furthermore, the organic solar cells with AgNW-rGO hybrid transparent electrode showed good photovoltaic behavior as much as solar cells with AgNW transparent electrode. It is expected that AgNW-rGO hybrid transparent electrode can be used as a key component in various optoelectronic application such as display panels, touch screen panels, and solar cells.

  6. Thermal decomposition and oxidation of CH3OH.

    PubMed

    Lee, Pei-Fang; Matsui, Hiroyuki; Xu, Ding-Wei; Wang, Niann-Shiah

    2013-01-24

    Thermal decomposition of CH(3)OH diluted in Ar has been studied by monitoring H atoms behind reflected shock waves of 100 ppm CH(3)OH + Ar. The total decomposition rate k(1) for CH(3)OH + M → products obtained in this study is expressed as, ln(k(1)/cm(3) molecule(-1) s(-1)) = -(14.81 ± 1.22) - (38.86 ± 1.82) × 10(3)/T, over 1359-1644 K. The present result on k(1) is indicated to be substantially smaller than the extrapolation of the most of the previous experimental data but consistent with the published theoretical results [Faraday Discuss. 2002, 119, 191-205 and J. Phys. Chem. A 2007, 111, 3932-3950]. Oxidation of CH(3)OH has been studied also by monitoring H atoms behind shock waves of (0.35-100) ppm CH(3)OH + (100-400) ppm O(2) + Ar. For the low concentration CH(3)OH (below 10 ppm) + O(2) mixtures, the initial concentration of CH(3)OH is evaluated by comparing evolutions of H atoms in the same concentration of CH(3)OH with addition of 300 ppm H(2) diluted in Ar. The branching fraction for CH(3)OH + Ar → (1)CH(2) + H(2)O + Ar has been quantitatively evaluated from this comparative measurements with using recent experimental result on the yield of H atoms in the reaction of (1,3)CH(2) + O(2) [J. Phys. Chem. A 2012, 116, 9245-9254]; i.e., the branching fraction for the above reaction is evaluated as, φ(1a) = 0.20 ± 0.04 at T = 1880-2050 K, in the 1.3 and 3.5 ppm CH(3)OH + 100 ppm O(2) samples. An extended reaction mechanism for the pyrolysis and oxidation of CH(3)OH is constructed based on the results of the present study combined with the oxidation mechanism of natural gas [GRI-Mech 3.0]; evolution of H atoms can be predicted very well with this new reaction scheme over a wide concentration range for the pyrolysis (0.36-100 ppm CH(3)OH), and oxidation (0.36-100 ppm CH(3)OH + 100/400 ppm O(2)) of methanol.

  7. Thermal oxidative degradation of ethylene tetrafluoroethylene copolymer systems

    NASA Astrophysics Data System (ADS)

    Elders, Jonathan Patrick

    Thermo-oxidative degradation of ethylene tetrafluoroethylene (ETFE) was investigated to determine how modifications for use in an electrical wire system affected its thermal stability. Modifications included electron irradiation and subsequent cross-linking during manufacture and contact with a metal surface. Samples with irradiation histories between 0 and 48 MRads were investigated. Degradation of ETFE was enhanced by contact with a metal "conductor" surface: silver - coated copper. Polymer degradation was analyzed by weight loss kinetics (thermogravimetric analysis (TGA)), changes in polymer morphology (differential scanning calorimetry (DSC)), optical microscopy, attenuated total reflectance (ATR) infrared spectroscopy, and gas chromatography - mass spectroscopy (GC/MS). Conductor aging (copper permeation through silver with subsequent oxidation) was investigated using scanning Auger Electron Spectroscopy (AES). Conductor aging is enhanced in the presence of the polymer surface. Interactions between conductor and polymer were analyzed by optical microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The rate of polymer degradation from 220°C to 280°C was independent of time and extent of degradation, and rate was proportional to irradiation dose. The activation energy for degradation of unirradiated ETFE was 227 kJ/mol and decreased from 150 to 138 kJ/mol for ETFE irradiated to doses between 6 and 48 MRads. Rates of degradation at 300°C to 320°C were dependent on the extent of degradation. Rates of degradation at temperatures between 230°C and 310°C were an order of magnitude larger in the presence of a conductor than in its absence, and activation energies for degradation in the presence of conductor were reduced to 120 kJ/mol. Degradation was modeled as the combination of bulk polymer degradation and catalytic degradation at the polymer-metal interface. ETFE aged at 250°C in the presence or absence of a conductor

  8. The application of computational simulation to design optimization of an axisymmetric rapid thermal processing system

    SciTech Connect

    Spence, P.A.; Winters, W.S.; Kee, R.J.; Kermani, A.

    1994-08-01

    We are developing and applying computational models to guide the development of a rapid-thermal-processing system. This work concentrates on scale-up and commercialization of the axisymmetric, multiple-lamp-ring approach that was pioneered by Texas Instruments in the Microelectronics Manufacturing Science and Technology program. CVC Products intends to incorporate the tool into their open-architecture MESC compatible cluster environment. Integration of modeling into the product development process can reduce time-to-market and development costs, as well as improve tool performance.

  9. Pore Size Control of Ultra-thin Silicon Membranes by Rapid Thermal Carbonization

    PubMed Central

    Fang, David Z.; Striemer, Christopher C.; Gaborski, Thomas R.; McGrath, James L.; Fauchet, Philippe M.

    2010-01-01

    Rapid thermal carbonization in a dilute acetylene (C2H2) atmosphere has been used to chemically modify and precisely tune the pore size of ultrathin porous nanocrystalline silicon (pnc-Si). The magnitude of size reduction was controlled by varying the process temperature and time. Under certain conditions, the carbon coating displayed atomic ordering indicative of graphene layer formation conformal to the pore walls. Initial experiments show that carbonized membranes follow theoretical predictions for hydraulic permeability and retain the precise separation capabilities of untreated membranes. PMID:20839831

  10. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density.

    PubMed

    Shao, Zongping; Haile, Sossina M; Ahn, Jeongmin; Ronney, Paul D; Zhan, Zhongliang; Barnett, Scott A

    2005-06-09

    High energy efficiency and energy density, together with rapid refuelling capability, render fuel cells highly attractive for portable power generation. Accordingly, polymer-electrolyte direct-methanol fuel cells are of increasing interest as possible alternatives to Li ion batteries. However, such fuel cells face several design challenges and cannot operate with hydrocarbon fuels of higher energy density. Solid-oxide fuel cells (SOFCs) enable direct use of higher hydrocarbons, but have not been seriously considered for portable applications because of thermal management difficulties at small scales, slow start-up and poor thermal cyclability. Here we demonstrate a thermally self-sustaining micro-SOFC stack with high power output and rapid start-up by using single chamber operation on propane fuel. The catalytic oxidation reactions supply sufficient thermal energy to maintain the fuel cells at 500-600 degrees C. A power output of approximately 350 mW (at 1.0 V) was obtained from a device with a total cathode area of only 1.42 cm2.

  11. NOTE: Measuring oxidative gelation of aqueous flour suspensions using the Rapid Visco Analyzer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Rapid Visco Analyzer (RVA) was investigated as a tool to measure oxidative gelation capacity (OGC) of aqueous wheat-flour suspensions. One, club-wheat patent flour was used to determine optimal hydration time and 33 straight-grade flours (representing 12 hard and 31 soft varieties) were used to ...

  12. A rapid and efficient self-healing thermo-reversible elastomer crosslinked with graphene oxide.

    PubMed

    Wang, Chao; Liu, Nan; Allen, Ranulfo; Tok, Jeffrey B-H; Wu, Yunpeng; Zhang, Fan; Chen, Yongsheng; Bao, Zhenan

    2013-10-25

    A self-healing thermo-reversible elastomer is synthesized by cross-linking a hydrogen bonding polymer network with chemically-modified graphene oxide. This nanocomposite allows for both rapid and efficient self-healing (in only several minutes) at room temperature, without the need for any external stimuli (e.g., heating or light exposure), healing agents, plasticizers or solvents.

  13. Conformal cooling and rapid thermal cycling in injection molding with 3D printed tools

    NASA Astrophysics Data System (ADS)

    Xu, Xiaorong

    Solid Freeform Fabrication processes such as 3D Printing have demonstrated the potential to produce tools with complex internal geometry. This work explores the application of this capability to improved thermal management for injection molding tooling through: (i)cooling lines which are conformal to the mold surface which provide improved uniformity and stability of mold temperature and (ii)tools with low thermal inertia which, in combination with conformal fluid channels allow for rapid heating and cooling of tooling, thereby facilitating isothermal filling of the mold cavity. This work presents a systematic, modular, approach to the design of conformal cooling channels. Recognizing that the cooling is local to the surface of the tool, the tool is divided up into geometric regions and a channel system is designed for each region. Each channel system is itself modeled as composed of cooling elements, typically the region spanned by two channels. Six criteria are applied including; a transient heat transfer condition which dictates a maximum distance from mold surface to cooling channel, considerations of pressure and temperature drop along the flow channel and considerations of strength of the mold. These criteria are treated as constraints and successful designs are sought which define windows bounded by these constraints. The methodology is demonstrated in application to a complex core and cavity for injection molding. In the area of rapid thermal cycling, this work utilizes the design methods for conformal channels for the heating phases and adds analysis of the packing and cooling phases. A design is created which provides thermal isolation and accommodation of cyclic thermal stresses though an array of bendable support columns which support the molding portion of the tool where the heating/cooling channels are contained. Designed elasticity of the tool is used to aid in packing of the polymer during the cooling phase. Methodology for the design of this

  14. Rapid surficial oxidation of synthetic Fe-Ti oxides at high temperature: Observations and consequences for magnetic measurements

    NASA Astrophysics Data System (ADS)

    Lattard, Dominique; Sauerzapf, Ursula; Kontny, Agnes

    2012-08-01

    Synthetic polycrystalline samples of Fe-Ti oxides (titanomagnetite, Tmtss; ilmenite-hematitess, Ilmss; pseudobrookitess, Psbss) are very sensitive to changes in the redox conditions at high temperatures, either during synthesis experiments or during thermomagnetic measurements. For instance, exposure to air for a few seconds at the end of a synthesis run at 1300°C of a Tmtss-Ilmss sample produces surficial oxidation down to a depth of some 100 μm. This oxidation zone is well visible on backscattered electron images of polished sections through the sample pellet. It is characterized by so-called trellis “oxyexsolution” textures, i.e., fine lamellae of Ilmss within the Tmtss crystals and lamellae of Psbss within the Ilmss crystals. In this oxidation zone the newly grown Ilmss lamellae and the surrounding Tmtss are more Fe rich than the original crystals. The presence of trellis textures in the crystals of both coexisting phases, Tmtss and Ilmss, show that only short-scaled elemental transport within the crystals was involved and that equilibrium was not attained. Even though the oxidation zone is very narrow, the imprint of the new Tmtss compositions is well recognizable in temperature-dependent magnetic susceptibility curves. In temperature-dependent saturation magnetization (MS-T) curves, however, the contribution of more Fe-rich Tmtss from the oxidation zone can be easily overseen. However, surficial oxidation of Tmtss does occur during MS-T measurements with a variable field translation balance, apparently in relation with insufficient Ar flowing around the sample. Further examples of rapid surficial oxidation of Fe-Ti oxide samples are also discussed.

  15. Rapid surficial oxidation of synthetic Fe-Ti oxides at high temperature: Observations and consequences for magnetic measurements

    NASA Astrophysics Data System (ADS)

    Lattard, Dominique; Sauerzapf, Ursula; Kontny, Agnes

    2012-08-01

    Synthetic polycrystalline samples of Fe-Ti oxides (titanomagnetite, Tmtss; ilmenite-hematitess, Ilmss; pseudobrookitess, Psbss) are very sensitive to changes in the redox conditions at high temperatures, either during synthesis experiments or during thermomagnetic measurements. For instance, exposure to air for a few seconds at the end of a synthesis run at 1300°C of a Tmtss-Ilmss sample produces surficial oxidation down to a depth of some 100 μm. This oxidation zone is well visible on backscattered electron images of polished sections through the sample pellet. It is characterized by so-called trellis "oxyexsolution" textures, i.e., fine lamellae of Ilmss within the Tmtss crystals and lamellae of Psbss within the Ilmss crystals. In this oxidation zone the newly grown Ilmss lamellae and the surrounding Tmtss are more Fe rich than the original crystals. The presence of trellis textures in the crystals of both coexisting phases, Tmtss and Ilmss, show that only short-scaled elemental transport within the crystals was involved and that equilibrium was not attained. Even though the oxidation zone is very narrow, the imprint of the new Tmtsscompositions is well recognizable in temperature-dependent magnetic susceptibility curves. In temperature-dependent saturation magnetization (MS-T) curves, however, the contribution of more Fe-rich Tmtss from the oxidation zone can be easily overseen. However, surficial oxidation of Tmtss does occur during MS-T measurements with a variable field translation balance, apparently in relation with insufficient Ar flowing around the sample. Further examples of rapid surficial oxidation of Fe-Ti oxide samples are also discussed.

  16. Do thermal tolerances and rapid thermal responses contribute to the invasion potential of Bactrocera dorsalis (Diptera: Tephritidae)?

    PubMed

    Pieterse, Welma; Terblanche, John S; Addison, Pia

    2017-04-01

    Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) has shown remarkable range expansion over the past 10years and invaded several new continents including Africa. Here we report results of a detailed assessment of acute high and low temperature survival ability and the plasticity thereof, to test the hypothesis that traits of the thermal niche have contributed to the species' invasion ability. We also assess life-stage-related variation of thermal tolerances to determine potential stage-related environmental sensitivity. The temperatures at which c. 20% of the population survived of B. dorsalis were determined to be -6.5°C and 42.7°C, respectively, when using 2h exposures. Further, four life stages of B. dorsalis (egg, 3rd instar larvae, pupae and adults) were exposed to high and low discriminating temperatures to compare their thermal survival rates. The egg stage was found to be the most resistant life stage to both high and low temperatures, since 44±2.3% survived the low and 60±4.2% survived the high discriminating temperature treatments respectively. Finally, the potential for adult hardening responses to mediate tolerance of extremes was also considered using a diverse range of acute conditions (using 2h exposures to 15°C, 10°C and 5°C and 30°C, 35°C, 37°C and 39°C as hardening temperatures, and some treatments with and without recovery periods between hardening and discriminating temperature treatment). These showed that although some significant hardening responses could be detected in certain treatments (e.g. after exposure to 37°C and 39°C), the magnitude of this plasticity was generally low compared to two other wide-spread and more geographically-range-restricted con-familial species, Ceratitis capitata and C. rosa. In other words, Bactrocera dorsalis adults were unable to rapidly heat- or cold-harden to the same extent as the other Ceratitis species examined to date. These results suggest a narrower thermal niche in B. dorsalis compared

  17. Effects of rapid thermal annealing on the structural and local atomic properties of ZnO: Ge nanocomposite thin films

    SciTech Connect

    Ceylan, Abdullah Ozcan, Sadan; Rumaiz, Abdul K.; Caliskan, Deniz; Ozbay, Ekmel; Woicik, J. C.

    2015-03-14

    We have investigated the structural and local atomic properties of Ge nanocrystals (Ge-ncs) embedded ZnO (ZnO: Ge) thin films. The films were deposited by sequential sputtering of ZnO and Ge thin film layers on z-cut quartz substrates followed by an ex-situ rapid thermal annealing (RTA) at 600 °C for 30, 60, and 90 s under forming gas atmosphere. Effects of RTA time on the evolution of Ge-ncs were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), hard x-ray photoelectron spectroscopy (HAXPES), and extended x-ray absorption fine structure (EXAFS). XRD patterns have clearly shown that fcc diamond phase Ge-ncs of sizes ranging between 18 and 27 nm are formed upon RTA and no Ge-oxide peak has been detected. However, cross-section SEM images have clearly revealed that after RTA process, Ge layers form varying size nanoclusters composed of Ge-ncs regions. EXAFS performed at the Ge K-edge to probe the local atomic structure of the Ge-ncs has revealed that as prepared ZnO:Ge possesses Ge-oxide but subsequent RTA leads to crystalline Ge structure without the oxide layer. In order to study the occupied electronic structure, HAXPES has been utilized. The peak separation between the Zn 2p and Ge 3d shows no significant change due to RTA. This implies little change in the valence band offset due to RTA.

  18. Surface and sub-surface thermal oxidation of thin ruthenium films

    NASA Astrophysics Data System (ADS)

    Coloma Ribera, R.; van de Kruijs, R. W. E.; Kokke, S.; Zoethout, E.; Yakshin, A. E.; Bijkerk, F.

    2014-09-01

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide film.

  19. Surface and sub-surface thermal oxidation of thin ruthenium films

    SciTech Connect

    Coloma Ribera, R.; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F.; Kokke, S.; Zoethout, E.

    2014-09-29

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide film.

  20. Rapid thermal lysis of cells using silicon-diamond microcantilever heaters.

    PubMed

    Privorotskaya, Natalya; Liu, Yi-Shao; Lee, Jungchul; Zeng, Hongjun; Carlisle, John A; Radadia, Adarsh; Millet, Larry; Bashir, Rashid; King, William P

    2010-05-07

    This paper presents the design and application of microcantilever heaters for biochemical applications. Thermal lysis of biological cells was demonstrated as a specific example. The microcantilever heaters, fabricated from selectively doped single crystal silicon, provide local resistive heating with highly uniform temperature distribution across the cantilevers. Very importantly, the microcantilever heaters were coated with a layer of 100 nm thick electrically insulating ultrananocrystalline diamond (UNCD) layer used for cell immobilization on the cantilever surface. Fibroblast cells or bacterial cells were immobilized on the UNCD/cantilever surfaces and thermal lysis was demonstrated via optical fluorescence microscopy. Upon electrical heating of the cantilever structures to 93 degrees C for 30 seconds, fibroblast cell and nuclear membrane were compromised and the cells were lysed. Over 90% of viable bacteria were also lysed after 15 seconds of heating at 93 degrees C. This work demonstrates the utility of silicon-UNCD heated microcantilevers for rapid cell lysis and forms the basis for other rapid and localized temperature-regulated microbiological experiments in cantilever-based lab on chip applications.

  1. Microstructural modeling of thermal conductivity of high burn-up mixed oxide fuel

    NASA Astrophysics Data System (ADS)

    Teague, Melissa; Tonks, Michael; Novascone, Stephen; Hayes, Steven

    2014-01-01

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON [1] fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez-Lucuta model was favorable.

  2. Microstructural Modeling of Thermal Conductivity of High Burn-up Mixed Oxide Fuel

    SciTech Connect

    Melissa Teague; Michael Tonks; Stephen Novascone; Steven Hayes

    2014-01-01

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez–Lucuta model was favorable.

  3. Thermal Mechanical Stability of Single-Crystal-Oxide Refractive Concentrators Evaluated for High-Temperature Solar-Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Recently, refractive secondary solar concentrator systems were developed for solar thermal power and propulsion (ref. 1). Single-crystal oxides-such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO), and sapphire (Al2O3)-are candidate refractive secondary concentrator materials. However, the refractive concentrator system will experience high-temperature thermal cycling in the solar thermal engine during the sun/shade transition of a space mission. The thermal mechanical reliability of these components in severe thermal environments is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions. In this research at the NASA Lewis Research Center, a controlled heat flux test approach was developed for investigating the thermal mechanical stability of the candidate oxide. This approach used a 3.0-kW continuous-wave (wavelength, 10.6 mm) carbon dioxide (CO2) laser (ref. 2). The CO2 laser is especially well-suited for single-crystal thermal shock tests because it can directly deliver well-characterized heat energy to the oxide surfaces. Since the oxides are opaque at the 10.6-mm wavelength of the laser beam, the light energy is absorbed at the surfaces rather than transmitting into the crystals, and thus generates the required temperature gradients within the specimens. The following figure is a schematic diagram of the test rig.

  4. Effect of nano-sized oxide particles on thermal and electrical properties of epoxy silica composites

    NASA Astrophysics Data System (ADS)

    Lee, Sang Heon; Choi, Yong

    2014-12-01

    Polymer matrix composites were fabricated using a modified injection molding technique in which nano-sized silicon oxides, titanium oxides, and aluminium oxides were contained. Nano-sized oxides were uniformly distributed in the composites produced by modified injection molding combining vacuum degassing and curing at a moderate temperature. The thermal decomposition and evaporation of the epoxy resin matrix depended on the composition of the composites. The relative permittivity of the nano-sized silicon carbide-epoxy composites increased from 5.16 to 5.37 by adding 2.0 wt % titanium oxide. The addition of titanium oxide of up to 2.0 wt % had little influence on the permittivity. The addition of 2.0 wt % of titanium oxide to epoxy resin showed the maximum thermal properties. Both the thermal conductivity and thermal diffusivity of the silicon oxide-epoxy composites tended to increase with titanium oxide content. The maximum thermal conductivity was observed in the composites with 2.0 wt % titanium oxide.

  5. Thermal-Mechanical Stability of Single Crystal Oxide Refractive Concentrators for High-Temperature Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO2 laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet, and magnesium oxide.

  6. Thermal-Mechanical Stability of Single Crystal Oxide Refractive Concentrators for High-Temperature Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO2 laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet and magnesium oxide.

  7. Thermal oxidation technology ready for tougher paint finishing regs

    SciTech Connect

    Brooks, J.

    1995-04-01

    There is good news and bad news in the air for commercial paint finishers. The bad news is that future local and federal clean-air regulations are almost certain to require control of volatile organic compound emissions from spray booths and drying ovens. The good news is that one of the most effective systems for meeting such requirements also can help cut operations and maintenance costs. There are as many solutions to VOC emissions problems in paint finishing as there are types of paint-spraying facilities. However, despite the range of choices, regenerative thermal oxidation systems are gaining favor among plant managers, for whom performance and maximum application flexibility are key considerations. Compared to other VOC-destruction approaches, RTO systems are more forgiving and reliable. Although RTO systems involve somewhat higher capital investments than alternative approaches, such costs typically are offset by lower long-term fuel and maintenance requirements. In addition, RTO systems can convert pollutants into usable energy sources, helping minimize operating costs of abatement equipment.

  8. Thermal oxidation effect on porcelain-titanium restoration.

    PubMed

    Horng, C J; Okazaki, M; Takahashi, J; Kimura, H

    1989-09-01

    Titanium has good corrosion resistance, light density, high strength and excellent biocompatibility. Conventional ceramicmetal restorations were used extensively in dentistry because of their esthetic appearance and good strength properties. The purpose of this study was to investigate the influence of various thermal treatments on the bond strength and physical properties of the porcelain-titanium system. Pure titanium was treated in a porcelain furnace at temperatures ranging from 600 to 1000 degrees C, under vacuum and in air, respectively. X-ray diffraction analysis revealed that the relative peak intensity of alpha-Ti was decreased, while the TiO2 was increased when raising the firing temperature. The vickers hardness number was increased at elevated temperatures, especially over 900 degrees C, and firing in air was harder than under vacuum. The tension-shear bond strength was highest in the green stage and lowest in the 1000 degrees C treated group. The metallographic microscopic of the porcelaintitanium interface revealed a thick band-like zone in the 1000 degrees C treated sample. Therefore it seems that the excess oxidation layer of TiO2 weakened the bond strength of porcelain-titanium. Contrary to the conventional ceramic-gold alloys system, the recommended degassing procedure was not suitable for the porcelain-titanium restoration.

  9. The rotary zone thermal cycler: a low-power system enabling automated rapid PCR.

    PubMed

    Bartsch, Michael S; Edwards, Harrison S; Lee, Daniel; Moseley, Caroline E; Tew, Karen E; Renzi, Ronald F; Van de Vreugde, James L; Kim, Hanyoup; Knight, Daniel L; Sinha, Anupama; Branda, Steven S; Patel, Kamlesh D

    2015-01-01

    Advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology (e.g., aliquoting, centrifuging, mixing, and thermal cycling) to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system that uses low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between-run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, we present preliminary results for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis.

  10. The Rotary Zone Thermal Cycler: A Low-Power System Enabling Automated Rapid PCR

    PubMed Central

    Bartsch, Michael S.; Renzi, Ronald F.; Van de Vreugde, James L.; Kim, Hanyoup; Knight, Daniel L.; Sinha, Anupama; Branda, Steven S.; Patel, Kamlesh D.

    2015-01-01

    Advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology (e.g., aliquoting, centrifuging, mixing, and thermal cycling) to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system that uses low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between-run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, we present preliminary results for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis. PMID:25826708

  11. The rotary zone thermal cycler: A low-power system enabling automated rapid PCR

    DOE PAGES

    Bartsch, Michael S.; Edwards, Harrison S.; Gas Transmission Systems, Walnut Creek, CA; ...

    2015-03-31

    In this study, advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, portable, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology such as aliquoting, centrifuging, mixing, and thermal cycling to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks intomore » contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We further demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system using low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, preliminary results are presented for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis.« less

  12. Influence of Rapid Thermal Ramp Rate on Phase Transformation of Titanium Silicides

    SciTech Connect

    Bailey, Glenn; Hu, Yao, Zhi; Smith, Paul Martin; Tay, Sing Pin; Thakur, Randhir; Yang, Jiting

    1999-05-03

    ULSI technology requires low resistance, stable silicides formed on small geometry lines. Titanium disilicide (TiSiz), which is the most widely used silicide for ULSI applications, exists in two crystallographic phases: the high resistance, metastable C49 phase and the low resistance, stable C54 phase. The major issue with TiSiz is the increasing thermal budget required to transform the C49 phase into the low resistance C54 phase as linewiths decrease below 0.25 pm. Annealing above 900"C to obtain this transformation often results in thermal degradation, so it is desirable to reduce the transformation temperature. The transformation temperature has been shown to be a fi.mction of many factors including microstructure, grain size, and impurities. In this paper we report an investig+ion of rapid thermal silicidation of titanium films (250, 400, and 600 A) on single crystalline silicon at temperatures from 300 to 1000"C. The ramp rates for these experiments are 5, 30, 70, and 200oC/s. The transformation temperature decreases as the ramp rate increases and as the initial film thickness increases. Scanning electron microscopy (SEM) is used to analyze the resultant film microstructure. The ramp rate influence on Ti silicidation is also investigated on polycrystalline Si lines with widths ranging from 0.27 to 3.0 pm.

  13. The rotary zone thermal cycler: A low-power system enabling automated rapid PCR

    SciTech Connect

    Bartsch, Michael S.; Edwards, Harrison S.; Lee, Daniel; Moseley, Caroline E.; Tew, Karen E.; Renzi, Ronald F.; Van de Vreugde, James L.; Kim, Hanyoup; Knight, Daniel L.; Sinha, Anupama; Branda, Steven S.; Patel, Kamlesh D.; Wanunu, Meni

    2015-03-31

    In this study, advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, portable, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology such as aliquoting, centrifuging, mixing, and thermal cycling to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We further demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system using low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, preliminary results are presented for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis.

  14. Energy recovery efficiency and cost analysis of VOC thermal oxidation pollution control technology.

    PubMed

    Warahena, Aruna S K; Chuah, Yew Khoy

    2009-08-01

    Thermal oxidation of VOC is extremely energy intensive, and necessitates high efficiency heat recovery from the exhaust heat. In this paper, two independent parameters heat recovery factor (HRF) and equipment cost factor (ECF) are introduced. HRF and ECF can be used to evaluate separately the merits of energy efficiency and cost effectiveness of VOC oxidation systems. Another parameter equipment cost against heat recovery (ECHR) which is a function of HRF and ECF is introduced to evaluate the merit of different systems for the thermal oxidation of VOC. Respective cost models were derived for recuperative thermal oxidizer (TO) and regenerative thermal oxidizer (RTO). Application examples are presented to show the use and the importance of these parameters. An application examples show that TO has a lower ECF while RTO has a higher HRF. However when analyzed using ECHR, RTO would be of advantage economically in longer periods of use. The analytical models presented can be applied in similar environmental protection systems.

  15. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    NASA Astrophysics Data System (ADS)

    Horak, P.; Bejsovec, V.; Vacik, J.; Lavrentiev, V.; Vrnata, M.; Kormunda, M.; Danis, S.

    2016-12-01

    Copper oxide films were prepared by thermal oxidation of thin Cu films deposited on substrates by ion beam sputtering. The subsequent oxidation was achieved in the temperature range of 200 °C-600 °C with time of treatment from 1 to 7 h (with a 1-h step) in a furnace open to air. At temperatures 250 °C-600 °C, the dominant phase formed was CuO, while at 200 °C mainly the Cu2O phase was identified. However, the oxidation at 200 °C led to a more complicated composition - in the depth Cu2O phase was observed, though in the near-surface layer the CuO dominant phase was found with a significant presence of Cu(OH)2. A limited amount of Cu2O was also found in samples annealed at 600 °C. The sheet resistance RS of the as-deposited Cu sample was 2.22 Ω/□, after gradual annealing RS was measured in the range 2.64 MΩ/□-2.45 GΩ/□. The highest RS values were obtained after annealing at 300 °C and 350 °C, respectively. Oxygen depth distribution was studied using the 16O(α,α) nuclear reaction with the resonance at energy 3032 keV. It was confirmed that the higher oxidation degree of copper is located in the near-surface region. Preliminary tests of the copper oxide films as an active layer of a chemiresistor were also performed. Hydrogen and methanol vapours, with a concentration of 1000 ppm, were detected by the sensor at an operating temperature of 300 °C and 350 °C, respectively. The response of the sensors, pointed at the p-type conductivity, was improved by the addition of thin Pd or Au catalytic films to the oxidic film surface. Pd-covered films showed an increased response to hydrogen at 300 °C, while Au-covered films were more sensitive to methanol vapours at 350 °C.

  16. Insight into the mechanism of the thermal reduction of graphite oxide: deuterium-labeled graphite oxide is the key.

    PubMed

    Sofer, Zdeněk; Jankovský, Ondřej; Šimek, Petr; Sedmidubský, David; Šturala, Jiří; Kosina, Jiří; Mikšová, Romana; Macková, Anna; Mikulics, Martin; Pumera, Martin

    2015-05-26

    For the past decade, researchers have been trying to understand the mechanism of the thermal reduction of graphite oxide. Because deuterium is widely used as a marker in various organic reactions, we wondered if deuterium-labeled graphite oxide could be the key to fully understand this mechanism. Graphite oxides were prepared by the Hofmann, Hummers, Staudenmaier, and Brodie methods, and a deuterium-labeled analogue was synthesized by the Hofmann method. All graphite oxides were analyzed not only using the traditional techniques but also by gas chromatography-mass spectrometry (GC-MS) during exfoliation in hydrogen and nitrogen atmospheres. GC-MS enabled us to compare differences between the chemical compositions of the organic exfoliation products formed during the thermal reduction of these graphite oxides. Nuclear analytical methods (Rutherford backscattering spectroscopy, elastic recoil detection analysis) were used to calculate the concentrations of light elements, including the ratio of hydrogen to deuterium. Combining all of these results we were able to determine graphite oxide's thermal reduction mechanism. Carbon dioxide, carbon monoxide, and water are formed from the thermal reduction of graphite oxide. This process is also accompanied by various radical reactions that lead to the formation of a large amount of carcinogenic volatile organic compounds, and this will have major safety implications for the mass production of graphene.

  17. A Rapid and Low-Cost PCR Thermal Cycler for Infectious Disease Diagnostics

    PubMed Central

    Chan, Kamfai; Wong, Pui-Yan; Yu, Peter; Hardick, Justin; Wong, Kah-Yat; Wilson, Scott A.; Wu, Tiffany; Hui, Zoe; Gaydos, Charlotte; Wong, Season S.

    2016-01-01

    The ability to make rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a great step forward in global health. Many molecular diagnostic assays are developed based on using thermal cyclers to carry out polymerase chain reaction (PCR) and reverse-transcription PCR for DNA and RNA amplification and detection, respectively. Unfortunately, most commercial thermal cyclers are expensive and need continuous electrical power supply, so they are not suitable for uses in low-resource settings. We have previously reported a low-cost and simple approach to amplify DNA using vacuum insulated stainless steel thermoses food cans, which we have named it thermos thermal cycler or TTC. Here, we describe the use of an improved set up to enable the detection of viral RNA targets by reverse-transcription PCR (RT-PCR), thus expanding the TTC’s ability to identify highly infectious, RNA virus-based diseases in low resource settings. The TTC was successful in demonstrating high-speed and sensitive detection of DNA or RNA targets of sexually transmitted diseases, HIV/AIDS, Ebola hemorrhagic fever, and dengue fever. Our innovative TTC costs less than $200 to build and has a capacity of at least eight tubes. In terms of speed, the TTC’s performance exceeded that of commercial thermal cyclers tested. When coupled with low-cost endpoint detection technologies such as nucleic acid lateral-flow assay or a cell-phone-based fluorescence detector, the TTC will increase the availability of on-site molecular diagnostics in low-resource settings. PMID:26872358

  18. A Rapid and Low-Cost PCR Thermal Cycler for Infectious Disease Diagnostics.

    PubMed

    Chan, Kamfai; Wong, Pui-Yan; Yu, Peter; Hardick, Justin; Wong, Kah-Yat; Wilson, Scott A; Wu, Tiffany; Hui, Zoe; Gaydos, Charlotte; Wong, Season S

    2016-01-01

    The ability to make rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a great step forward in global health. Many molecular diagnostic assays are developed based on using thermal cyclers to carry out polymerase chain reaction (PCR) and reverse-transcription PCR for DNA and RNA amplification and detection, respectively. Unfortunately, most commercial thermal cyclers are expensive and need continuous electrical power supply, so they are not suitable for uses in low-resource settings. We have previously reported a low-cost and simple approach to amplify DNA using vacuum insulated stainless steel thermoses food cans, which we have named it thermos thermal cycler or TTC. Here, we describe the use of an improved set up to enable the detection of viral RNA targets by reverse-transcription PCR (RT-PCR), thus expanding the TTC's ability to identify highly infectious, RNA virus-based diseases in low resource settings. The TTC was successful in demonstrating high-speed and sensitive detection of DNA or RNA targets of sexually transmitted diseases, HIV/AIDS, Ebola hemorrhagic fever, and dengue fever. Our innovative TTC costs less than $200 to build and has a capacity of at least eight tubes. In terms of speed, the TTC's performance exceeded that of commercial thermal cyclers tested. When coupled with low-cost endpoint detection technologies such as nucleic acid lateral-flow assay or a cell-phone-based fluorescence detector, the TTC will increase the availability of on-site molecular diagnostics in low-resource settings.

  19. Oxidation instability of SiC and Si3N4 following thermal excursions

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. T.

    1991-01-01

    The effect of thermal excursion and thermal cycling on the oxidation stability of chemical vapor-deposited (CVD) SiC and Si3N4 was studied at 1350 C. Thermal cycling alone produced no noticeable change in oxidation kinetics. However, TEM showed that oxide scales grown in cycles consist of alternating layers of SiO2 and Si2N2O. When the oxidation of CVD SiC or Si3N4 at 1350 C was interrupted with a 1.5-h annealing in Ar at 1500 C, the kinetics of reoxidation at 1350 C were found to be drastically increased. The SiC and Si3N4 then oxidized essentially at the same rate, which is over 50 times the preannealing rate, and comparable to the expected oxidation rate of these materials at 1500 C.

  20. Thermal-treatment effect on the photoluminescence and gas-sensing properties of tungsten oxide nanowires

    SciTech Connect

    Sun, Shibin; Chang, Xueting; Li, Zhenjiang

    2010-09-15

    Single-crystalline non-stoichiometric tungsten oxide nanowires were initially prepared using a simple solvothermal method. High resolution transmission electron microscopy (HRTEM) investigations indicate that the tungsten oxide nanowires exhibit various crystal defects, including stacking faults, dislocations, and vacancies. A possible defect-induced mechanism was proposed to account for the temperature-dependent morphological evolution of the tungsten oxide nanowires under thermal processing. Due to the high specific surface areas and non-stoichiometric crystal structure, the original tungsten oxide nanowires were highly sensitive to ppm level ethanol at room temperature. Thermal treatment under dry air condition was found to deteriorate the selectivity of room-temperature tungsten oxide sensors, and 400 {sup o}C may be considered as the top temperature limit in sensor applications for the solvothermally-prepared nanowires. The photoluminescence (PL) characteristics of tungsten oxide nanowires were also strongly influenced by thermal treatment.

  1. Perspective: Rapid synthesis of complex oxides by combinatorial molecular beam epitaxy

    SciTech Connect

    A. T. Bollinger; Wu, J.; Bozovic, I.

    2016-03-15

    In this study, the molecular beam epitaxy(MBE) technique is well known for producing atomically smooth thin films as well as impeccable interfaces in multilayers of many different materials. In particular, molecular beam epitaxy is well suited to the growth of complex oxides, materials that hold promise for many applications. Rapid synthesis and high throughput characterization techniques are needed to tap into that potential most efficiently. We discuss our approach to doing that, leaving behind the traditional one-growth-one-compound scheme and instead implementing combinatorial oxide molecular beam epitaxy in a custom built system.

  2. Thermal transport in graphene oxide--from ballistic extreme to amorphous limit.

    PubMed

    Mu, Xin; Wu, Xufei; Zhang, Teng; Go, David B; Luo, Tengfei

    2014-01-28

    Graphene oxide is being used in energy, optical, electronic and sensor devices due to its unique properties. However, unlike its counterpart - graphene - the thermal transport properties of graphene oxide remain unknown. In this work, we use large-scale molecular dynamics simulations with reactive potentials to systematically study the role of oxygen adatoms on the thermal transport in graphene oxide. For pristine graphene, highly ballistic thermal transport is observed. As the oxygen coverage increases, the thermal conductivity is significantly reduced. An oxygen coverage of 5% can reduce the graphene thermal conductivity by ~90% and a coverage of 20% lower it to ~8.8 W/mK. This value is even lower than the calculated amorphous limit (~11.6 W/mK for graphene), which is usually regarded as the minimal possible thermal conductivity of a solid. Analyses show that the large reduction in thermal conductivity is due to the significantly enhanced phonon scattering induced by the oxygen defects which introduce dramatic structural deformations. These results provide important insight to the thermal transport physics in graphene oxide and offer valuable information for the design of graphene oxide-based materials and devices.

  3. Thermal Transport in Graphene Oxide – From Ballistic Extreme to Amorphous Limit

    PubMed Central

    Mu, Xin; Wu, Xufei; Zhang, Teng; Go, David B.; Luo, Tengfei

    2014-01-01

    Graphene oxide is being used in energy, optical, electronic and sensor devices due to its unique properties. However, unlike its counterpart – graphene – the thermal transport properties of graphene oxide remain unknown. In this work, we use large-scale molecular dynamics simulations with reactive potentials to systematically study the role of oxygen adatoms on the thermal transport in graphene oxide. For pristine graphene, highly ballistic thermal transport is observed. As the oxygen coverage increases, the thermal conductivity is significantly reduced. An oxygen coverage of 5% can reduce the graphene thermal conductivity by ~90% and a coverage of 20% lower it to ~8.8 W/mK. This value is even lower than the calculated amorphous limit (~11.6 W/mK for graphene), which is usually regarded as the minimal possible thermal conductivity of a solid. Analyses show that the large reduction in thermal conductivity is due to the significantly enhanced phonon scattering induced by the oxygen defects which introduce dramatic structural deformations. These results provide important insight to the thermal transport physics in graphene oxide and offer valuable information for the design of graphene oxide-based materials and devices. PMID:24468660

  4. The Effect of Interface Roughness and Oxide Film Thickness on the Inelastic Response of Thermal Barrier Coatings to Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Aboudi, Jacob; Arnold, Steven M.

    1999-01-01

    The effects of interfacial roughness and oxide film thickness on thermally-induced stresses in plasma-sprayed thermal barrier coatings subjected to thermal cycling are investigated using the recently developed higher-order theory for functionally graded materials. The higher-order theory is shown to be a viable alternative to the finite-element approach, capable of modeling different interfacial roughness architectures in the presence of an aluminum oxide layer and capturing the high stress gradients that occur at the top coat/bond coat interface. The oxide layer thickness is demonstrated to have a substantially greater effect on the evolution of residual stresses than local variations in interfacial roughness. Further, the location of delamination initiation in the top coat is predicted to change with increasing oxide layer thickness. This result can be used to optimize the thickness of a pre-oxidized layer introduced at the top coat/bond coat interface in order to enhance TBC durability as suggested by some researchers. The results of our investigation also support a recently proposed hypothesis regarding delamination initiation and propagation in the presence of an evolving bond coat oxidation, while pointing to the importance of interfacial roughness details and specimen geometry in modeling this phenomenon.

  5. Rapid determination of drugs and semivolatile organics by direct thermal desorption ion trap mass spectrometry

    SciTech Connect

    Wise, M.B.; Ilgner, R.H.; Buchanan, M.V.; Guerin, M.R.

    1991-01-01

    Direct thermal desorption of analytes into an ion trap mass spectrometer (ITMS) is being investigated as a technique for the rapid screening of a wide variety of samples for target semivolatile organic compounds. This includes the direct detection of drugs in physiological fluids, semivolatile organic pollutants in water and waste samples, and air pollutants collected on sorbent cartridges. In order to minimize the analysis time, chromatographic separation is not performed on the sample prior to introduction into the ITMS. Instead, selective chemical ionization and tandem mass spectrometry (MS/MS) are used achieve the specificity required for the target analytes. Detection limits are typically 10--50 ppb using a 1 uL aliquot of a liquid sample without preconcentration. Sample turn-around time is 2 to 5 minutes and 3 to 5 target analytes can be quantitatively determined simultaneously. 6 figs.

  6. Transformation and removal of wood extractives from pulp mill sludge using wet oxidation and thermal hydrolysis.

    PubMed

    Baroutian, Saeid; Robinson, Murray; Smit, Anne-Marie; Wijeyekoon, Suren; Gapes, Daniel

    2013-10-01

    In order to remove wood extractive compounds from pulp mill sludge and thereby enhancing anaerobic digestibility, samples were subjected to either oxidative hydrothermal treatment (wet oxidation) or non-oxidative hydrothermal treatment (thermal hydrolysis). Treatments were carried out at 220 °C with initial pressure of 20 bar. More than 90% destruction of extractive compounds was observed after 20 min of wet oxidation. Wet oxidation eliminated 95.7% of phenolics, 98.6% fatty acids, 99.8% resin acids and 100% of phytosterols in 120 min. Acetic acid concentration increased by approximately 2 g/l after 120 min of wet oxidation. This has potential for rendering sludge more amenable to anaerobic digestion. In contrast thermal hydrolysis was found to be ineffective in degrading extractive compounds. Wet oxidation is considered to be an effective process for removal of recalcitrant and inhibitive compounds through hydrothermal pre-treatment of pulp mill sludge.

  7. Rapid, in Situ Synthesis of High Capacity Battery Anodes through High Temperature Radiation-Based Thermal Shock.

    PubMed

    Chen, Yanan; Li, Yiju; Wang, Yanbin; Fu, Kun; Danner, Valencia A; Dai, Jiaqi; Lacey, Steven D; Yao, Yonggang; Hu, Liangbing

    2016-09-14

    High capacity battery electrodes require nanosized components to avoid pulverization associated with volume changes during the charge-discharge process. Additionally, these nanosized electrodes need an electronically conductive matrix to facilitate electron transport. Here, for the first time, we report a rapid thermal shock process using high-temperature radiative heating to fabricate a conductive reduced graphene oxide (RGO) composite with silicon nanoparticles. Silicon (Si) particles on the order of a few micrometers are initially embedded in the RGO host and in situ transformed into 10-15 nm nanoparticles in less than a minute through radiative heating. The as-prepared composites of ultrafine Si nanoparticles embedded in a RGO matrix show great performance as a Li-ion battery (LIB) anode. The in situ nanoparticle synthesis method can also be adopted for other high capacity battery anode materials including tin (Sn) and aluminum (Al). This method for synthesizing high capacity anodes in a RGO matrix can be envisioned for roll-to-roll nanomanufacturing due to the ease and scalability of this high-temperature radiative heating process.

  8. Thermally activated persulfate oxidation regeneration of NOM- and MTBE- spent granular activated carbon

    EPA Science Inventory

    Chemical oxidation is a developing technology used to regenerate contaminant-spent GAC. Chemical regeneration of GAC represents a viable option to thermal regeneration methods that are energy intensive resulting in significant consumption of fossil fuels and production of greenho...

  9. Dominance of Ferritrophicum populations at an AMD site with rapid iron oxidation

    NASA Astrophysics Data System (ADS)

    Grettenberger, C.; Pearce, A.; Bibby, K. J.; Burgos, W.; Jones, D. S.; Macalady, J.

    2015-12-01

    Acid mine drainage is a major environmental problem affecting watersheds across the globe. Bioremediation of AMD relies on microbial communities to oxidize and thus remove iron from the system. Iron-oxidation rates in AMD environments are highly variable across sites. At Scalp Level Run in Summerset County PA, iron-oxidation rates are five to eight times faster than other coal-associated AMD sites. We examined the microbial community at Scalp Level Run to determine whether a unique microbial community may be responsible for the observed rapid iron-oxidation rates. Using MiSeq sequence tags, 16S rRNA gene clone libraries, and fluorescence in situ hybridization, we found that Scalp Level Run sediments host microbial populations closely related to the betaproteobacterium Ferritrophicum radicicola, an iron-oxidizing species isolated from an acid mine drainage wetland in Virginia. Ferritrophicum spp. was not found at the four other coal-associated AMD sites in the study and is uncommon in the published literature. The influence of Ferritrophicum spp. populations in biogeochemical cycling, specifically their role in determining the iron-oxidation rate at Scalp Level Run is unknown. Therefore, we employed metagenomic sequencing to examine the metabolic potential of the microbial community at Scalp Level Run.

  10. Rapid Life-History Diversification of an Introduced Fish Species across a Localized Thermal Gradient

    PubMed Central

    Zhu, Fengyue; Rypel, Andrew L.; Murphy, Brian R.; Li, Zhongjie; Zhang, Tanglin; Yuan, Jing; Guo, Zhiqiang; Tang, Jianfeng; Liu, Jiashou

    2014-01-01

    Climatic variations are known to engender life-history diversification of species and populations at large spatial scales. However, the extent to which microgeographic variations in climate (e.g., those occurring within a single large ecosystem) can also drive life-history divergence is generally poorly documented. We exploited a spatial gradient in water temperatures at three sites across a large montane lake in southwest China (Lake Erhai) to examine the extent to which life histories of a short-lived fish species (icefish, Neosalanx taihuensis) diversified in response to thermal regime following introduction 25 y prior. In general, warmwater icefish variants grew faster, had larger adult body size and higher condition and fecundity, but matured at smaller sizes. Conversely, coldwater variants had smaller adult body size and lower condition, but matured at larger sizes and had larger eggs. These life-history differences strongly suggest that key ecological trade-offs exist for icefish populations exposed to different thermal regimes, and these trade-offs have driven relatively rapid diversification in the life histories of icefish within Lake Erhai. Results are surprisingly concordant with current knowledge on life-history evolution at macroecological scales, and suggest that improved conservation management might be possible by focusing on patterns operating at microgeographical, including, within-ecosystem scales. PMID:24505366

  11. Fe{sub 2}O{sub 3} nanopowders prepared by a thermal plasma process for water oxidation

    SciTech Connect

    Lee, Dongeun; Choi, Yong-Wook; Na, Ye-Seul; Choi, Soo-Suk; Park, Dong-Wha; Choi, Jinsub

    2015-08-15

    Highlights: • Hematite nanopowders with a high purity were synthesized by a DC thermal plasma process. • Fe{sub 3}O{sub 4} is formed during the formation of Fe{sub 2}O{sub 3} by thermal plasma with iron and oxygen sources. • Hematite nanopowders with a high purity show higher PEC performance compared to mixed oxides. - Abstract: Hematite (Fe{sub 2}O{sub 3}) nanopowders were synthesized from commercially available micro-sized iron powders by a DC thermal plasma process at atmospheric pressure. The micro-sized iron powders were vaporized in the plasma region, after which the plasma processing equipment was rapidly quenched, resulting in the formation of iron nanopowders with a size of less than 100 nm. Subsequently, the iron nanopowders were heated to convert hematite with a high purity, which was then formed into a thin film with a binder for preparation of electrodes for photoelectrochemical water oxidation. Iron oxide nanopowders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), particle size analysis (PSA) and transmission electron microscopy (TEM). The photoelectrochemical properties of the Fe{sub 2}O{sub 3} film were characterized in 1 M NaOH under AM 1.5 conditions.

  12. Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierra Nevada

    USGS Publications Warehouse

    Wilkie, J.A.; Hering, J.G.

    1998-01-01

    Arsenic redox cycling was examined in source waters of the Los Angeles Aqueduct, specifically at Hot Creek, a tributary of the Owens River. Elevated arsenic concentrations in Hot Creek result from geothermal inputs. Total arsenic and As(III) concentrations were determined in the creek and in hot spring pools along its banks. Samples were processed in the field using anion-exchange columns to separate inorganic As(III) and As(V) species. Downstream of the geothermal inputs, decreasing contributions of As(III) to total arsenic concentrations indicated rapid in-stream oxidation of As(III) to As(V) with almost complete oxidation occurring within 1200 m. Based on assumed plug flow transport and a flow velocity of about 0.4 m/s, the pseudo- first-order half-life calculated for this reaction was approximately 0.3 h. Conservative transport of total dissolved arsenic was observed over the reach. Pseudo-first-order reaction rates determined for As(III) oxidation in batch studies conducted in the field with aquatic macrophytes and/or macrophyte surface matter were comparable to the in-stream oxidation rate observed along Hot Creek. In batch kinetic studies, oxidation was not observed after sterile filtration or after the addition of antibiotics, which indicates that bacteria attached to submerged macrophytes are mediating the rapid As(III) oxidation reaction.Arsenic redox cycling was examined in source waters of the Los Angeles Aqueduct, specifically at Hot Creek, a tributary of the Owens River. Elevated arsenic concentrations in Hot Creek result from geothermal inputs. Total arsenic and As(III) concentrations were determined in the creek and in hot spring pools along its banks. Samples were processed in the field using anion-exchange columns to separate inorganic As(III) and As(V) species. Downstream of the geothermal inputs, decreasing contributions of As(III) to total arsenic concentrations indicated rapid in-stream oxidation of As(III) to As(V) with almost complete

  13. Rapid thermal processing — where has it been? Where is it going?

    NASA Astrophysics Data System (ADS)

    Russo, Carl

    1985-01-01

    Rapid thermal processing (RTP) is a method which uniformly heats and cools wafers in seconds. Since the process heats the whole wafer, the heating and cooling is limited by the thermal mass of the wafer and the heat transfer mechanism operating on the wafer. The main reason for considering RTP is to obtain improved dopant activation of implanted layers (due to the high wafer temperatures used) while minimizing dopant redistribution (due to short processing times at high temperature). This unique combination of high activation temperature and short processing time provides a degree of control over the thermal processing of wafers not available with standard diffusion furnaces and allows full activation of the dopant introduced by ion implantation without junction motion. Having this improved level of control over implant activation and dopant redistribution, several other important applications can be addressed as well. These applications include: PSG reflow; suicide and salicide processing; polysilicon annealing and drive-in doping from polysilicon; and controlled lattice damage repair. Results of the above applications indicate that activation with minimum dopant redistribution occurs in times less than ten seconds for wafer temperature > 1000°C, PSG reflows in times between 8 s and 30 s; refractory metal suicides can be formed and/or sintered in times on the order of 10 s. Processes are being developed in the other areas. For production applications RTP machines must also demonstrate: process uniformity and reproducibility (e.g., wafer temperature uniformity across the wafer and uniformity from wafer to wafer) and no slip. Slip is due to wafer temperature nonuniformity, plastic deformation of the wafer and/or oxygen concentration in the wafer. To achieve the required level of machine performance, accurate in situ wafer monitoring techniques are required which provide the necessary process/uniformity control without affecting the measured parameters.

  14. Rapid changes in cell physiology as a result of acute thermal stress house sparrows, Passer domesticus.

    PubMed

    Jimenez, Ana G; Williams, Joseph B

    2014-12-01

    Given that our climate is rapidly changing, Physiological Ecologists have the critical task of identifying characteristics of species that make them either resilient or susceptible to changes in their natural air temperature regime. Because climate change models suggest that heat events will become more common, and in some places more extreme, it is important to consider how extreme heat events might affect the physiology of a species. The implications of more frequent heat wave events for birds have only recently begun to be addressed, however, the impact of these events on the cellular physiology of a species is difficult to assess. We have developed a novel approach using dermal fibroblasts to explore how short-term thermal stress at the whole animal level might affect cellular rates of metabolism. House sparrows, Passer domesticus were separated into a "control group" and a "heat shocked" group, the latter acclimated to 43°C for 24h. We determined the plasticity of cellular thermal responses by assigning a "recovery group" that was heat shocked as above, but then returned to room temperature for 24h. Primary dermal fibroblasts were grown from skin of all treatment groups and the pectoralis muscle was collected. We found that glycolysis (ECAR) and oxygen consumption rates (OCR), measured using a Seahorse XF 96 analyzer, were significantly higher in the fibroblasts from the heat shocked group of House sparrows compared with their control counterparts. Additionally, muscle fiber diameters decreased and, in turn, Na(+)-K(+)-ATPase maximal activity in the muscle significantly increased in heat shocked sparrows compared with birds in the control group. All of these physiological alterations due to short-term heat exposure were reversible within 24h of recovery at room temperature. These results show that acute exposure to heat stress significantly alters the cellular physiology of sparrows, but that this species is plastic enough to recover from such a thermal

  15. Microstructure and thermal oxidation behavior of yttria-stabilized hafnia nanostructured coatings deposited on alumina

    SciTech Connect

    Rubio, E. J.; Martinez, G.; Noor-A-Alam, M.; Stafford, S. W.; Shutthanandan, V.; Ramana, C. V.

    2013-12-01

    Nanostructured yttria-stabilized hafnia (YSH) coatings were grown on α-Al2O3 substrates with variable coating thickness in a wide range of ~50 nm to 1 μm. Microstructure and thermal oxidation behavior of the grown YSH coatings were studied employing X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), scanning electron microscopy (SEM) and isothermal furnace oxidation testing. The effect of coating thickness on the crystal structure, surface/interface morphology and thermal oxidation was investigated. X-ray diffraction analyses revealed the formation of monoclinic phase for relatively thin coatings (b100 nm) indicating that the interfacial phenomena play a dominant role in phase stabilization. The evolution towards stabilized cubic phase with increasing coating thickness is observed. The SEM results indicate the dense, columnar structure of YSH coatings as a function of thickness. Thermal oxidation measurements indicate the enhanced hightemperature oxidation resistance of cubic YSH coatings.

  16. Materials characterization of rapid thermal chemical vapor deposition of titanium disilicide

    NASA Astrophysics Data System (ADS)

    Gladden-Green, Dannellia Banay

    Technological advancements of novel processes and materials involving refractory metal silicides for ultra large scale integration is of paramount importance to the semiconductor industry. Scaling of devices to meet the demands for increased packing density and speed requires such novel processes and materials. Rapid thermal chemical vapor deposition (RTCVD) of titanium disilicide (TiSisb2) was investigated in an effort to meet some of the challenges of ultra large scale integration (ULSI) technology. Selective RTCVD of TiSisb2 offers an optimal technological vehicle for achieving contacts to ultra-shallow junctions. Of all of the metal silicides, TiSisb2 has the lowest resistivity and meets the microelectronics demands for a thermally stable contact. The research results presented in this dissertation explores the mechanisms of selective RTCVD of TiSisb2 in terms of thermodynamic trends and kinetic driving forces for nucleation and growth. The present research addresses the qualitative and quantitative parameters that affect the controlling mechanisms for nucleation and therefore the results provide significant data and theoretical insights into a state-of-the-art process. Just as the fundamental building block in understanding the kinetic constraints of a process lie in the realm of thermodynamic exploration, understanding the complex processes involved in RTCVD TiSisb2 begin with characterization of the mechanisms governing thin film nucleation. In this work, the early stages of growth are investigated as they offer insight into how process parameters are optimized to render desired silicide film properties. Equilibrium simulations have been used to model the CVD reaction with very good trend indicating accuracy. Empirical investigations of CVD TiSisb2 took place in a low-pressure rapid-thermal environment using the SiHsb4 + TiClsb4 gas system on silicon (100) substrates. Secondary ion mass spectroscopy (SIMS) has been used to qualify the benefits of vacuum and

  17. Model reduction and temperature uniformity control for rapid thermal chemical vapor deposition reactors

    NASA Astrophysics Data System (ADS)

    Theodoropoulou, Artemis-Georgia

    The consideration of Rapid Thermal Processing (RTP) in semiconductor manufacturing has recently been increasing. As a result, control of RTP systems has become of great importance since it is expected to help in addressing uniformity problems that, so far, have been obstructing the acceptance of the method. The spatial distribution appearing in RTP models necessitates the use of model reduction in order to obtain models of a size suitable for use in control algorithms. This dissertation addresses model reduction as well as control issues for RTP systems. A model of a three-zone Rapid Thermal Chemical Vapor Deposition (RTCVD) system is developed to study the effects of spatial wafer temperature patterns on polysilicon deposition uniformity. A sequence of simulated runs is performed, varying the lamp power profiles so that different wafer temperature modes are excited. The dominant spatial wafer thermal modes are extracted via Proper Orthogonal Decomposition and subsequently used as a set of trial functions to represent both the wafer temperature and deposition thickness. A collocation formulation of Galerkin's method is used to discretize the original modeling equations, giving a low-order model which loses little of the original, high-order model's fidelity. We make use of the excellent predictive capabilities of the reduced model to optimize power inputs to the lamp banks to achieve a desired polysilicon deposition thickness at the end of a run with minimal deposition spatial nonuniformity. Since the results illustrate that the optimization procedure benefits from the use of the reduced-order model, we further utilize the reduced order model for real time Model Based Control. The feedback controller is designed using the Internal Model Control (IMC) structure especially modified to handle systems described by ordinary differential and algebraic equations. The IMC controller is obtained using optimal control theory on singular arcs extended for multi input systems

  18. Osteoblast response to thermally oxidized Ti6Al4V alloy.

    PubMed

    Saldaña, L; Vilaboa, N; Vallés, G; González-Cabrero, J; Munuera, L

    2005-04-01

    We have recently reported that thermal oxidation treatments of Ti6Al4V at 500 degrees and 700 degrees C for 1 h result in the formation of an outer "ceramic" layer of rutile that do not decrease the high in vitro corrosion resistance of the alloy. In the present work, surface roughness was measured and found marginally increased as a consequence of oxidation of the alloy at 700 degrees C, but not at 500 degrees C. We have evaluated the biocompatibility of the oxidized surfaces, by assessing cell adhesion, proliferation, and differentiation of primary cultures of human osteoblastic cells. Compared with polished alloy, both thermal treatments increased osteoblast adhesion measured as cell attachment, beta1 integrin and FAK-Y397 expression, as well as cytoskeletal reorganization. Compared with treatment at 500 degrees C, thermal oxidation at 700 degrees C enhanced cell adhesion. Treatment at 700 degrees C transiently impaired cell proliferation and viability, which were not altered in alloys oxidized at 500 degrees C. Several markers of osteoblastic differentiation such as procollagen I peptide, alkaline phosphatase, osteocalcin, and mineralized nodule formation were found either unaffected or differentially increased by alloys treated either at 500 degrees or 700 degrees C. In addition, thermal oxidation at 700 degrees C also increased osteoprotegerin secretion. Taken together, our results indicate that thermal oxidation treatments at 500 degrees or 700 degrees C for 1 h improve the in vitro biocompatibility of Ti6Al4V.

  19. Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria

    NASA Astrophysics Data System (ADS)

    Chang, Jingbo; Mao, Shun; Zhang, Yang; Cui, Shumao; Zhou, Guihua; Wu, Xiaogang; Yang, Ching-Hong; Chen, Junhong

    2013-04-01

    Due to potential risks to the environment and human health arising from pathogens/chemical contaminants, novel devices are being developed for rapid and precise detection of those contaminants. Here, we demonstrate highly sensitive and selective field-effect transistor (FET) sensor devices for detection of Escherichia coli (E. coli) bacteria using thermally reduced monolayer graphene oxide (TRMGO) sheets as semiconducting channels. The graphene oxide (GO) sheets are assembled on the aminoethanethiol (AET)-functionalized gold (Au) electrodes through electrostatic interactions with ultrasonic assistance. Anti-Escherichia coli (anti-E. coli) antibodies are used as receptors for selective detection of E. coli cells and integrated on the FET device through covalent bonding with Au nanoparticles on the GO surface. The TRMGO FET device shows great electronic stability and high sensitivity to E. coli cells with a concentration as low as 10 colony-forming units (cfu) per mL. The biosensing platform reported here is promising for large-scale, sensitive, selective, low-cost, and real-time detection of E. coli bacteria.

  20. Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria.

    PubMed

    Chang, Jingbo; Mao, Shun; Zhang, Yang; Cui, Shumao; Zhou, Guihua; Wu, Xiaogang; Yang, Ching-Hong; Chen, Junhong

    2013-05-07

    Due to potential risks to the environment and human health arising from pathogens/chemical contaminants, novel devices are being developed for rapid and precise detection of those contaminants. Here, we demonstrate highly sensitive and selective field-effect transistor (FET) sensor devices for detection of Escherichia coli (E. coli) bacteria using thermally reduced monolayer graphene oxide (TRMGO) sheets as semiconducting channels. The graphene oxide (GO) sheets are assembled on the aminoethanethiol (AET)-functionalized gold (Au) electrodes through electrostatic interactions with ultrasonic assistance. Anti-Escherichia coli (anti-E. coli) antibodies are used as receptors for selective detection of E. coli cells and integrated on the FET device through covalent bonding with Au nanoparticles on the GO surface. The TRMGO FET device shows great electronic stability and high sensitivity to E. coli cells with a concentration as low as 10 colony-forming units (cfu) per mL. The biosensing platform reported here is promising for large-scale, sensitive, selective, low-cost, and real-time detection of E. coli bacteria.

  1. The use of thermal analysis to assess oxidative damage in polyolefins

    SciTech Connect

    Horrocks, A.R.; Liu, M.; Mwila, J.

    1997-12-31

    During the thermal oxidation of polyolefins, exemplified by isotactic polypropylene, few observable physical and chemical changes occur until embrittlement or similar failure. The increasing oxidative and auto-oxidative behavior that accompanies oxidation can be measured as a reducing oxidation induction time using isothermal thermal analysis. Alternatively, dynamic thermal analysis (DSC or TGA) may be used more conveniently to record the shift to lower temperatures of the post-fusion, oxidative exotherm quantified as an onset (T{sub on}) temperature. This paper collates data from a number of previous and current studies on the oxidative behavior of oriented polypropylene tapes and filaments exposed at elevated (130 C) temperature in air. During exposure, T{sub on} values decrease according to a power law dependence with time and these shifts may be used to assess degrees of oxidation present in aged specimens. The implications of these shifts are discussed in terms of monitoring in-service behavior of exposed polyolefins and their relationship to oxidative and auto-oxidative mechanisms are discussed.

  2. Polymerization method for formation of thermally exfoliated graphite oxide containing polymer

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Adamson, Douglas (Inventor)

    2010-01-01

    A process for polymerization of at least one monomer including polymerizing the at least one monomer in the presence of a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(esp 2)/g to 2600 m(esp 2/g.

  3. Conductive ink containing thermally exfoliated graphite oxide and method a conductive circuit using the same

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A conductive ink containing a conductive polymer, wherein the conductive polymer contains at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, and it use in a method for making a conductive circuit.

  4. Electrospray painted article containing thermally exfoliated graphite oxide and method for their manufacture

    NASA Technical Reports Server (NTRS)

    Korkut, Sibel (Inventor); Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A painted polymer part containing a conductive polymer composition containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the painted polymer part has been electrospray painted.

  5. Ammonia Oxidizers in a Pilot-Scale Multilayer Rapid Infiltration System for Domestic Wastewater Treatment

    PubMed Central

    Lian, Yingli; Xu, Meiying; Zhong, Yuming; Yang, Yongqiang; Chen, Fanrong; Guo, Jun

    2014-01-01

    A pilot-scale multilayer rapid infiltration system (MRIS) for domestic wastewater treatment was established and efficient removal of ammonia and chemical oxygen demand (COD) was achieved in this study. The microbial community composition and abundance of ammonia oxidizers were investigated. Efficient biofilms of ammonia oxidizers in the stationary phase (packing material) was formed successfully in the MRIS without special inoculation. DGGE and phylogenetic analyses revealed that proteobacteria dominated in the MRIS. Relative abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) showed contrary tendency. In the flowing phase (water effluent), AOA diversity was significantly correlated with the concentration of dissolve oxygen (DO), NO3-N and NH3-N. AOB abundance was significantly correlated with the concentration of DO and chemical oxygen demand (COD). NH3-N and COD were identified as the key factors to shape AOB community structure, while no variable significantly correlated with that of AOA. AOA might play an important role in the MRIS. This study could reveal key environmental factors affecting the community composition and abundance of ammonia oxidizers in the MRIS. PMID:25479611

  6. Thermal contact resistance in solid oxide fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Dillig, Marius; Biedermann, Thomas; Karl, Jürgen

    2015-12-01

    For detailed thermal modelling of SOFC stacks, in particular research of improved thermal management, start-up and shut-down processes, thermal contact resistances (TCR) are required input parameters. These parameters are difficult to access analytically and strongly depend on temperature, geometry and material properties of the contact. Therefore, this work presents an experimental study of thermal contact resistance between different components of one SOFC stack repeating unit at varying temperatures up to typical operating temperatures (800 °C). Heat transfer rates are obtained for full repeating units, cell only, contact mesh only and sealing set-ups. Thermal interface resistances between interconnector and Ni-mesh, Ni-mesh and anode, cathode and interconnector as well as between interconnector and sealing are computed based on the measured data and provide information for numerical SOFC stack modelling.

  7. Rapid Mobilization of Noncrystalline U(IV) Coupled with FeS Oxidation.

    PubMed

    Bi, Yuqiang; Stylo, Malgorzata; Bernier-Latmani, Rizlan; Hayes, Kim F

    2016-02-02

    The reactivity of disordered, noncrystalline U(IV) species remains poorly characterized despite their prevalence in biostimulated sediments. Because of the lack of crystalline structure, noncrystalline U(IV) may be susceptible to oxidative mobilization under oxic conditions. The present study investigated the mechanism and rate of oxidation of biogenic noncrystalline U(IV) by dissolved oxygen (DO) in the presence of mackinawite (FeS). Previously recognized as an effective reductant and oxygen scavenger, nanoparticulate FeS was evaluated for its role in influencing U release in a flow-through system as a function of pH and carbonate concentration. The results demonstrated that noncrystalline U(IV) was more susceptible to oxidation than uraninite (UO2) in the presence of dissolved carbonate. A rapid release of U occurred immediately after FeS addition without exhibiting a temporary inhibition stage, as was observed during the oxidation of UO2, although FeS still kept DO levels low. X-ray photoelectron spectroscopy (XPS) characterized a transient surface Fe(III) species during the initial FeS oxidation, which was likely responsible for oxidizing noncrystalline U(IV) in addition to oxygen. In the absence of carbonate, however, the release of dissolved U was significantly hindered as a result of U adsorption by FeS oxidation products. This study illustrates the strong interactions between iron sulfide and U(IV) species during redox transformation and implies the lability of biogenic noncrystalline U(IV) species in the subsurface environment when subjected to redox cycling events.

  8. Manipulating feature sizes in Si-based grating structures by thermal oxidation

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Ji, Ran; Dai, Ning; Scholz, Roland; Steinhart, Martin; Nielsch, Kornelius; Gösele, Ulrich

    2008-08-01

    We report a method for manipulating feature sizes in Si-based grating structures by thermal oxidation, which allows the realization of fin width/period ratios not directly accessible by laser interference lithography. Taking advantage of the expansion in volume associated with the thermal oxidation of Si, grating structures with very high fin width/period ratios of the order of 0.96 were obtained, whereas subsequent chemical etching of the oxide yields grating structures with fin width/period ratios as small as ~0.06.

  9. Iodine doping effects on the lattice thermal conductivity of oxidized polyacetylene nanofibers

    SciTech Connect

    Bi, Kedong E-mail: kedongbi@seu.edu.cn; Weathers, Annie; Pettes, Michael T.; Shi, Li E-mail: kedongbi@seu.edu.cn; Matsushita, Satoshi; Akagi, Kazuo; Goh, Munju

    2013-11-21

    Thermal transport in oxidized polyacetylene (PA) nanofibers with diameters in the range between 74 and 126 nm is measured with the use of a suspended micro heater device. With the error due to both radiation and contact thermal resistance corrected via a differential measurement procedure, the obtained thermal conductivity of oxidized PA nanofibers varies in the range between 0.84 and 1.24 W m{sup −1} K{sup −1} near room temperature, and decreases by 40%–70% after iodine doping. It is also found that the thermal conductivity of oxidized PA nanofibers increases with temperature between 100 and 350 K. Because of exposure to oxygen during sample preparation, the PA nanofibers are oxidized to be electrically insulating before and after iodine doping. The measurement results reveal that iodine doping can result in enhanced lattice disorder and reduced lattice thermal conductivity of PA nanofibers. If the oxidation issue can be addressed via further research to increase the electrical conductivity via doping, the observed suppressed lattice thermal conductivity in doped polymer nanofibers can be useful for the development of such conducting polymer nanostructures for thermoelectric energy conversion.

  10. Rapid and effective oxidative pretreatment of woody biomass at mild reaction conditions and low oxidant loadings

    PubMed Central

    2013-01-01

    Background One route for producing cellulosic biofuels is by the fermentation of lignocellulose-derived sugars generated from a pretreatment that can be effectively coupled with an enzymatic hydrolysis of the plant cell wall. While woody biomass exhibits a number of positive agronomic and logistical attributes, these feedstocks are significantly more recalcitrant to chemical pretreatments than herbaceous feedstocks, requiring higher chemical and energy inputs to achieve high sugar yields from enzymatic hydrolysis. We previously discovered that alkaline hydrogen peroxide (AHP) pretreatment catalyzed by copper(II) 2,2΄-bipyridine complexes significantly improves subsequent enzymatic glucose and xylose release from hybrid poplar heartwood and sapwood relative to uncatalyzed AHP pretreatment at modest reaction conditions (room temperature and atmospheric pressure). In the present work, the reaction conditions for this catalyzed AHP pretreatment were investigated in more detail with the aim of better characterizing the relationship between pretreatment conditions and subsequent enzymatic sugar release. Results We found that for a wide range of pretreatment conditions, the catalyzed pretreatment resulted in significantly higher glucose and xylose enzymatic hydrolysis yields (as high as 80% for both glucose and xylose) relative to uncatalyzed pretreatment (up to 40% for glucose and 50% for xylose). We identified that the extent of improvement in glucan and xylan yield using this catalyzed pretreatment approach was a function of pretreatment conditions that included H2O2 loading on biomass, catalyst concentration, solids concentration, and pretreatment duration. Based on these results, several important improvements in pretreatment and hydrolysis conditions were identified that may have a positive economic impact for a process employing a catalyzed oxidative pretreatment. These improvements include identifying that: (1) substantially lower H2O2 loadings can be used that

  11. Thermal fatigue and oxidation data for directionally solidified MAR-M 246 turbine blades

    NASA Technical Reports Server (NTRS)

    Hill, V. L.; Humphreys, V. E.

    1980-01-01

    Thermal fatigue and oxidation data were obtained for 11 plasma spray coated and 13 uncoated directionally solidified and single crystal MAR-M 246 blades. Blade coatings on the airfoil included several metal-oxide thermal barrier layers based on Al2O3, Cr2O3, or ZrO2. The 24 turbine blades were tested simultaneously for 3000 cycles in fluidized beds maintained at 950 and 25 C using a symmetrical 360 set thermal cycle. In 3000 cycles, only uncoated turbine blades exhibited cracking on the trailing edge near the platform; 3 of the 13 uncoated blades did not crack. Cracking occurred over the range 400 to 2750 cycles, with single crystal blades indicating the poorest thermal fatigue resistance. Oxidation of the uncoated blades was limited in 3000 cycles. All coatings indicated microscopically visible spalling at the trailing edge radius after 3000 cycles. Severe general spalling on the airfoil was observed for two multilayered coatings.

  12. Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations.

    PubMed

    Schymanski, Stanislaus J; Or, Dani; Zwieniecki, Maciej

    2013-01-01

    Leaves within a canopy may experience rapid and extreme fluctuations in ambient conditions. A shaded leaf, for example, may become exposed to an order of magnitude increase in solar radiation within a few seconds, due to sunflecks or canopy motions. Considering typical time scales for stomatal adjustments, (2 to 60 minutes), the gap between these two time scales raised the question whether leaves rely on their hydraulic and thermal capacitances for passive protection from hydraulic failure or over-heating until stomata have adjusted. We employed a physically based model to systematically study effects of short-term fluctuations in irradiance on leaf temperatures and transpiration rates. Considering typical amplitudes and time scales of such fluctuations, the importance of leaf heat and water capacities for avoiding damaging leaf temperatures and hydraulic failure were investigated. The results suggest that common leaf heat capacities are not sufficient to protect a non-transpiring leaf from over-heating during sunflecks of several minutes duration whereas transpirative cooling provides effective protection. A comparison of the simulated time scales for heat damage in the absence of evaporative cooling with observed stomatal response times suggested that stomata must be already open before arrival of a sunfleck to avoid over-heating to critical leaf temperatures. This is consistent with measured stomatal conductances in shaded leaves and has implications for water use efficiency of deep canopy leaves and vulnerability to heat damage during drought. Our results also suggest that typical leaf water contents could sustain several minutes of evaporative cooling during a sunfleck without increasing the xylem water supply and thus risking embolism. We thus submit that shaded leaves rely on hydraulic capacitance and evaporative cooling to avoid over-heating and hydraulic failure during exposure to typical sunflecks, whereas thermal capacitance provides limited protection

  13. Stomatal Control and Leaf Thermal and Hydraulic Capacitances under Rapid Environmental Fluctuations

    PubMed Central

    Schymanski, Stanislaus J.; Or, Dani; Zwieniecki, Maciej

    2013-01-01

    Leaves within a canopy may experience rapid and extreme fluctuations in ambient conditions. A shaded leaf, for example, may become exposed to an order of magnitude increase in solar radiation within a few seconds, due to sunflecks or canopy motions. Considering typical time scales for stomatal adjustments, (2 to 60 minutes), the gap between these two time scales raised the question whether leaves rely on their hydraulic and thermal capacitances for passive protection from hydraulic failure or over-heating until stomata have adjusted. We employed a physically based model to systematically study effects of short-term fluctuations in irradiance on leaf temperatures and transpiration rates. Considering typical amplitudes and time scales of such fluctuations, the importance of leaf heat and water capacities for avoiding damaging leaf temperatures and hydraulic failure were investigated. The results suggest that common leaf heat capacities are not sufficient to protect a non-transpiring leaf from over-heating during sunflecks of several minutes duration whereas transpirative cooling provides effective protection. A comparison of the simulated time scales for heat damage in the absence of evaporative cooling with observed stomatal response times suggested that stomata must be already open before arrival of a sunfleck to avoid over-heating to critical leaf temperatures. This is consistent with measured stomatal conductances in shaded leaves and has implications for water use efficiency of deep canopy leaves and vulnerability to heat damage during drought. Our results also suggest that typical leaf water contents could sustain several minutes of evaporative cooling during a sunfleck without increasing the xylem water supply and thus risking embolism. We thus submit that shaded leaves rely on hydraulic capacitance and evaporative cooling to avoid over-heating and hydraulic failure during exposure to typical sunflecks, whereas thermal capacitance provides limited protection

  14. Electrical and thermal conductivities of rapidly crystallized Cu-Zr alloys: The effect of anharmonicity

    NASA Astrophysics Data System (ADS)

    Uporov, S.; Bykov, V.; Estemirova, S.

    2016-10-01

    We present a comprehensive study of electrical and thermal conductivities, specific heat and magnetic susceptibility of rapidly crystallized Cu100-xZrx (x = 20-90) alloys. X-ray diffraction analysis has revealed that all the prepared compositions had strongly textured and distorted crystal structures. Different monoclinic and other non-equilibrium phases were detected in the case of glass-forming samples, whereas the alloys without a tendency to form glassy state show almost equilibrium phase content. Metallic type of electrical conductivity and the Kondo anomaly were observed for all the examined samples. It was found that the electrical resistance data cannot be adequately described within the standard Bloch-Grüneisen theory. We use the Debye characteristic temperature as a linear function to fit the electrical conductivity accurately. The composition dependence of the electron density of states at the Fermi level (DOS) has been extracted from room temperature magnetic susceptibility. We found that the glass-forming alloys are characterized by abnormally large values of DOS, which are comparable to those of glassy analogues. Noticeable anharmonic contribution in total specific heat has been revealed for all the studied compositions. In order to estimate the effect of anharmonicity in the system under consideration, we analyzed composition and temperature dependencies of the studied thermal characteristics related to the Grüneisen coefficient. Basing on the results obtained in this study we propose a phenomenological concept to explain abnormal behavior of physical properties of glass-forming Cu-Zr alloys within the standard solid state theory taking into account anharmonic effects.

  15. Rapid thermal annealing of magnesium implanted GaAs-GaAIAs heterostructures experimental and simulated distributions

    NASA Astrophysics Data System (ADS)

    Ketata, K.; Debrie, R.; Ketata, M.

    1993-01-01

    The use of rapid thermal annealing (RTA) techniques to anneal ion implanted GaAs compounds is expected to have a significant impact on device technology. Due to the short duration of the heat treatment, the implanted impurities may be activated without significant diffusion. For heterojunction bipolar transistor (HBT) applications, high doses of p-type impurities are required to compensate the doping levels of N-GaAlAs emitter and n+ GaAs contact layers. Multi-implantations were chosen to maintain a flat profile down to the base layer. Energies of 30, 60, 150, and 340 keV with doses of 6 × 1013, 9 × 1013,6 × 1014, and 9 × 1014 cm-2, respectively, have been used. Annealing cycles with time durations of a few seconds and temperature in the range of 850 950°C are described. Electrical properties of the annealed samples have been investigated using an electrochemical measurement technique. It was found that hole concentrations as high as 4 × 1019 cm-3 and electrical activities near to 75 percent can be obtained. There is no evident indiffusion and no significant outdiffusion at the optimal annealing conditions. Simulation of multilayer implantations are also carried out by an accurate model available in TITAN 2D process simulator using Pearson IV laws and taking into account the diffusion effects on profile distribution caused by RTA. A first approximation using a simple model allows a rapid evaluation of the data fitting operation. In a second approach, concentration dependent diffusivity and the contribution of the electric field at the interface are covered to perform an improved data fitting of ion implanted and annealed dopant profiles. A comparative study shows a good agreement between experimental and simulated distributions.

  16. Methods to create thermally oxidized lipids and comparison of analytical procedures to characterize peroxidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this experiment was to evaluate peroxidation in 4 lipids, each with 3 degrees of peroxidation. Lipid sources were: corn oil (CN), canola oil (CA), poultry fat, and tallow. Peroxidation levels were: original lipids (OL), slow-oxidized lipids (SO), and rapid-oxidized lipids (RO). To p...

  17. Effect of Thermal Oxidation on Corrosion Resistance of Commercially Pure Titanium in Acid Medium

    NASA Astrophysics Data System (ADS)

    Jamesh, M.; Kumar, Satendra; Sankara Narayanan, T. S. N.

    2012-06-01

    This article addresses the characteristics of commercially pure titanium (CP-Ti) subjected to thermal oxidation in air at 650 °C for 48 h and its corrosion behavior in 0.1 and 4 M HCl and HNO3 mediums. Thermal oxidation of CP-Ti leads to the formation of thick oxide scales (~20 μm) throughout its surface without any spallation. The oxide layer consists of rutile- and oxygen-diffused titanium as predominant phases with a hardness of 679 ± 43 HV1.96. Electrochemical studies reveal that the thermally oxidized CP-Ti offers a better corrosion resistance than its untreated counterpart in both HCl and HNO3 mediums. The uniform surface coverage and compactness of the oxide layer provide an effective barrier toward corrosion of CP-Ti. The study concludes that thermal oxidation is an effective approach to engineer the surface of CP-Ti so as to increase its corrosion resistance in HCl and HNO3 mediums.

  18. Thermal transport in tantalum oxide films for memristive applications

    SciTech Connect

    Landon, Colin Donald; Wilke, Rudeger H. T.; Brumbach, Michael T.; Brennecka, Geoffrey L.; Blea-Kirby, Mia Angelica; Ihlefeld, Jon; Marinella, Matthew; Thomas Edwin Beechem

    2015-07-15

    The thermal conductivity of amorphous TaOx memristive films having variable oxygen content is measured using time domain thermoreflectance. Furthermore, the thermal transport is described by a two-partmodel where the electrical contribution is quantified via the Wiedemann-Franz relation and the vibrational contribution by the minimum thermal conductivity limit for amorphous solids. Additionally, the vibrational contribution remains constant near 0.9 W/mK regardless of oxygen concentration, while the electrical contribution varies from 0 to 3.3 W/mK. Thus, the dominant thermal carrier in TaOx switches between vibrations and charge carriers and is controllable either by oxygen content during deposition, or dynamically by field-induced charge state migration.

  19. Thermal transport in tantalum oxide films for memristive applications

    SciTech Connect

    Landon, Colin D.; Wilke, Rudeger H. T.; Brumbach, Michael T.; Blea-Kirby, Mia; Ihlefeld, Jon F.; Marinella, Matthew J.; Beechem, Thomas E.; Brennecka, Geoff L.

    2015-07-13

    The thermal conductivity of amorphous TaO{sub x} memristive films having variable oxygen content is measured using time domain thermoreflectance. Thermal transport is described by a two-part model where the electrical contribution is quantified via the Wiedemann-Franz relation and the vibrational contribution by the minimum thermal conductivity limit for amorphous solids. The vibrational contribution remains constant near 0.9 W/mK regardless of oxygen concentration, while the electrical contribution varies from 0 to 3.3 W/mK. Thus, the dominant thermal carrier in TaO{sub x} switches between vibrations and charge carriers and is controllable either by oxygen content during deposition, or dynamically by field-induced charge state migration.

  20. Thermal transport in tantalum oxide films for memristive applications

    DOE PAGES

    Landon, Colin Donald; Wilke, Rudeger H. T.; Brumbach, Michael T.; ...

    2015-07-15

    The thermal conductivity of amorphous TaOx memristive films having variable oxygen content is measured using time domain thermoreflectance. Furthermore, the thermal transport is described by a two-partmodel where the electrical contribution is quantified via the Wiedemann-Franz relation and the vibrational contribution by the minimum thermal conductivity limit for amorphous solids. Additionally, the vibrational contribution remains constant near 0.9 W/mK regardless of oxygen concentration, while the electrical contribution varies from 0 to 3.3 W/mK. Thus, the dominant thermal carrier in TaOx switches between vibrations and charge carriers and is controllable either by oxygen content during deposition, or dynamically by field-induced chargemore » state migration.« less

  1. Molecular Dynamics study of the mixed oxide fuel thermal conductivity

    NASA Astrophysics Data System (ADS)

    Nichenko, S.; Staicu, D.

    2013-08-01

    There is still no clear understanding of the plutonium content influence on the thermal conductivity behaviour of the (U,Pu) O2 MOX fuels. In this work Classical Molecular Dynamics (MD) was used to investigate the (U,Pu) O2 thermal conductivity in the whole concentration range and in the temperature range from 400 K to 1600 K. The Green-Kubo approach was used for the thermal conductivity calculation and an algorithm was proposed to improve the accuracy of the calculation. The obtained results are in good agreement with the literature experimental data and results of modelling of other authors. On the basis of the obtained results we give recommendations for the MOX thermal conductivity evaluation in the concentration range from pure UO2 up to pure PuO2.

  2. Rapid antibiotic efficacy screening with aluminum oxide nanoporous membrane filter-chip and optical detection system.

    PubMed

    Tsou, Pei-Hsiang; Sreenivasappa, Harini; Hong, Sungmin; Yasuike, Masayuki; Miyamoto, Hiroshi; Nakano, Keiyo; Misawa, Takeyuki; Kameoka, Jun

    2010-09-15

    We have developed a filter-chip and optical detection system for rapid antibiotic efficacy screening. The filter-chip consisted of a 1-mL reservoir and an anodic aluminum oxide (AAO) nanoporous membrane. Sample solution with liquid growth media, bacteria, and antibiotics was incubated in the reservoir for a specific period of time. The number of live bacteria on the surface of membrane was counted after the incubation with antibiotics and filtration. Using this biosensing system, we have demonstrated a 1-h antibiotic screening for patients' clinical samples, significantly faster than the conventional antibiotic susceptibility tests that typically take more than 24h. This rapid screening nature makes the filter-chip and detection system ideal for tailoring antibiotic treatment to individual patients by reducing the microbial antibiotic resistance, and improving the survival rate for patients suffering from postoperative infections.

  3. Rapid and direct synthesis of complex perovskite oxides through a highly energetic planetary milling.

    PubMed

    Lee, Gyoung-Ja; Park, Eun-Kwang; Yang, Sun-A; Park, Jin-Ju; Bu, Sang-Don; Lee, Min-Ku

    2017-04-07

    The search for a new and facile synthetic route that is simple, economical and environmentally safe is one of the most challenging issues related to the synthesis of functional complex oxides. Herein, we report the expeditious synthesis of single-phase perovskite oxides by a high-rate mechanochemical reaction, which is generally difficult through conventional milling methods. With the help of a highly energetic planetary ball mill, lead-free piezoelectric perovskite oxides of (Bi, Na)TiO3, (K, Na)NbO3 and their modified complex compositions were directly synthesized with low contamination. The reaction time necessary to fully convert the micron-sized reactant powder mixture into a single-phase perovskite structure was markedly short at only 30-40 min regardless of the chemical composition. The cumulative kinetic energy required to overtake the activation period necessary for predominant formation of perovskite products was ca. 387 kJ/g for (Bi, Na)TiO3 and ca. 580 kJ/g for (K, Na)NbO3. The mechanochemically derived powders, when sintered, showed piezoelectric performance capabilities comparable to those of powders obtained by conventional solid-state reaction processes. The observed mechanochemical synthetic route may lead to the realization of a rapid, one-step preparation method by which to create other promising functional oxides without time-consuming homogenization and high-temperature calcination powder procedures.

  4. Rapid and direct synthesis of complex perovskite oxides through a highly energetic planetary milling

    PubMed Central

    Lee, Gyoung-Ja; Park, Eun-Kwang; Yang, Sun-A; Park, Jin-Ju; Bu, Sang-Don; Lee, Min-Ku

    2017-01-01

    The search for a new and facile synthetic route that is simple, economical and environmentally safe is one of the most challenging issues related to the synthesis of functional complex oxides. Herein, we report the expeditious synthesis of single-phase perovskite oxides by a high-rate mechanochemical reaction, which is generally difficult through conventional milling methods. With the help of a highly energetic planetary ball mill, lead-free piezoelectric perovskite oxides of (Bi, Na)TiO3, (K, Na)NbO3 and their modified complex compositions were directly synthesized with low contamination. The reaction time necessary to fully convert the micron-sized reactant powder mixture into a single-phase perovskite structure was markedly short at only 30–40 min regardless of the chemical composition. The cumulative kinetic energy required to overtake the activation period necessary for predominant formation of perovskite products was ca. 387 kJ/g for (Bi, Na)TiO3 and ca. 580 kJ/g for (K, Na)NbO3. The mechanochemically derived powders, when sintered, showed piezoelectric performance capabilities comparable to those of powders obtained by conventional solid-state reaction processes. The observed mechanochemical synthetic route may lead to the realization of a rapid, one-step preparation method by which to create other promising functional oxides without time-consuming homogenization and high-temperature calcination powder procedures. PMID:28387324

  5. Rapid synthesis of zinc oxide nanoforest: use of microwave and forced seeding

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Chakraborty, J.

    2016-12-01

    A rapid synthesis technique has been developed for zinc oxide (ZnO) nanoforest using microwave assisted hydrothermal method. This microwave assisted process takes less than 4 h whereas conventional hydrothermal synthesis takes 25 h to fabricate nanoforest of comparable dimensions. The simple dipping technique for secondary seeding on the primary nanorods has been studied and it has been shown that such seeding would take at least an hour. A ‘forced seeding’ technique has been developed which reduces the seeding time drastically. The microwave assisted branch growth occurs at a speed of 10 nm min-1 which is 10 fold faster than that of hydrothermal method.

  6. Note: Rapid reduction of graphene oxide paper by glow discharge plasma

    SciTech Connect

    Bo, Zheng; Qian, Jiajing; Duan, Liangping; Qiu, Kunzan Yan, Jianhua; Cen, Kefa; Han, Zhao Jun; Ostrikov, Kostya

    2015-05-15

    This note reports on a novel method for the rapid reduction of graphene oxide (GO) paper using a glow discharge plasma reactor. Glow discharge is produced and sustained between two parallel-plate graphite electrodes at a pressure of 240 mTorr. By exposing GO paper at the junction of negative-glow and Faraday-dark area for 4 min, the oxygen-containing groups can be effectively removed (C/O ratio increases from 2.6 to 7.9), while the material integrality and flexibility are kept well. Electrochemical measurements demonstrate that the as-obtained reduced GO paper can be potentially used for supercapacitor application.

  7. Atmospheric Pressure-Thermal Desorption (AP-TD)/Electrospray Ionization-Mass Spectrometry for the Rapid Analysis of Bacillus Spores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A technique is described where an atmospheric pressure-thermal desorption (AP-TD) device and electrospray ionization (ESI)-mass spectrometry are coupled and used for the rapid analysis of Bacillus spores in complex matrices. The resulting AP-TD/ESI-MS technique combines the generation of volatile co...

  8. Rapid and Adaptable Measurement of Protein Thermal Stability by Differential Scanning Fluorimetry: Updating a Common Biochemical Laboratory Experiment

    ERIC Educational Resources Information Center

    Johnson, R. Jeremy; Savas, Christopher J.; Kartje, Zachary; Hoops, Geoffrey C.

    2014-01-01

    Measurement of protein denaturation and protein folding is a common laboratory technique used in undergraduate biochemistry laboratories. Differential scanning fluorimetry (DSF) provides a rapid, sensitive, and general method for measuring protein thermal stability in an undergraduate biochemistry laboratory. In this method, the thermal…

  9. Rapid thermal processing chamber for in-situ x-ray diffraction

    SciTech Connect

    Ahmad, Md. Imteyaz; Van Campen, Douglas G.; Yu, Jiafan; Pool, Vanessa L.; Van Hest, Maikel F. A. M.; Toney, Michael F.; Fields, Jeremy D.; Parilla, Philip A.; Ginley, David S.

    2015-01-15

    Rapid thermal processing (RTP) is widely used for processing a variety of materials, including electronics and photovoltaics. Presently, optimization of RTP is done primarily based on ex-situ studies. As a consequence, the precise reaction pathways and phase progression during the RTP remain unclear. More awareness of the reaction pathways would better enable process optimization and foster increased adoption of RTP, which offers numerous advantages for synthesis of a broad range of materials systems. To achieve this, we have designed and developed a RTP instrument that enables real-time collection of X-ray diffraction data with intervals as short as 100 ms, while heating with ramp rates up to 100 °Cs{sup −1}, and with a maximum operating temperature of 1200 °C. The system is portable and can be installed on a synchrotron beamline. The unique capabilities of this instrument are demonstrated with in-situ characterization of a Bi{sub 2}O{sub 3}-SiO{sub 2} glass frit obtained during heating with ramp rates 5 °C s{sup −1} and 100 °C s{sup −1}, revealing numerous phase changes.

  10. Rapid determination of nicotine in urine by direct thermal desorption ion trap mass spectrometry

    SciTech Connect

    Wise, M.B.; Ilgner, R.H.; Guerin, M.R.

    1990-01-01

    The measurement of nicotine and cotinine in physiological fluids (urine, blood serum, and saliva) is widely used as a means of assessing human exposure to environmental tobacco smoke (ETS). Although numerous analytical methods exist for these measurements, they generally involve extensive sample preparation which increases cost and decreases sample throughput. We report the use of thermal desorption directly into an ion trap mass spectrometer (ITMS) for the rapid determination of nicotine and cotinine in urine. A 1{mu}L aliquot of urine is injected into a specially designed inlet and flash vaporized directly into an ITMS through an open-split capillary restrictor interface. Isobutane chemical ionization is used to generate (M+H){sup +} ions of the analytes and collision induced dissociation is used to generate characteristic fragment ions which are used to confirm their identity. Quantification is achieved by integrating the ion current for the characteristic ions and comparing with an external working curve. Detection limits are approximately 50 pg per analyte and the sample turnaround time is approximately 3 minutes without the need for extensive sample preparation. 12 refs., 5 figs.

  11. Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires

    PubMed Central

    2011-01-01

    We report on the major improvement in UV photosensitivity and faster photoresponse from vertically aligned ZnO nanowires (NWs) by means of rapid thermal annealing (RTA). The ZnO NWs were grown by vapor-liquid-solid method and subsequently RTA treated at 700°C and 800°C for 120 s. The UV photosensitivity (photo-to-dark current ratio) is 4.5 × 103 for the as-grown NWs and after RTA treatment it is enhanced by a factor of five. The photocurrent (PC) spectra of the as-grown and RTA-treated NWs show a strong peak in the UV region and two other relatively weak peaks in the visible region. The photoresponse measurement shows a bi-exponential growth and bi-exponential decay of the PC from as-grown as well as RTA-treated ZnO NWs. The growth and decay time constants are reduced after the RTA treatment indicating a faster photoresponse. The dark current-voltage characteristics clearly show the presence of surface defects-related trap centers on the as-grown ZnO NWs and after RTA treatment it is significantly reduced. The RTA processing diminishes the surface defect-related trap centers and modifies the surface of the ZnO NWs, resulting in enhanced PC and faster photoresponse. These results demonstrated the effectiveness of RTA processing for achieving improved photosensitivity of ZnO NWs. PMID:21859456

  12. Nano-Welding of Ag Nanowires Using Rapid Thermal Annealing for Transparent Conductive Films.

    PubMed

    Oh, Jong Sik; Oh, Ji Soo; Shin, Jae Hee; Yeom, Geun Young; Kim, Kyong Nam

    2015-11-01

    Ag nanowire (NW) films obtained by the spraying the Ag NWs on the substrates were nano-welded by rapid thermal annealing (RTA) process and the effect of RTA process on the change of sheet resistance and optical transmittance of the Ag NW films was investigated. The increased number of Ag NW sprays on the substrate decreased the sheet resistance but also decreased the optical transmittance. By the annealing for 60 sec in a nitrogen environment to 225-250 degrees C, the sheet resistance of Ag NW film could be decreased to about 50%, even though it was accompanied by the slight decrease of optical transmittance less than 5%. The decrease of sheet resistance was related to the nano-welding of the Ag NW junctions and the slight decrease of optical transmittance was related local melting of the Ag NWs and spreading on the substrate surface. Through the nano-welding by RTA process, the Ag NW film with the sheet resistance of -20 Ω/sq. and the optical transmittance of 93% could be obtained.

  13. Stabilization of thin tungsten films on silicon during rapid thermal annealing in nitrogen

    SciTech Connect

    Smith, P.M.

    1991-01-01

    Thin W films on Si, deposited by electron-beam evaporation or sputtering, are shown to be stabilized against silicidation by a N[sub 2] ambient during rapid thermal annealing to temperatures of 1100[degree]C. The behavior of the W films in contact with Si was monitored following anneals in Ar and N[sub 2] ambients. Tungsten films annealed in an Ar ambient reacted fully to form the stable silicide, WSi[sub 2], while films annealed in N[sub 2] remained elemental W. The stability of W films with incorporated N was studied further by subsequent annealing in an Ar ambient. Complete stabilization of the W films was only achieved for N doses above 2.0 [times] 10[sup 17] N atoms/cm[sub 2]. At lower doses, a continual supply of N was necessary to maintain the stabilization by consumption of mobile Si at the interface. In contrast to films deposited by e-beam evaporation or sputtering, films deposited by chemical vapor deposition (CVD) reacted to form WSi[sub 2], regardless of the annealing ambient, at a substantially faster rate than the other samples. AES measurements show this reaction is the result of an absence of measurable O in the CVD films.

  14. Facile synthesis of few-layer graphene with a controllable thickness using rapid thermal annealing.

    PubMed

    Chu, Jae Hwan; Kwak, Jinsung; Kwon, Tae-Yang; Park, Soon-Dong; Go, Heungseok; Kim, Sung Youb; Park, Kibog; Kang, Seoktae; Kwon, Soon-Yong

    2012-03-01

    Few-layer graphene films with a controllable thickness were grown on a nickel surface by rapid thermal annealing (RTA) under vacuum. The instability of nickel films in air facilitates the spontaneous formation of ultrathin (<2-3 nm) carbon- and oxygen-containing compounds on a nickel surface; thus, the high-temperature annealing of the nickel samples without the introduction of intentional carbon-containing precursors results in the formation of graphene films. From annealing temperature and ambient studies during RTA, it was found that the evaporation of oxygen atoms from the surface is the dominant factor affecting the formation of graphene films. The thickness of the graphene layers is strongly dependent on the RTA temperature and time, and the resulting films have a limited thickness (<2 nm), even for an extended RTA time. The transferred films have a low sheet resistance of ~0.9 ± 0.4 kΩ/sq, with ~94% ± 2% optical transparency, making them useful for applications as flexible transparent conductors.

  15. Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Penman, Donald E.; Hönisch, Bärbel; Zeebe, Richard E.; Thomas, Ellen; Zachos, James C.

    2014-05-01

    The Paleocene-Eocene Thermal Maximum (PETM) has been associated with the release of several thousands of petagrams of carbon (Pg C) as methane and/or carbon dioxide into the ocean-atmosphere system within ~10 kyr, on the basis of the co-occurrence of a carbon isotope excursion (CIE), widespread dissolution of deep sea carbonates, and global warming. In theory, this rapid carbon release should have severely acidified the surface ocean, though no geochemical evidence has yet been presented. Using boron-based proxies for surface ocean carbonate chemistry, we present the first observational evidence for a drop in the pH of surface and thermocline seawater during the PETM. Planktic foraminifers from a drill site in the North Pacific (Ocean Drilling Program Site 1209) show a ~0.8‰ decrease in boron isotopic composition (δ11B) at the onset of the event, along with a 30-40% reduction in shell B/Ca. Similar trends in δ11B are present in two lower-resolution records from the South Atlantic and Equatorial Pacific. These observations are consistent with significant, global acidification of the surface ocean lasting at least 70 kyr and requiring sustained carbon release. The anomalies in the B records are consistent with an initial surface pH drop of ~0.3 units, at the upper range of model-based estimates of acidification.

  16. High-density-plasma (HDP)-CVD oxide to thermal oxide wafer bonding for strained silicon layer transfer applications

    NASA Astrophysics Data System (ADS)

    Singh, R.; Radu, I.; Reiche, M.; Himcinschi, C.; Kuck, B.; Tillack, B.; Gösele, U.; Christiansen, S. H.

    2007-01-01

    Direct wafer bonding between high-density-plasma chemical vapour deposited (HDP-CVD) oxide and thermal oxide (TO) has been investigated. HDP-CVD oxides, about 230 nm in thickness, were deposited on Si(0 0 1) control wafers and the wafers of interest that contain a thin strained silicon (sSi) layer on a so-called virtual substrate that is composed of relaxed SiGe (˜4 μm thick) on Si(0 0 1) wafers. The surfaces of the as-deposited HDP-CVD oxides on the Si control wafers were smooth with a root-mean-square (RMS) roughness of <1 nm, which is sufficiently smooth for direct wafer bonding. The surfaces of the sSi/SiGe/Si(0 0 1) substrates show an RMS roughness of >2 nm. After HDP-CVD oxide deposition on the sSi/SiGe/Si substrates, the RMS roughness of the oxide surfaces was also found to be the same, i.e., >2 nm. To use these wafers for direct bonding the RMS roughness had to be reduced below 1 nm, which was carried out using a chemo-mechanical polishing (CMP) step. After bonding the HDP-CVD oxides to thermally oxidized handle wafers, the bonded interfaces were mostly bubble- and void-free for the silicon control and the sSi/SiGe/Si(0 0 1) wafers. The bonded wafer pairs were then annealed at higher temperatures up to 800 °C and the bonded interfaces were still found to be almost bubble- and void-free. Thus, HDP-CVD oxide is quite suitable for direct wafer bonding and layer transfer of ultrathin sSi layers on oxidized Si wafers for the fabrication of novel sSOI substrates.

  17. Impedance Analysis of 7YSZ Thermal Barrier Coatings During High-Temperature Oxidation

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Long; Liu, Min; Zhang, Ji-Fu

    2016-12-01

    ZrO2-7 wt.%Y2O3 (7YSZ) thermal barrier coatings (TBCs) were prepared by atmospheric plasma spraying. High-temperature oxidation of 7YSZ TBCs was accomplished at 950 °C and characterized by impedance spectroscopy and scanning electron microscopy with energy-dispersive spectrometry. The results indicated that the thermally grown oxide (TGO) mainly contained alumina. The increase of the thickness of the TGO layer appeared to follow a parabolic law. Impedance analysis demonstrated that the resistance of the TGO increased with increasing oxidation time, also following a parabolic law, and that characterization of the TGO thickness based on fitting an equivalent circuit to its measured resistance is feasible. The YSZ grain-boundary resistance increased due to increasing cracks within the coating for oxidation time less than 50 h. However, beyond 150 h, the YSZ grain-boundary resistance slightly decreased, mainly due to sintering of the coating during the oxidation process.

  18. Interfacial failure via encapsulation of external particulates in an outward-growing thermal oxide

    NASA Astrophysics Data System (ADS)

    Jung, Keeyoung; Kim, Chang-Soo; Pettit, Frederick S.; Meier, Gerald H.

    2011-05-01

    A Cr2O3-forming Ni-base superalloy and this alloy coated with a Pt-modified aluminide coating were exposed to SiO2 powder and cyclically oxidized at 950 °C. The uncoated alloy showed a considerable amount of spallation and buckling whereas the Pt-NiAl coated alloy remained protective throughout hundred 1 h-cycles. The interfacial failure is mainly ascribed to the increased thermal strain by the encapsulation of external SiO2 particulates in an outward-growing Cr2O3 layer. However, the particles were not embedded in the thermally grown oxide of the Pt-NiAl coated alloy due to the slow inward-growing characteristics of Al2O3 scales. The buckling of the Cr2O3 scale with embedded SiO2 was analyzed with (1) a classical buckling criterion using the instantaneous coefficients of thermal expansion of the constituents, and (2) finite element analyses (FEA) to estimate the local interfacial shear stresses. It turns out that the thermal strain with embedded SiO2 is larger than the experimentally determined critical thermal strain (ɛb) explaining the buckling of the oxide scale observed in the experiment. The FEA results demonstrate that local shear stresses at the metal/oxide interface are significantly amplified near the SiO2 particles showing that the buckling of oxide can be readily initiated especially in the vicinity of the embedded particles.

  19. A Novel Investigation of the Formation of Titanium Oxide Nanotubes on Thermally Formed Oxide of Ti-6Al-4V.

    PubMed

    Butt, Arman; Hamlekhan, Azhang; Patel, Sweetu; Royhman, Dmitry; Sukotjo, Cortino; Mathew, Mathew T; Shokuhfar, Tolou; Takoudis, Christos

    2015-10-01

    Traditionally, titanium oxide (TiO2) nanotubes (TNTs) are anodized on Ti-6Al-4V alloy (Ti-V) surfaces with native TiO2 (amorphous TiO2); subsequent heat treatment of anodized surfaces has been observed to enhance cellular response. As-is bulk Ti-V, however, is often subjected to heat treatment, such as thermal oxidation (TO), to improve its mechanical properties. Thermal oxidation treatment of Ti-V at temperatures greater than 200°C and 400°C initiates the formation of anatase and rutile TiO2, respectively, which can affect TNT formation. This study aims at understanding the TNT formation mechanism on Ti-V surfaces with TO-formed TiO2 compared with that on as-is Ti-V surfaces with native oxide. Thermal oxidation-formed TiO2 can affect TNT formation and surface wettability because TO-formed TiO2 is expected to be part of the TNT structure. Surface characterization was carried out with field emission scanning electron microscopy, energy dispersive x-ray spectroscopy, water contact angle measurements, and white light interferometry. The TNTs were formed on control and 300°C and 600°C TO-treated Ti-V samples, and significant differences in TNT lengths and surface morphology were observed. No difference in elemental composition was found. Thermal oxidation and TO/anodization treatments produced hydrophilic surfaces, while hydrophobic behavior was observed over time (aging) for all samples. Reduced hydrophobic behavior was observed for TO/anodized samples when compared with control, control/anodized, and TO-treated samples. A method for improved surface wettability and TNT morphology is therefore discussed for possible applications in effective osseointegration of dental and orthopedic implants.

  20. Mechanofused metal-carbide-oxide cermet powders for thermal spraying

    SciTech Connect

    Bernard, D.; Yokota, O.; Grimaud, A.; Fauchais, P.; Usmani, S.; Chen, Z.J.; Berndt, C.C.; Herman, H.

    1994-12-31

    By generating a mechano-chemical reaction between two or more materials, the mechanofusion process enables the production of novel powdered materials having different mechanical properties. In this study, different varieties of starting materials have been combined with the aim of manufacturing powders for thermal spraying, the objective being to produce a coating having good wear resistance in severe environments (e.g., high temperatures). Sets of NiCrAlY-TiC-ZrO{sub 2} and NiAl-TiC-ZrO{sub 2} powders with different levels of ceramic have been sprayed and the resultant coatings evaluated for microstructure, microhardness, wear and thermal shock resistance. The principal objective of the present study was to evaluate mechanofusion for the production of thermal spray cermet powders.

  1. Degradable Molybdenum Oxide Nanosheets with Rapid Clearance and Efficient Tumor Homing Capabilities as a Therapeutic Nanoplatform.

    PubMed

    Song, Guosheng; Hao, Jiali; Liang, Chao; Liu, Teng; Gao, Min; Cheng, Liang; Hu, Junqing; Liu, Zhuang

    2016-02-05

    Molybdenum oxide (MoOx) nanosheets with high near-infrared (NIR) absorbance and pH-dependent oxidative degradation properties were synthesized, functionalized with polyethylene glycol (PEG), and then used as a degradable photothermal agent and drug carrier. The nanosheets, which are relatively stable under acidic pH, could be degraded at physiological pH. Therefore, MoOx-PEG distributed in organs upon intravenous injection would be rapidly degraded and excreted without apparent in vivo toxicity. MoOx-PEG shows efficient accumulation in tumors, the acidic pH of which then leads to longer tumor retention of those nanosheets. Along with the capability of acting as a photothermal agent for effective tumor ablation, MoOx-PEG can load therapeutic molecules with high efficiencies. This concept of inorganic theranostic nanoagent should be relatively stable in tumors to allow imaging and treatment, while being readily degradable in normal organs to enable rapid excretion and avoid long-term retention/toxicity.

  2. Rapid Size- Controlled Synthesis of Dextran-Coated, Copper-Doped Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wong, Ray M.

    2011-12-01

    Development of dual modality probes enabled for magnetic resonance imaging (MRI) and positron emission tomography (PET) has been on the rise in recent years due to the potential for these probes to facilitate combining the complementary high resolution of MRI and the high sensitivity of PET. The efficient synthesis of multimodal probes that include the radiolabels for PET can be hindered due to prolonged reaction times during radioisotope incorporation, and the resulting decay of the radiolabel. Along with a time-efficient synthesis, one also needs an optimal synthesis that yields products in a desirable size range (between 20-100 nm) to increase blood retention time. In this work, we describe a novel, rapid, microwave-based synthesis of dextran-coated iron oxide nanoparticles doped with copper (DIO/Cu). Traditional methods for synthesizing dextran-coated iron oxide particles require refluxing for 2 hours and result in approximately 50 nm particles. We demonstrate that microwave synthesis can produce 50 nm nanoparticles in 5 minutes of heating. We discuss the various parameters used in the microwave synthesis protocol to vary the size distribution of DIO/Cu, and demonstrate the successful incorporation of copper into these particles with the aim of future use for rapid 64Cu incorporation.

  3. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    DOE PAGES

    Fergus, Jeffrey W.

    2014-04-12

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatingsmore » are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.« less

  4. Advanced Oxide Material Systems for 1650 C Thermal/Environmental Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    Advanced thermal and environmental barrier coatings (TEBCs) are being developed for low-emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor-containing combustion environments. The advanced 1650 C TEBC system is required to have a better high-temperature stability, lower thermal conductivity, and more resistance to sintering and thermal stress than current coating systems under engine high-heat-flux and severe thermal cycling conditions. In this report, the thermal conductivity and water vapor stability of selected candidate hafnia-, pyrochlore- and magnetoplumbite-based TEBC materials are evaluated. The effects of dopants on the materials properties are also discussed. The test results have been used to downselect the TEBC materials and help demonstrate the feasibility of advanced 1650 C coatings with long-term thermal cycling durability.

  5. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    SciTech Connect

    Fergus, Jeffrey W.

    2014-04-12

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatings are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.

  6. Rapid assessment of singlet oxygen-induced plasma lipid oxidation and its inhibition by antioxidants with diphenyl-1-pyrenylphosphine (DPPP).

    PubMed

    Morita, Mayuko; Naito, Yuji; Yoshikawa, Toshikazu; Niki, Etsuo

    2016-01-01

    Recent studies suggesting the involvement of singlet oxygen in the pathogenesis of multiple diseases have attracted renewed attention to lipid oxidation mediated by singlet oxygen. Although the rate constants for singlet oxygen quenching by antioxidants have been measured extensively, the inhibition of lipid oxidation mediated by singlet oxygen has received relatively less attention, partly because a convenient method for measuring the rate of lipid oxidation is not available. The objective of this study was to develop a convenient method to measure plasma lipid oxidation mediated by singlet oxygen which may be applied to a rapid assessment of the antioxidant capacity to inhibit this oxidation using a conventional microplate reader. Singlet oxygen was produced from naphthalene endoperoxide, and lipid hydroperoxide production was followed by using diphenyl-1-pyrenylphosphine (DPPP). Non-fluorescent DPPP reacts stoichiometrically with lipid hydroperoxides to give highly fluorescent DPPP oxide. It was found that plasma oxidation by singlet oxygen increased the fluorescence intensity of DPPP oxide, which was suppressed by antioxidants. Fucoxanthin suppressed the oxidation more efficiently than β-carotene and α-tocopherol, while ascorbic acid and Trolox were not effective. The present method may be useful for monitoring lipid oxidation and also for rapid screening of the capacity of dietary antioxidants and natural products to inhibit lipid oxidation in a biologically relevant system.

  7. Comprehensive study on initial thermal oxidation of GaN(0001) surface and subsequent oxide growth in dry oxygen ambient

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Ito, Joyo; Asahara, Ryohei; Watanabe, Kenta; Nozaki, Mikito; Nakazawa, Satoshi; Anda, Yoshiharu; Ishida, Masahiro; Ueda, Tetsuzo; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2017-01-01

    Initial oxidation of gallium nitride (GaN) (0001) epilayers and subsequent growth of thermal oxides in dry oxygen ambient were investigated by means of x-ray photoelectron spectroscopy, spectroscopic ellipsometry, atomic force microscopy, and x-ray diffraction measurements. It was found that initial oxide formation tends to saturate at temperatures below 800 °C, whereas the selective growth of small oxide grains proceeds at dislocations in the epilayers, followed by noticeable grain growth, leading to a rough surface morphology at higher oxidation temperatures. This indicates that oxide growth and its morphology are crucially dependent on the defect density in the GaN epilayers. Structural characterizations also reveal that polycrystalline α- and β-phase Ga2O3 grains in an epitaxial relation with the GaN substrate are formed from the initial stage of the oxide growth. We propose a comprehensive model for GaN oxidation mediated by nitrogen removal and mass transport and discuss the model on the basis of experimental findings.

  8. Effect of rapid product desiccation or hydration on thermal resistance of Salmonella enterica serovar enteritidis PT 30 in wheat flour.

    PubMed

    Smith, Danielle F; Marks, Bradley P

    2015-02-01

    Salmonella is able to survive in low-moisture environments and is known to be more heat resistant as product water activity (aw) decreases. However, it is unknown how rapidly the resistance changes if product aw is altered rapidly, as can occur in certain processes. Therefore, the objective was to determine the effect of rapid product desiccation or hydration on Salmonella thermal resistance. Two dynamic moisture treatments were compared with two static moisture treatments to determine the effect of time-at-moisture on the thermal resistance of Salmonella enterica serovar Enteritidis phage type 30 (PT 30) in wheat flour. After inoculation, two static moisture groups were equilibrated to 0.3 and 0.6 aw over 4 to 7 days, and two dynamic moisture groups then were rapidly (<4 min) desiccated from 0.6 to 0.3 aw or hydrated from 0.3 to 0.6 aw. Samples then were subjected to isothermal (80°C) heat treatments, and Salmonella thermal resistance was compared via decimal reduction times (i.e., D80°C-values). The D80°C-value in flour that was rapidly desiccated from 0.6 to 0.3 aw was statistically equivalent (P > 0.05) to the D80°C-value in flour previously equilibrated to 0.3 aw, but both were greater (P < 0.05) than the D80°C-value in flour previously equilibrated to 0.6 aw. Similarly, the D80°C-value in flour rapidly hydrated from 0.3 to 0.6 aw was statistically equivalent (P > 0.05) to the D80°C-value in flour previously equilibrated to 0.6 aw, and both were less than the D80°C-value in flour previously equilibrated to 0.3 aw. Therefore, Salmonella in the rapidly desiccated flour (0.3 aw) was as thermally resistant as that which previously had been equilibrated to 0.3 aw, and Salmonella in the rapidly hydrated flour (0.6 aw) responded similarly to that in the flour previously equilibrated to 0.6 aw. These results suggest that the response period to new aw is negligible, which is critically important in applying thermal resistance data or parameters to industrial

  9. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release.

    PubMed

    Guibelin, E

    2004-01-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO2, CH4, N2O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best ways to minimize greenhouse effect gases emission.

  10. Improvement of band gap profile in Cu(InGa)Se{sub 2} solar cells through rapid thermal annealing

    SciTech Connect

    Chen, D.S.; Yang, J.; Yang, Z.B.; Xu, F.; Du, H.W.; Ma, Z.Q.

    2014-06-01

    Highlights: • Proper RTA treatment can effectively optimize band gap profile to more expected level. • Inter-diffusion of atoms account for the improvement of the graded band gap profile. • The variation of the band gap profile created an absolute gain in the efficiency by 1.22%. - Abstract: In the paper, the effect of rapid thermal annealing on non-optimal double-graded band gap profiles was investigated by using X-ray photoelectron spectroscopy and capacitance–voltage measurement techniques. Experimental results revealed that proper rapid thermal annealing treatment can effectively improve band gap profile to more optimal level. The annealing treatment could not only reduce the values of front band gap and minimum band gap, but also shift the position of the minimum band gap toward front electrode and enter into space charge region. In addition, the thickness of Cu(InGa)Se{sub 2} thin film decreased by 25 nm after rapid thermal annealing treatment. All of these modifications were attributed to the inter-diffusion of atoms during thermal treatment process. Simultaneously, the variation of the band gap profile created an absolute gain in the efficiency by 1.22%, short-circuit current density by 2.16 mA/cm{sup 2} and filled factor by 3.57%.

  11. Phase stability of thermal barrier oxides based on t'-zirconia with trivalent oxide additions

    NASA Astrophysics Data System (ADS)

    Rebollo Franco, Noemi Rosa

    Zirconia stabilized with 7+/-1 wt.% addition of yttria (7YSZ) is widely used for thermal barrier coatings (TBC's) on actively cooled gas turbine components, selected partly because of its superior durability under thermal cyclic conditions. As deposited, 7YSZ occurs as a metastable single-phase tetragonal solid solution (t') that is thermodynamically stable against the deleterious transformation to monoclinic upon cooling. However, at high temperatures t' is driven to decompose diffusionally into an equilibrium mixture of high-Y cubic and low-Y tetragonal; the latter becomes transformable to monoclinic compromising the mechanical integrity of the system. This dissertation explores the effects of trivalent stabilizers, including Y, Sc and selected rare-earth oxides (REO's), on the phase stability of the resulting solid solutions in zirconia. The REO additions are of interest because they can potentially enhance the insulation efficiency on the coating allowing higher operating temperatures. However, understanding of their effects on phase stability and potentially on cyclic durability at the projected use temperature in next generation engines (1200-1400°C) is insufficient to guide the design of coatings with the desirable combination of lower thermal conductivity and acceptable durability. Sc was also investigated because of previous reports on the higher phase stability of materials doped with Sc, and Y served as the baseline. The experimental approach is based on powders synthesized by reverse co-precipitation of precursor solutions, usually compacted and then subjected to a variety of heat treatments, following their evolution by means of X-ray diffractometry, dilatometry, transmission electron microscopy and Raman spectroscopy. The use of powders facilitated the synthesis of a wider range of compositions that would not have been possible by coating deposition approaches, and because the synthesis occurs at low temperature, it also enabled the starting

  12. Methods of measuring adhesion for thermally grown oxide scales

    SciTech Connect

    Hou, P.Y.; Atkinson, A.

    1994-06-01

    High temperature alloys and coatings rely on the formation of adherent scales to protect against further oxidation, but scale spallation is often problematic. Despite the technical importance of the problem, ``practical adhesion``, which refers to the separation of the oxide from the metal, has mainly been treated qualitatively in the past. Various techniques now exist such that the subject can be assessed in quantitative or semi-quantitative terms. Some of the techniques are described in this paper, and their weakness and strength are discussed. The experimental methods addressed here include: tensile pulling, micro-indentation, scratch test, residual stress induced delamination, laser or shock wave induced spallation, double cantilever beam and several 4-point beam bending approaches. To date, there is not an universal, easy test for oxide adhesion measurement that can provide reproducible information on interfacial fracture energy for a variety of oxide/metal systems. Much experimentation is still needed to increase confidence in many of the existing tests, and the fundamental mechanics for some present techniques also require further development.

  13. Effects of thermal cycling and thermal aging on the hermeticity and strength of silver-copper oxide air-brazed seals

    NASA Astrophysics Data System (ADS)

    Scott Weil, K.; Coyle, Christopher A.; Darsell, Jens T.; Xia, Gordon G.; Hardy, John S.

    Thermal cycle and exposure tests were conducted on ceramic-to-metal joints prepared by a new sealing technique. Known as reactive air brazing, this joining method is currently being considered for use in sealing various high-temperature solid-state electrochemical devices, including planar solid oxide fuel cells (pSOFC). In order to simulate a typical pSOFC application, test specimens were prepared by joining ceramic anode/electrolyte bilayers to metal washers, of the same composition as the common frame materials employed in pSOFC stacks, using a filler metal composed of 4 mol% CuO in silver. The brazed samples were exposure tested at 750 °C for 200, 400, and 800 h in both simulated fuel and air environments and thermally cycled at rapid rate (75 °C min -1) between room temperature and 750 °C for as many as 50 cycles. Subsequent joint strength testing and microstructural analysis indicated that the samples exposure tested in air displayed little degradation with respect to strength, hermeticity, or microstructure out to 800 h of exposure. Those tested in fuel showed no change in rupture strength or loss in hermeticity after 800 h of high-temperature exposure, but did undergo microstructural change due to the dissolution of hydrogen into the silver-based braze material. Air-brazed specimens subjected to rapid thermal cycling exhibited no loss in joint strength or hermeticity, but displayed initial signs of seal delamination along the braze-electrolyte interface after 50 cycles.

  14. Thermal Stability Limits of Imidazolium Ionic Liquids Immobilized on Metal-Oxides.

    PubMed

    Babucci, Melike; Akçay, Aslı; Balci, Volkan; Uzun, Alper

    2015-08-25

    Thermal stability limits of 33 imidazolium ionic liquids (ILs) immobilized on three of the most commonly used high surface area metal-oxides, SiO2, γ-Al2O3, and MgO, were investigated. ILs were chosen from a family of 13 cations and 18 anions. Results show that the acidity of C2H of an imidazolium ring is one of the key factors controlling the thermal stability. An increase in C2H bonding strength of ILs leads to an increase in their stability limits accompanied by a decrease in interionic energy. Systematic changes in IL structure, such as changes in electronic structure and size of anion/cation, methylation on C2 site, and substitution of alkyl groups on the imidazolium ring with functional groups have significant effects on thermal stability limits. Furthermore, thermal stability limits of ILs are influenced strongly by acidic character of the metal-oxide surface. Generally, as the point of zero charge (PZC) of the metal-oxide increases from SiO2 to MgO, the interactions of IL and metal-oxide dominate over interionic interactions, and metal-oxide becomes the significant factor controlling the stability limits. However, thermal stability limits of some ILs show the opposite trend, as the chemical activities of the cation functional group or the electron donating properties of the anion alter IL/metal-oxide interactions. Results presented here can help in choosing the most suitable ILs for materials involving ILs supported on metal-oxides, such as for supported ionic liquid membranes (SILM) in separation applications or for solid catalyst with ionic liquid layer (SCILL) and supported ionic liquid phase (SILP) catalysts in catalysis.

  15. Thermal stability of polyacetal/ethylene-octene copolymer/zinc oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Grigalovica, A.; Merijs Meri, R.; Zicans, J.; Ivanova, T.; Grabis, J.

    2013-12-01

    In this work we investigate binary blends of polyoxymethylene and ethylene octene copolymer (EOC) and their composites with nanostructured zinc oxide (ZnO). EOC content in the composites varies from 0 to 50 wt. %. The amount of ZnO filler in the composites is changed in the interval from 0 to 5 wt. %. Thermal properties of composites are investigated with thermogravimetric analysis and differential scanning calorimetry. It is observed that ZnO addition increases thermal stability of the investigated composites.

  16. Thermally induced all-optical inverter and dynamic hysteresis loops in graphene oxide dispersions.

    PubMed

    Melle, Sonia; Calderón, Oscar G; Egatz-Gómez, Ana; Cabrera-Granado, E; Carreño, F; Antón, M A

    2015-11-01

    We experimentally study the temporal dynamics of amplitude-modulated laser beams propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. Nonlinear refraction induced in the sample by thermal effects leads to both phase reversing of the transmitted signals and dynamic hysteresis in the input-output power curves. A theoretical model including beam propagation and thermal lensing dynamics reproduces the experimental findings.

  17. Experimental study of compatibility of reduced metal oxides with thermal energy storage lining materials

    NASA Astrophysics Data System (ADS)

    El-Leathy, Abdelrahman; Danish, Syed Noman; Al-Ansary, Hany; Jeter, Sheldon; Al-Suhaibani, Zeyad

    2016-05-01

    Solid particles have been shown to be able to operate at temperatures higher than 1000 °C in concentrated solar power (CSP) systems with thermal energy storage (TES). Thermochemical energy storage (TCES) using metal oxides have also found to be advantageous over sensible and latent heat storage concepts. This paper investigates the compatibility of the inner lining material of a TES tank with the reduced metal oxide. Two candidate metal oxides are investigated against six candidate lining materials. XRD results for both the materials are investigated and compared before and after the reduction of metal oxide at 1000°C in the presence of lining material. It is found that the lining material rich in zirconia is suitable for such application. Silicon Carbide is also found non-reacting with one of the metal oxides so it needs to be further investigated with other candidate metal oxides.

  18. Activation energy of thermal desorption of silicon oxide layers on silicon substrates

    NASA Astrophysics Data System (ADS)

    Enta, Yoshiharu; Osanai, Shodai; Ogasawara, Takahito

    2017-02-01

    Thermal desorption rates of silicon oxide layers, from 20 to 120 nm in thickness, on silicon substrates in vacuum have been accurately obtained from intervals between ring structures formed inside voids on the oxide layers. From the temperature dependence of the desorption rate, the activation energy and frequency factor of the desorption reaction have been derived as a function of the oxide thickness. The obtained values are compared with the previous studies, and as a result, the activation energy is found to be almost constant ( 4 eV) in a wide range of the oxide thickness. The frequency factor decreases as the inverse square of the oxide thickness. The decomposition kinetics of the oxide layer is also discussed from the obtained results.

  19. Thermal performance of a catalytic/oxidizer for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Wedel, R. K.; Djordjevic, N.; Faulkner, F.

    1993-01-01

    Thermal analysis and testing have been performed for the High Temperature Catalytic/Oxidizer (HTCO) for the Space Station Freedom (SSF) Trace Contaminant Control Subassembly (TCCS). The HTCO consists of a counterflow, plate-fin heat exchanger, a resistance heater, and a charcoal catalytic oxidizer bed. The unit removes various inorganics and hydrocarbons from the SSF cabin air. A thermal model of the unit was developed which was used to design the HEX and catalytic bed. The model has been used to predict both steady state and transient results. Accurate predictions of ground test data have led to confidence in proper operation of the unit in the SSF.

  20. The impact of beef steak thermal processing on lipid oxidation and postprandial inflammation related responses.

    PubMed

    Nuora, Anu; Chiang, Vic Shao-Chih; Milan, Amber M; Tarvainen, Marko; Pundir, Shikha; Quek, Siew-Young; Smith, Greg C; Markworth, James F; Ahotupa, Markku; Cameron-Smith, David; Linderborg, Kaisa M

    2015-10-01

    Oxidised lipid species, their bioavailability and impact on inflammatory responses from cooked beef steak are poorly characterised. Oxidised lipid species from pan-fried (PF) and sous-vide (SV) thermally processed beef were determined with UHPLC-ESI/MS. Twenty-three lipid oxidation products increased with thermal processing and differences between the PF and SV steaks were measured. Fifteen oxidised lipids were measured in post-meal plasma after a cross-over randomised clinical study. Postprandial plasma inflammatory markers tended to remain lower following the SV meal than the PF meal. High levels of conjugated dienes were measured in the HDL fraction, suggesting that the protective effect of HDL may extend to the reverse-transport of oxidised lipid species. Oxidised lipids in a single meal may influence postprandial oxidative stress and inflammation. Further studies are required to examine the lipid oxidative responses to increased dietary oxidative lipid load, including the reverse transport activity of HDL.

  1. Experimental study on the dynamic mechanical properties of titanium alloy after thermal oxidation

    NASA Astrophysics Data System (ADS)

    Niu, Xiaoyan; Yu, Yingjie; Ma, Lianhua; Chen, Liangbiao

    2016-06-01

    In this study, the dynamic compressive properties of thermally oxidized TC4 (Ti-6Al-4V) titanium alloys were studied with split Hopkinson pressure bar. The dynamic tests were conducted under multiple strain rates from 400 to 2000 s-1 and different testing temperatures from 25 to 200 °C. Data for the true stress-strain curves of thermally oxidized TC4 titanium alloy are presented. They show that the thermal oxidation increases both the dynamic compressive strength of TC4 titanium and the rate of strain hardening. Higher compressive strengths of the material were obtained by applying higher strain rates. Under a strain rate of 2000 s-1, the stress-strain curves of TC4 titanium alloys exhibit both strain-rate-hardening behavior and thermal softening behavior. The oxidation temperature has little effect on dynamic properties of TC4 titanium alloy, but choosing different holding time for oxidation could greatly affect the initiation of plastic deformation and thus might potentially improve the ductility of the treated material. Furthermore, the data show that the increase in the testing temperature results in much lower yield stresses of the treated material.

  2. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.

    PubMed

    Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T

    2016-02-01

    The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment.

  3. Solar thermal decomposition of zinc oxide in aerosol flow for renewable hydrogen production

    NASA Astrophysics Data System (ADS)

    Perkins, Christopher Michael

    Hydrogen could be a clean replacement for fossil fuels. The Zn/ZnO solar thermochemical water-splitting cycle provides a renewable path to this fuel. Thermodynamic simulations showed that the Zn/ZnO cycle has the lowest temperature of all two-step metal oxide cycles, and the prediction of relatively high efficiency based on its lower temperature and number of steps led to its selection for further study. A rapid aerosol configuration for ZnO decomposition was chosen based on expectation of high reaction rates and small product particle production, and proof-of-concept experiments confirmed this assumption. Thermogravimetric studies of the thermal decomposition kinetics of ZnO showed that the rate followed a 2/3 order L'vov kinetic expression. The activation energy was found to be 353 +/- 25.9 kJ/mol, and a simple electrostatic model was used to describe the reaction mechanism. The pre-exponential factor was found, as expected, to vary inversely with the distance to a product concentration sink. Investigation of the aerosol decomposition of ZnO showed high forward conversion (˜60%) but low net yield (18%) of zinc due to recombination of product oxygen with nucleated zinc particles. Products that were initially converted had high surface area (15.5 +/- 0.13 g/m2), small particle size (5-70 nm), and relatively spherical morphology, properties desirable when considering the hydrolysis step of the water-splitting cycle. Rates in the aerosol reactor were found to be three orders of magnitude greater than those in a stationary configuration. Computational fluid dynamics (CFD) simulations of the aerosol reaction showed rapid particle heating and high forward conversion (>90%) in short residence times (<1.5s). Results could be used to scale a commercial size reactor, and the recommended particle size based on conversion and handling considerations was 1 mum. Reactor materials sensitive to oxidation were shown to be inappropriate for application due to high corrosion rates

  4. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide

    PubMed Central

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-01-01

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants. PMID:26681104

  5. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide

    NASA Astrophysics Data System (ADS)

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-12-01

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants.

  6. Effect of rapid thermal annealing on InP1-xBix grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wu, X. Y.; Wang, K.; Pan, W. W.; Wang, P.; Li, Y. Y.; Song, Y. X.; Gu, Y.; Yue, L.; Xu, H.; Zhang, Z. P.; Cui, J.; Gong, Q.; Wang, S. M.

    2015-09-01

    The effect of post-growth rapid thermal annealing on structural and optical properties of InP1-xBix thin films was investigated. InPBi shows good thermal stability up to 500 °C and a modest improvement in photoluminescence (PL) intensity with an unchanged PL spectral feature. Bismuth outdiffusion from InPBi and strain relaxation are observed at about 600 °C. The InPBi sample annealed at 800 °C shows an unexpected PL spectrum with different energy transitions.

  7. Effects of rapid thermal annealing on the optical properties of strain-free quantum ring solar cells.

    PubMed

    Wu, Jiang; Wang, Zhiming M; Dorogan, Vitaliy G; Li, Shibin; Lee, Jihoon; Mazur, Yuriy I; Kim, Eun Soo; Salamo, Gregory J

    2013-01-02

    Strain-free GaAs/Al0.33Ga0.67As quantum rings are fabricated by droplet epitaxy. Both photoresponse and photoluminescence spectra confirm optical transitions in quantum rings, suggesting that droplet epitaxial nanomaterials are applicable to intermediate band solar cells. The effects of post-growth annealing on the quantum ring solar cells are investigated, and the optical properties of the solar cells with and without thermal treatment are characterized by photoluminescence technique. Rapid thermal annealing treatment has resulted in the significant improvement of material quality, which can be served as a standard process for quantum structure solar cells grown by droplet epitaxy.

  8. Thermally stable yttrium-scandium oxide high-k dielectrics deposited by a solution process

    NASA Astrophysics Data System (ADS)

    Hu, Wenbing; Frost, Bradley; Peterson, Rebecca L.

    2016-03-01

    We investigated the thermal stability of electrical properties in ternary alloy (Y x Sc1-x )2O3 high-k oxides as a function of yttrium fraction, x. The yttrium-scandium oxide dielectric films are deposited using a facile ink-based process. The oxides have a stoichiometry-dependent relative dielectric constant of 26.0 to 7.7 at 100 kHz, low leakage current density of 10-8 A·cm-2, high breakdown field of 4 MVṡcm-1, and interface trap density of 1012 cm-2·eV-1 with silicon. Compared with binary oxides, ternary alloys exhibit less frequency dispersion of the dielectric constant and a higher crystallization temperature. After crystallization is induced through a 900 °C anneal, ternary (Y0.6Sc0.4)2O3 films maintain their low leakage current and high breakdown field. In contrast, the electrical performance of the binary oxides significantly degrades following the same treatment. The solution-processed ternary oxide dielectrics demonstrated here may be used as high-k gate insulators in complementary metal-oxide semiconductor (CMOS) technologies, in novel electronic material systems and devices, and in printed, flexible thin film electronics, and as passivation layers for high power devices. These oxides may also be used as insulators in fabrication process flows that require a high thermal budget.

  9. Functionalization of cotton fabrics through thermal reduction of graphene oxide

    NASA Astrophysics Data System (ADS)

    Cai, Guangming; Xu, Zhenglin; Yang, Mengyun; Tang, Bin; Wang, Xungai

    2017-01-01

    Graphene oxide (GO) was in-situ reduced on cotton fabrics by a simple heat treatment, which endowed cotton fabrics with multi-functions. GO was coated on the surface of cotton fabric through a conventional "dip and dry" approach. Reduced graphene oxide (RGO) was obtained from GO in the presence of cotton by heating under the protection of nitrogen. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy were employed to characterize the complexes of RGO and cotton (RGO/cotton). The RGO/cotton fabrics showed good electrical conductivity, surface hydrophobicity and ultraviolet (UV) protection properties. These properties did not deteriorate significantly after repeated fabric bending and washing.

  10. Thermal Recycling of Waelz Oxide Using Concentrated Solar Energy

    NASA Astrophysics Data System (ADS)

    Tzouganatos, N.; Matter, R.; Wieckert, C.; Antrekowitsch, J.; Gamroth, M.; Steinfeld, A.

    2013-12-01

    The dominating Zn recycling process is the so-called Waelz process. Waelz oxide (WOX), containing 55-65% Zn in oxidic form, is mainly derived from electric arc furnace dust produced during recycling of galvanized steel. After its wash treatment to separate off chlorides, WOX is used as feedstock along with ZnS concentrates for the electrolytic production of high-grade zinc. Novel and environmentally cleaner routes for the purification of WOX and the production of Zn are investigated using concentrated solar energy as the source of high-temperature process heat. The solar-driven clinkering of WOX and its carbothermal reduction were experimentally demonstrated using a 10 kWth packed-bed solar reactor. Solar clinkering at above 1265°C reduced the amount of impurities below 0.1 wt.%. Solar carbothermal reduction using biocharcoal as reducing agent in the 1170-1320°C range yielded 90 wt.% Zn.

  11. Rapid aqueous phase SO2 oxidation in winter fog in the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Sachan, Himanshu; Sarkar, Chinmoy; Sinha, Baerbel

    2013-04-01

    account for changes in the emission intensity (activity pattern) and the dilution of the plume during transport. We see a linear correlation between the measured SO2/CO ratio and the transport time. Binning the data on the basis of relative humidity and applying first order kinetics to SO2 loss within each humidity bin we find the SO2 loss rate with respect to aqueous phase oxidation at our sites varies between > 2.2 x 10-3 mol/cm3/s at 96 % RH and 3.8 x 10-4 mol/cm3/s at 47 % RH. Simple box model calculations reveal that neither oxidation by H2O2 nor oxidation by O3 can account for such rapid SO2 oxidation in the fog water. Considering the high mineral dust loadings are our station (PM 10 typically > 300 μg/m3) we propose that transition metal catalysis by TMI leached from natural mineral dust and resuspended road dust may be responsible for the rapid oxidation of SO2 in the fog water. However, the observed lifetime with respect to aqueous phase oxidation in wintertime fog is a factor 150-800 times shorter than the lifetime of SO2 with respect to TMI catalyzed oxidation currently implemented in global atmospheric chemistry models. During 2012-2013 winter season we will measure TMI concentrations in the fog water and verify the rates coefficients estimated from the ambient observation by conducting controlled experiments both using collected fog water and different TMI mixtures. If confirmed through laboratory studies our findings have major implications for the SO2 lifetime over the IGP (and possibly other regions with high mineral dust loadings) and will significantly alter the regional direct and indirect aerosol forcing estimates due to anthropogenic SO2 emissions. Acknowledgement: We thank the IISER Mohali Atmospheric Chemistry Facility for data and the Ministry of Human Resource Development (MHRD), India and IISER Mohali for funding the facility. Himanshu acknowledges the DST-INSPIRE Fellowship program. Chinmoy Sarkar thanks the Max Planck-DST India Partner Group

  12. Kinetics of switch grass pellet thermal decomposition under inert and oxidizing atmospheres.

    PubMed

    Chandrasekaran, Sriraam R; Hopke, Philip K

    2012-12-01

    Grass pellets are a renewable resource that have energy content similar to that of wood. However, the higher ash and chlorine content affects combustion. Thermal degradation analysis of a fuel is useful in developing effective combustion. Thermogravimetric analysis (TGA) of the thermal degradation of grass pellets under inert (nitrogen) and oxidizing (air) atmospheres was conducted. Non-isothermal conditions were employed with 4 different heating rates. Kinetic parameters (activation energy and pre-exponential factors) were estimated using the iso-conversional method. Both pyrolysis and oxidative atmospheric thermal degradation exhibited two major loss process: volatilization of cellulose, hemicelluloses and lignin and burning or slow oxidation of the residual char. The activation energy and pre-exponential factors were high for the oxidizing environment. During pyrolysis, major decomposition occurred with 40% to 75% conversion of the mass to gas with an activation energy of 314 kJ/mol. In air the decomposition occurred with 30% to 55% conversion with an activation energy of 556 kJ/mol. There was a substantial effect of heating rate on mass loss and mass loss rate. The TG shifted to higher temperature ranges on increasing the heating rate. In both pyrolyzing and oxidizing conditions, average combustion and devolatilization rates increased. Enhanced combustion takes place with higher activation energy in oxidizing atmosphere compared to the inert atmosphere due to presence of air.

  13. STEP wastewater treatment: a solar thermal electrochemical process for pollutant oxidation.

    PubMed

    Wang, Baohui; Wu, Hongjun; Zhang, Guoxue; Licht, Stuart

    2012-10-01

    A solar thermal electrochemical production (STEP) pathway was established to utilize solar energy to drive useful chemical processes. In this paper, we use experimental chemistry for efficient STEP wastewater treatment, and suggest a theory based on the decreasing stability of organic pollutants (hydrocarbon oxidation potentials) with increasing temperature. Exemplified by the solar thermal electrochemical oxidation of phenol, the fundamental model and experimental system components of this process outline a general method for the oxidation of environmentally stable organic pollutants into carbon dioxide, which is easily removed. Using thermodynamic calculations we show a sharply decreasing phenol oxidation potential with increasing temperature. The experimental results demonstrate that this increased temperature can be supplied by solar thermal heating. In combination this drives electrochemical phenol removal with enhanced oxidation efficiency through (i) a thermodynamically driven decrease in the energy needed to fuel the process and (ii) improved kinetics to sustain high rates of phenol oxidation at low electrochemical overpotential. The STEP wastewater treatment process is synergistic in that it is performed with higher efficiency than either electrochemical or photovoltaic conversion process acting alone. STEP is a green, efficient, safe, and sustainable process for organic wastewater treatment driven solely by solar energy.

  14. Interfacial reaction and electrical properties of HfO2 film gate dielectric prepared by pulsed laser deposition in nitrogen: role of rapid thermal annealing and gate electrode.

    PubMed

    Wang, Yi; Wang, Hao; Ye, Cong; Zhang, Jun; Wang, Hanbin; Jiang, Yong

    2011-10-01

    The high-k dielectric HfO(2) thin films were deposited by pulsed laser deposition in nitrogen atmosphere. Rapid thermal annealing effect on film surface roughness, structure and electrical properties of HfO(2) film was investigated. The mechanism of interfacial reaction and the annealing atmosphere effect on the interfacial layer thickness were discussed. The sample annealed in nitrogen shows an amorphous dominated structure and the lowest leakage current density. Capacitors with high-k HfO(2) film as gate dielectric were fabricated, using Pt, Au, and Ti as the top gate electrode whereas Pt constitutes the bottom side electrode. At the gate injection case, the Pt- and Au-gated metal oxide semiconductor devices present a lower leakage current than that of the Ti-gated device, as well as similar leakage current conduction mechanism and interfacial properties at the metal/HfO(2) interface, because of their close work function and chemical properties.

  15. A Novel Solid-State Thermal Rectifier Based On Reduced Graphene Oxide

    PubMed Central

    Tian, He; Xie, Dan; Yang, Yi; Ren, Tian-Ling; Zhang, Gang; Wang, Yu-Feng; Zhou, Chang-Jian; Peng, Ping-Gang; Wang, Li-Gang; Liu, Li-Tian

    2012-01-01

    Recently, manipulating heat transport by phononic devices has received significant attention, in which phonon – a heat pulse through lattice, is used to carry energy. In addition to heat control, the thermal devices might also have broad applications in the renewable energy engineering, such as thermoelectric energy harvesting. Elementary phononic devices such as diode, transistor and logic devices have been theoretically proposed. In this work, we experimentally create a macroscopic scale thermal rectifier based on reduced graphene oxide. Obvious thermal rectification ratio up to 1.21 under 12 K temperature bias has been observed. Moreover, this ratio can be enhanced further by increasing the asymmetric ratio. Collectively, our results raise the exciting prospect that the realization of macroscopic phononic device with large-area graphene based materials is technologically feasible, which may open up important applications in thermal circuits and thermal management. PMID:22826801

  16. A novel solid-state thermal rectifier based on reduced graphene oxide.

    PubMed

    Tian, He; Xie, Dan; Yang, Yi; Ren, Tian-Ling; Zhang, Gang; Wang, Yu-Feng; Zhou, Chang-Jian; Peng, Ping-Gang; Wang, Li-Gang; Liu, Li-Tian

    2012-01-01

    Recently, manipulating heat transport by phononic devices has received significant attention, in which phonon--a heat pulse through lattice, is used to carry energy. In addition to heat control, the thermal devices might also have broad applications in the renewable energy engineering, such as thermoelectric energy harvesting. Elementary phononic devices such as diode, transistor and logic devices have been theoretically proposed. In this work, we experimentally create a macroscopic scale thermal rectifier based on reduced graphene oxide. Obvious thermal rectification ratio up to 1.21 under 12 K temperature bias has been observed. Moreover, this ratio can be enhanced further by increasing the asymmetric ratio. Collectively, our results raise the exciting prospect that the realization of macroscopic phononic device with large-area graphene based materials is technologically feasible, which may open up important applications in thermal circuits and thermal management.

  17. Advanced Oxide Material Systems For 1650 C Thermal/Environmental Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    Advanced thermal/environmental barrier coatings (T/EBCs) are being developed for low emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor containing combustion environments. The 1650 C T/EBC system is required to have better thermal stability, lower thermal conductivity, and improved sintering and thermal stress resistance than current coating systems. In this paper, the thermal conductivity, water vapor stability and cyclic durability of selected candidate zirconia-/hafnia-, pyrochlore- and magnetoplumbite-based T/EBC materials are evaluated. The test results have been used to downselect the T/EBC coating materials, and help demonstrate advanced 1650OC coatings feasibility with long-term cyclic durability.

  18. Highly defective oxides as sinter resistant thermal barrier coating

    DOEpatents

    Subramanian, Ramesh

    2005-08-16

    A thermal barrier coating material formed of a highly defective cubic matrix structure having a concentration of a stabilizer sufficiently high that the oxygen vacancies created by the stabilizer interact within the matrix to form multi-vacancies, thereby improving the sintering resistance of the material. The concentration of stabilizer within the cubic matrix structure is greater than that concentration of stabilizer necessary to give the matrix a peak ionic conductivity value. The concentration of stabilizer may be at least 30 wt. %. Embodiments include a cubic matrix of zirconia stabilized by at least 30-50 wt. % yttria, and a cubic matrix of hafnia stabilized by at least 30-50 wt. % gadolinia.

  19. Tunable photoluminescence of self-assembled GeSi quantum dots by B{sup +} implantation and rapid thermal annealing

    SciTech Connect

    Chen, Yulu; Wu, Shan; Ma, Yinjie; Fan, Yongliang; Yang, Xinju; Zhong, Zhenyang; Jiang, Zuimin

    2014-06-21

    The layered GeSi quantum dots (QDs) are grown on (001) Si substrate by molecular beam epitaxy. The photoluminescence (PL) peak of the as-grown GeSi quantum dots has obvious blue shift and enhancement after processed by ion implantation and rapid thermal annealing. It is indicated that the blue shift is originated from the interdiffusion of Ge and Si at the interface between QDs and the surrounding matrix. The dependence of PL intensity on the excitation power shows that there are the nonradiative centers of shallow local energy levels from the point defects caused by the ion implantation, but not removed by the rapid thermal annealing. The tunable blue shift of the PL position from the 1300 nm to 1500 nm region may have significant application value in the optical communication.

  20. Interconversion, reactivity and thermal stability of polyaniline in selected oxidation states

    SciTech Connect

    Masters, J.G.

    1992-01-01

    The objectives of this study were: (i) to determine if the base form of the conducting polymer, polyaniline, existed in a continuum of oxidation states ranging from the completely reduced leucoemeraldine oxidation state, (1 [minus] y) = 0, to the completely oxidized pernigraniline oxidation state, (1 [minus] y = 1). (ii) To investigate a novel type of reductive ring amination reaction of protonated polyaniline, of oxidation state 1 [minus] y = 0.50. (iii) Tascertain whether certain forms of polyaniline exhibited thermochromic behavior. (iv) To study factors responsible for enhancing the thermal/oxidative stability of [open quotes]doped[close quotes] polyaniline. (v) To study the reaction between polyaniline and C[sub 60]. The significant results and conclusions are: (a) In the oxidation state range between 1 [minus] y = 0.0 and 1 [minus] y = 1.0, polyaniline base exists in only three discrete oxidation states at the molecular level in the solid state and also in N-methylpyrrolidinone (NMP) solution. (b) Equimolar quantities of the two extreme oxidation states of polyaniline in the base form, leucoemeraldine, (1 [minus] y = 0.0), and pernigraniline, (1 [minus] y = 1.0), undergo a [open quotes]mutual[close quotes] oxidation and reduction when mixed in NMP solution. (c) In the oxidation state range between 1 [minus] y = 0.0 and 1 [minus] y = 0.50, only two species are observed in NMP solution of the polymer after the addition of excess aq. HCl, viz., fully protonated emeraldine salt and non-protonated leucoemeraldine base. (d) Protonation of emeraldine base, (1 [minus] y = 0.50), with nonvolatile acids has allowed the determination of the intrinsic thermal stability of the [open quotes]doped[close quotes] polymer. (e) A new reaction between emeraldine HCl and anhydrous amines results in reductive ring amination to produce leucoemeraldine base derivatives. (f) Reactions of the bases gave reversible thermochromic behavior and the formation of insoluble fullerenes.

  1. Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment

    PubMed Central

    Wang, Xinghao; Huang, Qingguo; Lu, Junhe; Wang, Liansheng; Wang, Zunyao

    2015-01-01

    Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardants and has attracted more and more attention. In this work, the parent TBBPA with an initial concentration of 100 mg/L was completely removed after 6 min of ozonation at pH 8.0, and alkaline conditions favored a more rapid removal than acidic and neutral conditions. The presence of typical anions and humic acid did not significantly affect the degradation of TBBPA. The quenching test using isopropanol indicated that direct ozone oxidation played a dominant role during this process. Seventeen reaction intermediates and products were identified using an electrospray time-of-flight mass spectrometer. Notably, the generation of 2,4,6-tribromophenol was first observed in the degradation process of TBBPA. The evolution of reaction products showed that ozonation is an efficient treatment for removal of both TBBPA and intermediates. Sequential transformation of organic bromine to bromide and bromate was confirmed by ion chromatography analysis. Two primary reaction pathways that involve cleavage of central carbon atom and benzene ring cleavage concomitant with debromination were thus proposed and further justified by calculations of frontier electron densities. Furthermore, the total organic carbon data suggested a low mineralization rate, even after the complete removal of TBBPA. Meanwhile, the acute aqueous toxicity of reaction solutions to Photobacterium Phosphoreum and Daphnia magna was rapidly decreased during ozonation. In addition, no obvious difference in the attenuation of TBBPA was found by ozone oxidation using different water matrices, and the effectiveness in natural waters further demonstrates that ozonation can be adopted as a promising technique to treat TBBPA-contaminated waters. PMID:26430733

  2. Isothermal and cyclic oxidation of an air plasma-sprayed thermal barrier coating system

    SciTech Connect

    Haynes, J.A.; Ferber, M.K.; Porter, W.D.; Rigney, E.D.

    1996-08-01

    Thermogravimetric methods for evaluating bond coat oxidation in plasma-sprayed thermal barrier coating (TBC) systems were assessed by high-temperature testing of TBC systems with air plasma-sprayed (APS) Ni-22Cr-10Al-1Y bond coatings and yttria-stabilized zirconia top coatings. High-mass thermogravimetric analysis (at 1150{sup degrees}C) was used to measure bond coat oxidation kinetics. Furnace cycling was used to evaluate APS TBC durability. This paper describes the experimental methods and relative oxidation kinetics of the various specimen types. Characterization of the APS TBCs and their reaction products is discussed.

  3. Processing of Mn-Al nanostructured magnets by spark plasma sintering and subsequent rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Vinod, V. T. P.; Černík, Miroslav; Selvapriya, A.; Chakravarty, Dibyendu; Kamat, S. V.

    2015-01-01

    The potential of spark plasma sintering (SPS) in combination with rapid thermal annealing (RTA) for the processing of Mn-Al nanostructured magnets is explored in this study. Ferromagnetic α-Mn alloy powders were processed by high-energy ball milling using Mn (56 at%) and Al (44 at%) as constituent metal elements. The alloying action between Mn and Al due to intensive milling was studied by X-ray diffraction and field-emission scanning electron microscope; while the phase transformation kinetics was investigated using differential scanning calorimetry. The evolution of ferromagnetic properties in the as-milled powders was studied by superconducting quantum interference device (SQUID). Among the Mn-Al alloy powders collected at various milling intervals, the 25 h milled Mn-Al powders showed a good combination of coercivity, Hc (11.3 kA/m) and saturation magnetization, Ms (5.0 A/m2/kg); accordingly, these powders were chosen for SPS. The SPS experiments were conducted at different temperatures: 773, 873 and 973 K and its effect on the density, phase composition and magnetic properties of the Mn-Al bulk samples were investigated. Upon increasing the SPS temperature from 773 to 973 K, the bulk density was found to increase from 3.6 to 4.0 g/cm3. The occurrence of equilibrium β-phase with significant amount of γ2-phase was obvious at all the SPS temperatures; however, crystallization of some amount of τ-phase was evident at 973 K. Irrespective of the SPS temperatures, all the samples demonstrated soft magnetic behavior with Hc and Ms values similar to those obtained for the 25 h milled powders. The magnetic properties of the SPSed samples were significantly improved upon subjecting them to RTA at 1100 K. Through the RTA process, Hc values of 75, 174 and 194 kA/m and Ms values of 19, 21 and 28 A/m2/kg were achieved for the samples SPSed at 773, 873 and 973 K, respectively. The possible reasons for the observed improvement in the magnetic properties of the SPSed

  4. Thermally Stable Ultra-Low Temperature Oxidation Catalysts

    SciTech Connect

    Szanyi, Janos; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.

    2014-12-09

    This annual reports describes recent results of a CRADA between General Motors Company (GM) and Battelle/Pacific Northwest National Laboratory (PNNL). In the CRADA, we are investigating a number of candidate low temperature oxidation catalysts as fresh materials, and after realistic laboratory- and engine-aging. These studies will lead to a better understanding of fundamental characteristics and various aging factors that impact the long-term performance of catalysts, while also providing an assessment of the appropriateness of the laboratory conditions in realistically reproducing the effects of actual engine aging conditions.

  5. Characteristics of hydrogen produced by partial oxidation and auto-thermal reforming in a small methanol reformer

    NASA Astrophysics Data System (ADS)

    Horng, Rong-Fang; Chou, Huann-Ming; Lee, Chiou-Hwang; Tsai, Hsien-Te

    This paper investigates experimentally, the transient characteristics of a small methanol reformer using partial oxidation (POX) and auto-thermal reforming (ATR) for fuel cell applications. The parameters varied were heating temperature, methanol supply rate, steady mode shifting temperature, O 2/C (O 2/CH 3OH) and S/C (H 2O/CH 3OH) molar ratios with the main aim of promoting a rapid response and a high flow rate of hydrogen. The experiments showed that a high steady mode shifting temperature resulted in a faster temperature rise at the catalyst outlet and vice versa and that a low steady mode shifting temperature resulted in a lower final hydrogen concentration. However, when the mode shifting temperature was too high, the hydrogen production response was not necessarily improved. It was subsequently shown that the optimum steady mode shifting temperature for this experimental set-up was approximately 75 °C. Further, the hydrogen concentration produced by the auto-thermal process was as high as 49.12% and the volume flow rate up to 23.0 L min -1 compared to 40.0% and 20.5 L min -1 produced by partial oxidation.

  6. Thermal cleanups using dynamic underground stripping and hydrous pyrolysis oxidation

    SciTech Connect

    Aines, R D; Knauss, K; Leif, R; Newmark, R L

    1999-05-01

    In the early 1990s, in collaboration with the School of Engineering at the University of California, Berkeley, Lawrence Livermore National Laboratory developed dynamic underground stripping (DUS), a method for treating subsurface contaminants with heat that is much faster and more effective than traditional treatment methods. more recently, Livermore scientists developed hydrous pyrolysis/oxidation (HPO), which introduces both heat and oxygen to the subsurface to convert contaminants in the ground to such benign products as carbon dioxide, chloride ion, and water. This process has effectively destroyed all contaminants it encountered in laboratory tests. With dynamic underground stripping, the contaminants are vaporized and vacuumed out of the ground, leaving them still to be destroyed elsewhere. Hydrous pyrolysis/oxidation technology takes the cleanup process one step further by eliminating the treatment, handling, and disposal requirements and destroying the contamination in the ground. When used in combination, HPO is especially useful in the final polishing of a site containing significant free-product contaminant, once the majority of the contaminant has been removed.

  7. Hydrogen peroxide induces a rapid production of nitric oxide in mung bean (Phaseolus aureus).

    PubMed

    Lum, H K; Butt, Y K C; Lo, S C L

    2002-03-01

    Nitric oxide (NO) has recently been identified as an important signaling molecule in plant immune response. The present study aims to investigate the signaling pathway that leads to NO production. Using the NO specific fluorescent dye DAF-2DA, we observed rapid production of NO in mung bean leaves after the addition of 10 mM hydrogen peroxide (H(2)O(2)). NO was probably produced by a NOS-like enzyme in plants, as the NO production was inhibited by l-NAME, a NOS inhibitor. The NOS-like activity in the total leaf protein preparation of mung bean (Phaseolus aureus) was elevated 8.3-fold after 10 mM H(2)O(2) treatment, as demonstrated using the chemiluminescence NOS assay. The NOS-like activity was BH(4) dependent: omitting BH(4) in the reaction mixture of NOS assay reduced the NOS activity by 76%. We also found that the H(2)O(2) induced NO production was mediated via calcium ion flux, as it was blocked in the presence of a calcium ion channel blocker, verapamil. Results from the present study identified H(2)O(2) as an upstream signal that leads to NO production in plants. H(2)O(2) and NO, besides acting as two independent signaling molecules in plant immune response, may interrelate to form an oxidative cell death (OCD) cycle.

  8. The effect of phytosterol concentration on oxidative stability and thermal polymerization of heated oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study determined the effect of adding mixed phytosterols, at various concentrations, on the thermal polymerization and oxidative stability index (OSI) of soybean and high-oleic sunflower oils. The indigenous tocopherols and phytosterols were removed from the oils by molecular distillation. Pu...

  9. Ultrasmooth reaction-sintered silicon carbide surface resulting from combination of thermal oxidation and ceria slurry polishing.

    PubMed

    Shen, Xinmin; Dai, Yifan; Deng, Hui; Guan, Chaoliang; Yamamura, Kazuya

    2013-06-17

    An ultrasmooth reaction-sintered silicon carbide surface with an rms roughness of 0.424 nm is obtained after thermal oxidation for 30 min followed by ceria slurry polishing for 30 min. By SEM-EDX analysis, we investigated the thermal oxidation behavior of RS-SiC, in which the main components are Si and SiC. As the oxidation rate is higher in the area with defects, there are no scratches or cracks on the surface after oxidation. However, a bumpy structure is formed after oxidation because the oxidation rates of Si and SiC differ. Through a theoretical analysis of thermal oxidation using the Deal-Grove model and the removal of the oxide layer by ceria slurry polishing in accordance with the Preston equation, a model for obtaining an ultrasmooth surface is proposed and the optimal processing conditions are presented.

  10. Investigation of the thermal oxidation of a polybutadiene by headspace sampling-gas chromatography.

    PubMed

    Judge, M D

    1994-05-01

    A novel method was developed, utilizing headspace sampling in conjunction with gas chromatography, to quantitatively follow the thermal oxidation in air of a low molecular weight, hydroxy-terminated polybutadiene. This method was found to offer an efficient and simple technique by which to analyze both the rate and the extent of oxidation of the polymer. Rate studies of the oxidation revealed an induction period followed by self-catalyzed oxidation, the rate of which quickly becomes controlled by diffusion of oxygen into the polymer. By determining the rate of oxygen consumption at various temperatures, an Arrhenius-type plot was derived and an activation energy value of 13 kcal/mol was calculated. The relative effects on oxidation of a number of common antioxidants and organometallic cure catalysts were also determined by this technique.

  11. Rapid Detection of Neutrophil Oxidative Burst Capacity is Predictive of Whole Blood Cytokine Responses

    PubMed Central

    Vernon, Philip J.; Schaub, Leasha J.; Dallelucca, Jurandir J.; Pusateri, Anthony E.; Sheppard, Forest R.

    2015-01-01

    Background Maladaptive immune responses, particularly cytokine and chemokine-driven, are a significant contributor to the deleterious inflammation present in many types of injury and infection. Widely available applications to rapidly assess individual inflammatory capacity could permit identification of patients at risk for exacerbated immune responses and guide therapy. Here we evaluate neutrophil oxidative burst (NOX) capacity measured by plate reader to immuno-type Rhesus Macaques as an acute strategy to rapidly detect inflammatory capacity and predict maladaptive immune responses as assayed by cytokine array. Methods Whole blood was collected from anesthetized Rhesus Macaques (n = 25) and analyzed for plasma cytokine secretion (23-plex Luminex assay) and NOX capacity. For cytokine secretion, paired samples were either unstimulated or ex-vivo lipopolysaccharide (LPS)-stimulated (100μg/mL/24h). NOX capacity was measured in dihydrorhodamine-123 loaded samples following phorbol 12-myristate 13-acetate (PMA)/ionomycin treatment. Pearson’s test was utilized to correlate NOX capacity with cytokine secretion, p<0.05 considered significant. Results LPS stimulation induced secretion of the inflammatory molecules G-CSF, IL-1β, IL-1RA, IL-6, IL-10, IL-12/23(p40), IL-18, MIP-1α, MIP-1β, and TNFα. Although values were variable, several cytokines correlated with NOX capacity, p-values≤0.0001. Specifically, IL-1β (r = 0.66), IL-6 (r = 0.74), the Th1-polarizing cytokine IL-12/23(p40) (r = 0.78), and TNFα (r = 0.76) were strongly associated with NOX. Conclusion NOX capacity correlated with Th1-polarizing cytokine secretion, indicating its ability to rapidly predict inflammatory responses. These data suggest that NOX capacity may quickly identify patients at risk for maladaptive immune responses and who may benefit from immuno-modulatory therapies. Future studies will assess the in-vivo predictive value of NOX in animal models of immune-mediated pathologies. PMID

  12. Low-Thermal-Conductivity Pyrochlore Oxide Materials Developed for Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dong-Ming

    2005-01-01

    When turbine engines operate at higher temperatures, they consume less fuel, have higher efficiencies, and have lower emissions. The upper-use temperatures of the base materials (superalloys, silicon-based ceramics, etc.) used for the hot-section components of turbine engines are limited by the physical, mechanical, and corrosion characteristics of these materials. Thermal barrier coatings (TBCs) are applied as thin layers on the surfaces of these materials to further increase the operating temperatures. The current state-of-the-art TBC material in commercial use is partially yttria-stabilized zirconia (YSZ), which is applied on engine components by plasma spraying or by electron-beam physical vapor deposition. At temperatures higher than 1000 C, YSZ layers are prone to sintering, which increases thermal conductivity and makes them less effective. The sintered and densified coatings can also reduce thermal stress and strain tolerance, which can reduce the coating s durability significantly. Alternate TBC materials with lower thermal conductivity and better sintering resistance are needed to further increase the operating temperature of turbine engines.

  13. Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration

    PubMed Central

    Wang, Guifang; Li, Jinhua; Lv, Kaige; Zhang, Wenjie; Ding, Xun; Yang, Guangzheng; Liu, Xuanyong; Jiang, Xinquan

    2016-01-01

    Thermal oxidation, which serves as a low-cost, effective and relatively simple/facile method, was used to modify a micro-structured titanium surface in ambient atmosphere at 450 °C for different time periods to improve in vitro and in vivo bioactivity. The surface morphology, crystallinity of the surface layers, chemical composition and chemical states were evaluated by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Cell behaviours including cell adhesion, attachment, proliferation, and osteogenic differentiation were observed in vitro study. The ability of the titanium surface to promote osseointegration was evaluated in an in vivo animal model. Surface thermal oxidation on titanium implants maintained the microstructure and, thus, both slightly changed the nanoscale structure of titanium and enhanced the crystallinity of the titanium surface layer. Cells cultured on the three oxidized titanium surfaces grew well and exhibited better osteogenic activity than did the control samples. The in vivo bone-implant contact also showed enhanced osseointegration after several hours of oxidization. This heat-treated titanium enhanced the osteogenic differentiation activity of rBMMSCs and improved osseointegration in vivo, suggesting that surface thermal oxidation could potentially be used in clinical applications to improve bone-implant integration. PMID:27546196

  14. Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration

    NASA Astrophysics Data System (ADS)

    Wang, Guifang; Li, Jinhua; Lv, Kaige; Zhang, Wenjie; Ding, Xun; Yang, Guangzheng; Liu, Xuanyong; Jiang, Xinquan

    2016-08-01

    Thermal oxidation, which serves as a low-cost, effective and relatively simple/facile method, was used to modify a micro-structured titanium surface in ambient atmosphere at 450 °C for different time periods to improve in vitro and in vivo bioactivity. The surface morphology, crystallinity of the surface layers, chemical composition and chemical states were evaluated by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Cell behaviours including cell adhesion, attachment, proliferation, and osteogenic differentiation were observed in vitro study. The ability of the titanium surface to promote osseointegration was evaluated in an in vivo animal model. Surface thermal oxidation on titanium implants maintained the microstructure and, thus, both slightly changed the nanoscale structure of titanium and enhanced the crystallinity of the titanium surface layer. Cells cultured on the three oxidized titanium surfaces grew well and exhibited better osteogenic activity than did the control samples. The in vivo bone-implant contact also showed enhanced osseointegration after several hours of oxidization. This heat-treated titanium enhanced the osteogenic differentiation activity of rBMMSCs and improved osseointegration in vivo, suggesting that surface thermal oxidation could potentially be used in clinical applications to improve bone-implant integration.

  15. Evaluation of Applied Materials` rapid thermal processor using SEMATECH methodologies for 0.25 {micro}m technology thermal applications. Part 1

    SciTech Connect

    Riley, T.J.; Nanda, A.K.; Miner, G.; Pas, M.F.; Hossain-Pas, S.; Velo, L.A.

    1996-12-01

    Under a joint development contract with Applied Materials (AMAT) and Texas Instruments (TI), SEMATECH undertook a project (Joint Development Project J100) with a goal of delivering a cost effective, technically advanced rapid Thermal Processor (RTP). The RTP tool was specified to meet the present and future manufacturing needs of SEMATECH`s member companies. The J100 results contained here focus on the temperature and control performance of the AMAT RTP tool. The evaluation methodology included passive data collection (PDC) to check the tool stability, screening experiments to isolate the variable interaction and to define the process window, broad range and narrow range sensitivity studies to determine the sheet resistance dependence on thermal budget for small increments in temperature set point, perturbation experiments to determine localized control, and stability experiments to check for drift and process repeatability. The impact of wafer emissivity on source/drain rapid-thermal annealing was evaluated by processing wafers with varying backside films. The PDC experiments demonstrated the tool to be stable. Screening experiments revealed the strong effect of temperature, followed by time, and time-temperature interaction on sheet resistance. Boron implanted (p+/n) wafers were found to be sensitive at a temperature of 1,025 C or less for a 10 second anneal whereas arsenic implanted wafers (n+/p) showed greater sensitivity at temperatures ranging from 1,025 C to 1,100 C for a 10 second anneal.

  16. Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding

    NASA Astrophysics Data System (ADS)

    Chen, Xueye; Shen, Jienan; Zhou, Mengde

    2016-10-01

    A smart design method to transform the original two-layer microfluidic chip into a four-layer 3D microfluidic chip is proposed. A novel fabrication method is established to rapidly and effectively produce a four-layer microfluidic chip device made entirely from polymethylmethacrylate (PMMA). Firstly, the CO2-laser cuts the PMMA sheets by melting and blowing away vaporized material from the parent material to obtain high-quality channels of the microfluidic chip. An orthogonal experimental method is used to study its processing stability. In addition, a simple, rapid thermal bonding technique is successfully applied in fabricating the four-layer microfluidic chip, which has a bond strength of 1.3 MPa. A wooden pole is used to improve the accuracy of the alignment. Finally, a mixing experiment with blue ink and water is carried out, which proves that this smart design method and rapid manufacturing technology are successful.

  17. In vitro corrosion behavior and cellular response of thermally oxidized Zr-3Sn alloy

    NASA Astrophysics Data System (ADS)

    Zhou, F. Y.; Wang, B. L.; Qiu, K. J.; Li, H. F.; Li, L.; Zheng, Y. F.; Han, Y.

    2013-01-01

    In this study, ZrSn alloy was thermally oxidized at 600 °C for 3 h and its morphological and structural characteristics, corrosion behavior, ion release and in vitro cytocompatibility were studied to evaluate the feasibility of applying it as dental implant. After oxidation, a dense black oxide layer formed on ZrSn alloy surface, which consisted of predominant monoclinic zirconia and a few non-stoichiometric oxides. The scratching and water contact angle test results demonstrated that the oxide layer exhibited good adhesion strength and similar hydrophilicity to zirconia. The oxidized ZrSn alloy showed higher corrosion resistance, as indicated by far lower corrosion current density and passive current density compared to pure Ti and untreated ZrSn alloy in artificial saliva with and without H2O2. The amount of ions released from the oxidized ZrSn alloy was much lower than that dissolved from pure Ti in simulated corrosive oral mediums. Moreover, the oxidized ZrSn alloy did not present any significant toxic effect to both osteoblast-like cells and fibroblast cells, and osteoblast-like cells could adhere well onto the surface and exhibited a good proliferative pattern. The combination of improved surface properties, superior corrosion resistance and good biocompatibility made the oxidized ZrSn alloy promising for oral implantology application.

  18. Effect of oxide films on the thermal resistance between contacting zirconium alloys

    SciTech Connect

    Schankula, M.H.; Patterson, D.W.; Yovanovich, M.M.

    1982-01-01

    The resistance to heat flow at interfaces formed between contacting solids plays a key role in nuclear reactor systems. In many instances, these contacts occur at elevated temperatures and in oxidizing or corrosive environments. These environments normally lead to increased thermal resistance (decreased conductance), which recent theoretical predictions have related to (i) thermal conductivity of the oxide layer, (ii) layer thickness, (iii) effective hardness of the surface, and (iv) surface microtopography. Experiments with oxidized zirconium specimens have confirmed these predictions and revealed that the contact conductance in vacuum increases as the ratio of layer thickness to contact-spot radius increases. This study is of particular importance in our efforts to predict the rate of heat flow from an overheated CANDU pressure tube when it comes into contact with the surrounding calandria tube during a postulated loss-of-coolant accident. 12 references, 6 figures, 3 tables.

  19. Rapid and repeatable fabrication of high A/R silk fibroin microneedles using thermally-drawn micromolds.

    PubMed

    Lee, JiYong; Park, Seung Hyun; Seo, Il Ho; Lee, Kang Ju; Ryu, WonHyoung

    2015-08-01

    Thermal drawing is a versatile rapid prototyping method that can freely form microneedle (MN) structures with ultra-high aspect ratio without relying on any complex and expensive process. However, it is still challenging to repeatedly produce MNs with identical shapes using this thermal drawing due to small fluctuations in processing conditions such as temperatures, drawing speeds, drawing heights, or parallelism in the drawing setup. In addition, thermal drawing is only applicable to thermoplastic materials and most natural biomaterials are incompatible with this method. Thus, we propose use of thermal drawing to fabricate master molds with high aspect ratios and replicate the shape by micromolding. In this work, high A/R MNs with various body profiles were fabricated by thermal drawing and replicated to silk fibroin (SF) MNs multiple times using micromolding. The original MN shape was precisely copied to the SF MNs. Methanol treatment enhanced the mechanical strength of SF MNs up to about 113% more depending on the treatment duration. We also demonstrated that methanol exposure time could effectively control drug release rates from SF MNs.

  20. Effect of shot peening on the oxidation behavior of thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Karaoglanli, Abdullah Cahit; Doleker, Kadir Mert; Demirel, Bilal; Turk, Ahmet; Varol, Remzi

    2015-11-01

    A conventional thermal barrier coating (TBC) system is made up of a multilayered coating system that comprises a metallic bond coat including oxidation-resistant MCrAlY and a thermally insulating ceramic top coat including yttria stabilized zirconia (YSZ). In this study, in order to improve the oxidation behavior in conventionally produced TBC systems, shot peening process is applied for modification of surface layer structure of atmospheric plasma spray (APS) bond coats. The oxidation behavior of TBCs, produced by the APS process and subjected to shot peening, was investigated. Oxidation tests were performed under isothermal conditions at 1000 °C for different time periods. The coatings produced by the APS process include high porosity and oxide content due to atmospheric production conditions as well as exposure to very high temperature. In this study, the coatings, produced by the APS process, subsequently subjected to shot-peening, were compared with the ones which were not shot peened. Following the application of the shot peening process, a dense structure is obtained due to the plastic deformation effect in the metallic bond coating structure at a certain distance from the surface. To this end, the effects of the shot-peening on the high temperature oxidation behavior of the coatings are investigated and evaluated.

  1. Fabricating vertically aligned sub-20 nm Si nanowire arrays by chemical etching and thermal oxidation.

    PubMed

    Li, Luping; Fang, Yin; Xu, Cheng; Zhao, Yang; Zang, Nanzhi; Jiang, Peng; Ziegler, Kirk J

    2016-04-22

    Silicon nanowires (SiNWs) are appealing building blocks in various applications, including photovoltaics, photonics, and sensors. Fabricating SiNW arrays with diameters <100 nm remains challenging through conventional top-down approaches. In this work, chemical etching and thermal oxidation are combined to fabricate vertically aligned, sub-20 nm SiNW arrays. Defect-free SiNWs with diameters between 95 and 200 nm are first fabricated by nanosphere (NS) lithography and chemical etching. The key aspects for defect-free SiNW fabrication are identified as: (1) achieving a high etching selectivity during NS size reduction; (2) retaining the circular NS shape with smooth sidewalls; and (3) using a directional metal deposition technique. SiNWs with identical spacing but variable diameters are demonstrated by changing the reactive ion etching power. The diameter of the SiNWs is reduced by thermal oxidation, where self-limiting oxidation is encountered after oxidizing the SiNWs at 950 °C for 1 h. A second oxidation is performed to achieve vertically aligned, sub-20 nm SiNW arrays. Si/SiO2 core/shell NWs are obtained before removing the oxidized shell. HRTEM imaging shows that the SiNWs have excellent crystallinity.

  2. High thermal stability and low Gilbert damping constant of CoFeB/MgO bilayer with perpendicular magnetic anisotropy by Al capping and rapid thermal annealing

    SciTech Connect

    Wang, Ding-Shuo; Lai, Shu-Yu; Lin, Tzu-Ying; Wang, Liang-Wei; Liao, Jung-Wei; Lai, Chih-Huang; Chien, Cheng-Wei; Wang, Yung-Hung; Ellsworth, David; Lu, Lei; Wu, Mingzhong

    2014-04-07

    We demonstrate that the magnetic anisotropy of the CoFeB/MgO bilayer can be manipulated by adding an aluminum capping layer. After rapid thermal annealing, we can achieve large perpendicular magnetic anisotropy of CoFeB with a high thermal stability factor (Δ = 72) while the Gilbert damping constant can be reduced down to only 0.011 simultaneously. The boron and residual oxygen in the bulk CoFeB layer are properly absorbed by the Al capping layer during annealing, leading to the enhanced exchange stiffness and reduced damping. The interfacial Fe-O bonding can be optimized by tuning annealing temperature and thickness of Al, resulting in enhanced perpendicular anisotropy.

  3. High thermal stability and low Gilbert damping constant of CoFeB/MgO bilayer with perpendicular magnetic anisotropy by Al capping and rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Wang, Ding-Shuo; Lai, Shu-Yu; Lin, Tzu-Ying; Chien, Cheng-Wei; Ellsworth, David; Wang, Liang-Wei; Liao, Jung-Wei; Lu, Lei; Wang, Yung-Hung; Wu, Mingzhong; Lai, Chih-Huang

    2014-04-01

    We demonstrate that the magnetic anisotropy of the CoFeB/MgO bilayer can be manipulated by adding an aluminum capping layer. After rapid thermal annealing, we can achieve large perpendicular magnetic anisotropy of CoFeB with a high thermal stability factor (Δ = 72) while the Gilbert damping constant can be reduced down to only 0.011 simultaneously. The boron and residual oxygen in the bulk CoFeB layer are properly absorbed by the Al capping layer during annealing, leading to the enhanced exchange stiffness and reduced damping. The interfacial Fe-O bonding can be optimized by tuning annealing temperature and thickness of Al, resulting in enhanced perpendicular anisotropy.

  4. Growth Stresses in Thermally Grown Oxides on Nickel-Based Single-Crystal Alloys

    NASA Astrophysics Data System (ADS)

    Rettberg, Luke H.; Laux, Britta; He, Ming Y.; Hovis, David; Heuer, Arthur H.; Pollock, Tresa M.

    2016-03-01

    Growth stresses that develop in α-Al2O3 scale that form during isothermal oxidation of three Ni-based single crystal alloys have been studied to elucidate their role in coating and substrate degradation at elevated temperatures. Piezospectroscopy measurements at room temperature indicate large room temperature compressive stresses in the oxides formed at 1255 K or 1366 K (982 °C or 1093 °C) on the alloys, ranging from a high of 4.8 GPa for René N4 at 1366 K (1093 °C) to a low of 3.8 GPa for René N5 at 1255 K (982 °C). Finite element modeling of each of these systems to account for differences in coefficients of thermal expansion of the oxide and substrate indicates growth strains in the range from 0.21 to 0.44 pct at the oxidation temperature, which is an order of magnitude higher than the growth strains measured in the oxides on intermetallic coatings that are typically applied to these superalloys. The magnitudes of the growth strains do not scale with the parabolic oxidation rate constants measured for the alloys. Significant spatial inhomogeneities in the growth stresses were observed, due to (i) the presence of dendritic segregation and (ii) large carbides in the material that locally disrupts the structure of the oxide scale. The implications of these observations for failure during cyclic oxidation, fatigue cycling, and alloy design are considered.

  5. Oxidation and biodegradation of polyethylene films containing pro-oxidantadditives: Synergistic effects of sunlight exposure, thermal aging and fungal biodegradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synergistic effects of sunlight exposure, thermal aging and fungal biodegradation on the oxidation and biodegradation of linear low density poly (ethylene) PE-LLD films containing pro-oxidant were examined. To achieve oxidation and degradation, films were first exposed to the sunlight for 93 days du...

  6. Furnace Cyclic Oxidation Behavior of Multi-Component Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Nesbitt, James A.; Barrett, Charles A.; McCue, Terry R.; Miller, Robert A.

    2004-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency and improved reliability goals. Advanced multi-component zirconia-based thermal barrier coatings are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed zirconia-based defect cluster thermal barrier coatings was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with X-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.

  7. In situ sonochemical reduction and direct functionalization of graphene oxide: A robust approach with thermal and biomedical applications.

    PubMed

    Maktedar, Shrikant S; Mehetre, Shantilal S; Avashthi, Gopal; Singh, Man

    2017-01-01

    The rapid, robust, scalable and non-hazardous sonochemical approach for in situ reduction and direct functionalization of graphene oxide has been developed for non-toxic biomedical applications. The graphene oxide (GrO) was directly functionalized with tryptamine (TA) without using any hazardous acylating and coupling reagents. The reaction was completed within 20min. An impact of ultrasound was inferred for a direct functionalization with other conventional methods. The evolved electronic states were confirmed with near edge X-ray absorption fine structure (NEXAFS). The direct covalent functionalization and formation of f-(TA) GrO was proven with FTIR, (13)C solid state NMR, XPS, XRD, Raman' HRTEM, AFM and TGA. The total percentage weight loss in TGA confirms an enhanced thermal stability of f-(TA) GrO. The f-(TA) GrO was further explored for an investigation of in vitro antimicrobial activity to ensure the health and environmental safety. An outstanding antibacterial activity of f-(TA) GrO was found against gram positive Staphylococcus aureus at MIC 128mgmL(-1). It confirms a suitability of f-(TA) GrO for thermally stable antibacterial coating. The f-(TA) GrO showed 39.14-48.9% antioxidant activities, evaluated with 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay. The inherent cytotoxicity of f-(TA) GrO was evaluated with SRB assay to living cells, MCF-7 and Vero. The estimated cell viabilities were >80% upon addition of f-(TA) GrO over a wide concentration range of 10-80μgmL(-1). The high cytocompatibility of f-(TA) GrO confirms the low toxicity and an excellent biocompatibility. The morphological effect on Vero cell line, evidently confirmed the biocompatibility of f-(TA) GrO. Therefore, f-(TA) GrO was emerged as an advanced functional biomaterial for thermal and biomedical applications.

  8. Synthesis of Lithium Oxide Composite Nanoparticles with Spinel Structure by Induction Thermal Plasma

    NASA Astrophysics Data System (ADS)

    Kageyama, Takuya; Sone, Hirotaka; Tanaka, Manabu; Okamoto, Daisuke; Watanabe, Takayuki

    2015-09-01

    Lithium oxide composite nanoparticles were successfully synthesized by induction thermal plasma. Powder mixtures of Li2CO3 and MnO2were injected into the induction thermal plasma at 20 kW-4MHz operated in different O2gas flow rates. The injected precursors were evaporated immediately in the high temperature region of the plasma and nanoparticles were produced through the quenching process. The particles were characterized by using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The obtained results indicated that the nanoparticles of LiMn2O4 and LiMnO2 were selectively synthesized by controlling partial pressure of O2 in thermal plasma. Then formation mechanism of Li-based oxide nanoparticles was investigated on the basis of homogenous nucleation rate and thermodynamic consideration. In higher partial pressure of O2, MnO nucleates and Li oxide condense on the nuclei with relatively high condensation rate, resulting in single-phase LiMn2O4 formation. On the other hand, in lower partial pressure of O2, LiMnO2 was obtained due to the lower condensation rate of Li oxide.

  9. Characterization and dispersibility of improved thermally stable amide functionalized graphene oxide

    SciTech Connect

    Rani, Sumita; Kumar, Mukesh; Kumar, Rajiv; Kumar, Dinesh; Sharma, Sumit; Singh, Gulshan

    2014-12-15

    Graphical abstract: Improved thermal stability and surface study of amide functionalized graphene oxide. - Highlights: • Amide functionalized graphene oxides (AGOs) were synthesized from aniline, 2-aminothiazole and 2-aminopyrimidine. • Achieved enhancement in thermal stability of AGOs as compare to GO. • AGOs are found to be highly dispersible in water, DMSO and DMF. • Dispersibility is stable for more than two and half months. - Abstract: Amidation of graphene oxide (GO) with aniline, 2-aminothiazole and 2-aminopyrimidine results in the synthesis of amide functionalized graphene oxides (AGOs). Scanning electron microscopy, X-ray diffraction, thermogravimetric analysis (TGA), UV–vis and Raman spectroscopy were used to investigate the properties of AGOs. It was found that, contrary to GO, AGOs are soluble in water, dimethyl sulfoxide, dimethylformamide and can be stabilized for months. TGA of AGOs shows the major weight loss above 670 °C as compared to GO in which significant weight loss occurs near 200 °C. Thus AGOs show strong improvement in thermal properties.

  10. High-temperature stability of chemically vapor-deposited tungsten-silicon couples rapid thermal annealed in ammonia and argon

    SciTech Connect

    Broadbent, E.K.; Morgan, A.E.; Flanner, J.M.; Coulman, B.; Sadana, D.K.; Burrow, B.J.; Ellwanger, R.C.

    1988-12-15

    A rapid thermal anneal (RTA) in an NH/sub 3/ ambient has been found to increase the thermal stability of W films chemically vapor deposited (CVD) on Si. W films deposited onto single-crystal Si by low-pressure CVD were rapid thermal annealed at temperatures between 500 and 1100 /sup 0/C in NH/sub 3/ and Ar ambients. The reactions were studied using Rutherford backscattering spectrometry, x-ray diffraction, Auger electron spectroscopy, transmission electron microscopy, and four-point resistivity probe. High-temperature (greater than or equal to1000 /sup 0/C) RTA in Ar completely converted W into the low resistivity (31 ..mu cap omega.. cm) tetragonal WSi/sub 2/ phase. In contrast, after a prior 900 /sup 0/C RTA in NH/sub 3/, N inclusion within the W film and at the W/Si interface almost completely suppressed the W-Si reaction. Detailed examination, however, revealed some patches of WSi/sub 2/ formed at the interface accompanied by long tunnels extending into the substrate, and some crystalline precipitates in the substrate close to the interface. The associated interfacial contact resistance was only slightly altered by the 900 /sup 0/C NH/sub 3/ anneal. The NH/sub 3/-treated W film acted as a diffusion barrier in an Al/W/Si contact metallurgy up to at least 550 /sup 0/C, at which point some increase in contact resistance was measured.

  11. Simple, rapid and effective preservation and reactivation of anaerobic ammonium oxidizing bacterium "Candidatus Brocadia sinica".

    PubMed

    Ali, Muhammad; Oshiki, Mamoru; Okabe, Satoshi

    2014-06-15

    It is still the biggest challenge to secure enough seeding biomass for rapid start-up of full-scale (anaerobic ammonium oxidation) anammox processes due to slow growth. Preservation of active anammox biomass could be one of the solutions. In this study, biomass of anammox bacterium, "Candidatus Brocadia sinica", immersed in various nutrient media were preserved at -80 °C, 4 °C and room temperature. After 45, 90 and 150 days of preservation, specific anammox activity (SAA) of the preserved anammox biomass was determined by measuring (29)N2 production rate and transcription levels of hzsA gene encoding hydrazine synthase alpha subunit. Storage in nutrient medium containing 3 mM of molybdate at room temperature with periodical (every 45 days) supply of NH4(+) and NO2(-) was proved to be the most effective storage technique for "Ca. Brocadia sinica" biomass. Using this preservation condition, 96, 92 and 65% of the initial SAA was sustained after 45, 90 and 150 days of storage, respectively. Transcription levels of hzsA gene in biomass correlated with the SAA (R(2) = 0.83), indicating it can be used as a genetic marker to evaluate the anammox activity of preserved biomass. Furthermore, the 90-day-stored biomass was successfully reactivated by immobilizing in polyvinyl alcohol (6%, w/v) and sodium alginate (2%, w/v) gel and then inoculated to up-flow column reactors. Total nitrogen removal rates rapidly increased to 7 kg-N m(-3) d(-1) within 35 days of operation. Based on these results, the room temperature preservation with molybdate addition is simple, cost-effective and feasible at a practical scale, which will accelerate the practical use of anammox process for wastewater treatment.

  12. Rapid warming at the Palaeocene-Eocene Thermal Maximum drives rapid hydrate dissociation but only modest and delayed methane release to the ocean

    NASA Astrophysics Data System (ADS)

    Minshull, Tim; Marin-Moreno, Hector; Wilson, Paul; Armstrong McKay, David

    2016-04-01

    During the Palaeocene-Eocene Thermal Maximum (PETM), the carbon isotopic signature δ13C of the ocean-atmosphere system decreased abruptly - the record in deep sea benthic foraminifera shows an excursion of at least 2.5 to 3.0 ‰ VPDB. This global carbon isotope excursion (CIE) has been attributed to large-scale methane hydrate dissociation in response to rapid ocean warming. There is increasing evidence for warming-induced hydrate dissociation in the modern ocean and the PETM may represent an analogue for this process. We ran a thermohydraulic modeling code to simulate hydrate dissociation due to ocean warming for a range of possible PETM scenarios. Our results show that hydrate dissociation in response to such warming is rapid but methane release to the ocean is modest, and delayed by hundreds to thousands of years by transport processes through the hydrate stability field. In our simulations most of the dissociated hydrate methane remains beneath the seabed, either in solution or as free gas below the irreducible gas saturation, and the small fraction (≤0.13) released to the ocean is delivered over several kyr. We conclude that hydrate dissociation cannot have been largely responsible for the CIE unless the late Palaeocene hydrate inventory greatly exceeded most current estimates.

  13. Thermal and oxidative degradation studies of formulated C-ethers by gel-permeation chromatography

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Morales, W.

    1982-01-01

    Gel-permeation chromatography was used to analyze C-ether lubricant formulations from high-temperature bearing tests and from micro-oxidation tests. Three mu-styragel columns (one 500 and two 100 A) and a tetrahydrofuran mobile phase were found to adequately separate the C-ether degradation products. The micro-oxidation tests yielded degradation results qualitatively similar to those observed from the bearing tests. Micro-oxidation tests conducted in air yielded more degradation than did tests in nitrogen. No great differences were observed between the thermal-oxidative stabilities of the two C-ether formulations or between the catalytic degradation activities of silver and M-50 steel. C-ether formulation I did yield more degradation than did formulation II in 111- and 25-hour bearing tests, respectively.

  14. Cyano-Bridged Trimetallic Coordination Polymer Nanoparticles and Their Thermal Decomposition into Nanoporous Spinel Ferromagnetic Oxides.

    PubMed

    Zakaria, Mohamed B; Hossain, Md Shahriar A; Shiddiky, Muhammad J A; Shahabuddin, Mohammed; Yanmaz, Ekrem; Kim, Jung Ho; Belik, Alexei A; Ide, Yusuke; Hu, Ming; Tominaka, Satoshi; Yamauchi, Yusuke

    2016-10-10

    The synthesis of a novel family of cyano-bridged trimetallic coordination polymers (CPs) with various compositions and shapes has been reported by changing the compositional ratios of Fe, Co, and Ni species in the reaction system. In order to efficiently control the nucleation rate and the crystal growth, trisodium citrate dihydrate plays an important role as a chelating agent. After the obtained cyano-bridged trimetallic CPs undergo thermal treatment in air at three different temperatures (250, 350, and 450 °C), nanoporous spinel metal oxides are successfully obtained. Interestingly, the obtained nanoporous metal oxides are composed of small crstalline grains, and the grains are oriented in the same direction, realizing pseudo-single crystals with nanopores. The resultant nanoporous spinel oxides feature interesting magnetic properties. Cyano-bridged multimetallic CPs with various sizes and shapes can provide a pathway toward functional nanoporous metal oxides that are not attainable from simple cyano-bridged CPs containing single metal ions.

  15. Valuable compounds from sewage sludge by thermal hydrolysis and wet oxidation. A review.

    PubMed

    Suárez-Iglesias, Octavio; Urrea, José Luis; Oulego, Paula; Collado, Sergio; Díaz, Mario

    2017-04-15

    Sewage sludge is considered a costly waste, whose benefit has received a lot of attention for decades. In this sense, a variety of promising technologies, such as thermal hydrolysis and wet oxidation, are currently employed. Thermal hydrolysis is used as a pretreatment step ahead of anaerobic digestion processes and wet oxidation is intended for the solubilization and partial oxidation of the sludge. Such processes could be utilized for solubilizing polysaccharides, lipids, fragments of them and phosphorus (thermal hydrolysis) or for generating carboxylic acids (wet oxidation). This article compiles the available information on the production of valuable chemicals by these techniques and comments on their main features. Temperature, reaction duration times and sludge characteristics influence the experimental results significantly, but only the first two variables have been thoroughly studied. For thermal hydrolysis, a rise of temperature led to an increase in the solubilized biomolecules, but also to a greater decomposition of proteins and undesirable reactions of carbohydrates with themselves or with proteins. At constant temperature, the amounts of substances that can be recovered tend to become time independent after several minutes. Diluted and activated sludges seem to be more readily hydrolyzable than the thickened and primary ones. For wet oxidation, the dependence of the production of carboxylic acids with temperature and time is not simple: their concentration can increase, decrease or go through a maximum. At high temperatures, acetic acid is the main carboxylic acid obtained. Concentrated, fermented and secondary sludge seem to be more suitable for yielding higher amounts of acid than diluted, undigested and primary ones.

  16. Experimental and modeling approaches for the formation of hydroperoxide during the auto-oxidation of polymers: Thermal-oxidative degradation of polyethylene oxide

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Yamane, Shogo; Sago, Tomohiro; Hagihara, Hideaki; Kutsuna, Shuzo; Uchimaru, Tadafumi; Suda, Hiroyuki; Sato, Hiroaki; Mizukado, Junji

    2016-07-01

    ROOH was a key intermediate compound in oxidation of polymer because it was only source of radOH radicals. ROOH was believed to be produced by ROOrad abstraction H-atom from polymer, which is thermodynamically unfavorable, but it may be facilitated due to the high polymer concentration. However, ROOH also could be produced by ROOrad reaction with HO2rad. For examining the formation scheme of ROOH, kinetics and mechanism for the thermal-oxidative degradation of PEO at 473 K in air was investigated by using the experimental and modeling approaches. The contribution of HO2rad reaction with ROOrad to the formation of ROOH was estimated.

  17. Food availability promotes rapid recovery from thermal stress in a scleractinian coral

    NASA Astrophysics Data System (ADS)

    Connolly, S. R.; Lopez-Yglesias, M. A.; Anthony, K. R. N.

    2012-12-01

    Bleaching in corals due to environmental stress represents a loss of energy intake often leading to an increase in mortality risk. Successful coral recovery from severe bleaching events may depend on the rate of replenishment of algal symbiont populations following the period of thermal stress, the supply of an alternative food source, or both. Here, we explore the role of food availability in promoting the survival and recovery of a common coral ( Acropora intermedia) following acute experimentally induced thermal stress. Fed corals were provided with live rotifers daily, to maintain densities of zooplankton in tanks that are typical of coral reefs. After a 6-week acclimation phase, heated corals were subjected to a +4 °C thermal anomaly for a 7-day period (bleaching phase) then temperatures were returned to normal for a further 2 weeks (recovery phase). Results demonstrated that heated corals had higher survival when they were provided with heterotrophic food. Fed corals experienced reduced loss of chlorophyll a, relative to unfed corals. During the recovery phase, both fed and unfed corals recovered within a few days; however, fed corals recovered to pre-bleaching phase levels of chlorophyll a, whereas unfed corals stabilized approximately one-third below this level. Protein levels of fed corals declined markedly during the bleaching phase, but recovered all of their losses by the end of the recovery phase. In contrast, unfed corals had low protein levels that were maintained throughout the experiment. To the extent that these results are representative of corals' responses to thermal anomalies in nature, the findings imply that availability of particulate food matter has the potential to increase corals' capacity to survive thermally induced bleaching and to ameliorate its sub-lethal effects. They also support the hypothesis that different rates of heterotrophy are an important determinant of variation in resilience to thermal stress among reef environments.

  18. NANOSIZED MAGNESIUM OXIDE AS CATALYST FOR THE RAPID AND GREEN SYNTHESIS OF SUBSTITUTED 2-AMINO-2-CHROMENES

    EPA Science Inventory

    A nanosized magnesium oxide catalyzed three-component condensation reaction of aldehyde, malononitrile and ¿-naphthol proceeded rapidly in water/PEG to afford corresponding 2-amino-2-chromenes in high yields at room temperature. The greener protocol was found to be fairly general...

  19. The Development of HfO2-Rare Earth Based Oxide Materials and Barrier Coatings for Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan James

    2014-01-01

    Advanced hafnia-rare earth oxides, rare earth aluminates and silicates have been developed for thermal environmental barrier systems for aerospace propulsion engine and thermal protection applications. The high temperature stability, low thermal conductivity, excellent oxidation resistance and mechanical properties of these oxide material systems make them attractive and potentially viable for thermal protection systems. This paper will focus on the development of the high performance and high temperature capable ZrO2HfO2-rare earth based alloy and compound oxide materials, processed as protective coating systems using state-or-the-art processing techniques. The emphasis has been in particular placed on assessing their temperature capability, stability and suitability for advanced space vehicle entry thermal protection systems. Fundamental thermophysical and thermomechanical properties of the material systems have been investigated at high temperatures. Laser high-heat-flux testing has also been developed to validate the material systems, and demonstrating durability under space entry high heat flux conditions.

  20. Surge discharge capability and thermal stability of a metal oxide surge arrester

    SciTech Connect

    Kan, M.; Kojima, S.; Nishiwaki, S.; Sato, T.; Yanabu, S.

    1983-02-01

    The surge discharge capability and the thermal stability of a metal oxide surge arrester were examined experimentally. It was found that the breakdown energy is nearly the same against the switching surge and the temporary overvoltage of various peak values and time durations. Heat dissipation capability of an 84kV porcelain-type model arrester was examined and found to be less than that of a small model unit, while this relation of the value had been considered opposite in a previously published paper. From these experimental data, the limit at high operation stress was found to be determined by the thermal stability rather than by the discharge capability

  1. Electrochemical Synthesis of Amorphous VO2 Colloids and Their Rapid Thermal Transforming to VO2 (M) Nanoparticles with Good Thermochromic Performance.

    PubMed

    Wu, Hao; Li, Ming; Zhong, Li; Luo, Yuan Yuan; Li, Guang Hai

    2016-12-05

    Amorphous VO2 (a-VO2 ) colloids were synthesized by electrochemical anodic oxidation of metallic vanadium. It was found that the a-VO2 colloids have a cotton-like morphology composed of very small clusters, and that the crystallization temperature of the a-VO2 colloids can be adjusted either by the electrolyte of the anodic oxidation or/and the dispersion agent of the colloids. VO2 (M) nanoparticles (NPs) (and a NP film) with an average size of about 50 nm can be obtained by a rapid thermal annealing of the a-VO2 colloids at 310 °C under air, which is beneficial for practical applications. The VO2 (M) NP film shows an obvious metal-semiconductor transition with a resistance less than 10 Ω in the metallic state. An integral visible transmittance of 40.7 %, a solar transmittance modulation of 9.4 %, and a resistance modulation in the order of 5×10(4) were realized in the VO2 (M) NP film.

  2. Thermal oxidation of Si/SiGe heterostructures for use in quantum dot qubits

    NASA Astrophysics Data System (ADS)

    Neyens, Samuel F.; Foote, Ryan H.; Knapp, T. J.; McJunkin, Thomas; Savage, D. E.; Lagally, M. G.; Coppersmith, S. N.; Eriksson, M. A.

    Here we demonstrate dry thermal oxidation of a Si/SiGe heterostructure at 700°C and use a Hall bar device to measure the mobility after oxidation to be 43,000 cm2V-1s-1 at a carrier density of 4.1 ×1011 cm-2. Surprisingly, we find no significant reduction in mobility compared with an Al2O3 device made with atomic layer deposition on the same heterostructure, indicating thermal oxidation can be used to process Si/SiGe quantum dot devices. This result provides a path for investigating improvements to the gate oxide in Si/SiGe qubit devices, whose performance is believed to be limited by charge noise in the oxide layer. This work was supported in part by ARO (W911NF-12-0607) and NSF (DMR-1206915 and PHY-1104660). Development and maintenance of the growth facilities used for fabricating samples is supported by DOE (DE-FG02-03ER46028). This research utilized NSF-supported shared facilities at the University of Wisconsin-Madison.

  3. Thermal Behavior Study of the MoVTeNb Oxide Catalyst for Selective Oxidation Process

    SciTech Connect

    Idris, R.; Hamid, S. B. Abd.

    2009-06-01

    Several parameters involved in preparing the multi metal oxide (MMO) catalysts (Mo{sub 1}V{sub 0.3}Te{sub 0.23}Nb{sub 0.12}O{sub x}) for selective oxidation of propane to acrylic acid (AA) were investigated. These included the proper pre-calcined and calcinations atmosphere effect on the performance of the catalysts. It was found that each metal element plays a critical role to the performance of an effective catalyst and also the calcinations under a non-flow inert atmosphere. The characterization results from XRD, SEM, TG and DSC show the important differences depending on the activation procedures of the MoVTeNb oxide catalyst. The XRD analysis is used to identify the phase inventory of the MoVTeNb oxide catalysts. The structure of orthorhombic M1, M2, TeMo{sub 5}O{sub 16}, V{sub 0.95}Mo{sub 0.97}O{sub 5} and Mo{sub 5}O{sub 14} phase was investigated. The orthorhombic M1 phase is the most active and selective phase and is responsible for the major of the efficiently of the best catalyst for selective oxidation process. TGA and DTG allow the identification of the number and types, of reactions involving evaporation of small molecules from removal of ligands and water to condensation or drying processes. From all these analyses it was proven that the activation procedures would affect the performance of the MoVTeNb oxide catalyst.

  4. Rapid online nonenzymatic protein digestion combining microwave heating acid hydrolysis and electrochemical oxidation.

    PubMed

    Basile, Franco; Hauser, Nicolas

    2011-01-01

    We report an online nonenzymatic method for site-specific digestion of proteins to yield peptides that are well suited for collision-induced dissociation tandem mass spectrometry. The method combines online microwave heating acid hydrolysis at aspartic acid and online electrochemical oxidation at tryptophan and tyrosine. The combined microwave/electrochemical digestion is reproducible and produces peptides with an average sequence length of 10 amino acids. This peptide length is similar to the average peptide length of 9 amino acids obtained by digestion of proteins with the enzyme trypsin. As a result, the peptides produced by this novel nonenzymatic digestion method, when analyzed by electrospray ionization mass spectrometry, produce protonated molecules with mostly +1 and +2 charge states. The combination of these two nonenzymatic methods overcomes shortcomings with each individual method in that (i) peptides generated by the microwave-hydrolysis method have an average amino acid length of 16 amino acids and (ii) the electrochemical-cleavage method is unable to reproducibly digest proteins with molecular masses above 4 kDa. Preliminary results are presented on the application and utility of this rapid online digestion (total of 6 min of digestion time) on a series of standard peptides and proteins as well as an Escherichia coli protein extract.

  5. Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; McAllister, T. N.; Frangos, J. A.

    1996-01-01

    Interstitial fluid flow may mediate skeletal remodeling in response to mechanical loading. Because nitric oxide (NO) has been shown to be an osteoblast mitogen and inhibitor of osteoclastic resorption, we investigated and characterized the role of fluid shear on the release of NO in osteoblasts. Rat calvarial cells in a stationary culture produced undetectable levels of NO. Fluid shear stress (6 dyn/cm2) rapidly increased NO release rate to 9.8 nmol.h-1.mg protein-1 and sustained this production for 12 h of exposure to flow. Cytokine treatment also induced NO synthesis after a 12-h lag phase of zero production, followed by a production rate of 0.6 nmol.h-1.mg protein-1. Flow-induced NO production was blocked by the NO synthase (NOS) inhibitor NG-amino-L-arginine, but not by dexamethasone, which suggests that the flow stimulated a constitutive NOS isoform. This is the first time that a functional constitutively present NOS isoform has been identified in osteoblasts. Moreover, fluid flow represents the most potent stimulus of NO release in osteoblasts reported to date. Fluid flow-induced NO production may therefore play a primary role in bone maintenance and remodeling.

  6. Ultrasensitive electrochemical immunoassay based on graphene oxide-Ag composites for rapid determination of clenbuterol.

    PubMed

    Bai, Jing; Lai, Yanjun; Jiang, Dawei; Zeng, Yanbo; Xian, Yuezhong; Xiao, Fei; Zhang, Ningdan; Hou, Jie; Jin, Litong

    2012-09-21

    We report the development of an ultrasensitive amperometric biosensor based on Ag nanoparticles-decorated graphene oxide nanosheets (GO) (Ag-GO) for the rapid detection of clenbuterol (CLB). The morphology and structure of the Ag-GO labeled CLB (Ag-GO-CLB) were characterized by transmission electron microscope (TEM), atomic force microscope (AFM), and ultraviolet-visible spectroscope (UV-vis). The immunosensor was prepared by covalently immobilizing capture antibodies on a multi-walled carbon nanotubes-modified glassy carbon electrode. Through competitive immunoreactions, the Ag-GO-CLB nanocomposites were captured on the immunosensor and the silver was measured by positive differential pulse voltammetry (DPV) in KCl solution for the detection of antigen. The experimental results show a linear response over the range from 0.01 to 10.0 ng mL(-1) with a lower detection limit of 6.8 pg mL(-1) (signal-to-noise ratio of 3). The Ag-GO based immunosensor offers a simple and convenient route for metal-immunoassay labels, which can avoid the complicated and time-consuming dissolving of metal component for ultrasensitive determination. Moreover, the electrochemical immunoassay shows acceptable specificity and stability and is suitable for the determination of CLB in real samples.

  7. Rapid estimation of glucosinolate thermal degradation rate constants in leaves of Chinese kale and broccoli (Brassica oleracea) in two seasons.

    PubMed

    Hennig, Kristin; Verkerk, Ruud; Bonnema, Guusje; Dekker, Matthijs

    2012-08-15

    Kinetic modeling was used as a tool to quantitatively estimate glucosinolate thermal degradation rate constants. Literature shows that thermal degradation rates differ in different vegetables. Well-characterized plant material, leaves of broccoli and Chinese kale plants grown in two seasons, was used in the study. It was shown that a first-order reaction is appropriate to model glucosinolate degradation independent from the season. No difference in degradation rate constants of structurally identical glucosinolates was found between broccoli and Chinese kale leaves when grown in the same season. However, glucosinolate degradation rate constants were highly affected by the season (20-80% increase in spring compared to autumn). These results suggest that differences in glucosinolate degradation rate constants can be due to variation in environmental as well as genetic factors. Furthermore, a methodology to estimate rate constants rapidly is provided to enable the analysis of high sample numbers for future studies.

  8. MgB2 tunnel junctions with native or thermal oxide barriers

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Gandikota, R.; Kim, J.; Newman, N.; Rowell, J. M.

    2006-07-01

    MgB2 tunnel junctions (MgB2/barrier/MgB2) were fabricated using a native oxide grown on the bottom MgB2 film as the tunnel barrier. Such barriers therefore survive the deposition of the second electrode at 300°C, even over junction areas of ˜1mm2. Studies of such junctions and those of the type MgB2/native or thermal oxide/metal (Pb, Au, or Ag) show that tunnel barriers grown on MgB2 exhibit a wide range of barrier heights and widths.

  9. New rapid-curing, stable polyimide polymers with high-temperature strength and thermal stability

    NASA Technical Reports Server (NTRS)

    Burns, E. A.; Jones, J. F.; Kendrick, W. R.; Lubowitz, H. R.; Thorpe, R. S.; Wilson, E. R.

    1969-01-01

    Additive-type polymerization reaction forms thermally stable polyimide polymers, thereby eliminating the volatile matter attendant with the condensation reaction. It is based on the utilization of reactive alicyclic rings positioned on the ends of polyimide prepolymers having relatively low molecular weights.

  10. Thermal oxidation of 3C silicon carbide single-crystal layers on silicon

    NASA Technical Reports Server (NTRS)

    Fung, C. D.; Kopanski, J. J.

    1984-01-01

    Thermal oxidation of thick single-crystal 3C SiC layers on silicon substrates was studied. The oxidations were conducted in a wet O2 atmosphere at temperatures from 1000 to 1250 C for times from 0.1 to 50 h. Ellipsometry was used to determine the thickness and index of refraction of the oxide films. Auger analysis showed them to be homogeneous with near stoichiometric composition. The oxide growth followed a linear parabolic relationship with time. Activation energy of the parabolic rate constant was found to be 50 kcal/mole, while the linear rate constant was 74 kcal/mole. The latter value corresponds approximately to the energy required to break a Si-C bond. Electrical measurements show an effective density of 4-6 x 10 to the 11th per sq cm for fixed oxide charges at the oxide-carbide interface, and the dielectric strength of the oxide film is aproximately 6 x 10 to the 6th V/cm.

  11. Application of the rapid thermal process: Sintering the sputtered aluminum/silicon contact in silicon detector fabrication

    SciTech Connect

    Chen, Wei; Li, Zheng; Kraner, H.W.

    1991-11-01

    Rapid thermal process (RTP) sintering has been used in p{sup +}{minus}n junction detector fabrication. For the same thickness of aluminum film and at the same RTP sintering condition, the leakage current of the p{sup +}{minus}n junction detector with sputtered Al gate showed at least a 50% improvement and no spiking phenomena were observed. RTP sintering in 4% H{sub 2}/N{sub 2} ambient passivates the defects introduced by sputtering and the damage caused by the {sup 60}Co irradiation.

  12. The Coadministration of Unoxidized and Oxidized Desi Ghee Ameliorates the Toxic Effects of Thermally Oxidized Ghee in Rabbits

    PubMed Central

    Uddin, Islam

    2017-01-01

    Desi Ghee was thermally oxidized at 160°C for 9 h and characterized for peroxide value (PV), free fatty acid (FFA), thiobarbituric acid reactive substances (TBARS), radical scavenging activity (RSA), and fatty acid and cholesterol composition using GC-MS. Oxidized (OG) and normal ghee (NG) were fed to rabbits in different doses. Blood was collected for hematology and biochemical analyses after 7 and 14 days. The oxidation of desi ghee increased the PV, FFA, and TBARS values and showed a decline in the RSA values. GC-MS revealed that desi ghee was rich in saturated fatty acids (55.9 g/100 g) and significant amounts of oleic acid (26.2 g/100 g). The OG significantly decreased the body weight, which was normalized by the coadministration of NG. Serum lipid profile showed a dose dependent increase in total cholesterol, triglycerides, and low density lipoproteins (LDL) and decrease in RBCs count, hematocrit, glucose, and hemoglobin concentration with OG feeding. These parameters were normalized by coadministration of NG. Liver histopathology of OG fed groups showed bile duct dilation and necrotic changes, while normal architecture showed in NG groups, compared to control. These results indicate that NG has no significant effect on rabbits comparing with OG and that it was beneficial when coadministered with oxidized ghee. PMID:28299204

  13. Synthesis and Magneto-Thermal Actuation of Iron Oxide Core–PNIPAM Shell Nanoparticles

    PubMed Central

    2015-01-01

    Superparamagnetic nanoparticles have been proposed for many applications in biotechnology and medicine. In this paper, it is demonstrated how the excellent colloidal stability and magnetic properties of monodisperse and individually densely grafted iron oxide nanoparticles can be used to manipulate reversibly the solubility of nanoparticles with a poly(N-isopropylacrylamide)nitrodopamine shell. “Grafting-to” and “grafting-from” methods for synthesis of an irreversibly anchored brush shell to monodisperse, oleic acid coated iron oxide cores are compared. Thereafter, it is shown that local heating by magnetic fields as well as global thermal heating can be used to efficiently and reversibly aggregate, magnetically extract nanoparticles from solution and spontaneously redisperse them. The coupling of magnetic and thermally responsive properties points to novel uses as smart materials, for example, in integrated devices for molecular separation and extraction. PMID:26270412

  14. Characterization of Ti-6Al-4V Tribopairs: Effect of Thermal Oxidation Treatment

    NASA Astrophysics Data System (ADS)

    Durante, Massimo; Boccarusso, Luca; Velotti, Carla; Astarita, Antonello; Squillace, Antonino; Carrino, Luigi

    2017-02-01

    This paper deals with the study of the influence of the thermal oxidation (TO) treatment on the tribological properties of Ti-6Al-4V tribopairs. A detailed experimental campaign, including tribological tests, microgeometrical measurements, microhardness tests and phase composition analyses, was carried out on both treated and untreated components. The tribological behavior was studied through the pin-on-disk tests in four different contact conditions: treated disk coupled with untreated pin, untreated disk coupled with treated pin, both treated and both untreated. The effectiveness of the treatment in enhancing the tribological properties of the Ti-6Al-4V alloy sheets was found. In particular, the thermal oxidation treatment, promoting hardness enhancement and the formation of a superficial rutile layer, changed the wear mechanism of the titanium alloy, passing from adhesive wear type, for the untreated case, to abrasive wear, in the treated one.

  15. Characterization of Ti-6Al-4V Tribopairs: Effect of Thermal Oxidation Treatment

    NASA Astrophysics Data System (ADS)

    Durante, Massimo; Boccarusso, Luca; Velotti, Carla; Astarita, Antonello; Squillace, Antonino; Carrino, Luigi

    2016-12-01

    This paper deals with the study of the influence of the thermal oxidation (TO) treatment on the tribological properties of Ti-6Al-4V tribopairs. A detailed experimental campaign, including tribological tests, microgeometrical measurements, microhardness tests and phase composition analyses, was carried out on both treated and untreated components. The tribological behavior was studied through the pin-on-disk tests in four different contact conditions: treated disk coupled with untreated pin, untreated disk coupled with treated pin, both treated and both untreated. The effectiveness of the treatment in enhancing the tribological properties of the Ti-6Al-4V alloy sheets was found. In particular, the thermal oxidation treatment, promoting hardness enhancement and the formation of a superficial rutile layer, changed the wear mechanism of the titanium alloy, passing from adhesive wear type, for the untreated case, to abrasive wear, in the treated one.

  16. Thermal control/oxidation resistant coatings for titanium-based alloys

    NASA Technical Reports Server (NTRS)

    Clark, Ronald K.; Wallace, Terryl A.; Cunnington, George R.; Wiedemann, Karl E.

    1992-01-01

    Extensive research and development efforts have been expended toward development of thermal control and environmental protection coatings for NASP and generic hypersonic vehicle applications. The objective of the coatings development activities summarized here was to develop light-weight coatings for protecting advanced titanium alloys from oxidation in hypersonic vehicle applications. A number of new coating concepts have been evaluated. Coated samples were exposed to static oxidation tests at temperatures up to 1000 C using a thermogravimetric apparatus. Samples were also exposed to simulated hypersonic flight conditions for up to 10 hr to determine their thermal and chemical stability and catalytic efficiency. The emittance of samples was determined before and after exposure to simulated hypersonic flight conditions.

  17. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors.

    PubMed

    Çakır, M Cihan; Çalışkan, Deniz; Bütün, Bayram; Özbay, Ekmel

    2016-09-29

    Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO) heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption-dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively.

  18. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors

    PubMed Central

    Çakır, M. Cihan; Çalışkan, Deniz; Bütün, Bayram; Özbay, Ekmel

    2016-01-01

    Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO) heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption–dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively. PMID:27690048

  19. Thermal oxidation of amorphous germanium thin films on SiO2 substrates

    NASA Astrophysics Data System (ADS)

    de los Santos Valladares, L.; Bustamante Dominguez, A.; Ionescu, A.; Brown, A.; Sepe, A.; Steiner, U.; Avalos Quispe, O.; Holmes, S.; Majima, Y.; Langford, R.; Barnes, C. H. W.

    2016-12-01

    In this work we report the thermal oxidation of amorphous germanium (a-Ge) thin films (140 nm thickness) in air. Following fabrication by conventional thermal evaporation on SiO2 substrates, the samples were annealed in air at different temperatures ranging from 300 to 1000 °C. By means of x-ray diffraction, x-ray reflectivity, synchrotron grazing-incidence wide-angle x-ray scattering and cross-sectional transmission electron microscopy analysis it is found that the a-Ge films abruptly crystallize at 475 °C, while simultaneously increasing the thickness of the oxide (GeO2) in a layer by layer fashion. X-ray photoemission spectroscopy reveals that the oxidation state of the Ge atoms in the GeO2 layer is 4+. However, a reaction at the GeO2/Ge interface occurs between 500 and 550 °C reducing the oxide layer to GeO x (x < 2) and containing Ge2+ and Ge+. The thickness of the oxide layer grows with the annealing temperature following an Arrhenius behavior with an activation energy of 0.82 ± 0.09 eV up to 500 °C. Remarkably, we observed simultaneous enhancement of the oxidation and crystallization of the a-Ge in the temperature interval 450 °C-500 °C, in which the oxidation rate reaches a maximum of around 0.8 nm °C-1 at around 500 °C.

  20. Methods for separation/purification utilizing rapidly cycled thermal swing sorption

    DOEpatents

    Tonkovich, Anna Lee Y.; Monzyk, Bruce F.; Wang, Yong; VanderWiel, David P.; Perry, Steven T.; Fitzgerald, Sean P.; Simmons, Wayne W.; McDaniel, Jeffrey S.; Weller, Jr., Albert E.

    2004-11-09

    The present invention provides apparatus and methods for separating fluid components. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of fluid components separated in short times using relatively compact hardware.

  1. Pseudonegative thermal expansion and the state of water in graphene oxide layered assemblies.

    PubMed

    Zhu, Jian; Andres, Christine M; Xu, Jiadi; Ramamoorthy, Ayyalusamy; Tsotsis, Thomas; Kotov, Nicholas A

    2012-09-25

    Unraveling the complex interplay between thermal properties and hydration is a part of understanding the fundamental properties of many soft materials and very essential for many applications. Here we show that graphene oxide (GO) demonstrates a highly negative thermal expansion (NTE) coefficient owing to unique thermohydration processes related with fast transport of water between the GO sheets, the amphiphilic nature of nanochannels, and close-to-zero intrinsic thermal expansion of GO. The humidity-dependent NTE of GO layered assemblies, or "pseudonegative thermal expansion" (PNTE), differs from that of other hygroscopic materials due to its relatively fast and highly reversible expansion/contraction cycles and occurrence at low humidity levels while bearing similarities to classic NTE. Thermal expansion of polyvinyl alcohol/GO composites is easily tunable with additional intricacy of thermohydration effects. PNTE combined with isotropy, nontoxicity, and mechanical robustness is an asset for applications of actuators, sensors, MEMS devices, and memory materials and crucial for developing methods of thermal/photopatterning of GO devices.

  2. Using Coupled Mesoscale Experiments and Simulations to Investigate High Burn-Up Oxide Fuel Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.

    2014-12-01

    Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.

  3. Refracted x-ray fluorescence (RXF) applied to the study of thermally grown oxide scales

    SciTech Connect

    Koshelev, I.; Paulikas, A.P.; Veal, B.W.

    1996-12-31

    RXF is a new technique for studying thin films. Here, it is applied to study of thermally grown oxide scales. Evolution of chromia scales on Fe-25Cr-20Ni-0.3Y alloys and the evolution of alumina scales on {beta}-NiAl are investigated. The technique provides scale composition and depth profile information, scale thicknesses and growth rates, and information about transient phase evolution.

  4. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    PubMed Central

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-01-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge. PMID:26908198

  5. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  6. Thermal Screening Of Residues From Acidification And Copper-Catalyzed Peroxide Oxidation Of Tank 48H Simulant

    SciTech Connect

    Fondeur, F. F.; Newell, J. D.; Peters, T. B.; Fink, S. D.

    2012-10-04

    This study evaluated the residues generated from copper-catalyzed peroxide oxidation (CCPO) of Tank 48H simulant. The first step of the CCPO calls for pH adjustment of the simulant, and early testing used either 15wt% or 50wt % nitric acid to reach a slurry pH of between 12 and 5. Residues obtained by ambient temperature pH adjustment with 50wt % nitric acid followed by oxidation with 50 wt % hydrogen peroxide at 35, 50, and 65°C (from a recently conducted Copper Catalyzed Peroxide Oxidation or CCPO) were also analyzed. Slurry samples at pH 7 or lower especially made from adding nitric acid at the process equivalent of one gallon per minute had the largest enthalpy of decomposition. The thermogravimetric characteristics of some samples from the CCPO test generated at pH 9 or lower exhibited rapid weight loss. Taken together, residues generated at pH 9 or lower may be classified as energetic upon decomposition in confined spaces or under adiabatic conditions. Therefore, additional testing is recommended with larger (up to 50mL) samples in an adiabatic calorimeter. To minimize risk of formation of energetic byproducts, an intermediate slurry pH of 9 or greater is recommended following the acidification step in the CCPO and prior to start of peroxide addition. In practice, process temperature needs to reach 150°C or greater to decompose residues obtained a pH 9 or lower which is unlikely. Oxidation temperature had no significant effect on the thermal characteristics of the final residues generated.

  7. The fabrication and thermal properties of bismuth-aluminum oxide nanothermometers

    NASA Astrophysics Data System (ADS)

    Wang, Chiu-Yen; Chen, Shih-Hsun; Tsai, Ping-Hsin; Chiou, Chung-Han; Hsieh, Sheng-Jen

    2017-01-01

    Bismuth (Bi) nanowires, well controlled in length and diameter, were prepared by using an anodic aluminum oxide (AAO) template-assisted molding injection process with a high cooling rate. A high performance atomic layer deposition (ALD)-capped bismuth-aluminum oxide (Bi-Al2O3) nanothermometer is demonstrated that was fabricated via a facile, low-cost and low-temperature method, including AAO templated-assisted molding injection and low-temperature ALD-capped processes. The thermal behaviors of Bi nanowires and Bi-Al2O3 nanocables were studied by in situ heating transmission electron microscopy. Linear thermal expansion of liquid Bi within native bismuth oxide nanotubes and ALD-capped Bi-Al2O3 nanocables were evaluated from 275 °C to 700 °C and 300 °C to 1000 °C, respectively. The results showed that the ALD-capped Bi-Al2O3 nanocable possesses the highest working temperature, 1000 °C, and the broadest operation window, 300 °C-1000 °C, of a thermal-expanding type nanothermometer. Our innovative approach provides another way of fabricating core-shell nanocables and to further achieve sensing local temperature under an extreme high vacuum environment.

  8. Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics

    SciTech Connect

    Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki; Hozumi, Hideaki; Gao, Yongqian; Eda, Goki; Mattevi, Cecilia; Fujita, Takeshi; Yoshigoe, Akitaka; Ishizuka, Shinji; Adamska, Lyudmyla; Yamada, Takatoshi; Dattelbaum, Andrew M.; Gupta, Gautam; Doorn, Stephen K.; Velizhanin, Kirill A.; Teraoka, Yuden; Chen, Mingwei; Htoon, Han; Chhowalla, Manish; Mohite, Aditya D.; Takakuwa, Yuji

    2016-09-01

    We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a set of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.

  9. Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics

    DOE PAGES

    Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki; ...

    2016-09-01

    We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less

  10. Role of mechanical loads in inducing in-cycle tensile stress in thermally grown oxide

    SciTech Connect

    Diaz, R.; Jansz, M.; Mossaddad, M.; Raghavan, S.; Okasinski, J.S.; Almer, J.D.; Perez, H.P.; Imbrie, P.

    2012-01-01

    Experimental in situ synchrotron x-ray diffraction results tracking the strain behavior of the various layers during a cycle, under thermo-mechanical conditions are presented in this work. The quantitative strain measurements here show that the thermally grown oxide briefly experiences in-plane tensile stress ({sigma}{sub 22} = +36.4 MPa) with increased mechanical loading during ramp-up in the thermal cycle. These findings are the first in situ experimental observations of these strains under thermo-mechanical conditions, envisaged to serve as a catalyst for crack initiation. The depth resolved measurements of strain taken during applied thermal and mechanical load in this work are a significant step towards achieving realistic testing conditions.

  11. Ultra-low thermal conductivity of nanogranular indium tin oxide films deposited by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Brinzari, Vladimir I.; Cocemasov, Alexandr I.; Nika, Denis L.; Korotcenkov, Ghenadii S.

    2017-02-01

    The authors have shown that nanogranular indium tin oxide (ITO) films, deposited by spray pyrolysis on a silicon substrate, demonstrate ultralow thermal conductivity κ ˜ 0.84 ± 0.12 Wm-1 K-1 at room temperature. This value is approximately by one order of magnitude lower than that in bulk ITO. The strong drop of thermal conductivity is explained by the nanogranular structure and porosity of ITO films, resulting in enhanced phonon scattering on grain boundaries. The experimental results were interpreted theoretically, employing the Boltzmann transport equation approach for phonon transport and filtering model for electronic transport. The calculated values of thermal conductivity are in reasonable agreement with the experimental findings. The presented results show that ITO films with an optimal nanogranular structure may be prospective for thermoelectric applications.

  12. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence.

    PubMed

    Flynn, Padrig B; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P; Elliott, Christopher T; Laverty, Garry; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2016-05-31

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30-60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa.

  13. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence

    PubMed Central

    Flynn, Padrig B.; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P.; Elliott, Christopher T.; Laverty, Garry; Gorman, Sean P.; Graham, William G.; Gilmore, Brendan F.

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30–60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  14. Studies on Thermal and Mechanical Properties of Epoxy-Silicon Oxide Hybrid Materials

    NASA Astrophysics Data System (ADS)

    Ghosh, P. K.; Kumar, Kaushal; Kumar, Arun

    2015-11-01

    Ultrasonic dual mixing (UDM) process involving ultrasonic vibration with simultaneous stirring is used to prepare epoxy-silicon oxide hybrid materials with inorganic nanoscale building blocks by incorporating nanoscale silicon oxide network in epoxy matrix. The silicon oxide network is obtained from tetraethoxysilane (TEOS) by using the in situ sol-gel process. Same epoxy-silica hybrid materials were also prepared by mixing with simple impeller stirring, and its properties were compared with the material of same composition prepared by the UDM process. The epoxy-silicon oxide hybrid materials are characterized by using FT-IR, DSC, FESEM, and XRD techniques. The glass transition temperature, tensile strength, and elastic modulus of the epoxy-silicon oxide hybrid materials treated by UDM process are found comparatively better than those of the materials processed by a rotating impeller. FESEM studies confirm that amount of TEOS varies the distribution and size of silicon oxide network, which remains relatively finer at lower content of TEOS. Significant improvement of thermal and mechanical properties of the neat epoxy is noted in the presence of 3.05 wt.% TEOS content in it is giving rise to the formation of inorganic building block of silicon oxide of size 88 ± 45 nm in the matrix. In this regard, the use of UDM process is found superior to mixing by simple impeller stirring for enhancement of properties of epoxy-silicon oxide hybrid materials. Lowering of properties of the epoxy-silicon oxide hybrid materials with TEOS addition beyond 3.05 wt.% up to 6.1 wt.% occurs primarily due to increase of amount and size (up to 170 ± 82 nm) of the inorganic building block in the matrix.

  15. Mechanical, thermal and morphological characterization of polycarbonate/oxidized carbon nanofiber composites produced with a lean 2-step manufacturing process.

    PubMed

    Lively, Brooks; Kumar, Sandeep; Tian, Liu; Li, Bin; Zhong, Wei-Hong

    2011-05-01

    In this study we report the advantages of a 2-step method that incorporates an additional process pre-conditioning step for rapid and precise blending of the constituents prior to the commonly used melt compounding method for preparing polycarbonate/oxidized carbon nanofiber composites. This additional step (equivalent to a manufacturing cell) involves the formation of a highly concentrated solid nano-nectar of polycarbonate/carbon nanofiber composite using a solution mixing process followed by melt mixing with pure polycarbonate. This combined method yields excellent dispersion and improved mechanical and thermal properties as compared to the 1-step melt mixing method. The test results indicated that inclusion of carbon nanofibers into composites via the 2-step method resulted in dramatically reduced ( 48% lower) coefficient of thermal expansion compared to that of pure polycarbonate and 30% lower than that from the 1-step processing, at the same loading of 1.0 wt%. Improvements were also found in dynamic mechanical analysis and flexural mechanical properties. The 2-step approach is more precise and leads to better dispersion, higher quality, consistency, and improved performance in critical application areas. It is also consistent with Lean Manufacturing principles in which manufacturing cells are linked together using less of the key resources and creates a smoother production flow. Therefore, this 2-step process can be more attractive for industry.

  16. Strong cationic oxidizers: thermal decomposition, electronic structure and magnetism of their compounds.

    PubMed

    Leszczyński, Piotr J; Grochala, Wojciech

    2013-01-01

    Strong oxidizers could be provisionally defined as compounds for which the standard redox potential exceeds 2.0 V in the NHE scale. Compounds which contain transition or post-transition metals at their unusually high positive oxidation states constitute one important family of strong oxidizers. Majority of such systems typically exhibit either diamagnetic or 'simple' paramagnetic properties down to very low temperatures. This is connected with the fact that highest oxidation states of metals are stabilized in fluoride environment and that binary high-valence metal fluorides form either molecular(OD) or low-dimensional (usually !D) crystals. The ternary and higher fluorides are usually OD in electronic sense leading again to low ordering temperatures. The situation becomes more interesting in selected compounds of Ag(II),the strongest oxidizer among all divalent cations, where one finds 2D or even 3D magnetic ordering at elevated temperatures.Thermal stability, electronic structure and magnetic properties of strong oxidizers are discussed jointly in this contribution with emphasis on the compounds of unique divalent silver.

  17. Multicycle rapid thermal annealing optimization of Mg-implanted GaN: Evolution of surface, optical, and structural properties

    SciTech Connect

    Greenlee, Jordan D.; Feigelson, Boris N.; Anderson, Travis J.; Hite, Jennifer K.; Mastro, Michael A.; Eddy, Charles R.; Hobart, Karl D.; Kub, Francis J.; Tadjer, Marko J.

    2014-08-14

    The first step of a multi-cycle rapid thermal annealing process was systematically studied. The surface, structure, and optical properties of Mg implanted GaN thin films annealed at temperatures ranging from 900 to 1200 °C were investigated by Raman spectroscopy, photoluminescence, UV-visible spectroscopy, atomic force microscopy, and Nomarski microscopy. The GaN thin films are capped with two layers of in-situ metal organic chemical vapor deposition -grown AlN and annealed in 24 bar of N{sub 2} overpressure to avoid GaN decomposition. The crystal quality of the GaN improves with increasing annealing temperature as confirmed by UV-visible spectroscopy and the full widths at half maximums of the E{sub 2} and A{sub 1} (LO) Raman modes. The crystal quality of films annealed above 1100 °C exceeds the quality of the as-grown films. At 1200 °C, Mg is optically activated, which is determined by photoluminescence measurements. However, at 1200 °C, the GaN begins to decompose as evidenced by pit formation on the surface of the samples. Therefore, it was determined that the optimal temperature for the first step in a multi-cycle rapid thermal anneal process should be conducted at 1150 °C due to crystal quality and surface morphology considerations.

  18. Rapid thermal anneal in InP, GaAs and GaAs/GaAlAs

    NASA Astrophysics Data System (ADS)

    Descouts, B.; Duhamel, N.; Godefroy, S.; Krauz, P.

    Ion implantation in semiconductors provides a doping technique with several advantages over more conventional doping methods and is now extensively used for device applications, e.g. field effect transistors (MESFET GaAs, MIS (InP), GaAs/GaAlAs heterojunction bipolar transistors (HBT). Because of the lattice disorder produced by the implantation, the dopant must be made electrically active by a postimplant anneal. As the device performances are very dependent on its electrical characteristics, the anneal is a very important stage of the process. Rapid anneal is known to provide less exodiffusion and less induffusion of impurities compared to conventional furnace anneal, so this technique has been used in this work to activate an n-type dopant (Si) in InP and a p-type dopant (Mg) in GaAs and GaAs/GaAIAs. These two ions have been chosen to realize implanted MIS InP and the base contacts for GaAs/GaAlAs HBTs. The experimental conditions to obtain the maximum electrical activity in these two cases will be detailed. For example, although we have not been able to obtain a flat profile in Mg + implanted GaAs/GaAlAs heterostructure by conventional thermal anneal, rapid thermal anneal gives a flat hole profile over a depth of 0.5 μm with a concentration of 1 x 10 19 cm -3.

  19. Thermal treatment of solution-processed nano-sized thin films of molybdenum oxide

    NASA Astrophysics Data System (ADS)

    Ganchev, M.; Sendova-Vassileva, M.; Popkirov, G.; Vitanov, P.

    2016-10-01

    A solution based deposition method to form nano-sized thin films of molybdenum oxide suitable for photovoltaic device applications is presented. The samples were deposited by spin-coating from molybdenum metal organic precursor solution on soda lime glass substrates. The influence of the process parameters such as spinning regime and concentration of the precursor solutions on the thickness and morphology of the films were investigated. The thermal decomposition of the molybdenum precursor and oxide formation were investigated by differential scanning calorimetry and characteristic patterns showed transitions up to 300oC followed by a zone of stability. Optical spectroscopy measurements in the wavelength range from 300 to 1800 nm presented an increase in transparency when temperature of annealing was raised up to 400oC. Raman scattering analysis revealed the presence of mixed molybdenum oxides. Measurements of the electrical conductivity were performed by the 4-point method.

  20. Induction thermal plasma synthesis of lithium oxide composite nanoparticles with a spinel structure

    NASA Astrophysics Data System (ADS)

    Sone, Hirotaka; Kageyama, Takuya; Tanaka, Manabu; Okamoto, Daisuke; Watanabe, Takayuki

    2016-07-01

    Li-Mn composite oxide nanoparticles are synthesized using an induction thermal plasma, and the formation mechanism is investigated on the basis of the homogenous nucleation rate and thermodynamic considerations. Under a high O2 partial pressure, MnO crystals nucleate and Li oxide condenses on MnO nuclei at a relatively high rate, forming LiMn2O4 in a single phase. On the other hand, under a low partial pressure of O2, LiMnO2 is obtained owing to the low condensation rate of Li oxide. This study presents the successful selective synthesis of LiMn2O4 nanoparticles by controlling the partial pressure of O2.

  1. THERMAL EFFECTS ON MASS AND SPATIAL RESOLUTION DURING LASER PULSE ATOM PROBE TOMOGRAPHY OF CERIUM OXIDE

    SciTech Connect

    Rita Kirchhofer; Melissa C. Teague; Brian P. Gorman

    2013-05-01

    Cerium oxide (CeO2) is an ideal surrogate material for trans-uranic elements and fission products found in nuclear fuels due to similarities in their thermal properties; therefore, cerium oxide was used to determine the best run condition for atom probe tomography (APT). Laser pulse APT is a technique that allows for spatial resolution in the nm scale and isotopic/elemental chemical identification. A systematic study of the impact of laser pulse energy and specimen base temperature on the mass resolution, measurement of stoichiometry, multiples, and evaporation mechanisms are reported in this paper. It was demonstrated that using laser pulse APT stoichiometric field evaporation of cerium oxide was achieved at 1 pJ laser pulse energy and 20 K specimen base temperature.

  2. Thermal oxidation of single-crystal silicon carbide - Kinetic, electrical, and chemical studies

    NASA Technical Reports Server (NTRS)

    Petit, J. B.; Neudeck, P. G.; Matus, L. G.; Powell, J. A.

    1992-01-01

    This paper presents kinetic data from oxidation studies of the polar faces for 3C and 6H SiC in wet and dry oxidizing ambients. Values for the linear and parabolic rate constants were obtained, as well as preliminary results for the activation energies of the rate constants. Examples are presented describing how thermal oxidation can be used to map polytypes and characterize defects in epitaxial layers grown on low tilt angle 6H SiC substrates. Interface widths were measured using Auger electron spectroscopy (AES) with Ar ion beam depth profiling and variable angle spectroscopic ellipsometry (VASE) with effective medium approximation (EMA) models. Preliminary electrical measurements of MOS capacitors are also presented.

  3. Precipitants of hepatic encephalopathy induce rapid astrocyte swelling in an oxidative stress dependent manner.

    PubMed

    Lachmann, Vera; Görg, Boris; Bidmon, Hans Jürgen; Keitel, Verena; Häussinger, Dieter

    2013-08-15

    Hepatic encephalopathy (HE) is seen as the clinical manifestation of a low grade cerebral edema with formation of reactive oxygen and nitrogen species (RNOS). Astrocyte swelling is a crucial event and in cultured astrocytes HE-relevant factors almost instantaneously induce the formation of RNOS. However, short term effects of ammonia, inflammatory cytokines and RNOS on the volume of astrocytes and other brain cells as well as the underlying mechanisms are largely unknown, although a pathogenic link between RNOS formation and swelling in HE has been proposed. This issue was addressed in the present study by means of live-cell volume microscopy of brain cells in vitro. Ammonia, diazepam and pro-inflammatory cytokines such as tumor-necrosis factor-α (TNF-α), interferon-γ, interleukin-1β induced within 20min astrocyte swelling by about 25% accompanied by nuclear swelling of similar magnitude. Astrocyte swelling in response to NH4Cl, TNF-α or diazepam was abolished by the antioxidant epigallocatechin-gallate pointing to an involvement of RNOS. NH4Cl-induced astrocyte swelling was sensitive to inhibition of glutamine synthetase, NADPH oxidase or nitric oxide synthases. In line with a NMDA receptor-, prostanoid- and Ca(2+)-dependence of NH4Cl-induced RNOS formation, Ca(2+) chelation and inhibition of NMDA receptors or cyclooxygenase suppressed NH4Cl-induced astrocyte swelling, whereas the Ca(2+)-ionophore ionomycin, NMDA, glutamate and prostanoids induced rapid astrocyte swelling. NH4Cl also induced swelling of cultured microglia in a glutamine-synthesis dependent way, but had no effect on cell volume of cultured neurons. It is concluded that the pathways which trigger RNOS formation in astrocytes also trigger astrocyte swelling, whereas conversely and as shown previously hypoosmotic astrocyte swelling can induce RNOS formation. This establishes a complex interplay with an auto-amplificatory loop between RNOS formation and astrocyte swelling as an important event in

  4. Thermal and oxidative stability of the Ocimum basilicum L. essential oil/β-cyclodextrin supramolecular system

    PubMed Central

    Hădărugă, Nicoleta G; Costescu, Corina I; David, Ioan; Gruia, Alexandra T

    2014-01-01

    Summary Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD) complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed–uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC–MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole) was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated. PMID:25550747

  5. Thermal and oxidative stability of the Ocimum basilicum L. essential oil/β-cyclodextrin supramolecular system.

    PubMed

    Hădărugă, Daniel I; Hădărugă, Nicoleta G; Costescu, Corina I; David, Ioan; Gruia, Alexandra T

    2014-01-01

    Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD) complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed-uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC-MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole) was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated.

  6. Stress Intensity Factors for Cracking Metal Structures under Rapid Thermal Loading. Volume 2. Theoretical Background

    DTIC Science & Technology

    1989-08-01

    actual value, and that a coarse mesh comparable to the mesh used in this study 5-23 would yield K1 values which are in error by about 10%. To check...8217. Ar Figure~~~~~~ ~ ~ ~ ~ 7-5 :iieEeit.-,e o etica no I a - c. ; cIý*s l.e u f c ___ I I _____57 -MENNE- z R Figure 7-16. Finite Element Mesh at the...the full capacity. The full rated capacity of the spot heater is 0.711 BTU/sec (750 W). Due to radiation losses, the actual thermal loading applied on

  7. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient.

    PubMed

    Roxy, Mathew Koll; Ritika, Kapoor; Terray, Pascal; Murtugudde, Raghu; Ashok, Karumuri; Goswami, B N

    2015-06-16

    There are large uncertainties looming over the status and fate of the South Asian summer monsoon, with several studies debating whether the monsoon is weakening or strengthening in a changing climate. Our analysis using multiple observed datasets demonstrates a significant weakening trend in summer rainfall during 1901-2012 over the central-east and northern regions of India, along the Ganges-Brahmaputra-Meghna basins and the Himalayan foothills, where agriculture is still largely rain-fed. Earlier studies have suggested an increase in moisture availability and land-sea thermal gradient in the tropics due to anthropogenic warming, favouring an increase in tropical rainfall. Here we show that the land-sea thermal gradient over South Asia has been decreasing, due to rapid warming in the Indian Ocean and a relatively subdued warming over the subcontinent. Using long-term observations and coupled model experiments, we provide compelling evidence that the enhanced Indian Ocean warming potentially weakens the land-sea thermal contrast, dampens the summer monsoon Hadley circulation, and thereby reduces the rainfall over parts of South Asia.

  8. Research on optimal process parameters in thermally oxidation-assisted polishing of reaction-sintered silicon carbide

    NASA Astrophysics Data System (ADS)

    Shen, Xinmin; Yamamura, Kazuya; Zhang, Xiaonan; Zhang, Xiangpo; Wang, Dong; Peng, Kang

    2016-10-01

    Reaction-sintered silicon carbide (RS-SiC) has been widely used in space telescope systems for its excellent physical and mechanical properties. Thermally oxidation-assisted polishing is a practical machining method to obtain RS-SiC parts with high precision, and the research focus is optimization of process parameters, because there are bumpy structures on the oxidized RS-SiC. By atomic force microscopy (AFM) detection, the distributions of oxides on the oxidized RS-SiC sample are quantitative analyzed when the thermal oxidation time is 5min, 30min, and 60min, and the calculated average differences of oxide heights between the initial Si grains and SiC grains are 10.7nm, 25.1nm, and 35.2nm, respectively. Meanwhile, the volume expansion coefficient in oxidation of Si/SiC to SiO2 is 2.257 and 2.194, respectively. Through theoretical derivation based on the Deal-Grove model, the numerical relationship between differences of oxide heights and thermal oxidation time is obtained. Combining with the material removal rate of oxide by ceria slurry in the abrasive polishing, the obtained surface quality can be precisely forecasted and controlled. The oxidized RS-SiC sample, when the oxidation time is 30min, is polished with different times to verify the theoretical analysis results. When the polishing times are 20min, 30min, and 40min, the obtained differences of oxide heights by the AFM detection are consistent with theoretical calculated results. Research on the optimal process parameters in thermally oxidation-assisted polishing of RS-SiC can improve the process level of RS-SiC sample and promote the application of SiC parts.

  9. Microwave-Accelerated Rapid, Chemical Oxidant-Free, Material-Independent Surface Chemistry of Poly(dopamine).

    PubMed

    Lee, Mihyun; Lee, Si-Hwa; Oh, Il-Kwon; Lee, Haeshin

    2017-01-01

    A simple strategy for the rapid preparation of multifunctional polydopamine (pDA) coatings is demonstrated. Microwave irradiation of the coating solution enables the formation of a ≈18 nm thick, genuine pDA coating in 15 min, which is ≈18 times faster than conventional coating. The acceleration effect results from the radical generation and temperature increase, which facilitate thermally accelerated radical polymerization of dopamine.

  10. Solid oxide fuel cell interconnect design optimization considering the thermal stresses.

    PubMed

    Xu, Min; Li, Tingshuai; Yang, Ming; Andersson, Martin

    The mechanical failure of solid oxide fuel cell (SOFC) components may cause cracks with consequences such as gas leakage, structure instability and reduction of cell lifetime. A comprehensive 3D model of the thermal stresses of an anode-supported planar SOFC is presented in this work. The main objective of this paper is to get an interconnect optimized design by evaluating the thermal stresses of an anode-supported SOFC for different designs, which would be a new criterion for interconnect design. The model incorporates the momentum, mass, heat, ion and electron transport, as well as steady-state mechanics. Heat from methane steam reforming and water-gas shift reaction were considered in our model. The results examine the relationship between the interconnect structures and thermal stresses in SOFC at certain mechanical properties. A wider interconnect of the anode side lowers the stress obviously. The simulation results also indicate that thermal stress of coflow design is smaller than that of counterflow, corresponding to the temperature distribution. This study shows that it is possible to design interconnects for an optimum thermal stress performance of the cell.

  11. Methane from partially digested sewage sludge using a steam-injection rapid thermal reactor. Final report

    SciTech Connect

    Leuschner, A.P.; Laquidara, M.J.

    1988-09-01

    Each day, a fleet of barges hauls 300,000 cubic feet of sewage sludge from wastewater treatment facilities in New York City, to an ocean dumping site 106 miles offshore. On January 1, 1992, this ocean dumping site will be officially closed by federal mandate, forcing the city to find alternative disposal methods for its sewage sludge. Researchers at Dynatech and the Thayer School of Engineering at Dartmouth College have explored an innovative method for enhancing the anaerobic digestion sludge treatment system. Results from an extensive series of laboratory tests indicate that using a thermal reactor, an additional 70% of the organic material in the sludge can be converted to biogas by anaerobic digestion. More importantly, 85% of the total organic material is removed from the sludge. The remaining sludge was dewatered and found to be two to four times drier than normally dewatered sludge. Applying these results to NYC, the volume of sludge requiring disposal might be reduced from 300,000 cubic feet per day to about 13,000 cubic feet per day through a three-step process employing thermal reactors, anaerobic digestion and dewatering.

  12. An integrated photo-thermal sensing system for rapid and direct diagnosis of anemia.

    PubMed

    Kwak, Bong Seop; Kim, Hyung Joon; Kim, Hyun Ok; Jung, Hyo-Il

    2010-12-15

    This article presents a thermal biosensor to diagnose the anemia without chemical treatments using temperature increase of red blood cells (RBC) when hemoglobin molecules absorb specific wavelength of photons and convert them to thermal energy. For measuring temperature change of red blood cell, the micro-scaled platinum resistance temperature detector (Pt RTD) was developed. For maintenance of constant ambient temperature, we designed and fabricated a thermostat system. The thermostat system consists of a K-type thermocouple and two electric heaters that serve to increase the system temperature, which is monitored by the thermocouple. Both heaters and the thermocouple were connected to a proportional-integral-derivative (PID) controller and enabled to maintain the temperature constant (<±0.1°C). For specific heating of red blood cell, 8.0 W/cm(2) diode pumped solid state (DPSS) continuous wave (CW) laser module was used with 532 nm wavelength. Using this system, we successfully measured the temperature variations (from 66.33±2.72°C to 74.16±2.06°C) of whole blood samples from 10 anemic patients and subsequently determined the concentration of hemoglobin (from 7.2 g/dL to 9.8 g/dL). The method proposed in this paper requires significantly less amount of whole blood sample (6 μl) compared with the conventional methods (175 μl) and allows instantaneous diagnosis (3 s) of anemia.

  13. Influence of aluminum oxide on the prebiotic thermal synthesis of Gly-Glu-(Gly-Glu)(n) polymer.

    PubMed

    Leyton, Patricio; Zárate, R Antonio; Fuentes, Sandra; Paipa, Carolina; Gómez-Jeria, Juan S; Leyton, Yessica

    2011-01-01

    The effect of the aluminum oxide on the thermal synthesis of the glycine-glutamic acid (Gly-Glu-(Gly-Glu)(n) polymer is described. The thermal synthesis in the molten state was carried out in the absence and presence of the oxide. In both cases, the vibrational spectra showed characteristic group frequencies corresponding predominantly to a Gly-Glu-(Gly-Glu)(n) sequence in the polymeric structure. The theoretical spectral data support the experimental proposed Gly-Glu-(Gly-Glu)(n) sequence for the polymer. The SEM-EDX characterization of the solid phase involved in the thermal synthesis showed that the aluminum oxide participates as a site for nucleation and growth of the polymer, explaining the increase of 25% efficiency in the presence of aluminum oxide. Electrophoresis data show shorter polypeptide chains in the presence of aluminum oxide.

  14. Synthesis Gas Production by Rapid Solar Thermal Gasification of Corn Stover

    SciTech Connect

    Perkins, C. M.; Woodruff, B.; Andrews, L.; Lichty, P.; Lancaster, B.; Weimer, A. W.; Bingham, C.

    2008-03-01

    Biomass resources hold great promise as renewable fuel sources for the future, and there exists great interest in thermochemical methods of converting these resources into useful fuels. The novel approach taken by the authors uses concentrated solar energy to efficiently achieve temperatures where conversion and selectivity of gasification are high. Use of solar energy removes the need for a combustion fuel and upgrades the heating value of the biomass products. The syngas product of the gasification can be transformed into a variety of fuels useable with today?s infrastructure. Gasification in an aerosol reactor allows for rapid kinetics, allowing efficient utilization of the incident solar radiation and high solar efficiency.

  15. Rapid solid-phase peptide synthesis using thermal and controlled microwave irradiation.

    PubMed

    Bacsa, Bernadett; Desai, Bimbisar; Dibó, Gábor; Kappe, C Oliver

    2006-10-01

    A rapid and efficient microwave-assisted solid-phase synthesis method is described for the preparation of the nonapeptide WDTVRISFK, using conventional Fmoc/Bu(t) orthogonal protection strategy. The synthesis protocol is based on the use of cycles of pulsed microwave irradiation with intermittent cooling of the reaction during the removal of the Fmoc protecting group and during the coupling. The desired nonapeptide was obtained in highest yield and purity by employing MicroKan technology. The chemical reactions were carried out in a single-mode microwave reactor, equipped with a fiber-optic probe to monitor the reaction temperature continuously.

  16. Thermal decomposition studies of energetic materials using confined rapid thermolysis/FTIR spectroscopy

    SciTech Connect

    Kim, E.S.; Lee, H.S.; Mallery, C.F.; Thynell, S.T.

    1997-07-01

    An experimental setup for performing rapid thermolysis studies of small samples of energetic materials is described. In this setup, about 8 {micro}L of a liquid sample or about 2 mg of a solid sample is heated at rates exceeding 1,500 K/s to a set temperature where decomposition occurs. The rapid heating is achieved as a result of confining the sample between two closely spaced isothermal surfaces. The gaseous decomposition products depart from the confined space through a rectangular slit into the region of detection. The evolved gases are quantified using FTIR absorption spectroscopy by accounting for the instrument line shape. To illustrate the use of this setup, the thermolysis behaviors of three different energetic materials are examined. These materials include HMX, RDX, and HAN, all of which are considered as highly energetic propellant ingredients. The results obtained in this study of the temporal evolution of species concentrations from these ingredients are in reasonably close agreement with results available in the literature.

  17. Thermal ecology on an exposed algal reef: infrared imagery a rapid tool to survey temperature at local spatial scales

    NASA Astrophysics Data System (ADS)

    Cox, T. E.; Smith, C. M.

    2011-12-01

    We tested the feasibility of infra-red (IR) thermography as a tool to survey in situ temperatures in intertidal habitats. We employed this method to describe aspects of thermal ecology for an exposed algal reef in the tropics (O`ahu, Hawai`i). In addition, we compared temperatures of the surrounding habitat as determined by IR thermography and traditional waterproof loggers. Images of reef organisms (6 macroalgae, 9 molluscs, 1 anthozoan, and 2 echinoderms), loggers, and landscapes were taken during two diurnal low tides. Analysis of IR thermographs revealed remarkable thermal complexity on a narrow tropical shore, as habitats ranged from 18.1 to 38.3°C and surfaces of organisms that ranged from 21.1 to 33.2°C. The near 20°C difference between abiotic habitats and the mosaic of temperatures experienced by reef organisms across the shore are similar to findings from temperate studies using specialized longterm loggers. Further, IR thermography captured rapid temperature fluctuations that were related to tidal height and cross-correlated to wave action. Finally, we gathered evidence that tidal species were associated with particular temperature ranges and that two species possess morphological characteristics that limit thermal stress. Loggers provided similar results as thermography but lack the ability to resolve variation in fine-scale spatial and temporal patterns. Our results support the utility of IR thermography in exploring thermal ecology, and demonstrate the steps needed to calibrate data leading to establishment of baseline conditions in a changing and heterogeneous environment.

  18. Low thermal budget in situ removal of oxygen and carbon on silicon for silicon epitaxy in an ultrahigh vacuum rapid thermal chemical vapor deposition reactor

    NASA Astrophysics Data System (ADS)

    Sanganeria, Mahesh K.; Öztürk, Mehmet C.; Violette, Katherine E.; Harris, Gari; Lee, C. Archie; Maher, Dennis M.

    1995-03-01

    In this letter, we present experimental evidence on desorption of O and C from a Si surface resulting in impurity levels below the detection levels of secondary ion mass spectroscopy. We then propose a surface preperation method for silicon epitaxy that consists of an ex situ clean and an in situ low thermal budget prebake in an ultrahigh vacuum rapid thermal chemical vapor deposition (UHV-RTCVD) reactor. The ex situ clean consists of a standard RCA clean followed by a dilute HF dip and rinse in de-ionized water. The in situ clean is either carried out in vacuum or in a low partial pressure of 10% Si2H6 in H2. The experiments were conducted in an UHV-RTCVD reactor equipped with oil-free vacuum pumps. We propose that the responsible mechanism is desorption of oxygen and hydrocarbons from the Si surface due to the low partial pressures of these contaminants in the growth chamber. If Si2H6 is used during the prebake, a sufficiently low growth rate is required in order to provide sufficient time for desorption and avoid Si overgrowth on the O and C sites.

  19. Direct numerical simulations of a rapidly expanding thermal plume: structure and entrainment interaction

    NASA Astrophysics Data System (ADS)

    Plourde, Fr?D.?Ric; Pham, Minh Vuong; Kim, Son Doan; Balachandar, S.

    We examine the development of a thermal plume originating from a localized heat source using direct numerical simulation. The Reynolds number of the plume, based on source diameter and the characteristic buoyancy velocity, is chosen to be 7700, which is sufficiently large so that the flow turns to a fully turbulent state. A highly resolved grid of 622 million points is used to capture the entire range of turbulent scales in the plume. Here at the source, only heat has been added with no mass or momentum addition and accordingly the vertical evolution of the mass, momentum and buoyancy fluxes computed from the simulation have been verified to follow those of a pure thermal plume. The computed vertical evolution of the time-averaged centreline velocity and temperature are in good agreement with available experimental measurements. Investigation of the time evolution of the plume shows periodic formation of vortex ring structure surrounding the main ascending column of hot fluid. The vortex ring forms very close to the heat source and even at formation it is three-dimensional. The vortex ring ascends with the plume and at an elevation of about two diameters it strongly interacts with and destabilizes the central column and subsequently a complex turbulent flow arises. Thus, relatively laminar, transitional and fully turbulent regimes of the plume evolution can be identified. In the fully turbulent regime, complex three-dimensional hairpin-like vortex structures are observed; but vestiges of the coherent vortex rolls that form close to the source can be observed in the turbulent statistics. It is shown that local entrainment consists of contraction and expulsion phases. Such instantaneous mechanisms drive the entrainment process, and the instantaneous entrainment coefficient shows large variation in both time and space with local values up to three times higher than the average entrainment level. Such findings support the view that entrainment mechanisms in plumes

  20. Thermal behavior of Ni- and Cu-containing plasma electrolytic oxide coatings on titanium

    NASA Astrophysics Data System (ADS)

    Rudnev, V. S.; Wybornov, S.; Lukiyanchuk, I. V.; Staedler, T.; Jiang, X.; Ustinov, A. Yu.; Vasilyeva, M. S.

    2012-09-01

    In this work the effect of thermal annealing on the surface composition, structure and catalytic activity in CO oxidation of NiO + CuO/TiO2/Ti composites is studied. The composites have been obtained by a plasma electrolytic oxidation (PEO) technique, followed by impregnation in a solution of nickel (II) and copper (II) salts and air annealing. The structures contain ˜20 at% Ni and ˜12 at% Cu. It has been shown that the additional air annealing of such structures at temperature above 750 °C results in phosphate crystallization in the coatings and decreasing of Cu concentration in the surface layers. A growth of filiform nanocrystals containing mainly oxygen compounds of nickel and titanium on the coating surface takes place at the temperatures above 700 °C. The nanocrystals have a diameter of 50-200 nm and lengths below 10 μm. Such changes result in decreasing of catalytic activity of the composites in CO oxidation. At the same time the ascertained regularities may be of interest for obtaining the Ni-containing oxide catalysts with an extended surface, perspective for usage in organic catalysis or for preparing oxide nanofibers.

  1. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    NASA Astrophysics Data System (ADS)

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-01

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn3O4, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20-30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 - 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9-10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  2. Thermal stability and oxidation resistance of Ti–Al–N coatings

    PubMed Central

    Chen, Li; Paulitsch, Jörg; Du, Yong; Mayrhofer, Paul H.

    2012-01-01

    Ti1 − xAlxN coatings are widely used for wear resistant applications due to their excellent mechanical and thermal properties, which depend to a great extent on the Al content. Here, we concentrate on a comparative study of the effect of Al content on crystal structure, thermal stability and oxidation resistance of Ti1 − xAlxN coatings. In agreement to earlier studies, thermal annealing of the individual cubic (c) and wurtzite (w) structured metastable Ti1 − xAlxN coatings induces decomposition into their stable phases c-TiN and w-AlN. The decomposition process for c-Ti1 − xAlxN involves an intermediate formation of cubic Al-rich and Ti-rich domains which results in a hardness increase to 34.7 and 34.4 GPa for x = 0.52 and 0.62 when annealed at 950 and 900 °C, respectively. In general, coatings with an Al content closer to the solubility limit, exhibit an earlier decomposition process, and hence an earlier peak-hardness. During exposure of the Ti1 − xAlxN coatings to ambient air at elevated temperatures Al2O3, TiO2 and Al2TiO5 are formed. The oxidation resistance of as-deposited single-phase Ti1 − xAlxN coatings, cubic or wurtzite structured, increases with increasing Al content. However, coatings containing Al contents at the metastable solubility limit, which result in a mixed cubic–wurtzite structure, have the worst oxidation resistance of the Al-containing coatings investigated. The single phase wurtzite structured coating w-Ti0.25Al0.75N shows the best oxidation resistance, with only ~0.7 μm oxide scale thickness, after thermal exposure for 20 h at 850 °C in ambient air. PMID:23471551

  3. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods.

    PubMed

    Shen, D K; Gu, S; Jin, Baosheng; Fang, M X

    2011-01-01

    The pyrolytic behavior of wood is investigated under inert and oxidative conditions. The TGA experiment is given a temperature variation from 323 to 1173 K by setting the heating rate between 5 and 40 K/min. The results of DTG curves show that the hemicellulose shoulder peak for birch is more visible under inert atmosphere due to the higher content of reactive xylan-based hemicellulose (mannan-based for pine). When oxygen presents, thermal reactivity of biomass (especially the cellulose) is greatly enhanced due to the acceleration of mass loss in the first stage, and complex reactions occur simultaneously in the second stage when char and lignin oxidize. A new kinetic model is employed for biomass pyrolysis, namely the distributed activation energy model (DAEM). Under inert atmosphere, the distributed activation energy for the two species is found to be increased from 180 to 220 kJ/mol at the solid conversion of 10-85% with the high correlation coefficient. Under oxidative atmosphere, the distributed activation energy is about 175-235 kJ/mol at the solid conversion of 10-65% and 300-770 kJ/mol at the solid conversion of 70-95% with the low correlation coefficient (below 0.90). Comparatively, the activation energy obtained from established global kinetic model is correspondingly lower than that from DAEM under both inert and oxidative environments, giving relatively higher correlation coefficient (more than 0.96). The results imply that the DAEM is not suitable for oxidative pyrolysis of biomass (especially for the second mass loss stage in air), but it could represent the intrinsic mechanism of thermal decomposition of wood under nitrogen better than global kinetic model when it is applicable.

  4. Diffusion-reaction of aluminum and oxygen in thermally grown Al2O3 oxide layers

    NASA Astrophysics Data System (ADS)

    Osorio, Julián D.; Giraldo, Juliana; Hernández, Juan C.; Toro, Alejandro; Hernández-Ortiz, Juan P.

    2014-04-01

    The diffusion-reaction of aluminum (Al) and oxygen (O), to form thermally grown oxide (TGO) layers in thermal barrier coatings (TBCs), is studied through an analytical model. A nonsymmetrical radial basis function approach is used to numerically solve the mass balance equations that predict the TGO growth. Correct boundary conditions for the Al and O reactions are laid out using scaling arguments. The Damköhler number shows that the O-Al reaction is several orders of magnitude faster than diffusion. In addition, a comparison between aluminum and oxygen diffusivities indicates that TGO growth is governed by aluminum diffusion. The results are compared with experimental measurements on air plasma spray-deposited TBCs treated at 1,373 K with exposure times ranging from 1 to 1700 hours. We found that, for several time decades, the thickness of the thermally grown layer has power law dependence of time with an exponent of ½, following the diffusion control mechanism. At later times, however, the presence of other oxides and additional kinetics modify the diffusive exponent.

  5. Synthesis of high-performance graphene nanosheets by thermal reduction of graphene oxide

    SciTech Connect

    Wei, Ang; Wang, Jingxia; Long, Qing; Liu, Xiangmei; Li, Xingao; Dong, Xiaochen; Huang, Wei

    2011-11-15

    Graphical abstract: High-performance graphene nanosheets were synthesized by thermal reduction of graphene oxide under ethanol atmosphere. X-ray photoelectron spectroscopy, Raman spectroscopy and electrical transport measurements indicate that the resulting graphene nanosheets can effectively restore its graphic structure in GO and present high mobility. Highlights: {yields} Graphene nanosheets were synthesized by reduction of GO under ethanol atmosphere. {yields} Raman and XPS results indicate the reduced graphene sheets have high-performance. {yields} Graphene sheets field-effect transistors present high mobility. -- Abstract: High-performance graphene nanosheets have been synthesized by thermal reduction of graphene oxide (GO) under ethanol atmosphere. The reduced GO nanosheets were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy and electrical transport measurements, respectively. The results indicated that the thermal reduction of GO under ethanol atmosphere can effectively remove the oxygen-containing functional groups and restore its graphic structure compared to the ones obtained using hydrazine or hydrogen. The electrical measurements indicated that the electrical mobility of single-layer graphene sheet reduced under ethanol atmosphere at 900 {sup o}C can reach 29.08 cm{sup 2} V{sup -1} S{sup -1}.

  6. Thermally Stable Silver Nanowires-Embedding Metal Oxide for Schottky Junction Solar Cells.

    PubMed

    Kim, Hong-Sik; Patel, Malkeshkumar; Park, Hyeong-Ho; Ray, Abhijit; Jeong, Chaehwan; Kim, Joondong

    2016-04-06

    Thermally stable silver nanowires (AgNWs)-embedding metal oxide was applied for Schottky junction solar cells without an intentional doping process in Si. A large scale (100 mm(2)) Schottky solar cell showed a power conversion efficiency of 6.1% under standard illumination, and 8.3% under diffused illumination conditions which is the highest efficiency for AgNWs-involved Schottky junction Si solar cells. Indium-tin-oxide (ITO)-capped AgNWs showed excellent thermal stability with no deformation at 500 °C. The top ITO layer grew in a cylindrical shape along the AgNWs, forming a teardrop shape. The design of ITO/AgNWs/ITO layers is optically beneficial because the AgNWs generate plasmonic photons, due to the AgNWs. Electrical investigations were performed by Mott-Schottky and impedance spectroscopy to reveal the formation of a single space charge region at the interface between Si and AgNWs-embedding ITO layer. We propose a route to design the thermally stable AgNWs for photoelectric device applications with investigation of the optical and electrical aspects.

  7. Reduced silanized graphene oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    Lin, Jing; Zhang, Peipei; Zheng, Cheng; Wu, Xu; Mao, Taoyan; Zhu, Mingning; Wang, Huaquan; Feng, Danyan; Qian, Shuxuan; Cai, Xianfang

    2014-10-01

    This paper describes the synthesis of reduced silanized graphene oxide/epoxy-polyurethane (EPUAs/R-Si-GEO) composites with enhanced thermal and mechanical properties. Graphene oxide (GEO), prepared from natural graphite flakes, was modified with methacryloxypropyltrimethoxysilane to prepare silanized GEO (Si-GEO), and was then reduced by NaHSO3 to prepare R-Si-GEO (partially reduced Si-GEO). EPAc/R-Si-GEO (R-Si-GEO/epoxy acrylate copolymers) was synthesized via an in situ polymerization of R-Si-GEO and epoxy acrylic monomers. EPUAs/R-Si-GEO was obtained by curing reaction between EPAc/R-Si-GEO and an isocyanate curing agent. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were used to characterize the surface and crystal structure of the modified graphene and EPUAs/R-Si-GEO. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize their morphology. Thermal gravimetric analysis (TGA), tensile strength, elongation at break, and cross-linking density measurements showed that the thermal stability and mechanical properties of EPUAs/R-Si-GEO were greatly enhanced by the addition of R-Si-GEO.

  8. Conductive Circuit Containing a Polymer Composition Containing Thermally Exfoliated Graphite Oxide and Method of Making the Same

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2014-01-01

    A conductive circuit containing a polymer composite, which contains at least one polymer and a modified graphite oxide material, containing thermally exfoliated graphite oxide having a surface area of from about 300 m(sup.2)/g to 2600 m(sup.2)/g, and a method of making the same.

  9. Effect of ingestion of thermally oxidized frying oil on peroxidative criteria in rats.

    PubMed

    Izaki, Y; Yoshikawa, S; Uchiyama, M

    1984-05-01

    Thermally oxidized rapeseed oils (4 levels of deterioration; used by a manufacturer of fried fish paste in a conventional manner) were fed to rats at a practical level of concentration. Rats were fed a diet ad libitum for 13 weeks that contained 15% of a test oil. The effects of the diet on several biochemical criteria related to peroxidative alterations were investigated. In groups given thermally oxidized oils relative liver weight, relative kidney weight, thiobarbituric acid-reactive substances (TBA-RS) in the liver and reduced glutathione content were increased significantly in proportion to the degree of deterioration of the oil, compared with the group given fresh oil. Tocopherol contents in both serum and liver were decreased considerably in proportion to the deterioration level of the supplied oils. The above criteria correlated well with various deterioration indices of the oil. For instance, TBA-RS was well correlated (p less than 0.001) with petroleum ether-insoluble oxidized fatty acid (r = 0.9191), column chromatographically separated polar fraction (r = 0.9056), glyceride dimer fraction (r = 0.9023) and carbonyl value (r = 0.8647).

  10. Contribution of nitric oxide in the contraction-induced rapid vasodilation in young and older adults.

    PubMed

    Casey, Darren P; Walker, Branton G; Ranadive, Sushant M; Taylor, Jennifer L; Joyner, Michael J

    2013-08-15

    We tested the hypothesis that reduced nitric oxide (NO) bioavailability contributes to the attenuated peak and total vasodilation following single-muscle contractions in older adults. Young (n = 10; 24 ± 2 yr) and older (n = 10; 67 ± 2 yr) adults performed single forearm contractions at 10, 20, and 40% of maximum during saline infusion (control) and NO synthase (NOS) inhibition via N(G)-monomethyl-l-arginine. Brachial artery diameters and velocities were measured using Doppler ultrasound and forearm vascular conductance (FVC; in ml·min(-1)·100 mmHg(-1)) was calculated from blood flow (ml/min) and blood pressure (mmHg). Peak and total vasodilator responses [change (Δ) in FVC from baseline] were attenuated in older adults at all intensities (P < 0.05). NOS inhibition reduced the peak ΔFVC at 10% (88 ± 12 vs. 52 ± 9 ml·min(-1)·100 mmHg(-1)), 20% (125 ± 13 vs. 83 ± 13 ml·min(-1)·100 mmHg(-1)), and 40% (207 ± 26 vs. 133 ± 20 ml·min(-1)·100 mmHg(-1)) in young subjects, (P < 0.05 for all) and in older adults at 10% (59 ± 5 vs. 47 ± 7 ml·min(-1)·100 mmHg(-1), P < 0.05) and 20% (88 ± 9 vs. 68 ± 9 ml·min(-1)·100 mmHg(-1), P < 0.05), but not 40% (128 ± 12 vs. 105 ± 11 ml·min(-1)·100 mmHg(-1), P = 0.11). The relative (%) reduction in peak ΔFVC due to NOS inhibition was greater in young vs. older adults at 20% (-36 ± 5 vs. -23 ± 5%, P < 0.05) and 40% (-35 ± 6 vs. -16 ± 7%, P < 0.05). The reduction in the total vasodilator response (area under the curve) with NOS inhibition was also greater in young vs. older adults at all intensities. Our data suggest that contraction-induced rapid vasodilation is mediated in part by NO, and that the contribution of NO is greater in young adults.

  11. Thermal model development and validation for rapid filling of high pressure hydrogen tanks

    SciTech Connect

    Johnson, Terry A.; Bozinoski, Radoslav; Ye, Jianjun; Sartor, George; Zheng, Jinyang; Yang, Jian

    2015-06-30

    This paper describes the development of thermal models for the filling of high pressure hydrogen tanks with experimental validation. Two models are presented; the first uses a one-dimensional, transient, network flow analysis code developed at Sandia National Labs, and the second uses the commercially available CFD analysis tool Fluent. These models were developed to help assess the safety of Type IV high pressure hydrogen tanks during the filling process. The primary concern for these tanks is due to the increased susceptibility to fatigue failure of the liner caused by the fill process. Thus, a thorough understanding of temperature changes of the hydrogen gas and the heat transfer to the tank walls is essential. The effects of initial pressure, filling time, and fill procedure were investigated to quantify the temperature change and verify the accuracy of the models. In this paper we show that the predictions of mass averaged gas temperature for the one and three-dimensional models compare well with the experiment and both can be used to make predictions for final mass delivery. Furthermore, due to buoyancy and other three-dimensional effects, however, the maximum wall temperature cannot be predicted using one-dimensional tools alone which means that a three-dimensional analysis is required for a safety assessment of the system.

  12. Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum.

    PubMed

    Wright, James D; Schaller, Morgan F

    2013-10-01

    The Paleocene/Eocene thermal maximum (PETM) and associated carbon isotope excursion (CIE) are often touted as the best geologic analog for the current anthropogenic rise in pCO2. However, a causal mechanism for the PETM CIE remains unidentified because of large uncertainties in the duration of the CIE's onset. Here, we report on a sequence of rhythmic sedimentary couplets comprising the Paleocene/Eocene Marlboro Clay (Salisbury Embayment). These couplets have corresponding δ(18)O cycles that imply a climatic origin. Seasonal insolation is the only regular climate cycle that can plausibly account for δ(18)O amplitudes and layer counts. High-resolution stable isotope records show 3.5‰ δ(13)C decrease over 13 couplets defining the CIE onset, which requires a large, instantaneous release of (13)C-depleted carbon. During the CIE, a clear δ(13)C gradient developed on the shelf with the largest excursions in shallowest waters, indicating atmospheric δ(13)C decreased by ~20‰. Our observations and revised release rate are consistent with an atmospheric perturbation of 3,000-gigatons of carbon (GtC).

  13. Thermal model development and validation for rapid filling of high pressure hydrogen tanks

    DOE PAGES

    Johnson, Terry A.; Bozinoski, Radoslav; Ye, Jianjun; ...

    2015-06-30

    This paper describes the development of thermal models for the filling of high pressure hydrogen tanks with experimental validation. Two models are presented; the first uses a one-dimensional, transient, network flow analysis code developed at Sandia National Labs, and the second uses the commercially available CFD analysis tool Fluent. These models were developed to help assess the safety of Type IV high pressure hydrogen tanks during the filling process. The primary concern for these tanks is due to the increased susceptibility to fatigue failure of the liner caused by the fill process. Thus, a thorough understanding of temperature changes ofmore » the hydrogen gas and the heat transfer to the tank walls is essential. The effects of initial pressure, filling time, and fill procedure were investigated to quantify the temperature change and verify the accuracy of the models. In this paper we show that the predictions of mass averaged gas temperature for the one and three-dimensional models compare well with the experiment and both can be used to make predictions for final mass delivery. Furthermore, due to buoyancy and other three-dimensional effects, however, the maximum wall temperature cannot be predicted using one-dimensional tools alone which means that a three-dimensional analysis is required for a safety assessment of the system.« less

  14. Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum

    PubMed Central

    Wright, James D.; Schaller, Morgan F.

    2013-01-01

    The Paleocene/Eocene thermal maximum (PETM) and associated carbon isotope excursion (CIE) are often touted as the best geologic analog for the current anthropogenic rise in pCO2. However, a causal mechanism for the PETM CIE remains unidentified because of large uncertainties in the duration of the CIE’s onset. Here, we report on a sequence of rhythmic sedimentary couplets comprising the Paleocene/Eocene Marlboro Clay (Salisbury Embayment). These couplets have corresponding δ18O cycles that imply a climatic origin. Seasonal insolation is the only regular climate cycle that can plausibly account for δ18O amplitudes and layer counts. High-resolution stable isotope records show 3.5‰ δ13C decrease over 13 couplets defining the CIE onset, which requires a large, instantaneous release of 13C-depleted carbon. During the CIE, a clear δ13C gradient developed on the shelf with the largest excursions in shallowest waters, indicating atmospheric δ13C decreased by ∼20‰. Our observations and revised release rate are consistent with an atmospheric perturbation of 3,000-gigatons of carbon (GtC). PMID:24043840

  15. Rapid determination of the chemical oxygen demand of water using a thermal biosensor.

    PubMed

    Yao, Na; Wang, Jinqi; Zhou, Yikai

    2014-06-06

    In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD) of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L) and a low detection limit (1.84 mg/L). It could tolerate the presence of chloride ions in concentrations of 0.015 M without requiring a masking agent. The sensor was successfully used for detecting the COD values of actual samples. The COD values of water samples from various sources were correlated with those obtained by the standard dichromate method; the linear regression coefficient was found to be 0.996. The sensor is environmentally friendly, economical, and highly stable, and exhibits good reproducibility and accuracy. In addition, its response time is short, and there is no danger of hazardous emissions or external contamination. Finally, the samples to be tested do not have to be pretreated. These results suggest that the biosensor is suitable for the continuous monitoring of the COD values of actual wastewater samples.

  16. Rapid Calculation of Thermal Forces in Coarse Grained Simulation of Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Swan, James; Fiore, Andrew; Donev, Aleksander; Balboa, Florencio

    2016-11-01

    In the presented work, we will demonstrate a spectrally accurate method for calculation of thermal forces in implicit solvent simulations of soft materials such as colloidal dispersions. For implicit solvent models, the stochastic forces must be drawn from a normal distribution whose covariance is a complicated function of the particle configuration. For a system of interacting N particles, drawing a single sample requires O (N3) operations, if numerically exact techniques from linear algebra are employed. So-called "fast" methods can approximate the sampling with roughly O (Nm logN) computational complexity, where m is a coefficient greater than one which depends on the configuration of the particles. The computational complexity of the presented approach is O (N(logN) d / (d + 3)) , where d is the fractal dimension of the particulate structures being modeled. Remarkably, this new approach adapts to the structure of the material under study by leveraging the algebraic structure of Ewald summation and balancing the computational effort spent evaluating near-field and far-field contributions to the hydrodynamic interactions among the suspended particles. Applications of this approach to modeling colloidal gelation and particulate suspensions will be discussed.

  17. Chemical nature of silicon nitride-indium phosphide interface and rapid thermal annealing for InP MISFETs

    NASA Technical Reports Server (NTRS)

    Biedenbender, M. D.; Kapoor, V. J.

    1990-01-01

    A rapid thermal annealing (RTA) process in pure N2 or pure H2 was developed for ion-implanted and encapsulated indium phosphide compound semiconductors, and the chemical nature at the silicon nitride-InP interface before and after RTA was examined using XPS. Results obtained from SIMS on the atomic concentration profiles of the implanted silicon in InP before and after RTA are presented, together with electrical characteristics of the annealed implants. Using the RTA process developed, InP metal-insulator semiconductor FETs (MISFETS) were fabricated. The MISFETS prepared had threshold voltages of +1 V, transconductance of 27 mS/mm, peak channel mobility of 1200 sq cm/V per sec, and drain current drift of only 7 percent.

  18. Rapid analysis of animal drug residues by microcolumn solid-phase extraction and thermal desorption-ion trap mass spectrometry

    SciTech Connect

    Barshick, S.A.; Buchanan, M.V.

    1994-11-01

    A new approach was developed for the rapid and quantitative determination of an anthelmintic drug, phenothiazine, in milk. The technique involves a simple extraction procedure using a C{sub 18} microcolumn disc, followed by thermal desorption of the analyte from the disc directly into an ion trap mass spectrometer. The compounds are selectively ionized by isobutane chemical ionization and detected by tandem mass spectrometry. With this approach, 10 ppb detection limits were achieved with as little as 100 {mu}L mild and only 10 min of analysis time. This approach was used to analyze samples of milk taken from a cow administered a one-time therapeutic dose of phenothiazine. The target compound could be detected at 56 post-dosage, corresponding to a concentration of 30 ppb. 13 refs., 3 figs., 2 tabs.

  19. Manufacture and engine test of advanced oxide dispersion strengthened alloy turbine vanes. [for space shuttle thermal protection

    NASA Technical Reports Server (NTRS)

    Bailey, P. G.

    1977-01-01

    Oxide-Dispersion-strengthened (ODS) Ni-Cr-Al alloy systems were exploited for turbine engine vanes which would be used for the space shuttle thermal protection system. Available commercial and developmental advanced ODS alloys were evaluated, and three were selected based on established vane property goals and manufacturing criteria. The selected alloys were evaluated in an engine test. Candidate alloys were screened by strength, thermal fatigue resistance, oxidation and sulfidation resistance. The Ni-16Cr (3 to 5)Al-ThO2 system was identified as having attractive high temperature oxidation resistance. Subsequent work also indicated exceptional sulfidation resistance for these alloys.

  20. Processing Methods Established To Fabricate Porous Oxide Ceramic Spheres for Thermal Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.

    2003-01-01

    As gas turbine technology advances, the demand for efficient engines and emission reduction requires a further increase in operating temperatures, but combustion temperatures are currently limited by the temperature capability of the engine components. The existing thermal barrier coating (TBC) technology does not provide sufficient thermal load reduction at a 3000 F (1649 C) operating condition. Advancement in thermal barrier coating technology is needed to meet this aggressive goal. One concept for improving thermal barrier coating effectiveness is to design coating systems that incorporate a layer that reflects or scatters photon radiation. This can be achieved by using porous structures. The refractive index mismatch between the solid and pore, the pore size, and the pore density can be engineered to efficiently scatter photon radiation. Under NASA s Ultra-Efficient Engine Technology (UEET) Program, processing methods to fabricate porous ceramic spheres suitable for scattering photon radiation at elevated temperatures have been established. A straightforward templating process was developed at the NASA Glenn Research Center that requires no special processing equipment. The template was used to define particle shape, particle size, and pore size. Spherical organic cation exchange resins were used as a structure-directing template. The cation exchange resins have dual template capabilities that can produce different pore architectures. This process can be used to fabricate both metal oxide and metal carbide spheres.

  1. Thermal-driven attachment of gold nanoparticles prepared with ascorbic acid onto indium tin oxide surfaces

    NASA Astrophysics Data System (ADS)

    Aziz, Md. Abdul; Oyama, Munetaka

    2013-05-01

    Thermal-driven attachment of gold nanoparticles (AuNPs), of which size was less than 50 nm, onto the surfaces of indium tin oxide (ITO) is reported as a new phenomenon. This was permitted by preparing AuNPs via the reduction of hydrogen tetrachloroaurate (HAuCl4) with ascorbic acid (AA). While the AuNPs prepared via the AA reduction sparsely attached on the surface of ITO even at room temperature, a heat-up treatment at ca. 75 °C caused denser attachment of AuNPs on ITO surfaces. The attached density and the homogeneity after the thermal treatment were better than those of AuNP/ITO prepared using 3-aminopropyl-trimethoxysilane linker molecules. The denser attachment was observed similarly both by the immersion of ITO samples after the preparations of AuNPs by AA and by the in situ preparation of AuNPs with AA together with ITO samples. Thus, it is considered that the thermal-driven attachment of AuNPs would occur after the formation of AuNPs in the aqueous solutions, not via the growth of AuNPs on ITO surfaces. The preparation of AuNPs with AA would be a key for the thermal-driven attachment because the same attachments were not observed for AuNPs prepared with citrate ions or commercially available tannic acid-capped AuNPs.

  2. Effect of graphene oxide sheet size on the curing kinetics and thermal stability of epoxy resins

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Jin, Jie; Song, Mo; Lin, Yue

    2016-10-01

    This work revealed the influences of graphene oxide (GO) sheet size on the curing kinetics and thermal stability of epoxy resins. A series of GO/epoxy nanocomposites were prepared by the incorporation of three different sized GO sheets, namely GO-1, GO-2 and GO-3, the average size of which was 10.79 μm, 1.72 μm and 0.70 μm, respectively. The morphologies of the nanocomposites were observed by field emission gun scanning electron microscope. The dispersion quality of each sized GO was comparable in the epoxy matrix. The curing kinetics was investigated by means of differential scanning calorimetry and analyzed based on kinetics model. Addition of a small amount of GO (0.1 wt%) exhibited strong catalytic effect on the curing reaction of epoxy resin. The activation energy was reduced by 18.9%, 28.8% and 14.6% with addition of GO-1, GO-2 and GO-3, respectively. GO-2 with medium size (1.72 μm) showed the most effective catalysis on the cure. The thermal stability of the cured resins was evaluated based on thermogravimetric analysis. GO/epoxy nanocomposites showed improved thermal stability in the range of 420 °C-500 °C, compared with the pure resin. A ˜ 4% more residue was obtained in each of the incorporated system. The variations of GO sheet size did not influence the enhancement effect on the thermal stability.

  3. Thermal conversions of fatty acid peroxides to cyclopentenones: a biomimetic model for allene oxide synthase pathway.

    PubMed

    Mukhtarova, Lucia S; Mukhitova, Fakhima K; Grechkin, Alexander N

    2013-01-01

    The trimethylsilyl (TMS) peroxides of linoleic acid 9(S)-hydroperoxide (TMS or Me esters) were subjected to gas chromatography-mass spectrometry (GC-MS) analyses. The cyclopentenones, trans- and cis-10-oxo-11-phytoenoic acid (10-oxo-PEA, Me or TMS esters) were first time detected as the products of TMS-peroxide thermal conversions. The major products were ketodienes, epoxyalcohols, hemiacetals and decadienals. For further study of thermal cyclopentenone formation, 9(S)- or 13(S)-hydroperoxides of linoleic acid (Me esters) were sealed in ampoules and heated at 230 °C for 15 or 30 min. The products were separated by HPLC. The cyclopentenone fractions were collected and analyzed by GC-MS. Trans-10-oxo-PEA (Me) and 10-oxo-9(13)-PEA (Me) were formed during the thermal conversion of 9-hydroperoxide (Me ester). Similarly, the cyclopentenones trans-12-oxo-PEA (Me) and 12-oxo-9(13)-PEA (Me) were detected after the heating of 13-hydroperoxide (Me ester). Thermal formation of cyclopentenones can be considered as a biomimetic model of AOS pathway, providing new insights into the mechanisms of allene oxide formation and cyclization.

  4. Characteristics of phase-change materials containing oxide nano-additives for thermal storage

    PubMed Central

    2012-01-01

    In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin. PMID:23127224

  5. Research on Micro-arc Oxidation Coatings with Thermal Control on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Li, Sizhen; Bai, Jingying; Feng, Li; Zhang, Ligong; Cui, Qingxin; Jiang, Wenwu; Zhao, Guimei

    The Micro-arc coatings with antisepsis and thermal control function was grew in situ on magnesium alloys by Micro-arc oxidation (MAO) method in order to satisfy the antisepsis and thermal control demand of magnesium alloys for spacecraft. The effect of electrolyte formulation and temperature were reviewed by orthogonal test. The appearance and bonding strength of Micro-arc coatings were checked by eyeballing and draw-testing. Hemisphere emissivity ɛH was tested by using hemisphere emissivity testing apparatus. The results showed that the micro-arc coatings were homogeneous and uniform when the Electrolyte components correspond to temperature. Hemisphere emissivity ɛH test result showed that ɛH≥0.85.All the Performance of micro-arc coatings were qualified with technology guideline.

  6. Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes

    NASA Astrophysics Data System (ADS)

    Song, Qilei; Cao, Shuai; Pritchard, Robyn H.; Ghalei, Behnam; Al-Muhtaseb, Shaheen A.; Terentjev, Eugene M.; Cheetham, Anthony K.; Sivaniah, Easan

    2014-09-01

    Organic open frameworks with well-defined micropore (pore dimensions below 2 nm) structure are attractive next-generation materials for gas sorption, storage, catalysis and molecular level separations. Polymers of intrinsic microporosity (PIMs) represent a paradigm shift in conceptualizing molecular sieves from conventional ordered frameworks to disordered frameworks with heterogeneous distributions of microporosity. PIMs contain interconnected regions of micropores with high gas permeability but with a level of heterogeneity that compromises their molecular selectivity. Here we report controllable thermal oxidative crosslinking of PIMs by heat treatment in the presence of trace amounts of oxygen. The resulting covalently crosslinked networks are thermally and chemically stable, mechanically flexible and have remarkable selectivity at permeability that is three orders of magnitude higher than commercial polymeric membranes. This study demonstrates that controlled thermochemical reactions can delicately tune the topological structure of channels and pores within microporous polymers and their molecular sieving properties.

  7. Synthesis and thermal transport studies of nanofluids based on metal decorated photochemically oxidized multiwalled carbon nanotubes.

    PubMed

    Aravind, S S Jyothirmayee; Ramaprabhu, S

    2012-08-01

    Nanoparticle fluid suspensions were prepared using photochemically functionalized multiwalled carbon nanotubes in polar base fluids. Multiwalled carbon nanotubes prepared by catalytic chemical vapour deposition technique have been functionalized by irradiating with ultraviolet light of wavelength 254 nm. The photochemical oxidation of multiwalled carbon nanotubes under UV irradiation introduces oxygen containing functional groups onto the surface of the nanotubes, generating new defects on their structure. Silver nanoparticles have been deposited over multiwalled carbon nanotubes by chemical method. The enhancement in thermal conductivity of the prepared nanofluids using functionalized multiwalled carbon nanotubes and Ag nanoparticles deposited functionalized multiwalled carbon nanotubes with volume fraction, temperature and aspect ratio has been demonstrated. Silver deposited functionalized multiwalled carbon nanotubes based nanofluids in DI water with 0.02% volume fraction exhibit a thermal conductivity enhancement of 9.9% and 47% at room temperature and at 50 degrees C respectively.

  8. Tungsten Incorporation into Gallium Oxide: Crystal Structure, Surface and Interface Chemistry, Thermal Stability and Interdiffusion

    SciTech Connect

    Rubio, E. J.; Mates, T. E.; Manandhar, S.; Nandasiri, M.; Shutthanandan, V.; Ramana, C. V.

    2016-12-01

    Tungsten (W) incorporated gallium oxide (Ga2O3) (GWO) thin films were deposited by radio-frequency magnetron co-sputtering of W-metal and Ga2O3-ceramic targets. Films were produced by varying sputtering power applied to the W-target in order to achieve variable W-content (0-12 at%) into Ga2O3 while substrate temperature was kept constant at 500 °C. Chemical composition, chemical valence states, microstructure and crystal structure of as-deposited and annealed GWO films were evaluated as a function of W-content. The structural and chemical analyses indicate that the samples deposited without any W-incorporation are stoichiometric, nanocrystalline Ga2O3 films, which crystallize in β-phase monoclinic structure. While GWO films also crystallize in monoclinic β-Ga2O3 phase, W-incorporation induces surface amorphization as revealed by structural studies. The chemical valence state of Ga ions probed by X-ray photoelectron spectroscopic (XPS) analyses is characterized by the highest oxidation state i.e., Ga3+. No changes in Ga chemical state are noted for variable W-incorporation in the range of 0-12 at%. Rutherford backscattering spectrometry (RBS) analyses indicate the uniform distribution of W-content in the GWO films. However, XPS analyses indicate the formation of mixed valence states for W ions, which may be responsible for surface amorphization in GWO films. GWO films were stable up to 900 oC, at which point thermally induced secondary phase (W-oxide) formation was observed. A transition to mesoporous structure coupled with W interdiffusion occurs due to thermal annealing as derived from the chemical analyses at the GWO films’ surface as well as depth-profiling towards the GWO-Si interface. A model has been formulated to account for the mechanism of W-incorporation, thermal stability and interdiffusion via pore formation in GWO films.

  9. Rapid thermal annealing effect on the spatial resistivity distribution of AZO thin films deposited by pulsed-direct-current sputtering for solar cells applications

    NASA Astrophysics Data System (ADS)

    Ayachi, Boubakeur; Aviles, Thomas; Vilcot, Jean-Pierre; Sion, Cathy

    2016-03-01

    Room temperature deposited aluminium-doped zinc oxide thin films on glass substrate, using pulsed-DC magnetron sputtering, have shown high optical transmittance and low electrical resistivity with high uniformity of its spatial distribution after they were exposed to a rapid thermal annealing process at 400 °C under N2H2 atmosphere. It is particularly interesting to note that such an annealing process of AZO thin films for only 30 s was sufficient, on one hand to improve their optical transmittance from 73% to 86%, on the other hand to both decrease their resistivity from 1.7 × 10-3 Ω cm to 5.1 × 10-4 Ω cm and achieve the highest uniformity spatial distribution. To understand the mechanisms behind such improvements of the optoelectronic properties, electrical, optical, structural and morphological changes as a function of annealing time have been investigated by using hall measurement, UV-visible spectrometry, X-ray diffraction and scanning electron microscope imaging, respectively.

  10. Contribution of point defects and nano-grains to thermal transport behaviours of oxide-based thermoelectrics

    NASA Astrophysics Data System (ADS)

    Ren, Guang-Kun; Lan, Jin-Le; Ventura, Kyle J.; Tan, Xing; Lin, Yuan-Hua; Nan, Ce-Wen

    2016-08-01

    Point defects and nano-grains are very effective ways to control the thermal conductivity in oxide-based thermoelectrics. Here we use the optimised Debye-Callaway model to understand how the effect of point defects and nano-grains to reduce the thermal conductivity by inducing normal process and oxygen vacancy in oxide-based thermoelectrics. Our results reveal that this model can be effective to fit the experimental data of thermal conductivity in ZnO-, CaMnO3-, BiCuSeO-, SrTiO3- and In2O3-based systems, which indicate that the normal scattering process and the oxygen vacancy will make obvious contribution to the thermal conductivity as compared with alloy compounds system. These calculations also propose that it could be desirable to obtain higher ZT by controlling the concentration of oxygen vacancy in the nano-grained thermoelectric oxides.

  11. Thermally modulated photoacoustic imaging with super-paramagnetic iron oxide nanoparticles.

    PubMed

    Feng, Xiaohua; Gao, Fei; Zheng, Yuanjin

    2014-06-15

    Thermally modulated photoacoustic imaging (TMPI) is reported here for contrast enhancement when using nanoparticles as contrast agents. Exploiting the excellent sensitivity of the photoacoustic (PA) process on temperature and the highly selective heating capability of nanoparticles under electromagnetic field, the PA signals stemming from the nanoparticles labeled region can be efficiently modulated whereas those from highly light absorptive backgrounds are minimally affected. A coherent difference imaging procedure reduces the background signal and thus improves the imaging contrast. Phantom experiments with super-paramagnetic iron oxide nanoparticles (SPIONs) as contrast agents and alternating magnetic fields for heating are demonstrated. Further improvements toward clinical applications are also discussed.

  12. Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion.

    PubMed

    Zhang, Xiao-Liang; Liu, Zhi-Bo; Li, Xiao-Chun; Ma, Qiang; Chen, Xu-Dong; Tian, Jian-Guo; Xu, Yan-Fei; Chen, Yong-Sheng

    2013-03-25

    The nonlinear refraction (NLR) properties of graphene oxide (GO) in N, N-Dimethylformamide (DMF) was studied in nanosecond, picosecond and femtosecond time regimes by Z-scan technique. Results show that the dispersion of GO in DMF exhibits negative NLR properties in nanosecond time regime, which is mainly attributed to transient thermal effect in the dispersion. The dispersion also exhibits negative NLR in picosecond and femtosecond time regimes, which are arising from sp(2)- hybridized carbon domains and sp(3)- hybridized matrix in GO sheets. To illustrate the relations between NLR and nonlinear absorption (NLA), NLA properties of the dispersion were also studied in nanosecond, picosecond and femtosecond time regimes.

  13. Complex oxide with negative thermal expansion for producing ceramic matrix composites with invar effect

    NASA Astrophysics Data System (ADS)

    Dedova, Elena S.; Pertushina, Mariya U.; Kondratenko, Anton I.; Gorev, Mikhail V.; Kulkov, Sergei N.

    2016-11-01

    The article investigates the phase composition of (Al2O3-20 wt % ZrO2)-ZrW2O8 ceramic composites obtained by cold-pressing and sintering processes. Using X-ray analysis it has been shown that composites mainly have monoclinic modification of zirconium dioxide and orthorhombic phase of aluminum oxide. After adding zirconium tungstate the phase composition of sintered ceramics changes, followed by the formation of tungsten-aluminates spinel such as Alx(WOy)z. It has been shown that thermal expansion coefficient of material decreases approximatly by 30%, as compared with initial ceramics.

  14. Oxidation and degradation of a plasma-sprayed thermal barrier coating system

    SciTech Connect

    Haynes, J.A.; Ferber, M.K.; Porter, W.D.

    1996-04-01

    The isothermal oxidation behavior of thermal barrier coating (TBC) specimens consisting of single-crystal superalloy substrates, vacuum plasma-sprayed Ni-22Cr-10Al-1Y bond coatings and air plasma-sprayed 7.5 wt.% yttria stabilized zirconia top coatings was evaluated by thermogravimetric analysis at 1150{degrees}C for up to 200 hours. Coating durability was assessed by furnace cycling at 1150{degrees}C. Coatings and reaction products were identified by x-ray diffraction, field-emission scanning electron microscopy and energy dispersive spectroscopy.

  15. Chemical and optical properties of thermally evaporated manganese oxide thin films

    SciTech Connect

    Al-Kuhaili, M. F.

    2006-09-15

    Manganese oxide thin films were deposited using thermal evaporation from a tungsten boat. Films were deposited under an oxygen atmosphere, and the effects of thickness, substrate temperature, and deposition rate on their properties were investigated. The chemical properties of the films were studied using x-ray photoelectron spectroscopy and x-ray fluorescence. The optical properties were determined from normal-incidence transmittance and reflectance. Based on the chemical and optical characterizations, the optimum conditions for the deposition of the films were investigated. Subsequently, the optical properties (refractive index, extinction coefficient, and band gap) of these films were determined.

  16. The effects of metals and inhibitors on thermal oxidative degradation reactions of unbranched perfluoroalkyl ethers

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Paciorek, K. J. L.; Harris, D. H.; Smythe, M. E.; Nakahara, J. H.; Kratzer, R. H.

    1985-01-01

    Thermal oxidative degradation studies were performed on unbranched perfluoroalkylethers at 288 C in oxygen. Metals and alloys studied included Ti, Al, and Ti (4 Al, 4 Mn). The mechanism of degradation was by chain scission. Ti and Al promoted less degradation than Ti (4 Al, 4 Mn). The two inhibitors investigated (a perfluorophenyl phosphine and a phosphatriazine) reduced degradation rates by several orders of magnitude. Both inhibitors were effective for the same duration (75 to 100 hours). The phosphatriazine appeared to provide more surface protection.

  17. The effects of metals and inhibitors on thermal oxidative degradation reactions of unbranched perfluoroalkylethers

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Paciorek, K. J. L.; Harris, D. H. L.; Smythe, M. E.; Kratzer, R. H.

    1983-01-01

    Thermal oxidative degradation studies were performed on unbranched perfluoroalkylethers at 288 C in oxygen. Metals and alloys studied included Ti, Al, and Ti (4 Al, 4 Mn). The mechanism of degradation was by chain scission. Ti and Al promoted less degradation than Ti (4 Al, 4 Mn). The two inhibitors investigated (a perfluorophenyl phosphine and a phosphatriazine) reduced degradation rates by several orders of magnitude. Both inhibitors were effective for the same duration (75 to 100 hours). The phosphatriazine appeared to provide more surface protection.

  18. Controlled Covalent Functionalization of Thermally Reduced Graphene Oxide To Generate Defined Bifunctional 2D Nanomaterials

    PubMed Central

    Faghani, Abbas; Donskyi, Ievgen S.; Fardin Gholami, Mohammad; Ziem, Benjamin; Lippitz, Andreas; Unger, Wolfgang E. S.; Böttcher, Christoph; Rabe, Jürgen P.

    2017-01-01

    Abstract A controlled, reproducible, gram‐scale method is reported for the covalent functionalization of graphene sheets by a one‐pot nitrene [2+1] cycloaddition reaction under mild conditions. The reaction between commercially available 2,4,6‐trichloro‐1,3,5‐triazine and sodium azide with thermally reduced graphene oxide (TRGO) results in defined dichlorotriazine‐functionalized sheets. The different reactivities of the chlorine substituents on the functionalized graphene allow stepwise post‐modification by manipulating the temperature. This new method provides unique access to defined bifunctional 2D nanomaterials, as exemplified by chiral surfaces and multifunctional hybrid architectures. PMID:28165179

  19. Thermal non-oxidative aromatization of light alkanes catalyzed by gallium nitride.

    PubMed

    Li, Lu; Mu, Xiaoyue; Liu, Wenbo; Kong, Xianghua; Fan, Shizhao; Mi, Zetian; Li, Chao-Jun

    2014-12-15

    The thermal catalytic activity of GaN in non-oxidative alkane dehydroaromatization has been discovered for the first time. The origin of the catalytic activity was studied experimentally and theoretically. Commercially available GaN powders with a wurtzite crystal structure showed superior stability and reactivity for converting light alkanes, including methane, propane, n-butane, n-hexane and cyclohexane into benzene at an elevated temperature with high selectivity. The catalyst is highly robust and can be used repeatedly without noticeable deactivation.

  20. Rapid identification of pesticides in human oral fluid for emergency management by thermal desorption electrospray ionization/mass spectrometry.

    PubMed

    Lee, Chi-Wei; Su, Hung; Chen, Peng-Yu; Lin, Shiang-Jiun; Shiea, Jentaie; Shin, Shyi-Jang; Chen, Bai-Hsiun

    2016-02-01

    Self-poisoning with pesticides accounts for approximately one-third of all suicides worldwide. To expedite rescue in the emergency department, it is essential to develop a point-of-care analytical method for rapid identification of ingested pesticides. In this study, five of the most common pesticides ingested by self-poisoning patients in Taiwan were analyzed from oral fluid samples. Pesticide-oral fluid mixtures were applied on a cotton swab and then transferred into methanol. A metallic probe was used to sample the methanol solution for subsequent thermal desorption-electrospray ionization mass spectrometry analysis. Altogether, pesticide sampling, transfer, desorption, ionization, and detection took less than 1 min. The reproducibility of this method (n = 6) was shown in the observed low-relative standard deviation (<7%) in the detection of pesticide in oral fluid. The detection limits of the pesticides in oral fluid obtained from four human subjects by thermal desorption-electrospray ionization mass spectrometry were between 1-10 ppb with relative standard deviation 10.7%. Moreover, in this study, linear responses of five pesticides in oral fluid with concentrations between 1 ppb-1 ppm (R2 between 0.9938 and 0.9988) were observed. As the whole analytical process is extremely short, this technique allows for early non-invasive point-of-care identification of pesticides in the oral fluid of self-poisoning patients in the emergency room, providing important toxicological information for decision-making during critical resuscitation.

  1. Shallow-junction diode formation by implantation of arsenic and boron through titanium-silicide films and rapid thermal annealing

    SciTech Connect

    Rubin, L.; Herbots, N. . Center for Materials Science and Engineering); Hoffman, D. ); Ma, D. )

    1990-01-01

    The authors have studied the performance of diodes fabricated on n-type and p-type Si substrates by implanting As or B through a low-resistivity titanium-silicide layer. The effects of varying the implant dose, energy, and post-implant thermal treatment were investigated. After implantation, a rapid thermal anneal was found to be sufficient in removing most of the implant damage and activating the dopants, which resulted in N{sup +} {minus} p and p{sup +} {minus} n junctions under a low-resistivity silicide layer. The n{sup +} {minus} p junctions were as shallow as 1000 {angstrom} with reverse leakage currents as low as 5.5 {mu}A/cm{sup 2}. A conventional furnace anneal resulted in a further reduction of this leakage. Shallow p{sub +} {minus} n junctions could not be formed with boron implantation because of the large projected range of boron ions at the lowest available energy. Ti silicide films thinner than 600 {angstrom} exhibited a sharp rise in sheet resistivity after a furnace anneal, whereas thicker films exhibited more stable behavior. This is attributed to coalescence of the films. High-temperature furnace annealing diffused some of the dopants into the silicide film, reducing the surface concentrations at the TiSi{sub 2}-Si interface.

  2. Effect of rapid thermal annealing on the noise properties of InAs/GaAs quantum dot structures

    SciTech Connect

    Arpatzanis, N.; Tsormpatzoglou, A.; Dimitriadis, C. A.; Song, J. D.; Choi, W. J.; Lee, J. I.; Charitidis, C.

    2007-09-01

    Self-assembled InAs quantum dots (QDs) were grown by molecular beam epitaxy (MBE) on n{sup +}-GaAs substrates, capped between 0.4 {mu}m thick n-type GaAs layers with electron concentration of 1x10{sup 16} cm{sup -3}. The effect of rapid thermal annealing at 700 deg. C for 60 s on the noise properties of the structure has been investigated using Au/n-GaAs Schottky diodes as test devices. In the reference sample without containing QDs, the noise spectra show a generation-recombination (g-r) noise behavior due to a discrete energy level located about 0.51 eV below the conduction band edge. This trap is ascribed to the M4 (or EL3) trap in GaAs MBE layers, related to a chemical impurity-native defect complex. In the structure with embedded QDs, the observed g-r noise spectra are due to a midgap trap level ascribed to the EL2 trap in GaAs, which is related to the InAs QDs dissolution due to the thermal treatment.

  3. Effect of rapid thermal annealing on the noise properties of InAs /GaAs quantum dot structures

    NASA Astrophysics Data System (ADS)

    Arpatzanis, N.; Tsormpatzoglou, A.; Dimitriadis, C. A.; Song, J. D.; Choi, W. J.; Lee, J. I.; Charitidis, C.

    2007-09-01

    Self-assembled InAs quantum dots (QDs) were grown by molecular beam epitaxy (MBE) on n+-GaAs substrates, capped between 0.4μm thick n-type GaAs layers with electron concentration of 1×1016cm-3. The effect of rapid thermal annealing at 700°C for 60s on the noise properties of the structure has been investigated using Au /n-GaAs Schottky diodes as test devices. In the reference sample without containing QDs, the noise spectra show a generation-recombination (g-r) noise behavior due to a discrete energy level located about 0.51eV below the conduction band edge. This trap is ascribed to the M4 (or EL3) trap in GaAs MBE layers, related to a chemical impurity-native defect complex. In the structure with embedded QDs, the observed g-r noise spectra are due to a midgap trap level ascribed to the EL2 trap in GaAs, which is related to the InAs QDs dissolution due to the thermal treatment.

  4. An experimental correlation approach for predicting thermal conductivity of water-EG based nanofluids of zinc oxide

    NASA Astrophysics Data System (ADS)

    Ahmadi Nadooshan, Afshin

    2017-03-01

    In this study, the effects of temperature (20 °Cthermal conductivity of zinc oxide/ethylene glycol-water nanofluid have been presented. Nanofluid samples were prepared by a two-step method and thermal conductivity measurements were performed by a KD2 pro instrument. Results showed that the thermal conductivity increases uniformly with increasing solid volume fraction and temperature. The results also revealed that the thermal conductivity of nanofluids significantly increases with increasing solid volume fraction at higher temperatures. Moreover, it can be seen that for more concentrated samples, the effect of temperature was more tangible. Experimental thermal conductivity enhancement of the nanofluid in comparison with the Maxwell model indicated that Maxwell model was unable to predict the thermal conductivity of the present nanofluid. Therefore, a new correlation was presented for predicting the thermal conductivity of ZnO/EG-water nanofluid.

  5. Thermal catalytic oxidation of octachloronaphthalene over anatase TiO2 nanomaterial and its hypothesized mechanism

    NASA Astrophysics Data System (ADS)

    Su, Guijin; Li, Qianqian; Lu, Huijie; Zhang, Lixia; Huang, Linyan; Yan, Li; Zheng, Minghui

    2015-12-01

    As an environmentally-green technology, thermal catalytic oxidation of octachloronaphthalene (CN-75) over anatase TiO2 nanomaterials was investigated at 300 °C. A wide range of oxidation intermediates, which were investigated using various techniques, could be of three types: naphthalene-ring, single-benzene-ring, and completely ring-opened products. Reactive oxygen species on anatase TiO2 surface, such as O2-• and O2-, contributed to oxidative degradation. Based on these findings, a novel oxidation degradation mechanism was proposed. The reaction at (101) surface of anatase TiO2 was used as a model. The naphthalene-ring oxidative products with chloronaphthols and hydroxyl-pentachloronaphthalene-dione, could be formed via attacking the carbon of naphthalene ring at one or more positions by nucleophilic O2-. Lateral cleavage of the naphthalene ring at different C1-C10 and C4-C9, C1-C2 and C4-C9, C1-C2 or and C3-C4 bond positions by electrophilic O2-• could occur. This will lead to the formation of tetrachlorophenol, tetrachloro-benzoic acid, tetrachloro-phthalaldehyde, and tetrachloro-acrolein-benzoic acid, partially with further transformation into tetrachlorobenzene-dihydrodiol and tetrachloro-salicylic acid. Unexpectedly, the symmetric half section of CN-75 could be completely remained with generating the intricate oxidative intermediates characteristically containing tetrachlorobenzene structure. Complete cleavage of naphthalene ring could produce the ring-opened products, such as formic and acetic acids.

  6. Thermal catalytic oxidation of octachloronaphthalene over anatase TiO2 nanomaterial and its hypothesized mechanism

    PubMed Central

    Su, Guijin; Li, Qianqian; Lu, Huijie; Zhang, Lixia; Huang, Linyan; Yan, Li; Zheng, Minghui

    2015-01-01

    As an environmentally-green technology, thermal catalytic oxidation of octachloronaphthalene (CN-75) over anatase TiO2 nanomaterials was investigated at 300 °C. A wide range of oxidation intermediates, which were investigated using various techniques, could be of three types: naphthalene-ring, single-benzene-ring, and completely ring-opened products. Reactive oxygen species on anatase TiO2 surface, such as O2−• and O2−, contributed to oxidative degradation. Based on these findings, a novel oxidation degradation mechanism was proposed. The reaction at (101) surface of anatase TiO2 was used as a model. The naphthalene-ring oxidative products with chloronaphthols and hydroxyl-pentachloronaphthalene-dione, could be formed via attacking the carbon of naphthalene ring at one or more positions by nucleophilic O2−. Lateral cleavage of the naphthalene ring at different C1-C10 and C4-C9, C1-C2 and C4-C9, C1-C2 or and C3-C4 bond positions by electrophilic O2−• could occur. This will lead to the formation of tetrachlorophenol, tetrachloro-benzoic acid, tetrachloro-phthalaldehyde, and tetrachloro-acrolein-benzoic acid, partially with further transformation into tetrachlorobenzene-dihydrodiol and tetrachloro-salicylic acid. Unexpectedly, the symmetric half section of CN-75 could be completely remained with generating the intricate oxidative intermediates characteristically containing tetrachlorobenzene structure. Complete cleavage of naphthalene ring could produce the ring-opened products, such as formic and acetic acids. PMID:26643373

  7. The effect of thermal oxidation on the luminescence properties of nanostructured silicon.

    PubMed

    Liu, Lijia; Sham, Tsun-Kong

    2012-08-06

    Herein is reported a detailed study of the luminescence properties of nanostructured Si using X-ray excited optical luminescence (XEOL) in combination with X-ray absorption near-edge structures (XANES). P-type Si nanowires synthesized via electroless chemical etching from Si wafers of different doping levels and porous Si synthesized using electrochemical method are examined under X-ray excitation across the Si K-, L(3,2) -, and O K-edges. It is found that while as-prepared Si nanostructures are weak light emitters, intense visible luminescence is observed from thermally oxidized Si nanowires and porous Si. The luminescence mechanism of Si upon oxidation is investigated by oxidizing nanostructured Si at different temperatures. Interestingly, the two luminescence bands observed show different response with the variation of absorption coefficient upon Si and O core-electron excitation in elemental silicon and silicon oxide. A correlation between luminescence properties and electronic structures is thus established. The implications of the finding are discussed in terms of the behavior of the oxygen deficient center (OCD) and non-bridging oxygen hole center (NBOHC).

  8. Efficient electrocatalytic performance of thermally exfoliated reduced graphene oxide-Pt hybrid

    SciTech Connect

    Antony, Rajini P. Preethi, L.K.; Gupta, Bhavana; Mathews, Tom Dash, S.; Tyagi, A.K.

    2015-10-15

    Highlights: • Synthesis of Pt–RGO nanohybrids of very high electrochemically active surface area. • Electrocatalytic activity-cum-stability: ∼10 times that of commercial Pt-C catalyst. • TEM confirms narrow size distribution and excellent dispersion of Pt nanoparticles. • SAED and XRD indicate (1 1 1) orientation of Pt nanoparticles. • Methanol oxidation EIS reveal decrease in charge transfer resistance with potential - Abstract: High quality thermally exfoliated reduced graphene oxide (RGO) nanosheets decorated with platinum nanocrystals have been synthesized using a simple environmentally benign process. The electrocatalytic behaviour of the Pt–RGO nanohybrid for methanol oxidation was studied using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. High resolution transmission electron microscopy shows uniform dispersion of Pt nanoparticles of ∼2–4 nm size. X-ray diffraction and selected area diffraction studies reveal (1 1 1) orientation of the platinum nanoparticles. The cyclic voltammetry and chronoamperometry results indicate higher catalytic activity and stability for Pt–RGO compared to commercial Pt-C. The electrochemical active surface area of Pt–RGO (52.16 m{sup 2}/g) is found to be 1.5 times that of commercial Pt-C. Impedance spectroscopy shows different impedance behaviour at different potential regions, indicating change in methanol oxidation reaction mechanism with potential. The reversal of impedance pattern to the second quadrant, at potentials higher than ∼0.40 V, indicates change in the rate determining reaction.

  9. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition

    SciTech Connect

    Hufschmid, Ryan D.; Arami, Hamed; Ferguson, R. Matthew; Gonzales, Marcela; Teeman, Eric M.; Brush, Lucien N.; Browning, Nigel D.; Krishnan, Kannan M.

    2015-06-03

    We present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting properties. Monodisperse superparamagnetic iron oxide nanoparticles were synthesized by thermal decomposition of three different iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) in organic solvents under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution. In particular, large quantities of excess surfactant (up to 25:1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase is also critical for establishing magnetic properties. As an example, we show the importance of obtaining the required iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled.

  10. Optical characteristics of wet-thermally oxidized bulk and nanoporous GaN

    NASA Astrophysics Data System (ADS)

    Kim, Sinjae; Kadam, Mahadev; Kang, Jin-Ho; Ryu, Sang-Wan

    2016-09-01

    Gallium nitride (GaN) films deposited on sapphire substrates by metal organic chemical vapor deposition were successfully transformed into bulk and nanoporous gallium oxide (Ga2O3) using a wet thermal oxidation technique. Oxidation depth measurements confirmed that the oxide growth appeared to be faster in the case of nanoporous GaN than that of bulk GaN. Spectroscopic ellipsometry was used to evaluate and compare the optical properties of nanoporous and bulk Ga2O3 films, such as refractive index and extinction coefficient, which revealed improved optical properties for nanoporous Ga2O3 compared to the bulk. The simulations conducted on the ellipsometric spectra for bulk and nanoporous Ga2O3 using the Forouhi-Bloomer model and the Bruggeman effective medium approximation revealed the best fit with a low mean square error value. In the case of nanoporous Ga2O3, zero absorption was observed in the wavelength range of 300 nm to 840 nm, supporting the use of this material as a transparent coating in optoelectronic devices.

  11. Electron spin resonance study of point defects in thermal GaAs/GaAs-oxide structures

    NASA Astrophysics Data System (ADS)

    Nguyen, S.; Afanas'ev, V. V.; Stesmans, A.

    2012-12-01

    In an attempt to atomically assess interface and oxide-related point defects, a first basic multifrequency low-temperature electron spin resonance study has been carried out on semi-insulating (Fe compensated) GaAs/oxide structures, implying both powders and (100)GaAs/oxide slices, thermally grown in the range Tox=350-615 °C. Various spectra are observed: As for powders, this includes the 4-line EL2 defect spectrum centered at g~2.043 and characterized by the isotropic hyperfine constant Aiso~ 910 G, ascribed to the 75AsGa+ antisite defect. Observed in freshly crushed powder, it substantially increases in density with oxidation, in line with theoretical expectation; A maximum appears reached for at Tox~440 °C. It is not observed in the parent c-GaAs wafer. A second isotropic signal is observed at g~1.937 in powders for Tox in the range 510-615 °C, but only after additional VUV irradiation; it may correspond to As clusters. In bulk (100)GaAs, we observe the 5-branch spectrum of substitutional Fe impurities (spin S=5/2) in GaAs, with inferred crystal field constant a ≈ 360 G, well in line with previous observations. The results are discussed within the framework of advanced theoretical interface and defect models and previous experimental assessment.

  12. Ni-catalysed WO3 nanostructures grown by electron beam rapid thermal annealing for NO2 gas sensing

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Gopalakrishnan; Sundararaj, Anuraj; Therese, Helen Annal; Jeganathan, K.

    2015-07-01

    Ni-catalysed WO3 (Ni-WO3) nanowires and nanosheets were grown on Si (100) substrates using electron beam evaporation followed by electron beam-assisted rapid thermal annealing process. Gas-sensing measurements were performed for various concentrations of NO2 in dry air at a temperature range of 50-400 °C. Nanowires and nanosheets show optimum sensor response of 229 and 197 at operating temperatures of 200 and 250 °C, respectively, for 100 ppm of NO2 exposure. Nanowires demonstrated a rapid response time of 66 s, but a slow recovery time of 204 s owing to poor rate of desorption of the adsorbed NO2 gas molecules from the internal porous structure of nanowires. In contrast, the recovery time for nanosheet was 126 s due to higher desorption rate of the adhered NO2 molecules associated with low surface area and less porous structure of nanosheet. The gas-sensing mechanism of WO3 nanostructure is discussed briefly.

  13. Nanoscale Particulate Matter from Urban Traffic Rapidly Induces Oxidative Stress and Inflammation in Olfactory Epithelium with Concomitant Effects on Brain

    PubMed Central

    Cheng, Hank; Saffari, Arian; Sioutas, Constantinos; Forman, Henry J.; Morgan, Todd E.; Finch, Caleb E.

    2016-01-01

    Background: Rodent models for urban air pollution show consistent induction of inflammatory responses in major brain regions. However, the initial impact of air pollution particulate material on olfactory gateways has not been reported. Objective: We evaluated the olfactory neuroepithelium (OE) and brain regional responses to a nanosized subfraction of urban traffic ultrafine particulate matter (nPM, < 200 nm) in vivo, ex vivo, and in vitro. Methods: Adult mice were exposed to reaerosolized nPM for 5, 20, and 45 cumulative hours over 3 weeks. The OE, the olfactory bulb (OB), the cerebral cortex, and the cerebellum were analyzed for oxidative stress and inflammatory responses. Acute responses of the OE to liquid nPM suspensions were studied with ex vivo and primary OE cultures. Results: After exposure to nPM, the OE and OB had rapid increases of 4-hydroxy-2-nonenal (4-HNE) and 3-nitrotyrosine (3-NT) protein adducts, whereas the cerebral cortex and cerebellum did not respond at any time. All brain regions showed increased levels of tumor necrosis factor-α (TNFα) protein by 45 hr, with earlier induction of TNFα mRNA in OE and OB. These responses corresponded to in vitro OE and mixed glial responses, with rapid induction of nitrite and inducible nitric oxide synthase (iNOS), followed by induction of TNFα. Conclusions: These findings show the differential time course of oxidative stress and inflammatory responses to nPM between the OE and the brain. Slow cumulative transport of inhaled nPM into the brain may contribute to delayed responses of proximal and distal brain regions, with potential input from systemic factors. Citation: Cheng H, Saffari A, Sioutas C, Forman HJ, Morgan TE, Finch CE. 2016. Nanoscale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain. Environ Health Perspect 124:1537–1546; http://dx.doi.org/10.1289/EHP134 PMID:27187980

  14. Interplay between mass-impurity and vacancy phonon scattering effects on the thermal conductivity of doped cadmium oxide

    SciTech Connect

    Donovan, Brian F.; Sachet, Edward; Maria, Jon-Paul; Hopkins, Patrick E.

    2016-01-11

    Understanding the impact and complex interaction of thermal carrier scattering centers in functional oxide systems is critical to their progress and application. In this work, we study the interplay among electron and phonon thermal transport, mass-impurity scattering, and phonon-vacancy interactions on the thermal conductivity of cadmium oxide. We use time domain thermoreflectance to measure the thermal conductivity of a set of CdO thin films doped with Dy up to the saturation limit. Using measurements at room temperature and 80 K, our results suggest that the enhancement in thermal conductivity at low Dy concentrations is dominated by an increase in the electron mobility due to a decrease in oxygen vacancy concentration. Furthermore, we find that at intermediate doping concentrations, the subsequent decrease in thermal conductivity can be ascribed to a large reduction in phononic thermal transport due to both point defect and cation-vacancy scattering. With these results, we gain insight into the complex dynamics driving phonon scattering and resulting thermal transport in functional oxides.

  15. Self-templated synthesis and thermal conductivity investigation for ultrathin perovskite oxide nanowires

    NASA Astrophysics Data System (ADS)

    Yadav, Gautam G.; Zhang, Genqiang; Qiu, Bo; Susoreny, Joseph A.; Ruan, Xiulin; Wu, Yue

    2011-10-01

    The large thermal conductivity of bulk complex metal oxides such as SrTiO3, NaCo2O4, and Ca3Co4O9 has set a barrier for the improvement of thermoelectric figure of merit and the applications of these materials in high temperature (>=1000 K) thermoelectric energy harvesting and solid-state cooling. Here, we present a self-templated synthesis approach to grow ultrathin SrTiO3 nanowires with an average diameter of 6 nm in large quantity. The thermal conductivity of the bulk pellet made by compressing nanowire powder using spark plasma sintering shows a 64% reduction in thermal conductivity at 1000 K, which agrees well with theoretical modeling.The large thermal conductivity of bulk complex metal oxides such as SrTiO3, NaCo2O4, and Ca3Co4O9 has set a barrier for the improvement of thermoelectric figure of merit and the applications of these materials in high temperature (>=1000 K) thermoelectric energy harvesting and solid-state cooling. Here, we present a self-templated synthesis approach to grow ultrathin SrTiO3 nanowires with an average diameter of 6 nm in large quantity. The thermal conductivity of the bulk pellet made by compressing nanowire powder using spark plasma sintering shows a 64% reduction in thermal conductivity at 1000 K, which agrees well with theoretical modeling. Y. Wu thanks the support from the Purdue University new faculty startup grant, Kick Grant from Birck Nanotechnology Center, DuPont Young Faculty Award, Midwest Institute for Nanoelectronics Discovery (MIND), and NSF/DOE Thermoelectric Partnership (Award Number 1048616). Y. Wu acknowledges the help from Dr Douglas Dudis and Charles Cooke at Wright-Patterson Air Force Research Lab on the spark plasma sintering of nanowire powder. X.L. Ruan and B. Qiu acknowledge the partial support of Air Force Office of Scientific Research (Grant Number FA9550-11-1-0057).

  16. Thermal and photochemical oxidation of self-assembled monolayers on alumina particles exposed to nitrogen dioxide.

    PubMed

    Raff, Jonathan D; Szanyi, János; Finlayson-Pitts, Barbara J

    2011-01-14

    Alumina is an important component of airborne dust particles as well as of building materials and soils found in the tropospheric boundary layer. While the uptake and reactions of oxides of nitrogen and their photochemistry on alumina have been reported in the past, little is known about the chemistry when organics are also present. Fourier transform infrared (FTIR) spectroscopy at ∼23 °C was used to study reactions of NO(2) on γ-Al(2)O(3) particles that had been derivatized using 7-octenyltrichlorosilane to form a self-assembled monolayer (SAM). For comparison, the reactions with untreated γ-Al(2)O(3) were also studied. In both cases, the particles were exposed to water vapor prior to NO(2) to provide adsorbed water for reaction. As expected, surface-bound HONO, NO(2)(-), and NO(3)(-) were formed. Surprisingly, oxidation of the organic by surface-bound nitrogen oxides was observed in the dark, forming organo-nitrogen products identified as nitronates (R(2)C[double bond, length as m-dash]NO(2)(-)). Oxidation was more rapid under irradiation (λ > 290 nm) and formed organic nitrates and carbonyl compounds and/or peroxy nitrates in addition to the products observed in the dark. Mass spectrometry of the gas phase during irradiation revealed the production of NO, CO(2), and CO. These studies provide evidence for oxidation of organic compounds on particles and boundary layer surfaces that are exposed to air containing oxides of nitrogen, as well as new pathways for the formation of nitrogen-containing compounds on these surfaces.

  17. Thermal and Photochemical Oxidation of Organic Compounds on Model Mineral Dust Particles Exposed to Nitrogen Dioxide

    NASA Astrophysics Data System (ADS)

    Raff, J.; Finlayson-Pitts, B. J.; Szanyi, J.

    2010-12-01

    Alumina is an important component of airborne dust particles as well as of building materials and soils found in the tropospheric boundary layer. While the uptake and reactions of oxides of nitrogen and their photochemistry on alumina have been reported in the past, little is known about the chemistry when organics are also present. Fourier transform infrared (FTIR) spectroscopy was used to study at ~23 °C reactions of NO2 on γ-Al2O3 particles that had been derivatized using 7-octenyltrichlorosilane to form a self-assembled monolayer (SAM). For comparison, the reactions with untreated γ-Al2O3 were also studied. In both cases, the particles were exposed to water vapor prior to NO2 to provide adsorbed water for reaction. As expected, surface-bound HONO, NO2-, and NO3- were formed. Surprisingly, oxidation of the organic by surface-bound nitrogen oxides was observed in the dark, forming organo-nitrogen products identified as nitronates (R2C=NO2-). Oxidation was more rapid under irradiation (λ > 290 nm) and formed organic nitrates and carbonyl compounds and/or peroxy nitrates in addition to the products observed in the dark. Mass spectrometry of the gas phase during irradiation revealed the production of NO, CO2, and CO. These studies provide evidence for oxidation of organic compounds on particles and boundary layer surfaces that are exposed to air containing oxides of nitrogen, as well as new pathways for the formation of nitrogen-containing compounds on these surfaces.

  18. Sodium perxenate permits rapid oxidation of manganese for easy spectrophotometric determination

    NASA Technical Reports Server (NTRS)

    Bane, R. W.

    1967-01-01

    Sodium perxenate oxidizes manganese to permanganate almost instantaneously in dilute acid solution and without a catalyst. A solution is prepared by dissolving 200 mg of sodium perxenate in distilled water and diluting to 100 ml.

  19. A rapid and simple respirometric biosensor with immobilized cells of Nitrosomonas europaea for detecting inhibitors of ammonia oxidation.

    PubMed

    Cui, Rong; Chung, Wook-Jin; Jahng, Deokjin

    2005-03-15

    As obligate chemolithotrophs, ammonia-oxidizing bacteria (AOB) grow very slowly and are known to be extremely sensitive to a wide variety of inhibitors. Since it is generally accepted that inhibition of ammonia oxidation by AOB results in a total failure of nitrogen removal, it is necessary to develop a method to detect inhibitors of ammonia oxidation in wastewater. Since ammonia oxidation accompanies oxygen consumption, ammonia oxidation can be easily evaluated by measuring oxygen consumption rate using a dissolved oxygen (DO) probe. In this study, a rapid and simple respirometric biosensor using the pure culture of Nitrosomonas europaea was developed. N. europaea was cultivated in a continuous fermentor operating at the dilution rate of 0.008 h(-1) to obtain physiologically constant cells and was immobilized onto the dialysis membrane through filtration. DO, determined by the biosensor, started to increase 30 s later after ammonia oxidation inhibitor was fed, and a new steady-state DO was obtained in 10-30 min. For this DO profile, steady-state kinetics was applied to evaluate ammonia oxidation efficiency. The concentration of a toxic compound causing 50% decrease of oxygen-consumption activity (EC50) was determined for different chemicals. The EC50 values obtained with the biosensor (0.018 mg l(-1) for allylthiourea, 0.027 mg l(-1) for thioacetamide, 1.10 mg l(-1) for phenol and 0.0 1mg l(-1) for thiourea) indicated that the developed biosensor was highly sensitive to a variety of the inhibitors. It was also shown that the biosensor is applicable for on-line real time monitoring.

  20. Rapid screening of N-oxides of chemical warfare agents degradation products by ESI-tandem mass spectrometry.

    PubMed

    Sridhar, L; Karthikraj, R; Lakshmi, V V S; Raju, N Prasada; Prabhakar, S

    2014-08-01

    Rapid detection and identification of chemical warfare agents and related precursors/degradation products in various environmental matrices is of paramount importance for verification of standards set by the chemical weapons convention (CWC). Nitrogen mustards, N,N-dialkylaminoethyl-2-chlorides, N,N-dialkylaminoethanols, N-alkyldiethanolamines, and triethanolamine, which are listed CWC scheduled chemicals, are prone to undergo N-oxidation in environmental matrices or during decontamination process. Thus, screening of the oxidized products of these compounds is also an important task in the verification process because the presence of these products reveals alleged use of nitrogen mustards or precursors of VX compounds. The N-oxides of aminoethanols and aminoethylchlorides easily produce [M + H](+) ions under electrospray ionization conditions, and their collision-induced dissociation spectra include a specific neutral loss of 48 u (OH + CH2OH) and 66 u (OH + CH2Cl), respectively. Based on this specific fragmentation, a rapid screening method was developed for screening of the N-oxides by applying neutral loss scan technique. The method was validated and the applicability of the method was demonstrated by analyzing positive and negative samples. The method was useful in the detection of N-oxides of aminoethanols and aminoethylchlorides in environmental matrices at trace levels (LOD, up to 500 ppb), even in the presence of complex masking agents, without the use of time-consuming sample preparation methods and chromatographic steps. This method is advantageous for the off-site verification program and also for participation in official proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons (OPCW), the Netherlands. The structure of N-oxides can be confirmed by the MS/MS experiments on the detected peaks. A liquid chromatography-mass spectrometry (LC-MS) method was developed for the separation of isomeric N-oxides of aminoethanols and

  1. Tunneling-injection-induced turnaround behavior of threshold voltage in thermally nitrided oxide n-channel metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Ma, Z. J.; Lai, P. T.; Liu, Z. H.; Fleischer, S.; Cheng, Y. C.

    1990-12-01

    The threshold voltage (VT) degradation metal-oxide-semiconductor field-effect transistors (MOSFETs) with thermally nitrided oxide or pure oxide as gate dielectric was determined under Fowler-Nordheim (FN) stressing. A typical VT turnaround behavior was observed for both kinds of devices. The VT for nitrided oxide MOSFETs shifts more negatively than that for pure oxide MOSFETs during the initial period of FN stressing whereas the opposite is true for the positive shift after the critical time at turnaround point. The discovery that the shift of substrate current peak exhibits similar turnaround behavior reinforces the above results. In the meantime, the field-effect electron mobility and the maximum transconductance in the channel for nitrided oxide MOSFETs are only slightly degraded by stressing as compared to that for pure oxide MOSFETs. The VT turnaround behavior can be explained as follows: Net trapped charges in the oxide are initially positive (due to hole traps in the oxide) and result in the negative shift of VT. With increasing injection time, trapped electrons in the oxide as well as acceptortype interface states increase. This results in the positive shift in VT. It is revealed that VT degradation in MOSFETs is dominated by the generation of acceptortype interface states rather than electron trapping in the oxide after the critical time.

  2. Preparation of low toxicity pitches by thermal oxidative condensation of anthracene oil.

    PubMed

    Alvarez, Patricia; Granda, Marcos; Sutil, Juan; Santamaría, Ricardo; Blanco, Clara; Menéndez, Rosa; José Fernández, Juan; Viña, José Antonio

    2009-11-01

    This article describes a novel industrial procedure for producing new pitches of low toxicity from anthracene oil, a byproduct of coal tar distillation. The procedure involves oxidative treatment in order to polymerize and condense the anthracene oil components followed by thermal treatment and distillation in order to obtain a pitch with the desired parameters. This sequence (oxidative treatment/thermal treatment/distillation) was repeated four times under reaction conditions of increasing severity in four cycles of anthracene oil processing to obtain the four pitches. The pitches had similar characteristics to those of standard binder coal tar pitches (e.g., softening point and wetting capacity). Because of the inherent composition of the parent anthracene oil, the pitches were found to be totally free of solid particles, i.e., primary quinoline insolubles and metals. The gas chromatography and gas chromatography/mass spectroscopy results revealed a consecutive decrease in toxicity with successive cycles of anthracene oil processing. Thus, the benzo[a]pyrene content decreased from 11.2 mg/g for the pitch in cycle one to 1.5 mg/g for the pitch with four processing cycles. The carcinogenicity of the pitches, evaluated on the basis of benzo[a]pyrene toxic equivalency factors, also followed the same tendency. The final carcinogenity values are nearly all lower than those of standard binder coal tar pitches.

  3. Thermally reduced graphene oxide: The study and use for reagentless amperometric D-fructose biosensors.

    PubMed

    Šakinytė, Ieva; Barkauskas, Jurgis; Gaidukevič, Justina; Razumienė, Julija

    2015-11-01

    Aiming to create reagentless amperometric D-fructose biosensor, graphene based electrode materials have been synthesized by newly proposed thermal reduction of graphene oxide. The method allowed to separate and collect different fractions of thermally reduced graphene oxide (TRGO) with different physicochemical properties. The structural characteristics and surface morphologies of TRGO fractions were evaluated using SEM, XRD, TGA analysis, Raman spectroscopy and BET measurements. Three different fractions of TRGO were tested as electrode materials for D-fructose amperometric biosensors. The direct electron transfer (DET) from the active site of D-fructose dehydrogenase (FDH) to the electrode was achieved with all TRGO fractions. High values of the sensitivity (up to 14.5 μA mM(-1) cm(-2)) are of the same order as these for other D-fructose sensors based on the synergistic mediated processes. The relationships between the structure of TRGO fractions and the molecular processes determining the effect of DET in bioelectrocatalysis by FDH have been studied. Stability of the D-fructose biosensors was also assessed. The best results were achieved when immobilization of FDH was performed using a crosslinking with glutaraldehyde. For the best group, after a period of 5 days the sensitivity of the biosensor for D-fructose determination decreased by less than 20%.

  4. Global Kinetic Constants for Thermal Oxidative Degradation of a Cellulosic Paper

    NASA Technical Reports Server (NTRS)

    Kashiwagi, Takashi; Nambu, Hidesaburo

    1992-01-01

    Values of global kinetic constants for pyrolysis, thermal oxidative degradation, and char oxidation of a cellulosic paper were determined by a derivative thermal gravimetric study. The study was conducted at heating rates of 0.5, 1, 1.5, 3, and 5 C/min in ambient atmospheres of nitrogen, 0.28, 1.08, 5.2 percent oxygen concentrations, and air. Sample weight loss rate, concentrations of CO, CO2, and H2O in the degradation products, and oxygen consumption were continuously measured during the experiment. Values of activation energy, preexponential factor, orders of reaction, and yields of CO, CO2, H2O, total hydrocarbons, and char for each degradation reaction were derived from the results. Heat of reaction for each reaction was determined by differential scanning calorimetry. A comparison of the calculated CO, CO2, H2O, total hydrocarbons, sample weight loss rate, and oxygen consumption was made with the measured results using the derived kinetic constants, and the accuracy of the values of kinetic constants was discussed.

  5. Explosive thermal reduction of graphene oxide-based materials: mechanism and safety implications.

    PubMed

    Qiu, Yang; Guo, Fei; Hurt, Robert; Külaots, Indrek

    2014-06-01

    Thermal reduction of graphene oxide or graphite oxide (GO) is an important processing step in the fabrication of many graphene-based materials and devices. Here we show that some bulk solid GO samples can undergo explosive decomposition when small samples are heated slowly in inert gas environments, while others do not. These micro-explosions can occur for samples as small as few milligrams and are sufficiently energetic to cause laboratory equipment damage. Thermochemical analysis methods are used to understand the factors that lead to the explosive reduction mode. The studies show that the explosive mode of reduction is caused by the exothermicity of GO reduction coupled with a threshold sample mass/size that causes heat and mass transfer limitations leading to local temperature rise and a thermal runaway reaction. The explosive mode of reduction is not caused or promoted by interstitial water, and its onset temperature can be lowered by immersion in potassium hydroxide solution. By allowing early release of internal gas pressure, the explosive mode reduces the extent of surface area development in GO exfoliation from an optimum value of 1470 m(2)g(-1) obtained under non-explosive reduction conditions. Explosive reduction of bulk GO poses industrial safety hazards during large-scale storage, handling, and processing.

  6. Determination of the thermal, oxidative and photochemical degradation rates of scintillator liquid by fluorescence EEM spectroscopy.

    PubMed

    Andrews, N L P; Fan, J Z; Forward, R L; Chen, M C; Loock, H-P

    2016-12-21

    The thermal, oxidative and photochemical stability of the scintillator liquid proposed for the SNO+ experiment has been tested experimentally using accelerated aging methods. The stability of the scintillator constituents was determined through fluorescence excitation emission matrix (EEM) spectroscopy and absorption spectroscopy, using parallel factor analysis (PARAFAC) as an multivariate analysis tool. By exposing the scintillator liquid to a well-known photon flux at 365 nm and by measuring the decay rate of the fluorescence shifters and the formation rate of their photochemical degradation products, we can place an upper limit on the acceptable photon flux as 1.38 ± 0.09 × 10(-11) photon mol L(-1). Similarly, the oxidative stability of the scintillator liquid was determined by exposure to air at several elevated temperatures. Through measurement of the corresponding activation energy it was determined that the average oxygen concentration would have to be kept below 4.3-7.1 ppbw (headspace partial pressure below 24 ppmv). On the other hand, the thermal stability of the scintillator cocktail in the absence of light and oxygen was remarkable and poses no concern to the SNO+ experiment.

  7. Explosive thermal reduction of graphene oxide-based materials: mechanism and safety implications

    PubMed Central

    Qiu, Yang; Guo, Fei; Hurt, Robert; Külaots, Indrek

    2014-01-01

    Thermal reduction of graphene oxide or graphite oxide (GO) is an important processing step in the fabrication of many graphene-based materials and devices. Here we show that some bulk solid GO samples can undergo explosive decomposition when small samples are heated slowly in inert gas environments, while others do not. These micro-explosions can occur for samples as small as few milligrams and are sufficiently energetic to cause laboratory equipment damage. Thermochemical analysis methods are used to understand the factors that lead to the explosive reduction mode. The studies show that the explosive mode of reduction is caused by the exothermicity of GO reduction coupled with a threshold sample mass/size that causes heat and mass transfer limitations leading to local temperature rise and a thermal runaway reaction. The explosive mode of reduction is not caused or promoted by interstitial water, and its onset temperature can be lowered by immersion in potassium hydroxide solution. By allowing early release of internal gas pressure, the explosive mode reduces the extent of surface area development in GO exfoliation from an optimum value of 1470 m2g−1 obtained under non-explosive reduction conditions. Explosive reduction of bulk GO poses industrial safety hazards during large-scale storage, handling, and processing. PMID:25018560

  8. Ultrasound irradiation: a robust approach for direct functionalization of graphene oxide with thermal and antimicrobial aspects.

    PubMed

    Maktedar, Shrikant S; Mehetre, Shantilal S; Singh, Man; Kale, R K

    2014-07-01

    Sonochemical waves as mechanochemical energy was employed to exfoliate graphite oxide and functionalized graphene oxide (GrO), through a reaction of solvent and accountable for top-down and bottom-up approach respectively. The in situ formation of ester intermediate was inferred and a polymeric surface of GrO was further functionalized with 6-Aminoindazole (6-AIND) through sonochemical nucleophilic substitution reaction. As compared to conventional method the effect of ultrasound was verified for the direct functionalization of GrO. The conventional hazardous acylation step for functionalization of GrO was deleted in ultrasound assisted formation of f-(6-AIND) GrO nanocomposite, prepared by stereoselective exploitation of carboxyl groups at edges of GrO. The characterization has ascertained a covalent attachment of 6-AIND onto GrO surface with ATR-FTIR, XPS, SSNMR, TGA, DSC, XRD, AFM, RAMAN, EDX, SEM, BET and elemental analyzer. A weight loss in TGA depicts enhanced thermal stability of f-(6-AIND) GrO and a thermally sensitive behavior. The f-(6-AIND) GrO was studied for in vitro antimicrobial activity to ensure health and environmental safety. Antibacterial activity was identified against human pathogenic gram-positive (Staphylococcus aureus; ATCC 25923) and gram-negative bacteria (Escherichia coli; ATCC 25922). The antifungal activity was observed against Candida albicans (ATCC 10231).

  9. Effect of Layer-Graded Bond Coats on Edge Stress Concentration and Oxidation Behavior of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.

    1998-01-01

    Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.

  10. Role of Oxides and Porosity on High-Temperature Oxidation of Liquid-Fueled HVOF Thermal-Sprayed Ni50Cr Coatings

    NASA Astrophysics Data System (ADS)

    Song, B.; Bai, M.; Voisey, K. T.; Hussain, T.

    2017-02-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high-temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid-fueled high velocity oxy-fuel thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using oxygen content analysis, mercury intrusion porosimetry, scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). Short-term air oxidation tests (4 h) of freestanding coatings (without boiler steel substrate) in a thermogravimetric analyzer at 700 °C were performed to obtain the kinetics of oxidation of the as-sprayed coating. Long-term air oxidation tests (100 h) of the coated substrates were performed at same temperature to obtain the oxidation products for further characterization in detail using SEM/EDX and XRD. In all samples, oxides of various morphologies developed on top of the Ni50Cr coatings. Cr2O3 was the main oxidation product on the surface of all three coatings. The coating with medium porosity and medium oxygen content has the best high-temperature oxidation performance in this study.

  11. On the thermal stability of physical vapor deposited oxide-hardened nanocrystalline gold thin films

    DOE PAGES

    Argibay, Nicolas; Mogonye, J. E.; Michael, Joseph R.; ...

    2015-04-08

    We describe a correlation between electrical resistivity and grain size for PVD synthesized polycrystalline oxide-hardened metal-matrix thin films in oxide-dilute (<5 vol. % oxide phase) compositions. The correlation is based on the Mayadas-Shatzkes (M-S) electron scattering model, predictive of grain size evolution as a function of composition in the oxide-dilute regime for 2 μm thick Au-ZnO films. We describe a technique to investigate grain boundary (GB) mobility and the thermal stability of GBs based on in situelectrical resistivity measurements during annealing experiments, interpreted using a combination of the M-S model and the Michels et al. model describing solute drag stabilizedmore » grain growth kinetics. Using this technique, activation energy and pre-exponential Arrhenius parameter values of Ea = 21.6 kJ/mol and Ao = 2.3 × 10-17 m2/s for Au-1 vol. % ZnO and Ea =12.7 kJ/mol and Ao = 3.1 × 10-18 m2/s for Au-2 vol.% ZnO were determined. In the oxide-dilute regime, the grain size reduction of the Au matrix yielded a maximum hardness of 2.6 GPa for 5 vol. % ZnO. A combined model including percolation behavior and grain refinement is presented that accurately describes the composition dependent change in electrical resistivity throughout the entire composition range for Au-ZnO thin films. As a result, the proposed correlations are supported by microstructural characterization using transmission electron microscopy and electron diffraction mapping for grain size determination.« less

  12. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    SciTech Connect

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  13. On the thermal stability of physical vapor deposited oxide-hardened nanocrystalline gold thin films

    NASA Astrophysics Data System (ADS)

    Argibay, N.; Mogonye, J. E.; Michael, J. R.; Goeke, R. S.; Kotula, P. G.; Scharf, T. W.; Dugger, M. T.; Prasad, S. V.

    2015-04-01

    We describe a correlation between electrical resistivity and grain size for PVD synthesized polycrystalline oxide-hardened metal-matrix thin films in oxide-dilute (<5 vol. % oxide phase) compositions. The correlation is based on the Mayadas-Shatzkes (M-S) electron scattering model, predictive of grain size evolution as a function of composition in the oxide-dilute regime for 2 μm thick Au-ZnO films. We describe a technique to investigate grain boundary (GB) mobility and the thermal stability of GBs based on in situ electrical resistivity measurements during annealing experiments, interpreted using a combination of the M-S model and the Michels et al. model describing solute drag stabilized grain growth kinetics. Using this technique, activation energy and pre-exponential Arrhenius parameter values of Ea = 21.6 kJ/mol and Ao = 2.3 × 10-17 m2/s for Au-1 vol. % ZnO and Ea = 12.7 kJ/mol and Ao = 3.1 × 10-18 m2/s for Au-2 vol. % ZnO were determined. In the oxide-dilute regime, the grain size reduction of the Au matrix yielded a maximum hardness of 2.6 GPa for 5 vol. % ZnO. A combined model including percolation behavior and grain refinement is presented that accurately describes the composition dependent change in electrical resistivity throughout the entire composition range for Au-ZnO thin films. The proposed correlations are supported by microstructural characterization using transmission electron microscopy and electron diffraction mapping for grain size determination.

  14. On the thermal stability of physical vapor deposited oxide-hardened nanocrystalline gold thin films

    SciTech Connect

    Argibay, N. Mogonye, J. E.; Michael, J. R.; Goeke, R. S.; Kotula, P. G.; Scharf, T. W.; Dugger, M. T.; Prasad, S. V.

    2015-04-14

    We describe a correlation between electrical resistivity and grain size for PVD synthesized polycrystalline oxide-hardened metal-matrix thin films in oxide-dilute (<5 vol. % oxide phase) compositions. The correlation is based on the Mayadas-Shatzkes (M-S) electron scattering model, predictive of grain size evolution as a function of composition in the oxide-dilute regime for 2 μm thick Au-ZnO films. We describe a technique to investigate grain boundary (GB) mobility and the thermal stability of GBs based on in situ electrical resistivity measurements during annealing experiments, interpreted using a combination of the M-S model and the Michels et al. model describing solute drag stabilized grain growth kinetics. Using this technique, activation energy and pre-exponential Arrhenius parameter values of E{sub a} = 21.6 kJ/mol and A{sub o} = 2.3 × 10{sup −17} m{sup 2}/s for Au-1 vol. % ZnO and E{sub a} = 12.7 kJ/mol and A{sub o} = 3.1 × 10{sup −18} m{sup 2}/s for Au-2 vol. % ZnO were determined. In the oxide-dilute regime, the grain size reduction of the Au matrix yielded a maximum hardness of 2.6 GPa for 5 vol. % ZnO. A combined model including percolation behavior and grain refinement is presented that accurately describes the composition dependent change in electrical resistivity throughout the entire composition range for Au-ZnO thin films. The proposed correlations are supported by microstructural characterization using transmission electron microscopy and electron diffraction mapping for grain size determination.

  15. On the thermal stability of physical vapor deposited oxide-hardened nanocrystalline gold thin films

    SciTech Connect

    Argibay, Nicolas; Mogonye, J. E.; Michael, Joseph R.; Goeke, Ronald S.; Kotula, Paul G.; Scharf, T. W.; Dugger, Michael Thomas; Prasad, Somuri V.

    2015-04-08

    We describe a correlation between electrical resistivity and grain size for PVD synthesized polycrystalline oxide-hardened metal-matrix thin films in oxide-dilute (<5 vol. % oxide phase) compositions. The correlation is based on the Mayadas-Shatzkes (M-S) electron scattering model, predictive of grain size evolution as a function of composition in the oxide-dilute regime for 2 μm thick Au-ZnO films. We describe a technique to investigate grain boundary (GB) mobility and the thermal stability of GBs based on in situelectrical resistivity measurements during annealing experiments, interpreted using a combination of the M-S model and the Michels et al. model describing solute drag stabilized grain growth kinetics. Using this technique, activation energy and pre-exponential Arrhenius parameter values of Ea = 21.6 kJ/mol and Ao = 2.3 × 10-17 m2/s for Au-1 vol. % ZnO and Ea =12.7 kJ/mol and Ao = 3.1 × 10-18 m2/s for Au-2 vol.% ZnO were determined. In the oxide-dilute regime, the grain size reduction of the Au matrix yielded a maximum hardness of 2.6 GPa for 5 vol. % ZnO. A combined model including percolation behavior and grain refinement is presented that accurately describes the composition dependent change in electrical resistivity throughout the entire composition range for Au-ZnO thin films. As a result, the proposed correlations are supported by microstructural characterization using transmission electron microscopy and electron diffraction mapping for grain size determination.

  16. Enhanced in vitro angiogenic behaviour of human umbilical vein endothelial cells on thermally oxidized TiO2 nanofibrous surfaces.

    PubMed

    Tan, Ai Wen; Liau, Ling Ling; Chua, Kien Hui; Ahmad, Roslina; Akbar, Sheikh Ali; Pingguan-Murphy, Belinda

    2016-02-17

    One of the major challenges in bone grafting is the lack of sufficient bone vascularization. A rapid and stable bone vascularization at an early stage of implantation is essential for optimal functioning of the bone graft. To address this, the ability of in situ TiO2 nanofibrous surfaces fabricated via thermal oxidation method to enhance the angiogenic potential of human umbilical vein endothelial cells (HUVECs) was investigated. The cellular responses of HUVECs on TiO2 nanofibrous surfaces were studied through cell adhesion, cell proliferation, capillary-like tube formation, growth factors secretion (VEGF and BFGF), and angiogenic-endogenic-associated gene (VEGF, VEGFR2, BFGF, PGF, HGF, Ang-1, VWF, PECAM-1 and ENOS) expression analysis after 2 weeks of cell seeding. Our results show that TiO2 nanofibrous surfaces significantly enhanced adhesion, proliferation, formation of capillary-like tube networks and growth factors secretion of HUVECs, as well as leading to higher expression level of all angiogenic-endogenic-associated genes, in comparison to unmodified control surfaces. These beneficial effects suggest the potential use of such surface nanostructures to be utilized as an advantageous interface for bone grafts as they can promote angiogenesis, which improves bone vascularization.

  17. Enhanced in vitro angiogenic behaviour of human umbilical vein endothelial cells on thermally oxidized TiO2 nanofibrous surfaces

    PubMed Central

    Tan, Ai Wen; Liau, Ling Ling; Chua, Kien Hui; Ahmad, Roslina; Akbar, Sheikh Ali; Pingguan-Murphy, Belinda

    2016-01-01

    One of the major challenges in bone grafting is the lack of sufficient bone vascularization. A rapid and stable bone vascularization at an early stage of implantation is essential for optimal functioning of the bone graft. To address this, the ability of in situ TiO2 nanofibrous surfaces fabricated via thermal oxidation method to enhance the angiogenic potential of human umbilical vein endothelial cells (HUVECs) was investigated. The cellular responses of HUVECs on TiO2 nanofibrous surfaces were studied through cell adhesion, cell proliferation, capillary-like tube formation, growth factors secretion (VEGF and BFGF), and angiogenic-endogenic-associated gene (VEGF, VEGFR2, BFGF, PGF, HGF, Ang-1, VWF, PECAM-1 and ENOS) expression analysis after 2 weeks of cell seeding. Our results show that TiO2 nanofibrous surfaces significantly enhanced adhesion, proliferation, formation of capillary-like tube networks and growth factors secretion of HUVECs, as well as leading to higher expression level of all angiogenic-endogenic-associated genes, in comparison to unmodified control surfaces. These beneficial effects suggest the potential use of such surface nanostructures to be utilized as an advantageous interface for bone grafts as they can promote angiogenesis, which improves bone vascularization. PMID:26883761

  18. Enhanced in vitro angiogenic behaviour of human umbilical vein endothelial cells on thermally oxidized TiO2 nanofibrous surfaces

    NASA Astrophysics Data System (ADS)

    Tan, Ai Wen; Liau, Ling Ling; Chua, Kien Hui; Ahmad, Roslina; Akbar, Sheikh Ali; Pingguan-Murphy, Belinda

    2016-02-01

    One of the major challenges in bone grafting is the lack of sufficient bone vascularization. A rapid and stable bone vascularization at an early stage of implantation is essential for optimal functioning of the bone graft. To address this, the ability of in situ TiO2 nanofibrous surfaces fabricated via thermal oxidation method to enhance the angiogenic potential of human umbilical vein endothelial cells (HUVECs) was investigated. The cellular responses of HUVECs on TiO2 nanofibrous surfaces were studied through cell adhesion, cell proliferation, capillary-like tube formation, growth factors secretion (VEGF and BFGF), and angiogenic-endogenic-associated gene (VEGF, VEGFR2, BFGF, PGF, HGF, Ang-1, VWF, PECAM-1 and ENOS) expression analysis after 2 weeks of cell seeding. Our results show that TiO2 nanofibrous surfaces significantly enhanced adhesion, proliferation, formation of capillary-like tube networks and growth factors secretion of HUVECs, as well as leading to higher expression level of all angiogenic-endogenic-associated genes, in comparison to unmodified control surfaces. These beneficial effects suggest the potential use of such surface nanostructures to be utilized as an advantageous interface for bone grafts as they can promote angiogenesis, which improves bone vascularization.

  19. Cross-plane electrical and thermal transport in oxide metal/semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj

    Perovskite oxides display a rich variety of electronic properties as metals, ferroelectrics, ferromagnetics, multiferroics, and thermoelectrics. Cross-plane electron filtering transport in metal/semiconductor superlattices provides a potential approach to increase the thermoelectric figure of merit (ZT). La0.67Sr0.33MnO3 (LSMO) and LaMnO3 (LMO) thin-film depositions were optimized using pulsed laser deposition (PLD) to achieve low resistivity constituent materials for LSMO/LMO superlattice heterostructures on (100)-strontium titanate (STO) substrates. X-ray diffraction and high-resolution reciprocal space mapping (RSM) indicate that the superlattices are epitaxial and pseudomorphic. Cross-plane devices were fabricated by etching cylindrical pillar structures in superlattices using inductively-coupled-plasma reactive-ion etching. The cross-plane electrical conductivity data for LSMO/LMO superlattices reveal an effective barrier height of 220 meV. The cross-plane LSMO/LMO superlattices showed a giant Seebeck coefficient of 2560 microV/K at 300K that increases to 16640 microV/K at 360K. The large Seebeck coefficient may arise due to hot electron and spin filtering as LSMO/LMO superlattice constituent materials exhibit spintronic properties where charges and spin current are intertwined and can generate a spin-Seebeck effect. The room temperature thermal conductivity achieved in low resistivity superlattices was 0.92 W/mK, which indicates that cross-plane phonon scattering at interfaces reduces the lattice contribution to the thermal conductivity. The giant contribution of spin-Seebeck, the large temperature dependence of the cross-plane power factor, and the low thermal conductivity in low resistance LSMO/LMO superlattices may offer opportunities to realize spin-magnetic thermoelectric devices, and suggests a direction for further investigations of the potential of LSMO/LMO oxide superlattices for thermoelectric devices.

  20. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide.

    PubMed

    Wicklein, Bernd; Kocjan, Andraž; Salazar-Alvarez, German; Carosio, Federico; Camino, Giovanni; Antonietti, Markus; Bergström, Lennart

    2015-03-01

    High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m(-1) K(-1), which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.

  1. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide

    NASA Astrophysics Data System (ADS)

    Wicklein, Bernd; Kocjan, Andraž; Salazar-Alvarez, German; Carosio, Federico; Camino, Giovanni; Antonietti, Markus; Bergström, Lennart

    2015-03-01

    High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m-1 K-1, which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.

  2. Thermally induced growth of ZnO nanocrystals on mixed metal oxide surfaces.

    PubMed

    Inayat, Alexandra; Makky, Ayman; Giraldo, Jose; Kuhnt, Andreas; Busse, Corinna; Schwieger, Wilhelm

    2014-06-23

    An in situ method for the growth of ZnO nanocrystals on Zn/Al mixed metal oxide (MMO) surfaces is presented. The key to this method is the thermal treatment of Zn/Al layered double hydroxides (Zn/Al LDHs) in the presence of nitrate anions, which results in partial demixing of the LDH/MMO structure and the subsequent crystallization of ZnO crystals on the surface of the forming MMO layers. In a first experimental series, thermal treatment of Zn/Al LDHs with different fractions of nitrate and carbonate in the interlayer space was examined by thermogravimetry coupled with mass spectrometry (TG-MS) and in situ XRD. In a second experimental series, Zn/Al LDHs with only carbonate in the interlayer space were thermally treated in the presence of different amounts of an external nitrate source (NH4NO3). All obtained Zn/Al MMO samples were analysed by electron microscopy, nitrogen physisorption and powder X-ray diffraction. The gas phase formed during nitrate decomposition turned out to be responsible for the formation of crystalline ZnO nanoparticles. Accordingly, both interlayer nitrate and the presence of ammonium nitrate led to the formation of supported ZnO nanocrystals with mean diameters between 100 and 400 nm, and both methods offer the possibility to tailor the amount and size of the ZnO crystals by means of the amount of nitrate.

  3. Thermally Sprayed Large Tubular Solid Oxide Fuel Cells and Its Stack: Geometry Optimization, Preparation, and Performance

    NASA Astrophysics Data System (ADS)

    Zhang, Shan-Lin; Li, Cheng-Xin; Liu, Shuai; Li, Chang-Jiu; Yang, Guan-Jun; He, Peng-Jiang; Yun, Liang-Liang; Song, Bo; Xie, Ying-Xin

    2017-02-01

    In this study, we develop a large tubular solid oxide fuel cells design with several cells in series on a porous cermet support, which has many characteristics such as self-sealing, low Ohmic loss, high strength, and good thermal expansion coefficient matching. Here, we investigate aspects of the cell design, manufacture, performance, and application. Firstly, the cell length and number of cells in series are optimized by theoretical analysis. Then, thermal spraying is applied as a cost-effective method to prepare all the cell components. Finally, the performance of different types of cells and two types of stacks is characterized. The maximum output power of one tube, which had 20 cells in series, reaches 31 and 40.5 W at 800 and 900 °C, respectively. Moreover, the output power of a stack assembled with 56 tubes, each with ten cells in series, reaches 800 W at 830 °C. The excellent single tube and cell stack performance suggest that thermally sprayed tubular SOFCs have significant potential for commercialized application.

  4. Thermally Sprayed Large Tubular Solid Oxide Fuel Cells and Its Stack: Geometry Optimization, Preparation, and Performance

    NASA Astrophysics Data System (ADS)

    Zhang, Shan-Lin; Li, Cheng-Xin; Liu, Shuai; Li, Chang-Jiu; Yang, Guan-Jun; He, Peng-Jiang; Yun, Liang-Liang; Song, Bo; Xie, Ying-Xin

    2017-01-01

    In this study, we develop a large tubular solid oxide fuel cells design with several cells in series on a porous cermet support, which has many characteristics such as self-sealing, low Ohmic loss, high strength, and good thermal expansion coefficient matching. Here, we investigate aspects of the cell design, manufacture, performance, and application. Firstly, the cell length and number of cells in series are optimized by theoretical analysis. Then, thermal spraying is applied as a cost-effective method to prepare all the cell components. Finally, the performance of different types of cells and two types of stacks is characterized. The maximum output power of one tube, which had 20 cells in series, reaches 31 and 40.5 W at 800 and 900 °C, respectively. Moreover, the output power of a stack assembled with 56 tubes, each with ten cells in series, reaches 800 W at 830 °C. The excellent single tube and cell stack performance suggest that thermally sprayed tubular SOFCs have significant potential for commercialized application.

  5. Rapid decolorization of azo dyes in aqueous solution by an ultrasound-assisted electrocatalytic oxidation process.

    PubMed

    Ai, Zhihui; Li, Jinpo; Zhang, Lizhi; Lee, Shuncheng

    2010-02-01

    In this study, we developed a novel ultrasound-assisted electrocatalytic oxidation (US-EO) process to decolorize azo dyes in aqueous solution. Rhodamine B was decolorized completely within several minutes in this developed US-EO system. Oxidation parameters such as applied potentials, power of the ultrasound, initial pH of the solution, and initial concentration of RhB were systematically studied and optimized. An obvious synergistic effect was found in decolorization of RhB by the US-EO process when comparing with either ultrasound (US) process or electrocatalytic oxidation (EO) one. Additionally, the decolorization of other azo dyes, such as methylene blue, reactive brilliant red X-3B, and methyl orange, were also effective in the US-EO system. The results indicated that US-EO system was effective for the decolorization of azo dyes, suggesting its great potential in dyeing wastewater treatment.

  6. The AC-Stark Effect in Nitric Oxide Induced by Rapidly Swept Continuous Wave Quantum Cascade Lasers

    SciTech Connect

    Duxbury, Geoffrey; Kelly, James F.; Blake, Thomas A.; Langford, Nigel

    2012-05-07

    A large AC Stark effect has been observed when nitric oxide, at low pressure in a long optical path (100 m) Herriot cell, is subjected to infrared radiation from a rapidly swept, continuous wave infrared quantum cascade laser. As the frequency sweep rate of the laser is increased, an emission signal induced by rapid passage, occurs after the laser frequency has passed through the resonance of a molecular absorption line. At very high sweep rates a laser field-induced splitting of the absorptive part of the signal is observed, due to the AC Stark effect. This splitting is related to the Autler-Townes mixing of the hyperfine transitions, which lie within the lambda doublet components of the transition, under the Doppler broadened envelope.

  7. Rapid catalytic water oxidation by a single site, Ru carbene catalyst

    SciTech Connect

    Chen, Zuofeng; Concepcion, Javier J.; Meyer, Thomas J.

    2011-01-01

    Compared to earlier single site catalysts, greatly enhanced rates of electrocatalytic water oxidation by the Ru carbene catalyst [Ru(tpy)(Mebim-py)(OH2)]2+ (tpy = 2,2':6',2''-terpyridine; Mebim-py = 3-methyl-1-pyridylbenzimidazol-2-ylidene) have been observed. The mechanism appears to be the same with proton coupled electron transfer (PCET) activation to RuV=O3+ followed by O–O coupling and further oxidation. An important factor in the enhanced reactivity of the carbene complex may come from increased driving force for the O–O bond forming step.

  8. Acute Exposure to Low Glucose Rapidly Induces Endothelial Dysfunction and Mitochondrial Oxidative Stress: Role for AMP Kinase

    PubMed Central

    Wang, Jingli; Alexanian, Anna; Ying, Rong; Kizhakekuttu, Tinoy J.; Dharmashankar, Kodlipet; Vasquez-Vivar, Jeanette; Gutterman, David D.; Widlansky, Michael E.

    2012-01-01

    Objective Hypoglycemia is associated with increased mortality. The reasons for this remain unclear and the effects of low glucose exposure on vascular endothelial function remain largely unknown. We endeavored to determine the effects of low glucose on endothelial cells and intact human arterioles. Methods and Results We exposed human umbilical vein endothelial cells to low glucose conditions in a clinically relevant range (40–70 mg/dL) and found rapid and marked reductions in nitric oxide (NO) bioavailability (P<0.001). This was associated with concomitantly increased mitochondrial superoxide production (P<0.001) and NO-dependent mitochondrial hyperpolarization (P<0.001). Reduced NO bioavailability was rapid and attributable to reduced eNOS activity and destruction of NO. Low glucose rapidly activated AMP Kinase but physiological activation failed to restore NO bioavailability. Pharmacological AMP Kinase activation led to phosphorylation of eNOS’s Ser633 activation site, reversing the adverse effects of low glucose, and this protective effect was prevented by L-NAME. Intact human arterioles exposed to low glucose demonstrated marked endothelial dysfunction which was prevented by either metformin or TEMPOL. Conclusions Our data suggest that moderate low glucose exposure rapidly impairs NO bioavailability and endothelial function in the human endothelium, and that pharmacological AMP Kinase activation can inhibit this effect in an NO-dependent manner. PMID:22207730

  9. Development of thermal desorption gas chromatography/mass spectrometry as a rapid method for ambient particulate characterization

    NASA Astrophysics Data System (ADS)

    Sheya, Sue Anne N.

    A direct thermal desorption gas chromatography/mass spectrometry (TD GC/MS) method for air particulate matter (PM) analysis of volatile and semivolatile organic compounds was investigated. This technique uses a specially designed microdesorption GC inlet utilizing an inductively heated ferromagnetic foil with a Curie point temperature suitable for desorption, which can accommodate microgram amounts of material deposited on a thin strip of quartz fiber filter. Liquid or solid samples can be rapidly desorbed within 10 s at 315°C, followed by 30--40 min of chromatography time. The results obtained by this technique were found to be statistically equivalent to those obtained by the conventional solvent extraction gas chromatography/mass spectrometry (SX GC/MS) method for analysis of aromatic and n alkane standards, single source soot particles, and PM 10 filter samples. Correlations between injecting an extract, desorbing an extract, and desorbing particles averaged R = 0.94, with a three way correlation averaging R = 0.97. High volume sampling conducted at 12 spatially distributed sites located along the US/Mexican border of the El Paso/Juarez metroplex supplied 24h PM 10 filters for an investigation combining thermal desorption with a rapid online chemical derivatization procedure, and multivariate methods of source attribution using principal component and canonical correlation analysis of the resultant chemical markers. Four major combustion related PM emission sources were revealed at these sites: automotive, waste burning, biomass burning and meat cooking. A second investigation conducted in the same area used mediumvolume sampling to collect 2 h timeresolved PM 10 receptor samples for TD GC/MS analysis. Additionally, 2 h samples for inorganic analysis, multichannel particle size distribution measurements, and meteorological data were collected enabling generation of circadian PM multicharacterization profiles. Factor analysis based receptor modeling using

  10. Improved chamber systems for rapid, real-time nitrous oxide emissions from manure and soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrous oxide (N2O) emission rates have traditionally been measured using non-flow-through, non-steady-state (NFT-NSS) chambers, which rely on measuring the increase in N2O concentration in the sealed chamber headspace over time. These flux measurements are very labor and time intensive, requiring ...

  11. COSP for Windows: Strategies for Rapid Analyses of Cyclic Oxidation Behavior

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Auping, Judith V.

    2002-01-01

    COSP is a publicly available computer program that models the cyclic oxidation weight gain and spallation process. Inputs to the model include the selection of an oxidation growth law and a spalling geometry, plus oxide phase, growth rate, spall constant, and cycle duration parameters. Output includes weight change, the amounts of retained and spalled oxide, the total oxygen and metal consumed, and the terminal rates of weight loss and metal consumption. The present version is Windows based and can accordingly be operated conveniently while other applications remain open for importing experimental weight change data, storing model output data, or plotting model curves. Point-and-click operating features include multiple drop-down menus for input parameters, data importing, and quick, on-screen plots showing one selection of the six output parameters for up to 10 models. A run summary text lists various characteristic parameters that are helpful in describing cyclic behavior, such as the maximum weight change, the number of cycles to reach the maximum weight gain or zero weight change, the ratio of these, and the final rate of weight loss. The program includes save and print options as well as a help file. Families of model curves readily show the sensitivity to various input parameters. The cyclic behaviors of nickel aluminide (NiAl) and a complex superalloy are shown to be properly fitted by model curves. However, caution is always advised regarding the uniqueness claimed for any specific set of input parameters,

  12. Assessing Arsenic Removal by Metal (Hydr)Oxide Adsorptive Media Using Rapid Small Scale Column Tests

    EPA Science Inventory

    The rapid small scale column test (RSSCT) was use to evaluate the the performance of eight commercially available adsorptive media for the removal of arsenic. Side-by-side tests were conducted using RSSCTs and pilot/full-scale systems either in the field or in the laboratory. ...

  13. Oxidative Stress Induced by Polymyxin E Is Involved in Rapid Killing of Paenibacillus polymyxa

    PubMed Central

    Zhu, Yuyi; Qin, Wangrong

    2017-01-01

    Historically, the colistin has been thought to kill bacteria through membrane lysis. Here, we present an alternative mechanism that colistin induces rapid Paenibacillus polymyxa death through reactive oxygen species production. This significantly augments our understanding of the mechanism of colistin action, which is critical knowledge toward the yield development of colistin in the future. PMID:28321410

  14. High-Throughput Computation of Thermal Conductivity of High-Temperature Solid Phases: The Case of Oxide and Fluoride Perovskites

    NASA Astrophysics Data System (ADS)

    van Roekeghem, Ambroise; Carrete, Jesús; Oses, Corey; Curtarolo, Stefano; Mingo, Natalio

    2016-10-01

    Using finite-temperature phonon calculations and machine-learning methods, we assess the mechanical stability of about 400 semiconducting oxides and fluorides with cubic perovskite structures at 0, 300, and 1000 K. We find 92 mechanically stable compounds at high temperatures—including 36 not mentioned in the literature so far—for which we calculate the thermal conductivity. We show that the thermal conductivity is generally smaller in fluorides than in oxides, largely due to a lower ionic charge, and describe simple structural descriptors that are correlated with its magnitude. Furthermore, we show that the thermal conductivities of most cubic perovskites decrease more slowly than the usual T-1 behavior. Within this set, we also screen for materials exhibiting negative thermal expansion. Finally, we describe a strategy to accelerate the discovery of mechanically stable compounds at high temperatures.

  15. Resumption of thermal stabilization of plutonium oxide in Building 707, Rocky Flats Plant, Golden, Colorado. Environmental Assessment

    SciTech Connect

    Not Available

    1994-02-01

    The Department of Energy is proposing thermal stabilization to enhance the safe storage of plutonium at Rocky Flats Plant until decisions are made on long-term storage and disposition of the material. The proposed action is to resume thermal stabilization of pyrophoric plutonium in Building 707 at Rocky Flats Plant. Thermal stabilization would heat the pyrophoric plutonium under controlled conditions in a glovebox furnace to promote full oxidation and convert the material into stable plutonium oxide in the form of PuO{sub 2}. Other activities associated with thermal stabilization would include post-stabilization characterization of non-pyrophoric plutonium and on-site movement of pyrophoric and non-pyrophoric plutonium. This report covers; purpose and need; proposed action; alternatives to the proposed action; affected environment; environmental effects of proposed action and no action alternative; agencies and person consulted; and public participation.

  16. Increasing the Thermal Stability of Aluminum Titanate for Solid Oxide Fuel Cell Anodes

    NASA Technical Reports Server (NTRS)

    Bender, Jeffrey B.

    2004-01-01

    Solid-oxide fuel cells (SOFCs) show great potential as a power source for future space exploration missions. Because SOFCs operate at temperatures significantly higher than other types of fuel cells, they can reach overall efficiencies of up to 60% and are able to utilize fossil fuels. The SOFC team at GRC is leading NASA's effort to develop a solid oxide fuel cell with a power density high enough to be used for aeronautics and space applications, which is approximately ten times higher than ground transport targets. layers must be able to operate as a single unit at temperatures upwards of 900'C for at least 40,000 hours with less than ten percent degradation. One key challenge to meeting this goal arises from the thermal expansion mismatch between different layers. The amount a material expands upon heating is expressed by its coefficient of thermal expansion (CTE). If the CTEs of adjacent layers are substantially different, thermal stresses will arise during the cell's fabrication and operation. These stresses, accompanied by thermal cycling, can fracture and destroy the cell. While this is not an issue at the electrolyte-cathode interface, it is a major concern at the electrolyte-anode interface, especially in high power anode-supported systems. electrolyte are nearly identical. Conventionally, this has been accomplished by varying the composition of the anode to match the CTE of the yittria-stabilized zirconia (YSZ) electrolyte (approx.10.8x10(exp -6/degC). A Ni/YSZ composite is typically used as a base material for the anode due to its excellent electrochemical properties, but its CTE is about 13.4x10(exp -6/degC). One potential way to lower the CTE of this anode is to add a small percentage of polycrystalline Al2TiO5, with a CTE of 0.68x10(exp -6/degC, to the Ni/YSZ base. However, Al2TiO5 is thermally unstable and loses its effectiveness as it decomposes to Al2O3 and TiO2 between 750 C and 1280 C. be used as additives to increase the thermal stability of Al2

  17. Atomistic Simulations of Mass and Thermal Transport in Oxide Nuclear Fuels

    SciTech Connect

    Andersson, Anders D.; Uberuaga, Blas P.; Du, Shiyu; Liu, Xiang-Yang; Nerikar, Pankaj; Stanek, Christopher R.; Tonks, Michael; Millet, Paul; Biner, Bulent

    2012-06-04

    In this talk we discuss simulations of the mass and thermal transport in oxide nuclear fuels. Redistribution of fission gases such as Xe is closely coupled to nuclear fuel performance. Most fission gases have low solubility in the fuel matrix, specifically the insolubility is most pronounced for large fission gas atoms such as Xe, and as a result there is a significant driving force for segregation of gas atoms to grain boundaries or dislocations and subsequently for nucleation of gas bubbles at these sinks. The first step of the fission gas redistribution is diffusion of individual gas atoms through the fuel matrix to existing sinks, which is governed by the activation energy for bulk diffusion. Fission gas bubbles are then formed by either separate nucleation events or by filling voids that were nucleated at a prior stage; in both cases their formation and latter growth is coupled to vacancy dynamics and thus linked to the production of vacancies via irradiation or thermal events. In order to better understand bulk Xe behavior (diffusion mechanisms) in UO{sub 2{+-}x} we first calculate the relevant activation energies using density functional theory (DFT) techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism, though other alternatives may exist in high irradiation fields. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next a continuum transport model for Xe and U is formulated based on the diffusion mechanisms established from DFT. After combining this model with descriptions of the interaction between Xe and grain

  18. Thermal chemistry of copper acetamidinate atomic layer deposition precursors on silicon oxide surfaces studied by XPS

    SciTech Connect

    Yao, Yunxi; Zaera, Francisco

    2016-01-15

    The thermal surface chemistry of copper(I)-N,N′-di-sec-butylacetamidinate, [Cu({sup s}Bu-amd)]{sub 2}, a metalorganic complex recently proposed for the chemical-based deposition of copper films, has been characterized on SiO{sub 2} films under ultrahigh vacuum conditions by x-ray photoelectron spectroscopy (XPS). Initial adsorption at cryogenic temperatures results in the oxidation of the copper centers with Cu 2p{sub 3/2} XPS binding energies close to those seen for a +2 oxidation state, an observation that the authors interpret as the result of the additional coordination of oxygen atoms from the surface to the Cu atoms of the molecular acetamidinate dimer. Either heating to 300 K or dosing the precursor directly at that temperature leads to the loss of one of its two ligands, presumably via hydrogenation/protonation with a hydrogen/proton from a silanol group, or following a similar reaction on a defect site. By approximately 500 K the Cu 2p{sub 3/2}, C 1s, and N 1s XPS data suggest that the remaining acetamidinate ligand is displaced from the copper center and bonds to the silicon oxide directly, after which temperatures above 900 K need to be reached to promote further (and only partial) decomposition of those organic moieties. It was also shown that the uptake of the Cu precursor is self-limiting at either 300 or 500 K, although the initial chemistry is somewhat different at the two temperatures, and that the nature of the substrate also defines reactivity, with the thin native silicon oxide layer always present on Si(100) surfaces being less reactive than thicker films grown by evaporation, presumably because of the lower density of surface nucleation sites.

  19. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, V.K.

    1990-08-21

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  20. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for