Rapid Thermal Processing (RTP) of semiconductors in space
NASA Technical Reports Server (NTRS)
Anderson, T. J.; Jones, K. S.
1993-01-01
The progress achieved on the project entitled 'Rapid Thermal Processing of Semiconductors in Space' for a 12 month period of activity ending March 31, 1993 is summarized. The activity of this group is being performed under the direct auspices of the ROMPS program. The main objective of this program is to develop and demonstrate the use of advanced robotics in space with rapid thermal process (RTP) of semiconductors providing the test technology. Rapid thermal processing is an ideal processing step for demonstration purposes since it encompasses many of the characteristics of other processes used in solid state device manufacturing. Furthermore, a low thermal budget is becoming more important in existing manufacturing practice, while a low thermal budget is critical to successful processing in space. A secondary objective of this project is to determine the influence of microgravity on the rapid thermal process for a variety of operating modes. In many instances, this involves one or more fluid phases. The advancement of microgravity processing science is an important ancillary objective.
Atmospheric Processing Platform | Photovoltaic Research | NREL
printing units to the left and sample preparation and rapid thermal processing units to the right. In variety of substrates and then further process into optoelectronic materials using rapid thermal , however, occur within a vacuum (i.e., thermal evaporation, sputtering). Samples can remain in ambient
Rapid thermal processing by stamping
Stradins, Pauls; Wang, Qi
2013-03-05
A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.
High-density Bi-Pb-Sr-Ca-Cu-O superconductor prepared by rapid thermal melt processing
NASA Astrophysics Data System (ADS)
Moon, B. M.; Lalevic, B.; Kear, B. H.; McCandlish, L. E.; Safari, A.; Meskoob, M.
1989-10-01
A high quality, dense Bi-Pb-Sr-Ca-Cu-O superconductor has been successfully synthesized by rapid thermal melt processing. Conventionally sintered pellets were melted at 1200 °C, cooled rapidly, and then annealed. As-melted samples exhibited semiconductor behavior, which upon annealing became superconducting at 115 K [Tc(zero)=105 K]. A detailed study of various processing techniques has been carried out.
NASA Astrophysics Data System (ADS)
Xie, Yushu; Li, Fatao
2010-06-01
The objective of this paper is to study thermal inertia effect due to the fact of the properties of the hyperbolic equations based on LS theory in generalized thermoelasticity. Simulations in a 2D hollow cylinder for uncoupled dynamic thermal stresses and thermal displacements were predicted by use of finite element method with Newmark algorithm. The thermal inertia effect on LS theory in rapid transient heat transfer process is also investigated in comparison with in steady heat transfer process. When different specific heat capacity is chosen, dynamic thermal stresses appear different types of vibration, in which less heat capacity causes more violent dynamic thermal stresses because of the thermal inertia effect. Both dynamic thermal stresses and thermal displacements in rapid transient heat transfer process have the larger amplitude and higher frequency than in steady heat transfer process due to thermal inertia from the results of simulation, which is consistent with the nature of the generalized thermoelasticity.
Embedded spacecraft thermal control using ultrasonic consolidation
NASA Astrophysics Data System (ADS)
Clements, Jared W.
Research has been completed in order to rapidly manufacture spacecraft thermal control technologies embedded in spacecraft structural panels using ultrasonic consolidation. This rapid manufacturing process enables custom thermal control designs in the time frame necessary for responsive space. Successfully embedded components include temperature sensors, heaters, wire harnessing, pre-manufactured heat pipes, and custom integral heat pipes. High conductivity inserts and custom integral pulsating heat pipes were unsuccessfully attempted. This research shows the viability of rapid manufacturing of spacecraft structures with embedded thermal control using ultrasonic consolidation.
Ankireddy, Krishnamraju; Ghahremani, Amir H.; Martin, Blake; ...
2018-01-01
Perovskite thin films are thermally annealed using a rapid intense pulsed light technique enabled by an alkyl halide that collectively improves device performance when processed in ambient conditions.
Method and apparatus for thermal processing of semiconductor substrates
Griffiths, Stewart K.; Nilson, Robert H.; Mattson, Brad S.; Savas, Stephen E.
2002-01-01
An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.
Method and apparatus for thermal processing of semiconductor substrates
Griffiths, Stewart K.; Nilson, Robert H.; Mattson, Brad S.; Savas, Stephen E.
2000-01-01
An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.
Rapid thermal annealing of Amorphous Hydrogenated Carbon (a-C:H) films
NASA Technical Reports Server (NTRS)
Alterovitz, Samuel A.; Pouch, John J.; Warner, Joseph D.
1987-01-01
Amorphous hydrogenated carbon (a-C:H) films were deposited on silicon and quartz substrates by a 30 kHz plasma discharge technique using methane. Rapid thermal processing of the films was accomplished in nitrogen gas using tungsten halogen light. The rapid thermal processing was done at several fixed temperatures (up to 600 C), as a function of time (up to 1800 sec). The films were characterized by optical absorption and by ellipsometry in the near UV and the visible. The bandgap, estimated from extrapolation of the linear part of a Tauc plot, decreases both with the annealing temperature and the annealing time, with the temperature dependence being the dominating factor. The density of states parameter increases up to 25 percent and the refractive index changes up to 20 percent with temperature increase. Possible explanations of the mechanisms involved in these processes are discussed.
Zhou, Lan; Suram, Santosh K.; Becerra-Stasiewicz, Natalie; ...
2015-05-27
Recent efforts have demonstrated enhanced tailoring of material functionality with mixed-anion materials, yet exploratory research with mixed-anion chemistries is limited by the sensitivity of these materials to synthesis conditions. In order to synthesize a particular metal oxynitride compound by traditional reactive annealing we require specific, limited ranges of both oxygen and nitrogen chemical potentials in order to establish equilibrium between the solid-state material and a reactive atmosphere. While using Ta-O-N as an example system, we describe a combination of reactive sputter deposition and rapid thermal processing for synthesis of mixed-anion inorganic materials. Heuristic optimization of reactive gas pressures to attainmore » a desired anion stoichiometry is discussed, and the ability of rapid thermal processing to enable amorphous to crystalline transitions without preferential anion loss is demonstrated through the controlled synthesis of nitride, oxide and oxynitride phases.« less
Rapid Selective Annealing of Cu Thin Films on Si Using Microwaves
NASA Technical Reports Server (NTRS)
Brain, R. A.; Atwater, H. A.; Watson, T. J.; Barmatz, M.
1994-01-01
A major goal of the semiconductor indurstry is to lower the processing temperatures needed for interconnects in silicon integrated circuits. Typical rapid thermal annealing processes heat the film as well as the substrate, creating device problems.
Multivariable control of a rapid thermal processor using ultrasonic sensors
NASA Astrophysics Data System (ADS)
Dankoski, Paul C. P.
The semiconductor manufacturing industry faces the need for tighter control of thermal budget and process variations as circuit feature sizes decrease. Strategies to meet this need include supervisory control, run-to-run control, and real-time feedback control. Typically, the level of control chosen depends upon the actuation and sensing available. Rapid Thermal Processing (RTP) is one step of the manufacturing cycle requiring precise temperature control and hence real-time feedback control. At the outset of this research, the primary ingredient lacking from in-situ RTP temperature control was a suitable sensor. This research looks at an alternative to the traditional approach of pyrometry, which is limited by the unknown and possibly time-varying wafer emissivity. The technique is based upon the temperature dependence of the propagation time of an acoustic wave in the wafer. The aim of this thesis is to evaluate the ultrasonic sensors as a potentially viable sensor for control in RTP. To do this, an experimental implementation was developed at the Center for Integrated Systems. Because of the difficulty in applying a known temperature standard in an RTP environment, calibration to absolute temperature is nontrivial. Given reference propagation delays, multivariable model-based feedback control is applied to the system. The modelling and implementation details are described. The control techniques have been applied to a number of research processes including rapid thermal annealing and rapid thermal crystallization of thin silicon films on quartz/glass substrates.
Effect of Back Contact and Rapid Thermal Processing Conditions on Flexible CdTe Device Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahabaduge, Hasitha; Meysing, D. M.; Rance, Will L.
Flexible CdTe solar cells on ultra-thin glass substrates can enable new applications that require high specific power, unique form-factors, and low manufacturing costs. To be successful, these cells must be cost competitive, have high efficiency, and have high reliability. Here we present back contact processing conditions that enabled us to achieve over 16% efficiency on flexible Corning (R) Willow (R) Glass substrates. We used co-evaporated ZnTe:Cu and Au as our back contact and used rapid thermal processing (RTP) to activate the back contact. Both the ZnTe to Cu ratio and the RTP activation temperature provide independent control over the devicemore » performance. We have investigated the influence of various RTP conditions to Cu activation and distribution. Current density-voltage, capacitance-voltage measurements along with device simulations were used to examine the device performance in terms of ZnTe to Cu ratio and rapid thermal activation temperature.« less
Optical processing for semiconductor device fabrication
NASA Technical Reports Server (NTRS)
Sopori, Bhushan L.
1994-01-01
A new technique for semiconductor device processing is described that uses optical energy to produce local heating/melting in the vicinity of a preselected interface of the device. This process, called optical processing, invokes assistance of photons to enhance interface reactions such as diffusion and melting, as compared to the use of thermal heating alone. Optical processing is performed in a 'cold wall' furnace, and requires considerably lower energies than furnace or rapid thermal annealing. This technique can produce some device structures with unique properties that cannot be produced by conventional thermal processing. Some applications of optical processing involving semiconductor-metal interfaces are described.
Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion
Wickman, B.; Bastos Fanta, A.; Burrows, A.; Hellman, A.; Wagner, J. B.; Iandolo, B.
2017-01-01
Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes considerably. Herein, we present hematite thin films fabricated via one-step oxidation of Fe by rapid thermal processing (RTP). In particular, we investigate the effect of oxidation temperature on the PEC properties of hematite. Films prepared at 750 °C show the highest activity towards water oxidation. These films show the largest average grain size and the highest charge carrier density, as determined from electron microscopy and impedance spectroscopy analysis. We believe that the fast processing enabled by RTP makes this technique a preferred method for investigation of novel materials and architectures, potentially also on nanostructured electrodes, where retaining high surface area is crucial to maximize performance. PMID:28091573
Processing of hydroxylapatite coatings on titanium alloy bone prostheses
Nastasi, M.A.; Levine, T.E.; Mayer, J.W.; Pizziconi, V.B.
1998-10-06
Processing of hydroxylapatite sol-gel films on titanium alloy bone prostheses. A method utilizing non-line-of-sight ion beam implantation and/or rapid thermal processing to provide improved bonding of layers of hydroxylapatite to titanium alloy substrates while encouraging bone ingrowth into the hydroxylapatite layers located away from the substrate, is described for the fabrication of prostheses. The first layer of hydroxylapatite is mixed into the substrate by the ions or rapidly thermally annealed, while subsequent layers are heat treated or densified using ion implantation to form layers of decreasing density and larger crystallization, with the outermost layers being suitable for bone ingrowth.
Processing of hydroxylapatite coatings on titanium alloy bone prostheses
Nastasi, Michael A.; Levine, Timothy E.; Mayer, James W.; Pizziconi, Vincent B.
1998-01-01
Processing of hydroxylapatite sol-gel films on titanium alloy bone prostheses. A method utilizing non-line-of-sight ion beam implantation and/or rapid thermal processing to provide improved bonding of layers of hydroxylapatite to titanium alloy substrates while encouraging bone ingrowth into the hydroxylapatite layers located away from the substrate, is described for the fabrication of prostheses. The first layer of hydroxylapatite is mixed into the substrate by the ions or rapidly thermally annealed, while subsequent layers are heat treated or densified using ion implantation to form layers of decreasing density and larger crystallization, with the outermost layers being suitable for bone ingrowth.
Thermo-acousto-photonics for noncontact temperature measurement in silicon wafer processing
NASA Astrophysics Data System (ADS)
Suh, Chii-Der S.; Rabroker, G. Andrew; Chona, Ravinder; Burger, Christian P.
1999-10-01
A non-contact thermometry technique has been developed to characterize the thermal state of silicon wafers during rapid thermal processing. Information on thermal variations is obtained from the dispersion relations of the propagating waveguide mode excited in wafers using a non-contact, broadband optical system referred to as Thermal Acousto- Photonics for Non-Destructive Evaluation. Variations of thermo-mechanical properties in silicon wafers are correlated to temperature changes by performing simultaneous time-frequency analyses on Lamb waveforms acquired with a fiber-tip interferometer sensor. Experimental Lamb wave data collected for cases ranging from room temperature to 400 degrees C is presented. The results show that the temporal progressions of all spectral elements found in the fundamental antisymmetric mode are strong functions of temperature. This particular attribute is exploited to achieve a thermal resolution superior to the +/- 5 degrees C attainable through current pyrometric techniques. By analyzing the temperature-dependent group velocity of a specific frequency component over the temperature range considered and then comparing the results to an analytical model developed for silicon wafers undergoing annealing, excellent agreement was obtained. Presented results demonstrate the feasibility of applying laser-induced stress waves as a temperature diagnostic during rapid thermal processing.
Formation of TiO2 nanorings due to rapid thermal annealing of swift heavy ion irradiated films.
Thakurdesai, Madhavi; Sulania, I; Narsale, A M; Kanjilal, D; Bhattacharyya, Varsha
2008-09-01
Amorphous thin films of TiO2 deposited by Pulsed Laser Deposition (PLD) method are irradiated by Swift Heavy Ion (SHI) beam. The irradiated films are subsequently annealed by Rapid Thermal Annealing (RTA) method. Atomic Force Microscopy (AFM) study reveals formation of nano-rings on the surface after RTA processing. Phase change is identified by Glancing Angle X-ray Diffraction (GAXRD) and Raman spectroscopy. Optical characterisation is carried out by UV-VIS absorption spectroscopy. Though no shift of absorption edge is observed after irradiation, RTA processing does show redshift.
NASA Astrophysics Data System (ADS)
Davies, A. G.; Davies, R. L.; Veeder, G. J.; de Kleer, K.; de Pater, I.; Matson, D. L.; Johnson, T. V.; Wilson, L.
2018-04-01
Analysis of Galileo Near-Infrared Mapping Spectrometer observations of Marduk Fluctus, a volcano on the Jovian moon Io, reveals a style of volcanic activity not previously seen there—a powerful thermal event lasting only a few minutes in 1996. The thermal emission rapidly fades, suggesting extremely rapid cooling of small clasts. The duration and evolution of the explosive eruption are akin to what might be expected from a strombolian or vulcanian explosion. The presence of such events provides an additional volcanic process that can be imaged by future missions with the intent of determining lava composition from eruption temperature, an important constraint on the internal composition of Io. These data promise to be of particular use in understanding the mechanics of explosive volcanic processes on Io.
Photo-thermal processing of semiconductor fibers and thin films
NASA Astrophysics Data System (ADS)
Gupta, Nishant
Furnace processing and rapid thermal processing (RTP) have been an integral part of several processing steps in semiconductor manufacturing. The performance of RTP techniques can be improved many times by exploiting quantum photo-effects of UV and vacuum ultraviolet (VUV) photons in thermal processing and this technique is known as rapid photo-thermal processing (RPP). As compared to furnace processing and RTP, RPP provides higher diffusion coefficient, lower stress and lower microscopic defects. In this work, a custom designed automated photo assisted processing system was built from individual parts and an incoherent light source. This photo-assisted processing system is used to anneal silica clad silicon fibers and deposit thin-films. To the best of our knowledge, incoherent light source based rapid photo-thermal processing (RPP) was used for the first time to anneal glass-clad silicon core optical fibers. X-ray diffraction examination, Raman spectroscopy and electrical measurements showed a considerable enhancement of structural and crystalline properties of RPP treated silicon fibers. Photons in UV and vacuum ultraviolet (VUV) regions play a very important role in improving the bulk and carrier transport properties of RPP-treated silicon optical fibers, and the resultant annealing permits a path forward to in situ enhancement of the structure and properties of these new crystalline core optical fibers. To explore further applications of RPP, thin-films of Calcium Copper Titanate (CaCu3Ti4O12) or CCTO and Copper (I) Oxide (Cu2O) were also deposited using photo-assisted metal-organic chemical vapor deposition (MOCVD) on Si/SiO2 and n-Si substrate respectively. CCTO is one of the most researched giant dielectric constant materials in recent years. The given photo-assisted MOCVD approach provided polycrystalline CCTO growth on a SiO2 surface with grain sizes as large as 410 nm. Copper (I) oxide (Cu2O) is a direct band gap semiconductor with p-type conductivity and is a potential candidate for multi-junction solar cells. X-ray diffraction study revealed a preferred orientation, as (200) oriented crystals of Cu2O are grown on both substrates. Also, electrical characterization of Cu2O/n-Si devices showed the lowest saturation current density of 1.5x10-12 A/cm 2 at zero bias. As a result, photo-assisted thermal processing has the potential of making the process more effective with enhanced device performance.
Recuit thermique rapide de semi-conducteur par énergie micro-onde
NASA Astrophysics Data System (ADS)
Covas, M.; Gay, H. C.
1993-05-01
This paper proposes a new technique for rapid thermal annealing of semi-conductors. This technique is based on microwave energy, and offers the same advantages as the rapid thermal annealing by incoherent light, in terms of rapidity, and contamination. However, our technique reduces considerably the required energy for the annealing process. This technique has been compared to the rapid thermal by incoherent light: lab experiments, carried out on boron implanted silicon samples, showed that a power gain ratio of about 10 can be achieved. Nous proposons une méthode de recuit thermique rapide du silicium par énergie micro-onde. Cette technique offre les mêmes avantages que les traitements thermiques rapides par lumière incohérente, c'est-à-dire des durées de chauffage très brèves, limitant ainsi la diffusion des dopants, et un traitement plaquette par plaquette : les risques de contamination de tout un lot sont ainsi éliminés. De plus notre méthode requiert une faible énergie : pour parvenir à des recuits de qualité similaire à celle obtenue dans des fours de recuit rapide à lampes il faut un flux de puissance 10 fois plus faible.
NASA Astrophysics Data System (ADS)
Murakoshi, Atsushi; Harada, Tsubasa; Miyano, Kiyotaka; Harakawa, Hideaki; Aoyama, Tomonori; Yamashita, Hirofumi; Kohyama, Yusuke
2017-09-01
To reduce the number of crystal defects in a p+Si diffusion layer by a low-thermal-budget annealing process, we have examined crystal recovery in the amorphous layer formed by the cryogenic implantation of germanium and boron combined with sub-melt laser spike annealing (LSA). The cryogenic implantation at -150 °C is very effective in suppressing vacancy clustering, which is advantageous for rapid crystal recovery during annealing. The crystallinity after LSA is shown to be very high and comparable to that after rapid thermal annealing (RTA) owing to the cryogenic implantation, although LSA is a low-thermal-budget annealing process that can suppress boron diffusion effectively. It is also shown that in the p+Si diffusion layer, there is high contact resistance due to the incomplete formation of a metal silicide contact, which originates from insufficient outdiffusion of surface contaminants such as fluorine. To widely utilize the marked reduction in the number of crystal defects, sufficient removal of surface contaminants will be required in the low-thermal-budget process.
1988-05-01
LE i GOD~’Q~/ SOLID STATE ELECTRONICS LABORATORY STANFORD ELECTRON ICS LABORATORIES DEPARTMENT OF ELECTRICAL ENGINEERING L STANFORD UNIVERSITY...defects in the growth of subsequent layers. Test structures consisting 325 zEP-H~ PrzC~ LE of multiple layers of GaAs or alternating lay ers of GaAs...QA5) ~erhfellowship. ’J L Ho~ viand ) IF Gibtxn,. itecr Res Soc S% mp Proc 52. 15119t 36 Rapid thermal annealing of Si-implanted GaAs with
Lee, JiYong; Park, Seung Hyun; Seo, Il Ho; Lee, Kang Ju; Ryu, WonHyoung
2015-08-01
Thermal drawing is a versatile rapid prototyping method that can freely form microneedle (MN) structures with ultra-high aspect ratio without relying on any complex and expensive process. However, it is still challenging to repeatedly produce MNs with identical shapes using this thermal drawing due to small fluctuations in processing conditions such as temperatures, drawing speeds, drawing heights, or parallelism in the drawing setup. In addition, thermal drawing is only applicable to thermoplastic materials and most natural biomaterials are incompatible with this method. Thus, we propose use of thermal drawing to fabricate master molds with high aspect ratios and replicate the shape by micromolding. In this work, high A/R MNs with various body profiles were fabricated by thermal drawing and replicated to silk fibroin (SF) MNs multiple times using micromolding. The original MN shape was precisely copied to the SF MNs. Methanol treatment enhanced the mechanical strength of SF MNs up to about 113% more depending on the treatment duration. We also demonstrated that methanol exposure time could effectively control drug release rates from SF MNs. Copyright © 2015 Elsevier B.V. All rights reserved.
Process dependency of radiation hardness of rapid thermal reoxidized nitrided gate oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weishin Lu; Kuanchin Lin; Jenngwo Hwu
The radiation hardness of MOS capacitors with various reoxidized nitrided oxide (RNO) structures is studied by changing the durations of rapid thermal processes during sample preparation and by applying irradiation-then-anneal (ITA) treatments on samples after preparation. It is found that the initial flatband voltage and midgap interface trap density of MOS capacitors exhibit turnaround'' dependency on the total time of nitridation and reoxidation processes. For samples with nitrided oxide (NO) structures, the radiation-induced variations of above parameters are also turnaround''-dependent on nitridation time. However, when the reoxidation process is performed, the radiation hardness for all samples will be gradually improvedmore » with increasing reoxidation time no matter what the nitridation time is. The most radiation-hard process for RNO structures is suggested. Finally, it is found that when ITA treatments are applied on samples after preparation, their radiation hardness is much improved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ankireddy, Krishnamraju; Ghahremani, Amir H.; Martin, Blake
Perovskite thin films are thermally annealed using a rapid intense pulsed light technique enabled by an alkyl halide that collectively improves device performance when processed in ambient conditions.
Improvement of band gap profile in Cu(InGa)Se{sub 2} solar cells through rapid thermal annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, D.S.; College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 200090; Yang, J.
Highlights: • Proper RTA treatment can effectively optimize band gap profile to more expected level. • Inter-diffusion of atoms account for the improvement of the graded band gap profile. • The variation of the band gap profile created an absolute gain in the efficiency by 1.22%. - Abstract: In the paper, the effect of rapid thermal annealing on non-optimal double-graded band gap profiles was investigated by using X-ray photoelectron spectroscopy and capacitance–voltage measurement techniques. Experimental results revealed that proper rapid thermal annealing treatment can effectively improve band gap profile to more optimal level. The annealing treatment could not only reducemore » the values of front band gap and minimum band gap, but also shift the position of the minimum band gap toward front electrode and enter into space charge region. In addition, the thickness of Cu(InGa)Se{sub 2} thin film decreased by 25 nm after rapid thermal annealing treatment. All of these modifications were attributed to the inter-diffusion of atoms during thermal treatment process. Simultaneously, the variation of the band gap profile created an absolute gain in the efficiency by 1.22%, short-circuit current density by 2.16 mA/cm{sup 2} and filled factor by 3.57%.« less
Optical/thermal analysis methodology for a space-qualifiable RTP furnace
NASA Technical Reports Server (NTRS)
Bugby, D.; Dardarian, S.; Cole, E.
1993-01-01
A methodology to predict the coupled optical/thermal performance of a reflective cavity heating system was developed and a laboratory test to verify the method was carried out. The procedure was utilized to design a rapid thermal processing (RTP) furnace for the Robot-Operated Material Processing in Space (ROMPS) Program which is a planned STS HH-G canister experiment involving robotics and material processing in microgravity. The laboratory test employed a tungsten-halogen reflector/lamp to heat thin, p-type silicon wafers. Measurements instrumentation consisted of 5-mil Pt/Pt-Rh thermocouples and an optical pyrometer. The predicted results, utilizing an optical ray-tracing program and a lumped-capacitance thermal analyzer, showed good agreement with the measured data for temperatures exceeding 1300 C.
Flash (Ultra-Rapid) Spark-Plasma Sintering of Silicon Carbide
Olevsky, Eugene A.; Rolfing, Stephen M.; Maximenko, Andrey L.
2016-01-01
A new ultra-rapid process of flash spark plasma sintering is developed. The idea of flash spark plasma sintering (or flash hot pressing - FHP) stems from the conducted theoretical analysis of the role of thermal runaway phenomena for material processing by flash sintering. The major purpose of the present study is to theoretically analyze the thermal runaway nature of flash sintering and to experimentally address the challenge of uncontrollable thermal conditions by the stabilization of the flash sintering process through the application of the external pressure. The effectiveness of the developed FHP technique is demonstrated by the few seconds–long consolidation of SiC powder in an industrial spark plasma sintering device. Specially designed sacrificial dies heat the pre-compacted SiC powder specimens to a critical temperature before applying any voltage to the powder volume and allowing the electrode-punches of the SPS device setup to contact the specimens and pass electric current through them under elevated temperatures. The experimental results demonstrate that flash sintering phenomena can be realized using conventional SPS devices. The usage of hybrid heating SPS devices is pointed out as the mainstream direction for the future studies and utilization of the new flash hot pressing (ultra-rapid spark plasma sintering) technique. PMID:27624641
Flash (Ultra-Rapid) Spark-Plasma Sintering of Silicon Carbide
Olevsky, Eugene A.; Rolfing, Stephen M.; Maximenko, Andrey L.
2016-09-14
A new ultra-rapid process of flash spark plasma sintering is developed. The idea of flash spark plasma sintering (or flash hot pressing - FHP) stems from the conducted theoretical analysis of the role of thermal runaway phenomena for material processing by flash sintering. The major purpose of the present study is to theoretically analyze the thermal runaway nature of flash sintering and to experimentally address the challenge of uncontrollable thermal conditions by the stabilization of the flash sintering process through the application of the external pressure. The effectiveness of the developed FHP technique is demonstrated by the few seconds–long consolidationmore » of SiC powder in an industrial spark plasma sintering device. Specially designed sacrificial dies heat the pre-compacted SiC powder specimens to a critical temperature before applying any voltage to the powder volume and allowing the electrode-punches of the SPS device setup to contact the specimens and pass electric current through them under elevated temperatures. The experimental results demonstrate that flash sintering phenomena can be realized using conventional SPS devices. The usage of hybrid heating SPS devices is pointed out as the mainstream direction for the future studies and utilization of the new flash hot pressing (ultra-rapid spark plasma sintering) technique.« less
Temperature shock, injury and transient sensitivity to nisin in Gram negatives.
Boziaris, I S; Adams, M R
2001-10-01
The effect of thermal stresses on survival, injury and nisin sensitivity was investigated in Salmonella Enteritidis PT4, PT7 and Pseudomonas aeruginosa. Heating at 55 degrees C, rapid chilling to 0.5 degrees C or freezing at -20 degrees C produced transient sensitivity to nisin. Cells were only sensitive if nisin was present during stress. Resistance recovered rapidly afterwards, though some cells displayed residual injury. Injury was assessed by SDS sensitivity, hydrophobicity changes, lipopolysaccharide release and NPN uptake. LPS release and hydrophobicity were not always associated with transient nisin sensitivity. Uptake of NPN correlated better but persisted longer after treatment. Thermal shocks produce transient injury to the outer membrane, allowing nisin access. After treatment, the permeability barrier is rapidly restored by a process apparently involving reorganization rather than biosynthetic repair. Inclusion of nisin during food treatments that impose sub-lethal stress on Gram negatives could increase process lethality, enhancing microbiological safety and stability.
Effects of rapid thermal annealing on the optical properties of strain-free quantum ring solar cells
2013-01-01
Strain-free GaAs/Al0.33Ga0.67As quantum rings are fabricated by droplet epitaxy. Both photoresponse and photoluminescence spectra confirm optical transitions in quantum rings, suggesting that droplet epitaxial nanomaterials are applicable to intermediate band solar cells. The effects of post-growth annealing on the quantum ring solar cells are investigated, and the optical properties of the solar cells with and without thermal treatment are characterized by photoluminescence technique. Rapid thermal annealing treatment has resulted in the significant improvement of material quality, which can be served as a standard process for quantum structure solar cells grown by droplet epitaxy. PMID:23281811
Greco, Giuseppe; Fiorenza, Patrick; Giannazzo, Filippo; Alberti, Alessandra; Roccaforte, Fabrizio
2014-01-17
In this paper, the structural and electrical modifications induced, in the nanoscale, by a rapid thermal oxidation process on AlGaN/GaN heterostructures, are investigated. A local rapid oxidation (900 ° C in O2, 10 min) localized under the anode region of an AlGaN/GaN diode enabled a reduction of the leakage current with respect to a standard Schottky contact. The insulating properties of the near-surface oxidized layer were probed by a nanoscale electrical characterization using scanning probe microscopy techniques. The structural characterization indicated the formation of a thin uniform oxide layer on the surface, with preferential oxidation paths along V-shaped defects penetrating through the AlGaN/GaN interface. The oxidation process resulted in an expansion of the lattice parameters due to the incorporation of oxygen atoms, accompanied by an increase of the crystal mosaicity. As a consequence, a decrease of the sheet carrier density of the two-dimensional electron gas and a positive shift of the threshold voltage are observed. The results provide useful insights for a possible future integration of rapid oxidation processes during GaN device fabrication.
Solar-thermal fluid-wall reaction processing
Weimer, Alan W.; Dahl, Jaimee K.; Lewandowski, Allan A.; Bingham, Carl; Buechler, Karen J.; Grothe, Willy
2006-04-25
The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.
Solar-Thermal Fluid-Wall Reaction Processing
Weimer, A. W.; Dahl, J. K.; Lewandowski, A. A.; Bingham, C.; Raska Buechler, K. J.; Grothe, W.
2006-04-25
The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.
NASA Technical Reports Server (NTRS)
Hogenson, P. A.; Lu, Tina
1995-01-01
The objective is to develop the advanced thermal seals to a technology readiness level (TRL) of 6 to support the rapid turnaround time and low maintenance requirements of the X-33 and the future reusable launch vehicle (RLV). This program is divided into three subtasks: (1) orbiter thermal seals operation history review; (2) material, process, and design improvement; and (3) fabrication and evaluation of the advanced thermal seals.
Development of a high-speed real-time PCR system for rapid and precise nucleotide recognition
NASA Astrophysics Data System (ADS)
Terazono, Hideyuki; Takei, Hiroyuki; Hattori, Akihiro; Yasuda, Kenji
2010-04-01
Polymerase chain reaction (PCR) is a common method used to create copies of a specific target region of a DNA sequence and to produce large quantities of DNA. A few DNA molecules, which act as templates, are rapidly amplified by PCR into many billions of copies. PCR is a key technology in genome-based biological analysis, revolutionizing many life science fields such as medical diagnostics, food safety monitoring, and countermeasures against bioterrorism. Thus, many applications have been developed with the thermal cycling. For these PCR applications, one of the most important key factors is reduction in the data acquisition time. To reduce the acquisition time, it is necessary to decrease the temperature transition time between the high and low ends as much as possible. We have developed a novel rapid real-time PCR system based on rapid exchange of media maintained at different temperatures. This system consists of two thermal reservoirs and a reaction chamber for PCR observation. The temperature transition was achieved within 0.3 sec, and good thermal stability was achieved during thermal cycling with rapid exchange of circulating media. This system allows rigorous optimization of the temperatures required for each stage of the PCR processes. Resulting amplicons were confirmed by electrophoresis. Using the system, rapid DNA amplification was accomplished within 3.5 min, including initial heating and complete 50 PCR cycles. It clearly shows that the device could allow us faster temperature switching than the conventional conduction-based heating systems based on Peltier heating/cooling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sames, William J.; Unocic, Kinga A.; Dehoff, Ryan R.
2014-07-28
Additive manufacturing (AM) technologies, also known as 3D printing, have demonstrated the potential to fabricate complex geometrical components, but the resulting microstructures and mechanical properties of these materials are not well understood due to unique and complex thermal cycles observed during processing. The electron beam melting (EBM) process is unique because the powder bed temperature can be elevated and maintained at temperatures over 1000 °C for the duration of the process. This results in three specific stages of microstructural phase evolution: (a) rapid cool down from the melting temperature to the process temperature, (b) extended hold at the process temperature,more » and (c) slow cool down to the room temperature. In this work, the mechanisms for reported microstructural differences in EBM are rationalized for Inconel 718 based on measured thermal cycles, preliminary thermal modeling, and computational thermodynamics models. The relationship between processing parameters, solidification microstructure, interdendritic segregation, and phase precipitation (δ, γ´, and γ´´) are discussed.« less
NASA Astrophysics Data System (ADS)
Maeda, Susumu; Sudo, Haruo; Okamura, Hideyuki; Nakamura, Kozo; Sueoka, Koji; Izunome, Koji
2018-04-01
A new control technique for achieving compatibility between crystal quality and gettering ability for heavy metal impurities was demonstrated for a nitrogen-doped Czochralski silicon wafer with a diameter of 300 mm via ultra-high temperature rapid thermal oxidation (UHT-RTO) processing. We have found that the DZ-IG structure with surface denuded zone and the wafer bulk with dense oxygen precipitates were formed by the control of vacancies in UHT-RTO process at temperature exceeding 1300 °C. It was also confirmed that most of the void defects were annihilated from the sub-surface of the wafer due to the interstitial Si atoms that were generated at the SiO2/Si interface. These results indicated that vacancies corresponded to dominant species, despite numerous interstitial silicon injections. We have explained these prominent features by the degree of super-saturation for the interstitial silicon due to oxidation and the precise thermal properties of the vacancy and interstitial silicon.
NASA Astrophysics Data System (ADS)
de Dieu Mugiraneza, Jean; Miyahira, Tomoyuki; Sakamoto, Akinori; Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Itoh, Taketsugu
2010-12-01
The microcrystalline phase obtained by adopting a two-step rapid thermal annealing (RTA) process for rf-sputtered silicon films deposited on thermally durable glass was characterized. The optical properties, surface morphology, and internal stress of the annealed Si films are investigated. As the thermally durable glass substrate allows heating of the deposited films at high temperatures, micro-polycrystalline silicon (micro-poly-Si) films of uniform grain size with a smooth surface and a low internal stress could be obtained after annealing at 750 °C. The thermal stress in the Si films was 100 times lower than that found in the films deposited on conventional glass. Uniform grains with an average grain size of 30 nm were observed by transmission electron microscopy (TEM) in the films annealed at 800 °C. These micro-poly-Si films have potential application for fabrication of uniform and reliable thin film transistors (TFTs) for large scale active-matrix organic light emitting diode (AMOLED) displays.
NASA Technical Reports Server (NTRS)
Biedenbender, M. D.; Kapoor, V. J.
1990-01-01
A rapid thermal annealing (RTA) process in pure N2 or pure H2 was developed for ion-implanted and encapsulated indium phosphide compound semiconductors, and the chemical nature at the silicon nitride-InP interface before and after RTA was examined using XPS. Results obtained from SIMS on the atomic concentration profiles of the implanted silicon in InP before and after RTA are presented, together with electrical characteristics of the annealed implants. Using the RTA process developed, InP metal-insulator semiconductor FETs (MISFETS) were fabricated. The MISFETS prepared had threshold voltages of +1 V, transconductance of 27 mS/mm, peak channel mobility of 1200 sq cm/V per sec, and drain current drift of only 7 percent.
Gaussian ancillary bombardment
NASA Astrophysics Data System (ADS)
Grimmer, Daniel; Brown, Eric; Kempf, Achim; Mann, Robert B.; Martín-Martínez, Eduardo
2018-05-01
We analyze in full detail the time evolution of an open Gaussian quantum system rapidly bombarded by Gaussian ancillae. As a particular case this analysis covers the thermalization (or not) of a harmonic oscillator coupled to a thermal reservoir made of harmonic oscillators. We derive general results for this scenario and apply them to the problem of thermalization. We show that only a particular family of system-environment couplings will cause the system to thermalize to the temperature of its environment. We discuss that if we want to understand thermalization as ensuing from the Markovian interaction of a system with the individual microconstituents of its (thermal) environment then the process of thermalization is not as robust as one might expect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirka, Michael M.; Nandwana, Peeyush; Lee, Yousub
Additive manufacturing (AM) of metals is rapidly emerging as an established manufacturing process for metal components. Unlike traditional metals fabrication processes, metals fabricated via AM undergo localized thermal cycles during fabrication. As a result, AM presents the opportunity to control the liquid-solid phase transformation, i.e. material texture. But, thermal cycling presents challenges from the standpoint of solid-solid phase transformations. We will discuss the opportunities and challenges in metals AM in the context of texture control and associated solid-solid phase transformations in Ti-6Al-4V and Inconel 718.
NASA Astrophysics Data System (ADS)
Zelazny, A. L.; Walsh, K. F.; Deegan, J. P.; Bundschuh, B.; Patton, E. K.
2015-05-01
The demand for infrared optical elements, particularly those made of chalcogenide materials, is rapidly increasing as thermal imaging becomes affordable to the consumer. The use of these materials in conjunction with established lens manufacturing techniques presents unique challenges relative to the cost sensitive nature of this new market. We explore the process from design to manufacture, and discuss the technical challenges involved. Additionally, facets of the development process including manufacturing logistics, packaging, supply chain management, and qualification are discussed.
Coal liquefaction quenching process
Thorogood, Robert M.; Yeh, Chung-Liang; Donath, Ernest E.
1983-01-01
There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.
Goto, Taichi; Onbaşlı, Mehmet C; Ross, C A
2012-12-17
Thin films of polycrystalline cerium substituted yttrium iron garnet (CeYIG) were grown on an yttrium iron garnet (YIG) seed layer on Si and Si-on-insulator substrates by pulsed laser deposition, and their optical and magneto-optical properties in the near-IR region were measured. A YIG seed layer of ~30 nm thick processed by rapid thermal anneal at 800°C provided a virtual substrate to promote crystallization of the CeYIG. The effect of the thermal budget of the YIG/CeYIG growth process on the film structure, magnetic and magnetooptical properties was determined.
ISS qualified thermal carrier equipment
NASA Astrophysics Data System (ADS)
Deuser, Mark S.; Vellinger, John C.; Jennings, Wm. M.
2000-01-01
Biotechnology is undergoing a period of rapid and sustained growth, a trend which is expected to continue as the general population ages and as new medical treatments and products are conceived. As pharmaceutical and biomedical companies continue to search for improved methods of production and, for answers to basic research questions, they will seek out new avenues of research. Space processing on the International Space Station (ISS) offers such an opportunity! Space is rapidly becoming an industrial laboratory for biotechnology research and processing. Space bioprocessing offers exciting possibilities for developing new pharmaceuticals and medical treatments, which can be used to benefit mankind on Earth. It also represents a new economic frontier for the private sector. For over eight years, the thermal carrier development team at SHOT has been working with government and commercial sector scientists who are conducting microgravity experiments that require thermal control. SHOT realized several years ago that the hardware currently being used for microgravity thermal control was becoming obsolete. It is likely that the government, academic, and industrial bioscience community members could utilize SHOT's hardware as a replacement to their current microgravity thermal carrier equipment. Moreover, SHOT is aware of several international scientists interested in utilizing our space qualified thermal carrier. SHOT's economic financing concept could be extremely beneficial to the international participant, while providing a source of geographic return for their particular region. Beginning in 2000, flight qualified thermal carriers are expected to be available to both the private and government sectors. .
Ontogeny of thermoregulatory mechanisms in king penguin chicks (Aptenodytes patagonicus).
Duchamp, Claude; Rouanet, Jean Louis; Barré, Hervé
2002-04-01
The rapid maturation of thermoregulatory mechanisms may be of critical importance for optimising chick growth and survival and parental energy investment under harsh climatic conditions. The ontogeny of thermoregulatory mechanisms was studied in growing king penguin chicks from hatching to the full emancipation observed at 1 month of age in the sub-Antarctic area (Crozet Archipelago). Newly hatched chicks showed small, but significant regulatory thermogenesis (21% rise in heat production assessed by indirect calorimetry), but rapidly became hypothermic. Within a few days, both resting (+32%) and peak (+52%) metabolic rates increased. The first week of life was characterised by a two-fold rise in thermogenic capacity in the cold, while thermal insulation was not improved. During the second and third weeks of age, thermal insulation markedly rose (two-fold drop in thermal conductance) in relation to down growth, while resting heat production was slightly reduced (-13%). Shivering (assessed by electromyography) was visible right after hatching, although its efficiency was limited. Thermogenic efficiency of shivering increased five-fold with age during the first weeks of life, but there was no sign of non-shivering thermogenesis. We conclude that thermal emancipation of king penguin chicks may be primarily determined by improvement of thermal insulation after thermogenic processes have become sufficiently matured. Both insulative and metabolic adaptations are required for the rapid ontogeny of thermoregulation and thermal emancipation in growing king penguin chicks.
Growth of WSi2 in phosphorous-implanted W/«Si» couples
NASA Astrophysics Data System (ADS)
Ma, E.; Lim, B. S.; Nicolet, M.-A.; Alvi, N. S.; Hamdi, A. H.
1988-05-01
The thermal reaction of rf-sputter-deposited tungsten films with a (100) silicon substrate is investigated by vacuum furnace annealing and rapid thermal annealing. An irradiation of the W/Si interface by a phosphorous ion beam at room temperature prior to annealing promotes a uniform interfacial growth of WSi2. The growth of WSi2 follows diffusion-controlled kinetics during both furnace annealing and rapid thermal processing. A growth law of x2 = kt is obtained for furnace annealing between 690 and 740° C, where x is the thickness of the compound, t is the annealing duration after an initial incubation period and k = 62 (cm2/s) exp (--3.0 eV/kT). The surface smoothness of the suicide films improves with increasing ion dose.
NASA Astrophysics Data System (ADS)
Greenlee, Jordan D.; Feigelson, Boris N.; Anderson, Travis J.; Tadjer, Marko J.; Hite, Jennifer K.; Mastro, Michael A.; Eddy, Charles R.; Hobart, Karl D.; Kub, Francis J.
2014-08-01
The first step of a multi-cycle rapid thermal annealing process was systematically studied. The surface, structure, and optical properties of Mg implanted GaN thin films annealed at temperatures ranging from 900 to 1200 °C were investigated by Raman spectroscopy, photoluminescence, UV-visible spectroscopy, atomic force microscopy, and Nomarski microscopy. The GaN thin films are capped with two layers of in-situ metal organic chemical vapor deposition -grown AlN and annealed in 24 bar of N2 overpressure to avoid GaN decomposition. The crystal quality of the GaN improves with increasing annealing temperature as confirmed by UV-visible spectroscopy and the full widths at half maximums of the E2 and A1 (LO) Raman modes. The crystal quality of films annealed above 1100 °C exceeds the quality of the as-grown films. At 1200 °C, Mg is optically activated, which is determined by photoluminescence measurements. However, at 1200 °C, the GaN begins to decompose as evidenced by pit formation on the surface of the samples. Therefore, it was determined that the optimal temperature for the first step in a multi-cycle rapid thermal anneal process should be conducted at 1150 °C due to crystal quality and surface morphology considerations.
NASA Astrophysics Data System (ADS)
Thakurdesai, Madhavi; Kanjilal, D.; Bhattacharyya, Varsha
2012-08-01
Irradiation by swift heavy ions (SHI) is unique tool to synthesize nanocrystalline thin films. We have reported transformation of 100 nm thick amorphous films into nanocrystalline film due to irradiation by 100 MeV Ag ion beam. Oblate shaped nanoparticles having anatase phase of TiO2 were formed on the surface of the irradiated films. In the present investigation, these films are annealed at 350 °C for 2 min in oxygen atmosphere by Rapid Thermal Annealing (RTA) method. During RTA processing, the temperature rises abruptly and this thermal instability is expected to alter surface morphology, structural and optical properties of nanocrystalline TiO2 thin films. Thus in the present work, effect of RTA on SHI induced nanocrystalline thin films of TiO2 is studied. The effect of RTA processing on the shape and size of TiO2 nanoparticles is studied by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Glancing Angle X-ray Diffraction (GAXRD) studies are carried to investigate structural changes induced by RTA processing. Optical characterization is carried out by UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The changes observed in structural and optical properties of nanocrystalline TiO2 thin films after RTA processing are attributed to the annihilation of SHI induced defects.
NASA Astrophysics Data System (ADS)
Nadalini, R.; Extase Team
The thermal properties of the constituent materials of the upper meters of planets and planetary bodies are of extreme interest. During the design and the verification of various planetary missions, the need to model and test appropriate simulants in laboratory is often raised. To verify the thermal properties of deployed laboratory simulants, the EXTASE thermal probe is a fast, precise, and easy-to-use tool. EXTASE is a thermal profile probe, able to measure the temperature and inject heat into the selected material at 16 different locations along its 45cm long slender cylindrical body. It has been developed following the experience of MUPUS, with the purpose of observing such properties on Earth, in situ and in a short time. We have used EXTASE, under laboratory cold and standard conditions, on several sand mixtures, soils, granular and compact ices, under vacuum and at normal pressure levels, to collect a great number of time- and depth-dependent temperature curves that represent the thermal dynamical response of the material. At the same time, two independent models have been developed to verify the experimental results by reaching the same results with a simulation of the same process. The models, analytical and numerical, which account for all material parameters (conductivity, density, capacity), have been developed and fine tuned until their results are superposed to the experimental curves, thus allowing the determination of the distinct thermal properties. In addition, a test campaign is under planning to use EXTASE to determine, rapidly and efficiently, the thermal properties of various regolith simulants to be used in the simulation of planetary subsurface processes.
Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters
NASA Astrophysics Data System (ADS)
Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon
2017-12-01
Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.
Lai, Man-Hong; Lim, Kok-Sing; Gunawardena, Dinusha S; Yang, Hang-Zhou; Chong, Wu-Yi; Ahmad, Harith
2015-03-01
In this work, we have demonstrated thermal stress relaxation in regenerated fiber Bragg gratings (RFBGs) by using direct CO₂-laser annealing technique. After the isothermal annealing and slow cooling process, the Bragg wavelength of the RFBG has been red-shifted. This modification is reversible by re-annealing and rapid cooling. It is repeatable with different cooling process in the subsequent annealing treatments. This phenomenon can be attributed to the thermal stress modification in the fiber core by means of manipulation of glass transition temperature with different cooling rates. This finding in this investigation is important for accurate temperature measurement of RFBG in dynamic environment.
Solidification and solid-state transformation sciences in metals additive manufacturing
Kirka, Michael M.; Nandwana, Peeyush; Lee, Yousub; ...
2017-02-11
Additive manufacturing (AM) of metals is rapidly emerging as an established manufacturing process for metal components. Unlike traditional metals fabrication processes, metals fabricated via AM undergo localized thermal cycles during fabrication. As a result, AM presents the opportunity to control the liquid-solid phase transformation, i.e. material texture. But, thermal cycling presents challenges from the standpoint of solid-solid phase transformations. We will discuss the opportunities and challenges in metals AM in the context of texture control and associated solid-solid phase transformations in Ti-6Al-4V and Inconel 718.
Preparation and modification of VO2 thin film on R-sapphire substrate by rapid thermal process
NASA Astrophysics Data System (ADS)
Zhu, Nai-Wei; Hu, Ming; Xia, Xiao-Xu; Wei, Xiao-Ying; Liang, Ji-Ran
2014-04-01
The VO2 thin film with high performance of metal-insulator transition (MIT) is prepared on R-sapphire substrate for the first time by magnetron sputtering with rapid thermal process (RTP). The electrical characteristic and THz transmittance of MIT in VO2 film are studied by four-point probe method and THz time domain spectrum (THz-TDS). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and search engine marketing (SEM) are employed to analyze the crystalline structure, valence state, surface morphology of the film. Results indicate that the properties of VO2 film which is oxidized from the metal vanadium film in oxygen atmosphere are improved with a follow-up RTP modification in nitrogen atmosphere. The crystallization and components of VO2 film are improved and the film becomes compact and uniform. A better phase transition performance is shown that the resistance changes nearly 3 orders of magnitude with a 2-°C hysteresis width and the THz transmittances are reduced by 64% and 60% in thermal and optical excitation respectively.
Nam, Hanyeob; Kim, Hong-Seok; Han, Jae-Hee; Kwon, Sang Jik; Cho, Eou Sik
2018-09-01
As direct formation of p-type two-dimensional transition metal dichalcogenides (TMDC) films on substrates, tungsten disulfide (WS2) thin films were deposited onto sapphire glass substrate through shadow mask patterns by radio-frequency (RF) sputtering at different sputtering powers ranging from 60 W to 150 W and annealed by rapid thermal processing (RTP) at various high temperatures ranging from 500 °C to 800 °C. Based on scanning electron microscope (SEM) images and Raman spectra, better surface roughness and mode dominant E12g and A1g peaks were found for WS2 thin films prepared at higher RF sputtering powers. It was also possible to obtain high mobilities and carrier densities for all WS2 thin films based on results of Hall measurements. Process conditions for these WS2 thin films on sapphire substrate were optimized to low RF sputtering power and high temperature annealing.
NASA Astrophysics Data System (ADS)
Peyton, David; Kinoshita, Hiroyuki; Lo, G. Q.; Kwong, Dim-Lee
1991-04-01
Rapid Thermal Processing (RTP) is becoming a popular approach for future ULSI manufacturing due to its unique low thermal budget and process flexibility. Furthermore when RTP is combined with Chemical Vapor Deposition (CVD) the so-called RTP-CVD technology it can be used to deposit ultrathin films with extremely sharp interfaces and excellent material qualities. One major consequence of this type of processing however is the need for extremely tight control of wafer temperature both to obtain reproducible results for process control and to minimize slip and warpage arising from nonuniformities in temperature. Specifically temperature measurement systems suitable for RiP must have both high precision--within 1-2 degrees--and a short response time--to output an accurate reading on the order of milliseconds for closedloop control. Any such in-situ measurement technique must be non-contact since thermocouples cannot meet the response time requirements and have problems with conductive heat flow in the wafer. To date optical pyrometry has been the most widely used technique for RiP systems although a number of other techniques are being considered and researched. This article examines several such techniques from a systems perspective: optical pyrometry both conventional and a new approach using ellipsometric techniques for concurrent emissivity measurement Raman scattering infrared laser thermometry optical diffraction thermometry and photoacoustic thermometry. Each approach is evaluated in terms of its actual or estimated manufacturing cost remote sensing capability precision repeatability dependence on processing history range
Rapid Thermal Processing to Enhance Steel Toughness.
Judge, V K; Speer, J G; Clarke, K D; Findley, K O; Clarke, A J
2018-01-11
Quenching and Tempering (Q&T) has been utilized for decades to alter steel mechanical properties, particularly strength and toughness. While tempering typically increases toughness, a well-established phenomenon called tempered martensite embrittlement (TME) is known to occur during conventional Q&T. Here we show that short-time, rapid tempering can overcome TME to produce unprecedented property combinations that cannot be attained by conventional Q&T. Toughness is enhanced over 43% at a strength level of 1.7 GPa and strength is improved over 0.5 GPa at an impact toughness of 30 J. We also show that hardness and the tempering parameter (TP), developed by Holloman and Jaffe in 1945 and ubiquitous within the field, is insufficient for characterizing measured strengths, toughnesses, and microstructural conditions after rapid processing. Rapid tempering by energy-saving manufacturing processes like induction heating creates the opportunity for new Q&T steels for energy, defense, and transportation applications.
Combustion-Assisted Photonic Annealing of Printable Graphene Inks via Exothermic Binders.
Secor, Ethan B; Gao, Theodore Z; Dos Santos, Manuel H; Wallace, Shay G; Putz, Karl W; Hersam, Mark C
2017-09-06
High-throughput and low-temperature processing of high-performance nanomaterial inks is an important technical challenge for large-area, flexible printed electronics. In this report, we demonstrate nitrocellulose as an exothermic binder for photonic annealing of conductive graphene inks, leveraging the rapid decomposition kinetics and built-in energy of nitrocellulose to enable versatile process integration. This strategy results in superlative electrical properties that are comparable to extended thermal annealing at 350 °C, using a pulsed light process that is compatible with thermally sensitive substrates. The resulting porous microstructure and broad liquid-phase patterning compatibility are exploited for printed graphene microsupercapacitors on paper-based substrates.
Role of thermal processes in dewetting of epitaxial Ag(111) film on Si(111)
Sanders, Charlotte E.; Zhang, Chendong D.; Kellogg, Gary L.; ...
2014-08-01
Epitaxially grown silver (Ag) film on silicon (Si) is an optimal plasmonic device platform, but its technological utility has been limited by its tendency to dewet rapidly under ambient conditions (standard temperature and pressure). The mechanisms driving this dewetting have not heretofore been determined. In our study, scanning probe microscopy and low-energy electron microscopy are used to compare the morphological evolution of epitaxial Ag(111)/Si(111) under ambient conditions with that of similarly prepared films heated under ultra-high vacuum (UHV) conditions. Furthermore, dewetting is seen to be initiated with the formation of pinholes, which might function to relieve strain in the film.more » We find that in the UHV environment, dewetting is determined by thermal processes, and while under ambient conditions, thermal processes are not required. Finally, we conclude that dewetting in ambient conditions is triggered by some chemical process, most likely oxidation.« less
Rapid modification of urban land surface temperature during rainfall
NASA Astrophysics Data System (ADS)
Omidvar, H.; Bou-Zeid, E.; Song, J.; Yang, J.; Arwatz, G.; Wang, Z.; Hultmark, M.; Kaloush, K.
2017-12-01
We study the runoff dynamics and heat transfer over urban pavements during rainfall. A kinematic wave approach is combined with heat storage and transfer schemes to develop a model for impervious (with runoff) and pervious (without runoff) pavements. The resulting framework is a numerical prognostic model that can simulate the temperature fields in the subsurface and runoff layers to capture the rapid cooling of the surface, as well as the thermal pollution advected in the runoff. Extensive field measurements were then conducted over experimental pavements in Arizona to probe the physics and better represent the relevant processes in the model, and then to validate the model. The experimental data and the model results were in very good agreements, and their joint analysis elucidated the physics of the rapid heat transfer from the subsurface to the runoff layer. Finally, we apply the developed model to investigate how the various hydrological and thermal properties of the pavements, as well as ambient environmental conditions, modulate the surface and runoff thermal dynamics, what is the relative importance of each of them, and how we can apply the model mitigate the adverse impacts of urbanization.
Anisotropic growth of NiO nanorods from Ni nanoparticles by rapid thermal oxidation.
Koga, Kenji; Hirasawa, Makoto
2013-09-20
NiO nanorods with extremely high crystallinity were grown by rapid thermal oxidation through exposure of Ni nanoparticles (NPs) heated above 400° C to oxygen. Oxidation proceeds by nucleation of a NiO island on a Ni NP that grows anisotropically to produce a NiO nanorod. This process differs completely from that under mild oxidation conditions, where the surface of the NPs is completely covered with an oxide film during the early stage of oxidation. The observed novel behaviour strongly suggests an interfacial oxidation mechanism driven by the dissolution of adsorbed oxygen into the Ni NP sub-surface region, subsequent diffusion and reaction at the NiO/Ni interface. The early oxidation conditions of metal NPs impose a significant influence on the entire oxidation process at the nanoscale and are therefore inherently important for the precise morphological control of oxidized NPs to design functional nanomaterials.
Tailoring magnetic domains in Gd-Fe thin films
NASA Astrophysics Data System (ADS)
Talapatra, A.; Chelvane, J. Arout; Mohanty, J.
2018-05-01
This paper presents the global modification of magnetic domains and magnetic properties in amorphous Gd19Fe81 thin films with rapid thermal processing at two distinct temperatures (250oC and 450oC), and with different time intervals viz., 2, 5, 10 and 20 minutes. 100 nm thick as-prepared films display nano-scale meandering stripe domains with high magnetic phase contrast which is the signature of perpendicular magnetic anisotropy. The films processed at 250oC for various time intervals show successive reduction in magnetic phase contrast and domain size. The domain pattern completely disappeared, and topography dominated mixed magnetic phase has been obtained for the films processed at 450oC for time intervals greater than 2 minutes. The magnetization measurements indicate the reduction in perpendicular magnetic anisotropy with increase in saturation magnetization for all the rapid thermal processed films. The experimental outputs have been used to simulate the domain pattern. Reduction in uniaxial anisotropy along with the increase in saturation magnetization successfully explain the experimental trend of decrease in domain size and magnetic contrast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenlee, Jordan D., E-mail: jordan.greenlee.ctr@nrl.navy.mil; Feigelson, Boris N.; Anderson, Travis J.
2014-08-14
The first step of a multi-cycle rapid thermal annealing process was systematically studied. The surface, structure, and optical properties of Mg implanted GaN thin films annealed at temperatures ranging from 900 to 1200 °C were investigated by Raman spectroscopy, photoluminescence, UV-visible spectroscopy, atomic force microscopy, and Nomarski microscopy. The GaN thin films are capped with two layers of in-situ metal organic chemical vapor deposition -grown AlN and annealed in 24 bar of N{sub 2} overpressure to avoid GaN decomposition. The crystal quality of the GaN improves with increasing annealing temperature as confirmed by UV-visible spectroscopy and the full widths at halfmore » maximums of the E{sub 2} and A{sub 1} (LO) Raman modes. The crystal quality of films annealed above 1100 °C exceeds the quality of the as-grown films. At 1200 °C, Mg is optically activated, which is determined by photoluminescence measurements. However, at 1200 °C, the GaN begins to decompose as evidenced by pit formation on the surface of the samples. Therefore, it was determined that the optimal temperature for the first step in a multi-cycle rapid thermal anneal process should be conducted at 1150 °C due to crystal quality and surface morphology considerations.« less
Detering, Brent A.; Kong, Peter C.
2001-01-01
Carbon monoxide is produced in a fast quench reactor. The production of carbon monoxide includes injecting carbon dioxide and some air into a reactor chamber having a high temperature at its inlet and a rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Carbon dioxide and other reactants such as methane and other low molecular weight hydrocarbons are injected into the reactor chamber. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.
NASA Astrophysics Data System (ADS)
Shulga, A. V.
2017-12-01
This article presents the results of comparative studies of mechanical properties and microstructure of nuclear fuel tubes and semifinished stainless steel items fabricated by consolidation of rapidly quenched powders and by conventional technology after high-temperature exposures at 600 and 700°C. Tensile tests of nuclear fuel tube ring specimens of stainless austenitic steel of grade AISI 316 and ferritic-martensitic steel are performed at room temperature. The microstructure and distribution of carbon and boron are analyzed by metallography and autoradiography in nuclear fuel tubes and semifinished items. Rapidly quenched powders of the considered steels are obtained by the plasma rotating electrode process. Positive influence of consolidation of rapidly quenched powders on mechanical properties after high-temperature aging is confirmed. The correlation between homogeneous distribution of carbon and boron and mechanical properties of the considered steel is determined. The effects of thermal aging and degradation of the considered steels are determined at 600°C and 700°C, respectively.
Method for thermal processing alumina-enriched spinel single crystals
Jantzen, Carol M.
1995-01-01
A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly.
Magnetic domains in Tb-Fe-Co thin films under anisotropy tilt
NASA Astrophysics Data System (ADS)
Talapatra, A.; Umadevi, K.; Arout Chelvane, J.; Mohanty, J.; Jayalakshmi, V.
2018-04-01
Tailoring of magnetic domains of Tb-Fe-Co thin films with rapid thermal processing has been reported in this paper. While the as-deposited films show elongated, inter-connected domains with high out-of-plane magnetic phase contrast, the rapid thermal processed films at 550 °C with different time intervals display deterioration of magnetic contrast. A longitudinal extension of domains has been observed with the processing time of 5 min. With subsequent increase in processing time, the domain patterns exhibit considerable decrease in magnetic phase difference combined with strong intermixing between two oppositely magnetized areas. The out-of-plane magnetic contrast is seen to be very weak for the Tb-Fe-Co film processed for 30 min. The domain morphology and the contrast variation have been modeled with micromagnetic simulations, considering the in-plane (along xz plane) tilt of anisotropy axis. The ground state energy profile and the variation in magnetic properties indicate the threshold tilt angle to be around 30 ° wherein the in-plane and out-of-plane squareness ratio and coercivities are comparable and hence the system shows a spin re-orientation behavior at higher tilt angles.
On the Processing of Martensitic Steels in Continuous Galvanizing Lines: Part 1
NASA Astrophysics Data System (ADS)
Song, Taejin; Kwak, Jaihyun; de Cooman, B. C.
2012-01-01
Whereas low-carbon (<0.2 mass pct) martensitic grades can be produced easily in continuous annealing processing lines equipped with the required cooling capacity, the thermal cycles in continuous galvanizing lines make it difficult to produce hot-dip Zn or Zn-alloy coated high-strength martensitic grades. This is because of the tempering processes occurring during dipping of the strip in the liquid Zn bath and, in the case of galvannealed sheet steel, the short thermal treatment required to achieve the alloying between the Zn and the steel. These short additional thermal treatments last less than 30 seconds but severely degrade the mechanical properties. Using a combination of internal friction, X-ray diffraction, and transmission electron microscopy, it is shown that the ultrafine-grained lath microstructure allows for a rapid dislocation recovery and carbide formation during the galvanizing processes. In addition, the effective dislocation pinning occurring during the galvannealing process results in strain localization and the suppression of strain hardening.
Gundupalli, Sathish Paulraj; Hait, Subrata; Thakur, Atul
2017-12-01
There has been a significant rise in municipal solid waste (MSW) generation in the last few decades due to rapid urbanization and industrialization. Due to the lack of source segregation practice, a need for automated segregation of recyclables from MSW exists in the developing countries. This paper reports a thermal imaging based system for classifying useful recyclables from simulated MSW sample. Experimental results have demonstrated the possibility to use thermal imaging technique for classification and a robotic system for sorting of recyclables in a single process step. The reported classification system yields an accuracy in the range of 85-96% and is comparable with the existing single-material recyclable classification techniques. We believe that the reported thermal imaging based system can emerge as a viable and inexpensive large-scale classification-cum-sorting technology in recycling plants for processing MSW in developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vandana; Batra, Neha; Gope, Jhuma; Singh, Rajbir; Panigrahi, Jagannath; Tyagi, Sanjay; Pathi, P; Srivastava, S K; Rauthan, C M S; Singh, P K
2014-10-21
Thermal ALD deposited Al2O3 films on silicon show a marked difference in surface passivation quality as a function of annealing time (using a rapid thermal process). An effective and quality passivation is realized in short anneal duration (∼100 s) in nitrogen ambient which is reflected in the low surface recombination velocity (SRV <10 cm s(-1)). The deduced values are close to the best reported SRV obtained by the high thermal budget process (with annealing time between 10-30 min), conventionally used for improved surface passivation. Both as-deposited and low thermal budget annealed films show the presence of positive fixed charges and this is never been reported in the literature before. The role of field and chemical passivation is investigated in terms of fixed charge and interface defect densities. Further, the importance of the annealing step sequence in the MIS structure fabrication protocol is also investigated from the view point of its effect on the nature of fixed charges.
NASA Astrophysics Data System (ADS)
Kim, Dong Wook; Park, Jaehoon; Hwang, Jaeeun; Kim, Hong Doo; Ryu, Jin Hwa; Lee, Kang Bok; Baek, Kyu Ha; Do, Lee-Mi; Choi, Jong Sun
2015-01-01
In this study, a pulse-light annealing method is proposed for the rapid fabrication of solution-processed zinc oxide (ZnO) thinfilm transistors (TFTs). Transistors that were fabricated by the pulse-light annealing method, with the annealing being carried out at 90℃ for 15 s, exhibited a mobility of 0.05 cm2/Vs and an on/off current ratio of 106. Such electrical properties are quite close to those of devices that are thermally annealed at 165℃ for 40 min. X-ray photoelectron spectroscopy analysis of ZnO films showed that the activation energy required to form a Zn-O bond is entirely supplied within 15 s of pulse-light exposure. We conclude that the pulse-light annealing method is viable for rapidly curing solution-processable oxide semiconductors for TFT applications.
LANDSAT-4 image data quality analysis for energy related applications. [nuclear power plant sites
NASA Technical Reports Server (NTRS)
Wukelic, G. E. (Principal Investigator)
1983-01-01
No useable LANDSAT 4 TM data were obtained for the Hanford site in the Columbia Plateau region, but TM simulator data for a Virginia Electric Company nuclear power plant was used to test image processing algorithms. Principal component analyses of this data set clearly indicated that thermal plumes in surface waters used for reactor cooling would be discrenible. Image processing and analysis programs were successfully testing using the 7 band Arkansas test scene and preliminary analysis of TM data for the Savanah River Plant shows that current interactive, image enhancement, analysis and integration techniques can be effectively used for LANDSAT 4 data. Thermal band data appear adequate for gross estimates of thermal changes occurring near operating nuclear facilities especially in surface water bodies being used for reactor cooling purposes. Additional image processing software was written and tested which provides for more rapid and effective analysis of the 7 band TM data.
Chen, Yanan; Li, Yiju; Wang, Yanbin; Fu, Kun; Danner, Valencia A; Dai, Jiaqi; Lacey, Steven D; Yao, Yonggang; Hu, Liangbing
2016-09-14
High capacity battery electrodes require nanosized components to avoid pulverization associated with volume changes during the charge-discharge process. Additionally, these nanosized electrodes need an electronically conductive matrix to facilitate electron transport. Here, for the first time, we report a rapid thermal shock process using high-temperature radiative heating to fabricate a conductive reduced graphene oxide (RGO) composite with silicon nanoparticles. Silicon (Si) particles on the order of a few micrometers are initially embedded in the RGO host and in situ transformed into 10-15 nm nanoparticles in less than a minute through radiative heating. The as-prepared composites of ultrafine Si nanoparticles embedded in a RGO matrix show great performance as a Li-ion battery (LIB) anode. The in situ nanoparticle synthesis method can also be adopted for other high capacity battery anode materials including tin (Sn) and aluminum (Al). This method for synthesizing high capacity anodes in a RGO matrix can be envisioned for roll-to-roll nanomanufacturing due to the ease and scalability of this high-temperature radiative heating process.
Rapid detection of technological disasters by using a RST-based processing chain
NASA Astrophysics Data System (ADS)
Filizzola, Carolina; Corrado, Rosita; Mazzeo, Giuseppe; Marchese, Francesco; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio
2010-05-01
Natural disasters may be responsible for technological disasters which may cause injuries to citizens and damages to relevant infrastructures. When it is not possible to prevent or foresee such disasters it is hoped at least to rapidly detect the accident in order to intervene as soon as possible to minimize damages. In this context, the combination of a Robust Satellite Technique (RST), able to identify for sure actual (i.e. no false alarm) accidents, and satellite sensors with high temporal resolution seems to assure both a reliable and a timely detection of abrupt Thermal Infrared (TIR) transients related to dangerous explosions. A processing chain, based on the RST approach, has been developed in the framework of the G-MOSAIC project by DIFA-UNIBAS team, suitable for automatically identify on MSG-SEVIRI images harmful events. Maps of thermal anomalies are generated every 15 minutes (i.e. SEVIRI temporal repetition rate) over a selected area together with kml files (containing information on latitude and longitude of "thermally" anomalous SEVIRI pixel centre, time of image acquisition, relative intensity of anomalies, etc.) for a rapid visualization of the accident position even on google earth. Results achieved in the case of the event occurred in Russia on 10th May 2009 will be presented: a gas pipeline exploded, causing injures to citizens and a huge damage to a Physicochemical Scientific Research Institute which is, according to official data, an organisation, running especially dangerous production and facilities.
High density circuit technology, part 4
NASA Technical Reports Server (NTRS)
Wade, T. E.
1982-01-01
An accurate study and evaluation of dielectric thin films is conducted in order to find the material or combination of materials which would optimize NASA'S double layer metal process. Emphasis is placed on polyimide dielectrics because of their reported outstanding dielectric characteristics (including electrical, chemical, thermal, and mechanical) and ease of processing, as well as their rapid acceptance by the semiconductor industry.
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, J.; Wang, H.; Zhu, L.; Wu, W.
2017-06-01
Lower Ti/Al/Ni/Au Ohmic contact resistance on AlGaN/GaN with wider rapid thermal annealing (RTA) temperature window was achieved using recessed Ohmic contact structure based on self-terminating thermal oxidation assisted wet etching technique (STOAWET), in comparison with conventional Ohmic contacts. Even at lower temperature such as 650°C, recessed structure by STOAWET could still obtain Ohmic contact with contact resistance of 1.97Ω·mm, while conventional Ohmic structure mainly featured as Schottky contact. Actually, both Ohmic contact recess and mesa isolation processes could be accomplished by STOAWET in one process step and the process window of STOAWET is wide, simplifying AlGaN/GaN HEMT device process. Our experiment shows that the isolation leakage current by STOAWET is about one order of magnitude lower than that by inductivity coupled plasma (ICP) performed on the same wafer.
NASA Astrophysics Data System (ADS)
Huang, Shengzhou; Li, Mujun; Shen, Lianguan; Qiu, Jinfeng; Zhou, Youquan
2018-03-01
A novel fabrication method for high quality aspheric microlens array (MLA) was developed by combining the dose-modulated DMD-based lithography and surface thermal reflow process. In this method, the complex shape of aspheric microlens is pre-modeled via dose modulation in a digital micromirror device (DMD) based maskless projection lithography. And the dose modulation mainly depends on the distribution of exposure dose of photoresist. Then the pre-shaped aspheric microlens is polished by a following non-contact thermal reflow (NCTR) process. Different from the normal process, the reflow process here is investigated to improve the surface quality while keeping the pre-modeled shape unchanged, and thus will avoid the difficulties in generating the aspheric surface during reflow. Fabrication of a designed aspheric MLA with this method was demonstrated in experiments. Results showed that the obtained aspheric MLA was good in both shape accuracy and surface quality. The presented method may be a promising approach in rapidly fabricating high quality aspheric microlens with complex surface.
NASA Astrophysics Data System (ADS)
Cavanaugh, C.; Gille, J.; Francis, G.; Nardi, B.; Hannigan, J.; McInerney, J.; Krinsky, C.; Barnett, J.; Dean, V.; Craig, C.
2005-12-01
The High Resolution Dynamics Limb Sounder (HIRDLS) instrument onboard the NASA Aura spacecraft experienced a rupture of the thermal blanketing material (Kapton) during the rapid depressurization of launch. The Kapton draped over the HIRDLS scan mirror, severely limiting the aperture through which HIRDLS views space and Earth's atmospheric limb. In order for HIRDLS to achieve its intended measurement goals, rapid characterization of the anomaly, and rapid recovery from it were required. The recovery centered around a new processing module inserted into the standard HIRDLS processing scheme, with a goal of minimizing the effect of the anomaly on the already existing processing modules. We describe the software infrastructure on which the new processing module was built, and how that infrastructure allows for rapid application development and processing response. The scope of the infrastructure spans three distinct anomaly recovery steps and the means for their intercommunication. Each of the three recovery steps (removing the Kapton-induced oscillation in the radiometric signal, removing the Kapton signal contamination upon the radiometric signal, and correcting for the partially-obscured atmospheric view) is completely modularized and insulated from the other steps, allowing focused and rapid application development towards a specific step, and neutralizing unintended inter-step influences, thus greatly shortening the design-development-test lifecycle. The intercommunication is also completely modularized and has a simple interface to which the three recovery steps adhere, allowing easy modification and replacement of specific recovery scenarios, thereby heightening the processing response.
Measurement of in-plane thermal conductivity in polymer films
NASA Astrophysics Data System (ADS)
Wei, Qingshuo; Uehara, Chinatsu; Mukaida, Masakazu; Kirihara, Kazuhiro; Ishida, Takao
2016-04-01
Measuring the in-plane thermal conductivity of organic thermoelectric materials is challenging but is critically important. Here, a method to study the in-plane thermal conductivity of free-standing films (via the use of commercial equipment) based on temperature wave analysis is explored in depth. This subject method required a free-standing thin film with a thickness larger than 10 μm and an area larger than 1 cm2, which are not difficult to obtain for most solution-processable organic thermoelectric materials. We evaluated thermal conductivities and anisotropic ratios for various types of samples including insulating polymers, undoped semiconducting polymers, doped conducting polymers, and one-dimensional carbon fiber bulky papers. This approach facilitated a rapid screening of in-plane thermal conductivities for various organic thermoelectric materials.
Method for thermal processing alumina-enriched spinel single crystals
Jantzen, C.M.
1995-05-09
A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly. 12 figs.
NASA Astrophysics Data System (ADS)
Shin, Joong-Won; Cho, Won-Ju
2017-07-01
In this paper, we investigate a low thermal budget post-deposition-annealing (PDA) process for amorphous In-Ga-ZnO (a-IGZO) oxide semiconductor thin-film-transistors (TFTs). To evaluate the electrical characteristics and reliability of the TFTs after the PDA process, microwave annealing (MWA) and rapid thermal annealing (RTA) methods were applied, and the results were compared with those of the conventional annealing (CTA) method. The a-IGZO TFTs fabricated with as-deposited films exhibited poor electrical characteristics; however, their characteristics were improved by the proposed PDA process. The CTA-treated TFTs had excellent electrical properties and stability, but the CTA method required high temperatures and long processing times. In contrast, the fabricated RTA-treated TFTs benefited from the lower thermal budget due to the short process time; however, they exhibited poor stability. The MWA method uses a low temperature (100 °C) and short annealing time (2 min) because microwaves transfer energy directly to the substrate, and this method effectively removed the defects in the a-IGZO TFTs. Consequently, they had a higher mobility, higher on-off current ratio, lower hysteresis voltage, lower subthreshold swing, and higher interface trap density than TFTs treated with CTA or RTA, and exhibited excellent stability. Based on these results, low thermal budget MWA is a promising technology for use on various substrates in next generation displays.
Graphene-based porous silica sheets impregnated with polyethyleneimine for superior CO2 capture.
Yang, Shubin; Zhan, Liang; Xu, Xiaoyue; Wang, Yanli; Ling, Licheng; Feng, Xinliang
2013-04-18
It is demonstrated that graphene-based porous silica sheets can serve as an efficient carrier support for PEI via a simple nanocasting technology. The resulting materials possess thin nature, high PEI loading content and high thermal-conductivity. Such features are favorable for the efficient diffusion and adsorption of CO2 as well as the rapid thermal transfer during the CO2 capture process. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Noncontact temperature measurement: Requirements and applications for metals and alloys research
NASA Technical Reports Server (NTRS)
Perepezko, J. H.
1988-01-01
Temperature measurement is an essential capability for almost all areas of metals and alloys research. In the microgravity environment many of the science priorities that have been identified for metals and alloys also require noncontact temperature measurement capability. For example, in order to exploit the full potential of containerless processing, it is critical to have available a suitable noncontact temperature measurement system. This system is needed to track continuously the thermal history, including melt undercooling and rapid recalescence, of relatively small metal spheres during free-fall motion in drop tube systems. During containerless processing with levitation-based equipment, accurate noncontact temperature measurement is required to monitor one or more quasi-static samples with sufficient spatial and thermal resolution to follow the progress of solidification fronts originating in undercooled melts. In crystal growth, thermal migration, coarsening and other experiments high resolution thermal maps would be a valuable asset in the understanding and modeling of solidification processes, fluid flows and microstructure development. The science and applications requirements place several constraints on the spatial resolution, response time and accuracy of suitable instrumentation.
Woolley, Christine; Garcia, Antonio A; Santello, Marco
2017-04-12
Pure coconut oil, lanolin, and acetaminophen were vaporized at rates of 1-50 mg/min, using a porous network exhibiting a temperature gradient from 5000 to 5500 K/mm, without incurring noticeable chemical changes due to combustion, oxidation, or other thermally-induced chemical structural changes. The newly coined term "ereptiospiration" is used here to describe this combination of thermal transpiration at high temperature gradients since the process can force the creation of thermal aerosols by rapid heating in a localized zone. Experimental data were generated for these materials using two different supports for metering the materials to the battery powered coil: namely, a stainless steel fiber bundle and a 3-D printed steel cartridge. Heating coconut oil, lanolin, or acetaminophen in a beaker to lower temperatures than those achieved at the surface of the coil showed noticeable and rapid degradation in the samples, while visual and olfactory observations for ereptiospiration showed no noticeable degradation in lanolin and coconut oil while HPLC chromatograms along with visual observation confirm that within the limit of detection, acetaminophen remains chemically unaltered by ereptiospiration.
NASA Astrophysics Data System (ADS)
Nicaise, Samuel M.; Gadelrab, Karim R.; G, Amir Tavakkoli K.; Ross, Caroline A.; Alexander-Katz, Alfredo; Berggren, Karl K.
2018-01-01
Directed self-assembly of block copolymers (BCPs) provided by shear-stress can produce aligned sub-10 nm structures over large areas for applications in integrated circuits, next-generation data storage, and plasmonic structures. In this work, we present a fast, versatile BCP shear-alignment process based on coefficient of thermal expansion mismatch of the BCP film, a rigid top coat and a substrate. Monolayer and bilayer cylindrical microdomains of poly(styrene-b-dimethylsiloxane) aligned preferentially in-plane and orthogonal to naturally-forming or engineered cracks in the top coat film, allowing for orientation control over 1 cm2 substrates. Annealing temperatures, up to 275 °C, provided low-defect alignment up to 2 mm away from cracks for rapid (<1 min) annealing times. Finite-element simulations of the stress as a function of annealing time, annealing temperature, and distance from cracks showed that shear stress during the cooling phase of the thermal annealing was critical for the observed microdomain alignment.
NASA Astrophysics Data System (ADS)
Tan, Hui-Gee; Duh, Jenq-Gong
2016-12-01
A vast quantity of waste sludge is generated during the silicon wafers slicing process in semiconductor and photovoltaic industries. Turning the waste powder into high-value products is of strategic importance for industrial processes. The purified Si microparticles (Si-MP) are recycled by a simple and fast procedure, Rapid Thermal Process (RTP). A prominent anodic material of Si-MP/Carbon composite with porous structure is obtained via in-spaced carbonization of water-soluble binder sodium carboxymethyl cellulose during RTP. This strategy provides buffer space, which is constructed by carbon porous continuous conductive framework throughout the entire electrode, to resist local stress and intense volume variation. In addition, a sufficiently electrochemically stable solid-electrolyte interphase layer is accomplished with the coating of SiOx film and amorphous carbon on the surface of Si-MP. Under these circumstances, the enhanced electrodes achieve a first cycle efficiency of approximately 80% and a reversible charge capacity of 800 mAhg-1 over 100 cycles at 0.5 Ag-1 with good retention. Through a green and simple procedure, a remarkable Si-MP embedded carbon-matrix with porous structure is established to achieve commercially high performance Si-MP/C composite anodes and also to resolve the issues of waste disposal.
Effect of acoustic softening on the thermal-mechanical process of ultrasonic welding.
Chen, Kunkun; Zhang, Yansong; Wang, Hongze
2017-03-01
Application of ultrasonic energy can reduce the static stress necessary for plastic deformation of metallic materials to reduce forming load and energy, namely acoustic softening effect (ASE). Ultrasonic welding (USW) is a rapid joining process utilizing ultrasonic energy to form a solid state joint between two or more pieces of metals. Quantitative characterization of ASE and its influence on specimen deformation and heat generation is essential to clarify the thermal-mechanical process of ultrasonic welding. In the present work, experiments were set up to found out mechanical behavior of copper and aluminum under combined effect of compression force and ultrasonic energy. Constitutive model was proposed and numerical implemented in finite element model of ultrasonic welding. Thermal-mechanical analysis was put forward to explore the effect of ultrasonic energy on the welding process quantitatively. Conclusions can be drawn that ASE increases structural deformation significantly, which is beneficial for joint formation. Meanwhile, heat generation from both frictional work and plastic deformation is slightly influenced by ASE. Based on the proposed model, relationship between ultrasonic energy and thermal-mechanical behavior of structure during ultrasonic welding was constructed. Copyright © 2016 Elsevier B.V. All rights reserved.
Dilation Behavior of Thermal Spray Coatings
NASA Astrophysics Data System (ADS)
Bejarano Lopez, Miryan Lorena
Thermal Spray (TS) is a very versatile manufacturing process to deposit thick coatings on a variety of substrates. Coatings are used in protective (i.e. wear, chemical attack, high temperature, etc.) and functional (i.e. sensors) applications. TS coatings have a unique lamellar microstructure as a result of the overlapping of millions of molten and partially-molten particles. During processing, high deformation by impact, high temperature, and rapid solidification lead to a complex hierarchical material system that contains a high amount of microstructural defects. The presence of defects in the microstructure contribute to differences in property values in comparison to bulk materials. Thermal stresses and residual strains arise from processing, thermal gradients and thermal exposure. Evaluation of thermal properties, in this case, the coefficient of thermal expansion (CTE) is of vital importance to enhance coating performance. In this dissertation, expansion measurements of various metals, alloys, ceramics, and cermet coatings; were carried out using various techniques (push rod dilatometry, x-ray diffraction XRD, digital image correlation DIC, and curvature method) to determine the dilation behavior at the atomic, micro- and macro-scale levels. The main results were. 1) Mathematical models (Turner and Kerner) used for composite materials, successfully predicted the CTE property of a TS coating where the primary phase is the coating material and the secondary phases can be oxides, precipitates, etc. (formed as a byproduct of the spraying process). CTE was found not to be affected by porosity. 2) Despite the anisotropic behavior characteristic of TS coatings, the experimental results shown that CTE results to be reasonable isotropic within the scope of this study. 3) The curvature method was found to be an alternative technique to obtain the CTE, as well as the Young's modulus of coating in a bi-material strip, with good approximation. 4) An anomalous expansion behavior during the first heating exposure was exhibited by all coatings. The effect was named here, as "thermal shakedown", and is magnified in metals and alloys. 5) Non-isothermal rapid annealing of defects was correlated to this first irreversible contraction or expansion behavior. Although observed in most thermal spray materials, two material systems, pure Al and Ni-5Al were evaluated in-depth to quantify the mechanisms contributing to this behavior: vacancy formation, dislocation annealing, grain boundaries annihilation, residual stress relief, inelastic mechanical effects, etc. Correct determination of CTE values are important for design to assure integrity and functionality of coatings. Considerations of appropriate measurements are described in this dissertation.
Preparation, properties, and bonding utilization of pyrolysis bio-oil
USDA-ARS?s Scientific Manuscript database
The rapid increase in energy consumption, limited fossil fuel resource, and environmental concerns have stimulated the research need for biomass-derived fuels and chemicals. Pyrolysis is a thermal degradation process of biomass in the absence of oxygen. The liquid product from pyrolysis is known as ...
Significant aspects on thermal degradation of hybrid biocomposite material
NASA Astrophysics Data System (ADS)
Bavan, D. Saravana; Kumar, G. C. Mohan
2013-06-01
Interest in use of bio fibers is increasing rapidly in structural and automotive applications because of few important properties such as low density, mechanical properties, renewability, biodegradation and sustainability. The present work is focused on fabricating a hybrid bio-composite material processed through compression molding technique. Natural fibers of maize and jute with bio polymeric resin of epoxidized soya bean oil are used as a matrix in obtaining a hybrid bio composite material. Thermal degradation of the prepared material is studied through Thermal gravimetric analyzer. Chemical treatment of the fibers was performed to have a better adhesion between the fibers and the matrix. The work is also surveyed on various parameters influencing the thermal properties and other aspects for a hybrid bio composite material.
NASA Astrophysics Data System (ADS)
Sakaizawa, Honami; Watanabe, Hiroshi C.; Furuta, Tadaomi; Sakurai, Minoru
2016-01-01
In hydrophilic protein-protein associations, the dehydration penalty, which can cause the formation of a reaction barrier, must be canceled out; however, its mechanism has not been clarified. Here, we explored the possible mechanism through investigation of the dimerization of nucleotide binding domains (NBDs). We assessed the different dimerization processes by molecular dynamics simulations with and without thermal fluctuations in each NBD. Consequently, the reaction barriers of the former and latter were estimated to be ∼100 and ∼15 kcal/mol, respectively, suggesting that thermal fluctuations in the proteins facilitate the exclusion of water molecules from the interfacial region, thereby lowering the barrier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detering, B.A.; Kong, P.C.; Thomas, C.P.
This paper describes the experimental demonstration of a process for direct conversion of methane to acetylene in a thermal plasma. The process utilizes a thermal plasma to dissociate methane and form an equilibrium mixture of acetylene followed by a supersonic expansion of the hot gas to preserve the produced acetylene in high yield. The high translational velocities and rapid cooling result in an overpopulation of atomic hydrogen which persists throughout the expansion process. The presence of atomic hydrogen shifts the equilibrium composition by inhibiting complete pyrolysis of methane and acetylene to solid carbon. This process has the potential to reducemore » the cost of producing acetylene from natural gas. Acetylene and hydrogen produced by this process could be used directly as industrial gases, building blocks for synthesis of industrial chemicals, or oligomerized to long chain liquid hydrocarbons for use as fuels. This process produces hydrogen and ultrafine carbon black in addition to acetylene.« less
Directed-energy process technology efforts
NASA Technical Reports Server (NTRS)
Alexander, P.
1985-01-01
A summary of directed-energy process technology for solar cells was presented. This technology is defined as directing energy or mass to specific areas on solar cells to produce a desired effect in contrast to exposing a cell to a thermal or mass flow environment. Some of these second generation processing techniques are: ion implantation; microwave-enhanced chemical vapor deposition; rapid thermal processing; and the use of lasers for cutting, assisting in metallization, assisting in deposition, and drive-in of liquid dopants. Advantages of directed energy techniques are: surface heating resulting in the bulk of the cell material being cooler and unchanged; better process control yields; better junction profiles, junction depths, and metal sintering; lower energy consumption during processing and smaller factory space requirements. These advantages should result in higher-efficiency cells at lower costs. The results of the numerous contracted efforts were presented as well as the application potentials of these new technologies.
Rapid adhesive bonding of advanced composites and titanium
NASA Technical Reports Server (NTRS)
Stein, B. A.; Tyeryart, J. R.; Hodgest, W. T.
1985-01-01
Rapid adhesive bonding (RAB) concepts utilize a toroid induction technique to heat the adhesive bond line directly. This technique was used to bond titanium overlap shear specimens with 3 advanced thermoplastic adhesives and APC-2 (graphite/PEEK) composites with PEEK film. Bond strengths equivalent to standard heated-platen press bonds were produced with large reductions in process time. RAB produced very strong bonds in APC-2 adherend specimens; the APC-2 adherends were highly resistant to delamination. Thermal cycling did not significantly affect the shear strengths of RAB titanium bonds with polyimide adhesives. A simple ultrasonic non-destructive evaluation process was found promising for evaluating bond quality.
Surface Flashover of Semiconductors: A Fundamental Study
1993-06-16
surface electric fields for a number of samples with aluminum and gold contacts. Effects of processing varia- tions such as anneal method (rapid thermal...more uniform pre- breakdown surface fields. 3. Various contact materials and processing methods were used to determine effects on flashover...diffusion depths determined by this method were generally consistent with the estimated depths. 2-4 In order to characterize better the diffused layers
Portable Body Temperature Conditioner
2013-12-01
thermal manikin. This research will identify specific design improvements to be implemented in a reiterative process , ultimately leading to an...activity in hot environmental conditions. Studies have shown that lowering the patient’s core body temperature rapidly to 38oC improves complications and...further attempts to hire a second technician, during the past year (Year 2) UNSOM began the process of hiring a bio-heat transfer engineering expert to
Ni-catalysed WO3 nanostructures grown by electron beam rapid thermal annealing for NO2 gas sensing
NASA Astrophysics Data System (ADS)
Chandrasekaran, Gopalakrishnan; Sundararaj, Anuraj; Therese, Helen Annal; Jeganathan, K.
2015-07-01
Ni-catalysed WO3 (Ni-WO3) nanowires and nanosheets were grown on Si (100) substrates using electron beam evaporation followed by electron beam-assisted rapid thermal annealing process. Gas-sensing measurements were performed for various concentrations of NO2 in dry air at a temperature range of 50-400 °C. Nanowires and nanosheets show optimum sensor response of 229 and 197 at operating temperatures of 200 and 250 °C, respectively, for 100 ppm of NO2 exposure. Nanowires demonstrated a rapid response time of 66 s, but a slow recovery time of 204 s owing to poor rate of desorption of the adsorbed NO2 gas molecules from the internal porous structure of nanowires. In contrast, the recovery time for nanosheet was 126 s due to higher desorption rate of the adhered NO2 molecules associated with low surface area and less porous structure of nanosheet. The gas-sensing mechanism of WO3 nanostructure is discussed briefly.
Gold Nanorod-based Photo-PCR System for One-Step, Rapid Detection of Bacteria
Kim, Jinjoo; Kim, Hansol; Park, Ji Ho; Jon, Sangyong
2017-01-01
The polymerase chain reaction (PCR) has been an essential tool for diagnosis of infectious diseases, but conventional PCR still has some limitations with respect to applications to point-of-care (POC) diagnostic systems that require rapid detection and miniaturization. Here we report a light-based PCR method, termed as photo-PCR, which enables rapid detection of bacteria in a single step. In the photo-PCR system, poly(enthylene glycol)-modified gold nanorods (PEG-GNRs), used as a heat generator, are added into the PCR mixture, which is subsequently periodically irradiated with a 808-nm laser to create thermal cycling. Photo-PCR was able to significantly reduce overall thermal cycling time by integrating bacterial cell lysis and DNA amplification into a single step. Furthermore, when combined with KAPA2G fast polymerase and cooling system, the entire process of bacterial genomic DNA extraction and amplification was further shortened, highlighting the potential of photo-PCR for use in a portable, POC diagnostic system. PMID:29071186
Evaluation of methods for rapid determination of freezing point of aviation fuels
NASA Technical Reports Server (NTRS)
Mathiprakasam, B.
1982-01-01
Methods for identification of the more promising concepts for the development of a portable instrument to rapidly determine the freezing point of aviation fuels are described. The evaluation process consisted of: (1) collection of information on techniques previously used for the determination of the freezing point, (2) screening and selection of these techniques for further evaluation of their suitability in a portable unit for rapid measurement, and (3) an extensive experimental evaluation of the selected techniques and a final selection of the most promising technique. Test apparatuses employing differential thermal analysis and the change in optical transparency during phase change were evaluated and tested. A technique similar to differential thermal analysis using no reference fuel was investigated. In this method, the freezing point was obtained by digitizing the data and locating the point of inflection. Results obtained using this technique compare well with those obtained elsewhere using different techniques. A conceptual design of a portable instrument incorporating this technique is presented.
Modeling of thermalization phenomena in coaxial plasma accelerators
NASA Astrophysics Data System (ADS)
Subramaniam, Vivek; Panneerchelvam, Premkumar; Raja, Laxminarayan L.
2018-05-01
Coaxial plasma accelerators are electromagnetic acceleration devices that employ a self-induced Lorentz force to produce collimated plasma jets with velocities ~50 km s‑1. The accelerator operation is characterized by the formation of an ionization/thermalization zone near gas inlet of the device that continually processes the incoming neutral gas into a highly ionized thermal plasma. In this paper, we present a 1D non-equilibrium plasma model to resolve the plasma formation and the electron-heavy species thermalization phenomena that take place in the thermalization zone. The non-equilibrium model is based on a self-consistent multi-species continuum description of the plasma with finite-rate chemistry. The thermalization zone is modelled by tracking a 1D gas-bit as it convects down the device with an initial gas pressure of 1 atm. The thermalization process occurs in two stages. The first is a plasma production stage, associated with a rapid increase in the charged species number densities facilitated by cathode surface electron emission and volumetric production processes. The production stage results in the formation of a two-temperature plasma with electron energies of ~2.5 eV in a low temperature background gas of ~300 K. The second, a temperature equilibration stage, is characterized by the energy transfer between the electrons and heavy species. The characteristic length scale for thermalization is found to be comparable to axial length of the accelerator thus putting into question the equilibrium magnetohydrodynamics assumption used in modeling coaxial accelerators.
Method and device for predicting wavelength dependent radiation influences in thermal systems
Kee, Robert J.; Ting, Aili
1996-01-01
A method and apparatus for predicting the spectral (wavelength-dependent) radiation transport in thermal systems including interaction by the radiation with partially transmitting medium. The predicted model of the thermal system is used to design and control the thermal system. The predictions are well suited to be implemented in design and control of rapid thermal processing (RTP) reactors. The method involves generating a spectral thermal radiation transport model of an RTP reactor. The method also involves specifying a desired wafer time dependent temperature profile. The method further involves calculating an inverse of the generated model using the desired wafer time dependent temperature to determine heating element parameters required to produce the desired profile. The method also involves controlling the heating elements of the RTP reactor in accordance with the heating element parameters to heat the wafer in accordance with the desired profile.
The processing of aluminum gasarites via thermal decomposition of interstitial hydrides
NASA Astrophysics Data System (ADS)
Licavoli, Joseph J.
Gasarite structures are a unique type of metallic foam containing tubular pores. The original methods for their production limited them to laboratory study despite appealing foam properties. Thermal decomposition processing of gasarites holds the potential to increase the application of gasarite foams in engineering design by removing several barriers to their industrial scale production. The following study characterized thermal decomposition gasarite processing both experimentally and theoretically. It was found that significant variation was inherent to this process therefore several modifications were necessary to produce gasarites using this method. Conventional means to increase porosity and enhance pore morphology were studied. Pore morphology was determined to be more easily replicated if pores were stabilized by alumina additions and powders were dispersed evenly. In order to better characterize processing, high temperature and high ramp rate thermal decomposition data were gathered. It was found that the high ramp rate thermal decomposition behavior of several hydrides was more rapid than hydride kinetics at low ramp rates. This data was then used to estimate the contribution of several pore formation mechanisms to the development of pore structure. It was found that gas-metal eutectic growth can only be a viable pore formation mode if non-equilibrium conditions persist. Bubble capture cannot be a dominant pore growth mode due to high bubble terminal velocities. Direct gas evolution appears to be the most likely pore formation mode due to high gas evolution rate from the decomposing particulate and microstructural pore growth trends. The overall process was evaluated for its economic viability. It was found that thermal decomposition has potential for industrialization, but further refinements are necessary in order for the process to be viable.
NASA Astrophysics Data System (ADS)
Ghosh, Tapas; Satpati, Biswarup
2017-05-01
The effect of the thermal annealing on silver nanoparticles deposited on silicon surface has been studied. The silver nanoparticles have been deposited by the galvanic displacement reaction. Rapid thermal annealing (RTA) has been performed on the Si substrate, containing the silver nanoparticles. The scanning transmission electron microscopy (STEM), energy dispersive X-ray (EDX) spectroscopy and scanning electron microscopy (SEM) study show that the galvanic displacement reaction and subsequent rapid thermal annealing could lead to well separated and spherical shaped larger silver nanoparticles on silicon substrate.
NASA Astrophysics Data System (ADS)
Jennings, William M.; Vellinger, John C.; Deuser, Mark S.
2000-01-01
Biotechnology is undergoing a period of rapid and sustained growth, a trend which is expected to continue as the general population ages and as new medical treatments and products are conceived. As pharmaceutical and biomedical companies continue to search for improved methods of production and, for answers to basic research questions, they will seek out new avenues of research. Space processing on the International Space Station (ISS) offers such an opportunity! Space is rapidly becoming an industrial laboratory for biotechnology research and processing. Space bioprocessing offers exciting possibilities for developing new pharmaceuticals and medical treatments which can be used to benefit mankind on Earth. It also represents a new economic frontier for the private sector. .
NASA Astrophysics Data System (ADS)
Vogler, D.; Walsh, S. D. C.; Rudolf von Rohr, P.; Saar, M. O.
2017-12-01
Drilling expenses constitute a significant share of the upfront capital costs and thereby the associated risks of geothermal energy production. This is especially true for deep boreholes, as drilling costs per meter increase significantly with depth. Thermal spallation drilling is a relatively new drilling technique, particularly suited to the hard crystalline (e.g., basement) rocks in which many deep geothermal resources are located. The method uses a hot jet-flame to rapidly heat the rock surface, which leads to large temperature gradients in the rock. These temperature gradients cause localized thermal stresses that, in combination with the in situ stress field, lead to the formation and ejection of spalls. These spalls are then transported out of the borehole with the drilling mud. Thermal spallation not only in principle enables much faster rates of penetration than traditional rotary drilling, but is also contact-less, which significantly reduces the long tripping times associated with conventional rotary head drilling. We present numerical simulations investigating the influence of rock heterogeneities on the thermal spallation process. Special emphasis is put on different mineral compositions, stress regimes, and heat sources.
Flexible thermal cycle test equipment for concentrator solar cells
Hebert, Peter H [Glendale, CA; Brandt, Randolph J [Palmdale, CA
2012-06-19
A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.
Satellite Remote Sensing Tools at the Alaska Volcano Observatory
NASA Astrophysics Data System (ADS)
Dehn, J.; Dean, K.; Webley, P.; Bailey, J.; Valcic, L.
2008-12-01
Volcanoes rarely conform to schedules or convenience. This is even more the case for remote volcanoes that still have impact on local infrastructure and air traffic. With well over 100 eruptions in the North Pacific over 20 years, the Alaska Volcano Observatory has developed a series of web-based tools to rapidly assess satellite imagery of volcanic eruptions from virtually anywhere. These range from automated alarms systems to detect thermal anomalies and ash plumes at volcanoes, as well as efficient image processing that can be done at a moments notice from any computer linked to the internet. The thermal anomaly detection algorithm looks for warm pixels several standard deviations above the background as well as pixels which show stronger mid infrared (3-5 microns) signals relative to available thermal channels (10-12 microns). The ash algorithm primarily uses the brightness temperature difference of two thermal bands, but also looks for shape of clouds and noise elimination. The automated algorithms are far from perfect, with 60-70% success rates, but improve with each eruptions. All of the data is available to the community online in a variety of forms which provide rudimentary processing. The website, avo-animate.images.alaska.edu, is designed for use by AVO's partners and "customers" to provide quick synoptic views of volcanic activity. These tools also have been essential in AVO's efforts in recent years and provide a model for rapid response to eruptions at distant volcanoes anywhere in the world. animate.images.alaska.edu
Hanschen, Franziska S; Platz, Stefanie; Mewis, Inga; Schreiner, Monika; Rohn, Sascha; Kroh, Lothar W
2012-03-07
Processing reduces the glucosinolate (GSL) content of plant food, among other aspects due to thermally induced degradation. Since there is little information about the thermal stability of GSL and formation of corresponding breakdown products, the thermally induced degradation of sulfur-containing aliphatic GSL was studied in broccoli sprouts and with isolated GSL in dry medium at different temperatures as well as in aqueous medium at different pH values. Desulfo-GSL have been analyzed with HPLC-DAD, while breakdown products were estimated using GC-FID. Whereas in the broccoli sprouts structural differences of the GSL with regard to thermal stability exist, the various isolated sulfur-containing aliphatic GSL degraded nearly equally and were in general more stable. In broccoli sprouts, methylsulfanylalkyl GSL were more susceptible to degradation at high temperatures, whereas methylsulfinylalkyl GSL were revealed to be more affected in aqueous medium under alkaline conditions. Besides small amounts of isothiocyanates, the main thermally induced breakdown products of sulfur-containing aliphatic GSL were nitriles. Although they were most rapidly formed at comparatively high temperatures under dry heat conditions, their highest concentrations were found after cooking in acidic medium, conditions being typical for domestic processing.
Thermal annealing of radiation damage in CMOS ICs in the temperature range -140 C to +375 C
NASA Technical Reports Server (NTRS)
Danchenko, V.; Fang, P. H.; Brashears, S. S.
1982-01-01
Annealing of radiation damage was investigated in the commercial, Z- and J-processes of the RCA CD4007A ICs in the temperature range from -140 C to +375 C. Tempering curves were analyzed for activation energies of thermal annealing, following irradiation at -140 C. It was found that at -140 C, the radiation-induced shifts in the threshold potentials were similar for all three processes. The radiation hardness of the Z- and J-process is primarily due to rapid annealing of radiation damage at room temperature. In the region -140 to 20 C, no dopant-dependent charge trapping is seen, similar to that observed at higher temperatures. In the unbiased Z-process n-channels, after 1 MeV electron irradiation, considerable negative charge remains in the gate oxide.
NASA Technical Reports Server (NTRS)
Spanos, G.; Ayers, J. D.; Vold, C. L.; Locci, I. E.
1993-01-01
A study is presented to determine if fine microstructures could be achieved using rapid solidification to produce a fine-grained fully austenitic starting structure and then using thermal processing cycles to produce an even finer ferrite-cementite structure. The evolution, mechanisms of grain refinement, and crystallography of the resultant microstructures were examined by TEM. A thermal processing cycle consisted of quenching the ribbon in liquid nitrogen, tempering at 600 C for 10 sec, 'upquenching' to 750 C for 10 sec, and subsequently quenching again in liquid nitrogen. The heat-treatment resulted in martensite grains with sizes of about 1 micron or less in both length and thickness and cementite particles of 0.4 micron or less. It is concluded that these microstructures could be used for producing fine-grained ultrahigh carbon steels of very high strength without the brittleness associated with the formation of coarse carbide particles of the loss of strength due to graphite formation.
Net shaped high performance oxide ceramic parts by selective laser melting
NASA Astrophysics Data System (ADS)
Yves-Christian, Hagedorn; Jan, Wilkes; Wilhelm, Meiners; Konrad, Wissenbach; Reinhart, Poprawe
An additive manufacturing technique (AM) for ceramics, based on Al2O3-ZrO2 powder by means of Selective Laser Melting (SLM) is presented. Pure ceramic powder is completely melted by a laser beam yielding net-shaped specimens of almost 100% densities without any post-processing. Possible crack formation during the build-up process due to thermal stresses is prevented by a high-temperature preheating of above 1600 ∘C. Specimens with fine-grained nano-sized microstructures and flexural strengths of above 500 MPa are produced. The new technology allows for rapid freeform manufacture of complex net-shaped ceramics, thus, exploiting the outstanding mechanical and thermal properties for high-end medical and engineering disciplines.
Automatic RST-based system for a rapid detection of man-made disasters
NASA Astrophysics Data System (ADS)
Tramutoli, Valerio; Corrado, Rosita; Filizzola, Carolina; Livia Grimaldi, Caterina Sara; Mazzeo, Giuseppe; Marchese, Francesco; Pergola, Nicola
2010-05-01
Man-made disasters may cause injuries to citizens and damages to critical infrastructures. When it is not possible to prevent or foresee such disasters it is hoped at least to rapidly detect the accident in order to intervene as soon as possible to minimize damages. In this context, the combination of a Robust Satellite Technique (RST), able to identify for sure actual (i.e. no false alarm) accidents, and satellite sensors with high temporal resolution seems to assure both a reliable and a timely detection of abrupt Thermal Infrared (TIR) transients related to dangerous explosions. A processing chain, based on the RST approach, has been developed in the framework of the GMOSS and G-MOSAIC projects by DIFA-UNIBAS team, suitable for automatically identify on MSG-SEVIRI images harmful events. Maps of thermal anomalies are generated every 15 minutes (i.e. SEVIRI temporal repetition rate) over a selected area together with kml files (containing information on latitude and longitude of "thermally" anomalous SEVIRI pixel centre, time of image acquisition, relative intensity of anomalies, etc.) for a rapid visualization of the accident position even on Google Earth. Results achieved in the cases of gas pipelines recently exploded or attacked in Russia and in Iraq will be presented in this work.
Koo, Jaseok; Kim, Sammi; Cheon, Taehoon; Kim, Soo-Hyun; Kim, Woo Kyoung
2018-03-02
Amongst several processes which have been developed for the production of reliable chalcopyrite Cu(InGa)Se 2 photovoltaic absorbers, the 2-step metallization-selenization process is widely accepted as being suitable for industrial-scale application. Here we visualize the detailed thermal behavior and reaction pathways of constituent elements during commercially attractive rapid thermal processing of glass/Mo/CuGa/In/Se precursors on the basis of the results of systematic characterization of samples obtained from a series of quenching experiments with set-temperatures between 25 and 550 °C. It was confirmed that the Se layer crystallized and then melted between 250 and 350 °C, completely disappearing at 500 °C. The formation of CuInSe 2 and Cu(InGa)Se 2 was initiated at around 450 °C and 550 °C, respectively. It is suggested that pre-heat treatment to control crystallization of Se layer should be designed at 250-350 °C and Cu(InGa)Se 2 formation from CuGa/In/Se precursors can be completed within a timeframe of 6 min.
Li, Da-Wei; Zhang, Yao-Bin; Quan, Xie; Zhao, Ya-Zhi
2009-02-15
The advantage of rapid, selective and simultaneous heating of microwave heating technology was taken to remediate the crude oil-contaminated soil rapidly and to recover the oil contaminant efficiently. The contaminated soil was processed in the microwave field with addition of granular activated carbon (GAC), which was used as strong microwave absorber to enhance microwave heating of the soil mixture to remove the oil contaminant and recover it by a condensation system. The influences of some process parameters on the removal of the oil contaminant and the oil recovery in the remediation process were investigated. The results revealed that, under the condition of 10.0% GAC, 800 W microwave power, 0.08 MPa absolute pressure and 150 mL x min(-1) carrier gas (N2) flow-rate, more than 99% oil removal could be obtained within 15 min using this microwave thermal remediation enhanced by GAC; at the same time, about 91% of the oil contaminant could be recovered without significant changes in chemical composition. In addition, the experiment results showed that GAC can be reused in enhancing microwave heating of soil without changing its enhancement efficiency obviously.
Cho, Chung-Ki; Kim, Han-Ki
2012-04-01
We investigated the effect of rapid thermal annealing on the electrical, optical, and structural properties of ZnO-doped In2O3 (ZIO) films grown at different Ar/O2 flow ratios (15/0 and 15/1 sccm) by using linear facing target sputtering. It was found that the ZIO films grown at different Ar/O2, flow ratios showed different electrical and optical behavior with increasing rapid thermal annealing temperature. Synchrotron X-ray scattering examination showed that the different electrical and optical properties of the ZIO films could be attributed to the difference in preferred orientation with an increase in rapid thermal annealing temperature.
High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis
NASA Astrophysics Data System (ADS)
Röttger, Max; Domenech, Trystan; van der Weegen, Rob; Breuillac, Antoine; Nicolaÿ, Renaud; Leibler, Ludwik
2017-04-01
Windmills, cars, and dental restoration demand polymer materials and composites that are easy to process, assemble, and recycle while exhibiting outstanding mechanical, thermal, and chemical resistance. Vitrimers, which are polymer networks able to shuffle chemical bonds through exchange reactions, could address these demands if they were prepared from existing plastics and processed with fast production rates and current equipment. We report the metathesis of dioxaborolanes, which is rapid and thermally robust, and use it to prepare vitrimers from polymers as different as poly(methyl methacrylate), polystyrene, and high-density polyethylene that, although permanently cross-linked, can be processed multiple times by means of extrusion or injection molding. They show superior chemical resistance and dimensional stability and can be efficiently assembled. The strategy is applicable to polymers with backbones made of carbon-carbon single bonds.
Rapid Annealing Of Amorphous Hydrogenated Carbon
NASA Technical Reports Server (NTRS)
Alterovitz, Samuel A.; Pouch, John J.; Warner, Joseph D.
1989-01-01
Report describes experiments to determine effects of rapid annealing on films of amorphous hydrogenated carbon. Study represents first efforts to provide information for applications of a-C:H films where rapid thermal processing required. Major finding, annealing causes abrupt increase in absorption and concomitant decrease in optical band gap. Most of change occurs during first 20 s, continues during longer annealing times. Extend of change increases with annealing temperature. Researchers hypothesize abrupt initial change caused by loss of hydrogen, while gradual subsequent change due to polymerization of remaining carbon into crystallites or sheets of graphite. Optical band gaps of unannealed specimens on silicon substrates lower than those of specimens on quartz substrates.
Solidification of undercooled liquids
NASA Technical Reports Server (NTRS)
Perepezko, J. H.; Shiohara, Y.; Paik, J. S.; Flemmings, M. C.
1982-01-01
During rapid solidification processing (RSP) the amount of liquid undercooling is an important factor in determining microstructural development by controlling phase selection during nucleation and morphological evolution during crystal growth. While undercooling is an inherent feature of many techniques of RSP, the deepest undercoolings and most controlled studies have been possible in carefully prepared fine droplet samples. From past work and recent advances in studies of nucleation kinetics it has become clear that the initiation of crystallization during RSP is governed usually by heterogeneous sites located at surfaces. With known nucleant sites, it has been possible to identify specific pathways of metastable phase formation and microstructural development in alloys. These advances have allowed for a clearer assessment of the interplay between undercooling, cooling rate and particle size statistics in structure formation. New approaches to the examination of growth processes have been developed to follow the thermal behavior and morphology in small samples in the period of rapid crystallization and recalescence. Based upon the new experimental information from these studies, useful models can be developed for the overall solidification process to include nucleation behavior, thermodynamic constraints, thermal history, growth kinetics, solute redistribution and resulting structures. From the refinement of knowledge concerning the underlying factors that govern RSP a basis is emerging for an effective alloy design and processing strategy.
Use of a fluidized bed for the thermal and chemicothermal treatment of metals
NASA Astrophysics Data System (ADS)
Varygin, N. N.; Ol'shanov, E. Ya.
1971-06-01
An investigation of the heat processes in a fluidized bed shows that this unit has a high heating rate and cooling rate, and allows direct control in the process of heat treatment; chemicothermal processing is speeded up 3-5 times. Examples of experimental-industrial and industrial use show the advantages of using the fluidized bed for rapid nonoxidative heating for thermal processing and pressure processing, and also for replacing expensive salt and metal baths. The use of the fluidized bed is promising for heating temperature-sensitive aluminum and other nonferrous alloys, and for heat processing refractory metals, and alloys [45], etc. It is desirable to use the fluidized bed as the cooling medium to achieve optimum cooling with reduced stresses in components of especially complex configuration. It would be promising to use the fluidized bed for carrying out chemicothermal processing and for creating new processes (including surface saturation with rare metals), especially with the application of electrical, and possibly strong magnetic, fields.
Thermal Spray Applications in Electronics and Sensors: Past, Present, and Future
NASA Astrophysics Data System (ADS)
Sampath, Sanjay
2010-09-01
Thermal spray has enjoyed unprecedented growth and has emerged as an innovative and multifaceted deposition technology. Thermal spray coatings are crucial to the enhanced utilization of various engineering systems. Industries, in recognition of thermal spray's versatility and economics, have introduced it into manufacturing environments. The majority of modern thermal spray applications are "passive" protective coatings, and they rarely perform an electronic function. The ability to consolidate dissimilar material multilayers without substrate thermal loading has long been considered a virtue for thick-film electronics. However, the complexity of understanding/controlling materials functions especially those resulting from rapid solidification and layered assemblage has stymied expansion into electronics. That situation is changing: enhancements in process/material science are allowing reconsideration for novel electronic/sensor devices. This review critically examines past efforts in terms of materials functionality from a device perspective, along with ongoing/future concepts addressing the aforementioned deficiencies. The analysis points to intriguing future possibilities for thermal spray technology in the world of thick-film sensors.
Simulating the Thermal Response of High Explosives on Time Scales of Days to Microseconds
NASA Astrophysics Data System (ADS)
Yoh, Jack J.; McClelland, Matthew A.
2004-07-01
We present an overview of computational techniques for simulating the thermal cookoff of high explosives using a multi-physics hydrodynamics code, ALE3D. Recent improvements to the code have aided our computational capability in modeling the response of energetic materials systems exposed to extreme thermal environments, such as fires. We consider an idealized model process for a confined explosive involving the transition from slow heating to rapid deflagration in which the time scale changes from days to hundreds of microseconds. The heating stage involves thermal expansion and decomposition according to an Arrhenius kinetics model while a pressure-dependent burn model is employed during the explosive phase. We describe and demonstrate the numerical strategies employed to make the transition from slow to fast dynamics.
Selective laser melting of hypereutectic Al-Si40-powder using ultra-short laser pulses
NASA Astrophysics Data System (ADS)
Ullsperger, T.; Matthäus, G.; Kaden, L.; Engelhardt, H.; Rettenmayr, M.; Risse, S.; Tünnermann, A.; Nolte, S.
2017-12-01
We investigate the use of ultra-short laser pulses for the selective melting of Al-Si40-powder to fabricate complex light-weight structures with wall sizes below 100 μ {m} combined with higher tensile strength and lower thermal expansion coefficient in comparison to standard Al-Si alloys. During the cooling process using conventional techniques, large primary silicon particles are formed which impairs the mechanical and thermal properties. We demonstrate that these limitations can be overcome using ultra-short laser pulses enabling the rapid heating and cooling in a non-thermal equilibrium process. We analyze the morphology characteristics and micro-structures of single tracks and thin-walled structures depending on pulse energy, repetition rate and scanning velocity utilizing pulses with a duration of 500 {fs} at a wavelength of 1030 {nm}. The possibility to specifically change and optimize the microstructure is shown.
Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species
NASA Astrophysics Data System (ADS)
Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme
2017-07-01
The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. For the same coupling parameters, the dynamic friction coefficient is found to tend to unity. These results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.
Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species
Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme
2017-07-05
The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. We found that for the same coupling parameters, the dynamic friction coefficient there tends to be unity. Our results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.
Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme
The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. We found that for the same coupling parameters, the dynamic friction coefficient there tends to be unity. Our results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.
Onboard Science and Applications Algorithm for Hyperspectral Data Reduction
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Davies, Ashley G.; Silverman, Dorothy; Mandl, Daniel
2012-01-01
An onboard processing mission concept is under development for a possible Direct Broadcast capability for the HyspIRI mission, a Hyperspectral remote sensing mission under consideration for launch in the next decade. The concept would intelligently spectrally and spatially subsample the data as well as generate science products onboard to enable return of key rapid response science and applications information despite limited downlink bandwidth. This rapid data delivery concept focuses on wildfires and volcanoes as primary applications, but also has applications to vegetation, coastal flooding, dust, and snow/ice applications. Operationally, the HyspIRI team would define a set of spatial regions of interest where specific algorithms would be executed. For example, known coastal areas would have certain products or bands downlinked, ocean areas might have other bands downlinked, and during fire seasons other areas would be processed for active fire detections. Ground operations would automatically generate the mission plans specifying the highest priority tasks executable within onboard computation, setup, and data downlink constraints. The spectral bands of the TIR (thermal infrared) instrument can accurately detect the thermal signature of fires and send down alerts, as well as the thermal and VSWIR (visible to short-wave infrared) data corresponding to the active fires. Active volcanism also produces a distinctive thermal signature that can be detected onboard to enable spatial subsampling. Onboard algorithms and ground-based algorithms suitable for onboard deployment are mature. On HyspIRI, the algorithm would perform a table-driven temperature inversion from several spectral TIR bands, and then trigger downlink of the entire spectrum for each of the hot pixels identified. Ocean and coastal applications include sea surface temperature (using a small spectral subset of TIR data, but requiring considerable ancillary data), and ocean color applications to track biological activity such as harmful algal blooms. Measuring surface water extent to track flooding is another rapid response product leveraging VSWIR spectral information.
Bench-scale synthesis of nanoscale materials
NASA Technical Reports Server (NTRS)
Buehler, M. F.; Darab, J. G.; Matson, D. W.; Linehan, J. C.
1994-01-01
A novel flow-through hydrothermal method used to synthesize nanoscale powders is introduced by Pacific Northwest Laboratory. The process, Rapid Thermal Decomposition of precursors in Solution (RTDS), uniquely combines high-pressure and high-temperature conditions to rapidly form nanoscale particles. The RTDS process was initially demonstrated on a laboratory scale and was subsequently scaled up to accommodate production rates attractive to industry. The process is able to produce a wide variety of metal oxides and oxyhydroxides. The powders are characterized by scanning and transmission electron microscopic methods, surface-area measurements, and x-ray diffraction. Typical crystallite sizes are less than 20 nanometers, with BET surface areas ranging from 100 to 400 sq m/g. A description of the RTDS process is presented along with powder characterization results. In addition, data on the sintering of nanoscale ZrO2 produced by RTDS are included.
Internal Temperature Control For Vibration Testers
NASA Technical Reports Server (NTRS)
Dean, Richard J.
1996-01-01
Vibration test fixtures with internal thermal-transfer capabilities developed. Made of aluminum for rapid thermal transfer. Small size gives rapid response to changing temperatures, with better thermal control. Setup quicker and internal ducting facilitates access to parts being tested. In addition, internal flows smaller, so less energy consumed in maintaining desired temperature settings.
Rapid adhesive bonding concepts
NASA Technical Reports Server (NTRS)
Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.
1984-01-01
Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.
Troy, Declan J; Ojha, Kumari Shikha; Kerry, Joseph P; Tiwari, Brijesh K
2016-10-01
New and emerging robust technologies can play an important role in ensuring a more resilient meat value chain and satisfying consumer demands and needs. This paper outlines various novel thermal and non-thermal technologies which have shown potential for meat processing applications. A number of process analytical techniques which have shown potential for rapid, real-time assessment of meat quality are also discussed. The commercial uptake and consumer acceptance of novel technologies in meat processing have been subjects of great interest over the past decade. Consumer focus group studies have shown that consumer expectations and liking for novel technologies, applicable to meat processing applications, vary significantly. This overview also highlights the necessity for meat processors to address consumer risk-benefit perceptions, knowledge and trust in order to be commercially successful in the application of novel technologies within the meat sector. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Zhang, Fan; Zhao, Jianjian; Hu, Dawei; Skoczylas, Frederic; Shao, Jianfu
2018-03-01
High-temperature treatment may cause changes in physical and mechanical properties of rocks. Temperature changing rate (heating, cooling and both of them) plays an important role in those changes. Thermal conductivity tests, ultrasonic pulse velocity tests, gas permeability tests and triaxial compression tests are performed on granite samples after a heating and rapid cooling treatment in order to characterize the changes in physical and mechanical properties. Seven levels of temperature (from 25 to 900 °C) are used. It is found that the physical and mechanical properties of granite are significantly deteriorated by the thermal treatment. The porosity shows a significant increase from 1.19% at the initial state to 6.13% for samples heated to 900 °C. The increase in porosity is mainly due to three factors: (1) a large number of microcracks caused by the rapid cooling rate; (2) the mineral transformation of granite through high-temperature heating and water-cooling process; (3) the rapid cooling process causes the mineral particles to weaken. As the temperature of treatment increases, the thermal conductivity and P-wave velocity decrease while the gas permeability increases. Below 200 °C, the elastic modulus and cohesion increase with temperature increasing. Between 200 and 500 °C, the elastic modulus and cohesion have no obvious change with temperature. Beyond 500 °C, as the temperature increases, the elastic modulus and cohesion obviously decrease and the decreasing rate becomes slower with the increase in confining pressure. Poisson's ratio and internal frictional coefficient have no obvious change as the temperature increases. Moreover, there is a transition from a brittle to ductile behavior when the temperature becomes high. At 900 °C, the granite shows an obvious elastic-plastic behavior.
Advanced powder metallurgy aluminum alloys via rapid solidification technology
NASA Technical Reports Server (NTRS)
Ray, R.
1984-01-01
Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.
Laser Micro and Nano Processing of Metals , Ceramics , and Polymers
NASA Astrophysics Data System (ADS)
Pfleging, Wilhelm; Kohler, Robert; Südmeyer, Isabelle; Rohde, Magnus
Laser -based material processing is well investigated for structuring , modification , and bonding of metals , ceramics , glasses, and polymers . Especially for material processing on micrometer, and nanometer scale laser-assisted processes will very likely become more prevalent as lasers offer more cost-effective solutions for advanced material research, and application. Laser ablation , and surface modification are suitable for direct patterning of materials and their surface properties. Lasers allow rapid prototyping and small-batch manufacturing . They can also be used to pattern moving substrates, permitting fly-processing of large areas at reasonable speed. Different types of laser processes such as ablation, modification, and welding can be successfully combined in order to enable a high grade of bulk and surface functionality. Ultraviolet lasers favored for precise and debris-free patterns can be generated without the need for masks, resist materials, or chemicals. Machining of materials, for faster operation, thermally driven laser processes using NIR and IR laser radiation, could be increasingly attractive for a real rapid manufacturing.
NASA Astrophysics Data System (ADS)
Barman, Bidyut; Dhasmana, Hrishikesh; Verma, Abhishek; Kumar, Amit; Pratap Chaudhary, Shiv; Jain, V. K.
2017-09-01
This work presents studies of plasmonic silver nanoparticles (AgNPs) formation at low temperatures (200 °C-300 °C) onto Si surface by sputtering followed with rapid thermal processing (RTP) for different time durations(5-30 min). The study reveals that 20 min RTP at all temperatures show minimum average size of AgNPs (60.42 nm) with corresponding reduction in reflectance of Si surface from 40.12% to mere 1.15% only in wavelength region 300-800 nm for RTP at 200 °C. A detailed supporting growth mechanism is also discussed. This low temperature technique can be helpful in achieving efficiency improvement in solar cells via reflectance reduction with additional features such as reproducibility, minimal time and very good adhesion without damaging underlying layers device parameters.
Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals.
Rubin, Allison E; Cooper, Kari M; Till, Christy B; Kent, Adam J R; Costa, Fidel; Bose, Maitrayee; Gravley, Darren; Deering, Chad; Cole, Jim
2017-06-16
Silicic volcanic eruptions pose considerable hazards, yet the processes leading to these eruptions remain poorly known. A missing link is knowledge of the thermal history of magma feeding such eruptions, which largely controls crystallinity and therefore eruptability. We have determined the thermal history of individual zircon crystals from an eruption of the Taupo Volcanic Zone, New Zealand. Results show that although zircons resided in the magmatic system for 10 3 to 10 5 years, they experienced temperatures >650° to 750°C for only years to centuries. This implies near-solidus long-term crystal storage, punctuated by rapid heating and cooling. Reconciling these data with existing models of magma storage requires considering multiple small intrusions and multiple spatial scales, and our approach can help to quantify heat input to and output from magma reservoirs. Copyright © 2017, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Sun, Yi; Chian Kwok, Yien; Nguyen, Nam-Trung
2006-08-01
A new method for thermally bonding poly(methyl methacrylate) (PMMA) substrates has been demonstrated. PMMA substrates are first engraved by CO2-laser micromachining to form microchannels. Both channel width and depth can be adjusted by varying the laser power and scanning speed. Channel depths from 50 µm to 1500 µm and widths from 150 µm to 400 µm are attained. CO2 laser is also used for drilling and dicing of the PMMA parts. Considering the thermal properties of PMMA, a novel thermal bonding process with high temperature and low bonding pressure has been developed for assembling PMMA sheets. A high bonding strength of 2.15 MPa is achieved. Subsequent inspection of the cross sections of several microdevices reveals that the dimensions of the channels are well preserved during the bonding process. Electroosmotic mobility of the ablated channel is measured to be 2.47 × 10-4 cm2 V-1 s-1. The functionality of these thermally bonded microfluidic substrates is demonstrated by performing rapid and high-resolution electrophoretic separations of mixture of fluorescein and carboxyfluorescein as well as double-stranded DNA ladders (ΦX174-Hae III dsDNA digest). The performance of the CO2 laser ablated and thermally bonded PMMA devices compares favorably with those fabricated by other professional means.
Thermal Inactivation of Bacillus anthracis Spores Using Rapid Resistive Heating
2016-03-24
thermal inactivation research. However, the research conducted to support this thesis utilizes the B.a. Sterne strain which is used in livestock vaccines...methodology conducted for this research including hard surface recovery, thermal inactivation of Bacillus anthracis spores, and the rapid resistive heating...to 500°C range but again, many of the thermal inactivation studies were conducted in the 350 to 2000°C range. Sample plots will be discussed in
Millisecond ordering of block-copolymer films via photo-thermal gradients
Majewski, Pawel W.; Yager, Kevin G.
2015-03-12
For the promise of self-assembly to be realized, processing techniques must be developed that simultaneously enable control of the nanoscale morphology, rapid assembly, and, ideally, the ability to pattern the nanostructure. Here, we demonstrate how photo-thermal gradients can be used to control the ordering of block-copolymer thin films. Highly localized laser heating leads to intense thermal gradients, which induce a thermophoretic force on morphological defects. This increases the ordering kinetics by at least 3 orders-of-magnitude, compared to conventional oven annealing. By simultaneously exploiting the thermal gradients to induce shear fields, we demonstrate uniaxial alignment of a block-copolymer film in lessmore » than a second. Finally, we provide examples of how control of the incident light-field can be used to generate prescribed configurations of block-copolymer nanoscale patterns.« less
Bowman, C.D.
1992-11-03
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
Bowman, Charles D.
1992-01-01
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
Conforti, Patrick F; Prasad, Manish; Garrison, Barbara J
2008-08-01
[Figure: see text]. Laser ablation harnesses photon energy to remove material from a surface. Although applications such as laser-assisted in situ keratomileusis (LASIK) surgery, lithography, and nanoscale device fabrication take advantage of this process, a better understanding the underlying mechanism of ablation in polymeric materials remains much sought after. Molecular simulation is a particularly attractive technique to study the basic aspects of ablation because it allows control over specific process parameters and enables observation of microscopic mechanistic details. This Account describes a hybrid molecular dynamics-Monte Carlo technique to simulate laser ablation in poly(methyl methacrylate) (PMMA). It also discusses the impact of thermal and chemical excitation on the ensuing ejection processes. We used molecular dynamics simulation to study the molecular interactions in a coarse-grained PMMA substrate following photon absorption. To ascertain the role of chemistry in initiating ablation, we embedded a Monte Carlo protocol within the simulation framework. These calculations permit chemical reactions to occur probabilistically during the molecular dynamics calculation using predetermined reaction pathways and Arrhenius rates. With this hybrid scheme, we can examine thermal and chemical pathways of decomposition separately. In the simulations, we observed distinct mechanisms of ablation for each type of photoexcitation pathway. Ablation via thermal processes is governed by a critical number of bond breaks following the deposition of energy. For the case in which an absorbed photon directly causes a bond scission, ablation occurs following the rapid chemical decomposition of material. A detailed analysis of the processes shows that a critical energy for ablation can describe this complex series of events. The simulations show a decrease in the critical energy with a greater amount of photochemistry. Additionally, the simulations demonstrate the effects of the energy deposition rate on the ejection mechanism. When the energy is deposited rapidly, not allowing for mechanical relaxation of the sample, the formation of a pressure wave and subsequent tensile wave dominates the ejection process. This study provides insight into the influence of thermal, chemical, and mechanical processes in PMMA and facilitates greater understanding of the complex nature of polymer ablation. These simulations complement experiments that have used chemical design to harness the photochemical properties of materials to enhance laser ablation. We successfully fit the results of the simulations to established analytical models of both photothermal and photochemical ablation and demonstrate their relevance. Although the simulations are for PMMA, the mechanistic concepts are applicable to a large range of systems and provide a conceptual foundation for interpretation of experimental data.
NASA Astrophysics Data System (ADS)
Ou, Yihong; Du, Yang; Jiang, Xingsheng; Wang, Dong; Liang, Jianjun
2010-04-01
The study on the special phenomenon, occurrence process and control mechanism of gasoline-air mixture thermal ignition in underground oil depots is of important academic and applied value for enriching scientific theories of explosion safety, developing protective technology against fire and decreasing the number of fire accidents. In this paper, the research on thermal ignition process of gasoline-air mixture in model underground oil depots tunnel has been carried out by using experiment and numerical simulation methods. The calculation result has been demonstrated by the experiment data. The five stages of thermal ignition course, which are slow oxidation stage, rapid oxidation stage, fire stage, flameout stage and quench stage, have been firstly defined and accurately descried. According to the magnitude order of concentration, the species have been divided into six categories, which lay the foundation for explosion-proof design based on the role of different species. The influence of space scale on thermal ignition in small-scale space has been found, and the mechanism for not easy to fire is that the wall reflection causes the reflux of fluids and changes the distribution of heat and mass, so that the progress of chemical reactions in the whole space are also changed. The novel mathematical model on the basis of unification chemical kinetics and thermodynamics established in this paper provides supplementary means for the analysis of process and mechanism of thermal ignition.
Rapid thermal anneal in InP, GaAs and GaAs/GaAlAs
NASA Astrophysics Data System (ADS)
Descouts, B.; Duhamel, N.; Godefroy, S.; Krauz, P.
Ion implantation in semiconductors provides a doping technique with several advantages over more conventional doping methods and is now extensively used for device applications, e.g. field effect transistors (MESFET GaAs, MIS (InP), GaAs/GaAlAs heterojunction bipolar transistors (HBT). Because of the lattice disorder produced by the implantation, the dopant must be made electrically active by a postimplant anneal. As the device performances are very dependent on its electrical characteristics, the anneal is a very important stage of the process. Rapid anneal is known to provide less exodiffusion and less induffusion of impurities compared to conventional furnace anneal, so this technique has been used in this work to activate an n-type dopant (Si) in InP and a p-type dopant (Mg) in GaAs and GaAs/GaAIAs. These two ions have been chosen to realize implanted MIS InP and the base contacts for GaAs/GaAlAs HBTs. The experimental conditions to obtain the maximum electrical activity in these two cases will be detailed. For example, although we have not been able to obtain a flat profile in Mg + implanted GaAs/GaAlAs heterostructure by conventional thermal anneal, rapid thermal anneal gives a flat hole profile over a depth of 0.5 μm with a concentration of 1 x 10 19 cm -3.
Abidin, Mastura Shafinaz Zainal; Morshed, Tahsin; Chikita, Hironori; Kinoshita, Yuki; Muta, Shunpei; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Matsumura, Ryo; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf
2014-01-01
The effects of annealing temperatures on composition and strain in SixGe1−x, obtained by rapid melting growth of electrodeposited Ge on Si (100) substrate were investigated. Here, a rapid melting process was performed at temperatures of 1000, 1050 and 1100°C for 1 s. All annealed samples show single crystalline structure in (100) orientation. A significant appearance of Si-Ge vibration mode peak at ~00 cm−1 confirms the existence of Si-Ge intermixing due to out-diffusion of Si into Ge region. On a rapid melting process, Ge melts and reaches the thermal equilibrium in short time. Si at Ge/Si interface begins to dissolve once in contact with the molten Ge to produce Si-Ge intermixing. The Si fraction in Si-Ge intermixing was calculated by taking into account the intensity ratio of Ge-Ge and Si-Ge vibration mode peaks and was found to increase with the annealing temperatures. It is found that the strain turns from tensile to compressive as the annealing temperature increases. The Si fraction dependent thermal expansion coefficient of SixGe1−x is a possible cause to generate such strain behavior. The understanding of compositional and strain characteristics is important in Ge/Si heterostructure as these properties seem to give significant effects in device performance. PMID:28788521
Abidin, Mastura Shafinaz Zainal; Morshed, Tahsin; Chikita, Hironori; Kinoshita, Yuki; Muta, Shunpei; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Matsumura, Ryo; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf
2014-02-24
The effects of annealing temperatures on composition and strain in Si x Ge 1- x , obtained by rapid melting growth of electrodeposited Ge on Si (100) substrate were investigated. Here, a rapid melting process was performed at temperatures of 1000, 1050 and 1100 °C for 1 s. All annealed samples show single crystalline structure in (100) orientation. A significant appearance of Si-Ge vibration mode peak at ~400 cm -1 confirms the existence of Si-Ge intermixing due to out-diffusion of Si into Ge region. On a rapid melting process, Ge melts and reaches the thermal equilibrium in short time. Si at Ge/Si interface begins to dissolve once in contact with the molten Ge to produce Si-Ge intermixing. The Si fraction in Si-Ge intermixing was calculated by taking into account the intensity ratio of Ge-Ge and Si-Ge vibration mode peaks and was found to increase with the annealing temperatures. It is found that the strain turns from tensile to compressive as the annealing temperature increases. The Si fraction dependent thermal expansion coefficient of Si x Ge 1- x is a possible cause to generate such strain behavior. The understanding of compositional and strain characteristics is important in Ge/Si heterostructure as these properties seem to give significant effects in device performance.
Dynamic dielectric properties of a wood liquefaction system using polyethylene glycol and glycerol
Mengchao Zhou; Thomas L. Eberhardt; Bo Cai; Chung-Yun Hse; Hui Pan
2017-01-01
Microwave-assisted liquefaction has shown potential for rapid thermal processing of lignocellulosic biomass. The efficiency of microwave heating depends largely on the dielectric properties of the materials being heated. The objective of this study was to investigate the dynamic interactions between microwave energy and the reaction system during the liquefaction of a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Tushar; Basak, Durga
A rapid dark thermal annealing process at 800 deg. C of radio frequency sputtered P doped ZnO thin films have resulted in improved electrical transport properties with hole concentration of 1 x 1018 cm-3, mobility 4.37 cm2/Vs and resistivity 1.4 {Omega}-cm. X-ray photoelectron spectroscopy shows the presence of inactivated P in as-grown ZnO films.
Application of thermal analysis techniques in activated carbon production
Donnals, G.L.; DeBarr, J.A.; Rostam-Abadi, M.; Lizzio, A.A.; Brady, T.A.
1996-01-01
Thermal analysis techniques have been used at the ISGS as an aid in the development and characterization of carbon adsorbents. Promising adsorbents from fly ash, tires, and Illinois coals have been produced for various applications. Process conditions determined in the preparation of gram quantities of carbons were used as guides in the preparation of larger samples. TG techniques developed to characterize the carbon adsorbents included the measurement of the kinetics of SO2 adsorption, the performance of rapid proximate analyses, and the determination of equilibrium methane adsorption capacities. Thermal regeneration of carbons was assessed by TG to predict the life cycle of carbon adsorbents in different applications. TPD was used to determine the nature of surface functional groups and their effect on a carbon's adsorption properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brevick, Jerald R.
2014-06-13
In the high pressure die casting process, molten metal is introduced into a die cavity at high pressure and velocity, enabling castings of thin wall section and complex geometry to be obtained. Traditional die materials have been hot work die steels, commonly H13. Manufacture of the dies involves machining the desired geometry from monolithic blocks of annealed tool steel, heat treating to desired hardness and toughness, and final machining, grinding and polishing. The die is fabricated with internal water cooling passages created by drilling. These materials and fabrication methods have been used for many years, however, there are limitations. Toolmore » steels have relatively low thermal conductivity, and as a result, it takes time to remove the heat from the tool steel via the drilled internal water cooling passages. Furthermore, the low thermal conductivity generates large thermal gradients at the die cavity surfaces, which ultimately leads to thermal fatigue cracking on the surfaces of the die steel. The high die surface temperatures also promote the metallurgical bonding of the aluminum casting alloy to the surface of the die steel (soldering). In terms of process efficiency, these tooling limitations reduce the number of die castings that can be made per unit time by increasing cycle time required for cooling, and increasing downtime and cost to replace tooling which has failed either by soldering or by thermal fatigue cracking (heat checking). The objective of this research was to evaluate the feasibility of designing, fabricating, and testing high pressure die casting tooling having properties equivalent to H13 on the surface in contact with molten casting alloy - for high temperature and high velocity molten metal erosion resistance – but with the ability to conduct heat rapidly to interior water cooling passages. A layered bimetallic tool design was selected, and the design evaluated for thermal and mechanical performance via finite element analysis. H13 was retained as the exterior layer of the tooling, while commercially pure copper was chosen for the interior structure of the tooling. The tooling was fabricated by traditional machining of the copper substrate, and H13 powder was deposited on the copper via the Laser Engineered Net Shape (LENSTM) process. The H13 deposition layer was then final machined by traditional methods. Two tooling components were designed and fabricated; a thermal fatigue test specimen, and a core for a commercial aluminum high pressure die casting tool. The bimetallic thermal fatigue specimen demonstrated promising performance during testing, and the test results were used to improve the design and LENS TM deposition methods for subsequent manufacture of the commercial core. Results of the thermal finite element analysis for the thermal fatigue test specimen indicate that it has the ability to lose heat to the internal water cooling passages, and to external spray cooling, significantly faster than a monolithic H13 thermal fatigue sample. The commercial core is currently in the final stages of fabrication, and will be evaluated in an actual production environment at Shiloh Die casting. In this research, the feasibility of designing and fabricating copper/H13 bimetallic die casting tooling via LENS TM processing, for the purpose of improving die casting process efficiency, is demonstrated.« less
NASA Astrophysics Data System (ADS)
Shukla, Rajesh Kumar; Patel, Virendra; Kumar, Arvind
2018-02-01
The coating deposit on the substrate in thermal spray coating process develops by solidification of individual molten particle which impacts, flattens and solidifies on the surface of the substrate. Droplet flattening and solidification typically involves rapid cooling. In this paper, a model for non-equilibrium rapid solidification of a molten droplet spreading onto a substrate is presented. Transient flow during droplet impact and its subsequent spreading is considered using the volume of fluid surface tracking method which was fully coupled with the rapid solidification model. The rapid solidification model includes undercooling, nucleation, interface tracking, non-equilibrium solidification kinetics and combined heat transfer and fluid flow as required to treat a non-stagnant splat formed from droplet flattening. The model is validated with the literature results on stagnant splats. Subsequently, using the model the characteristics of the rapidly solidifying interface for non-stagnant splat, such as interface velocity and interface temperature, are described and the effect of undercooling and interfacial heat transfer coefficient are highlighted. In contrast to the stagnant splat, the non-stagnant splat considered in this study displays interesting features in the rapidly solidifying interface. These are attributed to droplet thinning and droplet recoiling that occur during the droplet spreading process.
Modeling the spray casting process
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Haggar, S.M.; Muoio, N.; Crowe, C.T.
1995-12-31
Spray forming is a process in which a liquid metal is atomized into very small droplets and deposited on a substrate. These small droplets cool very rapidly in a high velocity gas jet, giving rise to smaller grain structure and improved mechanical properties. This paper presents a numerical model, based on the trajectory approach, for the velocity and thermal properties of the droplets in the jet and predicts the deposition pattern and the state of the droplets upon contact with the substrate.
Concurrent design of an RTP chamber and advanced control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spence, P.; Schaper, C.; Kermani, A.
1995-12-31
A concurrent-engineering approach is applied to the development of an axisymmetric rapid-thermal-processing (RTP) reactor and its associated temperature controller. Using a detailed finite-element thermal model as a surrogate for actual hardware, the authors have developed and tested a multi-input multi-output (MIMO) controller. Closed-loop simulations are performed by linking the control algorithm with the finite-element code. Simulations show that good temperature uniformity is maintained on the wafer during both steady and transient conditions. A numerical study shows the effect of ramp rate, feedback gain, sensor placement, and wafer-emissivity patterns on system performance.
NASA Astrophysics Data System (ADS)
Li, Ning; Habuka, Hitoshi; Ikeda, Shin-ichi; Hara, Shiro
A chemical vapor deposition reactor for producing thin silicon films was designed and developed for achieving a new electronic device production system, the Minimal Manufacturing, using a half-inch wafer. This system requires a rapid process by a small footprint reactor. This was designed and verified by employing the technical issues, such as (i) vertical gas flow, (ii) thermal operation using a highly concentrated infrared flux, and (iii) reactor cleaning by chlorine trifluoride gas. The combination of (i) and (ii) could achieve a low heating power and a fast cooling designed by the heat balance of the small wafer placed at a position outside of the reflector. The cleaning process could be rapid by (iii). The heating step could be skipped because chlorine trifluoride gas was reactive at any temperature higher than room temperature.
Komoroske, Lisa M; Connon, Richard E; Jeffries, Ken M; Fangue, Nann A
2015-10-01
Forecasting species' responses to climate change requires understanding the underlying mechanisms governing environmental stress tolerance, including acclimation capacity and acute stress responses. Current knowledge of these physiological processes in aquatic ectotherms is largely drawn from eurythermal or extreme stenothermal species. Yet many species of conservation concern exhibit tolerance windows and acclimation capacities in between these extremes. We linked transcriptome profiles to organismal tolerance in a mesothermal endangered fish, the delta smelt (Hypomesus transpacificus), to quantify the cellular processes, sublethal thresholds and effects of thermal acclimation on acute stress responses. Delta smelt initiated rapid molecular changes in line with expectations of theoretical thermal limitation models, but also exhibited diminished capacity to modify the expression of some genes and cellular mechanisms key to coping with acute thermal stress found in eurytherms. Sublethal critical thresholds occurred 4-6 °C below their upper tolerance limits, and thermal acclimation shifted the onset of acute thermal stress and tolerance as predicted. However, we found evidence that delta smelt's limited thermal plasticity may be partially due to an inability of individuals to effectively make physiological adjustments to truly achieve new homoeostasis under heightened temperatures, resulting in chronic thermal stress. These findings provide insight into the physiological basis of the diverse patterns of thermal tolerances observed in nature. Moreover, understanding how underlying molecular mechanisms shape thermal acclimation capacity, acute stress responses and ultimately differential phenotypes contributes to a predictive framework to deduce species' responses in situ to changes in selective pressures due to climate change. © 2015 John Wiley & Sons Ltd.
Rapid plasma quenching for the production of ultrafine metal and ceramic powders
NASA Astrophysics Data System (ADS)
Donaldson, Alan; Cordes, Ronald A.
2005-04-01
The rapid plasma quench concept used to produce ultrafine titanium hydride, magnesium, and aluminum powders involves the thermal dissociation of liquid reactants into gaseous components followed by rapid quenching of the products of the subject reaction to prevent back reactions. For example, in the case of titanium hydride powder production, titanium tetrachloride dissociates into titanium and chlorine atoms at 5,000 K. Expansion through a Delaval nozzle accelerates the gas to supersonic speed, cooling it very rapidly at rates as high as 710 K/s. Injected hydrogen reacts with condensed titanium particles to form titanium hydride and with the chlorine to form hydrogen chloride. Titanium powder has been produced at 20 kg/h in a continuous reactor. Costs are projected to be lower than the Kroll process at a sufficiently large scale. Magnesium and aluminum production based upon the rapid plasma quench concept are also discussed.
Temporal Treatment of a Thermal Response for Defect Depth Estimation
NASA Technical Reports Server (NTRS)
Plotnikov, Y. A.; Winfree, W. P.
2004-01-01
Transient thermography, which employs pulse surface heating of an inspected component followed by acquisition of the thermal decay stage, is gaining wider acceptance as a result of its remoteness and rapidness. Flaws in the component s material may induce a thermal contrast in surface thermograms. An important issue in transient thermography is estimating the depth of a subsurface flaw from the thermal response. This improves the quantitative ability of the thermal evaluation: from one scan it is possible to locate regions of anomalies in thickness (caused by corrosion) and estimate the implications of the flaw on the integrity of the structure. Our research focuses on thick composite aircraft components. A long square heating pulse and several minutes observation period are required to receive an adequate thermal response from such a component. Application of various time-related informative parameters of the thermal response for depth estimation is discussed. A three-dimensional finite difference model of heat propagation in solids in Cartesian coordinates is used to simulate the thermographic process. Typical physical properties of polymer graphite composites are assumed for the model.
Effective thermal conductivity of isotropic polymer composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavman, I.H.
1998-07-01
The effective thermal conductivity of tin powder filled high density polyethylene composites is investigated experimentally as a function of filler concentration and the measured values are compared with the existing theoretical and empirical models. Samples are prepared by compression molding process, up to 16% volumetric concentration of tin particles. The thermal conductivity is measured by a modified hot wire technique in a temperature range from about 0 to 70 C. Experimental results show a region of low particle content, up to about 10% volume concentration, where the increase in thermal conductivity is rather slow. The filler particles are dispersed inmore » the matrix material in this region, the thermal conductivity is best predicted by Maxwell`s model and Nielsen`s model with A = 1.5, {phi}{sub m} = 0.637. Whereas, at high filler concentrations, the filler particles tend to form agglomerates and conductive chains in the direction of heat flow resulting in a rapid increase in thermal conductivity. A model developed by Agari and Uno estimates the thermal conductivity in this region, using two experimentally determined constants.« less
Cracking the Stoping Paradigm: Field and Modeling Constraints From the Sierra Nevada Batholith
NASA Astrophysics Data System (ADS)
Pignotta, G. S.; Paterson, S. R.; Okaya, D.
2001-12-01
The significance of stoping during pluton emplacement remains a controversial issue. This mechanism has fallen out of favor recently largely due to the apparent lack of stoped blocks preserved in plutons. Our field studies in plutons in a variety of tectonic settings clearly show evidence of stoping. This is not surprising since stoping should be favored when large thermal gradients exist at magma-host rock boundaries. Preservation of stoped blocks is uncommon however, since the rate at which blocks sink is much greater than the rate at which magmas crystallize (Paterson and Okaya, 1999). Thus, only during final crystallization when magmatic yield strength is high, should stoped blocks be trapped. The Mitchell Peak granodiorite, Sierra Nevada is a rare example of a pluton that preserves abundant stoped blocks, with the youngest intrusive phase preserving >25% stoped blocks, and locally, near the margins >50% of exposed surface area is stoped blocks. Thus stoping is an important process here, at least during the final stages of emplacement. This area is ideal to study the mechanisms of block formation and disintegration using both field and modeling techniques, because of abundant stoped blocks, excellent exposure, and nature of host rock. The host rock is a slightly older, coarse grained, granodioritic intrusion that preserves extremely weak to no magmatic fabric, and thus can be treated as a "homogeneous and isotropic" medium for the purposes of thermal-mechanical modeling. Detailed mapping indicates that preserved stoped blocks range in size from hundreds of m's to xenocrystic feldspars, and there is abundant evidence for mechanical disintegration of blocks. Thermal-mechanical models, using detailed maps from the Mitchell Peak area, further support field observations. Rates at which thermal stresses develop and exceed host rock tensile strength are extremely rapid (hours to days) compared to onset of crystal plastic flow and/or melting. The calculated pattern of thermal stresses (i.e. high magnitudes at block corners) strongly supports rapid mechanical breakdown of stoped blocks. We suggest that rapid disintegration coupled with rapid rates of sinking of blocks explains the lack of observable blocks in plutons, and is an effective way to contaminate magmas thermally, mechanically and chemically. Furthermore, lack of observable stoped blocks in plutons should not be used as evidence that stoping did not occur.
Battery management systems with thermally integrated fire suppression
Bandhauer, Todd M.; Farmer, Joseph C.
2017-07-11
A thermal management system is integral to a battery pack and/or individual cells. It relies on passive liquid-vapor phase change heat removal to provide enhanced thermal protection via rapid expulsion of inert high pressure refrigerant during abnormal abuse events and can be integrated with a cooling system that operates during normal operation. When a thermal runaway event occurs and sensed by either active or passive sensors, the high pressure refrigerant is preferentially ejected through strategically placed passages within the pack to rapidly quench the battery.
Zhang, Lin; Zhou, Wenchen; Yi, Allen Y
2017-04-01
In compression molding of polymer optical components with micro/nanoscale surface features, rapid heating of the mold surface is critical for the implementation of this technology for large-scale applications. In this Letter, a novel method of a localized rapid heating process is reported. This process is based on induction heating of a thin conductive coating deposited on a silicon mold. Since the graphene coating is very thin (∼45 nm), a high heating rate of 10∼20°C/s can be achieved by employing a 1200 W 30 kHz electrical power unit. Under this condition, the graphene-coated surface and the polymer substrate can be heated above the polymer's glass transition temperature within 30 s and subsequently cooled down to room temperature within several tens of seconds after molding, resulting in an overall thermal cycle of about 3 min or shorter. The feasibility of this process was validated by fabrication of optical gratings, micropillar matrices, and microlens arrays on polymethylmethacrylate (PMMA) substrates with very high precision. The uniformity and surface geometries of the replicated optical elements are evaluated using an optical profilometer, a diffraction test setup, and a Shack-Hartmann wavefront sensor built with a molded PMMA microlens array. Compared with the conventional bulk heating molding process, this novel rapid localized induction heating process could improve replication efficiency with better geometrical fidelity.
Previously unknown class of metalorganic compounds revealed in meteorites
Ruf, Alexander; Kanawati, Basem; Hertkorn, Norbert; Yin, Qing-Zhu; Moritz, Franco; Harir, Mourad; Lucio, Marianna; Michalke, Bernhard; Wimpenny, Joshua; Shilobreeva, Svetlana; Bronsky, Basil; Saraykin, Vladimir; Gabelica, Zelimir; Gougeon, Régis D.; Quirico, Eric; Ralew, Stefan; Jakubowski, Tomasz; Haack, Henning; Gonsior, Michael; Jenniskens, Peter; Hinman, Nancy W.; Schmitt-Kopplin, Philippe
2017-01-01
The rich diversity and complexity of organic matter found in meteorites is rapidly expanding our knowledge and understanding of extreme environments from which the early solar system emerged and evolved. Here, we report the discovery of a hitherto unknown chemical class, dihydroxymagnesium carboxylates [(OH)2MgO2CR]−, in meteoritic soluble organic matter. High collision energies, which are required for fragmentation, suggest substantial thermal stability of these Mg-metalorganics (CHOMg compounds). This was corroborated by their higher abundance in thermally processed meteorites. CHOMg compounds were found to be present in a set of 61 meteorites of diverse petrological classes. The appearance of this CHOMg chemical class extends the previously investigated, diverse set of CHNOS molecules. A connection between the evolution of organic compounds and minerals is made, as Mg released from minerals gets trapped into organic compounds. These CHOMg metalorganic compounds and their relation to thermal processing in meteorites might shed new light on our understanding of carbon speciation at a molecular level in meteorite parent bodies. PMID:28242686
NASA Astrophysics Data System (ADS)
Chen, Kai-Huang; Cheng, Chien-Min; Kao, Ming-Cheng; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Wu, Sean; Su, Feng-Yi
2017-04-01
The bipolar switching properties and electrical conduction mechanism of vanadium oxide thin-film resistive random-access memory (RRAM) devices obtained using a rapid thermal annealing (RTA) process have been investigated in high-resistive status/low-resistive status (HRS/LRS) and are discussed herein. In addition, the resistance switching properties and quality improvement of the vanadium oxide thin-film RRAM devices were measured by x-ray diffraction (XRD) analysis, x-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage ( I- V) measurements. The activation energy of the hopping conduction mechanism in the devices was investigated based on Arrhenius plots in HRS and LRS. The hopping conduction distance and activation energy barrier were obtained as 12 nm and 45 meV, respectively. The thermal annealing process is recognized as a candidate method for fabrication of thin-film RRAM devices, being compatible with integrated circuit technology for nonvolatile memory devices.
Thermal processing of diblock copolymer melts mimics metallurgy
NASA Astrophysics Data System (ADS)
Kim, Kyungtae; Schulze, Morgan W.; Arora, Akash; Lewis, Ronald M.; Hillmyer, Marc A.; Dorfman, Kevin D.; Bates, Frank S.
2017-05-01
Small-angle x-ray scattering experiments conducted with compositionally asymmetric low molar mass poly(isoprene)-b-poly(lactide) diblock copolymers reveal an extraordinary thermal history dependence. The development of distinct periodic crystalline or aperiodic quasicrystalline states depends on how specimens are cooled from the disordered state to temperatures below the order-disorder transition temperature. Whereas direct cooling leads to the formation of documented morphologies, rapidly quenched samples that are then heated from low temperature form the hexagonal C14 and cubic C15 Laves phases commonly found in metal alloys. Self-consistent mean-field theory calculations show that these, and other associated Frank-Kasper phases, have nearly degenerate free energies, suggesting that processing history drives the material into long-lived metastable states defined by self-assembled particles with discrete populations of volumes and polyhedral shapes.
Thermal casting process for the preparation of anisotropic membranes and the resultant membrane
Caneba, Gerard T. M.; Soong, David S.
1987-01-01
A method for providing anisotropic polymer membranes from a binary polymer/solvent solution using a thermal inversion process. A homogeneous binary solution is cast onto a support and cooled in such a way as to provide a differential in cooling rate across the thickness of the resulting membrane sheet. Isotropic or anisotropic structures of selected porosities can be produced, depending on the initial concentration of polymer in the selected solvent and on the extent of the differential in cooling rate. This differential results in a corresponding gradation in pore size. The method may be modified to provide a working skin by applying a rapid, high-temperature pulse to redissolve a predetermined thickness of the membrane at one of its faces and then freezing the entire structure.
Thermal casting process for the preparation of membranes
Caneba, G.T.M.; Soong, D.S.
1985-07-10
Disclosed is a method for providing anisotropic polymer membrane from a binary polymer/solvent solution using a thermal inversion process. A homogeneous binary solution is cast onto a support and cooled in such a way as to provide a differential in cooling rate across the thickness of the resulting membrane sheet. Isotropic or anisotropic structures of selected porosities can be produced, depending on the initial concentration of polymer in the selected solvent and on the extent of the differential in cooling rate. This differential results in a corresponding gradation in pore size. The method may be modified to provide a working skin by applying a rapid, high-temperature pulse to redissolve a predetermined thickness of the membrane at one of its faces and then freezing the entire structure.
CFD Script for Rapid TPS Damage Assessment
NASA Technical Reports Server (NTRS)
McCloud, Peter
2013-01-01
This grid generation script creates unstructured CFD grids for rapid thermal protection system (TPS) damage aeroheating assessments. The existing manual solution is cumbersome, open to errors, and slow. The invention takes a large-scale geometry grid and its large-scale CFD solution, and creates a unstructured patch grid that models the TPS damage. The flow field boundary condition for the patch grid is then interpolated from the large-scale CFD solution. It speeds up the generation of CFD grids and solutions in the modeling of TPS damages and their aeroheating assessment. This process was successfully utilized during STS-134.
Thermal escape from extrasolar giant planets
Koskinen, Tommi T.; Lavvas, Panayotis; Harris, Matthew J.; Yelle, Roger V.
2014-01-01
The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres. PMID:24664923
Morsy, M A; Shwehdi, M H
2006-03-01
Electron spin resonance (ESR) study is carried out to characterize thermal endurance of insulating materials used in power cable industry. The presented work provides ESR investigation and evaluation of widely used cable insulation materials, namely polyvinyl chloride (PVC) and cross-linked polyethylene (XLPE). The results confirm the fact that PVC is rapidly degrades than XLPE. The study also indicates that colorants and cable's manufacturing processes enhance the thermal resistance of the PVC. It also verifies the powerfulness and the importance of the ESR-testing of insulation materials compared to other tests assumed by International Electrotechnical Commission (IEC) Standard 216-procedure, e.g. weight loss (WL), electric strength (ES) or tensile strength (TS). The estimated thermal endurance parameters by ESR-method show that the other standard methods overestimate these parameters and produce less accurate thermal life time curves of cable insulation materials.
Thermal stresses due to cooling of a viscoelastic oceanic lithosphere
Denlinger, R.P.; Savage, W.Z.
1989-01-01
Instant-freezing methods inaccurately predict transient thermal stresses in rapidly cooling silicate glass plates because of the temperature dependent rheology of the material. The temperature dependent rheology of the lithosphere may affect the transient thermal stress distribution in a similar way, and for this reason we use a thermoviscoelastic model to estimate thermal stresses in young oceanic lithosphere. This theory is formulated here for linear creep processes that have an Arrhenius rate dependence on temperature. Our results show that the stress differences between instant freezing and linear thermoviscoelastic theory are most pronounced at early times (0-20 m.y. when the instant freezing stresses may be twice as large. The solutions for the two methods asymptotically approach the same solution with time. A comparison with intraplate seismicity shows that both methods underestimate the depth of compressional stresses inferred from the seismicity in a systematic way. -from Authors
Thermal escape from extrasolar giant planets.
Koskinen, Tommi T; Lavvas, Panayotis; Harris, Matthew J; Yelle, Roger V
2014-04-28
The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres.
NASA Astrophysics Data System (ADS)
Kargel, J. S.; Furfaro, R.
2013-12-01
Thermal gradients within conductive layers of icy satellite and asteroids depend partly on heat flow, which is related to the secular decay of radioactive isotopes, to heat released by chemical phase changes, by conversion of gravitational potential energy to heat during differentiation, tidal energy dissipation, and to release of heat stored from prior periods. Thermal gradients are also dependent on the thermal conductivity of materials, which in turn depends on their composition, crystallinity, porosity, crystal fabric anisotropy, and details of their mixture with other materials. Small impurities can produce lattice defects and changes in polymerization, and thereby have a huge influence on thermal conductivity, as can cage-inclusion (clathrate) compounds. Heat flow and thermal gradients can be affected by fluid phase advection of mass and heat (in oceans or sublimating upper crusts), by refraction related to heterogeneities of thermal conductivity due to lateral variations and composition or porosity. Thermal profiles depend also on the surface temperature controlled by albedo and climate, surface relief, and latitude, orbital obliquity and surface insolation, solid state greenhouses, and endogenic heating of the surface. The thermal state of icy moon interiors and thermal gradients can be limited at depth by fluid phase advection of heat (e.g., percolating meteoric methane or gas emission), by the latent heat of phase transitions (melting, solid-state transitions, and sublimation), by solid-state convective or diapiric heat transfer, and by foundering. Rapid burial of thick volatile deposits can also affect thermal gradients. For geologically inactive or simple icy objects, most of these controls on heat flow and thermal gradients are irrelevant, but for many other icy objects they can be important, in some cases causing large lateral and depth variations in thermal gradients, large variations in heat flow, and dynamically evolving thermal states. Many of these processes result in transient thermal states and hence rapid evolution of icy body interiors. Interesting heat-flow phenomena (approximated as steady-state thermal states) have been modeled in volatile-rich main belt asteroids, Io, Europa, Enceladus, Titan, Pluto, and Makemake (2005 FY9). Thermal conditions can activate geologic processes, but the occurrence of geologic activity can fundamentally alter the thermal conductivity and elasticity of icy objects, which then further affects the distribution and type of subsequent geologic activity. For example, cryoclastic volcanism on Enceladus can increase solid-state greenhouse heating of the upper crust, reduce thermal conductivity, and increase retention of heat and spur further cryovolcanism. Sulfur extrusion on Io can produce low-thermal-conductivity flows, high thermal gradients, basal melting of the flows, and lateral extrusion and spreading of the flows or formation of solid-crusted lava lakes. Impact formation of regoliths and fine-grained dust deposits on large asteroids may generate local variations in thermal gradients. Interior heating and geologic activity can either (1) emplace low-conductivity materials on the surface and cause further interior heating, or (2) drive metamorphism, sintering, and volatile loss, and increase thermal conductivity and cool the object. Thus, the type and distribution of present-day geologic activity on icy worlds is dependent on geologic history. Geology begets geology.
Modeling of Laser Material Interactions
NASA Astrophysics Data System (ADS)
Garrison, Barbara
2009-03-01
Irradiation of a substrate by laser light initiates the complex chemical and physical process of ablation where large amounts of material are removed. Ablation has been successfully used in techniques such as nanolithography and LASIK surgery, however a fundamental understanding of the process is necessary in order to further optimize and develop applications. To accurately describe the ablation phenomenon, a model must take into account the multitude of events which occur when a laser irradiates a target including electronic excitation, bond cleavage, desorption of small molecules, ongoing chemical reactions, propagation of stress waves, and bulk ejection of material. A coarse grained molecular dynamics (MD) protocol with an embedded Monte Carlo (MC) scheme has been developed which effectively addresses each of these events during the simulation. Using the simulation technique, thermal and chemical excitation channels are separately studied with a model polymethyl methacrylate system. The effects of the irradiation parameters and reaction pathways on the process dynamics are investigated. The mechanism of ablation for thermal processes is governed by a critical number of bond breaks following the deposition of energy. For the case where an absorbed photon directly causes a bond scission, ablation occurs following the rapid chemical decomposition of material. The study provides insight into the influence of thermal and chemical processes in polymethyl methacrylate and facilitates greater understanding of the complex nature of polymer ablation.
NASA Astrophysics Data System (ADS)
Romanovskii, V. R.
2017-08-01
Conditions for the irreversible propagation of thermal instabilities in commercial superconductors subjected to intense and soft cooling have been formulated. An analysis has been conducted using two types of the superconductor's I-V characteristics, i.e., an ideal I-V characteristic, which assumes a step superconducting-to-normal transition, and a continuous I-V characteristic, which is described by a power law. The propagation rate of thermal instabilities along the superconducting composite has been determined. Calculations have been made for both subcritical and supercritical values of the current. It has been shown that they propagate along a commercial superconductor in the form of a switching wave. In rapidly cooled commercial superconductors, the steady-state rate of thermal instability propagation in the longitudinal direction can only be positive because there is no region of steady stabilization. It has been proved that, in the case of thermal instability irreversible propagation, the rise in the commercial superconductor temperature is similar to diffusion processes that occur in explosive chain reactions.
Hatada, Naoyuki; Shizume, Kunihiko; Uda, Tetsuya
2017-07-01
Thermal energy storage based on chemical reactions is a prospective technology for the reduction of fossil-fuel consumption by storing and using waste heat. For widespread application, a critical challenge is to identify appropriate reversible reactions that occur below 250 °C, where abundant low-grade waste heat and solar energy might be available. Here, it is shown that lanthanum sulfate monohydrate La 2 (SO 4 ) 3 ⋅H 2 O undergoes rapid and reversible dehydration/hydration reactions in the temperature range from 50 to 250 °C upon heating/cooling with remarkably small thermal hysteresis (<50 °C), and thus it emerges as a new candidate system for thermal energy storage. Thermogravimetry and X-ray diffraction analyses reveal that the reactions proceed through an unusual mechanism for sulfates: water is removed from, or inserted in La 2 (SO 4 ) 3 ⋅H 2 O with progressive change in hydration number x without phase change. It is also revealed that only a specific structural modification of La 2 (SO 4 ) 3 exhibits this reversible dehydration/hydration behavior. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal Tomography of Asteroid Surface Structure
NASA Astrophysics Data System (ADS)
Harris, Alan W.; Drube, Line
2016-12-01
Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.
THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Alan W.; Drube, Line, E-mail: alan.harris@dlr.de
Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) tomore » 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.« less
FNAS modify matric and transparent experiments
NASA Technical Reports Server (NTRS)
Smith, Guy A.; Kosten, Sue E.; Workman, Gary L.
1992-01-01
Monotectic alloy materials are created by rapid melt/rapid solidification processing on the NASA KC-135. Separation of the uniform liquid into two liquids may occur by either of two processes; spinodal decomposition or nucleation followed by growth. In the first case, the liquid is unstable to composition waves, which form and grow, giving liquids of two different compositions. In the latter process discrete particles of the second liquid phase form via thermal fluctuations and then grow by diffusion. The two processes are very different, with the determining process being dictated by temperature, composition, and thermodynamic characteristics of the alloy. The first two quantities are process variables, while the third is determined by electronic interactions between the atoms in the alloy. In either case the initial alloy decomposition is followed by coarsening, resulting in growth of the particle size at nearly constant volume fraction. In particular, reduced gravity experiments on monotectic solutions have shown a number of interesting results in the KC-135. Monotectic solutions exhibit a miscibility gap in the liquid state, and consequently, gravity driven forces can dominate the solidification parameters at 1 g. In reduced gravity however, the distribution of the phases is different, resulting in new and interesting microstructures. The Rapid Melt/Rapid Quench Furnace allows one to melt a sample and resolidify it in one parabola of the KC-135's flight path, thus eliminating any accumulative influence of multiple parabolas to affect the microstructure of the material.
An Overview of the Thermal Challenges of Designing Microgravity Furnaces
NASA Technical Reports Server (NTRS)
Westra, Douglas G.
2001-01-01
Marshall Space Flight Center is involved in a wide variety of microgravity projects that require furnaces, with hot zone temperatures ranging from 300 C to 2300 C, requirements for gradient processing and rapid quench, and both semi-conductor and metal materials. On these types of projects, the thermal engineer is a key player in the design process. Microgravity furnaces present unique challenges to the thermal designer. One challenge is designing a sample containment assembly that achieves dual containment, yet allows a high radial heat flux. Another challenge is providing a high axial gradient but a very low radial gradient. These furnaces also present unique challenges to the thermal analyst. First, there are several orders of magnitude difference in the size of the thermal 'conductors' between various parts of the model. A second challenge is providing high fidelity in the sample model, and connecting the sample with the rest of the furnace model, yet maintaining some sanity in the number of total nodes in the model. The purpose of this paper is to present an overview of the challenges involved in designing and analyzing microgravity furnaces and how some of these challenges have been overcome. The thermal analysis tools presently used to analyze microgravity furnaces and will be listed. Challenges for the future and a description of future analysis tools will be given.
Evolving Nonthermal Electron Distributions in Simulations of Sgr A*
NASA Astrophysics Data System (ADS)
Chael, Andrew; Narayan, Ramesh
2018-01-01
The accretion flow around Sagittarius A* (Sgr A*), the black hole at the Galactic Center, produces strong variability from the radio to X-rays on timescales of minutes to hours. This rapid, powerful variability is thought to be powered by energetic particle acceleration by plasma processes like magnetic reconnection and shocks. These processes can accelerate particles into non-thermal distributions which do not quickly isothermal in the low densities found around hot accretion flows. Current state-of-the-art simulations of accretion flows around black holes assume either a single-temperature gas or, at best, a two-temperature gas with thermal ions and electrons. We present results from incorporating the self-consistent evolution of a non-thermal electron population in a GRRMHD simulation of Sgr A*. The electron distribution is evolved across space, time, and Lorentz factor in parallel with background thermal ion, electron, and radiation fluids. Energy injection into the non-thermal distribution is modeled with a sub-grid prescription based on results from particle-in-cell simulations of magnetic reconnection. The energy distribution of the non-thermal electrons shows strong variability, and the spectral shape traces the complex interplay between the local viscous heating rate, magnetic field strength, and fluid velocity. Results from these simulations will be used in interpreting forthcoming data from the Event Horizon Telescope that resolves Sgr A*'s sub-mm variability in both time and space.
Dynamic Monte Carlo description of thermal desorption processes
NASA Astrophysics Data System (ADS)
Weinketz, Sieghard
1994-07-01
The applicability of the dynamic Monte Carlo method of Fichthorn and Weinberg, in which the time evolution of a system is described in terms of the absolute number of different microscopic possible events and their associated transition rates, is discussed for the case of thermal desorption simulations. It is shown that the definition of the time increment at each successful event leads naturally to the macroscopic differential equation of desorption, in the case of simple first- and second-order processes in which the only possible events are desorption and diffusion. This equivalence is numerically demonstrated for a second-order case. In the sequence, the equivalence of this method with the Monte Carlo method of Sales and Zgrablich for more complex desorption processes, allowing for lateral interactions between adsorbates, is shown, even though the dynamic Monte Carlo method does not bear their limitation of a rapid surface diffusion condition, thus being able to describe a more complex ``kinetics'' of surface reactive processes, and therefore be applied to a wider class of phenomena, such as surface catalysis.
NASA Astrophysics Data System (ADS)
Cheng, Yuan-Chieh; Hsu, Wei-Yao; Kuo, Ching-Hsiang; Abou-El-Hossein, Khaled; Otieno, Timothy
2015-08-01
The metal mirror has been widely used in optical application for a longtime. Especially the aluminum 6061 is often considered the preferred material for manufacturing optical components for ground-based astronomical applications. One reason for using this material is its high specific stiffness and excellent thermal properties. However, a large amount of data exists for this material and commercially available aluminum 6061 using single point diamond turning (SPDT) and polishing process can achieve surface roughness values of approximately 2 to 4 nm, which is adequate for applications that involve the infrared spectral range, but not for the shorter spectral range. A novel aluminum material, fabricated using a rapid solidification process that is equivalent to the conventional aluminum 6061 alloy grade has been used in optical applications in recent years because of its smaller grain size. In this study, the surface quality of the rapid solidification aluminum after single point diamond turning and followed by magnetorheological finish (MRF) process is investigated and compared with conventional aluminum 6061. Both the surface roughness Ra was evaluated using white light interferometers. Finally, indicators such as optimal fabrication parameter combination and optical performance are discussed.
Thermal storage/discharge performances of Cu-Si alloy for solar thermochemical process
NASA Astrophysics Data System (ADS)
Gokon, Nobuyuki; Yamaguchi, Tomoya; Cho, Hyun-seok; Bellan, Selvan; Hatamachi, Tsuyoshi; Kodama, Tatsuya
2017-06-01
The present authors (Niigata University, Japan) have developed a tubular reactor system using novel "double-walled" reactor/receiver tubes with carbonate molten-salt thermal storage as a phase change material (PCM) for solar reforming of natural gas and with Al-Si alloy thermal storage as a PCM for solar air receiver to produce high-temperature air. For both of the cases, the high heat capacity and large latent heat (heat of solidification) of the PCM phase circumvents the rapid temperature change of the reactor/receiver tubes at high temperatures under variable and uncontinuous characteristics of solar radiation. In this study, we examined cyclic properties of thermal storage/discharge for Cu-Si alloy in air stream in order to evaluate a potentiality of Cu-Si alloy as a PCM thermal storage material. Temperature-increasing performances of Cu-Si alloy are measured during thermal storage (or heat-charge) mode and during cooling (or heat-discharge) mode. A oxidation state of the Cu-Si alloy after the cyclic reaction was evaluated by using electron probe micro analyzer (EPMA).
Griffiths, Jennifer R.; Schindler, Daniel E.; Balistrieri, Laurie S.; Ruggerone, Gregory T.
2011-01-01
We used a hydrodynamics model to assess the consequences of climate warming and contemporary geomorphic evolution for thermal conditions in a large, shallow Alaskan lake. We evaluated the effects of both known climate and landscape change, including rapid outlet erosion and migration of the principal inlet stream, over the past 50 yr as well as future scenarios of geomorphic restoration. Compared to effects of air temperature during the past 50 yr, lake thermal properties showed little sensitivity to substantial (~60%) loss of lake volume, as the lake maximum depth declined from 6 m to 4 m driven by outlet erosion. The direction and magnitude of future lake thermal responses will be driven largely by the extent of inlet stream migration when it occurs simultaneously with outlet erosion. Maintaining connectivity with inlet streams had substantial effects on buffering lake thermal responses to warming climate. Failing to account for changing rates and types of geomorphic processes under continuing climate change may misidentify the primary drivers of lake thermal responses and reduce our ability to understand the consequences for aquatic organisms.
Thermal emission before earthquakes by analyzing satellite infra-red data
NASA Astrophysics Data System (ADS)
Ouzounov, D.; Taylor, P.; Bryant, N.; Pulinets, S.; Freund, F.
2004-05-01
Satellite thermal imaging data indicate long-lived thermal anomaly fields associated with large linear structures and fault systems in the Earth's crust but also with short-lived anomalies prior to major earthquakes. Positive anomalous land surface temperature excursions of the order of 3-4oC have been observed from NOAA/AVHRR, GOES/METEOSAT and EOS Terra/Aqua satellites prior to some major earthquake around the world. The rapid time-dependent evolution of the "thermal anomaly" suggests that is changing mid-IR emissivity from the earth. These short-lived "thermal anomalies", however, are very transient therefore there origin has yet to be determined. Their areal extent and temporal evolution may be dependent on geology, tectonic, focal mechanism, meteorological conditions and other factors.This work addresses the relationship between tectonic stress, electro-chemical and thermodynamic processes in the atmosphere and increasing mid-IR flux as part of a larger family of electromagnetic (EM) phenomena related to seismic activity.We still need to understand better the link between seismo-mechanical processes in the crust, on the surface, and at the earth-atmospheric interface that trigger thermal anomalies. This work serves as an introduction to our effort to find an answer to this question. We will present examples from the strong earthquakes that have occurred in the Americas during 2003/2004 and the techniques used to record the thermal emission mid-IR anomalies, geomagnetic and ionospheric variations that appear to associated with impending earthquake activity.
Rapid and Checkable Electrical Post-Treatment Method for Organic Photovoltaic Devices
Park, Sangheon; Seo, Yu-Seong; Shin, Won Suk; Moon, Sang-Jin; Hwang, Jungseek
2016-01-01
Post-treatment processes improve the performance of organic photovoltaic devices by changing the microscopic morphology and configuration of the vertical phase separation in the active layer. Thermal annealing and solvent vapor (or chemical) treatment processes have been extensively used to improve the performance of bulk-heterojunction (BHJ) organic photovoltaic (OPV) devices. In this work we introduce a new post-treatment process which we apply only electrical voltage to the BHJ-OPV devices. We used the commercially available P3HT [Poly(3-hexylthiophene)] and PC61BM (Phenyl-C61-Butyric acid Methyl ester) photovoltaic materials as donor and acceptor, respectively. We monitored the voltage and current applied to the device to check for when the post-treatment process had been completed. This electrical treatment process is simpler and faster than other post-treatment methods, and the performance of the electrically treated solar cell is comparable to that of a reference (thermally annealed) device. Our results indicate that the proposed treatment process can be used efficiently to fabricate high-performance BHJ-OPV devices. PMID:26932767
Micro Thermal and Chemical Systems for In Situ Resource Utilization on Mars
NASA Technical Reports Server (NTRS)
Wegeng, Robert S.; Sanders, Gerald
2000-01-01
Robotic sample return missions and postulated human missions to Mars can be greatly aided through the development and utilization of compact chemical processing systems that process atmospheric gases and other indigenous resources to produce hydrocarbon propellants/fuels, oxygen, and other needed chemicals. When used to reduce earth launch mass, substantial cost savings can result. Process Intensification and Process Miniaturization can simultaneously be achieved through the application of microfabricated chemical process systems, based on the rapid heat and mass transport in engineered microchannels. Researchers at NASA's Johnson Space Center (JSC) and the Department of Energy's Pacific Northwest National Laboratory (PNNL) are collaboratively developing micro thermal and chemical systems for NASA's Mission to Mars program. Preliminary results show that many standard chemical process components (e.g., heat exchangers, chemical reactors and chemical separations units) can be reduced in hardware volume without a corresponding reduction in chemical production rates. Low pressure drops are also achievable when appropriate scaling rules are applied. This paper will discuss current progress in the development of engineered microchemical systems for space and terrestrial applications, including fabrication methods, expected operating characteristics, and specific experimental results.
Slow Noncollinear Coulomb Scattering in the Vicinity of the Dirac Point in Graphene.
König-Otto, J C; Mittendorff, M; Winzer, T; Kadi, F; Malic, E; Knorr, A; Berger, C; de Heer, W A; Pashkin, A; Schneider, H; Helm, M; Winnerl, S
2016-08-19
The Coulomb scattering dynamics in graphene in energetic proximity to the Dirac point is investigated by polarization resolved pump-probe spectroscopy and microscopic theory. Collinear Coulomb scattering rapidly thermalizes the carrier distribution in k directions pointing radially away from the Dirac point. Our study reveals, however, that, in almost intrinsic graphene, full thermalization in all directions relying on noncollinear scattering is much slower. For low photon energies, carrier-optical-phonon processes are strongly suppressed and Coulomb mediated noncollinear scattering is remarkably slow, namely on a ps time scale. This effect is very promising for infrared and THz devices based on hot carrier effects.
Wang, Xiao-Yun; Meng, Fan-Guo; Zhou, Hai-Meng
2004-03-01
The thermostability of an enzyme that exhibits phytase and acid phosphatase activities was studied. Kinetics of inactivation and unfolding during thermal denaturation of the enzyme were compared. The loss of phytase activity on thermal denaturation is most suggestive of a reversible process. As for acid phosphatase activities, an interesting phenomenon was observed; there are two phases in thermal inactivation: when the temperature was between 45 and 50 degrees C, the thermal inactivation could be characterized as an irreversible inactivation which had some residual activity and when the temperature was above 55 degrees C, the thermal inactivation could be characterized as an irreversible process which had no residual activity. The microscopic rate constants for the free enzyme and substrate-enzyme complex were determined by Tsou's method [Adv. Enzymol. Relat. Areas Mol. Biol. 61 (1988) 381]. Fluorescence analyses indicate that when the enzyme was treated at temperatures below 60 degrees C for 60 min, the conformation of the enzyme had no detectable change; when the temperatures were above 60 degrees C, some fluorescence red-shift could be observed with a decrease in emission intensity. The inactivation rates (k(+0)) of free enzymes were faster than those of conformational changes during thermal denaturation at the same temperature. The rapid inactivation and slow conformational changes of phytase during thermal denaturation suggest that inactivation occurs before significant conformational changes of the enzyme, and the active site of this enzyme is situated in a relatively fragile region which makes the active site more flexible than the molecule as a whole.
Microwave-driven asbestos treatment and its scale-up for use after natural disasters.
Horikoshi, Satoshi; Sumi, Takuya; Ito, Shigeyuki; Dillert, Ralf; Kashimura, Keiichiro; Yoshikawa, Noboru; Sato, Motoyasu; Shinohara, Naoki
2014-06-17
Asbestos-containing debris generated by the tsunami after the Great East Japan Earthquake of March 11, 2011, was processed by microwave heating. The analysis of the treated samples employing thermo gravimetry, differential thermal analysis, X-ray diffractometry, scanning electron microscopy, and phase-contrast microscopy revealed the rapid detoxification of the waste by conversion of the asbestos fibers to a nonfibrous glassy material. The detoxification by the microwave method occurred at a significantly lower processing temperature than the thermal methods actually established for the treatment of asbestos-containing waste. The lower treatment temperature is considered to be a consequence of the microwave penetration depth into the waste material and the increased intensity of the microwave electric field in the gaps between the asbestos fibers resulting in a rapid heating of the fibers inside the debris. A continuous treatment plant having a capacity of 2000 kg day(-1) of asbestos-containing waste was built in the area affected by the earthquake disaster. This treatment plant consists of a rotary kiln to burn the combustible waste (wood) and a microwave rotary kiln to treat asbestos-containing inorganic materials. The hot flue gas produced by the combustion of wood is introduced into the connected microwave rotary kiln to increase the energy efficiency of the combined process. Successful operation of this combined device with regard to asbestos decomposition is demonstrated.
NASA Astrophysics Data System (ADS)
Voronkov, V. V.; Falster, R.; Kim, TaeHyeong; Park, SoonSung; Torack, T.
2013-07-01
Silicon wafers, coated with a silicon nitride layer and subjected to high temperature Rapid Thermal Annealing (RTA) in Ar, show—upon a subsequent two-step precipitation anneal cycle (such as 800 °C + 1000 °C)—peculiar depth profiles of oxygen precipitate densities. Some profiles are sharply peaked near the wafer surface, sometimes with a zero bulk density. Other profiles are uniform in depth. The maximum density is always the same. These profiles are well reproduced by simulations assuming that precipitation starts from a uniformly distributed small oxide plates originated from RTA step and composed of oxygen atoms and vacancies ("VO2 plates"). During the first step of the precipitation anneal, an oxide layer propagates around this core plate by a process of oxygen attachment, meaning that an oxygen-only ring-shaped plate emerges around the original plate. These rings, depending on their size, then either dissolve or grow during the second part of the anneal leading to a rich variety of density profiles.
Wet oxidation of GeSi strained layers by rapid thermal processing
NASA Astrophysics Data System (ADS)
Nayak, D. K.; Kamjoo, K.; Park, J. S.; Woo, J. C. S.; Wang, K. L.
1990-07-01
A cold-wall rapid thermal processor is used for the wet oxidation of the commensurately grown GexSi1-x layers on Si substrates. The rate of oxidation of the GexSi1-x layer is found to be significantly higher than that of pure Si, and the oxidation rate increases with the increase in the Ge content in GexSi1-x layer. The oxidation rate of GexSi1-x appears to decrease with increasing oxidation time for the time-temperature cycles considered here. Employing high-frequency and quasi-static capacitance-voltage measurements, it is found that a fixed negative oxide charge density in the range of 1011- 1012/cm2 and the interface trap level density (in the mid-gap region) of about 1012/cm2 eV are present. Further, the density of this fixed interface charge at the SiO2/GeSi interface is found to increase with the Ge concentration in the commensurately grown GeSi layers.
Redshift and blueshift of GaNAs/GaAs multiple quantum wells induced by rapid thermal annealing
NASA Astrophysics Data System (ADS)
Sun, Yijun; Cheng, Zhiyuan; Zhou, Qiang; Sun, Ying; Sun, Jiabao; Liu, Yanhua; Wang, Meifang; Cao, Zhen; Ye, Zhi; Xu, Mingsheng; Ding, Yong; Chen, Peng; Heuken, Michael; Egawa, Takashi
2018-02-01
The effects of rapid thermal annealing (RTA) on the optical properties of GaNAs/GaAs multiple quantum wells (MQWs) grown by chemical beam epitaxy (CBE) are studied by photoluminescence (PL) at 77 K. The results show that the optical quality of the MQWs improves significantly after RTA. With increasing RTA temperature, PL peak energy of the MQWs redshifts below 1023 K, while it blueshifts above 1023 K. Two competitive processes which occur simultaneously during RTA result in redshift at low temperature and blueshift at high temperature. It is also found that PL peak energy shift can be explained neither by nitrogen diffusion out of quantum wells nor by nitrogen reorganization inside quantum wells. PL peak energy shift can be quantitatively explained by a modified recombination coupling model in which redshift nonradiative recombination and blueshift nonradiative recombination coexist. The results obtained have significant implication on the growth and RTA of GaNAs material for high performance optoelectronic device application.
Intelligent monitoring and control of semiconductor manufacturing equipment
NASA Technical Reports Server (NTRS)
Murdock, Janet L.; Hayes-Roth, Barbara
1991-01-01
The use of AI methods to monitor and control semiconductor fabrication in a state-of-the-art manufacturing environment called the Rapid Thermal Multiprocessor is described. Semiconductor fabrication involves many complex processing steps with limited opportunities to measure process and product properties. By applying additional process and product knowledge to that limited data, AI methods augment classical control methods by detecting abnormalities and trends, predicting failures, diagnosing, planning corrective action sequences, explaining diagnoses or predictions, and reacting to anomalous conditions that classical control systems typically would not correct. Research methodology and issues are discussed, and two diagnosis scenarios are examined.
Rapid self-assembly of DNA on a microfluidic chip
Zheng, Yao; Footz, Tim; Manage, Dammika P; Backhouse, Christopher James
2005-01-01
Background DNA self-assembly methods have played a major role in enabling methods for acquiring genetic information without having to resort to sequencing, a relatively slow and costly procedure. However, even self-assembly processes tend to be very slow when they rely upon diffusion on a large scale. Miniaturisation and integration therefore hold the promise of greatly increasing this speed of operation. Results We have developed a rapid method for implementing the self-assembly of DNA within a microfluidic system by electrically extracting the DNA from an environment containing an uncharged denaturant. By controlling the parameters of the electrophoretic extraction and subsequent analysis of the DNA we are able to control when the hybridisation occurs as well as the degree of hybridisation. By avoiding off-chip processing or long thermal treatments we are able to perform this hybridisation rapidly and can perform hybridisation, sizing, heteroduplex analysis and single-stranded conformation analysis within a matter of minutes. The rapidity of this analysis allows the sampling of transient effects that may improve the sensitivity of mutation detection. Conclusions We believe that this method will aid the integration of self-assembly methods upon microfluidic chips. The speed of this analysis also appears to provide information upon the dynamics of the self-assembly process. PMID:15717935
NASA Technical Reports Server (NTRS)
Ethridge, E. C.; Kaukler, W. F.
1993-01-01
A number of promising glass forming compositions of high Tc superconducting Ba-Sr-Ca-Cu-O (BSCCO) materials were evaluated for their glass-ceramic crystallization ability. The BSCCO ceramics belonging to the class of superconductors in the Ba-Sr-Ca-Cu-O system were the focus of this study. By first forming the superconducting material as a glass, subsequent devitrification into the crystalline (glass-ceramic) superconductor can be performed by thermal processing of the glass preform body. Glass formability and phase formation were determined by a variety of methods in another related study. This study focused on the nucleation and crystallization of the materials. Thermal analysis during rapid cooling aids in the evaluation of nucleation and crystallization behavior. Melt viscosity is used to predict glass formation ability.
Accessing thermoplastic processing windows in metallic glasses using rapid capacitive discharge
Kaltenboeck, Georg; Harris, Thomas; Sun, Kerry; Tran, Thomas; Chang, Gregory; Schramm, Joseph P.; Demetriou, Marios D.; Johnson, William L.
2014-01-01
The ability of the rapid-capacitive discharge approach to access optimal viscosity ranges in metallic glasses for thermoplastic processing is explored. Using high-speed thermal imaging, the heating uniformity and stability against crystallization of Zr35Ti30Cu7.5Be27.5 metallic glass heated deeply into the supercooled region is investigated. The method enables homogeneous volumetric heating of bulk samples throughout the entire supercooled liquid region at high rates (~105 K/s) sufficient to bypass crystallization throughout. The crystallization onsets at temperatures in the vicinity of the “crystallization nose” were identified and a Time-Temperature-Transformation diagram is constructed, revealing a “critical heating rate” for the metallic glass of ~1000 K/s. Thermoplastic process windows in the optimal viscosity range of 100–104 Pa·s are identified, being confined between the glass relaxation and the eutectic crystallization transition. Within this process window, near-net forging of a fine precision metallic glass part is demonstrated. PMID:25269892
Simulation of Solid-State Weld Microstructures in Ti-17 via Thermal and Thermo- Mechanical Exposures
NASA Astrophysics Data System (ADS)
Orsborn, Jonathan
Solid-state welding processes are very important to the advancement of aviation technology; since they enable the joining of dissimilar metals without the additional weight and bulk of fastening systems, the processes can create for stronger and lighter parts to increase payload and efficiency. However, since the processes are not equilibrium, not much is understood about what happens to the materials during the process. During a solid-state weld, the materials being welded are exposed to rapid heating rates, high maximum temperatures, large and varying amounts of deformation, short hold times at temperature, and fast cooling rates. Due to the dynamic nature of the process it is very hard to measure the strains and temperatures experienced by the materials. This work attempted to simulate the microstructures observed in solid-state welds of Ti-5Al-2Sn-2Zr-4Cr-4Mo, or Ti-17. If the microstructures could be replicated in a controlled and repeatable fashion, then perhaps the conditions of the welding process could be indirectly determined. The simulations were performed by rapidly heating Ti-17 specimens, holding them for a very short time, and rapidly cooling. Some of the samples were also subjected to deformation while at high temperatures. The microstructures resulting from the thermal and thermo-mechanical exposures were then compared with microstructures from an actual solid-state weld of Ti-17. It was determined that the presence of untransformed secondary alpha indicates the temperature did not exceed the beta transus of the alloy (˜900 °C), the presence of untransformed primary alpha indicates that the temperature did not exceed ˜1100 °C, homogenized beta grains indicate that the temperature did exceed 1100°C, and the presence of ghost alpha is indicative that the temperature likely exceeded ˜950 °C. These numbers are rough estimates, as time at temperature and heating rate both factor into the process, and shorter times at higher temperatures can sometimes produce results similar to longer times at lower temperatures. It was also determined that ghost alpha is a conglomeration of alpha laths with many different morphological orientations and crystallographic orientations, with beta present between the laths.
NASA Astrophysics Data System (ADS)
Kalyanamanohar, V.; Appalachari, D. Gireesh Chandra
2018-04-01
Friction stir processing (FSP) is emerging as a promising technique for making surface composites. FSP can improve surface properties such as hardness, strength, ductility, corrosion resistance, fatigue life and formability without affecting the bulk properties of the material. The literatures reported that FSP can produces very fine equiaxed and homogeneous grain structure for different Al alloys. Al 6060 is heat treatable alloy which has high thermal and electrical properties than remaining Al alloys. Al 6060 is being used where high rate of heat exchange is needed i.e. engine cylinders, heat exchangers etc. As derived from the carbon materials, like graphene and CNTs dissipates heat rapidly that improves the life of the engine cylinders and heat exchangers. In this work, nanographene is reinforced in the Al 6060 using friction stir processing at different rotational speeds, traverse speeds, and at constant load and tool tilt angle. After processed, the effect of process parameters on microstructure of the surface composite was investigated. The SEM studies shows that the FSP produces very fine and homogenous grain structure and it is observed that smaller grain size structure is obtained at lower traverse speed and higher rotational speeds. Significant improvement in ultimate tensile strength(22.9%) and hardness (22.44%) when compared friction stir processed plate at 1400 rotational speed and 20mm/min traverse speed with base Al 6060 plate. Coefficient of thermal expansion test of nanographene reinforced Al 6060 shows 7.33% decrease in its coefficient of thermal expansion as graphene has tendency to reduce the anisotropic nature.
Aptamer Selection Express: A Novel Method for Rapid Single-Step Selection and Sensing of Aptamers
Fan, Maomian; McBurnett, Shelly Roper; Andrews, Carrie J.; Allman, Amity M.; Bruno, John G.; Kiel, Johnathan L.
2008-01-01
Here we describe a new DNA capture element (DCE) sensing system, based on the quenching and dequenching of a double-stranded aptamer. This system shows very good sensitivity and thermal stability. While quenching, dequenching, and separating the DCE systems made from different aptamers (all selected by SELEX), an alternative method to rapidly select aptamers was developed—the Aptamer Selection Express (ASExp). This process has been used to select aptamers against different types of targets (Bacillus anthracis spores, Bacillus thuringiensis spores, MS-2 bacteriophage, ovalbumin, and botulinum neurotoxin). The DCE systems made from botulinum neurotoxin aptamers selected by ASExp have been investigated. The results of this investigation indicate that ASExp can be used to rapidly select aptamers for the DCE sensing system. PMID:19183794
Physics of direct-contact ultrasonic cloth drying process
Peng, Chang; Ravi, Saitej; Patel, Viral K.; ...
2017-02-27
Existing methods of drying fabrics involve energy-intensive thermal evaporation of moisture from clothes. Drying fabrics using high-frequency vibrations of piezoelectric transducers can substantially reduce drying time and energy consumption. In this method, vibrational energy generates instability on the liquid-air interface and mechanically ejects water from a wet fabric. For the first time, the physics of the ultrasonic fabric drying process in direct-contact mode is studied. The kinematic and thermal responses of water droplets and fabrics on piezoelectric crystal transducers and metal mesh–based transducers are studied. The results suggest that on piezoelectric crystal transducers, the response of a droplet subjected tomore » ultrasonic excitation is dictated by the relative magnitude of the surface tension and the ultrasonic excitation forces. The drying process for a fabric on the studied transducers consists of two regimes—vibrational and thermal. When the water content is high, the vibrational forces can eject bulk water rapidly. But the more strongly bound water within the smaller fabric pores evaporates by the thermal energy generated as a result of the viscous losses. Our study finds that a metal mesh–based transducer is more suitable for dewatering fabrics, as it facilitates the ejection of water from the fabric–transducer interface to the opposite side of the mesh. A demonstration unit developed consumes 10–20% of the water latent heat energy at water contents greater than 20%.« less
Physics of direct-contact ultrasonic cloth drying process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Chang; Ravi, Saitej; Patel, Viral K.
Existing methods of drying fabrics involve energy-intensive thermal evaporation of moisture from clothes. Drying fabrics using high-frequency vibrations of piezoelectric transducers can substantially reduce drying time and energy consumption. In this method, vibrational energy generates instability on the liquid-air interface and mechanically ejects water from a wet fabric. For the first time, the physics of the ultrasonic fabric drying process in direct-contact mode is studied. The kinematic and thermal responses of water droplets and fabrics on piezoelectric crystal transducers and metal mesh–based transducers are studied. The results suggest that on piezoelectric crystal transducers, the response of a droplet subjected tomore » ultrasonic excitation is dictated by the relative magnitude of the surface tension and the ultrasonic excitation forces. The drying process for a fabric on the studied transducers consists of two regimes—vibrational and thermal. When the water content is high, the vibrational forces can eject bulk water rapidly. But the more strongly bound water within the smaller fabric pores evaporates by the thermal energy generated as a result of the viscous losses. Our study finds that a metal mesh–based transducer is more suitable for dewatering fabrics, as it facilitates the ejection of water from the fabric–transducer interface to the opposite side of the mesh. A demonstration unit developed consumes 10–20% of the water latent heat energy at water contents greater than 20%.« less
Affordable Manufacturing Technologies Being Developed for Actively Cooled Ceramic Components
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.
1999-01-01
Efforts to improve the performance of modern gas turbine engines have imposed increasing service temperature demands on structural materials. Through active cooling, the useful temperature range of nickel-base superalloys in current gas turbine engines has been extended, but the margin for further improvement appears modest. Because of their low density, high-temperature strength, and high thermal conductivity, in situ toughened silicon nitride ceramics have received a great deal of attention for cooled structures. However, high processing costs have proven to be a major obstacle to their widespread application. Advanced rapid prototyping technology, which is developing rapidly, offers the possibility of an affordable manufacturing approach.
1995-06-01
Energy efficient, 30 and 40 watt ballasts are Rapid Start, thermally protected, automatic resetting. Class P, high or low power factor as required...BALLASTS Energy efficient, 30 ana 40 watt Rapic Start, thermally protected, automatic resetting. Class P. high power factor, CEM, sound rated A. unless...BALLASTS Energy efficient, 40 Watt Rapid Start, thermally protected, automatic resetting, Class P, high power factor, CBM, sound rated A, unless
Lively, Brooks; Kumar, Sandeep; Tian, Liu; Li, Bin; Zhong, Wei-Hong
2011-05-01
In this study we report the advantages of a 2-step method that incorporates an additional process pre-conditioning step for rapid and precise blending of the constituents prior to the commonly used melt compounding method for preparing polycarbonate/oxidized carbon nanofiber composites. This additional step (equivalent to a manufacturing cell) involves the formation of a highly concentrated solid nano-nectar of polycarbonate/carbon nanofiber composite using a solution mixing process followed by melt mixing with pure polycarbonate. This combined method yields excellent dispersion and improved mechanical and thermal properties as compared to the 1-step melt mixing method. The test results indicated that inclusion of carbon nanofibers into composites via the 2-step method resulted in dramatically reduced ( 48% lower) coefficient of thermal expansion compared to that of pure polycarbonate and 30% lower than that from the 1-step processing, at the same loading of 1.0 wt%. Improvements were also found in dynamic mechanical analysis and flexural mechanical properties. The 2-step approach is more precise and leads to better dispersion, higher quality, consistency, and improved performance in critical application areas. It is also consistent with Lean Manufacturing principles in which manufacturing cells are linked together using less of the key resources and creates a smoother production flow. Therefore, this 2-step process can be more attractive for industry.
Design and performance analysis of gas sorption compressors
NASA Technical Reports Server (NTRS)
Chan, C. K.
1984-01-01
Compressor kinetics based on gas adsorption and desorption processes by charcoal and for gas absorption and desorption processes by LaNi5 were analyzed using a two-phase model and a three-component model, respectively. The assumption of the modeling involved thermal and mechanical equilibria between phases or among the components. The analyses predicted performance well for compressors which have heaters located outside the adsorbent or the absorbent bed. For the rapidly-cycled compressor, where the heater was centrally located, only the transient pressure compared well with the experimental data.
NASA Astrophysics Data System (ADS)
Bicanic, D.; Skenderović, H.; Marković, K.; Dóka, O.; Pichler, L.; Pichler, G.; Luterotti, S.
2010-03-01
The combined use of a high power light emitting diode (LED) and the compact photoacoustic (PA) detector offers the possibility for a rapid (no extraction needed), accurate (precision 1.5%) and inexpensive quantification of lycopene in different products derived from the thermally processed tomatoes. The concentration of lycopene in selected products ranges from a few mg to several tens mg per 100 g fresh weight. The HPLC was used as the well established reference method.
Khan, Z. N.; Ahmed, S.; Ali, M.
2016-01-01
Metal Oxide Semiconductor (MOS) capacitors (MOSCAP) have been instrumental in making CMOS nano-electronics realized for back-to-back technology nodes. High-k gate stacks including the desirable metal gate processing and its integration into CMOS technology remain an active research area projecting the solution to address the requirements of technology roadmaps. Screening, selection and deposition of high-k gate dielectrics, post-deposition thermal processing, choice of metal gate structure and its post-metal deposition annealing are important parameters to optimize the process and possibly address the energy efficiency of CMOS electronics at nano scales. Atomic layer deposition technique is used throughout this work because of its known deposition kinetics resulting in excellent electrical properties and conformal structure of the device. The dynamics of annealing greatly influence the electrical properties of the gate stack and consequently the reliability of the process as well as manufacturable device. Again, the choice of the annealing technique (migration of thermal flux into the layer), time-temperature cycle and sequence are key parameters influencing the device’s output characteristics. This work presents a careful selection of annealing process parameters to provide sufficient thermal budget to Si MOSCAP with atomic layer deposited HfSiO high-k gate dielectric and TiN gate metal. The post-process annealing temperatures in the range of 600°C -1000°C with rapid dwell time provide a better trade-off between the desirable performance of Capacitance-Voltage hysteresis and the leakage current. The defect dynamics is thought to be responsible for the evolution of electrical characteristics in this Si MOSCAP structure specifically designed to tune the trade-off at low frequency for device application. PMID:27571412
NASA Astrophysics Data System (ADS)
Yamazaki, T.; Katayama, I.; Uwamino, Y.
1993-02-01
The possibility of a crossed beam facility of slow neutrons capturing unstable nuclei is examined in connection with the Japanese Hadron Project. With a pulsed proton beam of 50 Hz repetition and with a 100 μA average beam current, one obtains a spallation neutron source of 2.4 × 10 8 thermal neutrons/cm 3/spill over a 60 cm length with a 3 ms average duration time by using a D 2O moderator. By confining radioactive nuclei of 10 9 ions in a beam circulation ring of 0.3 MHz revolution frequency, so that nuclei pass through the neutron source, one obtains a collision luminosity of 3.9 × 10 24/cm 2/s. A new research domain aimed at studying rapid processes in nuclear genetics in a laboratory will be created.
Decay property of sup 20 Na for the onset mechanism of the rapid-proton process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubono, S.; Ikeda, N.; Funatsu, Y.
1992-07-01
The decay property of {sup 20}Na was studied using a {sup 20}Mg beam to learn better the onset mechanism of the rapid-proton process. The delayed protons were successfully measured, which correspond to one of the possible 1{sup +} states in {sup 20}Na. There is no clear beta decay to the first excited 1{sup +} state above the proton threshold, suggesting that this state would not be the {ital s}-wave resonance in the thermal reaction of {sup 19}Ne+{ital p} as was expected before. The half-life time of {sup 20}Mg is determined to be 114{plus minus}17 ms. The stellar reaction rate ofmore » {sup 19}Ne({ital p},{gamma}){sup 20}Na is also discussed based on the present experimental result.« less
ERIC Educational Resources Information Center
Johnson, R. Jeremy; Savas, Christopher J.; Kartje, Zachary; Hoops, Geoffrey C.
2014-01-01
Measurement of protein denaturation and protein folding is a common laboratory technique used in undergraduate biochemistry laboratories. Differential scanning fluorimetry (DSF) provides a rapid, sensitive, and general method for measuring protein thermal stability in an undergraduate biochemistry laboratory. In this method, the thermal…
Raman scattering from rapid thermally annealed tungsten silicide
NASA Technical Reports Server (NTRS)
Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.
1987-01-01
Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.
USDA-ARS?s Scientific Manuscript database
A technique is described where an atmospheric pressure-thermal desorption (AP-TD) device and electrospray ionization (ESI)-mass spectrometry are coupled and used for the rapid analysis of Bacillus spores in complex matrices. The resulting AP-TD/ESI-MS technique combines the generation of volatile co...
Rapid change in the thermal tolerance of a tropical lizard.
Leal, Manuel; Gunderson, Alex R
2012-12-01
The predominant view is that the thermal physiology of tropical ectotherms, including lizards, is not labile over ecological timescales. We used the recent introduction (∼35 years ago) of the Puerto Rican lizard Anolis cristatellus to Miami, Florida, to test this thermal rigidity hypothesis. We measured lower (critical thermal minimum [CT(min)]) and upper (critical thermal maximum [CT(max)]) thermal tolerances and found that the introduced population tolerates significantly colder temperatures (by ∼3°C) than does the Puerto Rican source population; however, CT(max) did not differ. These results mirror the thermal regimes experienced by each population: Miami reaches colder ambient temperatures than Puerto Rico, but maximum ambient temperatures are similar. The differences in CT(min) were observed even though lizards from both sites experienced nearly identical conditions for 49 days before CT(min) measurement. Our results demonstrate that changes in thermal tolerance occurred relatively rapidly (∼35 generations), which strongly suggests that the thermal physiology of tropical lizards is more labile than previously proposed.
Numerical investigation of electromagnetic pulse welded interfaces between dissimilar metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wei; Sun, Xin
Electromagnetic pulse welding (EMPW), an innovative high-speed joining technique, is a potential method for the automotive industry in joining and assembly of dissimilar lightweight metals with drastically different melting temperatures and other thermal physical properties, such as thermal conductivity and thermal expansion coefficients. The weld quality of EMPW is significantly affected by a variety of interacting physical phenomena including large plastic deformation, materials mixing, localized heating and rapid cooling, possible localized melting and subsequent diffusion and solidification, micro-cracking and void, etc. In the present study, a thermo-mechanically coupled dynamic model has been developed to quantitatively resolve the high-speed impact joiningmore » interface characteristics as well as the process-induced interface temperature evolution, defect formation and possible microstructural composition variation. Reasonably good agreement has been obtained between the predicted results and experimental measurements in terms of interfacial morphology characteristics. The modeling framework is expected to provide further understanding of the hierarchical interfacial features of the non-equilibrium material joining process and weld formation mechanisms involved in the EMPW operation, thus accelerating future development and deployment of this advanced joining technology.« less
Ion implantation in group III-nitride semiconductors: a tool for doping and defect studies
NASA Astrophysics Data System (ADS)
Zolper, J. C.
1997-06-01
Ion implantation is a flexible process technology for introducing an array of doping or compensating impurities into semiconductors. As the crystal quality of the group III-nitride materials continues to improve, ion implantation is playing an enabling role in exploring new dopant species and device structures. In this paper we review the recent developments in ion implantation processing of these materials with a particular emphasis on how this technology has brought new understanding to this materials system. In particular, the use of ion implantation to characterize impurity luminescence, doping, and compensation in III-nitride materials is reviewed. In addition, we address the nature of implantation induced damage in GaN which demonstrates a very strong resistance to amorphization while at the same time forming damage that is not easily removed by thermal annealing. Finally, we review the coupling of implantation with high temperature rapid thermal annealing to better understand the thermal stability of these materials and the redistribution properties of the common dopant (Si, O, Be, Mg, Ca, and Zn).
Vidal, Arnau; Sanchis, Vicente; Ramos, Antonio J; Marín, Sonia
2015-07-01
The stability of deoxynivalenol (DON), deoxynivalenol-3-glucoside (DON-3-glucoside), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), de-epoxy-deoxynivalenol (DOM-1) and ochratoxin A (OTA) during thermal processing has been studied. Baking temperature, time and initial mycotoxin concentration in the raw materials were assayed as factors. An improved UPLC-MS/MS method to detect DON, DON-3-glucoside, 3-ADON, 15-ADON and DOM-1 in wheat baked products was developed in the present assay. The results highlighted the importance of temperature and time in mycotoxin stability in heat treatments. OTA is more stable than DON in a baking treatment. Interestingly, the DON-3-glucoside concentrations increased (>300%) under mild baking conditions. On the other hand, it was rapidly reduced under harsh conditions. The 3-ADON decreased during the heat treatment; while DOM-1 increased after the heating process. Finally, the data followed first order kinetics for analysed mycotoxins and thermal constant rates (k) were calculated. This parameter can be a useful tool for prediction of mycotoxin levels. Copyright © 2015 Elsevier Ltd. All rights reserved.
Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids
NASA Astrophysics Data System (ADS)
Feng, Tianli; Lindsay, Lucas; Ruan, Xiulin
2017-10-01
For decades, the three-phonon scattering process has been considered to govern thermal transport in solids, while the role of higher-order four-phonon scattering has been persistently unclear and so ignored. However, recent quantitative calculations of three-phonon scattering have often shown a significant overestimation of thermal conductivity as compared to experimental values. In this Rapid Communication we show that four-phonon scattering is generally important in solids and can remedy such discrepancies. For silicon and diamond, the predicted thermal conductivity is reduced by 30% at 1000 K after including four-phonon scattering, bringing predictions in excellent agreement with measurements. For the projected ultrahigh-thermal conductivity material, zinc-blende BAs, a competitor of diamond as a heat sink material, four-phonon scattering is found to be strikingly strong as three-phonon processes have an extremely limited phase space for scattering. The four-phonon scattering reduces the predicted thermal conductivity from 2200 to 1400 W/m K at room temperature. The reduction at 1000 K is 60%. We also find that optical phonon scattering rates are largely affected, being important in applications such as phonon bottlenecks in equilibrating electronic excitations. Recognizing that four-phonon scattering is expensive to calculate, in the end we provide some guidelines on how to quickly assess the significance of four-phonon scattering, based on energy surface anharmonicity and the scattering phase space. Our work clears the decades-long fundamental question of the significance of higher-order scattering, and points out ways to improve thermoelectrics, thermal barrier coatings, nuclear materials, and radiative heat transfer.
Thermal regime of an ice-wedge polygon landscape near Barrow, Alaska
NASA Astrophysics Data System (ADS)
Daanen, R. P.; Liljedahl, A. K.
2017-12-01
Tundra landscapes are changing all over the circumpolar Arctic due to permafrost degradation. Soil cracking and infilling of meltwater repeated over thousands of years form ice wedges, which produce the characteristic surface pattern of ice-wedge polygon tundra. Rapid top-down thawing of massive ice leads to differential ground subsidence and sets in motion a series of short- and long-term hydrological and ecological changes. Subsequent responses in the soil thermal regime drive further permafrost degradation and/or stabilization. Here we explore the soil thermal regime of an ice-wedge polygon terrain near Utqiagvik (formerly Barrow) with the Water balance Simulation Model (WaSiM). WaSiM is a hydro-thermal model developed to simulate the water balance at the watershed scale and was recently refined to represent the hydrological processes unique to cold climates. WaSiM includes modules that represent surface runoff, evapotranspiration, groundwater, and soil moisture, while active layer freezing and thawing is based on a direct coupling of hydrological and thermal processes. A new snow module expands the vadose zone calculations into the snow pack, allowing the model to simulate the snow as a porous medium similar to soil. Together with a snow redistribution algorithm based on local topography, this latest addition to WaSiM makes simulation of the ground thermal regime much more accurate during winter months. Effective representation of ground temperatures during winter is crucial in the simulation of the permafrost thermal regime and allows for refined predictions of future ice-wedge degradation or stabilization.
Process research of non-Cz material
NASA Astrophysics Data System (ADS)
Campbell, R. B.
1985-06-01
Efforts were aimed at achieving a simultaneous front and back junction. Lasers and other heat sources were tried. Successful results were gained by two different methods: laser and flash lamp. Polymer dopants were applied to both sides of dendritic web cells. Rapid heating and cooling avoided any cross contamination between two junctions after removal of the dendrites. Both methods required subsequent thermal annealing in an oven to produce maximum efficiency cells.
2015-01-14
substrates using a titanium adhesion layer, and (3) characterized hardness and electrical conductivity of plated silver before and after rapid thermal...layer composite films. We observed that the silver erosion during carboxylated carbon nanotube deposition leads to significant porosity within the...composite films. We plan to explore amine-terminated carbon nanotubes in the near future to eliminate the porosity and study how different
Nanoengineered CIGS thin films for low cost photovoltaics
NASA Astrophysics Data System (ADS)
Eldada, Louay; Taylor, Matthew; Sang, Baosheng; McWilliams, Scott; Oswald, Robert; Stanbery, Billy J.
2008-08-01
Low cost manufacturing of Cu(In,Ga)Se2 (CIGS) films for high efficiency photovoltaic devices by the innovative Field-Assisted Simultaneous Synthesis and Transfer (FASST®) process is reported. The FASST® process is a two-stage reactive transfer printing method relying on chemical reaction between two separate precursor films to form CIGS, one deposited on the substrate and the other on a printing plate in the first stage. In the second stage these precursors are brought into intimate contact and rapidly reacted under pressure in the presence of an applied electrostatic field. The method utilizes physical mechanisms characteristic of anodic wafer bonding and rapid thermal annealing, effectively creating a sealed micro-reactor that ensures high material utilization efficiency, direct control of reaction pressure, and low thermal budget. The use of two independent ink-based or PVD-based nanoengineered precursor thin films provides the benefits of independent composition and flexible deposition technique optimization, and eliminates pre-reaction prior to the second stage FASST® synthesis of CIGS. High quality CIGS with large grains on the order of several microns are formed in just several minutes based on compositional and structural analysis by XRF, SIMS, SEM and XRD. Cell efficiencies of 12.2% have been achieved using this method.
Lost Mold Rapid Infiltration Forming of Mesoscale Ceramics: Part 1, Fabrication
Antolino, Nicholas E.; Hayes, Gregory; Kirkpatrick, Rebecca; Muhlstein, Christopher L.; Frecker, Mary I.; Mockensturm, Eric M.; Adair, James H.
2009-01-01
Free-standing mesoscale (340 μm × 30 μm × 20 μm) bend bars with an aspect ratio over 15:1 and an edge resolution as fine as a single grain diameter (∼400 nm) have been fabricated in large numbers on refractory ceramic substrates by combining a novel powder processing approach with photoresist molds and an innovative lost-mold thermal process. The colloid and interfacial chemistry of the nanoscale zirconia particulates has been modeled and used to prepare highly concentrated suspensions. Engineering solutions to challenges in mold fabrication and casting have yielded free-standing, crack-free parts. Molds are fabricated using high-aspect-ratio photoresist on ceramic substrates. Green parts are formed using a rapid infiltration method that exploits the shear thinning behavior of the highly concentrated ceramic suspension in combination with gelcasting. The mold is thermally decomposed and the parts are sintered in place on the ceramic substrate. Chemically aided attrition milling disperses and concentrates the as-received 3Y-TZP powder to produce a dense, fine-grained sintered microstructure. Initial three-point bend strength data are comparable to that of conventional zirconia; however, geometric irregularities (e.g., trapezoidal cross sections) are present in this first generation and are discussed with respect to the distribution of bend strength. PMID:19809595
Rapid screening of pharmaceutical drugs using thermal desorption - SALDI mass spectrometry
NASA Astrophysics Data System (ADS)
Grechnikov, A. A.; Kubasov, A. E.; Georgieva, V. B.; Borodkov, A. S.; Nikiforov, S. M.; Simanovsky, Ya O.; Alimpiev, S. S.
2012-12-01
A novel approach to the rapid screening of pharmaceutical drugs by surface assisted laser desorption-ionization (SALDI) mass spectrometry with the rotating ball interface coupled with temperature programmed thermal desorption has been developed. Analytes were thermally desorbed and deposited onto the surface of amorphous silicon substrate attached to the rotating ball. The ball was rotated and the deposited analytes were analyzed using SALDI. The effectiveness of coupling SALDI mass spectrometry with thermal desorption was evaluated by the direct and rapid analysis of tablets containing lidocaine, diphenhydramine and propranolol without any sample pretreatment. The overall duration of the screening procedure was 30÷40 sec. Real urine samples were studied for drug analysis. It is shown that with simple preparation steps, urine samples can be quantitatively analyzed using the proposed technique with the detection limits in the range of 0.2÷0.5 ng/ml.
NASA Technical Reports Server (NTRS)
Varshney, Usha; Eichelberger, B. Davis, III
1995-01-01
This paper summarizes the technique of laser-driven directional solidification in a controlled thermal gradient of yttria stabilized zirconia core coated Y-Ba-Cu-O materials to produce textured high T(sub c) superconducting polycrystalline fibers/wires with improved critical current densities in the extended range of magnetic fields at temperatures greater than 77 K. The approach involves laser heating to minimize phase segregation by heating very rapidly through the two-phase incongruent melt region to the single phase melt region and directionally solidifying in a controlled thermal gradient to achieve highly textured grains in the fiber axis direction. The technique offers a higher grain growth rate and a lower thermal budget compared with a conventional thermal gradient and is amenable as a continuous process for improving the J(sub c) of high T(sub c) superconducting polycrystalline fibers/wires. The technique has the advantage of suppressing weak-link behavior by orientation of crystals, formation of dense structures with enhanced connectivity, formation of fewer and cleaner grain boundaries, and minimization of phase segregation in the incongruent melt region.
Pressure-jump induced rapid solidification of melt: a method of preparing amorphous materials
NASA Astrophysics Data System (ADS)
Liu, Xiuru; Jia, Ru; Zhang, Doudou; Yuan, Chaosheng; Shao, Chunguang; Hong, Shiming
2018-04-01
By using a self-designed pressure-jump apparatus, we investigated the melt solidification behavior in rapid compression process for several kinds of materials, such as elementary sulfur, polymer polyether-ether-ketone (PEEK) and poly-ethylene-terephthalate, alloy La68Al10Cu20Co2 and Nd60Cu20Ni10Al10. Experimental results clearly show that their melts could be solidified to be amorphous states through the rapid compression process. Bulk amorphous PEEK with 24 mm in diameter and 12 mm in height was prepared, which exceeds the size obtained by melt quenching method. The bulk amorphous sulfur thus obtained exhibited extraordinarily high thermal stability, and an abnormal exothermic transition to liquid sulfur was observed at around 396 K for the first time. Furthermore, it is suggested that the glass transition pressure and critical compression rate exist to form the amorphous phase. This approach of rapid compression is very attractive not only because it is a new technique of make bulk amorphous materials, but also because novel properties are expected in the amorphous materials solidified by the pressure-jump within milliseconds or microseconds.
NASA Astrophysics Data System (ADS)
Chen, Wei; Chen, Shuyu; Liang, Tengfei; Zhang, Qiang; Fan, Zhongli; Yin, Hang; Huang, Kuo-Wei; Zhang, Xixiang; Lai, Zhiping; Sheng, Ping
2018-04-01
Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3-20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered.
GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, S C; Lomov, I; Roberts, J J
2012-01-19
Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discussmore » results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.« less
Evaluation of the synergistic effects of milk proteins in a rapid viscosity analyzer.
Stephani, Rodrigo; Borges de Souza, Alisson; Leal de Oliveira, Marcone Augusto; Perrone, Ítalo Tuler; Fernandes de Carvalho, Antônio; Cappa de Oliveira, Luiz Fernando
2015-12-01
Protein systems (PS) are routinely used by companies from Brazil and around the globe to improve the texture, yield, and palatability of processed foods. Understanding the synergistic behavior among the different protein structures of these systems during thermal treatment under the influence of pH can help to better define optimum conditions for products and processes. The interpretation of the reactions and interactions that occur simultaneously among the protein constituents of these systems as dispersions during thermal processing is still a major challenge. Here, using a rapid viscosity analyzer, we observed the rheological changes in the startup viscosities of 5 PS obtained by combining varying proportions of milk protein concentrate and whey protein concentrate under different conditions of pH (5.0, 6.5, and 7.0) and heat processing (85°C/15min and 95°C/5min). The solutions were standardized to 25% of total solids and 17% of protein. Ten analytical parameters were used to characterize each of the startup-viscosity ramps for 35 experiments conducted in a 2×3 × 5 mixed planning matrix, using principal component analysis to interpret behavioral similarities. The study showed the clear influence of pH 5.5 in the elevation of the initial temperature of the PS startup viscosity by at least 5°C, as well as the effect of different milk protein concentrate:whey protein concentrate ratios above 15:85 at pH 7.0 on the viscographic profile curves. These results suggested that the primary agent driving the changes was the synergism among the reactions and interactions of casein with whey proteins during processing. This study reinforces the importance of the rapid viscosity analyzer as an analytical tool for the simulation of industrial processes involving PS, and the use of the startup viscosity ramp as a means of interpreting the interactions of system components with respect to changes related to the treatment temperature. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Karched, M.; Furgang, D.; Sawalha, N.; Fine, D.H.
2017-01-01
Aggregatibacter actinomycetemcomitans is a Gram negative oral bacterium associated with localized aggressive periodontitis (LAP). Detection of A. actinomycetemcomitans in clinical samples is routinely done by PCR. Our aim was to develop a rapid and reliable PCR method that can be used as a chair-side tool to detect A. actinomycetemcomitans in clinical samples. Sensitivity and specificity assessment was performed on buccal and plaque samples obtained from 40 adolescents enrolled in an ongoing LAP study by comparing 20 A. actinomycetemcomitans-positive subjects and 20 who were negative. In a second study, A. actinomycetemcomitans presence was tested in oral samples from eighty-six primates that included rhesus monkeys, chimpanzees, marmosets, tamarins and baboons. All samples were processed for detection of A. actinomycetemcomitans by means of culture, conventional PCR (cPCR) and rapid PCR (rPCR) using a Super Convection based AmpXpress thermal cycler (AlphaHelix, Sweden). For human samples, culture, cPCR and rPCR showed perfect agreement. Using this method A. actinomycetemcomitans was detected in 27 of 32 rhesus monkeys, 4 of 8 chimpanzees and 1 of 34 marmosets. Rapidity of AmpXpress thermal cycler, combined with Ready-To-Go PCR beads (GE Life sciences), a quick DNA extraction kit (Epicentre Biotechnologies, Madison, Wisconsin, USA) and a bufferless fast agarose gel system, made it possible to obtain results on A. actinomycetemcomitans detection within 35 min. We conclude that AmpXpress fast PCR can be conveniently used as a chair-side tool for rapid detection of A. actinomycetemcomitans in clinical samples. PMID:22326236
Interfacial Strength and Physical Properties of Functionalized Graphene - Epoxy Nanocomposites
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Heimann, Paula; Scheiman, Daniel; Adamson, Douglas H.; Aksay, Iihan A.; Prud'homme, Robert K.
2006-01-01
The toughness and coefficient of thermal expansion of a series of functionalized graphene sheet - epoxy nanocomposites are investigated. Functionalized graphene sheets are produced by splitting graphite oxide into single graphene sheets through a rapid thermal expansion process. These graphene sheets contain approx. 10% oxygen due to the presence of hydroxide, epoxide, and carboxyl functional groups which assist in chemical bond formation with the epoxy matrix. Intrinsic surface functionality is used to graft alkyl amine chains on the graphene sheets, and the addition of excess hardener insures covalent bonding between the epoxide matrix and graphene sheets. Considerable improvement in the epoxy dimensional stability is obtained. An increase in nanocomposite toughness is observed in some cases.
NASA Technical Reports Server (NTRS)
Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.
1993-01-01
Topics addressed are: (1) cryogenic tankage; (2) launch vehicle TPS/insulation; (3) durable passive thermal control devices and/or coatings; (4) development and characterization of processing methods to reduce anisotropy of material properties in Al-Li; (5) durable thermal protection system (TPS); (6) unpressurized Al-Li structures (interstages, thrust structures); (7) near net shape sections; (8) pressurized structures; (9) welding and joining; (10) micrometeoroid and debris hypervelocity shields; (11) state-of-the-art shell buckling structure optimizer program to serve as a rapid design tool; (12) test philosophy; (13) reduced load cycle time; (14) structural analysis methods; (15) optimization of structural criteria; and (16) develop an engineering approach to properly trade material and structural concepts selection, fabrication, facilities, and cost.
NASA Astrophysics Data System (ADS)
Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; McGaw, Mike; Munafo, Paul M.
1993-02-01
Topics addressed are: (1) cryogenic tankage; (2) launch vehicle TPS/insulation; (3) durable passive thermal control devices and/or coatings; (4) development and characterization of processing methods to reduce anisotropy of material properties in Al-Li; (5) durable thermal protection system (TPS); (6) unpressurized Al-Li structures (interstages, thrust structures); (7) near net shape sections; (8) pressurized structures; (9) welding and joining; (10) micrometeoroid and debris hypervelocity shields; (11) state-of-the-art shell buckling structure optimizer program to serve as a rapid design tool; (12) test philosophy; (13) reduced load cycle time; (14) structural analysis methods; (15) optimization of structural criteria; and (16) develop an engineering approach to properly trade material and structural concepts selection, fabrication, facilities, and cost.
Jian, Guoqiang; Zhou, Lei; Piekiel, Nicholas W; Zachariah, Michael R
2014-06-06
Oxygen release from metal oxides at high temperatures is relevant to many thermally activated chemical processes, including chemical-looping combustion, solar thermochemical cycles and energetic thermite reactions. In this study, we evaluated the thermal decomposition of nanosized metal oxides under rapid heating (~10(5) K s(-1)) with time-resolved mass spectrometry. We found that the effective activation-energy values that were obtained using the Flynn-Wall-Ozawa isoconversional method are much lower than the values found at low heating rates, indicating that oxygen transport might be rate-determining at a high heating rate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal Inspection of Composite Honeycomb Structures
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Parker, F. Raymond
2014-01-01
Composite honeycomb structures continue to be widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Pulsed thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Pulsed thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are presented. In addition, limitations to the thermal detection of the core are investigated. Other NDE techniques, such as computed tomography X-ray and ultrasound, are used for comparison to the thermography results.
Phillips, Nelson B; Whittaker, Jonathan; Ismail-Beigi, Faramarz; Weiss, Michael A
2012-03-01
Insulin is susceptible to thermal fibrillation, a misfolding process that leads to nonnative cross-β assembly analogous to pathological amyloid deposition. Pharmaceutical formulations are ordinarily protected from such degradation by sequestration of the susceptible monomer within native protein assemblies. With respect to the safety and efficacy of insulin pumps, however, this strategy imposes an intrinsic trade-off between pharmacokinetic goals (rapid absorption and clearance) and the requisite physical properties of a formulation (prolonged shelf life and stability within the reservoir). Available rapid-acting formulations are suboptimal in both respects; susceptibility to fibrillation is exacerbated even as absorption is delayed relative to the ideal specifications of a closed-loop system. To circumvent this molecular trade-off, we exploited structural models of insulin fibrils and amyloidogenic intermediates to define an alternative protective mechanism. Single-chain insulin (SCI) analogs were shown to be refractory to thermal fibrillation with maintenance of biological activity for more than 3 months under conditions that promote the rapid fibrillation and inactivation of insulin. The essential idea exploits an intrinsic incompatibility between SCI topology and the geometry of cross-β assembly. A peptide tether was thus interposed between the A- and B-chains whose length was (a) sufficiently long to provide the "play" needed for induced fit of the hormone on receptor binding and yet (b) sufficiently short to impose a topological barrier to fibrillation. Our findings suggest that ultrastable monomeric SCI analogs may be formulated without protective self-assembly and so permit simultaneous optimization of pharmacokinetics and reservoir life. © 2012 Diabetes Technology Society.
Dissociative Attachment Reactions of Electrons with Gas Phase Superacids
NASA Astrophysics Data System (ADS)
Liu, Xifan
Using the flowing afterglow Langmuir probe (FALP) technique, dissociative attachment coefficients beta for reactions of electrons with gas phase superacids HCo(PF_3)_4, HRh(PF _3)_4 and carbonyl hydride complexes HMn(CO)_5, HRe(CO) _5 have been determined under thermal conditions over the approximate temperature range 300~ 550 K. The superacids react relatively slowly (< 1/20 of beta_{rm max}) with free electrons in a thermal plasma, and the values of beta obtained this far do not show a correlation between acidity and beta. The pioneer researchers in this field had speculated that any superacid would be a rapid attacher of electrons; we found that this speculation is not true in general. The product distribution of electron attachment reaction to HCo(PF_3)_4 was found to be independent of temperature even though the beta (HCo(PF_3)_4 ) increases with temperature. This leads us to propose that the electron attachment process occurs well before the excited complex dissociates. In addition, the activation energy of HCo(PF_3)_4 for electron attachment has been derived from the Arrhenius plots. The carbonyl hydride complexes, HMn(CO) _5 and HRe(CO)_5, react relatively rapidly (>1/4 of beta_{rm max}) with free electrons in thermal plasma. This indicates that these reactions cannot be significantly endothermic. Observation of rapid attachment for these non-superacids shows that the Mn-CO and Re-CO bonds are weaker than the Mn-H and Re-H bonds, respectively. Comparisons between the carbonyl and trifluorophosphine cases implies that fast electron capture is related more to the CO ligand than to the transition -metal species.
Spray and High-Pressure Flow Computations in the National Combustion Code (NCC) Improved
NASA Technical Reports Server (NTRS)
Raju, Manthena S.
2002-01-01
Sprays occur in a wide variety of industrial and power applications and in materials processing. A liquid spray is a two-phase flow with a gas as the continuous phase and a liquid as the dispersed phase in the form of droplets or ligaments. The interactions between the two phases--which are coupled through exchanges of mass, momentum, and energy--can occur in different ways at disparate time and length scales involving various thermal, mass, and fluid dynamic factors. An understanding of the flow, combustion, and thermal properties of a rapidly vaporizing spray requires careful modeling of the ratecontrolling processes associated with turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates of the spray, among many other factors. With the aim of developing an efficient solution procedure for use in multidimensional combustor modeling, researchers at the NASA Glenn Research Center have advanced the state-of-the-art in spray computations in several important ways.
Degradation of Teflon(trademark) FEP Following Charged Particle Radiation and Rapid Thermal Cycling
NASA Technical Reports Server (NTRS)
Townsend, Jacqueline; Powers, Charles; Viens, Michael; Ayres-Treusdell, Mary; Munoz, Bruno
1999-01-01
During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon(trademark) FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(trademark) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(trademark) FEP.
Degradation of Teflon(tm) FEP Following Charged Particle Radiation and Rapid Thermal Cycling
NASA Technical Reports Server (NTRS)
Townsend, Jacqueline A.; Powers, Charles E.; Viens, Michael J.; Ayres-Treusdell, Mary T.; Munoz, Bruno
1998-01-01
During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon' FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon FEP.
Degradation of Teflon(tm) FEP Following Charged Particle Radiation and Rapid Thermal Cycling
NASA Technical Reports Server (NTRS)
Townsend, Jacqueline A.; Powers, Charles E.; Viens, Michael J.; Ayres-Treusdell, Mary T.; Munoz, Bruno F.
1998-01-01
During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon' FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(registered trademark) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(registered trademark) FEP.
Degradation of Teflon(tm) FEP Following Charged Particle Radiation and Rapid Thermal Cycling
NASA Technical Reports Server (NTRS)
Townsend, Jacqueline; Powers, Charles; Viens, Michael; Ayres-Treusdell, Mary; Munoz, Bruno
1998-01-01
During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon(R) FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(R) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(R) FEP.
Application of ultra high pressure (UHP) in starch chemistry.
Kim, Hyun-Seok; Kim, Byung-Yong; Baik, Moo-Yeol
2012-01-01
Ultra high pressure (UHP) processing is an attractive non-thermal technique for food treatment and preservation at room temperature, with the potential to achieve interesting functional effects. The majority of UHP process applications in food systems have focused on shelf-life extension associated with non-thermal sterilization and a reduction or increase in enzymatic activity. Only a few studies have investigated modifications of structural characteristics and/or protein functionalities. Despite the rapid expansion of UHP applications in food systems, limited information is available on the effects of UHP on the structural and physicochemical properties of starch and/or its chemical derivatives included in most processed foods as major ingredients or minor additives. Starch and its chemical derivatives are responsible for textural and physical properties of food systems, impacting their end-use quality and/or shelf-life. This article reviews UHP processes for native (unmodified) starch granules and their effects on the physicochemical properties of UHP-treated starch. Furthermore, functional roles of UHP in acid-hydrolysis, hydroxypropylation, acetylation, and cross-linking reactions of starch granules, as well as the physicochemical properties of UHP-assisted starch chemical derivatives, are discussed.
In-Situ monitoring and modeling of metal additive manufacturing powder bed fusion
NASA Astrophysics Data System (ADS)
Alldredge, Jacob; Slotwinski, John; Storck, Steven; Kim, Sam; Goldberg, Arnold; Montalbano, Timothy
2018-04-01
One of the major challenges in metal additive manufacturing is developing in-situ sensing and feedback control capabilities to eliminate build errors and allow qualified part creation without the need for costly and destructive external testing. Previously, many groups have focused on high fidelity numerical modeling and true temperature thermal imaging systems. These approaches require large computational resources or costly hardware that requires complex calibration and are difficult to integrate into commercial systems. In addition, due to the rapid change in the state of the material as well as its surface properties, getting true temperature is complicated and difficult. Here, we describe a different approach where we implement a low cost thermal imaging solution allowing for relative temperature measurements sufficient for detecting unwanted process variability. We match this with a faster than real time qualitative model that allows the process to be rapidly modeled during the build. The hope is to combine these two, allowing for the detection of anomalies in real time, enabling corrective action to potentially be taken, or parts to be stopped immediately after the error, saving material and time. Here we describe our sensor setup, its costs and abilities. We also show the ability to detect in real time unwanted process deviations. We also show that the output of our high speed model agrees qualitatively with experimental results. These results lay the groundwork for our vision of an integrated feedback and control scheme that combines low cost, easy to use sensors and fast modeling for process deviation monitoring.
Jang, Ji-Un; Park, Hyeong Cheol; Lee, Hun Su; Khil, Myung-Seob; Kim, Seong Yun
2018-05-16
There is growing interest in carbon fibre fabric reinforced polymer (CFRP) composites based on a thermoplastic matrix, which is easy to rapidly produce, repair or recycle. To expand the applications of thermoplastic CFRP composites, we propose a process for fabricating conductive CFRP composites with improved electrical and thermal conductivities using an in-situ polymerizable and thermoplastic cyclic butylene terephthalate oligomer matrix, which can induce good impregnation of carbon fibres and a high dispersion of nanocarbon fillers. Under optimal processing conditions, the surface resistivity below the order of 10 +10 Ω/sq, which can enable electrostatic powder painting application for automotive outer panels, can be induced with a low nanofiller content of 1 wt%. Furthermore, CFRP composites containing 20 wt% graphene nanoplatelets (GNPs) were found to exhibit an excellent thermal conductivity of 13.7 W/m·K. Incorporating multi-walled carbon nanotubes into CFRP composites is more advantageous for improving electrical conductivity, whereas incorporating GNPs is more beneficial for enhancing thermal conductivity. It is possible to fabricate the developed thermoplastic CFRP composites within 2 min. The proposed composites have sufficient potential for use in automotive outer panels, engine blocks and other mechanical components that require conductive characteristics.
Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walczyk, Daniel F.
2015-08-26
The purpose of this 5-year DOE-sponsored project was to address major process bottlenecks associated with fuel cell manufacturing. New technologies were developed to significantly reduce pressing cycle time for high temperature PEM membrane electrode assembly (MEA) through the use of novel, robust ultrasonic (U/S) bonding processes along with low temperature (<100°C) PEM MEAs. In addition, greater manufacturing uniformity and performance was achieved through (a) an investigation into the causes of excessive variation in ultrasonically and thermally bonded MEAs using more diagnostics applied during the entire fabrication and cell build process, and (b) development of rapid, yet simple quality control measurementmore » techniques for use by industry.« less
NASA Astrophysics Data System (ADS)
Yu, Haijiang
This dissertation is focused on three fields: ultra-high temperature annealing of GaN, activation of implanted GaN and the implantation incorporation into AlGaN/GaN HEMT processing, with an aim to increase the performance, manufacturability and reliability of AlGaN/GaN HEMTs. First, the ultra high temperature (around 1500°C) annealing of MOCVD grown GaN on sapphire has been studied, and a thermally induced threading dislocation (TD) motion and reaction are reported. Using a rapid thermal annealing (RTA) approach capable of heating 2 inch wafers to around 1500°C with 100 bar N2 over-pressure, evidence of dislocation motion was first observed in transmission electron microscopy (TEM) micrographs of both planar and patterned GaN films protected by an AIN capping layer. An associated decrease in x-ray rocking curve (XRC) full-width-half-maximum (FWHM) was also observed for both the symmetric and asymmetric scans. After annealing, the AIN capping layer remained intact, and optical measurements showed no degradation of the opto-electronic properties of the films. Then activation annealing of Si implants in MOCVD grown GaN has been studied for use in ohmic contacts. Si was implanted in semi-insulating GaN at 100 keV with doses from 5 x 1014 cm-2 to 1.5 x 1016 cm-2. Rapid thermal annealing at 1500°C with 100 bar N2 over-pressure was used for dopant activation, resulting in a minimum sheet resistance of 13.9 O/square for a dose of 7 x 1015 cm-2. Secondary ion mass spectroscopy measurements showed a post-activation broadening of the dopant concentration peak by 20 nm (at half the maximum), while X-Ray triple axis o-2theta scans indicated nearly complete implant damage recovery. Transfer length method measurements of the resistance of Ti/Al/Ni/Au contacts to activated GaN:Si (5 x 1015 cm-2 at 100 keV) indicated lowest contact resistances of 0.07 Omm and 0.02 Omm for as-deposited and subsequently annealed contacts, respectively. Finally, the incorporation of Si implantation into AlGaN/GaN high electron mobility transistor processing has been first demonstrated. An ultra-high temperature (1500°C) rapid thermal annealing technique was developed for the activation of Si dopants implanted in the source and drain. In comparison to control devices processed by conventional fabrication, the implanted device with nonalloyed ohmic contact showed comparable device performance with a contact resistance of 0.4 Omm Imax 730 mA/mm ft/f max; 26/62 GHz and power 3.4 W/mm on sapphire. These early results demonstrate the feasibility of implantation incorporation into GaN based device processing as well as the potential to increase yield, reproducibility and reliability in AlGaN/GaN HEMTs.
NASA Astrophysics Data System (ADS)
Kouhlane, Y.; Bouhafs, D.; Khelifati, N.; Belhousse, S.; Menari, H.; Guenda, A.; Khelfane, A.
2016-11-01
The electrical properties of Czochralski silicon (Cz-Si) p-type boron-doped bare wafers have been investigated after rapid thermal processing (RTP) with different peak temperatures. Treated wafers were exposed to light for various illumination times, and the effective carrier lifetime ( τ eff) measured using the quasi-steady-state photoconductance (QSSPC) technique. τ eff values dropped after prolonged illumination exposure due to light-induced degradation (LID) related to electrical activation of boron-oxygen (BO) complexes, except in the sample treated with peak temperature of 785°C, for which the τ eff degradation was less pronounced. Also, a reduction was observed when using the 830°C peak temperature, an effect that was enhanced by alteration of the wafer morphology (roughness). Furthermore, the electrical resistivity presented good stability under light exposure as a function of temperature compared with reference wafers. Additionally, the optical absorption edge shifted to higher wavelength, leading to increased free-carrier absorption by treated wafers. Moreover, a theoretical model is used to understand the lifetime degradation and regeneration behavior as a function of illumination time. We conclude that RTP plays an important role in carrier lifetime regeneration for Cz-Si wafers via modification of optoelectronic and structural properties. The balance between an optimized RTP cycle and the rest of the solar cell elaboration process can overcome the negative effect of LID and contribute to achievement of higher solar cell efficiency and module performance.
Generation of ROS mediated by mechanical waves (ultrasound) and its possible applications.
Duco, Walter; Grosso, Viviana; Zaccari, Daniel; Soltermann, Arnaldo T
2016-10-15
The thermal decomposition of 9,10 diphenylanthracene peroxide (DPAO 2 ) generates DPA and a mix of triplet and singlet molecular oxygen. For DPAO 2 the efficiency to produce singlet molecular oxygen is 0.35. On the other hand, it has shown that many thermal reactions can be carried out through the interaction of molecules with ultrasound. Ultrasound irradiation can create hydrodynamic stress (sonomechanical process), inertial cavitation (pyrolitic process) and long range effects mediated by radicals or ROS. Sonochemical reactions can be originated by pyrolytic like process, shock mechanical waves, thermal reactions and radical and ROS mediated reactions. Sonolysis of pure water can yield hydrogen or hydroxyl radicals and hydrogen peroxide (ROS). When DPAO 2 in 1,4 dioxane solution is treated with 20 or 24kHz and different power intensity the production of molecular singlet oxygen is observed. Specific scavengers like tetracyclone (TC) are used to demonstrate it. The efficiency now is 0.85 showing that the sonochemical process is much more efficient that the thermal one. Another endoperoxide, artemisinin was also studied. Unlike the concept of photosensitizer of photodynamic therapy, in spite of large amount of reported results in literature, the term sonosensitizer and the sonosensitization process are not well defined. We define sonosensitized reaction as one in which a chemical species decompose as consequence of cavitation phenomena producing ROS or other radicals and some other target species does undergo a chemical reaction. The concept could be reach rapidly other peroxides which are now under experimental studies. For artemisinin, an important antimalarian and anticancer drug, was established that ultrasound irradiation increases the effectiveness of the treatment but without any explanation. We show that artemisinin is an endoperoxide and behaves as a sonosensitizer in the sense of our definition. Copyright © 2016 Elsevier Inc. All rights reserved.
Mechanisms of material removal and mass transport in focused ion beam nanopore formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Kallol, E-mail: das7@illinois.edu; Johnson, Harley T., E-mail: htj@illinois.edu; Freund, Jonathan B., E-mail: jbfreund@illinois.edu
2015-02-28
Despite the widespread use of focused ion beam (FIB) processing as a material removal method for applications ranging from electron microscope sample preparation to nanopore processing for DNA sequencing, the basic material removal mechanisms of FIB processing are not well understood. We present the first complete atomistic simulation of high-flux FIB using large-scale parallel molecular dynamics (MD) simulations of nanopore fabrication in freestanding thin films. We focus on the root mechanisms of material removal and rearrangement and describe the role of explosive boiling in forming nanopores. FIB nanopore fabrication is typically understood to occur via sputter erosion. This can bemore » shown to be the case in low flux systems, where individual ion impacts are sufficiently separated in time that they may be considered as independent events. But our detailed MD simulations show that in high flux FIB processing, above a threshold level at which thermal effects become significant, the primary mechanism of material removal changes to a significantly accelerated, thermally dominated process. Under these conditions, the target is heated by the ion beam faster than heat is conducted away by the material, leading quickly to melting, and then continued heating to nearly the material critical temperature. This leads to explosive boiling of the target material with spontaneous bubble formation and coalescence. Mass is rapidly rearranged at the atomistic scale, and material removal occurs orders of magnitude faster than would occur by simple sputtering. While the phenomenology is demonstrated computationally in silicon, it can be expected to occur at lower beam fluxes in other cases where thermal conduction is suppressed due to material properties, geometry, or ambient thermal conditions.« less
Numerical model study of radio frequency vessel sealing thermodynamics
NASA Astrophysics Data System (ADS)
Pearce, John
2015-03-01
Several clinically successful clinical radio frequency vessel-sealing devices are currently available. The dominant thermodynamic principles at work involve tissue water vaporization processes. It is necessary to thermally denature vessel collagen, elastin and their adherent proteins to achieve a successful fusion. Collagens denature at middle temperatures, between about 60 and 90 C depending on heating time and rate. Elastin, and its adherent proteins, are more thermally robust, and require temperatures in excess of the boiling point of water at atmospheric pressure to thermally fuse. Rapid boiling at low apposition pressures leads to steam vacuole formation, brittle tissue remnants and frequently to substantial disruption in the vessel wall, particularly in high elastin-content arteries. High apposition pressures substantially increase the equilibrium boiling point of tissue water and are necessary to ensure a high probability of a successful seal. The FDM numerical models illustrate the beneficial effects of high apposition pressures.
Si, Chaorun; Hu, Songtao; Cao, Xiaobao; Wu, Weichao
2017-01-01
Due to their ease of fabrication, facile use and low cost, ice valves have great potential for use in microfluidic platforms. For this to be possible, a rapid response speed is key and hence there is still much scope for improvement in current ice valve technology. Therefore, in this study, an ice valve with enhanced thermal conductivity and a movable refrigeration source has been developed. An embedded aluminium cylinder is used to dramatically enhance the heat conduction performance of the microfluidic platform and a movable thermoelectric unit eliminates the thermal inertia, resulting in a faster cooling process. The proposed ice valve achieves very short closing times (0.37 s at 10 μL/min) and also operates at high flow rates (1150 μL/min). Furthermore, the response time of the valve decreased by a factor of 8 when compared to current state of the art technology. PMID:28084447
NASA Astrophysics Data System (ADS)
Si, Chaorun; Hu, Songtao; Cao, Xiaobao; Wu, Weichao
2017-01-01
Due to their ease of fabrication, facile use and low cost, ice valves have great potential for use in microfluidic platforms. For this to be possible, a rapid response speed is key and hence there is still much scope for improvement in current ice valve technology. Therefore, in this study, an ice valve with enhanced thermal conductivity and a movable refrigeration source has been developed. An embedded aluminium cylinder is used to dramatically enhance the heat conduction performance of the microfluidic platform and a movable thermoelectric unit eliminates the thermal inertia, resulting in a faster cooling process. The proposed ice valve achieves very short closing times (0.37 s at 10 μL/min) and also operates at high flow rates (1150 μL/min). Furthermore, the response time of the valve decreased by a factor of 8 when compared to current state of the art technology.
Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing
NASA Astrophysics Data System (ADS)
Takezawa, Akihiro; Kobashi, Makoto; Kitamura, Mitsuru
2015-07-01
Additive manufacturing (AM) could be a novel method of fabricating composite and porous materials having various effective performances based on mechanisms of their internal geometries. Materials fabricated by AM could rapidly be used in industrial application since they could easily be embedded in the target part employing the same AM process used for the bulk material. Furthermore, multi-material AM has greater potential than usual single-material AM in producing materials with effective properties. Negative thermal expansion is a representative effective material property realized by designing a composite made of two materials with different coefficients of thermal expansion. In this study, we developed a porous composite having planar negative thermal expansion by employing multi-material photopolymer AM. After measurement of the physical properties of bulk photopolymers, the internal geometry was designed by topology optimization, which is the most effective structural optimization in terms of both minimizing thermal stress and maximizing stiffness. The designed structure was converted to a three-dimensional stereolithography (STL) model, which is a native digital format of AM, and assembled as a test piece. The thermal expansions of the specimens were measured using a laser scanning dilatometer. Negative thermal expansion corresponding to less than -1 × 10-4 K-1 was observed for each test piece of the N = 3 experiment.
Discovery of Spin-Rate-Dependent Asteroid Thermal Inertia
NASA Astrophysics Data System (ADS)
Harris, Alan; Drube, Line
2016-10-01
Knowledge of the surface thermal inertia of an asteroid can provide insight into surface structure: porous material has a lower thermal inertia than rock. Using WISE/NEOWISE data and our new asteroid thermal-inertia estimator we show that the thermal inertia of main-belt asteroids (MBAs) appears to increase with spin period. Similar behavior is found in the case of thermophysically-modeled thermal inertia values of near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. On the basis of a picture of depth-dependent thermal inertia our results suggest that, in general, thermal inertia values representative of solid rock are reached some tens of centimeters to meters below the surface in the case of MBAs (the median diameter in our dataset = 24 km). In the case of the much smaller (km-sized) NEOs a thinner porous surface layer is indicated, with large pieces of solid rock possibly existing just a meter or less below the surface. These conclusions are consistent with our understanding from in-situ measurements of the surfaces of the Moon, and a few asteroids, and suggest a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids. Our results have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles ("kinetic impactors") in planetary defense.
Noncontacting acoustics-based temperature measurement techniques in rapid thermal processing
NASA Astrophysics Data System (ADS)
Lee, Yong J.; Chou, Ching-Hua; Khuri-Yakub, Butrus T.; Saraswat, Krishna C.
1991-04-01
Temperature measurement of silicon wafers based on the temperature dependence of acoustic waves is studied. The change in the temperature-dependent dispersion relations of the plate modes through the wafer can be exploited to provide a viable temperature monitoring scheme with advantages over both thermocouples and pyrometers. Velocity measurements of acoustic waves through a thin layer of ambient directly above the wafer provides the temperature of the wafer-ambient interface. 1.
Study of different thermal processes on boron-doped PERL cells
NASA Astrophysics Data System (ADS)
Li, Wenjia; Wang, Zhenjiao; Han, Peiyu; Lu, Hongyan; Yang, Jian; Guo, Ying; Shi, Zhengrong; Li, Guohua
2014-08-01
In this paper, three kinds of thermal processes for boron-doped PERL cells were investigated. These are the forming gas annealing (FGA), the rapid thermal (RTP) and the low temperature annealing processes. FGA was introduced after laser ablation and doping in order to increase minority carrier lifetime by hydrogenating the trapping centers. Subsequent evaluation revealed considerable enhancement of minority carrier lifetime (from 150 μs to 240 μs) and the implied Voc (from 660 mV to 675 mV). After aluminum sputtering, three actual peak temperatures (370 °C, 600 °C and 810 °C) of RTP (as it occurs in the compressed air environment used in our experiment) were utilized to form a contact between the metal and the semi-conductor. It is concluded that only low temperature (lower than 600 °C) firing could create boron back surface field and high quality rear reflector. Lastly, a method of improving the performance of finished PERL cells which did not experience high temperature (over 800 °C) firing was investigated. Finished cells undergone low temperature annealing in N2 atmosphere at 150 °C for 15 min produced 0.44% absolute increase in PERL cells. The enhancement of low temperature annealing originally comes from the activation of passivated boron which is deactivated during FGA.
In situ experimental formation and growth of Fe nanoparticles and vesicles in lunar soil
NASA Astrophysics Data System (ADS)
Thompson, Michelle S.; Zega, Thomas J.; Howe, Jane Y.
2017-03-01
We report the results of the first dynamic, in situ heating of lunar soils to simulate micrometeorite impacts on the lunar surface. We performed slow- and rapid-heating experiments inside the transmission electron microscope to understand the chemical and microstructural changes in surface soils resulting from space-weathering processes. Our slow-heating experiments show that the formation of Fe nanoparticles begins at 575 °C. These nanoparticles also form as a result of rapid-heating experiments, and electron energy-loss spectroscopy measurements indicate the Fe nanoparticles are composed entirely of Fe0, suggesting this simulation accurately mimics micrometeorite space-weathering processes occurring on airless body surfaces. In addition to Fe nanoparticles, rapid-heating experiments also formed vesiculated textures in the samples. Several grains were subjected to repeated thermal shocks, and the measured size distribution and number of Fe nanoparticles evolved with each subsequent heating event. These results provide insight into the formation and growth mechanisms for Fe nanoparticles in space-weathered soils and could provide a new methodology for relative age dating of individual soil grains from within a sample population.
Rapid charging of thermal energy storage materials through plasmonic heating.
Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao
2014-09-01
Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites.
Rapid Charging of Thermal Energy Storage Materials through Plasmonic Heating
Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao
2014-01-01
Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites. PMID:25175717
Switching dynamics of TaOx-based threshold switching devices
NASA Astrophysics Data System (ADS)
Goodwill, Jonathan M.; Gala, Darshil K.; Bain, James A.; Skowronski, Marek
2018-03-01
Bi-stable volatile switching devices are being used as access devices in solid-state memory arrays and as the active part of compact oscillators. Such structures exhibit two stable states of resistance and switch between them at a critical value of voltage or current. A typical resistance transient under a constant amplitude voltage pulse starts with a slow decrease followed by a rapid drop and leveling off at a low steady state value. This behavior prompted the interpretation of initial delay and fast transition as due to two different processes. Here, we show that the entire transient including incubation time, transition time, and the final resistance values in TaOx-based switching can be explained by one process, namely, Joule heating with the rapid transition due to the thermal runaway. The time, which is required for the device in the conducting state to relax back to the stable high resistance one, is also consistent with the proposed mechanism.
Uncooled infrared sensors: rapid growth and future perspective
NASA Astrophysics Data System (ADS)
Balcerak, Raymond S.
2000-07-01
The uncooled infrared cameras are now available for both the military and commercial markets. The current camera technology incorporates the fruits of many years of development, focusing on the details of pixel design, novel material processing, and low noise read-out electronics. The rapid insertion of cameras into systems is testimony to the successful completion of this 'first phase' of development. In the military market, the first uncooled infrared cameras will be used for weapon sights, driver's viewers and helmet mounted cameras. Major commercial applications include night driving, security, police and fire fighting, and thermography, primarily for preventive maintenance and process control. The technology for the next generation of cameras is even more demanding, but within reach. The paper outlines the technology program planned for the next generation of cameras, and the approaches to further enhance performance, even to the radiation limit of thermal detectors.
Rapid laser fabrication of microlens array using colorless liquid photopolymer for AMOLED devices
NASA Astrophysics Data System (ADS)
Kim, Kwang-Ryul; Jeong, Han-Wook; Lee, Kong-Soo; Yi, Junsin; Yoo, Jae-Chern; Cho, Myung-Woo; Cho, Sung-Hak; Choi, Byoungdeog
2011-01-01
Microlens array (MLA) is microfabricated using Ultra Violet (UV) laser for display device applications. A colorless liquid photopolymer, Norland Optical Adhesive (NOA) 60, is spin-coated and pre-cured via UV light for completing the laser process. The laser energy controlled by a galvano scanner is radiated on the surface of the NOA 60. A rapid thermal volume expansion inside the material creates microlens array when the Gaussian laser energy is absorbed. The fabrication process conditions for various shapes and densities of MLA using a non-contact surface profiler are investigated. Furthermore, we analyze the optical and display characteristics for the Organic Light Emitting Diode (OLED) devices. Optimized condition furnishes the OLED with the enhancement of light emission by 15%. We show that UV laser technique, which is installed with NOA 60 MLA layer, is eligible for improving the performance of the next generation display devices.
Production Strategies for Production-Quality Parts for Aerospace Applications
NASA Technical Reports Server (NTRS)
Cawley, J. D.; Best, J. E.; Liu, Z.; Eckel, A. J.; Reed, B. D.; Fox, D. S.; Bhatt, R.; Levine, Stanley R. (Technical Monitor)
2000-01-01
A combination of rapid prototyping processes (3D Systems' stereolithography and Sanders Prototyping's ModelMaker) are combined with gelcasting to produce high quality silicon nitride components that were performance tested under simulated use conditions. Two types of aerospace components were produced, a low-force rocket thruster and a simulated airfoil section. The rocket was tested in a test stand using varying mixtures of H2 and O2, whereas the simulated airfoil was tested by subjecting it to a 0.3 Mach jet-fuel burner flame. Both parts performed successfully, demonstrating the usefulness of the rapid prototyping in efforts to effect materials substitution. In addition, the simulated airfoil was used to explore the possibility of applying thermal/environmental barrier coatings and providing for internal cooling of ceramic parts. It is concluded that this strategy for processing offers the ceramic engineer all the flexibility normally associated with investment casting of superalloys.
Ceramic thermal barrier coating for rapid thermal cycling applications
Scharman, Alan J.; Yonushonis, Thomas M.
1994-01-01
A thermal barrier coating for metal articles subjected to rapid thermal cycling includes a metallic bond coat deposited on the metal article, at least one MCrAlY/ceramic layer deposited on the bond coat, and a ceramic top layer deposited on the MCrAlY/ceramic layer. The M in the MCrAlY material is Fe, Ni, Co, or a mixture of Ni and Co. The ceramic in the MCrAlY/ceramic layer is mullite or Al.sub.2 O.sub.3. The ceramic top layer includes a ceramic with a coefficient of thermal expansion less than about 5.4.times.10.sup.-6 .degree.C.sup.-1 and a thermal conductivity between about 1 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1 and about 1.7 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1.
Apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption
Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.
2005-12-13
The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption
Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.
2003-10-07
The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
NASA Astrophysics Data System (ADS)
Zhan, Yongjun; Xiao, Xiudi; Lu, Yuan; Cao, Ziyi; Cheng, Haoliang; Shi, Jifu; Xu, Gang
2017-10-01
The VOx thin films are successfully prepared on glass substrate by reactive magnetron sputtering at room-temperature, and subsequently annealed by rapid thermal annealing system in N2 from 0.5Pa to 10000Pa. The effects of annealing pressure on the optical performance and phase transition temperature (Tc) of VOx thin films are systematically investigated. The results show that the VOx thin films exhibit good performance with Tlum of 28.17%, ΔTsol of 12.69%, and Tc of 42. The annealing pressure had an obvious influence on the grain size, which can be attributed to light scattering effects by gas molecule. Compared with oxygen vacancy defects, the grain size plays a decisive role in the regulation of Tc. The restricting the growth of grain can be reduced the Tc, and a little deterioration effect on optical performance can be observed. In addition, the method in this paper not only depressed the Tc, but also simplified the process and improved efficiency, which will provide guidance for the preparation and application of VOx thin films.
NASA Astrophysics Data System (ADS)
Studenyak, I. P.; Kutsyk, M. M.; Buchuk, M. Yu.; Rati, Y. Y.; Neimet, Yu. Yu.; Izai, V. Yu.; Kökényesi, S.; Nemec, P.
2016-02-01
(Ag3AsS3)0.6(As2S3)0.4 thin films were deposited using rapid thermal evaporation (RTE) and pulse laser deposition (PLD) techniques. Ag-enriched micrometre-sized cones (RTE) and bubbles (PLD) were observed on the thin film surface. Optical transmission spectra of the thin films were studied in the temperature range 77-300 K. The Urbach behaviour of the optical absorption edge in the thin films due to strong electron-phonon interaction was observed, the main parameters of the Urbach absorption edge were determined. Temperature dependences of the energy position of the exponential absorption edge and the Urbach energy are well described in the Einstein model. Dispersion and temperature dependences of refractive indices were analysed; a non-linear increase of the refractive indices with temperature was revealed. Disordering processes in the thin films were studied and compared with bulk composites, the differences between the thin films prepared by RTE and PLD were analysed.
Dynamics of metal-induced crystallization of ultrathin Ge films by rapid thermal annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Yuanxun; Huang, Shujuan; Shrestha, Santosh
2015-12-07
Though Ge crystallization has been widely studied, few works investigate metal-induced crystallization of ultrathin Ge films. For 2 nm Ge films in oxide matrix, crystallization becomes challenging due to easy oxidation and low mobility of Ge atoms. Introducing metal atoms may alleviate these problems, but the functions and the behaviours of metal atoms need to be clarified. This paper investigates the crystallization dynamics of a multilayer structure 1.9 nm Ge/0.5 nm Al/1.5 nm Al{sub 2}O{sub 3} under rapid thermal annealing (RTA). The functions of metal atoms, like effective anti-oxidation, downshifting Raman peaks, and incapability to decrease crystallization temperature, are found and explained. The metalmore » behaviours, such as inter-diffusion and defect generation, are supported with direct evidences, Al-Ge nanobicrystals, and Al cluster in Ge atoms. With these understandings, a two-step RTA process achieves high-quality 2 nm nanocrystal Ge films with Raman peak at 298 cm{sup −1} of FWHM 10.3 cm{sup −1} and atomic smooth interfaces.« less
Spin reorientations in Tb-Fe films grown on polyimide substrates
NASA Astrophysics Data System (ADS)
Maneesh, K. Sai; Arout Chelvane, J.; Talapatra, A.; Basumatary, Himalay; Mohanty, J.; Kamat, S. V.
2018-02-01
This paper reports the effect of film thickness and rapid thermal annealing on the spin reorientations in Tb-Fe films grown on flexible polyimide substrates. Magnetization studies indicated that the spins reorient from in-plane to out-of-plane direction with increase in film thicknesses. This was confirmed by magnetic force microscopy studies which showed weak featureless contrast for films deposited with lower thickness and a strong out-of-plane contrast for films grown with higher thicknesses. On subsequent rapid thermal annealing all the Tb-Fe films exhibited in-plane magnetic anisotropy. The results were explained based on competition between uniaxial and shape anisotropies, nature of residual stresses as well as nucleation of crystalline Fe phase in an amorphous Tb-Fe matrix on rapid thermal annealing.
Reliable 6 PEP LTPS device for AMOLED's
NASA Astrophysics Data System (ADS)
Chou, Cheng-Wei; Wang, Pei-Yun; Hu, Chin-Wei; Chang, York; Chuang, Ching-Sang; Lin, Yusin
2013-09-01
This study presents a TFT structure which has less photo process and higher cost competitiveness in AMOLED display markets. A novel LTPS based 6 masks TFT structure for bottom emission AMOLED display is demonstrated in this paper. High field effect mobility (PMOS < 80 cm2/Vs ) and high reliability (PBTS △Vth< 0.02V @ 50oC VG=15V 10ks) was accomplished without the high temperature and rapid thermal annealing (RTA) activation process. Furthermore, a 14-inch AMOLED TV was achieved on the proposed 6-pep TFT backplane using the Gen. 3.5 mass production factory.
Forbes, Thomas P; Sisco, Edward; Staymates, Matthew
2018-05-07
Infrared thermal desorption (IRTD) was coupled with direct analysis in real time mass spectrometry (DART-MS) for the detection of both inorganic and organic explosives from wipe collected samples. This platform generated discrete and rapid heating rates that allowed volatile and semivolatile organic explosives to thermally desorb at relatively lower temperatures, while still achieving elevated temperatures required to desorb nonvolatile inorganic oxidizer-based explosives. IRTD-DART-MS demonstrated the thermal desorption and detection of refractory potassium chlorate and potassium perchlorate oxidizers, compounds difficult to desorb with traditional moderate-temperature resistance-based thermal desorbers. Nanogram to sub-nanogram sensitivities were established for analysis of a range of organic and inorganic oxidizer-based explosive compounds, with further enhancement limited by the thermal properties of the most common commercial wipe materials. Detailed investigations and high-speed visualization revealed conduction from the heated glass-mica base plate as the dominant process for heating of the wipe and analyte materials, resulting in thermal desorption through boiling, aerosolization, and vaporization of samples. The thermal desorption and ionization characteristics of the IRTD-DART technique resulted in optimal sensitivity for the formation of nitrate adducts with both organic and inorganic species. The IRTD-DART-MS coupling and IRTD in general offer promising explosive detection capabilities to the defense, security, and law enforcement arenas.
NASA Astrophysics Data System (ADS)
Thigpen, R.; Ashley, K. T.; Law, R. D.; Mako, C. A.
2017-12-01
In natural systems, two key observations indicate that major strain discontinuities such as faults and shear zones should play a fundamental role in orogenic thermal evolution: (1) Large faults and shear zones often separate components of the composite orogen that have experienced broadly different thermal and deformational histories, and (2) quantitative metamorphic and diffusional studies indicate that heating rates are much faster and the duration of peak conditions much shorter in natural collisional systems than those predicted by numerical continuum deformation models. Because heat transfer processes such as conduction usually operate at much slower time scales than rates of other tectonic processes, thermal evolution is often transient and thus can be strongly influenced by tectonic disturbances that occur at rates much faster than thermal relaxation. Here, we use coupled thermal-mechanical finite element models of thrust faults to explore how fault slip rate may fundamentally influence the thermal evolution of individual footwall and hanging wall thrust slices. The model geometry involves a single crustal-scale thrust with a dip of 25° that is translated up the ramp at average velocities of 20, 35, and 50 km Myr-1, interpreted to represent average to relatively high slip rates observed in many collisional systems. Boundary conditions include crustal radioactive heat production, basal mantle heat flow, and surface erosion rates that are a function of thrust rate and subsequent topography generation. In the models, translation of the hanging wall along the crustal-scale detachment results in erosion, exhumation, and retrograde metamorphism of the emerging hanging wall topography and coeval burial, `hot iron' heating, and prograde metamorphism of the thrust footwall. Thrust slip rates of 20, 35, and 50 km Myr-1 yield maximum footwall heating rates ranging from 55-90° C Myr-1 and maximum hanging wall cooling rates of 138-303° C Myr-1. These relatively rapid heating rates explain, in part, the presence of chemical diffusion profiles in metamorphic minerals that are indicative of high heating rates. Additionally, the relatively high cooling rates explain preservation of chemical zoning, as rapid cooling prevents diffusive profiles from being substantially modified during exhumation.
Continuum modelling of silicon diffusion in indium gallium arsenide
NASA Astrophysics Data System (ADS)
Aldridge, Henry Lee, Jr.
A possible method to overcome the physical limitations experienced by continued transistor scaling and continue improvements in performance and power consumption is integration of III-V semiconductors as alternative channel materials for logic devices. Indium Gallium Arsenide (InGaAs) is such a material from the III-V semiconductor family, which exhibit superior electron mobilities and injection velocities than that of silicon. In order for InGaAs integration to be realized, contact resistances must be minimized through maximizing activation of dopants in this material. Additionally, redistribution of dopants during processing must be clearly understood and ultimately controlled at the nanometer-scale. In this work, the activation and diffusion behavior of silicon, a prominent n-type dopant in InGaAs, has been characterized and subsequently modelled using the Florida Object Oriented Process and Device Simulator (FLOOPS). In contrast to previous reports, silicon exhibits non-negligible diffusion in InGaAs, even for smaller thermal budget rapid thermal anneals (RTAs). Its diffusion is heavily concentration-dependent, with broadening "shoulder-like" profiles when doping levels exceed 1-3x1019cm -3, for both ion-implanted and Molecular Beam Epitaxy (MBE)-grown cases. Likewise a max net-activation value of ˜1.7x1019cm -3 is consistently reached with enough thermal processing, regardless of doping method. In line with experimental results and several ab-initio calculation results, rapid concentration-dependent diffusion of Si in InGaAs and the upper limits of its activation is believed to be governed by cation vacancies that serve as compensating defects in heavily n-type regions of InGaAs. These results are ultimately in line with an amphoteric defect model, where the activation limits of dopants are an intrinsic limitation of the material, rather than governed by individual dopant species or their methods of incorporation. As a result a Fermi level dependent point defect diffusion model and activation limit model were subsequently developed in FLOOPS with outputs in good agreement with experimental results.
Wang, Liang-Wei; Cheng, Chung-Fu; Liao, Jung-Wei; Wang, Chiu-Yen; Wang, Ding-Shuo; Huang, Kuo-Feng; Lin, Tzu-Ying; Ho, Rong-Ming; Chen, Lih-Juann; Lai, Chih-Huang
2016-02-21
A design for the fabrication of metallic nanoparticles is presented by thermal dewetting with a chemically heterogeneous nano-template. For the template, we fabricate a nanostructured polystyrene-b-polydimethylsiloxane (PS-b-PDMS) film on a Si|SiO2 substrate, followed by a thermal annealing and reactive ion etching (RIE) process. This gives a template composed of an ordered hexagonal array of SiOC hemispheres emerging in the polystyrene matrix. After the deposition of a FePt film on this template, we utilize the rapid thermal annealing (RTA) process, which provides in-plane stress, to achieve thermal dewetting and structural ordering of FePt simultaneously. Since the template is composed of different composition surfaces with periodically varied morphologies, it offers more tuning knobs to manipulate the nanostructures. We show that both the decrease in the area of the PS matrix and the increase in the strain energy relaxation transfer the dewetted pattern from the randomly distributed nanoparticles into a hexagonal periodic array of L10 FePt nanoparticles. Transmission electron microscopy with the in situ heating stage reveals the evolution of the dewetting process, and confirms that the positions of nanoparticles are aligned with those of the SiOC hemispheres. The nanoparticles formed by this template-dewetting show an average diameter and center-to-center distance of 19.30 ± 2.09 nm and 39.85 ± 4.80 nm, respectively. The hexagonal array of FePt nanoparticles reveals a large coercivity of 1.5 T, much larger than the nanoparticles fabricated by top-down approaches. This approach offers an efficient pathway toward self-assembled nanostructures in a wide range of material systems.
Numerical Simulation of Thermal Performance of Glass-Fibre-Reinforced Polymer
NASA Astrophysics Data System (ADS)
Zhao, Yuchao; Jiang, Xu; Zhang, Qilin; Wang, Qi
2017-10-01
Glass-Fibre-Reinforced Polymer (GFRP), as a developing construction material, has a rapidly increasing application in civil engineering especially bridge engineering area these years, mainly used as decorating materials and reinforcing bars for now. Compared with traditional construction material, these kinds of composite material have obvious advantages such as high strength, low density, resistance to corrosion and ease of processing. There are different processing methods to form members, such as pultrusion and resin transfer moulding (RTM) methods, which process into desired shape directly through raw material; meanwhile, GFRP, as a polymer composite, possesses several particular physical and mechanical properties, and the thermal property is one of them. The matrix material, polymer, performs special after heated and endue these composite material a potential hot processing property, but also a poor fire resistance. This paper focuses on thermal performance of GFRP as panels and corresponding researches are conducted. First, dynamic thermomechanical analysis (DMA) experiment is conducted to obtain the glass transition temperature (Tg) of the object GFRP, and the curve of bending elastic modulus with temperature is calculated according to the experimental data. Then compute and estimate the values of other various thermal parameters through DMA experiment and other literatures, and conduct numerical simulation under two condition respectively: (1) the heat transfer process of GFRP panel in which the panel would be heated directly on the surface above Tg, and the hot processing under this temperature field; (2) physical and mechanical performance of GFRP panel under fire condition. Condition (1) is mainly used to guide the development of high temperature processing equipment, and condition (2) indicates that GFRP’s performance under fire is unsatisfactory, measures must be taken when being adopted. Since composite materials’ properties differ from each other and their high temperature parameters can’t be obtained through common methods, some parameters are estimated, the simulation is to guide the actual high temperature experiment, and the parameters will also be adjusted by then.
Lin, S S; Chen, B G; Xiong, W; Yang, Y; He, H P; Luo, J
2012-09-10
Graphene is an atomic thin two-dimensional semimetal whereas ZnO is a direct wide band gap semiconductor with a strong light-emitting ability. In this paper, we report on photoluminescence (PL) of ZnO-nanowires (NWs)-core/Graphene-shell heterostructures, which shows a negative thermal quenching (NTQ) behavior both for the near band-edge and deep level emission. The abnormal PL behavior was understood through the charging and discharging processes between ZnO NWs and graphene. The NTQ properties are most possibly induced by the unique rapidly increasing density of states of graphene as a function of Fermi level, which promises a higher quantum tunneling probability between graphene and ZnO at a raised temperature.
A Rapid and Low-Cost PCR Thermal Cycler for Low Resource Settings.
Wong, Grace; Wong, Isaac; Chan, Kamfai; Hsieh, Yicheng; Wong, Season
2015-01-01
Many modern molecular diagnostic assays targeting nucleic acids are typically confined to developed countries or to the national reference laboratories of developing-world countries. The ability to make technologies for the rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a revolutionary step forward in global health. Many molecular assays are also developed based on polymerase chain reactions (PCR), which require thermal cyclers that are relatively heavy (>20 pounds) and need continuous electrical power. The temperature ramping speed of most economical thermal cyclers are relatively slow (2 to 3 °C/s) so a polymerase chain reaction can take 1 to 2 hours. Most of all, these thermal cyclers are still too expensive ($2k to $4k) for low-resource setting uses. In this article, we demonstrate the development of a low-cost and rapid water bath based thermal cycler that does not require active temperature control or continuous power supply during PCR. This unit costs $130 to build using commercial off-the-shelf items. The use of two or three vacuum-insulated stainless-steel Thermos food jars containing heated water (for denaturation and annealing/extension steps) and a layer of oil on top of the water allow for significantly stabilized temperatures for PCR to take place. Using an Arduino-based microcontroller, we automate the "archaic" method of hand-transferring PCR tubes between water baths. We demonstrate that this innovative unit can deliver high speed PCR (17 s per PCR cycle) with the potential to go beyond the 1,522 bp long amplicons tested in this study and can amplify from templates down to at least 20 copies per reaction. The unit also accepts regular PCR tubes and glass capillary tubes. The PCR efficiency of our thermal cycler is not different from other commercial thermal cyclers. When combined with a rapid nucleic acid detection approach, the thermos thermal cycler (TTC) can enable on-site molecular diagnostics in low-resource settings.
Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-01
DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km)more » (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).« less
NASA Astrophysics Data System (ADS)
Aminzadeh, Milad; Breitenstein, Daniel; Or, Dani
2017-12-01
The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (α and β ) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., α = 3 and β = 1/26 (ms)^{-1} for the infrared, and α = 3 and β = 1/19 (ms)^{-1} for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter α and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of α . The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.
Hsu, Ya-Chu; Hung, Yu-Chen; Wang, Chiu-Yen
2017-09-15
High uniformity Au-catalyzed indium selenide (In 2 Se 3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In 2 Se 3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In 2 Se 3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In 2 Se 3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials. Graphical Abstract Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In 2 Se 3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In 2 Se 3 vapor and produce the high uniformity In 2 Se 3 nanowires. The in situ annealing TEM is used to realize the effect of heating rate on Au nanoparticle formation from the as-deposited Au film. The byproduct of self-catalyzed In 2 Se 3 nanoplates can be inhibited by lowering the precursors and growth temperatures.
Press Dry Conference 1983 Held at Madison, Wisconsin on September 7-9, 1983,
1983-01-01
facil- model has served as a useful tool to ities wherein one can witness the pros verify reported results of other and cons associated with emerging...subjects of reduces the surface temperature required to pro - research at the Institute. The concepts being duce rapid drying; the desirability of operating...kraft handsheets (1650 experimental investigation of a new, thermally- g/m2 basis weight) at a 452 initial moisture con - driven, vacuum drying process
Mathematical model governing laser-produced dental cavity
NASA Astrophysics Data System (ADS)
Yilbas, Bekir S.; Karatoy, M.; Yilbas, Z.; Karakas, Eyup S.; Bilge, A.; Ustunbas, Hasan B.; Ceyhan, O.
1990-06-01
Formation of dental cavity may be improved by using a laser beam. This provides nonmechanical contact, precise location of cavity, rapid processing and increased hygienity. Further examination of interaction mechanism is needed to improve the application of lasers in density. Present study examines the tenperature rise and thermal stress development in the enamel during Nd YAG laser irradiation. It is found that the stresses developed in the enamel is not sufficiently high enough to cause crack developed in the enamel.
Modeling metal droplet sprays in spray forming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muoio, N.G.; Crowe, C.T.; Fritsching, U.
1995-12-31
Spray casting is a process whereby a molten metal stream is atomized and deposited on a substrate. The rapid solidification of the metal droplets gives rise to a fine grain structure and improved material properties. This paper presents a simulation for the fluid and thermal interaction of the fluid and droplets in the spray and the effect on the droplet spray pattern. Good agreement is obtained between the measured and predicted droplet mass flux distribution in the spray.
Sustainable intensive thermal use of the shallow subsurface-a critical view on the status quo.
Vienken, T; Schelenz, S; Rink, K; Dietrich, P
2015-01-01
Thermal use of the shallow subsurface for heat generation, cooling, and thermal energy storage is increasingly gaining importance in reconsideration of future energy supplies. Shallow geothermal energy use is often promoted as being of little or no costs during operation, while simultaneously being environmentally friendly. Hence, the number of installed systems has rapidly risen over the last few decades, especially among newly built houses. While the carbon dioxide reduction potential of this method remains undoubted, concerns about sustainability and potential negative effects on the soil and groundwater due to an intensified use have been raised-even as far back as 25 years ago. Nevertheless, consistent regulation and management schemes for the intensified thermal use of the shallow subsurface are still missing-mainly due to a lack of system understanding and process knowledge. In the meantime, large geothermal applications, for example, residential neighborhoods that are entirely dependent up on shallow geothermal energy use or low enthalpy aquifer heat storage, have been developed throughout Europe. Potential negative effects on the soil and groundwater due to an intensive thermal use of the shallow subsurface as well as the extent of potential system interaction still remain unknown. © 2014, National Ground Water Association.
The origin of thermal component in the transverse momentum spectra in high energy hadronic processes
Bylinkin, Alexander A.; Kharzeev, Dmitri E.; Rostovtsev, Andrei A.
2014-12-15
The transverse momentum spectra of hadrons produced in high energy collisions can be decomposed into two components: the exponential ("thermal") and the power ("hard") ones. Recently, the H1 Collaboration has discovered that the relative strength of these two components in Deep Inelastic Scattering (DIS) depends drastically upon the global structure of the event - namely, the exponential component is absent in the diffractive events characterized by a rapidity gap. We discuss the possible origin of this effect and speculate that it is linked to confinement. Specifically, we argue that the thermal component is due to the effective event horizon introducedmore » by the confining string, in analogy to the Hawking-Unruh effect. In diffractive events, the t-channel exchange is color-singlet and there is no fragmenting string - so the thermal component is absent. The slope of the soft component of the hadron spectrum in this picture is determined by the saturation momentum that drives the deceleration in the color field, and thus the Hawking-Unruh temperature. We analyze the data on non-diffractive pp collisions and find that the slope of the thermal component of the hadron spectrum is indeed proportional to the saturation momentum.« less
Is phenotypic plasticity a key mechanism for responding to thermal stress in ants?
NASA Astrophysics Data System (ADS)
Oms, Cristela Sánchez; Cerdá, Xim; Boulay, Raphaël
2017-06-01
Unlike natural selection, phenotypic plasticity allows organisms to respond quickly to changing environmental conditions. However, plasticity may not always be adaptive. In insects, body size and other morphological measurements have been shown to decrease as temperature increases. This relationship may lead to a physiological conflict in ants, where larger body size and longer legs often confer better thermal resistance. Here, we tested the effect of developmental temperature (20, 24, 28 or 32 °C) on adult thermal resistance in the thermophilic ant species Aphaenogaster senilis. We found that no larval development occurred at 20 °C. However, at higher temperatures, developmental speed increased as expected and smaller adults were produced. In thermal resistance tests, we found that ants reared at 28 and 32 °C had half-lethal temperatures that were 2 °C higher than those of ants reared at 24 °C. Thus, although ants reared at higher temperatures were smaller in size, they were nonetheless more thermoresistant. These results show that A. senilis can exploit phenotypic plasticity to quickly adjust its thermal resistance to local conditions and that this process is independent of morphological adaptations. This mechanism may be particularly relevant given current rapid climate warming.
Vortmann, Britta; Nowak, Sascha; Engelhard, Carsten
2013-03-19
Lithium ion batteries (LIBs) are key components for portable electronic devices that are used around the world. However, thermal decomposition products in the battery reduce its lifetime, and decomposition processes are still not understood. In this study, a rapid method for in situ analysis and reaction monitoring in LIB electrolytes is presented based on high-resolution mass spectrometry (HR-MS) with low-temperature plasma probe (LTP) ambient desorption/ionization for the first time. This proof-of-principle study demonstrates the capabilities of ambient mass spectrometry in battery research. LTP-HR-MS is ideally suited for qualitative analysis in the ambient environment because it allows direct sample analysis independent of the sample size, geometry, and structure. Further, it is environmental friendly because it eliminates the need of organic solvents that are typically used in separation techniques coupled to mass spectrometry. Accurate mass measurements were used to identify the time-/condition-dependent formation of electrolyte decomposition compounds. A LIB model electrolyte containing ethylene carbonate and dimethyl carbonate was analyzed before and after controlled thermal stress and over the course of several weeks. Major decomposition products identified include difluorophosphoric acid, monofluorophosphoric acid methyl ester, monofluorophosphoric acid dimethyl ester, and hexafluorophosphate. Solvents (i.e., dimethyl carbonate) were partly consumed via an esterification pathway. LTP-HR-MS is considered to be an attractive method for fundamental LIB studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Z Zhang; B Yang; Y Zhu
This letter reports on a process scheme to obtain highly reproducible Ni{sub 1-x}Pt{sub x} silicide films of 3-6 nm thickness formed on a Si(100) substrate. Such ultrathin silicide films are readily attained by sputter deposition of metal films, metal stripping in wet chemicals, and final silicidation by rapid thermal processing. This process sequence warrants an invariant amount of metal intermixed with Si in the substrate surface region independent of the initial metal thickness, thereby leading to a self-limiting formation of ultrathin silicide films. The crystallographic structure, thickness, uniformity, and morphological stability of the final silicide films depend sensitively on themore » initial Pt fraction.« less
NASA Technical Reports Server (NTRS)
Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Tsurikov, A.; Sutter, J. K.
2003-01-01
High velocity oxy-fuel (HVOF) sprayed, functionally graded polyimide/WC-Co composite coatings on polymer matrix composites (PMC's) are being investigated for applications in turbine engine technologies. This requires that the polyimide, used as the matrix material, be fully crosslinked during deposition in order to maximize its engineering properties. The rapid heating and cooling nature of the HVOF spray process and the high heat flux through the coating into the substrate typically do not allow sufficient time at temperature for curing of the thermoset. It was hypothesized that external substrate preheating might enhance the deposition behavior and curing reaction during the thermal spraying of polyimide thermosets. A simple analytical process model for the deposition of thermosetting polyimide onto polymer matrix composites by HVOF thermal spray technology has been developed. The model incorporates various heat transfer mechanisms and enables surface temperature profiles of the coating to be simulated, primarily as a function of substrate preheating temperature. Four cases were modeled: (i) no substrate preheating; (ii) substrates electrically preheated from the rear; (iii) substrates preheated by hot air from the front face; and (iv) substrates electrically preheated from the rear and by hot air from the front.
Photothermal damage is correlated to the delivery rate of time-integrated temperature
NASA Astrophysics Data System (ADS)
Denton, Michael L.; Noojin, Gary D.; Gamboa, B. Giovanna; Ahmed, Elharith M.; Rockwell, Benjamin A.
2016-03-01
Photothermal damage rate processes in biological tissues are usually characterized by a kinetics approach. This stems from experimental data that show how the transformation of a specified biological property of cells or biomolecule (plating efficiency for viability, change in birefringence, tensile strength, etc.) is dependent upon both time and temperature. However, kinetic methods require determination of kinetic rate constants and knowledge of substrate or product concentrations during the reaction. To better understand photothermal damage processes we have identified temperature histories of cultured retinal cells receiving minimum lethal thermal doses for a variety of laser and culture parameters. These "threshold" temperature histories are of interest because they inherently contain information regarding the fundamental thermal dose requirements for damage in individual cells. We introduce the notion of time-integrated temperature (Tint) as an accumulated thermal dose (ATD) with units of °C s. Damaging photothermal exposure raises the rate of ATD accumulation from that of the ambient (e.g. 37 °C) to one that correlates with cell death (e.g. 52 °C). The degree of rapid increase in ATD (ΔATD) during photothermal exposure depends strongly on the laser exposure duration and the ambient temperature.
Utilizing of inner porous structure in injection moulds for application of special cooling method
NASA Astrophysics Data System (ADS)
Seidl, M.; Bobek, J.; Šafka, J.; Habr, J.; Nováková, I.; Běhálek, L.
2016-04-01
The article is focused on impact evaluation of controlled inner structure of production tools and new cooling method on regulation of thermal processes for injection moulding technology. The mould inserts with porous structure were cooled by means of liquid CO2 which is very progressive cooling method and enables very fast and intensive heat transfer among the plastic product, the production tool and cooling medium. The inserts were created using rapid prototype technology (DLSM) and they had a bi-component structure consisting of thin compact surface layer and defined porous inner structure of open cell character where liquid CO2 was flowing through. This analyse includes the evaluation of cooling efficiency for different inner structures and different time profiles for dosing of liquid CO2 into the porous structure. The thermal processes were monitored using thermocouples and IR thermal analyse of product surface and experimental device. Intensive heat removal influenced also the final structure and the shape and dimensional accuracy of the moulded parts that were made of semi-crystalline polymer. The range of final impacts of using intensive cooling method on the plastic parts was defined by DSC and dimensional analyses.
NASA Astrophysics Data System (ADS)
Hiller, Daniel; Gutsch, Sebastian; Hartel, Andreas M.; Löper, Philipp; Gebel, Thoralf; Zacharias, Margit
2014-04-01
Silicon nanocrystals (Si NCs) for 3rd generation photovoltaics or optoelectronic applications can be produced by several industrially compatible physical or chemical vapor deposition technologies. A major obstacle for the integration into a fabrication process is the typical annealing to form and crystallize these Si quantum dots (QDs) which involves temperatures ≥1100 °C for 1 h. This standard annealing procedure allows for interface qualities that correspond to more than 95% dangling bond defect free Si NCs. We study the possibilities to use rapid thermal annealing (RTA) and flash lamp annealing to crystallize the Si QDs within seconds or milliseconds at high temperatures. The Si NC interface of such samples exhibits huge dangling bond defect densities which makes them inapplicable for photovoltaics or optoelectronics. However, if the RTA high temperature annealing is combined with a medium temperature inert gas post-annealing and a H2 passivation, luminescent Si NC fractions of up to 90% can be achieved with a significantly reduced thermal load. A new figure or merit, the relative dopant diffusion length, is introduced as a measure for the impact of a Si NC annealing procedure on doping profiles of device structures.
Tian, Xiaojuan; Li, Yun; Chen, Zhuo; Li, Qi; Hou, Liqiang; Wu, Jiaye; Tang, Yushu; Li, Yongfeng
2017-12-19
Boron nitride nanosheets (BNNS) hold the similar two-dimensional structure as graphene and unique properties complementary to graphene, which makes it attractive in application ranging from electronics to energy storage. The exfoliation of boron nitride (BN) still remains challenge and hinders the applications of BNNS. In this work, the preparation of BNNS has been realized by a shear-assisted supercritical CO 2 exfoliation process, during which supercritical CO 2 intercalates and diffuses between boron nitride layers, and then the exfoliation of BN layers is obtained in the rapid depressurization process by overcoming the van der Waals forces. Our results indicate that the bulk boron nitride has been successfully exfoliated into thin nanosheets with an average 6 layers. It is found that the produced BNNS is well-dispersed in isopropyl alcohol (IPA) with a higher extinction coefficient compared with the bulk BN. Moreover, the BNNS/epoxy composite used as thermal interface materials has been prepared. The introduction of BNNS results in a 313% enhancement in thermal conductivity. Our results demonstrate that BNNS produced by supercritical CO 2 exfoliation show great potential applications for heat dissipation of high efficiency electronics.
Milestones in Functional Titanium Dioxide Thermal Spray Coatings: A Review
NASA Astrophysics Data System (ADS)
Gardon, M.; Guilemany, J. M.
2014-04-01
Titanium dioxide has been the most investigated metal oxide due to its outstanding performance in a wide range of applications, chemical stability and low cost. Coating processes that can produce surfaces based on this material have been deeply studied. Nevertheless, the necessity of coating large areas by means of rapid manufacturing processes renders laboratory-scale techniques unsuitable, leading to a noteworthy interest from the thermal spray (TS) community in the development of significant intellectual property and a large number of scientific publications. This review unravels the relationship between titanium dioxide and TS technologies with the aim of providing detailed information related to the most significant achievements, lack of knowhow, and performance of TS TiO2 functional coatings in photocatalytic, biomedical, and other applications. The influence of thermally activated techniques such as atmospheric plasma spray and high-velocity oxygen fuel spray on TiO2 feedstock based on powders and suspensions is revised; the influence of spraying parameters on the microstructural and compositional changes and the final active behavior of the coating have been analyzed. Recent findings on titanium dioxide coatings deposited by cold gas spray and the capacity of this technology to prevent loss of the nanostructured anatase metastable phase are also reviewed.
NASA Astrophysics Data System (ADS)
Davies, Ashley Gerard; Gunapala, Sarath; Soibel, Alexander; Ting, David; Rafol, Sir; Blackwell, Megan; Hayne, Paul O.; Kelly, Michael
2017-09-01
The highly variable and unpredictable magnitude of thermal emission from evolving volcanic eruptions creates saturation problems for remote sensing instruments observing eruptions on Earth and on Io, the highly volcanic moon of Jupiter. For Io, it is desirable to determine the temperature of the erupting lavas as this measurement constrains lava composition. One method of determining lava eruption temperature is by measuring radiant flux at two or more wavelengths and fitting a blackbody thermal emission function. Only certain styles of volcanic activity are suitable, those where detectable thermal emission is from a restricted range of surface temperatures close to the eruption temperature. Volcanic processes where this occurs include large lava fountains; smaller lava fountains common in active lava lakes; and lava tube skylights. Problems that must be overcome to obtain usable data are: (1) the rapid cooling of the lava between data acquisitions at different wavelengths, (2) the unknown magnitude of thermal emission, which has often led to detector saturation, and (3) thermal emission changing on a shorter timescale than the observation integration time. We can overcome these problems by using the HOT-BIRD detector and a novel, advanced digital readout circuit (D-ROIC) to achieve a wide dynamic range sufficient to image lava on Io without saturating. We have created an instrument model that allows various instrument parameters (including mirror diameter, number of signal splits, exposure duration, filter band pass, and optics transmissivity) to be tested to determine the detectability of thermal sources on Io's surface. We find that a short-wavelength infrared instrument on an Io flyby mission can achieve simultaneity of observations by splitting the incoming signal for all relevant eruption processes and still obtain data fast enough to remove uncertainties in accurate determination of the highest lava surface temperatures. Observations at 1 and 1.5 μm are sufficient for this purpose. Even with a ten-way beam split, instrument throughput generates acceptable signal-to-noise values. Accurate constraints on lava eruption temperature are also possible with a visible wavelength detector so long as data at different wavelengths are obtained simultaneously and integration time is very short. Fast integration times are important for examining the thermal emission from lava tube skylights due to rapidly changing viewing geometry during close flybys. The technology described here is applicable to instruments observing terrestrial volcanism and for investigating proposed volcanic activity on Venus, where lava composition is not known.
Juliano, Pablo; Knoerzer, Kai; Fryer, Peter J; Versteeg, Cornelis
2009-01-01
High-pressure, high-temperature (HPHT) processing is effective for microbial spore inactivation using mild preheating, followed by rapid volumetric compression heating and cooling on pressure release, enabling much shorter processing times than conventional thermal processing for many food products. A computational thermal fluid dynamic (CTFD) model has been developed to model all processing steps, including the vertical pressure vessel, an internal polymeric carrier, and food packages in an axis-symmetric geometry. Heat transfer and fluid dynamic equations were coupled to four selected kinetic models for the inactivation of C. botulinum; the traditional first-order kinetic model, the Weibull model, an nth-order model, and a combined discrete log-linear nth-order model. The models were solved to compare the resulting microbial inactivation distributions. The initial temperature of the system was set to 90 degrees C and pressure was selected at 600 MPa, holding for 220 s, with a target temperature of 121 degrees C. A representation of the extent of microbial inactivation throughout all processing steps was obtained for each microbial model. Comparison of the models showed that the conventional thermal processing kinetics (not accounting for pressure) required shorter holding times to achieve a 12D reduction of C. botulinum spores than the other models. The temperature distribution inside the vessel resulted in a more uniform inactivation distribution when using a Weibull or an nth-order kinetics model than when using log-linear kinetics. The CTFD platform could illustrate the inactivation extent and uniformity provided by the microbial models. The platform is expected to be useful to evaluate models fitted into new C. botulinum inactivation data at varying conditions of pressure and temperature, as an aid for regulatory filing of the technology as well as in process and equipment design.
Exploring contrasts between fast and slow rifting
NASA Astrophysics Data System (ADS)
de Montserrat Navarro, A.; Morgan, J. P.; Hall, R.; White, L. T.
2016-12-01
Researchers are now finding that extension sometimes occurs at rates much faster than the mean rates observed in the development of passive margins. Examples of rapid and ultra-rapid extension are found in several locations in Eastern Indonesia, including northern and central Sulawesi as well as eastern- and westernmost New Guinea. Periods of extension are associated with sedimentary basin growth and phases of crustal melting and rapid uplift. This is recorded by seismic imagery of basins offshore Sulawesi and New Guinea as well as through new field studies of the onshore geology in these regions. A growing body of new geochronological and biostratigraphic data provides some control on the rates of processes, indicating that extension rates can be up to an order of magnitude faster than the rates inferred for the more commonly studied rift settings (e.g. Atlantic opening, East African Rift, Australia-Antarctica opening). We explore a suite of numerical experiments comparing the evolution of these `fast' (20-100 mm/year full rate) rifting models to rifting at slow and ultra-slow extension rates (5-20 mm/year). The experiments focus on the 2-D margin architecture and predicted melt volumes. These extension episodes occurring in Eastern Indonesia take place under different thermal conditions. Thus, we also investigate the role of the initial thermal structure in controlling the evolution of rifting. We explore to what depths hot lower crust and mantle can be exhumed by fast rifting, and infer that many of the extensional basins in SE Asia cannot be explained by simple rifting episodes of fragments of continental crust. Instead, fast extension appears to be initiated by subduction related processes that we will briefly discuss.
Cooling Rate Determination in Additively Manufactured Aluminum Alloy 2219
NASA Astrophysics Data System (ADS)
Brice, Craig A.; Dennis, Noah
2015-05-01
Metallic additive manufacturing processes generally utilize a conduction mode, welding-type approach to create beads of deposited material that can be arranged into a three-dimensional structure. As with welding, the cooling rates in the molten pool are relatively rapid compared to traditional casting techniques. Determination of the cooling rate in the molten pool is critical for predicting the solidified microstructure and resultant properties. In this experiment, wire-fed electron beam additive manufacturing was used to melt aluminum alloy 2219 under different thermal boundary conditions. The dendrite arm spacing was measured in the remelted material, and this information was used to estimate cooling rates in the molten pool based on established empirical relationships. The results showed that the thermal boundary conditions have a significant effect on the resulting cooling rate in the molten pool. When thermal conduction is limited due to a small thermal sink, the dendrite arm spacing varies between 15 and 35 µm. When thermal conduction is active, the dendrite arm spacing varies between 6 and 12 µm. This range of dendrite arm spacing implies cooling rates ranging from 5 to 350 K/s. Cooling rates can vary greatly as thermal conditions change during deposition. A cooling rate at the higher end of the range could lead to significant deviation from microstructural equilibrium during solidification.
Towards a predictive thermal explosion model for energetic materials
NASA Astrophysics Data System (ADS)
Yoh, Jack J.; McClelland, Matthew A.; Maienschein, Jon L.; Wardell, Jeffrey F.
2005-01-01
We present an overview of models and computational strategies for simulating the thermal response of high explosives using a multi-physics hydrodynamics code, ALE3D. Recent improvements to the code have aided our computational capability in modeling the behavior of energetic materials systems exposed to strong thermal environments such as fires. We apply these models and computational techniques to a thermal explosion experiment involving the slow heating of a confined explosive. The model includes the transition from slow heating to rapid deflagration in which the time scale decreases from days to hundreds of microseconds. Thermal, mechanical, and chemical effects are modeled during all phases of this process. The heating stage involves thermal expansion and decomposition according to an Arrhenius kinetics model while a pressure-dependent burn model is employed during the explosive phase. We describe and demonstrate the numerical strategies employed to make the transition from slow to fast dynamics. In addition, we investigate the sensitivity of wall expansion rates to numerical strategies and parameters. Results from a one-dimensional model show that violence is influenced by the presence of a gap between the explosive and container. In addition, a comparison is made between 2D model and measured results for the explosion temperature and tube wall expansion profiles.
Crystal growth of intermetallic clathrates: Floating zone process and ultra rapid crystallization
NASA Astrophysics Data System (ADS)
Prokofiev, A.; Yan, X.; Ikeda, M.; Löffler, S.; Paschen, S.
2014-09-01
We studied the crystal growth process of type-I transition metal clathrates in two different regimes: a regime of moderate cooling rate, realized with the floating zone technique, and a regime of ultra rapid cooling, realized by the melt spinning technique. In the former regime, bulk Ba8AuxSi46-x and Ba8Cu4.8GaxGe41.2-x single crystals were grown. We investigated segregation effects of the constituting elements by measurements of the composition profiles along the growth direction. The compositional non-uniformity results in a spatial variation of the electrical resistivity which is discussed as well. Structural features of clathrates and their extremely low thermal conductivities imply specifics in growth behavior which manifest themselves most pronouncedly in a rapid crystallization process. Our melt spinning experiments on Ba8Au5Si41 and Ba8Ni3.5Si42.5 (and earlier on some other clathrates) have revealed surprisingly large grains of at least 1 μm. Because of the anomalously high growth rate of the clathrate phase the formation of impurity phases is considerably kinetically suppressed. We present our scanning and transmission electron microscopy investigations of melt spun samples and discuss structural, thermodynamic and kinetic aspects of the unusual clathrate nucleation and crystallization.
Thermal Imaging Applied to Cryocrystallography: Cryocooling and Beam Heating (Part I)
NASA Technical Reports Server (NTRS)
Snell, Edward; Bellamy, Henry; Rosenbaum, Gerd; vanderWoerd, Mark; Kazmierczak, Michael
2006-01-01
Thermal imaging provides a non-invasive method to study both the cryocooling process and the heating due to the X-ray beam interaction with a sample. The method has been used successfully to image cryocooling in a number of experimental situations, i.e. cooling as a function of sample volume and as a function of cryostream orientation. Although there are experimental limitations to the method, it has proved a powerful technique to aid cryocrystallography development. Due to the rapid spatial temperature information provided about the sample it is also a powerful tool in the testing of mathematical models. Recently thermal imaging has been used to measure the temperature distribution on both a model and typical crystal samples illuminated with an X-ray beam produced by an undulator. A brief overview of thermal imaging and previous results will be presented. In addition, a detailed description of the calibration and experimental aspects of the beam heating measurements will be described. This will complement the following talk on the mathematical modeling and analysis of the results.
NASA Astrophysics Data System (ADS)
Cosme, Jayson G.
2015-09-01
We numerically investigate the relaxation dynamics in an isolated quantum system of interacting bosons trapped in a double-well potential after an integrability breaking quench. Using the statistics of the spectrum, we identify the postquench Hamiltonian as nonchaotic and close to integrability over a wide range of interaction parameters. We demonstrate that the system exhibits thermalization in the context of the eigenstate thermalization hypothesis (ETH). We also explore the possibility of an initial state to delocalize with respect to the eigenstates of the postquench Hamiltonian even for energies away from the middle of the spectrum. We observe distinct regimes of equilibration process depending on the initial energy. For low energies, the system rapidly relaxes in a single step to a thermal state. As the energy increases towards the middle of the spectrum, the relaxation dynamics exhibits prethermalization and the lifetime of the metastable states grows. Time evolution of the occupation numbers and the von Neumann entropy in the mode-partitioned system underpins the analyses of the relaxation dynamics.
Spin dynamics and thermal stability in L10 FePt
NASA Astrophysics Data System (ADS)
Chen, Tianran; Toomey, Wahida
Increasing the data storage density of hard drives remains one of the continuing goals in magnetic recording technology. A critical challenge for increasing data density is the thermal stability of the written information, which drops rapidly as the bit size gets smaller. To maintain good thermal stability in small bits, one should consider materials with high anisotropy energy such as L10 FePt. High anisotropy energy nevertheless implies high coercivity, making it difficult to write information onto the disk. This issue can be overcome by a new technique called heat-assisted magnetic recording, where a laser is used to locally heat the recording medium to reduce its coercivity while retaining relatively good thermal stability. Many of the microscopic magnetic properties of L10 FePt, however, have not been theoretically well understood. In this poster, I will focus on a single L10 FePt grain, typically of a few nanometers. Specifically, I will discuss its critical temperature, size effect and, in particular, spin dynamics in the writing process, a key to the success of heat-assisted magnetic recording. WCU URF16.
High-speed thermal cycling system and method of use
Hansen, A.D.A.; Jaklevic, J.M.
1996-04-16
A thermal cycling system and method of use are described. The thermal cycling system is based on the circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 microliters of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded. 13 figs.
High-speed thermal cycling system and method of use
Hansen, Anthony D. A.; Jaklevic, Joseph M.
1996-01-01
A thermal cycling system and method of use are described. The thermal cycling system is based on the-circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate microtiter plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 .mu.l of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded.
NASA Astrophysics Data System (ADS)
Wang, Hao; Zhao, Liang; Chen, Lijie; Song, Guolin; Tang, Guoyi
2017-12-01
We designed a photocurable pickering emulsion polymerization to create microencapsulated phase change materials (MicroPCM) with polymer-silica hybrid shell. The emulsion was stabilized by modified SiO2 particles without any surfactant or dispersant. The polymerization process can be carried out at ambient temperature only for 5 min ultraviolet radiation, which is a low-energy procedure. The resultant capsules were shown a good core-shell structure and uniform in size. The surface of the microcapsules was covered by SiO2 particles. According to the DSC and TGA examinations, the microcapsules has good thermal energy storage-release performance, enhanced thermal reliability and thermal stability. When ratio of MMA/n-octadecane was 1.5/1.5. The encapsulation efficiency of the microcapsules reached 62.55%, accompanied with 122.31 J/g melting enthalpy. The work is virtually applicable to the construction of a wide variety of organic-inorganic hybrid shell MicroPCM. Furthermore, with the application of this method, exciting opportunities may arise for realizing rapid, continuous and large-scale industrial preparation of MicroPCM.
NASA Astrophysics Data System (ADS)
Rozé, Fabien; Gourhant, Olivier; Blanquet, Elisabeth; Bertin, François; Juhel, Marc; Abbate, Francesco; Pribat, Clément; Duru, Romain
2017-06-01
The fabrication of ultrathin compressively strained SiGe-On-Insulator layers by the condensation technique is likely a key milestone towards low-power and high performances FD-SOI logic devices. However, the SiGe condensation technique still requires challenges to be solved for an optimized use in an industrial environment. SiGe oxidation kinetics, upon which the condensation technique is founded, has still not reached a consensus in spite of various studies which gave insights into the matter. This paper aims to bridge the gaps between these studies by covering various oxidation processes relevant to today's technological needs with a new and quantitative analysis methodology. We thus address oxidation kinetics of SiGe with three Ge concentrations (0%, 10%, and 30%) by means of dry rapid thermal oxidation, in-situ steam generation oxidation, and dry furnace oxidation. Oxide thicknesses in the 50 Å to 150 Å range grown with oxidation temperatures between 850 and 1100 °C were targeted. The present work shows first that for all investigated processes, oxidation follows a parabolic regime even for thin oxides, which indicates a diffusion-limited oxidation regime. We also observe that, for all investigated processes, the SiGe oxidation rate is systematically higher than that of Si. The amplitude of the variation of oxidation kinetics of SiGe with respect to Si is found to be strongly dependent on the process type. Second, a new quantitative analysis methodology of oxidation kinetics is introduced. This methodology allows us to highlight the dependence of oxidation kinetics on the Ge concentration at the oxidation interface, which is modulated by the pile-up mechanism. Our results show that the oxidation rate increases with the Ge concentration at the oxidation interface.
Kingsolver, J G; Massie, K R; Ragland, G J; Smith, M H
2007-05-01
The temperature-size rule is a common pattern of phenotypic plasticity in which higher temperature during development results in a smaller adult body size (i.e. a thermal reaction norm with negative slope). Examples and exceptions to the rule are known in multiple groups of organisms, but rapid population differentiation in the temperature-size rule has not been explored. Here we examine the genetic and parental contributions to population differentiation in thermal reaction norms for size, development time and survival in the Cabbage White Butterfly Pieris rapae, for two geographical populations that have likely diverged within the past 150 years. We used split-sibship experiments with two temperature treatments (warm and cool) for P. rapae from Chapel Hill, NC, and from Seattle, WA. Mixed-effect model analyses demonstrate significant genetic differences between NC and WA populations for adult size and for thermal reaction norms for size. Mean adult mass was 12-24% greater in NC than in WA populations for both temperature treatments; mean size was unaffected or decreased with temperature (the temperature-size rule) for the WA population, but size increased with temperature for the NC population. Our study shows that the temperature-size rule and related thermal reaction norms can evolve rapidly within species in natural field conditions. Rapid evolutionary divergence argues against the existence of a simple, general mechanistic constraint as the underlying cause of the temperature-size rule.
Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing
Bates, John B.
2003-04-29
Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.
Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing
Bates, John B.
2002-01-01
Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.
Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing
Bates, John B.
2003-05-13
Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.
Zhou, Rong; Basile, Franco
2017-09-05
A method based on plasmon surface resonance absorption and heating was developed to perform a rapid on-surface protein thermal decomposition and digestion suitable for imaging mass spectrometry (MS) and/or profiling. This photothermal process or plasmonic thermal decomposition/digestion (plasmonic-TDD) method incorporates a continuous wave (CW) laser excitation and gold nanoparticles (Au-NPs) to induce known thermal decomposition reactions that cleave peptides and proteins specifically at the C-terminus of aspartic acid and at the N-terminus of cysteine. These thermal decomposition reactions are induced by heating a solid protein sample to temperatures between 200 and 270 °C for a short period of time (10-50 s per 200 μm segment) and are reagentless and solventless, and thus are devoid of sample product delocalization. In the plasmonic-TDD setup the sample is coated with Au-NPs and irradiated with 532 nm laser radiation to induce thermoplasmonic heating and bring about site-specific thermal decomposition on solid peptide/protein samples. In this manner the Au-NPs act as nanoheaters that result in a highly localized thermal decomposition and digestion of the protein sample that is independent of the absorption properties of the protein, making the method universally applicable to all types of proteinaceous samples (e.g., tissues or protein arrays). Several experimental variables were optimized to maximize product yield, and they include heating time, laser intensity, size of Au-NPs, and surface coverage of Au-NPs. Using optimized parameters, proof-of-principle experiments confirmed the ability of the plasmonic-TDD method to induce both C-cleavage and D-cleavage on several peptide standards and the protein lysozyme by detecting their thermal decomposition products with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The high spatial specificity of the plasmonic-TDD method was demonstrated by using a mask to digest designated sections of the sample surface with the heating laser and MALDI-MS imaging to map the resulting products. The solventless nature of the plasmonic-TDD method enabled the nonenzymatic on-surface digestion of proteins to proceed with undetectable delocalization of the resulting products from their precursor protein location. The advantages of this novel plasmonic-TDD method include short reaction times (<30 s/200 μm), compatibility with MALDI, universal sample compatibility, high spatial specificity, and localization of the digestion products. These advantages point to potential applications of this method for on-tissue protein digestion and MS-imaging/profiling for the identification of proteins, high-fidelity MS imaging of high molecular weight (>30 kDa) proteins, and the rapid analysis of formalin-fixed paraffin-embedded (FFPE) tissue samples.
Essa, Ebtessam A; Elmarakby, Amira O; Donia, Ahmed M A; El Maghraby, Gamal M
2017-09-01
The aim of this work was to investigate the potential of controlled precipitation of flurbiprofen on solid surface, in the presence or absence of hydrophilic polymers, as a tool for enhanced dissolution rate of the drug. The work was extended to develop rapidly disintegrated tablets. This strategy provides simple technique for dissolution enhancement of slowly dissolving drugs with high scaling up potential. Aerosil was dispersed in ethanolic solution of flurbiprofen in the presence and absence of hydrophilic polymers. Acidified water was added as antisolvent to produce controlled precipitation. The resultant particles were centrifuged and dried at ambient temperature before monitoring the dissolution pattern. The particles were also subjected to FTIR spectroscopic, X-ray diffraction and thermal analyses. The FTIR spectroscopy excluded any interaction between flurbiprofen and excipients. The thermal analysis reflected possible change in the crystalline structure and or crystal size of the drug after controlled precipitation in the presence of hydrophilic polymers. This was further confirmed by X-ray diffraction. The modulation in the crystalline structure and size was associated with a significant enhancement in the dissolution rate of flurbiprofen. Optimum formulations were successfully formulated as rapidly disintegrating tablet with subsequent fast dissolution. Precipitation on a large solid surface area is a promising strategy for enhanced dissolution rate with the presence of hydrophilic polymers during precipitation process improving the efficiency.
Morales, Fermín
2013-01-01
Under excess light, the efficient PSII light-harvesting antenna is switched into a photoprotected state in which potentially harmful absorbed energy is thermally dissipated. Changes occur rapidly and reversibly, enhanced by de-epoxidation of violaxanthin (V) to zeaxanthin (Z). This process is usually measured as non-photochemical quenching (NPQ) of chlorophyll (Chl) fluorescence. Using instrumentation for instantaneous leaf freezing, NPQ, spectral reflectance, and interconversions within the xanthophyll cycle with time resolution of seconds were recorded from Quercus coccifera leaves during low light (LL) to high light (HL) transitions, followed by relaxation at LL. During the first 30 s of both the LL to HL and HL to LL transitions, no activity of the xanthophyll cycle was detected, whereas 70–75% of the NPQ was formed and relaxed, respectively, by that time, the latter being traits of a rapidly reversible photoprotective energy dissipation. Three different Z pools were identified, which play different roles in energy dissipation and photoprotection. In conclusion, ΔpH was crucial to NPQ formation and relaxation in Q. coccifera during light transitions. Only a minor fraction of Z was associated to quenching, whereas the largest Z pool was not related to thermal dissipation. The latter is proposed to participate in photoprotection acting as antioxidant. PMID:23390289
Multi-sensor fusion over the World Trade Center disaster site
NASA Astrophysics Data System (ADS)
Rodarmel, Craig; Scott, Lawrence; Simerlink, Deborah A.; Walker, Jeffrey
2002-09-01
The immense size and scope of the rescue and clean-up of the World Trade Center site created a need for data that would provide a total overview of the disaster area. To fulfill this need, the New York State Office for Technology (NYSOFT) contracted with EarthData International to collect airborne remote sensing data over Ground Zero with an airborne light detection and ranging (LIDAR) sensor, a high-resolution digital camera, and a thermal camera. The LIDAR data provided a three-dimensional elevation model of the ground surface that was used for volumetric calculations and also in the orthorectification of the digital images. The digital camera provided high-resolution imagery over the site to aide the rescuers in placement of equipment and other assets. In addition, the digital imagery was used to georeference the thermal imagery and also provided the visual background for the thermal data. The thermal camera aided in the location and tracking of underground fires. The combination of data from these three sensors provided the emergency crews with a timely, accurate overview containing a wealth of information of the rapidly changing disaster site. Because of the dynamic nature of the site, the data was acquired on a daily basis, processed, and turned over to NYSOFT within twelve hours of the collection. During processing, the three datasets were combined and georeferenced to allow them to be inserted into the client's geographic information systems.
Influence of Thermal Treatment Conditions on the Properties of Dental Silicate Cements.
Voicu, Georgeta; Popa, Alexandru Mihai; Badanoiu, Alina Ioana; Iordache, Florin
2016-02-18
In this study the sol-gel process was used to synthesize a precursor mixture for the preparation of silicate cement, also called mineral trioxide aggregate (MTA) cement. This mixture was thermally treated under two different conditions (1400 °C/2 h and 1450 °C/3 h) followed by rapid cooling in air. The resulted material (clinker) was ground for one hour in a laboratory planetary mill (v = 150 rot/min), in order to obtain the MTA cements. The setting time and mechanical properties, in vitro induction of apatite formation by soaking in simulated body fluid (SBF) and cytocompatibility of the MTA cements were assessed in this study. The hardening processes, nature of the reaction products and the microstructural characteristics were also investigated. The anhydrous and hydrated cements were characterized by different techniques e.g., X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR) and thermal analysis (DTA-DTG-TG). The setting time of the MTA cement obtained by thermal treatment at 1400 °C/2 h (MTA1) was 55 min and 15 min for the MTA cement obtained at 1450 °C/3 h (MTA2). The compressive strength values were 18.5 MPa (MTA1) and 22.9 MPa (MTA2). Both MTA cements showed good bioactivity (assessed by an in vitro test), good cytocompatibility and stimulatory effect on the proliferation of cells.
Thermal rejuvenation in metallic glasses
NASA Astrophysics Data System (ADS)
Saida, Junji; Yamada, Rui; Wakeda, Masato; Ogata, Shigenobu
2017-12-01
Structural rejuvenation in metallic glasses by a thermal process (i.e. through recovery annealing) was investigated experimentally and theoretically for various alloy compositions. An increase in the potential energy, a decrease in the density, and a change in the local structure as well as mechanical softening were observed after thermal rejuvenation. Two parameters, one related to the annealing temperature, Ta/Tg, and the other related to the cooling rate during the recovery annealing process, Vc/Vi, were proposed to evaluate the rejuvenation phenomena. A rejuvenation map was constructed using these two parameters. Since the thermal history of metallic glasses is reset above 1.2Tg, accompanied by a change in the local structure, it is essential that the condition of Ta/Tg ≥ 1.2 is satisfied during annealing. The glassy structure transforms into a more disordered state with the decomposition of icosahedral short-range order within this temperature range. Therefore, a new glassy structure (rejuvenation) depending on the subsequent quenching rate is generated. Partial rejuvenation also occurs in a Zr55Al10Ni5Cu30 bulk metallic glass when annealing is performed at a low temperature (Ta/Tg 1.07) followed by rapid cooling. This behavior probably originates from disordering in the weakly bonded (loosely packed) region. This study provides a novel approach to improving the mechanical properties of metallic glasses by controlling their glassy structure.
Thermally-driven Coupled THM Processes in Shales
NASA Astrophysics Data System (ADS)
Rutqvist, J.
2017-12-01
Temperature changes can trigger strongly coupled thermal-hydrological-mechanical (THM) processes in shales that are important to a number of subsurface energy applications, including geologic nuclear waste disposal and hydrocarbon extraction. These coupled processes include (1) direct pore-volume couplings, by thermal expansion of trapped pore-fluid that triggers instantaneous two-way couplings between pore fluid pressure and mechanical deformation, and (2) indirect couplings in terms of property changes, such as changes in mechanical stiffness, strength, and permeability. Direct pore-volume couplings have been studied in situ during borehole heating experiments in shale (or clay stone) formations at Mont Terri and Bure underground research laboratories in Switzerland and France. Typically, the temperature changes are accompanied with a rapid increase in pore pressure followed by a slower decrease towards initial (pre-heating) pore pressure. Coupled THM modeling of these heater tests shows that the pore pressure increases because the thermal expansion coefficient of the fluid is much higher than that of the porous clay stone. Such thermal pressurization induces fluid flow away from the pressurized area towards areas of lower pressure. The rate of pressure increase and magnitude of peak pressure depends on the rate of heating, pore-compressibility, and permeability of the shale. Modeling as well as laboratory experiments have shown that if the pore pressure increase is sufficiently large it could lead to fracturing of the shale or shear slip along pre-existing bedding planes. Another set of data and observations have been collected associated with studies related to concentrated heating and cooling of oil-shales and shale-gas formations. Heating may be used to enhance production from tight oil-shale, whereas thermal stimulation has been attempted for enhanced shale-gas extraction. Laboratory experiments on shale have shown that strength and elastic deformation modulus decreases with temperature while the rate creep deformations increase with temperature. Such temperature dependency also affects the well stability and zonal sealing across shale layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pankratov, I. M., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Zhou, R. J., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Hu, L. Q.
2015-07-15
Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot andmore » its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.« less
NASA Astrophysics Data System (ADS)
Pankratov, I. M.; Zhou, R. J.; Hu, L. Q.
2015-07-01
Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.
Rapid thermal cycling of new technology solar array blanket coupons
NASA Technical Reports Server (NTRS)
Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.
1990-01-01
NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.
NASA Technical Reports Server (NTRS)
Stecura, S.
1979-01-01
A cyclic furnace study was conducted between 990 - 280 C and 1095 - 280 C to evaluate the effects of yttrium, chromium, and aluminum concentrations in nickel base alloy bond coatings and also the effect of the bond coating thickness on the performance of yttria-stabilized zirconia thermal barrier coatings. The presence and the concentration of yttrium is very critical. Without yttrium, rapid oxidation of Ni-Al, Ni-Cr, and Ni-Cr-Al bond coatings causes zirconia thermal barrier coatings to fail very rapidly. Concentrations of chrominum and aluminum in Ni-Cr-Al-Y bond coating have a very significant effect on the thermal barrier coating life. This effect, however, is not as great as that due to yttrium. Furthermore, the thickness and the thickness uniformity also have a very significant effect on the life of the thermal barrier system.
Thermal Analysis Methods for Aerobraking Heating
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.; Gasbarre, Joseph F.; Dec, John A.
2005-01-01
As NASA begins exploration of other planets, a method of non-propulsively slowing vehicles at the planet, aerobraking, may become a valuable technique for managing vehicle design mass and propellant. An example of this is Mars Reconnaissance Orbiter (MRO), which will launch in late 2005 and reach Mars in March of 2006. In order to save propellant, MRO will use aerobraking to modify the initial orbit at Mars. The spacecraft will dip into the atmosphere briefly on each orbit, and during the drag pass, the atmospheric drag on the spacecraft will slow it, thus lowering the orbit apoapsis. The largest area on the spacecraft, and that most affected by the heat generated during the aerobraking process, is the solar arrays. A thermal analysis of the solar arrays was conducted at NASA Langley, to simulate their performance throughout the entire roughly 6-month period of aerobraking. Several interesting methods were used to make this analysis more rapid and robust. Two separate models were built for this analysis, one in Thermal Desktop for radiation and orbital heating analysis, and one in MSC.Patran for thermal analysis. The results from the radiation model were mapped in an automated fashion to the Patran thermal model that was used to analyze the thermal behavior during the drag pass. A high degree of automation in file manipulation as well as other methods for reducing run time were employed, since toward the end of the aerobraking period the orbit period is short, and in order to support flight operations the runs must be computed rapidly. All heating within the Patran Thermal model was combined in one section of logic, such that data mapped from the radiation model and aeroheating model, as well as skin temperature effects on the aeroheating and surface radiation, could be incorporated easily. This approach calculates the aeroheating at any given node, based on its position and temperature as well as the density and velocity at that trajectory point. Run times on several different processors, computer hard drives, and operating systems (Windows versus Linux) were evaluated.
Molecular evolution and thermal adaptation
NASA Astrophysics Data System (ADS)
Chen, Peiqiu
2011-12-01
In this thesis, we address problems in molecular evolution, thermal adaptation, and the kinetics of adaptation of bacteria and viruses to elevated environmental temperatures. We use a nearly neutral fitness model where the replication speed of an organism is proportional to the copy number of folded proteins. Our model reproduces the distribution of stabilities of natural proteins in excellent agreement with experiment. We find that species with high mutation rates tend to have less stable proteins compared to species with low mutation rate. We found that a broad distribution of protein stabilities observed in the model and in experiment is the key determinant of thermal response for viruses and bacteria. Our results explain most of the earlier experimental observations: striking asymmetry of thermal response curves, the absence of evolutionary trade-off which was expected but not found in experiments, correlation between denaturation temperature for several protein families and the Optimal Growth Temperature (OGT) of their carrier organisms, and proximity of bacterial or viral OGTs to their evolutionary temperatures. Our theory quantitatively and with high accuracy described thermal response curves for 35 bacterial species. The model also addresses the key to adaptation is in weak-link genes (WLG), which encode least thermodynamically stable essential proteins in the proteome. We observe, as in experiment, a two-stage adaptation process. The first stage is a Luria-Delbruck type of selection, whereby rare WLG alleles, whose proteins are more stable than WLG proteins of the majority of the population (either due to standing genetic variation or due to an early acquired mutation), rapidly rise to fixation. The second stage constitutes subsequent slow accumulation of mutations in an adapted population. As adaptation progresses, selection regime changes from positive to neutral: Selection coefficient of beneficial mutations scales as a negative power of number of generations. Diversity plays an important role in thermal adaptation: While monoclonal strains adapt via acquisition and rapid fixation of new early mutations, wild population adapt via standing genetic variations, and they are more robust against thermal shocks due to greater diversity within the initial population.
NASA Astrophysics Data System (ADS)
Back, Seunghyun; Kang, Bongchul
2018-02-01
Fabricating copper electrodes on heat-sensitive polymer films in air is highly challenging owing to the need of expensive copper nanoparticles, rapid oxidation of precursor during sintering, and limitation of sintering temperature to prevent the thermal damage of the polymer film. A laser-induced hybrid process of reductive sintering and adhesive transfer is demonstrated to cost-effectively fabricate copper electrode on a polyethylene film with a thermal resistance below 100 °C. A laser-induced reductive sintering process directly fabricates a high-conductive copper electrode onto a glass donor from copper oxide nanoparticle solution via photo-thermochemical reduction and agglomeration of copper oxide nanoparticles. The sintered copper patterns were transferred in parallel to a heat-sensitive polyethylene film through self-selective surface adhesion of the film, which was generated by the selective laser absorption of the copper pattern. The method reported here could become one of the most important manufacturing technologies for fabricating low-cost wearable and disposable electronics.
Enhanced carrier multiplication in engineered quasi-type-II quantum dots
Cirloganu, Claudiu M.; Padilha, Lazaro A.; Lin, Qianglu; Makarov, Nikolay S.; Velizhanin, Kirill A.; Luo, Hongmei; Robel, Istvan; Pietryga, Jeffrey M.; Klimov, Victor I.
2014-01-01
One process limiting the performance of solar cells is rapid cooling (thermalization) of hot carriers generated by higher-energy solar photons. In principle, the thermalization losses can be reduced by converting the kinetic energy of energetic carriers into additional electron-hole pairs via carrier multiplication (CM). While being inefficient in bulk semiconductors this process is enhanced in quantum dots, although not sufficiently high to considerably boost the power output of practical devices. Here we demonstrate that thick-shell PbSe/CdSe nanostructures can show almost a fourfold increase in the CM yield over conventional PbSe quantum dots, accompanied by a considerable reduction of the CM threshold. These structures enhance a valence-band CM channel due to effective capture of energetic holes into long-lived shell-localized states. The attainment of the regime of slowed cooling responsible for CM enhancement is indicated by the development of shell-related emission in the visible observed simultaneously with infrared emission from the core. PMID:24938462
NASA Astrophysics Data System (ADS)
Evlyukhin, E.; Museur, L.; Traore, M.; Perruchot, C.; Zerr, A.; Kanaev, A.
2015-12-01
The synthesis of highly biocompatible polymers is important for modern biotechnologies and medicine. Here, we report a unique process based on a two-step high-pressure ramp (HPR) for the ultrafast and efficient bulk polymerization of 2-(hydroxyethyl)methacrylate (HEMA) at room temperature without photo- and thermal activation or addition of initiator. The HEMA monomers are first activated during the compression step but their reactivity is hindered by the dense glass-like environment. The rapid polymerization occurs in only the second step upon decompression to the liquid state. The conversion yield was found to exceed 90% in the recovered samples. The gel permeation chromatography evidences the overriding role of HEMA2•• biradicals in the polymerization mechanism. The HPR process extends the application field of HP-induced polymerization, beyond the family of crystallized monomers considered up today. It is also an appealing alternative to typical photo- or thermal activation, allowing the efficient synthesis of highly pure organic materials.
Study of the glass formation of high temperature superconductors
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Kaukler, William F.; Rolin, Terry
1992-01-01
A number of compositions of ceramic oxide high T(sub c) superconductors were elevated for their glass formation ability by means of rapid thermal analysis during quenching, optical, and electron microscopy of the quenched samples, and with subsequent DSC measurements. Correlations between experimental measurements and the methodical composition changes identified the formulations of superconductors that can easily form glass. The superconducting material was first formed as a glass; then, with subsequent devitrification, it was formed into a bulk crystalline superconductor by a series of processing methods.
Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S
2014-11-04
Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.
NASA Astrophysics Data System (ADS)
Gao, Youtang; Ding, Huan; Xue, Xiao; Xu, Yuan; Chang, Benkang
2010-10-01
Testing device TST-05B, which is suitable for adaptability test of semiconductor devices, electronic products and other military equipment under the condition of the surrounding air temperature rapidly changing, is used here for temperature shock test.Thermal stability technology of thermoelectric cooler control circuit infrared sight under temperature shock is studied in this paper. Model parameters and geometry is configured for ADI devices (ADN8830), welding material and PCB which are used in system. Thermoelectric cooler control circuit packaged by CSP32 distribution are simulated and analyzed by thermal shock and waveform through engineering finite element analysis software ANSYYS. Because solders of the whole model have much stronger stress along X direction than that of other directions, initial stress constraints along X direction are primarily considered when the partial model of single solder is imposed by thermal load. When absolute thermal loads stresses of diagonal nodes with maximum strains are separated from the whole model, interpolation is processed according to thermal loads circulation. Plastic strains and thermal stresses of nodes in both sides of partial model are obtained. The analysis results indicates that with thermal load circulation, maximum forces of each circulation along X direction are increasingly enlarged and with the accumulation of plastic strains of danger point, at the same time structural deformation and the location of maximum equivalent plastic strain in the solder joints at the first and eighth, the composition will become invalid in the end.
NASA Astrophysics Data System (ADS)
Liang, Ji-Ran; Wu, Mai-Jun; Hu, Ming; Liu, Jian; Zhu, Nai-Wei; Xia, Xiao-Xu; Chen, Hong-Da
2014-07-01
Vanadium dioxide thin films have been fabricated through sputtering vanadium thin films and rapid thermal annealing in oxygen. The microstructure and the metal—insulator transition properties of the vanadium dioxide thin films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and a spectrometer. It is found that the preferred orientation of the vanadium dioxide changes from (1¯11) to (011) with increasing thickness of the vanadium thin film after rapid thermal annealing. The vanadium dioxide thin films exhibit an obvious metal—insulator transition with increasing temperature, and the phase transition temperature decreases as the film thickness increases. The transition shows hysteretic behaviors, and the hysteresis width decreases as the film thickness increases due to the higher concentration carriers resulted from the uncompleted lattice. The fabrication of vanadium dioxide thin films with higher concentration carriers will facilitate the nature study of the metal—insulator transition.
Distributed databases for materials study of thermo-kinetic properties
NASA Astrophysics Data System (ADS)
Toher, Cormac
2015-03-01
High-throughput computational materials science provides researchers with the opportunity to rapidly generate large databases of materials properties. To rapidly add thermal properties to the AFLOWLIB consortium and Materials Project repositories, we have implemented an automated quasi-harmonic Debye model, the Automatic GIBBS Library (AGL). This enables us to screen thousands of materials for thermal conductivity, bulk modulus, thermal expansion and related properties. The search and sort functions of the online database can then be used to identify suitable materials for more in-depth study using more precise computational or experimental techniques. AFLOW-AGL source code is public domain and will soon be released within the GNU-GPL license.
Jensen, Reed J.; Lyman, John L.; King, Joe D.; Guettler, Robert D.
2000-01-01
The red shift of the absorption spectrum of CO.sub.2 with increasing temperature permits the use of sunlight to photolyze CO.sub.2 to CO. The process of the present invention includes: preheating CO.sub.2 to near 1800 K; exposing the preheated CO.sub.2 to sunlight, whereby CO, O.sub.2 and O are produced; and cooling the hot product mix by rapid admixture with room temperature CO.sub.2. The excess thermal energy may be used to produce electricity and to heat additional CO.sub.2 for subsequent process steps. The product CO may be used to generate H.sub.2 by the shift reaction or to synthesize methanol.
NASA Astrophysics Data System (ADS)
Fan, Ching-Lin; Shang, Ming-Chi; Hsia, Mao-Yuan; Wang, Shea-Jue; Huang, Bohr-Ran; Lee, Win-Der
2016-03-01
A Microwave-Induction Heating (MIH) scheme is proposed for the poly(4-vinylphenol) (PVP) gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.
NASA Astrophysics Data System (ADS)
Chen, Junyi; Subramani, Thiyagu; Sun, Yonglie; Jevasuwan, Wipakorn; Fukata, Naoki
2018-05-01
Silicon nanowire solar cells were fabricated by metal catalyzed electroless etching (MCEE) followed by thermal chemical vapor deposition (CVD). In this study, we investigated two effects, a UV/ozone treatment and the use of a micro-grid electrodes, to enhance light absorption and reduce the optic losses in the solar cell device. The UV/ozone treatment successfully improved the conversion efficiency. The micro-grid electrodes were then applied in solar cell devices subjected to a back surface field (BSF) treatment and rapid thermal annealing (RTA). These effects improved the conversion efficiency from 9.4% to 10.9%. Moreover, to reduce surface recombination and improve the continuity of front electrodes, we optimized the etching time of the MCEE process, giving a high efficiency of 12.3%.
Outbursts of H2O in Comet P/Halley
NASA Astrophysics Data System (ADS)
Larson, H. P.; Hu, H.-Y.; Mumma, M. J.; Weaver, H. A.
1990-07-01
Comet Halley gas-production monitoring efforts in March 1986 with the NASA Kuiper Airborne Observatory's Fourier transform spectrometer have indicated rapid temporal variations in H2O emissions; a continuous record of an H2O outburst was thus obtained. The event, in which H2O brightness increased by a factor of 2.2 in less than 10 min, is ascribable to an energetic process in the nucleus whose character may have been that of amorphous H2O ice crystallization, chemical explosion, thermal stress, or a compressed gas pocket. The timing and energy of the event appear to require an internal energy source; amorphous ice crystallization is held to be most consistent with compositional and thermal models of cometary nuclei as well as the observations.
NASA Astrophysics Data System (ADS)
Onuki, Akira
2007-12-01
We present a general theory of thermoacoustic phenomena in one phase states of one-component fluids. Singular behavior is predicted in supercritical fluids near the critical point. In a one-dimensional geometry we start with linearized hydrodynamic equations taking into account the effects of heat conduction in the boundary walls and the bulk viscosity. We introduce a coefficient Z(ω) characterizing reflection of sound with frequency ω at the boundary in a rigid cell. As applications, we examine acoustic eigenmodes, response to time-dependent perturbations, and sound emission and reflection. Resonance and rapid adiabatic changes are noteworthy. In these processes, the role of the thermal diffusion layers is enhanced near the critical point because of the strong critical divergence of the thermal expansion.
Rapid Analysis of Trace Drugs and Metabolites Using a Thermal Desorption DART-MS Configuration.
Sisco, Edward; Forbes, Thomas P; Staymates, Matthew E; Gillen, Greg
2016-01-01
The need to analyze trace narcotic samples rapidly for screening or confirmatory purposes is of increasing interest to the forensic, homeland security, and criminal justice sectors. This work presents a novel method for the detection and quantification of trace drugs and metabolites off of a swipe material using a thermal desorption direct analysis in real time mass spectrometry (TD-DART-MS) configuration. A variation on traditional DART, this configuration allows for desorption of the sample into a confined tube, completely independent of the DART source, allowing for more efficient and thermally precise analysis of material present on a swipe. Over thirty trace samples of narcotics, metabolites, and cutting agents deposited onto swipes were rapidly differentiated using this methodology. The non-optimized method led to sensitivities ranging from single nanograms to hundreds of picograms. Direct comparison to traditional DART with a subset of the samples highlighted an improvement in sensitivity by a factor of twenty to thirty and an increase in reproducibility sample to sample from approximately 45 % RSD to less than 15 % RSD. Rapid extraction-less quantification was also possible.
ERIC Educational Resources Information Center
Badrinarayanan, Prashanth; Kessler, Michael R.
2010-01-01
A detailed understanding of the effect of thermal history on the thermal properties of semicrystalline polymers is essential for materials scientists and engineers. In this article, we describe a materials science laboratory to demonstrate the effect of parameters such as heating rate and isothermal annealing conditions on the thermal behavior of…
Denny, M W; Dowd, W W
2012-03-15
As the air temperature of the Earth rises, ecological relationships within a community might shift, in part due to differences in the thermal physiology of species. Prediction of these shifts - an urgent task for ecologists - will be complicated if thermal tolerance itself can rapidly evolve. Here, we employ a mechanistic approach to predict the potential for rapid evolution of thermal tolerance in the intertidal limpet Lottia gigantea. Using biophysical principles to predict body temperature as a function of the state of the environment, and an environmental bootstrap procedure to predict how the environment fluctuates through time, we create hypothetical time-series of limpet body temperatures, which are in turn used as a test platform for a mechanistic evolutionary model of thermal tolerance. Our simulations suggest that environmentally driven stochastic variation of L. gigantea body temperature results in rapid evolution of a substantial 'safety margin': the average lethal limit is 5-7°C above the average annual maximum temperature. This predicted safety margin approximately matches that found in nature, and once established is sufficient, in our simulations, to allow some limpet populations to survive a drastic, century-long increase in air temperature. By contrast, in the absence of environmental stochasticity, the safety margin is dramatically reduced. We suggest that the risk of exceeding the safety margin, rather than the absolute value of the safety margin, plays an underappreciated role in the evolution of thermal tolerance. Our predictions are based on a simple, hypothetical, allelic model that connects genetics to thermal physiology. To move beyond this simple model - and thereby potentially to predict differential evolution among populations and among species - will require significant advances in our ability to translate the details of thermal histories into physiological and population-genetic consequences.
Goyal, Megha; Chaudhuri, Tapan K.; Kuwajima, Kunihiro
2014-01-01
Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5–1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C). PMID:25548918
Goyal, Megha; Chaudhuri, Tapan K; Kuwajima, Kunihiro
2014-01-01
Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5-1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C).
A Rapid and Low-Cost PCR Thermal Cycler for Low Resource Settings
Wong, Grace; Wong, Isaac; Chan, Kamfai; Hsieh, Yicheng; Wong, Season
2015-01-01
Background Many modern molecular diagnostic assays targeting nucleic acids are typically confined to developed countries or to the national reference laboratories of developing-world countries. The ability to make technologies for the rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a revolutionary step forward in global health. Many molecular assays are also developed based on polymerase chain reactions (PCR), which require thermal cyclers that are relatively heavy (>20 pounds) and need continuous electrical power. The temperature ramping speed of most economical thermal cyclers are relatively slow (2 to 3°C/s) so a polymerase chain reaction can take 1 to 2 hours. Most of all, these thermal cyclers are still too expensive ($2k to $4k) for low-resource setting uses. Methodology/Principal Findings In this article, we demonstrate the development of a low-cost and rapid water bath based thermal cycler that does not require active temperature control or continuous power supply during PCR. This unit costs $130 to build using commercial off-the-shelf items. The use of two or three vacuum-insulated stainless-steel Thermos food jars containing heated water (for denaturation and annealing/extension steps) and a layer of oil on top of the water allow for significantly stabilized temperatures for PCR to take place. Using an Arduino-based microcontroller, we automate the “archaic” method of hand-transferring PCR tubes between water baths. Conclusions/Significance We demonstrate that this innovative unit can deliver high speed PCR (17 s per PCR cycle) with the potential to go beyond the 1,522 bp long amplicons tested in this study and can amplify from templates down to at least 20 copies per reaction. The unit also accepts regular PCR tubes and glass capillary tubes. The PCR efficiency of our thermal cycler is not different from other commercial thermal cyclers. When combined with a rapid nucleic acid detection approach, the thermos thermal cycler (TTC) can enable on-site molecular diagnostics in low-resource settings. PMID:26146999
On the Mechanism of Microwave Flash Sintering of Ceramics
Bykov, Yury V.; Egorov, Sergei V.; Eremeev, Anatoly G.; Kholoptsev, Vladislav V.; Plotnikov, Ivan V.; Rybakov, Kirill I.; Sorokin, Andrei A.
2016-01-01
The results of a study of ultra-rapid (flash) sintering of oxide ceramic materials under microwave heating with high absorbed power per unit volume of material (10–500 W/cm3) are presented. Ceramic samples of various compositions—Al2O3; Y2O3; MgAl2O4; and Yb(LaO)2O3—were sintered using a 24 GHz gyrotron system to a density above 0.98–0.99 of the theoretical value in 0.5–5 min without isothermal hold. An analysis of the experimental data (microwave power; heating and cooling rates) along with microstructure characterization provided an insight into the mechanism of flash sintering. Flash sintering occurs when the processing conditions—including the temperature of the sample; the properties of thermal insulation; and the intensity of microwave radiation—facilitate the development of thermal runaway due to an Arrhenius-type dependency of the material’s effective conductivity on temperature. The proper control over the thermal runaway effect is provided by fast regulation of the microwave power. The elevated concentration of defects and impurities in the boundary regions of the grains leads to localized preferential absorption of microwave radiation and results in grain boundary softening/pre-melting. The rapid densification of the granular medium with a reduced viscosity of the grain boundary phase occurs via rotation and sliding of the grains which accommodate their shape due to fast diffusion mass transport through the (quasi-)liquid phase. The same mechanism based on a thermal runaway under volumetric heating can be relevant for the effect of flash sintering of various oxide ceramics under a dc/ac voltage applied to the sample. PMID:28773807
Defect reduction in MBE-grown AlN by multicycle rapid thermal annealing
NASA Astrophysics Data System (ADS)
Greenlee, Jordan D.; Gunning, Brendan; Feigelson, Boris N.; Anderson, Travis J.; Koehler, Andrew D.; Hobart, Karl D.; Kub, Francis J.; Doolittle, W. Alan
2016-01-01
Multicycle rapid thermal annealing (MRTA) is shown to reduce the defect density of molecular beam epitaxially grown AlN films. No damage to the AlN surface occurred after performing the MRTA process at 1520°C. However, the individual grain structure was altered, with the emergence of step edges. This change in grain structure and diffusion of AlN resulted in an improvement in the crystalline structure. The Raman E2 linewidth decreased, confirming an improvement in crystal quality. The optical band edge of the AlN maintained the expected value of 6.2 eV throughout MRTA annealing, and the band edge sharpened after MRTA annealing at increased temperatures, providing further evidence of crystalline improvement. X-ray diffraction shows a substantial improvement in the (002) and (102) rocking curve FWHM for both the 1400 and 1520°C MRTA annealing conditions compared to the as-grown films, indicating that the screw and edge type dislocation densities decreased. Overall, the MRTA post-growth annealing of AlN lowers defect density, and thus will be a key step to improving optoelectronic and power electronic devices. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Lemal, Philipp; Geers, Christoph; Monnier, Christophe A.; Crippa, Federica; Daum, Leopold; Urban, Dominic A.; Rothen-Rutishauser, Barbara; Bonmarin, Mathias; Petri-Fink, Alke; Moore, Thomas L.
2017-04-01
Lock-in thermography (LIT) is a sensitive imaging technique generally used in engineering and materials science (e.g. detecting defects in composite materials). However, it has recently been expanded for investigating the heating power of nanomaterials, such as superparamagnetic iron oxide nanoparticles (SPIONs). Here we implement LIT as a rapid and reproducible method that can evaluate the heating potential of various sizes of SPIONs under an alternating magnetic field (AMF), as well as the limits of detection for each particle size. SPIONs were synthesized via thermal decomposition and stabilized in water via a ligand transfer process. Thermographic measurements of SPIONs were made by stimulating particles of varying sizes and increasing concentrations under an AMF. Furthermore, a commercially available SPION sample was included as an external reference. While the size dependent heating efficiency of SPIONs has been previously described, our objective was to probe the sensitivity limits of LIT. For certain size regimes it was possible to detect signals at concentrations as low as 0.1 mg Fe/mL. Measuring at different concentrations enabled a linear regression analysis and extrapolation of the limit of detection for different size nanoparticles.
NASA Astrophysics Data System (ADS)
Watson, Gregory S.; Gregory, Emily A.; Johnstone, Charmaine; Berlino, Manuel; Green, David W.; Peterson, Nicola R.; Schoeman, David S.; Watson, Jolanta A.
2018-04-01
Ghost crabs, Ocypode cordimanus, inhabit relatively hostile environments subject to thermal fluctuations, including both diurnal and seasonal cycles. For many ectotherms, including ghost crabs, a major challenge is to remain cool during hot daytime temperatures. This can be achieved by adopting a fossorial lifestyle, taking advantage of thermal refuge afforded by burrows of sufficient depth. Another consideration, often overlooked, is the potential advantage associated with ready access to a thermal energy source (a "charging station") when surface temperatures are cooler. Being able to rapidly elevate body temperature during cool periods would enhance the crab's ability to maintain rate processes and carry out essential activities. We have measured ghost crab burrow temperature profiles at two times of the day with contrasting sun exposure (06:00 and 14:00), demonstrating how effective burrow depth (up to a maximum of 40 cm) provides thermal regulation below the surface of the sand (e.g., at dawn (06:00) and early afternoon (14:00) at a depth of 5 cm, temperatures (±SD) of 16.32 ± 0.96 °C and 25.04 ± 1.47 °C were recorded, respectively. Corresponding temperatures at a depth of 30 cm were 19.17 ± 0.59 °C and 19.78 ± 1.60 °C, respectively). This demonstrates that while temperature conditions at the surface vary dramatically from night to day, ghost crab burrows can maintain relatively constant temperatures at the burrow base throughout the diurnal cycle, at least during winter. As a consequence, the burrow heat signatures undergo a corresponding thermal gradient reversal between night and day, as revealed by infra-red photography. Complementing these field observations, we also determined heating and cooling times/constants for O. cordimanus in the laboratory (τ = 17.54 and 16.59 JK-1, respectively), and analysed chemical composition of their carapace (external (with β Chitin evident) and internal (predominance of α Chitin)), which is the primary thermal interface with the environment. We find that ghost crabs both gain and lose heat relatively rapidly, which likely affects the range and duration of surface activities under different thermal conditions, and renders the thermal characteristics of their burrows vital for their persistence on beaches. Finally, we speculate that the distinctly contrasting thermal signatures of ghost crab burrows in comparison to the surrounding sand could in principle be used by crabs as spatial markers for navigation and to identify holes on return from nightly excursions, being identified either by direct thermal sensing or odours rising from the burrow base as a consequence of the thermal flux.
Efficient utilization of renewable feedstocks: the role of catalysis and process design
NASA Astrophysics Data System (ADS)
Palkovits, Regina; Delidovich, Irina
2017-11-01
Renewable carbon feedstocks such as biomass and CO2 present an important element of future circular economy. Especially biomass as highly functionalized feedstock provides manifold opportunities for the transformation into attractive platform chemicals. However, this change of the resources requires a paradigm shift in refinery design. Fossil feedstocks are processed in gas phase at elevated temperature. In contrast, biorefineries are based on processes in polar solvents at moderate conditions to selectively deoxygenate the polar, often thermally instable and high-boiling molecules. Here, challenges of catalytic deoxygenation, novel strategies for separation and opportunities provided at the interface to biotechnology are discussed in form of showcases. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.
NASA Astrophysics Data System (ADS)
Han, L.; Hole, J. A.; Lowell, R. P.; Stock, J. M.; Fuis, G. S.; Driscoll, N. W.; Kell, A. M.; Kent, G. M.; Harding, A. J.; Gonzalez-Fernandez, A.; Lázaro-Mancilla, O.
2015-12-01
Continental rifting ultimately creates a deep accommodation space for sediment. When a major river flows into a late-stage rift, thick deltaic sediment can change the thermal regime and alter the mechanisms of extension and continental breakup. The Salton Trough, the northernmost rift segment of the Gulf of California plate boundary, has experienced the same extension as the rest of the Gulf, but is filled to sea level by sediment from the Colorado River. Unlike the southern Gulf, seafloor spreading has not initiated. Instead, seismicity, high heat flow, and minor volcanoes attest to ongoing rifting of thin, transitional crust. Recently acquired controlled-source seismic refraction and wide-angle reflection data in the Salton Trough provide constraints upon crustal architecture and active rift processes. The crust in the central Salton Trough is only 17-18 km thick, with a strongly layered but relatively one-dimensional structure for ~100 km in the direction of plate motion. The upper crust includes 2-4 km of Colorado River sediment. Crystalline rock below the sediment is interpreted to be similar sediment metamorphosed by the high heat flow and geothermal activity. Meta-sediment extends to at least 9 km depth. A 4-5 km thick layer in the middle crust is either additional meta-sediment or stretched pre-existing continental crust. The lowermost 4-5 km of the crust is rift-related mafic magmatic intrusion or underplating from partial melting in the hot upper mantle. North American lithosphere in the Salton Trough has been almost or completely rifted apart. The gap has been filled by ~100 km of new transitional crust created by magmatism from below and sedimentation from above. These processes create strong lithologic, thermal, and rheologic layering. While heat flow in the rift is very high, rapid sedimentation cools the upper crust as compared to a linear geotherm. Brittle extension occurs within new meta-sedimentary rock. The lower crust, in comparison, is maintained hot and weak by the overlying sedimentary thermal blanket. The lower crust stretches by ductile flow and magmatism is not localized. In this passive rift driven by distant plate motions, rapid sedimentation and its thermal effects delay final breakup of the crust and the onset of seafloor spreading.
Metal-induced rapid transformation of diamond into single and multilayer graphene on wafer scale
Berman, Diana; Deshmukh, Sanket; Narayanan, Badri; ...
2016-07-04
The degradation of intrinsic properties of graphene during the transfer process constitutes a major challenge in graphene device fabrication, stimulating the need for direct growth of graphene on dielectric substrates. Previous attempts of metal-induced transformation of diamond and silicon carbide into graphene suffers from metal contamination and inability to scale graphene growth over large area. Here in this article, we introduce a direct approach to transform polycrystalline diamond into high-quality graphene layers on wafer scale (4 inch in diameter) using a rapid thermal annealing process facilitated by a nickel, Ni thin film catalyst on top. We show that the processmore » can be tuned to grow single or multilayer graphene with good electronic properties. Molecular dynamics simulations elucidate the mechanism of graphene growth on polycrystalline diamond. Additionally, we demonstrate the lateral growth of free-standing graphene over micron-sized pre-fabricated holes, opening exciting opportunities for future graphene/diamond-based electronics.« less
Metal-induced rapid transformation of diamond into single and multilayer graphene on wafer scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, Diana; Deshmukh, Sanket; Narayanan, Badri
The degradation of intrinsic properties of graphene during the transfer process constitutes a major challenge in graphene device fabrication, stimulating the need for direct growth of graphene on dielectric substrates. Previous attempts of metal-induced transformation of diamond and silicon carbide into graphene suffers from metal contamination and inability to scale graphene growth over large area. Here in this article, we introduce a direct approach to transform polycrystalline diamond into high-quality graphene layers on wafer scale (4 inch in diameter) using a rapid thermal annealing process facilitated by a nickel, Ni thin film catalyst on top. We show that the processmore » can be tuned to grow single or multilayer graphene with good electronic properties. Molecular dynamics simulations elucidate the mechanism of graphene growth on polycrystalline diamond. Additionally, we demonstrate the lateral growth of free-standing graphene over micron-sized pre-fabricated holes, opening exciting opportunities for future graphene/diamond-based electronics.« less
Recent developments in novel freezing and thawing technologies applied to foods.
Wu, Xiao-Fei; Zhang, Min; Adhikari, Benu; Sun, Jincai
2017-11-22
This article reviews the recent developments in novel freezing and thawing technologies applied to foods. These novel technologies improve the quality of frozen and thawed foods and are energy efficient. The novel technologies applied to freezing include pulsed electric field pre-treatment, ultra-low temperature, ultra-rapid freezing, ultra-high pressure and ultrasound. The novel technologies applied to thawing include ultra-high pressure, ultrasound, high voltage electrostatic field (HVEF), and radio frequency. Ultra-low temperature and ultra-rapid freezing promote the formation and uniform distribution of small ice crystals throughout frozen foods. Ultra-high pressure and ultrasound assisted freezing are non-thermal methods and shorten the freezing time and improve product quality. Ultra-high pressure and HVEF thawing generate high heat transfer rates and accelerate the thawing process. Ultrasound and radio frequency thawing can facilitate thawing process by volumetrically generating heat within frozen foods. It is anticipated that these novel technologies will be increasingly used in food industries in the future.
NASA Astrophysics Data System (ADS)
Kouhlane, Yacine; Bouhafs, Djoudi; Khelifati, Nabil; Guenda, Abdelkader; Demagh, Nacer-Eddine; Demagh, Assia; Pfeiffer, Pierre; Mezghiche, Salah; Hetatache, Warda; Derkaoui, Fahima; Nasraoui, Chahinez; Nwadiaru, Ogechi Vivian
2018-04-01
In this study, the carrier lifetime variation of p-type boron-doped Czochralski silicon (Cz-Si) wafers was investigated after a direct rapid thermal processing (RTP). Two wafers were passivated by silicon nitride (SiNx:H) layers, deposited by a PECVD system on both surfaces. Then the wafers were subjected to an RTP cycle at a peak temperature of 620 °C. The first wafer was protected (PW) from the direct radiative heating of the RTP furnace by placing the wafer between two as-cut Cz-Si shield wafers during the heat processing. The second wafer was not protected (NPW) and followed the same RTP cycle procedure. The carrier lifetime τ eff was measured using the QSSPC technique before and after illumination for 5 h duration at 0.5 suns. The immediate results of the measured lifetime (τ RTP ) after the RTP process have shown a regeneration in the lifetime of the two wafers with the PW wafer exhibiting an important enhancement in τ RTP as compared to the NPW wafer. The QSSPC measurements have indicated a good stable lifetime (τ d ) and a weak degradation effect was observed in the case of the PW wafer as compared to their initial lifetime value. Interferometry technique analyses have shown an enhancement in the surface roughness for the NPW wafer as compared to the protected one. Additionally, to improve the correlation between the RTP heat radiation stress and the carrier lifetime behavior, a simulation of the thermal stress and temperature profile using the finite element method on the wafers surface at RTP peak temperature of 620 °C was performed. The results confirm the reduction of the thermal stress with less heat losses for the PW wafer. Finally, the proposed method can lead to improving the lifetime of wafers by an RTP process at minimum energy costs.
Wind-Induced Atmospheric Escape: Titan
NASA Technical Reports Server (NTRS)
Hartle, Richard; Johnson, Robert; Sittler, Edward, Jr.; Sarantos, Menelaos; Simpson, David
2012-01-01
Rapid thermospheric flows can significantly enhance the estimates of the atmospheric loss rate and the structure of the atmospheric corona of a planetary body. In particular, rapid horizontal flow at the exobase can increase the corresponding constituent escape rate. Here we show that such corrections, for both thermal and non-thermal escape, cannot be ignored when calculating the escape of methane from Titan, for which drastically different rates have been proposed. Such enhancements are also relevant to Pluto and exoplanets.
Gharleghi, Ahmad; Chu, Yu-Hsien; Lin, Fei-Hung; Yang, Zong-Ren; Pai, Yi-Hsuan; Liu, Chia-Jyi
2016-03-02
A series of nanostructured co-doped Co(1-x-y)Ni(x)Fe(y)Sb3 were fabricated using a rapid hydrothermal method at 170 °C for a duration of 12 h, followed by evacuated-and-encapsulated heating at 580 °C for a short period of 5 h. The resulting samples were characterized using powder X-ray diffraction, field emission scanning electron microscopy, bulk density, electronic and thermal transport measurements. The power factor of Co(1-x-y)Ni(x)Fe(y)Sb3 is significantly enhanced in the high-temperature region due to significant enhancement of the electrical conductivity and absolute value of thermopower. The latter arises from the onset of bipolar effect being shifted to higher temperatures as compared with the non-doped CoSb3. The room temperature thermal conductivity falls in the range between 1.22 and 1.67 W m(-1) K(-1) for Co(1-x-y)Ni(x)Fe(y)Sb3. The thermal conductivity of both the (x,y) = (0.14,10) and (0.14,12) samples is measured up to 600 K and found to decrease with increasing temperature. The thermal conductivity of the (0.14,10) sample goes down to ∼1.02 W m(-1) K(-1). As a result, zT = 0.68 is attained at 600 K. The lattice thermal conductivity is analyzed to gain insight into the contribution of various scattering processes that suppress the heat transfer through the phonons in Co(1-x-y)Ni(x)Fe(y)Sb3. The effect of the simultaneous presence of Co, Ni, and Fe elements on the electronic structure and transport properties of Co(1-x-y)Ni(x)Fe(y)Sb3 is described using the quantum mechanical tunneling theory of electron transmission among the potential barriers.
An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Werner; Sam Bhattacharyya; Mike Houts
Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuelmore » and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.« less
Automatic thermographic scanning with the creation of 3D panoramic views of buildings
NASA Astrophysics Data System (ADS)
Ferrarini, G.; Cadelano, G.; Bortolin, A.
2016-05-01
Infrared thermography is widely applied to the inspection of building, enabling the identification of thermal anomalies due to the presence of hidden structures, air leakages, and moisture. One of the main advantages of this technique is the possibility to acquire rapidly a temperature map of a surface. However, due to the actual low-resolution of thermal camera and the necessity of scanning surfaces with different orientation, during a building survey it is necessary to take multiple images. In this work a device based on quantitative infrared thermography, called aIRview, has been applied during building surveys to automatically acquire thermograms with a camera mounted on a robotized pan tilt unit. The goal is to perform a first rapid survey of the building that could give useful information for the successive quantitative thermal investigations. For each data acquisition, the instrument covers a rotational field of view of 360° around the vertical axis and up to 180° around the horizontal one. The obtained images have been processed in order to create a full equirectangular projection of the ambient. For this reason the images have been integrated into a web visualization tool, working with web panorama viewers such as Google Street View, creating a webpage where it is possible to have a three dimensional virtual visit of the building. The thermographic data are embedded with the visual imaging and with other sensor data, facilitating the understanding of the physical phenomena underlying the temperature distribution.
Regolith Formation Rates and Evolution from the Diviner Lunar Radiometer
NASA Astrophysics Data System (ADS)
Hayne, P. O.; Ghent, R. R.; Bandfield, J. L.; Vasavada, A. R.; Williams, J. P.; Siegler, M. A.; Lucey, P. G.; Greenhagen, B. T.; Elder, C. M.; Paige, D. A.
2015-12-01
Fragmentation and overturn of lunar surface materials produces a layer of regolith, which increases in thickness through time. Experiments on the lunar surface during the Apollo era, combined with remote sensing, found that the upper 10's of cm of regolith exhibit a rapid increase in density and thermal conductivity with depth. This is interpreted to be the signature of impact gardening, which operates most rapidly in the uppermost layers. Gravity data from the GRAIL mission showed that impacts have also extensively fractured the deeper crust. The breakdown and mixing of crustal materials is therefore a central process to lunar evolution and must be understood in order to interpret compositional information from remote sensing and sample analysis. Recently, thermal infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner radiometer were used to provide the first remote observational constraints on the rate of ejecta breakdown around craters < 1 Ga (Ghent et al., 2014). Here, we use nighttime regolith temperatures derived from Diviner data to constrain regolith thermal inertia, thickness, and spatial variability. Applied to models, these new data help improve understanding of regolith formation on a variety of geologic units. We will also discuss several anomalous features that merit further investigation. Reference: Ghent, R. R., Hayne, P. O., Bandfield, J. L., Campbell, B. A., Allen, C. C., Carter, L. M., & Paige, D. A. (2014). Constraints on the recent rate of lunar ejecta breakdown and implications for crater ages. Geology, 42(12), 1059-1062.
NASA Astrophysics Data System (ADS)
Nabil, Mahdi; Rattner, Alexander S.
The volume-of-fluid (VOF) approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam), which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A). By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.
Oakley, Clinton A; Durand, Elysanne; Wilkinson, Shaun P; Peng, Lifeng; Weis, Virginia M; Grossman, Arthur R; Davy, Simon K
2017-06-02
Coral bleaching has devastating effects on coral survival and reef ecosystem function, but many of the fundamental cellular effects of thermal stress on cnidarian physiology are unclear. We used label-free liquid chromatography-tandem mass spectrometry to compare the effects of rapidly (33.5 °C, 24 h) and gradually (30 and 33.5 °C, 12 days) elevated temperatures on the proteome of the model symbiotic anemone Aiptasia. We identified 2133 proteins in Aiptasia, 136 of which were differentially abundant between treatments. Thermal shock, but not acclimation, resulted in significant abundance changes in 104 proteins, including those involved in protein folding and synthesis, redox homeostasis, and central metabolism. Nineteen abundant structural proteins showed particularly reduced abundance, demonstrating proteostasis disruption and potential protein synthesis inhibition. Heat shock induced antioxidant mechanisms and proteins involved in stabilizing nascent proteins, preventing protein aggregation and degrading damaged proteins, which is indicative of endoplasmic reticulum stress. Host proteostasis disruption occurred before either bleaching or symbiont photoinhibition was detected, suggesting host-derived reactive oxygen species production as the proximate cause of thermal damage. The pronounced abundance changes in endoplasmic reticulum proteins associated with proteostasis and protein turnover indicate that these processes are essential in the cellular response of symbiotic cnidarians to severe thermal stress.
Is phenotypic plasticity a key mechanism for responding to thermal stress in ants?
Oms, Cristela Sánchez; Cerdá, Xim; Boulay, Raphaël
2017-06-01
Unlike natural selection, phenotypic plasticity allows organisms to respond quickly to changing environmental conditions. However, plasticity may not always be adaptive. In insects, body size and other morphological measurements have been shown to decrease as temperature increases. This relationship may lead to a physiological conflict in ants, where larger body size and longer legs often confer better thermal resistance. Here, we tested the effect of developmental temperature (20, 24, 28 or 32 °C) on adult thermal resistance in the thermophilic ant species Aphaenogaster senilis. We found that no larval development occurred at 20 °C. However, at higher temperatures, developmental speed increased as expected and smaller adults were produced. In thermal resistance tests, we found that ants reared at 28 and 32 °C had half-lethal temperatures that were 2 °C higher than those of ants reared at 24 °C. Thus, although ants reared at higher temperatures were smaller in size, they were nonetheless more thermoresistant. These results show that A. senilis can exploit phenotypic plasticity to quickly adjust its thermal resistance to local conditions and that this process is independent of morphological adaptations. This mechanism may be particularly relevant given current rapid climate warming.
NASA Astrophysics Data System (ADS)
Dayaghi, Amir Masoud; Kim, Kun Joong; Kim, Sun Jae; Kim, Sunwoong; Bae, Hongyeul; Choi, Gyeong Man
2017-06-01
We report design, fabrication method, and fast thermal-cycling ability of solid oxide fuel cells (SOFCs) that use stainless steel (STS) as a support, and a new 3-phase anode. La and Ni co-doped SrTiO3 (La0.2Sr0.8Ti0.9Ni0.1O3-d, LSTN), replaces some of the Ni in conventional Ni-yttria stabilized zirconia (YSZ) anode; the resultant LSTN-YSZ-Ni 3-phase-composite anode is tested as a new reduction (or decomposition)-resistant anode of STS-supported SOFCs that can be co-fired with STS. A multi-layered cell with YSZ electrolyte (thickness ∼5 μm), composite anode, STS-cermet contact-layer, and STS support is designed, then fabricated by tape casting, lamination, and co-firing at 1250 °C in reducing atmosphere. The maximum power density (MPD) is 325 mW cm-2 at 650 °C; this is one of the highest among STS-supported cells fabricated by co-firing. The cell also shows stable open-circuit voltage and Ohmic resistance during 100 rapid thermal cycles between 170 and 600 °C. STS support minimizes stress and avoids cracking of electrolyte during rapid thermal cycling. The excellent MPD and stability during thermal cycles, and promising characteristics of SOFC as a power source for vehicle or mobile devices that requires rapid thermal cycles, are attributed to the new design of the cell with new anode structure.
Hu, Qinqin; Fu, Yingchun; Xu, Xiahong; Qiao, Zhaohui; Wang, Ronghui; Zhang, Ying; Li, Yanbin
2016-02-07
Acrylamide (AA), a neurotoxin and a potential carcinogen, has been found in various thermally processed foods such as potato chips, biscuits, and coffee. Simple, cost-effective, and sensitive methods for the rapid detection of AA are needed to ensure food safety. Herein, a novel colorimetric method was proposed for the visual detection of AA based on a nucleophile-initiated thiol-ene Michael addition reaction. Gold nanoparticles (AuNPs) were aggregated by glutathione (GSH) because of a ligand-replacement, accompanied by a color change from red to purple. In the presence of AA, after the thiol-ene Michael addition reaction between GSH and AA with the catalysis of a nucleophile, the sulfhydryl group of GSH was consumed by AA, which hindered the subsequent ligand-replacement and the aggregation of AuNPs. Therefore, the concentration of AA could be determined by the visible color change caused by dispersion/aggregation of AuNPs. This new method showed high sensitivity with a linear range from 0.1 μmol L(-1) to 80 μmol L(-1) and a detection limit of 28.6 nmol L(-1), and especially revealed better selectivity than the fluorescence sensing method reported previously. Moreover, this new method was used to detect AA in potato chips with a satisfactory result in comparison with the standard methods based on chromatography, which indicated that the colorimetric method can be expanded for the rapid detection of AA in thermally processed foods.
Moroz, N A; Olvera, A; Willis, G M; Poudeu, P F P
2015-06-07
The use of template nanostructures for the creation of photovoltaic and thermoelectric semiconductors is becoming a quickly expanding synthesis strategy. In this work we report a simple two-step process enabling the formation of ternary CuAgSe nanoplatelets with a great degree of control over the composition and shape. Starting with hexagonal nanoplatelets of cubic Cu2-xSe, ternary CuAgSe nanoplatelets were generated through a rapid ion exchange reaction at 300 K using AgNO3 solution. The Cu2-xSe nanoplatelet template and the final CuAgSe nanoplatelets were analyzed by electron microscopy and X-ray diffraction (XRD). It was found that both the low temperature pseudotetragonal and the high temperature cubic forms of CuAgSe phase were created while maintaining the morphology of the Cu2-xSe nanoplatelet template. Thermal and electronic transport measurements of hot-pressed pellets of the synthesized CuAgSe nanoplatelets showed a drastic reduction in the thermal conductivity and a sharp transition from n-type (S = -45 μV K(-1)) to p-type (S = +200 μV K(-1)) semiconducting behavior upon heating above the structural transition from the low temperature orthorhombic to the high temperature super-ionic cubic phase. This simple reaction process utilizing a template nanostructure matrix represents an energy efficient, cost-efficient, and versatile strategy to create interesting materials with lower defect density and superior thermoelectric performance.
The universal toolbox thermal imager
NASA Astrophysics Data System (ADS)
Hollock, Steve; Jones, Graham; Usowicz, Paul
2003-09-01
The Introduction of Microsoft Pocket PC 2000/2002 has seen a standardisation of the operating systems used by the majority of PDA manufacturers. This, coupled with the recent price reductions associated with these devices, has led to a rapid increase in the sales of such units; their use is now common in industrial, commercial and domestic applications throughout the world. This paper describes the results of a programme to develop a thermal imager that will interface directly to all of these units so as to take advantage of the existing and future installed base of such devices. The imager currently interfaces with virtually any Pocket PC which provides the necessary processing, display and storage capability; as an alternative, the output of the unit can be visualised and processed in real time using a PC or laptop computer. In future, the open architecture employed by this imager will allow it to support all mobile computing devices, including phones and PDAs. The imager has been designed for one-handed or two-handed operation so that it may be pointed at awkward angles or used in confined spaces; this flexibility of use coupled with the extensive feature range and exceedingly low-cost of the imager, is extending the marketplace for thermal imaging from military and professional, through industrial to the commercial and domestic marketplaces.
1989-08-01
thermal pulse loadings. The work couples a Green’s function integration technique for transient thermal stresses with the well-known influence ... function approach for calculating stress intensity factors. A total of seven most commonly used crack models were investigated in this study. A computer
Efficient thermal diode with ballistic spacer
NASA Astrophysics Data System (ADS)
Chen, Shunda; Donadio, Davide; Benenti, Giuliano; Casati, Giulio
2018-03-01
Thermal rectification is of importance not only for fundamental physics, but also for potential applications in thermal manipulations and thermal management. However, thermal rectification effect usually decays rapidly with system size. Here, we show that a mass-graded system, with two diffusive leads separated by a ballistic spacer, can exhibit large thermal rectification effect, with the rectification factor independent of system size. The underlying mechanism is explained in terms of the effective size-independent thermal gradient and the match or mismatch of the phonon bands. We also show the robustness of the thermal diode upon variation of the model's parameters. Our finding suggests a promising way for designing realistic efficient thermal diodes.
Heat dissipation schemes in QCLs monitored by CCD thermoreflectance (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pierscinski, Kamil; Pierścińska, Dorota; Morawiec, Magdalena; Gutowski, Piotr; Karbownik, Piotr; Serebrennikova, Olga; Bugajski, Maciej
2017-02-01
In this paper we present the development of the instrumentation for accurate evaluation of the thermal characteristics of quantum cascade lasers based on CCD thermoreflectance (CCD TR). This method allows rapid thermal characterization of QCLs, as the registration of high-resolution map of the whole device facet lasts only several seconds. The capabilities of the CCD TR are used to study temperature dissipation schemes in different designs of QCLs. We report on the investigation of thermal performance of QCLs developed at the Institute of Electron Technology, with an emphasis on the influence of different material system, processing technology and device designs. We investigate and compare AlInAs/InGaAs/InP QCLs (lattice matched and strain compensated) of different architectures, i.e., double trench and buried heterostructure (BH) in terms of thermal management. Experimental results are in very good agreement with numerical predictions of heat dissipation in various device constructions. Numerical model is based on FEM model solved by commercial software package. The model assumes anisotropic thermal conductivity in the AR layers as well as the temperature dependence of thermal conductivities of all materials in the project. We have observed experimentally improvement of thermal properties of devices based on InP materials, especially for buried heterostructure type. The use of buried heterostructure enhanced the lateral heat dissipation from the active region of QCLs. The BH structure and epilayer-down bonding help dissipate the heat generated from active core of the QCL.
Response of Al-Based Micro- and Nanocomposites to Rapid Fluctuations in Thermal Environments
NASA Astrophysics Data System (ADS)
Dash, K.; Ray, B. C.
2018-05-01
The focus of this work is to highlight the relative response of Al-based micro- and nanocomposites in the form of enhancement in flexural strength via induced thermal stresses at high and cryogenic temperatures in ex situ and in situ atmospheres. In this investigation, we have tried to explore the reliability, matrix-reinforcement interaction and microstructural integrity of these materials in their service period by designing appropriate heat treatment regimes. Al-Al2O3 micro- and nanocomposites had been fabricated by powder processing method. The micro- and nanocomposites were subjected to down-thermal shock (from positive to negative temperature) and up-thermal shock (from negative to positive temperature) with varying thermal gradients. For isothermal conditioning, the composites were exposed to + 80 and - 80 °C for 1 h separately. High-temperature three-point flexural tests were performed at 100 and 250 °C on the composites. All the composites subjected to thermal shock and isothermal conditioning was tested in three-point flexural mode post-treatments. Al-1 vol.% Al2O3 nanocomposite's flexural strength improved to 118 MPa post-thermal shock treatment of gradient of 160 °C. The Al-5 and 10 vol.% Al2O3 microcomposites possessed flexural strength of 200 and 99.8 MPa after thermal shock treatment of gradient of 160 and 80 °C, respectively. The observed improvement in flexural strength of micro- and nanocomposites post-thermal excursions were compared and have been discussed with the support of fractography. The microcomposites showed a higher positive scale of response to the thermal excursions as compared to that of the nanocomposites.
Setting Mechanical Properties of High Strength Steels for Rapid Hot Forming Processes
Löbbe, Christian; Hering, Oliver; Hiegemann, Lars; Tekkaya, A. Erman
2016-01-01
Hot stamping of sheet metal is an established method for the manufacturing of light weight products with tailored properties. However, the generally-applied continuous roller furnace manifests two crucial disadvantages: the overall process time is long and a local setting of mechanical properties is only feasible through special cooling techniques. Hot forming with rapid heating directly before shaping is a new approach, which not only reduces the thermal intervention in the zones of critical formability and requested properties, but also allows the processing of an advantageous microstructure characterized by less grain growth, additional fractions (e.g., retained austenite), and undissolved carbides. Since the austenitization and homogenization process is strongly dependent on the microstructure constitution, the general applicability for the process relevant parameters is unknown. Thus, different austenitization parameters are analyzed for the conventional high strength steels 22MnB5, Docol 1400M, and DP1000 in respect of the mechanical properties. In order to characterize the resulting microstructure, the light optical and scanning electron microscopy, micro and macro hardness measurements, and the X-ray diffraction are conducted subsequent to tensile tests. The investigation proves not only the feasibility to adjust the strength and ductility flexibly, unique microstructures are also observed and the governing mechanisms are clarified. PMID:28773354
Process Feasibility Study in Support of Silicon Material Task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1979-01-01
Analysis of process system properties was continued for silicon source materials under consideration for producing silicon. The following property data are reported for dichlorosilane which is involved in processing operations for silicon: critical constants, vapor pressure, heat of vaporization, heat capacity, density, surface tension, thermal conductivity, heat of formation and Gibb's free energy of formation. The properties are reported as a function of temperature to permit rapid engineering usage. The preliminary economic analysis of the process is described. Cost analysis results for the process (case A-two deposition reactors and six electrolysis cells) are presented based on a preliminary process design of a plant to produce 1,000 metric tons/year of silicon. Fixed capital investment estimate for the plant is $12.47 million (1975 dollars) ($17.47 million, 1980 dollars). Product cost without profit is 8.63 $/kg of silicon (1975 dollars)(12.1 $/kg, 1980 dollars).
Dynamic thermal field-induced gradient soft-shear for highly oriented block copolymer thin films.
Singh, Gurpreet; Yager, Kevin G; Berry, Brian; Kim, Ho-Cheol; Karim, Alamgir
2012-11-27
As demand for smaller, more powerful, and energy-efficient devices continues, conventional patterning technologies are pushing up against fundamental limits. Block copolymers (BCPs) are considered prime candidates for a potential solution via directed self-assembly of nanostructures. We introduce here a facile directed self-assembly method to rapidly fabricate unidirectionally aligned BCP nanopatterns at large scale, on rigid or flexible template-free substrates via a thermally induced dynamic gradient soft-shear field. A localized differential thermal expansion at the interface between a BCP film and a confining polydimethylsiloxane (PDMS) layer due to a dynamic thermal field imposes the gradient soft-shear field. PDMS undergoes directional expansion (along the annealing direction) in the heating zone and contracts back in the cooling zone, thus setting up a single cycle of oscillatory shear (maximum lateral shear stress ∼12 × 10(4) Pa) in the system. We successfully apply this process to create unidirectional alignment of BCP thin films over a wide range of thicknesses (nm to μm) and processing speeds (μm/s to mm/s) using both a flat and patterned PDMS layer. Grazing incidence small-angle X-ray scattering measurements show absolutely no sign of isotropic population and reveal ≥99% aligned orientational order with an angular spread Δθ(fwhm) ≤ 5° (full width at half-maximum). This method may pave the way to practical industrial use of hierarchically patterned BCP nanostructures.
The role of temperature increase rate in combinational hyperthermia chemotherapy treatment
NASA Astrophysics Data System (ADS)
Tang, Yuan; McGoron, Anthony J.
2010-02-01
Hyperthermia in combination with chemotherapy has been widely used in cancer treatment. Our previous study has shown that rapid rate hyperthermia in combination with chemotherapy can synergistically kill cancer cells whereas a sub-additive effect was found when a slow rate hyperthermia was applied. In this study, we explored the basis of this difference. For this purpose, in vitro cell culture experiments with a uterine cancer cell line (MES-SA) and its multidrug resistant (MDR) variant MES-SA/Dx5 were conducted. P-glycoprotein (P-gp) expression, Caspase 3 activity, and heat shock protein 70 (HSP 70) expression following the two different modes of heating were measured. Doxorubicin (DOX) was used as the chemotherapy drug. Indocyanine green (ICG), which absorbs near infrared light at 808nm (ideal for tissue penetration), was chosen for achieving rapid rate hyperthermia. Slow rate hyperthermia was provided by a cell culture incubator. Two sets of thermal doses were delivered by either slow rate or rapid rate hyperthermia. HSP70 expression was highly elevated under low dose slow rate incubator hyperthermia while maintained at the baseline level under the other three treatments. Caspase3 level slightly increased after low dose slow rate incubator hyperthermia while necrotic cell death was found in the other three types of heat treatment. In conclusion, when given at the same thermal dose, slow rate hyperthermia is more likely to induce thermotolerance. Meanwhile, hyperthermia showed a dose dependent capability in reversing P-gp mediated MDR; when MDR is reversed, the combinational treatment induced extensive necrotic cell death. During this process, the rate of heating also played a very important role; necrosis was more dramatic in rapid rate hyperthermia than in slow rate hyperthermia even though they were given at the same dose.
Non-supervised method for early forest fire detection and rapid mapping
NASA Astrophysics Data System (ADS)
Artés, Tomás; Boca, Roberto; Liberta, Giorgio; San-Miguel, Jesús
2017-09-01
Natural hazards are a challenge for the society. Scientific community efforts have been severely increased assessing tasks about prevention and damage mitigation. The most important points to minimize natural hazard damages are monitoring and prevention. This work focuses particularly on forest fires. This phenomenon depends on small-scale factors and fire behavior is strongly related to the local weather. Forest fire spread forecast is a complex task because of the scale of the phenomena, the input data uncertainty and time constraints in forest fire monitoring. Forest fire simulators have been improved, including some calibration techniques avoiding data uncertainty and taking into account complex factors as the atmosphere. Such techniques increase dramatically the computational cost in a context where the available time to provide a forecast is a hard constraint. Furthermore, an early mapping of the fire becomes crucial to assess it. In this work, a non-supervised method for forest fire early detection and mapping is proposed. As main sources, the method uses daily thermal anomalies from MODIS and VIIRS combined with land cover map to identify and monitor forest fires with very few resources. This method relies on a clustering technique (DBSCAN algorithm) and on filtering thermal anomalies to detect the forest fires. In addition, a concave hull (alpha shape algorithm) is applied to obtain rapid mapping of the fire area (very coarse accuracy mapping). Therefore, the method leads to a potential use for high-resolution forest fire rapid mapping based on satellite imagery using the extent of each early fire detection. It shows the way to an automatic rapid mapping of the fire at high resolution processing as few data as possible.
The Infrared Automatic Mass Screening (IRAMS) System For Printed Circuit Board Fault Detection
NASA Astrophysics Data System (ADS)
Hugo, Perry W.
1987-05-01
Office of the Program Manager for TMDE (OPM TMDE) has initiated a program to develop techniques for evaluating the performance of printed circuit boards (PCB's) using infrared thermal imaging. It is OPM TMDE's expectation that the standard thermal profile (STP) will become the basis for the future rapid automatic detection and isolation of gross failure mechanisms on units under test (UUT's). To accomplish this OPM TMDE has purchased two Infrared Automatic Mass Screening ( I RAMS) systems which are scheduled for delivery in 1987. The IRAMS system combines a high resolution infrared thermal imager with a test bench and diagnostic computer hardware and software. Its purpose is to rapidly and automatically compare the thermal profiles of a UUT with the STP of that unit, recalled from memory, in order to detect thermally responsive failure mechanisms in PCB's. This paper will review the IRAMS performance requirements, outline the plan for implementing the two systems and report on progress to date.
SOL Thermal Instability due to Radial Blob Convection
NASA Astrophysics Data System (ADS)
D'Ippolito, D. A.
2005-10-01
C-Mod datafootnotetextM. Greenwald, Plasma Phys. Contr. Fusion 44, R27 (2002). suggests a density limit when rapid perpendicular convection dominates SOL heat transport. This is supported by a recent analysisfootnotetextD.A. Russell et al., Phys. Rev. Lett. 93, 265001 (2004). of BOUT code turbulence simulations, which shows that rapid outwards convection of plasma by turbulent blobs is enhanced when the X-point collisionality is large, resulting in a synergistic effect between blob convection and X-point cooling. This work motivates the present analysis of SOL thermal equilibrium and instability including an RX-regime modelfootnotetextJ.R. Myra and D.A. D'Ippolito, Lodestar Report LRC-05-105 (2005). of blob particle and heat transport. Two-point (midplane, X-point) SOL thermal equilibrium and stability models are considered including both two-field (T) and four-field (n,T) treatments. The conditions under which loss of thermal equilibrium or thermal instabilities occur are established, and relations to the C-Mod data are described.
Integrated Modeling Tools for Thermal Analysis and Applications
NASA Technical Reports Server (NTRS)
Milman, Mark H.; Needels, Laura; Papalexandris, Miltiadis
1999-01-01
Integrated modeling of spacecraft systems is a rapidly evolving area in which multidisciplinary models are developed to design and analyze spacecraft configurations. These models are especially important in the early design stages where rapid trades between subsystems can substantially impact design decisions. Integrated modeling is one of the cornerstones of two of NASA's planned missions in the Origins Program -- the Next Generation Space Telescope (NGST) and the Space Interferometry Mission (SIM). Common modeling tools for control design and opto-mechanical analysis have recently emerged and are becoming increasingly widely used. A discipline that has been somewhat less integrated, but is nevertheless of critical concern for high precision optical instruments, is thermal analysis and design. A major factor contributing to this mild estrangement is that the modeling philosophies and objectives for structural and thermal systems typically do not coincide. Consequently the tools that are used in these discplines suffer a degree of incompatibility, each having developed along their own evolutionary path. Although standard thermal tools have worked relatively well in the past. integration with other disciplines requires revisiting modeling assumptions and solution methods. Over the past several years we have been developing a MATLAB based integrated modeling tool called IMOS (Integrated Modeling of Optical Systems) which integrates many aspects of structural, optical, control and dynamical analysis disciplines. Recent efforts have included developing a thermal modeling and analysis capability, which is the subject of this article. Currently, the IMOS thermal suite contains steady state and transient heat equation solvers, and the ability to set up the linear conduction network from an IMOS finite element model. The IMOS code generates linear conduction elements associated with plates and beams/rods of the thermal network directly from the finite element structural model. Conductances for temperature varying materials are accommodated. This capability both streamlines the process of developing the thermal model from the finite element model, and also makes the structural and thermal models compatible in the sense that each structural node is associated with a thermal node. This is particularly useful when the purpose of the analysis is to predict structural deformations due to thermal loads. The steady state solver uses a restricted step size Newton method, and the transient solver is an adaptive step size implicit method applicable to general differential algebraic systems. Temperature dependent conductances and capacitances are accommodated by the solvers. In addition to discussing the modeling and solution methods. applications where the thermal modeling is "in the loop" with sensitivity analysis, optimization and optical performance drawn from our experiences with the Space Interferometry Mission (SIM), and the Next Generation Space Telescope (NGST) are presented.
Estimating the potential for adaptation of corals to climate warming.
Császár, Nikolaus B M; Ralph, Peter J; Frankham, Richard; Berkelmans, Ray; van Oppen, Madeleine J H
2010-03-18
The persistence of tropical coral reefs is threatened by rapidly increasing climate warming, causing a functional breakdown of the obligate symbiosis between corals and their algal photosymbionts (Symbiodinium) through a process known as coral bleaching. Yet the potential of the coral-algal symbiosis to genetically adapt in an evolutionary sense to warming oceans is unknown. Using a quantitative genetics approach, we estimated the proportion of the variance in thermal tolerance traits that has a genetic basis (i.e. heritability) as a proxy for their adaptive potential in the widespread Indo-Pacific reef-building coral Acropora millepora. We chose two physiologically different populations that associate respectively with one thermo-tolerant (Symbiodinium clade D) and one less tolerant symbiont type (Symbiodinium C2). In both symbiont types, pulse amplitude modulated (PAM) fluorometry and high performance liquid chromatography (HPLC) analysis revealed significant heritabilities for traits related to both photosynthesis and photoprotective pigment profile. However, quantitative real-time polymerase chain reaction (qRT-PCR) assays showed a lack of heritability in both coral host populations for their own expression of fundamental stress genes. Coral colony growth, contributed to by both symbiotic partners, displayed heritability. High heritabilities for functional key traits of algal symbionts, along with their short clonal generation time and high population sizes allow for their rapid thermal adaptation. However, the low overall heritability of coral host traits, along with the corals' long generation time, raise concern about the timely adaptation of the coral-algal symbiosis in the face of continued rapid climate warming.
Estimating the Potential for Adaptation of Corals to Climate Warming
Császár, Nikolaus B. M.; Ralph, Peter J.; Frankham, Richard; Berkelmans, Ray; van Oppen, Madeleine J. H.
2010-01-01
The persistence of tropical coral reefs is threatened by rapidly increasing climate warming, causing a functional breakdown of the obligate symbiosis between corals and their algal photosymbionts (Symbiodinium) through a process known as coral bleaching. Yet the potential of the coral-algal symbiosis to genetically adapt in an evolutionary sense to warming oceans is unknown. Using a quantitative genetics approach, we estimated the proportion of the variance in thermal tolerance traits that has a genetic basis (i.e. heritability) as a proxy for their adaptive potential in the widespread Indo-Pacific reef-building coral Acropora millepora. We chose two physiologically different populations that associate respectively with one thermo-tolerant (Symbiodinium clade D) and one less tolerant symbiont type (Symbiodinium C2). In both symbiont types, pulse amplitude modulated (PAM) fluorometry and high performance liquid chromatography (HPLC) analysis revealed significant heritabilities for traits related to both photosynthesis and photoprotective pigment profile. However, quantitative real-time polymerase chain reaction (qRT-PCR) assays showed a lack of heritability in both coral host populations for their own expression of fundamental stress genes. Coral colony growth, contributed to by both symbiotic partners, displayed heritability. High heritabilities for functional key traits of algal symbionts, along with their short clonal generation time and high population sizes allow for their rapid thermal adaptation. However, the low overall heritability of coral host traits, along with the corals' long generation time, raise concern about the timely adaptation of the coral-algal symbiosis in the face of continued rapid climate warming. PMID:20305781
Gonzalez, M E; Jernstedt, J A; Slaughter, D C; Barrett, D M
2010-09-01
The integrity of onion cells and its impact on tissue texture after high pressure and thermal processing was studied. The contribution of cell membranes and the pectic component of cell walls on the texture properties of onion tissue were analyzed. Neutral red (NR) staining of onion parenchyma cell vacuoles was used for the evaluation of cell membrane integrity and microscopic image analysis was used for its quantification. The content of methanol in tissue as a result of pectin methylesterase activity was used to evaluate the pectin component of the middle lamella and cell walls and the hardening effect on the tissue after processing. High pressure treatments consisted of 5-min holding times at 50, 100, 200, 300, or 600 MPa. Thermal treatments consisted of 30-min water bath exposure to 40, 50, 60, 70, or 90 °C. In the high pressure treatments, loss of membrane integrity commenced at 200 MPa and total loss of membrane integrity occurred at 300 MPa and above. In the thermal treatments, membrane integrity was lost between 50 and 60 °C. The texture of onions was influenced by the state of the membranes and texture profiles were abruptly modified once membrane integrity was lost. Hardening of the tissue corresponded with pressure and temperature PME activation and occurred after membrane integrity loss. The texture of vegetables is an important quality attribute that affects consumer preference. Loss of textural integrity also indicates that other biochemical reactions that affect color, flavor, and nutrient content may occur more rapidly. In this study, we analyzed changes in the texture of onions after preservation with heat and high pressure.
Thermal buffering of concrete by seaweeds during a prolonged summer heatwave
NASA Astrophysics Data System (ADS)
Naylor, Larissa; Coombes, Martin
2014-05-01
Hard coastal infrastructure is subject to aggressive environmental conditions, including a suite of weathering processes in the intertidal zone. These processes, along with waves, lead to costly deterioration of coastal structures. Existing methods (e.g. coatings, less porous concrete) to reduce the risk of concrete deterioration rapidly lose their effectiveness in the intertidal zone. Additionally, a changing climate will lead to increased frequency of storms, higher sea level and higher extreme temperatures - and therefore, pose an increased risk of deterioration. Might there be a biogenic solution? New research (Coombes et al. 2013) has shown that fucoid seaweeds reduce microclimatic extremes and variability under normal summer conditions. The results presented here supplement these findings in two ways. First, they demonstrate that fucoid seaweeds act as a thermal buffer during a prolonged summer heatwave in Britain (July 2013). Over 36 days of continuous monitoring at two sites in Cornwall, UK, 19 of which were during the official heatwave, there were statistically significant differences (p = 0.000) in the maximum temperatures between thick seaweed (7.5 - 9.5 cm thickness) and thin seaweed (2 - 2.5 cm thickness) plots. Maximum temperatures reached 22°C and 33°C, for thick seaweed and thin seaweed plots, respectively. Variations in maximum temperatures between the two sites appear to be related to aspect. Second, the significantly different maximum temperature results between plots also demonstrate that seaweed thickness is an important factor influencing thermal buffering capacity. These data clearly demonstrate that fucoid seaweeds buffer concrete seawalls against extreme temperature fluxes during a heatwave, probably limiting the efficiency of deteriorative processes such as thermal expansion and contraction and salt crystallisation.
Development of Advanced Coatings for Laser Modifications Through Process and Materials Simulation
NASA Astrophysics Data System (ADS)
Martukanitz, R. P.; Babu, S. S.
2004-06-01
A simulation-based system is currently being constructed to aid in the development of advanced coating systems for laser cladding and surface alloying. The system employs loosely coupled material and process models that allow rapid determination of material compatibility over a wide range of processing conditions. The primary emphasis is on the development and identification of composite coatings for improved wear and corrosion resistance. The material model utilizes computational thermodynamics and kinetic analysis to establish phase stability and extent of diffusional reactions that may result from the thermal response of the material during virtual processing. The process model is used to develop accurate thermal histories associated with the laser surface modification process and provides critical input for the non-isothermal materials simulations. These techniques were utilized to design a laser surface modification experiment that utilized the addition of stainless steel alloy 431 and TiC produced using argon and argon and nitrogen shielding. The deposits representing alloy 431 and TiC powder produced in argon resulted in microstructures retaining some TiC particles and an increase in hardness when compared to deposits produced using only the 431 powder. Laser deposits representing alloy 431 and TiC powder produced with a mixture of argon and nitrogen shielding gas resulted in microstructures retaining some TiC particles, as well as fine precipitates of Ti(CN) formed during cooling and a further increase in hardness of the deposit.
Low Gravity Rapid Thermal Analysis of Glass
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Ethridge, Edwin C.; Smith, Guy A.
2004-01-01
It has been observed by two research groups that ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) glass crystallization is suppressed in microgravity. The mechanism for this phenomenon is unknown at the present time. In order to better understand the mechanism, an experiment was performed on NASA's KC135 reduced gravity aircraft to obtain quantitative crystallization data. An apparatus was designed and constructed for performing rapid thermal analysis of milligram quantities of ZBLAN glass. The apparatus employs an ellipsoidal furnace allowing for rapid heating and cooling. Using this apparatus nucleation and crystallization kinetic data was obtained leading to the construction of time-temperature-transformation curves for ZBLAN in microgravity and unit gravity.
Study on stimulus-responsive cellulose-based polymeric materials
NASA Astrophysics Data System (ADS)
Luo, Hongsheng
Stimulus-responsive cellulose-based polymeric materials were developed by physical and chemical approaches. The thermal, structural, mechanical and morphological properties of the samples were comprehensively investigated by multiple tools. Shape memory effect (SME), programming-structure-property relationship and underling mechanisms were emphasized in this study. Some new concepts, such as heterogeneous-twin-switch, path-dependent multi-shape, rapidly switchable water-sensitive SME were established. The samples were divided into two categories. For the first category, cellulose nano-whiskers (CNWs) were incorporated into crystalline shape memory polyurethane (SMPU) and thermal plastic polyurethane (TPU). The CNW-SMPU nano-composites had heterogeneous switches. Triple- and multi-shape effects were achieved for the CNW-SMPU nano-composites by applying into appropriate thermal-aqueous-mechanical programming. Furthermore, the thermally triggered shape recovery of the composites was found to be tuneable, depending on the PCN content. Theoretical prediction along with numerical analysis was conducted, providing evidence on the possible microstructure of the CNW-SMPU nano-composites. Rapidly switchable water-sensitive SME of the CNW-TPU nano-composites was unprecedentedly studied, which originated from the reversible regulation of hydrogen bonding by water. The samples in the second category consisted of cellulose-polyurethane (PU) blends, cellulose-poly(acrylic acid) (PAA) composites and modified cellulose with supramolecular switches, featuring the requirement of homogeneous cellulose solution in the synthesis process. The reversible behaviours of the cellulose-PU blends in wet-dry cycles as well as the underlying shape memory mechanism were characterized and disclosed. The micro-patterns of the blends were found to be self-similar in fractal dimensions. Cellulose-PAA semi-interpenetrating networks exhibited mechanical adaptability in wet-dry cycles. A type of thermally reversible quadruple hydrogen bonding units, ureidopyrimidinone (UPy), reacted with the cellulose as pendent side-groups, which may impart the modified cellulose with thermal sensitivity. It is the first attempt to explore the natural cellulose as smart polymeric materials systematically and comprehensively. The concepts originally created in the study provided new viewpoints and routes for the development of novel shape memory polymers. The findings significantly benefits extension of the potential application of the cellulose in smart polymeric materials field.
NASA Astrophysics Data System (ADS)
Moroz, N. A.; Olvera, A.; Willis, G. M.; Poudeu, P. F. P.
2015-05-01
The use of template nanostructures for the creation of photovoltaic and thermoelectric semiconductors is becoming a quickly expanding synthesis strategy. In this work we report a simple two-step process enabling the formation of ternary CuAgSe nanoplatelets with a great degree of control over the composition and shape. Starting with hexagonal nanoplatelets of cubic Cu2-xSe, ternary CuAgSe nanoplatelets were generated through a rapid ion exchange reaction at 300 K using AgNO3 solution. The Cu2-xSe nanoplatelet template and the final CuAgSe nanoplatelets were analyzed by electron microscopy and X-ray diffraction (XRD). It was found that both the low temperature pseudotetragonal and the high temperature cubic forms of CuAgSe phase were created while maintaining the morphology of the Cu2-xSe nanoplatelet template. Thermal and electronic transport measurements of hot-pressed pellets of the synthesized CuAgSe nanoplatelets showed a drastic reduction in the thermal conductivity and a sharp transition from n-type (S = -45 μV K-1) to p-type (S = +200 μV K-1) semiconducting behavior upon heating above the structural transition from the low temperature orthorhombic to the high temperature super-ionic cubic phase. This simple reaction process utilizing a template nanostructure matrix represents an energy efficient, cost-efficient, and versatile strategy to create interesting materials with lower defect density and superior thermoelectric performance.The use of template nanostructures for the creation of photovoltaic and thermoelectric semiconductors is becoming a quickly expanding synthesis strategy. In this work we report a simple two-step process enabling the formation of ternary CuAgSe nanoplatelets with a great degree of control over the composition and shape. Starting with hexagonal nanoplatelets of cubic Cu2-xSe, ternary CuAgSe nanoplatelets were generated through a rapid ion exchange reaction at 300 K using AgNO3 solution. The Cu2-xSe nanoplatelet template and the final CuAgSe nanoplatelets were analyzed by electron microscopy and X-ray diffraction (XRD). It was found that both the low temperature pseudotetragonal and the high temperature cubic forms of CuAgSe phase were created while maintaining the morphology of the Cu2-xSe nanoplatelet template. Thermal and electronic transport measurements of hot-pressed pellets of the synthesized CuAgSe nanoplatelets showed a drastic reduction in the thermal conductivity and a sharp transition from n-type (S = -45 μV K-1) to p-type (S = +200 μV K-1) semiconducting behavior upon heating above the structural transition from the low temperature orthorhombic to the high temperature super-ionic cubic phase. This simple reaction process utilizing a template nanostructure matrix represents an energy efficient, cost-efficient, and versatile strategy to create interesting materials with lower defect density and superior thermoelectric performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01451d
Ordering pathway of block copolymers under dynamic thermal gradients studied by in situ GISAXS
Samant, Saumil; Strzalka, Joseph; Yager, Kevin G.; ...
2016-10-31
Dynamic thermal gradient-based processes for directed self-assembly of block copolymer (BCP) thin films such as cold zone annealing (CZA) have demonstrated much potential for rapidly fabricating highly ordered patterns of BCP domains with facile orientation control. As a demonstration, hexagonally packed predominantly vertical cylindrical morphology, technologically relevant for applications such as membranes and lithography, was achieved in 1 μm thick cylinder-forming PS-b-PMMA (cBCP) films by applying sharp thermal gradients (CZA-Sharp) at optimum sample sweep rates. A thorough understanding of the molecular level mechanisms and pathways of the BCP ordering that occur during this CZA-S process is presented, useful to fullymore » exploit the potential of CZA-S for large-scale BCP-based device fabrication. To that end, we developed a customized CZA-S assembly to probe the dynamic structure evolution and ordering of the PS-b-PMMA cBCP film in situ as it undergoes the CZA-S process using the grazing incidence small-angle X-ray scattering (GISAXS) technique. Four distinct regimes of BCP ordering were observed within the gradient that include microphase separation from an “as cast” unordered state (Regime I), evolution of vertical cylinders under a thermally imposed strain gradient (Regime II), reorientation of a fraction of cylinders due to preferential substrate interactions (Regime III), and finally grain-coarsening on the cooling edge (Regime IV). The ordering pathway in the different regimes is further described within the framework of an energy landscape. A novel aspect of this study is the identification of a grain-coarsening regime on the cooling edge of the gradient, previously obscure in zone annealing studies of BCPs. Furthermore, such insights into the development of highly ordered BCP nanostructures under template-free thermal gradient fields can potentially have important ramifications in the field of BCP-directed self-assembly and self-assembling polymer systems more broadly.« less
Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities
NASA Technical Reports Server (NTRS)
Emrich, William
2013-01-01
A key technology element in Nuclear Thermal Propulsion is the development of fuel materials and components which can withstand extremely high temperatures while being exposed to flowing hydrogen. NTREES provides a cost effective method for rapidly screening of candidate fuel components with regard to their viability for use in NTR systems. The NTREES is designed to mimic the conditions (minus the radiation) to which nuclear rocket fuel elements and other components would be subjected to during reactor operation. The NTREES consists of a water cooled ASME code stamped pressure vessel and its associated control hardware and instrumentation coupled with inductive heaters to simulate the heat provided by the fission process. The NTREES has been designed to safely allow hydrogen gas to be injected into internal flow passages of an inductively heated test article mounted in the chamber.
Status of the atomized uranium silicide fuel development at KAERI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, C.K.; Kim, K.H.; Park, H.D.
1997-08-01
While developing KMRR fuel fabrication technology an atomizing technique has been applied in order to eliminate the difficulties relating to the tough property of U{sub 3}Si and to take advantage of the rapid solidification effect of atomization. The comparison between the conventionally comminuted powder dispersion fuel and the atomized powder dispersion fuel has been made. As the result, the processes, uranium silicide powdering and heat treatment for U{sub 3}Si transformation, become simplified. The workability, the thermal conductivity and the thermal compatibility of fuel meat have been investigated and found to be improved due to the spherical shape of atomized powder.more » In this presentation the overall developments of atomized U{sub 3}Si dispersion fuel and the planned activities for applying the atomizing technique to the real fuel fabrication are described.« less
Scaling properties of multiscale equilibration
NASA Astrophysics Data System (ADS)
Detmold, W.; Endres, M. G.
2018-04-01
We investigate the lattice spacing dependence of the equilibration time for a recently proposed multiscale thermalization algorithm for Markov chain Monte Carlo simulations. The algorithm uses a renormalization-group matched coarse lattice action and prolongation operation to rapidly thermalize decorrelated initial configurations for evolution using a corresponding target lattice action defined at a finer scale. Focusing on nontopological long-distance observables in pure S U (3 ) gauge theory, we provide quantitative evidence that the slow modes of the Markov process, which provide the dominant contribution to the rethermalization time, have a suppressed contribution toward the continuum limit, despite their associated timescales increasing. Based on these numerical investigations, we conjecture that the prolongation operation used herein will produce ensembles that are indistinguishable from the target fine-action distribution for a sufficiently fine coupling at a given level of statistical precision, thereby eliminating the cost of rethermalization.
Modeling the Rapid Boil-Off of a Cryogenic Liquid When Injected into a Low Pressure Cavity
NASA Technical Reports Server (NTRS)
Lira, Eric
2016-01-01
Many launch vehicle cryogenic applications require the modeling of injecting a cryogenic liquid into a low pressure cavity. The difficulty of such analyses lies in accurately predicting the heat transfer coefficient between the cold liquid and a warm wall in a low pressure environment. The heat transfer coefficient and the behavior of the liquid is highly dependent on the mass flow rate into the cavity, the cavity wall temperature and the cavity volume. Testing was performed to correlate the modeling performed using Thermal Desktop and Sinda Fluint Thermal and Fluids Analysis Software. This presentation shall describe a methodology to model the cryogenic process using Sinda Fluint, a description of the cryogenic test set up, a description of the test procedure and how the model was correlated to match the test results.
Wu, Jing; Cao, Zhiping; Hu, Yuying; Wang, Xiaolu; Wang, Guangqi; Zuo, Jiane; Wang, Kaijun; Qian, Yi
2017-11-30
High solid anaerobic digestion (HSAD) is a rapidly developed anaerobic digestion technique for treating municipal sludge, and has been widely used in Europe and Asia. Recently, the enhanced HSAD process with thermal treatment showed its advantages in both methane production and VS reduction. However, the understanding of the microbial community is still poor. This study investigated microbial communities in a pilot enhanced two-stage HSAD system that degraded waste activated sludge at 9% solid content. The system employed process "thermal pre-treatment (TPT) at 70 °C, thermophilic anaerobic digestion (TAD), and mesophilic anaerobic digestion (MAD)". Hydrogenotrophic methanogens Methanothermobacter spp. dominated the system with relative abundance up to about 100% in both TAD and MAD. Syntrophic acetate oxidation (SAO) bacteria were discovered in TAD, and they converted acetate into H₂ and CO₂ to support hydrogenotrophic methanogenesis. The microbial composition and conversion route of this system are derived from the high solid content and protein content in raw sludge, as well as the operational conditions. This study could facilitate the understanding of the enhanced HSAD process, and is of academic and industrial importance.
Wu, Jing; Cao, Zhiping; Hu, Yuying; Wang, Xiaolu; Wang, Guangqi; Zuo, Jiane; Wang, Kaijun; Qian, Yi
2017-01-01
High solid anaerobic digestion (HSAD) is a rapidly developed anaerobic digestion technique for treating municipal sludge, and has been widely used in Europe and Asia. Recently, the enhanced HSAD process with thermal treatment showed its advantages in both methane production and VS reduction. However, the understanding of the microbial community is still poor. This study investigated microbial communities in a pilot enhanced two-stage HSAD system that degraded waste activated sludge at 9% solid content. The system employed process “thermal pre-treatment (TPT) at 70 °C, thermophilic anaerobic digestion (TAD), and mesophilic anaerobic digestion (MAD)”. Hydrogenotrophic methanogens Methanothermobacter spp. dominated the system with relative abundance up to about 100% in both TAD and MAD. Syntrophic acetate oxidation (SAO) bacteria were discovered in TAD, and they converted acetate into H2 and CO2 to support hydrogenotrophic methanogenesis. The microbial composition and conversion route of this system are derived from the high solid content and protein content in raw sludge, as well as the operational conditions. This study could facilitate the understanding of the enhanced HSAD process, and is of academic and industrial importance. PMID:29189754
NASA Astrophysics Data System (ADS)
Vytykáčová, Soňa; Mrázek, Jan; Puchý, Viktor; Džunda, Róbert; Skála, Roman; Peterka, Pavel; Kašík, Ivan
2018-04-01
We present a generic sol-gel route to the preparation of optically active nanocrystalline holmium-yttrium titanate (Ho0.05Y0.95)2Ti2O7 thin films, which exhibit a strong luminescence at 2 μm. The films were prepared by the sol-gel process and thermally treated in a rapid thermal annealing furnace. The nanocrystal size and optical properties were tailored by the processing temperature. The final film thickness was around 500 nm. X-ray diffraction analysis and Raman spectroscopy confirmed the high purity of the crystal phase of (Ho0.05Y0.95)2Ti2O7. The activation energy of crystal growth was 35.7 kJ mol-1. The films had excellent structural and surface homogeneity causing their high transparency close to the theoretical limit of 93.39%. Refractive index of the film heat-treated at 1000 °C was around 1.98. The films exhibited strong emission at 2 μm with a luminescence lifetime around 4.6 ms. Their properties together with processing feasibility make them promising materials for photonic applications.
NASA Astrophysics Data System (ADS)
Hofmeister, A.; Criss, R. E.
2013-12-01
Because magmatism conveys radioactive isotopes plus latent heat rapidly upwards while advecting heat, this process links and controls the thermal and chemical evolution of Earth. We present evidence that the lower mantle-upper mantle boundary is a profound chemical discontinuity, leading to observed heterogeneities in the outermost layers that can be directly sampled, and construct an alternative view of Earth's internal workings. Earth's beginning involved cooling via explosive outgassing of substantial ice (mainly CO) buried with dust during accretion. High carbon content is expected from Solar abundances and ice in comets. Reaction of CO with metal provided a carbide-rich core while converting MgSiO3 to olivine via oxidizing reactions. Because thermodynamic law (and buoyancy of hot particles) indicates that primordial heat from gravitational segregation is neither large nor carried downwards, whereas differentiation forced radioactive elements upwards, formation of the core and lower mantle greatly cooled the Earth. Reference conductive geotherms, calculated using accurate and new thermal diffusivity data, require that heat-producing elements are sequestered above 670 km which limits convection to the upper mantle. These irreversible beginnings limit secular cooling to radioactive wind-down, permiting deduction of Earth's inventory of heat-producing elements from today's heat flux. Coupling our estimate for heat producing elements with meteoritic data indicates that Earth's oxide content has been underestimated. Density sorting segregated a Si-rich, peridotitic upper mantle from a refractory, oxide lower mantle with high Ca, Al and Ti contents, consistent with diamond inclusion mineralogy. Early and rapid differentiation means that internal temperatures have long been buffered by freezing of the inner core, allowing survival of crust as old as ca.4 Ga. Magmatism remains important. Melt escaping though stress-induced fractures in the rigid lithosphere imparts a lateral component and preferred direction to upper mantle circulation. Mid-ocean magma production over ca. 4 Ga has deposited a slab volume at 670 km that is equivalent to the transition zone, thereby continuing differentiation by creating a late-stage chemical discontinuity near 400 km. This ongoing process has generated the observed lateral and vertical heterogeneity above 670 km.
NASA Astrophysics Data System (ADS)
Ramsey, M.; Wessels, R.; Dehn, J.; Duda, K.; Harris, A.; Watson, M.
2008-12-01
From soon after its launch in December 1999, the ASTER sensor on the NASA Terra satellite has been acquiring data of volcanic eruptions and other natural disasters around the world. ASTER has the capability to acquire high spatial resolution data from the visible to thermal infrared wavelength region. Those data, in conjunction with its ability to generate digital elevation models (DEMs), makes ASTER particularly useful for numerous aspects of volcanic remote sensing. However, the nature of the ASTER scheduling/data collection/calibration pathway makes rapid observations of hazard locations nearly impossible. The sensor's acquisitions are scheduled in advance and the data are processed and calibrated in Japan prior to archiving in the United States. This can produce a lag of at least several days from the initial request to data scheduling and another several days after acquisition until the data are available. However, there exists a manual "rapid response" mode that provides faster data scheduling, processing and availability. This mode has now been semi-automated and linked to larger-scale and more rapid monitoring alert system. The first phase has been to integrate with the Alaska Volcano Observatory's current near-real-time satellite monitoring system, which relies on high temporal/low spatial resolution orbital data. This phase of the project has focused on eruptions in the north Pacific region, and in particular over Kamchatka, Russia. Several beneficial factors have combined that resulted in over 1350 ASTER images being acquired for the five most thermally-active Kamchatka volcanoes (Bezymianny, Karimsky, Kluichevskoi, Sheveluch and Tolbachik). These factors include the orbital alignment of Terra, the high latitude of the peninsula, and the many eruptions and volcanic activity in Kamchatka. From the inception of the automated rapid response program in 2003, an additional 350 scenes have been acquired over the Kamchatka volcanoes, which have targeted both small-scale activity and larger eruptions for science and hazard response. Numerous eruptions have been observed that displayed varying volcanic styles including basaltic lava flow emplacement, silicic lava dome growth, pyroclastic flow production, volcanic ash plume production, fumarolic activity, and geothermal emission. The focus of this presentation is to summarize the current ASTER rapid response program in Kamchatka, focus on two specific eruptions of Sheveluch volcano, and discuss the future expansion plans for global hazard response.
Lorenzo-Martin, Cinta; Ajayi, Oyelayo O.
2015-06-06
Tribological performance of steel materials can be substantially enhanced by various thermal surface hardening processes. For relatively low-carbon steel alloys, case carburization is often used to improve surface performance and durability. If the carbon content of steel is high enough (>0.4%), thermal treatments such as induction, flame, laser, etc. can produce adequate surface hardening without the need for surface compositional change. This paper presents an experimental study of the use of friction stir processing (FSP) as a means to hardened surface layer in AISI 4140 steel. The impacts of this surface hardening process on the friction and wear performance weremore » evaluated under both dry and lubricated contact conditions in reciprocating sliding. FSP produced the same level of hardening and superior tribological performance when compared to conventional thermal treatment, using only 10% of the energy and without the need for quenching treatments. With FSP surface hardness of about 7.8 GPa (62 Rc) was achieved while water quenching conventional heat treatment produced about 7.5 GPa (61 Rc) hardness. Microstructural analysis showed that both FSP and conventional heat treatment produced martensite. Although the friction behavior for FSP treated surfaces and the conventional heat treatment were about the same, the wear in FSP processed surfaces was reduced by almost 2× that of conventional heat treated surfaces. Furthermore, the superior performance is attributed to the observed grain refinement accompanying the FSP treatment in addition to the formation of martensite. As it relates to tribological performance, this study shows FSP to be an effective, highly energy efficient, and environmental friendly (green) alternative to conventional heat treatment for steel.« less
2004-04-15
Comparison of ground-based (left) and Skylab (right) electron beam welds in pure tantalum (Ta) (10X magnification). Residual votices left behind in the ground-based sample after the electron beam passed were frozen into the grain structure. These occurred because of the rapid cooling rate at the high temperature. Although the thermal characteristics and electron beam travel speeds were comparable for the skylab sample, the residual vortices were erased in the grain structure. This may have been due to the fact that final grain size of the solidified material was smaller in the Skylab sample compared to the ground-based sample. The Skylab sample was processed in the M512 Materials Processing Facility (MPF) during Skylab SL-2 Mission. Principal Investigator was Richard Poorman.
Smoother Turbine Blades Resist Thermal Shock Better
NASA Technical Reports Server (NTRS)
Czerniak, Paul; Longenecker, Kent; Paulus, Don; Ullman, Zane
1991-01-01
Surface treatment increases resistance of turbine blades to low-cycle fatigue. Smoothing removes small flaws where cracks start. Intended for blades in turbines subject to thermal shock of rapid starting. No recrystallization occurs at rocket-turbine operating temperatures.
Solid state rapid thermocycling
Beer, Neil Reginald; Spadaccini, Christopher
2014-05-13
The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.
Methods and compositions for rapid thermal cycling
Beer, Neil Reginald; Benett, William J.; Frank, James M.; Deotte, Joshua R.; Spadaccini, Christopher
2015-10-27
The rapid thermal cycling of a material is targeted. A microfluidic heat exchanger with an internal porous medium is coupled to tanks containing cold fluid and hot fluid. Fluid flows alternately from the cold tank and the hot tank into the porous medium, cooling and heating samples contained in the microfluidic heat exchanger's sample wells. A valve may be coupled to the tanks and a pump, and switching the position of the valve may switch the source and direction of fluid flowing through the porous medium. A controller may control the switching of valve positions based on the temperature of the samples and determined temperature thresholds. A sample tray for containing samples to be thermally cycled may be used in conjunction with the thermal cycling system. A surface or internal electrical heater may aid in heating the samples, or may replace the necessity for the hot tank.
Method and apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption
Wegeng, Robert S.; Rassat, Scot D.; TeGrotenhuis, Ward E.; Drost, Kevin; Vishwanathan, Vilayanur V.
2004-06-08
The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. In another aspect, the apparatus or methods utilize heat exchange channels of varying lengths that have volumes controlled to provide equal heat fluxes. Methods of fuel cell startup are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
Methods and compositions for rapid thermal cycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, Neil Reginald; Benett, William J.; Frank, James M.
The rapid thermal cycling of a material is targeted. A microfluidic heat exchanger with an internal porous medium is coupled to tanks containing cold fluid and hot fluid. Fluid flows alternately from the cold tank and the hot tank into the porous medium, cooling and heating samples contained in the microfluidic heat exchanger's sample wells. A valve may be coupled to the tanks and a pump, and switching the position of the valve may switch the source and direction of fluid flowing through the porous medium. A controller may control the switching of valve positions based on the temperature ofmore » the samples and determined temperature thresholds. A sample tray for containing samples to be thermally cycled may be used in conjunction with the thermal cycling system. A surface or internal electrical heater may aid in heating the samples, or may replace the necessity for the hot tank.« less
Arjmandi, Mitra; Otón, Mariano; Artés, Francisco; Artés-Hernández, Francisco; Gómez, Perla A; Aguayo, Encarna
2017-02-01
Thermal processing causes a number of undesirable changes in physicochemical and bioactive properties of tomato products. Microwave (MW) technology is an emergent thermal industrial process that offers a rapid and uniform heating, high energy efficiency and high overall quality of the final product. The main quality changes of tomato puree after pasteurization at 96 ± 2 °C for 35 s, provided by a semi-industrial continuous microwave oven (MWP) under different doses (low power/long time to high power/short time) or by conventional method (CP) were studied. All heat treatments reduced colour quality, total antioxidant capacity and vitamin C, with a greater reduction in CP than in MWP. On the other hand, use of an MWP, in particular high power/short time (1900 W/180 s, 2700 W/160 s and 3150 W/150 s) enhanced the viscosity and lycopene extraction and decreased the enzyme residual activity better than with CP samples. For tomato puree, polygalacturonase was the more thermo-resistant enzyme, and could be used as an indicator of pasteurization efficiency. MWP was an excellent pasteurization technique that provided tomato puree with improved nutritional quality, reducing process times compared to the standard pasteurization process. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition
Cheng, Christine
2017-01-01
3D printing is a useful fabrication technique because it offers design flexibility and rapid prototyping. The ability to functionalize the surfaces of 3D-printed objects allows the bulk properties, such as material strength or printability, to be chosen separately from surface properties, which is critical to expanding the breadth of 3D printing applications. In this work, we studied the ability of the initiated chemical vapor deposition (iCVD) process to coat 3D-printed shapes composed of poly(lactic acid) and acrylonitrile butadiene styrene. The thermally insulating properties of 3D-printed plastics pose a challenge to the iCVD process due to large thermal gradients along the structures during processing. In this study, processing parameters such as the substrate temperature and the filament temperature were systematically varied to understand how these parameters affect the uniformity of the coatings along the 3D-printed objects. The 3D-printed objects were coated with both hydrophobic and hydrophilic polymers. Contact angle goniometry and X-ray photoelectron spectroscopy were used to characterize the functionalized surfaces. Our results can enable the use of iCVD to functionalize 3D-printed materials for a range of applications such as tissue scaffolds and microfluidics. PMID:28875099
NASA Astrophysics Data System (ADS)
Amado, Antonio; Schmid, Manfred; Wegener, Konrad
2015-05-01
Polymer processing using Additive Manufacturing Technologies (AM) has experienced a remarkable growth during the last years. The application range has been expanding rapidly, particularly driven by the so-called consumer 3D printing sector. However, for applications demanding higher requirements in terms of thermo-mechanical properties and dimensional accuracy the long established AM technologies such as Selective Laser Sintering (SLS) do not depict a comparable development. The higher process complexity hinders the number of materials that can be currently processed and the interactions between the different physics involved have not been fully investigated. In case of thermoplastic materials the crystallization kinetics coupled to the shrinkage strain development strongly influences the stability of the process. Thus, the current investigation presents a transient Finite Element simulation of the warpage effect during the SLS process of a new developed polyolefin (co-polypropylene) coupling the thermal, mechanical and phase change equations that control the process. A thermal characterization of the material was performed by means of DSC, integrating the Nakamura model with the classical Hoffmann-Lauritzen theory. The viscoelastic behavior was measured using a plate-plate rheometer at different degrees of undercooling and a phase change-temperature superposition principle was implemented. Additionally, for validation porpoises the warpage development of the first sintered layers was captured employing an optical device. The simulation results depict a good agreement with experimental measurements of deformation, describing the high sensitivity of the geometrical accuracy of the sintered parts related to the processing conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philip, Asher; Gupta, Sanjay, E-mail: sgupta@mdanderson.org; Ahrar, Kamran, E-mail: kahrar@mdanderson.org
2013-10-15
Thermal ablation is an accepted alternative for the palliation of pain from bone metastases. Although rare, neurologic complications after thermal ablation have been reported. We present four cases, including two cases of rapid reversal of postcryoablation neurapraxia after the administration of steroid therapy, and review the literature.
Thermal disconnect for high-temperature batteries
Jungst, Rudolph George; Armijo, James Rudolph; Frear, Darrel Richard
2000-01-01
A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.
Glass formability of high T(sub c) Bi-Sr-Ca-Cu-O superconductors
NASA Technical Reports Server (NTRS)
Kaukler, William F.
1992-01-01
A number of compositions of ceramic oxide high T(sub c) superconductors were evaluated for their glass formation ability by means of rapid thermal analysis during quenching, optical and electron microscopy of the quenched samples, and with subsequent DSC measurements. Correlations between experimental measurements and the methodical composition changes identified the formulations of superconductors that can easily form glass. The superconducting material was first formed as a glass, then with subsequent devitrification it was formed into bulk crystalline superconductor by a series of processing methods.
2006-05-01
switches that are used in power conditioning systems. Silicon carbide diodes are now available commercially, and transistors (JEFETs, MOSFETs, IGBTs ...in UHP Ar for 60s in a rapid thermal annealing (RTA) furnace to achieve a low contact resistance. Following the RTA step, photolithography was...with 20μm Au is shown in Figure 3-4. The brazing process was performed with an SST 3150 high vacuum furnace . The 3150 utilizes an oil-free roughing
2014-01-01
a rapidly growing non thermal food processing technology that ensures the safety of meat, fruit juice and seafood products, extends product shelf...spore germination with nutrient germinants are the sum of values for germination via the GerA GR with L valine and the GerB plus GerK GRs with AGFK...gerKD had no significant effect on mHP germination (Fig. 1d). Complementation of a gerKD strain by introduction of a wild type gerKD gene plus its own
The Structural Ceramics Database: Technical Foundations
Munro, R. G.; Hwang, F. Y.; Hubbard, C. R.
1989-01-01
The development of a computerized database on advanced structural ceramics can play a critical role in fostering the widespread use of ceramics in industry and in advanced technologies. A computerized database may be the most effective means of accelerating technology development by enabling new materials to be incorporated into designs far more rapidly than would have been possible with traditional information transfer processes. Faster, more efficient access to critical data is the basis for creating this technological advantage. Further, a computerized database provides the means for a more consistent treatment of data, greater quality control and product reliability, and improved continuity of research and development programs. A preliminary system has been completed as phase one of an ongoing program to establish the Structural Ceramics Database system. The system is designed to be used on personal computers. Developed in a modular design, the preliminary system is focused on the thermal properties of monolithic ceramics. The initial modules consist of materials specification, thermal expansion, thermal conductivity, thermal diffusivity, specific heat, thermal shock resistance, and a bibliography of data references. Query and output programs also have been developed for use with these modules. The latter program elements, along with the database modules, will be subjected to several stages of testing and refinement in the second phase of this effort. The goal of the refinement process will be the establishment of this system as a user-friendly prototype. Three primary considerations provide the guidelines to the system’s development: (1) The user’s needs; (2) The nature of materials properties; and (3) The requirements of the programming language. The present report discusses the manner and rationale by which each of these considerations leads to specific features in the design of the system. PMID:28053397
The Thermal States of Accreting Planets: From Mars-like Embryos to a MAD Earth
NASA Astrophysics Data System (ADS)
Stewart, S. T.; Lock, S. J.
2015-12-01
The thermal states of rocky planets can vary widely during the process of accretion. The thermal structure affects several major processes on the growing planet, including the mechanics of core formation, pressure-temperature conditions for metal-silicate equilibration, mixing, and atmospheric erosion. Because impact energy is distributed heterogeneously, accretional energy is preferentially deposited in the gravitationally re-equilibrated outer layers of the planet for both small and giant impacts. The resulting stably stratified structure inhibits complete mixing within the mantle. Initially, the specific energy of giant impacts between Mars-mass embryos leads to melting of the mantle. However, as planet formation progresses, the specific energies of giant impacts increase and can drive the mantle into a transient supercritical state. In the hottest regions of the planet, metal and silicates are miscible, and metal exsolution occurs as the structure cools. The cooling time of the supercritical structure is typically longer than the timescale for metal segregation to the core. Thus, these high temperature excursions during planet formation are significant for understanding metal-silicate equilibration. Furthermore, when a supercritical planet is also rapidly rotating, the mantle, atmosphere and disk (MAD) form a continuous dynamic and thermodynamic structure. Lunar origin by condensation from a MAD Earth can explain the major characteristics of the Moon (Lock et al., this meeting). One of the greatest uncertainties in understanding the thermal states of planets during accretion is the changing composition and mass of the atmosphere. After the dispersal of the solar nebula, the thermal boundary condition imposed by the atmosphere can vary between silicate vapor and condensed ices. The coupled problem of atmospheric origin and planetary accretion can be used to constrain the many uncertainties in the growth and divergence of the terrestrial planets in our solar system.
Early change in thermal perception is not a driver of anticipatory exercise pacing in the heat.
Barwood, Martin James; Corbett, Jo; White, Danny; James, Jason
2012-10-01
Initial power output declines significantly during exercise in hot conditions on attaining a rapid increase in skin temperature when exercise commences. It is unclear whether this initial reduced power is mediated consciously, through thermal perceptual cues, or is a subconscious process. The authors tested the hypothesis that improved thermal perception (feeling cooler and more comfortable) in the absence of a change in thermal state (ie, similar deep-body and skin temperatures between spray conditions) would alter pacing and 40 km cycling time trial (TT) performance. Eleven trained participants (mean (SD): age 30 (8.1) years; height 1.78 (0.06) m; mass 76.0 (8.3) kg) completed three 40 km cycling TTs in standardised conditions (32°C, 50% RH) with thermal perception altered prior to exercise by application of cold-receptor-activating menthol spray (MENTHOL SPRAY), in contrast to a separate control spray (CONTROL SPRAY) and no spray control (CON). Thermal perception, perceived exertion, thermal responses and cycling TT performance were measured. MENTHOL SPRAY induced feelings of coolness and improved thermal comfort before and during exercise. Skin temperature profile at the start of exercise was similar between sprays (CON-SPRAY 33.3 (1.1)°C and MENTHOL SPRAY 33.4 (0.4)°C, but different to CON 34.5 (0.5)°C), but there was no difference in the pacing strategy adopted. There was no performance benefit using MENTHOL SPRAY; cycling TT completion time for CON is 71.58 (6.21) min, for CON-SPRAY is 70.94 (6.06) min and for MENTHOL SPRAY is 71.04 (5.47) min. The hypothesis is rejected. Thermal perception is not a primary driver of early pacing during 40 km cycling TT in hot conditions in trained participants.
Jiang, Z D; Zhao, G; Lu, G R
BACKGROUND: Cryotherapy and hyperthermia are effective treatments for several diseases, especially for liver cancers. Thermal conductivity is a significant thermal property for the prediction and guidance of surgical procedure. However, the thermal conductivities of organs and tissues, especially over the temperature range of both cryotherapy and hyperthermia are scarce. To provide comprehensive thermal conductivity of liver for both cryotherapy and hyperthermia. A hot probe made of stain steel needle and micron-sized copper wire is used for measurement. To verify data processing, both the least square method and the Monte Carlo inversion method are used to determine the hot probe constants, respectively, with reference materials of water and 29.9 % Ca 2 Cl aqueous solution. Then the thermal conductivities of Hanks solution and pork liver bathed in Hanks solution are measured. The effective length for two methods is nearly the same, but the heat capacity of probe calibrated by the Monte Carlo inversion is temperature dependent. Fairly comprehensive thermal conductivity of porcine liver measured with these two methods in the target temperature range is verified to be similar. We provide an integrated thermal conductivity of liver for cryotherapy and hyperthermia in two methods, and make more accurate predictions possible for surgery. The least square method and the Monte Carlo inversion method have their advantages and disadvantages. The least square method is available for measurement of liquids that not prone to convection or solids in a wide temperature range, while the Monte Carlo inversion method is available for accurate and rapid measurement.
NASA Astrophysics Data System (ADS)
Choi, Hyun-Jung; Kang, Jae-Sik; Huh, Jung-Ho
2018-01-01
Insulation materials used for buildings are broadly classified as organic insulation materials or inorganic insulation materials. Foam gas is used for producing organic insulation materials. The thermal conductivity of foam gas is generally lower than that of air. As a result, foam gas is discharged over time and replaced by outside air that has relatively less thermal resistance. The gas composition ratio in air bubbles inside the insulation materials changes rapidly, causing the performance degradation of insulation materials. Such performance degradation can be classified into different stages. Stage 1 appears to have a duration of 5 years, and Stage 2 takes a period of over 10 years. In this study, two insulation materials that are most frequently used in South Korea were analyzed, focusing on the changes thermal resistance for the period of over 5000 days. The measurement result indicated that the thermal resistance of expanded polystyrene fell below the KS performance standards after about 80-150 days from its production date. After about 5000 days, its thermal resistance decreased by 25.7 % to 42.7 % in comparison with the initial thermal resistance. In the case of rigid polyurethane, a pattern of rapid performance degradation appeared about 100 days post-production, and the thermal resistance fell below the KS performance standards after about 1000 days. The thermal resistance decreased by 22.5 % to 27.4 % in comparison with the initial thermal resistance after about 5000 days.
NASA Astrophysics Data System (ADS)
Whitenton, Eric; Heigel, Jarred; Lane, Brandon; Moylan, Shawn
2016-05-01
Accurate non-contact temperature measurement is important to optimize manufacturing processes. This applies to both additive (3D printing) and subtractive (material removal by machining) manufacturing. Performing accurate single wavelength thermography suffers numerous challenges. A potential alternative is hyperpixel array hyperspectral imaging. Focusing on metals, this paper discusses issues involved such as unknown or changing emissivity, inaccurate greybody assumptions, motion blur, and size of source effects. The algorithm which converts measured thermal spectra to emissivity and temperature uses a customized multistep non-linear equation solver to determine the best-fit emission curve. Emissivity dependence on wavelength may be assumed uniform or have a relationship typical for metals. The custom software displays residuals for intensity, temperature, and emissivity to gauge the correctness of the greybody assumption. Initial results are shown from a laser powder-bed fusion additive process, as well as a machining process. In addition, the effects of motion blur are analyzed, which occurs in both additive and subtractive manufacturing processes. In a laser powder-bed fusion additive process, the scanning laser causes the melt pool to move rapidly, causing a motion blur-like effect. In machining, measuring temperature of the rapidly moving chip is a desirable goal to develop and validate simulations of the cutting process. A moving slit target is imaged to characterize how the measured temperature values are affected by motion of a measured target.
PBDEs emission from waste printed wiring boards during thermal process.
Guo, Jie; Zhang, Ran; Xu, Zhenming
2015-03-03
Polybrominated diphenyl ethers (PBDEs) contained in waste printed wiring board (PWB) matrix and surface dust can be emitted into the air during thermal process, which is widely used to detach the electronic components from the base boards of waste PWB. In this study, PBDEs concentrations in air and dust samples were detected in a PWB-heating workshop, and then heating experiments of PBDEs-containing materials in a quartz tube furnace were performed to investigate the PBDEs emission mechanism. The results showed that the mean concentrations of Σ8PBDEs in PM10 and TSP were 479 and 1670 ng/m(3), respectively. Compared with surface dust collected from waste PWB (15600 ng/g), PBDEs concentrations in dust from the workshop floor (31,100 ng/g), heating machine inside (84,700 ng/g), and the cyclone extractor (317,000 ng/g), were condensed after thermal process. Heating experiments showed that the emission rates of PBDEs from PBDEs-containing dust were obviously higher than those from PWB fragments in the first 1-h time. The cumulative amounts of PBDEs emitted from dust increased rapidly at first, and then leveled off to become asymptotic to the maximum amounts. At the temperature of 300 °C, the PBDEs emission from dust mainly occurred within the first 5 min, and the average emission rates for BDE-28, -47, and -99 among the first 5 min were 1230, 4480, and 1950 ng/(g·min), respectively. During the initial 1-h period, the trends of PBDEs emission from PWB fragments had a linear increase, and the emission rates of penta-BDE (BDE-47, -99, -100) at different temperatures were at a range of 9.75-11.5 ng/(g·min). All the results showed that PBDEs emission from PWB waste happened during thermal process, and management strategies were provided to reduce the occupational exposure level of PBDEs for workers.
Reineke, Kai; Schottroff, Felix; Meneses, Nicolas; Knorr, Dietrich
2015-01-01
The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF) treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm(-1)), skim milk (0.3% fat; 5.3 mS cm(-1)) and fresh prepared carrot juice (7.73 mS cm(-1)). The combination of moderate preheating (70-90°C) and an insulated PEF-chamber, combined with a holding tube (65 cm) and a heat exchanger for cooling, enabled a rapid heat up to 105-140°C (measured above the PEF chamber) within 92.2-368.9 μs. To compare the PEF process with a pure thermal inactivation, each spore suspension was heat treated in thin glass capillaries and D-values from 90 to 130°C and its corresponding z-values were calculated. For a comparison of the inactivation data, F-values for the temperature fields of both processes were calculated by using computational fluid dynamics (CFD). A preheating of saline water to 70°C with a flow rate of 5 l h(-1), a frequency of 150 Hz and an energy input of 226.5 kJ kg(-1), resulted in a measured outlet temperature of 117°C and a 4.67 log10 inactivation of B. subtilis. The thermal process with identical F-value caused only a 3.71 log10 inactivation. This synergism of moderate preheating and PEF was even more pronounced for G. stearothermophilus spores in saline water. A preheating to 95°C and an energy input of 144 kJ kg(-1) resulted in an outlet temperature of 126°C and a 3.28 log10 inactivation, whereas nearly no inactivation (0.2 log10) was achieved during the thermal treatment. Hence, the PEF technology was evaluated as an alternative ultra-high temperature process. However, for an industrial scale application of this process for sterilization, optimization of the treatment chamber design is needed to reduce the occurring inhomogeneous temperature fields.
Ma, Xinyu; Feng, Shuxuan; He, Liang; Yan, Mengyu; Tian, Xiaocong; Li, Yanxi; Tang, Chunjuan; Hong, Xufeng; Mai, Liqiang
2017-08-17
On-chip electrochemical energy storage devices have attracted growing attention due to the decreasing size of electronic devices. Various approaches have been applied for constructing the microsupercapacitors. However, the microfabrication of high-performance microsupercapacitors by conventional and fully compatible semiconductor microfabrication technologies is still a critical challenge. Herein, unique three-dimensional (3D) Co 3 O 4 nanonetwork microelectrodes formed by the interconnection of Co 3 O 4 nanosheets are constructed by controllable physical vapor deposition combined with rapid thermal annealing. This construction process is an all dry and rapid (≤5 minutes) procedure. Afterward, by sputtering highly electrically conductive Pt nanoparticles on the microelectrodes, the 3D Co 3 O 4 /Pt nanonetworks based microsupercapacitor is fabricated, showing a high volume capacitance (35.7 F cm -3 ) at a scan rate of 20 mV s -1 due to the unique interconnected structures, high electrical conductivity and high surface area of the microelectrodes. This microfabrication process is also used to construct high-performance flexible microsupercapacitors, and it can be applied in the construction of wearable devices. The proposed strategy is completely compatible with the current semiconductor microfabrication and shows great potential in the applications of the large-scale integration of micro/nano and wearable devices.
NASA Astrophysics Data System (ADS)
Mei, Yaguang; Cheng, Yuxin; Cheng, Shusen; Hao, Zhongqi; Guo, Lianbo; Li, Xiangyou; Zeng, Xiaoyan
2017-10-01
During the iron-making process in blast furnace, the Si content in liquid pig iron was usually used to evaluate the quality of liquid iron and thermal state of blast furnace. None effective method was found for rapid detecting the Si concentration of liquid iron. Laser-induced breakdown spectroscopy (LIBS) is a kind of atomic emission spectrometry technology based on laser ablation. Its obvious advantage is realizing rapid, in-situ, online analysis of element concentration in open air without sample pretreatment. The characteristics of Si in liquid iron were analyzed from the aspect of thermodynamic theory and metallurgical technology. The relationship between Si and C, Mn, S, P or other alloy elements were revealed based on thermodynamic calculation. Subsequently, LIBS was applied on rapid detection of Si of pig iron in this work. During LIBS detection process, several groups of standard pig iron samples were employed in this work to calibrate the Si content in pig iron. The calibration methods including linear, quadratic and cubic internal standard calibration, multivariate linear calibration and partial least squares (PLS) were compared with each other. It revealed that the PLS improved by normalization was the best calibration method for Si detection by LIBS.
Preparation and Ablating Behavior of FGM used in a Heat Flux Rocket Engine
NASA Astrophysics Data System (ADS)
He, Xiaodong; Han, Jiecai; Zhang, Xinghong
2002-01-01
Functionally Graded Material (FGM) is a new kind of nonhomogeneous materials, which composition varies gradually and continuously from metals to ceramics, thus excellence of both ceramic and metal is brought fully into play. The impetus for the development of FGM was to make thermal barrier materials for space shuttles and structure such as combustion chamber, gas vane, air vane, nose cone, fuel valve sheets and piston crown. There are several main techniques for making FGMs including chemical vapor deposition (CVD), powder metallurgy, plasma spraying and self-propagating high temperate synthesis (SHS). SHS Technology is the process by which condensed phases are produced by self - sustaining exothermic chemical reaction. Demonstrated advantages of SHS as a method for the preparation of materials include higher purity of the products, low energy requirements, and the relative simplicity of the process. SHS is particularly well suited to fabricating FGM. Due to the rapidity of the combustion reaction, the initial arrangement of the constituent in the green body is unchanged during combustion. In this paper, TiB2-Cu FGM and homogeneous cermets have been prepared by combing forced compaction with SHS. The experimental results show that process parameters significantly influence the combustion synthesis procedure of Ti-B-Cu system. Optimal process parameters have been gained for preparing TiB2-Cu FGM and cermets. TiB2-Cu FGM by SHS has a continuous distribution in microstructure along its thickness. The macroscopic interface of ceramic/metal joint is elemented. Mechanical properties of TiB2-Cu cermets were investigated at room and high temperature. The thermal stress of TiC-Ni FGM prepared by SHS are simulated at working condition, as well as comparing with a layered TiB2-Cu Non- FGM. Obviously, the TiB2-Cu FGM has the function of distortion and thermal stress relation. TiB2-Cu FGM was tested in the limited wind tunnel simulating the real condition of the heat flux rocket engine. As a result, TiB2-Cu FGM showed excellent resistant ablating properties. There is only a little loss of the mass after heated for 40 seconds in the wind tunnel. Meanwhile no cracks and breakup appeared in the FGM under the sharp thermal shock condition. Key words: functionally graded materials, combustion synthesis, ablation, thermal shock, thermal stress
Novel micronisation β-carotene using rapid expansion supercritical solution with co-solvent
NASA Astrophysics Data System (ADS)
Kien, Le Anh
2017-09-01
Rapid expansion of supercritical solution (RESS) is the most common approach of pharmaceutical pacticle forming methods using supercritical fluids. The RESS method is a technology producing a small solid product with a very narrow particle size distribution, organic solvent-free particles. This process is also simple and easy to control the operating parameters in comparision with other ways based on supercritical techniques. In this study, β-carotene, a strongly colored red-orange pigment abundant in plants and fruits, has been forming by RESS. In addition, the size and morphology effect of four different RESS parameters including co-solvent, extraction temperature, and extraction pressure and expansion nozzle temperature has surveyed. The particle size distribution has been determined by using laser diffraction experiment. SEM has conducted to analyze the surface structure, DSC and FTIR for thermal and chemical structure analysis.
The response of the ionosphere to the injection of chemically reactive vapors
NASA Technical Reports Server (NTRS)
Bernhardt, P. A.
1976-01-01
As a gas released in the ionosphere expands, it is rapidly cooled. When the vapor becomes sufficiently tenuous, it is reheated by collisions with the ambient atmosphere and its flow is then governed by diffusive expansion. As the injected gas becomes well mixed with the plasma, a hole is created by chemical processes. In the case of diatomic hydrogen release, depression of the electron concentrations is governed by the charge exchange reaction between oxygen ions and hydrogen, producing positive hydroxyl ions. Hydroxyl ions rapidly react with the electron gas to produce excited oxygen and hydrogen atoms. Enhanced airglow emissions result from the transition of the excited atoms to lower energy states. The electron temperature in the depleted region rises sharply causing a thermal expansion of the plasma and a further reduction in the local plasma concentration.
Amorphous silicon as high index photonic material
NASA Astrophysics Data System (ADS)
Lipka, T.; Harke, A.; Horn, O.; Amthor, J.; Müller, J.
2009-05-01
Silicon-on-Insulator (SOI) photonics has become an attractive research topic within the area of integrated optics. This paper aims to fabricate SOI-structures for optical communication applications with lower costs compared to standard fabrication processes as well as to provide a higher flexibility with respect to waveguide and substrate material choice. Amorphous silicon is deposited on thermal oxidized silicon wafers with plasma-enhanced chemical vapor deposition (PECVD). The material is optimized in terms of optical light transmission and refractive index. Different a-Si:H waveguides with low propagation losses are presented. The waveguides were processed with CMOS-compatible fabrication technologies and standard DUV-lithography enabling high volume production. To overcome the large mode-field diameter mismatch between incoupling fiber and sub-μm waveguides three dimensional, amorphous silicon tapers were fabricated with a KOH etched shadow mask for patterning. Using ellipsometric and Raman spectroscopic measurements the material properties as refractive index, layer thickness, crystallinity and material composition were analyzed. Rapid thermal annealing (RTA) experiments of amorphous thin films and rib waveguides were performed aiming to tune the refractive index of the deposited a-Si:H waveguide core layer after deposition.
Watson, Brianna R.; Yang, Bin; Xiao, Kai; ...
2015-07-29
The emergence of efficient hybrid organic-inorganic perovskite photovoltaic materials has caused the rapid development of a variety of preparation and processing techniques designed to maximize their performance. As processing methods continue to emerge, it is important to understand how the optical properties of these materials are affected on a microscopic scale. Here polarization resolved two-photon total internal reflectance microscopy (TIRFM) was used to probe changes in transition dipole moment orientation as a function of thermal annealing time in hybrid organic-inorganic lead iodide based perovskite (CH 3NH 3PbI 3) thin films on glass. These results show that as thermal annealing timemore » is increased the distribution of transition moments pointing out-of-plane decreases in favor of forming areas with increased in-plane orientations. As a result, it was also shown through the axial sensitivity of TIRFM that the surface topography is manifested in the signal intensity and can be used to survey aspects of morphology in coincidence with the optical properties of these films.« less
NASA Astrophysics Data System (ADS)
Kim, Si Joon; Narayan, Dushyant; Lee, Jae-Gil; Mohan, Jaidah; Lee, Joy S.; Lee, Jaebeom; Kim, Harrison S.; Byun, Young-Chul; Lucero, Antonio T.; Young, Chadwin D.; Summerfelt, Scott R.; San, Tamer; Colombo, Luigi; Kim, Jiyoung
2017-12-01
We report on atomic layer deposited Hf0.5Zr0.5O2 (HZO)-based capacitors which exhibit excellent ferroelectric (FE) characteristics featuring a large switching polarization (45 μC/cm2) and a low FE saturation voltage (˜1.5 V) as extracted from pulse write/read measurements. The large FE polarization in HZO is achieved by the formation of a non-centrosymmetric orthorhombic phase, which is enabled by the TiN top electrode (TE) having a thickness of at least 90 nm. The TiN films are deposited at room temperature and annealed at 400 °C in an inert environment for at least 1 min in a rapid thermal annealing system. The room-temperature deposited TiN TE acts as a tensile stressor on the HZO film during the annealing process. The stress-inducing TiN TE is shown to inhibit the formation of the monoclinic phase during HZO crystallization, forming an orthorhombic phase that generates a large FE polarization, even at low process temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruess, K.; Doughty, C.
2010-01-15
Single-well injection-withdrawal (SWIW) tracer tests involve injection of traced fluid and subsequent tracer recovery from the same well, usually with some quiescent time between the injection and withdrawal periods. SWIW are insensitive to variations in advective processes that arise from formation heterogeneities, because upon withdrawal, fluid parcels tend to retrace the paths taken during injection. However, SWIW are sensitive to diffusive processes, such as diffusive exchange of conservative or reactive solutes between fractures and rock matrix. This paper focuses on SWIW tests in which temperature itself is used as a tracer. Numerical simulations demonstrate the sensitivity of temperature returns tomore » fracture-matrix interaction. We consider thermal SWIW response to the two primary reservoir improvements targeted with stimulation, (1) making additional fractures accessible to injected fluids, and (2) increasing the aperture and permeability of pre-existing fractures. It is found that temperature returns in SWIW tests are insensitive to (2), while providing a strong signal of more rapid temperature recovery during the withdrawal phase for (1).« less
Chao, Yu-Ying; Chen, Yen-Ling; Lin, Hong-Yi; Huang, Yeou-Lih
2018-06-20
Thermal desorption electrospray ionization/mass spectrometry (TD-ESI-MS) employing a quickly interchangeable ionization source is a relatively new ambient ionization mass spectrometric technique that has had, to date, only a limited number of applications related to food safety control. With reallocation of resources, this direct-analysis technique has had wider use in food analysis when operated in dual-working mode (pretreatment-free qualitative screening and conventional quantitative confirmation) after switching to an ambient ionization source from a traditional atmospheric pressure ionization source. Herein, we describe the benefits and challenges associated with the use of a TD-ESI source to detect adulterants in processed vegetables (PVs), as a proof-of-concept for the detection of basic colorants. While TD-ESI can offer direct qualitative screening analyses for PVs with detection capabilities lower than those provided with liquid chromatography/UV detection within 30 s, the use of TD-ESI for semi-quantification is applicable only for homogeneous food matrices. Copyright © 2018 Elsevier B.V. All rights reserved.
Hot cracking of Structural Steel during Laser Welding
NASA Astrophysics Data System (ADS)
Pineda Huitron, Rosa M.; Vuorinen, Esa
2017-10-01
Laser welding is an important technique in many industries due to its high precision in operation, its local and fast processing, narrow welds and its good weld surface quality. However, the process can involve some complications due to the rapid heating and cooling of the material processed, resulting in physical and metallurgical effects as thermal contraction during solidification, giving as a result the presence of residual stresses in the narrow weld. Formation of defects during the process is an important topic to be evaluated in order to achieve better performance of the steels in use. In the present work, defects formed during laser welding of a structural steel have been investigated. The defects formed have been identified and the causes of the defects are discussed. Possible strategies for improvement of the welding procedure and final weld result are proposed. The defects were analysed by optical and scanning electron microscopy and hardness measurement. Cracks were located in the middle of the fusion zone and followed both inter-granular and trans-granular paths. Impurities as manganese sulphides were found along the welding direction, and could act as sites for crack formation. The cracks formed during solidification of the weld are identified as solidification cracks. This kind of cracks is usually caused by solidification shrinkage and thermal contractions during the process, which appear in the fusion zone and sometimes in the heat affected zone.
Thermal Conductivity of Functional Citrus Tree Wood 1
Turrell, F. M.; Austin, S. W.; McNee, Dan; Park, W. J.
1967-01-01
Thermal conductivity coefficients have been determined for longitudinal and transverse flow in 4 varieties of fresh Citrus wood using steady state-methods. Equations were developed from which thermal conductivity could be rapidly estimated from moisture content or electrical conductivity. The heat balance of large and small tree trunks on a freezing night has been calculated on the basis of the coefficients. PMID:16656610
High carrier activation of Mg ion-implanted GaN by conventional rapid thermal annealing
NASA Astrophysics Data System (ADS)
Niwa, Takaki; Fujii, Takahiro; Oka, Tohru
2017-09-01
A high activation ratio of Mg ion implantation by conventional rapid thermal annealing (RTA) was demonstrated. To obtain the high activation ratio of Mg ion implantation, the dependence of hole concentration on Mg dose was investigated. A maximum hole concentration and a high activation ratio of 2.3% were obtained at a Mg dose of 2.3 × 1014 cm-2 between 9.2 × 1013 and 2.3 × 1015 cm-2. The ratio is, to the best of our knowledge, the highest ever obtained by conventional RTA.
NASA Astrophysics Data System (ADS)
Feigelson, B. N.; Anderson, T. J.; Abraham, M.; Freitas, J. A.; Hite, J. K.; Eddy, C. R.; Kub, F. J.
2012-07-01
No reliable results were reported up-to-date on electrical activation of Mg implanted GaN without co-doping with other ions. The main reason of the poor ion-implanted activation in GaN is lack of the adequate GaN annealing technique. We have developed a new approach, Multicycle Rapid Thermal Annealing to overcome this limitation and enable longer annealing times at high temperature. We have applied this new technique to Mg-implanted GaN, and demonstrated p-type conductivity.
Optimization of ultrahigh-speed multiplex PCR for forensic analysis.
Gibson-Daw, Georgiana; Crenshaw, Karin; McCord, Bruce
2018-01-01
In this paper, we demonstrate the design and optimization of an ultrafast PCR amplification technique, used with a seven-locus multiplex that is compatible with conventional capillary electrophoresis systems as well as newer microfluidic chip devices. The procedure involves the use of a high-speed polymerase and a rapid cycling protocol to permit multiplex PCR amplification of forensic short tandem repeat loci in 6.5 min. We describe the selection and optimization of master mix reagents such as enzyme, buffer, MgCl 2 , and dNTPs, as well as primer ratios, total volume, and cycle conditions, in order to get the best profile in the shortest time possible. Sensitivity and reproducibility studies are also described. The amplification process utilizes a small high-speed thermocycler and compact laptop, making it portable and potentially useful for rapid, inexpensive on-site genotyping. The seven loci of the multiplex were taken from conventional STR genotyping kits and selected for their size and lack of overlap. Analysis was performed using conventional capillary electrophoresis and microfluidics with fluorescent detection. Overall, this technique provides a more rapid method for rapid sample screening of suspects and victims. Graphical abstract Rapid amplification of forensic DNA using high speed thermal cycling followed by capillary or microfluidic electrophoresis.
Micro-architecture embedding ultra-thin interlayer to bond diamond and silicon via direct fusion
NASA Astrophysics Data System (ADS)
Kim, Jong Cheol; Kim, Jongsik; Xin, Yan; Lee, Jinhyung; Kim, Young-Gyun; Subhash, Ghatu; Singh, Rajiv K.; Arjunan, Arul C.; Lee, Haigun
2018-05-01
The continuous demand on miniaturized electronic circuits bearing high power density illuminates the need to modify the silicon-on-insulator-based chip architecture. This is because of the low thermal conductivity of the few hundred nanometer-thick insulator present between the silicon substrate and active layers. The thick insulator is notorious for releasing the heat generated from the active layers during the operation of devices, leading to degradation in their performance and thus reducing their lifetime. To avoid the heat accumulation, we propose a method to fabricate the silicon-on-diamond (SOD) microstructure featured by an exceptionally thin silicon oxycarbide interlayer (˜3 nm). While exploiting the diamond as an insulator, we employ spark plasma sintering to render the silicon directly fused to the diamond. Notably, this process can manufacture the SOD microarchitecture via a simple/rapid way and incorporates the ultra-thin interlayer for minute thermal resistance. The method invented herein expects to minimize the thermal interfacial resistance of the devices and is thus deemed as a breakthrough appealing to the current chip industry.
A review of heat transfer in human tooth--experimental characterization and mathematical modeling.
Lin, Min; Xu, Feng; Lu, Tian Jian; Bai, Bo Feng
2010-06-01
With rapid advances in modern dentistry, high-energy output instruments (e.g., dental lasers and light polymerizing units) are increasingly employed in dental surgery for applications such as laser assisted tooth ablation, bleaching, hypersensitivity treatment and polymerization of dental restorative materials. Extreme high temperature occurs within the tooth during these treatments, which may induce tooth thermal pain (TTP) sensation. Despite the wide application of these dental treatments, the underlying mechanisms are far from clear. Therefore, there is an urgent need to better understand heat transfer (HT) process in tooth, thermally induced damage of tooth, and the corresponding TTP. This will enhance the design and optimization of clinical treatment strategies. This paper presents the state-of-the-art of the current understanding on HT in tooth, with both experimental study and mathematical modeling reviewed. Limitations of the current experimental and mathematical methodologies are discussed and potential solutions are suggested. Interpretation of TTP in terms of thermally stimulated dentinal fluid flow is also discussed. Copyright (c) 2010 Academy of Dental Materials. All rights reserved.
Thermal noise in a boost-invariant matter expansion in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Chattopadhyay, Chandrodoy; Bhalerao, Rajeev S.; Pal, Subrata
2018-05-01
We formulate a general theory of thermal fluctuations within causal second-order viscous hydrodynamic evolution of matter formed in relativistic heavy-ion collisions. The fluctuation is treated perturbatively on top of a boost-invariant longitudinal expansion. Numerical simulation of thermal noise is performed for a lattice quantum chromodynamics equation of state and for various second-order dissipative evolution equations. Phenomenological effects of thermal fluctuations on the two-particle rapidity correlations are studied.
Ihlefeld, Jon F; Foley, Brian M; Scrymgeour, David A; Michael, Joseph R; McKenzie, Bonnie B; Medlin, Douglas L; Wallace, Margeaux; Trolier-McKinstry, Susan; Hopkins, Patrick E
2015-03-11
Dynamic control of thermal transport in solid-state systems is a transformative capability with the promise to propel technologies including phononic logic, thermal management, and energy harvesting. A solid-state solution to rapidly manipulate phonons has escaped the scientific community. We demonstrate active and reversible tuning of thermal conductivity by manipulating the nanoscale ferroelastic domain structure of a Pb(Zr0.3Ti0.7)O3 film with applied electric fields. With subsecond response times, the room-temperature thermal conductivity was modulated by 11%.
Winwood-Smith, Hugh S; Alton, Lesley A; Franklin, Craig E; White, Craig R
2015-01-01
Temperature has pervasive effects on physiological processes and is critical in setting species distribution limits. Since invading Australia, cane toads have spread rapidly across low latitudes, but slowly into higher latitudes. Low temperature is the likely factor limiting high-latitude advancement. Several previous attempts have been made to predict future cane toad distributions in Australia, but understanding the potential contribution of phenotypic plasticity and adaptation to future range expansion remains challenging. Previous research demonstrates the considerable thermal metabolic plasticity of the cane toad, but suggests limited thermal plasticity of locomotor performance. Additionally, the oxygen-limited thermal tolerance hypothesis predicts that reduced aerobic scope sets thermal limits for ectotherm performance. Metabolic plasticity, locomotor performance and aerobic scope are therefore predicted targets of natural selection as cane toads invade colder regions. We measured these traits at temperatures of 10, 15, 22.5 and 30°C in low- and high-latitude toads acclimated to 15 and 30°C, to test the hypothesis that cane toads have adapted to cooler temperatures. High-latitude toads show increased metabolic plasticity and higher resting metabolic rates at lower temperatures. Burst locomotor performance was worse for high-latitude toads. Other traits showed no regional differences. We conclude that increased metabolic plasticity may facilitate invasion into higher latitudes by maintaining critical physiological functions at lower temperatures.
Phase field modeling of rapid crystallization in the phase-change material AIST
NASA Astrophysics Data System (ADS)
Tabatabaei, Fatemeh; Boussinot, Guillaume; Spatschek, Robert; Brener, Efim A.; Apel, Markus
2017-07-01
We carry out phase field modeling as a continuum simulation technique in order to study rapid crystallization processes in the phase-change material AIST (Ag4In3Sb67Te26). In particular, we simulate the spatio-temporal evolution of the crystallization of a molten area of the phase-change material embedded in a layer stack. The simulation model is adapted to the experimental conditions used for recent measurements of crystallization rates by a laser pulse technique. Simulations are performed for substrate temperatures close to the melting temperature of AIST down to low temperatures when an amorphous state is involved. The design of the phase field model using the thin interface limit allows us to retrieve the two limiting regimes of interface controlled (low temperatures) and thermal transport controlled (high temperatures) dynamics. Our simulations show that, generically, the crystallization velocity presents a maximum in the intermediate regime where both the interface mobility and the thermal transport, through the molten area as well as through the layer stack, are important. Simulations reveal the complex interplay of all different contributions. This suggests that the maximum switching velocity depends not only on material properties but also on the precise design of the thin film structure into which the phase-change material is embedded.
Furukawa, Taro; Nakanotani, Hajime; Inoue, Munetomo; Adachi, Chihaya
2015-01-01
Recently, triplet harvesting via a thermally activated delayed fluorescence (TADF) process has been established as a realistic route for obtaining ultimate internal electroluminescence (EL) quantum efficiency in organic light-emitting diodes (OLEDs). However, the possibility that the rather long transient lifetime of the triplet excited states would reduce operational stability due to an increased chance for unwarranted chemical reactions has been a concern. Herein, we demonstrate dual enhancement of EL efficiency and operational stability in OLEDs by employing a TADF molecule as an assistant dopant and a fluorescent molecule as an end emitter. The proper combination of assistant dopant and emitter molecules realized a “one-way” rapid Förster energy transfer of singlet excitons from TADF molecules to fluorescent emitters, reducing the number of cycles of intersystem crossing (ISC) and reverse ISC in the TADF molecules and resulting in a significant enhancement of operational stability compared to OLEDs with a TADF molecule as the end emitter. In addition, we found that the presence of this rapid energy transfer significantly suppresses singlet-triplet annihilation. Using this finely-tuned rapid triplet-exciton upconversion scheme, OLED performance and lifetime was greatly improved. PMID:25673259
NASA Astrophysics Data System (ADS)
Ebrahimi, Ali; Or, Dani
2017-04-01
The sensitivity of the Earth's polar regions to raising global temperatures is reflected in rapidly changing hydrological processes with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and the stimulation of other soil-borne GHG emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and a host of other environmental factors. Soil structural elements such as aggregates and layering and hydration status affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hotspots or hot-layers). We developed a mechanistic individual based model to quantify microbial activity dynamics within soil pore networks considering, hydration, temperature, transport processes and enzymatic activity associated with methane production in soil. The model was the upscaled from single aggregates (or hotspots) to quantifying emissions from soil profiles in which freezing/thawing processes provide macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged parts of the profile) for resolving methane production and oxidation rates. Methane transport pathways through soil by diffusion and ebullition of bubbles vary with hydration dynamics and affect emission patterns. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability, enzyme activity, PH) on long term methane emissions and carbon decomposition rates in the rapidly changing polar regions.
NASA Astrophysics Data System (ADS)
Malinauskas, Mangirdas; Lukoševičius, Laurynas; MackevičiÅ«tÄ--, DovilÄ--; BalčiÅ«nas, Evaldas; RekštytÄ--, Sima; Paipulas, Domas
2014-05-01
A novel approach for efficient manufacturing of three-dimensional (3D) microstructured scaffolds designed for cell studies and tissue engineering applications is presented. A thermal extrusion (fused filament fabrication) 3D printer is employed as a simple and low-cost tabletop device enabling rapid materialization of CAD models out of biocompatible and biodegradable polylactic acid (PLA). Here it was used to produce cm- scale microporous (pore size varying from 100 to 400 µm) scaffolds. The fabricated objects were further laser processed in a direct laser writing (DLW) subtractive (ablation) and additive (lithography) manners. The first approach enables precise surface modification by creating micro-craters, holes and grooves thus increasing the surface roughness. An alternative way is to immerse the 3D PLA scaffold in a monomer solution and use the same DLW setup to refine its inner structure by fabricating dots, lines or a fine mesh on top as well as inside the pores of previously produced scaffolds. The DLW technique is empowered by ultrafast lasers - it allows 3D structuring with high spatial resolution in a great variety of photosensitive materials. Structure geometry on macro- to micro- scales could be finely tuned by combining these two fabrication techniques. Such artificial 3D substrates could be used for cell growth or as biocompatible-biodegradable implants. This combination of distinct material processing techniques enables rapid fabrication of diverse functional micro- featured and integrated devices. Hopefully, the proposed approach will find numerous applications in the field of ms, microfluidics, microoptics and many others.
Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity.
Ding, Jiheng; Ur Rahman, Obaid; Zhao, Hongran; Peng, Wanjun; Dou, Huimin; Chen, Hao; Yu, Haibin
2017-09-29
Graphene-based films are widely used in the electronics industry. Here, surface hydroxylated graphene sheets (HGS) have been synthesized from natural graphite (NG) by a rapid and efficient molten hydroxide-assisted exfoliation technique. This method enables preparation of aqueous dispersible graphene sheets with a high dispersed concentration (∼10.0 mg ml -1 ) and an extraordinary production yield (∼100%). The HGS dispersion was processed into graphene flexible film (HGCF) through fast filtration, annealing treatment and mechanical compression. The HGS endows graphene flexible film with a high electrical conductivity of 11.5 × 10 4 S m -1 and a superior thermal conductivity of 1842 W m -1 K -1 . Simultaneously, the superflexible HGCF could endure 3000 repeated cycles of bending or folding. As a result, this graphene flexible film is expected to be integrated into electronic packaging and high-power electronics applications.
NASA Technical Reports Server (NTRS)
Vazquez, Juan M. (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Weiser, Erik S. (Inventor)
2005-01-01
A fully imidized, solvent-free polyimide foam having excellent mechanical, acoustic, thermal, and flame resistant properties is produced. A first solution is provided, which includes one or more aromatic dianhydrides or derivatives of aromatic dianhydrides, and may include one or more aromatic diamines, dissolved in one or more polar solvents, along with an effective amount of one or more blowing agents. This first solution may also advantageously include effective amounts respectively of one or mores catalysts, one or more surfactants, and one or more fire retardants. A second solution is also provided which includes one or more isocyanates. The first and second solutions are rapidly and thoroughly mixed to produce an admixture, which is allowed to foam-in an open container, or in a closed mold-under ambient conditions to completion produce a foamed product. This foamed product is then cured by high frequency electromagnetic radiation, thermal energy, or a combination thereof. Alternatively, the process is adapted for spraying or extrusion.
NASA Technical Reports Server (NTRS)
Weiser, Erik S. (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Vazquez, Juan M. (Inventor)
2005-01-01
A fully imidized, solvent-free polyimide foam having excellent mechanical, acoustic, thermal, and flame resistant properties is produced. A first solution is provided, which includes one or more aromatic dianhydrides or derivatives of aromatic dianhydrides, and may include one or more aromatic diamines, dissolved in one or more polar solvents, along with an effective amount of one or more blowing agents. This first solution may also advantageously include effective amounts respectively of one or mores catalysts, one or more surfactants, and one or more fire retardants. A second solution is also provided which includes one or more isocyanates. The first and second solutions are rapidly and thoroughly mixed to produce an admixture, which is allowed to foam?in an open container, or in a closed mold?under ambient conditions to completion produce a foamed product. This foamed product is then cured by high frequency electromagnetic radiation, thermal energy, or a combination thereof. Alternatively, the process is adapted for spraying or extrusion.
NASA Technical Reports Server (NTRS)
Vazquez, Juan M. (Inventor); Cano, Roberto J. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)
2009-01-01
A fully imidized, solvent-free polyimide foam having excellent mechanical, acoustic, thermal, and flame resistant properties is produced. A first solution is provided, which includes one or more aromatic dianhydrides or derivatives of aromatic dianhydrides, and may include one or more aromatic diamines, dissolved in one or more polar solvents, along with an effective amount of one or more blowing agents. This first solution may also advantageously include effective amounts respectively of one or mores catalysts, one or more surfactants, and one or more fire retardants. A second solution is also provided which includes one or more isocyanates. The first and second solutions are rapidly and thoroughly mixed to produce an admixture, which is allowed to foam--in an open container, or in a closed mold--under ambient conditions to completion produce a foamed product. This foamed product is then cured by high frequency electromagnetic radiation, thermal energy, or a combination thereof. Alternatively, the process is adapted for spraying or extrusion.
NASA Technical Reports Server (NTRS)
Stinson, Henry; Turner, James (Technical Monitor)
2002-01-01
In this viewgraph presentation, information and diagrams are provided on rocket engine turbopumps. These turbomachines are highly complex and have several unique features: (1) They are generally very high power density machines; (2) They experience high fluid dynamic loads; (3) They are exposed to severe thermal shocks in terms of rapid starts and stops and extremely high heat transfer coefficients; (4) They have stringent suction performance requirements to minimize tank weight; (5) Their working fluids significantly impact the design: oxidizers are generally explosive, they afford almost no lubrication for bearings and seals, some fuels can degrade material properties, cryogenics result in severe thermal gradients; (6) Their life requirements are short relative to other turbomachines in that there are hundreds of cycles and a few hours of operation for reusable systems. The design of rocket engine turbomachines is a systems engineering challenge because multiple engineering disciplines must be integrated to deal with issues pertaining to stress, structural dynamics, hydrodynamics, aerodynamics, thermodynamics, and materials and process selection.
Isolation and characterization of a bacteriophage for Vibrio fetus.
Bryner, J H; Ritchie, A E; Foley, J W; Berman, D T
1970-07-01
Bacteriophages were isolated from 22 of 38 strains of Vibrio fetus by an enrichment process, utilizing the donor and host strains growing together in fluid thioglycollate medium. One phage, V-45, isolated by the conventional lawn-spot method, was characterized by stability in broth, growth kinetics, and morphology. It was sensitive to rapid thermal inactivation, chloroform, and pH values above 6.5. Calcium was required for phage replication and stability in broth. Magnesium provided the best protection against thermal inactivation at 50 C in the pH range of 6.5 to 7.5. The minimum latent period was 135 min, rise time was 75 min, and average burst size was 35 plaque-forming units per infected cell. Phage V-45 resembled Bradley's morphological group B, having a long tail without contractile sheath. Dimensions were: head, about 50 nm; tail, about 7 by 240 nm; and tail lumen, 2 to 3 nm.
NASA Astrophysics Data System (ADS)
Sinder, M.; Pelleg, J.; Meerovich, V.; Sokolovsky, V.
2018-03-01
RF heating kinetics of a nano-graphene layer/silicon substrate structure is analyzed theoretically as a function of the thickness and sheet resistance of the graphene layer, the dimensions and thermal parameters of the structure, as well as of cooling conditions and of the amplitude and frequency of the applied RF magnetic field. It is shown that two regimes of the heating can be realized. The first one is characterized by heating of the structure up to a finite temperature determined by equilibrium between the dissipated loss power caused by induced eddy-currents and the heat transfer to environment. The second regime corresponds to a fast unlimited temperature increase (heat explosion). The criterions of realization of these regimes are presented in the analytical form. Using the criterions and literature data, it is shown the possibility of the heat explosion regime for a graphene layer/silicon substrate structure at RF heating.
Microwave Thermal Hydrolysis Of Sewage Sludge As A Pretreatment Stage For Anaerobic Digestion
NASA Astrophysics Data System (ADS)
Qiao, W.; Wang, W.; Xun, R.
2008-02-01
This article focuses on the effects of microwave thermal hydrolysis on sewage sludge anaerobic digestion. Volatile suspended solid (VSS) and COD solubilization of treated sludge were investigated. It was found that the microwave hydrolysis provided a rapid and efficient process to release organics from sludge. The increase of organic dissolution ratio was not obvious when holding time was over 5 min. The effect of the VSS solubilization was mainly dependent on temperature. The highest value of VSS dissolving ratio, 36.4%, was obtained at 170 °C for 30 min. COD dissolving ratio was about 25% at 170 °C. BMP test of excess sludge and mixture of primary and excess sludge proved the increase of methane production. Total biogas production of microwave treated mixture sludge increased by 12.9% to 20.2% over control after 30 days digestion. For excess sludge, biogas production was 11.1% to 25.9% higher than untreated sludge.
Heat produced by the dark-adapted bullfrog retina in response to light pulses.
Tasaki, I; Nakaye, T
1986-08-01
By using a pyroelectric detector constructed with a polyvinylidene fluoride film, a rapid rise in the temperature of the dark-adapted bullfrog retina induced by light was demonstrated. In the bullfrog retina, as in the squid retina examined previously, the heat generated in response to a brief light pulse was found to be far greater than the amount produced by conversion of the entire radiant energy of the stimulus into heat. The thermal responses consist of the heat generated by the photoreceptor and the postsynaptic elements in the retina, preceded by a small signal reflecting conversion of a portion of the radiant energy of the stimulus into heat. The dependence of the thermal responses on the light intensity, on the wavelength and on a variety of physical and chemical agents was examined. The exothermic process underlying the production of heat by the photoreceptor was found to precede the electrophysiological response of the retina.
Processes for producing low cost, high efficiency silicon solar cells
Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag
1996-01-01
Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.
Rapid bonding of Pyrex glass microchips.
Akiyama, Yoshitake; Morishima, Keisuke; Kogi, Atsuna; Kikutani, Yoshikuni; Tokeshi, Manabu; Kitamori, Takehiko
2007-03-01
A newly developed vacuum hot press system has been specially designed for the thermal bonding of glass substrates in the fabrication process of Pyrex glass microchemical chips. This system includes a vacuum chamber equipped with a high-pressure piston cylinder and carbon plate heaters. A temperature of up to 900 degrees C and a force of as much as 9800 N could be applied to the substrates in a vacuum atmosphere. The Pyrex substrates bonded with this system under different temperatures, pressures, and heating times were evaluated by tensile strength tests, by measurements of thickness, and by observations of the cross-sectional shapes of the microchannels. The optimal bonding conditions of the Pyrex glass substrates were 570 degrees C for 10 min under 4.7 N/mm(2) of applied pressure. Whereas more than 16 h is required for thermal bonding with a conventional furnace, the new system could complete the whole bonding processes within just 79 min, including heating and cooling periods. Such improvements should considerably enhance the production rate of Pyrex glass microchemical chips. Whereas flat and dust-free surfaces are required for conventional thermal bonding, especially without long and repeated heating periods, our hot press system could press a fine dust into glass substrates so that even the areas around the dust were bonded. Using this capability, we were able to successfully integrate Pt/Ti thin film electrodes into a Pyrex glass microchip.
Effect of gamma radiation on the stability of UV replicated composite mirrors
NASA Astrophysics Data System (ADS)
Zaldivar, Rafael J.; Kim, Hyun I.; Ferrelli, Geena L.
2018-04-01
Composite replicated mirrors are gaining increasing attention for space-based applications due to their lower density, tailorable mechanical properties, and rapid manufacturing times over state-of-the-art glass mirrors. Ultraviolet (UV)-cured mirrors provide a route by which high-quality mirrors can be manufactured at relatively low processing temperatures that minimize residual stresses. The successful utilization of these mirrors requires nanometer scale dimensional stability after both thermal cycling and hygrothermal exposure. We investigate the effect of gamma irradiation as a process to improve the stability of UV replicated mirrors. Gamma radiation exposure was shown to increase the cure state of these mirrors as evidenced by an increase in modulus, glass transition temperature, and the thermal degradation behavior with dosage. Gas chromatography-mass spectroscopy also showed evidence of consumption of the primary monomers and initiation of the photosensitive agent with gamma exposure. The gamma-exposed mirrors exhibited significant improvement in stability even after multiple thermal cycling in comparison with nonirradiated composite mirrors. Though improvements in the cure state contribute to the overall stability, the radiation dosage was also shown to reduce the film stress of the mirror by over 80% as evidenced using Stoney replicated specimens. This reduction in residual stress is encouraging considering the utilization of these structures for space applications. This paper shows that replicated composite mirrors are a viable alternative to conventional optical structures.
Liquid Film Migration in Warm Formed Aluminum Brazing Sheet
NASA Astrophysics Data System (ADS)
Benoit, M. J.; Whitney, M. A.; Wells, M. A.; Jin, H.; Winkler, S.
2017-10-01
Warm forming has previously proven to be a promising manufacturing route to improve formability of Al brazing sheets used in automotive heat exchanger production; however, the impact of warm forming on subsequent brazing has not previously been studied. In particular, the interaction between liquid clad and solid core alloys during brazing through the process of liquid film migration (LFM) requires further understanding. Al brazing sheet comprised of an AA3003 core and AA4045 clad alloy, supplied in O and H24 tempers, was stretched between 0 and 12 pct strain, at room temperature and 523K (250 °C), to simulate warm forming. Brazeability was predicted through thermal and microstructure analysis. The rate of solid-liquid interactions was quantified using thermal analysis, while microstructure analysis was used to investigate the opposing processes of LFM and core alloy recrystallization during brazing. In general, liquid clad was consumed relatively rapidly and LFM occurred in forming conditions where the core alloy did not recrystallize during brazing. The results showed that warm forming could potentially impair brazeability of O temper sheet by extending the regime over which LFM occurs during brazing. No change in microstructure or thermal data was found for H24 sheet when the forming temperature was increased, and thus warm forming was not predicted to adversely affect the brazing performance of H24 sheet.
Remagnetization in Some Transitional Flows
NASA Astrophysics Data System (ADS)
Valet, J. P.; Carlut, J. H.; Vella, J.; Le Goff, M.; Soler, V.
2016-12-01
Very large directional variations of magnetization have been reported in several lava flows recording a geomagnetic reversal. Such behavior could reflect real geomagnetic changes or be caused by artifacts due to post-emplacement alteration and/or non-ideal magnetic behavior. More recently, a high resolution paleomagnetic record from sediments pleads also for an extremely rapid reversal process during the last reversal (Sagnotti et al., 2014). Assuming that the geomagnetic field would have moved by tens of degrees during cooling of moderate thickness lava flows implies brief episodes of rapid changes by a few degrees per day that are difficult to reconcile with the rate of liquid motions at the core surface. Systematical mineralogical bias is a most likely explanation to promote such behavior as recently reconsidered by Coe et al., 2014 for the rapid field changes recorded at Steens Mountain. We resampled two lava flows at La Palma island (Canarias) that are sandwiched between reverse polarity and normal polarity flows associated with the last geomagnetic reversal. The results show an evolution of the magnetization direction from top to bottom. Hysteresis, coercivity and thermomagnetic parameters do not show important variations and no correlation with the amplitude of the deviations could be established. Thermal demagnetization experiments conducted using continuous demagnetization (TRIAXE method) did not allow the detection of dubious behavior. Experimental evidences finally indicate that critical thermal activation of some of the magnetic grains during the moderate baking by the above flow may be responsible for the directional swing. Microscopic observations indicate poor exsolution, which suggest a link between Ti-rich magnetite and thermoviscous remagnetization.
Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study.
Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng
2017-09-07
To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system.
Spontaneous jumping, bouncing and trampolining of hydrogel drops on a heated plate.
Pham, Jonathan T; Paven, Maxime; Wooh, Sanghyuk; Kajiya, Tadashi; Butt, Hans-Jürgen; Vollmer, Doris
2017-10-13
The contact between liquid drops and hot solid surfaces is of practical importance for industrial processes, such as thermal spraying and spray cooling. The contact and bouncing of solid spheres is also an important event encountered in ball milling, powder processing, and everyday activities, such as ball sports. Using high speed video microscopy, we demonstrate that hydrogel drops, initially at rest on a surface, spontaneously jump upon rapid heating and continue to bounce with increasing amplitudes. Jumping is governed by the surface wettability, surface temperature, hydrogel elasticity, and adhesion. A combination of low-adhesion impact behavior and fast water vapor formation supports continuous bouncing and trampolining. Our results illustrate how the interplay between solid and liquid characteristics of hydrogels results in intriguing dynamics, as reflected by spontaneous jumping, bouncing, trampolining, and extremely short contact times.Drops of liquid on a hot surface can exhibit fascinating behaviour such as the Leidenfrost effect in which drops hover on a vapour layer. Here Pham et al. show that when hydrogel drops are placed on a rapidly heated plate they bounce to increasing heights even if they were initially at rest.
Rapid Cellulose-Mediated Microwave Sintering for High-Conductivity Ag Patterns on Paper.
Jung, Sunshin; Chun, Su Jin; Shon, Chae-Hwa
2016-08-10
Cellulose-based paper is essential in everyday life, but it also has further potentials for use in low-cost, printable, disposable, and eco-friendly electronics. Here, a method is developed for the cellulose-mediated microwave sintering of Ag patterns on conventional paper, in which the paper plays a significant role both as a flexible insulating substrate for the conductive Ag pattern and as a lossy dielectric media for rapid microwave heating. The anisotropic dielectric properties of the cellulose fibers mean that a microwave electric field applied parallel to the paper substrate provides sufficient heating to produce Ag patterns with a conductivity 29-38% that of bulk Ag in a short period of time (∼1 s) at 250-300 °C. Significantly, there is little thermal degradation of the substrate during this process. The microwave-sintered Ag patterns exhibit good mechanical stability against 10 000 bending cycles and can be easily soldered with lead-free solder. Therefore, cellulose-mediated microwave sintering presents a promising means of achieving short processing times and high electrical performance in flexible paper electronics.
Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study
Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng
2017-01-01
To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system. PMID:28880207
Work functions of hafnium nitride thin films as emitter material for field emitter arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gotoh, Yasuhito, E-mail: gotoh.yasuhito.5w@kyoto-u.ac.jp; Fujiwara, Sho; Tsuji, Hiroshi
The work functions of hafnium nitride thin films prepared by radio-frequency magnetron sputtering were investigated in vacuum, before and after surface cleaning processes, with a view of improving the properties of as-fabricated field emitter arrays comprising hafnium nitride emitters. The measurement of the work function was first performed for the as-deposited films and then for films subjected to surface cleaning process, either thermal treatment or ion bombardment. Thermal treatment at a maximum temperature of 300 °C reduced the work function by 0.7 eV. Once the film was heated, the work function maintained the reduced value, even after cooling to room temperature. Amore » little change in the work function was observed for the second and third thermal treatments. The ion bombardment was conducted by exposing the sample to a thin plasma for different sample bias conditions and processing times. When the sample was biased at −10 V, the work function decreased by 0.6 eV. The work function reduction became saturated in the early stage of the ion bombardment. When the sample was biased at −50 V, the work function exhibited different behaviors, that is, first it decreased rapidly and then increased in response to the increase in processing time. The lowest attainable work function was found to be 4.00 eV. It should be noted that none of the work function values reported in this paper were obtained using surfaces that were demonstrated to be free from oxygen contamination. The present results suggest that the current–voltage characteristics of a field emitter array can be improved by a factor of 25–50 by the examined postprocesses.« less
Effects of processing and dopant on radiation damage removal in silicon solar cells
NASA Technical Reports Server (NTRS)
Weinberg, I.; Brandhorst, H. W., Jr.; Swartz, C. K.; Mehta, S.
1982-01-01
Gallium and boron doped silicon solar cells, processed by ion-implantation followed by either laser or furnace anneal were irradiated by 1 MeV electrons and their post-irradiation recovery by thermal annealing determined. During the post-irradiation anneal, gallium-doped cells prepared by both processes recovered more rapidly and exhibited none of the severe reverse annealing observed for similarly processed 2 ohm-cm boron doped cells. Ion-implanted furnace annealed 0.1 ohm-cm boron doped cells exhibited the lowest post-irradiation annealing temperatures (200 C) after irradiation to 5 x 10 to the 13th e(-)/sq cm. The drastically lowered recovery temperature is attributed to the reduced oxygen and carbon content of the 0.1 ohm-cm cells. Analysis based on defect properties and annealing kinetics indicates that further reduction in annealing temperature should be attainable with further reduction in the silicon's carbon and/or divacancy content after irradiation.
Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films.
Park, Jun-Sik; Kim, Dug-Joong; Chung, Wan-Ho; Lim, Yonghyun; Kim, Hak-Sung; Kim, Young-Beom
2017-09-29
Here we report a photonic annealing process for yttria-stabilized zirconia films, which are one of the most well-known solid-state electrolytes for solid oxide fuel cells (SOFCs). Precursor films were coated using a wet-chemical method with a simple metal-organic precursor solution and directly annealed at standard pressure and temperature by two cycles of xenon flash lamp irradiation. The residual organics were almost completely decomposed in the first pre-annealing step, and the fluorite crystalline phases and good ionic conductivity were developed during the second annealing step. These films showed properties comparable to those of thermally annealed films. This process is much faster than conventional annealing processes (e.g. halogen furnaces); a few seconds compared to tens of hours, respectively. The significance of this work includes the treatment of solid-state electrolyte oxides for SOFCs and the demonstration of the feasibility of other oxide components for solid-state energy devices.
Mining and beneficiation of lunar ores
NASA Technical Reports Server (NTRS)
Bunch, T. E.; Williams, R. J.; Mckay, D. S.; Giles, D.
1979-01-01
The beneficiation of lunar plagioclase and ilmenite ores to feedstock grade permits a rapid growth of the space manufacturing economy by maximizing the production rate of metals and oxygen. A beneficiation scheme based on electrostatic and magnetic separation is preferred over conventional schemes, but such a scheme cannot be completely modeled because beneficiation processes are empirical and because some properties of lunar minerals have not been measured. To meet anticipated shipping and processing needs, the peak lunar mining rate will exceed 1000 tons/hr by the fifth year of operation. Such capabilities will be best obtained by automated mining vehicles and conveyor systems rather than trucks. It may be possible to extract about 40 kg of volatiles (60 percent H2O) by thermally processing the less than 20 micron ilmenite concentrate extracted from 130 tons of ilmenite ore. A thermodynamic analysis of an extraction process is presented.
A Fracture Mechanics Approach to Thermal Shock Investigation in Alumina-Based Refractory
NASA Astrophysics Data System (ADS)
Volkov-Husović, T.; Heinemann, R. Jančić; Mitraković, D.
2008-02-01
The thermal shock behavior of large grain size, alumina-based refractories was investigated experimentally using a standard water quench test. A mathematical model was employed to simulate the thermal stability behavior. Behavior of the samples under repeated thermal shock was monitored using ultrasonic measurements of dynamic Young's modulus. Image analysis was used to observe the extent of surface degradation. Analysis of the obtained results for the behavior of large grain size samples under conditions of rapid temperature changes is given.
A thermal-sensitive device fabricated with diamond film and a planar microelectrode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Changzhi Gu; Zengsun Jin; Xianyi Lu
1995-12-31
Polycrystalline diamond film were deposited by means of the hot filament CVD technique (HFCVD) onto a planar interdigital Ti microelectrode arrays, and forming a thermal-sensitive device, The resistor changes of diamond film caused by temperature are shown to be sensitive, reproducible, rapid and stable thermal-sensitive device. The characteristics of thermal-sensitive for this device was study. Functionalized diamond film deposited onto planar microelectrode arrays can easily detect temperature from 20{degrees}C to 700{degrees}C.
NASA Astrophysics Data System (ADS)
Kal, S.; Kasko, I.; Ryssel, H.
1995-10-01
The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (<50 nm) CoSi2 preparation. A comparison of the plan-view and cross-section TEM micrographs of the ion-beam mixed and unmixed CoSi2 films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.
Multi-color pyrometer for materials processing in space
NASA Technical Reports Server (NTRS)
Frish, Michael B.; Spencer, Mark N.; Wolk, Nancy E.; Werner, Jennifer S.; Miranda, Henry A., Jr.
1988-01-01
The design, construction and calibration of a computer-linked multicolor pyrometer is described. The device was constructed for ready adaptation to a spacecraft and for use in the control of thermal processes for manufacturing materials in space. The pyrometer actually uses only one color at a time, and is relatively insensitive to uncertainties in the heated object's emissivity because the product of the color and the temperature has been selected to be within a regime where the radiant energy emitted from the body increases very rapidly with temperature. The instrument was calibrated and shown to exceed its design goal of temperature measurements between 300 and 2000 C, and its accuracy in the face of imprecise knowledge of the hot object's emissivity was demonstrated.
Dinocyst taphonomy, impact craters, cyst ghosts, and the Paleocene-Eocene thermal maximum (PETM)
Edwards, Lucy E.
2012-01-01
Dinocysts recovered from sediments related to the Chesapeake Bay impact structure in Virginia and the earliest Eocene suboxic environment in Maryland show strange and intriguing details of preservation. Features such as curled processes, opaque debris, breakage, microborings and cyst ghosts, among others, invite speculation about catastrophic depositional processes, rapid burial and biological and chemical decay. Selected specimens from seven cores taken in the coastal plain of Virginia and Maryland show abnormal preservation features in various combinations that merit illustration, description, discussion and further study. Although the depositional environments described are extreme, many of the features discussed are known from, or could be found in, other environments. These environments will show both similarities to and differences from the extreme environments here.
Measurement of Laser Weld Temperatures for 3D Model Input
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagel, Daryl; Grossetete, Grant; Maccallum, Danny O.
Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defectsmore » and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.« less
NASA Astrophysics Data System (ADS)
Wang, Ziyang; Fiorini, Paolo; Leonov, Vladimir; Van Hoof, Chris
2009-09-01
This paper presents the material characterization methods, characterization results and the optimization scheme for polycrystalline Si70%Ge30% (poly-SiGe) from the perspective of its application in a surface micromachined thermopile. Due to its comparative advantages, such as lower thermal conductivity and ease of processing, over other materials, poly-SiGe is chosen to fabricate a surface micromachined thermopile and eventually a wearable thermoelectric generator (TEG) to be used on a human body. To enable optimal design of advanced thermocouple microstructures, poly-SiGe sample materials prepared by two different techniques, namely low-pressure chemical vapor deposition (LPCVD) with in situ doping and rapid thermal chemical vapor deposition (RTCVD) with ion implantation, have been characterized. Relevant material properties, including electrical resistivity, Seebeck coefficient, thermal conductivity and specific contact resistance, have been reported. For the determination of thermal conductivity, a novel surface-micromachined test structure based on the Seebeck effect is designed, fabricated and measured. Compared to the traditional test structures, it is more advantageous for sample materials with a relatively large Seebeck coefficient, such as poly-SiGe. Based on the characterization results, a further optimization scheme is suggested to allow independent respective optimization of the figure of merit and the specific contact resistance.
Spatial variation in climate mediates gene flow across an island archipelago.
Logan, Michael L; Duryea, M C; Molnar, Orsolya R; Kessler, Benji J; Calsbeek, Ryan
2016-10-01
High levels of gene flow among partially isolated populations can overwhelm selection and limit local adaptation. This process, known as "gene swamping," can homogenize genetic diversity among populations and reduce the capacity of a species to withstand rapid environmental change. We studied brown anole lizards (Anolis sagrei) distributed across seven islands in The Bahamas. We used microsatellite markers to estimate gene flow among islands and then examined the correlation between thermal performance and island temperature. The thermal optimum for sprint performance was correlated with both mean and maximum island temperature, whereas performance breadth was not correlated with any measure of temperature variation. Gene flow between islands decreased as the difference between mean island temperatures increased, even when those islands were adjacent to one another. These data suggest that phenotypic variation is the result of either (1) local genetic adaptation with selection against immigrants maintaining variation in the thermal optimum, (2) irreversible forms of adaptive plasticity such that immigrants have reduced fitness, or (3) an interaction between fixed genetic differences and plasticity. In general, the patterns of gene flow we observed suggest that local thermal environments represent important ecological filters that can mediate gene flow on relatively fine geographic scales. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Yang, Gao; Li, Lihua; Lee, Wing Bun; Ng, Man Cheung; Chan, Chang Yuen
2018-03-01
A recently developed carbide-bonded graphene (CBG) coated silicon wafer was found to be an effective micro-patterned mold material for implementing rapid heating in hot embossing processes owing to its superior electrical and thermal conductivity, in addition to excellent mechanical properties. To facilitate the achievement of precision temperature control in the hot embossing, the heating behavior of a CBG coated silicon wafer sample was experimentally investigated. First, two groups of controlled experiments were conducted for quantitatively evaluating the influence of the main factors such as the vacuum pressure and gaseous environment (vacuum versus nitrogen) on its heating performance. The electrical and thermal responses of this sample under a voltage of 60 V were then intensively analyzed, and revealed that it had somewhat semi-conducting properties. Further, we compared its thermal profiles under different settings of the input voltage and current limiting threshold. Moreover, the strong temperature dependence of electrical resistance for this material was observed and determined. Ultimately, the surface temperature of CBG coated silicon wafer could be as high as 1300 ℃, but surprisingly the graphene coating did not detach from the substrate under such an elevated temperature due to its strong thermal coupling with the silicon wafer.
A new mechanism for the formation of regolith on asteroids
NASA Astrophysics Data System (ADS)
Delbo, Marco; Libourel, Guy; Wilkerson, Justin; Murdoch, Naomi; Michel, Patrick; Ramesh, Kt; Ganino, Clement; Verati, Chrystele; Marchi, Simone
2014-11-01
The soil of asteroids, like that of the Moon, and other rocky, airless bodies in the Solar System, is made of a layer of pebbles, sand, and dust called regolith.Previous works suggested that the regolith on asteroids is made from material ejected from impacts and re-accumulated on the surface and from surface rocks that are broken down by micrometeoroid impacts. However, this regolith formation process has problems to explain the regolith on km-sized and smaller asteroids: it is known that impact fragments can reach escape velocities and breaks free from the gravitational forces of these small asteroids, indicating the impact mechanism is not the dominant process for regolith creation. Other studies also reveal that there is too much regolith on small asteroids’ surfaces to have been deposited there solely by impacts over the millions of years of asteroids’ evolution.We proposed that another process is capable of gently breaking rocks at the surface of asteroids: thermal fatigue by temperature cycling. As asteroids spin about their rotation axes, their surfaces go in and out of shadow resulting in large surface temperature variations. The rapid heating and cooling creates thermal expansion and contraction in the asteroid material, initiating cracking and propagating existing cracks. As the process is repeated over and over, the crack damage increases with time, leading eventually to rock fragmentation (and production of new regolith).To study this process, in the laboratory, we subjected meteorites, used as asteroid material analogs, to 37 days of thermal cycles similar to those occurring on asteroids. We measured cracks widening at an average rate of 0.5 mm/y. Some fragments were also produced, indicating meteorite fragmentation. To scale our results to asteroid lifetime, we incorporated our measurements into a fracture model and we deduced that thermal cycling is more efficient than micrometeorite bombardment at fragmenting rock over millions of years on asteroids (see Delbo et al. 2014. Nature 508, 233-236).This work was supported by the French Agence National de la Recherche (ANR) SHOCKS,
NASA Technical Reports Server (NTRS)
Kattamis, T. Z.
1984-01-01
Bulk undercooling methods and procedures will first be reviewed. Measurement of various parameters which are necessary to understand the solidification mechanism during and after recalescence will be discussed. During recalescence of levitated, glass-encased large droplets (5 to 8 mm diam) high speed temperature sensing devices coupled with a rapid response oscilloscope are now being used at MIT to measure local thermal behavior in hypoeutectic and eutectic binary Ni-Sn alloys. Dendrite tip velocities were measured by various investigators using thermal sensors or high speed cinematography. The confirmation of the validity of solidification models of bulk-undercooled melts is made difficult by the fineness of the final microstructure, the ultra-rapid evolution of the solidifying system which makes measurements very awkward, and the continuous modification of the microstructure which formed during recalescence because of precipitation, remelting and rapid coarsening.
Rapid thermal cycling of solar array blanket coupons for Space Station Freedom
NASA Technical Reports Server (NTRS)
Scheiman, David A.; Smith, Bryan K.
1991-01-01
The NASA Lewis Research Center has been conducting rapid thermal cycling on blanket coupons for Space Station Freedom. This testing includes two designs (8 coupons total) of the solar array. Four coupons were fabricated as part of the Photovoltaic Array Environmental Protection Program (PAEP), NAS3-25079, at Lockheed Missiles and Space Company. These coupons began cycling in early 1989 and have completed 172,000 thermal cycles. Four other coupons were fabricated a year later and included several design changes; cycling of these began in early 1990 and has reached 90,000 cycles. The objective of this testing is to demonstrate the durability or operational lifetime (15 yrs.) of the welded interconnects within a low earth orbit (LEO) thermal cycling environment. The blanket coupons, design changes, test description, status to date including performance and observed anomalies, and any insights related to the testing of these coupons are described. The description of a third design is included.
NASA Astrophysics Data System (ADS)
Yau, J.-B.; Cai, J.; Hashemi, P.; Balakrishnan, K.; D'Emic, C.; Ning, T. H.
2018-04-01
We report a systematic study of process-related electrical defects in symmetric lateral NPN transistors on silicon-on-insulator (SOI) fabricated using ion implantation for all the doped regions. A primary objective of this study is to see if pipe defects (emitter-collector shorts caused by locally enhanced dopant diffusion) are a show stopper for such bipolar technology. Measurements of IC-VCE and Gummel currents in parallel-connected transistor chains as a function of post-fabrication rapid thermal anneal cycles allow several process-related electrical defects to be identified. They include defective emitter-base and collector-base diodes, pipe defects, and defects associated with a dopant-deficient region in an extrinsic base adjacent its intrinsic base. There is no evidence of pipe defects being a major concern in SOI lateral bipolar transistors.
Monte-Carlo simulation of defect-cluster nucleation in metals during irradiation
NASA Astrophysics Data System (ADS)
Nakasuji, Toshiki; Morishita, Kazunori; Ruan, Xiaoyong
2017-02-01
A multiscale modeling approach was applied to investigate the nucleation process of CRPs (copper rich precipitates, i.e., copper-vacancy clusters) in α-Fe containing 1 at.% Cu during irradiation. Monte-Carlo simulations were performed to investigate the nucleation process, with the rate theory equation analysis to evaluate the concentration of displacement defects, along with the molecular dynamics technique to know CRP thermal stabilities in advance. Our MC simulations showed that there is long incubation period at first, followed by a rapid growth of CRPs. The incubation period depends on irradiation conditions such as the damage rate and temperature. CRP's composition during nucleation varies with time. The copper content of CRPs shows relatively rich at first, and then becomes poorer as the precipitate size increases. A widely-accepted model of CRP nucleation process is finally proposed.
Towards Low-Cost Effective and Homogeneous Thermal Activation of Shape Memory Polymers
Lantada, Andrés Díaz; Rebollo, María Ángeles Santamaría
2013-01-01
A typical limitation of intelligent devices based on the use of shape-memory polymers as actuators is linked to the widespread use of distributed heating resistors, via Joule effect, as activation method, which involves several relevant issues needing attention, such as: (a) Final device size is importantly increased due to the additional space required for the resistances; (b) the use of resistances limits materials’ strength and the obtained devices are normally weaker; (c) the activation process through heating resistances is not homogeneous, thus leading to important temperature differences among the polymeric structure and to undesirable thermal gradients and stresses, also limiting the application fields of shape-memory polymers. In our present work we describe interesting activation alternatives, based on coating shape-memory polymers with different kinds of conductive materials, including textiles, conductive threads and conductive paint, which stand out for their easy, rapid and very cheap implementation. Distributed heating and homogeneous activation can be achieved in several of the alternatives studied and the technical results are comparable to those obtained by using advanced shape-memory nanocomposites, which have to deal with complex synthesis, processing and security aspects. Different combinations of shape memory epoxy resin with several coating electrotextiles, conductive films and paints are prepared, simulated with the help of thermal finite element method based resources and characterized using infrared thermography for validating the simulations and overall design process. A final application linked to an active catheter pincer is detailed and the advantages of using distributed heating instead of conventional resistors are discussed. PMID:28788401
NASA Astrophysics Data System (ADS)
Ramsey, M. S.
2006-12-01
The use of satellite thermal infrared (TIR) data to rapidly detect and monitor transient thermal events such as volcanic eruptions commonly relies on datasets with coarse spatial resolution (1.0 - 8.0 km) and high temporal resolution (minutes to hours). However, the growing need to extract physical parameters at meter to sub- meter scales requires data with improved spectral and spatial resolution. Current orbital systems such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Landsat Enhanced Thematic Mapper plus (ETM+) can provide TIR data ideal for this type of scientific analysis, assessment of hazard risks, and to perform smaller scale monitoring; but at the expense of rapid repeat observations. A potential solution to this apparent conflict is to combine the spatial and temporal scales of TIR data in order to provide the benefits of rapid detection together with the potential of detailed science return. Such a fusion is now in place using ASTER data collected in the north Pacific region to monitor the Aleutian and Kamchatka arcs. However, this approach of cross-instrument/cross-satellite monitoring is in jeopardy with the lack of planned moderate resolution TIR instruments following ETM+ and ASTER. This data collection program is also being expanded globally, and was used in 2006 to assist in the response and monitoring of the volcanic crisis at Merapi Volcano in Indonesia. Merapi Volcano is one of the most active volcanoes in the country and lies in central Java north of the densely-populated city of Yogyakarta. Pyroclastic flows and lahars are common following the growth and collapse of the summit lava dome. These flows can be fatal and were the major hazard concern during a period of renewed activity beginning in April 2006. Lava at the surface was confirmed on 25 April and ASTER was tasked with an urgent request observation, subsequently collecting data on 26 April (daytime) and 28 April (nighttime). The TIR revealed thermally-elevated pixels (max = 25.9 C) clustered near the summit with a lesser anomaly (max = 15.5 C) approximately 650 m to the southwest and down slope from the summit. Such small-scale and low-grade thermal features confirmed the increased activity state of the volcano and were only made possible with the moderate spatial, spectral, and radiometric resolution of ASTER. ASTER continued to collect data for the next 12 weeks tracking the progress of large scale pyroclastic flows, the growth of the lava dome, and the path of ash-rich plumes. Data from these observations were reported world-wide and used for evacuation and hazard planning purposes. With the pending demise of such TIR data from orbit, research is also focused on the use of handheld TIR instruments such as the forward-looking infrared radiometer (FLIR) camera. These instruments provide the highest spatial resolution in-situ TIR data and have been used to observe numerous volcanic phenomena and quantitatively model others (e.g., the rise of the magma body preceding the eruption of Mt. St. Helens Volcano; the changes on the lava dome at Bezymianny Volcano; the behavior of basalt crusts during pahoehoe flow inflation). Studies such as these confirm the utility and importance of future moderate to high resolution TIR data in order to understand volcanic processes and their accompanying hazards.
NASA Astrophysics Data System (ADS)
Godin, E.; Fortier, D.
2011-12-01
Thermo-erosion gullies often develop in ice-wedge polygons terrace and contribute to the dynamic evolution of the periglacial landscape. When snowmelt surface run-off concentrated into streams and water tracks infiltrate frost cracks, advective heat flow and convective thermal transfer from water to the ice-wedge ice enable the rapid development of tunnels and gullies in the permafrost (Fortier et al. 2007). Fine scale monitoring of the physical interaction between flowing water and ice rich permafrost had already been studied in a context of thermal erosion of a large river banks in Russia (Costard et al. 2003). Ice wedge polygons thermo-erosion process leading to gullying remains to be physically modelled and quantified. The present paper focus on the fine scale monitoring of thermo-erosion physical parameters both in the field and in laboratory. The physical model in laboratory was elaborated using a fixed block of ice monitored by a linear voltage differential transducer (LVDT) and temperature sensors connected to a logger. A water container with controlled discharge and temperature provided the fluid which flowed over the ice through a hose. Water discharge (Q), water temperature (Tw), ice melting temperature (Ti) and ice ablation rate (Ar) were measured. In laboratory, water at 281 Kelvin (K) flowing on the ice (Ti 273 K) made the ice melt at a rate Ar of 0.002 m min-1, under a continuous discharge of ≈ 8 x 10-7 m3 s-1. In the field, a small channel was dug between a stream and an exposed ice-wedge in a pre-existing active gully, where in 2010 large quantities of near zero snowmelt run-off water contributed to several meters of ice wedge ablation and gully development. Screws were fastened into the ice and a ruler was used to measure the ablation rate every minute. The surface temperature of the ice wedge was monitored with thermocouples connected to a logger to obtain the condition of the ice boundary layer. Discharge and water temperature were measured in the excavated channel just before the water got in contact with the ice surface. The field experiment where flowing water at Tw = 277 K, Ti = 273 K with a water discharge of 0.01 m3 s-1 resulted in a measured Ar of 0.01 to 0.02 m min-1. Water discharge and temperature difference between water and the melting ice were fundamental to ice ablation rate. The recent climate warming in the Canadian High Arctic will likely strongly contribute to the interaction and importance of the thermo-erosion and gullying processes in the High Arctic. Combined factors such as earlier or faster snowmelt, precipitation changes during the summer and positive feedback effects will probably increase the hydrological input to gullies and therefore enhance their development by thermo-erosion. Costard F. et al. 2003. Fluvial thermal erosion investigations along a rapidly eroding river bank: Application to the Lena River (central Siberia). Earth Surface Processes and Landforms 28: 1349-1359. Fortier D. et al. 2007. Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot island, Canadian Arctic Archipelago. Permafrost and Periglacial Processes 18: 229-243.
Injectable Hydrogel Scaffold from Decellularized Human Lipoaspirate
Young, D. Adam; Ibrahim, Dina O.; Hu, Diane; Christman, Karen L.
2010-01-01
Soft tissue fillers are rapidly gaining popularity for aesthetic improvements or repair of adipose tissue deficits. Several injectable biopolymers have been investigated for this purpose but often face rapid resorption or limited adipogenesis, and do not mimic the native adipose extracellular matrix (ECM). We have generated an injectable adipose matrix scaffold by efficiently removing both the cellular and lipid contents of human lipoaspirate. The decellularized material retained a complex composition of peptides and glycosaminoglycans found in native adipose ECM. This matrix can be further processed by solubilizing the extracted ECM to generate a thermally-responsive hydrogel that self-assembles upon subcutaneous injection. This hydrogel also supports the growth and survival of patient matched adipose - derived stem cells in vitro. The development of an injectable hydrogel from human lipoaspirate represents a minimally-invasive option for adipose tissue engineering in terms of both the collection of source material and delivery of the scaffold. PMID:20932943
Integration of P-CuO Thin Sputtered Layers onto Microsensor Platforms for Gas Sensing
Presmanes, Lionel; Thimont, Yohann; el Younsi, Imane; Chapelle, Audrey; Blanc, Frédéric; Talhi, Chabane; Bonningue, Corine; Barnabé, Antoine; Menini, Philippe; Tailhades, Philippe
2017-01-01
P-type semiconducting copper oxide (CuO) thin films deposited by radio-frequency (RF) sputtering were integrated onto microsensors using classical photolithography technologies. The integration of the 50-nm-thick layer could be successfully carried out using the lift-off process. The microsensors were tested with variable thermal sequences under carbon monoxide (CO), ammonia (NH3), acetaldehyde (C2H4O), and nitrogen dioxide (NO2) which are among the main pollutant gases measured by metal-oxide (MOS) gas sensors for air quality control systems in automotive cabins. Because the microheaters were designed on a membrane, it was then possible to generate very rapid temperature variations (from room temperature to 550 °C in only 50 ms) and a rapid temperature cycling mode could be applied. This measurement mode allowed a significant improvement of the sensor response under 2 and 5 ppm of acetaldehyde. PMID:28621738
NASA Astrophysics Data System (ADS)
Zang, Faheng; Chu, Sangwook; Gerasopoulos, Konstantinos; Culver, James N.; Ghodssi, Reza
2017-06-01
This paper reports the implementation of temporal capillary microfluidic patterns and biological nanoscaffolds in autonomous microfabrication of nanostructured symmetric electrochemical supercapacitors. A photoresist layer was first patterned on the substrate, forming a capillary microfluidics layer with two separated interdigitated microchannels. Tobacco mosaic virus (TMV) macromolecules suspended in solution are autonomously delivered into the microfluidics, and form a dense bio-nanoscaffolds layer within an hour. This TMV layer is utilized in the electroless plating and thermal oxidation for creating nanostructured NiO supercapacitor. The galvanostatic charge/discharge cycle showed a 3.6-fold increase in areal capacitance for the nanostructured electrode compared to planar structures. The rapid creation of nanostructure-textured microdevices with only simple photolithography and bionanostructure self-assembly can completely eliminate the needs for sophisticated synthesis or deposition processes. This method will contribute to rapid prototyping of wide range of nano-/micro-devices with enhanced performance.
NASA Astrophysics Data System (ADS)
Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy; Martin, Richard E.
2013-05-01
Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA's electron beam freeform fabrication (EBF3) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF3 technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF3 system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality deposit, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for deposit assessment metrics.
Cellulose acetate fibers prepared from different raw materials with rapid synthesis method.
Chen, Jinghuan; Xu, Jikun; Wang, Kun; Cao, Xuefei; Sun, Runcang
2016-02-10
Transesterification is a mild process to prepare cellulose acetate (CA) as compared with the traditional method. In this study, CA fibers were produced from six cellulose raw materials based on a simple and rapid transesterification method. The properties of the CA solutions and the obtained CA fibers were investigated in detail. Results showed that all of the cellulose raw materials were esterified within 15 min, and spinning dopes could be obtained by concentrating the CA solutions via vacuum distillation. The XRD, FT-IR, (1)H, (13)C and HSQC NMR analysis confirmed the successful synthesis of CA. The degree of substitution (DS) of the obtained CA was significantly affected by the degree of polymerization (DP) of cellulose raw materials, which further influenced the viscosity of CA solutions as well as the structural, thermal and mechanical properties of the CA fibers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Production of ELZM mirrors: performance coupled with attractive schedule, cost, and risk factors
NASA Astrophysics Data System (ADS)
Leys, Antoine; Hull, Tony; Westerhoff, Thomas
2016-08-01
Extreme light weighted ZERODUR Mirrors (ELZM) have been developed to exploit the superb thermal characteristics of ZERODUR. Coupled with up to date mechanical and optical fabrication methods this becomes an attractive technical approach. However the process of making mirror substrates has demonstrated to be unusually rapid and especially cost-effective. ELZM is aimed at the knee of the cost as a function of light weighting curve. ELZM mirrors are available at 88% light weighted. Together with their low risk, low cost production methods, this is presented as a strong option for NASA Explorer and Probe class missions.
New rapid-curing, stable polyimide polymers with high-temperature strength and thermal stability
NASA Technical Reports Server (NTRS)
Burns, E. A.; Jones, J. F.; Kendrick, W. R.; Lubowitz, H. R.; Thorpe, R. S.; Wilson, E. R.
1969-01-01
Additive-type polymerization reaction forms thermally stable polyimide polymers, thereby eliminating the volatile matter attendant with the condensation reaction. It is based on the utilization of reactive alicyclic rings positioned on the ends of polyimide prepolymers having relatively low molecular weights.
Rain, Snow, and Spring Runoff Revisited.
ERIC Educational Resources Information Center
Bohren, Craig F.
1995-01-01
Explores the theory behind the correlation between warm rain, rapid snowmelt, and the subsequent runoff using the concepts of enthalpy, thermal transfer, and energy transfer. Concludes that rapid runoff is not a consequence of rain per se but of the high humidities associated with the rain. (JRH)
Katavoutas, George; Flocas, Helena A; Matzarakis, Andreas
2015-02-01
Thermal comfort under non-steady-state conditions primarily deals with rapid environmental transients and significant alterations of the meteorological conditions, activity, or clothing pattern within the time scale of some minutes. In such cases, thermal history plays an important role in respect to time, and thus, a dynamic approach is appropriate. The present study aims to investigate the dynamic thermal adaptation process of a human individual, after his transition from a typical indoor climate to an outdoor hot environment. Three scenarios of thermal transients have been considered for a range of hot outdoor environmental conditions, employing the dynamic two-node IMEM model. The differences among them concern the radiation field, the activity level, and the body position. The temporal pattern of body temperatures as well as the range of skin wettedness and of water loss have been investigated and compared among the scenarios and the environmental conditions considered. The structure and the temporal course of human energy fluxes as well as the identification of the contribution of body temperatures to energy fluxes have also been studied and compared. In general, the simulation results indicate that the response of a person, coming from the same neutral indoor climate, varies depending on the scenario followed by the individual while being outdoors. The combination of radiation field (shade or not) with the kind of activity (sitting or walking) and the outdoor conditions differentiates significantly the thermal state of the human body. Therefore, 75% of the skin wettedness values do not exceed the thermal comfort limit at rest for a sitting individual under the shade. This percentage decreases dramatically, less than 25%, under direct solar radiation and exceeds 75% for a walking person under direct solar radiation.
NASA Astrophysics Data System (ADS)
Marotta, Enrica; Avino, Rosario; Avvisati, Gala; Belviso, Pasquale; Caliro, Stefano; Caputo, Teresa; Carandente, Antonio; Peluso, Rosario; Sangianantoni, Agata; Sansivero, Fabio; Vilardo, Giuseppe
2017-04-01
Last years have been characterized by a fast development of Remotely Piloted Aircraft Systems which are becoming cheaper, lighter and more powerful. The concurrent development of high resolution, lightweight and energy saving sensors sometimes specifically designed for air-borne applications are together rapidly changing the way in which it is possible to perform monitoring and surveys in hazardous environments such as volcanoes. An example of this convergence is the new methodology we are currently developing at the INGV-Osservatorio Vesuviano for the estimation of the thermal energy release of volcanic diffuse degassing areas using the ground temperatures from thermal infrared images. Preliminary experiments, carried out during many-years campaigns performed inside at La Solfatara crater by using thermal infrared images and K type thermocouples inserted into the ground at various depths, found a correlation between surface temperature and shallow gradient. Due to the large extent of areas affected by thermal anomalies, an effective and expedite tool to acquire the IR images is a RPAS equipped with high-resolution thermal and visible cameras. These acquisitions allow to quickly acquire the data to produce a heat release map. This map is then orthorectified and geocoded in order to be superimposed on digital terrain models or on the orthophotogrammetric mosaic obtained after processing photos acquired by RPAS. Such expedite maps of heat flux, taking in account accurate filtering of atmospheric influence, represents a useful tool for volcanic surveillance monitoring purposes. In order to start all the activities of these drones we had to acquire all necessary permissions required by the complex Italian normative.
OBSERVED ASTEROID SURFACE AREA IN THE THERMAL INFRARED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nugent, C. R.; Mainzer, A.; Masiero, J.
The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emittedmore » flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.« less
Spurious behavior in volcanic records of geomagnetic field reversals
NASA Astrophysics Data System (ADS)
Carlut, Julie; Vella, Jerome; Valet, Jean-Pierre; Soler, Vicente; Legoff, Maxime
2016-04-01
Very large directional variations of magnetization have been reported in several lava flows recording a geomagnetic reversal. Such behavior could reflect real geomagnetic changes or be caused by artifacts due to post-emplacement alteration and/or non-ideal magnetic behavior. More recently, a high resolution paleomagnetic record from sediments pleads also for an extremely rapid reversal process during the last reversal. Assuming that the geomagnetic field would have moved by tens of degrees during cooling of moderate thickness lava flows implies brief episodes of rapid changes by a few degrees per day that are difficult to reconcile with the rate of liquid motions at the core surface. Systematical mineralogical bias is a most likely explanation to promote such behavior as recently reconsidered by Coe et al., 2014 for the rapid field changes recorded at Steens Mountain. We resampled three lava flows at La Palma island (Canarias) that are sandwiched between reverse polarity and normal polarity flows associated with the last reversal. The results show an evolution of the magnetization direction from top to bottom. Thermal demagnetization experiments were conducted using different heating and cooling rates. Similarly, continuous demagnetization and measurements. In both cases, we did not notice any remagnetization associated with mineralogical transformations during the experiments. Magnetic grain sizes do not show any correlation with the amplitude of the deviations. Microscopic observations indicate poor exsolution, which could suggests post-cooling thermochemical remagnetization processes.
Jiang, Feng Ling; Ikeda, Ikuo; Ogawa, Yuichi; Endo, Yasushi
2012-01-01
A rapid method for determining the saponification value (SV) and polymer content of vegetable and fish oils using the terahertz (THz) spectroscopy was developed. When the THz absorption spectra for vegetable and fish oils were measured in the range of 20 to 400 cm⁻¹, two peaks were seen at 77 and 328 cm⁻¹. The level of absorbance at 77 cm⁻¹ correlated well with the SV. When the THz absorption spectra of thermally treated high-oleic safflower oils were measured, the absorbance increased with heating time. The polymer content in thermally treated oil correlated with the absorbance at 77 cm⁻¹. These results demonstrate that the THz spectrometry is a suitable non-destructive technique for the rapid determination of the SV and polymer content of vegetable and fish oils.
Rapid biodiagnostic ex vivo imaging at 1 μm pixel resolution with thermal source FTIR FPA.
Findlay, C R; Wiens, R; Rak, M; Sedlmair, J; Hirschmugl, C J; Morrison, Jason; Mundy, C J; Kansiz, M; Gough, K M
2015-04-07
A recent upgrade to the optics configuration of a thermal source FTIR microscope equipped with a focal plane array detector has enabled rapid acquisition of high magnification spectrochemical images, in transmission, with an effective geometric pixel size of ∼1 × 1 μm(2) at the sample plane. Examples, including standard imaging targets for scale and accuracy, as well as biomedical tissues and microorganisms, have been imaged with the new system and contrasted with data acquired at normal magnification and with a high magnification multi-beam synchrotron instrument. With this optics upgrade, one can now conduct rapid biodiagnostic ex vivo tissue imaging in-house, with images collected over larger areas, in less time (minutes) and with comparable quality and resolution to the best synchrotron source FTIR imaging capabilities.