Sample records for rapidly create functional

  1. Architecture for robot intelligence

    NASA Technical Reports Server (NTRS)

    Peters, II, Richard Alan (Inventor)

    2004-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a DBAM that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  2. fgui: A Method for Automatically Creating Graphical User Interfaces for Command-Line R Packages

    PubMed Central

    Hoffmann, Thomas J.; Laird, Nan M.

    2009-01-01

    The fgui R package is designed for developers of R packages, to help rapidly, and sometimes fully automatically, create a graphical user interface for a command line R package. The interface is built upon the Tcl/Tk graphical interface included in R. The package further facilitates the developer by loading in the help files from the command line functions to provide context sensitive help to the user with no additional effort from the developer. Passing a function as the argument to the routines in the fgui package creates a graphical interface for the function, and further options are available to tweak this interface for those who want more flexibility. PMID:21625291

  3. Apparatus for multiprocessor-based control of a multiagent robot

    NASA Technical Reports Server (NTRS)

    Peters, II, Richard Alan (Inventor)

    2009-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a DBAM that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  4. Architecture for Multiple Interacting Robot Intelligences

    NASA Technical Reports Server (NTRS)

    Peters, Richard Alan, II (Inventor)

    2008-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a database associative memory (DBAM) that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  5. Patient specific ankle-foot orthoses using rapid prototyping

    PubMed Central

    2011-01-01

    Background Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. Methods In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD) software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Results Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. Conclusions The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait). The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required. PMID:21226898

  6. Applying Lean principles and Kaizen rapid improvement events in public health practice.

    PubMed

    Smith, Gene; Poteat-Godwin, Annah; Harrison, Lisa Macon; Randolph, Greg D

    2012-01-01

    This case study describes a local home health and hospice agency's effort to implement Lean principles and Kaizen methodology as a rapid improvement approach to quality improvement. The agency created a cross-functional team, followed Lean Kaizen methodology, and made significant improvements in scheduling time for home health nurses that resulted in reduced operational costs, improved working conditions, and multiple organizational efficiencies.

  7. Discerning Trends in Performance Across Multiple Events

    NASA Technical Reports Server (NTRS)

    Slater, Simon; Hiltz, Mike; Rice, Craig

    2006-01-01

    Mass Data is a computer program that enables rapid, easy discernment of trends in performance data across multiple flights and ground tests. The program can perform Fourier analysis and other functions for the purposes of frequency analysis and trending of all variables. These functions facilitate identification of past use of diagnosed systems and of anomalies in such systems, and enable rapid assessment of related current problems. Many variables, for computation of which it is usually necessary to perform extensive manual manipulation of raw downlist data, are automatically computed and made available to all users, regularly eliminating the need for what would otherwise be an extensive amount of engineering analysis. Data from flight, ground test, and simulation are preprocessed and stored in one central location for instantaneous access and comparison for diagnostic and trending purposes. Rules are created so that an event log is created for every flight, making it easy to locate information on similar maneuvers across many flights. The same rules can be created for test sets and simulations, and are searchable, so that information on like events is easily accessible.

  8. Gateway Vectors for Efficient Artificial Gene Assembly In Vitro and Expression in Yeast Saccharomyces cerevisiae

    PubMed Central

    Giuraniuc, Claudiu V.; MacPherson, Murray; Saka, Yasushi

    2013-01-01

    Construction of synthetic genetic networks requires the assembly of DNA fragments encoding functional biological parts in a defined order. Yet this may become a time-consuming procedure. To address this technical bottleneck, we have created a series of Gateway shuttle vectors and an integration vector, which facilitate the assembly of artificial genes and their expression in the budding yeast Saccharomyces cerevisiae. Our method enables the rapid construction of an artificial gene from a promoter and an open reading frame (ORF) cassette by one-step recombination reaction in vitro. Furthermore, the plasmid thus created can readily be introduced into yeast cells to test the assembled gene’s functionality. As flexible regulatory components of a synthetic genetic network, we also created new versions of the tetracycline-regulated transactivators tTA and rtTA by fusing them to the auxin-inducible degron (AID). Using our gene assembly approach, we made yeast expression vectors of these engineered transactivators, AIDtTA and AIDrtTA and then tested their functions in yeast. We showed that these factors can be regulated by doxycycline and degraded rapidly after addition of auxin to the medium. Taken together, the method for combinatorial gene assembly described here is versatile and would be a valuable tool for yeast synthetic biology. PMID:23675537

  9. Extinction order and altered community structure rapidly disrupt ecosystem functioning.

    PubMed

    Larsen, Trond H; Williams, Neal M; Kremen, Claire

    2005-05-01

    By causing extinctions and altering community structure, anthropogenic disturbances can disrupt processes that maintain ecosystem integrity. However, the relationship between community structure and ecosystem functioning in natural systems is poorly understood. Here we show that habitat loss appeared to disrupt ecosystem functioning by affecting extinction order, species richness and abundance. We studied pollination by bees in a mosaic of agricultural and natural habitats in California and dung burial by dung beetles on recently created islands in Venezuela. We found that large-bodied bee and beetle species tended to be both most extinction-prone and most functionally efficient, contributing to rapid functional loss. Simulations confirmed that extinction order led to greater disruption of function than predicted by random species loss. Total abundance declined with richness and also appeared to contribute to loss of function. We demonstrate conceptually and empirically how the non-random response of communities to disturbance can have unexpectedly large functional consequences.

  10. Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes

    PubMed Central

    Fischbach, Michael A.; Lai, Jonathan R.; Roche, Eric D.; Walsh, Christopher T.; Liu, David R.

    2007-01-01

    Nonribosomal peptides (NRPs) are produced by NRP synthetase (NRPS) enzymes that function as molecular assembly lines. The modular architecture of NRPSs suggests that a domain responsible for activating a building block could be replaced with a domain from a foreign NRPS to create a chimeric assembly line that produces a new variant of a natural NRP. However, such chimeric NRPS modules are often heavily impaired, impeding efforts to create novel NRP variants by swapping domains from different modules or organisms. Here we show that impaired chimeric NRPSs can be functionally restored by directed evolution. Using rounds of mutagenesis coupled with in vivo screens for NRP production, we rapidly isolated variants of two different chimeric NRPSs with ≈10-fold improvements in enzyme activity and product yield, including one that produces new derivatives of the potent NRP/polyketide antibiotic andrimid. Because functional restoration in these examples required only modest library sizes (103 to 104 clones) and three or fewer rounds of screening, our approach may be widely applicable even for NRPSs from genetically challenging hosts. PMID:17620609

  11. Report on functional and performance requirements, and high-level data and communication needs for integrated dynamic transit operations (IDTO).

    DOT National Transportation Integrated Search

    2012-08-01

    In support of USDOTs Intelligent Transportation Systems (ITS) Mobility Program, the Dynamic Mobility Applications (DMA) program seeks to create applications that fully leverage frequently collected and rapidly disseminated multi-source data gat...

  12. Evaluation of the NSF Industry/University Cooperative Research Centers: Descriptive and Correlative Findings.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Directorate for Engineering.

    This report presents results of a survey of participants in the National Science Foundation (NSF) Industry-University Cooperative Research Centers program. The program promotes more rapid technological innovation by creating linkages between industry and university scientists. The Centers function as university research groups, with partial…

  13. We have AN Increasing Need to Model Ourselves

    NASA Astrophysics Data System (ADS)

    Farmer, J. Doyne

    Pierre Teilhard de Chardin referred to the fusion of biological life, human culture, and technology as the noosphere. Technological improvement is causing the noosphere to evolve rapidly, driving the enormous increase in human population over the last 10,000 years and the transformation (and devastation) of the biosphere. The rapid proliferation of the internet is changing human culture, including everything from the way we find mates to the way democracy functions, or fails to function. The emergence of the BINC (Bio, Info, Nano, Cogno) technologies promises to further accelerate this change. We are acquiring an ever-increasing ability to engineer devices at a molecular level, to control the genome, and to create new forms of life and intelligence...

  14. Place-Making in Higher Education: Co-Creating Engagement and Knowledge Practices in the Networked Age

    ERIC Educational Resources Information Center

    Swist, Teresa; Kuswara, Andreas

    2016-01-01

    The pedagogical locations, functions and possibilities of higher education continuously unfold as mobile technologies, digital content and social practices intersect at a rapid pace. There is an urgent need to understand better how student learning is situated within this complex system and interrelates with broader sociotechnical knowledge…

  15. EBOOK.EXE: A Desktop Authoring Tool for HURAA.

    ERIC Educational Resources Information Center

    Hu, Xiangen; Mathews, Eric; Graesser, Arthur C.; Susarla, Suresh

    The development of authoring tools for intelligent systems is an important step for creating, maintaining, and structuring content in a quick and easy manner. It has the benefit of allowing for a rapid change to new domains or topics for tutoring. The development of such tools requires functional control, access protection, ease of learning, and…

  16. Simulation-based instruction of technical skills

    NASA Technical Reports Server (NTRS)

    Towne, Douglas M.; Munro, Allen

    1991-01-01

    A rapid intelligent tutoring development system (RAPIDS) was developed to facilitate the production of interactive, real-time graphical device models for use in instructing the operation and maintenance of complex systems. The tools allowed subject matter experts to produce device models by creating instances of previously defined objects and positioning them in the emerging device model. These simulation authoring functions, as well as those associated with demonstrating procedures and functional effects on the completed model, required no previous programming experience or use of frame-based instructional languages. Three large simulations were developed in RAPIDS, each involving more than a dozen screen-sized sections. Seven small, single-view applications were developed to explore the range of applicability. Three workshops were conducted to train others in the use of the authoring tools. Participants learned to employ the authoring tools in three to four days and were able to produce small working device models on the fifth day.

  17. Large Area Microcorrals and Cavity Formation on Cantilevers using a Focused Ion Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saraf, Laxmikant V.; Britt, David W.

    2011-09-14

    We utilize focused ion beam (FIB) to explore various sputtering parameters to form large area microcorrals and cavities on cantilevers. Microcorrals were rapidly created by modifying ion beam blur and overlaps. Modification in FIB sputtering parameters affects the periodicity and shape of corral microstructure. Cantilever deflections show ion beam amorphization effects as a function of sputtered area and cantilever base cavities with or without side walls. The FIB sputtering parameters address a method for rapid creation of a cantilever tensiometer with integrated fluid storage and delivery.

  18. Automated Methods to Extract Patient New Information from Clinical Notes in Electronic Health Record Systems

    ERIC Educational Resources Information Center

    Zhang, Rui

    2013-01-01

    The widespread adoption of Electronic Health Record (EHR) has resulted in rapid text proliferation within clinical care. Clinicians' use of copying and pasting functions in EHR systems further compounds this by creating a large amount of redundant clinical information in clinical documents. A mixture of redundant information (especially outdated…

  19. Managing landscapes at multiple scales for sustainability of ecosystem functions (Preface)

    Treesearch

    R.A. Birdsey; R. Lucas; Y. Pan; G. Sun; E.J. Gustafson; A.H.  Perera

    2010-01-01

    The science of landscape ecology is a rapidly evolving academic field with an emphasis on studying large-scale spatial heterogeneity created by natural influences and human activities. These advances have important implications for managing and conserving natural resources. At a September 2008 IUFRO conference in Chengdu, Sichuan, P.R. China, we highlighted both the...

  20. An Evidence Centered Design for Learning and Assessment in the Digital World. CRESST Report 778

    ERIC Educational Resources Information Center

    Behrens, John T.; Mislevy, Robert J.; DiCerbo, Kristen E.; Levy, Roy

    2010-01-01

    The world in which learning and assessment must take place is rapidly changing. The digital revolution has created a vast space of interconnected information, communication, and interaction. Functioning effectively in this environment requires so-called 21st century skills such as technological fluency, complex problem solving, and the ability to…

  1. Rapid E-Learning Simulation Training and User Response

    ERIC Educational Resources Information Center

    Rackler, Angeline

    2011-01-01

    A new trend in e-learning development is to have subject matter experts use rapid development tools to create training simulations. This type of training is called rapid e-learning simulation training. Though companies are using rapid development tools to create training quickly and cost effectively, there is little empirical research to indicate…

  2. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion

    NASA Astrophysics Data System (ADS)

    Dong, Jinlan; Bruening, Merlin L.

    2015-07-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO2 nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  3. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion.

    PubMed

    Dong, Jinlan; Bruening, Merlin L

    2015-01-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO₂ nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  4. Enhancer scanning to locate regulatory regions in genomic loci

    PubMed Central

    Buckley, Melissa; Gjyshi, Anxhela; Mendoza-Fandiño, Gustavo; Baskin, Rebekah; Carvalho, Renato S.; Carvalho, Marcelo A.; Woods, Nicholas T.; Monteiro, Alvaro N.A.

    2016-01-01

    The present protocol provides a rapid, streamlined and scalable strategy to systematically scan genomic regions for the presence of transcriptional regulatory regions active in a specific cell type. It creates genomic tiles spanning a region of interest that are subsequently cloned by recombination into a luciferase reporter vector containing the Simian Virus 40 promoter. Tiling clones are transfected into specific cell types to test for the presence of transcriptional regulatory regions. The protocol includes testing of different SNP (single nucleotide polymorphism) alleles to determine their effect on regulatory activity. This procedure provides a systematic framework to identify candidate functional SNPs within a locus during functional analysis of genome-wide association studies. This protocol adapts and combines previous well-established molecular biology methods to provide a streamlined strategy, based on automated primer design and recombinational cloning to rapidly go from a genomic locus to a set of candidate functional SNPs in eight weeks. PMID:26658467

  5. Building an Effective Social Media Strategy for Science Programs

    NASA Astrophysics Data System (ADS)

    Bohon, Wendy; Robinson, Sarah; Arrowsmith, Ramon; Semken, Steven

    2013-07-01

    Social media has emerged as a popular mode of communication, with more than 73% of the teenage and adult population in the United States using it on a regular basis [Lenhart et al., 2010]. Young people in particular (ages 12-29) are deeply involved in the rapidly evolving social media environment and have an expectation of communication through these media. This engagement creates a valuable opportunity for scientific organizations and programs to use the wide reach, functionality, and informal environment of social media to create brand recognition, establish trust with users, and disseminate scientific information.

  6. Rapid micropatterning of cell lines and human pluripotent stem cells on elastomeric membranes.

    PubMed

    Paik, Isha; Scurr, David J; Morris, Bryan; Hall, Graham; Denning, Chris; Alexander, Morgan R; Shakesheff, Kevin M; Dixon, James E

    2012-10-01

    Tissue function during development and in regenerative medicine completely relies on correct cell organization and patterning at micro and macro scales. We describe a rapid method for patterning mammalian cells including human embryonic stem cells (HESCs) and induced pluripotent stem cells (iPSCs) on elastomeric membranes such that micron-scale control of cell position can be achieved over centimeter-length scales. Our method employs surface engineering of hydrophobic polydimethylsiloxane (PDMS) membranes by plasma polymerization of allylamine. Deposition of plasma polymerized allylamine (ppAAm) using our methods may be spatially restricted using a micro-stencil leaving faithful hydrophilic ppAAm patterns. We employed airbrushing to create aerosols which deposit extracellular matrix (ECM) proteins (such as fibronectin and Matrigel™) onto the same patterned ppAAm rich regions. Cell patterns were created with a variety of well characterized cell lines (e.g., NIH-3T3, C2C12, HL1, BJ6, HESC line HUES7, and HiPSC line IPS2). Individual and multiple cell line patterning were also achieved. Patterning remains faithful for several days and cells are viable and proliferate. To demonstrate the utility of our technique we have patterned cells in a variety of configurations. The ability to rapidly pattern cells at high resolution over macro scales should aid future tissue engineering efforts for regenerative medicine applications and in creating in vitro stem cell niches. Copyright © 2012 Wiley Periodicals, Inc.

  7. 25th anniversary article: supramolecular materials for regenerative medicine.

    PubMed

    Boekhoven, Job; Stupp, Samuel I

    2014-03-19

    In supramolecular materials, molecular building blocks are designed to interact with one another via non-covalent interactions in order to create function. This offers the opportunity to create structures similar to those found in living systems that combine order and dynamics through the reversibility of intermolecular bonds. For regenerative medicine there is a great need to develop materials that signal cells effectively, deliver or bind bioactive agents in vivo at controlled rates, have highly tunable mechanical properties, but at the same time, can biodegrade safely and rapidly after fulfilling their function. These requirements make supramolecular materials a great platform to develop regenerative therapies. This review illustrates the emerging science of these materials and their use in a number of applications for regenerative medicine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. On the conservative nature of intragenic recombination

    PubMed Central

    Drummond, D. Allan; Silberg, Jonathan J.; Meyer, Michelle M.; Wilke, Claus O.; Arnold, Frances H.

    2005-01-01

    Intragenic recombination rapidly creates protein sequence diversity compared with random mutation, but little is known about the relative effects of recombination and mutation on protein function. Here, we compare recombination of the distantly related β-lactamases PSE-4 and TEM-1 to mutation of PSE-4. We show that, among β-lactamase variants containing the same number of amino acid substitutions, variants created by recombination retain function with a significantly higher probability than those generated by random mutagenesis. We present a simple model that accurately captures the differing effects of mutation and recombination in real and simulated proteins with only four parameters: (i) the amino acid sequence distance between parents, (ii) the number of substitutions, (iii) the average probability that random substitutions will preserve function, and (iv) the average probability that substitutions generated by recombination will preserve function. Our results expose a fundamental functional enrichment in regions of protein sequence space accessible by recombination and provide a framework for evaluating whether the relative rates of mutation and recombination observed in nature reflect the underlying imbalance in their effects on protein function. PMID:15809422

  9. On the conservative nature of intragenic recombination.

    PubMed

    Drummond, D Allan; Silberg, Jonathan J; Meyer, Michelle M; Wilke, Claus O; Arnold, Frances H

    2005-04-12

    Intragenic recombination rapidly creates protein sequence diversity compared with random mutation, but little is known about the relative effects of recombination and mutation on protein function. Here, we compare recombination of the distantly related beta-lactamases PSE-4 and TEM-1 to mutation of PSE-4. We show that, among beta-lactamase variants containing the same number of amino acid substitutions, variants created by recombination retain function with a significantly higher probability than those generated by random mutagenesis. We present a simple model that accurately captures the differing effects of mutation and recombination in real and simulated proteins with only four parameters: (i) the amino acid sequence distance between parents, (ii) the number of substitutions, (iii) the average probability that random substitutions will preserve function, and (iv) the average probability that substitutions generated by recombination will preserve function. Our results expose a fundamental functional enrichment in regions of protein sequence space accessible by recombination and provide a framework for evaluating whether the relative rates of mutation and recombination observed in nature reflect the underlying imbalance in their effects on protein function.

  10. Accidental overheating of a newborn under an infant radiant warmer: a lesson for future use.

    PubMed

    Molgat-Seon, Y; Daboval, T; Chou, S; Jay, O

    2013-09-01

    A fully functional radiant warmer induced rapid and continuous increases in regional skin temperatures, heart rate, mean arterial blood pressure and respiratory rate in a newborn patient without corrective action. We report this case of passive overheating to create awareness of the risks associated with regulating radiant heat output based upon a single servo-controlled temperature.

  11. Incorporation of Cross-Disciplinary Teaching and a Wiki Research Project to Engage Undergraduate Students' to Develop Information Literacy, Critical Thinking, and Communication Skills

    ERIC Educational Resources Information Center

    Crist, Courtney A.; Duncan, Susan E.; Bianchi, Laurie M.

    2017-01-01

    A Wiki research project was created in the Functional Foods for Health (FST/HNFE 2544) as an instructional tool and assignment for improving undergraduate students' proficiency in evaluating appropriate information sources for rapidly evolving science and research. The project design targeted improving students' information literacy skills…

  12. Simulation of the modulation transfer function dependent on the partial Fourier fraction in dynamic contrast enhancement magnetic resonance imaging.

    PubMed

    Takatsu, Yasuo; Ueyama, Tsuyoshi; Miyati, Tosiaki; Yamamura, Kenichirou

    2016-12-01

    The image characteristics in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) depend on the partial Fourier fraction and contrast medium concentration. These characteristics were assessed and the modulation transfer function (MTF) was calculated by computer simulation. A digital phantom was created from signal intensity data acquired at different contrast medium concentrations on a breast model. The frequency images [created by fast Fourier transform (FFT)] were divided into 512 parts and rearranged to form a new image. The inverse FFT of this image yielded the MTF. From the reference data, three linear models (low, medium, and high) and three exponential models (slow, medium, and rapid) of the signal intensity were created. Smaller partial Fourier fractions, and higher gradients in the linear models, corresponded to faster MTF decline. The MTF more gradually decreased in the exponential models than in the linear models. The MTF, which reflects the image characteristics in DCE-MRI, was more degraded as the partial Fourier fraction decreased.

  13. MBGD update 2015: microbial genome database for flexible ortholog analysis utilizing a diverse set of genomic data.

    PubMed

    Uchiyama, Ikuo; Mihara, Motohiro; Nishide, Hiroyo; Chiba, Hirokazu

    2015-01-01

    The microbial genome database for comparative analysis (MBGD) (available at http://mbgd.genome.ad.jp/) is a comprehensive ortholog database for flexible comparative analysis of microbial genomes, where the users are allowed to create an ortholog table among any specified set of organisms. Because of the rapid increase in microbial genome data owing to the next-generation sequencing technology, it becomes increasingly challenging to maintain high-quality orthology relationships while allowing the users to incorporate the latest genomic data available into an analysis. Because many of the recently accumulating genomic data are draft genome sequences for which some complete genome sequences of the same or closely related species are available, MBGD now stores draft genome data and allows the users to incorporate them into a user-specific ortholog database using the MyMBGD functionality. In this function, draft genome data are incorporated into an existing ortholog table created only from the complete genome data in an incremental manner to prevent low-quality draft data from affecting clustering results. In addition, to provide high-quality orthology relationships, the standard ortholog table containing all the representative genomes, which is first created by the rapid classification program DomClust, is now refined using DomRefine, a recently developed program for improving domain-level clustering using multiple sequence alignment information. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Scale-up of nature's tissue weaving algorithms to engineer advanced functional materials.

    PubMed

    Ng, Joanna L; Knothe, Lillian E; Whan, Renee M; Knothe, Ulf; Tate, Melissa L Knothe

    2017-01-11

    We are literally the stuff from which our tissue fabrics and their fibers are woven and spun. The arrangement of collagen, elastin and other structural proteins in space and time embodies our tissues and organs with amazing resilience and multifunctional smart properties. For example, the periosteum, a soft tissue sleeve that envelops all nonarticular bony surfaces of the body, comprises an inherently "smart" material that gives hard bones added strength under high impact loads. Yet a paucity of scalable bottom-up approaches stymies the harnessing of smart tissues' biological, mechanical and organizational detail to create advanced functional materials. Here, a novel approach is established to scale up the multidimensional fiber patterns of natural soft tissue weaves for rapid prototyping of advanced functional materials. First second harmonic generation and two-photon excitation microscopy is used to map the microscopic three-dimensional (3D) alignment, composition and distribution of the collagen and elastin fibers of periosteum, the soft tissue sheath bounding all nonarticular bone surfaces in our bodies. Then, using engineering rendering software to scale up this natural tissue fabric, as well as multidimensional weaving algorithms, macroscopic tissue prototypes are created using a computer-controlled jacquard loom. The capacity to prototype scaled up architectures of natural fabrics provides a new avenue to create advanced functional materials.

  15. Scale-up of nature’s tissue weaving algorithms to engineer advanced functional materials

    NASA Astrophysics Data System (ADS)

    Ng, Joanna L.; Knothe, Lillian E.; Whan, Renee M.; Knothe, Ulf; Tate, Melissa L. Knothe

    2017-01-01

    We are literally the stuff from which our tissue fabrics and their fibers are woven and spun. The arrangement of collagen, elastin and other structural proteins in space and time embodies our tissues and organs with amazing resilience and multifunctional smart properties. For example, the periosteum, a soft tissue sleeve that envelops all nonarticular bony surfaces of the body, comprises an inherently “smart” material that gives hard bones added strength under high impact loads. Yet a paucity of scalable bottom-up approaches stymies the harnessing of smart tissues’ biological, mechanical and organizational detail to create advanced functional materials. Here, a novel approach is established to scale up the multidimensional fiber patterns of natural soft tissue weaves for rapid prototyping of advanced functional materials. First second harmonic generation and two-photon excitation microscopy is used to map the microscopic three-dimensional (3D) alignment, composition and distribution of the collagen and elastin fibers of periosteum, the soft tissue sheath bounding all nonarticular bone surfaces in our bodies. Then, using engineering rendering software to scale up this natural tissue fabric, as well as multidimensional weaving algorithms, macroscopic tissue prototypes are created using a computer-controlled jacquard loom. The capacity to prototype scaled up architectures of natural fabrics provides a new avenue to create advanced functional materials.

  16. Print-and-play: a new paradigm for the nearly-instant aerospace system

    NASA Astrophysics Data System (ADS)

    Church, Kenneth H.; Newton, C. Michael; Marsh, Albert J.; MacDonald, Eric W.; Soto, Cassandra D.; Lyke, James C.

    2010-04-01

    Nanosatellites, in particular the sub-class of CubeSATs, will provide an ability to place multiple small satellites in space more efficiently than larger satellites, with the eventual expectation that they will compete against some of the roles played by traditional large satellites that are expensive to launch. In order to do this, it is necessary to decrease the weight and volume without decreasing the capabilities. At the same time, it is desirable to create systems extremely rapidly, less than a week from concept to orbit. The Air Force has been working on a concept termed "CubeFlow" which will be a web-based design flow for rapidly constructible CubeSAT systems. In CubeFlow, distributed suppliers create offerings (modules, software functions, for satellite bus and payloads) meeting standard size and interface specifications, which are registered as a living catalog to a design community within the web-based CubeFlow environment. The idea of allowing any interested parties to make circuits and sensors that simply and compatibly connect to a modular satellite carrier is going to change how satellites are developed and launched, promoting creative exploitation and reduced development time and costs. We extend the power of the CubeFlow framework by a concept we call "print-and-play." "Print-and-play" enriches the CubeFlow concept dramatically. Whereas the CubeFlow system is oriented to the brokering of pre-created offerings from a "plug-and-play" vendor community, the idea of "print-andplay" allows similar offerings to be created "from scratch," using web-based plug-ins to capture design requirements, which are communicated to rapid prototyping tools.

  17. Evaluation of a new mobile system for protecting immune-suppressed patients against airborne contamination.

    PubMed

    Poirot, Jean-Louis; Gangneux, Jean-Pierre; Fischer, Alain; Malbernard, Mireille; Challier, Svetlana; Laudinet, Nicolas; Bergeron, Vance

    2007-09-01

    Invasive aspergillosis is one of the most lethal airborne dangers for immune-suppressed subjects. Providing patient protection from such airborne threats requires costly and high-maintenance facilities. We herein evaluate a new self-contained mobile unit as an alternative for creating a patient protective environment. Airborne contamination levels were monitored for different simulated scenarios and under actual clinical conditions. Functional tests were used to challenge the unit under adverse conditions, and a preliminary clinical study with patients and staff present was performed at 2 different French hospitals. Functional tests demonstrated that the unit can rapidly decontaminate air in the protected zone created by the unit and in the surrounding room. In addition, the protected zone is not sensitive to large disturbances that occur in the room. The clinical study included 4 patients with 150 accumulated days of testing. The protected zone created by the unit systematically provided an environment with undetectable airborne fungal levels (ie, <1 CFU/m(3)) regardless of the levels in the room or corridor (P < .01). These tests show that the unit can be used to create a mobile protective environment for immune-suppressed patients in a standard hospital setting.

  18. Flight Mechanics Project

    NASA Technical Reports Server (NTRS)

    Steck, Daniel

    2009-01-01

    This report documents the generation of an outbound Earth to Moon transfer preliminary database consisting of four cases calculated twice a day for a 19 year period. The database was desired as the first step in order for NASA to rapidly generate Earth to Moon trajectories for the Constellation Program using the Mission Assessment Post Processor. The completed database was created running a flight trajectory and optimization program, called Copernicus, in batch mode with the use of newly created Matlab functions. The database is accurate and has high data resolution. The techniques and scripts developed to generate the trajectory information will also be directly used in generating a comprehensive database.

  19. Wrinkling Non-Spherical Particles and Its Application in Cell Attachment Promotion

    NASA Astrophysics Data System (ADS)

    Li, Minggan; Joung, Dehi; Hughes, Bethany; Waldman, Stephen D.; Kozinski, Janusz A.; Hwang, Dae Kun

    2016-07-01

    Surface wrinkled particles are ubiquitous in nature and present in different sizes and shapes, such as plant pollens and peppercorn seeds. These natural wrinkles provide the particles with advanced functions to survive and thrive in nature. In this work, by combining flow lithography and plasma treatment, we have developed a simple method that can rapidly create wrinkled non-spherical particles, mimicking the surface textures in nature. Due to the oxygen inhibition in flow lithography, the non-spherical particles synthesized in a microfluidic channel are covered by a partially cured polymer (PCP) layer. When exposed to plasma treatment, this PCP layer rapidly buckles, forming surface-wrinkled particles. We designed and fabricated various particles with desired shapes and sizes. The surfaces of these shapes were tuned to created wrinkle morphologies by controlling UV exposure time and the washing process. We further demonstrated that wrinkles on the particles significantly promoted cell attachment without any chemical modification, potentially providing a new route for cell attachment for various biomedical applications.

  20. Realization of ActiveX control based on ATL in VC 2008

    NASA Astrophysics Data System (ADS)

    Li, Shuhua; Tie, Yong

    2011-10-01

    ActiveX has a key role in web development, this paper realizes the classical program Polygon in the newest Visual C++ environment 2008 and tests each function of control in ActiveX Control Test Container. After that web code is created rapidly via ActiveX Control Pad and it is checked in HTML. Development process and key point attention are summarized systematically which can guide the related developers.

  1. Lab-on-chip components for molecular detection

    NASA Astrophysics Data System (ADS)

    Adam, Tijjani; Dhahi, Th S.; Mohammed, Mohammed; Hashim, U.; Noriman, N. Z.; Dahham, Omar S.

    2017-09-01

    We successfully fabricated Lab on chip components and integrated for possible use in biomedical application. The sensor was fabricated by using conventional photolithography method integrated with PDMS micro channels for smooth delivery of sample to the sensing domain. The sensor was silanized and aminated with 3-Aminopropyl triethoxysilane (APTES) to functionalize the surface with biomolecules and create molecular binding chemistry. The resulting Si-O-Si- components were functionalized with oligonucleotides probe of HPV, which interacted with the single stranded HPV DNA target to create a field across on the device. The fabrication, immobilization and hybridization processes were characterized with current voltage (I-V) characterization (KEITHLEY, 6487). The sensor show selectivity for the HPV DNA target in a linear range from concentration 0.1 nM to 1 µM. This strategy presented a simple, rapid and sensitive platform for HPV detection and would become a powerful tool for pathogenic microorganisms screening in clinical diagnosis.

  2. Development of user customized smart keyboard using Smart Product Design-Finite Element Analysis Process in the Internet of Things.

    PubMed

    Kim, Jung Woo; Sul, Sang Hun; Choi, Jae Boong

    2018-06-07

    In a hyper-connected society, IoT environment, markets are rapidly changing as smartphones penetrate global market. As smartphones are applied to various digital media, development of a novel smart product is required. In this paper, a Smart Product Design-Finite Element Analysis Process (SPD-FEAP) is developed to adopt fast-changing tends and user requirements that can be visually verified. The user requirements are derived and quantitatively evaluated from Smart Quality Function Deployment (SQFD) using WebData. Then the usage scenarios are created according to the priority of the functions derived from SQFD. 3D shape analysis by Finite Element Analysis (FEA) was conducted and printed out through Rapid Prototyping (RP) technology to identify any possible errors. Thus, a User Customized Smart Keyboard has been developed using SPD-FEAP. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Rapid Optimal SPH Particle Distributions in Spherical Geometries For Creating Astrophysical Initial Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raskin, Cody; Owen, J. Michael

    Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here in this paper, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such asmore » planets with core–mantle boundaries.« less

  4. Rapid Optimal SPH Particle Distributions in Spherical Geometries For Creating Astrophysical Initial Conditions

    DOE PAGES

    Raskin, Cody; Owen, J. Michael

    2016-03-24

    Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here in this paper, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such asmore » planets with core–mantle boundaries.« less

  5. RAPID OPTIMAL SPH PARTICLE DISTRIBUTIONS IN SPHERICAL GEOMETRIES FOR CREATING ASTROPHYSICAL INITIAL CONDITIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raskin, Cody; Owen, J. Michael

    2016-04-01

    Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such as planets with core–mantlemore » boundaries.« less

  6. The quest for the bionic arm.

    PubMed

    Hutchinson, Douglas T

    2014-06-01

    The current state of research of upper extremity prosthetic devices is focused on creating a complete prosthesis with full motor and sensory function that will provide amputees with a near-normal human arm. Although advances are being made rapidly, many hurdles remain to be overcome before a functional, so-called bionic arm is a reality. Acquiring signals via nerve or muscle inputs will require either a reliable wireless device or direct wiring through an osseous-integrated implant. The best way to tap into the "knowledge" present in the peripheral nerve is yet to be determined. Copyright 2014 by the American Academy of Orthopaedic Surgeons.

  7. Mapping land cover through time with the Rapid Land Cover Mapper—Documentation and user manual

    USGS Publications Warehouse

    Cotillon, Suzanne E.; Mathis, Melissa L.

    2017-02-15

    The Rapid Land Cover Mapper is an Esri ArcGIS® Desktop add-in, which was created as an alternative to automated or semiautomated mapping methods. Based on a manual photo interpretation technique, the tool facilitates mapping over large areas and through time, and produces time-series raster maps and associated statistics that characterize the changing landscapes. The Rapid Land Cover Mapper add-in can be used with any imagery source to map various themes (for instance, land cover, soils, or forest) at any chosen mapping resolution. The user manual contains all essential information for the user to make full use of the Rapid Land Cover Mapper add-in. This manual includes a description of the add-in functions and capabilities, and step-by-step procedures for using the add-in. The Rapid Land Cover Mapper add-in was successfully used by the U.S. Geological Survey West Africa Land Use Dynamics team to accurately map land use and land cover in 17 West African countries through time (1975, 2000, and 2013).

  8. Modified Linear Theory Aircraft Design Tools and Sonic Boom Minimization Strategy Applied to Signature Freezing via F-function Lobe Balancing

    NASA Astrophysics Data System (ADS)

    Jung, Timothy Paul

    Commercial supersonic travel has strong business potential; however, in order for the Federal Aviation Administration to lift its ban on supersonic flight overland, designers must reduce aircraft sonic boom strength to an acceptable level. An efficient methodology and associated tools for designing aircraft for minimized sonic booms are presented. The computer-based preliminary design tool, RapidF, based on modified linear theory, enables quick assessment of an aircraft's sonic boom with run times less than 30 seconds on a desktop computer. A unique feature of RapidF is that it tracks where on the aircraft each segment of the of the sonic boom came from, enabling precise modifications, speeding the design process. Sonic booms from RapidF are compared to flight test data, showing that it is capability of predicting a sonic boom duration, overpressure, and interior shock locations. After the preliminary design is complete, scaled flight tests should be conducted to validate the low boom design. When conducting such tests, it is insufficient to just scale the length; thus, equations to scale the weight and propagation distance are derived. Using RapidF, a conceptual supersonic business jet design is presented that uses F-function lobe balancing to create a frozen sonic boom using lifting surfaces. The leading shock is reduced from 1.4 to 0.83 psf, and the trailing shock from 1.2 to 0.87 psf, 41% and 28% reductions respectfully. By changing the incidence angle of the surfaces, different sonic boom shapes can be created, and allowing the lobes to be re-balanced for new flight conditions. Computational fluid dynamics is conducted to validate the sonic boom predictions. Off-design analysis is presented that varies weight, altitude, Mach number, and propagation angle, demonstrating that lobe-balance is robust. Finally, the Perceived Level of Loudness metric is analyzed, resulting in a modified design that incorporates other boom minimization techniques to further reduce the sonic boom.

  9. Sequential shrink photolithography for plastic microlens arrays

    NASA Astrophysics Data System (ADS)

    Dyer, David; Shreim, Samir; Jayadev, Shreshta; Lew, Valerie; Botvinick, Elliot; Khine, Michelle

    2011-07-01

    Endeavoring to push the boundaries of microfabrication with shrinkable polymers, we have developed a sequential shrink photolithography process. We demonstrate the utility of this approach by rapidly fabricating plastic microlens arrays. First, we create a mask out of the children's toy Shrinky Dinks by simply printing dots using a standard desktop printer. Upon retraction of this pre-stressed thermoplastic sheet, the dots shrink to a fraction of their original size, which we then lithographically transfer onto photoresist-coated commodity shrink wrap film. This shrink film reduces in area by 95% when briefly heated, creating smooth convex photoresist bumps down to 30 µm. Taken together, this sequential shrink process provides a complete process to create microlenses, with an almost 99% reduction in area from the original pattern size. Finally, with a lithography molding step, we emboss these bumps into optical grade plastics such as cyclic olefin copolymer for functional microlens arrays.

  10. Sequential shrink photolithography for plastic microlens arrays.

    PubMed

    Dyer, David; Shreim, Samir; Jayadev, Shreshta; Lew, Valerie; Botvinick, Elliot; Khine, Michelle

    2011-07-18

    Endeavoring to push the boundaries of microfabrication with shrinkable polymers, we have developed a sequential shrink photolithography process. We demonstrate the utility of this approach by rapidly fabricating plastic microlens arrays. First, we create a mask out of the children's toy Shrinky Dinks by simply printing dots using a standard desktop printer. Upon retraction of this pre-stressed thermoplastic sheet, the dots shrink to a fraction of their original size, which we then lithographically transfer onto photoresist-coated commodity shrink wrap film. This shrink film reduces in area by 95% when briefly heated, creating smooth convex photoresist bumps down to 30 µm. Taken together, this sequential shrink process provides a complete process to create microlenses, with an almost 99% reduction in area from the original pattern size. Finally, with a lithography molding step, we emboss these bumps into optical grade plastics such as cyclic olefin copolymer for functional microlens arrays.

  11. Sequential shrink photolithography for plastic microlens arrays

    PubMed Central

    Dyer, David; Shreim, Samir; Jayadev, Shreshta; Lew, Valerie; Botvinick, Elliot; Khine, Michelle

    2011-01-01

    Endeavoring to push the boundaries of microfabrication with shrinkable polymers, we have developed a sequential shrink photolithography process. We demonstrate the utility of this approach by rapidly fabricating plastic microlens arrays. First, we create a mask out of the children’s toy Shrinky Dinks by simply printing dots using a standard desktop printer. Upon retraction of this pre-stressed thermoplastic sheet, the dots shrink to a fraction of their original size, which we then lithographically transfer onto photoresist-coated commodity shrink wrap film. This shrink film reduces in area by 95% when briefly heated, creating smooth convex photoresist bumps down to 30 µm. Taken together, this sequential shrink process provides a complete process to create microlenses, with an almost 99% reduction in area from the original pattern size. Finally, with a lithography molding step, we emboss these bumps into optical grade plastics such as cyclic olefin copolymer for functional microlens arrays. PMID:21863126

  12. Tailoring many-body entanglement through local control

    NASA Astrophysics Data System (ADS)

    Lucas, Felix; Mintert, Florian; Buchleitner, Andreas

    2013-09-01

    We construct optimal time-local control pulses based on a multipartite entanglement measure as target functional. The underlying control Hamiltonians are derived in a purely algebraic fashion, and the resulting pulses drive a composite quantum system rapidly into that highly entangled state which can be created most efficiently for a given interaction mechanism, and which bears entanglement that is robust against decoherence. Moreover, it is shown that the control scheme is insensitive to experimental imperfections in first order.

  13. Mining for Data

    NASA Technical Reports Server (NTRS)

    1998-01-01

    AbTech Corporation used an F-18 HARV (High Alpha Research Vehicle) simulation developed by NASA to create an interactive computer-based prototype of the MQ (Model Quest) SV (System Validator) tool. Dryden Flight Research Center provided support to develop, test, and rapidly reprogram the validation function. AbTech's ModelQuest Enterprises highly automated and outperforms other modeling techniques to quickly discover meaningful relationships, patterns, and trends in databases. Applications include technical and business professionals in finance, marketing, business, banking, retail, healthcare, and aerospace.

  14. Herbert Simon and the GSIA: building an interdisciplinary community.

    PubMed

    Crowther-Heyck, Hunter

    2006-01-01

    This article explores Herbert Simon's attempts to build Carnegie Tech's Graduate School of Industrial Administration into a center for interdisciplinary social research. It shows that despite the pressures toward disciplinary specialization created by the rapid growth of the postwar social sciences, there were strong countercurrents supporting interdisciplinary work. Support for interdisciplinary work came from a network of powerful new patrons that were interested in transforming social science into behavioral science and that supported mathematical, behavioral-functional analysis whatever the topic of study. These patrons deliberately defined their goals in terms of solving problems, not building disciplines, and the networks of advisory committees they created enabled certain entrepreneurial researchers, such as Simon, to exert influence across a range of fields and institutions. (c) 2006 Wiley Periodicals, Inc.

  15. Self-assembling multimeric nucleic acid constructs

    DOEpatents

    Cantor, Charles R.; Niemeyer, Christof M.; Smith, Cassandra L.; Sano, Takeshi; Hnatowich, Donald J.; Rusckowski, Mary

    1999-10-12

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  16. Self-assembling multimeric nucleic acid constructs

    DOEpatents

    Cantor, Charles R.; Niemeyer, Christof M.; Smith, Cassandra L.; Sano, Takeshi; Hnatowich, Donald J.; Rusckowski, Mary

    1996-01-01

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  17. Self-assembling multimeric nucleic acid constructs

    DOEpatents

    Cantor, C.R.; Niemeyer, C.M.; Smith, C.L.; Sano, Takeshi; Hnatowich, D.J.; Rusckowski, M.

    1996-10-01

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products. 5 figs.

  18. Web technologies for rapid assessment of pollution of the atmosphere of the industrial city

    NASA Astrophysics Data System (ADS)

    Shaparev, N.; Tokarev, A.; Yakubailik, O.; Soldatov, A.

    2018-05-01

    The functionality, architectural features, the user interface of the geoinformation web-system of environmental monitoring of Krasnoyarsk is discussed. This system is created in service-oriented architecture. Data collection from the automated stations to monitor the state of atmospheric air has been implemented. An original device to measure the level of contamination of the atmosphere by fine dust PM2.5 has developed. Assessment of the level of air pollution is based on the quality index AQI atmosphere.

  19. Next-Generation High-Throughput Functional Annotation of Microbial Genomes.

    PubMed

    Baric, Ralph S; Crosson, Sean; Damania, Blossom; Miller, Samuel I; Rubin, Eric J

    2016-10-04

    Host infection by microbial pathogens cues global changes in microbial and host cell biology that facilitate microbial replication and disease. The complete maps of thousands of bacterial and viral genomes have recently been defined; however, the rate at which physiological or biochemical functions have been assigned to genes has greatly lagged. The National Institute of Allergy and Infectious Diseases (NIAID) addressed this gap by creating functional genomics centers dedicated to developing high-throughput approaches to assign gene function. These centers require broad-based and collaborative research programs to generate and integrate diverse data to achieve a comprehensive understanding of microbial pathogenesis. High-throughput functional genomics can lead to new therapeutics and better understanding of the next generation of emerging pathogens by rapidly defining new general mechanisms by which organisms cause disease and replicate in host tissues and by facilitating the rate at which functional data reach the scientific community. Copyright © 2016 Baric et al.

  20. Autogenous healing of sea-water exposed mortar: Quantification through a simple and rapid permeability test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palin, D., E-mail: d.palin@tudelft.nl; Jonkers, H. M.; Wiktor, V.

    Concrete has an autogenous ability to heal cracks potentially contributing to its functional water tightness and durability. Here, we quantify the crack-healing capacity of sea-water submerged mortar specimens through a simple and rapid permeability test. Defined crack width geometries were created in blast furnace slag cement specimens allowing healed specimens to be quantified against unhealed specimens. Specimens with 0.2 mm wide cracks were not permeable after 28 days submersion. Specimens with 0.4 mm cracks had decreases in permeability of 66% after 28 days submersion, and 50–53% after 56 days submersion. Precipitation of aragonite and brucite in the cracks was themore » main cause of crack healing. Healing potential was dependent on the initial crack width, thermodynamic considerations and the amount of ions available in the crack. To our knowledge, this is the first study to quantify the functional autogenous healing capacity of cracked sea-water exposed cementitious specimens.« less

  1. The use of wavelength dispersive X-ray fluorescence in the identification of the elemental composition of vanilla samples and the determination of the geographic origin by discriminant function analysis.

    PubMed

    Hondrogiannis, Ellen; Rotta, Kathryn; Zapf, Charles M

    2013-03-01

    Sixteen elements found in 37 vanilla samples from Madagascar, Uganda, India, Indonesia (all Vanilla planifolia species), and Papa New Guinea (Vanilla tahitensis species) were measured by wavelength dispersive X-ray fluorescence (WDXRF) spectroscopy for the purpose of determining the elemental concentrations to discriminate among the origins. Pellets were prepared of the samples and elemental concentrations were calculated based on calibration curves created using 4 Natl. Inst. of Standards and Technology (NIST) standards. Discriminant analysis was used to successfully classify the vanilla samples by their species and their geographical region. Our method allows for higher throughput in the rapid screening of vanilla samples in less time than analytical methods currently available. Wavelength dispersive X-ray fluorescence spectroscopy and discriminant function analysis were used to classify vanilla from different origins resulting in a model that could potentially serve to rapidly validate these samples before purchasing from a producer. © 2013 Institute of Food Technologists®

  2. Design of structurally distinct proteins using strategies inspired by evolution

    DOE PAGES

    Jacobs, T. M.; Williams, B.; Williams, T.; ...

    2016-05-06

    Natural recombination combines pieces of preexisting proteins to create new tertiary structures and functions. In this paper, we describe a computational protocol, called SEWING, which is inspired by this process and builds new proteins from connected or disconnected pieces of existing structures. Helical proteins designed with SEWING contain structural features absent from other de novo designed proteins and, in some cases, remain folded at more than 100°C. High-resolution structures of the designed proteins CA01 and DA05R1 were solved by x-ray crystallography (2.2 angstrom resolution) and nuclear magnetic resonance, respectively, and there was excellent agreement with the design models. Finally, thismore » method provides a new strategy to rapidly create large numbers of diverse and designable protein scaffolds.« less

  3. Numerical simulation of a radially injected barium cloud

    NASA Technical Reports Server (NTRS)

    Swift, D. W.; Wescott, E. M.

    1981-01-01

    Electrostatic two-dimensional numerical simulations of a radially symmetric barium injection experiment demonstrate that ions created by solar UV irradiation are electrostatically bound to the electrons which remain tied to the field lines on which they are created. Two possible instabilities are identified, but neither of them causes the barium plasma cloud to polarize in a way that would permit the plasma to keep up with the neutrals. In a second model, the velocity of the neutrals is allowed to be a function of the azimuthal angle. Here, a portion of the cloud does polarize in a way that allows a portion of the plasma to detach and move outward at the approximate speed of the neutrals. No rapid detachment is found when only the density of the neutrals is given an azimuthal asymmetry.

  4. The utilization of cranial models created using rapid prototyping techniques in the development of models for navigation training.

    PubMed

    Waran, V; Pancharatnam, Devaraj; Thambinayagam, Hari Chandran; Raman, Rajagopal; Rathinam, Alwin Kumar; Balakrishnan, Yuwaraj Kumar; Tung, Tan Su; Rahman, Z A

    2014-01-01

    Navigation in neurosurgery has expanded rapidly; however, suitable models to train end users to use the myriad software and hardware that come with these systems are lacking. Utilizing three-dimensional (3D) industrial rapid prototyping processes, we have been able to create models using actual computed tomography (CT) data from patients with pathology and use these models to simulate a variety of commonly performed neurosurgical procedures with navigation systems. To assess the possibility of utilizing models created from CT scan dataset obtained from patients with cranial pathology to simulate common neurosurgical procedures using navigation systems. Three patients with pathology were selected (hydrocephalus, right frontal cortical lesion, and midline clival meningioma). CT scan data following an image-guidance surgery protocol in DIACOM format and a Rapid Prototyping Machine were taken to create the necessary printed model with the corresponding pathology embedded. The ability in registration, planning, and navigation of two navigation systems using a variety of software and hardware provided by these platforms was assessed. We were able to register all models accurately using both navigation systems and perform the necessary simulations as planned. Models with pathology utilizing 3D rapid prototyping techniques accurately reflect data of actual patients and can be used in the simulation of neurosurgical operations using navigation systems. Georg Thieme Verlag KG Stuttgart · New York.

  5. Older drivers and rapid deceleration events: Salisbury Eye Evaluation Driving Study.

    PubMed

    Keay, Lisa; Munoz, Beatriz; Duncan, Donald D; Hahn, Daniel; Baldwin, Kevin; Turano, Kathleen A; Munro, Cynthia A; Bandeen-Roche, Karen; West, Sheila K

    2013-09-01

    Drivers who rapidly change speed while driving may be more at risk for a crash. We sought to determine the relationship of demographic, vision, and cognitive variables with episodes of rapid decelerations during five days of normal driving in a cohort of older drivers. In the Salisbury Eye Evaluation Driving Study, 1425 older drivers aged 67-87 were recruited from the Maryland Motor Vehicle Administration's rolls for licensees in Salisbury, Maryland. Participants had several measures of vision tested: visual acuity, contrast sensitivity, visual fields, and the attentional visual field. Participants were also tested for various domains of cognitive function including executive function, attention, psychomotor speed, and visual search. A custom created driving monitoring system (DMS) was used to capture rapid deceleration events (RDEs), defined as at least 350 milli-g deceleration, during a five day period of monitoring. The rate of RDE per mile driven was modeled using a negative binomial regression model with an offset of the logarithm of the number of miles driven. We found that 30% of older drivers had one or more RDE during a five day period, and of those, about 1/3 had four or more. The rate of RDE per mile driven was highest for those drivers driving<59 miles during the 5-day period of monitoring. However, older drivers with RDE's were more likely to have better scores in cognitive tests of psychomotor speed and visual search, and have faster brake reaction time. Further, greater average speed and maximum speed per driving segment was protective against RDE events. In conclusion, contrary to our hypothesis, older drivers who perform rapid decelerations tend to be more "fit", with better measures of vision and cognition compared to those who do not have events of rapid deceleration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Older Drivers and Rapid Deceleration Events: Salisbury Eye Evaluation Driving Study

    PubMed Central

    Keay, Lisa; Munoz, Beatriz; Duncan, Donald D; Hahn, Daniel; Baldwin, Kevin; Turano, Kathleen A; Munro, Cynthia A; Bandeen-Roche, Karen; West, Sheila K

    2012-01-01

    Drivers who rapidly change speed while driving may be more at risk for a crash. We sought to determine the relationship of demographic, vision, and cognitive variables with episodes of rapid decelerations during five days of normal driving in a cohort of older drivers. In the Salisbury Eye Evaluation Driving Study, 1425 older drivers ages 67 to 87 were recruited from the Maryland Motor Vehicle Administration’s rolls for licensees in Salisbury, Maryland. Participants had several measures of vision tested: visual acuity, contrast sensitivity, visual fields, and the attentional visual field. Participants were also tested for various domains of cognitive function including executive function, attention, psychomotor speed, and visual search. A custom created Driving Monitor System (DMS) was used to capture rapid deceleration events (RDE), defined as at least 350 milli-g deceleration, during a five day period of monitoring. The rate of RDE per mile driven was modeled using a negative binomial regression model with an offset of the logarithm of the number of miles driven. We found that 30% of older drivers had one or more RDE during a five day period, and of those, about 1/3 had four or more. The rate of RDE per mile driven was highest for those drivers driving <59 miles during the 5-day period of monitoring. However, older drivers with RDE’s were more likely to have better scores in cognitive tests of psychomotor speed and visual search, and have faster brake reaction time. Further, greater average speed and maximum speed per driving segment was protective against RDE events. In conclusion, contrary to our hypothesis, older drivers who perform rapid decelerations tend to be more “fit”, with better measures of vision and cognition compared to those who do not have events of rapid deceleration. PMID:22742775

  7. Industry/University/Government partnerships in metrology: A new paradigm for the future

    NASA Astrophysics Data System (ADS)

    Helms, C. R.

    1998-11-01

    A business process is described where Industry/University/Government interactions are optimized for highest productivity across these three sectors. This cross-functional approach provides for the rapid development of differentiated products for competitive advantage in industry, best of class scholarship and academically free university research, and the assurance of U.S. economic and military strength. The major focus of this paper will be R&D. However, the above objectives will only be met if effective transition from R&D into final product marketing, design, and manufacturing are included as an additional required concurrent, cross-functional activity. Metrology will be shown as an area that meets all the requirements for the development of a broad cross-functional partnership between industry, academia, and the Government that creates significant value for each sector.

  8. Sources, mechanisms, and consequences of chemical-induced mitochondrial toxicity

    PubMed Central

    Meyer, Joel N.; Chan, Sherine S. L.

    2017-01-01

    Mitochondrial function is critical for health, as demonstrated by the effects of mitochondrial toxicity, mutations in genes encoding mitochondrial proteins, and the role of mitochondrial dysfunction in many chronic diseases. However, much basic mitochondrial biology is still being discovered. Furthermore, the details of how different environmental exposures affect mitochondria, how mitochondria respond to stressors, and how genetic variation affecting mitochondrial function alters response to exposures are areas of rapid research growth. This Special Issue was created to highlight and review cutting-edge areas of research into chemical effects on mitochondrial function. We anticipate that it will stimulate additional research into the mechanisms by which chemical exposures impact mitochondria, the biological processes that protect mitochondria from such impacts, and the health consequences that result when defense and homeostatic mechanisms are overcome. PMID:28627407

  9. Harnessing plasticity for the treatment of neurosurgical disorders: an overview.

    PubMed

    Chen, H Isaac; Attiah, Mark; Baltuch, Gordon; Smith, Douglas H; Hamilton, Roy H; Lucas, Timothy H

    2014-11-01

    Plasticity is fundamental to normal central nervous system function and its response to injury. Understanding this adaptive capacity is central to the development of novel surgical approaches to neurologic disease. These innovative interventions offer the promise of maximizing functional recovery for patients by harnessing targeted plasticity. Developing novel therapies will require the unprecedented integration of neuroscience, bioengineering, molecular biology, and physiology. Such synergistic approaches will create therapeutic options for patients previously outside of the scope of neurosurgery, such as those with permanent disability after traumatic brain injury or stroke. In this review, we synthesize the rapidly evolving field of plasticity and explore ways that neurosurgeons may enhance functional recovery in the future. We conclude that understanding plasticity is fundamental to modern neurosurgical education and practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Rapid, Sensitive Detection of Botulinum Toxin on a Flexible Microfluidics Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Marvin G.; Dockendorff, Brian P.; Feldhaus, Michael J.

    2004-10-30

    In this paper we will describe how high affinity reagents and a sensor configuration enabling rapid mass transport can be combined for rapid, sensitive biodetection. The system that we have developed includes a renewable surface immunoassay, which involves on-column detection of a fluorescently labeled secondary antibody in a sandwich immunoassay. Yeast display and directed molecular evolution were used to create high affinity antibodies to the botulinum toxin heavy chain receptor binding domain, AR1 and 3D12. A rotating rod renewable surface microcolumn was used to form a microliter-sized column containing beads functionalized with the capture antibody (AR1). The column was perfusedmore » with sample, wash solutions, and a fluorescently labeled secondary antibody (3D12) while the on-column fluorescence was monitored. Detection was accomplished in less than 5 minutes, with a total processing time of about 10 minutes. On-column detection of botulinum toxin was more sensitive and much faster than flow cytometry analysis on microbeads using the same reagents.« less

  11. Connectivity and seasonality cause rapid taxonomic and functional trait succession within an invertebrate community after stream restoration

    PubMed Central

    van der Geest, Harm G.; van Loon, E. Emiel; Verdonschot, Piet F. M.

    2018-01-01

    General colonization concepts consent that a slow process of microhabitat formation and subsequent niche realization occurs during early stages after new habitat is released. Subsequently, only few species are able to colonize new habitat in the early onset of succession, while species richness increases steadily over time. Although most colonization studies have been performed in terrestrial ecosystems, running water ecosystems are equally or even more prone to colonization after disturbance due to their dynamic nature. We question how invertebrate succession patterns reconcile with general colonization concepts. With this study we provide insight into the colonization process in newly created lowland stream trajectories and answer how within-stream bio- and functional diversity develops over time. Our results show a rapid influx of species, with a wide range of functional traits, during the first season after water flow commenced. During more than two years of regular monitoring, immigration rates were highest in autumn, marking the effects of seasonality on invertebrate dispersal. Biodiversity increased while abundance peaks of species alternated between seasons. Moreover, also days since start of the experiment explains a considerable part of the variability for taxa as well as traits. However, the relative trait composition remained similar throughout the entire monitoring period and only few specific traits had significantly higher proportions during specific seasons. This indicates that first phase colonization in freshwater streams can be a very rapid process that results in a high biodiversity and a large variety of species functional characteristics from the early onset of succession, contradicting general terrestrial colonization theory. PMID:29795599

  12. Exploiting fine-scale genetic and physiological variation of closely related microbes to reveal unknown enzyme functions.

    PubMed

    Badur, Ahmet H; Plutz, Matthew J; Yalamanchili, Geethika; Jagtap, Sujit Sadashiv; Schweder, Thomas; Unfried, Frank; Markert, Stephanie; Polz, Martin F; Hehemann, Jan-Hendrik; Rao, Christopher V

    2017-08-04

    Polysaccharide degradation by marine microbes represents one of the largest and most rapid heterotrophic transformations of organic matter in the environment. Microbes employ systems of complementary carbohydrate-specific enzymes to deconstruct algal or plant polysaccharides (glycans) into monosaccharides. Because of the high diversity of glycan substrates, the functions of these enzymes are often difficult to establish. One solution to this problem may lie within naturally occurring microdiversity; varying numbers of enzymes, due to gene loss, duplication, or transfer, among closely related environmental microbes create metabolic differences akin to those generated by knock-out strains engineered in the laboratory used to establish the functions of unknown genes. Inspired by this natural fine-scale microbial diversity, we show here that it can be used to develop hypotheses guiding biochemical experiments for establishing the role of these enzymes in nature. In this work, we investigated alginate degradation among closely related strains of the marine bacterium Vibrio splendidus One strain, V. splendidus 13B01, exhibited high extracellular alginate lyase activity compared with other V. splendidus strains. To identify the enzymes responsible for this high extracellular activity, we compared V. splendidus 13B01 with the previously characterized V. splendidus 12B01, which has low extracellular activity and lacks two alginate lyase genes present in V. splendidus 13B01. Using a combination of genomics, proteomics, biochemical, and functional screening, we identified a polysaccharide lyase family 7 enzyme that is unique to V. splendidus 13B01, secreted, and responsible for the rapid digestion of extracellular alginate. These results demonstrate the value of querying the enzymatic repertoires of closely related microbes to rapidly pinpoint key proteins with beneficial functions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Rapid Prototyping in Instructional Design: Creating Competencies

    ERIC Educational Resources Information Center

    Fulton, Carolyn D.

    2010-01-01

    Instructional designers working in rapid prototyping environments currently do not have a list of competencies that help to identify the knowledge, skills, and attitudes (KSAs) required in these workplaces. This qualitative case study used multiple cases in an attempt to identify rapid prototyping competencies required in a rapid prototyping…

  14. Sci-Vis Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur Bleeker, PNNL

    2015-03-11

    SVF is a full featured OpenGL 3d framework that allows for rapid creation of complex visualizations. The SVF framework handles much of the lifecycle and complex tasks required for a 3d visualization. Unlike a game framework SVF was designed to use fewer resources, work well in a windowed environment, and only render when necessary. The scene also takes advantage of multiple threads to free up the UI thread as much as possible. Shapes (actors) in the scene are created by adding or removing functionality (through support objects) during runtime. This allows a highly flexible and dynamic means of creating highlymore » complex actors without the code complexity (it also helps overcome the lack of multiple inheritance in Java.) All classes are highly customizable and there are abstract classes which are intended to be subclassed to allow a developer to create more complex and highly performant actors. There are multiple demos included in the framework to help the developer get started and shows off nearly all of the functionality. Some simple shapes (actors) are already created for you such as text, bordered text, radial text, text area, complex paths, NURBS paths, cube, disk, grid, plane, geometric shapes, and volumetric area. It also comes with various camera types for viewing that can be dragged, zoomed, and rotated. Picking or selecting items in the scene can be accomplished in various ways depending on your needs (raycasting or color picking.) The framework currently has functionality for tooltips, animation, actor pools, color gradients, 2d physics, text, 1d/2d/3d textures, children, blending, clipping planes, view frustum culling, custom shaders, and custom actor states« less

  15. A Rapid Pathway Toward a Superb Gene Delivery System: Programming Structural and Functional Diversity into a Supramolecular Nanoparticle Library

    PubMed Central

    Wang, Hao; Liu, Kan; Chen, Kuan-Ju; Lu, Yujie; Wang, Shutao; Lin, Wei-Yu; Guo, Feng; Kamei, Ken-ichiro; Chen, Yi-Chun; Ohashi, Minori; Wang, Mingwei; Garcia, Mitch André; Zhao, Xing-Zhong; Shen, Clifton K.-F.; Tseng, Hsian-Rong

    2010-01-01

    Nanoparticles are regarded as promising transfection reagents for effective and safe delivery of nucleic acids into specific type of cells or tissues providing an alternative manipulation/therapy strategy to viral gene delivery. However, the current process of searching novel delivery materials is limited due to conventional low-throughput and time-consuming multistep synthetic approaches. Additionally, conventional approaches are frequently accompanied with unpredictability and continual optimization refinements, impeding flexible generation of material diversity creating a major obstacle to achieving high transfection performance. Here we have demonstrated a rapid developmental pathway toward highly efficient gene delivery systems by leveraging the powers of a supramolecular synthetic approach and a custom-designed digital microreactor. Using the digital microreactor, broad structural/functional diversity can be programmed into a library of DNA-encapsulated supramolecular nanoparticles (DNA⊂SNPs) by systematically altering the mixing ratios of molecular building blocks and a DNA plasmid. In vitro transfection studies with DNA⊂SNPs library identified the DNA⊂SNPs with the highest gene transfection efficiency, which can be attributed to cooperative effects of structures and surface chemistry of DNA⊂SNPs. We envision such a rapid developmental pathway can be adopted for generating nanoparticle-based vectors for delivery of a variety of loads. PMID:20925389

  16. Method and apparatus for upshifting light frequency by rapid plasma creation

    DOEpatents

    Dawson, John M.; Wilks, Scott C.; Mori, Warren B.; Joshi, Chandrasekhar J.; Sessler, Andrew M.

    1990-01-01

    Photons of an electromagnetic source wave are frequency-upshifted as a plasma is rapidly created around the path of this propagating source wave. The final frequency can be controlled by adjusting the gas density. A controlled time-varying frequency (chirped) pulse can be produced by using a controlled spatially varying gas density. The plasma must be created in a time which is short compared to the transit time of the light through the plasmas region. For very fast creation over one to at most a few light periods of an overdense plasma, static magnetic fields with short wavelengths are created.

  17. Excitonic AND Logic Gates on DNA Brick Nanobreadboards.

    PubMed

    Cannon, Brittany L; Kellis, Donald L; Davis, Paul H; Lee, Jeunghoon; Kuang, Wan; Hughes, William L; Graugnard, Elton; Yurke, Bernard; Knowlton, William B

    2015-03-18

    A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems.

  18. Excitonic AND Logic Gates on DNA Brick Nanobreadboards

    PubMed Central

    2015-01-01

    A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems. PMID:25839049

  19. Software Verification of Orion Cockpit Displays

    NASA Technical Reports Server (NTRS)

    Biswas, M. A. Rafe; Garcia, Samuel; Prado, Matthew; Hossain, Sadad; Souris, Matthew; Morin, Lee

    2017-01-01

    NASA's latest spacecraft Orion is in the development process of taking humans deeper into space. Orion is equipped with three main displays to monitor and control the spacecraft. To ensure the software behind the glass displays operates without faults, rigorous testing is needed. To conduct such testing, the Rapid Prototyping Lab at NASA's Johnson Space Center along with the University of Texas at Tyler employed a software verification tool, EggPlant Functional by TestPlant. It is an image based test automation tool that allows users to create scripts to verify the functionality within a program. A set of edge key framework and Common EggPlant Functions were developed to enable creation of scripts in an efficient fashion. This framework standardized the way to code and to simulate user inputs in the verification process. Moreover, the Common EggPlant Functions can be used repeatedly in verification of different displays.

  20. 4D Bioprinting for Biomedical Applications.

    PubMed

    Gao, Bin; Yang, Qingzhen; Zhao, Xin; Jin, Guorui; Ma, Yufei; Xu, Feng

    2016-09-01

    3D bioprinting has been developed to effectively and rapidly pattern living cells and biomaterials, aiming to create complex bioconstructs. However, placing biocompatible materials or cells into direct contact via bioprinting is necessary but insufficient for creating these constructs. Therefore, '4D bioprinting' has emerged recently, where 'time' is integrated with 3D bioprinting as the fourth dimension, and the printed objects can change their shapes or functionalities when an external stimulus is imposed or when cell fusion or postprinting self-assembly occurs. In this review, we highlight recent developments in 4D bioprinting technology. Additionally, we review the uses of 4D bioprinting in tissue engineering and drug delivery. Finally, we discuss the major roadblocks to this approach, together with possible solutions, to provide future perspectives on this technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A technique to functionalize and self-assemble macroscopic nanoparticle-ligand monolayer films onto template-free substrates.

    PubMed

    Fontana, Jake; Spillmann, Christopher; Naciri, Jawad; Ratna, Banahalli R

    2014-05-09

    This protocol describes a self-assembly technique to create macroscopic monolayer films composed of ligand-coated nanoparticles. The simple, robust and scalable technique efficiently functionalizes metallic nanoparticles with thiol-ligands in a miscible water/organic solvent mixture allowing for rapid grafting of thiol groups onto the gold nanoparticle surface. The hydrophobic ligands on the nanoparticles then quickly phase separate the nanoparticles from the aqueous based suspension and confine them to the air-fluid interface. This drives the ligand-capped nanoparticles to form monolayer domains at the air-fluid interface. The use of water-miscible organic solvents is important as it enables the transport of the nanoparticles from the interface onto template-free substrates. The flow is mediated by a surface tension gradient and creates macroscopic, high-density, monolayer nanoparticle-ligand films. This self-assembly technique may be generalized to include the use of particles of different compositions, size, and shape and may lead to an efficient assembly method to produce low-cost, macroscopic, high-density, monolayer nanoparticle films for wide-spread applications.

  2. The behavioural consequences of sex reversal in dragons

    PubMed Central

    Li, Hong; Holleley, Clare E.; Elphick, Melanie; Georges, Arthur

    2016-01-01

    Sex differences in morphology, physiology, and behaviour are caused by sex-linked genes, as well as by circulating sex-steroid levels. Thus, a shift from genotypic to environmental sex determination may create an organism that exhibits a mixture of male-like and female-like traits. We studied a lizard species (Central Bearded Dragon, Pogona vitticeps), in which the high-temperature incubation of eggs transforms genetically male individuals into functional females. Although they are reproductively female, sex-reversed dragons (individuals with ZZ genotype reversed to female phenotype) resemble genetic males rather than females in morphology (relative tail length), general behaviour (boldness and activity level), and thermoregulatory tactics. Indeed, sex-reversed ‘females’ are more male-like in some behavioural traits than are genetic males. This novel phenotype may impose strong selection on the frequency of sex reversal within natural populations, facilitating rapid shifts in sex-determining systems. A single period of high incubation temperatures (generating thermally induced sex reversal) can produce functionally female individuals with male-like (or novel) traits that enhance individual fitness, allowing the new temperature-dependent sex-determining system to rapidly replace the previous genetically based one.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb -1 of Pb+Pb data and 4.0 pb -1 of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluatemore » the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. Finally, no significant dependence of modifications on jet p T and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.« less

  4. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species.

    PubMed

    Stapley, Jessica; Santure, Anna W; Dennis, Stuart R

    2015-05-01

    Rapid adaptation of invasive species to novel habitats has puzzled evolutionary biologists for decades, especially as this often occurs in the face of limited genetic variability. Although some ecological traits common to invasive species have been identified, little is known about the possible genomic/genetic mechanisms that may underlie their success. A common scenario in many introductions is that small founder population sizes will often lead to reduced genetic diversity, but that invading populations experience large environmental perturbations, such as changes in habitat and environmental stress. Although sudden and intense stress is usually considered in a negative context, these perturbations may actually facilitate rapid adaptation by affecting genome structure, organization and function via interactions with transposable elements (TEs), especially in populations with low genetic diversity. Stress-induced changes in TE activity can alter gene action and can promote structural variation that may facilitate the rapid adaptation observed in new environments. We focus here on the adaptive potential of TEs in relation to invasive species and highlight their role as powerful mutational forces that can rapidly create genetic diversity. We hypothesize that activity of transposable elements can explain rapid adaptation despite low genetic variation (the genetic paradox of invasive species), and provide a framework under which this hypothesis can be tested using recently developed and emerging genomic technologies. © 2015 John Wiley & Sons Ltd.

  5. Enabling functional genomics with genome engineering

    PubMed Central

    Hilton, Isaac B.; Gersbach, Charles A.

    2015-01-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  6. Application Actuation Trade Study

    DTIC Science & Technology

    1982-01-01

    for a safe ditching or bailout. 3.10.2 Electrical Power System The electrical power systcm for the Baseline Airplanc is recuired to provide...results achieved can be duplicated by a user. The RCA PRICE Podel calculates the RDTSE. Production cost, and creates the YiDF file for use in the PCA...transmitters can create very broad spectrums of high frequency components by a rapid change in voltage and/or energy level. A rapid change of one volt is

  7. A Three-Dimensional Mediastinal Model Created with Rapid Prototyping in a Patient with Ectopic Thymoma

    PubMed Central

    Nakada, Takeo; Inagaki, Takuya

    2014-01-01

    Preoperative three-dimensional (3D) imaging of a mediastinal tumor using two-dimensional (2D) axial computed tomography is sometimes difficult, and an unexpected appearance of the tumor may be encountered during surgery. In order to evaluate the preoperative feasibility of a 3D mediastinal model that used the rapid prototyping technique, we created a model and report its results. The 2D image showed some of the relationship between the tumor and the pericardium, but the 3D mediastinal model that was created using the rapid prototyping technique showed the 3D lesion in the outer side of the extrapericardium. The patient underwent a thoracoscopic resection of the tumor, and the pathological examination showed a rare middle mediastinal ectopic thymoma. We believe that the construction of mediastinal models is useful for thoracoscopic surgery and other complicated surgeries of the chest diseases. PMID:24633133

  8. A three-dimensional mediastinal model created with rapid prototyping in a patient with ectopic thymoma.

    PubMed

    Akiba, Tadashi; Nakada, Takeo; Inagaki, Takuya

    2015-01-01

    Preoperative three-dimensional (3D) imaging of a mediastinal tumor using two-dimensional (2D) axial computed tomography is sometimes difficult, and an unexpected appearance of the tumor may be encountered during surgery. In order to evaluate the preoperative feasibility of a 3D mediastinal model that used the rapid prototyping technique, we created a model and report its results. The 2D image showed some of the relationship between the tumor and the pericardium, but the 3D mediastinal model that was created using the rapid prototyping technique showed the 3D lesion in the outer side of the extrapericardium. The patient underwent a thoracoscopic resection of the tumor, and the pathological examination showed a rare middle mediastinal ectopic thymoma. We believe that the construction of mediastinal models is useful for thoracoscopic surgery and other complicated surgeries of the chest diseases.

  9. Rapid prototyping to create vascular replicas from CT scan data: making tools to teach, rehearse, and choose treatment strategies.

    PubMed

    Knox, K; Kerber, Charles W; Singel, S A; Bailey, M J; Imbesi, S G

    2005-05-01

    Our goal was to develop and prove the accuracy of a system that would allow us to re-create live patient arterial pathology. Anatomically accurate replicas of blood vessels could allow physicians to teach and practice dangerous interventional techniques and might also be used to gather basic physiologic information. The preparation of replicas has, until now, depended on acquisition of fresh cadaver material. Using rapid prototyping, it should be able to replicate vascular pathology in a live patient. We obtained CT angiographic scan data from two patients with known arterial abnormalities. We took such data and, using proprietary software, created a 3D replica using a commercially available rapid prototyping machine. From the prototypes, using a lost wax technique, we created vessel replicas, placed those replicas in the CT scanner, then compared those images with the original scans. Comparison of the images made directly from the patient and from the replica showed that with each step, the relationships were maintained, remaining within 3% of the original, but some smoothing occurred in the final computer manipulation. From routinely obtainable CT angiographic data, it is possible to create accurate replicas of human vascular pathology with the aid of commercially available stereolithography equipment. Visual analysis of the images appeared to be as important as the measurements. With 64 and 128 slice detector scanners becoming available, acquisition times fall enough that we should be able to model rapidly moving structures such as the aortic root. (c) 2005 Wiley-Liss, Inc.

  10. Children and Families in an Era of Rapid Change: Creating a Shared Agenda for Researchers, Practitioners and Policy Makers. Summary of Conference Proceedings: Head Start's National Research Conference (4th, Washington, DC, July 9-12, 1998).

    ERIC Educational Resources Information Center

    Lamb-Parker, Faith, Ed.; Hagen, John, Ed.; Robinson, Ruth, Ed.; Clark, Cheryl, Ed.

    This report summarizes the conference proceedings of the fourth Head Start National Research Conference. The focus of the conference was on creating a shared agenda for researchers, practitioners, and policy makers related to serving children and families in an era of rapid change. Keynote topics and speakers are: "Countering the Health…

  11. PipelineDog: a simple and flexible graphic pipeline construction and maintenance tool.

    PubMed

    Zhou, Anbo; Zhang, Yeting; Sun, Yazhou; Xing, Jinchuan

    2018-05-01

    Analysis pipelines are an essential part of bioinformatics research, and ad hoc pipelines are frequently created by researchers for prototyping and proof-of-concept purposes. However, most existing pipeline management system or workflow engines are too complex for rapid prototyping or learning the pipeline concept. A lightweight, user-friendly and flexible solution is thus desirable. In this study, we developed a new pipeline construction and maintenance tool, PipelineDog. This is a web-based integrated development environment with a modern web graphical user interface. It offers cross-platform compatibility, project management capabilities, code formatting and error checking functions and an online repository. It uses an easy-to-read/write script system that encourages code reuse. With the online repository, it also encourages sharing of pipelines, which enhances analysis reproducibility and accountability. For most users, PipelineDog requires no software installation. Overall, this web application provides a way to rapidly create and easily manage pipelines. PipelineDog web app is freely available at http://web.pipeline.dog. The command line version is available at http://www.npmjs.com/package/pipelinedog and online repository at http://repo.pipeline.dog. ysun@kean.edu or xing@biology.rutgers.edu or ysun@diagnoa.com. Supplementary data are available at Bioinformatics online.

  12. A comparative study of Message Digest 5(MD5) and SHA256 algorithm

    NASA Astrophysics Data System (ADS)

    Rachmawati, D.; Tarigan, J. T.; Ginting, A. B. C.

    2018-03-01

    The document is a collection of written or printed data containing information. The more rapid advancement of technology, the integrity of a document should be kept. Because of the nature of an open document means the document contents can be read and modified by many parties so that the integrity of the information as a content of the document is not preserved. To maintain the integrity of the data, it needs to create a mechanism which is called a digital signature. A digital signature is a specific code which is generated from the function of producing a digital signature. One of the algorithms that used to create the digital signature is a hash function. There are many hash functions. Two of them are message digest 5 (MD5) and SHA256. Those both algorithms certainly have its advantages and disadvantages of each. The purpose of this research is to determine the algorithm which is better. The parameters which used to compare that two algorithms are the running time and complexity. The research results obtained from the complexity of the Algorithms MD5 and SHA256 is the same, i.e., ⊖ (N), but regarding the speed is obtained that MD5 is better compared to SHA256.

  13. Assessing the Benefits of Wetland Restoration: A Rapid Benefit Indicators Approach for Decision Makers

    EPA Science Inventory

    This guide presents the Rapid Benefits Indicators (RBI) Approach, a rapid process for assessing the social benefits of ecosystem restoration. Created for those who conduct, advocate for, or support restoration, the RBI approach consists of five steps: (1) Describe the decision co...

  14. Impacts of discarded plastic bags on marine assemblages and ecosystem functioning.

    PubMed

    Green, Dannielle Senga; Boots, Bas; Blockley, David James; Rocha, Carlos; Thompson, Richard

    2015-05-05

    The accumulation of plastic debris is a global environmental problem due to its durability, persistence, and abundance. Although effects of plastic debris on individual marine organisms, particularly mammals and birds, have been extensively documented (e.g., entanglement and choking), very little is known about effects on assemblages and consequences for ecosystem functioning. In Europe, around 40% of the plastic items produced are utilized as single-use packaging, which rapidly accumulate in waste management facilities and as litter in the environment. A range of biodegradable plastics have been developed with the aspiration of reducing the persistence of litter; however, their impacts on marine assemblages or ecosystem functioning have never been evaluated. A field experiment was conducted to assess the impact of conventional and biodegradable plastic carrier bags as litter on benthic macro- and meio-faunal assemblages and biogeochemical processes (primary productivity, redox condition, organic matter content, and pore-water nutrients) on an intertidal shore near Dublin, Ireland. After 9 weeks, the presence of either type of bag created anoxic conditions within the sediment along with reduced primary productivity and organic matter and significantly lower abundances of infaunal invertebrates. This indicates that both conventional and biodegradable bags can rapidly alter marine assemblages and the ecosystem services they provide.

  15. A universal TagModule collection for parallel genetic analysis of microorganisms

    PubMed Central

    Oh, Julia; Fung, Eula; Price, Morgan N.; Dehal, Paramvir S.; Davis, Ronald W.; Giaever, Guri; Nislow, Corey; Arkin, Adam P.; Deutschbauer, Adam

    2010-01-01

    Systems-level analyses of non-model microorganisms are limited by the existence of numerous uncharacterized genes and a corresponding over-reliance on automated computational annotations. One solution to this challenge is to disrupt gene function using DNA tag technology, which has been highly successful in parallelizing reverse genetics in Saccharomyces cerevisiae and has led to discoveries in gene function, genetic interactions and drug mechanism of action. To extend the yeast DNA tag methodology to a wide variety of microorganisms and applications, we have created a universal, sequence-verified TagModule collection. A hallmark of the 4280 TagModules is that they are cloned into a Gateway entry vector, thus facilitating rapid transfer to any compatible genetic system. Here, we describe the application of the TagModules to rapidly generate tagged mutants by transposon mutagenesis in the metal-reducing bacterium Shewanella oneidensis MR-1 and the pathogenic yeast Candida albicans. Our results demonstrate the optimal hybridization properties of the TagModule collection, the flexibility in applying the strategy to diverse microorganisms and the biological insights that can be gained from fitness profiling tagged mutant collections. The publicly available TagModule collection is a platform-independent resource for the functional genomics of a wide range of microbial systems in the post-genome era. PMID:20494978

  16. [Usefulness of volume rendering stereo-movie in neurosurgical craniotomies].

    PubMed

    Fukunaga, Tateya; Mokudai, Toshihiko; Fukuoka, Masaaki; Maeda, Tomonori; Yamamoto, Kouji; Yamanaka, Kozue; Minakuchi, Kiyomi; Miyake, Hirohisa; Moriki, Akihito; Uchida, Yasufumi

    2007-12-20

    In recent years, the advancements in MR technology combined with the development of the multi-channel coil have resulted in substantially shortened inspection times. In addition, rapid improvement in functional performance in the workstation has produced a more simplified imaging-making process. Consequently, graphical images of intra-cranial lesions can be easily created. For example, the use of three-dimensional spoiled gradient echo (3D-SPGR) volume rendering (VR) after injection of a contrast medium is applied clinically as a preoperative reference image. Recently, improvements in 3D-SPGR VR high-resolution have enabled accurate surface images of the brain to be obtained. We used stereo-imaging created by weighted maximum intensity projection (Weighted MIP) to determine the skin incision line. Furthermore, the stereo imaging technique utilizing 3D-SPGR VR was actually used in cases presented here. The techniques we report here seemed to be very useful in the pre-operative simulation of neurosurgical craniotomy.

  17. A system for rapid prototyping of hearts with congenital malformations based on the medical imaging interaction toolkit (MITK)

    NASA Astrophysics Data System (ADS)

    Wolf, Ivo; Böttger, Thomas; Rietdorf, Urte; Maleike, Daniel; Greil, Gerald; Sieverding, Ludger; Miller, Stephan; Mottl-Link, Sibylle; Meinzer, Hans-Peter

    2006-03-01

    Precise knowledge of the individual cardiac anatomy is essential for diagnosis and treatment of congenital heart disease. Complex malformations of the heart can best be comprehended not from images but from anatomic specimens. Physical models can be created from data using rapid prototyping techniques, e.g., lasersintering or 3D-printing. We have developed a system for obtaining data that show the relevant cardiac anatomy from high-resolution CT/MR images and are suitable for rapid prototyping. The challenge is to preserve all relevant details unaltered in the produced models. The main anatomical structures of interest are the four heart cavities (atria, ventricles), the valves and the septum separating the cavities, and the great vessels. These can be shown either by reproducing the morphology itself or by producing a model of the blood-pool, thus creating a negative of the morphology. Algorithmically the key issue is segmentation. Practically, possibilities allowing the cardiologist or cardiac surgeon to interactively check and correct the segmentation are even more important due to the complex, irregular anatomy and imaging artefacts. The paper presents the algorithmic and interactive processing steps implemented in the system, which is based on the open-source Medical Imaging Interaction Toolkit (MITK, www.mitk.org). It is shown how the principles used in MITK enable to assemble the system from modules (functionalities) developed independently from each other. The system allows to produce models of the heart (and other anatomic structures) of individual patients as well as to reproduce unique specimens from pathology collections for teaching purposes.

  18. Modelling proteins' hidden conformations to predict antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Hart, Kathryn M.; Ho, Chris M. W.; Dutta, Supratik; Gross, Michael L.; Bowman, Gregory R.

    2016-10-01

    TEM β-lactamase confers bacteria with resistance to many antibiotics and rapidly evolves activity against new drugs. However, functional changes are not easily explained by differences in crystal structures. We employ Markov state models to identify hidden conformations and explore their role in determining TEM's specificity. We integrate these models with existing drug-design tools to create a new technique, called Boltzmann docking, which better predicts TEM specificity by accounting for conformational heterogeneity. Using our MSMs, we identify hidden states whose populations correlate with activity against cefotaxime. To experimentally detect our predicted hidden states, we use rapid mass spectrometric footprinting and confirm our models' prediction that increased cefotaxime activity correlates with reduced Ω-loop flexibility. Finally, we design novel variants to stabilize the hidden cefotaximase states, and find their populations predict activity against cefotaxime in vitro and in vivo. Therefore, we expect this framework to have numerous applications in drug and protein design.

  19. Micromotors Spontaneously Neutralize Gastric Acid for pH-Responsive Payload Release.

    PubMed

    Li, Jinxing; Angsantikul, Pavimol; Liu, Wenjuan; Esteban-Fernández de Ávila, Berta; Thamphiwatana, Soracha; Xu, Mingli; Sandraz, Elodie; Wang, Xiaolei; Delezuk, Jorge; Gao, Weiwei; Zhang, Liangfang; Wang, Joseph

    2017-02-13

    The highly acidic gastric environment creates a physiological barrier for using therapeutic drugs in the stomach. While proton pump inhibitors have been widely used for blocking acid-producing enzymes, this approach can cause various adverse effects. Reported herein is a new microdevice, consisting of magnesium-based micromotors which can autonomously and temporally neutralize gastric acid through efficient chemical propulsion in the gastric fluid by rapidly depleting the localized protons. Coating these micromotors with a cargo-containing pH-responsive polymer layer leads to autonomous release of the encapsulated payload upon gastric-acid neutralization by the motors. Testing in a mouse model demonstrate that these motors can safely and rapidly neutralize gastric acid and simultaneously release payload without causing noticeable acute toxicity or affecting the stomach function, and the normal stomach pH is restored within 24 h post motor administration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Biconically tapered fiber optic probes for rapid label-free immunoassays.

    PubMed

    Miller, John; Castaneda, Angelica; Lee, Kun Ho; Sanchez, Martin; Ortiz, Adrian; Almaz, Ekrem; Almaz, Zuleyha Turkoglu; Murinda, Shelton; Lin, Wei-Jen; Salik, Ertan

    2015-04-01

    We report use of U-shaped biconically tapered optical fibers (BTOF) as probes for label-free immunoassays. The tapered regions of the sensors were functionalized by immobilization of immunoglobulin-G (Ig-G) and tested for detection of anti-IgG at concentrations of 50 ng/mL to 50 µg/mL. Antibody-antigen reaction creates a biological nanolayer modifying the waveguide structure leading to a change in the sensor signal, which allows real-time monitoring. The kinetics of the antibody (mouse Ig-G)-antigen (rabbit anti-mouse IgG) reactions was studied. Hydrofluoric acid treatment makes the sensitive region thinner to enhance sensitivity, which we confirmed by experiments and simulations. The limit of detection for the sensor was estimated to be less than 50 ng/mL. Utilization of the rate of the sensor peak shift within the first few minutes of the antibody-antigen reaction is proposed as a rapid protein detection method.

  1. Modelling proteins’ hidden conformations to predict antibiotic resistance

    PubMed Central

    Hart, Kathryn M.; Ho, Chris M. W.; Dutta, Supratik; Gross, Michael L.; Bowman, Gregory R.

    2016-01-01

    TEM β-lactamase confers bacteria with resistance to many antibiotics and rapidly evolves activity against new drugs. However, functional changes are not easily explained by differences in crystal structures. We employ Markov state models to identify hidden conformations and explore their role in determining TEM’s specificity. We integrate these models with existing drug-design tools to create a new technique, called Boltzmann docking, which better predicts TEM specificity by accounting for conformational heterogeneity. Using our MSMs, we identify hidden states whose populations correlate with activity against cefotaxime. To experimentally detect our predicted hidden states, we use rapid mass spectrometric footprinting and confirm our models’ prediction that increased cefotaxime activity correlates with reduced Ω-loop flexibility. Finally, we design novel variants to stabilize the hidden cefotaximase states, and find their populations predict activity against cefotaxime in vitro and in vivo. Therefore, we expect this framework to have numerous applications in drug and protein design. PMID:27708258

  2. Selective laser sintering: A qualitative and objective approach

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay

    2003-10-01

    This article presents an overview of selective laser sintering (SLS) work as reported in various journals and proceedings. Selective laser sintering was first done mainly on polymers and nylon to create prototypes for audio-visual help and fit-to-form tests. Gradually it was expanded to include metals and alloys to manufacture functional prototypes and develop rapid tooling. The growth gained momentum with the entry of commercial entities such as DTM Corporation and EOS GmbH Electro Optical Systems. Computational modeling has been used to understand the SLS process, optimize the process parameters, and enhance the efficiency of the sintering machine.

  3. Diffusion of non-Gaussianity in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Kitazawa, Masakiyo; Asakawa, Masayuki; Ono, Hirosato

    2014-05-01

    We investigate the time evolution of higher order cumulants of bulk fluctuations of conserved charges in the hadronic stage in relativistic heavy ion collisions. The dynamical evolution of non-Gaussian fluctuations is modeled by the diffusion master equation. Using this model we predict that the fourth-order cumulant of net-electric charge is suppressed compared with the recently observed second-order one at ALICE for a reasonable parameter range. Significance of the measurements of various cumulants as functions of rapidity window to probe dynamical history of the hot medium created by heavy ion collisions is emphasized.

  4. Rapidity dependence of proton cumulants and correlation functions

    DOE PAGES

    Bzdak, Adam; Koch, Volker

    2017-11-13

    The dependence of multiproton correlation functions and cumulants on the acceptance in rapidity and transverse momentum is studied. Here, we found that the preliminary data of various cumulant ratios are consistent, within errors, with rapidity and transverse momentum-independent correlation functions. But, rapidity correlations which moderately increase with rapidity separation between protons are slightly favored. We propose to further explore the rapidity dependence of multiparticle correlation functions by measuring the dependence of the integrated reduced correlation functions as a function of the size of the rapidity window.

  5. Rapidity dependence of proton cumulants and correlation functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzdak, Adam; Koch, Volker

    The dependence of multiproton correlation functions and cumulants on the acceptance in rapidity and transverse momentum is studied. Here, we found that the preliminary data of various cumulant ratios are consistent, within errors, with rapidity and transverse momentum-independent correlation functions. But, rapidity correlations which moderately increase with rapidity separation between protons are slightly favored. We propose to further explore the rapidity dependence of multiparticle correlation functions by measuring the dependence of the integrated reduced correlation functions as a function of the size of the rapidity window.

  6. Enabling functional genomics with genome engineering.

    PubMed

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. © 2015 Hilton and Gersbach; Published by Cold Spring Harbor Laboratory Press.

  7. Rapid Prototyping of Mobile Learning Games

    ERIC Educational Resources Information Center

    Federley, Maija; Sorsa, Timo; Paavilainen, Janne; Boissonnier, Kimo; Seisto, Anu

    2014-01-01

    This position paper presents the first results of an on-going project, in which we explore rapid prototyping method to efficiently produce digital learning solutions that are commercially viable. In this first phase, rapid game prototyping and an iterative approach was tested as a quick and efficient way to create learning games and to evaluate…

  8. The Demographic and Biomedical Case for Late-Life Interventions in Aging

    PubMed Central

    Rae, Michael J.; Butler, Robert N.; Campisi, Judith; de Grey, Aubrey D. N. J.; Finch, Caleb E.; Gough, Michael; Martin, George M.; Vijg, Jan; Perrott, Kevin M.; Logan, Barbara J.

    2013-01-01

    The social and medical costs of the biological aging process are high and will rise rapidly in coming decades, creating an enormous challenge to societies worldwide. In recent decades, researchers have expanded their understanding of the underlying deleterious structural and physiological changes (aging damage) that underlie the progressive functional impairments, declining health, and rising mortality of aging humans and other organisms and have been able to intervene in the process in model organisms, even late in life. To preempt a global aging crisis, we advocate an ambitious global initiative to translate these findings into interventions for aging humans, using three complementary approaches to retard, arrest, and even reverse aging damage, extending and even restoring the period of youthful health and functionality of older people. PMID:20630854

  9. Optimal Synthesis of Compliant Mechanisms using Subdivision and Commercial FEA (DETC2004-57497)

    NASA Technical Reports Server (NTRS)

    Hull, Patrick V.; Canfield, Stephen

    2004-01-01

    The field of distributed-compliance mechanisms has seen significant work in developing suitable topology optimization tools for their design. These optimal design tools have grown out of the techniques of structural optimization. This paper will build on the previous work in topology optimization and compliant mechanism design by proposing an alternative design space parameterization through control points and adding another step to the process, that of subdivision. The control points allow a specific design to be represented as a solid model during the optimization process. The process of subdivision creates an additional number of control points that help smooth the surface (for example a C(sup 2) continuous surface depending on the method of subdivision chosen) creating a manufacturable design free of some traditional numerical instabilities. Note that these additional control points do not add to the number of design parameters. This alternative parameterization and description as a solid model effectively and completely separates the design variables from the analysis variables during the optimization procedure. The motivation behind this work is to create an automated design tool from task definition to functional prototype created on a CNC or rapid-prototype machine. This paper will describe the proposed compliant mechanism design process and will demonstrate the procedure on several examples common in the literature.

  10. Which benefits in the use of a modeling platform : The VSoil example.

    NASA Astrophysics Data System (ADS)

    Lafolie, François; Cousin, Isabelle; Mollier, Alain; Pot, Valérie; Maron, Pierre-Alain; Moitrier, Nicolas; Nouguier, Cedric; Moitrier, Nathalie; Beudez, Nicolas

    2015-04-01

    In the environmental community the need for coupling the models and the associated knowledges emerged recently. The development of a coupling tool or of a modeling platform is mainly driven by the necessity to create models accounting for multiple processes and to take into account the feed back between these processes. Models focusing on a restricted number of processes exist and thus the coupling of these numerical tools appeared as an efficient and rapid mean to fill up the identified gaps. Several tools have been proposed : OMS3 (David et al. 2013) ; CSDMS framework (Peckham et al. 2013) ; the Open MI project developed within the frame of European Community (Open MI, 2011). However, what we should expect from a modeling platform could be more ambitious than only coupling existing numerical codes. We believe that we need to share easily not only our numerical representations but also the attached knowledges. We need to rapidly and easily develop complex models to have tools to bring responses to current issues on soil functioning and soil evolution within the frame of global change. We also need to share in a common frame our visions of soil functioning at various scales, one the one hand to strengthen our collaborations, and, on the other hand, to make them visible by the other communities working on environmental issues. The presentation will briefly present the VSoil platform. The platform is able to manipulate concepts and numerical representations of these processes. The tool helps in assembling modules to create a model and automatically generates an executable code and a GUI. Potentialities of the tool will be illustrated on few selected cases.

  11. CAD-CAM-generated hydroxyapatite scaffold to replace the mandibular condyle in sheep: preliminary results.

    PubMed

    Ciocca, Leonardo; Donati, Davide; Fantini, Massimiliano; Landi, Elena; Piattelli, Adriano; Iezzi, Giovanna; Tampieri, Anna; Spadari, Alessandro; Romagnoli, Noemi; Scotti, Roberto

    2013-08-01

    In this study, rapid CAD-CAM prototyping of pure hydroxyapatite to replace temporomandibular joint condyles was tested in sheep. Three adult animals were implanted with CAD-CAM-designed porous hydroxyapatite scaffolds as condyle substitutes. The desired scaffold shape was achieved by subtractive automated milling machining (block reduction). Custom-made surgical guides were created by direct metal laser sintering and were used to export the virtual planning of the bone cut lines into the surgical environment. Using the same technique, fixation plates were created and applied to the scaffold pre-operatively to firmly secure the condyles to the bone and to assure primary stability of the hydroxyapatite scaffolds during masticatory function. Four months post-surgery, the sheep were sacrificed. The hydroxyapatite scaffolds were explanted, and histological specimens were prepared. Different histological tissues penetrating the scaffold macropores, the sequence of bone remodeling, new apposition of bone and/or cartilage as a consequence of the different functional anatomic role, and osseointegration at the interface between the scaffold and bone were documented. This animal model was found to be appropriate for testing CAD-CAM customization and the biomechanical properties of porous, pure hydroxyapatite scaffolds used as joint prostheses.

  12. Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections.

    PubMed

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-09-01

    Constructed by a consortium of 16 laboratories, the Saccharomyces genome-wide deletion collections have, for the past decade, provided a powerful, rapid, and inexpensive approach for functional profiling of the yeast genome. Loss-of-function deletion mutants were systematically created using a polymerase chain reaction (PCR)-based gene deletion strategy to generate a start-to-stop codon replacement of each open reading frame by homologous recombination. Each strain carries two molecular barcodes that serve as unique strain identifiers, enabling their growth to be analyzed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays or through the use of next-generation sequencing technologies. Functional profiling of the deletion collections, using either strain-by-strain or parallel assays, provides an unbiased approach to systematically survey the yeast genome. The Saccharomyces yeast deletion collections have proved immensely powerful in contributing to the understanding of gene function, including functional relationships between genes and genetic pathways in response to diverse genetic and environmental perturbations. © 2016 Cold Spring Harbor Laboratory Press.

  13. Rapid recovery protocol for peri-operative care of total hip and total knee arthroplasty patients.

    PubMed

    Berend, Keith R; Lombardi, Adolph V; Mallory, Thomas H

    2004-01-01

    Total hip arthroplasty (THA) and total knee arthroplasty (TKA) are among the most successful procedures performed in terms of quality-of-life years gained. The long-term goals of arthroplasty, to relieve pain, increase function, provide stability, and obtain durability, are accomplished in the vast majority of cases. The short-term goals, however, have become the target of aggressive peri-operative programs that aim to speed recovery, reduce morbidity and complications, and create a program of efficiency while maintaining the highest level of patient care. The concept of rapid recovery is built upon the burgeoning interest in less-invasive and small-incision surgeries for (THA and TKA). However, the incision size does not appear to be the most critical aspect of the program. This article outlines the specific elements of the rapid-recovery program for lower-extremity arthroplasty patients, including pre-operative patient education, peri-operative nutrition, vitamin and herbal medication supplementation, preemptive analgesia, and post-operative rehabilitation. A holistic peri-operative, rapid-recovery program has lead to a significantly decreased hospital length of stay and significantly lower hospital readmission rates in patients who undergo primary THAs and TKAs. Combining these results with minimally invasive techniques and instrumentation should make recovery even faster.

  14. Rapid Detection of Human Immunodeficiency Virus Types 1 and 2 by Use of an Improved Piezoelectric Biosensor

    PubMed Central

    Severns, Virginia; Branch, Darren W.; Edwards, Thayne L.; Larson, Richard S.

    2013-01-01

    Disasters can create situations in which blood donations can save lives. However, in emergency situations and when resources are depleted, on-site blood donations require the rapid and accurate detection of blood-borne pathogens, including human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2). Techniques such as PCR and antibody capture by an enzyme-linked immunosorbent assay (ELISA) for HIV-1 and HIV-2 are precise but time-consuming and require sophisticated equipment that is not compatible with emergency point-of-care requirements. We describe here a prototype biosensor based on piezoelectric materials functionalized with specific antibodies against HIV-1 and HIV-2. We show the rapid and accurate detection of HIV-1 and HIV-2 in both simple and complex solutions, including human serum, and in the presence of a cross-confounding virus. We report detection limits of 12 50% tissue culture infective doses (TCID50s) for HIV-1 and 87 TCID50s for HIV-2. The accuracy, precision of measurements, and operation of the prototype biosensor compared favorably to those for nucleic acid amplification. We conclude that the biosensor has significant promise as a successful point-of-care diagnostic device for use in emergency field applications requiring rapid and reliable testing for blood-borne pathogens. PMID:23515541

  15. Rapid Selective Annealing of Cu Thin Films on Si Using Microwaves

    NASA Technical Reports Server (NTRS)

    Brain, R. A.; Atwater, H. A.; Watson, T. J.; Barmatz, M.

    1994-01-01

    A major goal of the semiconductor indurstry is to lower the processing temperatures needed for interconnects in silicon integrated circuits. Typical rapid thermal annealing processes heat the film as well as the substrate, creating device problems.

  16. Rural Labour in Latin America.

    ERIC Educational Resources Information Center

    de Janvry, Alain; And Others

    1989-01-01

    Discusses the status of rural labor and the performance of labor markets in Latin American agriculture. Points out the rapidly declining share of agriculture in the total labor force, weak capacity for creating nonagricultural employment, and rapidly increasing migration to towns. (JOW)

  17. Genomic Aspects of Research Involving Polyploid Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaohan; Ye, Chuyu; Tschaplinski, Timothy J

    2011-01-01

    Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are alsomore » used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.« less

  18. Lizards on newly created islands independently and rapidly adapt in morphology and diet

    PubMed Central

    Eloy de Amorim, Mariana; Schoener, Thomas W.; Santoro, Guilherme Ramalho Chagas Cataldi; Lins, Anna Carolina Ramalho; Piovia-Scott, Jonah; Brandão, Reuber Albuquerque

    2017-01-01

    Rapid adaptive changes can result from the drastic alterations humans impose on ecosystems. For example, flooding large areas for hydroelectric dams converts mountaintops into islands and leaves surviving populations in a new environment. We report differences in morphology and diet of the termite-eating gecko Gymnodactylus amarali between five such newly created islands and five nearby mainland sites located in the Brazilian Cerrado, a biodiversity hotspot. Mean prey size and dietary prey-size breadth were larger on islands than mainlands, expected because four larger lizard species that also consume termites, but presumably prefer larger prey, went extinct on the islands. In addition, island populations had larger heads relative to their body length than mainland populations; larger heads are more suited to the larger prey taken, and disproportionately larger heads allow that functional advantage without an increase in energetic requirements resulting from larger body size. Parallel morphological evolution is strongly suggested, because there are indications that, before flooding, relative head size did not differ between future island and future mainland sites. Females and males showed the same trend of relatively larger heads on islands, so the difference between island and mainland sites is unlikely to be due to greater male–male competition for mates on islands. We thus discovered a very fast (at most 15 y) case of independent parallel adaptive change in response to catastrophic human disturbance. PMID:28760959

  19. What rheumatologists need to know about CRISPR/Cas9.

    PubMed

    Gibson, Gary J; Yang, Maozhou

    2017-04-01

    CRISPR/Cas9 genome editing technology has taken the research world by storm since its use in eukaryotes was first proposed in 2012. Publications describing advances in technology and new applications have continued at an unrelenting pace since that time. In this Review, we discuss the application of CRISPR/Cas9 for creating gene mutations - the application that initiated the current avalanche of interest - and new developments that have largely answered initial concerns about its specificity and ability to introduce new gene sequences. We discuss the new, diverse and rapidly growing adaptations of the CRISPR/Cas9 technique that enable activation, repression, multiplexing and gene screening. These developments have enabled researchers to create sophisticated tools for dissecting the function and inter-relatedness of genes, as well as noncoding regions of the genome, and to identify gene networks and noncoding regions that promote disease or confer disease susceptibility. These approaches are beginning to be used to interrogate complex and multilayered biological systems and to produce complex animal models of disease. CRISPR/Cas9 technology has enabled the application of new therapeutic approaches to treating disease in animal models, some of which are beginning to be seen in the first human clinical trials. We discuss the direct application of these techniques to rheumatic diseases, which are currently limited but are sure to increase rapidly in the near future.

  20. Printed Graphene Electrochemical Biosensors Fabricated by Inkjet Maskless Lithography for Rapid and Sensitive Detection of Organophosphates.

    PubMed

    Hondred, John A; Breger, Joyce C; Alves, Nathan J; Trammell, Scott A; Walper, Scott A; Medintz, Igor L; Claussen, Jonathan C

    2018-04-04

    Solution phase printing of graphene-based electrodes has recently become an attractive low-cost, scalable manufacturing technique to create in-field electrochemical biosensors. Here, we report a graphene-based electrode developed via inkjet maskless lithography (IML) for the direct and rapid monitoring of triple-O linked phosphonate organophosphates (OPs); these constitute the active compounds found in chemical warfare agents and pesticides that exhibit acute toxicity as well as long-term pollution to soils and waterways. The IML-printed graphene electrode is nano/microstructured with a 1000 mW benchtop laser engraver and electrochemically deposited platinum nanoparticles (dia. ∼25 nm) to improve its electrical conductivity (sheet resistance decreased from ∼10 000 to 100 Ω/sq), surface area, and electroactive nature for subsequent enzyme functionalization and biosensing. The enzyme phosphotriesterase (PTE) was conjugated to the electrode surface via glutaraldehyde cross-linking. The resulting biosensor was able to rapidly measure (5 s response time) the insecticide paraoxon (a model OP) with a low detection limit (3 nM), and high sensitivity (370 nA/μM) with negligible interference from similar nerve agents. Moreover, the biosensor exhibited high reusability (average of 0.3% decrease in sensitivity per sensing event), stability (90% anodic current signal retention over 1000 s), longevity (70% retained sensitivity after 8 weeks), and the ability to selectively sense OP in actual soil and water samples. Hence, this work presents a scalable printed graphene manufacturing technique that can be used to create OP biosensors that are suitable for in-field applications as well as, more generally, for low-cost biosensor test strips that could be incorporated into wearable or disposable sensing paradigms.

  1. Rapid Isolation of Phenol Degrading Bacteria by Fourier Transform Infrared (FTIR) Spectroscopy.

    PubMed

    Li, Fei; Song, Wen-jun; Wei, Ji-ping; Wang, Su-ying; Liu, Chong-ji

    2015-05-01

    Phenol is an important chemical engineering material and ubiquitous in industry wastewater, its existence has become a thorny issue in many developed and developing country. More and more stringent standards for effluent all over the world with human realizing the toxicity of phenol have been announced. Many advanced biological methods are applied to industrial wastewater treatment with low cost, high efficiency and no secondary pollution, but the screening of function microorganisms is certain cumbersome process. In our study a rapid procedure devised for screening bacteria on solid medium can degrade phenol coupled with attenuated total reflection fourier transform infrared (ATR-FTIR) which is a detection method has the characteristics of efficient, fast, high fingerprint were used. Principal component analysis (PCA) is a method in common use to extract fingerprint peaks effectively, it couples with partial least squares (PLS) statistical method could establish a credible model. The model we created using PCA-PLS can reach 99. 5% of coefficient determination and validation data get 99. 4%, which shows the promising fitness and forecasting of the model. The high fitting model is used for predicting the concentration of phenol at solid medium where the bacteria were grown. The highly consistent result of two screening methods, solid cultural with ATR-FTIR detected and traditional liquid cultural detected by GC methods, suggests the former can rapid isolate the bacteria which can degrade substrates as well as traditional cumbersome liquid cultural method. Many hazardous substrates widely existed in industry wastewater, most of them has specialize fingerprint peaks detected by ATR-FTIR, thereby this detected method could be used as a rapid detection for isolation of functional microorganisms those can degrade many other toxic substrates.

  2. Rapid Prototyping Enters Mainstream Manufacturing.

    ERIC Educational Resources Information Center

    Winek, Gary

    1996-01-01

    Explains rapid prototyping, a process that uses computer-assisted design files to create a three-dimensional object automatically, speeding the industrial design process. Five commercially available systems and two emerging types--the 3-D printing process and repetitive masking and depositing--are described. (SK)

  3. Fabrication of tissue engineered osteochondral grafts for restoring the articular surface of diarthrodial joints

    PubMed Central

    Roach, Brendan L.; Hung, Clark T.; Cook, James L.; Ateshian, Gerard A.; Tan, Andrea R.

    2015-01-01

    Osteochondral allograft implantation is an effective cartilage restoration technique for large defects (>10 cm2), though the demand far exceeds the supply of available quality donor tissue. Large bilayered engineered cartilage tissue constructs with accurate anatomical features (i.e. contours, thickness, architecture) could be beneficial in replacing damaged tissue. When creating these osteochondral constructs, however, it is pertinent to maintain biofidelity to restore functionality. Here, we describe a step-by-step framework for the fabrication of a large osteochondral construct with correct anatomical architecture and topology through a combination of high-resolution imaging, rapid prototyping, impression molding, and injection molding. PMID:25794950

  4. ISACS-DOC: Monitoring and Diagnostic System for AKARI and HINODE

    NASA Astrophysics Data System (ADS)

    Mizutani, Mitsue; Hirose, Toshinori; Takaki, Ryoji; Honda, Hideyuki

    ISACS-DOC (Intelligent Satellite Control Software-DOCtor), which is an automatic monitoring and diagnostic system for scientific satellites or spacecraft, aims to rapidly and accurately capture important changes and sign of anomaly during daily satellite operations. After three systems for deep space missions, the new generation of ISACS-DOC with a higher speed processing performance had been developed for the satellites in earth orbit, AKARI and HINODE. This paper reports on the newest ISACS-DOC about enhanced functions, operating status, and an approach to create standards to build and keep up the knowledge data base. Continuous enhancements through the actual operations are the advantage of ISACS-DOC.

  5. Biological applications of nanobiotechnology.

    PubMed

    de Morais, Michele Greque; Martins, Vilásia Guimarães; Steffens, Daniela; Pranke, Patricia; da Costa, Jorge Alberto Vieira

    2014-01-01

    Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices derived from engineering, physics, chemistry, and biology. Nanotechnology has opened up by rapid advances in science and technology, creating new opportunities for advances in the fields of medicine, electronics, foods, and the environment. Nanoscale structures and materials (nanoparticles, nanowires, nanofibers, nanotubes) have been explored in many biological applications (biosensing, biological separation, molecular imaging, anticancer therapy) because their novel properties and functions differ drastically from their bulk counterparts. Their high volume/surface ratio, improved solubility, and multifunctionality open many new possibilities. The objective of this review is to describe the potential benefits and impacts of the nanobiotechnology in different areas.

  6. Rapid Design of Knowledge-Based Scoring Potentials for Enrichment of Near-Native Geometries in Protein-Protein Docking.

    PubMed

    Sasse, Alexander; de Vries, Sjoerd J; Schindler, Christina E M; de Beauchêne, Isaure Chauvot; Zacharias, Martin

    2017-01-01

    Protein-protein docking protocols aim to predict the structures of protein-protein complexes based on the structure of individual partners. Docking protocols usually include several steps of sampling, clustering, refinement and re-scoring. The scoring step is one of the bottlenecks in the performance of many state-of-the-art protocols. The performance of scoring functions depends on the quality of the generated structures and its coupling to the sampling algorithm. A tool kit, GRADSCOPT (GRid Accelerated Directly SCoring OPTimizing), was designed to allow rapid development and optimization of different knowledge-based scoring potentials for specific objectives in protein-protein docking. Different atomistic and coarse-grained potentials can be created by a grid-accelerated directly scoring dependent Monte-Carlo annealing or by a linear regression optimization. We demonstrate that the scoring functions generated by our approach are similar to or even outperform state-of-the-art scoring functions for predicting near-native solutions. Of additional importance, we find that potentials specifically trained to identify the native bound complex perform rather poorly on identifying acceptable or medium quality (near-native) solutions. In contrast, atomistic long-range contact potentials can increase the average fraction of near-native poses by up to a factor 2.5 in the best scored 1% decoys (compared to existing scoring), emphasizing the need of specific docking potentials for different steps in the docking protocol.

  7. Functional characterization of a promoter polymorphism that drives ACSL5 gene expression in skeletal muscle and associates with diet-induced weight loss.

    PubMed

    Teng, Allen C T; Adamo, Kristi; Tesson, Frédérique; Stewart, Alexandre F R

    2009-06-01

    Diet-induced weight loss is affected by a wide range of factors, including genetic variation. Identifying functional polymorphisms will help to elucidate mechanisms that account for variation in dietary metabolism. Previously, we reported a strong association between a common single nucleotide polymorphism (SNP) rs2419621 (C>T) in the promoter of acyl-CoA synthetase long chain 5 (ACSL5), rapid weight loss in obese Caucasian females, and elevated ACSL5 mRNA levels in skeletal muscle biopsies. Here, we showed by electrophoretic mobility shift assay (EMSA) that the T allele creates a functional cis-regulatory E-box element (CANNTG) that is recognized by the myogenic regulatory factor MyoD. The T allele promoted MyoD-dependent activation of a 1089-base pair ACSL5 promoter fragment in nonmuscle CV1 cells. Differentiation of skeletal myoblasts significantly elevated expression of the ACSL5 promoter. The T allele sustained promoter activity 48 h after differentiation, whereas the C allele showed a significant decline. These results reveal a mechanism for elevated transcription of ACSL5 in skeletal muscle of carriers of the rs2419621(T) allele, associated with more rapid diet-induced weight loss. Natural selection favoring promoter polymorphisms that reduced expression of catabolic genes in skeletal muscle likely accounts for the resistance of obese individuals to dietary intervention.

  8. Organic Binder Developments for Solid Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Mobasher, Amir A.

    2003-01-01

    A number of rapid prototyping techniques are under development at Marshall Space Flight Center's (MSFC) National Center for Advanced Manufacturing Rapid Prototyping Laboratory. Commercial binder developments in creating solid models for rapid prototyping include: 1) Fused Deposition Modeling; 2) Three Dimensional Printing; 3) Selective Laser Sintering (SLS). This document describes these techniques developed by the private sector, as well as SLS undertaken by MSFC.

  9. Water based fluidic radio frequency metamaterials

    NASA Astrophysics Data System (ADS)

    Cai, Xiaobing; Zhao, Shaolin; Hu, Mingjun; Xiao, Junfeng; Zhang, Naibo; Yang, Jun

    2017-11-01

    Electromagnetic metamaterials offer great flexibility for wave manipulation and enable exceptional functionality design, ranging from negative refraction, anomalous reflection, super-resolution imaging, transformation optics to cloaking, etc. However, demonstration of metamaterials with unprecedented functionalities is still challenging and costly due to the structural complexity or special material properties. Here, we demonstrate for the first time the versatile fluidic radio frequency metamaterials with negative refraction using a water-embedded and metal-coated 3D architecture. Effective medium analysis confirms that metallic frames create an evanescent environment while simultaneously water cylinders produce negative permeability under Mie resonance. The water-metal coupled 3D architectures and the accessory devices for measurement are fabricated by 3D printing with post electroless deposition. Our study also reveals the great potential of fluidic metamaterials and versatility of the 3D printing process in rapid prototyping of customized metamaterials.

  10. Complex and differential glial responses in Alzheimer's disease and ageing.

    PubMed

    Rodríguez, José J; Butt, Arthur M; Gardenal, Emanuela; Parpura, Vladimir; Verkhratsky, Alexei

    2016-01-01

    Glial cells and their association with neurones are fundamental for brain function. The emergence of complex neurone-glial networks assures rapid information transfer, creating a sophisticated circuitry where both types of neural cells work in concert, serving different activities. All glial cells, represented by astrocytes, oligodendrocytes, microglia and NG2-glia, are essential for brain homeostasis and defence. Thus, glia are key not only for normal central nervous system (CNS) function, but also to its dysfunction, being directly associated with all forms of neuropathological processes. Therefore, the progression and outcome of neurological and neurodegenerative diseases depend on glial reactions. In this review, we provide a concise account of recent data obtained from both human material and animal models demonstrating the pathological involvement of glia in neurodegenerative processes, including Alzheimer's disease (AD), as well as physiological ageing.

  11. Understanding RNA modifications: the promises and technological bottlenecks of the ‘epitranscriptome’

    PubMed Central

    Kapoor, Utkarsh

    2017-01-01

    The discovery of mechanisms that alter genetic information via RNA editing or introducing covalent RNA modifications points towards a complexity in gene expression that challenges long-standing concepts. Understanding the biology of RNA modifications represents one of the next frontiers in molecular biology. To this date, over 130 different RNA modifications have been identified, and improved mass spectrometry approaches are still adding to this list. However, only recently has it been possible to map selected RNA modifications at single-nucleotide resolution, which has created a number of exciting hypotheses about the biological function of RNA modifications, culminating in the proposition of the ‘epitranscriptome’. Here, we review some of the technological advances in this rapidly developing field, identify the conceptual challenges and discuss approaches that are needed to rigorously test the biological function of specific RNA modifications. PMID:28566301

  12. Introduction to TAFI - A Matlab® toolbox for analysis of flexural isostasy

    NASA Astrophysics Data System (ADS)

    Jha, S.; Harry, D. L.; Schutt, D.

    2016-12-01

    The isostatic response of vertical tectonic loads emplaced on thin elastic plates overlying inviscid substrate and the corresponding gravity anomalies are commonly modeled using well established theories and methodologies of flexural analysis. However, such analysis requires some mathematical and coding expertise on part of users. With that in mind, we designed a new interactive Matlab® toolbox called Toolbox for Analysis of Flexural Isostasy (TAFI). TAFI allows users to create forward models (2-D and 3-D) of flexural deformation of the lithosphere and resulting gravity anomaly. TAFI computes Green's Functions for flexure of the elastic plate subjected to point or line loads, and analytical solution for harmonic loads. Flexure due to non-impulsive, distributed 2-D or 3-D loads are computed by convolving the appropriate Green's function with a user-supplied spatially discretized load function. The gravity anomaly associated with each density interface is calculated by using the Fourier Transform of flexural deflection of these interfaces and estimating the gravity in the wavenumber domain. All models created in TAFI are based on Matlab's intrinsic functions and do not require any specialized toolbox, function or library except those distributed with TAFI. Modeling functions within TAFI can be called from Matlab workspace, from within user written programs or from the TAFI's graphical user interface (GUI). The GUI enables the user to model the flexural deflection of lithosphere interactively, enabling real time comparison of model fit with observed data constraining the flexural deformation and gravity, facilitating rapid search for best fitting flexural model. TAFI is a very useful teaching and research tool and have been tested rigorously in graduate level teaching and basic research environment.

  13. Hidden asymmetry and long range rapidity correlations

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Bzdak, A.; Zalewski, K.

    2012-04-01

    Interpretation of long-range rapidity correlations in terms of the fluctuating rapidity density distribution of the system created in high-energy collisions is proposed. When applied to recent data of the STAR Collaboration, it shows a substantial asymmetric component in the shape of this system in central Au-Au collisions, implying that boost invariance is violated on the event-by-event basis even at central rapidity. This effect may seriously influence the hydrodynamic expansion of the system.

  14. Highlights from PHENIX at RHIC

    NASA Astrophysics Data System (ADS)

    Nouicer, Rachid

    2018-02-01

    Hadrons conveying strange quarks or heavy quarks are essential probes of the hot and dense medium created in relativistic heavy-ion collisions. With hidden strangeness, ϕ meson production and its transport in the nuclear medium have attracted high interest since its discovery. Heavy quark-antiquark pairs, like charmonium and bottomonium mesons, are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. In this context, the PHENIX collaboration carries out a comprehensive physics program which studies the ϕ meson production, and heavy flavor production in relativistic heavy-ion collisions at RHIC. In recent years, the PHENIX experiment upgraded the detector in installing silicon vertex tracker (VTX) at mid-rapidity region and forward silicon vertex tracker (FVTX) at the forward rapidity region. With these new upgrades, the experiment has collected large data samples, and enhanced the capability of heavy flavor measurements via precision tracking. This paper summarizes the latest PHENIX results concerning ϕ meson, open and closed charm and beauty heavy quark production in relativistic heavy-ion collisions. These results are presented as a function of rapidity, energy and system size, and their interpretation with respect to the current theoretical understanding.

  15. CFD Script for Rapid TPS Damage Assessment

    NASA Technical Reports Server (NTRS)

    McCloud, Peter

    2013-01-01

    This grid generation script creates unstructured CFD grids for rapid thermal protection system (TPS) damage aeroheating assessments. The existing manual solution is cumbersome, open to errors, and slow. The invention takes a large-scale geometry grid and its large-scale CFD solution, and creates a unstructured patch grid that models the TPS damage. The flow field boundary condition for the patch grid is then interpolated from the large-scale CFD solution. It speeds up the generation of CFD grids and solutions in the modeling of TPS damages and their aeroheating assessment. This process was successfully utilized during STS-134.

  16. The Building Blocks of Materials: Gathering Knowledge at the Molecular Level

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Two start-up positions were created within SD46 to pursue developments in the rapidly expanding areas of biomineralization and nano-technology. As envisioned by Dr. Sandor Lehoczy, the new laboratories to be developed must have the capacity to investigate not only processes associated with the self-assembly of molecules but also the examination of self-assembled structures. For these purposes, laboratories capable of performing the intended function, particularly light scattering spectroscopy and atomic force microscopy were created. What follows then are recent advances arising from the development of these new laboratories. With the implementation of the Atomic Force Microscopy Facility, examples of investigations that determine a correlation between the molecular structure of materials and their macroscopic physical properties are provided. In addition, examples of investigations with particular emphasis on the physical properties of protein crystals, at the molecular level, and subsequent macroscopic characteristics are as provided. Finally, progress in fabrication of technology at the nano-scale levels at the developmental stage is also presented.

  17. Applications of Sentinel-2 data for agriculture and forest monitoring using the absolute difference (ZABUD) index derived from the AgroEye software (ESA)

    NASA Astrophysics Data System (ADS)

    de Kok, R.; WeŻyk, P.; PapieŻ, M.; Migo, L.

    2017-10-01

    To convince new users of the advantages of the Sentinel_2 sensor, a simplification of classic remote sensing tools allows to create a platform of communication among domain specialists of agricultural analysis, visual image interpreters and remote sensing programmers. An index value, known in the remote sensing user domain as "Zabud" was selected to represent, in color, the essentials of a time series analysis. The color index used in a color atlas offers a working platform for an agricultural field control. This creates a database of test and training areas that enables rapid anomaly detection in the agricultural domain. The use cases and simplifications now function as an introduction to Sentinel_2 based remote sensing, in an area that before relies on VHR imagery and aerial data, to serve mainly the visual interpretation. The database extension with detected anomalies allows developers of open source software to design solutions for further agricultural control with remote sensing.

  18. Biosynthesis and genetic encoding of phosphothreonine through parallel selection and deep sequencing

    PubMed Central

    Huguenin-Dezot, Nicolas; Liang, Alexandria D.; Schmied, Wolfgang H.; Rogerson, Daniel T.; Chin, Jason W.

    2017-01-01

    The phosphorylation of threonine residues in proteins regulates diverse processes in eukaryotic cells, and thousands of threonine phosphorylations have been identified. An understanding of how threonine phosphorylation regulates biological function will be accelerated by general methods to bio-synthesize defined phospho-proteins. Here we address limitations in current methods for discovering aminoacyl-tRNA synthetase/tRNA pairs for incorporating non-natural amino acids into proteins, by combining parallel positive selections with deep sequencing and statistical analysis, to create a rapid approach for directly discovering aminoacyl-tRNA synthetase/tRNA pairs that selectively incorporate non-natural substrates. Our approach is scalable and enables the direct discovery of aminoacyl-tRNA synthetase/tRNA pairs with mutually orthogonal substrate specificity. We biosynthesize phosphothreonine in cells, and use our new selection approach to discover a phosphothreonyl-tRNA synthetase/tRNACUA pair. By combining these advances we create an entirely biosynthetic route to incorporating phosphothreonine in proteins and biosynthesize several phosphoproteins; enabling phosphoprotein structure determination and synthetic protein kinase activation. PMID:28553966

  19. Environmental analysis and monitoring for recreational farms in Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Chuan; Lin, Chun-Nan; Wongchai, Anupong

    2017-11-01

    The rapid growth of recreational farms and leisure industry has fiercely faced competitive in a Taiwan’s market to achieve business development sustainability trends. Effective business development strategy has become a key of the business performance management to help develop and implement growth opportunities. Recreational farms have functional products, culture, and natural resources as essential elements for the business development of local cuisine. The purpose of this study is, based on the SWOT analysis, to understand the current situation of catering business in recreational farms in Taiwan and to analyze the trends in development to discover how to operate local food restaurant business in recreational farms successfully and create long-term value for a business from customers, markets, and related parties. This research collected a total of 300 questionnaires from recreational farm tourists and excellent recreational farm entrepreneurs, as well as on-site staffs in an outstanding recreational farm. The results of this study provided a reference and guidelines of trends in development for the entrepreneurs to create a modern niche market.

  20. Biomaterials for integration with 3-D bioprinting.

    PubMed

    Skardal, Aleksander; Atala, Anthony

    2015-03-01

    Bioprinting has emerged in recent years as an attractive method for creating 3-D tissues and organs in the laboratory, and therefore is a promising technology in a number of regenerative medicine applications. It has the potential to (i) create fully functional replacements for damaged tissues in patients, and (ii) rapidly fabricate small-sized human-based tissue models, or organoids, for diagnostics, pathology modeling, and drug development. A number of bioprinting modalities have been explored, including cellular inkjet printing, extrusion-based technologies, soft lithography, and laser-induced forward transfer. Despite the innovation of each of these technologies, successful implementation of bioprinting relies heavily on integration with compatible biomaterials that are responsible for supporting the cellular components during and after biofabrication, and that are compatible with the bioprinting device requirements. In this review, we will evaluate a variety of biomaterials, such as curable synthetic polymers, synthetic gels, and naturally derived hydrogels. Specifically we will describe how they are integrated with the bioprinting technologies above to generate bioprinted constructs with practical application in medicine.

  1. Some aspects of radical cascade and relay reactions

    PubMed Central

    Quiclet-Sire, Béatrice; Zard, Samir Z.

    2017-01-01

    The ability to create carbon–carbon bonds is at the heart of organic synthesis. Radical processes are particularly apt at creating such bonds, especially in cascade or relay sequences where more than one bond is formed, allowing for a rapid assembly of complex structures. In the present brief overview, examples taken from the authors' laboratory will serve to illustrate the strategic impact of radical-based approaches on synthetic planning. Transformations involving nitrogen-centred radicals, electron transfer from metallic nickel and the reversible degenerative exchange of xanthates will be presented and discussed. The last method has proved to be a particularly powerful tool for the intermolecular creation of carbon–carbon bonds by radical additions even to unactivated alkenes. Various functional groups can be brought into the same molecule in a convergent manner and made to react together in order to further increase the structural complexity. One important benefit of this chemistry is the so-called RAFT/MADIX technology for the manufacture of block copolymers of almost any desired architecture. PMID:28484329

  2. Computer-aided discovery of a metal-organic framework with superior oxygen uptake.

    PubMed

    Moghadam, Peyman Z; Islamoglu, Timur; Goswami, Subhadip; Exley, Jason; Fantham, Marcus; Kaminski, Clemens F; Snurr, Randall Q; Farha, Omar K; Fairen-Jimenez, David

    2018-04-11

    Current advances in materials science have resulted in the rapid emergence of thousands of functional adsorbent materials in recent years. This clearly creates multiple opportunities for their potential application, but it also creates the following challenge: how does one identify the most promising structures, among the thousands of possibilities, for a particular application? Here, we present a case of computer-aided material discovery, in which we complete the full cycle from computational screening of metal-organic framework materials for oxygen storage, to identification, synthesis and measurement of oxygen adsorption in the top-ranked structure. We introduce an interactive visualization concept to analyze over 1000 unique structure-property plots in five dimensions and delimit the relationships between structural properties and oxygen adsorption performance at different pressures for 2932 already-synthesized structures. We also report a world-record holding material for oxygen storage, UMCM-152, which delivers 22.5% more oxygen than the best known material to date, to the best of our knowledge.

  3. Rapid curing and strength relationships of concrete : final report.

    DOT National Transportation Integrated Search

    1985-05-01

    The rapid rate of construction has created a need to have information on the strength of concrete at the earliest possible time. Having to wait 28 days before the strength can be determined can cause serious problems if inferior concrete had been use...

  4. Rapid Prototyping of Physiologically-Based Toxicokinetic (PBTK) Models (SOT annual meeting)

    EPA Science Inventory

    Determining the tissue concentrations resulting from chemical exposure (i.e., toxicokinetics (TK)) is essential in emergency or other situations where time and data are lacking. Generic TK models can be created rapidly using in vitro assays and computational approaches to generat...

  5. The challenge of leadership in technology and education.

    PubMed

    Chambers, John W

    2004-01-01

    The leadership qualities necessary today in technology, education, and other modern organizations include the ability to recognize rapid changes in organizational environments and ensure continuous transformation and adaptability to that change. The important skills of such leaders include understanding their own business, articulating vision, creating a positive culture, communicating effectively, and measuring results. Rapidly emerging technology is prone to misunderstanding by those who mistake the surface features of how technology works with the functional opportunities it provides. Organizations that transform processes in parallel by adopting new technologies can expect much larger productivity gains than can those who merely insert technology. The problems of memory, speed, and cost have been addressed; the new challenge of technology is making it universal. Education in America is in danger. The infrastructure is outdated and it is not oriented toward change. Jobs will follow competence. Although the challenges of leadership today, especially in technology and education, are great, so is the opportunity for impact and the excitement of bringing diverse skills to bear.

  6. The role of bedrock in creating habitat in temperate watercourses

    NASA Astrophysics Data System (ADS)

    Entwistle, N. S.; Heritage, G. L.; Milan, D. J.

    2016-12-01

    Bedrock influenced rivers are a relatively common yet little studied river type across temperate regions, occurring predominantly in upland areas and in areas where isostatic rebound has promoted rapid watercourse downcutting through resistant bedrock. The presence of bedrock in the bed and banks exerts a major influence on channel development, controlling local flow hydraulics and subsequently influencing in-channel and valley bottom sedimentary feature development. This paper summarises extensive field audit evidence of bedrock influenced features on watercourses in the UK to characterise the diverse morphology of bedrock influenced channels and reviews the bedrock induced hydraulic influences on their development and maintenance. Such features include bedrock waterfalls, steps, rapids and cascades and associated alluvial deposits forming lee bars, bedrock obstruction bars, plunge pool bars and fine sediment drapes and veneers. Bedrock influence on valley bottom features is also reviewed and a functional typology is developed for this river type based on the feature assemblage and degree of bedrock/alluvial influence.

  7. Quarkonium production in Pb-Pb collisions at √SNN = 5.02 TeV with ALICE

    NASA Astrophysics Data System (ADS)

    Francisco, Audrey

    2018-02-01

    Ultra-relativistic heavy-ion collisions at the Large Hadron Collider provide a unique opportunity to study the properties of matter at extreme energy densities where a phase transition from the hadronic matter to a deconfined medium of quarks and gluons, the Quark-Gluon Plasma (QGP) is predicted. Among the prominent probes of the QGP, heavy quarks play a crucial role since they are created during the initial stages of the collision, before the QGP formation, and their number is conserved throughout the partonic and hadronic phases of the collision. The azimuthal anisotropy of charmonium production, quantified using the second harmonic Fourier coefficient (referred to as elliptic flow), provides important information on the magnitude and dynamics of charmonium production. Measurements of the quarkonium nuclear modification factor at forward rapidity and J/ψ elliptic flow in Pb-Pb collisions as a function of centrality, transverse momentum and rapidity will be presented and compared to different collision energy results and available theoretical calculations.

  8. Fabrication of phonon-based metamaterial structures using focused ion beam patterning

    NASA Astrophysics Data System (ADS)

    Bassim, Nabil D.; Giles, Alexander J.; Ocola, Leonidas E.; Caldwell, Joshua D.

    2018-02-01

    The focused ion beam (FIB) is a powerful tool for rapid prototyping and machining of functional nanodevices. It is employed regularly to fabricate test metamaterial structures but, to date, has been unsuccessful in fabricating metamaterial structures with features at the nanoscale that rely on surface phonons as opposed to surface plasmons because of the crystalline damage that occurs with the collision cascade associated with ion sputtering. In this study, we employ a simple technique of protecting the crystalline substrate in single-crystal 4H-SiC to design surface phonon polariton-based optical resonance structures. By coating the material surface with a thin film of chromium, we have placed a material of high sputter resistance on the surface, which essentially absorbs the energy in the beam tails. When the beam ultimately punches through the Cr film, the hard walls in the film have the effect of channeling the beam to create smooth sidewalls. This demonstration opens the possibility of further rapid-prototyping of metamaterials using FIB.

  9. Trustworthy History and Provenance for Files and Databases

    ERIC Educational Resources Information Center

    Hasan, Ragib

    2009-01-01

    In today's world, information is increasingly created, processed, transmitted, and stored digitally. While the digital nature of information has brought enormous benefits, it has also created new vulnerabilities and attacks against data. Unlike physical documents, digitally stored information can be rapidly copied, erased, or modified. The…

  10. OSD CALS Architecture Master Plan Study. Data Dictionary. Concept Paper. Draft Version 1.2. Volume 29

    DOT National Transportation Integrated Search

    1989-10-01

    Rapid advances in information technology are changing the way technical data is created, stored, and used. These advances have created opportunities to reduce costs and improve productivity in both the administration of data and in the acquisition an...

  11. Low-cost Method for Obtaining Medical Rapid Prototyping Using Desktop 3D printing: A Novel Technique for Mandibular Reconstruction Planning.

    PubMed

    Velasco, Ignacio; Vahdani, Soheil; Ramos, Hector

    2017-09-01

    Three-dimensional (3D) printing is relatively a new technology with clinical applications, which enable us to create rapid accurate prototype of the selected anatomic region, making it possible to plan complex surgery and pre-bend hardware for individual surgical cases. This study aimed to express our experience with the use of medical rapid prototype (MRP) of the maxillofacial region created by desktop 3D printer and its application in maxillofacial reconstructive surgeries. Three patients with benign mandible tumors were included in this study after obtaining informed consent. All patient's maxillofacial CT scan data was processed by segmentation and isolation software and mandible MRP was printed using our desktop 3D printer. These models were used for preoperative surgical planning and prebending of the reconstruction plate. MRP created by desktop 3D printer is a cost-efficient, quick and easily produced appliance for the planning of reconstructive surgery. It can contribute in patient orientation and helping them in a better understanding of their condition and proposed surgical treatment. It helps surgeons for pre-operative planning in the resection or reconstruction cases and represent an excellent tool in academic setting for residents training. The pre-bended reconstruction plate based on MRP, resulted in decreased surgery time, cost and anesthesia risks on the patients. Key words: 3D printing, medical modeling, rapid prototype, mandibular reconstruction, ameloblastoma.

  12. Beyond 'knock-out' mice: new perspectives for the programmed modification of the mammalian genome.

    PubMed

    Cohen-Tannoudji, M; Babinet, C

    1998-10-01

    The emergence of gene inactivation by homologous recombination methodology in embryonic stem cells has revolutionized the field of mouse genetics. Indeed, the availability of a rapidly growing number of mouse null mutants has represented an invaluable source of knowledge on mammalian development, cellular biology and physiology and has provided many models for human inherited diseases. In recent years, improvements of the original 'knock-out' strategy, as well as the exploitation of exogenous enzymatic systems that are active in the recombination process, have considerably extended the range of genetic manipulations that can be produced. For example, it is now possible to create a mouse bearing a targeted point mutation as the unique change in its entire genome therefore allowing very fine dissection of gene function in vivo. Chromosome alterations such as large deletions, inversions or translocations can also be designed and will facilitate the global functional analysis of the mouse genome. This will extend the possibilities of creating models of human pathologies that frequently originate from various chromosomal disorders. Finally, the advent of methods allowing conditional gene targeting will open the way for the analysis of the consequence of a particular mutation in a defined organ and at a specific time during the life of a mouse.

  13. XAL Application Framework and Bricks GUI Builder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelaia II, Tom

    2007-01-01

    The XAL [1] Application Framework is a framework for rapidly developing document based Java applications with a common look and feel along with many built-in user interface behaviors. The Bricks GUI builder consists of a modern application and framework for rapidly building user interfaces in support of true Model-View-Controller (MVC) compliant Java applications. Bricks and the XAL Application Framework allow developers to rapidly create quality applications.

  14. Rapid Response to Decision Making for Complex Issues - How Technologies of Cooperation Can Help

    DTIC Science & Technology

    2005-11-01

    creating bottom–up taxonomies—called folksonomies —using metadata tools like del.icio.us (in which users create their own tags for bookmarking Web...tools such as RSS, tagging (and the consequent development of folksonomies ), wikis, and group visualization tools all help multiply the individual

  15. Situated Action and the Management of Impression.

    ERIC Educational Resources Information Center

    Ginsburg, G. P.

    Studies of the creation and management of impressions have advanced rapidly in recent years. However, relatively little empirical information has been provided about the processes by which impressions are created and managed in routine interaction and about the range of matters about which impressions are created. The excessive use of internal…

  16. Sensory augmentation: integration of an auditory compass signal into human perception of space

    PubMed Central

    Schumann, Frank; O’Regan, J. Kevin

    2017-01-01

    Bio-mimetic approaches to restoring sensory function show great promise in that they rapidly produce perceptual experience, but have the disadvantage of being invasive. In contrast, sensory substitution approaches are non-invasive, but may lead to cognitive rather than perceptual experience. Here we introduce a new non-invasive approach that leads to fast and truly perceptual experience like bio-mimetic techniques. Instead of building on existing circuits at the neural level as done in bio-mimetics, we piggy-back on sensorimotor contingencies at the stimulus level. We convey head orientation to geomagnetic North, a reliable spatial relation not normally sensed by humans, by mimicking sensorimotor contingencies of distal sounds via head-related transfer functions. We demonstrate rapid and long-lasting integration into the perception of self-rotation. Short training with amplified or reduced rotation gain in the magnetic signal can expand or compress the perceived extent of vestibular self-rotation, even with the magnetic signal absent in the test. We argue that it is the reliability of the magnetic signal that allows vestibular spatial recalibration, and the coding scheme mimicking sensorimotor contingencies of distal sounds that permits fast integration. Hence we propose that contingency-mimetic feedback has great potential for creating sensory augmentation devices that achieve fast and genuinely perceptual experiences. PMID:28195187

  17. Measurement of jet fragmentation in Pb+Pb and pp collisions at $$\\sqrt{s}$$$_ {NN}$$ = 2.76 TeV with the ATLAS detector at the LHC

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-06-08

    The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb -1 of Pb+Pb data and 4.0 pb -1 of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluatemore » the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. Finally, no significant dependence of modifications on jet p T and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.« less

  18. Differentiable McCormick relaxations

    DOE PAGES

    Khan, Kamil A.; Watson, Harry A. J.; Barton, Paul I.

    2016-05-27

    McCormick's classical relaxation technique constructs closed-form convex and concave relaxations of compositions of simple intrinsic functions. These relaxations have several properties which make them useful for lower bounding problems in global optimization: they can be evaluated automatically, accurately, and computationally inexpensively, and they converge rapidly to the relaxed function as the underlying domain is reduced in size. They may also be adapted to yield relaxations of certain implicit functions and differential equation solutions. However, McCormick's relaxations may be nonsmooth, and this nonsmoothness can create theoretical and computational obstacles when relaxations are to be deployed. This article presents a continuously differentiablemore » variant of McCormick's original relaxations in the multivariate McCormick framework of Tsoukalas and Mitsos. Gradients of the new differentiable relaxations may be computed efficiently using the standard forward or reverse modes of automatic differentiation. Furthermore, extensions to differentiable relaxations of implicit functions and solutions of parametric ordinary differential equations are discussed. A C++ implementation based on the library MC++ is described and applied to a case study in nonsmooth nonconvex optimization.« less

  19. Electronic Advocacy and Social Welfare Policy Education

    ERIC Educational Resources Information Center

    Moon, Sung Seek; DeWeaver, Kevin L.

    2005-01-01

    The rapid increase in the number of low-cost computers, the proliferation of user-friendly software, and the development of electronic networks have created the "informatics era." The Internet is a rapidly growing communication resource that is becoming mainstream in the American society. Computer-based electronic political advocacy by social…

  20. Classroom Evaluation of a Rapid Prototyping System.

    ERIC Educational Resources Information Center

    Tennyson, Stephen A.; Krueger, Thomas J.

    2001-01-01

    Introduces rapid prototyping which creates virtual models through a variety of automated material additive processes. Relates experiences using JP System 5 in freshman and sophomore engineering design graphics courses. Analyzes strengths and limitations of the JP System 5 and discusses how to use it effectively. (Contains 15 references.)…

  1. Variation Process of Radiation Belt Electron Fluxes due to Interaction With Chorus and EMIC Rising-tone Emissions Localized in Longitude

    NASA Astrophysics Data System (ADS)

    Kubota, Y.; Omura, Y.

    2017-12-01

    Using results of test particle simulations of a large number of electrons interacting with a pair of chorus emissions, we create Green's functions to model the electron distribution function after all of the possible interactions with the waves [Omura et al., 2015]. Assuming that the waves are generated in a localized range of longitudes in the dawn side, we repeat taking the convolution integral of the Green's function with the distribution function of the electrons injected into the generation region of the localized waves. From numerical and theoretical analyses, we find that electron acceleration process only takes place efficiently below 4 MeV. Because extremely relativistic electrons go through the wave generation region rapidly due to grad-B0 and curvature drift, they don't have enough interaction time to be accelerated. In setting up the electrons after all interaction with chorus emissions as initial electron distribution function, we also compute the loss process of radiation belt electron fluxes due to interaction with EMIC rising-tone emissions generated in a localized range of longitudes in the dusk side [Kubota and Omura,2017]. References: (1) Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562, doi:10.1002/2015JA021563. (2) Kubota, Y., and Y. Omura (2017), Rapid precipitation of radiation belt electrons induced by EMIC rising tone emissions localized in longitude inside and outside the plasmapause, J. Geophys. Res. Space Physics, 122, 293-309, doi:10.1002/2016JA023267.

  2. Rgs13 constrains early B cell responses and limits germinal center sizes.

    PubMed

    Hwang, Il-Young; Hwang, Kyung-Sun; Park, Chung; Harrison, Kathleen A; Kehrl, John H

    2013-01-01

    Germinal centers (GCs) are microanatomic structures that develop in secondary lymphoid organs in response to antigenic stimulation. Within GCs B cells clonally expand and their immunoglobulin genes undergo class switch recombination and somatic hypermutation. Transcriptional profiling has identified a number of genes that are prominently expressed in GC B cells. Among them is Rgs13, which encodes an RGS protein with a dual function. Its canonical function is to accelerate the intrinsic GTPase activity of heterotrimeric G-protein α subunits at the plasma membrane, thereby limiting heterotrimeric G-protein signaling. A unique, non-canonical function of RGS13 occurs following translocation to the nucleus, where it represses CREB transcriptional activity. The functional role of RGS13 in GC B cells is unknown. To create a surrogate marker for Rgs13 expression and a loss of function mutation, we inserted a GFP coding region into the Rgs13 genomic locus. Following immunization GFP expression rapidly increased in activated B cells, persisted in GC B cells, but declined in newly generated memory B and plasma cells. Intravital microscopy of the inguinal lymph node (LN) of immunized mice revealed the rapid appearance of GFP(+) cells at LN interfollicular regions and along the T/B cell borders, and eventually within GCs. Analysis of WT, knock-in, and mixed chimeric mice indicated that RGS13 constrains extra-follicular plasma cell generation, GC size, and GC B cell numbers. Analysis of select cell cycle and GC specific genes disclosed an aberrant gene expression profile in the Rgs13 deficient GC B cells. These results indicate that RGS13, likely acting at cell membranes and in nuclei, helps coordinate key decision points during the expansion and differentiation of naive B cells.

  3. Bridging the Sciences of Mindfulness and Romantic Relationships.

    PubMed

    Karremans, Johan C; Schellekens, Melanie P J; Kappen, Gesa

    2017-02-01

    Research on mindfulness, defined as paying conscious and non-judgmental attention to present-moment experiences, has increased rapidly in the past decade but has focused almost entirely on the benefits of mindfulness for individual well-being. This article considers the role of mindfulness in romantic relationships. Although strong claims have been made about the potentially powerful role of mindfulness in creating better relationships, it is less clear whether, when, and how this may occur. This article integrates the literatures on mindfulness and romantic relationship science, and sketches a theory-driven model and future research agenda to test possible pathways of when and how mindfulness may affect romantic relationship functioning. We review some initial direct and indirect evidence relevant to the proposed model. Finally, we discuss the implications of how studying mindfulness may further our understanding of romantic relationship (dys)functioning, and how mindfulness may be a promising and effective tool in couple interventions.

  4. Industry liaison section implementation plan

    NASA Technical Reports Server (NTRS)

    Lakowske, Stephen

    1990-01-01

    The Industry Liaison Section is a new function of the Army/NASA Aircrew-Aircraft Integration (AAAI) Program that is intended to bridge an existing gap between Government developers (including contractors) and outside organizations who are potential users of products and services developed by the AAAI Program. Currently in its sixth year, the Program is experiencing considerable pull from industry and other government organizations to disseminate products. Since the AAAI Program's charter is exploratory and research in nature, and satisfying proper dissemination requirements is in conflict with the rapid prototyping approach utilized by the design team, the AAAI Program has elected to create an Industry Liaison Section (ILS) to serve as the Program's technology transfer focal point. The process by which the ILS may be established, organized and managed is described, including the baseline organizational structure, duties, functions, authority, responsibilities, relations and policies and procedures relevant to the conduct of the ILS.

  5. Human factors of the high technology cockpit

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1990-01-01

    The rapid advance of cockpit automation in the last decade has outstripped the ability of the human factors profession to understand the changes in human functions required. High technology cockpits require less physical (observable) workload, but are highly demanding of cognitive functions such as planning, alternative selection, and monitoring. Furthermore, automation creates opportunity for new and more serious forms of human error, and many pilots are concerned about the possibility of complacency affecting their performance. On the positive side, the equipment works as advertized with high reliability, offering highly efficient, computer-based flight. These findings from the cockpit studies probably apply equally to other industries, such as nuclear power production, other modes of transportation, medicine, and manufacturing, all of which traditionally have looked to aviation for technological leadership. The challenge to the human factors profession is to aid designers, operators, and training departments in exploiting the positive side of automation, while seeking solutions to the negative side. Viewgraphs are given.

  6. Exonuclease of human DNA polymerase gamma disengages its strand displacement function.

    PubMed

    He, Quan; Shumate, Christie K; White, Mark A; Molineux, Ian J; Yin, Y Whitney

    2013-11-01

    Pol γ, the only DNA polymerase found in human mitochondria, functions in both mtDNA repair and replication. During mtDNA base-excision repair, gaps are created after damaged base excision. Here we show that Pol γ efficiently gap-fills except when the gap is only a single nucleotide. Although wild-type Pol γ has very limited ability for strand displacement DNA synthesis, exo(-) (3'-5' exonuclease-deficient) Pol γ has significantly high activity and rapidly unwinds downstream DNA, synthesizing DNA at a rate comparable to that of the wild-type enzyme on a primer-template. The catalytic subunit Pol γA alone, even when exo(-), is unable to synthesize by strand displacement, making this the only known reaction of Pol γ holoenzyme that has an absolute requirement for the accessory subunit Pol γB. © 2013. Published by Elsevier B.V.

  7. A human-centered framework for innovation in conservation incentive programs.

    PubMed

    Sorice, Michael G; Donlan, C Josh

    2015-12-01

    The promise of environmental conservation incentive programs that provide direct payments in exchange for conservation outcomes is that they enhance the value of engaging in stewardship behaviors. An insidious but important concern is that a narrow focus on optimizing payment levels can ultimately suppress program participation and subvert participants' internal motivation to engage in long-term conservation behaviors. Increasing participation and engendering stewardship can be achieved by recognizing that participation is not simply a function of the payment; it is a function of the overall structure and administration of the program. Key to creating innovative and more sustainable programs is fitting them within the existing needs and values of target participants. By focusing on empathy for participants, co-designing program approaches, and learning from the rapid prototyping of program concepts, a human-centered approach to conservation incentive program design enhances the propensity for discovery of novel and innovative solutions to pressing conservation issues.

  8. Morphology of seahorse head hydrodynamically aids in capture of evasive prey.

    PubMed

    Gemmell, Brad J; Sheng, Jian; Buskey, Edward J

    2013-01-01

    Syngnathid fish (seahorses, pipefish and sea dragons) are slow swimmers yet capture evasive prey (copepods) using a technique known as the 'pivot' feeding, which involves rapid movement to overcome prey escape capabilities. However, this feeding mode functions only at short range and requires approaching very closely to hydrodynamically sensitive prey without triggering an escape. Here we investigate the role of head morphology on prey capture using holographic and particle image velocimetry (PIV). We show that head morphology functions to create a reduced fluid deformation zone, minimizing hydrodynamic disturbance where feeding strikes occur (above the end of the snout), and permits syngnathid fish to approach highly sensitive copepod prey (Acartia tonsa) undetected. The results explain how these animals can successfully employ short range 'pivot' feeding effectively on evasive prey. The need to approach prey with stealth may have selected for a head shape that produces lower deformation rates than other fish.

  9. Pac-Man for biotechnology: co-opting degrons for targeted protein degradation to control and alter cell function.

    PubMed

    Yu, Geng; Rosenberg, Julian N; Betenbaugh, Michael J; Oyler, George A

    2015-12-01

    Protein degradation in normal living cells is precisely regulated to match the cells' physiological requirements. The selectivity of protein degradation is determined by an elaborate degron-tagging system. Degron refers to an amino acid sequence that encodes a protein degradation signal, which is oftentimes a poly-ubiquitin chain that can be transferred to other proteins. Current understanding of ubiquitination dependent and independent protein degradation processes has expanded the application of degrons for targeted protein degradation and novel cell engineering strategies. Recent findings suggest that small molecules inducing protein association can be exploited to create degrons that target proteins for degradation. Here, recent applications of degron-based targeted protein degradation in eukaryotic organisms are reviewed. The degron mediated protein degradation represents a rapidly tunable methodology to control protein abundance, which has broad application in therapeutics and cellular function control and monitoring. Copyright © 2015. Published by Elsevier Ltd.

  10. Rapid Prototyping 3D Model in Treatment of Pediatric Hip Dysplasia: A Case Report

    PubMed Central

    Holt, Andrew M.; Starosolski, Zbigniew; Kan, J. Herman

    2017-01-01

    Abstract Background: Rapid prototyping is an emerging technology that integrates common medical imaging with specialized production mechanisms to create detailed anatomic replicas. 3D-printed models of musculoskeletal anatomy have already proven useful in orthopedics and their applications continue to expand. Case Description: We present the case of a 10 year-old female with Down syndrome and left acetabular dysplasia and chronic hip instability who underwent periacetabular osteotomy. A rapid prototyping 3D model was created to better understand the anatomy, counsel the family about the problem and the surgical procedure, as well as guide surgical technique. The intricate detail and size match of the model with the patient’s anatomy offered unparalleled, hands-on experience with the patient’s anatomy pre-operatively and improved surgical precision. Conclusions: Our experience with rapid prototyping confirmed its ability to enhance orthopedic care by improving the surgeon’s ability to understand complex anatomy. Additionally, we report a new application utilizing intraoperative fluoroscopic comparison of the model and patient to ensure surgical precision and minimize the risk of complications. This technique could be used in other challenging cases. The increasing availability of rapid prototyping welcomes further use in all areas of orthopedics. PMID:28852351

  11. Rapid Prototyping 3D Model in Treatment of Pediatric Hip Dysplasia: A Case Report.

    PubMed

    Holt, Andrew M; Starosolski, Zbigniew; Kan, J Herman; Rosenfeld, Scott B

    2017-01-01

    Rapid prototyping is an emerging technology that integrates common medical imaging with specialized production mechanisms to create detailed anatomic replicas. 3D-printed models of musculoskeletal anatomy have already proven useful in orthopedics and their applications continue to expand. We present the case of a 10 year-old female with Down syndrome and left acetabular dysplasia and chronic hip instability who underwent periacetabular osteotomy. A rapid prototyping 3D model was created to better understand the anatomy, counsel the family about the problem and the surgical procedure, as well as guide surgical technique. The intricate detail and size match of the model with the patient's anatomy offered unparalleled, hands-on experience with the patient's anatomy pre-operatively and improved surgical precision. Our experience with rapid prototyping confirmed its ability to enhance orthopedic care by improving the surgeon's ability to understand complex anatomy. Additionally, we report a new application utilizing intraoperative fluoroscopic comparison of the model and patient to ensure surgical precision and minimize the risk of complications. This technique could be used in other challenging cases. The increasing availability of rapid prototyping welcomes further use in all areas of orthopedics.

  12. Magnetic assembly route to colloidal responsive photonic nanostructures.

    PubMed

    He, Le; Wang, Mingsheng; Ge, Jianping; Yin, Yadong

    2012-09-18

    Responsive photonic structures can respond to external stimuli by transmitting optical signals. Because of their important technological applications such as color signage and displays, biological and chemical sensors, security devices, ink and paints, military camouflage, and various optoelectronic devices, researchers have focused on developing these functional materials. Conventionally, self-assembled colloidal crystals containing periodically arranged dielectric materials have served as the predominant starting frameworks. Stimulus-responsive materials are incorporated into the periodic structures either as the initial building blocks or as the surrounding matrix so that the photonic properties can be tuned. Although researchers have proposed various versions of responsive photonic structures, the low efficiency of fabrication through self-assembly, narrow tunability, slow responses to the external stimuli, incomplete reversibility, and the challenge of integrating them into existing photonic devices have limited their practical application. In this Account, we describe how magnetic fields can guide the assembly of superparamagnetic colloidal building blocks into periodically arranged particle arrays and how the photonic properties of the resulting structures can be reversibly tuned by manipulating the external magnetic fields. The application of the external magnetic field instantly induces a strong magnetic dipole-dipole interparticle attraction within the dispersion of superparamagnetic particles, which creates one-dimensional chains that each contains a string of particles. The balance between the magnetic attraction and the interparticle repulsions, such as the electrostatic force, defines the interparticle separation. By employing uniform superparamagnetic particles of appropriate sizes and surface charges, we can create one-dimensional periodicity, which leads to strong optical diffraction. Acting remotely over a large distance, magnetic forces drove the rapid formation of colloidal photonic arrays with a wide range of interparticle spacing. They also allowed instant tuning of the photonic properties because they manipulated the interparticle force balance, which changed the orientation of the colloidal assemblies or their periodicity. This magnetically responsive photonic system provides a new platform for chromatic applications: these colloidal particles assemble instantly into ordered arrays with widely, rapidly, and reversibly tunable structural colors, which can be easily and rapidly fixed in a curable polymer matrix. Based on these unique features, we demonstrated many applications of this system, such as structural color printing, the fabrication of anticounterfeiting devices, switchable signage, and field-responsive color displays. We also extended this idea to rapidly organize uniform nonmagnetic building blocks into photonic structures. Using a stable ferrofluid of highly charged magnetic nanoparticles, we created virtual magnetic moments inside the nonmagnetic particles. This "magnetic hole" strategy greatly broadens the scope of the magnetic assembly approach to the fabrication of tunable photonic structures from various dielectric materials.

  13. Small Business Innovations

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under a Small Business Innovation Research (SBIR) contract to Kennedy Space Center, EIC Laboratories invented a Raman Spectrograph with fiber optic sampling for space applications such as sensing hazardous fuel vapors and making on-board rapid analyses of chemicals and minerals. Raman spectroscopy is a laser-based measurement technique that provides through a unique vibrational spectrum a molecular 'fingerprint,' and can function in aqueous environments. EIC combined optical fiber technology with Raman methods to develop sensors that can be operated at a distance from the spectrographic analysis instruments and the laser excitation source. EIC refined and commercialized the technology to create the Fiber Optic Raman Spectrograph and the RamanProbe. Commercial applications range from process control to monitoring hazardous materials.

  14. Rapid Identification and Classification of Listeria spp. and Serotype Assignment of Listeria monocytogenes Using Fourier Transform-Infrared Spectroscopy and Artificial Neural Network Analysis

    PubMed Central

    Romanolo, K. F.; Gorski, L.; Wang, S.; Lauzon, C. R.

    2015-01-01

    The use of Fourier Transform-Infrared Spectroscopy (FT-IR) in conjunction with Artificial Neural Network software NeuroDeveloper™ was examined for the rapid identification and classification of Listeria species and serotyping of Listeria monocytogenes. A spectral library was created for 245 strains of Listeria spp. to give a biochemical fingerprint from which identification of unknown samples were made. This technology was able to accurately distinguish the Listeria species with 99.03% accuracy. Eleven serotypes of Listeria monocytogenes including 1/2a, 1/2b, and 4b were identified with 96.58% accuracy. In addition, motile and non-motile forms of Listeria were used to create a more robust model for identification. FT-IR coupled with NeuroDeveloper™ appear to be a more accurate and economic choice for rapid identification of pathogenic Listeria spp. than current methods. PMID:26600423

  15. Khmer Rap Boys, X-Men, Asia's Fruits, and Dragonball Z: Creating Multilingual and Multimodal Classroom Contexts

    ERIC Educational Resources Information Center

    McGinnis, Theresa Ann

    2007-01-01

    In our rapidly changing global culture, students' social worlds are becoming increasingly multilingual and multimodal, yet school practices do not often reflect the complexities or diversity of students' literacy and language practices. Valuing students' experiences with language and culture is important in creating supportive learning…

  16. Asymmetric Fireballs in Symmetric Collisions

    DOE PAGES

    Bialas, A.; Bzdak, A.; Zalewski, K.

    2013-01-01

    Here, this contribution reports on the results obtained in the two recently published papers demonstrating that data of the STAR Collaboration show a substantial asymmetric component in the rapidity distribution of the system created in central Au-Au collisions, implying that boost invariance is violated on the event-by-event basis even at the mid c.m. rapidity.

  17. Building Systems on the Campus, Part I. BSIC/EFL Newsletter.

    ERIC Educational Resources Information Center

    BSIC/EFL Newsletter, 1972

    1972-01-01

    The major systems development projects of the 1960's were concerned primarily with facility problems at the elementary and secondary levels. Rapidly increasing enrollments coupled with changes in both curriculum and in teaching methods created a demand for more flexible facilities that could be constructed rapidly and inexpensively. The success of…

  18. Incorporating Animation Concepts and Principles in STEM Education

    ERIC Educational Resources Information Center

    Harrison, Henry L., III; Hummell, Laura J.

    2010-01-01

    Animation is the rapid display of a sequence of static images that creates the illusion of movement. This optical illusion is often called perception of motion, persistence of vision, illusion of motion, or short-range apparent motion. The phenomenon occurs when the eye is exposed to rapidly changing still images, with each image being changed…

  19. Rapid prototyping model for percutaneous nephrolithotomy training.

    PubMed

    Bruyère, Franck; Leroux, Cecile; Brunereau, Laurent; Lermusiaux, Patrick

    2008-01-01

    Rapid prototyping is a technique used for creating computer images in three dimensions more efficiently than classic techniques. Percutaneous nephrolithotomy (PCNL) is a popular method to remove kidney stones; however, broader use by the urologic community has been hampered by the morbidity associated with needle puncture to gain access to the renal calix (bleeding, pneumothorax, hydrothorax, inadvertent colon injury). A training model to improve technique and understanding of renal anatomy could improve complications related to renal puncture; however, no model currently exists for resident training. We created a training model using the rapid prototyping technique based on abdominal CT images of a patient scheduled to undergo PCNL. This allowed our staff and residents to train on the model before performing the operation. This model allowed anticipation of particular difficulties inherent to the patient's anatomy. After training, the procedure proceeded without complication, and the patient was discharged at postoperative day 1 without problems. We hypothesize that rapid prototyping could be useful for resident education, allowing the creation of numerous models for research and surgical training. In addition, we anticipate that experienced urologists could find this technique helpful in preparation for difficult PCNL operations.

  20. Low-cost Method for Obtaining Medical Rapid Prototyping Using Desktop 3D printing: A Novel Technique for Mandibular Reconstruction Planning

    PubMed Central

    Vahdani, Soheil; Ramos, Hector

    2017-01-01

    Background Three-dimensional (3D) printing is relatively a new technology with clinical applications, which enable us to create rapid accurate prototype of the selected anatomic region, making it possible to plan complex surgery and pre-bend hardware for individual surgical cases. This study aimed to express our experience with the use of medical rapid prototype (MRP) of the maxillofacial region created by desktop 3D printer and its application in maxillofacial reconstructive surgeries. Material and Methods Three patients with benign mandible tumors were included in this study after obtaining informed consent. All patient’s maxillofacial CT scan data was processed by segmentation and isolation software and mandible MRP was printed using our desktop 3D printer. These models were used for preoperative surgical planning and prebending of the reconstruction plate. Conclusions MRP created by desktop 3D printer is a cost-efficient, quick and easily produced appliance for the planning of reconstructive surgery. It can contribute in patient orientation and helping them in a better understanding of their condition and proposed surgical treatment. It helps surgeons for pre-operative planning in the resection or reconstruction cases and represent an excellent tool in academic setting for residents training. The pre-bended reconstruction plate based on MRP, resulted in decreased surgery time, cost and anesthesia risks on the patients. Key words:3D printing, medical modeling, rapid prototype, mandibular reconstruction, ameloblastoma. PMID:29075412

  1. Developmental effects of economic and educational change: cognitive representation in three generations across 43 years in a Maya community.

    PubMed

    Maynard, Ashley E; Greenfield, Patricia M; Childs, Carla P

    2015-02-01

    We studied the implications of social change for cognitive development in a Maya community in Chiapas, Mexico, over 43 years. The same procedures were used to collect data in 1969-1970, 1991, and 2012-once in each generation. The goal was to understand the implications of weaving, schooling and participation in a commercial economy for the development of visual pattern representation. In 2012, our participants consisted of 133 boys and girls descended from participants in the prior two generations. Procedures consisted of placing colored sticks in a wooden frame to make striped patterns, some familiar (Zinacantec woven patterns) and some novel (created by the investigators). Following Greenfield (2009), we hypothesised that the development of commerce and the expansion of formal schooling would influence children's representations. Her theory postulates that these factors move human development towards cognitive abstraction and skill in dealing with novelty. Furthermore, the theory posits that whatever sociodemographic variable is changing most rapidly functions as the primary motor for developmental change. From 1969 to 1991, the rapid development of a commercial economy drove visual representation in the hypothesised directions. From 1991 to 2012, the rapid expansion of schooling drove visual representation in the hypothesised directions. © 2015 International Union of Psychological Science.

  2. Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au +Au collisions at √{sNN} = 19.6 and 200 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calder'on de la Barca S'anchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Codrington, M. J. M.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, H. Z.; Huang, X.; Huang, B.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, X.; Li, W.; Li, Z. M.; Li, Y.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, L.; Ma, R.; Ma, G. L.; Ma, Y. G.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solanki, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, Y.; Sun, Z.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbaek, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, Y.; Wang, F.; Wang, H.; Wang, J. S.; Wang, G.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, Z.; Xu, Q. H.; Xu, N.; Xu, H.; Xu, Y. F.; Yang, Y.; Yang, C.; Yang, S.; Yang, Q.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, X. P.; Zhang, S.; Zhang, J.; Zhang, Z.; Zhang, Y.; Zhang, J. L.; Zhao, F.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.

    2015-11-01

    The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity |yee | < 1 in minimum-bias Au +Au collisions at √{sNN} = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened ρ spectral function for Mee < 1.1 GeV /c2. The integrated dielectron excess yield at √{sNN} = 19.6 GeV for 0.4

  3. Insensitivity to Fearful Emotion for Early ERP Components in High Autistic Tendency Is Associated with Lower Magnocellular Efficiency.

    PubMed

    Burt, Adelaide; Hugrass, Laila; Frith-Belvedere, Tash; Crewther, David

    2017-01-01

    Low spatial frequency (LSF) visual information is extracted rapidly from fearful faces, suggesting magnocellular involvement. Autistic phenotypes demonstrate altered magnocellular processing, which we propose contributes to a decreased P100 evoked response to LSF fearful faces. Here, we investigated whether rapid processing of fearful facial expressions differs for groups of neurotypical adults with low and high scores on the Autistic Spectrum Quotient (AQ). We created hybrid face stimuli with low and high spatial frequency filtered, fearful, and neutral expressions. Fearful faces produced higher amplitude P100 responses than neutral faces in the low AQ group, particularly when the hybrid face contained a LSF fearful expression. By contrast, there was no effect of fearful expression on P100 amplitude in the high AQ group. Consistent with evidence linking magnocellular differences with autistic personality traits, our non-linear VEP results showed that the high AQ group had higher amplitude K2.1 responses than the low AQ group, which is indicative of less efficient magnocellular recovery. Our results suggest that magnocellular LSF processing of a human face may be the initial visual cue used to rapidly and automatically detect fear, but that this cue functions atypically in those with high autistic tendency.

  4. Economic Development at the Grass Roots: A Guide for Creating Partnerships between Main Street Programs and California Community Colleges.

    ERIC Educational Resources Information Center

    Perfumo-Kreiss, Paulette; Harrison, Laurie

    The California Main Street Program (MSP) provides technical assistance to rural communities facing rapid growth and downtown decay, serving as a vehicle for local stimulation and revitalization of downtown area businesses. This five-part handbook presents strategies for creating partnerships between California's MSPs and the state's community…

  5. Relative Levels of eLearning Readiness, Applications and Trainee Requirements in Botswana's Private Sector

    ERIC Educational Resources Information Center

    Nleya, Paul T.

    2009-01-01

    The rapid growth and modernization of economies in developing countries like Botswana creates new and unmet demands for certain kinds of educated and skilled labour. The expansion of secondary and tertiary school systems has also created a problem of unemployed school leavers. The growth of Information and Communication Technologies (ICTs),…

  6. Cuba: The New Frontier of Study Abroad Programs for U.S. Students

    ERIC Educational Resources Information Center

    Henthorne, Tony L.; Panko, Thomas R.

    2017-01-01

    The growing reconciliation between the United States and Cuba has created a unique opportunity for U.S. business and hospitality students to observe and experience first-hand an economy in marked transition. Attempting to balance the tenets of socialism with a rapidly growing reliance on capitalism creates a rare learning environment for students.…

  7. Artist Trading Cards: Connecting with Other Communities

    ERIC Educational Resources Information Center

    Bovio, Deborah

    2011-01-01

    Creating and exchanging Artist Trading Cards (ATCs) has been a rapidly growing trend. These miniature works of art are fun to make--and even more fun to share. The intrigue of developing these handmade treasures begins with the intent of creating art simply for the love of art. In this article, the author describes how her students made their…

  8. Parallel tools GUI framework-DOE SBIR phase I final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galarowicz, James

    2013-12-05

    Many parallel performance, profiling, and debugging tools require a graphical way of displaying the very large datasets typically gathered from high performance computing (HPC) applications. Most tool projects create their graphical user interfaces (GUI) from scratch, many times spending their project resources on simply redeveloping commonly used infrastructure. Our goal was to create a multiplatform GUI framework, based on Nokia/Digia’s popular Qt libraries, which will specifically address the needs of these parallel tools. The Parallel Tools GUI Framework (PTGF) uses a plugin architecture facilitating rapid GUI development and reduced development costs for new and existing tool projects by allowing themore » reuse of many common GUI elements, called “widgets.” Widgets created include, 2D data visualizations, a source code viewer with syntax highlighting, and integrated help and welcome screens. Application programming interface (API) design was focused on minimizing the time to getting a functional tool working. Having a standard, unified, and userfriendly interface which operates on multiple platforms will benefit HPC application developers by reducing training time and allowing users to move between tools rapidly during a single session. However, Argo Navis Technologies LLC will not be submitting a DOE SBIR Phase II proposal and commercialization plan for the PTGF project. Our preliminary estimates for gross income over the next several years was based upon initial customer interest and income generated by similar projects. Unfortunately, as we further assessed the market during Phase I, we grew to realize that there was not enough demand to warrant such a large investment. While we do find that the project is worth our continued investment of time and money, we do not think it worthy of the DOE's investment at this time. We are grateful that the DOE has afforded us the opportunity to make this assessment, and come to this conclusion.« less

  9. An Earthquake Shake Map Routine with Low Cost Accelerometers: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Alcik, H. A.; Tanircan, G.; Kaya, Y.

    2015-12-01

    Vast amounts of high quality strong motion data are indispensable inputs of the analyses in the field of geotechnical and earthquake engineering however, high cost of installation of the strong motion systems constitutes the biggest obstacle for worldwide dissemination. In recent years, MEMS based (micro-electro-mechanical systems) accelerometers have been used in seismological research-oriented studies as well as earthquake engineering oriented projects basically due to precision obtained in downsized instruments. In this research our primary goal is to ensure the usage of these low-cost instruments in the creation of shake-maps immediately after a strong earthquake. Second goal is to develop software that will automatically process the real-time data coming from the rapid response network and create shake-map. For those purposes, four MEMS sensors have been set up to deliver real-time data. Data transmission is done through 3G modems. A subroutine was coded in assembler language and embedded into the operating system of each instrument to create MiniSEED files with packages of 1-second instead of 512-byte packages.The Matlab-based software calculates the strong motion (SM) parameters at every second, and they are compared with the user-defined thresholds. A voting system embedded in the software captures the event if the total vote exceeds the threshold. The user interface of the software enables users to monitor the calculated SM parameters either in a table or in a graph (Figure 1). A small scale and affordable rapid response network is created using four MEMS sensors, and the functionality of the software has been tested and validated using shake table tests. The entire system is tested together with a reference sensor under real strong ground motion recordings as well as series of sine waves with varying amplitude and frequency. The successful realization of this software allowed us to set up a test network at Tekirdağ Province, the closest coastal point to the moderate size earthquake activities in the Marmara Sea, Turkey.

  10. The Prostate Cancer Biorepository Network (PCBN)

    DTIC Science & Technology

    2016-10-01

    site includes blood (serum, plasma, and buffy coat), prostatectomy tissues (frozen), biopsies and metastatic tissue from rapid autopsies (paraffin...embedded material and tissue microarrays (TMAs)), prostate cancer patient derived xenografts (PDX) and derived specimens (DNA and RNA) from prostate...Genitourinary Cancer Biorepository set up a rapid autopsy program to provide access to metastatic tissue and create patient derived xenograft (PDX

  11. Rapid identification and classification of Listeria spp. and serotype assignment of Listeria monocytogenes using fourier transform-infrared spectroscopy and artificial neural network analysis

    USDA-ARS?s Scientific Manuscript database

    The use of Fourier Transform-Infrared Spectroscopy (FT-IR) in conjunction with Artificial Neural Network software, NeuroDeveloper™ was examined for the rapid identification and classification of Listeria species and serotyping of Listeria monocytogenes. A spectral library was created for 245 strains...

  12. Mining Available Data from the United States Environmental Protection Agency to Support Rapid Life Cycle Inventory Modeling of Chemical Manufacturing

    EPA Science Inventory

    Demands for quick and accurate life cycle assessments create a need for methods to rapidly generate reliable life cycle inventories (LCI). Data mining is a suitable tool for this purpose, especially given the large amount of available governmental data. These data are typically a...

  13. Education in Management of Data Created by New Technologies for Rapid Product Development in SMEs

    ERIC Educational Resources Information Center

    Shaw, A.; Aitchison, D.

    2003-01-01

    This paper presents outcomes from a research programme aimed at developing new tools and methodologies to assist small and medium-sized enterprises (SMEs) in rapid product development (RPD). The authors suggest that current education strategies for the teaching of RPD tools and methodologies may be of limited value unless those strategies also…

  14. Rapid Development of Hybrid Courses for Distance Education: A Midwestern University's Pilot Project

    ERIC Educational Resources Information Center

    Rust, Jodi

    2011-01-01

    A descriptive case study was used to explore how repurposing and a pedagogical-based instructional design model, the multimodal model (Picciano, 2009), were used to create quality distance education courses in a rapid development setting at a Midwestern land grant university. Data triangulation was used to secure data from faculty member…

  15. A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (μPADs) using technical drawing pens and in-house formulated aqueous inks.

    PubMed

    Nuchtavorn, Nantana; Macka, Mirek

    2016-05-05

    Paper-based microfluidic devices (μPADs) are capable of achieving rapid quantitative measurements of a variety of analytes inexpensively. μPADs rely on patterning hydrophilic-hydrophobic regions on a sheet of paper in order to create capillary channels within impermeable fluidic brakes on the paper. Here, we present a novel, highly flexible and low-cost fabrication method using a desktop digital craft plotter/cutter and technical drawing pens with tip size of 0.5 mm. The pens were used with either commercial black permanent ink for drawing fluidic brakes, or with specialty in-house formulated aqueous inks. With the permanent marker ink it was possible to create barriers on paper rapidly and in a variety of designs in a highly flexible manner. For instance, a design featuring eight reservoirs can be produced within 10 s for each μPAD with a consistent line width of brakes (%RSD < 1.5). Further, we investigated the optimal viscosity range of in-house formulated inks controlled with additions of poly(ethylene glycol). The viscosity was measured by capillary electrophoresis and the optimal viscosity was in the range of ∼3-6 mPa s. A functional test of these μPADs was conducted by the screening of antioxidant activity. Colorimetric measurements of flavonoid, phenolic compounds and DPPH free radical scavenging activity were carried out on μPADs. The results can be detected by the naked eye and simply quantified by using a camera phone and image analysis software. The fabrication method using technical drawing pens provides flexibility in the use of in-house formulated inks, short fabrication time, simplicity and low cost. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  16. Father and son. The origins of Strange case of Dr Jekyll and Mr Hyde.

    PubMed

    Beattie, H J

    2001-01-01

    In Strange Case of Dr Jekyll and Mr Hyde Robert Louis Stevenson created, out of one of his own dreams, the most famous pre-Freudian case study of the divided self. The present essay explores the roots of that work in Stevenson's lifelong difficulty in separating from his moody, conflicted, and passionately possessive father. Out of a matrix of religious guilt and social conformity, Stevenson struggled to create and define his own identity as a writer, a struggle that ran counter to many of his beloved father's deepest needs and led to sharp clashes, accompanied by periods of severe depressive and physical illness in both. Stevenson's creative block during his father's final depression and dementia was broken only by the nightmare that became Jekyll and Hyde, which enabled him to give enduring literary expression to the disavowed rage, guilt, and sense of deformity and fractured identity endemic to their internalized relationship. It may also have functioned as an act of exorcism and expiation that helped him recover rapidly from his father's death and exploit more productively the few years that were left to him.

  17. Intuition: a bridge to the coenesthetic world of experience.

    PubMed

    Piha, Heikki

    2005-01-01

    The concept of intuition is relatively unestablished in psychoanalysis, where it is often associated with narcissistic meanings and vagueness. But intuition, as an integrated mode of archaic coenesthetic thinking, should be kept conceptually free of those connotations. Its capacity of undifferentiated delineation supplies an instinctive general means of dealing immediately with various rationally indistinct phenomena, such as forms, shades, and multidimensionality, regardless of the boundaries between sensory modalities. It may be impossible to translate intuitive experiences into lexical form; these languages are incommensurable. Intuition as a preconscious nondiscursive thinking process is needed in creativity, as well as less conspicuously in countless everyday activities. In speech communication, intuition rapidly specifies subtle shades of meaning in linguistic content and all the prosody. In psychoanalytic work intuition is like radar, creating preliminary contacts with the inner world of the analysand. The observations gained require, however, rational consideration to be confirmed. Intuition is an essential instrument of the psychoanalyst, and also functions in the service of tact to create working space and adequate forms of interpretations. Clinical vignettes reflecting some problematic fates of special intuitiveness in creativity are presented from psychoanalytic work with artists.

  18. Neural Processing of Target Distance by Echolocating Bats: Functional Roles of the Auditory Midbrain

    PubMed Central

    Wenstrup, Jeffrey J.; Portfors, Christine V.

    2011-01-01

    Using their biological sonar, bats estimate distance to avoid obstacles and capture moving prey. The primary distance cue is the delay between the bat's emitted echolocation pulse and the return of an echo. The mustached bat's auditory midbrain (inferior colliculus, IC) is crucial to the analysis of pulse-echo delay. IC neurons are selective for certain delays between frequency modulated (FM) elements of the pulse and echo. One role of the IC is to create these “delay-tuned”, “FM-FM” response properties through a series of spectro-temporal integrative interactions. A second major role of the midbrain is to project target distance information to many parts of the brain. Pathways through auditory thalamus undergo radical reorganization to create highly ordered maps of pulse-echo delay in auditory cortex, likely contributing to perceptual features of target distance analysis. FM-FM neurons in IC also project strongly to pre-motor centers including the pretectum and the pontine nuclei. These pathways may contribute to rapid adjustments in flight, body position, and sonar vocalizations that occur as a bat closes in on a target. PMID:21238485

  19. Meiotic recombination generates rich diversity in NK cell receptor genes, alleles, and haplotypes

    PubMed Central

    Norman, Paul J.; Abi-Rached, Laurent; Gendzekhadze, Ketevan; Hammond, John A.; Moesta, Achim K.; Sharma, Deepti; Graef, Thorsten; McQueen, Karina L.; Guethlein, Lisbeth A.; Carrington, Christine V.F.; Chandanayingyong, Dasdayanee; Chang, Yih-Hsin; Crespí, Catalina; Saruhan-Direskeneli, Güher; Hameed, Kamran; Kamkamidze, Giorgi; Koram, Kwadwo A.; Layrisse, Zulay; Matamoros, Nuria; Milà, Joan; Park, Myoung Hee; Pitchappan, Ramasamy M.; Ramdath, D. Dan; Shiau, Ming-Yuh; Stephens, Henry A.F.; Struik, Siske; Tyan, Dolly; Verity, David H.; Vaughan, Robert W.; Davis, Ronald W.; Fraser, Patricia A.; Riley, Eleanor M.; Ronaghi, Mostafa; Parham, Peter

    2009-01-01

    Natural killer (NK) cells contribute to the essential functions of innate immunity and reproduction. Various genes encode NK cell receptors that recognize the major histocompatibility complex (MHC) Class I molecules expressed by other cells. For primate NK cells, the killer-cell immunoglobulin-like receptors (KIR) are a variable and rapidly evolving family of MHC Class I receptors. Studied here is KIR3DL1/S1, which encodes receptors for highly polymorphic human HLA-A and -B and comprises three ancient allelic lineages that have been preserved by balancing selection throughout human evolution. While the 3DS1 lineage of activating receptors has been conserved, the two 3DL1 lineages of inhibitory receptors were diversified through inter-lineage recombination with each other and with 3DS1. Prominent targets for recombination were D0-domain polymorphisms, which modulate enhancer function, and dimorphism at position 283 in the D2 domain, which influences inhibitory function. In African populations, unequal crossing over between the 3DL1 and 3DL2 genes produced a deleted KIR haplotype in which the telomeric “half” was reduced to a single fusion gene with functional properties distinct from its 3DL1 and 3DL2 parents. Conversely, in Eurasian populations, duplication of the KIR3DL1/S1 locus by unequal crossing over has enabled individuals to carry and express alleles of all three KIR3DL1/S1 lineages. These results demonstrate how meiotic recombination combines with an ancient, preserved diversity to create new KIR phenotypes upon which natural selection acts. A consequence of such recombination is to blur the distinction between alleles and loci in the rapidly evolving human KIR gene family. PMID:19411600

  20. Absence of Rapid Propagation through the Purkinje Network as a Potential Cause of Line Block in the Human Heart with Left Bundle Branch Block.

    PubMed

    Okada, Jun-Ichi; Washio, Takumi; Nakagawa, Machiko; Watanabe, Masahiro; Kadooka, Yoshimasa; Kariya, Taro; Yamashita, Hiroshi; Yamada, Yoko; Momomura, Shin-Ichi; Nagai, Ryozo; Hisada, Toshiaki; Sugiura, Seiryo

    2018-01-01

    Background: Cardiac resynchronization therapy is an effective device therapy for heart failure patients with conduction block. However, a problem with this invasive technique is the nearly 30% of non-responders. A number of studies have reported a functional line of block of cardiac excitation propagation in responders. However, this can only be detected using non-contact endocardial mapping. Further, although the line of block is considered a sign of responders to therapy, the mechanism remains unclear. Methods: Herein, we created two patient-specific heart models with conduction block and simulated the propagation of excitation based on a cellmodel of electrophysiology. In one model with a relatively narrow QRS width (176 ms), we modeled the Purkinje network using a thin endocardial layer with rapid conduction. To reproduce a wider QRS complex (200 ms) in the second model, we eliminated the Purkinje network, and we simulated the endocardial mapping by solving the inverse problem according to the actual mapping system. Results: We successfully observed the line of block using non-contact mapping in the model without the rapid propagation of excitation through the Purkinje network, although the excitation in the wall propagated smoothly. This model of slow conduction also reproduced the characteristic properties of the line of block, including dense isochronal lines and fractionated local electrocardiograms. Further, simulation of ventricular pacing from the lateral wall shifted the location of the line of block. By contrast, in the model with the Purkinje network, propagation of excitation in the endocardial map faithfully followed the actual propagation in the wall, without showing the line of block. Finally, switching the mode of propagation between the two models completely reversed these findings. Conclusions: Our simulation data suggest that the absence of rapid propagation of excitation through the Purkinje network is the major cause of the functional line of block recorded by non-contact endocardial mapping. The line of block can be used to identify responders as these patients loose rapid propagation through the Purkinje network.

  1. Using in-cell SHAPE-Seq and simulations to probe structure–function design principles of RNA transcriptional regulators

    PubMed Central

    Takahashi, Melissa K.; Watters, Kyle E.; Gasper, Paul M.; Abbott, Timothy R.; Carlson, Paul D.; Chen, Alan A.

    2016-01-01

    Antisense RNA-mediated transcriptional regulators are powerful tools for controlling gene expression and creating synthetic gene networks. RNA transcriptional repressors derived from natural mechanisms called attenuators are particularly versatile, though their mechanistic complexity has made them difficult to engineer. Here we identify a new structure–function design principle for attenuators that enables the forward engineering of new RNA transcriptional repressors. Using in-cell SHAPE-Seq to characterize the structures of attenuator variants within Escherichia coli, we show that attenuator hairpins that facilitate interaction with antisense RNAs require interior loops for proper function. Molecular dynamics simulations of these attenuator variants suggest these interior loops impart structural flexibility. We further observe hairpin flexibility in the cellular structures of natural RNA mechanisms that use antisense RNA interactions to repress translation, confirming earlier results from in vitro studies. Finally, we design new transcriptional attenuators in silico using an interior loop as a structural requirement and show that they function as desired in vivo. This work establishes interior loops as an important structural element for designing synthetic RNA gene regulators. We anticipate that the coupling of experimental measurement of cellular RNA structure and function with computational modeling will enable rapid discovery of structure–function design principles for a diverse array of natural and synthetic RNA regulators. PMID:27103533

  2. Translating an AI application from Lisp to Ada: A case study

    NASA Technical Reports Server (NTRS)

    Davis, Gloria J.

    1991-01-01

    A set of benchmarks was developed to test the performance of a newly designed computer executing both Lisp and Ada. Among these was AutoClassII -- a large Artificial Intelligence (AI) application written in Common Lisp. The extraction of a representative subset of this complex application was aided by a Lisp Code Analyzer (LCA). The LCA enabled rapid analysis of the code, putting it in a concise and functionally readable form. An equivalent benchmark was created in Ada through manual translation of the Lisp version. A comparison of the execution results of both programs across a variety of compiler-machine combinations indicate that line-by-line translation coupled with analysis of the initial code can produce relatively efficient and reusable target code.

  3. Combining Induced Pluripotent Stem Cells and Genome Editing Technologies for Clinical Applications.

    PubMed

    Chang, Chia-Yu; Ting, Hsiao-Chien; Su, Hong-Lin; Jeng, Jing-Ren

    2018-01-01

    In this review, we introduce current developments in induced pluripotent stem cells (iPSCs), site-specific nuclease (SSN)-mediated genome editing tools, and the combined application of these two novel technologies in biomedical research and therapeutic trials. The sustainable pluripotent property of iPSCs in vitro not only provides unlimited cell sources for basic research but also benefits precision medicines for human diseases. In addition, rapidly evolving SSN tools efficiently tailor genetic manipulations for exploring gene functions and can be utilized to correct genetic defects of congenital diseases in the near future. Combining iPSC and SSN technologies will create new reliable human disease models with isogenic backgrounds in vitro and provide new solutions for cell replacement and precise therapies.

  4. Skull defect reconstruction based on a new hybrid level set.

    PubMed

    Zhang, Ziqun; Zhang, Ran; Song, Zhijian

    2014-01-01

    Skull defect reconstruction is an important aspect of surgical repair. Historically, a skull defect prosthesis was created by the mirroring technique, surface fitting, or formed templates. These methods are not based on the anatomy of the individual patient's skull, and therefore, the prosthesis cannot precisely correct the defect. This study presented a new hybrid level set model, taking into account both the global optimization region information and the local accuracy edge information, while avoiding re-initialization during the evolution of the level set function. Based on the new method, a skull defect was reconstructed, and the skull prosthesis was produced by rapid prototyping technology. This resulted in a skull defect prosthesis that well matched the skull defect with excellent individual adaptation.

  5. Mechanistic Challenges and Advantages of Biosensor Miniaturization into the Nanoscale.

    PubMed

    Soleymani, Leyla; Li, Feng

    2017-04-28

    Over the past few decades, there has been tremendous interest in developing biosensing systems that combine high sensitivity and specificity with rapid sample-to-answer times, portability, low-cost operation, and ease-of-use. Miniaturizing the biosensor dimensions into the nanoscale has been identified as a strategy for addressing the functional requirements of point-of-care and wearable biosensors. However, it is important to consider that decreasing the critical dimensions of biosensing elements impacts the two most important performance metrics of biosensors: limit-of-detection and response time. Miniaturization into the nanoscale enhances signal-to-noise-ratio by increasing the signal density (signal/geometric surface area) and reducing background signals. However, there is a trade-off between the enhanced signal transduction efficiency and the longer time it takes to collect target analytes on sensor surfaces due to the increase in mass transport times. By carefully considering the signal transduction mechanisms and reaction-transport kinetics governing different classes of biosensors, it is possible to develop structure-level and device-level strategies for leveraging miniaturization toward creating biosensors that combine low limit-of-detection with rapid response times.

  6. Contribution of transposable elements in the plant's genome.

    PubMed

    Sahebi, Mahbod; Hanafi, Mohamed M; van Wijnen, Andre J; Rice, David; Rafii, M Y; Azizi, Parisa; Osman, Mohamad; Taheri, Sima; Bakar, Mohd Faizal Abu; Isa, Mohd Noor Mat; Noor, Yusuf Muhammad

    2018-07-30

    Plants maintain extensive growth flexibility under different environmental conditions, allowing them to continuously and rapidly adapt to alterations in their environment. A large portion of many plant genomes consists of transposable elements (TEs) that create new genetic variations within plant species. Different types of mutations may be created by TEs in plants. Many TEs can avoid the host's defense mechanisms and survive alterations in transposition activity, internal sequence and target site. Thus, plant genomes are expected to utilize a variety of mechanisms to tolerate TEs that are near or within genes. TEs affect the expression of not only nearby genes but also unlinked inserted genes. TEs can create new promoters, leading to novel expression patterns or alternative coding regions to generate alternate transcripts in plant species. TEs can also provide novel cis-acting regulatory elements that act as enhancers or inserts within original enhancers that are required for transcription. Thus, the regulation of plant gene expression is strongly managed by the insertion of TEs into nearby genes. TEs can also lead to chromatin modifications and thereby affect gene expression in plants. TEs are able to generate new genes and modify existing gene structures by duplicating, mobilizing and recombining gene fragments. They can also facilitate cellular functions by sharing their transposase-coding regions. Hence, TE insertions can not only act as simple mutagens but can also alter the elementary functions of the plant genome. Here, we review recent discoveries concerning the contribution of TEs to gene expression in plant genomes and discuss the different mechanisms by which TEs can affect plant gene expression and reduce host defense mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Improved amber and opal suppressor tRNAs for incorporation of unnatural amino acids in vivo. Part 2: Evaluating suppression efficiency

    PubMed Central

    Rodriguez, Erik A.; Lester, Henry A.; Dougherty, Dennis A.

    2007-01-01

    The incorporation of unnatural amino acids into proteins is a valuable tool for addition of biophysical probes, bio-orthogonal functionalities, and photoreactive cross-linking agents, although these approaches often require quantities of protein that are difficult to access with chemically aminoacylated tRNAs. THG73 is an amber suppressor tRNA that has been used extensively, incorporating over 100 residues in 20 proteins. In vitro studies have shown that the Escherichia coli Asn amber suppressor (ENAS) suppresses better than THG73. However, we report here that ENAS suppresses with <26% of the efficiency of THG73 in Xenopus oocytes. We then tested the newly developed Tetrahymena thermophila Gln amber suppressor (TQAS) tRNA library, which contains mutations in the second to fourth positions of the acceptor stem. The acceptor stem mutations have no adverse effect on suppression efficiency and, in fact, can increase the suppression efficiency. Combining mutations causes an averaging of suppression efficiency, and increased suppression efficiency does not correlate with increased ΔG of the acceptor stem. We created a T. thermophila opal suppressor, TQOpS′, which shows ∼50% suppression efficiency relative to THG73. The TQAS tRNA library, composed of functional suppressor tRNAs, has been created and will allow for screening in eukaryotic cells, where rapid analysis of large libraries is not feasible. PMID:17698637

  8. Towards a rapid and comprehensive microbial detection and identification system for life support and planetary protection applications

    NASA Astrophysics Data System (ADS)

    Lasseur, Christophe

    Long term manned missions of our Russian colleagues have demonstrated the risks associated with microbial contamination. These risks concern both crew health via the metabolic consumables contamination (water, air,.) but and also the hardware degradation. In parallel to these life support issues, planetary protection experts have agreed to place clear specifications of the microbial quality of future hardware landing on extraterrestrial planets as well as elaborate the requirements of contamination for manned missions on surface. For these activities, it is necessary to have a better understanding of microbial activity, to create culture collections and to develop on-line detection tools. . In this respect, over the last 6 years , ESA has supported active scientific research on the choice of critical genes and functions, including those linked to horizontal gene pool of bacteria and its dissemination. In parallel, ESA and European industries have been developing an automated instrument for rapid microbial detection on air and surface samples. Within this paper, we first present the life support and planetary protection requirements, and the state of the art of the instrument development. Preliminary results at breadboard level, including a mock-up view of the final instrument are also presented. Finally, the remaining steps required to reach a functional instrument for planetary hardware integration and life support flight hardware are also presented.

  9. Heat Management Strategies for Solid-state NMR of Functional Proteins

    PubMed Central

    Fowler, Daniel J.; Harris, Michael J.; Thompson, Lynmarie K.

    2012-01-01

    Modern solid-state NMR methods can acquire high-resolution protein spectra for structure determination. However, these methods use rapid sample spinning and intense decoupling fields that can heat and denature the protein being studied. Here we present a strategy to avoid destroying valuable samples. We advocate first creating a sacrificial sample, which contains unlabeled protein (or no protein) in buffer conditions similar to the intended sample. This sample is then doped with the chemical shift thermometer Sm2Sn2O7. We introduce a pulse scheme called TCUP (for Temperature Calibration Under Pulseload) that can characterize the heating of this sacrificial sample rapidly, under a variety of experimental conditions, and with high temporal resolution. Sample heating is discussed with respect to different instrumental variables such as spinning speed, decoupling strength and duration, and cooling gas flow rate. The effects of different sample preparation variables are also discussed, including ionic strength, the inclusion of cryoprotectants, and the physical state of the sample (i.e. liquid, solid, or slurry). Lastly, we discuss probe detuning as a measure of sample thawing that does not require retuning the probe or using chemical shift thermometer compounds. Use of detuning tests and chemical shift thermometers with representative sample conditions makes it possible to maximize the efficiency of the NMR experiment while retaining a functional sample. PMID:22868258

  10. The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops

    PubMed Central

    Khatodia, Surender; Bhatotia, Kirti; Passricha, Nishat; Khurana, S. M. P.; Tuteja, Narendra

    2016-01-01

    The Clustered Regularly Interspaced Short Palindromic Repeats associated Cas9/sgRNA system is a novel targeted genome-editing technique derived from bacterial immune system. It is an inexpensive, easy, most user friendly and rapidly adopted genome editing tool transforming to revolutionary paradigm. This technique enables precise genomic modifications in many different organisms and tissues. Cas9 protein is an RNA guided endonuclease utilized for creating targeted double-stranded breaks with only a short RNA sequence to confer recognition of the target in animals and plants. Development of genetically edited (GE) crops similar to those developed by conventional or mutation breeding using this potential technique makes it a promising and extremely versatile tool for providing sustainable productive agriculture for better feeding of rapidly growing population in a changing climate. The emerging areas of research for the genome editing in plants include interrogating gene function, rewiring the regulatory signaling networks and sgRNA library for high-throughput loss-of-function screening. In this review, we have described the broad applicability of the Cas9 nuclease mediated targeted plant genome editing for development of designer crops. The regulatory uncertainty and social acceptance of plant breeding by Cas9 genome editing have also been described. With this powerful and innovative technique the designer GE non-GM plants could further advance climate resilient and sustainable agriculture in the future and maximizing yield by combating abiotic and biotic stresses. PMID:27148329

  11. Rapid and direct synthesis of complex perovskite oxides through a highly energetic planetary milling

    PubMed Central

    Lee, Gyoung-Ja; Park, Eun-Kwang; Yang, Sun-A; Park, Jin-Ju; Bu, Sang-Don; Lee, Min-Ku

    2017-01-01

    The search for a new and facile synthetic route that is simple, economical and environmentally safe is one of the most challenging issues related to the synthesis of functional complex oxides. Herein, we report the expeditious synthesis of single-phase perovskite oxides by a high-rate mechanochemical reaction, which is generally difficult through conventional milling methods. With the help of a highly energetic planetary ball mill, lead-free piezoelectric perovskite oxides of (Bi, Na)TiO3, (K, Na)NbO3 and their modified complex compositions were directly synthesized with low contamination. The reaction time necessary to fully convert the micron-sized reactant powder mixture into a single-phase perovskite structure was markedly short at only 30–40 min regardless of the chemical composition. The cumulative kinetic energy required to overtake the activation period necessary for predominant formation of perovskite products was ca. 387 kJ/g for (Bi, Na)TiO3 and ca. 580 kJ/g for (K, Na)NbO3. The mechanochemically derived powders, when sintered, showed piezoelectric performance capabilities comparable to those of powders obtained by conventional solid-state reaction processes. The observed mechanochemical synthetic route may lead to the realization of a rapid, one-step preparation method by which to create other promising functional oxides without time-consuming homogenization and high-temperature calcination powder procedures. PMID:28387324

  12. At the interface: convergence of neural regeneration and neural prostheses for restoration of function.

    PubMed

    Grill, W M; McDonald, J W; Peckham, P H; Heetderks, W; Kocsis, J; Weinrich, M

    2001-01-01

    The rapid pace of recent advances in development and application of electrical stimulation of the nervous system and in neural regeneration has created opportunities to combine these two approaches to restoration of function. This paper relates the discussion on this topic from a workshop at the International Functional Electrical Stimulation Society. The goals of this workshop were to discuss the current state of interaction between the fields of neural regeneration and neural prostheses and to identify potential areas of future research that would have the greatest impact on achieving the common goal of restoring function after neurological damage. Identified areas include enhancement of axonal regeneration with applied electric fields, development of hybrid neural interfaces combining synthetic silicon and biologically derived elements, and investigation of the role of patterned neural activity in regulating various neuronal processes and neurorehabilitation. Increased communication and cooperation between the two communities and recognition by each field that the other has something to contribute to their efforts are needed to take advantage of these opportunities. In addition, creative grants combining the two approaches and more flexible funding mechanisms to support the convergence of their perspectives are necessary to achieve common objectives.

  13. Leaf-trait plasticity and species vulnerability to climate change in a Mongolian steppe.

    PubMed

    Liancourt, Pierre; Boldgiv, Bazartseren; Song, Daniel S; Spence, Laura A; Helliker, Brent R; Petraitis, Peter S; Casper, Brenda B

    2015-09-01

    Climate change is expected to modify plant assemblages in ways that will have major consequences for ecosystem functions. How climate change will affect community composition will depend on how individual species respond, which is likely related to interspecific differences in functional traits. The extraordinary plasticity of some plant traits is typically neglected in assessing how climate change will affect different species. In the Mongolian steppe, we examined whether leaf functional traits under ambient conditions and whether plasticity in these traits under altered climate could explain climate-induced biomass responses in 12 co-occurring plant species. We experimentally created three probable climate change scenarios and used a model selection procedure to determine the set of baseline traits or plasticity values that best explained biomass response. Under all climate change scenarios, plasticity for at least one leaf trait correlated with change in species performance, while functional leaf-trait values in ambient conditions did not. We demonstrate that trait plasticity could play a critical role in vulnerability of species to a rapidly changing environment. Plasticity should be considered when examining how climate change will affect plant performance, species' niche spaces, and ecological processes that depend on plant community composition. © 2015 John Wiley & Sons Ltd.

  14. Management and Operations of Online Programs: Ensuring Quality and Accountability. Promising Practices in Online Learning

    ERIC Educational Resources Information Center

    Watson, John; Gemin, Butch

    2009-01-01

    Online learning is growing rapidly as states and districts are creating new online schools, and existing programs are adding new courses and students. The growth reflects the spreading understanding that online courses and programs can serve a wide variety of students and needs. These include: (1) Creating opportunities for small and rural school…

  15. Benefit from NASA

    NASA Image and Video Library

    2004-04-15

    Marshall Space Flight Center engineers helped North American Marine Jet (NAMJ), Inc. improve the proposed design of a new impeller for jet propulsion system. With a three-dimensional computer model of the new marine jet engine blades, engineers were able to quickly create a solid ploycarbonate model of it. The rapid prototyping allowed the company to avoid many time-consuming and costly steps in creating the impeller.

  16. Benefit from NASA

    NASA Image and Video Library

    1996-01-01

    Marshall space Flight Center engineers helped North American Marine Jet (NAMJ), Inc. improve the proposed design of a new impeller for a jet-propulsion system. With a three-dimensional computer model of the new marine jet engine blades, engineers were able to quickly create a solid polycarbonate model of it. The rapid prototyping allowed the company to avoid many time-consuming and costly steps in creating the impeller.

  17. PLAYGROUND: preparing students for the cyber battleground

    NASA Astrophysics Data System (ADS)

    Nielson, Seth James

    2016-12-01

    Attempting to educate practitioners of computer security can be difficult if for no other reason than the breadth of knowledge required today. The security profession includes widely diverse subfields including cryptography, network architectures, programming, programming languages, design, coding practices, software testing, pattern recognition, economic analysis, and even human psychology. While an individual may choose to specialize in one of these more narrow elements, there is a pressing need for practitioners that have a solid understanding of the unifying principles of the whole. We created the Playground network simulation tool and used it in the instruction of a network security course to graduate students. This tool was created for three specific purposes. First, it provides simulation sufficiently powerful to permit rigorous study of desired principles while simultaneously reducing or eliminating unnecessary and distracting complexities. Second, it permitted the students to rapidly prototype a suite of security protocols and mechanisms. Finally, with equal rapidity, the students were able to develop attacks against the protocols that they themselves had created. Based on our own observations and student reviews, we believe that these three features combine to create a powerful pedagogical tool that provides students with a significant amount of breadth and intense emotional connection to computer security in a single semester.

  18. Computational Design of Animated Mechanical Characters

    NASA Astrophysics Data System (ADS)

    Coros, Stelian; Thomaszewski, Bernhard; DRZ Team Team

    2014-03-01

    A factor key to the appeal of modern CG movies and video-games is that the virtual worlds they portray place no bounds on what can be imagined. Rapid manufacturing devices hold the promise of bringing this type of freedom to our own world, by enabling the fabrication of physical objects whose appearance, deformation behaviors and motions can be precisely specified. In order to unleash the full potential of this technology however, computational design methods that create digital content suitable for fabrication need to be developed. In recent work, we presented a computational design system that allows casual users to create animated mechanical characters. Given an articulated character as input, the user designs the animated character by sketching motion curves indicating how they should move. For each motion curve, our framework creates an optimized mechanism that reproduces it as closely as possible. The resulting mechanisms are attached to the character and then connected to each other using gear trains, which are created in a semi-automated fashion. The mechanical assemblies generated with our system can be driven with a single input driver, such as a hand-operated crank or an electric motor, and they can be fabricated using rapid prototyping devices.

  19. Survey of business process management: challenges and solutions

    NASA Astrophysics Data System (ADS)

    Alotaibi, Youseef; Liu, Fei

    2017-09-01

    The current literature shows that creating a good framework on business process model (PM) is not an easy task. A successful business PM should have the ability to ensure accurate alignment between business processes (BPs) and information technology (IT) designs, provide security protection, manage the rapidly changing business environment and BPs, manage customer power, be flexible for reengineering and ensure that IT goals can be easily derived from business goals and hence an information system (IS) can be easily implemented. This article presents an overview of research in the business PM domain. We have presented a review of the challenges facing business PMs, such as misalignment between business and IT, difficulty of deriving IT goals from business goals, creating secured business PM, reengineering BPs, managing the rapidly changing BP and business environment and managing customer power. Also, it presents the limitations of existing business PM frameworks. Finally, we outline several guidelines to create good business PM and the possible further research directions in the business PM domain.

  20. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslanyan, V.; Tallents, G. J.

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates.more » The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance.« less

  1. Rapid soil development after windthrow disturbance in pristine forests.

    Treesearch

    B.T. Bormann; H. Spaltenstein; M.H. McClellan; F.C. Ugolini; K. Cromack; S.M. Nay

    1995-01-01

    1. We examined how rapidly soils can change during secondary succession by observing soil development on 350-year chronosequences in three pristine forest ecosystems in south-east Alaska. 2. Soil surfaces, created by different windthrow events of known or estimated age, were examined within each of three forest stands (0.5-2.0 ha plots; i.e. a within-stand...

  2. The Educational Aspirations of Saudi Arabian Youth: Implications for Creating a New Framework to Explain Saudi Arabian Society

    ERIC Educational Resources Information Center

    Sim, Woohyang

    2016-01-01

    Higher education in Saudi Arabia has garnered immense praise for its rapid expansion and developments in both quantity and quality. In response to this, the tertiary school enrollment in Saudi Arabia is rapidly rising. These achievements can be explained by changes in educational policies. However, studies regarding youth's awareness are scarce.…

  3. Rapid prototyping of three-dimensional microstructures from multiwalled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, W.H.; Kumar, Rajay; Bushmaker, Adam

    The authors report a method for creating three-dimensional carbon nanotube structures, whereby a focused laser beam is used to selectively burn local regions of a dense forest of multiwalled carbon nanotubes. Raman spectroscopy and scanning electron microscopy are used to quantify the threshold for laser burnout and depth of burnout. The minimum power density for burning carbon nanotubes in air is found to be 244 {mu}W/{mu}m{sup 2}. We create various three-dimensional patterns using this method, illustrating its potential use for the rapid prototyping of carbon nanotube microstructures. Undercut profiles, changes in nanotube density, and nanoparticle formation are observed after lasermore » surface treatment and provide insight into the dynamic process of the burnout mechanism.« less

  4. Creating Age-Friendly Health Systems - A vision for better care of older adults.

    PubMed

    Mate, Kedar S; Berman, Amy; Laderman, Mara; Kabcenell, Andrea; Fulmer, Terry

    2018-03-01

    Safe and effective care of older adults is a crucial issue given the rapid growth of the aging demographic, many of whom have complex health and social needs. At the same time, the health care delivery environment is rapidly changing, offering a new set of opportunities to improve care of older adults. We describe the background, evidence-based changes, and testing, scale-up, and spread strategy that are part of the design of the Creating Age-Friendly Health Systems initiative. The goal is to reach 20% of U.S. hospitals and health systems by 2020, with plans to reach additional hospitals and health systems in subsequent years. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Predictive abilities of cardiovascular biomarkers to rapid decline of renal function in Chinese community-dwelling population: a 5-year prospective analysis.

    PubMed

    Fu, Shihui; Liu, Chunling; Luo, Leiming; Ye, Ping

    2017-11-09

    Predictive abilities of cardiovascular biomarkers to renal function decline are more significant in Chinese community-dwelling population without glomerular filtration rate (GFR) below 60 ml/min/1.73m 2 , and long-term prospective study is an optimal choice to explore this problem. Aim of this analysis was to observe this problem during the follow-up of 5 years. In a large medical check-up program in Beijing, there were 948 participants with renal function evaluated at baseline and follow-up of 5 years. Physical examinations were performed by well-trained physicians. Blood samples were analyzed by qualified technicians in central laboratory. Median rate of renal function decline was 1.46 (0.42-2.91) mL/min/1.73m 2 /year. Rapid decline of renal function had a prevalence of 23.5% (223 participants). Multivariate linear and Logistic regression analyses confirmed that age, sex, baseline GFR, homocysteine and N-terminal pro B-type natriuretic peptide (NT-proBNP) had independently predictive abilities to renal function decline rate and rapid decline of renal function (p < 0.05 for all). High-sensitivity cardiac troponin T (hs-cTnT), carotid femoral pulse wave velocity and central augmentation index had no statistically independent association with renal function decline rate and rapid decline of renal function (p > 0.05 for all). Homocysteine and NT-proBNP rather than hs-cTnT had independently predictive abilities to rapid decline of renal function in Chinese community-dwelling population without GFR below 60 ml/min/1.73m 2 . Baseline GFR was an independent factor predicting the rapid decline of renal function. Arterial stiffness and compliance had no independent effect on rapid decline of renal function. This analysis has a significant implication for public health, and changing the homocysteine and NT-proBNP levels might slow the rapid decline of renal function.

  6. Losing function through wetland mitigation in central Pennsylvania, USA.

    PubMed

    Hoeltje, S M; Cole, C A

    2007-03-01

    In the United States, the Clean Water Act requires mitigation for wetlands that are negatively impacted by dredging and filling activities. During the mitigation process, there generally is little effort to assess function for mitigation sites and function is usually inferred based on vegetative cover and acreage. In our study, hydrogeomorphic (HGM) functional assessment models were used to compare predicted and potential levels of functional capacity in created and natural reference wetlands. HGM models assess potential function by measurement of a suite of structural variables and these modeled functions can then be compared to those in natural, reference wetlands. The created wetlands were built in a floodplain setting of a valley in central Pennsylvania to replace natural ridge-side slope wetlands. Functional assessment models indicated that the created sites differed significantly from natural wetlands that represented the impacted sites for seven of the ten functions assessed. This was expected because the created wetlands were located in a different geomorphic setting than the impacted sites, which would affect the type and degree of functions that occur. However, functional differences were still observed when the created sites were compared with a second set of reference wetlands that were located in a similar geomorphic setting (floodplain). Most of the differences observed in both comparisons were related to unnatural hydrologic regimes and to the characteristics of the surrounding landscape. As a result, the created wetlands are not fulfilling the criteria for successful wetland mitigation.

  7. "RAPID" team triage: one hospital's approach to patient-centered team triage.

    PubMed

    Shea, Sheila Sanning; Hoyt, K Sue

    2012-01-01

    Patients who present to the emergency department want definitive care by a health care provider who can perform an initial assessment, initiate treatment, and implement a disposition plan. The traditional "nurse triage" model often creates barriers to the process of rapidly evaluating patients. Therefore, innovative strategies must be explored to improve the time of patient arrival to the time seen by a qualified provider in order to complete a thorough medical screening examination. One such approach is a rapid team triage system that provides a patient-centered process. This article describes the implementation of a rapid team triage model in an urban community hospital.

  8. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture

    PubMed Central

    Zhu, Wei; Qu, Xin; Zhu, Jie; Ma, Xuanyi; Patel, Sherrina; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Gou, Maling; Xu, Yang; Zhang, Kang; Chen, Shaochen

    2017-01-01

    Living tissues rely heavily on vascular networks to transport nutrients, oxygen and metabolic waste. However, there still remains a need for a simple and efficient approach to engineer vascularized tissues. Here, we created prevascularized tissues with complex three-dimensional (3D) microarchitectures using a rapid bioprinting method – microscale continuous optical bioprinting (μCOB). Multiple cell types mimicking the native vascular cell composition were encapsulated directly into hydrogels with precisely controlled distribution without the need of sacrificial materials or perfusion. With regionally controlled biomaterial properties the endothelial cells formed lumen-like structures spontaneously in vitro. In vivo implantation demonstrated the survival and progressive formation of the endothelial network in the prevascularized tissue. Anastomosis between the bioprinted endothelial network and host circulation was observed with functional blood vessels featuring red blood cells. With the superior bioprinting speed, flexibility and scalability, this new prevascularization approach can be broadly applicable to the engineering and translation of various functional tissues. PMID:28192772

  9. Ecosystem services: From theory to implementation

    PubMed Central

    Daily, Gretchen C.; Matson, Pamela A.

    2008-01-01

    Around the world, leaders are increasingly recognizing ecosystems as natural capital assets that supply life-support services of tremendous value. The challenge is to turn this recognition into incentives and institutions that will guide wise investments in natural capital, on a large scale. Advances are required on three key fronts, each featured here: the science of ecosystem production functions and service mapping; the design of appropriate finance, policy, and governance systems; and the art of implementing these in diverse biophysical and social contexts. Scientific understanding of ecosystem production functions is improving rapidly but remains a limiting factor in incorporating natural capital into decisions, via systems of national accounting and other mechanisms. Novel institutional structures are being established for a broad array of services and places, creating a need and opportunity for systematic assessment of their scope and limitations. Finally, it is clear that formal sharing of experience, and defining of priorities for future work, could greatly accelerate the rate of innovation and uptake of new approaches. PMID:18621697

  10. Fine-tuning gene networks using simple sequence repeats

    PubMed Central

    Egbert, Robert G.; Klavins, Eric

    2012-01-01

    The parameters in a complex synthetic gene network must be extensively tuned before the network functions as designed. Here, we introduce a simple and general approach to rapidly tune gene networks in Escherichia coli using hypermutable simple sequence repeats embedded in the spacer region of the ribosome binding site. By varying repeat length, we generated expression libraries that incrementally and predictably sample gene expression levels over a 1,000-fold range. We demonstrate the utility of the approach by creating a bistable switch library that programmatically samples the expression space to balance the two states of the switch, and we illustrate the need for tuning by showing that the switch’s behavior is sensitive to host context. Further, we show that mutation rates of the repeats are controllable in vivo for stability or for targeted mutagenesis—suggesting a new approach to optimizing gene networks via directed evolution. This tuning methodology should accelerate the process of engineering functionally complex gene networks. PMID:22927382

  11. Plant metabolomics: from holistic hope, to hype, to hot topic.

    PubMed

    Hall, Robert D

    2006-01-01

    In a short time, plant metabolomics has gone from being just an ambitious concept to being a rapidly growing, valuable technology applied in the stride to gain a more global picture of the molecular organization of multicellular organisms. The combination of improved analytical capabilities with newly designed, dedicated statistical, bioinformatics and data mining strategies, is beginning to broaden the horizons of our understanding of how plants are organized and how metabolism is both controlled but highly flexible. Metabolomics is predicted to play a significant, if not indispensable role in bridging the phenotype-genotype gap and thus in assisting us in our desire for full genome sequence annotation as part of the quest to link gene to function. Plants are a fabulously rich source of diverse functional biochemicals and metabolomics is also already proving valuable in an applied context. By creating unique opportunities for us to interrogate plant systems and characterize their biochemical composition, metabolomics will greatly assist in identifying and defining much of the still unexploited biodiversity available today.

  12. Explicit hypoxia targeting with tumor suppression by creating an “obligate” anaerobic Salmonella Typhimurium strain

    PubMed Central

    Yu, Bin; Yang, Mei; Shi, Lei; Yao, Yandan; Jiang, Qinqin; Li, Xuefei; Tang, Lei-Han; Zheng, Bo-Jian; Yuen, Kwok-Yung; Smith, David K.; Song, Erwei; Huang, Jian-Dong

    2012-01-01

    Using bacteria as therapeutic agents against solid tumors is emerging as an area of great potential in the treatment of cancer. Obligate and facultative anaerobic bacteria have been shown to infiltrate the hypoxic regions of solid tumors, thereby reducing their growth rate or causing regression. However, a major challenge for bacterial therapy of cancer with facultative anaerobes is avoiding damage to normal tissues. Consequently the virulence of bacteria must be adequately attenuated for therapeutic use. By placing an essential gene under a hypoxia conditioned promoter, Salmonella Typhimurium strain SL7207 was engineered to survive only in anaerobic conditions (strain YB1) without otherwise affecting its functions. In breast tumor bearing nude mice, YB1 grew within the tumor, retarding its growth, while being rapidly eliminated from normal tissues. YB1 provides a safe bacterial vector for anti-tumor therapies without compromising the other functions or tumor fitness of the bacterium as attenuation methods normally do. PMID:22666539

  13. A Lithography-Free and Field-Programmable Photonic Metacanvas.

    PubMed

    Dong, Kaichen; Hong, Sukjoon; Deng, Yang; Ma, He; Li, Jiachen; Wang, Xi; Yeo, Junyeob; Wang, Letian; Lou, Shuai; Tom, Kyle B; Liu, Kai; You, Zheng; Wei, Yang; Grigoropoulos, Costas P; Yao, Jie; Wu, Junqiao

    2018-02-01

    The unique correspondence between mathematical operators and photonic elements in wave optics enables quantitative analysis of light manipulation with individual optical devices. Phase-transition materials are able to provide real-time reconfigurability of these devices, which would create new optical functionalities via (re)compilation of photonic operators, as those achieved in other fields such as field-programmable gate arrays (FPGA). Here, by exploiting the hysteretic phase transition of vanadium dioxide, an all-solid, rewritable metacanvas on which nearly arbitrary photonic devices can be rapidly and repeatedly written and erased is presented. The writing is performed with a low-power laser and the entire process stays below 90 °C. Using the metacanvas, dynamic manipulation of optical waves is demonstrated for light propagation, polarization, and reconstruction. The metacanvas supports physical (re)compilation of photonic operators akin to that of FPGA, opening up possibilities where photonic elements can be field programmed to deliver complex, system-level functionalities. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Protein S-sulfenylation is a fleeting molecular switch that regulates non-enzymatic oxidative folding

    NASA Astrophysics Data System (ADS)

    Beedle, Amy E. M.; Lynham, Steven; Garcia-Manyes, Sergi

    2016-08-01

    The post-translational modification S-sulfenylation functions as a key sensor of oxidative stress. Yet the dynamics of sulfenic acid in proteins remains largely elusive due to its fleeting nature. Here we use single-molecule force-clamp spectroscopy and mass spectrometry to directly capture the reactivity of an individual sulfenic acid embedded within the core of a single Ig domain of the titin protein. Our results demonstrate that sulfenic acid is a crucial short-lived intermediate that dictates the protein's fate in a conformation-dependent manner. When exposed to the solution, sulfenic acid rapidly undergoes further chemical modification, leading to irreversible protein misfolding; when cryptic in the protein's microenvironment, it readily condenses with a neighbouring thiol to create a protective disulfide bond, which assists the functional folding of the protein. This mechanism for non-enzymatic oxidative folding provides a plausible explanation for redox-modulated stiffness of proteins that are physiologically exposed to mechanical forces, such as cardiac titin.

  15. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture.

    PubMed

    Zhu, Wei; Qu, Xin; Zhu, Jie; Ma, Xuanyi; Patel, Sherrina; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Gou, Maling; Xu, Yang; Zhang, Kang; Chen, Shaochen

    2017-04-01

    Living tissues rely heavily on vascular networks to transport nutrients, oxygen and metabolic waste. However, there still remains a need for a simple and efficient approach to engineer vascularized tissues. Here, we created prevascularized tissues with complex three-dimensional (3D) microarchitectures using a rapid bioprinting method - microscale continuous optical bioprinting (μCOB). Multiple cell types mimicking the native vascular cell composition were encapsulated directly into hydrogels with precisely controlled distribution without the need of sacrificial materials or perfusion. With regionally controlled biomaterial properties the endothelial cells formed lumen-like structures spontaneously in vitro. In vivo implantation demonstrated the survival and progressive formation of the endothelial network in the prevascularized tissue. Anastomosis between the bioprinted endothelial network and host circulation was observed with functional blood vessels featuring red blood cells. With the superior bioprinting speed, flexibility and scalability, this new prevascularization approach can be broadly applicable to the engineering and translation of various functional tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Smart fabric sensors and e-textile technologies: a review

    NASA Astrophysics Data System (ADS)

    Castano, Lina M.; Flatau, Alison B.

    2014-05-01

    This paper provides a review of recent developments in the rapidly changing and advancing field of smart fabric sensor and electronic textile technologies. It summarizes the basic principles and approaches employed when building fabric sensors as well as the most commonly used materials and techniques used in electronic textiles. This paper shows that sensing functionality can be created by intrinsic and extrinsic modifications to textile substrates depending on the level of integration into the fabric platform. The current work demonstrates that fabric sensors can be tailored to measure force, pressure, chemicals, humidity and temperature variations. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with fabric technologies prove to be customizable and versatile but less robust than their conventional electronics counterparts. The findings of this survey suggest that a complete smart fabric system is possible through the integration of the different types of textile based functional elements. This work intends to be a starting point for standardization of smart fabric sensing techniques and e-textile fabrication methods.

  17. Shortened dental arch and cerebral regional blood volume: an experimental pilot study with optical topography.

    PubMed

    Miyamoto, Ikuya; Yoshida, Kazuya; Bessho, Kazuhisa

    2009-04-01

    A shortened dental arch without posterior occlusal support has been thought to maintain sufficient oral function. The mechanism of occlusal adaptation with a shortened dental arch is unclear. For a better understanding of the effects of molar teeth on brain function, the authors combined experimentally-shortened dental arches and a neuro-imaging technique. Regional cerebral blood volume was measured using near-infrared optical topography during maximum voluntary clenching tasks from 10 subjects on individually fabricated oral appliances, which can create experimentally complete and shortened dental arches. Results suggested that clenching on the complete dental arch showed a significantly higher brain blood volume than that on the shortened dental arch. Moreover, there were no differences between the two splints in the latency to the maximum oxyhemoglobin concentration. These findings suggest that occlusal status is closely related to brain blood flow and lack of occlusal molar support rapidly reduces cerebral blood volume in the maximum voluntary clenching condition.

  18. Ecosystem services: from theory to implementation.

    PubMed

    Daily, Gretchen C; Matson, Pamela A

    2008-07-15

    Around the world, leaders are increasingly recognizing ecosystems as natural capital assets that supply life-support services of tremendous value. The challenge is to turn this recognition into incentives and institutions that will guide wise investments in natural capital, on a large scale. Advances are required on three key fronts, each featured here: the science of ecosystem production functions and service mapping; the design of appropriate finance, policy, and governance systems; and the art of implementing these in diverse biophysical and social contexts. Scientific understanding of ecosystem production functions is improving rapidly but remains a limiting factor in incorporating natural capital into decisions, via systems of national accounting and other mechanisms. Novel institutional structures are being established for a broad array of services and places, creating a need and opportunity for systematic assessment of their scope and limitations. Finally, it is clear that formal sharing of experience, and defining of priorities for future work, could greatly accelerate the rate of innovation and uptake of new approaches.

  19. Development of a mobile application for amphibian species recognition

    NASA Astrophysics Data System (ADS)

    Parveen, B.; H, Chew T.; Shamsir, M. S.; Ahmad, N.

    2014-02-01

    The smartphones mobility and its pervasiveness are beginning to transform practices in biodiversity conservation. The integrated functionalities of a smartphone have created for the public and biodiversity specialists means to identify, gather and record biodiversity data while simultaneously creating knowledge portability in the digital forms of mobile guides. Smartphones enable beginners to recreate the delight of species identification usually reserved for specialist with years of experience. Currently, the advent of Android platform has enabled stakeholders in biodiversity to harness the ubiquity of this platform and create various types of mobile application or "apps" for use in biodiversity research and conservation. However, there is an apparent lack of application devoted to the identification in herpetofauna or amphibian science. Amphibians are a large class of animals with many different species still unidentified under this category. Here we describe the development of an app called Amphibian Recognition Android Application (ARAA) to identify frog amphibian species as well as an accompanying field guide. The app has the amphibian taxonomic key which assists the users in easy and rapid species identification, thus facilitating the process of identification and recording of species occurrences in conservation work. We will also present an overview of the application work flow and how it is designed to meet the needs a conservationist. As this application is still in its beta phase, further research is required to improve the application to include tools such automatic geolocation and geotagging, participative sensing via crowdsourcing and automated identification via image capture. We believe that the introduction of this app will create an impetus to the awareness of nature via species identification.

  20. Rapid comparison of protein binding site surfaces with Property Encoded Shape Distributions (PESD)

    PubMed Central

    Das, Sourav; Kokardekar, Arshad

    2009-01-01

    Patterns in shape and property distributions on the surface of binding sites are often conserved across functional proteins without significant conservation of the underlying amino-acid residues. To explore similarities of these sites from the viewpoint of a ligand, a sequence and fold-independent method was created to rapidly and accurately compare binding sites of proteins represented by property-mapped triangulated Gauss-Connolly surfaces. Within this paradigm, signatures for each binding site surface are produced by calculating their property-encoded shape distributions (PESD), a measure of the probability that a particular property will be at a specific distance to another on the molecular surface. Similarity between the signatures can then be treated as a measure of similarity between binding sites. As postulated, the PESD method rapidly detected high levels of similarity in binding site surface characteristics even in cases where there was very low similarity at the sequence level. In a screening experiment involving each member of the PDBBind 2005 dataset as a query against the rest of the set, PESD was able to retrieve a binding site with identical E.C. (Enzyme Commission) numbers as the top match in 79.5% of cases. The ability of the method in detecting similarity in binding sites with low sequence conservations were compared with state-of-the-art binding site comparison methods. PMID:19919089

  1. Rapid Fabrication Techniques for Liquid Rocket Channel Wall Nozzles

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.

    2016-01-01

    The functions of a regeneratively-cooled nozzle are to (1) expand combustion gases to increase exhaust gas velocity while, (2) maintaining adequate wall temperatures to prevent structural failure, and (3) transfer heat from the hot gases to the coolant fluid to promote injector performance and stability. Regeneratively-cooled nozzles are grouped into two categories: tube-wall nozzles and channel wall nozzles. A channel wall nozzle is designed with an internal liner containing a series of integral coolant channels that are closed out with an external jacket. Manifolds are attached at each end of the nozzle to distribute coolant to and away from the channels. A variety of manufacturing techniques have been explored for channel wall nozzles, including state of the art laser-welded closeouts and pressure-assisted braze closeouts. This paper discusses techniques that NASA MSFC is evaluating for rapid fabrication of channel wall nozzles that address liner fabrication, slotting techniques and liner closeout techniques. Techniques being evaluated for liner fabrication include large-scale additive manufacturing of freeform-deposition structures to create the liner blanks. Abrasive water jet milling is being evaluated for cutting the complex coolant channel geometries. Techniques being considered for rapid closeout of the slotted liners include freeform deposition, explosive bonding and Cold Spray. Each of these techniques, development work and results are discussed in further detail in this paper.

  2. Effect of in-medium nucleon-nucleon cross section on proton-proton momentum correlation in intermediate-energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Wang, Ting-Ting; Ma, Yu-Gang; Zhang, Chun-Jian; Zhang, Zheng-Qiao

    2018-03-01

    The proton-proton momentum correlation function from different rapidity regions is systematically investigated for the Au + Au collisions at different impact parameters and different energies from 400 A MeV to 1500 A MeV in the framework of the isospin-dependent quantum molecular dynamics model complemented by the Lednický-Lyuboshitz analytical method. In particular, the in-medium nucleon-nucleon cross-section dependence of the correlation function is brought into focus, while the impact parameter and energy dependence of the momentum correlation function are also explored. The sizes of the emission source are extracted by fitting the momentum correlation functions using the Gaussian source method. We find that the in-medium nucleon-nucleon cross section obviously influences the proton-proton momentum correlation function, which is from the whole-rapidity or projectile or target rapidity region at smaller impact parameters, but there is no effect on the mid-rapidity proton-proton momentum correlation function, which indicates that the emission mechanism differs between projectile or target rapidity and mid-rapidity protons.

  3. Reusable Rapid Prototyped Blunt Impact Simulator

    DTIC Science & Technology

    2016-08-01

    for a nonclassical gun experimental application. 15. SUBJECT TERMS rapid prototype, additive manufacturing, reusable projectile, 3-axis accelerometer... gun -launched applications.1,2 SLS technology uses a bed of powdered material that is introduced to a laser. The laser is controlled by a computer to...in creating internal gun -hardened electronics for a variety of high-g applications, GTB developed an internal electronics package containing a COTS

  4. Soil disturbance as a grassland restoration measure-effects on plant species composition and plant functional traits.

    PubMed

    Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel

    2015-01-01

    Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target. Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a functional trait based analysis provides additional information of the vegetation response and the abiotic conditions created, complementing the information from the species composition.

  5. Soil Disturbance as a Grassland Restoration Measure—Effects on Plant Species Composition and Plant Functional Traits

    PubMed Central

    Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel

    2015-01-01

    Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target. Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a functional trait based analysis provides additional information of the vegetation response and the abiotic conditions created, complementing the information from the species composition. PMID:25875745

  6. Feasibility of the partial-single arc technique in RapidArc planning for prostate cancer treatment

    PubMed Central

    Rana, Suresh; Cheng, ChihYao

    2013-01-01

    The volumetric modulated arc therapy (VMAT) technique, in the form of RapidArc, is widely used to treat prostate cancer. The full-single arc (f-SA) technique in RapidArc planning for prostate cancer treatment provides efficient treatment, but it also delivers a higher radiation dose to the rectum. This study aimed to compare the dosimetric results from the new partial-single arc (p-SA) technique with those from the f-SA technique in RapidArc planning for prostate cancer treatment. In this study, 10 patients with low-risk prostate cancer were selected. For each patient, two sets of RapidArc plans (f-SA and p-SA) were created in the Eclipse treatment planning system. The f-SA plan was created using one full arc, and the p-SA plan was created using planning parameters identical to those of the f-SA plan but with anterior and posterior avoidance sectors. Various dosimetric parameters of the f-SA and p-SA plans were evaluated and compared for the same target coverage and identical plan optimization parameters. The f-SA and p-SA plans showed an average difference of ±1% for the doses to the planning target volume (PTV), and there were no clear differences in dose homogeneity or plan conformity. In comparison to the f-SA technique, the p-SA technique reduced the doses to the rectum by approximately 6.1% to 21.2%, to the bladder by approximately 10.3% to 29.5%, and to the penile bulb by approximately 2.2%. In contrast, the dose to the femoral heads, the integral dose, and the number of monitor units were higher in the p-SA plans by approximately 34.4%, 7.7%, and 9.2%, respectively. In conclusion, it is feasible to use the p-SA technique for RapidArc planning for prostate cancer treatment. For the same PTV coverage and identical plan optimization parameters, the p-SA technique is better in sparing the rectum and bladder without compromising plan conformity or target homogeneity when compared to the f-SA technique. PMID:23845140

  7. RAPID3 scores and hand outcome measurements in RA patients: a preliminary study.

    PubMed

    Qorolli, Merita; Hundozi-Hysenaj, Hajrije; Rexhepi, Sylejman; Rehxepi, Blerta; Grazio, Simeon

    2017-06-01

    The Routine Assessment of Patient Index Data 3 (RAPID3) is a patient-reported disease activity measure used to assess physical function, pain, and global health in patients with rheumatoid arthritis (RA) without formal joint counts. Since hand involvement and its decreased function are hallmarks of RA, the aim of our study was to investigate the performance of RAPID3 scores with regard to hand function and to confirm previous findings that the RAPID3 score as a disease activity measure is strongly correlated with the DAS28 score. Sixty-eight consecutive patients with RA (85% female), aged 18-75 years, were included in the study and were recruited during their outpatient visit. Apart from demographic and clinical data, the obtained parameters of interest included RAPID3 scores and assessments of the function of the hand, namely, the signal of functional impairment (SOFI)-hand, grip strength, and pulp-to-palm distance, as well the Health Assessment Questionnaire- Disability Index (HAQ-DI) and DAS28 scores. Pearson's correlation coefficient, Student's t test and linear regression were used in the statistical analysis of the results. The significance was set to p < 0.05. A positive correlation was found between RAPID3 scores and HAQ-DI scores, SOFI-hand scores, and pulp-to-palm distance, and negative correlation was observed between RAPID3 scores and grip strength. The order regarding the strength of correlations between RAPID3 scores and other variables (from the strongest to the weakest) was as follows: HAQ-DI, grip strength, SOFI-hand and pulp-to-palm distance. The hand assessment variables had stronger correlations with RAPID3 scores than with DAS28 scores. Our preliminary study showed that RAPID3 scores were strongly correlated with measurements of the functional ability of the hand, demonstrating that RAPID3 can be used as a measure of disease activity in clinical practice and to characterize hand function. Further studies are needed to confirm this result.

  8. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.

    PubMed

    Kim, Jungkyu; Surapaneni, Rajesh; Gale, Bruce K

    2009-05-07

    Rapid prototyping of microfluidic systems using a combination of double-sided tape and PDMS (polydimethylsiloxane) is introduced. PDMS is typically difficult to bond using adhesive tapes due to its hydrophobic nature and low surface energy. For this reason, PDMS is not compatible with the xurography method, which uses a knife plotter and various adhesive coated polymer tapes. To solve these problems, a PDMS/tape composite was developed and demonstrated in microfluidic applications. The PDMS/tape composite was created by spinning it to make a thin layer of PDMS over double-sided tape. Then the PDMS/tape composite was patterned to create channels using xurography, and bonded to a PDMS slab. After removing the backing paper from the tape, a complete microfluidic system could be created by placing the construct onto nearly any substrate; including glass, plastic or metal-coated glass/silicon substrates. The bond strength was shown to be sufficient for the pressures that occur in typical microfluidic channels used for chemical or biological analysis. This method was demonstrated in three applications: standard microfluidic channels and reactors, a microfluidic system with an integrated membrane, and an electrochemical biosensor. The PDMS/tape composite rapid prototyping technique provides a fast and cost effective fabrication method and can provide easy integration of microfluidic channels with sensors and other components without the need for a cleanroom facility.

  9. Rapidly dissolving repaglinide powders produced by the ultra-rapid freezing process.

    PubMed

    Purvis, Troy; Mattucci, Michal E; Crisp, M Todd; Johnston, Keith P; Williams, Robert O

    2007-07-20

    The objective of the study was to produce rapidly dissolving formulations of the poorly water-soluble drug repaglinide using an innovative new technology, ultra-rapid freezing (URF), and to investigate the influence of excipient type on repaglinide stability. Repaglinide compositions containing different types and levels of excipients and different drug potencies (50%-86%) were produced by the URF technology. Repaglinide/excipient solutions were frozen on a cryogenic substrate, collected, and lyophilized to form a dry powder. Surfactants, including sodium dodecyl sulfate, and alkalizing agents such as diethanolamine (DEA) and tromethamine (TRIS) were incorporated into the compositions. Forced degradation of repaglinide was conducted under stressed conditions (eg, elevated temperature, exposure to peroxide) to determine the stability of the drug in such environments. The solubility of repaglinide increased as a function of increasing pH; therefore, incorporation of an alkalizing agent into the URF formulations increased the drug's solubility. Drug instability resulted when the drug was exposed to pH values above 9.0. URF formulations containing alkalizing agents showed no degradation or spontaneous recrystallization in the formulation, indicating that increased stability was afforded by processing. URF processing created nanostructured drug/excipient particles with higher dissolution rates than were achieved for unprocessed drug. Alkalizing agents such as TRIS and DEA, present at levels of 25% to 33% wt/wt in the formulations, did not cause degradation of the drug when processed using URF. URF processing, therefore, yielded fast-dissolving formulations that were physically and chemically stable, resistant to alkali degradation or spontaneous recrystallization in the formulation.

  10. Controlling human corneal stromal stem cell contraction to mediate rapid cell and matrix organization of real architecture for 3-dimensional tissue equivalents.

    PubMed

    Mukhey, Dev; Phillips, James B; Daniels, Julie T; Kureshi, Alvena K

    2018-02-01

    The architecture of the human corneal stroma consists of a highly organized extracellular matrix (ECM) interspersed with keratocytes. Their progenitor cells; corneal stromal stem cells (CSSC) are located at the periphery, in the limbal stroma. A highly organized corneal ECM is critical for effective transmission of light but this structure may be compromised during injury or disease, resulting in loss of vision. Re-creating normal organization in engineered tissue equivalents for transplantation often involves lengthy culture times that are inappropriate for clinical use or utilisation of synthetic substrates that bring complications such as corneal melting. CSSC have great therapeutic potential owing to their ability to reorganize a disorganized matrix, restoring transparency in scarred corneas. We examined CSSC contractile behavior to assess whether this property could be exploited to rapidly generate cell and ECM organization in Real Architecture For 3D Tissues (RAFT) tissue equivalents (TE) for transplantation. Free-floating collagen gels were characterized to assess contractile behavior of CSSC and establish optimum cell density and culture times. To mediate cell and collagen organization, tethered collagen gels seeded with CSSC were cultured and subsequently stabilized with the RAFT process. We demonstrated rapid creation of biomimetic RAFT TE with tunable structural properties. These displayed three distinct regions of varying degrees of cellular and collagen organization. Interestingly, increased organization coincided with a dramatic loss of PAX6 expression in CSSC, indicating rapid differentiation into keratocytes. The organized RAFT TE system could be a useful bioengineering tool to rapidly create an organized ECM while simultaneously controlling cell phenotype. For the first time, we have demonstrated that human CSSC exhibit the phenomenon of cellular self-alignment in tethered collagen gels. We found this mediated rapid co-alignment of collagen fibrils and thus subsequently exploited this property in vitro to improve the architecture of engineered RAFT tissue equivalents of the corneal stroma. Existing techniques are extremely lengthy and carry significant risk and cost for GMP manufacture. This rapid and tunable technique takes just 8 h of culture and is therefore ideal for clinical manufacture, creating biomimetic tissue equivalents with both cellular and ECM organization. Thus, cellular self-alignment can be a useful bioengineering tool for the development of organized tissue equivalents in a variety of applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. "We are toothless and hanging, but optimistic": sub county managers' experiences of rapid devolution in coastal Kenya.

    PubMed

    Nyikuri, Mary M; Tsofa, Benjamin; Okoth, Philip; Barasa, Edwine W; Molyneux, Sassy

    2017-09-15

    In March 2013, Kenya transitioned from a centralized to a devolved system of governance. Within the health sector, this entailed the transfer of service provision functions to 47 newly formed semi-autonomous counties, while policy and regulatory functions were retained at the national level. The devolution process was rapid rather than progressive. We conducted qualitative research within one county to examine the early experiences of devolution in the health sector. We specifically focused on the experience of change from the perspective of sub-county managers, who form the link between county level managers and health facility managers. We collected data by observing a diverse range of management meetings, support supervision visits and outreach activities involving sub-county managers between May 2013 and June 2015, conducting informal interviews wherever we could. Informal observations and interviews were supplemented by fifteen tape recorded in depth interviews with purposively selected sub-county managers from three sub-counties. We found that sub county managers as with many other health system actors were anxious about and ill-prepared for the unexpectedly rapid devolution of health functions to the newly created county government. They experienced loss of autonomy and resources in addition to confused lines of accountability within the health system. However, they harnessed individual, team and stakeholder resources to maintain their jobs, and continued to play a central role in supporting peripheral facility managers to cope with change. Our study illustrates the importance in accelerated devolution contexts for: 1) mid-level managers to adopt new ways of working and engagement with higher and lower levels in the system; 2) clear lines of communication during reforms to these actors and 3) anticipating and managing the effect of change on intangible software issues such as trust and motivation. More broadly, we show the value of examining organisational change from the perspective of key actors within the system, and highlight the importance in times of rapid change of drawing upon and working with those already in the system. These actors have valuable tacit knowledge, but tapping into and building on this knowledge to enable positive response in times of health system shocks requires greater attention to sustained software capacity building within the health system.

  12. Power function decay of hydraulic conductivity for a TOPMODEL-based infiltration routine

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Endreny, Theodore A.; Hassett, James M.

    2006-11-01

    TOPMODEL rainfall-runoff hydrologic concepts are based on soil saturation processes, where soil controls on hydrograph recession have been represented by linear, exponential, and power function decay with soil depth. Although these decay formulations have been incorporated into baseflow decay and topographic index computations, only the linear and exponential forms have been incorporated into infiltration subroutines. This study develops a power function formulation of the Green and Ampt infiltration equation for the case where the power n = 1 and 2. This new function was created to represent field measurements in the New York City, USA, Ward Pound Ridge drinking water supply area, and provide support for similar sites reported by other researchers. Derivation of the power-function-based Green and Ampt model begins with the Green and Ampt formulation used by Beven in deriving an exponential decay model. Differences between the linear, exponential, and power function infiltration scenarios are sensitive to the relative difference between rainfall rates and hydraulic conductivity. Using a low-frequency 30 min design storm with 4.8 cm h-1 rain, the n = 2 power function formulation allows for a faster decay of infiltration and more rapid generation of runoff. Infiltration excess runoff is rare in most forested watersheds, and advantages of the power function infiltration routine may primarily include replication of field-observed processes in urbanized areas and numerical consistency with power function decay of baseflow and topographic index distributions. Equation development is presented within a TOPMODEL-based Ward Pound Ridge rainfall-runoff simulation. Copyright

  13. Creation of a virtual cutaneous tissue bank

    NASA Astrophysics Data System (ADS)

    LaFramboise, William A.; Shah, Sujal; Hoy, R. W.; Letbetter, D.; Petrosko, P.; Vennare, R.; Johnson, Peter C.

    2000-04-01

    Cellular and non-cellular constituents of skin contain fundamental morphometric features and structural patterns that correlate with tissue function. High resolution digital image acquisitions performed using an automated system and proprietary software to assemble adjacent images and create a contiguous, lossless, digital representation of individual microscope slide specimens. Serial extraction, evaluation and statistical analysis of cutaneous feature is performed utilizing an automated analysis system, to derive normal cutaneous parameters comprising essential structural skin components. Automated digital cutaneous analysis allows for fast extraction of microanatomic dat with accuracy approximating manual measurement. The process provides rapid assessment of feature both within individual specimens and across sample populations. The images, component data, and statistical analysis comprise a bioinformatics database to serve as an architectural blueprint for skin tissue engineering and as a diagnostic standard of comparison for pathologic specimens.

  14. DNA-Based Enzyme Reactors and Systems

    PubMed Central

    Linko, Veikko; Nummelin, Sami; Aarnos, Laura; Tapio, Kosti; Toppari, J. Jussi; Kostiainen, Mauri A.

    2016-01-01

    During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme) cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications. PMID:28335267

  15. Rubber and gel origami: visco- and poro-elastic behavior of folded structures

    NASA Astrophysics Data System (ADS)

    Evans, Arthur; Bende, Nakul; Na, Junhee; Hayward, Ryan; Santangelo, Christian

    2014-11-01

    The Japanese art of origami is rapidly becoming a platform for material design, as researchers develop systematic methods to exploit the purely geometric rules that allow paper to folded without stretching. Since any thin sheet couples mechanics strongly to geometry, origami provides a natural template for generating length-scale independent structures from a variety of different materials. In this talk I discuss some of the implications of using polymeric sheets and shells over many length scales to create folded materials with tunable shapes and properties. These implications include visco-elastic snap-through transitions and poro-elastically driven micro origami. In each case, mechanical response, dynamics, and reversible folding is tuned through a combination of geometry and constitutive properties, demonstrating the efficacy of using origami principles for designing functional materials.

  16. Fabricating microfluidic valve master molds in SU-8 photoresist

    NASA Astrophysics Data System (ADS)

    Dy, Aaron J.; Cosmanescu, Alin; Sluka, James; Glazier, James A.; Stupack, Dwayne; Amarie, Dragos

    2014-05-01

    Multilayer soft lithography has become a powerful tool in analytical chemistry, biochemistry, material and life sciences, and medical research. Complex fluidic micro-circuits require reliable components that integrate easily into microchips. We introduce two novel approaches to master mold fabrication for constructing in-line micro-valves using SU-8. Our fabrication techniques enable robust and versatile integration of many lab-on-a-chip functions including filters, mixers, pumps, stream focusing and cell-culture chambers, with in-line valves. SU-8 created more robust valve master molds than the conventional positive photoresists used in multilayer soft lithography, but maintained the advantages of biocompatibility and rapid prototyping. As an example, we used valve master molds made of SU-8 to fabricate PDMS chips capable of precisely controlling beads or cells in solution.

  17. Graphical User Interface for the NASA FLOPS Aircraft Performance and Sizing Code

    NASA Technical Reports Server (NTRS)

    Lavelle, Thomas M.; Curlett, Brian P.

    1994-01-01

    XFLOPS is an X-Windows/Motif graphical user interface for the aircraft performance and sizing code FLOPS. This new interface simplifies entering data and analyzing results, thereby reducing analysis time and errors. Data entry is simpler because input windows are used for each of the FLOPS namelists. These windows contain fields to input the variable's values along with help information describing the variable's function. Analyzing results is simpler because output data are displayed rapidly. This is accomplished in two ways. First, because the output file has been indexed, users can view particular sections with the click of a mouse button. Second, because menu picks have been created, users can plot engine and aircraft performance data. In addition, XFLOPS has a built-in help system and complete on-line documentation for FLOPS.

  18. 78 FR 35567 - Safety Zone; Lower Mississippi River, Mile Marker 219 to Mile Marker 229, in the Vicinity of Port...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... Mississippi River in this area have risen very rapidly, creating a faster than normal current that is a hazard... Rouge gauge has reached 33 feet and continues to rise. This elevated water level is creating a faster... event the Baton Rouge Gage is reading below 33 feet and falling. The Captain of the Port, New Orleans or...

  19. A rapid, automated approach to optimisation of multiple reaction monitoring conditions for quantitative bioanalytical mass spectrometry.

    PubMed

    Higton, D M

    2001-01-01

    An improvement to the procedure for the rapid optimisation of mass spectrometry (PROMS), for the development of multiple reaction methods (MRM) for quantitative bioanalytical liquid chromatography/tandem mass spectrometry (LC/MS/MS), is presented. PROMS is an automated protocol that uses flow-injection analysis (FIA) and AppleScripts to create methods and acquire the data for optimisation. The protocol determines the optimum orifice potential, the MRM conditions for each compound, and finally creates the MRM methods needed for sample analysis. The sensitivities of the MRM methods created by PROMS approach those created manually. MRM method development using PROMS currently takes less than three minutes per compound compared to at least fifteen minutes manually. To further enhance throughput, approaches to MRM optimisation using one injection per compound, two injections per pool of five compounds and one injection per pool of five compounds have been investigated. No significant difference in the optimised instrumental parameters for MRM methods were found between the original PROMS approach and these new methods, which are up to ten times faster. The time taken for an AppleScript to determine the optimum conditions and build the MRM methods is the same with all approaches. Copyright 2001 John Wiley & Sons, Ltd.

  20. Using in-cell SHAPE-Seq and simulations to probe structure-function design principles of RNA transcriptional regulators.

    PubMed

    Takahashi, Melissa K; Watters, Kyle E; Gasper, Paul M; Abbott, Timothy R; Carlson, Paul D; Chen, Alan A; Lucks, Julius B

    2016-06-01

    Antisense RNA-mediated transcriptional regulators are powerful tools for controlling gene expression and creating synthetic gene networks. RNA transcriptional repressors derived from natural mechanisms called attenuators are particularly versatile, though their mechanistic complexity has made them difficult to engineer. Here we identify a new structure-function design principle for attenuators that enables the forward engineering of new RNA transcriptional repressors. Using in-cell SHAPE-Seq to characterize the structures of attenuator variants within Escherichia coli, we show that attenuator hairpins that facilitate interaction with antisense RNAs require interior loops for proper function. Molecular dynamics simulations of these attenuator variants suggest these interior loops impart structural flexibility. We further observe hairpin flexibility in the cellular structures of natural RNA mechanisms that use antisense RNA interactions to repress translation, confirming earlier results from in vitro studies. Finally, we design new transcriptional attenuators in silico using an interior loop as a structural requirement and show that they function as desired in vivo. This work establishes interior loops as an important structural element for designing synthetic RNA gene regulators. We anticipate that the coupling of experimental measurement of cellular RNA structure and function with computational modeling will enable rapid discovery of structure-function design principles for a diverse array of natural and synthetic RNA regulators. © 2016 Takahashi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  1. 26. Generator Voltage Regulator Cabinet Exterior for Unit 1, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Generator Voltage Regulator Cabinet Exterior for Unit 1, view to the northwest. The exciter supplies the DC current to the generator rotor to create electricity. Each of the four original units has an exciter identical to this one, and all are scheduled for replacement. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  2. Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing.

    PubMed

    Knowlton, Stephanie; Yenilmez, Bekir; Tasoglu, Savas

    2016-09-01

    Organ-on-a-chip engineering employs microfabrication of living tissues within microscale fluid channels to create constructs that closely mimic human organs. With the advent of 3D printing, we predict that single-step fabrication of these devices will enable rapid design and cost-effective iterations in the development stage, facilitating rapid innovation in this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Infectious Disease Information Collection System at the Scene of Disaster Relief Based on a Personal Digital Assistant.

    PubMed

    Li, Ya-Pin; Gao, Hong-Wei; Fan, Hao-Jun; Wei, Wei; Xu, Bo; Dong, Wen-Long; Li, Qing-Feng; Song, Wen-Jing; Hou, Shi-Ke

    2017-12-01

    The objective of this study was to build a database to collect infectious disease information at the scene of a disaster through the use of 128 epidemiological questionnaires and 47 types of options, with rapid acquisition of information regarding infectious disease and rapid questionnaire customization at the scene of disaster relief by use of a personal digital assistant (PDA). SQL Server 2005 (Microsoft Corp, Redmond, WA) was used to create the option database for the infectious disease investigation, to develop a client application for the PDA, and to deploy the application on the server side. The users accessed the server for data collection and questionnaire customization with the PDA. A database with a set of comprehensive options was created and an application system was developed for the Android operating system (Google Inc, Mountain View, CA). On this basis, an infectious disease information collection system was built for use at the scene of disaster relief. The creation of an infectious disease information collection system and rapid questionnaire customization through the use of a PDA was achieved. This system integrated computer technology and mobile communication technology to develop an infectious disease information collection system and to allow for rapid questionnaire customization at the scene of disaster relief. (Disaster Med Public Health Preparedness. 2017;11:668-673).

  4. Improvement of band gap profile in Cu(InGa)Se{sub 2} solar cells through rapid thermal annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D.S.; College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 200090; Yang, J.

    Highlights: • Proper RTA treatment can effectively optimize band gap profile to more expected level. • Inter-diffusion of atoms account for the improvement of the graded band gap profile. • The variation of the band gap profile created an absolute gain in the efficiency by 1.22%. - Abstract: In the paper, the effect of rapid thermal annealing on non-optimal double-graded band gap profiles was investigated by using X-ray photoelectron spectroscopy and capacitance–voltage measurement techniques. Experimental results revealed that proper rapid thermal annealing treatment can effectively improve band gap profile to more optimal level. The annealing treatment could not only reducemore » the values of front band gap and minimum band gap, but also shift the position of the minimum band gap toward front electrode and enter into space charge region. In addition, the thickness of Cu(InGa)Se{sub 2} thin film decreased by 25 nm after rapid thermal annealing treatment. All of these modifications were attributed to the inter-diffusion of atoms during thermal treatment process. Simultaneously, the variation of the band gap profile created an absolute gain in the efficiency by 1.22%, short-circuit current density by 2.16 mA/cm{sup 2} and filled factor by 3.57%.« less

  5. Additive manufacturing technology (direct metal laser sintering) as a novel approach to fabricate functionally graded titanium implants: preliminary investigation of fabrication parameters.

    PubMed

    Lin, Wei-Shao; Starr, Thomas L; Harris, Bryan T; Zandinejad, Amirali; Morton, Dean

    2013-01-01

    This article describes the preliminary findings of the mechanical properties of functionally graded titanium with controlled distribution of porosity and a reduced Young's modulus on the basis of a computeraided design (CAD) file, using the rapid-prototyping, direct metal laser sintering (DMLS) technique. Sixty specimens of Ti-6Al-4V were created using a DMLS machine (M270) following the standard for tensile testing of metals. One group was fabricated with only 170 W of laser energy to create fully dense specimens (control group). The remaining specimens all featured an outer fully dense "skin" layer and a partially sintered porous inner "core" region. The outer "skin" of each specimen was scanned at 170 W and set at a thickness of 0.35, 1.00, or 1.50 mm for different specimen groups. The inner "core" of each specimen was scanned at a lower laser power (43 or 85 W). The partially sintered core was clearly visible in all specimens, with somewhat greater porosity with the lower laser power. However, the amount of porosity in the core region was not related to the laser power alone; thinner skin layers resulted in higher porosity for the same power values in the core structure. The lowest Young's modulus achieved, 35 GPa, is close to that of bone and was achieved with a laser power of 43 W and a skin thickness of 0.35 mm, producing a core that comprised 74% of the total volume. Additive manufacturing technology may provide an efficient alternative way to fabricate customized dental implants based on a CAD file with a functionally graded structure that may minimize stress shielding and improve the long-term performance of dental implants.

  6. Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue

    PubMed Central

    Radisic, Milica; Park, Hyoungshin; Martens, Timothy P.; Salazar-Lazaro, Johanna E.; Geng, Wenliang; Wang, Yadong; Langer, Robert; Freed, Lisa E.; Vunjak-Novakovic, Gordana

    2009-01-01

    Native myocardium consists of several cell types, of which approximately one-third are myocytes and most of the nonmyocytes are fibroblasts. By analogy with monolayer culture in which fibroblasts were removed to prevent overgrowth, early attempts to engineer myocardium utilized cell populations enriched for cardiac myocytes (CMs; ~80–90% of total cells). We hypothesized that the pre-treatment of synthetic elastomeric scaffolds with cardiac fibroblasts (CFs) will enhance the functional assembly of the engineered cardiac constructs by creating an environment supportive of cardiomyocyte attachment and function. Cells isolated from neonatal rat ventricles were prepared to form three distinct populations: rapidly plating cells identified as CFs, slowly plating cells identified as CMs, and unseparated initial population of cells (US). The cell fractions (3 × 106 cells total) were seeded into poly(glycerol sebacate) scaffolds (highly porous discs, 5 mm in diameter × 2-mm thick) using Matrigel™, either separately (CM or CF), concurrently (US), or sequentially (CF pre-treatment followed by CM culture, CF + CM), and cultured in spinner flasks. The CF + CM group had the highest amplitude of contraction and the lowest excitation threshold, superior DNA content, and higher glucose consumption rate. The CF + CM group exhibited compact 100- to 200-μm thick layers of elongated myocytes aligned in parallel over layers of collagen-producing fibroblasts, while US and CM groups exhibited scattered and poorly elongated myocytes. The sequential co-culture of CF and CM on a synthetic elastomer scaffold thus created an environment supportive of cardiomyocyte attachment, differentiation, and contractile function, presumably due to scaffold conditioning by cultured fibroblasts. When implanted over the infarcted myocardium in a nude rat model, cell-free poly(glycerol sebacate) remained at the ventricular wall after 2 weeks of in vivo, and was vascularized. PMID:18041719

  7. Uncertainty and operational considerations in mass prophylaxis workforce planning.

    PubMed

    Hupert, Nathaniel; Xiong, Wei; King, Kathleen; Castorena, Michelle; Hawkins, Caitlin; Wu, Cindie; Muckstadt, John A

    2009-12-01

    The public health response to an influenza pandemic or other large-scale health emergency may include mass prophylaxis using multiple points of dispensing (PODs) to deliver countermeasures rapidly to affected populations. Computer models created to date to determine "optimal" staffing levels at PODs typically assume stable patient demand for service. The authors investigated POD function under dynamic and uncertain operational environments. The authors constructed a Monte Carlo simulation model of mass prophylaxis (the Dynamic POD Simulator, or D-PODS) to assess the consequences of nonstationary patient arrival patterns on POD function under a variety of POD layouts and staffing plans. Compared are the performance of a standard POD layout under steady-state and variable patient arrival rates that may mimic real-life variation in patient demand. To achieve similar performance, PODs functioning under nonstationary patient arrival rates require higher staffing levels than would be predicted using the assumption of stationary arrival rates. Furthermore, PODs may develop severe bottlenecks unless staffing levels vary over time to meet changing patient arrival patterns. Efficient POD networks therefore require command and control systems capable of dynamically adjusting intra- and inter-POD staff levels to meet demand. In addition, under real-world operating conditions of heightened uncertainty, fewer large PODs will require a smaller total staff than many small PODs to achieve comparable performance. Modeling environments that capture the effects of fundamental uncertainties in public health disasters are essential for the realistic evaluation of response mechanisms and policies. D-PODS quantifies POD operational efficiency under more realistic conditions than have been modeled previously. The authors' experiments demonstrate that effective POD staffing plans must be responsive to variation and uncertainty in POD arrival patterns. These experiments highlight the need for command and control systems to be created to manage emergency response successfully.

  8. Prosthetically directed implant placement using computer software to ensure precise placement and predictable prosthetic outcomes. Part 2: rapid-prototype medical modeling and stereolithographic drilling guides requiring bone exposure.

    PubMed

    Rosenfeld, Alan L; Mandelaris, George A; Tardieu, Philippe B

    2006-08-01

    The purpose of this paper is to expand on part 1 of this series (published in the previous issue) regarding the emerging future of computer-guided implant dentistry. This article will introduce the concept of rapid-prototype medical modeling as well as describe the utilization and fabrication of computer-generated surgical drilling guides used during implant surgery. The placement of dental implants has traditionally been an intuitive process, whereby the surgeon relies on mental navigation to achieve optimal implant positioning. Through rapid-prototype medical modeling and the ste-reolithographic process, surgical drilling guides (eg, SurgiGuide) can be created. These guides are generated from a surgical implant plan created with a computer software system that incorporates all relevant prosthetic information from which the surgical plan is developed. The utilization of computer-generated planning and stereolithographically generated surgical drilling guides embraces the concept of collaborative accountability and supersedes traditional mental navigation on all levels of implant therapy.

  9. Biodiversity and emerging diseases.

    PubMed

    Maillard, Jean-Charles; Gonzalez, Jean-Paul

    2006-10-01

    First we remind general considerations concerning biodiversity on earth and particularly the loss of genetic biodiversity that seems irreversible whether its origin is directly or indirectly linked to human activities. Urgent and considerable efforts must be made from now on to cataloge, understand, preserve, and enhance the value of biodiversity while ensuring food safety and human and animal health. Ambitious integrated and multifield research programs must be implemented in order to understand the causes and anticipate the consequences of loss of biodiversity. Such losses are a serious threat to sustainable development and to the quality of life of future generations. They have an influence on the natural balance of global biodiversity in particularly in reducing the capability of species to adapt rapidly by genetic mutations to survive in modified ecosystems. Usually, the natural immune systems of mammals (both human and animal), are highly polymorphic and able to adapt rapidly to new situations. We more specifically discuss the fact that if the genetic diversity of the affected populations is low the invading microorganisms, will suddenly expand and create epidemic outbreaks with risks of pandemic. So biodiversity appears to function as an important barrier (buffer), especially against disease-causing organisms, which can function in different ways. Finally, we discuss the importance of preserving biodiversity mainly in the wildlife ecosystems as an integrated and sustainable approach among others in order to prevent and control the emergence or reemergence of diseases in animals and humans (zoonosis). Although plants are also part of this paradigm, they fall outside our field of study.

  10. Application of the Water Needs Index: Can Tho City, Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Moglia, Magnus; Neumann, Luis E.; Alexander, Kim S.; Nguyen, Minh N.; Sharma, Ashok K.; Cook, Stephen; Trung, Nguyen H.; Tuan, Dinh D. A.

    2012-10-01

    SummaryProvision of urban water supplies to rapidly growing cities of South East Asia is difficult because of increasing demand for limited water supplies, periodic droughts, and depletion and contamination of surface and groundwater. In such adverse environments, effective policy and planning processes are required to secure adequate water supplies. Developing a Water Needs Index reveals key elements of the complex urban water supply by means of a participatory approach for rapid and interdisciplinary assessment. The index uses deliberative interactions with stakeholders to create opportunities for mutual understanding, confirmation of constructs and capacity building of all involved. In Can Tho City, located at the heart of the Mekong delta in Vietnam, a Water Needs Index has been developed with local stakeholders. The functional attributes of the Water Needs Index at this urban scale have been critically appraised. Systemic water issues, supply problems, health issues and inadequate, poorly functioning infrastructure requiring attention from local authorities have been identified. Entrenched social and economic inequities in access to water and sanitation, as well as polluting environmental management practices has caused widespread problems for urban populations. The framework provides a common language based on systems thinking, increased cross-sectoral communication, as well as increased recognition of problem issues; this ought to lead to improved urban water management. Importantly, the case study shows that the approach can help to overcome biases of local planners based on their limited experience (information black spots), to allow them to address problems experienced in all areas of the city.

  11. Approaches to cutaneous wound healing: basics and future directions.

    PubMed

    Zeng, Ruijie; Lin, Chuangqiang; Lin, Zehuo; Chen, Hong; Lu, Weiye; Lin, Changmin; Li, Haihong

    2018-04-10

    The skin provides essential functions, such as thermoregulation, hydration, excretion and synthesis of vitamin D. Major disruptions of the skin cause impairment of critical functions, resulting in high morbidity and death, or leave one with life-changing cosmetic damage. Due to the complexity of the skin, diverse approaches are needed, including both traditional and advanced, to improve cutaneous wound healing. Cutaneous wounds undergo four phases of healing. Traditional management, including skin grafts and wound dressings, is still commonly used in current practice but in combination with newer technology, such as using engineered skin substitutes in skin grafts or combining traditional cotton gauze with anti-bacterial nanoparticles. Various upcoming methods, such as vacuum-assisted wound closure, engineered skin substitutes, stem cell therapy, growth factors and cytokine therapy, have emerged in recent years and are being used to assist wound healing, or even to replace traditional methods. However, many of these methods still lack assessment by large-scale studies and/or extensive application. Conceptual changes, for example, precision medicine and the rapid advancement of science and technology, such as RNA interference and 3D printing, offer tremendous potential. In this review, we focus on the basics of wound treatment and summarize recent developments involving both traditional and hi-tech therapeutic methods that lead to both rapid healing and better cosmetic results. Future studies should explore a more cost-effective, convenient and efficient approach to cutaneous wound healing. Graphical abstract Combination of various materials to create advanced wound dressings.

  12. Establishment of expanded and streamlined pipeline of PITCh knock-in – a web-based design tool for MMEJ-mediated gene knock-in, PITCh designer, and the variations of PITCh, PITCh-TG and PITCh-KIKO

    PubMed Central

    Nakamae, Kazuki; Nishimura, Yuki; Takenaga, Mitsumasa; Sakamoto, Naoaki; Ide, Hiroshi; Sakuma, Tetsushi; Yamamoto, Takashi

    2017-01-01

    ABSTRACT The emerging genome editing technology has enabled the creation of gene knock-in cells easily, efficiently, and rapidly, which has dramatically accelerated research in the field of mammalian functional genomics, including in humans. We recently developed a microhomology-mediated end-joining-based gene knock-in method, termed the PITCh system, and presented various examples of its application. Since the PITCh system only requires very short microhomologies (up to 40 bp) and single-guide RNA target sites on the donor vector, the targeting construct can be rapidly prepared compared with the conventional targeting vector for homologous recombination-based knock-in. Here, we established a streamlined pipeline to design and perform PITCh knock-in to further expand the availability of this method by creating web-based design software, PITCh designer (http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html), as well as presenting an experimental example of versatile gene cassette knock-in. PITCh designer can automatically design not only the appropriate microhomologies but also the primers to construct locus-specific donor vectors for PITCh knock-in. By using our newly established pipeline, a reporter cell line for monitoring endogenous gene expression, and transgenesis (TG) or knock-in/knockout (KIKO) cell line can be produced systematically. Using these new variations of PITCh, an exogenous promoter-driven gene cassette expressing fluorescent protein gene and drug resistance gene can be integrated into a safe harbor or a specific gene locus to create transgenic reporter cells (PITCh-TG) or knockout cells with reporter knock-in (PITCh-KIKO), respectively. PMID:28453368

  13. Establishment of expanded and streamlined pipeline of PITCh knock-in - a web-based design tool for MMEJ-mediated gene knock-in, PITCh designer, and the variations of PITCh, PITCh-TG and PITCh-KIKO.

    PubMed

    Nakamae, Kazuki; Nishimura, Yuki; Takenaga, Mitsumasa; Nakade, Shota; Sakamoto, Naoaki; Ide, Hiroshi; Sakuma, Tetsushi; Yamamoto, Takashi

    2017-05-04

    The emerging genome editing technology has enabled the creation of gene knock-in cells easily, efficiently, and rapidly, which has dramatically accelerated research in the field of mammalian functional genomics, including in humans. We recently developed a microhomology-mediated end-joining-based gene knock-in method, termed the PITCh system, and presented various examples of its application. Since the PITCh system only requires very short microhomologies (up to 40 bp) and single-guide RNA target sites on the donor vector, the targeting construct can be rapidly prepared compared with the conventional targeting vector for homologous recombination-based knock-in. Here, we established a streamlined pipeline to design and perform PITCh knock-in to further expand the availability of this method by creating web-based design software, PITCh designer ( http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html ), as well as presenting an experimental example of versatile gene cassette knock-in. PITCh designer can automatically design not only the appropriate microhomologies but also the primers to construct locus-specific donor vectors for PITCh knock-in. By using our newly established pipeline, a reporter cell line for monitoring endogenous gene expression, and transgenesis (TG) or knock-in/knockout (KIKO) cell line can be produced systematically. Using these new variations of PITCh, an exogenous promoter-driven gene cassette expressing fluorescent protein gene and drug resistance gene can be integrated into a safe harbor or a specific gene locus to create transgenic reporter cells (PITCh-TG) or knockout cells with reporter knock-in (PITCh-KIKO), respectively.

  14. Peroxisome Mini-Libraries: Systematic Approaches to Study Peroxisomes Made Easy.

    PubMed

    Dahan, Noa; Schuldiner, Maya; Zalckvar, Einat

    2017-01-01

    High-throughput methodologies have been extensively used in the budding yeast, Saccharomyces cerevisiae, to uncover fundamental principles of cell biology. Over the years, several collections of yeast strains (libraries) were built to enable systematic exploration of cellular functions. However, using these libraries experimentally is often labor intensive and restricted to laboratories that hold high throughput platforms. Utilizing the available full genome libraries we handpicked a subset of strains that represent all known and predicted peroxisomal proteins as well as proteins that have central roles in peroxisome biology. These smaller collections of strains, mini-libraries, can be rapidly and easily used for complicated screens by any lab. Since one of the libraries is built such that it can be easily modified in the tag, promoter and selection, we also discuss how these collections form the basis for creating a diversity of new peroxisomal libraries for future studies. Using manual tools, available in any yeast lab, coupled with few simple genetic approaches, we will show how these libraries can be "mixed and matched" to create tailor made libraries for screening. These yeast collections may now be exploited to study uncharted territories in the biology of peroxisomes by anyone, anywhere.

  15. A multi-criteria approach to camera motion design for volume data animation.

    PubMed

    Hsu, Wei-Hsien; Zhang, Yubo; Ma, Kwan-Liu

    2013-12-01

    We present an integrated camera motion design and path generation system for building volume data animations. Creating animations is an essential task in presenting complex scientific visualizations. Existing visualization systems use an established animation function based on keyframes selected by the user. This approach is limited in providing the optimal in-between views of the data. Alternatively, computer graphics and virtual reality camera motion planning is frequently focused on collision free movement in a virtual walkthrough. For semi-transparent, fuzzy, or blobby volume data the collision free objective becomes insufficient. Here, we provide a set of essential criteria focused on computing camera paths to establish effective animations of volume data. Our dynamic multi-criteria solver coupled with a force-directed routing algorithm enables rapid generation of camera paths. Once users review the resulting animation and evaluate the camera motion, they are able to determine how each criterion impacts path generation. In this paper, we demonstrate how incorporating this animation approach with an interactive volume visualization system reduces the effort in creating context-aware and coherent animations. This frees the user to focus on visualization tasks with the objective of gaining additional insight from the volume data.

  16. Developing a Synthetic Biology Toolkit for Comamonas testosteroni, an Emerging Cellular Chassis for Bioremediation.

    PubMed

    Tang, Qiang; Lu, Ting; Liu, Shuang-Jiang

    2018-06-12

    Synthetic biology is rapidly evolving into a new phase that emphasizes real-world applications such as environmental remediation. Recently, Comamonas testosteroni has become a promising chassis for bioremediation due to its natural pollutant-degrading capacity; however, its application is hindered by the lack of fundamental gene expression tools. Here, we present a synthetic biology toolkit that enables rapid creation of functional gene circuits in C. testosteroni. We first built a shuttle system that allows efficient circuit construction in E. coli and necessary phenotypic testing in C. testosteroni. Then, we tested a set of wildtype inducible promoters, and further used a hybrid strategy to create engineered promoters to expand expression strength and dynamics. Additionally, we tested the T7 RNA Polymerase-P T7 promoter system and reduced its leaky expression through promoter mutation for gene expression. By coupling random library construction with FACS screening, we further developed a synthetic T7 promoter library to confer a wider range of expression strength and dynamic characteristics. This study provides a set of valuable tools to engineer gene circuits in C. testosteroni, facilitating the establishment of the organism as a useful microbial chassis for bioremediation purposes.

  17. Signal Correlations in Ecological Niches Can Shape the Organization and Evolution of Bacterial Gene Regulatory Networks

    PubMed Central

    Dufour, Yann S.; Donohue, Timothy J.

    2015-01-01

    Transcriptional regulation plays a significant role in the biological response of bacteria to changing environmental conditions. Therefore, mapping transcriptional regulatory networks is an important step not only in understanding how bacteria sense and interpret their environment but also to identify the functions involved in biological responses to specific conditions. Recent experimental and computational developments have facilitated the characterization of regulatory networks on a genome-wide scale in model organisms. In addition, the multiplication of complete genome sequences has encouraged comparative analyses to detect conserved regulatory elements and infer regulatory networks in other less well-studied organisms. However, transcription regulation appears to evolve rapidly, thus, creating challenges for the transfer of knowledge to nonmodel organisms. Nevertheless, the mechanisms and constraints driving the evolution of regulatory networks have been the subjects of numerous analyses, and several models have been proposed. Overall, the contributions of mutations, recombination, and horizontal gene transfer are complex. Finally, the rapid evolution of regulatory networks plays a significant role in the remarkable capacity of bacteria to adapt to new or changing environments. Conversely, the characteristics of environmental niches determine the selective pressures and can shape the structure of regulatory network accordingly. PMID:23046950

  18. The Roles of Family B and D DNA Polymerases in Thermococcus Species 9°N Okazaki Fragment Maturation*

    PubMed Central

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F.

    2015-01-01

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. PMID:25814667

  19. Site-directed protein recombination as a shortest-path problem.

    PubMed

    Endelman, Jeffrey B; Silberg, Jonathan J; Wang, Zhen-Gang; Arnold, Frances H

    2004-07-01

    Protein function can be tuned using laboratory evolution, in which one rapidly searches through a library of proteins for the properties of interest. In site-directed recombination, n crossovers are chosen in an alignment of p parents to define a set of p(n + 1) peptide fragments. These fragments are then assembled combinatorially to create a library of p(n+1) proteins. We have developed a computational algorithm to enrich these libraries in folded proteins while maintaining an appropriate level of diversity for evolution. For a given set of parents, our algorithm selects crossovers that minimize the average energy of the library, subject to constraints on the length of each fragment. This problem is equivalent to finding the shortest path between nodes in a network, for which the global minimum can be found efficiently. Our algorithm has a running time of O(N(3)p(2) + N(2)n) for a protein of length N. Adjusting the constraints on fragment length generates a set of optimized libraries with varying degrees of diversity. By comparing these optima for different sets of parents, we rapidly determine which parents yield the lowest energy libraries.

  20. An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system.

    PubMed

    Zhu, Xiaoxiao; Xu, Yajie; Yu, Shanshan; Lu, Lu; Ding, Mingqin; Cheng, Jing; Song, Guoxu; Gao, Xing; Yao, Liangming; Fan, Dongdong; Meng, Shu; Zhang, Xuewen; Hu, Shengdi; Tian, Yong

    2014-09-19

    The rapid generation of various species and strains of laboratory animals using CRISPR/Cas9 technology has dramatically accelerated the interrogation of gene function in vivo. So far, the dominant approach for genotyping of genome-modified animals has been the T7E1 endonuclease cleavage assay. Here, we present a polyacrylamide gel electrophoresis-based (PAGE) method to genotype mice harboring different types of indel mutations. We developed 6 strains of genome-modified mice using CRISPR/Cas9 system, and utilized this approach to genotype mice from F0 to F2 generation, which included single and multiplexed genome-modified mice. We also determined the maximal detection sensitivity for detecting mosaic DNA using PAGE-based assay as 0.5%. We further applied PAGE-based genotyping approach to detect CRISPR/Cas9-mediated on- and off-target effect in human 293T and induced pluripotent stem cells (iPSCs). Thus, PAGE-based genotyping approach meets the rapidly increasing demand for genotyping of the fast-growing number of genome-modified animals and human cell lines created using CRISPR/Cas9 system or other nuclease systems such as TALEN or ZFN.

  1. An Efficient Genotyping Method for Genome-modified Animals and Human Cells Generated with CRISPR/Cas9 System

    PubMed Central

    Zhu, Xiaoxiao; Xu, Yajie; Yu, Shanshan; Lu, Lu; Ding, Mingqin; Cheng, Jing; Song, Guoxu; Gao, Xing; Yao, Liangming; Fan, Dongdong; Meng, Shu; Zhang, Xuewen; Hu, Shengdi; Tian, Yong

    2014-01-01

    The rapid generation of various species and strains of laboratory animals using CRISPR/Cas9 technology has dramatically accelerated the interrogation of gene function in vivo. So far, the dominant approach for genotyping of genome-modified animals has been the T7E1 endonuclease cleavage assay. Here, we present a polyacrylamide gel electrophoresis-based (PAGE) method to genotype mice harboring different types of indel mutations. We developed 6 strains of genome-modified mice using CRISPR/Cas9 system, and utilized this approach to genotype mice from F0 to F2 generation, which included single and multiplexed genome-modified mice. We also determined the maximal detection sensitivity for detecting mosaic DNA using PAGE-based assay as 0.5%. We further applied PAGE-based genotyping approach to detect CRISPR/Cas9-mediated on- and off-target effect in human 293T and induced pluripotent stem cells (iPSCs). Thus, PAGE-based genotyping approach meets the rapidly increasing demand for genotyping of the fast-growing number of genome-modified animals and human cell lines created using CRISPR/Cas9 system or other nuclease systems such as TALEN or ZFN. PMID:25236476

  2. Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity.

    PubMed

    Seals, Douglas R; Justice, Jamie N; LaRocca, Thomas J

    2016-04-15

    Most nations of the world are undergoing rapid and dramatic population ageing, which presents great socio-economic challenges, as well as opportunities, for individuals, families, governments and societies. The prevailing biomedical strategy for reducing the healthcare impact of population ageing has been 'compression of morbidity' and, more recently, to increase healthspan, both of which seek to extend the healthy period of life and delay the development of chronic diseases and disability until a brief period at the end of life. Indeed, a recently established field within biological ageing research, 'geroscience', is focused on healthspan extension. Superimposed on this background are new attitudes and demand for 'optimal longevity' - living long, but with good health and quality of life. A key obstacle to achieving optimal longevity is the progressive decline in physiological function that occurs with ageing, which causes functional limitations (e.g. reduced mobility) and increases the risk of chronic diseases, disability and mortality. Current efforts to increase healthspan centre on slowing the fundamental biological processes of ageing such as inflammation/oxidative stress, increased senescence, mitochondrial dysfunction, impaired proteostasis and reduced stress resistance. We propose that optimization of physiological function throughout the lifespan should be a major emphasis of any contemporary biomedical policy addressing global ageing. Effective strategies should delay, reduce in magnitude or abolish reductions in function with ageing (primary prevention) and/or improve function or slow further declines in older adults with already impaired function (secondary prevention). Healthy lifestyle practices featuring regular physical activity and ideal energy intake/diet composition represent first-line function-preserving strategies, with pharmacological agents, including existing and new pharmaceuticals and novel 'nutraceutical' compounds, serving as potential complementary approaches. Future research efforts should focus on defining the temporal patterns of functional declines with ageing, identifying the underlying mechanisms and modulatory factors involved, and establishing the most effective lifestyle practices and pharmacological options for maintaining function. Continuing development of effective behavioural approaches for enhancing adherence to healthy ageing practices in diverse populations, and ongoing analysis of the socio-economic costs and benefits of healthspan extension will be important supporting goals. To meet the demands created by rapid population ageing, a new emphasis in physiological geroscience is needed, which will require the collaborative, interdisciplinary efforts of investigators working throughout the translational research continuum from basic science to public health. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  3. Covalent Binding of Heparin to Functionalized PET Materials for Improved Haemocompatibility

    PubMed Central

    Kolar, Metod; Mozetič, Miran; Stana-Kleinschek, Karin; Fröhlich, Mirjam; Turk, Boris; Vesel, Alenka

    2015-01-01

    The hemocompatibility of vascular grafts made from poly(ethylene terephthalate) (PET) is insufficient due to the rapid adhesion and activation of blood platelets that occur upon incubation with whole blood. PET polymer was treated with NHx radicals created by passing ammonia through gaseous plasma formed by a microwave discharge, which allowed for functionalization with amino groups. X-ray photoelectron spectroscopy characterization using derivatization with 4-chlorobenzaldehyde indicated that approximately 4% of the –NH2 groups were associated with the PET surface after treatment with the gaseous radicals. The functionalized polymers were coated with an ultra-thin layer of heparin and incubated with fresh blood. The free-hemoglobin technique, which is based on the haemolysis of erythrocytes, indicated improved hemocompatibility, which was confirmed by imaging the samples using confocal optical microscopy. A significant decrease in number of adhered platelets was observed on such samples. Proliferation of both human umbilical vein endothelial cells and human microvascular endothelial cells was enhanced on treated polymers, especially after a few hours of cell seeding. Thus, the technique represents a promising substitute for wet-chemical modification of PET materials prior to coating with heparin. PMID:28788016

  4. Ion Trapping with Fast-Response Ion-Selective Microelectrodes Enhances Detection of Extracellular Ion Channel Gradients

    PubMed Central

    Messerli, Mark A.; Collis, Leon P.; Smith, Peter J.S.

    2009-01-01

    Previously, functional mapping of channels has been achieved by measuring the passage of net charge and of specific ions with electrophysiological and intracellular fluorescence imaging techniques. However, functional mapping of ion channels using extracellular ion-selective microelectrodes has distinct advantages over the former methods. We have developed this method through measurement of extracellular K+ gradients caused by efflux through Ca2+-activated K+ channels expressed in Chinese hamster ovary cells. We report that electrodes constructed with short columns of a mechanically stable K+-selective liquid membrane respond quickly and measure changes in local [K+] consistent with a diffusion model. When used in close proximity to the plasma membrane (<4 μm), the ISMs pose a barrier to simple diffusion, creating an ion trap. The ion trap amplifies the local change in [K+] without dramatically changing the rise or fall time of the [K+] profile. Measurement of extracellular K+ gradients from activated rSlo channels shows that rapid events, 10–55 ms, can be characterized. This method provides a noninvasive means for functional mapping of channel location and density as well as for characterizing the properties of ion channels in the plasma membrane. PMID:19217875

  5. Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules

    PubMed Central

    Schuster, Bernhard; Sleytr, Uwe B.

    2014-01-01

    Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state-of-the-art survey of how S-layer proteins, lipids and polymers may be used as basic building blocks for the assembly of S-layer-supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and, thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas in the (lab-on-a-) biochip technology are combining composite S-layer membrane systems involving specific membrane functions with the silicon world. Thus, it might become possible to create artificial noses or tongues, where many receptor proteins have to be exposed and read out simultaneously. Moreover, S-layer-coated liposomes and emulsomes copying virus envelopes constitute promising nanoformulations for the production of novel targeting, delivery, encapsulation and imaging systems. PMID:24812051

  6. Transcranial magnetic stimulation: language function.

    PubMed

    Epstein, C M

    1998-07-01

    Studies of language using transcranial magnetic stimulation (TMS) have focused both on identification of language areas and on elucidation of function. TMS may result in either inhibition or facilitation of language processes and may operate directly at a presumptive site of language cortex or indirectly through intracortical networks. TMS has been used to create reversible "temporary lesions," similar to those produced by Wada tests and direct cortical electrical stimulation, in cerebral cortical areas subserving language function. Rapid-rate TMS over the left inferior frontal region blocks speech output in most subjects. However, the results are not those predicted from classic models of language organization. Speech arrest is obtained most easily over facial motor cortex, and true aphasia is rare, whereas right hemisphere or bilateral lateralization is unexpectedly prominent. A clinical role for these techniques is not yet fully established. Interfering with language comprehension and verbal memory is currently more difficult than blocking speech output, but numerous TMS studies have demonstrated facilitation of language-related tasks, including oral word association, story recall, digit span, and picture naming. Conversely, speech output also facilitates motor responses to TMS in the dominant hemisphere. Such new and often-unexpected findings may provide important insights into the organization of language.

  7. Contact Angle Influence on Geysering Jets in Microgravity Investigated

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2004-01-01

    Microgravity poses many challenges to the designer of spacecraft tanks. Chief among these are the lack of phase separation and the need to supply vapor-free liquid or liquid-free vapor to the spacecraft processes that require fluid. One of the principal problems of phase separation is the creation of liquid jets. A jet can be created by liquid filling, settling of the fluid to one end of the tank, or even closing a valve to stop the liquid flow. Anyone who has seen a fountain knows that jets occur in normal gravity also. However, in normal gravity, the gravity controls and restricts the jet flow. In microgravity, with gravity largely absent, surface tension forces must be used to contain jets. To model this phenomenon, a numerical method that tracks the fluid motion and the surface tension forces is required. Jacqmin has developed a phase model that converts the discrete surface tension force into a barrier function that peaks at the free surface and decays rapidly away. Previous attempts at this formulation were criticized for smearing the interface. This can be overcome by sharpening the phase function, double gridding the fluid function, and using a higher-order solution for the fluid function. The solution of this equation can be rewritten as two coupled Poisson equations that also include the velocity.

  8. Phosphatidylserine and the human brain.

    PubMed

    Glade, Michael J; Smith, Kyl

    2015-06-01

    The aim of this study was to assess the roles and importance of phosphatidylserine (PS), an endogenous phospholipid and dietary nutrient, in human brain biochemistry, physiology, and function. A scientific literature search was conducted on MEDLINE for relevant articles regarding PS and the human brain published before June 2014. Additional publications were identified from references provided in original papers; 127 articles were selected for inclusion in this review. A large body of scientific evidence describes the interactions among PS, cognitive activity, cognitive aging, and retention of cognitive functioning ability. Phosphatidylserine is required for healthy nerve cell membranes and myelin. Aging of the human brain is associated with biochemical alterations and structural deterioration that impair neurotransmission. Exogenous PS (300-800 mg/d) is absorbed efficiently in humans, crosses the blood-brain barrier, and safely slows, halts, or reverses biochemical alterations and structural deterioration in nerve cells. It supports human cognitive functions, including the formation of short-term memory, the consolidation of long-term memory, the ability to create new memories, the ability to retrieve memories, the ability to learn and recall information, the ability to focus attention and concentrate, the ability to reason and solve problems, language skills, and the ability to communicate. It also supports locomotor functions, especially rapid reactions and reflexes. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Genetically Engineered Humanized Mouse Models for Preclinical Antibody Studies

    PubMed Central

    Proetzel, Gabriele; Wiles, Michael V.; Roopenian, Derry C.

    2015-01-01

    The use of genetic engineering has vastly improved our capabilities to create animal models relevant in preclinical research. With the recent advances in gene-editing technologies, it is now possible to very rapidly create highly tunable mouse models as needs arise. Here, we provide an overview of genetic engineering methods, as well as the development of humanized neonatal Fc receptor (FcRn) models and their use for monoclonal antibody in vivo studies. PMID:24150980

  10. Integrated Dynamic Transit Operations (IDTO) concept of operations.

    DOT National Transportation Integrated Search

    2012-05-01

    In support of USDOTs Intelligent Transportation Systems (ITS) Mobility Program, the Dynamic Mobility Applications (DMA) program seeks to create applications that fully leverage frequently collected and rapidly disseminated multi-source data gat...

  11. African White Gold: Elephant Ivory and Rhino Horn Trafficking - US Intervention and Interdiction

    DTIC Science & Technology

    2015-03-01

    wildlife trafficking and poaching is the impact to international security, regional stability, and to local governance. The rapid rise in the price of... poaching presents significant second and third order affects that impact their security, their rule of law, national sovereignty, and their future...national security. Research Question Both the recent spike in elephant and rhino poaching , and the rapid rise in the price of ivory creates an

  12. The rapid mode of calcium uptake into heart mitochondria (RaM): comparison to RaM in liver mitochondria.

    PubMed

    Buntinas, L; Gunter, K K; Sparagna, G C; Gunter, T E

    2001-04-02

    A mechanism of Ca(2+) uptake, capable of sequestering significant amounts of Ca(2+) from cytosolic Ca(2+) pulses, has previously been identified in liver mitochondria. This mechanism, the Rapid Mode of Ca(2+) uptake (RaM), was shown to sequester Ca(2+) very rapidly at the beginning of each pulse in a sequence [Sparagna et al. (1995) J. Biol. Chem. 270, 27510-27515]. The existence and properties of RaM in heart mitochondria, however, are unknown and are the basis for this study. We show that RaM functions in heart mitochondria with some of the characteristics of RaM in liver, but its activation and inhibition are quite different. It is feasible that these differences represent different physiological adaptations in these two tissues. In both tissues, RaM is highly conductive at the beginning of a Ca(2+) pulse, but is inhibited by the rising [Ca(2+)] of the pulse itself. In heart mitochondria, the time required at low [Ca(2+)] to reestablish high Ca(2+) conductivity via RaM i.e. the 'resetting time' of RaM is much longer than in liver. RaM in liver mitochondria is strongly activated by spermine, activated by ATP or GTP and unaffected by ADP and AMP. In heart, RaM is activated much less strongly by spermine and unaffected by ATP or GTP. RaM in heart is strongly inhibited by AMP and has a biphasic response to ADP; it is activated at low concentrations and inhibited at high concentrations. Finally, an hypothesis consistent with the data and characteristics of liver and heart is presented to explain how RaM may function to control the rate of oxidative phosphorylation in each tissue. Under this hypothesis, RaM functions to create a brief, high free Ca(2+) concentration inside mitochondria which may activate intramitochondrial metabolic reactions with relatively small amounts of Ca(2+) uptake. This hypothesis is consistent with the view that intramitochondrial [Ca(2+)] may be used to control the rate of ADP phosphorylation in such a way as to minimize the probability of activating the Ca(2+)-induced mitochondrial membrane permeability transition (MPT).

  13. Synthetic river valleys: Creating prescribed topography for form-process inquiry and river rehabilitation design

    NASA Astrophysics Data System (ADS)

    Brown, R. A.; Pasternack, G. B.; Wallender, W. W.

    2014-06-01

    The synthesis of artificial landforms is complementary to geomorphic analysis because it affords a reflection on both the characteristics and intrinsic formative processes of real world conditions. Moreover, the applied terminus of geomorphic theory is commonly manifested in the engineering and rehabilitation of riverine landforms where the goal is to create specific processes associated with specific morphology. To date, the synthesis of river topography has been explored outside of geomorphology through artistic renderings, computer science applications, and river rehabilitation design; while within geomorphology it has been explored using morphodynamic modeling, such as one-dimensional simulation of river reach profiles, two-dimensional simulation of river networks, and three-dimensional simulation of subreach scale river morphology. To date, no approach allows geomorphologists, engineers, or river rehabilitation practitioners to create landforms of prescribed conditions. In this paper a method for creating topography of synthetic river valleys is introduced that utilizes a theoretical framework that draws from fluvial geomorphology, computer science, and geometric modeling. Such a method would be valuable to geomorphologists in understanding form-process linkages as well as to engineers and river rehabilitation practitioners in developing design surfaces that can be rapidly iterated. The method introduced herein relies on the discretization of river valley topography into geometric elements associated with overlapping and orthogonal two-dimensional planes such as the planform, profile, and cross section that are represented by mathematical functions, termed geometric element equations. Topographic surfaces can be parameterized independently or dependently using a geomorphic covariance structure between the spatial series of geometric element equations. To illustrate the approach and overall model flexibility examples are provided that are associated with mountain, lowland, and hybrid synthetic river valleys. To conclude, recommended advances such as multithread channels are discussed along with potential applications.

  14. Customizing Laboratory Information Systems: Closing the Functionality Gap.

    PubMed

    Gershkovich, Peter; Sinard, John H

    2015-09-01

    Highly customizable laboratory information systems help to address great variations in laboratory workflows, typical in Pathology. Often, however, built-in customization tools are not sufficient to add all of the desired functionality and improve systems interoperability. Emerging technologies and advances in medicine often create a void in functionality that we call a functionality gap. These gaps have distinct characteristics—a persuasive need to change the way a pathology group operates, the general availability of technology to address the missing functionality, the absence of this technology from your laboratory information system, and inability of built-in customization tools to address it. We emphasize the pervasive nature of these gaps, the role of pathology informatics in closing them, and suggest methods on how to achieve that. We found that a large number of the papers in the Journal of Pathology Informatics are concerned with these functionality gaps, and an even larger proportion of electronic posters and abstracts presented at the Pathology Informatics Summit conference each year deal directly with these unmet needs in pathology practice. A rapid, continuous, and sustainable approach to closing these gaps is critical for Pathology to provide the highest quality of care, adopt new technologies, and meet regulatory and financial challenges. The key element of successfully addressing functionality gaps is gap ownership—the ability to control the entire pathology information infrastructure with access to complementary systems and components. In addition, software developers with detailed domain expertise, equipped with right tools and methodology can effectively address these needs as they emerge.

  15. Rapid cycling medical synchrotron and beam delivery system

    DOEpatents

    Peggs, Stephen G [Port Jefferson, NY; Brennan, J Michael [East Northport, NY; Tuozzolo, Joseph E [Sayville, NY; Zaltsman, Alexander [Commack, NY

    2008-10-07

    A medical synchrotron which cycles rapidly in order to accelerate particles for delivery in a beam therapy system. The synchrotron generally includes a radiofrequency (RF) cavity for accelerating the particles as a beam and a plurality of combined function magnets arranged in a ring. Each of the combined function magnets performs two functions. The first function of the combined function magnet is to bend the particle beam along an orbital path around the ring. The second function of the combined function magnet is to focus or defocus the particle beam as it travels around the path. The radiofrequency (RF) cavity is a ferrite loaded cavity adapted for high speed frequency swings for rapid cycling acceleration of the particles.

  16. Progress towards a rapidly rotating ultracold Fermi gas

    NASA Astrophysics Data System (ADS)

    Hu, Ming-Guang; van de Graaff, Michael; Cornell, Eric; Jin, Deborah

    2015-05-01

    We are designing an experiment with the goal of creating a rapidly rotating ultracold Fermi gas, which is promising system in which to study quantum Hall physics. We propose to use selective evaporation of a gas that has been initialized with a modest rotation rate to increase the angular momentum per particle in order to reach rapid rotation. We have performed simulations of this evaporation process for a model optical trap potential. Achieving rapid rotation will require a very smooth, very harmonic, and dynamically variable optical trap. We plan to use a setup consisting of two acousto-optical modulators to ``paint'' an optical dipole trapping potential that can be made smooth, radially symmetric, and harmonic. This project is supported by NSF, NIST, NASA.

  17. High-resolution Fourier-Domain Optical Coherence Tomography and Microperimetric Findings After Macula-off Retinal Detachment Repair

    PubMed Central

    Smith, Allison J.; Telander, David G.; Zawadzki, Robert J.; Choi, Stacey S.; Morse, Lawrence S.; Werner, John S.; Park, Susanna S.

    2009-01-01

    Objective To evaluate the morphologic changes in the macula of subjects with repaired macula-off retinal detachment (RD) using high-resolution Fourier-domain optical coherence tomography (FD OCT) and to perform functional correlation in a subset of patients using microperimetry (MP-1). Design Prospective observational case series. Participants Seventeen eyes from 17 subjects who had undergone anatomically successful repair for macula-off, rhegmatogenous RD at least 3 months earlier and without visually significant maculopathy on funduscopy. Methods FD OCT with axial and transverse resolution of 4.5 μm and 10 to 15 μm, respectively, was used to obtain rapid serial B-scans of the macula, which were compared with that from Stratus OCT. The FD OCT B-scans were used to create a 3-dimensional volume, from which en face C-scans were created. Among 11 patients, MP-1 was performed to correlate morphologic changes with visual function. Main Outcome Measures Stratus OCT scans, FD OCT scans, and MP-1 data. Results Stratus OCT and FD OCT images of the macula were obtained 3 to 30 months (mean 7 months) postoperatively in all eyes. Although Stratus OCT revealed photoreceptor disruption in 2 eyes (12%), FD OCT showed photoreceptor disruption in 13 eyes (76%). This difference was statistically significant (P<0.001, χ2). Both imaging modalities revealed persistent subretinal fluid in 2 eyes (12%) and lamellar hole in 1 eye. Among 7 subjects who had reliable MP-1 data, areas of abnormal function corresponded to areas of photoreceptor layer disruptions or persistent subretinal fluid in 5 subjects (71%); one subject had normal FD OCT and MP-1. Conclusions Photoreceptor disruption after macula-off RD repair is a common abnormality in the macula that is detected better with FD OCT than Stratus OCT. A good correlation between MP-1 abnormality and presence of photoreceptor disruption or subretinal fluid on FD OCT demonstrates that these anatomic abnormalities contribute to decreased visual function after successful repair. PMID:18672289

  18. Thiol/disulfide redox states in signaling and sensing

    PubMed Central

    Go, Young-Mi; Jones, Dean P.

    2015-01-01

    Rapid advances in redox systems biology are creating new opportunities to understand complexities of human disease and contributions of environmental exposures. New understanding of thiol-disulfide systems have occurred during the past decade as a consequence of the discoveries that thiol and disulfide systems are maintained in kinetically controlled steady-states displaced from thermodynamic equilibrium, that a widely distributed family of NADPH oxidases produces oxidants that function in cell signaling, and that a family of peroxiredoxins utilize thioredoxin as a reductant to complement the well-studied glutathione antioxidant system for peroxide elimination and redox regulation. This review focuses on thiol/disulfide redox state in biologic systems and the knowledge base available to support development of integrated redox systems biology models to better understand the function and dysfunction of thiol-disulfide redox systems. In particular, central principles have emerged concerning redox compartmentalization and utility of thiol/disulfide redox measures as indicators of physiologic function. Advances in redox proteomics show that, in addition to functioning in protein active sites and cell signaling, cysteine residues also serve as redox sensors to integrate biologic functions. These advances provide a framework for translation of redox systems biology concepts to practical use in understanding and treating human disease. Biological responses to cadmium, a widespread environmental agent, are used to illustrate the utility of these advances to the understanding of complex pleiotropic toxicities. PMID:23356510

  19. Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity

    PubMed Central

    Justice, Jamie N.; LaRocca, Thomas J.

    2015-01-01

    Abstract Most nations of the world are undergoing rapid and dramatic population ageing, which presents great socio‐economic challenges, as well as opportunities, for individuals, families, governments and societies. The prevailing biomedical strategy for reducing the healthcare impact of population ageing has been ‘compression of morbidity’ and, more recently, to increase healthspan, both of which seek to extend the healthy period of life and delay the development of chronic diseases and disability until a brief period at the end of life. Indeed, a recently established field within biological ageing research, ‘geroscience’, is focused on healthspan extension. Superimposed on this background are new attitudes and demand for ‘optimal longevity’ – living long, but with good health and quality of life. A key obstacle to achieving optimal longevity is the progressive decline in physiological function that occurs with ageing, which causes functional limitations (e.g. reduced mobility) and increases the risk of chronic diseases, disability and mortality. Current efforts to increase healthspan centre on slowing the fundamental biological processes of ageing such as inflammation/oxidative stress, increased senescence, mitochondrial dysfunction, impaired proteostasis and reduced stress resistance. We propose that optimization of physiological function throughout the lifespan should be a major emphasis of any contemporary biomedical policy addressing global ageing. Effective strategies should delay, reduce in magnitude or abolish reductions in function with ageing (primary prevention) and/or improve function or slow further declines in older adults with already impaired function (secondary prevention). Healthy lifestyle practices featuring regular physical activity and ideal energy intake/diet composition represent first‐line function‐preserving strategies, with pharmacological agents, including existing and new pharmaceuticals and novel ‘nutraceutical’ compounds, serving as potential complementary approaches. Future research efforts should focus on defining the temporal patterns of functional declines with ageing, identifying the underlying mechanisms and modulatory factors involved, and establishing the most effective lifestyle practices and pharmacological options for maintaining function. Continuing development of effective behavioural approaches for enhancing adherence to healthy ageing practices in diverse populations, and ongoing analysis of the socio‐economic costs and benefits of healthspan extension will be important supporting goals. To meet the demands created by rapid population ageing, a new emphasis in physiological geroscience is needed, which will require the collaborative, interdisciplinary efforts of investigators working throughout the translational research continuum from basic science to public health. PMID:25639909

  20. Pericytes as Inducers of Rapid, Matrix Metalloproteinase-9-Dependent Capillary Damage during Ischemia

    PubMed Central

    Underly, Robert G.; Levy, Manuel; Hartmann, David A.; Grant, Roger I.; Watson, Ashley N.

    2017-01-01

    Blood–brain barrier disruption (BBB) and release of toxic blood molecules into the brain contributes to neuronal injury during stroke and other cerebrovascular diseases. While pericytes are builders and custodians of the BBB in the normal brain, their impact on BBB integrity during ischemia remains unclear. We imaged pericyte-labeled transgenic mice with in vivo two-photon microscopy to examine the relationship between pericytes and blood plasma leakage during photothrombotic occlusion of cortical capillaries. Upon cessation of capillary flow, we observed that plasma leakage occurred with three times greater frequency in regions where pericyte somata adjoined the endothelium. Pericyte somata covered only 7% of the total capillary length in cortex, indicating that a disproportionate amount of leakage occurred from a small fraction of the capillary bed. Plasma leakage was preceded by rapid activation of matrix metalloproteinase (MMP) at pericyte somata, which was visualized at high resolution in vivo using a fluorescent probe for matrix metalloproteinase-2/9 activity, fluorescein isothiocyanate (FITC)-gelatin. Coinjection of an MMP-9 inhibitor, but not an MMP-2 inhibitor, reduced pericyte-associated FITC-gelatin fluorescence and plasma leakage. These results suggest that pericytes contribute to rapid and localized proteolytic degradation of the BBB during cerebral ischemia. SIGNIFICANCE STATEMENT Pericytes are a key component of the neurovascular unit and are essential for normal BBB function. However, during acute ischemia, we find that pericytes are involved in creating rapid and heterogeneous BBB disruption in the capillary bed. The mechanism by which pericytes contribute to BBB damage warrants further investigation, as it may yield new therapeutic targets for acute stroke injury and other neurological diseases involving capillary flow impairment. PMID:28053036

  1. A blueprint for strategic urban research: the urban piazza

    PubMed Central

    Kourtit, Karima; Nijkamp, Peter; Franklin, Rachel S.; Rodríguez-Pose, Andrés

    2014-01-01

    Urban research in many countries has failed to keep up with the pace of rapidly and constantly evolving urban change. The growth of cities, the increasing complexity of their functions and the complex intra- and inter-urban linkages in this ‘urban century’ demand new approaches to urban analysis, which, from a systemic perspective, supersede the existing fragmentation in urban studies. In this paper we propose the concept of the urban piazza as a framework in order to address some of the inefficiencies associated with current urban analysis. By combining wealth-creating potential with smart urban mobility, ecological resilience and social buzz in this integrated and systemic framework, the aim is to set the basis for a ‘New Urban World’ research blueprint, which lays the foundation for a broader and more integrated research programme for strategic urban issues. PMID:25339782

  2. Quantifying lipid changes in various membrane compartments using lipid binding protein domains.

    PubMed

    Várnai, Péter; Gulyás, Gergő; Tóth, Dániel J; Sohn, Mira; Sengupta, Nivedita; Balla, Tamas

    2017-06-01

    One of the largest challenges in cell biology is to map the lipid composition of the membranes of various organelles and define the exact location of processes that control the synthesis and distribution of lipids between cellular compartments. The critical role of phosphoinositides, low-abundant lipids with rapid metabolism and exceptional regulatory importance in the control of almost all aspects of cellular functions created the need for tools to visualize their localizations and dynamics at the single cell level. However, there is also an increasing need for methods to determine the cellular distribution of other lipids regulatory or structural, such as diacylglycerol, phosphatidic acid, or other phospholipids and cholesterol. This review will summarize recent advances in this research field focusing on the means by which changes can be described in more quantitative terms. Published by Elsevier Ltd.

  3. Self-Cleaning Anticondensing Glass via Supersonic Spraying of Silver Nanowires, Silica, and Polystyrene Nanoparticles.

    PubMed

    Lee, Jong-Gun; An, Seongpil; Kim, Tae-Gun; Kim, Min-Woo; Jo, Hong-Seok; Swihart, Mark T; Yarin, Alexander L; Yoon, Sam S

    2017-10-11

    We have sequentially deposited layers of silver nanowires (AgNWs), silicon dioxide (SiO 2 ) nanoparticles, and polystyrene (PS) nanoparticles on uncoated glass by a rapid low-cost supersonic spraying method to create antifrosting, anticondensation, and self-cleaning glass. The conductive silver nanowire network embedded in the coating allows electrical heating of the glass surface. Supersonic spraying is a single-step coating technique that does not require vacuum. The fabricated multifunctional glass was characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), ultraviolet-visible spectroscopy, and transmission electron microscopy (TEM). The thermal insulation and antifrosting performance were demonstrated using infrared thermal imaging. The reliability of the electrical heating function was tested through extensive cycling. This transparent multifunctional coating holds great promise for use in various smart window designs.

  4. Progress with enhancing veterinary surveillance in the United Kingdom.

    PubMed

    Lysons, R E; Gibbens, J C; Smith, L H

    2007-01-27

    The UK has experienced various animal health events that have had national impact in recent years. In response, a ;Veterinary Surveillance Strategy' (VSS) was published in 2003, with the objective of enhancing and coordinating national veterinary surveillance practice in a way that would enable important animal health events to be detected and assessed more rapidly and reliably. The VSS adopts an integrated UK-wide approach, which includes widespread engagement with interested parties both within government and beyond. It proposes enhancing surveillance through improved collaboration; transparent and defensible prioritisation of government resources to surveillance; deriving better value from existing resources, and assuring quality of the surveillance reports and source data. This article describes progress with implementing the VSS, in particular the methodology for developing a functional network and creating an effective, quality-assured, information management system, RADAR.

  5. A blueprint for strategic urban research: the urban piazza.

    PubMed

    Kourtit, Karima; Nijkamp, Peter; Franklin, Rachel S; Rodríguez-Pose, Andrés

    2014-01-01

    Urban research in many countries has failed to keep up with the pace of rapidly and constantly evolving urban change. The growth of cities, the increasing complexity of their functions and the complex intra- and inter-urban linkages in this 'urban century' demand new approaches to urban analysis, which, from a systemic perspective, supersede the existing fragmentation in urban studies. In this paper we propose the concept of the urban piazza as a framework in order to address some of the inefficiencies associated with current urban analysis. By combining wealth-creating potential with smart urban mobility, ecological resilience and social buzz in this integrated and systemic framework, the aim is to set the basis for a ' New Urban World ' research blueprint, which lays the foundation for a broader and more integrated research programme for strategic urban issues.

  6. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Gao, Xiu-Jie; Turner, Travis L.; Burton, Deborah; Brinson, L. Catherine

    2005-01-01

    The usage of shape memory materials has extended rapidly to many fields, including medical devices, actuators, composites, structures and MEMS devices. For these various applications, shape memory alloys (SMAs) are available in various forms: bulk, wire, ribbon, thin film, and porous. In this work, the focus is on SMA hybrid composites with adaptive-stiffening or morphing functions. These composites are created by using SMA ribbons or wires embedded in a polymeric based composite panel/beam. Adaptive stiffening or morphing is activated via selective resistance heating or uniform thermal loads. To simulate the thermomechanical behavior of these composites, a SMA model was implemented using ABAQUS user element interface and finite element simulations of the systems were studied. Several examples are presented which show that the implemented model can be a very useful design and simulation tool for SMA hybrid composites.

  7. VizieR Online Data Catalog: Optical/NIR light curves of SN 2009ib (Takats+, 2015)

    NASA Astrophysics Data System (ADS)

    Takats, K.; Pignata, G.; Pumo, M. L.; Paillas, E.; Zampieri, L.; Elias-Rosa, N.; Benetti, S.; Bufano, F.; Cappellaro, E.; Ergon, M.; Fraser, M.; Hamuy, M.; Inserra, C.; Kankare, E.; Smartt, S. J.; Stritzinger, M. D.; van Dyk, S. D.; Haislip, J. B.; Lacluyze, A. P.; Moore, J. P.; Reichart, D.

    2017-11-01

    Optical photometry was collected using multiple telescopes with UBVRI and u'g'r'i'z' filters, covering the phases between 13 and 262d after explosion. The basic reduction steps of the images (such as bias-subtraction, overscan-correction, flat-fielding) were carried out using the standard IRAF tasks. The photometric measurement of the SN was performed using the point-spread function (PSF) fitting technique via the SNOOPY package in IRAF. Near-infrared photometry was obtained using the Rapid Eye Mount (REM) telescope in JH bands. Dithered images of the SN field were taken in multiple sequences of five. The object images were dark- and flat-field corrected, combined to create sky images then the sky images were subtracted from the object images. The images were then registered and combined. (3 data files).

  8. Microglial migration and interactions with dendrimer nanoparticles are altered in the presence of neuroinflammation.

    PubMed

    Zhang, Fan; Nance, Elizabeth; Alnasser, Yossef; Kannan, Rangaramanujam; Kannan, Sujatha

    2016-03-22

    Microglial cells have been implicated in neuroinflammation-mediated injury in the brain, including neurodevelopmental disorders such as cerebral palsy (CP) and autism. Pro-inflammatory activation of microglial cells results in the impairment of their neuroprotective functions, leading to an exaggerated, ongoing immune dysregulation that can persist long after the initial insult. We have previously shown that dendrimer-mediated delivery of an anti-inflammatory agent can attenuate inflammation in a rabbit model of maternal inflammation-induced CP and significantly improve the motor phenotype, due to the ability of the dendrimer to selectively localize in activated microglia. To elucidate the interactions between dendrimers and microglia, we created an organotypic whole-hemisphere brain slice culture model from newborn rabbits with and without exposure to inflammation in utero. We then used this model to analyze the dynamics of microglial migration and their interactions with dendrimers in the presence of neuroinflammation. Microglial cells in animals with CP had an amoeboid morphology and impaired cell migration, demonstrated by decreased migration distance and velocity when compared to cells in healthy, age-matched controls. However, this decreased migration was associated with a greater, more rapid dendrimer uptake compared to microglial cells from healthy controls. This study demonstrates that maternal intrauterine inflammation is associated with impaired microglial function and movement in the newborn brain. This microglial impairment may play a role in the development of ongoing brain injury and CP in the offspring. Increased uptake of dendrimers by the "impaired" microglia can be exploited to deliver drugs specifically to these cells and modulate their functions. Host tissue and target cell characteristics are important aspects to be considered in the design and evaluation of targeted dendrimer-based nanotherapeutics for improved and sustained efficacy. This ex vivo model also provides a rapid screening tool for evaluation of the effects of various therapies on microglial function.

  9. Test readiness assessment summary for Integrated Dynamic Transit Operations (IDTO).

    DOT National Transportation Integrated Search

    2012-10-01

    In support of USDOTs Intelligent Transportation Systems (ITS) Mobility Program, the Dynamic Mobility Applications (DMA) program seeks to create applications that fully leverage frequently collected and rapidly disseminated multi-source data gat...

  10. Fabrication of spherical microlens array by combining lapping on silicon wafer and rapid surface molding

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohua; Zhou, Tianfeng; Zhang, Lin; Zhou, Wenchen; Yu, Jianfeng; Lee, L. James; Yi, Allen Y.

    2018-07-01

    Silicon is a promising mold material for compression molding because of its properties of hardness and abrasion resistance. Silicon wafers with carbide-bonded graphene coating and micro-patterns were evaluated as molds for the fabrication of microlens arrays. This study presents an efficient but flexible manufacturing method for microlens arrays that combines a lapping method and a rapid molding procedure. Unlike conventional processes for microstructures on silicon wafers, such as diamond machining and photolithography, this research demonstrates a unique approach by employing precision steel balls and diamond slurries to create microlenses with accurate geometry. The feasibility of this method was demonstrated by the fabrication of several microlens arrays with different aperture sizes and pitches on silicon molds. The geometrical accuracy and surface roughness of the microlens arrays were measured using an optical profiler. The measurement results indicated good agreement with the optical profile of the design. The silicon molds were then used to copy the microstructures onto polymer substrates. The uniformity and quality of the samples molded through rapid surface molding were also assessed and statistically quantified. To further evaluate the optical functionality of the molded microlens arrays, the focal lengths of the microlens arrays were measured using a simple optical setup. The measurements showed that the microlens arrays molded in this research were compatible with conventional manufacturing methods. This research demonstrated an alternative low-cost and efficient method for microstructure fabrication on silicon wafers, together with the follow-up optical molding processes.

  11. Economic Consequence Analysis of Disasters: The ECAT Software Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Adam; Prager, Fynn; Chen, Zhenhua

    This study develops a methodology for rapidly obtaining approximate estimates of the economic consequences from numerous natural, man-made and technological threats. This software tool is intended for use by various decision makers and analysts to obtain estimates rapidly. It is programmed in Excel and Visual Basic for Applications (VBA) to facilitate its use. This tool is called E-CAT (Economic Consequence Analysis Tool) and accounts for the cumulative direct and indirect impacts (including resilience and behavioral factors that significantly affect base estimates) on the U.S. economy. E-CAT is intended to be a major step toward advancing the current state of economicmore » consequence analysis (ECA) and also contributing to and developing interest in further research into complex but rapid turnaround approaches. The essence of the methodology involves running numerous simulations in a computable general equilibrium (CGE) model for each threat, yielding synthetic data for the estimation of a single regression equation based on the identification of key explanatory variables (threat characteristics and background conditions). This transforms the results of a complex model, which is beyond the reach of most users, into a "reduced form" model that is readily comprehensible. Functionality has been built into E-CAT so that its users can switch various consequence categories on and off in order to create customized profiles of economic consequences of numerous risk events. E-CAT incorporates uncertainty on both the input and output side in the course of the analysis.« less

  12. Rapid optimization of MRM-MS instrument parameters by subtle alteration of precursor and product m/z targets.

    PubMed

    Sherwood, Carly A; Eastham, Ashley; Lee, Lik Wee; Risler, Jenni; Mirzaei, Hamid; Falkner, Jayson A; Martin, Daniel B

    2009-07-01

    Multiple reaction monitoring (MRM) is a highly sensitive method of targeted mass spectrometry (MS) that can be used to selectively detect and quantify peptides based on the screening of specified precursor peptide-to-fragment ion transitions. MRM-MS sensitivity depends critically on the tuning of instrument parameters, such as collision energy and cone voltage, for the generation of maximal product ion signal. Although generalized equations and values exist for such instrument parameters, there is no clear indication that optimal signal can be reliably produced for all types of MRM transitions using such an algorithmic approach. To address this issue, we have devised a workflow functional on both Waters Quattro Premier and ABI 4000 QTRAP triple quadrupole instruments that allows rapid determination of the optimal value of any programmable instrument parameter for each MRM transition. Here, we demonstrate the strategy for the optimizations of collision energy and cone voltage, but the method could be applied to other instrument parameters, such as declustering potential, as well. The workflow makes use of the incremental adjustment of the precursor and product m/z values at the hundredth decimal place to create a series of MRM targets at different collision energies that can be cycled through in rapid succession within a single run, avoiding any run-to-run variability in execution or comparison. Results are easily visualized and quantified using the MRM software package Mr. M to determine the optimal instrument parameters for each transition.

  13. Rapid Optimization of MRM-MS Instrument Parameters by Subtle Alteration of Precursor and Product m/z Targets

    PubMed Central

    Sherwood, Carly A.; Eastham, Ashley; Lee, Lik Wee; Risler, Jenni; Mirzaei, Hamid; Falkner, Jayson A.; Martin, Daniel B.

    2009-01-01

    Multiple reaction monitoring (MRM) is a highly sensitive method of targeted mass spectrometry (MS) that can be used to selectively detect and quantify peptides based on the screening of specified precursor peptide-to-fragment ion transitions. MRM-MS sensitivity depends critically on the tuning of instrument parameters, such as collision energy and cone voltage, for the generation of maximal product ion signal. Although generalized equations and values exist for such instrument parameters, there is no clear indication that optimal signal can be reliably produced for all types of MRM transitions using such an algorithmic approach. To address this issue, we have devised a workflow functional on both Waters Quattro Premier and ABI 4000 QTRAP triple quadrupole instruments that allows rapid determination of the optimal value of any programmable instrument parameter for each MRM transition. Here, we demonstrate the strategy for the optimizations of collision energy and cone voltage, but the method could be applied to other instrument parameters, such as declustering potential, as well. The workflow makes use of the incremental adjustment of the precursor and product m/z values at the hundredth decimal place to create a series of MRM targets at different collision energies that can be cycled through in rapid succession within a single run, avoiding any run-to-run variability in execution or comparison. Results are easily visualized and quantified using the MRM software package Mr. M to determine the optimal instrument parameters for each transition. PMID:19405522

  14. Practical aspects of treatment with target specific anticoagulants: initiation, payment and current market, transitions, and venous thromboembolism treatment.

    PubMed

    Mahan, Charles E

    2015-04-01

    Target specific anticoagulants (TSOACs) have recently been introduced to the US market for multiple indications including venous thromboembolism (VTE) prevention in total hip and knee replacement surgeries, VTE treatment and reduction in the risk of stroke in patients with non-valvular atrial fibrillation (NVAF). Currently, three TSOACs are available including rivaroxaban, apixaban, and dabigatran with edoxaban currently under Food and Drug Administration review for VTE treatment and stroke prevention in NVAF. The introduction of these agents has created a paradigm shift in anticoagulation by considerably simplifying treatment and anticoagulant initiation for patients by giving clinicians the opportunity to use a rapid onset, rapid offset, oral agent. The availability of these rapid onset TSOACs is allowing for outpatient treatment of low risk pulmonary embolism and deep vein thrombosis which can greatly reduce healthcare costs by avoiding inpatient hospitalizations and treatment for the disease. Additionally with this practice, the complications of an inpatient hospitalization may also be avoided such as nosocomial infections. Single-agent approaches with TSOACs represent a paradigm shift in the treatment of VTE versus the complicated overlap of a parenteral agent with warfarin. Transitions between anticoagulants, including TSOACs, are a high-risk period for the patient, and clinicians must carefully consider patient characteristics such as renal function as well as the agents that are being transitioned. TSOAC use appears to be growing slowly with improved payment coverage throughout the US.

  15. Bilateral cross-bite treated by repeated rapid maxillary expansions: a 17-year follow-up case.

    PubMed

    Cozzani, M; Mazzotta, L; Caprioglio, A

    2014-07-01

    The objective of this paper is to show the clinical results after the repeated application of a Haas expander for rapid maxillary expansion (RME) anchored onto deciduous teeth in a 7-year-old patient that presented bilateral cross-bite, superior crowding and no space for permanent lateral incisors eruption. A first Haas expander was applied to the patient. She was told to activate it once a day, each activation was equal to 0.20 mm. After the first RME, the bilateral cross-bite was solved but still there was not enough space for lateral incisor eruption. A second and then a third Haas expander were applied, with the same activation protocol as the first one, in order to gain space in the anterior region and to achieve proper eruption of the lateral incisors. The patient was then treated with fixed appliances. At debonding the patient presented well aligned arch-forms: space for lateral incisor eruption was gained and superior crowding was solved. Bilateral cross-bite was also corrected. She was seen again 10 years and 17 years after expansions: she showed no relapse and presented a good functional occlusion that had remained stable, and an aesthetically pleasant smile, however she exhibited gingival recessions. Repeated rapid maxillary expansion, anchored onto deciduous teeth, performed in early mixed dentition represents a safe and successful treatment to correct severe bilateral cross- bites and to create space for maxillary incisor eruption.

  16. Induction of atherosclerosis in mice and hamsters without germline genetic engineering.

    PubMed

    Bjørklund, Martin Maeng; Hollensen, Anne Kruse; Hagensen, Mette Kallestrup; Dagnaes-Hansen, Frederik; Christoffersen, Christina; Mikkelsen, Jacob Giehm; Bentzon, Jacob Fog

    2014-05-23

    Atherosclerosis can be achieved in animals by germline genetic engineering, leading to hypercholesterolemia, but such models are constrained to few species and strains, and they are difficult to combine with other powerful techniques involving genetic manipulation or variation. To develop a method for induction of atherosclerosis without germline genetic engineering. Recombinant adeno-associated viral vectors were engineered to encode gain-of-function proprotein convertase subtilisin/kexin type 9 mutants, and mice were given a single intravenous vector injection followed by high-fat diet feeding. Plasma proprotein convertase subtilisin/kexin type 9 and total cholesterol increased rapidly and were maintained at high levels, and after 12 weeks, mice had atherosclerotic lesions in the aorta. Histology of the aortic root showed progression of lesions to the fibroatheromatous stage. To demonstrate the applicability of this method for rapid analysis of the atherosclerosis susceptibility of a mouse strain and for providing temporal control over disease induction, we demonstrated the accelerated atherosclerosis of mature diabetic Akita mice. Furthermore, the versatility of this approach for creating atherosclerosis models also in nonmurine species was demonstrated by inducing hypercholesterolemia and early atherosclerosis in Golden Syrian hamsters. Single injections of proprotein convertase subtilisin/kexin type 9-encoding recombinant adeno-associated viral vectors are a rapid and versatile method to induce atherosclerosis in animals. This method should prove useful for experiments that are high-throughput or involve genetic techniques, strains, or species that do not combine well with current genetically engineered models. © 2014 American Heart Association, Inc.

  17. SU-E-T-97: An Analysis of Knowledge Based Planning for Stereotactic Body Radiation Therapy of the Spine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foy, J; Marsh, R; Owen, D

    2015-06-15

    Purpose: Creating high quality SBRT treatment plans for the spine is often tedious and time consuming. In addition, the quality of treatment plans can vary greatly between treatment facilities due to inconsistencies in planning methods. This study investigates the performance of knowledge-based planning (KBP) for spine SBRT. Methods: Treatment plans were created for 28 spine SBRT patients. Each case was planned to meet strict dose objectives and guidelines. After physician and physicist approval, the plans were added to a custom model in a KBP system (RapidPlan, Varian Eclipse v13.5). The model was then trained to be able to predict estimatedmore » DVHs and provide starting objective functions for future patients based on both generated and manual objectives. To validate the model, ten additional spine SBRT cases were planned manually as well as using the model objectives. Plans were compared based on planning time and quality (ability to meet the plan objectives, including dose metrics and conformity). Results: The average dose to the spinal cord and the cord PRV differed between the validation and control plans by <0.25% demonstrating iso-toxicity. Six out of 10 validation plans met all dose objectives without the need for modifications, and overall, target dose coverage was increased by about 4.8%. If the validation plans did not meet the dose requirements initially, only 1–2 iterations of modifying the planning parameters were required before an acceptable plan was achieved. While manually created plans usually required 30 minutes to 3 hours to create, KBP can be used to create similar quality plans in 15–20 minutes. Conclusion: KBP for spinal tumors has shown to greatly decrease the amount of time required to achieve high quality treatment plans with minimal human intervention and could feasibly be used to standardize plan quality between institutions. Supported by Varian Medical Systems.« less

  18. Creating Sub-50 nm Nanofluidic Junctions in PDMS Microchip via Self-Assembly Process of Colloidal Silica Beads for Electrokinetic Concentration of Biomolecules

    PubMed Central

    Syed, A.; Mangano, L.; Mao, P.; Han, J.

    2014-01-01

    In this work we describe a novel and simple self-assembly of colloidal silica beads to create nanofluidic junction between two microchannels. The nanoporous membrane was used to induce ion concentration polarization inside the microchannel and this electrokinetic preconcentration system allowed rapid concentration of DNA samples by ∼1700 times and protein samples by ∼100 times within 5 minutes. PMID:25254651

  19. Fast-acting valve actuator

    DOEpatents

    Cho, Nakwon

    1980-01-01

    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  20. Taxonomic update on proposed nomenclature and classification changes for bacteria of medical importance, 2015.

    PubMed

    Janda, J Michael

    2016-10-01

    A key aspect of medical, public health, and diagnostic microbiology laboratories is the accurate and rapid reporting and communication regarding infectious agents of clinical significance. Microbial taxonomy in the age of molecular diagnostics and phylogenetics creates changes in taxonomy at a rapid rate further complicating this process. This update focuses on the description of new species and classification changes proposed in 2015. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. RAPID Toolkit Creates Smooth Flow Toward New Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Aaron; Young, Katherine

    2016-07-01

    Uncertainty about the duration and outcome of the permitting process has historically been seen as a deterrent to investment in renewable energy projects, including new hydropower projects. What if the process were clearer, smoother, faster? That's the purpose of the Regulatory and Permitting Information Desktop (RAPID) Toolkit, developed by the National Renewable Energy Laboratory (NREL) with funding from the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the Western Governors' Association. Now, the RAPID Toolkit is being expanded to include information about developing and permitting hydropower projects, with initial outreach and information gathering occurring duringmore » 2015.« less

  2. The Impact of Lightning on Hurricane Rapid Intensification Forecasts Using the HWRF Model

    NASA Astrophysics Data System (ADS)

    Rosado, K.; Tallapragada, V.; Jenkins, G. S.

    2016-12-01

    In 2010, the National Oceanic and Atmospheric Administration (NOAA) created the Hurricane Forecast Improvement Project (HFIP) with the main goal of improving the tropical cyclone intensity and track forecasts by 50% in ten years. One of the focus areas is the improvement of the tropical cyclone rapid intensification (RI) forecasts. In order to contribute to this task, the role of lightning during the life cycle of a tropical cyclone using the NCEP operational HWRF hurricane model has been investigated. We ask two key research questions: (1) What is the functional relationship between atmospheric moisture content, lightning, and intensity in the HWRF model? and (2) How well does the HWRF model forecast the spatial distributions of lightning before, during, and after tropical cyclone intensification, especially for RI events? In order to address those questions, a lightning parameterization scheme called the Lightning Potential Index (LPI) was implemented into the HWRF model. The selected study cases to test the LPI implementation on the 2015 HWRF (operational version) are: Earl and Joaquin (North Atlantic), Haiyan (Western North Pacific), and Patricia (Eastern North Pacific). Five-day forecasts was executed on each case study with emphasis on rapid intensification periods. An extensive analysis between observed "best track" intensity, model intensity forecast, and potential for lightning forecast was performed. Preliminary results show that: (1) strong correlation between lightning and intensity changes does exists; and (2) the potential for lightning increases to its maximum peak a few hours prior to the peak intensity of the tropical cyclone. LPI peak values could potentially serve as indicator for future rapid intensification periods. Results from this investigation are giving us a better understanding of the mechanism behind lightning as a proxy for tropical cyclone steady state intensification and tropical cyclone rapid intensification processes. Improvement of lightning forecast has the potential to improve HWRF hurricane model intensity forecasts.

  3. `Unlearning' has a stabilizing effect in collective memories

    NASA Astrophysics Data System (ADS)

    Hopfield, J. J.; Feinstein, D. I.; Palmer, R. G.

    1983-07-01

    Crick and Mitchison1 have presented a hypothesis for the functional role of dream sleep involving an `unlearning' process. We have independently carried out mathematical and computer modelling of learning and `unlearning' in a collective neural network of 30-1,000 neurones. The model network has a content-addressable memory or `associative memory' which allows it to learn and store many memories. A particular memory can be evoked in its entirety when the network is stimulated by any adequate-sized subpart of the information of that memory2. But different memories of the same size are not equally easy to recall. Also, when memories are learned, spurious memories are also created and can also be evoked. Applying an `unlearning' process, similar to the learning processes but with a reversed sign and starting from a noise input, enhances the performance of the network in accessing real memories and in minimizing spurious ones. Although our model was not motivated by higher nervous function, our system displays behaviours which are strikingly parallel to those needed for the hypothesized role of `unlearning' in rapid eye movement (REM) sleep.

  4. Space Shuttle Debris Impact Tool Assessment Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard; Rayos, Elonsio M.; Campbell, Charles H.; Rickman, Steven L.; Larsen, Curtis E.

    2007-01-01

    Complex computer codes are used to estimate thermal and structural reentry loads on the Shuttle Orbiter induced by ice and foam debris impact during ascent. Such debris can create cavities in the Shuttle Thermal Protection System. The sizes and shapes of these cavities are approximated to accommodate a code limitation that requires simple "shoebox" geometries to describe the cavities -- rectangular areas and planar walls that are at constant angles with respect to vertical. These approximations induce uncertainty in the code results. The Modern Design of Experiments (MDOE) has recently been applied to develop a series of resource-minimal computational experiments designed to generate low-order polynomial graduating functions to approximate the more complex underlying codes. These polynomial functions were then used to propagate cavity geometry errors to estimate the uncertainty they induce in the reentry load calculations performed by the underlying code. This paper describes a methodological study focused on evaluating the application of MDOE to future operational codes in a rapid and low-cost way to assess the effects of cavity geometry uncertainty.

  5. Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication.

    PubMed

    Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Bae, Hojae; Matsue, Tomokazu; Khademhosseini, Ali

    2014-03-19

    Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices.

  6. Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication

    PubMed Central

    Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Bae, Hojae; Matsue, Tomokazu; Khademhosseini, Ali

    2014-01-01

    Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices. PMID:24642903

  7. Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication

    NASA Astrophysics Data System (ADS)

    Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Bae, Hojae; Matsue, Tomokazu; Khademhosseini, Ali

    2014-03-01

    Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices.

  8. Simultaneous MRI and PET imaging of a rat brain

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan K.; Sendhil Velan, S.; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Zorn, Carl; Marano, Gary D.

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  9. The 2011 mileage-based user fee symposium.

    DOT National Transportation Integrated Search

    2011-09-01

    "The fuel tax is rapidly losing its ability to support system needs. Federal environmental : regulations and the escalating price of fossil fuels have created a strong incentive to develop and : utilize more fuel-efficient vehicles, which will drive ...

  10. Lightweight aggregate abrasion study.

    DOT National Transportation Integrated Search

    1963-02-01

    The rapid increase in the use of lightweight aggregates in structural concrete has created a number of problems for the Materials Engineer in evaluating this type aggregate. Exhaustive studies are being made of a number of properties of lightweight a...

  11. Rapid prototyping to design a customized locking plate for pancarpal arthrodesis in a giant breed dog.

    PubMed

    Petazzoni, M; Nicetto, T

    2014-01-01

    This report describes the treatment of traumatic carpal hyperextension in a giant breed dog by pancarpal arthrodesis using a custom-made Fixin locking plate, created with the aid of a three-dimensional plastic model of the bones of the antebrachium produced by rapid prototyping technology. A three-year-old 104 kg male Mastiff dog was admitted for treatment of carpal hyperextension injury. After diagnosis of carpal instability, surgery was recommended. Computed tomography images were used to create a life-size three-dimensional plastic model of the forelimb. The model was used as the basis for constructing a customized 12-hole Fixin locking plate. The plate was used to attain successful pancarpal arthrodesis in the animal. Radiographic examination after 74 and 140 days revealed signs of osseous union of the arthrodesis. Further clinical and radiographic follow-up examination three years later did not reveal any changes in implant position or complications.

  12. Quantitating protein synthesis, degradation, and endogenous antigen processing.

    PubMed

    Princiotta, Michael F; Finzi, Diana; Qian, Shu-Bing; Gibbs, James; Schuchmann, Sebastian; Buttgereit, Frank; Bennink, Jack R; Yewdell, Jonathan W

    2003-03-01

    Using L929 cells, we quantitated the macroeconomics of protein synthesis and degradation and the microeconomics of producing MHC class I associated peptides from viral translation products. To maintain a content of 2.6 x 10(9) proteins, each cell's 6 x 10(6) ribosomes produce 4 x 10(6) proteins min(-1). Each of the cell's 8 x 10(5) proteasomes degrades 2.5 substrates min(-1), creating one MHC class I-peptide complex for each 500-3000 viral translation products degraded. The efficiency of complex formation is similar in dendritic cells and macrophages, which play a critical role in activating T cells in vivo. Proteasomes create antigenic peptides at different efficiencies from two distinct substrate pools: rapidly degraded newly synthesized proteins that clearly represent defective ribosomal products (DRiPs) and a less rapidly degraded pool in which DRiPs may also predominate.

  13. Multi-scale Finite Element Modeling of Eustachian Tube Function: Influence of Mucosal Adhesion

    PubMed Central

    Malik, J.E.; Swarts, J.D.; Ghadiali, S. N.

    2017-01-01

    The inability to open the collapsible Eustachian tube (ET) leads to the development of chronic Otitis Media (OM). Although mucosal inflammation during OM leads to increased mucin gene expression and elevated adhesion forces within the ET lumen, it is not known how changes in mucosal adhesion alter the biomechanical mechanisms of ET function. In this study, we developed a novel multi-scale finite element model of ET function in adults that utilizes adhesion spring elements to simulate changes in mucosal adhesion. Models were created for six adult subjects and dynamic patterns in muscle contraction were used to simulate the wave-like opening of the ET that occurs during swallowing. Results indicate that ET opening is highly sensitive to the level of mucosal adhesion and that exceeding a critical value of adhesion leads to rapid ET dysfunction. Parameter variation studies and sensitivity analysis indicate that increased mucosal adhesion alters the relative importance of several tissue biomechanical properties. For example, increases in mucosal adhesion reduced the sensitivity of ET function to tensor veli palatini muscle forces but did not alter the insensitivity of ET function to levator veli palatini muscle forces. Interestingly, although changes in cartilage stiffness did not significantly influence ET opening under low adhesion conditions, ET opening was highly sensitive to changes in cartilage stiffness under high adhesion conditions. Therefore, our multi-scale computational models indicate that changes in mucosal adhesion as would occur during inflammatory OM alter the biomechanical mechanisms of ET function. PMID:26891171

  14. RADIATION FROM ELECTRON PHASE SPACE HOLES AS A POSSIBLE SOURCE OF JOVIAN S-BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodrich, K. A.; Ergun, R. E., E-mail: katherine.goodrich@lasp.colorado.edu

    2015-08-10

    Radio-frequency short burst emissions (10–40 MHz), known as Jovian S-bursts, have been observed from the Jovian aurora for over fifty years. These emissions, associated with Io’s motion, have a rapidly declining frequency and an exceptionally narrow bandwidth. While it is widely believed that S-bursts are generated by the electron cyclotron maser instability, the mechanism responsible for the rapidly declining frequency and narrow bandwidth currently is not well established. We explore a hypothesis that electron phase space holes radiate or stimulate radiation in the Jovian aurora plasma environment as a possible source of S-burst emissions. Electron phase-space holes (EHs) are ubiquitousmore » in an auroral environment and travel at the implied speeds (∼20,000 km s{sup −1}) of the structures creating the Jovian S-bursts. Furthermore, EHs have the proper physical size to create the observed bandwidth, have sufficient energy content, and can create an environment whereby X mode emissions can be excited. If verified, these findings imply that EHs may be an important source of radiation from strongly magnetized or relativistic astrophysical plasmas.« less

  15. Rapid Prototyping of an Aircraft Model in an Object-Oriented Simulation

    NASA Technical Reports Server (NTRS)

    Kenney, P. Sean

    2003-01-01

    A team was created to participate in the Mars Scout Opportunity. Trade studies determined that an aircraft provided the best opportunity to complete the science objectives of the team. A high fidelity six degree of freedom flight simulation was required to provide credible evidence that the aircraft design fulfilled mission objectives and to support the aircraft design process by providing performance evaluations. The team created the simulation using the Langley Standard Real-Time Simulation in C++ (LaSRS++) application framework. A rapid prototyping approach was necessary because the team had only three months to both develop the aircraft simulation model and evaluate aircraft performance as the design and mission parameters matured. The design of LaSRS++ enabled rapid-prototyping in several ways. First, the framework allowed component models to be designed, implemented, unit-tested, and integrated quickly. Next, the framework provides a highly reusable infrastructure that allowed developers to maximize code reuse while concentrating on aircraft and mission specific features. Finally, the framework reduces risk by providing reusable components that allow developers to build a quality product with a compressed testing cycle that relies heavily on unit testing of new components.

  16. Employing health information technology in the real world to transform delivery.

    PubMed

    Gold, Marsha

    2013-11-01

    Strong leadership and a supportive culture are critical to effective organizational transformation, but organizations pursuing change also need the infrastructure and tools to do so effectively. As policy makers seek to transform healthcare systems-specifically the delivery of care-we explore the real-world connection between health information technology (HIT) and the transformation of care delivery. This study is based on interviews with diverse federal and health system leaders and federal officials. The work was funded by the Office of the National Coordinator for Health Information Technology as part of a global assessment of the Health Information Technology for Economic and Clinical Health Act. The functionalities supported by HIT are integral to creating the information flow required for innovations such as medical homes, accountable care organizations, and bundled payment. However, such functionalities require much more than the presence of electronic health records; the data must also be liquid, integrated into the work flow, and used for analysis. Even in advanced systems, it takes years to create HIT infrastructure. Building this infrastructure and transforming delivery simultaneously is difficult, although probably unavoidable, for most providers. Progress will likely be slow and will require creative strategies that take into account the real-world environment of organizations and communities. While the rapid transformation of delivery and infrastructure is appealing, both types of change will take time and will progress unevenly across the nation. Policy makers serious about transforming the delivery of healthcare can benefit by recognizing these realities and developing practical strategies to deal with them over a relatively long period of time.

  17. Computer Aided Process Planning (CAPP): The User Interface for the Fabrication Module of the Rapid Design System

    DTIC Science & Technology

    1991-01-01

    plan. The Fabrication Planning Module automatically creates a plan using information from the Feature Based Design Environment (FBDE) of the RDS. It...llll By using the user Interface, the final process plan can be modified in many different ways. The translation of a design feature to a more...for the review and modification of a process plan. The Fabrication Planning Module automatically creates a plan using information from the Feature Based

  18. Fundamentals and Methods of High Angle-of-Attack Flying Qualities Research

    DTIC Science & Technology

    1988-01-01

    the subject, Carr sites the work of Ham and Gorelick (1968) (Reference (26)) which showed that additional lift could be created by rapid pitching of...the laminar boundary layer near the leading-edge. Thicker airfoils (t/c > 0. 12), 32 NADC 88020-60 representative of figure 24b, typically create ...lift-curve can result from leading-edge flow separation as shown in figure 24a. An airplance with this type of lift-curve would exhibit little or no

  19. 3D Printer Instrumentation to Create Varied Geometries of Robotic Limbs and Heterogeneous Granular Media

    DTIC Science & Technology

    2015-05-20

    Transfer Robo Ant The 3D printer was used to rapidly prototype a robot ant . The robot ant was used to model the behavior of the fire ant and to model...computer models and 3D printed ant robots are shown below. Snake Bot We used the 3D printed to rapidly design a modular, easily-modified snake...living organism (modern mudskippers, a terrestrial fish) and extinct early tetrapods (e.g. Ichthyostega, Acanthostega) while allowing us to explore

  20. Rapid Creation and Quantitative Monitoring of High Coverage shRNA Libraries

    PubMed Central

    Bassik, Michael C.; Lebbink, Robert Jan; Churchman, L. Stirling; Ingolia, Nicholas T.; Patena, Weronika; LeProust, Emily M.; Schuldiner, Maya; Weissman, Jonathan S.; McManus, Michael T.

    2009-01-01

    Short hairpin RNA (shRNA) libraries are limited by the low efficacy of many shRNAs, giving false negatives, and off-target effects, giving false positives. Here we present a strategy for rapidly creating expanded shRNA pools (∼30 shRNAs/gene) that are analyzed by deep-sequencing (EXPAND). This approach enables identification of multiple effective target-specific shRNAs from a complex pool, allowing a rigorous statistical evaluation of whether a gene is a true hit. PMID:19448642

  1. 3D printed electromagnetic transmission and electronic structures fabricated on a single platform using advanced process integration techniques

    NASA Astrophysics Data System (ADS)

    Deffenbaugh, Paul Issac

    3D printing has garnered immense attention from many fields including in-office rapid prototyping of mechanical parts, outer-space satellite replication, garage functional firearm manufacture, and NASA rocket engine component fabrication. 3D printing allows increased design flexibility in the fabrication of electronics, microwave circuits and wireless antennas and has reached a level of maturity which allows functional parts to be printed. Much more work is necessary in order to perfect the processes of 3D printed electronics especially in the area of automation. Chapter 1 shows several finished prototypes of 3D printed electronics as well as newly developed techniques in fabrication. Little is known about the RF and microwave properties and applications of the standard materials which have been developed for 3D printing. Measurement of a wide variety of materials over a broad spectrum of frequencies up to 10 GHz using a variety of well-established measurement methods is performed throughout chapter 2. Several types of high frequency RF transmission lines are fabricated and valuable model-matched data is gathered and provided in chapter 3 for future designers' use. Of particular note is a fully 3D printed stripline which was automatically fabricated in one process on one machine. Some core advantages of 3D printing RF/microwave components include rapid manufacturing of complex, dimensionally sensitive circuits (such as antennas and filters which are often iteratively tuned) and the ability to create new devices that cannot be made using standard fabrication techniques. Chapter 4 describes an exemplary fully 3D printed curved inverted-F antenna.

  2. Animal models in epigenetic research: institutional animal care and use committee considerations across the lifespan.

    PubMed

    Harris, Craig

    2012-01-01

    The rapid expansion and evolution of epigenetics as a core scientific discipline have raised new questions about how endogenous and environmental factors can inform the mechanisms through which biological form and function are regulated. Existing and proposed animal models used for epigenetic research have targeted a myriad of health and disease endpoints that may be acute, chronic, and transgenerational in nature. Initiating events and outcomes may extend across the entire lifespan to elicit unanticipated phenotypes that are of particular concern to institutional animal care and use committees (IACUCs). The dynamics and plasticity of epigenetic mechanisms produce effects and consequences that are manifest differentially within discreet spatial and temporal contexts, including prenatal development, stem cells, assisted reproductive technologies, production of sexual dimorphisms, senescence, and others. Many dietary and nutritional interventions have also been shown to have a significant impact on biological functions and disease susceptibilities through altered epigenetic programming. The environmental, chemical, toxic, therapeutic, and psychosocial stressors used in animal studies to elicit epigenetic changes can become extreme and should raise IACUC concerns for the well-being and proper care of all research animals involved. Epigenetics research is rapidly becoming an integral part of the search for mechanisms in every major area of biomedical and behavioral research and will foster the continued development of new animal models. From the IACUC perspective, care must be taken to acknowledge the particular needs and concerns created by superimposition of epigenetic mechanisms over diverse fields of investigation to ensure the proper care and use of animals without impeding scientific progress.

  3. Coupling MALDI-TOF mass spectrometry protein and specialized metabolite analyses to rapidly discriminate bacterial function

    PubMed Central

    Clark, Chase M.; Costa, Maria S.

    2018-01-01

    For decades, researchers have lacked the ability to rapidly correlate microbial identity with bacterial metabolism. Since specialized metabolites are critical to bacterial function and survival in the environment, we designed a data acquisition and bioinformatics technique (IDBac) that utilizes in situ matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze protein and specialized metabolite spectra recorded from single bacterial colonies picked from agar plates. We demonstrated the power of our approach by discriminating between two Bacillus subtilis strains in <30 min solely on the basis of their differential ability to produce cyclic peptide antibiotics surfactin and plipastatin, caused by a single frameshift mutation. Next, we used IDBac to detect subtle intraspecies differences in the production of metal scavenging acyl-desferrioxamines in a group of eight freshwater Micromonospora isolates that share >99% sequence similarity in the 16S rRNA gene. Finally, we used IDBac to simultaneously extract protein and specialized metabolite MS profiles from unidentified Lake Michigan sponge-associated bacteria isolated from an agar plate. In just 3 h, we created hierarchical protein MS groupings of 11 environmental isolates (10 MS replicates each, for a total of 110 spectra) that accurately mirrored phylogenetic groupings. We further distinguished isolates within these groupings, which share nearly identical 16S rRNA gene sequence identity, based on interspecies and intraspecies differences in specialized metabolite production. IDBac is an attempt to couple in situ MS analyses of protein content and specialized metabolite production to allow for facile discrimination of closely related bacterial colonies. PMID:29686101

  4. Resuscitation of the rare biosphere contributes to pulses of ecosystem activity

    PubMed Central

    Aanderud, Zachary T.; Jones, Stuart E.; Fierer, Noah; Lennon, Jay T.

    2015-01-01

    Dormancy is a life history trait that may have important implications for linking microbial communities to the functioning of natural and managed ecosystems. Rapid changes in environmental cues may resuscitate dormant bacteria and create pulses of ecosystem activity. In this study, we used heavy-water (H182O) stable isotope probing (SIP) to identify fast-growing bacteria that were associated with pulses of trace gasses (CO2, CH4, and N2O) from different ecosystems [agricultural site, grassland, deciduous forest, and coniferous forest (CF)] following a soil-rewetting event. Irrespective of ecosystem type, a large fraction (69–74%) of the bacteria that responded to rewetting were below detection limits in the dry soils. Based on the recovery of sequences, in just a few days, hundreds of rare taxa increased in abundance and in some cases became dominant members of the rewetted communities, especially bacteria belonging to the Sphingomonadaceae, Comamonadaceae, and Oxalobacteraceae. Resuscitation led to dynamic shifts in the rank abundance of taxa that caused previously rare bacteria to comprise nearly 60% of the sequences that were recovered in rewetted communities. This rapid turnover of the bacterial community corresponded with a 5–20-fold increase in the net production of CO2 and up to a 150% reduction in the net production of CH4 from rewetted soils. Results from our study demonstrate that the rare biosphere may account for a large and dynamic fraction of a community that is important for the maintenance of bacterial biodiversity. Moreover, our findings suggest that the resuscitation of rare taxa from seed banks contribute to ecosystem functioning. PMID:25688238

  5. Smart IR780 Theranostic Nanocarrier for Tumor-Specific Therapy: Hyperthermia-Mediated Bubble-Generating and Folate-Targeted Liposomes.

    PubMed

    Guo, Fang; Yu, Meng; Wang, Jinping; Tan, Fengping; Li, Nan

    2015-09-23

    The therapeutic effectiveness of chemotherapy was hampered by dose-limiting toxicity and was optimal only when tumor cells were subjected to a maximum drug exposure. The purpose of this work was to design a dual-functional thermosensitive bubble-generating liposome (BTSL) combined with conjugated targeted ligand (folate, FA) and photothermal agent (IR780), to realize enhanced therapeutic and diagnostic functions. This drug carrier was proposed to target tumor cells owing to FA-specific binding, followed by triggering drug release due to the decomposition of encapsulated ammonium bicarbonate (NH4HCO3) (generated CO2 bubbles) by being subjected to near-infrared (near-IR) laser irradiation, creating permeable defects in the lipid bilayer that rapidly release drug. In vitro temperature-triggered release study indicated the BTSL system was sensitive to heat triggering, resulting in rapid drug release under hyperthermia. For in vitro cellular uptake experiments, different results were observed on human epidermoid carcinoma cells (KB cells) and human lung cancer cells (A549 cells) due to their different (positive or negative) response to FA receptor. Furthermore, in vivo biodistribution analysis and antitumor study indicated IR780-BTSL-FA could specifically target KB tumor cells, exhibiting longer circulation time than free drug. In the pharmacodynamics experiments, IR780-BTSL-FA efficiently inhibited tumor growth in nude mice with no evident side effect to normal tissues and organs. Results of this study demonstrated that the constructed smart theranostic nanocarrier IR780-BTSL-FA might contribute to establishment of tumor-selective and effective chemotherapy.

  6. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification.

    PubMed

    Li, Lixin; Piatek, Marek J; Atef, Ahmed; Piatek, Agnieszka; Wibowo, Anjar; Fang, Xiaoyun; Sabir, J S M; Zhu, Jian-Kang; Mahfouz, Magdy M

    2012-03-01

    Transcription activator-like effectors (TALEs) can be used as DNA-targeting modules by engineering their repeat domains to dictate user-selected sequence specificity. TALEs have been shown to function as site-specific transcriptional activators in a variety of cell types and organisms. TALE nucleases (TALENs), generated by fusing the FokI cleavage domain to TALE, have been used to create genomic double-strand breaks. The identity of the TALE repeat variable di-residues, their number, and their order dictate the DNA sequence specificity. Because TALE repeats are nearly identical, their assembly by cloning or even by synthesis is challenging and time consuming. Here, we report the development and use of a rapid and straightforward approach for the construction of designer TALE (dTALE) activators and nucleases with user-selected DNA target specificity. Using our plasmid set of 100 repeat modules, researchers can assemble repeat domains for any 14-nucleotide target sequence in one sequential restriction-ligation cloning step and in only 24 h. We generated several custom dTALEs and dTALENs with new target sequence specificities and validated their function by transient expression in tobacco leaves and in vitro DNA cleavage assays, respectively. Moreover, we developed a web tool, called idTALE, to facilitate the design of dTALENs and the identification of their genomic targets and potential off-targets in the genomes of several model species. Our dTALE repeat assembly approach along with the web tool idTALE will expedite genome-engineering applications in a variety of cell types and organisms including plants.

  7. Atrial Fibrillation: Mechanisms, Therapeutics, and Future Directions

    PubMed Central

    Pellman, Jason; Sheikh, Farah

    2017-01-01

    Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, affecting 1% to 2% of the general population. It is characterized by rapid and disorganized atrial activation leading to impaired atrial function, which can be diagnosed on an EKG by lack of a P-wave and irregular QRS complexes. AF is associated with increased morbidity and mortality and is a risk factor for embolic stroke and worsening heart failure. Current research on AF support and explore the hypothesis that initiation and maintenance of AF require pathophysiological remodeling of the atria, either specifically as in lone AF or secondary to other heart disease as in heart failure-associated AF. Remodeling in AF can be grouped into three categories that include: (i) electrical remodeling, which includes modulation of L-type Ca2+ current, various K+ currents and gap junction function; (ii) structural remodeling, which includes changes in tissues properties, size, and ultrastructure; and (iii) autonomic remodeling, including altered sympathovagal activity and hyperinnervation. Electrical, structural, and autonomic remodeling all contribute to creating an AF-prone substrate which is able to produce AF-associated electrical phenomena including a rapidly firing focus, complex multiple reentrant circuit or rotors. Although various remodeling events occur in AF, current AF therapies focus on ventricular rate and rhythm control strategies using pharmacotherapy and surgical interventions. Recent progress in the field has started to focus on the underlying substrate that drives and maintains AF (termed upstream therapies); however, much work is needed in this area. Here, we review current knowledge of AF mechanisms, therapies, and new areas of investigation. PMID:25880508

  8. Remapping Revisionist Historiography

    ERIC Educational Resources Information Center

    Gold, David

    2012-01-01

    Rhetoric and composition historiography has recently undergone a rapid transformation as scholars have complicated and challenged earlier narratives by examining diverse local histories and alternative rhetorical traditions. This revisionist scholarship has in turn created new research challenges, as scholars must now demonstrate connections…

  9. EU-US standards harmonization task group report : stakeholder engagement and comment resolution.

    DOT National Transportation Integrated Search

    2001-10-12

    Rapid advances in technology have created many new opportunities for transportation professionals to deliver safer and more efficient transportation services, and to respond proactively to increasing demand for transportation services in many areas a...

  10. Assessment of geomorphic risks and attractiveness to recreational systems: a case of Nalychevo Nature Park (Kamchatka, Russia).

    NASA Astrophysics Data System (ADS)

    Blinova, I.; Bredikhin, A.

    2012-04-01

    Attractiveness of relief, diversity and rareness were always the basic features of overall recreational attractiveness of a territory. Mountainous regions with high geomorphic diversity served as model for first recreation and tourism researches. The above features often favoured sustainability of touristic system. Unique relief forms are commonly referred to natural sites. They differ from the others in structure or have some morphological and morphometric characteristics not found in other forms of the earth's surface. Such monuments form the main natural functional kernel for a recreation system which is created and exists around them. In general, functions of geomorphological sites in recreation can be divided into socio-cultural and economic. Socio-cultural function is the principal function of recreation. It responds to the cultural or spiritual needs of people such as the knowledge in the broader sense, knowledge of the world and their place in it. The economic function is to create consumer demand for goods and services, and sometimes an entire economy sector. Natural sites are particularly vulnerable to dangerous occurrence of endogenous and exogenous processes as guarantee of environmental stability is an essential condition for a proper system functioning. This requires a comprehensive study of relief dynamics, monitoring and forecasting its evolution in recreation areas. Nowadays educational and environmental tourism in Russia develop rapidly. The unique tectonic position of Kamchatka Peninsula (the active geodynamic area dedicated to the subduction zone) formed a variety of landscapes, attracting visitors from all over the world. Recreational development of this region is slow due to remoteness and poor transport accessibility. However, there are 3 state federal reserves and one federal wildlife sanctuary, 4 natural parks of regional significance, 23 nature preserves of regional significance, and 105 natural monuments officially marked in this region. "Volcanoes of Kamchatka" are included on UNESCO's World Heritage List. In spite of general fame of Far East recreational resources there are still areas which are not affected by human activities (including recreation and tourism) in immediate proximity to the regional center. This is usually caused by poor infrastructure and lack of information about natural objects. Natural Park Nalychevo, located 50 km NE from Petropavlovsk-Kamchatsky, represents an example of wild area not involved in human activities. The diversity of natural conditions and relief forms creates the necessary prerequisites for assignment a wide range of recreation specialization: balneal, hillwalking, sports (skiing, hiking etc.), environmental education. Hierarchical polycentric structure of Nature Park hampers its management and further development. Moreover, poor infrastructure aggravates the situation. Speaking of prospects for further elaboration of Nature Park, along with high geomorphic attractiveness we should take into account enormous risks induced by active relief dynamics. Sober assessment and analysis of these peculiarities allows to manage it effectively.

  11. MGDS: Free, on-line, cutting-edge tools to enable the democratisation of geoscience data

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.; Ryan, W. B.; O'Hara, S.; Ferrini, V.; Arko, R. A.; Coplan, J.; Chan, S.; Carbotte, S. M.; Nitsche, F. O.; Bonczkowski, J.; Morton, J. J.; Weissel, R.; Leung, A.

    2010-12-01

    The availability of user-friendly, effective cyber-information resources for accessing and manipulating geoscience data has grown rapidly in recent years. Based at Lamont-Doherty Earth Observatory the MGDS group has developed a number of free tools that have wide application across the geosciences for both educators and researchers. A simple web page (http://www.marine-geo.org/) allows users to search for and download many types of data by key word, geographical region, or published citation. The popular Create Maps and Grids function and the downloadable Google Earth-compatible KML files appeal to a wide user base. MGDS MediaBank galleries (http://media.marine-geo.org/) enable users to view and download compelling images that are purposefully selected for their educational value from NSF-funded field programs. GeoMapApp (http://www.geomapapp.org), a free map-based interactive tool that works on any machine, is increasingly being adopted across a broad suite of users from middle school students to university researchers. GeoMapApp allows users to plot, manipulate and present data in an intuitive geographical reference frame. GeoMapApp offers a convenient way to explore the wide range of built-in data sets, to quickly generate maps and images that aid visualisation and, when importing their own gridded and tabular data sets, to access the same rich built-in functionality. A user guide, short multi-media tutorials, and webinar are available on-line. The regularly-updated Global Multi-Resolution Topography (GMRT) Synthesis is used as the default GeoMapApp base map and is an increasingly popular means to rapidly create location maps. Additionally, the layer manager offers a fast way to overlay and compare multiple data sets and is augmented by the ability to alter layer transparency so that underlying layers become visible. Examples of GeoMapApp built-in data sets include high-resolution land topography and ocean floor bathymetry derived from satellite and multi-beam swath mapping systems - these can be profiled, shaded, and contoured; geo-registered geochemical sample analyses from the EarthChem database; plate boundary, earthquake and volcano catalogues; physical oceanography global and water column data; seafloor photos and Alvin dive video images; geological maps at various scales; and, high-quality coastline, lakes and rivers data. Customised data portals offer enhanced functionality for multi-channel seismic profiles, drill core logs, and earthquake animations. GeoMapApp is used in many MARGINS undergraduate-level off-the-shelf interactive learning activities called mini-lessons (http://serc.carleton.edu/margins/collection.html). Examples of educational applicability will be shown.

  12. Increasing Body Mass Index Predicts Rapid Decline in Renal Function: A 5 Year Retrospective Study.

    PubMed

    Ma, Xiaojing; Zhang, Chengyin; Su, Hong; Gong, Xiaojie; Kong, Xianglei

    2018-05-02

    While obesity is a recognized risk factor for chronic kidney disease, it remains unclear whether change in body mass index (ΔBMI ) is independently associated with decline in renal function (evaluated by the change in estimated glomerular filtration rate, ΔeGFR) over time. Accordingly, to help clarify this we conducted a retrospective study to measure the association of ΔBMI with decline in renal function in Chinese adult population. A total of 4007 adults (aged 45.3±13.7 years, 68.6% male) without chronic kidney disease at baseline were enrolled between 2008 and 2013. Logistic regression models were applied to explore the relationships between baseline BMI and ΔBMI, and rapid decline in renal function (defined as the lowest quartile of ΔeGFR ). During 5 years of follow-up, the ΔBMI and ΔeGFR were 0.47±1.6 (kg/m 2 ) and -3.0±8.8 (ml/min/1.73 m 2 ), respectively. After adjusted for potential confounders, ΔBMI (per 1 kg/m 2 increase) was independently associated with the rapid decline in renal function [with a fully adjusted OR of 1.12 (95% CI, 1.05 to 1.20). By contrast, the baseline BMI was not associated with rapid decline in renal function [OR=1.05 (95% CI, 0.98 to 1.13)]. The results were robust among 2948 hypertension-free and diabetes-free participants, the adjusted ORs of ΔBMI and baseline BMI were 1.14 (95% CI, 1.05 to 1.23) and 1.0 (95% CI, 0.96 to 1.04) for rapid decline in renal function, respectively. The study revealed that increasing ΔBMI predicts rapid decline in renal function. © Georg Thieme Verlag KG Stuttgart · New York.

  13. The importance of chemistry in creating well-defined nanoscopic embedded therapeutics: devices capable of the dual functions of imaging and therapy.

    PubMed

    Nyström, Andreas M; Wooley, Karen L

    2011-10-18

    Nanomedicine is a rapidly evolving field, for which polymer building blocks are proving useful for the construction of sophisticated devices that provide enhanced diagnostic imaging and treatment of disease, known as theranostics. These well-defined nanoscopic objects have high loading capacities, can protect embedded therapeutic cargo, and offer control over the conditions and rates of release. Theranostics also offer external surface area for the conjugation of ligands to impart stealth characteristics and/or direct their interactions with biological receptors and provide a framework for conjugation of imaging agents to track delivery to diseased site(s). The nanoscopic dimensions allow for extensive biological circulation. The incorporation of such multiple functions is complicated, requiring exquisite chemical control during production and rigorous characterization studies to confirm the compositions, structures, properties, and performance. We are particularly interested in the study of nanoscopic objects designed for treatment of lung infections and acute lung injury, urinary tract infections, and cancer. This Account highlights our work over several years to tune the assembly of unique nanostructures. We provide examples of how the composition, structure, dimensions, and morphology of theranostic devices can tune their performance as drug delivery agents for the treatment of infectious diseases and cancer. The evolution of nanostructured materials from relatively simple overall shapes and internal morphologies to those of increasing complexity is driving the development of synthetic methodologies for the preparation of increasingly complex nanomedicine devices. Our nanomedicine devices are derived from macromolecules that have well-defined compositions, structures, and topologies, which provide a framework for their programmed assembly into nanostructures with controlled sizes, shapes, and morphologies. The inclusion of functional units within selective compartments/domains allows us to create (multi)functional materials. We employ combinations of controlled radical and ring-opening polymerizations, chemical transformations, and supramolecular assembly to construct such materials as functional entities. The use of multifunctional monomers with selective polymerization chemistries affords regiochemically functionalized polymers. Further supramolecular assembly processes in water with further chemical transformations provide discrete nanoscopic objects within aqueous solutions. This approach echoes processes in nature, whereby small molecules (amino acids, nucleic acids, saccharides) are linked into polymers (proteins, DNA/RNA, polysaccharides, respectively) and then those polymers fold into three-dimensional conformations that can lead to nanoscopic functional entities.

  14. Interactive three-dimensional visualization and creation of geometries for Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Theis, C.; Buchegger, K. H.; Brugger, M.; Forkel-Wirth, D.; Roesler, S.; Vincke, H.

    2006-06-01

    The implementation of three-dimensional geometries for the simulation of radiation transport problems is a very time-consuming task. Each particle transport code supplies its own scripting language and syntax for creating the geometries. All of them are based on the Constructive Solid Geometry scheme requiring textual description. This makes the creation a tedious and error-prone task, which is especially hard to master for novice users. The Monte Carlo code FLUKA comes with built-in support for creating two-dimensional cross-sections through the geometry and FLUKACAD, a custom-built converter to the commercial Computer Aided Design package AutoCAD, exists for 3D visualization. For other codes, like MCNPX, a couple of different tools are available, but they are often specifically tailored to the particle transport code and its approach used for implementing geometries. Complex constructive solid modeling usually requires very fast and expensive special purpose hardware, which is not widely available. In this paper SimpleGeo is presented, which is an implementation of a generic versatile interactive geometry modeler using off-the-shelf hardware. It is running on Windows, with a Linux version currently under preparation. This paper describes its functionality, which allows for rapid interactive visualization as well as generation of three-dimensional geometries, and also discusses critical issues regarding common CAD systems.

  15. Development of a hardware-based AC microgrid for AC stability assessment

    NASA Astrophysics Data System (ADS)

    Swanson, Robert R.

    As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.

  16. Analysis of Mars Express Ionogram Data via a Multilayer Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Wilkinson, Collin; Potter, Arron; Palmer, Greg; Duru, Firdevs

    2017-01-01

    Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS), which is a low frequency radar on the Mars Express (MEX) Spacecraft, can provide electron plasma densities of the ionosphere local at the spacecraft in addition to densities obtained with remote sounding. The local electron densities are obtained, with a standard error of about 2%, by measuring the electron plasma frequencies with an electronic ruler on ionograms, which are plots of echo intensity as a function of time and frequency. This is done by using a tool created at the University of Iowa (Duru et al., 2008). This approach is time consuming due to the rapid accumulation of ionogram data. In 2013, results from an algorithm-based analysis of ionograms were reported by Andrews et al., but this method did not improve the human error. In the interest of fast, accurate data interpretation, a neural network (NN) has been created based on the Fast Artificial Neural Network C libraries. This NN consists of artificial neurons, with 4 layers of 12960, 10000, 1000 and 1 neuron(s) each, consecutively. This network was trained using 40 iterations of 1000 orbits. The algorithm-based method of Andrews et al. had a standard error of 40%, while the neural network has achieved error on the order of 20%.

  17. 'Fab-chips': a versatile, fabric-based platform for low-cost, rapid and multiplexed diagnostics.

    PubMed

    Bhandari, Paridhi; Narahari, Tanya; Dendukuri, Dhananjaya

    2011-08-07

    Low cost and scalable manufacture of lab-on-chip devices for applications such as point-of-care testing is an urgent need. Weaving is presented as a unified, scalable and low-cost platform for the manufacture of fabric chips that can be used to perform such testing. Silk yarns with different properties are first selected, treated with the appropriate reagent solutions, dried and handloom-woven in one step into an integrated fabric chip. This platform has the unique advantage of scaling up production using existing and low cost physical infrastructure. We have demonstrated the ability to create pre-defined flow paths in fabric by using wetting and non-wetting silk yarns and a Jacquard attachment in the loom. Further, we show that yarn parameters such as the yarn twist frequency and weaving coverage area may be conveniently used to tune both the wicking rate and the absorptive capacity of the fabric. Yarns optimized for their final function were used to create an integrated fabric chip containing reagent-coated yarns. Strips of this fabric were then used to perform a proof-of-concept immunoassay with sample flow taking place by capillary action and detection being performed by a visual readout. This journal is © The Royal Society of Chemistry 2011

  18. Development and application of automated systems for plasmid-based functional proteomics to improve syntheitc biology of engineered industrial microbes for high level expression of proteases for biofertilizer production

    USDA-ARS?s Scientific Manuscript database

    In addition to microarray technology, which provides a robust method to study protein function in a rapid, economical, and proteome-wide fashion, plasmid-based functional proteomics is an important technology for rapidly obtaining large quantities of protein and determining protein function across a...

  19. Enhancement of antibody functions through Fc multiplications

    PubMed Central

    Wang, Qun; Cvitkovic, Romana; Bonnell, Jessica; Chang, Chien-Ying; Koksal, Adem C.; O'Connor, Ellen; Gao, Xizhe; Yu, Xiang-Qing; Wu, Herren; Stover, C. Kendall; Dall'Acqua, William F.; Xiao, Xiaodong

    2017-01-01

    ABSTRACT Antibodies carry out a plethora of functions through their crystallizable fragment (Fc) regions, which can be naturally tuned by the adoption of several isotypes and post-translational modifications. Protein engineering enables further Fc function modulations through modifications of the interactions between the Fc and its functional partners, including FcγR, FcRn, complement complex, and additions of auxiliary functional units. Due to the many functions embedded within the confinement of an Fc, a suitable balance must be maintained for a therapeutic antibody to be effective and safe. The outcome of any Fc engineering depends on the interplay among all the effector molecules involved. In this report, we assessed the effects of Fc multiplication (or tandem Fc) on antibody functions. Using IgG1 as a test case, we found that, depending on the specifically designed linker, Fc multiplication led to differentially folded, stable molecules with unique pharmacokinetic profiles. Interestingly, the variants with 3 copies of Fc improved in vitro opsonophagocytic killing activity and displayed significantly improved protective efficacies in a Klebsiella pneumoniae mouse therapeutic model despite faster clearance compared with its IgG1 counterpart. There was no adverse effect observed or pro-inflammatory cytokine release when the Fc variants were administered to animals. We further elucidated that enhanced binding to various effector molecules by IgG-3Fc created a “sink” leading to the rapid clearance of the 3Fc variants, and identified the increased FcRn binding as one strategy to facilitate “sink” escape. These findings reveal new opportunities for novel Fc engineering to further expand our abilities to manipulate and improve antibody therapeutics. PMID:28102754

  20. Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods

    DOE PAGES

    Kolb, Brian; Lentz, Levi C.; Kolpak, Alexie M.

    2017-04-26

    Modern ab initio methods have rapidly increased our understanding of solid state materials properties, chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders direct ab initio calculations intractable for large or complex systems. There are two obvious avenues through which to remedy this problem: (i) develop new, less expensive methods to calculate system properties, or (ii) make existing methods faster. This paper describes an open source framework designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine learning techniques to find complex, non-linear mappings between sets of material or system properties. Themore » result is a single code capable of learning analytical potentials, non-linear density functionals, and other structure-property or property-property relationships. These capabilities enable highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the development of predictive models for systematic materials design and optimization. Here, this work explores the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for arbitrary properties), serving both to demonstrate PROPhet’s ability to create exciting post-processing analysis tools and to open the door to improving ab initio methods themselves with these powerful machine learning techniques.« less

  1. Real-time Space-time Integration in GIScience and Geography.

    PubMed

    Richardson, Douglas B

    2013-01-01

    Space-time integration has long been the topic of study and speculation in geography. However, in recent years an entirely new form of space-time integration has become possible in GIS and GIScience: real-time space-time integration and interaction. While real-time spatiotemporal data is now being generated almost ubiquitously, and its applications in research and commerce are widespread and rapidly accelerating, the ability to continuously create and interact with fused space-time data in geography and GIScience is a recent phenomenon, made possible by the invention and development of real-time interactive (RTI) GPS/GIS technology and functionality in the late 1980s and early 1990s. This innovation has since functioned as a core change agent in geography, cartography, GIScience and many related fields, profoundly realigning traditional relationships and structures, expanding research horizons, and transforming the ways geographic data is now collected, mapped, modeled, and used, both in geography and in science and society more broadly. Real-time space-time interactive functionality remains today the underlying process generating the current explosion of fused spatiotemporal data, new geographic research initiatives, and myriad geospatial applications in governments, businesses, and society. This essay addresses briefly the development of these real-time space-time functions and capabilities; their impact on geography, cartography, and GIScience; and some implications for how discovery and change can occur in geography and GIScience, and how we might foster continued innovation in these fields.

  2. A primer on brain-machine interfaces, concepts, and technology: a key element in the future of functional neurorestoration.

    PubMed

    Lee, Brian; Liu, Charles Y; Apuzzo, Michael L J

    2013-01-01

    Conventionally, the practice of neurosurgery has been characterized by the removal of pathology, congenital or acquired. The emerging complement to the removal of pathology is surgery for the specific purpose of restoration of function. Advents in neuroscience, technology, and the understanding of neural circuitry are creating opportunities to intervene in disease processes in a reparative manner, thereby advancing toward the long-sought-after concept of neurorestoration. Approaching the issue of neurorestoration from a biomedical engineering perspective is the rapidly growing arena of implantable devices. Implantable devices are becoming more common in medicine and are making significant advancements to improve a patient's functional outcome. Devices such as deep brain stimulators, vagus nerve stimulators, and spinal cord stimulators are now becoming more commonplace in neurosurgery as we utilize our understanding of the nervous system to interpret neural activity and restore function. One of the most exciting prospects in neurosurgery is the technologically driven field of brain-machine interface, also known as brain-computer interface, or neuroprosthetics. The successful development of this technology will have far-reaching implications for patients suffering from a great number of diseases, including but not limited to spinal cord injury, paralysis, stroke, or loss of limb. This article provides an overview of the issues related to neurorestoration using implantable devices with a specific focus on brain-machine interface technology. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, Brian; Lentz, Levi C.; Kolpak, Alexie M.

    Modern ab initio methods have rapidly increased our understanding of solid state materials properties, chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders direct ab initio calculations intractable for large or complex systems. There are two obvious avenues through which to remedy this problem: (i) develop new, less expensive methods to calculate system properties, or (ii) make existing methods faster. This paper describes an open source framework designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine learning techniques to find complex, non-linear mappings between sets of material or system properties. Themore » result is a single code capable of learning analytical potentials, non-linear density functionals, and other structure-property or property-property relationships. These capabilities enable highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the development of predictive models for systematic materials design and optimization. Here, this work explores the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for arbitrary properties), serving both to demonstrate PROPhet’s ability to create exciting post-processing analysis tools and to open the door to improving ab initio methods themselves with these powerful machine learning techniques.« less

  4. Macro-meso-microsystems integration in LTCC : LDRD report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Smet, Dennis J.; Nordquist, Christopher Daniel; Turner, Timothy Shawn

    2007-03-01

    Low Temperature Cofired Ceramic (LTCC) has proven to be an enabling medium for microsystem technologies, because of its desirable electrical, physical, and chemical properties coupled with its capability for rapid prototyping and scalable manufacturing of components. LTCC is viewed as an extension of hybrid microcircuits, and in that function it enables development, testing, and deployment of silicon microsystems. However, its versatility has allowed it to succeed as a microsystem medium in its own right, with applications in non-microelectronic meso-scale devices and in a range of sensor devices. Applications include silicon microfluidic ''chip-and-wire'' systems and fluid grid array (FGA)/microfluidic multichip modulesmore » using embedded channels in LTCC, and cofired electro-mechanical systems with moving parts. Both the microfluidic and mechanical system applications are enabled by sacrificial volume materials (SVM), which serve to create and maintain cavities and separation gaps during the lamination and cofiring process. SVMs consisting of thermally fugitive or partially inert materials are easily incorporated. Recognizing the premium on devices that are cofired rather than assembled, we report on functional-as-released and functional-as-fired moving parts. Additional applications for cofired transparent windows, some as small as an optical fiber, are also described. The applications described help pave the way for widespread application of LTCC to biomedical, control, analysis, characterization, and radio frequency (RF) functions for macro-meso-microsystems.« less

  5. Academic portfolio in the digital era: organizing and maintaining a portfolio using reference managers.

    PubMed

    Bhargava, Puneet; Patel, Vatsal B; Iyer, Ramesh S; Moshiri, Mariam; Robinson, Tracy J; Lall, Chandana; Heller, Matthew T

    2015-02-01

    The academic portfolio has become an integral part of the promotions process. Creating and maintaining an academic portfolio in paper-based or web-based formats can be a cumbersome and time-consuming task. In this article, we describe an alternative way to efficiently organize an academic portfolio using a reference manager software, and discuss some of the afforded advantages. The reference manager software Papers (Mekentosj, Amsterdam, The Netherlands) was used to create an academic portfolio. The article outlines the key steps in creating and maintaining a digital academic portfolio. Using reference manager software (Papers), we created an academic portfolio that allows the user to digitally organize clinical, teaching, and research accomplishments in an indexed library enabling efficient updating, rapid retrieval, and easy sharing. To our knowledge, this is the first digital portfolio of its kind.

  6. Crumpled graphene nanoreactors

    NASA Astrophysics Data System (ADS)

    Wang, Zhongying; Lv, Xiaoshu; Chen, Yantao; Liu, Dan; Xu, Xinhua; Palmore, G. Tayhas R.; Hurt, Robert H.

    2015-05-01

    Nanoreactors are material structures that provide engineered internal cavities that create unique confined nanoscale environments for chemical reactions. Crumpled graphene nanoparticles or ``nanosacks'' may serve as nanoreactors when filled with reactive or catalytic particles and engineered for a specific chemical function. This article explores the behavior of crumpled graphene nanoreactors containing nanoscale ZnO, Ag, Ni, Cu, Fe, or TiO2 particles, either alone or in combination, in a series of case studies designed to reveal their fundamental behaviors. The first case study shows that ZnO nanoparticles undergo rapid dissolution inside the nanoreactor cavity accompanied by diffusive release of soluble products to surrounding aqueous media through the irregular folded shell. This behavior demonstrates the open nature of the sack structure, which facilitates rapid small-molecule exchange between inside and outside that is a requirement for nanoreactor function. In a case study on copper and silver nanoparticles, encapsulation in graphene nanoreactors is shown in some cases to enhance their oxidation rate in aqueous media, which is attributed to electron transfer from the metal core to graphene that bypasses surface oxides and allows reduction of molecular oxygen on the high-area graphene shell. Nanoreactors also allow particle-particle electron transfer interactions that are mediated by the connecting conductive graphene, which give rise to novel behaviors such as galvanic protection of Ag nanoparticles in Ag/Ni-filled nanoreactors, and the photochemical control of Ag-ion release in Ag/TiO2-filled nanoreactors. It is also shown that internal graphene structures within the sacks provide pockets that reduce particle mobility and inhibit particle sintering during thermal treatment. Finally, these novel behaviors are used to suggest and demonstrate several potential applications for graphene nanoreactors in catalysts, controlled release, and environmental remediation.Nanoreactors are material structures that provide engineered internal cavities that create unique confined nanoscale environments for chemical reactions. Crumpled graphene nanoparticles or ``nanosacks'' may serve as nanoreactors when filled with reactive or catalytic particles and engineered for a specific chemical function. This article explores the behavior of crumpled graphene nanoreactors containing nanoscale ZnO, Ag, Ni, Cu, Fe, or TiO2 particles, either alone or in combination, in a series of case studies designed to reveal their fundamental behaviors. The first case study shows that ZnO nanoparticles undergo rapid dissolution inside the nanoreactor cavity accompanied by diffusive release of soluble products to surrounding aqueous media through the irregular folded shell. This behavior demonstrates the open nature of the sack structure, which facilitates rapid small-molecule exchange between inside and outside that is a requirement for nanoreactor function. In a case study on copper and silver nanoparticles, encapsulation in graphene nanoreactors is shown in some cases to enhance their oxidation rate in aqueous media, which is attributed to electron transfer from the metal core to graphene that bypasses surface oxides and allows reduction of molecular oxygen on the high-area graphene shell. Nanoreactors also allow particle-particle electron transfer interactions that are mediated by the connecting conductive graphene, which give rise to novel behaviors such as galvanic protection of Ag nanoparticles in Ag/Ni-filled nanoreactors, and the photochemical control of Ag-ion release in Ag/TiO2-filled nanoreactors. It is also shown that internal graphene structures within the sacks provide pockets that reduce particle mobility and inhibit particle sintering during thermal treatment. Finally, these novel behaviors are used to suggest and demonstrate several potential applications for graphene nanoreactors in catalysts, controlled release, and environmental remediation. Electronic supplementary information (ESI) available: Fig. S1-S5. See DOI: 10.1039/c5nr00963d

  7. Bulk combinatorial synthesis and high throughput characterization for rapid assessment of magnetic materials: Application of laser engineered net shaping (LENS)

    DOE PAGES

    Geng, J.; Nlebedim, I. C.; Besser, M. F.; ...

    2016-04-15

    A bulk combinatorial approach for synthesizing alloy libraries using laser engineered net shaping (LENS; i.e., 3D printing) was utilized to rapidly assess material systems for magnetic applications. The LENS system feeds powders in different ratios into a melt pool created by a laser to synthesize samples with bulk (millimeters) dimensions. By analyzing these libraries with autosampler differential scanning calorimeter/thermal gravimetric analysis and vibrating sample magnetometry, we are able to rapidly characterize the thermodynamic and magnetic properties of the libraries. Furthermore, the Fe-Co binary alloy was used as a model system and the results were compared with data in the literature.

  8. We really need to talk: adapting FDA processes to rapid change.

    PubMed

    Lykken, Sara

    2013-01-01

    The rapidly evolving realm of modern commerce strains traditional regulatory paradigms. This paper traces the historical evolution of FDA crisis-response regulation and provides examples of ways in which the definitions and procedures resulting from that past continue to be challenged by new products as market entrants, some in good faith and others not, take actions that create disconnects between actual product and marketing controls and those that consumers might expect. The paper then explores some of the techniques used by other federal agencies that have faced similar challenges in environments characterized by rapid innovation, and draws from this analysis suggestions for improvement of the FDA's warning letter system.

  9. A Tissue-Mimicking Ultrasound Test Object Using Droplet Vaporization to Create Point Targets

    PubMed Central

    Carneal, Catherine M.; Kripfgans, Oliver D.; Krücker, Jochen; Carson, Paul L.; Fowlkes, J. Brian

    2012-01-01

    Ultrasound test objects containing reference point targets could be useful for evaluating ultrasound systems and phase aberration correction methods. Polyacrylamide gels containing albumin-stabilized droplets (3.6 µm mean diameter) of dodecafluoropentane (DDFP) are being developed for this purpose. Perturbation by ultrasound causes spontaneous vaporization of the superheated droplets to form gas bubbles, a process termed acoustic droplet vaporization (ADV). The resulting bubbles (20 to 160 µm diameter) are small compared with acoustic wavelengths in diagnostic ultrasound and are theoretically suitable for use as point targets (phase errors <20° for typical f-numbers). Bubbles distributed throughout the material are convenient for determining the point spread function in an imaging plane or volume. Cooling the gel causes condensation of the DDFP droplets, which may be useful for storage. Studying ADV in such viscoelastic media could provide insight into potential bioeffects from rapid bubble formation. PMID:21937339

  10. Taking Innovation To Scale In Primary Care Practices: The Functions Of Health Care Extension.

    PubMed

    Ono, Sarah S; Crabtree, Benjamin F; Hemler, Jennifer R; Balasubramanian, Bijal A; Edwards, Samuel T; Green, Larry A; Kaufman, Arthur; Solberg, Leif I; Miller, William L; Woodson, Tanisha Tate; Sweeney, Shannon M; Cohen, Deborah J

    2018-02-01

    Health care extension is an approach to providing external support to primary care practices with the aim of diffusing innovation. EvidenceNOW was launched to rapidly disseminate and implement evidence-based guidelines for cardiovascular preventive care in the primary care setting. Seven regional grantee cooperatives provided the foundational elements of health care extension-technological and quality improvement support, practice capacity building, and linking with community resources-to more than two hundred primary care practices in each region. This article describes how the cooperatives varied in their approaches to extension and provides early empirical evidence that health care extension is a feasible and potentially useful approach for providing quality improvement support to primary care practices. With investment, health care extension may be an effective platform for federal and state quality improvement efforts to create economies of scale and provide practices with more robust and coordinated support services.

  11. Diatoms: a biotemplating approach to fabricating drug delivery reservoirs.

    PubMed

    Chao, Joshua T; Biggs, Manus J P; Pandit, Abhay S

    2014-11-01

    Biotemplating is a rapidly expanding subfield that utilizes nature-inspired systems and structures to create novel functional materials, and it is through these methods that the limitations of current engineering practices may be advanced. The diatom is an exceptional template for drug delivery applications, owing largely to its highly-ordered pores, large surface area, species-specific architecture, and flexibility for surface modifications. Diatoms have been studied in a wide range of biomedical applications and their potential as the next frontier of drug delivery has yet to be fully exploited. In this editorial, the authors aim to review the use of diatoms in the delivery of poorly water-soluble drugs as reported in the literature, discuss the progress and advancements that have been made thus far, identify the shortcomings and limitations in the field, and, lastly, present their expert opinion and convey the future outlook on biotemplating approaches for drug delivery.

  12. Spatio-temporal behaviour of atomic-scale tribo-ceramic films in adaptive surface engineered nano-materials.

    PubMed

    Fox-Rabinovich, G; Kovalev, A; Veldhuis, S; Yamamoto, K; Endrino, J L; Gershman, I S; Rashkovskiy, A; Aguirre, M H; Wainstein, D L

    2015-03-05

    Atomic-scale, tribo-ceramic films associated with dissipative structures formation are discovered under extreme frictional conditions which trigger self-organization. For the first time, we present an actual image of meta-stable protective tribo-ceramics within thicknesses of a few atomic layers. A mullite and sapphire structure predominates in these phases. They act as thermal barriers with an amazing energy soaking/dissipating capacity. Less protective tribo-films cannot sustain in these severe conditions and rapidly wear out. Therefore, a functional hierarchy is established. The created tribo-films act in synergy, striving to better adapt themselves to external stimuli. Under a highly complex structure and non-equilibrium state, the upcoming generation of adaptive surface engineered nano-multilayer materials behaves like intelligent systems - capable of generating, with unprecedented efficiency, the necessary tribo-films to endure an increasingly severe environment.

  13. Dual Catalytic Activity of a Cytochrome P450 Controls Bifurcation at a Metabolic Branch Point of Alkaloid Biosynthesis in Rauwolfia serpentina

    PubMed Central

    Dang, Thu‐Thuy T.; Franke, Jakob; Tatsis, Evangelos

    2017-01-01

    Abstract Plants create tremendous chemical diversity from a single biosynthetic intermediate. In plant‐derived ajmalan alkaloid pathways, the biosynthetic intermediate vomilenine can be transformed into the anti‐arrhythmic compound ajmaline, or alternatively, can isomerize to form perakine, an alkaloid with a structurally distinct scaffold. Here we report the discovery and characterization of vinorine hydroxylase, a cytochrome P450 enzyme that hydroxylates vinorine to form vomilenine, which was found to exist as a mixture of rapidly interconverting epimers. Surprisingly, this cytochrome P450 also catalyzes the non‐oxidative isomerization of the ajmaline precursor vomilenine to perakine. This unusual dual catalytic activity of vinorine hydroxylase thereby provides a control mechanism for the bifurcation of these alkaloid pathway branches. This discovery highlights the unusual catalytic functionality that has evolved in plant pathways. PMID:28654178

  14. Dual Catalytic Activity of a Cytochrome P450 Controls Bifurcation at a Metabolic Branch Point of Alkaloid Biosynthesis in Rauwolfia serpentina.

    PubMed

    Dang, Thu-Thuy T; Franke, Jakob; Tatsis, Evangelos; O'Connor, Sarah E

    2017-08-01

    Plants create tremendous chemical diversity from a single biosynthetic intermediate. In plant-derived ajmalan alkaloid pathways, the biosynthetic intermediate vomilenine can be transformed into the anti-arrhythmic compound ajmaline, or alternatively, can isomerize to form perakine, an alkaloid with a structurally distinct scaffold. Here we report the discovery and characterization of vinorine hydroxylase, a cytochrome P450 enzyme that hydroxylates vinorine to form vomilenine, which was found to exist as a mixture of rapidly interconverting epimers. Surprisingly, this cytochrome P450 also catalyzes the non-oxidative isomerization of the ajmaline precursor vomilenine to perakine. This unusual dual catalytic activity of vinorine hydroxylase thereby provides a control mechanism for the bifurcation of these alkaloid pathway branches. This discovery highlights the unusual catalytic functionality that has evolved in plant pathways. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Nonlinear modeling of chaotic time series: Theory and applications

    NASA Astrophysics Data System (ADS)

    Casdagli, M.; Eubank, S.; Farmer, J. D.; Gibson, J.; Desjardins, D.; Hunter, N.; Theiler, J.

    We review recent developments in the modeling and prediction of nonlinear time series. In some cases, apparent randomness in time series may be due to chaotic behavior of a nonlinear but deterministic system. In such cases, it is possible to exploit the determinism to make short term forecasts that are much more accurate than one could make from a linear stochastic model. This is done by first reconstructing a state space, and then using nonlinear function approximation methods to create a dynamical model. Nonlinear models are valuable not only as short term forecasters, but also as diagnostic tools for identifying and quantifying low-dimensional chaotic behavior. During the past few years, methods for nonlinear modeling have developed rapidly, and have already led to several applications where nonlinear models motivated by chaotic dynamics provide superior predictions to linear models. These applications include prediction of fluid flows, sunspots, mechanical vibrations, ice ages, measles epidemics, and human speech.

  16. Public Health and Mental Health Implications of Environmentally Induced Forced Migration.

    PubMed

    Shultz, James M; Rechkemmer, Andreas; Rai, Abha; McManus, Katherine T

    2018-03-28

    ABSTRACTClimate change is increasingly forcing population displacement, better described by the phrase environmentally induced forced migration. Rising global temperatures, rising sea levels, increasing frequency and severity of natural disasters, and progressive depletion of life-sustaining resources are among the drivers that stimulate population mobility. Projections forecast that current trends will rapidly accelerate. This will lead to an estimated 200 million climate migrants by the year 2050 and create dangerous tipping points for public health and security.Among the public health consequences of climate change, environmentally induced forced migration is one of the harshest and most harmful outcomes, always involving a multiplicity of profound resource and social losses and frequently exposing migrants to trauma and violence. Therefore, one particular aspect of forced migration, the effects of population displacement on mental health and psychosocial functioning, deserves dedicated focus. Multiple case examples are provided to elucidate this theme. (Disaster Med Public Health Preparedness. 2018;page 1 of 7).

  17. The Biological Reference Repository (BioR): a rapid and flexible system for genomics annotation.

    PubMed

    Kocher, Jean-Pierre A; Quest, Daniel J; Duffy, Patrick; Meiners, Michael A; Moore, Raymond M; Rider, David; Hossain, Asif; Hart, Steven N; Dinu, Valentin

    2014-07-01

    The Biological Reference Repository (BioR) is a toolkit for annotating variants. BioR stores public and user-specific annotation sources in indexed JSON-encoded flat files (catalogs). The BioR toolkit provides the functionality to combine and retrieve annotation from these catalogs via the command-line interface. Several catalogs from commonly used annotation sources and instructions for creating user-specific catalogs are provided. Commands from the toolkit can be combined with other UNIX commands for advanced annotation processing. We also provide instructions for the development of custom annotation pipelines. The package is implemented in Java and makes use of external tools written in Java and Perl. The toolkit can be executed on Mac OS X 10.5 and above or any Linux distribution. The BioR application, quickstart, and user guide documents and many biological examples are available at http://bioinformaticstools.mayo.edu. © The Author 2014. Published by Oxford University Press.

  18. The Opportunity and Challenge of The Age of Big Data

    NASA Astrophysics Data System (ADS)

    Yunguo, Hong

    2017-11-01

    The arrival of large data age has gradually expanded the scale of information industry in China, which has created favorable conditions for the expansion of information technology and computer network. Based on big data the computer system service function is becoming more and more perfect, and the efficiency of data processing in the system is improving, which provides important guarantee for the implementation of production plan in various industries. At the same time, the rapid development of fields such as Internet of things, social tools, cloud computing and the widen of information channel, these make the amount of data is increase, expand the influence range of the age of big data, we need to take the opportunities and challenges of the age of big data correctly, use data information resources effectively. Based on this, this paper will study the opportunities and challenges of the era of large data.

  19. Nano-Composite Material Development for 3-D Printers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satches, Michael Randolph

    Graphene possesses excellent mechanical properties with a tensile strength that may exceed 130 GPa, excellent electrical conductivity, and good thermal properties. Future nano-composites can leverage many of these material properties in an attempt to build designer materials for a broad range of applications. 3-D printing has also seen vast improvements in recent years that have allowed many companies and individuals to realize rapid prototyping for relatively low capital investment. This research sought to create a graphene reinforced, polymer matrix nano-composite that is viable in commercial 3D printer technology, study the effects of ultra-high loading percentages of graphene in polymer matricesmore » and determine the functional upper limit for loading. Loadings varied from 5 wt. % to 50 wt. % graphene nanopowder loaded in Acrylonitrile Butadiene Styrene (ABS) matrices. Loaded sample were characterized for their mechanical properties using three point bending, tensile tests, as well as dynamic mechanical analysis.« less

  20. Taking Innovation To Scale In Primary Care Practices: The Functions Of Health Care Extension

    PubMed Central

    Ono, Sarah S.; Crabtree, Benjamin F.; Hemler, Jennifer R.; Balasubramanian, Bijal A.; Edwards, Samuel T.; Green, Larry A.; Kaufman, Arthur; Solberg, Leif I.; Miller, William L.; Woodson, Tanisha Tate; Sweeney, Shannon M.; Cohen, Deborah J.

    2018-01-01

    Health care extension is an approach to providing external support to primary care practices with the aim of diffusing innovation. EvidenceNOW was launched to rapidly disseminate and implement evidence-based guidelines for cardiovascular preventive care in the primary care setting. Seven regional grantee cooperatives provided the foundational elements of health care extension—technological and quality improvement support, practice capacity building, and linking with community resources—to more than two hundred primary care practices in each region. This article describes how the cooperatives varied in their approaches to extension and provides early empirical evidence that health care extension is a feasible and potentially useful approach for providing quality improvement support to primary care practices. With investment, health care extension may be an effective platform for federal and state quality improvement efforts to create economies of scale and provide practices with more robust and coordinated support services. PMID:29401016

  1. Rapid detection and identification of energetic materials with surface enhanced raman spectrometry (SERS)

    DOEpatents

    Han, Thomas Yong-Jin; Valdez, Carlos A; Olson, Tammy Y; Kim, Sung Ho; Satcher, Jr., Joe H

    2015-04-21

    In one embodiment, a system includes a plurality of metal nanoparticles functionalized with a plurality of organic molecules tethered thereto, wherein the plurality of organic molecules preferentially interact with one or more analytes when placed in proximity therewith. According to another embodiment, a method for detecting analytes includes contacting a fluid having one or more analytes of interest therein with a plurality of metal nanoparticles, each metal nanoparticle having a plurality of organic molecules tethered thereto, and detecting Raman scattering from an analyte of interest from the fluid, the analyte interacting with one or more of the plurality of organic molecules. In another embodiment, a method includes chemically modifying a plurality of cyclodextrin molecules at a primary hydroxyl moiety to create a chemical handle, and tethering the plurality of cyclodextrin molecules to a metal nanoparticle using the chemical handle. Other systems and methods for detecting analytes are also described.

  2. Towards sustainable design for single-use medical devices.

    PubMed

    Hanson, Jacob J; Hitchcock, Robert W

    2009-01-01

    Despite their sophistication and value, single-use medical devices have become commodity items in the developed world. Cheap raw materials along with large scale manufacturing and distribution processes have combined to make many medical devices more expensive to resterilize, package and restock than to simply discard. This practice is not sustainable or scalable on a global basis. As the petrochemicals that provide raw materials become more expensive and the global reach of these devices continues into rapidly developing economies, there is a need for device designs that take into account the total life-cycle of these products, minimize the amount of non-renewable materials consumed and consider alternative hybrid reusable / disposable approaches. In this paper, we describe a methodology to perform life cycle and functional analyses to create additional design requirements for medical devices. These types of sustainable approaches can move the medical device industry even closer to the "triple bottom line"--people, planet, profit.

  3. Development of a 3D printer using scanning projection stereolithography

    PubMed Central

    Lee, Michael P.; Cooper, Geoffrey J. T.; Hinkley, Trevor; Gibson, Graham M.; Padgett, Miles J.; Cronin, Leroy

    2015-01-01

    We have developed a system for the rapid fabrication of low cost 3D devices and systems in the laboratory with micro-scale features yet cm-scale objects. Our system is inspired by maskless lithography, where a digital micromirror device (DMD) is used to project patterns with resolution up to 10 µm onto a layer of photoresist. Large area objects can be fabricated by stitching projected images over a 5cm2 area. The addition of a z-stage allows multiple layers to be stacked to create 3D objects, removing the need for any developing or etching steps but at the same time leading to true 3D devices which are robust, configurable and scalable. We demonstrate the applications of the system by printing a range of micro-scale objects as well as a fully functioning microfluidic droplet device and test its integrity by pumping dye through the channels. PMID:25906401

  4. Autonomic Computing: Panacea or Poppycock?

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2005-01-01

    Autonomic Computing arose out of a need for a means to cope with rapidly growing complexity of integrating, managing, and operating computer-based systems as well as a need to reduce the total cost of ownership of today's systems. Autonomic Computing (AC) as a discipline was proposed by IBM in 2001, with the vision to develop self-managing systems. As the name implies, the influence for the new paradigm is the human body's autonomic system, which regulates vital bodily functions such as the control of heart rate, the body's temperature and blood flow-all without conscious effort. The vision is to create selfivare through self-* properties. The initial set of properties, in terms of objectives, were self-configuring, self-healing, self-optimizing and self-protecting, along with attributes of self-awareness, self-monitoring and self-adjusting. This self-* list has grown: self-anticipating, self-critical, self-defining, self-destructing, self-diagnosis, self-governing, self-organized, self-reflecting, and self-simulation, for instance.

  5. Continuous-wave laser generated jets for needle free applications

    PubMed Central

    Visser, Claas Willem; Schlautmann, Stefan

    2016-01-01

    We designed and built a microfluidic device for the generation of liquid jets produced by thermocavitation. A continuous wave (CW) laser was focused inside a micro-chamber filled with a light-absorbing solution to create a rapidly expanding vapor bubble. The chamber is connected to a micro-channel which focuses and ejects the liquid jet through the exit. The bubble growth and the jet velocity were measured as a function of the devices geometry (channel diameter D and chamber width A). The fastest jets were those for relatively large chamber size with respect to the channel diameter. Elongated and focused jets up to 29 m/s for a channel diameter of 250 μm and chamber size of 700 μm were obtained. The proposed CW laser-based device is potentially a compact option for a practical and commercially feasible needle-free injector. PMID:26858816

  6. The BIRN Project: Imaging the Nervous System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellisman, Mark

    The grand goal in neuroscience research is to understand how the interplay of structural, chemical and electrical signals in nervous tissue gives rise to behavior. Experimental advances of the past decades have given the individual neuroscientist an increasingly powerful arsenal for obtaining data, from the level of molecules to nervous systems. Scientists have begun the arduous and challenging process of adapting and assembling neuroscience data at all scales of resolution and across disciplines into computerized databases and other easily accessed sources. These databases will complement the vast structural and sequence databases created to catalogue, organize and analyze gene sequences andmore » protein products. The general premise of the neuroscience goal is simple; namely that with "complete" knowledge of the genome and protein structures accruing rapidly we next need to assemble an infrastructure that will facilitate acquisition of an understanding for how functional complexes operate in their cell and tissue contexts.« less

  7. The BIRN Project: Imaging the Nervous System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellisman, Mark

    The grand goal in neuroscience research is to understand how the interplay of structural, chemical and electrical signals in nervous tissue gives rise to behavior. Experimental advances of the past decades have given the individual neuroscientist an increasingly powerful arsenal for obtaining data, from the level of molecules to nervous systems. Scientists have begun the arduous and challenging process of adapting and assembling neuroscience data at all scales of resolution and across disciplines into computerized databases and other easily accessed sources. These databases will complement the vast structural and sequence databases created to catalogue, organize and analyze gene sequences andmore » protein products. The general premise of the neuroscience goal is simple; namely that with 'complete' knowledge of the genome and protein structures accruing rapidly we next need to assemble an infrastructure that will facilitate acquisition of an understanding for how functional complexes operate in their cell and tissue contexts.« less

  8. Hydrogel-Tissue Chemistry: Principles and Applications.

    PubMed

    Gradinaru, Viviana; Treweek, Jennifer; Overton, Kristin; Deisseroth, Karl

    2018-05-20

    Over the past five years, a rapidly developing experimental approach has enabled high-resolution and high-content information retrieval from intact multicellular animal (metazoan) systems. New chemical and physical forms are created in the hydrogel-tissue chemistry process, and the retention and retrieval of crucial phenotypic information regarding constituent cells and molecules (and their joint interrelationships) are thereby enabled. For example, rich data sets defining both single-cell-resolution gene expression and single-cell-resolution activity during behavior can now be collected while still preserving information on three-dimensional positioning and/or brain-wide wiring of those very same neurons-even within vertebrate brains. This new approach and its variants, as applied to neuroscience, are beginning to illuminate the fundamental cellular and chemical representations of sensation, cognition, and action. More generally, reimagining metazoans as metareactants-or positionally defined three-dimensional graphs of constituent chemicals made available for ongoing functionalization, transformation, and readout-is stimulating innovation across biology and medicine.

  9. Temporal Processing in the Olfactory System: Can We See a Smell?

    PubMed Central

    Gire, David H.; Restrepo, Diego; Sejnowski, Terrence J.; Greer, Charles; De Carlos, Juan A.; Lopez-Mascaraque, Laura

    2013-01-01

    Sensory processing circuits in the visual and olfactory systems receive input from complex, rapidly changing environments. Although patterns of light and plumes of odor create different distributions of activity in the retina and olfactory bulb, both structures use what appears on the surface similar temporal coding strategies to convey information to higher areas in the brain. We compare temporal coding in the early stages of the olfactory and visual systems, highlighting recent progress in understanding the role of time in olfactory coding during active sensing by behaving animals. We also examine studies that address the divergent circuit mechanisms that generate temporal codes in the two systems, and find that they provide physiological information directly related to functional questions raised by neuroanatomical studies of Ramon y Cajal over a century ago. Consideration of differences in neural activity in sensory systems contributes to generating new approaches to understand signal processing. PMID:23664611

  10. Edible packaging materials.

    PubMed

    Janjarasskul, Theeranun; Krochta, John M

    2010-01-01

    Research groups and the food and pharmaceutical industries recognize edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability, quality, safety, variety, and convenience for consumers. Recent studies have explored the ability of biopolymer-based food packaging materials to carry and control-release active compounds. As diverse edible packaging materials derived from various by-products or waste from food industry are being developed, the dry thermoplastic process is advancing rapidly as a feasible commercial edible packaging manufacturing process. The employment of nanocomposite concepts to edible packaging materials promises to improve barrier and mechanical properties and facilitate effective incorporation of bioactive ingredients and other designed functions. In addition to the need for a more fundamental understanding to enable design to desired specifications, edible packaging has to overcome challenges such as regulatory requirements, consumer acceptance, and scaling-up research concepts to commercial applications.

  11. Spatio-temporal behaviour of atomic-scale tribo-ceramic films in adaptive surface engineered nano-materials

    PubMed Central

    Fox-Rabinovich, G.; Kovalev, A.; Veldhuis, S.; Yamamoto, K.; Endrino, J. L.; Gershman, I. S.; Rashkovskiy, A.; Aguirre, M. H.; Wainstein, D. L.

    2015-01-01

    Atomic-scale, tribo-ceramic films associated with dissipative structures formation are discovered under extreme frictional conditions which trigger self-organization. For the first time, we present an actual image of meta-stable protective tribo-ceramics within thicknesses of a few atomic layers. A mullite and sapphire structure predominates in these phases. They act as thermal barriers with an amazing energy soaking/dissipating capacity. Less protective tribo-films cannot sustain in these severe conditions and rapidly wear out. Therefore, a functional hierarchy is established. The created tribo-films act in synergy, striving to better adapt themselves to external stimuli. Under a highly complex structure and non-equilibrium state, the upcoming generation of adaptive surface engineered nano-multilayer materials behaves like intelligent systems - capable of generating, with unprecedented efficiency, the necessary tribo-films to endure an increasingly severe environment. PMID:25740153

  12. Low-Cost Rapid Prototyping of Liquid Crystal Polymer Based Magnetic Microactuators for Glaucoma Drainage Devices

    PubMed Central

    Park, Hyunsu; John, Simon; Lee, Hyowon

    2017-01-01

    Glaucoma is one of the leading causes of blindness in the world. Although there is no cure for glaucoma, pharmaceutical or surgical interventions are known to delay the progression of this debilitating disease. In recent years, implantation of glaucoma drainage devices (GDD) have increased due to their ability to manage IOP better than other therapeutic approaches. However, only 50% of the implanted devices remain functional after 5 years often due to biofouling. Here, we report our latest progress towards developing self-clearing GDDs using integrated magnetic microactuators. Our hypothesis is that these magnetic microdevices can provide local mechanical perturbations to prophylactically remove biological accumulation. To reduce the cost and increase the throughput of fabrication, we utilize a maskless photolithography setup and commercially available liquid crystal polymer foils to create prototype devices. The mechanical response of the devices is reported and compared with the theoretical values. PMID:28269212

  13. Low-cost rapid prototyping of liquid crystal polymer based magnetic microactuators for glaucoma drainage devices.

    PubMed

    Hyunsu Park; John, Simon; Hyowon Lee

    2016-08-01

    Glaucoma is one of the leading causes of blindness in the world. Although there is no cure for glaucoma, pharmaceutical or surgical interventions are known to delay the progression of this debilitating disease. In recent years, implantation of glaucoma drainage devices (GDD) have increased due to their ability to manage IOP better than other therapeutic approaches. However, only 50% of the implanted devices remain functional after 5 years often due to biofouling. Here, we report our latest progress towards developing self-clearing GDDs using integrated magnetic microactuators. Our hypothesis is that these magnetic microdevices can provide local mechanical perturbations to prophylactically remove biological accumulation. To reduce the cost and increase the throughput of fabrication, we utilize a maskless photolithography setup and commercially available liquid crystal polymer foils to create prototype devices. The mechanical response of the devices is reported and compared with the theoretical values.

  14. The KRA Canal and Thai Security

    DTIC Science & Technology

    2002-06-01

    created pockets of minorities; many carry diseases such as elephantiasis and malaria. For example, Ranong Province is presently facing the recurrence...of elephantiasis . This disease, which had long disappeared from Thailand, is now spreading rapidly.42 Furthermore, some of the illegal workers are

  15. Report on stakeholder input on transformational goals, performance measures and user needs for integrated dynamic transit operations.

    DOT National Transportation Integrated Search

    2012-03-01

    In support of USDOTs Intelligent Transportation Systems (ITS) Mobility Program, the Dynamic Mobility Applications (DMA) program seeks to create applications that fully leverage frequently collected and rapidly disseminated multi-source data gat...

  16. VR Simulation Testbed: Improving Surface Telerobotics for the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Walker, M. E.; Burns, J. O.; Szafir, D. J.

    2018-02-01

    Design of a virtual reality simulation testbed for prototyping surface telerobotics. The goal is to create a framework with robust physics and kinematics to allow simulated teleoperation and supervised control of lunar rovers and rapid UI prototyping.

  17. Process models vs empirical models

    USDA-ARS?s Scientific Manuscript database

    The dairy industry is rapidly expanding in the western and south-central U.S., with a trend towards larger, high-density, intensive production systems. Increased production intensity creates challenges for effective management of nutrients and control of emissions of ammonia, hydrogen sulfide, green...

  18. Rapid prototyping of all-solution-processed multi-lengthscale electrodes using polymer-induced thin film wrinkling

    PubMed Central

    Gabardo, Christine M.; Adams-McGavin, Robert C.; Fung, Barnabas C.; Mahoney, Eric J.; Fang, Qiyin; Soleymani, Leyla

    2017-01-01

    Three-dimensional electrodes that are controllable over multiple lengthscales are very important for use in bioanalytical systems that integrate solid-phase devices with solution-phase samples. Here we present a fabrication method based on all-solution-processing and thin film wrinkling using smart polymers that is ideal for rapid prototyping of tunable three-dimensional electrodes and is extendable to large volume manufacturing. Although all-solution-processing is an attractive alternative to vapor-based techniques for low-cost manufacturing of electrodes, it often results in films suffering from low conductivity and poor substrate adhesion. These limitations are addressed here by using a smart polymer to create a conformal layer of overlapping wrinkles on the substrate to shorten the current path and embed the conductor onto the polymer layer. The structural evolution of these wrinkled electrodes, deposited by electroless deposition onto a nanoparticle seed layer, is studied at varying deposition times to understand its effects on structural parameters such as porosity, wrinkle wavelength and height. Furthermore, the effect of structural parameters on functional properties such as electro-active surface area and surface-enhanced Raman scattering is investigated. It is found that wrinkling of electroless-deposited thin films can be used to reduce sheet resistance, increase surface area, and enhance the surface-enhanced Raman scattering signal. PMID:28211898

  19. Rapid prototyping of all-solution-processed multi-lengthscale electrodes using polymer-induced thin film wrinkling

    NASA Astrophysics Data System (ADS)

    Gabardo, Christine M.; Adams-McGavin, Robert C.; Fung, Barnabas C.; Mahoney, Eric J.; Fang, Qiyin; Soleymani, Leyla

    2017-02-01

    Three-dimensional electrodes that are controllable over multiple lengthscales are very important for use in bioanalytical systems that integrate solid-phase devices with solution-phase samples. Here we present a fabrication method based on all-solution-processing and thin film wrinkling using smart polymers that is ideal for rapid prototyping of tunable three-dimensional electrodes and is extendable to large volume manufacturing. Although all-solution-processing is an attractive alternative to vapor-based techniques for low-cost manufacturing of electrodes, it often results in films suffering from low conductivity and poor substrate adhesion. These limitations are addressed here by using a smart polymer to create a conformal layer of overlapping wrinkles on the substrate to shorten the current path and embed the conductor onto the polymer layer. The structural evolution of these wrinkled electrodes, deposited by electroless deposition onto a nanoparticle seed layer, is studied at varying deposition times to understand its effects on structural parameters such as porosity, wrinkle wavelength and height. Furthermore, the effect of structural parameters on functional properties such as electro-active surface area and surface-enhanced Raman scattering is investigated. It is found that wrinkling of electroless-deposited thin films can be used to reduce sheet resistance, increase surface area, and enhance the surface-enhanced Raman scattering signal.

  20. Expanding the chemical palate of cells by combining systems biology and metabolic engineering.

    PubMed

    Curran, Kathleen A; Alper, Hal S

    2012-07-01

    The field of Metabolic Engineering has recently undergone a transformation that has led to a rapid expansion of the chemical palate of cells. Now, it is conceivable to produce nearly any organic molecule of interest using a cellular host. Significant advances have been made in the production of biofuels, biopolymers and precursors, pharmaceuticals and nutraceuticals, and commodity and specialty chemicals. Much of this rapid expansion in the field has been, in part, due to synergies and advances in the area of systems biology. Specifically, the availability of functional genomics, metabolomics and transcriptomics data has resulted in the potential to produce a wealth of new products, both natural and non-natural, in cellular factories. The sheer amount and diversity of this data however, means that uncovering and unlocking novel chemistries and insights is a non-obvious exercise. To address this issue, a number of computational tools and experimental approaches have been developed to help expedite the design process to create new cellular factories. This review will highlight many of the systems biology enabling technologies that have reduced the design cycle for engineered hosts, highlight major advances in the expanded diversity of products that can be synthesized, and conclude with future prospects in the field of metabolic engineering. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. The roles of family B and D DNA polymerases in Thermococcus species 9°N Okazaki fragment maturation.

    PubMed

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F

    2015-05-15

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Statistics and Informatics in Space Astrophysics

    NASA Astrophysics Data System (ADS)

    Feigelson, E.

    2017-12-01

    The interest in statistical and computational methodology has seen rapid growth in space-based astrophysics, parallel to the growth seen in Earth remote sensing. There is widespread agreement that scientific interpretation of the cosmic microwave background, discovery of exoplanets, and classifying multiwavelength surveys is too complex to be accomplished with traditional techniques. NASA operates several well-functioning Science Archive Research Centers providing 0.5 PBy datasets to the research community. These databases are integrated with full-text journal articles in the NASA Astrophysics Data System (200K pageviews/day). Data products use interoperable formats and protocols established by the International Virtual Observatory Alliance. NASA supercomputers also support complex astrophysical models of systems such as accretion disks and planet formation. Academic researcher interest in methodology has significantly grown in areas such as Bayesian inference and machine learning, and statistical research is underway to treat problems such as irregularly spaced time series and astrophysical model uncertainties. Several scholarly societies have created interest groups in astrostatistics and astroinformatics. Improvements are needed on several fronts. Community education in advanced methodology is not sufficiently rapid to meet the research needs. Statistical procedures within NASA science analysis software are sometimes not optimal, and pipeline development may not use modern software engineering techniques. NASA offers few grant opportunities supporting research in astroinformatics and astrostatistics.

  3. Electromagnetic effects as a new source of information on the space-time evolution of heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Davis, Nikolaos; Rybicki, Andrzej; Szczurek, Antoni

    2017-12-01

    We review our studies of spectator-induced electromagnetic (EM) effects on charged pion emission in ultrarelativistic heavy ion collisions. These effects are found to consist in the electromagnetic charge splitting of pion directed flow as well as very large distortions in spectra and ratios of produced charged particles. As it emerges from our analysis, they offer sensitivity to the actual distance, dE, between the pion formation zone at freeze-out and the spectator matter. As a result, this offers a new possibility of studying the space-time evolution of dense and hot matter created in the course of the collision. Having established that dE traces the longitudinal evolution of the system and therefore rapidly decreases as a function of pion rapidity, we investigate the latter finding in view of pion feed-over from intermediate resonance production. As a result, we obtain a first estimate of the pion decoupling time from EM effects which we compare to existing HBT data. We conclude that spectator-induced EM interactions can serve as a new tool for studying the space-time characteristics and longitudinal evolution of the system. We discuss the future perspectives for this activity on the basis of existing and future data from the NA61/SHINE experiment.

  4. Automated Spectroscopic Analysis Using the Particle Swarm Optimization Algorithm: Implementing a Guided Search Algorithm to Autofit

    NASA Astrophysics Data System (ADS)

    Ervin, Katherine; Shipman, Steven

    2017-06-01

    While rotational spectra can be rapidly collected, their analysis (especially for complex systems) is seldom straightforward, leading to a bottleneck. The AUTOFIT program was designed to serve that need by quickly matching rotational constants to spectra with little user input and supervision. This program can potentially be improved by incorporating an optimization algorithm in the search for a solution. The Particle Swarm Optimization Algorithm (PSO) was chosen for implementation. PSO is part of a family of optimization algorithms called heuristic algorithms, which seek approximate best answers. This is ideal for rotational spectra, where an exact match will not be found without incorporating distortion constants, etc., which would otherwise greatly increase the size of the search space. PSO was tested for robustness against five standard fitness functions and then applied to a custom fitness function created for rotational spectra. This talk will explain the Particle Swarm Optimization algorithm and how it works, describe how Autofit was modified to use PSO, discuss the fitness function developed to work with spectroscopic data, and show our current results. Seifert, N.A., Finneran, I.A., Perez, C., Zaleski, D.P., Neill, J.L., Steber, A.L., Suenram, R.D., Lesarri, A., Shipman, S.T., Pate, B.H., J. Mol. Spec. 312, 13-21 (2015)

  5. Cell Based Metabolic Barriers to Glucose Diffusion: Macrophages and Continuous Glucose Monitoring

    PubMed Central

    Klueh, Ulrike; Frailey, Jackman; Qiao, Yi; Antar, Omar; Kreutzer, Donald L.

    2014-01-01

    It is assumed that MQ are central to glucose sensor bio-fouling and therefore have a major negative impact on continuous glucose monitoring (CGM) performance in vivo. However to our knowledge there is no data in the literature to directly support or refute this assumption. Since glucose and oxygen (O2) are key to glucose sensor function in vivo, understanding and controlling glucose and O2 metabolic activity of MQ is likely key to successful glucose sensor performance. We hypothesized that the accumulation of MQ at the glucose sensor-tissue interface will act as “Cell Based Metabolic Barriers” (CBMB) to glucose diffusing from the interstitial tissue compartment to the implanted glucose sensor and as such creating an artificially low sensor output, thereby compromising sensor function and CGM. Our studies demonstrated that 1) direct injections of MQ at in vivo sensor implantation sites dramatically decreased sensor output (measured in nA), 2) addition of MQ to glucose sensors in vitro resulted in a rapid and dramatic fall in sensor output and 3) lymphocytes did not affect sensor function in vitro or in vivo. These data support our hypothesis that MQ can act as metabolic barriers to glucose and O2 diffusion in vivo and in vitro. PMID:24461328

  6. Transgenic mouse models in the study of reproduction: insights into GATA protein function.

    PubMed

    Tevosian, Sergei G

    2014-07-01

    For the past 2 decades, transgenic technology in mice has allowed for an unprecedented insight into the transcriptional control of reproductive development and function. The key factor among the mouse genetic tools that made this rapid advance possible is a conditional transgenic approach, a particularly versatile method of creating gene deletions and substitutions in the mouse genome. A centerpiece of this strategy is an enzyme, Cre recombinase, which is expressed from defined DNA regulatory elements that are active in the tissue of choice. The regulatory DNA element (either genetically engineered or natural) assures Cre expression only in predetermined cell types, leading to the guided deletion of genetically modified (flanked by loxP or 'floxed' by loxP) gene loci. This review summarizes and compares the studies in which genes encoding GATA family transcription factors were targeted either globally or by Cre recombinases active in the somatic cells of ovaries and testes. The conditional gene loss experiments require detailed knowledge of the spatial and temporal expression of Cre activity, and the challenges in interpreting the outcomes are highlighted. These studies also expose the complexity of GATA-dependent regulation of gonadal gene expression and suggest that gene function is highly context dependent. © 2014 Society for Reproduction and Fertility.

  7. Lymph Nodes and Cancer Metastasis: New Perspectives on the Role of Intranodal Lymphatic Sinuses.

    PubMed

    Ji, Rui-Cheng

    2016-12-28

    The lymphatic system is essential for transporting interstitial fluid, soluble antigen, and immune cells from peripheral tissues to lymph nodes (LNs). Functional integrity of LNs is dependent on intact lymphatics and effective lymph drainage. Molecular mechanisms that facilitate interactions between tumor cells and lymphatic endothelial cells (LECs) during tumor progression still remain to be identified. The cellular and molecular structures of LNs are optimized to trigger a rapid and efficient immune response, and to participate in the process of tumor metastasis by stimulating lymphangiogenesis and establishing a premetastatic niche in LNs. Several molecules, e.g., S1P, CCR7-CCL19/CCL21, CXCL12/CXCR4, IL-7, IFN-γ, TGF-β, and integrin α4β1 play an important role in controlling the activity of LN stromal cells including LECs, fibroblastic reticular cells (FRCs) and follicular dendritic cells (DCs). The functional stromal cells are critical for reconstruction and remodeling of the LN that creates a unique microenvironment of tumor cells and LECs for cancer metastasis. LN metastasis is a major determinant for the prognosis of most human cancers and clinical management. Ongoing work to elucidate the function and molecular regulation of LN lymphatic sinuses will provide insight into cancer development mechanisms and improve therapeutic approaches for human malignancy.

  8. Cell based metabolic barriers to glucose diffusion: macrophages and continuous glucose monitoring.

    PubMed

    Klueh, Ulrike; Frailey, Jackman T; Qiao, Yi; Antar, Omar; Kreutzer, Donald L

    2014-03-01

    It is assumed that MQ are central to glucose sensor bio-fouling and therefore have a major negative impact on continuous glucose monitoring (CGM) performance in vivo. However to our knowledge there is no data in the literature to directly support or refute this assumption. Since glucose and oxygen (O2) are key to glucose sensor function in vivo, understanding and controlling glucose and O2 metabolic activity of MQ is likely key to successful glucose sensor performance. We hypothesized that the accumulation of MQ at the glucose sensor-tissue interface will act as "Cell Based Metabolic Barriers" (CBMB) to glucose diffusing from the interstitial tissue compartment to the implanted glucose sensor and as such creating an artificially low sensor output, thereby compromising sensor function and CGM. Our studies demonstrated that 1) direct injections of MQ at in vivo sensor implantation sites dramatically decreased sensor output (measured in nA), 2) addition of MQ to glucose sensors in vitro resulted in a rapid and dramatic fall in sensor output and 3) lymphocytes did not affect sensor function in vitro or in vivo. These data support our hypothesis that MQ can act as metabolic barriers to glucose and O2 diffusion in vivo and in vitro. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings

    PubMed Central

    Raphel, Jordan; Parisi-Amon, Andreina; Heilshorn, Sarah

    2012-01-01

    Photocrosslinkable, protein-engineered biomaterials combine a rapid, controllable, cytocompatible crosslinking method with a modular design strategy to create a new family of bioactive materials. These materials have a wide range of biomedical applications, including the development of bioactive implant coatings, drug delivery vehicles, and tissue engineering scaffolds. We present the successful functionalization of a bioactive elastin-like protein with photoreactive diazirine moieties. Scalable synthesis is achieved using a standard recombinant protein expression host followed by site-specific modification of lysine residues with a heterobifunctional N-hydroxysuccinimide ester-diazirine crosslinker. The resulting biomaterial is demonstrated to be processable by spin coating, drop casting, soft lithographic patterning, and mold casting to fabricate a variety of two- and three-dimensional photocrosslinked biomaterials with length scales spanning the nanometer to millimeter range. Protein thin films proved to be highly stable over a three-week period. Cell-adhesive functional domains incorporated into the engineered protein materials were shown to remain active post-photo-processing. Human adipose-derived stem cells achieved faster rates of cell adhesion and larger spread areas on thin films of the engineered protein compared to control substrates. The ease and scalability of material production, processing versatility, and modular bioactive functionality make this recombinantly engineered protein an ideal candidate for the development of novel biomaterial coatings, films, and scaffolds. PMID:23015764

  10. Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings.

    PubMed

    Raphel, Jordan; Parisi-Amon, Andreina; Heilshorn, Sarah

    2012-10-07

    Photocrosslinkable, protein-engineered biomaterials combine a rapid, controllable, cytocompatible crosslinking method with a modular design strategy to create a new family of bioactive materials. These materials have a wide range of biomedical applications, including the development of bioactive implant coatings, drug delivery vehicles, and tissue engineering scaffolds. We present the successful functionalization of a bioactive elastin-like protein with photoreactive diazirine moieties. Scalable synthesis is achieved using a standard recombinant protein expression host followed by site-specific modification of lysine residues with a heterobifunctional N-hydroxysuccinimide ester-diazirine crosslinker. The resulting biomaterial is demonstrated to be processable by spin coating, drop casting, soft lithographic patterning, and mold casting to fabricate a variety of two- and three-dimensional photocrosslinked biomaterials with length scales spanning the nanometer to millimeter range. Protein thin films proved to be highly stable over a three-week period. Cell-adhesive functional domains incorporated into the engineered protein materials were shown to remain active post-photo-processing. Human adipose-derived stem cells achieved faster rates of cell adhesion and larger spread areas on thin films of the engineered protein compared to control substrates. The ease and scalability of material production, processing versatility, and modular bioactive functionality make this recombinantly engineered protein an ideal candidate for the development of novel biomaterial coatings, films, and scaffolds.

  11. Reductive electrografting of benzene (p-bisdiazonium hexafluorophosphate): a simple and effective protocol for creating diazonium-functionalized thin films.

    PubMed

    Marshall, Nicholas; Locklin, Jason

    2011-11-01

    In this Article, we describe a protocol for surface functionalization of benzenediazonium hexafluorophosphate monolayers by in situ electrochemical reduction of bis(benzenediazonium) hexafluorophosphate. Due to the considerable difference in potential between the first and second reduction of this species, it is possible to form a high density of surface-bound diazonium groups by use of a mild potential which selectively reduces only one diazonium group per ring. The resulting diazonium-containing monolayer reacts readily with solutions of electron-rich aromatic compounds. The reaction with ferrocene produces a dense (2.7 × 10(-10) mol/cm(2)) ferrocene-containing monolayer through a Gomberg-Bachmann type arylation. The resulting ferrocene group exhibits relatively rapid electron transfer to the electrode due to the conjugated linker layer as measured by alternating current voltammetry (ACV) and cyclic voltammetry. Aromatic systems with π-donor substitutents (N,N-dimethylaniline, N,N,N',N'-tetramethyldiaminobenzophenone, and hydroquinone) react through an azo-coupling to form monolayers linked to the surface through an azobenzene moiety. The redox properties of these electron-rich species tethered to the surface were observed and quantified using cyclic voltammetry. This simple and versatile functionalization procedure has a wide variety of potential applications in surface science and materials research.

  12. Excitation functions of parameters extracted from three-source (net-)proton rapidity distributions in Au-Au and Pb-Pb collisions over an energy range from AGS to RHIC

    NASA Astrophysics Data System (ADS)

    Gao, Li-Na; Liu, Fu-Hu; Sun, Yan; Sun, Zhu; Lacey, Roy A.

    2017-03-01

    Experimental results of the rapidity spectra of protons and net-protons (protons minus antiprotons) emitted in gold-gold (Au-Au) and lead-lead (Pb-Pb) collisions, measured by a few collaborations at the alternating gradient synchrotron (AGS), super proton synchrotron (SPS), and relativistic heavy ion collider (RHIC), are described by a three-source distribution. The values of the distribution width σC and fraction kC of the central rapidity region, and the distribution width σF and rapidity shift Δ y of the forward/backward rapidity regions, are then obtained. The excitation function of σC increases generally with increase of the center-of-mass energy per nucleon pair √{s_{NN}}. The excitation function of σF shows a saturation at √{s_{NN}}=8.8 GeV. The excitation function of kC shows a minimum at √{s_{NN}}=8.8 GeV and a saturation at √{s_{NN}} ≈ 17 GeV. The excitation function of Δ y increases linearly with ln(√{s_{NN}}) in the considered energy range.

  13. High density 3D printed microfluidic valves, pumps, and multiplexers.

    PubMed

    Gong, Hua; Woolley, Adam T; Nordin, Gregory P

    2016-07-07

    In this paper we demonstrate that 3D printing with a digital light processor stereolithographic (DLP-SLA) 3D printer can be used to create high density microfluidic devices with active components such as valves and pumps. Leveraging our previous work on optical formulation of inexpensive resins (RSC Adv., 2015, 5, 106621), we demonstrate valves with only 10% of the volume of our original 3D printed valves (Biomicrofluidics, 2015, 9, 016501), which were already the smallest that have been reported. Moreover, we show that incorporation of a thermal initiator in the resin formulation along with a post-print bake can dramatically improve the durability of 3D printed valves up to 1 million actuations. Using two valves and a valve-like displacement chamber (DC), we also create compact 3D printed pumps. With 5-phase actuation and a 15 ms phase interval, we obtain pump flow rates as high as 40 μL min(-1). We also characterize maximum pump back pressure (i.e., maximum pressure the pump can work against), maximum flow rate (flow rate when there is zero back pressure), and flow rate as a function of the height of the pump outlet. We further demonstrate combining 5 valves and one DC to create a 3-to-2 multiplexer with integrated pump. In addition to serial multiplexing, we also show that the device can operate as a mixer. Importantly, we illustrate the rapid fabrication and test cycles that 3D printing makes possible by implementing a new multiplexer design to improve mixing, and fabricate and test it within one day.

  14. An Analysis of Factors Influencing Urbanite Woman Learner-Participation in Functional Literacy Programs in Selected Christian Churches, Accra

    ERIC Educational Resources Information Center

    Saah, Albert Amoah

    2013-01-01

    The promotion of adult functional literacy programs per se, neither creates the necessary motivation for learning, nor enhances the participation of adult learners in work-oriented or socio-cultural functional literacy programs. The task in learning-teaching transaction is to create the enabling environment for harnessing and enhancing…

  15. Approach to Rapid Synthesis and Functionalization of Iron Oxide Nanoparticles for High Gene Transfection.

    PubMed

    Stephen, Zachary R; Dayringer, Christopher J; Lim, Josh J; Revia, Richard A; Halbert, Mackenzie V; Jeon, Mike; Bakthavatsalam, Arvind; Ellenbogen, Richard G; Zhang, Miqin

    2016-03-01

    Surface functionalization of theranostic nanoparticles (NPs) typically relies on lengthy, aqueous postsynthesis labeling chemistries that have limited ability to fine-tune surface properties and can lead to NP heterogeneity. The need for a rapid, simple synthesis approach that can provide great control over the display of functional moieties on NP surfaces has led to increased use of highly selective bioorthoganol chemistries including metal-affinity coordination. Here we report a simple approach for rapid production of a superparamagnetic iron oxide NPs (SPIONs) with tunable functionality and high reproducibility under aqueous conditions. We utilize the high affinity complex formed between catechol and Fe((III)) as a means to dock well-defined catechol modified polymer modules on the surface of SPIONs during sonochemical coprecipitation synthesis. Polymer modules consisted of chitosan and poly(ethylene glycol) (PEG) copolymer (CP) modified with catechol (CCP), and CCP functionalized with cationic polyethylenimine (CCP-PEI) to facilitate binding and delivery of DNA for gene therapy. This rapid synthesis/functionalization approach provided excellent control over the extent of PEI labeling, improved SPION magnetic resonance imaging (MRI) contrast enhancement and produced an efficient transfection agent.

  16. Stainless steel pinholes for fast fabrication of high-performance microchip electrophoresis devices by CO2 laser ablation.

    PubMed

    Yap, Yiing C; Guijt, Rosanne M; Dickson, Tracey C; King, Anna E; Breadmore, Michael C

    2013-11-05

    With the introduction of hobby laser engravers/cutters, the use of CO2 laser micromachining on poly(methyl methacrylate) (PMMA) has the potential for flexible, low cost, rapid prototyping of microfluidic devices. Unfortunately, the feature size created by most entry-level CO2 laser micromachining systems is too large to become a functional tool in analytical microfluidics. In this paper, we report a novel method to reduce the feature size of microchannels and the bulges formed at the rim of the channel during CO2 laser micromachining by passing the laser beam through a stainless steel pinhole. Without the pinhole, the channel width was typically 300 μm wide. However, when 50 or 35 μm diameter pinholes were used, channel widths of 60 and 25 μm, respectively, could be obtained. The height of the bulge deposited directly next to the channel was reduced to less than 0.8 μm with the pinhole during ablation. Separations of fluorescent dyes on devices ablated with and without the pinhole were compared. On devices fabricated with the pinhole, the number of theoretical plates/m was 2.2-fold higher compared to devices fabricated without the pinhole, and efficiencies comparable to embossed PMMA and laser ablated glass chips were obtained. A mass-produced commercial hobby laser (retailing at ∼$2500), when equipped with a $500 pinhole, represents a rapid and low-cost approach to the rapid fabrication of rigid plastic microchips including the narrow microchannels required for microchip electrophoresis.

  17. Network and neuronal membrane properties in hybrid networks reciprocally regulate selectivity to rapid thalamocortical inputs.

    PubMed

    Pesavento, Michael J; Pinto, David J

    2012-11-01

    Rapidly changing environments require rapid processing from sensory inputs. Varying deflection velocities of a rodent's primary facial vibrissa cause varying temporal neuronal activity profiles within the ventral posteromedial thalamic nucleus. Local neuron populations in a single somatosensory layer 4 barrel transform sparsely coded input into a spike count based on the input's temporal profile. We investigate this transformation by creating a barrel-like hybrid network with whole cell recordings of in vitro neurons from a cortical slice preparation, embedding the biological neuron in the simulated network by presenting virtual synaptic conductances via a conductance clamp. Utilizing the hybrid network, we examine the reciprocal network properties (local excitatory and inhibitory synaptic convergence) and neuronal membrane properties (input resistance) by altering the barrel population response to diverse thalamic input. In the presence of local network input, neurons are more selective to thalamic input timing; this arises from strong feedforward inhibition. Strongly inhibitory (damping) network regimes are more selective to timing and less selective to the magnitude of input but require stronger initial input. Input selectivity relies heavily on the different membrane properties of excitatory and inhibitory neurons. When inhibitory and excitatory neurons had identical membrane properties, the sensitivity of in vitro neurons to temporal vs. magnitude features of input was substantially reduced. Increasing the mean leak conductance of the inhibitory cells decreased the network's temporal sensitivity, whereas increasing excitatory leak conductance enhanced magnitude sensitivity. Local network synapses are essential in shaping thalamic input, and differing membrane properties of functional classes reciprocally modulate this effect.

  18. The Fourth Law of Robotics.

    ERIC Educational Resources Information Center

    Markoff, John

    1994-01-01

    Discusses intelligent software agents, or knowledge robots (knowbots), and the impact they have on the Internet. Topics addressed include ethical dilemmas; problems created by rapid growth on the Internet; new technologies that are amplifying growth; and a shift to a market economy and resulting costs. (LRW)

  19. SUMMARY REPORT ON RESEARCH RESULTS FROM THE ADVANCE MEASUREMENT INITIATIVE (AMI)

    EPA Science Inventory

    EPA created the Advanced Measurement Initiative (AMI) to permit the early and inexpensive evaluation of innovative advanced technology and to encourage broad and rapid application in EPA operations. The AMI program focused on improving EPA's technological capabilities and acceler...

  20. Assessment of relevant prior and ongoing research for the concept development and needs identification for integrated dynamic transit operations.

    DOT National Transportation Integrated Search

    2011-11-01

    In support of USDOTs Intelligent Transportation Systems (ITS) Mobility Program, the Dynamic Mobility Applications (DMA) program seeks to create applications that fully leverage frequently collected and rapidly disseminated multi-source data gat...

  1. Auto Repair Gets Technical.

    ERIC Educational Resources Information Center

    Steiger, Jim; Shoemaker, Byrl

    1989-01-01

    Rapid advances in automotive technology and the growth of the automotive service industry have created opportunities in car repair, parts supply, and body work. Certification is the best way for vocational educators to ensure that their programs prepare students for work in the automotive industry. (JOW)

  2. Longer time spent in bed attempting to sleep is associated with rapid renal function decline: the Dongfeng-Tongji cohort study.

    PubMed

    Li, Yizhun; Yang, Liangle; Wang, Hao; Jiang, Haijing; Qiu, Gaokun; Liu, Yiyi; Xiao, Yang; Yang, Handong; Wu, Tangchun; Zhang, Xiaomin

    2018-03-01

    Prospective evidence on the relation between time in bed and renal dysfunction remains limited. We aimed to investigate the association of time spent in bed attempting to sleep (TSBS) with renal function decline in a middle-aged and elderly Chinese population. About 16,733 eligible participants with a mean age of 62.3 years at baseline were included. Rapid renal function decline was defined as (baseline eGFR - revisit eGFR)/years of follow-up ≥5 mL/min per 1.73 m 2 /year. A total of 1738 study participants experienced rapid renal function decline after a median 4.6-year follow-up. Logistic regression models were used for multivariate analyses. The adjusted odds ratio (OR) of rapid renal function decline was 1.18 (95% CI: 1.02, 1.37) for TSBS ≥9 h/night compared with TSBS 7 to <8 h/night. This association remained significant (OR = 1.19, 95% CI: 1.03, 1.38) after further adjustment for sleep quality, midday napping and usage of sleeping pills. Particularly, the association appeared to be prominent in individuals with diabetes. Longer TSBS (≥9 h) was independently associated with an increased risk of rapid renal function decline. Our findings emphasized the importance to have optimal TSBS. Key messages Our study firstly investigated the association between time spent in bed attempting to sleep (TSBS) and renal dysfunction in Chinese adults. Compared with individuals TSBS 7 to <8 h, individuals with TSBS ≥9 h had 19% increased risk for rapid renal function decline after adjustment for multivariate confounders. The association appeared to be prominent in individuals with diabetes.

  3. Trade Space Specification Tool (TSST) for Rapid Mission Architecture (Version 1.2)

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Schrock, Mitchell; Borden, Chester S.; Moeller, Robert C.

    2013-01-01

    Trade Space Specification Tool (TSST) is designed to capture quickly ideas in the early spacecraft and mission architecture design and categorize them into trade space dimensions and options for later analysis. It is implemented as an Eclipse RCP Application, which can be run as a standalone program. Users rapidly create concept items with single clicks on a graphical canvas, and can organize and create linkages between the ideas using drag-and-drop actions within the same graphical view. Various views such as a trade view, rules view, and architecture view are provided to help users to visualize the trade space. This software can identify, explore, and assess aspects of the mission trade space, as well as capture and organize linkages/dependencies between trade space components. The tool supports a user-in-the-loop preliminary logical examination and filtering of trade space options to help identify which paths in the trade space are feasible (and preferred) and what analyses need to be done later with executable models. This tool provides multiple user views of the trade space to guide the analyst/team to facilitate interpretation and communication of the trade space components and linkages, identify gaps in combining and selecting trade space options, and guide user decision-making for which combinations of architectural options should be pursued for further evaluation. This software provides an environment to capture mission trade space elements rapidly and assist users for their architecture analysis. This is primarily focused on mission and spacecraft architecture design, rather than general-purpose design application. In addition, it provides more flexibility to create concepts and organize the ideas. The software is developed as an Eclipse plug-in and potentially can be integrated with other Eclipse-based tools.

  4. Intranet Model and Metrics

    DTIC Science & Technology

    2007-02-01

    organization: to add suffi- cient value for its customers to create a sustainable business model . It takes its features and functionality from the mandate...customers to create a sustainable business model . It takes its features and functionality from the mandate to operate at world-class efficiency and

  5. High-Content Optical Codes for Protecting Rapid Diagnostic Tests from Counterfeiting.

    PubMed

    Gökçe, Onur; Mercandetti, Cristina; Delamarche, Emmanuel

    2018-06-19

    Warnings and reports on counterfeit diagnostic devices are released several times a year by regulators and public health agencies. Unfortunately, mishandling, altering, and counterfeiting point-of-care diagnostics (POCDs) and rapid diagnostic tests (RDTs) is lucrative, relatively simple and can lead to devastating consequences. Here, we demonstrate how to implement optical security codes in silicon- and nitrocellulose-based flow paths for device authentication using a smartphone. The codes are created by inkjet spotting inks directly on nitrocellulose or on micropillars. Codes containing up to 32 elements per mm 2 and 8 colors can encode as many as 10 45 combinations. Codes on silicon micropillars can be erased by setting a continuous flow path across the entire array of code elements or for nitrocellulose by simply wicking a liquid across the code. Static or labile code elements can further be formed on nitrocellulose to create a hidden code using poly(ethylene glycol) (PEG) or glycerol additives to the inks. More advanced codes having a specific deletion sequence can also be created in silicon microfluidic devices using an array of passive routing nodes, which activate in a particular, programmable sequence. Such codes are simple to fabricate, easy to view, and efficient in coding information; they can be ideally used in combination with information on a package to protect diagnostic devices from counterfeiting.

  6. The hospital tech laboratory: quality innovation in a new era of value-conscious care.

    PubMed

    Keteyian, Courtland K; Nallamothu, Brahmajee K; Ryan, Andrew M

    2017-08-01

    For decades, the healthcare industry has been incentivized to develop new diagnostic technologies, but this limitless progress fueled rapidly growing expenditures. With an emphasis on value, the future will favor information synthesis and processing over pure data generation, and hospitals will play a critical role in developing these systems. A Michigan Medicine, IBM, and AirStrip partnership created a robust streaming analytics platform tasked with creating predictive algorithms for critical care with the potential to support clinical decisions and deliver significant value.

  7. Development and Demonstration of Adanced Tooling Alloys for Molds and Dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin M. McHugh; Enrique J. Lavernia

    2006-01-01

    This report summarizes research results in the project Development and Demonstration of Advanced Tooling Alloys for Molds and Dies. Molds, dies and related tooling are used to manufacture most of the plastic and metal products we use every day. Conventional fabrication of molds and dies involves a multiplicity of machining, benching and heat treatment unit operations. This approach is very expensive and time consuming. Rapid Solidifcation Process (RSP) Tooling is a spray-forming technology tailored for producing molds and dies. The appraoch combines rapid solidifcation processing and net-shape materials processing in a single step. An atomized spray of a tool-forming alloy,more » typically a tool steel, is deposited onto an easy-to-form tool pattern to replicate the pattern's shape and surface features. By so doing, the approach eliminates many machining operations in conventional mold making, significantly reducing cost, lead time and energy. Moreover, rapid solidification creates unique microstructural features by suppressing carbide precipitation and growth, and creating metastable phases. This can result in unique material properties following heat treatment. Spray-formed and aged tool steel dies have exhibited extended life compared to conventional dies in many forming operations such as forging, extrusion and die casting. RSP Tooling technolocy was commercialized with the formation of RSP Tooling, LLC in Solon, Oh.« less

  8. Creation of a 3D printed temporal bone model from clinical CT data.

    PubMed

    Cohen, Joss; Reyes, Samuel A

    2015-01-01

    Generate and describe the process of creating a 3D printed, rapid prototype temporal bone model from clinical quality CT images. We describe a technique to create an accurate, alterable, and reproducible rapid prototype temporal bone model using freely available software to segment clinical CT data and generate three different 3D models composed of ABS plastic. Each model was evaluated based on the appearance and size of anatomical structures and response to surgical drilling. Mastoid air cells had retained scaffolding material in the initial versions. This required modifying the model to allow drainage of the scaffolding material. External auditory canal dimensions were similar to those measured from the clinical data. Malleus, incus, oval window, round window, promontory, horizontal semicircular canal, and mastoid segment of the facial nerve canal were identified in all models. The stapes was only partially formed in two models and absent in the third. Qualitative feel of the ABS plastic was softer than bone. The pate produced by drilling was similar to bone dust when appropriate irrigation was used. We present a rapid prototype temporal bone model made based on clinical CT data using 3D printing technology. The model can be made quickly and inexpensively enough to have potential applications for educational training. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Different Requirements for Proteolytic Processing of Bone Morphogenetic Protein 5/6/7/8 Ligands in Drosophila melanogaster*

    PubMed Central

    Fritsch, Cornelia; Sawala, Annick; Harris, Robin; Maartens, Aidan; Sutcliffe, Catherine; Ashe, Hilary L.; Ray, Robert P.

    2012-01-01

    Bone morphogenetic proteins (BMPs) are synthesized as proproteins that undergo proteolytic processing by furin/subtilisin proprotein convertases to release the active ligand. Here we study processing of BMP5/6/7/8 proteins, including the Drosophila orthologs Glass Bottom Boat (Gbb) and Screw (Scw) and human BMP7. Gbb and Scw have three functional furin/subtilisin proprotein convertase cleavage sites; two between the prodomain and ligand domain, which we call the Main and Shadow sites, and one within the prodomain, which we call the Pro site. In Gbb each site can be cleaved independently, although efficient cleavage at the Shadow site requires cleavage at the Main site, and remarkably, none of the sites is essential for Gbb function. Rather, Gbb must be processed at either the Pro or Main site to produce a functional ligand. Like Gbb, the Pro and Main sites in Scw can be cleaved independently, but cleavage at the Shadow site is dependent on cleavage at the Main site. However, both Pro and Main sites are essential for Scw function. Thus, Gbb and Scw have different processing requirements. The BMP7 ligand rescues gbb mutants in Drosophila, but full-length BMP7 cannot, showing that functional differences in the prodomain limit the BMP7 activity in flies. Furthermore, unlike Gbb, cleavage-resistant BMP7, although non-functional in rescue assays, activates the downstream signaling cascade and thus retains some functionality. Our data show that cleavage requirements evolve rapidly, supporting the notion that changes in post-translational processing are used to create functional diversity between BMPs within and between species. PMID:22199351

  10. A Web Tool for Generating High Quality Machine-readable Biological Pathways.

    PubMed

    Ramirez-Gaona, Miguel; Marcu, Ana; Pon, Allison; Grant, Jason; Wu, Anthony; Wishart, David S

    2017-02-08

    PathWhiz is a web server built to facilitate the creation of colorful, interactive, visually pleasing pathway diagrams that are rich in biological information. The pathways generated by this online application are machine-readable and fully compatible with essentially all web-browsers and computer operating systems. It uses a specially developed, web-enabled pathway drawing interface that permits the selection and placement of different combinations of pre-drawn biological or biochemical entities to depict reactions, interactions, transport processes and binding events. This palette of entities consists of chemical compounds, proteins, nucleic acids, cellular membranes, subcellular structures, tissues, and organs. All of the visual elements in it can be interactively adjusted and customized. Furthermore, because this tool is a web server, all pathways and pathway elements are publicly accessible. This kind of pathway "crowd sourcing" means that PathWhiz already contains a large and rapidly growing collection of previously drawn pathways and pathway elements. Here we describe a protocol for the quick and easy creation of new pathways and the alteration of existing pathways. To further facilitate pathway editing and creation, the tool contains replication and propagation functions. The replication function allows existing pathways to be used as templates to create or edit new pathways. The propagation function allows one to take an existing pathway and automatically propagate it across different species. Pathways created with this tool can be "re-styled" into different formats (KEGG-like or text-book like), colored with different backgrounds, exported to BioPAX, SBGN-ML, SBML, or PWML data exchange formats, and downloaded as PNG or SVG images. The pathways can easily be incorporated into online databases, integrated into presentations, posters or publications, or used exclusively for online visualization and exploration. This protocol has been successfully applied to generate over 2,000 pathway diagrams, which are now found in many online databases including HMDB, DrugBank, SMPDB, and ECMDB.

  11. Multi-scale finite element modeling of Eustachian tube function: influence of mucosal adhesion.

    PubMed

    Malik, J E; Swarts, J D; Ghadiali, S N

    2016-12-01

    The inability to open the collapsible Eustachian tube (ET) leads to the development of chronic Otitis Media (OM). Although mucosal inflammation during OM leads to increased mucin gene expression and elevated adhesion forces within the ET lumen, it is not known how changes in mucosal adhesion alter the biomechanical mechanisms of ET function. In this study, we developed a novel multi-scale finite element model of ET function in adults that utilizes adhesion spring elements to simulate changes in mucosal adhesion. Models were created for six adult subjects, and dynamic patterns in muscle contraction were used to simulate the wave-like opening of the ET that occurs during swallowing. Results indicate that ET opening is highly sensitive to the level of mucosal adhesion and that exceeding a critical value of adhesion leads to rapid ET dysfunction. Parameter variation studies and sensitivity analysis indicate that increased mucosal adhesion alters the relative importance of several tissue biomechanical properties. For example, increases in mucosal adhesion reduced the sensitivity of ET function to tensor veli palatini muscle forces but did not alter the insensitivity of ET function to levator veli palatini muscle forces. Interestingly, although changes in cartilage stiffness did not significantly influence ET opening under low adhesion conditions, ET opening was highly sensitive to changes in cartilage stiffness under high adhesion conditions. Therefore, our multi-scale computational models indicate that changes in mucosal adhesion as would occur during inflammatory OM alter the biomechanical mechanisms of ET function. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Thermal highly porous insulation materials made of mineral raw materials

    NASA Astrophysics Data System (ADS)

    Mestnikov, A.

    2015-01-01

    The main objective of the study is to create insulating foam based on modified mineral binders with rapid hardening. The results of experimental studies of the composition and properties of insulating foam on the basis of rapidly hardening Portland cement (PC) and gypsum binder composite are presented in the article. The article proposes technological methods of production of insulating foamed concrete and its placement to the permanent shuttering wall enclosures in monolithic-frame construction and individual energy-efficient residential buildings, thus reducing foam shrinkage and improving crack-resistance.

  13. Fusion proteins as alternate crystallization paths to difficult structure problems

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Rueker, Florian; Ho, Joseph X.; Lim, Kap; Keeling, Kim; Gilliland, Gary; Ji, Xinhua

    1994-01-01

    The three-dimensional structure of a peptide fusion product with glutathione transferase from Schistosoma japonicum (SjGST) has been solved by crystallographic methods to 2.5 A resolution. Peptides or proteins can be fused to SjGST and expressed in a plasmid for rapid synthesis in Escherichia coli. Fusion proteins created by this commercial method can be purified rapidly by chromatography on immobilized glutathione. The potential utility of using SjGST fusion proteins as alternate paths to the crystallization and structure determination of proteins is demonstrated.

  14. Creating affordable Internet map server applications for regional scale applications.

    PubMed

    Lembo, Arthur J; Wagenet, Linda P; Schusler, Tania; DeGloria, Stephen D

    2007-12-01

    This paper presents an overview and process for developing an Internet Map Server (IMS) application for a local volunteer watershed group using an Internal Internet Map Server (IIMS) strategy. The paper illustrates that modern GIS architectures utilizing an internal Internet map server coupled with a spatial SQL command language allow for rapid development of IMS applications. The implication of this approach means that powerful IMS applications can be rapidly and affordably developed for volunteer organizations that lack significant funds or a full time information technology staff.

  15. Rapid flow fractionation of particles combining liquid and particulate dielectrophoresis

    NASA Technical Reports Server (NTRS)

    King, Michael R. (Inventor); Lomakin, Oleg (Inventor); Jones, Thomas B. (Inventor); Ahmed, Rajib (Inventor)

    2007-01-01

    Rapid, size-based, deposition of particles from liquid suspension is accomplished using a nonuniform electric field created by coplanar microelectrode strips patterned on an insulating substrate. The scheme uses the dielectrophoretic force both to distribute aqueous liquid containing particles and, simultaneously, to separate the particles. Size-based separation is found within nanoliter droplets formed along the structure after voltage removal. Bioparticles or macromolecules of similar size can also be separated based on subtle differences in dielectric property, by controlling the frequency of the AC current supplied to the electrodes.

  16. Synthesis: Intertwining product and process

    NASA Technical Reports Server (NTRS)

    Weiss, David M.

    1990-01-01

    Synthesis is a proposed systematic process for rapidly creating different members of a program family. Family members are described by variations in their requirements. Requirements variations are mapped to variations on a standard design to generate production quality code and documentation. The approach is made feasible by using principles underlying design for change. Synthesis incorporates ideas from rapid prototyping, application generators, and domain analysis. The goals of Synthesis and the Synthesis process are discussed. The technology needed and the feasibility of the approach are also briefly discussed. The status of current efforts to implement Synthesis methodologies is presented.

  17. Online Identities and Social Networking

    NASA Astrophysics Data System (ADS)

    Maheswaran, Muthucumaru; Ali, Bader; Ozguven, Hatice; Lord, Julien

    Online identities play a critical role in the social web that is taking shape on the Internet. Despite many technical proposals for creating and managing online identities, none has received widespread acceptance. Design and implementation of online identities that are socially acceptable on the Internet remains an open problem. This chapter discusses the interplay between online identities and social networking. Online social networks (OSNs) are growing at a rapid pace and has millions of members in them. While the recent trend is to create explicit OSNs such as Facebook and MySpace, we also have implicit OSNs such as interaction graphs created by email and instant messaging services. Explicit OSNs allow users to create profiles and use them to project their identities on the web. There are many interesting identity related issues in the context of social networking including how OSNs help and hinder the definition of online identities.

  18. Creating semiconductor metafilms with designer absorption spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate thatmore » near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.« less

  19. Effects of creatine supplementation on biomarkers of hepatic and renal function in young trained rats.

    PubMed

    Souza, William Marciel; Heck, Thiago Gomes; Wronski, Evanio Castor; Ulbrich, Anderson Zampier; Boff, Everton

    2013-11-01

    Creatine supplementation has been widely used by athletes and young physical exercise practioneers in order of increasing muscle mass and enhancing athletic performance, but their use/overuse may represent a health risk on hepatic and renal impaired function. In this study, we evaluated the effects of 40 days of oral creatine supplementation on hepatic and renal function biomarkers in a young animal model. Wistar rats (5 weeks old) were divided in five groups (n = 7): control (CONTR), oral creatine supplementation (CREAT), moderate exercise training (EXERC), moderate exercise training plus oral creatine supplementation (EXERC + CREAT) and pathological group (positive control for liver and kidney injury) by the administration of rifampicin (RIFAMPICIN). Exercise groups were submitted to 60 min/day of swimming exercise session with a 4% of body weight workload for six weeks. The EXERC + CREAT showed the higher body weight at the end of the training protocol. The CREAT and EXERC + CREAT group showed an increase in hepatic (Aspartate transaminase and gamma-glutamyl transpeptidase) and renal (urea and creatinine) biomarkers levels (p < 0.05). Our study showed that the oral creatine supplementation promoted hepatic and renal function challenge in young rats submitted to moderate exercise training.

  20. Pork Production System and its Development in Mainland China

    USDA-ARS?s Scientific Manuscript database

    Livestock production and marketing have been driven by the growing consumer demand for high quality and low cost animal protein. As a result, intensive livestock industries have been rapidly developing globally. International trade creates new opportunities and challenges for U.S. animal agriculture...

  1. Nanocrystalline Iron-Cobalt Alloys for High Saturation Indutance

    DTIC Science & Technology

    2016-02-24

    toroid. Before fully embarking on the problem of creating the toroid’s from particles sintered by a process known as sparked plasma sintering which...allows the particles to be rapidly sintered without compromising the nano crystalline particle size, it was deemed necessary to anticipate the

  2. Bioindustry Creates Green Jobs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-07-01

    The U.S. bioindustry is expanding rapidly in response to the need for a near-term alternative to liquid petroleum fuels. The Energy Independence and Security Act of 2007 (EISA) requires that renewable fuels collectively supply at least 36 billion gallons of U.S. motor fuels by 2022.

  3. Community Access Video.

    ERIC Educational Resources Information Center

    Frederiksen, H. Allan

    In the belief that "the spread of technological development and the attendant rapidly changing environment creates the necessity for multi-source feedback systems to maximize the alternatives available in dealing with global problems," the author shows how to participate in the process of alternate video. He offers detailed information…

  4. eLearning in the Cloud

    ERIC Educational Resources Information Center

    Sclater, Niall

    2010-01-01

    Elearning has grown rapidly in importance for institutions and has been largely facilitated through the "walled garden" of the virtual learning environment. Meanwhile many students are creating their own personal learning environments by combining the various Web 2.0 services they find most useful. Cloud computing offers new…

  5. Creating Partnerships: Forging a Chain of Service Quality.

    ERIC Educational Resources Information Center

    Lynch, Richard; And Others

    1993-01-01

    Advocates the need for libraries to identify, nurture, and sustain new partnerships given rapid technological advancements and trends in information economics. Principles of partnerships are described, including Total Quality Management (TQM), negotiation, seamless connectivity, performance data, trust, patience, and perseverance; and steps in the…

  6. Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles

    EPA Science Inventory

    Applications for silver nanomaterials in consumer products are rapidly expanding, creating an urgent need for toxicological examination of the exposure potential and ecological effects of silver nanoparticles (AgNPs). The integration of genomic techniques into environmental toxic...

  7. Mixed region reactors for in situ treatment of DNAPL contaminated low permeability media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, O.R.; Siegrist, R.L.

    1996-08-01

    Fine-textured soils and sediments contaminated by dense non-aqueous phase liquids (DNAPLs) present a significant environmental restoration challenge. An emerging approach to rapid in situ treatment within low permeability media involves the use of soil mixing to create mixed region reactors wherein biological or physical/chemical treatment processes can be employed. In cohesive soils, mixing breaks up the original soil structure and produces soil aggregates or clods separated by interaggregate void spaces. These void spaces create preferential flow paths for more efficient extraction of contaminants from the soil matrix or more rapid diffusion of treatment agents into the soil aggregates. This enhancementmore » technology has been most successfully used with vapor stripping. However, other technologies can also be coupled with soil mixing including chemical degradation, biodegradation and solidification. The application of this technology to DNAPL-contaminated low permeability media appears promising but requires further experiments and models that can simulate the movement of DNAPLs in mixed regions. 11 refs., 6 figs.« less

  8. Interaction of an electromagnetic wave with a rapidly created spatially periodic plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, S.P.; Faith, J.

    1997-08-01

    The interaction of electromagnetic waves with rapidly created time-varying spatially periodic plasmas is studied. The numerical results of the collisionless case show that both frequency upshifted and frequency downshifted waves are generated. Moreover, the frequency downshifted waves are trapped by the plasma when the plasma frequency is larger than the wave frequency. The trapping has the effect of dramatically enhancing the efficiency of the frequency downshift conversion process, by accumulating incident wave energy during the plasma transition period. A theory based on the wave impedance of each Floquet mode of the periodic structure is formulated, incorporating with the collisional dampingmore » of the plasma. Such a theory explains the recent experimental observations [Faith, Kuo, and Huang, Phys. Rev. E {bold 55}, 1843 (1997)] where the frequency downshifted signals were detected repetitively with considerably enhanced spectral intensities while the frequency upshifted signals were missing. {copyright} {ital 1997} {ital The American Physical Society}« less

  9. A rapid method for creating qualitative images indicative of thick oil emulsion on the ocean's surface from imaging spectrometer data

    USGS Publications Warehouse

    Kokaly, Raymond F.; Hoefen, Todd M.; Livo, K. Eric; Swayze, Gregg A.; Leifer, Ira; McCubbin, Ian B.; Eastwood, Michael L.; Green, Robert O.; Lundeen, Sarah R.; Sarture, Charles M.; Steele, Denis; Ryan, Thomas; Bradley, Eliza S.; Roberts, Dar A.; ,

    2010-01-01

    This report describes a method to create color-composite images indicative of thick oil:water emulsions on the surface of clear, deep ocean water by using normalized difference ratios derived from remotely sensed data collected by an imaging spectrometer. The spectral bands used in the normalized difference ratios are located in wavelength regions where the spectra of thick oil:water emulsions on the ocean's surface have a distinct shape compared to clear water and clouds. In contrast to quantitative analyses, which require rigorous conversion to reflectance, the method described is easily computed and can be applied rapidly to radiance data or data that have been atmospherically corrected or ground-calibrated to reflectance. Examples are shown of the method applied to Airborne Visible/Infrared Imaging Spectrometer data collected May 17 and May 19, 2010, over the oil spill from the Deepwater Horizon offshore oil drilling platform in the Gulf of Mexico.

  10. A comparative approach to computer aided design model of a dog femur.

    PubMed

    Turamanlar, O; Verim, O; Karabulut, A

    2016-01-01

    Computer assisted technologies offer new opportunities in medical imaging and rapid prototyping in biomechanical engineering. Three dimensional (3D) modelling of soft tissues and bones are becoming more important. The accuracy of the analysis in modelling processes depends on the outline of the tissues derived from medical images. The aim of this study is the evaluation of the accuracy of 3D models of a dog femur derived from computed tomography data by using point cloud method and boundary line method on several modelling software. Solidworks, Rapidform and 3DSMax software were used to create 3D models and outcomes were evaluated statistically. The most accurate 3D prototype of the dog femur was created with stereolithography method using rapid prototype device. Furthermore, the linearity of the volumes of models was investigated between software and the constructed models. The difference between the software and real models manifests the sensitivity of the software and the devices used in this manner.

  11. Adaptations of the vestibular system to short and long-term exposures to altered gravity

    NASA Astrophysics Data System (ADS)

    Bruce, L.

    Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival. We are studying two aspects of this vestibular adaptation: (1) How does long-term exposure to microgravity and hypergravity affect the development of vestibular afferents? (2) How does short- term exposure to extremely rapid changes in gravity, such as those that occur during launch and landing, affect the vestibular system. During space flight the gravistatic receptors in the otolith organs are effectively unloaded. In hypergravity conditions they are overloaded. However, the angular acceleration receptors of the semicircular canals receive relatively normal stimulation in both micro- and hypergravity.Rat embryos exposed to microgravity from gestation day 10 (prior to vestibular function) until gestation day 20 (vestibular system is somewhat functional) showed that afferents from the posterior vertical canal projecting to the medial vestibular nucleus developed similarly in microgravity, hypergravity, and in controls . However, afferents from the saccule showed delayed development in microgravity as compared to development in hypergravity and in controls. Cerebellar plasticity is crucial for modification of sensory-motor control and learning. Thus we explored the possibility that strong vestibular stimuli would modify cerebellar motor control (i.e., eye movement, postural control, gut motility) by altering the morphology of cerebellar Purkinje cells. To study the effects of short-term exposures to strong vestibular stimuli we focused on structural changes in the vestibulo-cerebellum that are caused by strong vestibular stimuli. Adult mice were exposed to various combinations of constant and/or rapidly changing angular and linear accelerations for 8.5 min (the time length of shuttle launch). Our data shows that these stimuli cause intense excitation of cerebellar Purkinje cells, inducing up-regulation of clathrin-mediated endocytosis. Different types of stimulation affect Purkinje cells in particular locations of the vestibulo-cerebellum. This system allows us to study how the vestibular environment can modify cerebellar function, allowing animals to adapt to new environments. Supported by NASA grant NAG2-1353.

  12. Worsening renal function defined as an absolute increase in serum creatinine is a biased metric for the study of cardio-renal interactions.

    PubMed

    Testani, Jeffrey M; McCauley, Brian D; Chen, Jennifer; Shumski, Michael; Shannon, Richard P

    2010-01-01

    Worsening renal function (WRF) during the treatment of decompensated heart failure, frequently defined as an absolute increase in serum creatinine >or=0.3 mg/dl, has been reported as a strong adverse prognostic factor in several studies. We hypothesized that this definition of WRF is biased by baseline renal function secondary to the exponential relationship between creatinine and renal function. We reviewed consecutive admissions with a discharge diagnosis of heart failure. An increase in creatinine >or=0.3 mg/dl (WRF(CREAT)) was compared to a decrease in GFR >or=20% (WRF(GFR)). Overall, 993 admissions met eligibility. WRF(CREAT) occurred in 31.5% and WRF(GFR) in 32.7%. WRF(CREAT) and WRF(GFR) had opposing relationships with baseline renal function (OR = 1.9 vs. OR = 0.51, respectively, p < 0.001). Both definitions had similar unadjusted associations with death at 30 days [WRF(GFR) OR = 2.3 (95% CI 1.1-4.8), p = 0.026; WRF(CREAT) OR = 2.1 (95% CI 1.0-4.4), p = 0.047]. Controlling for baseline renal insufficiency, WRF(GFR) added incrementally in the prediction of mortality (p = 0.009); however, WRF(CREAT) did not (p = 0.11). WRF, defined as an absolute change in serum creatinine, is heavily biased by baseline renal function. An alternative definition of WRF should be considered for future studies of cardio-renal interactions. Copyright 2010 S. Karger AG, Basel.

  13. Association of pulse wave velocity and pulse pressure with decline in kidney function.

    PubMed

    Kim, Chang Seong; Kim, Ha Yeon; Kang, Yong Un; Choi, Joon Seok; Bae, Eun Hui; Ma, Seong Kwon; Kim, Soo Wan

    2014-05-01

    The association between arterial stiffness and decline in kidney function in patients with mild to moderate chronic kidney disease (CKD) is not well established. This study investigated whether pulse wave velocity (PWV) and pulse pressure (PP) are independently associated with glomerular filtration rate (GFR) and rapid decline in kidney function in early CKD. Carotid femoral PWV (cfPWV), brachial-ankle PWV (baPWV), and PP were measured in a cohort of 913 patients (mean age, 63±10 years; baseline estimated GFR, 84±18 mL/min/1.73 m(2) ). Estimated GFR was measured at baseline and at follow-up. The renal outcome examined was rapid decline in kidney function (estimated GFR loss, >3 mL/min/1.73 m(2) per year). The median follow-up duration was 3.2 years. Multivariable adjusted linear regression model indicated that arterial PWV (both cfPWV and baPWV) and PP increased as estimated GFR declined, but neither was associated with kidney function after adjustment for various covariates. Multivariable logistic regression analysis found that cfPWV and baPWV were not associated with rapid decline in kidney function (odds ratio [OR], 1.39, 95% confidence interval [CI], 0.41-4.65; OR, 2.51, 95% CI, 0.66-9.46, respectively), but PP was (OR, 1.22, 95% CI, 1.01-1.48; P=.045). Arterial stiffness assessed using cfPWV and baPWV was not correlated with lower estimated GFR and rapid decline in kidney function after adjustment for various confounders. Thus, PP is an independent risk factor for rapid decline in kidney function in populations with relatively preserved kidney function (estimated GFR ≥30 mL/min/1.73 m(2) ). ©2014 Wiley Periodicals, Inc.

  14. All-in-One Nanowire-Decorated Multifunctional Membrane for Rapid Cell Lysis and Direct DNA Isolation

    PubMed Central

    2015-01-01

    This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour. PMID:25420232

  15. Rapid Thermal Processing to Enhance Steel Toughness.

    PubMed

    Judge, V K; Speer, J G; Clarke, K D; Findley, K O; Clarke, A J

    2018-01-11

    Quenching and Tempering (Q&T) has been utilized for decades to alter steel mechanical properties, particularly strength and toughness. While tempering typically increases toughness, a well-established phenomenon called tempered martensite embrittlement (TME) is known to occur during conventional Q&T. Here we show that short-time, rapid tempering can overcome TME to produce unprecedented property combinations that cannot be attained by conventional Q&T. Toughness is enhanced over 43% at a strength level of 1.7 GPa and strength is improved over 0.5 GPa at an impact toughness of 30 J. We also show that hardness and the tempering parameter (TP), developed by Holloman and Jaffe in 1945 and ubiquitous within the field, is insufficient for characterizing measured strengths, toughnesses, and microstructural conditions after rapid processing. Rapid tempering by energy-saving manufacturing processes like induction heating creates the opportunity for new Q&T steels for energy, defense, and transportation applications.

  16. Treatment of Severe Aortic Bleeding Using Hemopatch in Swine on Dual Antiplatelet Therapy.

    PubMed

    Baumgartner, Bernhard; Draxler, Wolfgang; Lewis, Kevin M

    2016-12-01

    The perioperative management of patients on antithrombotic therapy is currently an unresolved problem as these therapies pose a considerable risk for perioperative hemorrhagic complications. The presented studies investigated the efficacy of a new collagen technology to achieve hemostasis. A polyethylene glycol-coated collagen pad (PCC) was compared to a marketed fibrinogen-thrombin coated collagen pad (FTC) for the treatment of an aortotomy incision in heparinized swine on dual antiplatelet therapy. Twenty-eight 3-mm aortotomy incisions were created in nine heparinized pigs without antiplatelet therapy and treated with PCC. Sixty-eight aortotomy incisions were created in ten heparinized pigs that received clopidogrel (10-11 mg/kg) and acetylsalicylic acid (8-11 mg/kg) orally for 5 days, and treated with either PCC or FTC (N = 34/group). Dual antiplatelet therapy resulted in significantly reduced platelet function. Aortotomy incisions resulted in life-threatening bleeding of 35-292 ml/min. In animals without antiplatelet treatment, PCC provided 96% immediate hemostatic success. In animals with antiplatelet treatment, FTC provided 18% immediate hemostatic success increasing to 74% after 10 min. Strikingly, PCC provided 94% immediate success increasing to 100% after 10 min. Controlling for differences in pretreatment bleeding rates, statistical model-estimated time to hemostasis was 12 times shorter in PCC-treated lesions (p < .02). The combination of a procoagulant collagen pad with a synthetic sealing component provides excellent hemostatic properties under a worst-case scenario. PCC rapidly and firmly adheres to tissue, thereby controlling severe arterial bleeding, even when platelet function is significantly reduced. Treatment with PCC provided superior time to hemostasis compared to FTC.

  17. Azole Functionalized Polyoxo-Titanium Clusters with Sunlight-Driven Dye Degradation Applications: Synthesis, Structure, and Photocatalytic Studies.

    PubMed

    Narayanam, Nagaraju; Chintakrinda, Kalpana; Fang, Wei-Hui; Kang, Yao; Zhang, Lei; Zhang, Jian

    2016-10-06

    Six polyoxo-titanium clusters (PTCs) with varying nuclearities containing Ti-N bonds and heteronuclearity, namely, [Ti 6 (μ 3 -O) 2 (μ 2 -O) 2 (O 3 P-Phen) 2 (OiPr) 10 (1-hbta) 2 ] (PTC-37), Ti 8 (μ 3 -O) 2 (μ 2 -O) 2 (O 3 P-Phen) 2 (OiPr) 16 (adn) 2 (NO 3 ) 2 ] (PTC-38), [Ti 4 (μ 3 -O)(μ 2 -O)(μ 2 -OiPr) 2 (OiPr) 4 (O 3 P-Phen) 3 (1,10-phn)](HOiPr) (PTC-39), [Ti 4 (μ 3 -O)(μ 2 -OiPr) 3 (OiPr) 5 (O 3 P-Phen) 3 (Im)] (PTC-40), [Ti 4 (μ 3 -O)(μ 2 -OiPr) 3 (OiPr) 5 (O 3 P-Phen) 3 (Im)][Ti 3 M(μ 3 -O)(μ 2 -OiPr) 3 (OiPr) 3 (O 3 P-Phen) 3 (Im)] (M = Co for PTC-41 and M = Zn for PTC-42; O 3 P-Phen = phenyl phosphonate, 1-hbta = 1-hydroxy benzotriazolate, adn = adenine, 1,10-phn = 1,10-phenanthroline, Im = imidazolate, and OiPr = isopropoxide) were prepared as crystalline samples and structurally characterized. Simultaneous doping of nitrogen and transition metal heteroatoms into the Ti-O clusters created complex chemical environments in the resulting hybrid materials. Thus, photocatalytic methylene blue degradation studies were performed to understand structure-property relationships in these Ti cluster-based materials. The complex chemical environment created in these novel molecular clusters had proved to exhibit ligand-dependent photocatalytic activities under normal sunlight. Adenine-functionalized PTC-38 presented moderate activities, while other PTCs all show rapid dye degradation.

  18. Determining Spatio-Temporal Cadastral Data Requirement for Infrastructure of Ladm for Turkey

    NASA Astrophysics Data System (ADS)

    Alkan, M.; Polat, Z. A.

    2016-06-01

    Nowadays, the nature of land title and cadastral (LTC) data in the Turkey is dynamic from a temporal perspective which depends on the LTC operations. Functional requirements with respect to the characteristics are investigated based upon interviews of professionals in public and private sectors. These are; Legal authorities, Land Registry and Cadastre offices, Highway departments, Foundations, Ministries of Budget, Transportation, Justice, Public Works and Settlement, Environment and Forestry, Agriculture and Rural Affairs, Culture and Internal Affairs, State Institute of Statistics (SIS), execution offices, tax offices, real estate offices, private sector, local governments and banks. On the other hand, spatio-temporal LTC data very important component for creating infrastructure of Land Administration Model (LADM). For this reason, spatio-temporal LTC data needs for LADM not only updated but also temporal. The investigations ended up with determine temporal analyses of LTC data, traditional LTC system and tracing temporal analyses in traditional LTC system. In the traditional system, the temporal analyses needed by all these users could not be performed in a rapid and reliable way. The reason for this is that the traditional LTC system is a manual archiving system. The aims and general contents of this paper: (1) define traditional LTC system of Turkey; (2) determining the need for spatio-temporal LTC data and analyses for core domain model for LADM. As a results of temporal and spatio-temporal analysis LTC data needs, new system design is important for the Turkish LADM model. Designing and realizing an efficient and functional Temporal Geographic Information Systems (TGIS) is inevitable for the Turkish LADM core infrastructure. Finally this paper outcome is creating infrastructure for design and develop LADM for Turkey.

  19. Design strategies and functionality of the Visual Interface for Virtual Interaction Development (VIVID) tool

    NASA Technical Reports Server (NTRS)

    Nguyen, Lac; Kenney, Patrick J.

    1993-01-01

    Development of interactive virtual environments (VE) has typically consisted of three primary activities: model (object) development, model relationship tree development, and environment behavior definition and coding. The model and relationship tree development activities are accomplished with a variety of well-established graphic library (GL) based programs - most utilizing graphical user interfaces (GUI) with point-and-click interactions. Because of this GUI format, little programming expertise on the part of the developer is necessary to create the 3D graphical models or to establish interrelationships between the models. However, the third VE development activity, environment behavior definition and coding, has generally required the greatest amount of time and programmer expertise. Behaviors, characteristics, and interactions between objects and the user within a VE must be defined via command line C coding prior to rendering the environment scenes. In an effort to simplify this environment behavior definition phase for non-programmers, and to provide easy access to model and tree tools, a graphical interface and development tool has been created. The principal thrust of this research is to effect rapid development and prototyping of virtual environments. This presentation will discuss the 'Visual Interface for Virtual Interaction Development' (VIVID) tool; an X-Windows based system employing drop-down menus for user selection of program access, models, and trees, behavior editing, and code generation. Examples of these selection will be highlighted in this presentation, as will the currently available program interfaces. The functionality of this tool allows non-programming users access to all facets of VE development while providing experienced programmers with a collection of pre-coded behaviors. In conjunction with its existing, interfaces and predefined suite of behaviors, future development plans for VIVID will be described. These include incorporation of dual user virtual environment enhancements, tool expansion, and additional behaviors.

  20. Differential Relationships between RAN Performance, Behaviour Ratings, and Executive Function Measures: Searching for a Double Dissociation

    ERIC Educational Resources Information Center

    Stringer, Ronald W.; Toplak, Maggie E.; Stanovich, Keith E.

    2004-01-01

    In this study, we investigated the relationships between rapid naming of letters, digits and colours, and reading ability and executive function. We gave fifty-six grade three and four children rapid automatised naming tasks using letters and digits as stimuli, executive function measures including the Stroop task, a working memory task and the…

  1. 20 CFR 631.30 - Designation or creation and functions of a State dislocated worker unit or office, and rapid...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Designation or creation and functions of a... TRAINING PARTNERSHIP ACT State Administration § 631.30 Designation or creation and functions of a State dislocated worker unit or office, and rapid response assistance. (a) Designation or creation of State...

  2. 20 CFR 631.30 - Designation or creation and functions of a State dislocated worker unit or office, and rapid...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Designation or creation and functions of a... TRAINING PARTNERSHIP ACT State Administration § 631.30 Designation or creation and functions of a State dislocated worker unit or office, and rapid response assistance. (a) Designation or creation of State...

  3. Rapid tooling for functional prototyping of metal mold processes. CRADA final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharia, T.; Ludtka, G.M.; Bjerke, M.A.

    1997-12-01

    The overall scope of this endeavor was to develop an integrated computer system, running on a network of heterogeneous computers, that would allow the rapid development of tool designs, and then use process models to determine whether the initial tooling would have characteristics which produce the prototype parts. The major thrust of this program for ORNL was the definition of the requirements for the development of the integrated die design system with the functional purpose to link part design, tool design, and component fabrication through a seamless software environment. The principal product would be a system control program that wouldmore » coordinate the various application programs and implement the data transfer so that any networked workstation would be useable. The overall system control architecture was to be required to easily facilitate any changes, upgrades, or replacements of the model from either the manufacturing end or the design criteria standpoint. The initial design of such a program is described in the section labeled ``Control Program Design``. A critical aspect of this research was the design of the system flow chart showing the exact system components and the data to be transferred. All of the major system components would have been configured to ensure data file compatibility and transferability across the Internet. The intent was to use commercially available packages to model the various manufacturing processes for creating the die and die inserts in addition to modeling the processes for which these parts were to be used. In order to meet all of these requirements, investigative research was conducted to determine the system flow features and software components within the various organizations contributing to this project. This research is summarized.« less

  4. Not only … but also: REM sleep creates and NREM Stage 2 instantiates landmark junctions in cortical memory networks.

    PubMed

    Llewellyn, Sue; Hobson, J Allan

    2015-07-01

    This article argues both rapid eye movement (REM) and non-rapid eye movement (NREM) sleep contribute to overnight episodic memory processes but their roles differ. Episodic memory may have evolved from memory for spatial navigation in animals and humans. Equally, mnemonic navigation in world and mental space may rely on fundamentally equivalent processes. Consequently, the basic spatial network characteristics of pathways which meet at omnidirectional nodes or junctions may be conserved in episodic brain networks. A pathway is formally identified with the unidirectional, sequential phases of an episodic memory. In contrast, the function of omnidirectional junctions is not well understood. In evolutionary terms, both animals and early humans undertook tours to a series of landmark junctions, to take advantage of resources (food, water and shelter), whilst trying to avoid predators. Such tours required memory for emotionally significant landmark resource-place-danger associations and the spatial relationships amongst these landmarks. In consequence, these tours may have driven the evolution of both spatial and episodic memory. The environment is dynamic. Resource-place associations are liable to shift and new resource-rich landmarks may be discovered, these changes may require re-wiring in neural networks. To realise these changes, REM may perform an associative, emotional encoding function between memory networks, engendering an omnidirectional landmark junction which is instantiated in the cortex during NREM Stage 2. In sum, REM may preplay associated elements of past episodes (rather than replay individual episodes), to engender an unconscious representation which can be used by the animal on approach to a landmark junction in wake. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. PredSTP: a highly accurate SVM based model to predict sequential cystine stabilized peptides.

    PubMed

    Islam, S M Ashiqul; Sajed, Tanvir; Kearney, Christopher Michel; Baker, Erich J

    2015-07-05

    Numerous organisms have evolved a wide range of toxic peptides for self-defense and predation. Their effective interstitial and macro-environmental use requires energetic and structural stability. One successful group of these peptides includes a tri-disulfide domain arrangement that offers toxicity and high stability. Sequential tri-disulfide connectivity variants create highly compact disulfide folds capable of withstanding a variety of environmental stresses. Their combination of toxicity and stability make these peptides remarkably valuable for their potential as bio-insecticides, antimicrobial peptides and peptide drug candidates. However, the wide sequence variation, sources and modalities of group members impose serious limitations on our ability to rapidly identify potential members. As a result, there is a need for automated high-throughput member classification approaches that leverage their demonstrated tertiary and functional homology. We developed an SVM-based model to predict sequential tri-disulfide peptide (STP) toxins from peptide sequences. One optimized model, called PredSTP, predicted STPs from training set with sensitivity, specificity, precision, accuracy and a Matthews correlation coefficient of 94.86%, 94.11%, 84.31%, 94.30% and 0.86, respectively, using 200 fold cross validation. The same model outperforms existing prediction approaches in three independent out of sample testsets derived from PDB. PredSTP can accurately identify a wide range of cystine stabilized peptide toxins directly from sequences in a species-agnostic fashion. The ability to rapidly filter sequences for potential bioactive peptides can greatly compress the time between peptide identification and testing structural and functional properties for possible antimicrobial and insecticidal candidates. A web interface is freely available to predict STP toxins from http://crick.ecs.baylor.edu/.

  6. Effects of propranolol on time of useful function (TUF) in rats.

    DOT National Transportation Integrated Search

    1979-02-01

    To assess the effects of propranolol on tolerance to rapid decompression, a series of experiments was conducted measuring time of useful function (TUF) in rats exposed to a rapid decompression profile in an altitude chamber. In other experiments TUF ...

  7. Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications.

    PubMed

    Hyder, Md Nasim; Lee, Seung Woo; Cebeci, Fevzi Ç; Schmidt, Daniel J; Shao-Horn, Yang; Hammond, Paula T

    2011-11-22

    Thin film electrodes of polyaniline (PANi) nanofibers and functionalized multiwall carbon nanotubes (MWNTs) are created by layer-by-layer (LbL) assembly for microbatteries or -electrochemical capacitors. Highly stable cationic PANi nanofibers, synthesized from the rapid aqueous phase polymerization of aniline, are assembled with carboxylic acid functionalized MWNT into LbL films. The pH-dependent surface charge of PANi nanofibers and MWNTs allows the system to behave like weak polyelectrolytes with controllable LbL film thickness and morphology by varying the number of bilayers. The LbL-PANi/MWNT films consist of a nanoscale interpenetrating network structure with well developed nanopores that yield excellent electrochemical performance for energy storage applications. These LbL-PANi/MWNT films in lithium cell can store high volumetric capacitance (~238 ± 32 F/cm(3)) and high volumetric capacity (~210 mAh/cm(3)). In addition, rate-dependent galvanostatic tests show LbL-PANi/MWNT films can deliver both high power and high energy density (~220 Wh/L(electrode) at ~100 kW/L(electrode)) and could be promising positive electrode materials for thin film microbatteries or electrochemical capacitors. © 2011 American Chemical Society

  8. Expanding the horizons of microRNA bioinformatics.

    PubMed

    Huntley, Rachael P; Kramarz, Barbara; Sawford, Tony; Umrao, Zara; Kalea, Anastasia Z; Acquaah, Vanessa; Martin, Maria-Jesus; Mayr, Manuel; Lovering, Ruth C

    2018-06-05

    MicroRNA regulation of key biological and developmental pathways is a rapidly expanding area of research, accompanied by vast amounts of experimental data. This data, however, is not widely available in bioinformatic resources, making it difficult for researchers to find and analyse microRNA-related experimental data and define further research projects. We are addressing this problem by providing two new bioinformatics datasets that contain experimentally verified functional information for mammalian microRNAs involved in cardiovascular-relevant, and other, processes. To date, our resource provides over 3,900 Gene Ontology annotations associated with almost 500 miRNAs from human, mouse and rat and over 2,200 experimentally validated miRNA:target interactions. We illustrate how this resource can be used to create miRNA-focused interaction networks with a biological context using the known biological role of miRNAs and the mRNAs they regulate, enabling discovery of associations between gene products, biological pathways and, ultimately, diseases. This data will be crucial in advancing the field of microRNA bioinformatics and will establish consistent datasets for reproducible functional analysis of microRNAs across all biological research areas. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. Sexual selection targets cetacean pelvic bones

    PubMed Central

    Dines, J. P.; Otárola-Castillo, E.; Ralph, P.; Alas, J.; Daley, T.; Smith, A. D.; Dean, M. D.

    2014-01-01

    Male genitalia evolve rapidly, probably as a result of sexual selection. Whether this pattern extends to the internal infrastructure that influences genital movements remains unknown. Cetaceans (whales and dolphins) offer a unique opportunity to test this hypothesis: since evolving from land-dwelling ancestors, they lost external hind limbs and evolved a highly reduced pelvis which seems to serve no other function except to anchor muscles that maneuver the penis. Here we create a novel morphometric pipeline to analyze the size and shape evolution of pelvic bones from 130 individuals (29 species) in the context of inferred mating system. We present two main findings: 1) males from species with relatively intense sexual selection (inferred by relative testes size) have evolved relatively large penises and pelvic bones compared to their body size, and 2) pelvic bone shape diverges more quickly in species pairs that have diverged in inferred mating system. Neither pattern was observed in the anterior-most pair of vertebral ribs, which served as a negative control. This study provides evidence that sexual selection can affect internal anatomy that controls male genitalia. These important functions may explain why cetacean pelvic bones have not been lost through evolutionary time. PMID:25186496

  10. Analysis of Craniocardiac Malformations in Xenopus using Optical Coherence Tomography

    PubMed Central

    Deniz, Engin; Jonas, Stephan; Hooper, Michael; N. Griffin, John; Choma, Michael A.; Khokha, Mustafa K.

    2017-01-01

    Birth defects affect 3% of children in the United States. Among the birth defects, congenital heart disease and craniofacial malformations are major causes of mortality and morbidity. Unfortunately, the genetic mechanisms underlying craniocardiac malformations remain largely uncharacterized. To address this, human genomic studies are identifying sequence variations in patients, resulting in numerous candidate genes. However, the molecular mechanisms of pathogenesis for most candidate genes are unknown. Therefore, there is a need for functional analyses in rapid and efficient animal models of human disease. Here, we coupled the frog Xenopus tropicalis with Optical Coherence Tomography (OCT) to create a fast and efficient system for testing craniocardiac candidate genes. OCT can image cross-sections of microscopic structures in vivo at resolutions approaching histology. Here, we identify optimal OCT imaging planes to visualize and quantitate Xenopus heart and facial structures establishing normative data. Next we evaluate known human congenital heart diseases: cardiomyopathy and heterotaxy. Finally, we examine craniofacial defects by a known human teratogen, cyclopamine. We recapitulate human phenotypes readily and quantify the functional and structural defects. Using this approach, we can quickly test human craniocardiac candidate genes for phenocopy as a critical first step towards understanding disease mechanisms of the candidate genes. PMID:28195132

  11. 25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress.

    PubMed

    Hammock, Mallory L; Chortos, Alex; Tee, Benjamin C-K; Tok, Jeffrey B-H; Bao, Zhenan

    2013-11-13

    Human skin is a remarkable organ. It consists of an integrated, stretchable network of sensors that relay information about tactile and thermal stimuli to the brain, allowing us to maneuver within our environment safely and effectively. Interest in large-area networks of electronic devices inspired by human skin is motivated by the promise of creating autonomous intelligent robots and biomimetic prosthetics, among other applications. The development of electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin (e-skin) akin to human skin. E-skins are already capable of providing augmented performance over their organic counterpart, both in superior spatial resolution and thermal sensitivity. They could be further improved through the incorporation of additional functionalities (e.g., chemical and biological sensing) and desired properties (e.g., biodegradability and self-powering). Continued rapid progress in this area is promising for the development of a fully integrated e-skin in the near future. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Preoperative three-dimensional model creation of magnetic resonance brain images as a tool to assist neurosurgical planning.

    PubMed

    Spottiswoode, B S; van den Heever, D J; Chang, Y; Engelhardt, S; Du Plessis, S; Nicolls, F; Hartzenberg, H B; Gretschel, A

    2013-01-01

    Neurosurgeons regularly plan their surgery using magnetic resonance imaging (MRI) images, which may show a clear distinction between the area to be resected and the surrounding healthy brain tissue depending on the nature of the pathology. However, this distinction is often unclear with the naked eye during the surgical intervention, and it may be difficult to infer depth and an accurate volumetric interpretation from a series of MRI image slices. In this work, MRI data are used to create affordable patient-specific 3-dimensional (3D) scale models of the brain which clearly indicate the location and extent of a tumour relative to brain surface features and important adjacent structures. This is achieved using custom software and rapid prototyping. In addition, functionally eloquent areas identified using functional MRI are integrated into the 3D models. Preliminary in vivo results are presented for 2 patients. The accuracy of the technique was estimated both theoretically and by printing a geometrical phantom, with mean dimensional errors of less than 0.5 mm observed. This may provide a practical and cost-effective tool which can be used for training, and during neurosurgical planning and intervention. Copyright © 2013 S. Karger AG, Basel.

  13. Synthetic physical interactions map kinetochore regulators and regions sensitive to constitutive Cdc14 localization.

    PubMed

    Ólafsson, Guðjón; Thorpe, Peter H

    2015-08-18

    The location of proteins within eukaryotic cells is often critical for their function and relocation of proteins forms the mainstay of regulatory pathways. To assess the importance of protein location to cellular homeostasis, we have developed a methodology to systematically create binary physical interactions between a query protein and most other members of the proteome. This method allows us to rapidly assess which of the thousands of possible protein interactions modify a phenotype. As proof of principle we studied the kinetochore, a multiprotein assembly that links centromeres to the microtubules of the spindle during cell division. In budding yeast, the kinetochores from the 16 chromosomes cluster together to a single location within the nucleus. The many proteins that make up the kinetochore are regulated through ubiquitylation and phosphorylation. By systematically associating members of the proteome to the kinetochore, we determine which fusions affect its normal function. We identify a number of candidate kinetochore regulators, including the phosphatase Cdc14. We examine where within the kinetochore Cdc14 can act and show that the effect is limited to regions that correlate with known phosphorylation sites, demonstrating the importance of serine phospho-regulation for normal kinetochore homeostasis.

  14. 3M's Dry Silver technology: an ideal media for electronic imaging

    NASA Astrophysics Data System (ADS)

    Morgan, David A.

    1991-08-01

    In recent years there has been great interest and growth in the ability to create images electronically. This trend has been driven by the lower cost of computing and storing data, and the speed in which this can be accomplished. The ability to scan, create, and transmit color images is possible even with the enormous amount of data needed to create color images with gray scale and high resolution. In the past, there has not been a great demand for color copiers because few color images were in existence. The above-mentioned trend is changing this, and in addition scanners can quickly translate color graphics into electronic forms at affordable costs. The replacement of black and white televisions and monitors with color was rapid and nearly 100% once the technology was available at a reasonable cost. It is felt by some equipment manufacturers that soft copy will replace hard copy and there will be a diminishing need for imaging media. The author believes, however, that the need for hard copy will continue, and in fact may increase, but with new technology. To create black and white or color hard copy from electronically generated data, some essential characteristics are needed. They are: (1) total dryness, (2) rapid access, (3) gray scale, (4) high resolution, (5) good image quality, and (6) easy to use, low-cost, reliable equipment. Some of the leading technologies for this are electrostatic, thermal dye transfer, ink jet, instant silver photography, and 3M's Dry Silver. This paper gives a general overview of these technologies, but its main emphasis is 3M's Dry Silver approach.

  15. The Electronic Game Gambit.

    ERIC Educational Resources Information Center

    Bing, Jon

    1982-01-01

    The rapid evolution of today's video games now fills arcades, snack bars, and homes with an array of highly interactive, graphically vivid technical devices. This electronic environment is creating a worldwide communication network. Developments in this area will be beneficial provided that appropriate media policies can be framed. (Author/JN)

  16. Fecal Coliform and E. coli Concentrations in Effluent-Dominated Streams of the Upper Santa Cruz Watershed

    EPA Science Inventory

    Balancing water quality and water quantity concerns is an ongoing challenge for communities in the semi-arid southwest. Over pumping of groundwater aquifers and limited surface water resources have created effluent-dominated sections of watersheds. As rapid urbanization increases...

  17. Virtual Education: Guidelines for Using Games Technology

    ERIC Educational Resources Information Center

    Schofield, Damian

    2014-01-01

    Advanced three-dimensional virtual environment technology, similar to that used by the film and computer games industry, can allow educational developers to rapidly create realistic online virtual environments. This technology has been used to generate a range of interactive Virtual Reality (VR) learning environments across a spectrum of…

  18. Cold plasma processing technology makes advances

    USDA-ARS?s Scientific Manuscript database

    Cold plasma (AKA nonthermal plasma, cool plasma, gas plasma, etc.) is a rapidly maturing antimicrobial process being developed for applications in the food industry. A wide array of devices can be used to create cold plasma, but the defining characteristic is that they operate at or near room temper...

  19. Advance Approach to Concept and Design Studies for Space Missions

    NASA Technical Reports Server (NTRS)

    Deutsch, M.; Nichols, J.

    1999-01-01

    Recent automated and advanced techniques developed at JPL have created a streamlined and fast-track approach to initial mission conceptualization and system architecture design, answering the need for rapid turnaround of trade studies for potential proposers, as well as mission and instrument study groups.

  20. Forest policy reform in Brazil

    Treesearch

    S. Bauch; E. Sills; L.C. Rodriguez Estraviz; K. McGinley; F. Cubbage

    2009-01-01

    Rapid deforestation in the Brazilian Amazon, caused by economic, social, and policy factors, has focused global and national attention on protecting this valuable forest resource. In response, Brazil reformed its federal forest laws in 2006, creating new regulatory, development, and incentive policy instruments and institutions. Federal forestry responsibilities are...

  1. Creating Asset-Rich Communities

    ERIC Educational Resources Information Center

    Miller, Teresa Northern; Leslie-Toogood, Adrienne; Kaff, Marilyn

    2005-01-01

    Adolescents today face increasing challenges, while the support systems that should help them meet and surmount those challenges are rapidly disappearing. Yearly statistics on teen substance abuse, depression, suicide, and violent crime continue to escalate. Teens with low attachments to school are most vulnerable because they are less likely to…

  2. Designing for Uncertainty: Three Approaches

    ERIC Educational Resources Information Center

    Bennett, Scott

    2007-01-01

    Higher education wishes to get long life and good returns on its investment in learning spaces. Doing this has become difficult because rapid changes in information technology have created fundamental uncertainties about the future in which capital investments must deliver value. Three approaches to designing for this uncertainty are described…

  3. Internet Fraud: Information for Teachers and Students

    ERIC Educational Resources Information Center

    Nkotagu, Gabriel Hudson

    2011-01-01

    Internet fraud takes a number of forms with the responsible individuals changing tactics rapidly to avoid detection. The perpetrators rely on telemarketing, emails, as well as presenting themselves personally to unsuspecting people. The evolution of internet marketing as well as ecommerce and the ease of connectivity create increasing…

  4. Internationalizing Business Education for Globally Competent Managers

    ERIC Educational Resources Information Center

    Kedia, Ben L.; Englis, Paula D.

    2011-01-01

    The world is shrinking as developments in technology and transportation rapidly increase global opportunities and challenges for businesses. Furthermore, developing markets are becoming increasingly important, creating new challenges for managers. Business education must step in and prepare graduates to work in and with these markets. This article…

  5. Validation of rapid assessment methods to determine streamflow duration classes in the Pacific Northwest, USA

    EPA Science Inventory

    U.S. Supreme Court rulings have created uncertainty regarding federal Clean Water Act (CWA) authority over certain waters, including ephemeral and intermittent streams, and established new data and analytical requirements for determining whether a water body is covered under the ...

  6. In Search of Vigilance: The Problem of Iatrogenically Created Psychological Phenomena

    ERIC Educational Resources Information Center

    Hancock, P. A.

    2013-01-01

    To what extent are identified psychological processes created in laboratories? The present work addresses this issue with reference to one particular realm of behavior: vigilance. Specifically, I argue that the classic vigilance decrement function can be viewed more realistically and advantageously as an "invigilant" increment function. Rather…

  7. Rapid Response Tools and Datasets for Post-fire Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Miller, Mary Ellen; MacDonald, Lee H.; Billmire, Michael; Elliot, William J.; Robichaud, Pete R.

    2016-04-01

    Rapid response is critical following natural disasters. Flooding, erosion, and debris flows are a major threat to life, property and municipal water supplies after moderate and high severity wildfires. The problem is that mitigation measures must be rapidly implemented if they are to be effective, but they are expensive and cannot be applied everywhere. Fires, runoff, and erosion risks also are highly heterogeneous in space, so there is an urgent need for a rapid, spatially-explicit assessment. Past post-fire modeling efforts have usually relied on lumped, conceptual models because of the lack of readily available, spatially-explicit data layers on the key controls of topography, vegetation type, climate, and soil characteristics. The purpose of this project is to develop a set of spatially-explicit data layers for use in process-based models such as WEPP, and to make these data layers freely available. The resulting interactive online modeling database (http://geodjango.mtri.org/geowepp/) is now operational and publically available for 17 western states in the USA. After a fire, users only need to upload a soil burn severity map, and this is combined with the pre-existing data layers to generate the model inputs needed for spatially explicit models such as GeoWEPP (Renschler, 2003). The development of this online database has allowed us to predict post-fire erosion and various remediation scenarios in just 1-7 days for six fires ranging in size from 4-540 km2. These initial successes have stimulated efforts to further improve the spatial extent and amount of data, and add functionality to support the USGS debris flow model, batch processing for Disturbed WEPP (Elliot et al., 2004) and ERMiT (Robichaud et al., 2007), and to support erosion modeling for other land uses, such as agriculture or mining. The design and techniques used to create the database and the modeling interface are readily repeatable for any area or country that has the necessary topography, climate, soil, and land cover datasets.

  8. Key Factors Influencing Rapid Development of Potentially Dune-Stabilizing Moss-Dominated Crusts

    PubMed Central

    Bu, Chongfeng; Zhang, Kankan; Zhang, Chunyun; Wu, Shufang

    2015-01-01

    Biological soil crusts (BSCs) are a widespread photosynthetic ground cover in arid and semiarid areas. They have many positive ecological functions, such as increasing soil stability, and reducing water and wind erosion. Using artificial technology to achieve the rapid development of BSCs is expected to become a low-cost and highly beneficial ecological restoration measure. In the present study, typical moss-dominated crusts in a region characterized by mobile dunes (Mu Us Sandland, China) were collected, and a 40-day cultivation experiment was performed to investigate key factors, including watering frequency, light intensity and a nutrient addition, which affect the rapid development of moss crusts and their optimal combination. The results demonstrated that watering frequency and illumination had a significant positive effect (P=0.049, three-factor ANOVA) and a highly significant, complicated effect (P=0.000, three-factor ANOVA), respectively, on the plant density of bryophytes, and a highly significant positive effect on the chlorophyll a and exopolysaccharide contents (P=0.000, P=0.000; P=0.000, P=0.000; one-way ANOVA). Knop nutrient solution did not have a significant positive but rather negative effect on the promotion of moss-dominated crust development (P=0.270, three-factor ANOVA). Moss-dominated crusts treated with the combination of moderate-intensity light (6,000 lx) + high watering frequency (1 watering/2 days) - Knop had the highest moss plant densities, while the treatment with high-intensity light (12,000 lx) + high watering frequency (1 watering/2 days) + Knop nutrient solution had higher chlorophyll a contents than that under other treatments. It is entirely feasible to achieve the rapid development of moss crusts under laboratory conditions by regulating key factors and creating the right environment. Future applications may seek to use cultured bryophytes to control erosion in vulnerable areas with urgent needs. PMID:26230324

  9. Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis.

    PubMed

    Nanjareddy, Kalpana; Arthikala, Manoj-Kumar; Blanco, Lourdes; Arellano, Elizabeth S; Lara, Miguel

    2016-06-24

    Phaseolus vulgaris is one of the most extensively studied model legumes in the world. The P. vulgaris genome sequence is available; therefore, the need for an efficient and rapid transformation system is more imperative than ever. The functional characterization of P. vulgaris genes is impeded chiefly due to the non-amenable nature of Phaseolus sp. to stable genetic transformation. Transient transformation systems are convenient and versatile alternatives for rapid gene functional characterization studies. Hence, the present work focuses on standardizing methodologies for protoplast isolation from multiple tissues and transient transformation protocols for rapid gene expression analysis in the recalcitrant grain legume P. vulgaris. Herein, we provide methodologies for the high-throughput isolation of leaf mesophyll-, flower petal-, hypocotyl-, root- and nodule-derived protoplasts from P. vulgaris. The highly efficient polyethylene glycol-mannitol magnesium (PEG-MMG)-mediated transformation of leaf mesophyll protoplasts was optimized using a GUS reporter gene. We used the P. vulgaris SNF1-related protein kinase 1 (PvSnRK1) gene as proof of concept to demonstrate rapid gene functional analysis. An RT-qPCR analysis of protoplasts that had been transformed with PvSnRK1-RNAi and PvSnRK1-OE vectors showed the significant downregulation and ectopic constitutive expression (overexpression), respectively, of the PvSnRK1 transcript. We also demonstrated an improved transient transformation approach, sonication-assisted Agrobacterium-mediated transformation (SAAT), for the leaf disc infiltration of P. vulgaris. Interestingly, this method resulted in a 90 % transformation efficiency and transformed 60-85 % of the cells in a given area of the leaf surface. The constitutive expression of YFP further confirmed the amenability of the system to gene functional characterization studies. We present simple and efficient methodologies for protoplast isolation from multiple P. vulgaris tissues. We also provide a high-efficiency and amenable method for leaf mesophyll transformation for rapid gene functional characterization studies. Furthermore, a modified SAAT leaf disc infiltration approach aids in validating genes and their functions. Together, these methods help to rapidly unravel novel gene functions and are promising tools for P. vulgaris research.

  10. Transverse vetoes with rapidity cutoff in SCET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornig, Andrew; Kang, Daekyoung; Makris, Yiannis

    We consider di-jet production in hadron collisions where a transverse veto is imposed on radiation for (pseudo-)rapidities in the central region only, where this central region is defined with rapidity cutoff. For the case where the transverse measurement (e.g., transverse energy or min p T for jet veto) is parametrically larger relative to the typical transverse momentum beyond the cutoff, the cross section is insensitive to the cutoff parameter and is factorized in terms of collinear and soft degrees of freedom. The virtuality for these degrees of freedom is set by the transverse measurement, as in typical transverse-momentum dependent observablesmore » such as Drell-Yan, Higgs production, and the event shape broadening. This paper focuses on the other region, where the typical transverse momentum below and beyond the cutoff is of similar size. In this region the rapidity cutoff further resolves soft radiation into (u)soft and soft-collinear radiation with different rapidities but identical virtuality. This gives rise to rapidity logarithms of the rapidity cutoff parameter which we resum using renormalization group methods. We factorize the cross section in this region in terms of soft and collinear functions in the framework of soft-collinear effective theory, then further refactorize the soft function as a convolution of the (u)soft and soft-collinear functions. All these functions are calculated at one-loop order. As an example, we calculate a differential cross section for a specific partonic channel, qq ' → qq ' , for the jet shape angularities and show that the refactorization allows us to resum the rapidity logarithms and significantly reduce theoretical uncertainties in the jet shape spectrum.« less

  11. Transverse vetoes with rapidity cutoff in SCET

    DOE PAGES

    Hornig, Andrew; Kang, Daekyoung; Makris, Yiannis; ...

    2017-12-11

    We consider di-jet production in hadron collisions where a transverse veto is imposed on radiation for (pseudo-)rapidities in the central region only, where this central region is defined with rapidity cutoff. For the case where the transverse measurement (e.g., transverse energy or min p T for jet veto) is parametrically larger relative to the typical transverse momentum beyond the cutoff, the cross section is insensitive to the cutoff parameter and is factorized in terms of collinear and soft degrees of freedom. The virtuality for these degrees of freedom is set by the transverse measurement, as in typical transverse-momentum dependent observablesmore » such as Drell-Yan, Higgs production, and the event shape broadening. This paper focuses on the other region, where the typical transverse momentum below and beyond the cutoff is of similar size. In this region the rapidity cutoff further resolves soft radiation into (u)soft and soft-collinear radiation with different rapidities but identical virtuality. This gives rise to rapidity logarithms of the rapidity cutoff parameter which we resum using renormalization group methods. We factorize the cross section in this region in terms of soft and collinear functions in the framework of soft-collinear effective theory, then further refactorize the soft function as a convolution of the (u)soft and soft-collinear functions. All these functions are calculated at one-loop order. As an example, we calculate a differential cross section for a specific partonic channel, qq ' → qq ' , for the jet shape angularities and show that the refactorization allows us to resum the rapidity logarithms and significantly reduce theoretical uncertainties in the jet shape spectrum.« less

  12. f-treeGC: a questionnaire-based family tree-creation software for genetic counseling and genome cohort studies.

    PubMed

    Tokutomi, Tomoharu; Fukushima, Akimune; Yamamoto, Kayono; Bansho, Yasushi; Hachiya, Tsuyoshi; Shimizu, Atsushi

    2017-07-14

    The Tohoku Medical Megabank project aims to create a next-generation personalized healthcare system by conducting large-scale genome-cohort studies involving three generations of local residents in the areas affected by the Great East Japan Earthquake. We collected medical and genomic information for developing a biobank to be used for this healthcare system. We designed a questionnaire-based pedigree-creation software program named "f-treeGC," which enables even less experienced medical practitioners to accurately and rapidly collect family health history and create pedigree charts. f-treeGC may be run on Adobe AIR. Pedigree charts are created in the following manner: 1) At system startup, the client is prompted to provide required information on the presence or absence of children; f-treeGC is capable of creating a pedigree up to three generations. 2) An interviewer fills out a multiple-choice questionnaire on genealogical information. 3) The information requested includes name, age, gender, general status, infertility status, pregnancy status, fetal status, and physical features or health conditions of individuals over three generations. In addition, information regarding the client and the proband, and birth order information, including multiple gestation, custody, multiple individuals, donor or surrogate, adoption, and consanguinity may be included. 4) f-treeGC shows only marriages between first cousins via the overlay function. 5) f-treeGC automatically creates a pedigree chart, and the chart-creation process is visible for inspection on the screen in real time. 6) The genealogical data may be saved as a file in the original format. The created/modified date and time may be changed as required, and the file may be password-protected and/or saved in read-only format. To enable sorting or searching from the database, the file name automatically contains the terms typed into the entry fields, including physical features or health conditions, by default. 7) Alternatively, family histories are collected using a completed foldable interview paper sheet named "f-sheet", which is identical to the questionnaire in f-treeGC. We developed a questionnaire-based family tree-creation software, named f-treeGC, which is fully compliant with international recommendations for standardized human pedigree nomenclature. The present software simplifies the process of collecting family histories and pedigrees, and has a variety of uses, from genome cohort studies or primary care to genetic counseling.

  13. Real-time Space-time Integration in GIScience and Geography

    PubMed Central

    Richardson, Douglas B.

    2013-01-01

    Space-time integration has long been the topic of study and speculation in geography. However, in recent years an entirely new form of space-time integration has become possible in GIS and GIScience: real-time space-time integration and interaction. While real-time spatiotemporal data is now being generated almost ubiquitously, and its applications in research and commerce are widespread and rapidly accelerating, the ability to continuously create and interact with fused space-time data in geography and GIScience is a recent phenomenon, made possible by the invention and development of real-time interactive (RTI) GPS/GIS technology and functionality in the late 1980s and early 1990s. This innovation has since functioned as a core change agent in geography, cartography, GIScience and many related fields, profoundly realigning traditional relationships and structures, expanding research horizons, and transforming the ways geographic data is now collected, mapped, modeled, and used, both in geography and in science and society more broadly. Real-time space-time interactive functionality remains today the underlying process generating the current explosion of fused spatiotemporal data, new geographic research initiatives, and myriad geospatial applications in governments, businesses, and society. This essay addresses briefly the development of these real-time space-time functions and capabilities; their impact on geography, cartography, and GIScience; and some implications for how discovery and change can occur in geography and GIScience, and how we might foster continued innovation in these fields. PMID:24587490

  14. Self-assembly with orthogonal-imposed stimuli to impart structure and confer magnetic function to electrodeposited hydrogels.

    PubMed

    Li, Ying; Liu, Yi; Gao, Tieren; Zhang, Boce; Song, Yingying; Terrell, Jessica L; Barber, Nathan; Bentley, William E; Takeuchi, Ichiro; Payne, Gregory F; Wang, Qin

    2015-05-20

    A magnetic nanocomposite film with the capability of reversibly collecting functionalized magnetic particles was fabricated by simultaneously imposing two orthogonal stimuli (electrical and magnetic). We demonstrate that cathodic codeposition of chitosan and Fe3O4 nanoparticles while simultaneously applying a magnetic field during codeposition can (i) organize structure, (ii) confer magnetic properties, and (iii) yield magnetic films that can perform reversible collection/assembly functions. The magnetic field triggered the self-assembly of Fe3O4 nanoparticles into hierarchical "chains" and "fibers" in the chitosan film. For controlled magnetic properties, the Fe3O4-chitosan film was electrodeposited in the presence of various strength magnetic fields and different deposition times. The magnetic properties of the resulting films should enable broad applications in complex devices. As a proof of concept, we demonstrate the reversible capture and release of green fluorescent protein (EGFP)-conjugated magnetic microparticles by the magnetic chitosan film. Moreover, antibody-functionalized magnetic microparticles were applied to capture cells from a sample, and these cells were collected, analyzed, and released by the magnetic chitosan film, paving the way for applications such as reusable biosensor interfaces (e.g., for pathogen detection). To our knowledge, this is the first report to apply a magnetic field during the electrodeposition of a hydrogel to generate magnetic soft matter. Importantly, the simple, rapid, and reagentless fabrication methodologies demonstrated here are valuable features for creating a magnetic device interface.

  15. The Role of Bilingualism in Shaping Engineering Literacies and Identities

    ERIC Educational Resources Information Center

    Mein, Erika; Esquinca, Alberto

    2017-01-01

    In this article, we demonstrate ways in which teachers, working within the context of rapidly changing demographics in our country, can create inclusive classroom environments that promote the development of engineering literacies and identities, particularly among bilingual students. We draw on our experience working with two projects funded by…

  16. The National Nanotechnology Initiative: Research and Development Leading to a Revolution in Technology and Industry

    DTIC Science & Technology

    2010-02-01

    dual-use deliveries to entice commercial interest at the earliest stages. NRO transition goals aim to create commercial “ pull ” to enable rapid... GOALI ), Partnerships for Innovation (PFI) , and Industry-University Cooperative Research Centers (IUCRC) • Partnership with small businesses and large

  17. Online Faculty Development and Assessment System (OFDAS)

    ERIC Educational Resources Information Center

    Villar, Luis M.; Alegre, Olga M.

    2006-01-01

    The rapid growth of online learning has led to the development of faculty inservice evaluation models focused on quality improvement of degree programs. Based on current "best practices" of student online assessment, the Online Faculty Development and Assessment System (OFDAS), created at the Canary Islands, was designed to serve the…

  18. Universities and Libraries Move to the Mobile Web

    ERIC Educational Resources Information Center

    Aldrich, Alan W.

    2010-01-01

    The convergence of web-enabled smartphones, the applications designed for smartphone interfaces, and cloud computing is rapidly changing how people interact with each other and with their environments. The commercial sector has taken the lead in creating mobile websites that leverage the capacities of smartphones, and the academic community has…

  19. Addressing a Nation's Challenge: Graduate Programs in Gerontology in Israel

    ERIC Educational Resources Information Center

    Carmel, Sara; Lowenstein, Ariela

    2007-01-01

    Like other developed nations, Israel has rapidly aged. This demographic revolution has created new challenges for Israeli society. We describe the societal background, including the emerging societal needs, solutions, and problems, as well as the professional principles, which guided us in developing the first two Israeli academic programs in…

  20. Polyfibroblast: A Self-Healing and Galvanic Protection Additive

    DTIC Science & Technology

    2013-01-25

    flour , the rapid addition of liquid created lumps in the powder that were difficult to remove. This issue did not appear to result from the material...probably the worst thing that one can do to the self-healing primer. Small scratches will prematurely rupture the microcapsules that tend to be enriched

Top