Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development
Sims, Zachary C.; Weiss, David; McCall, S. K.; ...
2016-05-23
Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanicalmore » properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.« less
NASA Astrophysics Data System (ADS)
Zhi-Qin, Xue; Yong-Quan, Guo
2016-06-01
The magnetisms of RCo5 (R = rare earth) intermetallics are systematically studied with the empirical electron theory of solids and molecules (EET). The theoretical moments and Curie temperatures agree well with experimental ones. The calculated results show strong correlations between the valence electronic structure and the magnetic properties in RCo5 intermetallic compounds. The moments of RCo5 intermetallics originate mainly from the 3d electrons of Co atoms and 4f electrons of rare earth, and the s electrons also affect the magnetic moments by the hybridization of d and s electrons. It is found that moment of Co atom at 2c site is higher than that at 3g site due to the fact that the bonding effect between R and Co is associated with an electron transformation from 3d electrons into covalence electrons. In the heavy rare-earth-based RCo5 intermetallics, the contribution to magnetic moment originates from the 3d and 4f electrons. The covalence electrons and lattice electrons also affect the Curie temperature, which is proportional to the average moment along the various bonds. Project supported by the National Natural Science Foundation of China (Grant No. 11274110).
NASA Astrophysics Data System (ADS)
Pourbahari, Bita; Mirzadeh, Hamed; Emamy, Massoud
2018-03-01
The effects of rare earth intermetallics and grain refinement by alloying and hot extrusion on the mechanical properties of Mg-Gd-Al-Zn alloys have been studied to elucidate some useful ways to enhance the mechanical properties of magnesium alloys. It was revealed that aluminum as an alloying element is a much better grain refining agent compared with gadolinium, but the simultaneous presence of Al and Gd can refine the as-cast grain size more efficiently. The presence of fine and widely dispersed rare earth intermetallics was found to be favorable to achieve finer recrystallized grains during hot deformation by extrusion. The presence of coarse dendritic structure in the GZ61 alloy, grain boundary eutectic containing Mg17Al12 phase in the AZ61 alloy, and rare earth intermetallics with unfavorable morphology in the Mg-4Gd-2Al-1Zn alloy was found to be detrimental to mechanical properties of the alloy in the as-cast condition. As a result, the microstructural refinement induced by hot extrusion process resulted in a significant enhancement in strength and ductility of the alloys. The presence of intermetallic compounds in the extruded Mg-4Gd-2Al-1Zn and Mg-2Gd-4Al-1Zn alloys deteriorated tensile properties, which was related to the fact that such intermetallic compounds act as stress risers and microvoid initiation sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumbaraddi, Dundappa; Sarkar, Sumanta; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in
2016-04-15
This review highlights the synthesis and crystal growth of quaternary intermetallic compounds based on rare earth metals. In the first part of this review, we highlight briefly about intermetallics and their versatile properties in comparison to the constituent elements. In the next part, we have discussed about various synthesis techniques with more focus on the metal flux technique towards the well shaped crystal growth of novel compounds. In the subsequent parts, several disordered quaternary compounds have been reviewed and then outlined most known ordered quaternary compounds with their complex structure. A special attention has been given to the ordered compoundsmore » with structural description and relation to the parent binary and ternary compounds. The importance of electronic and structural feature is highlighted as the key roles in designing these materials for emerging applications. - Graphical abstract: Rare earth based quaternary intermetallic compounds crystallize in complex novel crystal structures. The diversity in the crystal structure may induce unique properties and can be considered them as future materials. - Highlights: • Crystal growth and crystal structure of quaternary rare earth based intermetallics. • Structural complexity of quaternary compounds in comparison to the parent compounds. • Novel quaternary compounds display unique crystal structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braszczyńska-Malik, K.N., E-mail: kacha@wip.pcz.pl; Grzybowska, A.
2016-05-15
The microstructure and mechanical properties investigations of two AME503 and AME505 experimental alloys in as-cast conditions were presented. The investigated materials were fabricated on the basis of the AM50 commercial magnesium alloy with 3 and 5 wt.% cerium rich mischmetal. In the as-cast condition, both experimental alloys were mainly composed of α-Mg, Al{sub 11}RE{sub 3} and Al{sub 10}RE{sub 2}Mn{sub 7} intermetallic phases. Additionally, due to non-equilibrium solidification conditions, a small amount of α + γ divorced eutectic and Al{sub 2}RE intermetallic phase were revealed. The obtained results also show a significant influence of rare earth elements on Brinell hardness, tensilemore » and compression properties at ambient temperature and especially on creep properties at 473 K. Improved alloy properties with a rise in rare earth elements mass fraction results from an increase in Al{sub 11}RE{sub 3} phase volume fraction and suppression of α + γ eutectic volume fraction in the alloy microstructure. Additionally, the influence of rare earth elements on the dendrite arm space value was discussed. The presented results also proved the thermal stability of the intermetallic phases during creep testing. - Highlights: • Two different Mg-5Al-0.4Mn alloys containing 3 and 5 wt.% of rare earth elements were fabricated. • Addition of rare earth elements leads to a reduction of dendrite arm spaces. • Mechanical properties depend on the phase composition of the alloys. • The increase of the rare earth elements content causes rise of the creep resistance.« less
Rare-earth-free high energy product manganese-based magnetic materials.
Patel, Ketan; Zhang, Jingming; Ren, Shenqiang
2018-06-14
The constant drive to replace rare-earth metal magnets has initiated great interest in an alternative. Manganese (Mn) has emerged to be a potential candidate as a key element in rare-earth-free magnets. Its five unpaired valence electrons give it a large magnetocrystalline energy and the ability to form several intermetallic compounds. These factors have led Mn-based magnets to be a potential replacement for rare-earth permanent magnets for several applications, such as efficient power electronics, energy generators, magnetic recording and tunneling applications, and spintronics. For past few decades, Mn-based magnets have been explored in many different forms, such as bulk magnets, thin films, and nanoparticles. Here, we review the recent progress in the synthesis and structure-magnetic property relationships of Mn-based rare-earth-free magnets (MnBi, MnAl and MnGa). Furthermore, we discuss their potential to replace rare-earth magnetic materials through the control of their structure and composition to achieve the theoretically predicted magnetic properties.
Squeezing clathrate cages to host trivalent rare-earth guests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian; He, Yuping; Mordvinova, Natalia E.
Strike difference of the trivalent rare-earth cations from their alkali and alkaline-earth peers is in the presence of localized 4f-electrons and strong spin-orbit coupling. Placing trivalent rare-earth cations inside the fullerene molecules or in between the blocks of itinerant magnetic intermetallics gave rise to plethora of fascinating properties and materials. A long-time missing but hardly desired piece is the semiconducting or metallic compound where rare-earth cations are situated inside the oversized polyhedral cages of three-dimensional framework. In this work we present a synthesis of such compounds, rare-earth containing clathrates Ba 8-xR xCu 16P 30. The unambiguous proofs of their compositionmore » and crystal structure were achieved by a combination of synchrotron powder diffraction, time-of-flight neutron powder diffraction, scanning-transmission electron microscopy, and electron energy-loss spectroscopy. Our quantum-mechanical calculations and experimental characterizations show that the incorporation of the rare-earth cations significantly enhances the hole mobility and concentration which results in the drastic increase in the thermoelectric performance.« less
Bonding in gold-rare earth [Au2M] (M = Eu, Yb, Lu) ions. A strong covalent gold-lanthanide bond
NASA Astrophysics Data System (ADS)
Páez-Hernández, Dayán; Muñoz-Castro, Alvaro; Arratia-Perez, Ramiro
2017-09-01
The electronic structure and bonding nature of a series of intermetallic gold-lanthanide [Au2Ln] molecules, where Ln = Eu, Yb, Lu is predicted via the DFT and CASSCF/CASPT2 calculations. The 2c-2e bond model shows a good description of the intermetallic bonding which have a large covalent component with important contribution from bonding interaction between the 6s-Au and the 6s-Ln shell of orbitals.
NASA Astrophysics Data System (ADS)
Sakata, Masahiro; Kurata, Masaki; Hijikata, Takatoshi; Inoue, Tadashi
1991-11-01
Distribution experiments for several rare earth elements (La, Ce, Pr, Nd and Y) between molten KCl-LiCl eutectic salt and liquid Cd were carried out at 450, 500 and 600°C. The material balance of rare earth elements after reaching the equilibrium and their distribution and chemical states in a Cd sample frozen after the experiment were examined. The results suggested the formation of solid intermetallic compounds at the lower concentrations of rare earth metals dissolved in liquid Cd than those solubilities measured in the binary alloy system. The distribution coefficients of rare earth elements between two phases (mole fraction in the Cd phase divided by mole fraction in the salt phase) were determined at each temperature. These distribution coefficients were explained satisfactorily by using the activity coefficients of chlorides and metals in salt and Cd. Both the activity coefficients of metal and chloride caused a much smaller distribution coefficient of Y relative to those of other elements.
Quantitative image analysis of WE43-T6 cracking behavior
NASA Astrophysics Data System (ADS)
Ahmad, A.; Yahya, Z.
2013-06-01
Environment-assisted cracking of WE43 cast magnesium (4.2 wt.% Yt, 2.3 wt.% Nd, 0.7% Zr, 0.8% HRE) in the T6 peak-aged condition was induced in ambient air in notched specimens. The mechanism of fracture was studied using electron backscatter diffraction, serial sectioning and in situ observations of crack propagation. The intermetallic (rare earthed-enriched divorced intermetallic retained at grain boundaries and predominantly at triple points) material was found to play a significant role in initiating cracks which leads to failure of this material. Quantitative measurements were required for this project. The populations of the intermetallic and clusters of intermetallic particles were analyzed using image analysis of metallographic images. This is part of the work to generate a theoretical model of the effect of notch geometry on the static fatigue strength of this material.
Magnetic properties and crystal structure of RENiA1 and UniA1 hydrides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordallo, H. N.; Drulis, H.; Havela, L.
1999-08-11
RENiAl (RE = rare-earth metal) and UNiAl compounds crystallizing in the hexagonal ZrNiAl-type structure (space group P{bar 6}2m) can absorb up to 2 and 3 hydrogen (deuterium) atoms per formula unit, respectively. Hydrogenation leads to a notable lattice expansion and modification of magnetic properties. However, the impact of hydrogenation on magnetism is the opposite for 4f- and 5f-materials: TN(T{sub c})is lowered in the case of rare-earth hydrides, while for UNiAlH(D){sub x} it increases by an order of magnitude. Here we present results of magnetic and structure studies performed of these compounds, focusing on the correlation between magnetic and structural variationsmore » and discussing possible reasons of the striking difference in effect of hydrogenation on rare-earth and actinide intermetallics.« less
Rare earth elements and permanent magnets (invited)
NASA Astrophysics Data System (ADS)
Dent, Peter C.
2012-04-01
Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.
Crystal-field splittings in rare-earth-based hard magnets: An ab initio approach
NASA Astrophysics Data System (ADS)
Delange, Pascal; Biermann, Silke; Miyake, Takashi; Pourovskii, Leonid
2017-10-01
We apply the first-principles density functional theory + dynamical mean-field theory framework to evaluate the crystal-field splitting on rare-earth sites in hard magnetic intermetallics. An atomic (Hubbard-I) approximation is employed for local correlations on the rare-earth 4 f shell and self-consistency in the charge density is implemented. We reduce the density functional theory self-interaction contribution to the crystal-field splitting by properly averaging the 4 f charge density before recalculating the one-electron Kohn-Sham potential. Our approach is shown to reproduce the experimental crystal-field splitting in the prototypical rare-earth hard magnet SmCo5. Applying it to R Fe12 and R Fe12X hard magnets (R =Nd , Sm and X =N , Li), we obtain in particular a large positive value of the crystal-field parameter A20〈r2〉 in NdFe12N resulting in a strong out-of-plane anisotropy observed experimentally. The sign of A20〈r2〉 is predicted to be reversed by substituting N with Li, leading to a strong out-of-plane anisotropy in SmFe12Li . We discuss the origin of this strong impact of N and Li interstitials on the crystal-field splitting on rare-earth sites.
Magneto-structural correlations in rare-earth cobalt pnictides
NASA Astrophysics Data System (ADS)
Thompson, Corey Mitchell
Magnetic materials are used in many applications such as credit cards, hard drives, electric motors, sensors, etc. Although a vast range of magnetic solids is available for these purposes, our ability to improve their efficiency and discover new materials remains paramount to the sustainable progress and economic profitability in many technological areas. The search for magnetic solids with improved performance requires fundamental understanding of correlations between the structural, electronic, and magnetic properties of existing materials, as well as active exploratory synthesis that targets the development of new magnets. Some of the strongest permanent magnets, Nd 2Fe14B, SmCo5, and Sm2Co17, combine transition and rare-earth metals, benefiting from the strong exchange between the 4
Lin, Qisheng; Miller, Gordon J
2018-01-16
Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e - /atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Therefore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate. During our efforts to find quasicrystals and crystalline approximants by valence electron tuning near 2.0 e - /atom, we observed that compositions close to those of quasicrystals are exceptional sources for unprecedented valence electron-poor polar intermetallics, e.g., Ca 4 Au 10 In 3 containing (Au 10 In 3 ) wavy layers, Li 14.7 Mg 36.8 Cu 21.5 Ga 66 adopting a type IV clathrate framework, and Sc 4 Mg x Cu 15-x Ga 7.5 that is incommensurately modulated. In particular, exploratory syntheses of AAu 3 T (A = Ca, Sr, Ba and T = Ge, Sn) phases led to interesting bonding features for Au, such as columns, layers, and lonsdaleite-type tetrahedral frameworks. Overall, the breadth of Au-rich polar intermetallics originates, in part, from significant relativistics effect on the valence electrons of Au, effects which result in greater 6s/5d orbital mixing, a small effective metallic radius, and an enhanced Mulliken electronegativity, all leading to ultimate enhanced binding with nearly all metals including itself. Two other successful strategies to mine electron-poor polar intermetallics include lithiation and "cation-rich" phases. Along these lines, we have studied lithiated Zn-rich compounds in which structural complexity can be realized by small amounts of Li replacing Zn atoms in the parent binary compounds CaZn 2 , CaZn 3 , and CaZn 5 ; their phase formation and bonding schemes can be rationalized by Fermi surface-Brillouin zone interactions between nearly free-electron states. "Cation-rich", electron-poor polar intermetallics have emerged using rare earth metals as the electropositive ("cationic") component together metal/metalloid clusters that mimic the backbones of aromatic hydrocarbon molecules, which give evidence of extensive electronic delocalization and multicenter bonding. Thus, we can identify three distinct, valence electron-poor, polar intermetallic systems that have yielded unprecedented phases adopting novel structures containing complex clusters and intriguing bonding characteristics. In this Account, we summarize our recent specific progress in the developments of novel Au-rich BaAl 4 -type related structures, shown in the "gold-rich grid", lithiation-modulated Ca-Li-Zn phases stabilized by different bonding characteristics, and rare earth-rich polar intermetallics containing unprecedented hydrocarbon-like planar Co-Ge metal clusters and pronounced delocalized multicenter bonding. We will focus mainly on novel structural motifs, bonding analyses, and the role of valence electrons for phase stability.
Zhou, Sixuan; Mishra, Trinath; Wang, Man; Shatruk, Michael; Cao, Huibo; Latturner, Susan E
2014-06-16
The intermetallic compounds R2Co2SiC (R = Pr, Nd) were prepared from the reaction of silicon and carbon in either Pr/Co or Nd/Co eutectic flux. These phases crystallize with a new stuffed variant of the W2CoB2 structure type in orthorhombic space group Immm with unit cell parameters a = 3.978(4) Å, b = 6.094(5) Å, c = 8.903(8) Å (Z = 2; R1 = 0.0302) for Nd2Co2SiC. Silicon, cobalt, and carbon atoms form two-dimensional flat sheets, which are separated by puckered layers of rare-earth cations. Magnetic susceptibility measurements indicate that the rare earth cations in both analogues order ferromagnetically at low temperature (TC ≈ 12 K for Nd2Co2SiC and TC ≈ 20 K for Pr2Co2SiC). Single-crystal neutron diffraction data for Nd2Co2SiC indicate that Nd moments initially align ferromagnetically along the c axis around ∼12 K, but below 11 K, they tilt slightly away from the c axis, in the ac plane. Electronic structure calculations confirm the lack of spin polarization for Co 3d moments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, Sumohan
The binary, ternary and multicomponent intermetallic compounds of rare-earth metals (RE) with group 14 elements (Tt) at the RE 5Tt 4 stoichiometry have been known for over 30 years, but only in the past decade have these materials become a gold mine for solid-state chemistry, materials science and condensed matter physics. It all started with the discovery of a giant magnetocaloric effect in Gd 5Si 2Ge 2, along with other extraordinary magnetic properties, such as a colossal magnetostriction and giant magnetoresistance. The distinctiveness of this series is in the remarkable flexibility of the chemical bonding between well-defined, subnanometer-thick slabs andmore » the resultant magnetic, transport, and thermodynamic properties of these materials. This can be controlled by varying either or both RE and Tt elements, including mixed rare-earth elements on the RE sites and different group 14 (or T = group 13 or 15) elements occupying the Tt sites. In addition to chemical means, the interslab interactions are also tunable by temperature, pressure, and magnetic field. Thus, this system provides a splendid 'playground' to investigate the interrelationships among composition, structure, physical properties, and chemical bonding. The work presented in this dissertation involving RE 5T 4 materials has resulted in the successful synthesis, characterization, property measurements, and theoretical analyses of various new intermetallic compounds. The results provide significant insight into the fundamental magnetic and structural behavior of these materials and help us better understand the complex link between a compound's composition, its observed structure, and its properties.« less
R 5T 4 compounds - unique multifunctional intermetallics for basic research and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudryk, Yaroslav
The unique properties of the rare-earth elements and their alloys have brought them from relative obscurity to high profile use in common high-tech applications. The broad technological impact of these remarkable materials may have never been known by the general public if not for the supply concerns that placed the rare-earth materials on the front page of newspapers and magazines. Neodymium and dysprosium, two essential components of Nd 2Fe 14B-based high-performance permanent magnets, have drawn much attention and have been deemed critical materials for many energy-related applications. Ironically, the notoriety of rare-earth elements and their alloys is the result ofmore » a global movement to reduce their use in industrial applications and, thus, ease concerns about their supply and ultimately to reduce their position in high-tech supply chains. Research into the applications of lanthanide alloys has been de-emphasized recently due to the perception that industry is moving away from the use of rare-earth elements in new products. While lanthanide supply challenges justify efforts to diversify the supply chain, a strategy to completely replace the materials overlooks the reasons rare earths became important in the first place -- their unique properties are too beneficial to ignore. Rare-earth alloys and compounds possess truly exciting potential for basic science exploration and application development such as solid-state caloric cooling. In this brief review, we touch upon several promising systems containing lanthanide elements that show important and interesting magnetism-related phenomena.« less
Phase transition of intermetallic TbPt at high temperature and high pressure
NASA Astrophysics Data System (ADS)
Qin, Fei; Wu, Xiang; Yang, Ke; Qin, Shan
2018-04-01
Here we present synchrotron-based x-ray diffraction experiments combined with diamond anvil cell and laser heating techniques on the intermetallic rare earth compound TbPt (Pnma and Z = 4) up to 32.5 GPa and ~1800 K. The lattice parameters of TbPt exhibit continuous compression behavior up to 18.2 GPa without any evidence of phase transformation. Pressure-volume data were fitted to a third-order Birch-Murnaghan equation of state with V 0 = 175.5(2) Å3, {{K}{{T0}}} = 110(5) GPa and K{{T0}}\\prime = 3.8(7). TbPt exhibits anisotropic compression with β a > β b > β c and the ratio of axial compressibility is 2.50:1.26:1.00. A new monoclinic phase of TbPt assigned to the Pc or P2/c space group was observed at 32.5 GPa after laser heating at ~1800 K. This new phase is stable at high pressure and presented a quenchable property on decompression to ambient conditions. The pressure-volume relationship is well described by the second-order Birch-Murnaghan equation of state, which yields V 0 = 672(4) Å3, {{K}{{T0}}} = 123(6) GPa, which is about ~14% more compressible than the orthorhombic TbPt. Our results provide more information on the structure and elastic property view, and thus a better understanding of the physical properties related to magnetic structure in some intermetallic rare earth alloys.
Corrosion Protection Mechanisms of Rare-Earth Compounds Based on Cerium and Praseodymium
2012-04-01
Annular Dark Field IMC–Intermetallic compound LA-ICP-MS Laser Ablation Inductively Coupled Plasma Mass Spectrometry MPY—Mils per year (a measure of...currently researching CeCCs. ................................. 20 Table 2. Mass percent losses during various ranges of thermal treatment for Pr6O11...analysis data of corrosion product in an 084 primer series scribe following 500 hours of salt spray exposure as detected by mass spectrometry
Ab - initio study of rare earth magnesium alloy: TbMg
NASA Astrophysics Data System (ADS)
Kumari, Meena; Yadav, Priya; Nautiyal, Shashank; Verma, U. P.
2018-05-01
The structural, electronic and magnetic properties of TbMg were analyzed by using full-potential linearized augmented plane wave method. This intermetallic is stable in structure CsCl (B2 phase) with space group Pm-3m. In electronic properties, we show the electronic band structure and density of states plots. These plots show that this alloy have metallic character because there is no band gap between the valance band and conduction band at Fermi level. The structural properties, i.e. equilibrium lattice constant, bulk modulus and its pressure derivative, energy and volume show good agreement with available data. In this paper, we also present the total magnetic moment along with the magnetic moment on the atomic and interstitial sites of TbMg intermetallic in B2 phase.
Magnetic ordering in intermetallic La1-xTbxMn2Si2 compounds
NASA Astrophysics Data System (ADS)
Korotin, Dm. M.; Streltsov, S. V.; Gerasimov, E. G.; Mushnikov, N. V.; Zhidkov, I. S.; Kukharenko, A. I.; Finkelstein, L. D.; Cholakh, S. O.; Kurmaev, E. Z.
2018-05-01
The magnetic structures and magnetic phase transitions in intermetallic layered La1-xTbxMn2Si2 compounds (the ThCr2Si2-type structure) are investigated using the first-principles method and XPS measurements. The experimentally observed transition from ferromagnetic (FM) to antiferromagnetic (AFM) ordering of Mn sublattice with increase of terbium concentration is successfully reproduced in calculations for collinear magnetic moments model. The FM →AFM change of interplane magnetic ordering at small x is irrelevant to the number of f-electrons of the rare-earth ion. In contrast it was shown to be related to the Mn-Mn in-plane distance. Calculated Tb critical concentration for this transition x ≈ 0.14 corresponds to the Mn-Mn in-plane distance 0.289 nm, very close to the experimentally observed transition distance 0.287 nm. The crystal cell compression due to substitution increases an overlap between Mndxz,yz and the rare-earth ion d orbitals. Resulting hybridized states manifest themselves as an additional peak in the density of states. We suggest that a corresponding interlayer Mn-R-Mn superexchange interaction stabilizes AFM magnetic ordering in these compounds with Tb doping level x > 0.2 . The results of DFT calculations are in agreement with X-ray photoemission spectra for La1-xTbxMn2Si2 .
Texture evolution during thermomechanical processing in rare earth free magnesium alloys
NASA Astrophysics Data System (ADS)
Miller, Victoria Mayne
The use of wrought magnesium alloys is highly desirable for a wide range of applications where low component weight is desirable due to the high specific strength and stiffness the alloys can achieve. However, the implementation of wrought magnesium has been hindered by the limited room temperature formability which typically results from deformation processing. This work identifies opportunities for texture modification during thermomechanical processing of conventional (rare earth free) magnesium alloys via a combination of experimental investigation and polycrystal plasticity simulations. During deformation, it is observed that a homogeneous distribution of coarse intermetallic particles efficiently weakens deformation texture at all strain levels, while a highly inhomogeneous particle distribution is only effective at high strains. The particle deformation effects are complemented by the addition of alkaline earth solute, which modifies the relative deformation mode activity. During recrystallization, grains with basal orientations recrystallize more readily than off-basal grains, despite similar levels of internal misorientation. Dislocation substructure investigations revealed that this is a result of enhanced nucleation in the basal grains due to the dominance of prismatic slip. This dissertation identifies avenues to enhance the potential formability of magnesium alloys during thermomechanical processing by minimizing the evolved texture strength. The following are the identified key aspects of microstructural control: -Maintaining a fine grain size, likely via Zener pinning, to favorably modify deformation mode activity and homogenize deformation. -Developing a coarse, homogeneously distributed population of coarse intermetallic particles to promote a diffuse deformation texture. -Minimizing the activity of prismatic slip to retard the recrystallization of grains with basal orientations, allowing the development of a more diffuse recrystallization texture.
Hard permanent magnet development trends and their application to A.C. machines
NASA Technical Reports Server (NTRS)
Mildrum, H. F.
1981-01-01
The physical and magnetic properties of Mn-Al-C, Fe-Cr-Co, and RE-TM (rare earth-transition metal intermetallics) in polymer and soft metal bonded or sintered form are considered for ac circuit machine usage. The manufacturing processes for the magnetic materials are reviewed, and the mechanical and electrical properties of the magnetic materials are compared, with consideration given to the reference Alnico magnet. The Mn-Al-C magnets have the same magnetic properties and costs as Alnico units, operate well at low temperatures, but have poor high temperature performance. Fe-Cr-Co magnets also have comparable cost to Alnico magnets, and operate at high or low temperature, but are brittle, expensive, and contain Co. RE-Co magnets possess a high energy density, operate well in a wide temperature range, and are expensive. Recommendation for exploring the rare-earth alternatives are offered.
Properties of Sn3.8Ag0.7Cu Solder Alloy with Trace Rare Earth Element Y Additions
NASA Astrophysics Data System (ADS)
Hao, H.; Tian, J.; Shi, Y. W.; Lei, Y. P.; Xia, Z. D.
2007-07-01
In the current research, trace rare earth (RE) element Y was incorporated into a promising lead-free solder, Sn3.8Ag0.7Cu, in an effort to improve the comprehensive properties of Sn3.8Ag0.7Cu solder. The range of Y content in Sn3.8Ag0.7Cu solder alloys varied from 0 wt.% to 1.0 wt.%. As an illustration of the advantage of Y doping, the melting temperature, wettability, mechanical properties, and microstructures of Sn3.8Ag0.7CuY solder were studied. Trace Y additions had little influence on the melting behavior, but the solder showed better wettability and mechanical properties, as well as finer microstructures, than found in Y-free Sn3.8Ag0.7Cu solder. The Sn3.8Ag0.7Cu0.15Y solder alloy exhibited the best comprehensive properties compared to other solders with different Y content. Furthermore, interfacial and microstructural studies were conducted on Sn3.8Ag0.7Cu0.15Y solder alloys, and notable changes in microstructure were found compared to the Y-free alloy. The thickness of an intermetallic compound layer (IML) was decreased during soldering, and the growth of the IML was suppressed during aging. At the same time, the growth of intermetallic compounds (IMCs) inside the solder was reduced. In particular, some bigger IMC plates were replaced by fine, granular IMCs.
Structure and magnetism of new rare-earth-free intermetallic compounds: Fe 3+xCo 3-xTi 2 (0 ≤ x ≤ 3)
Balasubramanian, Balamurugan; Das, Bhaskar; Nguyen, Manh Cuong; ...
2016-11-28
Here, we report the fabrication of a set of new rare-earth-free magnetic compounds, which form the Fe 3Co 3Ti 2-type hexagonal structure with P-6m2 symmetry. Neutron powder diffraction shows a significant Fe/Co anti-site mixing in the Fe 3Co 3Ti 2 structure, which has a strong effect on the magnetocrystalline anisotropy as revealed by first-principle calculations. Increasing substitution of Fe atoms for Co in the Fe 3Co 3Ti 2 lattice leads to the formation of Fe 4Co 2Ti 2, Fe 5CoTi, and Fe 6Ti 2 with significantly improved permanent-magnet properties. A high magnetic anisotropy (13.0 Mergs/cm 3) and saturation magnetic polarizationmore » (11.4 kG) are achieved at 10 K by altering the atomic arrangements and decreasing Fe/Co occupancy disorder.« less
Mishra, S N
2009-03-18
Applying the time differential perturbed angular correlation (TDPAC) technique we have measured electric and magnetic hyperfine fields of the (111)Cd impurity in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr and Gd) showing antiferro- and ferromagnetism with unusually high ordering temperatures. The Cd nuclei occupying the Sc site show high magnetic hyperfine fields with saturation values B(hf)(0) = 21 kG, 45 kG and 189 kG in CeScGe, PrScGe and GdScGe, respectively. By comparing the results with the hyperfine field data of Cd in rare-earth metals and estimations from the RKKY model, we find evidence for the presence of additional spin density at the probe nucleus, possibly due to spin polarization of Sc d band electrons. The principal electric field gradient component V(zz) in CeScGe, PrScGe and GdScGe has been determined to be 5.3 × 10(21) V m(-2), 5.5 × 10(21) V m(-2) and 5.6 × 10(21) V m(-2), respectively. Supplementing the experimental measurements, we have carried out ab initio calculations for pure and Cd-doped RScGe compounds with R = Ce, Pr, Nd and Gd using the full potential linearized augmented plane wave (FLAPW) method based on density functional theory (DFT). From the total energies calculated with and without spin polarization we find ferrimagnetic ground states for CeScGe and PrScGe while NdScGe and GdScGe are ferromagnetic. In addition, we find a sizable magnetic moment at the Sc site, increasing from ≈0.10 μ(B) in CeScGe to ≈0.3 μ(B) in GdScGe, confirming the spin polarization of Sc d band electrons. The calculated electric field gradient and magnetic hyperfine fields of the Cd impurity closely agree with the experimental values. We believe spin polarization of Sc 3d band electrons, strongly hybridized with spin polarized 5d band electrons of the rare-earth, enables a long range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between RE 4f moments which in turn leads to high magnetic ordering temperatures in RScGe compounds.
NASA Astrophysics Data System (ADS)
Müller, K.-H.; Krabbes, G.; Fink, J.; Gruß, S.; Kirchner, A.; Fuchs, G.; Schultz, L.
2001-05-01
Permanent magnets play an important role and are widely spread in daily-life applications. Due to their very low costs, large availability of the row materials and their high chemical stability, hard ferrites are still dominant in the permanent magnet market although their relatively poor magnetic properties are a distinct disadvantage. Today's high-performance magnets are mostly made from Nd 2Fe 14B. The aim of research is to combine the large spontaneous magnetization of 3d metals with strong anisotropy fields known from rare-earth transition-metal compounds and, at the same time, to maintain a high value of the Curie temperature. However, the number of iron-rich rare-earth intermetallics is very limited and, consequently, not much success can be noted in this field for the last 10 years. One alternative concept is to use magnetic fields trapped in type II superconductors where much higher fields can be achieved compared to conventional rare-earth magnets. Very recently, we obtained a trapped field as high as 14.4 T in a melt-textured YBCO bulk sample of a few centimeters in diameter. This is the highest value ever achieved in a bulk superconductor. The trapped field of a superconductor is not governed by the Laplace equation and, therefore, levitation works without any additional (active) stabilization. The disadvantage of these magnets is their low working temperature (of liquid nitrogen and below).
Electronic response of rare-earth magnetic-refrigeration compounds GdX2 (X = Fe and Co)
NASA Astrophysics Data System (ADS)
Bhatt, Samir; Ahuja, Ushma; Kumar, Kishor; Heda, N. L.
2018-05-01
We present the Compton profiles (CPs) of rare-earth-transition metal compounds GdX2 (X = Fe and Co) using 740 GBq 137Cs Compton spectrometer. To compare the experimental momentum densities, we have also computed the CPs, electronic band structure, density of states (DOS) and Mulliken population (MP) using linear combination of atomic orbitals (LCAO) method. Local density and generalized gradient approximations within density functional theory (DFT) along with the hybridization of Hartree-Fock and DFT (B3LYP and PBE0) have been considered under the framework of LCAO scheme. It is seen that the LCAO-B3LYP based momentum densities give a better agreement with the experimental data for both the compounds. The energy bands and DOS for both the spin-up and spin-down states show metallic like character of the reported intermetallic compounds. The localization of 3d electrons of Co and Fe has also been discussed in terms of equally normalized CPs and MP data. Discussion on magnetization using LCAO method is also included.
NASA Astrophysics Data System (ADS)
Charbonnier, Véronique; Monnier, Judith; Zhang, Junxian; Paul-Boncour, Valérie; Joiret, Suzanne; Puga, Beatriz; Goubault, Lionel; Bernard, Patrick; Latroche, Michel
2016-09-01
Intermetallic compounds A2B7 (A = rare earth, B = transition metal) are of interest for Ni-MH batteries. Indeed they are able to absorb hydrogen reversibly and exhibit good specific capacity in electrochemical route. To understand the effect of rare earth on properties of interest such as thermodynamic, cycling stability and corrosion, we synthesized and studied three compounds: Y2Ni7, Gd2Ni7 and Sm2Ni7. Using Sieverts' method, we plot P-c-isotherms up to 10 MPa and study hydride stability upon solid-gas cycling. Electrochemical cycling was also performed, as well as calendar and cycling corrosion study. Corrosion products were characterized by means of X-ray diffraction, electron diffraction, Raman micro-spectroscopy and scanning and transmission electron microscopies. Magnetic measurements were also performed to calculate corrosion rates. A corrosion mechanism, based on the nature of corrosion products, is proposed. By combining results from solid-gas cycling, electrochemical cycling and corrosion study, we attribute the loss in capacity either to corrosion or loss of crystallinity.
Electronic and Spectral Properties of RRhSn (R = Gd, Tb) Intermetallic Compounds
NASA Astrophysics Data System (ADS)
Knyazev, Yu. V.; Lukoyanov, A. V.; Kuz'min, Yu. I.; Gupta, S.; Suresh, K. G.
2018-02-01
The investigations of electronic structure and optical properties of GdRhSn and TbRhSn were carried out. The calculations of band spectrum, taking into account the spin polarization, were performed in a local electron density approximation with a correction for strong correlation effects in 4f shell of rare earth metal (LSDA + U method). The optical studies were done by ellipsometry in a wide range of wavelengths, and the set of spectral and electronic characteristics was determined. It was shown that optical absorption in a region of interband transitions has a satisfactory explanation within a scope of calculations of density of electronic states carried out.
Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures
Liu, Chain T.; Takeyama, Masao
1994-01-01
The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250.degree. C. and improved room temperature ductility. The alloys contain a Cr.sub.2 Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements.
Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures
Liu, C.T.; Takeyama, Masao.
1994-02-01
The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250 C and improved room temperature ductility. The alloys contain a Cr[sub 2]Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements. 14 figures.
Cao, G. H.; Oertel, C. -G.; Schaarschuch, R.; ...
2017-05-03
DyCu and YCu are representatives of the family of CsCl-type B2 rare earth intermetallic compounds that exhibit high room temperature ductility. Structure, orientation relationship, and morphology of the martensites in the equiatomic compounds DyCu and YCu are examined using transmission electron microscopy (TEM). TEM studies show that the martensite structures in DyCu and YCu alloys are virtually identical. The martensite is of orthorhombic CrB-type B33 structure with lattice parameters a = 0.38 nm, b = 1.22 nm, and c = 0.40 nm. (021¯) twins were observed in the B33 DyCu and YCu martensites. The orientation relationship of B33 and B2more » phases is (111¯)[112]B33 || (110)[001]B2. The simulated electron diffraction patterns of the B33 phase are consistent with those of experimental observations. TEM investigations also reveal that a dominant orthorhombic FeB-type B27 martensite with lattice parameters a = 0.71 nm, b = 0.45 nm, and c = 0.54 nm exists in YCu alloy. (11¯ 1) twins were observed in the B27 YCu martensite. As a result, the formation mechanism of B2 to B33 and B2 to B27 phase transformation is discussed.« less
Polar Intermetallics Pr 5Co 2Ge 3 and Pr 7Co 2Ge 4 With Planar Hydrocarbon-Like Metal Clusters
Lin, Qisheng; Aguirre, Kaiser; Saunders, Scott M.; ...
2017-06-19
Planar hydrocarbon-like metal clusters may foster new insights linking organic molecules with conjugated π-π bonding interactions and inorganic structures in terms of their bonding characteristics. However, such clusters are uncommon in polar intermetallics. Herein, we report two polar intermetallic phases, Pr 5Co 2Ge 3 and Pr 7Co 2Ge 4, both of which feature such planar metal clusters, viz., ethylene-like [Co 2Ge 4] clusters plus the concatenated forms and polyacene-like [Co 2Ge 2] n ribbons in Pr 5Co 2Ge 3, and 1,2,4,5-tetramethylbenzene-like [Co4Ge6] cluster in Pr 7Co 2Ge 4. Just as in the related planar organic structures, these metal-metalloid species aremore » dominated by covalent bonding interactions. Both compounds magnetically order at low temperature with net ferromagnetic components: Pr 5Co 2Ge 3 via a series of transitions below 150 K; and Pr 7Co 2Ge 4 via a single ferromagnetic transition at 19 K. Spin-polarized electronic structure calculations for Pr 7Co 2Ge 4 reveal strong spin-orbit coupling within Pr and considerable magnetic contributions from Co atoms. This work suggests that similar structural chemistry can emerge for other rare earth-late transition metal-main group systems.« less
Experimental formation enthalpies for intermetallic phases and other inorganic compounds
Kim, George; Meschel, S. V.; Nash, Philip; Chen, Wei
2017-01-01
The standard enthalpy of formation of a compound is the energy associated with the reaction to form the compound from its component elements. The standard enthalpy of formation is a fundamental thermodynamic property that determines its phase stability, which can be coupled with other thermodynamic data to calculate phase diagrams. Calorimetry provides the only direct method by which the standard enthalpy of formation is experimentally measured. However, the measurement is often a time and energy intensive process. We present a dataset of enthalpies of formation measured by high-temperature calorimetry. The phases measured in this dataset include intermetallic compounds with transition metal and rare-earth elements, metal borides, metal carbides, and metallic silicides. These measurements were collected from over 50 years of calorimetric experiments. The dataset contains 1,276 entries on experimental enthalpy of formation values and structural information. Most of the entries are for binary compounds but ternary and quaternary compounds are being added as they become available. The dataset also contains predictions of enthalpy of formation from first-principles calculations for comparison. PMID:29064466
Magnetocaloric effect and other low-temperature properties of Pr2Pt2 In
NASA Astrophysics Data System (ADS)
Mboukam, J. J.; Sondezi, B. M.; Tchokonté, M. B. Tchoula; Bashir, A. K. H.; Strydom, A. M.; Britz, D.; Kaczorowski, D.
2018-05-01
We report on X-ray diffraction, electrical transport, heat capacity and magnetocaloric effect measurements of a polycrystalline sample of Pr2Pt2 In . The compound forms in the tetragonal Mo2FeB2 type structure and orders ferromagnetically at TC=9 K. In the ordered state, its thermodynamic and electrical transport properties are dominated by magnon contributions with an energy gap of about 8 K in the spin-wave spectrum. The magnitude of magnetocaloric effect is similar to the values reported for most rare-earth based intermetallics. Characteristic behavior of the isothermal magnetic entropy change maximum points to a second-order character of the ferromagnetic phase transition in the compound studied.
NASA Astrophysics Data System (ADS)
de Oliveira, A. L.; de Oliveira, N. A.; Troper, A.
2010-05-01
The purpose of the present work is to theoretically study the local magnetic moment formation and the systematics of the magnetic hyperfine fields at a non-magnetic s-p Mössbauer 119Sn impurity diluted on R sites ( R=rare-earth metals) of the cubic Laves phases intermetallic compounds RFe2. One considers that the magnetic hyperfine field has two contributions (i) the contribution from R ions, calculated via an extended Daniel-Friedel [J. Phys. Chem. Solids 24 (1963) 1601] model and (ii) the contribution from the induced magnetic moments arising from the Fe neighboring sites. We have in this case a two-center Blandin-Campbell-like [Phys. Rev. Lett. 31 (1973) 51; J. Magn. Magn. Mater. 1 (1975) 1] problem, where a magnetic 3d-element located at a distance from the 119Sn impurity gives an extra magnetization to a polarized electron gas which is strongly charge perturbed at the 119Sn impurity site. We also include in the model, the nearest-neighbor perturbation due to the translational invariance breaking introduced by the impurity. Our self-consistent total magnetic hyperfine field calculations are in a very good agreement with recent experimental data.
Materials prediction via classification learning
Balachandran, Prasanna V.; Theiler, James; Rondinelli, James M.; ...
2015-08-25
In the paradigm of materials informatics for accelerated materials discovery, the choice of feature set (i.e. attributes that capture aspects of structure, chemistry and/or bonding) is critical. Ideally, the feature sets should provide a simple physical basis for extracting major structural and chemical trends and furthermore, enable rapid predictions of new material chemistries. Orbital radii calculated from model pseudopotential fits to spectroscopic data are potential candidates to satisfy these conditions. Although these radii (and their linear combinations) have been utilized in the past, their functional forms are largely justified with heuristic arguments. Here we show that machine learning methods naturallymore » uncover the functional forms that mimic most frequently used features in the literature, thereby providing a mathematical basis for feature set construction without a priori assumptions. We apply these principles to study two broad materials classes: (i) wide band gap AB compounds and (ii) rare earth-main group RM intermetallics. The AB compounds serve as a prototypical example to demonstrate our approach, whereas the RM intermetallics show how these concepts can be used to rapidly design new ductile materials. In conclusion, our predictive models indicate that ScCo, ScIr, and YCd should be ductile, whereas each was previously proposed to be brittle.« less
Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency
Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; ...
2018-04-25
Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatmentmore » line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. Furthermore, this work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.« less
Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency
NASA Astrophysics Data System (ADS)
Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando
2018-06-01
Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.
Materials Prediction via Classification Learning
Balachandran, Prasanna V.; Theiler, James; Rondinelli, James M.; Lookman, Turab
2015-01-01
In the paradigm of materials informatics for accelerated materials discovery, the choice of feature set (i.e. attributes that capture aspects of structure, chemistry and/or bonding) is critical. Ideally, the feature sets should provide a simple physical basis for extracting major structural and chemical trends and furthermore, enable rapid predictions of new material chemistries. Orbital radii calculated from model pseudopotential fits to spectroscopic data are potential candidates to satisfy these conditions. Although these radii (and their linear combinations) have been utilized in the past, their functional forms are largely justified with heuristic arguments. Here we show that machine learning methods naturally uncover the functional forms that mimic most frequently used features in the literature, thereby providing a mathematical basis for feature set construction without a priori assumptions. We apply these principles to study two broad materials classes: (i) wide band gap AB compounds and (ii) rare earth-main group RM intermetallics. The AB compounds serve as a prototypical example to demonstrate our approach, whereas the RM intermetallics show how these concepts can be used to rapidly design new ductile materials. Our predictive models indicate that ScCo, ScIr, and YCd should be ductile, whereas each was previously proposed to be brittle. PMID:26304800
Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency
NASA Astrophysics Data System (ADS)
Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando
2018-04-01
Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.
Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.
Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatmentmore » line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. Furthermore, this work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.« less
Novel Gold Intermetallics with Unique Properties and Bonding Patterns
NASA Astrophysics Data System (ADS)
Celania, Christopher Ranger
Gold has drawn the fascination of society through its brilliant color, malleability, and chemical resistance (hence its chemical nobility) since its discovery in ancient times. Today, this material is still highly coveted by consumers, but also for research within the scientific realm. The inclusion of gold in intermetallics often leads to notably unique structural and bonding features due to the pronounced relativistic effects on its 5d and 6s orbitals. Examples include quasicrystals and their approximants, unique gold clusters such as isolated Au7 clusters in A4Au7X2 (A = K, Rb, Cs; X = Ge, Sn), one dimensional columns such as Au zig-zag chains through Ca3Au3In, two dimensional slabs, such as in K2 Au3, as well as three dimensional gold networks as observed in the interconnected trigonal bipyramids in KAu5, hexagonal diamond-like frameworks of Au tetrahedra in Au-rich Sr-Au-Al systems; and combinations of tetrahedral and fourfold planar Au atoms in Rb3Au7. In recent years, compounds in the gold-rich region of the R-Au- M system (R = rare earth, M = groups 13-15) have come under increased study. Many compounds within this system produce varied electronic and magnetic properties such as Pauli paramagnetism, superconductivity, thermoelectricity, etc. The shielded 4f electrons of the added rare earth elements provide the unpaired spins that lead to the wealth of interesting magnetic properties in their compounds. Metals and metalloids from groups 13-15 may then be used as a bank of available options useful in tuning the valence electron count of the R-Au system toward the formation of stable compounds. Exploration of the Gd-Au-Sb system by utilizing common solid state synthesis techniques frequently used for the production of intermetallics (such as arc melting and high-temperature furnaces for self-flux reactions with low melting components) has yielded rich outcomes. These results include the discovery of a new R3Au9Pn series of compounds (R = Y, Gd-Ho; Pn = Sb, Bi), which undergo interesting metamagnetic transitions, varied coloring schemes for Sb substitutions in the known R14Au51 compound forming R 14(Au, M)51 (R = Y, La-Nd, Sm-Tb, Ho, Er, Yb, Lu; M = Al, Ga, Ge, In, Sn, Sb, Bi), and a complex tetragonal Gd-Au-Sb structure with significant Sb site mixing and positional disorder, as well as preliminary structure results of several other previously unreported compounds within the R-Au- M family.
Microstructural characterisation of Al-Si cast alloys containing rare earth additions
NASA Astrophysics Data System (ADS)
Elgallad, E. M.; Ibrahim, M. F.; Doty, H. W.; Samuel, F. H.
2018-05-01
This paper presents a thorough study on the effect of rare earth elements, specifically La and Ce, on the microstructure characteristics of non-modified and Sr-modified A356 and A413 alloys. Several alloys were prepared by adding 1% La and 1% Ce either individually or in combination. Microstructural characterisation was carried out using optical microscopy, scanning electron microscopy and electron probe microanalysis as well as differential scanning calorimetry (DSC) analysis. The results showed that the individual and combined additions of La and Ce did not bring about any modification or even refinement in the eutectic Si structure. Moreover, these additions were found to negate the modification effect of Sr, particularly in the presence of La. The A356 and A413 alloys containing La and/or Ce displayed high phase volume fractions owing to the formation of Al-Si-La/Ce/(La,Ce) and Al-Ti-La/Ce intermetallic phases. DSC analysis revealed that the formation temperatures of these phases varied from 560 to 568 °C and 568 to 574 °C, respectively. This analysis also showed that the addition of La and Ce whether individually or in combination resulted in a depression in the eutectic temperature and a considerable increase in the solidification range, particularly for the A413 alloy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gout, Delphine J; Gourdon, Olivier; Bauer, E. D.
2008-01-01
Crystal structures of a series of La1−xCexIn3 (x = 0.02, 0.2, 0.5, or 0.8) intermetallic compounds have been investigated by both neutron and X-ray diffraction, and their physical properties have been characterized by magnetic susceptibility and specific heat measurements. Our results emphasize atypical atomic displacement parameters (ADP) for the In and the rare-earth sites. Depending on the x value, the In ADP presents either an ellipsoidal elongation (La-rich compounds) or a butterfly-like distortion (Ce-rich compounds). These deformations have been understood by theoretical techniques based on the band theory and are the result of hybridization between conduction electrons and 4f-electrons.
Competition between magnetism and superconductivity in Eu-based intermetallic compounds
NASA Astrophysics Data System (ADS)
Stavinoha, Macy; Green, Lance; Chan, Julia; Morosan, Emilia
Eu-based intermetallic compounds present a path to discover new correlated electronic behavior in quantum materials. Reports of superconductivity, intermediate valence behavior, and heavy fermions indicate that Eu-based compounds are promising routes to study the relationship between crystallography and electronic properties. The present work is focused on EuGa4, an antiferromagnet with TN = 16 K isostructural with the tetragonal RT2M2 (R = rare earth, T = transition metal, M = metal or metalloid) family that exhibits heavy fermion behavior and unconventional superconductivity. Single crystals of the doped series (Eu1-xLax)Ga4, (Eu1-xCax)Ga4, and Eu(Ga1-xAlx)4 have been grown using the self-flux method and tested for change in unit cell volume and magnetic susceptibility. Results show that doping with Ca (isoelectronic doping) and La (hole doping) reduce TN to 12.4 K and 2.3 K, respectively, for Ca doping up to x = 0.11 and La doping up to x = 0.74 without an associated change in unit cell volume. The series Eu(Ga1-xAlx)4 has shown incommensurate-to-commensurate magnetic transitions. Future studies will aim to further decrease TN and the unit cell volume using physical pressure and chemical pressure through doping. ICAM, Gordon and Betty Moore Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Qisheng; Aguirre, Kaiser; Saunders, Scott M.
Planar hydrocarbon-like metal clusters may foster new insights linking organic molecules with conjugated π-π bonding interactions and inorganic structures in terms of their bonding characteristics. However, such clusters are uncommon in polar intermetallics. Herein, we report two polar intermetallic phases, Pr 5Co 2Ge 3 and Pr 7Co 2Ge 4, both of which feature such planar metal clusters, viz., ethylene-like [Co 2Ge 4] clusters plus the concatenated forms and polyacene-like [Co 2Ge 2] n ribbons in Pr 5Co 2Ge 3, and 1,2,4,5-tetramethylbenzene-like [Co4Ge6] cluster in Pr 7Co 2Ge 4. Just as in the related planar organic structures, these metal-metalloid species aremore » dominated by covalent bonding interactions. Both compounds magnetically order at low temperature with net ferromagnetic components: Pr 5Co 2Ge 3 via a series of transitions below 150 K; and Pr 7Co 2Ge 4 via a single ferromagnetic transition at 19 K. Spin-polarized electronic structure calculations for Pr 7Co 2Ge 4 reveal strong spin-orbit coupling within Pr and considerable magnetic contributions from Co atoms. This work suggests that similar structural chemistry can emerge for other rare earth-late transition metal-main group systems.« less
Thermomechanical processing of plasma sprayed intermetallic sheets
Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.
2001-01-01
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.
NASA Astrophysics Data System (ADS)
Byun, Jong Min; Bang, Su-Ryong; Choi, Won June; Kim, Min Sang; Noh, Goo Won; Kim, Young Do
2017-01-01
In recent years, refractory materials with excellent high-temperature properties have been in the spotlight as a next generation's high-temperature materials. Among these, Mo-Si-B alloys composed of two intermetallic compound phases (Mo5SiB2 and Mo3Si) and a ductile α-Mo phase have shown an outstanding thermal properties. However, due to the brittleness of the intermetallic compound phases, Mo-Si-B alloys were restricted to apply for the structural materials. So, to enhance the mechanical properties of Mo-Si-B alloys, many efforts to add rare-earth oxide particles in the Mo-Si-B alloy were performed to induce the improvement of strength and fracture toughness. In this study, to investigate the effect of adding nano-sized Y2O3 particles in Mo-Si-B alloy, a core-shell powder consisting of intermetallic compound phases as the core and nano-sized α-Mo and Y2O3 particles surrounding the core was fabricated. Then pressureless sintering was carried out at 1400 °C for 3 h, and the mechanical properties of sintered bodies with different amounts of Y2O3 particles were evaluated by Vickers hardness and 3-point bending test. Vickers hardness was improved by dispersed Y2O3 particles in the Mo-Si-B alloy. Especially, Mo-3Si-1B-1.5Y2O3 alloy had the highest value, 589 Hv. The fracture toughness was measured using Mo-3Si-1B-1.5Y2O3 alloy and the value indicated as 13.5 MPa·√m.
Clusters, Assemble: Growth of Intermetallic Compounds from Metal Flux Reactions.
Latturner, Susan E
2018-01-16
Metal flux synthesis involves the reaction of metals and metalloids in a large excess of a low-melting metal that acts as a solvent. This technique makes use of an unusual temperature regime (above the temperatures used for solvothermal methods and below the temperatures used in traditional solid state synthesis) and facilitates the growth of products as large crystals. It has proven to be a fruitful method to discover new intermetallic compounds. However, little is known about the chemistry occurring within a molten metal solvent; without an understanding of the nature of precursor formation and assembly, it is difficult to predict product structures and target properties. Organic chemists have a vast toolbox of well-known reagents and reaction mechanisms to use in directing their synthesis toward a desired molecular structure. This is not yet the case for the synthesis of inorganic extended structures. We have carried out extensive explorations of the growth of new magnetic intermetallic compounds from a variety of metal fluxes. This Account presents a review of some of our results and recent reports by other groups; this work indicates that products with common building blocks and homologous series with identical structural motifs are repeatedly seen in metal flux chemistry. For instance, fluorite-type layers comprised of transition metals coordinated by eight main group metal atoms are found in the Th 2 (Au x Si 1-x )[AuAl 2 ] n Si 2 and R[AuAl 2 ] n Al 2 (Au x Si 1-x ) 2 series grown from aluminum flux, the Ce n PdIn 3n+2 series grown from indium flux, and CePdGa 6 and Ce 2 PdGa 10 grown from gallium flux. Similarly, our investigations of reactions of heavy main group metals, M, in rare earth/transition metal eutectic fluxes reveal that the R/T/M/M' products usually feature M-centered rare earth clusters M@R 8-12 , which share faces to form layers and networks that surround transition metal building blocks. These structural trends, temperature dependence of products formed in the flux, and interconversions observed by differential scanning calorimetry support the idea that these clusters likely form in the melt, existing as precursors and assembling into different crystalline products depending on time, temperature, and reaction ratio. Proof of this mechanism will require future investigations using techniques such as pair distribution function analysis of flux melts to observe cluster formation and in situ diffraction during cooling to detect various phases as they crystallize and interconvert. These data will aid in understanding the parameters that control cluster formation and assembly in metal melts, allow for prediction of products of flux reactions, and will potentially enable the tailoring of reaction conditions to promote the formation of structures with desirable properties.
Synthesis, crystal structure, and magnetism of A 2Co 12As 7 (A=Ca, Y, Ce–Yb)
Tan, Xiaoyan; Ovidiu Garlea, V.; Chai, Ping; ...
2015-08-28
In this study, ternary intermetallics, A 2Co 12As 7 (A=Ca, Y, Ce–Yb), have been synthesized by annealing mixtures of elements in molten Bi at 1223 K. The materials obtained crystallize in the P6 3/m variant of the Zr 2Fe 12P 7 structure type. The unit cell volume shows a monotonic decrease with the increasing atomic number of the rare-earth metal, with the exception of Ce-, Eu-, and Yb-containing compounds. An examination of these outliers with X-ray absorption near edge structures (XANES) spectroscopy revealed mixed valence of Ce, Eu, and Yb, with the average oxidation states of +3.20(1), +2.47(5), and +2.91(1),more » respectively, at room temperature. Magnetic behavior of A 2Co 12As 7 is generally characterized by ferromagnetic ordering of Co 3d moments at 100–140 K, followed by low-temperature ordering of rare-earth 4f moments. The 3d-4f magnetic coupling changes from antiferromagnetic for A=Pr–Sm to ferromagnetic for A=Ce and Eu–Yb. Finally, polarized neutron scattering experiments were performed to support the postulated ferro- and ferrimagnetic ground states for Ce 2Co 12As 7 and Nd 2Co 12As 7, respectively.« less
NASA Astrophysics Data System (ADS)
Zeng, Yuyang; Tian, Fanghua; Chang, Tieyan; Chen, Kaiyun; Yang, Sen; Cao, Kaiyan; Zhou, Chao; Song, Xiaoping
2017-02-01
We report the magnetocaloric effect in a Tb1-x Dy x Co2 compound which exhibits a wide working temperature window around the Curie temperature (T C) and delivers a large refrigerant capacity (RC) with near-zero thermal hysteresis. Specifically, the wide full width at half maxima ({δ\\text{WFHM}} ) can reach up to 62 K and the RC value changes from 216.5 to 274.3 J Kg-1 when the external magnetic field increases to 5 T. Such magnetocaloric effects are attributed to a magnetic and structural transition from a paramagnetic and cubic phase to a ferromagnetic (M S along [1 1 1] direction) and rhombohedral phase or ferromagnetic (M S along [0 0 1] direction) and tetragonal phase.
A diffraction based study of the deformation mechanisms in anomalously ductile B2 intermetallics
NASA Astrophysics Data System (ADS)
Mulay, Rupalee Prashant
For many decades, the brittle nature of most intermetallic compounds (e.g. NiAl) has been the limiting factor in their practical application. Many B2 (CsCl prototypical structure) intermetallics are known to exhibit slip on the <001>{110} slip mode, which provides only 3 independent slip systems and, hence, is unable to satisfy the von Mises (a.k.a. Taylor) criterion for polycrystalline ductility. As a result, inherent polycrystalline ductility is unexpected. Recent discovery of a number of ductile B2 intermetallics has raised questions about possible violation of the von Mises criterion by these alloys. These ductile intermetallic compounds are MR (metal (M) combined with a rare earth metal or group IV refractory metal (R)) alloys and are stoichiometric, ordered compounds. Single crystal slip trace analyses have only identified the presence of <100>{011} or <100>{010} slip systems. More than 100 other B2 MR compounds are known to exist and many of them have already been shown to be ductile (e.g., CuY, AgY, CuDy, CoZr, CoTi, etc.). Furthermore, these alloys exhibit a large Bauschinger effect. The present work uses several diffraction based techniques including electron back scattered diffraction (EBSD), X-ray diffraction (XRD) and in-situ neutron diffraction; in conjunction with scanning electron microscopy (SEM), transmission electron microscopy (TEM), mechanical testing, and crystal plasticity modeling, to elucidate the reason for ductility in select B2 alloys, explore the spread of this ductility over the B2 family, and understand the Bauschinger effect in these alloys. Several possible explanations (e.g., slip of <111> dislocations, strong texture, phase transformations and twinning) for the anomalous ductility were explored. An X-ray diffraction based analysis ruled out texture, phase purity and departure from order as explanations for the anomalous ductility in MR alloys. In-situ neutron diffraction and post deformation SEM, EBSD, and TEM were unable to detect any evidence for phase transformations in CoTi and CoZr. Also, post deformation characterization did not reveal any evidence of twinning. However, TEM based g·b analysis and EBSD based in-grain misorientation axis (IGMA) analysis showed that beyond a transition in the strain hardening behavior in CoTi, slip modes involving dislocations with <110> and <111> Burgers vectors are activated. The slip of such dislocations can reduce stress concentrations that could otherwise lead to premature fracture, thus providing a satisfying explanation for the anomalous ductility of CoTi and related compounds, like CoZr. Dislocation self-energy calculations accounting for elastic anisotropy suggest that the choice of slip direction in these alloys is mobility-, rather than source-, limited. The reach of this "ductilizing effect" over B2 alloys was explored by producing, characterizing, and testing a number of simple metal-rare earth metal compounds, namely MgY, MgNd and MgCe. MgR intermetallics with the B2 structure were found to be brittle and exhibit a cleavage type fracture indicating that the ductilizing effect is not as widespread as was initially thought. MgY and MgNd were found to primarily cleave along the {100} planes, while MgCe was found to cleave on the {111} planes. A large Bauschinger effect was observed in several of the anomalously ductile B2 compounds, such that the material actually begins to yield in the reverse direction on unloading. When only the primary slip mode <100>{011} is active in CoZr (prior to a transition in strain hardening), the buildup of intergranular stresses is large and is chiefly responsible for the observed Bauschinger effect. However, past the aforementioned transition in strain hardening, the effect of intergranular stresses diminishes. The results demonstrate that the activation of hard, secondary slip modes causes the internal strains to develop more uniformly among the grains, thus reducing the intergranular stresses which cause the Bauschinger effect. Crystal plasticity modeling, which accounts for the initial paucity of independent slip modes and allows for the activation of complementary hard slip modes, reproduces these trends in the Bauschinger effect and provides additional evidence that the experimental observations have correctly identified the cause of the anomalous ductility.
A high-throughput exploration of magnetic materials by using structure predicting methods
NASA Astrophysics Data System (ADS)
Arapan, S.; Nieves, P.; Cuesta-López, S.
2018-02-01
We study the capability of a structure predicting method based on genetic/evolutionary algorithm for a high-throughput exploration of magnetic materials. We use the USPEX and VASP codes to predict stable and generate low-energy meta-stable structures for a set of representative magnetic structures comprising intermetallic alloys, oxides, interstitial compounds, and systems containing rare-earths elements, and for both types of ferromagnetic and antiferromagnetic ordering. We have modified the interface between USPEX and VASP codes to improve the performance of structural optimization as well as to perform calculations in a high-throughput manner. We show that exploring the structure phase space with a structure predicting technique reveals large sets of low-energy metastable structures, which not only improve currently exiting databases, but also may provide understanding and solutions to stabilize and synthesize magnetic materials suitable for permanent magnet applications.
NASA Astrophysics Data System (ADS)
Pakhira, Santanu; Kundu, Asish K.; Mazumdar, Chandan; Ranganathan, R.
2018-05-01
In this work, we report the effect of random magnetic anisotropy (RMA) on the valence, magnetocaloric and resistivity properties in a glassy intermetallic material Sm2Ni0.87Si2.87. On the basis of detailed studies on the valence band and core level electronic structure, we have established that both the Sm3+ and Sm2+ ions are present in the system, suggesting the compound to be of mixed valence in nature. The significant observation of positive magnetic entropy change in zero-field cooled measurement has been argued due to the presence of RMA that develops due to local electronic environmental variations between the rare-earth ions in the system. The quantum interference effect caused by the elastic electron–electron interaction is responsible for the resistivity upturn at low-temperature for this disordered metallic conductor.
Electronic structure and equation of state of Sm2Co17 from first-principles DFT+ U
NASA Astrophysics Data System (ADS)
Huang, Patrick; Butch, Nicholas P.; Jeffries, Jason R.; McCall, Scott K.
2013-03-01
Rare-earth intermetallics have important applications as permanent magnet materials, and the rational optimization of their properties would benefit greatly from guidance from ab initio modeling. However, these systems are particularly challenging for current electronic structure methods. Here, we present an ab initio study of the prototype material Sm2Co17 and related compounds, using density functional theory with a Hubbard correction for the Sm 4 f-electrons (DFT+ U method) and ultrasoft pseudopotentials. The Hubbard U parameter is derived from first principles [Cococcioni and de Gironcoli, PRB 71, 035105 (2005)], not fit to experiment. Our calculations are in good agreement with recent photoemission measurements at ambient pressure and the equation of state up to 40 GPa, thus supporting the validity of our DFT+ U model. Prepared by LLNL under Contract DE-AC52-07NA27344.
Kuttiyiel, Kurian A; Sasaki, Kotaro; Su, Dong; Wu, Lijun; Zhu, Yimei; Adzic, Radoslav R
2014-11-06
Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here we report on a structurally ordered Au10Pd₄₀Co₅₀ catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that, at elevated temperatures, palladium cobalt nanoparticles undergo an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets via addition of gold atoms. The superior stability of this catalyst compared with platinum after 10,000 potential cycles in alkaline media is attributed to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matter.
Site preference, magnetism and lattice vibrations of intermetallics Lu₂Fe 17–xT x (T=Cr, Mn, Ru)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jin-Chun; Qian, Ping, E-mail: qianpinghu@sohu.com; Zhang, Zhen-Feng
We present an atomistic study on the phase stability, site preference and lattice constants of the rare earth intermetallics Lu₂Fe 17–xT x (T=Cr, Mn, Ru). The calculated preferential occupation site of ternary element T is found to be the 4f site. The order of site preference is given as 4f, 12k, 12j and 6g for Lu₂Fe 17–xT x. The calculated lattice parameters are corresponding to the experimental results. We have calculated the magnetic moments of Lu₂Fe 17–xT x compounds. Results show that the calculated total magnetic moment of Lu₂Fe₁₇ compound is M=37.34 μ B/f.u. In addition, the total and partialmore » phonon densities of states are evaluated first for these complicated structures. - Graphical abstract: The vibrational modes are mostly excited by Fe atoms, Lu contributes to the lower frequencies modes, and the contribution of Ru atoms is the same as Fe atoms. Highlights: • There are no reports on lattice vibrations of Lu₂(Fe, T) 17–x (T=Cr, Mn, Ru) compounds. • The phase stability and site preference are evaluated first for the complex structures of Lu₂(Fe, T) 17–x (T=Cr, Mn, Ru) compounds. • The lattice inversion method to obtain the interatomic pair potential is the unique one.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong
2014-11-06
Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here, we report on a structurally ordered Au₁₀Pd₄₀Co₅₀ catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that via addition of gold atoms PdCo nanoparticles undergo at elevated temperatures an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets. The superior stability of this catalyst compared to platinum after 10,000 potential cycles in alkaline media is attributedmore » to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Sixuan; Latturner, Susan E., E-mail: latturner@chem.fsu.edu
The intermetallic compounds RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) were synthesized from the reaction of germanium and aluminum in RE/Co eutectic flux. These phases crystallize with the Nd{sub 6}Co{sub 5}Ge{sub 2.2} structure type in hexagonal space group P-6m2 (a=9.203(2)Å, c=4.202(1) Å, R{sub 1}=0.0109 for Pr{sub 6}Co{sub 5}Ge{sub 1.80}Al{sub 2.20}; and a=9.170(3) Å, c=4.195(1) Å, R{sub 1}=0.0129 for Nd{sub 6}Co{sub 5}Ge{sub 1.74}Al{sub 2.26}). The structure features chains of face-sharing Ge@RE{sub 9} clusters intersecting hexagonal cobalt nets linked by aluminum atoms. Magnetic susceptibility measurements indicate that both phases exhibit ferromagnetic ordering of the cobalt layers with T{sub C} in themore » range of 130–140 K. The magnetic moments of the rare earth ions order at lower temperature (30–40 K). Magnetic measurements on oriented crystals of Nd{sub 6}Co{sub 5}Ge{sub 1.74}Al{sub 2.26} show a strong preference of the moments to order along the c-axis. - Graphical abstract: RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) were grown as large crystals from reactions of Ge and Al in RE/Co eutectic melts. Magnetic measurements indicate ordering of the 2-D cobalt nets at 130–140 K, and ordering of the rare earth moments at 30–40 K. Display Omitted - Highlights: • RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) grown as large crystals from RE/Co eutectic flux. • RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} structure features hexagonal cobalt nets stacked along c-axis. • Cobalt layers order ferromagnetically with T{sub c}=130–140 K. • Rare earth magnetic moments order at low temperature (30–40 K).« less
Neutron diffraction study of Tb0.5Ho0.5Mn2Si2
NASA Astrophysics Data System (ADS)
Pandey, Swati; Siruguri, Vasudeva; Rawat, Rajeev
2018-02-01
The magnetic properties of tetragonal polycrystalline intermetallic compound Tb0.5Ho0.5Mn2Si2 have been investigated using temperature dependent dc magnetic susceptibility and neutron powder diffraction studies. Results of high temperature susceptibility data shows anomaly at TN = 510 K while low temperature susceptibility data indicate two successive anomalies at T1 = 11 K and T2 = 25 K. Metamagnetic transition is observed in magnetization versus field curves. Our neutron diffraction results indicate three different magnetic regions with different magnetic structures. Neutron diffraction data shows that below T2, the intensities of some of the nuclear peaks get enhanced indicating ferromagnetic ordering, while additional magnetic reflections are observed below T1, indicating antiferromagnetic order. Ordering of rare earth sublattice at low temperature rearranges the ordering of Mn sublattice and results in reorientation of Mn spins at T1. At 2 K Tb/Ho moments are aligned along c-axis while Mn moments are aligned perpendicular to c-axis.
A comparison of thermoelectric phenomena in diverse alloy systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Bruce
1999-01-01
The study of thermoelectric phenomena in solids provides a wealth of opportunity for exploration of the complex interrelationships between structure, processing, and properties of materials. As thermoelectricity implies some type of coupled thermal and electrical behavior, it is expected that a basic understanding of transport behavior in materials is the goal of such a study. However, transport properties such as electrical resistivity and thermal diffusivity cannot be fully understood and interpreted without first developing an understanding of the material's preparation and its underlying structure. It is the objective of this dissertation to critically examine a number of diverse systems inmore » order to develop a broad perspective on how structure-processing-property relationships differ from system to system, and to discover the common parameters upon which any good thermoelectric material is based. The alloy systems examined in this work include silicon-germanium, zinc oxide, complex intermetallic compounds such as the half-Heusler MNiSn, where M = Ti, Zr, or Hf, and rare earth chalcogenides.« less
ERIC Educational Resources Information Center
Muecke, Gunter K.; Moller, Peter
1988-01-01
Describes the characteristics of rare earth elements. Details the physical chemistry of rare earths. Reviews the history of rare earth chemistry and mineralogy. Discusses the mineralogy and crystallography of the formation of rare earth laden minerals found in the earth's crust. Characterizes the geologic history of rare earth elements. (CW)
Recovering heavy rare earth metals from magnet scrap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.
A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gribanov, Alexander, E-mail: avgri@mail.r; Chemistry Department of the Moscow State University, Leninskie Gory, GSP-1, 119991 Moscow; Grytsiv, Andriy
Two series of intermetallic alloys, RT{sub 2}Si and RTSi{sub 2}, have been synthesized from stoichiometric compositions. The crystal structures of EuPt{sub 1+x}Si{sub 2-x} (CeNiSi{sub 2}-type), CeIr{sub 2}Si (new structure type), YbPd{sub 2}Si and YbPt{sub 2}Si (both YPd{sub 2}Si-type) have been elucidated from X-ray single crystal CCD data, which were confirmed by XPD experiments. The crystal structures of LaRh{sub 2}Si and LaIr{sub 2}Si (CeIr{sub 2}Si-type), {l_brace}La,Ce,Pr,Nd{r_brace}AgSi{sub 2} (all TbFeSi{sub 2}-type), and EuPt{sub 2}Si (inverse CeNiSi{sub 2}-type) were characterized by XPD data. RT{sub 2}Si/RTSi{sub 2} compounds were neither detected in as-cast alloys Sc{sub 25}Pt{sub 50}Si{sub 25}, Eu{sub 25}Os{sub 25}Si{sub 50} and Eu{submore » 25}Rh{sub 25}Si{sub 50} nor after annealing at 900 {sup o}C. Instead, X-ray single crystal data prompted Eu{sub 2}Os{sub 3}Si{sub 5} (Sc{sub 2}Fe{sub 3}Si{sub 5}-type) and EuRh{sub 2+x}Si{sub 2-x} (x=0.04, ThCr{sub 2}Si{sub 2}-type) as well as a new structure type for Sc{sub 2}Pt{sub 3}Si{sub 2} (own type). - Graphical abstract: Two series of the intermetallic compounds, RT{sub 2}Si and RTSi{sub 2}, have been investigated by X-ray diffraction methods. The new tetragonal CeIr{sub 2}Si-type of the crystal structure was described and the interrelation between orthorhombic CeNiSi{sub 2} and tetragonal CeIr{sub 2}Si had been discussed as a similar packing of the BaAl{sub 4} and AlB{sub 2} slabs.« less
Mineral resource of the month: rare earth elements
,
2011-01-01
The article provides information on rare earth elements, which are group of 17 natural metallic elements. The rare earth elements are scandium, yttrium and lanthanides and classified into light rare earth elements (LREE) and heavy rate earth elements (HREE). The principal ores of the rare earth elements are identified. An overview of China's production of 97 percent of the rare earths in the world is provided. Commercial applications of rare earths are described.
RRh2Al10 (R = Ce, Yb): New intermetallic compounds in the 1 : 2 : 10 stoichiometry series
NASA Astrophysics Data System (ADS)
Strydom, A. M.; Djoumessi, R. F.; Blinova, M.; Tursina, A.; Nesterenko, S.; Avzuragova, V.
2018-05-01
The orthorhombic, space group Cmcm YbFe2Al10 structure type series of compounds are known to form with practically the entire series of rare-earth elements R, but only with the three d - electron elements Fe, Ru, and Os. The Ce-derivatives in particular have been of much interest since the first reports of their highly unusual physical properties. Classified as Kondo insulators, CeRu2Al10 and CeOs2Al10 controversially order magnetically and with uncharacteristically high Néel temperatures of ≃ 28 K. CeFe2Al10 on the other hand shows pronounced semiconducting and Kondo features but remains paramagnetic. As part of our ongoing studies into the rich physics of this class of materials we have succeeded in synthesizing new members of the 1:2:10 stoichiometry involving the chemical element Rh for the first time. CeRh2Al10 is found to crystallize in the tetragonal system with space group I41 / amd . Yb Rh2Al10 on the other hand forms in the serial Cmcm orthorhombic structure type. We discuss important similarities between the two types. At 5.310 Å the shortest Ce-Ce distance is, likewise to the situation in CeRu2Al10 and CeOs2Al10 , also well above the Hill limit of 3.40 Å. Despite the cage-like structure and large rare-earth separation distances, this study reveals the onset of long-range magnetic ordering in CeRh2Al10 at 3.9 K. The magnetic ordering develops out of an incoherent Kondo state that dominates the electrical resistivity below about 40 K.
Asymmetrical bonding in cold spraying of dissimilar materials
NASA Astrophysics Data System (ADS)
Nikbakht, R.; Seyedein, S. H.; Kheirandish, S.; Assadi, H.; Jodoin, B.
2018-06-01
Characteristics of particle bonding, especially for dissimilar materials, remains a key question in cold spray deposition. There are limited reports in direct correlation to particle/substrate bonding and peripheral shear zones. Cold spraying experiments and numerical simulations are conducted to characterise and analyse the correlation between bonding and peripheral shear zones for asymmetric particle/substrate pairs of intermetallic-forming elements of nickel and titanium. The correlation between metallic bonding and highly strained areas is explored in view of the growth of the intermetallic phase at the particle/substrate interface during subsequent heat treatments. Characterisation of the as-sprayed samples reveal that for the Ni(particle)/Ti(substrate) pair, plastic deformation of the particle is dominating over substrate deformation. However, for the Ti(particle)/Ni(substrate) pair, it is observed that the substrate and particle deform to similar extents. Characterisation of the samples after a brief heat treatment at 700 °C indicate that intermetallic formation, and hence metallurgical bonding of the pairs is more likely to occur at the particle peripheries where the interface areas are highly strained, and rarely achieved at the particle base. Results also reveal that bonding extends from peripheries toward the central part of the interfaces with increasing the impact velocity. The kinetics of interfacial intermetallic formation at peripheral areas and its correlation to particle bonding is discussed in view of deformation-enhanced interdiffusion.
Production method for making rare earth compounds
McCallum, R.W.; Ellis, T.W.; Dennis, K.W.; Hofer, R.J.; Branagan, D.J.
1997-11-25
A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g., a transition metal and optional boron), and a carbide-forming element (e.g., a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g., Nd{sub 2}Fe{sub 14}B or LaNi{sub 5}) and a carbide of the carbide-forming element are formed.
Production method for making rare earth compounds
McCallum, R. William; Ellis, Timothy W.; Dennis, Kevin W.; Hofer, Robert J.; Branagan, Daniel J.
1997-11-25
A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g. a transition metal and optional boron), and a carbide-forming element (e.g. a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g. Nd.sub.2 Fe.sub.14 B or LaNi.sub.5) and a carbide of the carbide-forming element are formed.
Ellis, Timothy W.; Schmidt, Frederick A.
1995-08-01
Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.
Polymer quenched prealloyed metal powder
Hajaligol, Mohammad R.; Fleischhauer, Grier; German, Randall M.
2001-01-01
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.
Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders
Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleishhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.
2003-12-09
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.
Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders
Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.
2000-01-01
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr.ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.
Hydrogen Ordering in Hexagonal Intermetallic AB5 Type Compounds
NASA Astrophysics Data System (ADS)
Sikora, W.; Kuna, A.
2008-04-01
Intermetallic compounds AB5 type (A = rare-earth atoms, B = transition metal) are known to store reversibly large amounts of hydrogen and as that are discussed in this work. It was shown that the alloy cycling stability can be significantly improved by employing the so-called non-stoichiometric compounds AB5+x and that is why analysis of change of structure turned out to be interesting. A tendency for ordering of hydrogen atoms is one of the most intriguing problems for the unsaturated hydrides. The symmetry analysis method in the frame of the theory of space group and their representation gives opportunity to find all possible transformations of the parent structure. In this work symmetry analysis method was applied for AB5+x structure type (P6/mmm parent symmetry space group). There were investigated all possible ordering types and accompanying atom displacements in positions 1a, 2c, 3g (fully occupied in stoichiometric compounds AB5), in positions 2e, 6l (where atom B could appear in non-stoichiometric compounds) and also 4h, 6m, 6k, 12n, 12o, which could be partly occupied by hydrogen as a result of hydrides. An analysis was carried out of all possible structures of lower symmetry, following from P6/mmm for we k=(0, 0, 0). Also the way of getting the structure described by the P63mc space group with double cell along the z-axiswe k=(0, 0, 0.5), as it is suggested in the work of Latroche et al. is discussed by the symmetry analysis. The analysis was obtained by computer program MODY. The program calculates the so-called basis vectors of irreducible representations of a given symmetry group, which can be used for calculation of possible ordering modes.
Ellis, T.W.; Schmidt, F.A.
1995-08-01
A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.
Zhou, W R; Zheng, Y F; Leeflang, M A; Zhou, J
2013-11-01
Mg-Li-based alloys were investigated for future cardiovascular stent application as they possess excellent ductility. However, Mg-Li binary alloys exhibited reduced mechanical strengths due to the presence of lithium. To improve the mechanical strengths of Mg-Li binary alloys, aluminum and rare earth (RE) elements were added to form Mg-Li-Al ternary and Mg-Li-Al-RE quarternary alloys. In the present study, six Mg-Li-(Al)-(RE) alloys were fabricated. Their microstructures, mechanical properties and biocorrosion behavior were evaluated by using optical microscopy, X-ray diffraction, scanning electronic microscopy, tensile tests, immersion tests and electrochemical measurements. Microstructure characterization indicated that grain sizes were moderately refined by the addition of rare earth elements. Tensile testing showed that enhanced mechanical strengths were obtained, while electrochemical and immersion tests showed reduced corrosion resistance caused by intermetallic compounds distributed throughout the magnesium matrix in the rare-earth-containing Mg-Li alloys. Cytotoxicity assays, hemolysis tests as well as platelet adhesion tests were performed to evaluate in vitro biocompatibilities of the Mg-Li-based alloys. The results of cytotoxicity assays clearly showed that the Mg-3.5Li-2Al-2RE, Mg-3.5Li-4Al-2RE and Mg-8.5Li-2Al-2RE alloys suppressed vascular smooth muscle cell proliferation after 5day incubation, while the Mg-3.5Li, Mg-8.5Li and Mg-8.5Li-1Al alloys were proven to be tolerated. In the case of human umbilical vein endothelial cells, the Mg-Li-based alloys showed no significantly reduced cell viabilities except for the Mg-8.5Li-2Al-2RE alloy, with no obvious differences in cell viability between different culture periods. With the exception of Mg-8.5Li-2Al-2RE, all of the other Mg-Li-(Al)-(RE) alloys exhibited acceptable hemolysis ratios, and no sign of thrombogenicity was found. These in vitro experimental results indicate the potential of Mg-Li-(Al)-(RE) alloys as biomaterials for future cardiovascular stent application and the worthiness of investigating their biodegradation behaviors in vivo. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Solidification studies of nanocrystalline and quasicrystalline materials from the undercooled state
NASA Astrophysics Data System (ADS)
Croat, Thomas Kevin
2001-07-01
Nanocrystallization occurring during metallic glass devitrification is studied in Zr-Al-Ni-Cu bulk metallic glasses (BMGs) and Al-RE-TM (RE = rare-earth, TM = transition metal) metallic glasses. The importance of transient nucleation in BMG devitrification was established by a direct transmission electron microscopy (TEM) measurement of the grain density in two-stage annealed samples. TEM examination of low temperature annealed BMGs also suggest that amorphous phase separation is occurring prior to crystallization. Nanocrystallization of rapidly quenched Al-RE-Ni glasses was preceded by the compositional segregation of the initially homogeneous glass into Al-rich and solute-rich regions (mainly nickel-enriched) on a ≈50--100 nm length scale, suggesting amorphous phase separation. This pre-existing compositional modulation on a nanometer scale leads naturally to the development of nanocrystals. The average rare earth radius (rRE) in Al-RE-Ni alloys was altered by co-substitution of chemically similar rare earth elements. In glasses with smaller r RE, nucleation of alpha-Al occurred preferentially near the boundaries of the phase-separated regions. However, phase separation did not universally lead to alpha-Al nanocrystallization; glasses with larger rRE crystallized to metastable intermetallic phases with a 50--100 nm grain size. Kinetic analysis of the alpha-Al crystallization was performed using isothermal DSC, yielding abnormally low Avrami exponents (n = 1.0--1.5); these values were found to be consistent with the observed transformation using a model that considers the overlapping diffusion fields of the alpha-Al grains during growth within the phase separated region. Containerless solidification experiments on Ti-based quasicrystal-forming alloys have been performed using various techniques, including drop-tube solidification, electromagnetic levitation (EML) and electrostatic levitation (ESL). In Ti-Fe-Si-O, the alpha-1/1 quasicrystal approximant phase is found to nucleate directly from the liquid over the range TixFe94-xSi 4(SiO2)2 with 67 < x < 69 in EML experiments. Both the alpha-1/1 phase in Ti-Fe-Si-O and the C14 Laves phase in Ti-Zr-Ni have lower relative undercoolings than nearby crystal phases. This presumably reflects the structural similarity between these polytetrahedral phases and the undercooled liquid, which leads to smaller nucleation barriers and lower maximum undercoolings.
Rare earth elements: end use and recyclability
Goonan, Thomas G.
2011-01-01
Rare earth elements are used in mature markets (such as catalysts, glassmaking, lighting, and metallurgy), which account for 59 percent of the total worldwide consumption of rare earth elements, and in newer, high-growth markets (such as battery alloys, ceramics, and permanent magnets), which account for 41 percent of the total worldwide consumption of rare earth elements. In mature market segments, lanthanum and cerium constitute about 80 percent of rare earth elements used, and in new market segments, dysprosium, neodymium, and praseodymium account for about 85 percent of rare earth elements used. Regardless of the end use, rare earth elements are not recycled in large quantities, but could be if recycling became mandated or very high prices of rare earth elements made recycling feasible.
Giant volume magnetostriction in the Y{sub 2}Fe{sub 17} single crystal at room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikitin, S. A., E-mail: nikitin@phys.msu.ru; Pankratov, N. Yu.; Smarzhevskaya, A. I.
2015-05-21
An investigation of the Y{sub 2}Fe{sub 17} compound belonging to the class of intermetallic alloys of rare-earth and 3d-transition metals is presented. The magnetization, magnetostriction, and thermal expansion of the Y{sub 2}Fe{sub 17} single crystal were studied. The forced magnetostriction and magnetostriction constants were investigated in the temperature range of the magnetic ordering close to the room temperature. The giant field induced volume magnetostriction was discovered in the room temperature region in the magnetic field up to 1.2 T. The contributions of both anisotropic single-ion and isotropic pair exchange interactions to the volume magnetostriction and magnetostriction constants were determined. The experimentalmore » results were interpreted within the framework of the Standard Theory of Magnetostriction and the Landau thermodynamic theory. It was found out that the giant values of the volume magnetostriction were caused by the strong dependence of the 3d-electron Coulomb charge repulsion on the deformations and width of the 3d-electron energy band.« less
Rare Earth Elements | Alaska Division of Geological & Geophysical Surveys
- Mineral Resources main content Rare Earth Elements Rare earth elements and the supply and demand of these deposits containing rare earth elements to meet the perceived future demand. High prices for rare earth earth element occurrences in the DGGS publications catalog. Department of Natural Resources, Division of
Synthesis of Xenon and Iron-Nickel Intermetallic Compounds at Earth's Core Thermodynamic Conditions
NASA Astrophysics Data System (ADS)
Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.; Lobanov, Sergey S.; Zaug, Joseph M.; Liu, Hanyu; Greenberg, Eran; Prakapenka, Vitali B.
2018-03-01
Using in situ synchrotron x-ray diffraction and Raman spectroscopy in concert with first principles calculations we demonstrate the synthesis of stable Xe (Fe ,Fe /Ni )3 and XeNi3 compounds at thermodynamic conditions representative of Earth's core. Surprisingly, in the case of both the Xe-Fe and Xe-Ni systems Fe and Ni become highly electronegative and can act as oxidants. The results indicate the changing chemical properties of elements under extreme conditions by documenting that electropositive at ambient pressure elements could gain electrons and form anions.
Raman scattering of rare earth hexaborides
NASA Astrophysics Data System (ADS)
Ogita, Norio; Hasegawa, Takumi; Udagawa, Masayuki; Iga, Fumitoshi; Kunii, Satoru
2009-06-01
Raman scattering spectra were measured for the rare-earth hexaborides RB6 (R = Ce, Gd, or Dy). All Raman-active phonons due to B6 vibrations were observed in the range 600 - 1400 cm-1. Anomalous peaks were detected below 200 cm-1, which correspond to vibrations of rare-earth ion excited by second-order Raman scattering process. The intensity and energy of the rare-earth mode decrease with decreasing temperature. This suggests that the rare-earth ion vibrates in a shallow and anharmonic potential due to the boron cage. Using the reported values of mean square displacement of rare-earth ion, we estimated the anharmonic contribution for the rare-earth vibrations.
Lithium-aluminum-iron electrode composition
Kaun, Thomas D.
1979-01-01
A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pete McGrail
This GDR submission is an interim technical report and raw data files from the first year of testing on functionalized nanoparticles for rare earth element extraction from geothermal fluids. The report contains Rare Earth Element uptake results (percent removal, mg Rare Earth Element/gram of sorbent, distribution coefficient) for the elements of Neodymium, Europium, Yttrium, Dysprosium, and Cesium. A detailed techno economic analysis is also presented in the report for a scaled up geothermal rare earth element extraction process. All rare earth element uptake testing was done on simulated geothermal brines with one rare earth element in each brine. The raremore » earth element uptake testing was conducted at room temperature.« less
Enhanced pinning in mixed rare earth-123 films
Driscoll, Judith L [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM
2009-06-16
An superconductive article and method of forming such an article is disclosed, the article including a substrate and a layer of a rare earth barium cuprate film upon the substrate, the rare earth barium cuprate film including two or more rare earth metals capable of yielding a superconductive composition where ion size variance between the two or more rare earth metals is characterized as greater than zero and less than about 10.times.10.sup.-4, and the rare earth barium cuprate film including two or more rare earth metals is further characterized as having an enhanced critical current density in comparison to a standard YBa.sub.2Cu.sub.3O.sub.y composition under identical testing conditions.
Selective Emitter Pumped Rare Earth Laser
NASA Technical Reports Server (NTRS)
Chubb, Donald L. (Inventor); Patton, Martin O. (Inventor)
2001-01-01
A selective emitter pumped rare earth laser provides an additional type of laser for use in many laser applications. Rare earth doped lasers exist which are pumped with flashtubes or laser diodes. The invention uses a rare earth emitter to transform thermal energy input to a spectral band matching the absorption band of a rare earth in the laser in order to produce lasing.
NASA Astrophysics Data System (ADS)
Tavadyan, Levon, Prof; Sachkov, Viktor, Prof; Godymchuk, Anna, Dr.; Bogdan, Anna
2016-01-01
The 2nd International Symposium «Fundamental Aspects of Rare-earth Elements Mining and Separation and Modern Materials Engineering» (REES2015) was jointly organized by Tomsk State University (Russia), National Academy of Science (Armenia), Shenyang Polytechnic University (China), Moscow Institute of Physics and Engineering (Russia), Siberian Physical-technical Institute (Russia), and Tomsk Polytechnic University (Russia) in September, 7-15, 2015, Belokuriha, Russia. The Symposium provided a high quality of presentations and gathered engineers, scientists, academicians, and young researchers working in the field of rare and rare earth elements mining, modification, separation, elaboration and application, in order to facilitate aggregation and sharing interests and results for a better collaboration and activity visibility. The goal of the REES2015 was to bring researchers and practitioners together to share the latest knowledge on rare and rare earth elements technologies. The Symposium was aimed at presenting new trends in rare and rare earth elements mining, research and separation and recent achievements in advanced materials elaboration and developments for different purposes, as well as strengthening the already existing contacts between manufactures, highly-qualified specialists and young scientists. The topics of the REES2015 were: (1) Problems of extraction and separation of rare and rare earth elements; (2) Methods and approaches to the separation and isolation of rare and rare earth elements with ultra-high purity; (3) Industrial technologies of production and separation of rare and rare earth elements; (4) Economic aspects in technology of rare and rare earth elements; and (5) Rare and rare earth based materials (application in metallurgy, catalysis, medicine, optoelectronics, etc.). We want to thank the Organizing Committee, the Universities and Sponsors supporting the Symposium, and everyone who contributed to the organization of the event and to publication of this proceeding.
Emmanuel, E S Challaraj; Ananthi, T; Anandkumar, B; Maruthamuthu, S
2012-03-01
In this study, Arthrobacter luteolus, isolated from rare earth environment of Chavara (Quilon district, Kerala, India), were found to produce catechol-type siderophores. The bacterial strain accumulated rare earth elements such as samarium and scandium. The siderophores may play a role in the accumulation of rare earth elements. Catecholate siderophore and low-molecular-weight organic acids were found to be present in experiments with Arthrobacter luteolus. The influence of siderophore on the accumulation of rare earth elements by bacteria has been extensively discussed.
NASA Astrophysics Data System (ADS)
Meyer, John Louis Lamb
A novel gas atomization reaction synthesis (GARS) method was utilized to produce precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE)-containing intermetallic. Although Al is necessary for industrial superalloy production, the Ni-Cr base alloy system was selected as a simplified system more amenable to characterization. This was done in an effort to better study the effects of processing parameters. Consolidation and heat-treatment were performed to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nanometric oxide dispersoids. Alloy selection was aided by an internal oxidation and serial grinding experiment that found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloys, but the Hf-containing system exhibited five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was easier to characterize, and make observations on the effects of processing parameters, the Ti-containing system was used for experimental atomization trials. An internal oxidation model was used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature. A new high-pressure gas atomization (HPGA) nozzle was developed with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms. Six atomization trials were performed to investigate the effects of gas atomization pressure and reactive-gas concentration on the particle size distribution (PSD). Also, the effect on the rapidly solidified microstructure (as a function of powder size) was investigated as a function of reactive-gas composition and bulk alloy composition. The results indicate that the pulsation mechanism and optimum PSDs reported in the literature were not observed. Also, it was determined that reactive gas may marginally improve the PSD, but further experiments are required. The oxygen content in the gas was also not found to be detrimental to the microstructure (i.e., did not catalyze nucleation), but may have removed potent catalytic nucleation sites, although not enough to significantly alter the microstructure. Overall, the downstream injection of oxygen was not found to significantly affect either the PSD or undercooling (as inferred from microstructure and XRD observations), but injection further upstream, including in the gas atomization nozzle, remains to be investigated.
Health risk assessment of rare earth elements in cereals from mining area in Shandong, China.
Zhuang, Maoqiang; Wang, Liansen; Wu, Guangjian; Wang, Kebo; Jiang, Xiaofeng; Liu, Taibin; Xiao, Peirui; Yu, Lianlong; Jiang, Ying; Song, Jian; Zhang, Junli; Zhou, Jingyang; Zhao, Jinshan; Chu, Zunhua
2017-08-29
To investigate the concentrations of rare earth elements in cereals and assess human health risk through cereal consumption, a total of 327 cereal samples were collected from rare earth mining area and control area in Shandong, China. The contents of 14 rare earth elements were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The medians of total rare earth elements in cereals from mining and control areas were 74.22 μg/kg and 47.83 μg/kg, respectively, and the difference was statistically significant (P < 0.05). The wheat had the highest rare earth elements concentrations (109.39 μg/kg and 77.96 μg/kg for mining and control areas, respectively) and maize had the lowest rare earth elements concentrations (42.88 μg/kg and 30.25 μg/kg for mining and control areas, respectively). The rare earth elements distribution patterns for both areas were characterized by enrichment of light rare earth elements. The health risk assessment demonstrated that the estimated daily intakes of rare earth elements through cereal consumption were considerably lower than the acceptable daily intake (70 μg/kg bw). The damage to adults can be neglected, but more attention should be paid to the effects of continuous exposure to rare earth elements on children.
Rare Earth Element Mines, Deposits, and Occurrences
Orris, Greta J.; Grauch, Richard I.
2002-01-01
Data on rare earth (including yttrium) mines, deposits, and occurrences were compiled as part of an effort by the USGS and the University of Arizona Center for Mineral Resources to summarize current knowledge on the supply and demand outlook and related topics for this group of elements. Economic competition and environmental concerns are increasingly constraining the mining and processing of rare earths from the Mountain Pass mine in California. For many years, the deposit at Mountain Pass was the world's dominant source of rare earth elements and the United States was essentially self-sufficient. Starting approximately 10 years ago, the U.S. has become increasingly dependent (> 90 percent of separated rare earths) upon imports from China, now the dominant source of rare earths. A knowledge of the known economic and noneconomic sources of rare earths is basic to evaluating the outlook for rare earth supply and associated issues.
Radioactive rare-earth deposit at Scrub Oaks mine, Morris County, New Jersey
Klemic, Harry; Heyl, A.V.; Taylor, Audrey R.; Stone, Jerome
1959-01-01
A deposit of rare-earth minerals in the Scrub Oaks iron mine, Morris County, N. J., was mapped and sampled in 1955. The rare-earth minerals are mainly in coarse-grained magnetite ore and in pegmatite adjacent to it. Discrete bodies of rare-earth-bearing magnetite ore apparently follow the plunge of the main magnetite ore body at the north end of the mine. Radioactivity of the ore containing rare earths is about 0.2 to 0.6 mllliroentgens per hour. The principal minerals of the deposit are quartz, magnetite, hematite, albiteoligoclase, perthite and antiperthite. Xenotime and doverite aggregates and bastnaesite with intermixed leucoxene are the most abundant rare-earth minerals, and zircon, sphene, chevkinite, apatite, and monazite are of minor abundance in the ore. The rare-earth elements are partly differentiated into cerium-rich bastnaesite, chevkinite, and monazite, and yttrium-rich xenotime and doverite. Apatite, zircon, and sphene contain both cerium and yttrium group earths. Eleven samples of radioactive ore and rock average 0.009 percent uranium, 0.062 percent thorium, 1.51 percent combined rare-earth oxides including yttrium oxide and 24.8 percent iron. Scatter diagrams of sample data show a direct correlation between equivalent uranium, uranium, thorium, and combined rare^ earth oxides. Both cerium- and yttrium-group earths are abundant in the rare-earth minerals. Radioactive magnetite ore containing rare-earth minerals probably formed as a variant of the magnetite mineralization that produced the main iron ore of the Scrub Oaks deposit. The rare-earth minerals and the iron ore were deposited contemporaneously. Zircon crystals, probably deposited at the same time, have been determined by the Larsen method to be about 550 to 600 million years old (late Precambrian age). Uranium, thorium, and rare-earth elements are potential byproducts of iron in the coarse-grained magnetite ore.
Melt-Spun Fe-Sb Intermetallic Alloy Anode for Performance Enhanced Sodium-Ion Batteries.
Edison, Eldho; Sreejith, Sivaramapanicker; Madhavi, Srinivasan
2017-11-15
Owing to the high theoretical sodiation capacities, intermetallic alloy anodes have attracted considerable interest as electrodes for next-generation sodium-ion batteries (SIBs). Here, we demonstrate the fabrication of intermetallic Fe-Sb alloy anode for SIBs via a high-throughput and industrially viable melt-spinning process. The earth-abundant and low-cost Fe-Sb-based alloy anode exhibits excellent cycling stability with nearly 466 mAh g -1 sodiation capacity at a specific current of 50 mA g -1 with 95% capacity retention after 80 cycles. Moreover, the alloy anode displayed outstanding rate performance with ∼300 mAh g -1 sodiation capacity at 1 A g -1 . The crystalline features of the melt-spun fibers aid in the exceptional electrochemical performance of the alloy anode. Further, the feasibility of the alloy anode for real-life applications was demonstrated in a sodium-ion full-cell configuration which could deliver a sodiation capacity of over 300 mAh g -1 (based on anode) at 50 mA g -1 with more than 99% Coulombic efficiency. The results further exhort the prospects of melt-spun alloy anodes to realize fully functional sodium-ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selle, J E
Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussedmore » in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented.« less
Rare-earth metal prices in the USA ca. 1960 to 1994
Hedrick, James B.
1997-01-01
Rare-earth metal prices were compiled from the late 1950s and early 1960s through 1994. Although commercial demand for rare-earth metals began in 1908, as the alloy mischmetal, commercial quantities of a wide range of individual rare-earth metals were not available until the late 1950s. The discovery of a large, high-grade rare-earth deposit at Mountain Pass. CA, USA, in 1949, was significant because it led to the production of commercial quantities or rare-earth elements that reduced prices and encouraged wider application of the materials. The availability of ore from Mountain Pass, and other large rare-earth deposits, especially those in Australia and China, has provided the world with abundant resources for rare-earth metal production. This availability, coupled with improved technology from Government and private-sector metallurgical research, has resulted in substantial decreases in rare-earth metal prices since the late 1950s and early 1960s. Price series for the individual rare-earth metals (except promethium) are quoted on a kilogram basis from the late 1950s and early 1960s through 1994. Prices are given in US dollars on an actual and constant dollar basis. Industrial and economic factors affecting prices during this time period are examined.
Rare-earth metal prices in the USA ca. 1960 to 1994
Hedrick, J.B.
1997-01-01
Rare-earth metal prices were compiled from the late 1950s and early 1960s through 1994. Although commercial demand for rare-earth metals began in 1908, as the alloy mischmetal, commercial quantities of a wide range of individual rare-earth metals were not available until the late 1950s. The discovery of a large, high-grade rare-earth deposit at Mountain Pass, CA, USA, in 1949, was significant because it led to the production of commercial quantities of rare-earth elements that reduced prices and encouraged wider application of the materials. The availability of ore from Mountain Pass, and other large rare-earth deposits, especially those in Australia and China, has provided the world with abundant resources for rare-earth metal production. This availability, coupled with improved technology from Government and private-sector metallurgical research, has resulted in substantial decreases in rare-earth metal prices since the late 1950s and early 1960s. Price series for the individual rare-earth metals (except promethium) are quoted on a kilogram basis from the late 1950s and early 1960s through 1994. Prices are given in US dollars on an actual and constant dollar basis. Industrial and economic factors affecting prices during this time period are examined.
Tse, Pui-Kwan
2011-01-01
Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.
Leaching behavior of rare earth elements in Fort Union lignite coals of North America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laudal, Daniel A.; Benson, Steven A.; Addleman, Raymond Shane
Rare earth elements are crucial materials in an incredible array of consumer goods, energy system components and military defense applications. However, the global production and entire value chain for rare earth elements is dominated by China, with the U.S. currently 100% import reliant for these critical materials. Traditional mineral ores including those previously mined in the U.S., however, have several challenges. Chief among these is that the content of the most critical and valuable of the rare earths are deficient, making mining uneconomical. Further, the supply of these most critical rare earths is nearly 100% produced in China from amore » single resource that is only projected to last another 10 to 20 years. The U.S. currently considers the rare earths market an issue of national security. It is imperative that alternative domestic sources of rare earths be identified and methods developed to produce them. Recently, coal and coal byproducts have been identified as one of these promising alternative resources. This paper details the results of a study on characterization of North Dakota lignite and lignite-related feedstocks as an assessment of their feasibility for rare earth element recovery. The abundance, distribution and modes of occurrence of the rare earth elements in the samples collected were determined in this initial study to inform the selection of appropriate extraction and concentration methods to recover the rare earth elements. Materials investigated include the lignite coals, clay-rich sediments associated with the coal seams, and materials associated with a lignite beneficiation system and power plant. The results show that high rare earth element levels exist both in lignite coals and associated sediments. The form of the rare earth elements in the clay materials is primarily as ultra-fine mineral grains. In the lignite coals, approximately 80-95% of the rare earths content is organically associated, primarily as coordination complexes.« less
EuNi 5 InH 1.5-x (x = 0–1.5): hydrogen induced structural and magnetic transitions
Bigun, Inna; Smetana, Volodymyr; Mudryk, Yaroslav; ...
2017-01-01
The new quaternary hydride EuNi 5InH 1.5 has been obtained by hydrogenation of the intermetallic parent EuNi5In under extremely mild conditions, hence, at room temperature and low hydrogen pressure. Hydrogenation at slightly elevated temperatures and pressures allows for the growth of large crystals, which is a rare observation for intermetallic hydrides. EuNi 5InH 1.5 crystallizes in its own structure type ( hP17, P6¯m2, a = 4.9437(6), c = 10.643(1) Å) with a unique arrangement of the intermetallic host. The hydrogen atoms prefer Ni-surrounded positions, occupying {EuNi 3} and {Eu 2Ni 2} tetrahedral voids in the structure. Upon hydrogenation of EuNimore » 5In an anisotropic volume expansion accompanied with a decrease of symmetry is observed. Magnetic measurements reveal antiferromagnetic ordering in the hydride below 4 K and indicate an intermediate +II/+III oxidation state for Eu both in the intermetallic phase and the hydride. X-ray photoemission spectroscopy confirms the existence of the two different oxidation states of Eu. The hydrogenation does not affect the oxidation state of Eu and the type of magnetic ordering, but exerts a strong influence on the transition temperature, crystal structure, mechanical and electrical properties. Crystallographic analysis suggests that Eu(II) and Eu(III) do not order but rather mix homogeneously on crystallographic sites. Electronic structure calculations reveal the metallic character of the hydride with several different types of chemical bonding interactions being present in the compound ranging from the formally ionic Eu–H to covalent Ni–H and delocalized metal–metal. As a result, geometry optimization confirm the thermodynamic instability of the intermetallic host lattice for the hydride and supports a transformation into the parental structure as observed experimentally.« less
Rare earths, the lanthanides, yttrium and scandium
Hedrick, J.B.
2006-01-01
In 2005, rare earths were not mined in the United States. The major supplier, Molycorp, continued to maintain a large stockpile of rare-earth concentrates and compounds. Consumption decreased of refined rare-earth products. The United States remained a major importer and exporter of rare earths in 2005. During the same period, yttrium was not mined or refined in the US. Hence, supply of yttrium compounds for refined yttrium products came from China, France and Japan. Scandium was not also mined. World production was primarily in China, Russia and Ukraine. Demand for rare earths in 2006 is expected to be closely tied to economic conditions in the US.
Replacing critical rare earth materials in high energy density magnets
NASA Astrophysics Data System (ADS)
McCallum, R. William
2012-02-01
High energy density permanent magnets are crucial to the design of internal permanent magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily meet the performance goals, however, the rising concerns over cost and foreign control of the current supply of rare earth resources has motivated a search for non-rare earth based permanent magnets alloys with performance metrics which allow the design of permanent magnet motors and generators without rare earth magnets. This talk will discuss the state of non-rare-earth permanent magnets and efforts to both improve the current materials and find new materials. These efforts combine first principles calculations and meso-scale magnetic modeling with advance characterization and synthesis techniques in order to advance the state of the art in non rare earth permanent magnets. The use of genetic algorithms in first principle structural calculations, combinatorial synthesis in the experimental search for materials, atom probe microscopy to characterize grain boundaries on the atomic level, and other state of the art techniques will be discussed. In addition the possibility of replacing critical rare earth elements with the most abundant rare earth Ce will be discussed.
Gschneidner, Karl
2017-12-11
"Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.
Environmental Defects And Economic Impact On Global Market Of Rare Earth Metals
NASA Astrophysics Data System (ADS)
Charalampides, G.; Vatalis, K.; Karayannis, V.; Baklavaridis, A.
2016-11-01
Rare earth elements include the 14 lanthanides as well as lanthanium and often yttrium. Actually, most of them are not very rare and occur widely dispersed in a variety of rocks. Rare earth metals are vital to some of the world's faster growing industries: catalysts, Nd-magnets, ceramics, glass, metallurgy, battery alloys, electronics and phosphors. Worldwide, the main countries for distribution of rare earths deposits include China, USA, Russia, Brasil, India, Australia, Greenland and Malaysia. The mining and processing of rare earth metals usually result in significant environmental defects. Many deposits are associated with high concentrations of radioactive elements such as uranium and thorium, which requires separate treatment and disposal. The accumulation of rare earth elements in soils has occurred due to pollution caused by the exploitation of rare earth resources and the wide use of rare earths as fertilizers in agriculture. This accumulation has a toxic effect on the soil microfauna community. However, there are large differences in market prices due to the degree of purity determined by the specifications in the applications. The main focus of this article is to overview Rare Earth Metals’ overall impact on global economy and their environmental defects on soils during processing techniques and as they are used as fertilizers.
Mother Lode: The Untapped Rare Earth Mineral Resources of Vietnam
2013-11-01
Library of Congress, Congressional Research Service. Rare Earth Elements: The Global Supply Chain, 4. 14 Tse , Pui-Kwan. China’s Rare-Earth Industry...U.S. Geological Survey Open-File Report 2011–1042, 2. Figure 2. Global REO production, 1960-2011. Source: Tse , Pui-Kwan. China’s Rare-Earth...3 compiled from three sources: Tse , Pui-Kwan. China’s Rare-Earth Industry: U.S. Geological Survey Open-File Report 2011–1042, 4; Areddy, James T
40 CFR 721.6005 - Rare earth phosphate (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Rare earth phosphate (generic). 721... Substances § 721.6005 Rare earth phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as rare earth phophate (PMNs P-99...
40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary rare earth metals subcategory. The provisions of this subpart are applicable to discharges resulting from the...
40 CFR 721.6005 - Rare earth phosphate (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Rare earth phosphate (generic). 721... Substances § 721.6005 Rare earth phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as rare earth phophate (PMNs P-99...
40 CFR 721.6005 - Rare earth phosphate (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Rare earth phosphate (generic). 721... Substances § 721.6005 Rare earth phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as rare earth phophate (PMNs P-99...
40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary rare earth metals subcategory. The provisions of this subpart are applicable to discharges resulting from the...
40 CFR 721.6005 - Rare earth phosphate (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Rare earth phosphate (generic). 721... Substances § 721.6005 Rare earth phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as rare earth phophate (PMNs P-99...
40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary rare earth metals subcategory. The provisions of this subpart are applicable to discharges resulting from the...
40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary rare earth metals subcategory. The provisions of this subpart are applicable to discharges resulting from the...
40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary rare earth metals subcategory. The provisions of this subpart are applicable to discharges resulting from the...
40 CFR 721.6005 - Rare earth phosphate (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Rare earth phosphate (generic). 721... Substances § 721.6005 Rare earth phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as rare earth phophate (PMNs P-99...
Mineral resource of the month: rare earths
Hedrick, James B.
2004-01-01
As if classified as a top-secret project, the rare earths have been shrouded in secrecy. The principal ore mineral of the group, bastnäsite, rarely appears in the leading mineralogy texts. The long names of the rare-earth elements and some unusual arrangements of letters, many Scandinavian in origin, may have intimidated even those skilled in phonics. Somewhat obscurely labeled, the rare earths are neither rare nor earths (the historical term for oxides). They are a relatively abundant group of metallic elements that occur in nature as nonmetallic compounds and have hundreds of commercial applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-23
... INTERNATIONAL TRADE COMMISSION [Docket No. 2908] Certain Sintered Rare Earth Magnets, Methods of... Certain Sintered Rare Earth Magnets, Methods of Making Same and Products Containing Same, DN 2908; the... importation, and the sale within the United States after importation of certain sintered rare earth magnets...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-21
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-855] Certain Sintered Rare Earth Magnets... importation of certain sintered rare earth magnets, methods of making same and products containing same by... importation of certain sintered rare earth magnets, methods of making same and products containing same that...
Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model
Verplanck, Philip L.; Van Gosen, Bradley S.
2011-01-01
The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.
Cramer, Alisha J; Cole, Jacqueline M; FitzGerald, Vicky; Honkimaki, Veijo; Roberts, Mark A; Brennan, Tessa; Martin, Richard A; Saunders, George A; Newport, Robert J
2013-06-14
Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)(1-(x+y)), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Q(max) = 28 Å(-1)) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and P[double bond, length as m-dash]O bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials.
The neodymium-gold phase diagram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saccone, A.; Maccio, D.; Delfino, S.
The Nd-Au phase diagram was studied in the 0 to 100 at. pct Au composition range by differential thermal analysis (DTA), X-ray diffraction (XRD), optical microscopy (LOM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Six intermetallic phases were identified, the crystallographic structures were determined or confirmed, and the melting behavior was determined, as follows: Nd{sub 2}Au, orthorhombic oP12-Co{sub 2}Si type, peritectic decomposition at 810 C; NdAu, R.T. form, orthorhombic oP8-FeB type, H.T. forms, orthorhombic oC8-CrB type and, at a higher temperature, cubic cP2-CsCl type, melting point 1470 C; Nd{sub 3}Au{sub 4}, trigonal hR42-Pu{sub 3}Pd{sub 4} type, peritectic decompositionmore » at 1250 C; Nd{sub 17}Au{sub 36}, tetragonal tP106-Nd{sub 17}Au{sub 36} type, melting point 1170 C; Nd{sub 14}Au{sub 51}, hexagonal hP65-Gd{sub 14}Ag{sub 51} type, melting point 1210 C; and NdAu{sub 6}, monoclinic mC28-PrAu{sub 6} type, peritectic decomposition at 875 C. Four eutectic reactions were found, respectively, at 19.0 at. pct Au and 655 C, at 63.0 at. pct Au and 1080 C, at 72.0 at. pct Au and 1050 C, and, finally, at 91.0 at. pct Au and 795 C. A catatectic decomposition of the ({beta}Nd) phase, at 825 C and {approx}1 at. pct Au, was also found. The results are briefly discussed and compared to those for the other rare earth-gold (R-Au) systems. A short discussion of the general alloying behavior of the coinage metals (Cu, Ag, and Au) with the rare-earth metals is finally presented.« less
Rare Earths; The Fraternal Fifteen (Rev.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gschneidner, Jr., Karl A.
1966-01-01
Rare earths are a set of 15 elements: lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. They are not rare and not earths; they are metals and quite abundant. They are studied to develop commercial products which are beneficial to mankind, and because some rare earths are important to fission products.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
... Production Act of 1993--Rare Earth Industry and Technology Association Notice is hereby given that, on March..., 15 U.S.C. 4301 et seq. (``the Act''), the Rare Earth Technology Consortium (``RETC'') has filed..., the identities of the parties to the venture are: Rare Earth Industry and Tecimology Association...
40 CFR 721.10550 - Rare earth salt of a carboxylic acid (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Rare earth salt of a carboxylic acid... Specific Chemical Substances § 721.10550 Rare earth salt of a carboxylic acid (generic). (a) Chemical... as rare earth salt of a carboxylic acid (PMN P-05-324) is subject to reporting under this section for...
40 CFR 721.10550 - Rare earth salt of a carboxylic acid (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Rare earth salt of a carboxylic acid... Specific Chemical Substances § 721.10550 Rare earth salt of a carboxylic acid (generic). (a) Chemical... as rare earth salt of a carboxylic acid (PMN P-05-324) is subject to reporting under this section for...
PROCESS FOR SEPARATING AMERICIUM AND CURIUM FROM RARE EARTH ELEMENTS
Baybarz, R.D.; Lloyd, M.H.
1963-02-26
This invention relates to methods of separating americium and curium values from rare earth values. In accordance with the invention americium, curium, and rare earth values are sorbed on an anion exchange resin. A major portion of the rare earth values are selectively stripped from the resin with a concentrated aqueous solution of lithium chloride, and americium, curium, and a minor portion of rare earth values are then stripped from the resin with a dilute aqueous solution of lithium chloride. The americium and curium values are further purified by increasing the concentration of lithium chloride in the solution to at least 8 molar and selectively extracting rare earth values from the resulting solution with a monoalkylphosphoric acid. (AEC)
Studies of magnetostriction and spin polarized band structures of rare earth intermetallics
NASA Technical Reports Server (NTRS)
Wallace, W. E.
1979-01-01
Anisotropic magnetostriction measurements of R6Fe23, R = (Tb, Dy, Ho, and Er) were carried out from 77 K to room temperature. Magnetic fields up to 2.1 Tesla were applied. All the compounds exhibited large magnetostrictions at 77 K, the largest effect being obtained for Tb6Fe23. Saturation magnetostriction values for the compounds were also determined for 77 K and room temperature. Results of the temperature dependence of magnetostriction for Er6Fe23 are in good agreement with Callen and Callen's single ion theory. Therefore, the main sources of magnetostriction in this compound is the Er ion. The spin-up and spin-down electronic energy bands, the density of states and the magnetic moments of YCo5, SmCo5, and GdCo5 were calculated by the spin polarized augmented plane wave technique. The calculations obtained show the origin of the moment, provide good estimates of its magnitude and variation, and the reasons for those variations. They also show the important role of partial charge transfer and of d-d electronic coupling. Calculations for LaNi5 and GdNi5 systems are discussed.
Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient.
Gutfleisch, Oliver; Willard, Matthew A; Brück, Ekkes; Chen, Christina H; Sankar, S G; Liu, J Ping
2011-02-15
A new energy paradigm, consisting of greater reliance on renewable energy sources and increased concern for energy efficiency in the total energy lifecycle, has accelerated research into energy-related technologies. Due to their ubiquity, magnetic materials play an important role in improving the efficiency and performance of devices in electric power generation, conditioning, conversion, transportation, and other energy-use sectors of the economy. This review focuses on the state-of-the-art hard and soft magnets and magnetocaloric materials, with an emphasis on their optimization for energy applications. Specifically, the impact of hard magnets on electric motor and transportation technologies, of soft magnetic materials on electricity generation and conversion technologies, and of magnetocaloric materials for refrigeration technologies, are discussed. The synthesis, characterization, and property evaluation of the materials, with an emphasis on structure-property relationships, are discussed in the context of their respective markets, as well as their potential impact on energy efficiency. Finally, considering future bottlenecks in raw materials, options for the recycling of rare-earth intermetallics for hard magnets will be discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the edge of periodicity: Unconventional magnetism of Gd 117Co 56.4Sn 114.3
Liu, J.; Mudryk, Yaroslav; Ryan, D. H.; ...
2017-08-04
Magnetization measurements reveal the onset of magnetic ordering at T C = 65 K followed by three additional magnetic anomalies at T 1 = 47 K, T 2 = 28 K, and T 3 = 11 K in Gd 117Co 56.4Sn 114.3 – a compound with a giant cubic unit cell that crystallizes in the Dy 117Co 56Sn 112 structure type with space group Fm3¯m and lattice parameter a = 30.186 Å. The magnetic ordering temperature increases with applied magnetic field; however, the analysis of magnetic data indicates that antiferromagnetic interactions also play a role in the ground state. ACmore » magnetic susceptibility confirms multiple magnetic anomalies and shows minor frequency dependence. The local magnetic ordering below 60 K is supported by the Mössbauer spectroscopy. A single broad anomaly is detected at T 3 in the heat capacity; we suggest that magnetic domains form below this temperature. Furthermore, these data highlight unique features of magnetism in this and, potentially, other rare-earth intermetallics crystallizing with giant unit-cells where the exchange correlation lengths are much shorter when compared to the periodicity of the crystal lattice.« less
Anti-site mixing and magnetic properties of Fe 3Co 3Nb 2 studied via neutron powder diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiaoshan; Zhang, Xiaozhe; Yin, Yuewei
Here, we studied the crystal structure and magnetic properties of the rare-earth-free intermetallic compound Fe 3Co 3Nb 2, which has recently been demonstrated to have potentially high magnetic anisotropy, using temperature-dependent neutron powder diffraction. Furthermore, the temperature dependence of the diffraction spectra reveals a magnetic transition between 300 and 400 K, in agreement with the magnetometry measurements. According to the structural refinement of the paramagnetic state and the substantial magnetic contribution to the diffuse scattering in the ferromagnetic state, the Fe/Co anti-site mixing is so strong that the site occupation for Fe and Co is almost random. The projection ofmore » the magnetic moments turned out to be non-zero along the c axis and in the a–b plane of Fe 3Co 3Nb 2, most likely because of the exchange interactions between the randomly orientated nanograins in the samples. These findings suggest that future studies on the magnetism of Fe 3Co 3Nb 2 need to take the Fe/Co anti-site mixing into account, and the exchange interactions need to be suppressed to obtain large remanence and coercivity.« less
Anti-site mixing and magnetic properties of Fe 3Co 3Nb 2 studied via neutron powder diffraction
Xu, Xiaoshan; Zhang, Xiaozhe; Yin, Yuewei; ...
2016-11-02
Here, we studied the crystal structure and magnetic properties of the rare-earth-free intermetallic compound Fe 3Co 3Nb 2, which has recently been demonstrated to have potentially high magnetic anisotropy, using temperature-dependent neutron powder diffraction. Furthermore, the temperature dependence of the diffraction spectra reveals a magnetic transition between 300 and 400 K, in agreement with the magnetometry measurements. According to the structural refinement of the paramagnetic state and the substantial magnetic contribution to the diffuse scattering in the ferromagnetic state, the Fe/Co anti-site mixing is so strong that the site occupation for Fe and Co is almost random. The projection ofmore » the magnetic moments turned out to be non-zero along the c axis and in the a–b plane of Fe 3Co 3Nb 2, most likely because of the exchange interactions between the randomly orientated nanograins in the samples. These findings suggest that future studies on the magnetism of Fe 3Co 3Nb 2 need to take the Fe/Co anti-site mixing into account, and the exchange interactions need to be suppressed to obtain large remanence and coercivity.« less
Electronic Characteristics of Rare Earth Doped GaN Schottky Diodes
2013-03-21
REPORT TYPE Master’s Thesis 3. DATES COVERED (From – To) 04 Sep 2011 - Mar 2013 4. TITLE AND SUBTITLE ELECTRONIC CHARACTERISTICS OF RARE EARTH ...ELECTRONIC CHARACTERISTICS OF RARE EARTH DOPED GaN SCHOTTKY DIODES THESIS Aaron B. Blanning...United States. AFIT-ENP-13-M-03 Electronic Characteristics of Rare Earth Doped GaN Schottky Diodes THESIS Presented to the Faculty
Antibacterial, Antifungal and Nematicidal Activities of Rare Earth Ions.
Wakabayashi, Tokumitsu; Ymamoto, Ayumi; Kazaana, Akira; Nakano, Yuta; Nojiri, Yui; Kashiwazaki, Moeko
2016-12-01
Despite the name, rare earth elements are relatively abundant in soil. Therefore, these elements might interact with biosphere during the history of life. In this study, we have examined the effect of rare earth ions on the growth of bacteria, fungi and soil nematode. All rare earth ions, except radioactive promethium that we have not tested, showed antibacterial and antifungal activities comparable to that of copper ions, which is widely used as antibacterial metals in our daily life. Rare earth ions also have nematicidal activities as they strongly perturb the embryonic development of the nematode, Caenorhabditis elegans. Interestingly, the nematicidal activity increased with increasing atomic number of lanthanide ions. Since the rare earth ions did not show high toxicity to the human lymphoblastoid cell line or even stimulate the growth of the cultured cells at 1 mM, it raised the possibility that we can substitute rare earth elements for the antibacterial metals usually used because of their safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew Fowler
Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"
Zhao, Qian; Xu, Zhenhe; Sun, Yaguang
2014-02-01
Rare earth fluoride materials have attracted wide interest and come to the forefront in nanophotonics due to their distinct electrical, optical and magnetic properties as well as their potential applications in diverse fields such as optical telecommunication, lasers, biochemical probes, infrared quantum counters, and medical diagnostics. This review presents a comprehensive overview of the flourishing field of rare earth fluorides materials in the past decade. We summarize the recent research progress on the preparation, morphology, luminescent properties and application of rare earth fluoride-based luminescent materials by hydrothermal systems. Various rare earth fluoride materials are obtained by fine-tuning of experimental conditions, such as capping agents, fluoride source, acidity, temperature and reaction time. The controlled morphology, luminescent properties and application of the rare earth fluorides are briefly discussed with typical examples.
Phase stable rare earth garnets
Kuntz, Joshua D.; Cherepy, Nerine J.; Roberts, Jeffery J.; Payne, Stephen A.
2013-06-11
A transparent ceramic according to one embodiment includes a rare earth garnet comprising A.sub.hB.sub.iC.sub.jO.sub.12, where h is 3.+-.10%, i is 2.+-.10%, and j is 3.+-.10%. A includes a rare earth element or a mixture of rare earth elements, B includes at least one of aluminum, gallium and scandium, and C includes at least one of aluminum, gallium and scandium, where A is at a dodecahedral site of the garnet, B is at an octahedral site of the garnet, and C is at a tetrahedral site of the garnet. In one embodiment, the rare earth garment has scintillation properties. A radiation detector in one embodiment includes a transparent ceramic as described above and a photo detector optically coupled to the rare earth garnet.
Superconductivity achieved at over liquid nitrogen temperature by (mixed rare earths)-Ba-Cu oxides
NASA Astrophysics Data System (ADS)
Kishio, Kohji; Kuwahara, Kazuyuki; Kitazawa, Koichi; Fueki, Kazuo; Nakamura, Osamu
1987-05-01
Superconducting oxides were fabricated by reaction of powders of BaCO3, CuO and mixed rare earth (RE) carbonates at compositions expressed as (RE)1Ba2Cu3O(9-y). Two types of incompletely separated raw materials of mixed rare earths, namely, heavy rare earths (HRE) and medium rare earths (MRE), were examined. The zero-resistivity critical temperatures were observed at 92.5 K for the (HRE)-Ba-Cu-O and 85.0 K for the (MRE)-Ba-Cu-O systems, respectively, both of which were well above the boiling point of liquid nitrogen.
Alaska's rare earth deposits and resource potential
Barker, James C.; Van Gosen, Bradley S.
2012-01-01
Alaska’s known mineral endowment includes some of the largest and highest grade deposits of various metals, including gold, copper and zinc. Recently, Alaska has also been active in the worldwide search for sources of rare earth elements (REE) to replace exports now being limitedby China. Driven by limited supply of the rare earths, combined with their increasing use in new ‘green’ energy, lighting, transportation, and many other technological applications, the rare earth metals neodymium, europium and, in particular, the heavy rare earth elements terbium, dysprosium and yttrium are forecast to soon be in critical short supply (U.S. Department of Energy, 2010).
NASA Astrophysics Data System (ADS)
Kurata, M.; Sakamura, Y.; Hijikata, T.; Kinoshita, K.
1995-12-01
Distribution coefficients of uranium neptunium, eight rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) and two alkaline-earth metals (Sr and Ba) between molten LiCl-KCI eutectic salt and either liquid cadmium or bismuth were measured at 773 K. Separation factors of trivalent rare-earth elements to uranium or neptunium in the LiCl-KCl/Bi system were by one or two orders of magnitude larger than those in the LiCl-KCl/Cd system. On the contrary, the separation factors of alkaline-earth metals and divalent rare-earth elements to trivalent rare-earth elements were by one or two orders of magnitude smaller in the LiCl-KCl/Bi system.
NASA Astrophysics Data System (ADS)
Mcguiness, P.; Akdogan, O.; Asali, A.; Bance, S.; Bittner, F.; Coey, J. M. D.; Dempsey, N. M.; Fidler, J.; Givord, D.; Gutfleisch, O.; Katter, M.; Le Roy, D.; Sanvito, S.; Schrefl, T.; Schultz, L.; Schwöbl, C.; Soderžnik, M.; Šturm, S.; Tozman, P.; Üstüner, K.; Venkatesan, M.; Woodcock, T. G.; Žagar, K.; Kobe, S.
2015-06-01
The rare-earth crisis, which peaked in the summer of 2011 with the prices of both light and heavy rare earths soaring to unprecedented levels, brought about the widespread realization that the long-term availability and price stability of rare earths could not be guaranteed. This triggered a rapid response from manufacturers involved in rare earths, as well as governments and national and international funding agencies. In the case of rare-earth-containing permanent magnets, three possibilities were given quick and serious consideration: (I) increased recycling of devices containing rare earths; (II) the search for new, mineable, rare-earth resources beyond those in China; and (III) the development of high-energy-product permanent magnets with little or no rare-earth content used in their manufacture. The Replacement and Original Magnet Engineering Options (ROMEO) project addresses the latter challenge using a two-pronged approach. With its basis on work packages that include materials modeling and advanced characterization, the ROMEO project is an attempt to develop a new class of novel permanent magnets that are free of rare earths. Furthermore, the project aims to minimize rare-earth content, particularly heavy-rare-earth (HRE) content, as much as possible in Nd-Fe-B-type magnets. Success has been achieved on both fronts. In terms of new, rare-earth-free magnets, a Heusler alloy database of 236,945 compounds has been narrowed down to approximately 20 new compounds. Of these compounds, Co2MnTi is expected to be a ferromagnet with a high Curie temperature and a high magnetic moment. Regarding the reduction in the amount of rare earths, and more specifically HREs, major progress is seen in electrophoretic deposition as a method for accurately positioning the HRE on the surface prior to its diffusion into the microstructure. This locally increases the coercivity of the rather small Nd-Fe-B-type magnet, thereby substantially reducing the dependence on the HREs Dy and Tb, two of the most critical raw materials identified by the European Commission. Overall, the ROMEO project has demonstrated that rapid progress can be achieved when experts in a specific area are brought together to focus on a particular challenge. With more than half a year of the ROMEO project remaining, further progress and additional breakthroughs can be expected.
Methods for preparation of nanocrystalline rare earth phosphates for lighting applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comanzo, Holly Ann; Manoharan, Mohan; Martins Loureiro, Sergio Paulo
Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.
Rout, Alok; Binnemans, Koen
2014-02-28
The solvent extraction of trivalent rare-earth ions and their separation from divalent transition metal ions using molten salt hydrates as the feed phase and an undiluted fluorine-free ionic liquid as the extracting phase were investigated in detail. The extractant was tricaprylmethylammonium nitrate, [A336][NO3], and the hydrated melt was calcium nitrate tetrahydrate, Ca(NO3)2·4H2O. The extraction behavior of rare-earth ions was studied for solutions of individual elements, as well as for mixtures of rare earths in the hydrated melt. The influence of different extraction parameters was investigated: the initial metal loading in the feed phase, percentage of water in the feed solution, equilibration time, and the type of hydrated melt. The extraction of rare earths from Ca(NO3)2·4H2O was compared with extraction from CaCl2·4H2O by [A336][Cl] (Aliquat 336). The nitrate system was found to be the better one. The extraction and separation of rare earths from the transition metals nickel, cobalt and zinc were also investigated. Remarkably high separation factors of rare-earth ions over transition metal ions were observed for extraction from Ca(NO3)2·4H2O by the [A336][NO3] extracting phase. Furthermore, rare-earth ions could be separated efficiently from transition metal ions, even in melts with very high concentrations of transition metal ions. Rare-earth oxides could be directly dissolved in the Ca(NO3)2·4H2O phase in the presence of small amounts of Al(NO3)3·9H2O or concentrated nitric acid. The efficiency of extraction after dissolving the rare-earth oxides in the hydrated nitrate melt was identical to extraction from solutions with rare-earth nitrates dissolved in the molten phase. The stripping of the rare-earth ions from the loaded ionic liquid phase and the reuse of the recycled ionic liquid were also investigated in detail.
Jin, Shu-Lan; Huang, Yi-Zong; Wang, Fei; Xu, Feng; Wang, Xiao-Ling; Gao, Zhu; Hu, Ying; Qiao Min; Li, Jin; Xiang, Meng
2015-03-01
Rare earth elements content in farmland soils and crops of the surrounding copper mining and smelting plant in Jiangxi province was studied. The results showed that copper mining and smelting could increase the content of rare earth elements in soils and crops. Rare earth elements content in farmland soils of the surrounding Yinshan Lead Zinc Copper Mine and Guixi Smelting Plant varied from 112.42 to 397.02 mg x kg(-1) and 48.81 to 250.06 mg x kg(-1), and the average content was 254.84 mg x kg(-1) and 144.21 mg x kg(-1), respectively. The average contents of rare earth elements in soils in these two areas were 1.21 times and 0.68 times of the background value in Jiangxi province, 1.36 times and 0.77 times of the domestic background value, 3.59 times and 2.03 times of the control samples, respectively. Rare earth elements content in 10 crops of the surrounding Guixi Smelting Plant varied from 0.35 to 2.87 mg x kg(-1). The contents of rare earth elements in the leaves of crops were higher than those in stem and root. The contents of rare earth elements in Tomato, lettuce leaves and radish leaves were respectively 2.87 mg x kg(-1), 1.58 mg x kg(-1) and 0.80 mg x kg(-1), which were well above the hygienic standard limit of rare earth elements in vegetables and fruits (0.70 mg x kg(-1)). According to the health risk assessment method recommended by America Environmental Protection Bureau (USEPA), we found that the residents' lifelong average daily intake of rare earth elements was 17.72 mg x (kg x d)(-1), lower than the critical value of rare earth elements damage to human health. The results suggested that people must pay attention to the impact of rare earth elements on the surrounding environment when they mine and smelt copper ore in Jiangxi.
Development of Low Cost Gas Atomization of Precursor Powders for Simplified ODS Alloy Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iver
2014-08-05
A novel gas atomization reaction synthesis (GARS) method was developed in this project to enable production (at our partner’s facility) a precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE) containing intermetallic compound (IMC) phase. Consolidation and heat-treatment experiments were performed at Ames Lab to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nano-metric oxide dispersoids. Alloy selection was aided by an internal oxidation and serial grinding experiments at Ames Lab and found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloy, i.e., the Hf-containing system exhibitedmore » five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was less complex to characterize, and make observations on the effects of processing parameters, the Ti-containing system was selected by Ames Lab for experimental atomization trials at our partner. An internal oxidation model was developed at Ames Lab and used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature. A new high-pressure gas atomization (HPGA) nozzle was developed at Ames Lab with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing at Ames Lab to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms. Six atomization trials were performed at our partner to investigate the effects of: gas atomization pressure and reactive gas concentration on the particle size distribution (PSD) and the oxygen content of the resulting powder. Also, the effect on the rapidly solidified microstructure (as a function of powder size) was investigated at Ames Lab as a function of reactive gas composition and bulk alloy composition. The results indicated that the pulsatile gas atomization mechanism and a significantly enhanced yield of fine powders reported in the literature for this type of process were not observed. Also it was determined that reactive gas may marginally improve the fine powder yield but further experiments are required. The oxygen content in the gas also did not have any detrimental effect on the microstructure (i.e. did not significantly reduce undercooling). On the contrary, the oxygen addition to the atomization gas may have mitigated some potent catalytic nucleation sites, but not enough to significantly alter the microstructure vs. particle size relationship. Overall the downstream injection of oxygen was not found to significantly affect either the particle size distribution or undercooling (as inferred from microstructure and XRD observations) but injection further upstream, including in the gas atomization nozzle, remains to be investigated in later work.« less
Rare-earth Nanoparticle-induced Cytotoxicity on Spatial Cognition Memory of Mouse Brain.
Lin, Cai-Hou; Liu, Gui-Fen; Chen, Jing; Chen, Yan; Lin, Ru-Hui; He, Hong-Xing; Chen, Jian-Ping
2017-11-20
Luminescent rare-earth-based nanoparticles have been increasingly used in nanomedicine due to their excellent physicochemical properties, such as biomedical imaging agents, drug carriers, and biomarkers. However, biological safety of the rare-earth-based nanomedicine is of great significance for future development in practical applications. In particular, biological effects of rare-earth nanoparticles on human's central nervous system are still unclear. This study aimed to investigate the potential toxicity of rare-earth nanoparticles in nervous system function in the case of continuous exposure. Adult ICR mice were randomly divided into seven groups, including control group (receiving 0.9% normal saline) and six experimental groups (10 mice in each group). Luminescent rare-earth-based nanoparticles were synthesized by a reported co-precipitation method. Two different sizes of the nanoparticles were obtained, and then exposed to ICR mice through caudal vein injection at 0.5, 1.0, and 1.5 mg/kg body weight in each day for 7 days. Next, a Morris water maze test was employed to evaluate impaired behaviors of their spatial recognition memory. Finally, histopathological examination was implemented to study how the nanoparticles can affect the brain tissue of the ICR mice. Two different sizes of rare-earth nanoparticles have been successfully obtained, and their physical properties including luminescence spectra and nanoparticle sizes have been characterized. In these experiments, the rare-earth nanoparticles were taken up in the mouse liver using the magnetic resonance imaging characterization. Most importantly, the experimental results of the Morris water maze tests and histopathological analysis clearly showed that rare-earth nanoparticles could induce toxicity on mouse brain and impair the behaviors of spatial recognition memory. Finally, the mechanism of adenosine triphosphate quenching by the rare-earth nanoparticles was provided to illustrate the toxicity on the mouse brain. This study suggested that long-term exposure of high-dose bare rare-earth nanoparticles caused an obvious damage on the spatial recognition memory in the mice.
Zhuang, Maoqiang; Zhao, Jinshan; Li, Suyun; Liu, Danru; Wang, Kebo; Xiao, Peirui; Yu, Lianlong; Jiang, Ying; Song, Jian; Zhou, Jingyang; Wang, Liansen; Chu, Zunhua
2017-02-01
To investigate the concentrations of rare earth elements in vegetables and assess human health risk through vegetable consumption, a total of 301 vegetable samples were collected from mining area and control area in Shandong, China. The contents of 14 rare earth elements were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The total rare earth elements in vegetables from mining and control areas were 94.08 μg kg -1 and 38.67 μg kg -1 , respectively, and the difference was statistically significant (p < 0.05). The leaf vegetable had the highest rare earth elements concentration (984.24 μg kg -1 and 81.24 μg kg -1 for mining and control areas, respectively) and gourd vegetable had the lowest rare earth elements concentration (37.34 μg kg -1 and 24.63 μg kg -1 for mining and control areas, respectively). For both areas, the rare earth elements concentration in vegetables declined in the order of leaf vegetable > taproot vegetable > alliaceous vegetable > gourd vegetable. The rare earth elements distribution patterns for both areas were characterized by enrichment of light rare earth elements. The health risk assessment demonstrated that the estimated daily intakes (0.69 μg kg -1 d -1 and 0.28 μg kg -1 d -1 for mining and control areas, respectively) of rare earth elements through vegetable consumption were significantly lower than the acceptable daily intake (70 μg kg -1 d -1 ). The damage to adults can be neglected, but more attention should be paid to the effects of continuous exposure to low levels of rare earth elements on children. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The RE Light process is a process that recycles fluorescent lamps for their rare earth and mercury. There is a limited U.S. market for recycled rare earth materials and current rare earth prices make domestic production cost-prohibitive.
Biogeochemistry of the rare-earth elements with particular reference to hickory trees
Robinson, W.O.; Bastron, H.; Murata, K.J.
1958-01-01
Hickory trees concentrate the rare-earth elements in their leaves to a phenomenal degree and may contain as much as 2300 p.p.m. of total rare earths based on the dry weight of the leaves. The average proportions of the individual elements (atomic percent of the total rare-earth elements) in the leaves are: Y 36, La 16, Ce 14, Pr 2, Nd 20, Sm 1, Eu 0.7, Gd 3, Tb 0.6, Dy 3, Ho 0.7, Er 2, Tm 0.2, Yb 1, and Lu 0.2. The similarity in the proportions of the rare-earth elements in the leaves and in the exchange complex of the soil on which the hickory trees grow indicates that the trees do not fractionate the rare earths appreciably. The variation of the rare-earth elements in the leaves and soils can be explained generally in terms of the relative abundance of the cerium group and the yttrium group, except for the element cerium. The large fluctuations in the proportion of cerium [Ce/(La + Nd) atomic ratios of 0.16 to 0.86] correlate with oxidation-reduction conditions in the soil profile. The substitution of dilute H2SO3 for dilute HC1 in the determination of available rare-earth elements brings about a large increase in the proportion of cerium that is extracted from an oxygenated subsoil. These relationships strongly suggest that quadrivalent cerium is present in oxygenated subsoil and is less available to plants than the other rare-earth elements that do not undergo such a change in valence. A few parts per billion of rare-earth elements have been detected in two samples of ground water. ?? 1958.
Buffer layers for coated conductors
Stan, Liliana [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM
2011-08-23
A composite structure is provided including a base substrate, an IBAD oriented material upon the base substrate, and a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material. Additionally, an article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and a thick film upon the cubic metal oxide material. Finally, a superconducting article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and an yttrium barium copper oxide material upon the cubic metal oxide material.
Some metal-graphite and metal-ceramic composites for use as high energy brake lining materials
NASA Technical Reports Server (NTRS)
Bill, R. C.
1974-01-01
Materials were studied as candidates for development as potential new aircraft brake lining materials. These families were (1) copper-graphite composites; (2) nickel-graphite composites; (3) copper - rare-earth-oxide (gadolinium oxide (Gd2O3) or lanthanum oxide (La2O3)) composites and copper - rare-earth-oxide (La2O3) - rare-earth-fluoride (lanthanum fluoride (LaF3)) composites; (4) nickel - rare-earth-oxide composites and nickel - rare-earth-oxide - rare-earth-fluoride composites. For comparison purposes, a currently used metal-ceramic composite was also studied. Results showed that the nickel-Gd2O3 and nickel-La2O3-LaF3 composites were comparable or superior in friction and wear performance to the currently used composite and therefore deserve to be considered for further development.
40 CFR 721.10423 - Complex strontium aluminate, rare earth doped (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... earth doped (generic). 721.10423 Section 721.10423 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10423 Complex strontium aluminate, rare earth doped... substances identified generically as complex strontium aluminate, rare earth doped (PMNs P-12-22, P-12-23, P...
Zhou, Jie; Guo, Lanping; Xiao, Wenjuan; Geng, Yanling; Wang, Xiao; Shi, Xin'gang; Dan, Staerk
2012-08-01
The process in the studies on physiological effects of rare earth elements in plants and their action mechanisms were summarized in the aspects of seed germination, photosynthesis, mineral metabolism and stress resistance. And the applications of rare earth elements in traditional Chinese medicine (TCM) in recent years were also overviewed, which will provide reference for further development and application of rare earth elements in TCM.
2015-01-01
by the graduate fellow’s faculty committee. C O R P O R A T I O N Dissertation Critical Rare Earths, National Security, and U.S.-China Interactions A...Portfolio Approach to Dysprosium Policy Design David L. An Dissertation Critical Rare Earths, National Security, and U.S.-China Interactions A...Permanent Magnet ................................................ xxiv Dysprosium, the Most Critical Rare Earth
NASA Astrophysics Data System (ADS)
Hao, Baohong; Zeng, Qihui; Zhao, Jin
2018-01-01
Under the background that failure resulted in by high temperature once only aluminum oxide is used as the gasoline additive. This paper, with the purpose to solve this problem, is to synthesize AcAl oxide for gasoline additive. In order to get the rare-earth-aluminum oxide, first, a complex model of rare earth oxide based on theories about ion coordination is established. Then, by the complex model, the type of “compound growth unit” when rare earth elements join the hydrothermal conditions and the inclination that “diversification” might probably happen are deduced. Depending on the results got by complex model, this paper introduces the type of compound and its existence conditions of “Compound growth unit” owned by stable rare-earth-aluminum oxide. By adjusting the compositions of modifier, compound materials of rare earth-aluminum oxide used for gasoline additive is made. By XRD test, aperture test, adsorption test and desorption test, the theoretical deduction is proved to be right. From the experiment, it is concluded that: a dense environment is the pre-condition to form rare-earth-aluminum polymer, which is also an essential condition for the polymer to update to a favorable growth unit and produce mesoporous rare-earth-aluminum oxide with high activity.
Yang, Fan; Kubota, Fukiko; Baba, Yuzo; Kamiya, Noriho; Goto, Masahiro
2013-06-15
The recycling of rare earth metals from phosphor powders in waste fluorescent lamps by solvent extraction using ionic liquids was studied. Acid leaching of rare earth metals from the waste phosphor powder was examined first. Yttrium (Y) and europium (Eu) dissolved readily in the acid solution; however, the leaching of other rare earth metals required substantial energy input. Ionization of target rare earth metals from the waste phosphor powders into the leach solution was critical for their successful recovery. As a high temperature was required for the complete leaching of all rare earth metals, ionic liquids, for which vapor pressure is negligible, were used as an alternative extracting phase to the conventional organic diluent. An extractant, N, N-dioctyldiglycol amic acid (DODGAA), which was recently developed, showed a high affinity for rare earth metal ions in liquid-liquid extraction although a conventional commercial phosphonic extractant did not. An effective recovery of the rare earth metals, Y, Eu, La and Ce, from the metal impurities, Fe, Al and Zn, was achieved from the acidic leach solution of phosphor powders using an ionic liquid containing DODGAA as novel extractant system. Copyright © 2013 Elsevier B.V. All rights reserved.
Improved method for preparing rare earth sesquichalcogenides
Takeshita, T.; Beaudry, B.J.; Gschneidner, K.A. Jr.
1982-04-14
An improved method for the preparation of high purity rare earth sesquichalcogenides is described. The rare earth, as one or more pieces of the metal, is sealed under a vacuum with a stoichiometric amount of sulfur or selenium and a small amount of iodine into a quartz reaction vessel. The sealed vessel is then heated to above the vaporization temperature of the chalcogen and below the melting temperature of the rare earth metal and maintained until the product has been formed. The iodine is then vaporized off leaving a pure product. The rare earth sulfides and selenides thus formed are useful as semiconductors and as thermoelectric generators. 3 tables.
Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.
2003-04-01
A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.
Yan, Zhi-Yuan; Jia, Li-Ping; Yan, Bing
2014-01-01
Two typical kinds of rare earth fluoride nanocrystals codoped with rare earth ions (Eu(3+) and Tm(3+)/Er(3+),Yb(3+)) are synthesized and dispersed in ionic liquid compound (1-chlorohexane-3-methylimidazolium chloride, abbreviated as [C6mim][Cl]). Assisted by agarose, the luminescent hydrogels are prepared homogeneously. The down/up-conversion luminescence of these hydrogels can be realized for the dispersed rare earth fluoride nanocrystals. The results provide a strategy to prepare luminescent (especially up-conversion luminescent) hydrogels with ionic liquid to disperse rare earth fluoride nanocrystals. Copyright © 2013 Elsevier B.V. All rights reserved.
Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.
2005-09-13
A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.
An Overview of Rare Earth Science and Technology
NASA Astrophysics Data System (ADS)
Gschneidner, Karl, Jr.
2012-02-01
Currently rare earth science and technology is robust: this includes all the major branches of science -- biochemistry, chemistry, materials and physics. There are, however, currently some anomalies and distortions especially in the technology and applications sector of the rare earth field, which is caused by the dominance of China on the sales of rare earths and rare earth containing products. For the past 5 to 10 years ˜95% of rare earths utilized in commerce came from China. Although Chinese actions have lead to sudden and large price spikes and export embargoes, the rare earths are still available but at a higher cost. The start up of production in 2011 at mines in the USA and Australia will alleviate this situation in about two years. Basic and applied research on the condensed matter physics/materials science has hardly been impacted by these events, but new research opportunities are opening up especially with regard to the USA's military and energy security. Magnets seems to be the hottest topic, but research on battery materials, phosphors and catalysts are also (or should be) strongly considered.
Evaluation of Rare Earth Element Extraction from North Dakota Coal-Related Feed Stocks
NASA Astrophysics Data System (ADS)
Laudal, Daniel A.
The rare earth elements consist of the lanthanide series of elements with atomic numbers from 57-71 and also include yttrium and scandium. Due to their unique properties, rare earth elements are crucial materials in an incredible array of consumer goods, energy system components and military defense applications. However, the global production and entire value chain for rare earth elements is dominated by China, with the U.S. currently 100% import reliant for these critical materials. Traditional mineral ores including previously mined deposits in the U.S., however, have several challenges. Chief among these is that the content of the most critical and valuable of the rare earths are deficient, making mining uneconomical. Further, the supply of these most critical rare earths is nearly 100% produced in China from a single resource that is only projected to last another 10 to 20 years. The U.S. currently considers the rare earths market an issue of national security. It is imperative that alternative domestic sources of rare earths be identified and methods developed to produce them. Recently, coal and coal byproducts have been identified as one of these promising alternative resources. This dissertation details a study on evaluation of the technical and economic feasibility of rare earth element recovery from North Dakota lignite coal and lignite-related feedstocks. There were four major goals of this study: i) identify lignite or lignite-related feedstocks with total rare earth element content above 300 parts per million, a threshold dictated by the agency who funded this research as the minimum for economic viability, ii) determine the geochemistry of the feedstocks and understand the forms and modes of occurrence of the rare earth elements, information necessary to inform the development of extraction and concentration methods, iii) identify processing methods to concentrate the rare earth elements from the feedstocks to a target of two weight percent, a value that would be sufficient to leverage existing separation and refining methods developed for the traditional mineral ore industry, and iv) develop a process that is economically viable and environmentally benign. To achieve these overall goals, and to prove or disprove the research hypotheses, the research scope was broken down into three main efforts: i) sampling and characterization of potential feedstocks, ii) laboratory-scale development and testing of rare earth element extraction and concentration methods, and iii) process design and technical and economic feasibility evaluation. In total, 174 unique samples were collected, and several locations were identified that exceeded the 300 ppm total rare earth elements target. The results showed that on a whole sample basis, the rare earths are most concentrated in the clay-rich sediments associated with the coal seams, but on an ash basis in certain locations within certain coal seams the content is significantly higher, an unexpected finding given prior research. At Falkirk Mine near Underwood, North Dakota three coal seams were found to have elevated levels of rare earths, ranging from about 300 to 600 ppm on an ash basis. Additionally, exceptionally high rare earths content was found in samples collected from an outcropping of the Harmon-Hansen coal zone in southwestern North Dakota that contained 2300 ppm on an ash basis. The results dictated that extraction and concentration methods be developed for these rare earth element-rich coals, instead of the mineral-rich sediments. This effort also found that at a commercial-scale, due to non-uniformity of the rare earths content stratigraphically in the coal seams, selective mining practices will be needed to target specific locations within the seams. The bulk mining and blending practices as Falkirk Mine result in a relatively low total rare earths content in the feed coal entering the Coal Creek Power Station adjacent to the mine. Characterization of the coal samples identified that the predominant modes of rare earths occurrence in the lignite coals are associations with the organic matter, primarily as coordination complexes and a lesser amount as ion-exchangeable cations on oxygen functional groups. Overall it appears that about 80-95% of rare earths content in North Dakota lignite is organically associated, and not present in mineral forms, which due to the weak organic bonding, presented a unique opportunity for extraction. The process developed for extraction of rare earths was applied to the raw lignite coals instead of fly ash or other byproducts being investigated extensively in the literature. Rather, the process uses a dilute acid leaching process to strip the organically associated rare earths from the lignite with very high efficiency of about 70-90% at equilibrium contact times. Although the extraction kinetics are quite fast given commercial leaching operations, there is some tradeoff between extraction efficiency and contact time. (Abstract shortened by ProQuest.).
Rare Earth Element Concentration of Wyoming Thermal Waters Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quillinan, Scott; Nye, Charles; Neupane, Hari
Updated version of data generated from rare earth element investigation of produced waters. These data represent major, minor, trace, isotopes, and rare earth element concentrations in geologic formations and water associated with oil and gas production.
Metal sulfide and rare-earth phosphate nanostructures and methods of making same
Wong, Stanislaus; Zhang, Fen
2016-06-28
The present invention provides a method of producing a crystalline rare earth phosphate nanostructure. The method comprising: providing a rare earth metal precursor solution and providing a phosphate precursor solution; placing a porous membrane between the metal precursor solution and the phosphate precursor solution, wherein metal cations of the metal precursor solution and phosphate ions of the phosphate precursor solution react, thereby producing a crystalline rare earth metal phosphate nanostructure.
China’s Rare Earth Policies: Economic Statecraft or Interdependence?
2012-12-01
statecraft. As evident towards the beginning of the 21st century, China’s policies associated with the rare earths market (e.g., resource quotas...controls approximately 97% of the world’s REE market . These rare earths, which are not widely known because they are so low on the production chain...rare earths as well as access to the developing Chinese market . Additionally, safety and environmental factors will likely raise the cost of
Rare earths, the lanthanides, yttrium and scandium
Bedinger, G.; Bleiwas, D.
2012-01-01
In 2011, rare earths were recovered from bastnasite concentrates at the Mountain Pass Mine in California. Consumption of refined rare-earth products decreased in 2011 from 2010. U.S. rare-earth imports originated primarily from China, with lesser amounts from Austria, Estonia, France and Japan. The United States imported all of its demand for yttrium metal and yttrium compounds, with most of it originating from China. Scandium was imported in various forms and processed domestically.
Condensation and fractionation of rare earths in the solar nebula
NASA Technical Reports Server (NTRS)
Davis, A. M.; Grossman, L.
1979-01-01
The condensation behavior of the rare earth elements in the solar nebula is calculated on the basis of the most recent thermodynamic data in order to construct a model explaining group II rare earth element patterns in Allende inclusions. Models considered all involve the removal of large fractions of the more refractory heavy rare earth elements in an early condensate, followed by the condensation of the remainder at a lower temperature. It is shown that the model of Boynton (1975) in which one rare earth element component is dissolved nonideally in perovskite according to relative activity coefficients can not reasonably be made to fit the observed group II patterns. A model in which two rare earth components control the patterns and dissolve ideally in perovskite is proposed and shown to be able to account for the 20 patterns by variations of the perovskite removal temperature and the relative proportions of the two components.
Self-assemblies of luminescent rare earth compounds in capsules and multilayers.
Zhang, Renjie; Shang, Juanjuan; Xin, Jing; Xie, Beibei; Li, Ya; Möhwald, Helmuth
2014-05-01
This review addresses luminescent rare earth compounds assembled in microcapsules as well as in planar films fabricated by the layer-by-layer (LbL) technique, the Langmuir-Blodgett (LB) method and in self-assembled monolayers. Chemical precipitation, electrostatic, van der Waals interactions and covalent bonds are involved in the assembly of these compounds. Self-organized ring patterns of rare earth complexes in Langmuir monolayers and on planar surfaces with stripe patterns, as well as fluorescence enhancement due to donor-acceptor pairs, microcavities, enrichment of rare earth compounds, and shell protection against water are described. Recent information on the tuning of luminescence intensity and multicolors by the excitation wavelength and the ratio of rare earth ions, respectively, are also reviewed. Potential applications of luminescent rare earth complex assemblies serving as biological probes, temperature and gas sensors are pointed out. Copyright © 2014 Elsevier B.V. All rights reserved.
Rare Earth Metals: Resourcefulness and Recovery
NASA Astrophysics Data System (ADS)
Wang, Shijie
2013-10-01
When we appreciate the digital revolution carried over from the twentieth century with mobile communication and the Internet, and when we enjoy our high-tech lifestyle filled with iDevices, hybrid cars, wind turbines, and solar cells in this new century, we should also appreciate that all of these advanced products depend on rare earth metals to function. Although there are only 136,000 tons of annual worldwide demand, (Cho, Rare Earth Metals, Will We Have Enough?)1 rare earth metals are becoming such hot commodities on international markets, due to not only to their increasing uses, including in most critical military hardware, but also to Chinese growth, which accounts for 95% of global rare earth metal production. Hence, the 2013 technical calendar topic, planned by the TMS/Hydrometallurgy and Electrometallurgy Committee, is particularly relevant, with four articles (including this commentary) contributed to the JOM October Issue discussing rare earth metals' resourcefulness and recovery.
Two main and a new type rare earth elements in Mg alloys: A review
NASA Astrophysics Data System (ADS)
Kong, Linghang
2017-09-01
Magnesium (Mg) alloys stand for the lightest structure engineering materials. Moreover, the strengthening of Mg alloys in ductility, toughness and corrosion predominates their wide applications. With adding rare earth elements in Mg, the mechanical properties will be improved remarkably, especially their plasticity and strength. A brief overview of the addition of rare earth elements for Mg alloys is shown. The basic mechanisms of strengthening Mg alloys with rare earth elements are reviewed, including the solid solution strengthening, grain refinement and long period stacking ordered (LPSO) phase. Furthermore, the available rare earth elements are summarized by type, chemical or physical effects and other unique properties. Finally, some challenge problems that the research is facing and future expectations of ra-re-earth Mg alloys are stated and discussed.
Rare earth metal-containing ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodius, Denis; Mudring, Anja-Verena
As an innovative tool, ionic liquids (ILs) are widely employed as an alternative, smart, reaction media (vs. traditional solvents) offering interesting technology solutions for dissolving, processing and recycling of metal-containing materials. The costly mining and refining of rare earths (RE), combined with increasing demand for high-tech and energy-related applications around the world, urgently requires effective approaches to improve the efficiency of rare earth separation and recovery. In this context, ionic liquids appear as an attractive technology solution. Finally, this paper addresses the structural and coordination chemistry of ionic liquids comprising rare earth metals with the aim to add to understandingmore » prospects of ionic liquids in the chemistry of rare earths.« less
Rare earth metal-containing ionic liquids
Prodius, Denis; Mudring, Anja-Verena
2018-03-07
As an innovative tool, ionic liquids (ILs) are widely employed as an alternative, smart, reaction media (vs. traditional solvents) offering interesting technology solutions for dissolving, processing and recycling of metal-containing materials. The costly mining and refining of rare earths (RE), combined with increasing demand for high-tech and energy-related applications around the world, urgently requires effective approaches to improve the efficiency of rare earth separation and recovery. In this context, ionic liquids appear as an attractive technology solution. Finally, this paper addresses the structural and coordination chemistry of ionic liquids comprising rare earth metals with the aim to add to understandingmore » prospects of ionic liquids in the chemistry of rare earths.« less
Aerodynamic Levitation Reactor Studies of Fluorine Reactions with Refractory Ceramics
1981-05-01
Melting Points of Rare-Earth Metals and Rare-Earth Trifluorides . 14 3. Aerodynamic Lavitation Flow Reactor. 15 4 Lanthanutm-Boron-Carbon Ternary Phase...the least volatile fluorides (CaF , SrT and rare-earth trifluorides ) would yield a 10% increase in w* (initially O.O cam) in about 1 hour at 1300K...measurement, and are, therefore, somewhat uncertain. The melting points of the rare-earth metals and their trifluorides are illustrated in Fig. 2. The melting
SALICYLATE PROCESS FOR THORIUM SEPARATION FROM RARE EARTHS
Cowan, G.A.
1959-08-25
The separation of thorium from rare earths is accomplished by forming an aqueous solution of salts of thorium and rare earths and sufficient acetate buffer to provide a pH of between 2 and 5, adding an ammonium salicylate to the aqueous buffered solution, contacting the resultant solution with a substantially water-immiscible organic solvent mixture of an ether and an ester, and separating the solvent extract phase containing thorium salicylate from the aqueous phase containing the rare earths.
Bioleaching of rare earth elements from monazite sand.
Brisson, Vanessa L; Zhuang, Wei-Qin; Alvarez-Cohen, Lisa
2016-02-01
Three fungal strains were found to be capable of bioleaching rare earth elements from monazite, a rare earth phosphate mineral, utilizing the monazite as a phosphate source and releasing rare earth cations into solution. These organisms include one known phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a Paecilomyces spp. strain WE3-F. Although monazite also contains the radioactive element Thorium, bioleaching by these fungi preferentially solubilized rare earth elements over Thorium, leaving the Thorium in the solid residual. Adjustments in growth media composition improved bioleaching performance measured as rare earth release. Cell-free spent medium generated during growth of A. terreus strain ML3-1 and Paecilomyces spp. strain WE3-F in the presence of monazite leached rare earths to concentrations 1.7-3.8 times those of HCl solutions of comparable pH, indicating that compounds exogenously released by these organisms contribute substantially to leaching. Organic acids released by the organisms included acetic, citric, gluconic, itaconic, oxalic, and succinic acids. Abiotic leaching with laboratory prepared solutions of these acids was not as effective as bioleaching or leaching with cell-free spent medium at releasing rare earths from monazite, indicating that compounds other than the identified organic acids contribute to leaching performance. © 2015 Wiley Periodicals, Inc.
Moriwaki, Hiroshi; Masuda, Reiko; Yamazaki, Yuki; Horiuchi, Kaoru; Miyashita, Mari; Kasahara, Jun; Tanaka, Tatsuhito; Yamamoto, Hiroki
2016-10-12
The adsorption behaviors of the rare earth metal ions onto freeze-dried powders of genetically engineered microbial strains were compared. Cell powders obtained from four kinds of strains, Bacillus subtilis 168 wild type (WT), lipoteichoic acid-defective (ΔLTA), wall teichoic acid-defective (ΔWTA), and cell wall hydrolases-defective (EFKYOJLp) strains, were used as an adsorbent of the rare earth metal ions at pH 3. The adsorption ability of the rare earth metal ions was in the order of EFKYOJLp > WT > ΔLTA > ΔWTA. The order was the same as the order of the phosphorus quantity of the strains. This result indicates that the main adsorption sites for the ions are the phosphate groups and the teichoic acids, LTA and WTA, that contribute to the adsorption of the rare earth metal ions onto the cell walls. The contribution of WTA was clearly greater than that of LTA. Each microbial powder was added to a solution containing 16 kinds of rare earth metal ions, and the removals (%) of each rare earth metal ion were obtained. The scandium ion showed the highest removal (%), while that of the lanthanum ion was the lowest for all the microbial powders. Differences in the distribution coefficients between the kinds of lanthanide ions by the EFKYOJLp and ΔWTA powders were greater than those of the other strains. Therefore, the EFKYOJLp and ΔWTA powders could be applicable for the selective extraction of the lanthanide ions. The ΔLTA powder coagulated by mixing with a rare earth metal ion, although no sedimentation of the WT or ΔWTA powder with a rare earth metal ion was observed under the same conditions. The EFKYOJLp powder was also coagulated, but its flocculating activity was lower than that of ΔLTA. The ΔLTA and EFKYOJLp powders have a long shape compared to those of the WT or ΔWTA strain. The shapes of the cells will play an important role in the sedimentation of the microbial powders with rare earth metal ions. As the results, three kinds of the genetically engineered microbial powders revealed unique adsorption behaviors of the rare earth metal ions.
CADMIUM-RARE EARTH BORATE GLASS AS REACTOR CONTROL MATERIAL
Ploetz, G.L.; Ray, W.E.
1958-11-01
A reactor control rod fabricated from a cadmiumrare earth-borate glass is presented. The rare earth component of this glass is selected from among those rare earths having large neutron capture cross sections, such as samarium, gadolinium or europium. Partlcles of this glass are then dispersed in a metal matrix by standard powder metallurgy techniques.
Half-sandwich rare-earth-catalyzed olefin polymerization, carbometalation, and hydroarylation.
Nishiura, Masayoshi; Guo, Fang; Hou, Zhaomin
2015-08-18
The search for new catalysts for more efficient, selective chemical transformations and for the synthesis of new functional materials has been a long-standing research subject in both academia and industry. To develop new generations of catalysts that are superior or complementary to the existing ones, exploring the potential of untapped elements is an important strategy. Rare-earth elements, including scandium, yttrium, and the lanthanides (La-Lu), constitute one important frontier in the periodic table. Rare-earth elements possess unique chemical and physical properties that are different from those of main-group and late-transition metals. The development of rare-earth-based catalysts by taking the advantage of these unique properties is of great interest and importance. The most stable oxidation state of rare-earth metals is 3+, which is difficult to change under many reaction conditions. The oxidative addition and reductive elimination processes often observed in catalytic cycles involving late transition metals are generally difficult in the case of rare-earth complexes. The 18-electron rule that is applicable to late-transition-metal complexes does not fit rare-earth complexes, whose structures are mainly governed by the sterics (rather than the electron numbers) of the ligands. In the lanthanide series (La-Lu), the ionic radius gradually decreases with increasing atomic number because of the influence of the 4f electrons, which show poor shielding of nuclear charge. Rare-earth metal ions generally show strong Lewis acidity and oxophilicity. Rare-earth metal alkyl and hydride species are highly reactive, showing both nucleophilicity and basicity. The combination of these features, such as the strong nucleophilicity and moderate basicity of the alkyl and hydride species and the high stability, strong Lewis acidity, and unsaturated C-C bond affinity of the 3+ metal ions, can make rare-earth metals unique candidates for the formation of excellent single-site catalysts. This Account is intended to give an overview of our recent studies on organo rare-earth catalysis, in particular the synthesis and application of half-sandwich rare-earth alkyl complexes bearing monocyclopentadienyl ligands for olefin polymerization, carbometalation, and hydroarylation. Treatment of half-sandwich rare-earth dialkyl complexes having the general formula CpMR2 with an equimolar amount of an appropriate borate compound such as [Ph3C][B(C6F5)4] can generate the corresponding cationic monoalkyl species, which serve as excellent single-site catalysts for the polymerization and copolymerization of a wide range of olefin monomers such as ethylene, 1-hexene, styrene, conjugated and nonconjugated dienes, and cyclic olefins. The cationic half-sandwich rare-earth alkyl complexes can also catalyze the regio- and stereoselective alkylative alumination of alkenes and alkynes through insertion of the unsaturated C-C bond into the metal-alkyl bond followed by transmetalation between the resulting new alkyl or alkenyl species and an alkylaluminum compound. Moreover, a combination of deprotonative C-H bond activation of appropriate organic compounds such as anisoles and pyridines by the rare-earth alkyl species and insertion of alkenes into the resulting new metal-carbon bond can lead to catalytic C-H bond alkylation of the organic substrates. Most of these transformations are unique to the rare-earth catalysts with selectivity and functional group tolerance different from those of late-transition-metal catalysts.
Determination of thorium and of rare earth elements in cerium earth minerals and ores
Carron, M.K.; Skinner, D.L.; Stevens, R.E.
1955-01-01
The conventional oxalate method for precipitating thorium and the rare earth elements in acid solution exhibits definite solubilities of these elements. The present work was undertaken to establish conditions overcoming these solubilities and to find optimum conditions for precipitating thorium and the rare earth elements as hydroxides and sebacates. The investigations resulted in a reliable procedure applicable to samples in which the cerium group elements predominate. The oxalate precipitations are made from homogeneous solution at pH 2 by adding a prepared solution of anhydrous oxalic acid in methanol instead of the more expensive crystalline methyl oxalate. Calcium is added as a carrier. Quantitative precipitation of thorium and the rare earth elements is ascertained by further small additions of calcium to the supernatant liquid, until the added calcium precipitates as oxalate within 2 minutes. Calcium is removed by precipitating the hydroxides of thorium and rare earths at room temperature by adding ammonium hydroxide to pH > 10. Thorium is separated as the sebacate at pH 2.5, and the rare earths are precipitated with ammonium sebacate at pH 9. Maximum errors for combined weights of thorium and rare earth oxides on synthetic mixtures are ??0.6 mg. Maximum error for separated thoria is ??0.5 mg.
Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects.
Kumari, Aarti; Sinha, Manish Kumar; Pramanik, Swati; Sahu, Sushanta Kumar
2018-05-01
Increasing demands of rare earth (RE) metals for advanced technological applications coupled with the scarcity of primary resources have led to the development of processes to treat secondary resources like scraps or end of life products that are often rich in such metals. Spent NdFeB magnet may serve as a potential source of rare earths containing around ∼30% of neodymium and other rare earths. In the present investigation, a pyro-hydrometallurgical process has been developed to recover rare earth elements (Nd, Pr and Dy) from the spent wind turbine magnet. The spent magnet is demagnetized and roasted at 1123 K to convert rare earths and iron to their respective oxides. Roasting of the magnet not only provides selectivity, but enhances the leaching efficiency also. The leaching of the roasted sample with 0.5 M hydrochloric acid at 368 K, 100 g/L pulp density and 500 rpm for 300 min selectively recovers the rare earth elements almost quantitatively leaving iron oxide in the residue. Leaching of rare earth elements with hydrochloric acid follows the mixed controlled kinetic model with activation energy (E a ) of 30.1 kJ/mol in the temperature range 348-368 K. The leaching mechanism is further established by characterizing the leach residues obtained at different time intervals by scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD). Individual rare earth elements from the leach solution containing 16.8 g/L of Nd, 3.8 g/L Pr, 0.28 g/L of Dy and other minor impurity elements could be separated by solvent extraction. However, mixed rare earth oxide of 99% purity was produced by oxalate precipitation followed by roasting. The leach residue comprising of pure hematite has a potential to be used as pigment or can find other applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
[Application of ICP-MS to Detect Rare Earth Elements in Three Economic Macroalgaes in China].
Zhao, Yan-fang; Shang, De-rong; Zhai, Yu-xiu; Ning, Jin-song; Ding, Hai-yan; Sheng, Xiao-feng
2015-11-01
In order to investigate the content and distribution of rare earth elements (REE) in main economic macroalgaes in our country, fifteen rare earth elements in three economic macroalgaes (including 30 samples of kelp, 30 samples of laver and 15 samples of Enteromorpha) were detected using ICP-MS method. Results showed that the total content of REE in different species of macroalgaes was different. The highest total content of REE was in Enteromorpha (16,012.0 ng · g⁻¹), while in kelp and laver, the total REE was similar for two macroalgaes (3887.4 and 4318.1 ng · g⁻¹ respectively). The content of fifteen rare earth elements in kelp ranged from 7.9 to 1496.4 ng · g⁻¹; in laver, it ranged from 8.2 to 1836.6 ng · g⁻¹. For Enteromorpha, the concentration of 15 rare earth elements were between 19.2 and 6014.5 ng · g⁻¹. In addition, the content and distribution of different rare earth elements in different macroalgaes was also different. For kelp, the highest content of REE was Ce (1 496.4 ng · g⁻¹), and the second was La (689.1 ng · g⁻¹). For laver, the highest was Y (1836.6 ng · g⁻¹), and the second was Ce (682.2 ng · g⁻¹). For Enteromorpha, the highest was Ce (6014.5 ng · g⁻¹), and the second was La (2902.9 ng · g⁻¹). Present results also showed that three macroalgaes accumulated the light rare earth elements much more than the high rare earth elements. The light rare earth elements occupied 90.9%, 87.3% and 91.1% for kelp, laver and Enteromorpha respectively. The result that the Enteromorpha had high content of rare earth elements could provide important support for opening new research directions for the utilization of Enteromorpha.
Review of rare earth element concentrations in oil shales of the Eocene Green River Formation
Birdwell, Justin E.
2012-01-01
Concentrations of the lanthanide series or rare earth elements and yttrium were determined for lacustrine oil shale samples from the Eocene Green River Formation in the Piceance Basin of Colorado and the Uinta Basin of Utah. Unprocessed oil shale, post-pyrolysis (spent) shale, and leached shale samples were examined to determine if oil-shale processing to generate oil or the remediation of retorted shale affects rare earth element concentrations. Results for unprocessed Green River oil shale samples were compared to data published in the literature on reference materials, such as chondritic meteorites, the North American shale composite, marine oil shale samples from two sites in northern Tibet, and mined rare earth element ores from the United States and China. The Green River oil shales had lower rare earth element concentrations (66.3 to 141.3 micrograms per gram, μg g-1) than are typical of material in the upper crust (approximately 170 μg g-1) and were also lower in rare earth elements relative to the North American shale composite (approximately 165 μg g-1). Adjusting for dilution of rare earth elements by organic matter does not account for the total difference between the oil shales and other crustal rocks. Europium anomalies for Green River oil shales from the Piceance Basin were slightly lower than those reported for the North American shale composite and upper crust. When compared to ores currently mined for rare earth elements, the concentrations in Green River oil shales are several orders of magnitude lower. Retorting Green River oil shales led to a slight enrichment of rare earth elements due to removal of organic matter. When concentrations in spent and leached samples were normalized to an original rock basis, concentrations were comparable to those of the raw shale, indicating that rare earth elements are conserved in processed oil shales.
Perspectives on Permanent Magnetic Materials for Energy Conversion and Power Generation
NASA Astrophysics Data System (ADS)
Lewis, Laura H.; Jiménez-Villacorta, Félix
2013-01-01
Permanent magnet development has historically been driven by the need to supply larger magnetic energy in ever smaller volumes for incorporation in an enormous variety of applications that include consumer products, transportation components, military hardware, and clean energy technologies such as wind turbine generators and hybrid vehicle regenerative motors. Since the 1960s, the so-called rare-earth "supermagnets," composed of iron, cobalt, and rare-earth elements such as Nd, Pr, and Sm, have accounted for the majority of global sales of high-energy-product permanent magnets for advanced applications. In rare-earth magnets, the transition-metal components provide high magnetization, and the rare-earth components contribute a very large magnetocrystalline anisotropy that donates high resistance to demagnetization. However, at the end of 2009, geopolitical influences created a worldwide strategic shortage of rare-earth elements that may be addressed, among other actions, through the development of rare-earth-free magnetic materials harnessing sources of magnetic anisotropy other than that provided by the rare-earth components. Materials engineering at the micron scale, nanoscale, and Angstrom scales, accompanied by improvements in the understanding and characterization of nanoscale magnetic phenomena, is anticipated to result in new types of permanent magnetic materials with superior performance.
High-Pressure Synthesis: A New Frontier in the Search for Next-Generation Intermetallic Compounds.
Walsh, James P S; Freedman, Danna E
2018-06-19
The application of high pressure adds an additional dimension to chemical phase space, opening up an unexplored expanse bearing tremendous potential for discovery. Our continuing mission is to explore this new frontier, to seek out new intermetallic compounds and new solid-state bonding. Simple binary elemental systems, in particular those composed of pairs of elements that do not form compounds under ambient pressures, can yield novel crystalline phases under compression. Thus, high-pressure synthesis can provide access to solid-state compounds that cannot be formed with traditional thermodynamic methods. An emerging approach for the rapid exploration of composition-pressure-temperature phase space is the use of hand-held high-pressure devices known as diamond anvil cells (DACs). These devices were originally developed by geologists as a way to study minerals under conditions relevant to the earth's interior, but they possess a host of capabilities that make them ideal for high-pressure solid-state synthesis. Of particular importance, they offer the capability for in situ spectroscopic and diffraction measurements, thereby enabling continuous reaction monitoring-a powerful capability for solid-state synthesis. In this Account, we provide an overview of this approach in the context of research we have performed in the pursuit of new intermetallic compounds. We start with a discussion of pressure as a fundamental experimental variable that enables the formation of intermetallic compounds that cannot be isolated under ambient conditions. We then introduce the DAC apparatus and explain how it can be repurposed for use as a synthetic vessel with which to explore this phase space, going to extremes of pressure where no chemist has gone before. The remainder of the Account is devoted to discussions of recent experiments we have performed with this approach that have led to the discovery of novel intermetallic compounds in the Fe-Bi, Cu-Bi, and Ni-Bi systems, with a focus on the cutting-edge methods that made these experiments possible. We review the use of in situ laser heating at high pressure, which led to the discovery of FeBi 2 , the first binary intermetallic compound in the Fe-Bi system. Our work in the Cu-Bi system is described in the context of in situ experiments carried out in the DAC to map its high-pressure phase space, which revealed two intermetallic phases (Cu 11 Bi 7 and CuBi). Finally, we review the discovery of β-NiBi, a novel high-pressure phase in the Ni-Bi system. We hope that this Account will inspire the next generation of solid-state chemists to boldly explore high-pressure phase space.
Hydrothermal method of synthesis of rare-earth tantalates and niobates
Nyman, May D; Rohwer, Lauren E.S.; Martin, James E
2012-10-16
A hydrothermal method of synthesis of a family of rare-earth Group 5 oxides, where the Group 5 oxide is a niobate or tantalate. The rare-earth Group 5 oxides can be doped with suitable emitter ions to form nanophosphors.
2016-02-01
functionality in weapon system components. Many steps in the rare earths supply chain, such as mining , are conducted in China, a situation that may pose...functionality in weapon systems components.1 Many steps in the rare earths supply chain, such as mining and refining the ore, are primarily conducted outside...are difficult and costly to mine and process. Rare earth elements are Page 5 GAO-16-161 Rare Earth Materials often classified as either
P/M Processing of Rare Earth Modified High Strength Steels.
1980-12-01
AA094 165 TRW INC CLEVELAND OH MATERIALS TECHNOLOGY F 6 P/N PROCESSING OF RARE EARTH MODIFIED HIGH STRENGTH STEELS DEC So A A SHEXM(ER NOOŕT76-C...LEVEL’ (7 PIM PROCESSING OF RARE EARTH MODIFIED HIGH STRENGTH STEELS By A. A. SHEINKER 00 TECHNICAL REPORT Prepared for Office of Naval Research...Processing of Rare Earth Modified High 1 Technical -’ 3t eC"Strength Steels * 1dc4,093Se~ 9PEFRIGOGNZTONAEADADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Evaluation Of Ion Exchange For Fabrication Of Rare-Earth Doped Waveguides
NASA Astrophysics Data System (ADS)
Howell, Brian P.; Beerling, Timothy
1987-01-01
Rare earth ions are frequently incorporated into lasers by doping common glasses with the ions in the glass melt. This paper describes the potential of using diffusion of the rare earth ion from molten salt baths to incorporate it in the glass. The paper discusses the molten salts, the rare earths as a group, the diffusion phenomena, the glasses, and finally the interaction of all these to produce the process. General predictions of the waveguide profile and potential problems are presented.
Rare Earth Doped High Temperature Ceramic Selective Emitters
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Pal, AnnaMarie; Patton, Martin O.; Jenkins, Phillip P.
1999-01-01
As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study develops a spectral emittance model for films of rare earth containing materials. Although there are several possible rare earth doped high temperature materials, this study was confined to rare earth aluminum garnets. Good agreement between experimental and theoretical spectral emittances was found for erbium, thulium and erbium-holmium aluminum garnets. Spectral emittances of these films are sensitive to temperature differences across the film. Emitter efficiency is also a sensitive function of temperature. For thulium aluminum garnet the efficiency is 0.38 at 1700 K but only 0.19 at 1262 K.
Electro-kinetic Separation of Rare Earth Elements Using a Redox-Active Ligand.
Fang, Huayi; Cole, Bren E; Qiao, Yusen; Bogart, Justin A; Cheisson, Thibault; Manor, Brian C; Carroll, Patrick J; Schelter, Eric J
2017-10-16
Purification of rare earth elements is challenging due to their chemical similarities. All of the deployed separation methods rely on thermodynamic properties, such as distribution equilibria in solvent extraction. Rare-earth-metal separations based on kinetic differences have not been examined. Herein, we demonstrate a new approach for rare-earth-element separations by exploiting differences in the oxidation rates within a series of rare earth compounds containing the redox-active ligand [{2-(tBuN(O))C 6 H 4 CH 2 } 3 N] 3- . Using this method, a single-step separation factor up to 261 was obtained for the separation of a 50:50 yttrium-lutetium mixture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rare Earth Element Partition Coefficients from Enstatite/Melt Synthesis Experiments
NASA Technical Reports Server (NTRS)
Schwandt, Craig S.; McKay, Gordon A.
1997-01-01
Enstatite (En(80)Fs(19)Wo(01)) was synthesized from a hypersthene normative basaltic melt doped at the same time with La, Ce, Nd, Sm, Eu, Dy, Er, Yb and Lu. The rare earth element concentrations were measured in both the basaltic glass and the enstatite. Rare earth element concentrations in the glass were determined by electron microprobe analysis with uncertainties less than two percent relative. Rare earth element concentrations in enstatite were determined by secondary ion mass spectrometry with uncertainties less than five percent relative. The resulting rare earth element partition signature for enstatite is similar to previous calculated and composite low-Ca pigeonite signatures, but is better defined and differs in several details. The partition coefficients are consistent with crystal structural constraints.
40 CFR 421.271 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals.... (b) The term rare earth metals refers to the elements scandium, yttrium, and lanthanum to lutetium, inclusive. (c) The term mischmetal refers to a rare earth metal alloy comprised of the natural mixture of...
40 CFR 421.275 - Pretreatment standards for existing sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth... standards for existing sources. The mass of wastewater pollutants in primary rare earth metals process.... PSES for the Primary Rare Earth Metals Subcategory Pollutant or pollutant property Maximum for any 1...
40 CFR 421.271 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals.... (b) The term rare earth metals refers to the elements scandium, yttrium, and lanthanum to lutetium, inclusive. (c) The term mischmetal refers to a rare earth metal alloy comprised of the natural mixture of...
40 CFR 421.271 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals.... (b) The term rare earth metals refers to the elements scandium, yttrium, and lanthanum to lutetium, inclusive. (c) The term mischmetal refers to a rare earth metal alloy comprised of the natural mixture of...
40 CFR 421.275 - Pretreatment standards for existing sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth... standards for existing sources. The mass of wastewater pollutants in primary rare earth metals process.... PSES for the Primary Rare Earth Metals Subcategory Pollutant or pollutant property Maximum for any 1...
40 CFR 421.271 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals.... (b) The term rare earth metals refers to the elements scandium, yttrium, and lanthanum to lutetium, inclusive. (c) The term mischmetal refers to a rare earth metal alloy comprised of the natural mixture of...
40 CFR 421.275 - Pretreatment standards for existing sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth... standards for existing sources. The mass of wastewater pollutants in primary rare earth metals process.... PSES for the Primary Rare Earth Metals Subcategory Pollutant or pollutant property Maximum for any 1...
40 CFR 421.275 - Pretreatment standards for existing sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth... standards for existing sources. The mass of wastewater pollutants in primary rare earth metals process.... PSES for the Primary Rare Earth Metals Subcategory Pollutant or pollutant property Maximum for any 1...
40 CFR 421.275 - Pretreatment standards for existing sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth... standards for existing sources. The mass of wastewater pollutants in primary rare earth metals process.... PSES for the Primary Rare Earth Metals Subcategory Pollutant or pollutant property Maximum for any 1...
Method for determination of small amounts of rare earths and thorium in phosphate rocks
Waring, C.L.; Mela, H.
1953-01-01
In laboratory investigations, interest developed in the possible rare-earth content of phosphate samples from Florida and the northwestern United States. Because of the difficulty of making chemical determinations of traces of individual rare earths, a combined chemical-spectrographic method was investigated. After removal of iron by the extraction of the chloride with ether, the rare earths and thorium are concentrated by double oxalate precipitation, using calcium as a carrier. The rare earths are freed from calcium by an ammonium hydroxide precipitation with a fixed amount of aluminum as a carrier. The aluminum also serves as an internal standard in the final spectrographic analysis. The method will determine from 0.02 to 2 mg. of each rare earth with an error no greater than 10%. The investigation has resulted in a fairly rapid and precise procedure, involving no special spectrographic setup. The method could be applied to other types of geologic materials with the same expected accuracy.
Method of making sintered ductile intermetallic-bonded ceramic composites
Plucknett, Kevin; Tiegs, Terry N.; Becher, Paul F.
1999-01-01
A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite.
Reverse engineering nuclear properties from rare earth abundances in the r process
NASA Astrophysics Data System (ADS)
Mumpower, M. R.; McLaughlin, G. C.; Surman, R.; Steiner, A. W.
2017-03-01
The bulk of the rare earth elements are believed to be synthesized in the rapid neutron capture process or r process of nucleosynthesis. The solar r-process residuals show a small peak in the rare earths around A∼ 160, which is proposed to be formed dynamically during the end phase of the r process by a pileup of material. This abundance feature is of particular importance as it is sensitive to both the nuclear physics inputs and the astrophysical conditions of the main r process. We explore the formation of the rare earth peak from the perspective of an inverse problem, using Monte Carlo studies of nuclear masses to investigate the unknown nuclear properties required to best match rare earth abundance sector of the solar isotopic residuals. When nuclear masses are changed, we recalculate the relevant β-decay properties and neutron capture rates in the rare earth region. The feedback provided by this observational constraint allows for the reverse engineering of nuclear properties far from stability where no experimental information exists. We investigate a range of astrophysical conditions with this method and show how these lead to different predictions in the nuclear properties influential to the formation of the rare earth peak. We conclude that targeted experimental campaigns in this region will help to resolve the type of conditions responsible for the production of the rare earth nuclei, and will provide new insights into the longstanding problem of the astrophysical site(s) of the r process.
Kifle, Dejene; Wibetoe, Grethe
2013-09-13
One of the major difficulties in the rare earth elements separation is purification of yttrium from heavy rare earth elements. Thus, an HPLC method using acetic acid as novel eluent was explored for selective separation of yttrium form the heavy rare earth elements. When acetic acid is used as a mobile phase yttrium eluted with the lighter lanthanides. This is contrary to its relative position amongst heavier lanthanides when eluents commonly used for separation of rare earth elements were employed. The shift in elution position of yttrium with acetic acid as eluent may reflect a relatively lower stability constant of the yttrium-AcOH complex (in the same order as for the lighter lanthanides) compared to the corresponding AcOH complexes with heavy lanthanides, enabling selective separation of yttrium from the latter. The method was successfully used for selective separation of yttrium in mixed rare earth sample containing about 80% of yttrium and about 20% of heavy rare earth oxides. Thus, the use of AcOH as eluent is an effective approach for separating and determining the trace amounts of heavy rare earth elements in large amounts of yttrium matrix. Separation was performed on C18 column by running appropriate elution programs. The effluent from the column was monitored with diode array detector at absorbance wavelength of 658nm after post column derivatization with Arsenazo III. Copyright © 2013 Elsevier B.V. All rights reserved.
Lee, D.E.; Bastron, H.
1967-01-01
Rare-earth contents of 20 allanites and 13 monazites, accessory minerals from a restricted outcrop area of intrusive granitic rocks, are reported. A quantity called sigma (??), which is the sum of the atomic percentages of La, Ce and Pr, is used as an index of composition with respect to the rare-earth elements. Values of sigma vary from 61.3 to 80.9 at.% for these allanites and monazites, representing an appreciable range of composition in terms of the rare-earth elements. Degree of fractionation of rare earths varies directly with CaO content of the granitic rocks, which in turn depends largely on proximity of limestone. Four xenoliths included in the study suggest that spotty mosaic equilibria are superimposed on the regional gradients and that locally the degree of fractionation of rare earths responds to whole rock composition over distances of a few yards or less. The chemistry of the granitic rocks under study appears to be similar in some respects to that of alkalio rocks and carbonatites. Allanites from the most calcium-rich rocks show a pronounced concentration of the most basic rare earths, and whole-rock concentrations of such rare constituents as total cerium earths, Zr, F, Ti, Ba and Sr increase sympathetically with whole-rock calcium. The explanation for the concentration gradients observed in this chemical system must involve assimilation more than magmatic differentiation. ?? 1967.
Rare Earth Elements in National Defense: Background, Oversight Issues, and Options for Congress
2011-03-31
12 U.S. Department of Energy Report on Critical Mineral Strategy...17 Institute a New Critical Minerals Program...exports of rare earth minerals by 72%. In September 2010, China temporarily cut rare earth exports to Japan apparently over a maritime dispute. This
40 CFR 421.276 - Pretreatment standards for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals... wastewater pollutants in primary rare earth metals process wastewater introduced into a POTW shall not exceed the following values: (a) Dryer vent water quench and scrubber. PSNS for the Primary Rare Earth Metals...
40 CFR 421.276 - Pretreatment standards for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals... wastewater pollutants in primary rare earth metals process wastewater introduced into a POTW shall not exceed the following values: (a) Dryer vent water quench and scrubber. PSNS for the Primary Rare Earth Metals...
40 CFR 421.276 - Pretreatment standards for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals... wastewater pollutants in primary rare earth metals process wastewater introduced into a POTW shall not exceed the following values: (a) Dryer vent water quench and scrubber. PSNS for the Primary Rare Earth Metals...
40 CFR 421.276 - Pretreatment standards for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals... wastewater pollutants in primary rare earth metals process wastewater introduced into a POTW shall not exceed the following values: (a) Dryer vent water quench and scrubber. PSNS for the Primary Rare Earth Metals...
40 CFR 421.276 - Pretreatment standards for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals... wastewater pollutants in primary rare earth metals process wastewater introduced into a POTW shall not exceed the following values: (a) Dryer vent water quench and scrubber. PSNS for the Primary Rare Earth Metals...
How PNNL Extracts Rare Earth Elements from Geothermal Brine
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-07-12
By looking at a problem at a nanoscale level, PNNL researchers are developing an economic way to extract valuable rare earth elements from geothermal fluids. This novel approach may help meet the high demand for rare earth elements that are used in many clean energy technologies.
Guo, Wei; Fu, Rui-ying; Zhao, Ren-xin; Zhao, Wen-jing; Guo, Jiang-yuan; Zhang, Jun
2013-05-01
The pollution status and distribution characteristic of rare earth elements in soil were analyzed around Bayan Obo mining area and Baotou tailing reservoir located in Inner Mongolia grassland ecosystem, aiming at grasping the overall situation of grassland ecosystem pollution caused by rare earth elements and providing basic information as well as theoretical basis. The results indicated that seven rare earth elements in soils from different directions of Baotou tailing reservoir accumulated to a certain extent compared to the soil background value of Inner Mongolia. The pollution degree was Ce > La > Nd > Pr > Sm > Y > Eu. Within 50 m from the edge of tailing reservoir, soil rare earth contamination was the most serious, with the concentrations of La, Ce, Pr, Nd, Sm, Eu and Y reaching 11,45.0 mg x kg(-1), 23,636.0 mg x kg(-1), 4568.16 mg x kg(-1) , 6855.51 mg x kg(-1), 582.18 mg x kg(-1), 94.21 mg x kg(-1)), and 136.25 mg x kg(-1), respectively. Owing to the dominant wind direction of northwest, soils from the southeast were contaminated most seriously. For Bayan Obo mining area, the concentrations of seven rare earth elements in soil from the mining area were significantly higher than those of other areas investigated, with the concentrations of La, Ce, Pr, Nd, Sm, Eu and Y reaching 3112.56 mg x kg(-1), 7142.12 mg x kg(-1), 1467.12 mg x kg(-1), 2552.80 mg x kg(-1), 210.80 mg x kg(-1), 36.20 mg x kg(-1) and 63.22 mg x kg(-1), respectively. The soils of six areas of Bayan Obo mining area were all contaminated by rare earth elements, and the contamination degree was in the order of mining area > outside the dump > east side of the railway > the dump > outside the urban area > west side of the railway. Besides, the transportation of rare earth ore led to the soil rare earth contamination along the railway, and the distribution characteristic of rare earth elements in soils along the railway was affected by the dominant wind direction of northwest. Baotou tailing reservoir and Bayan Obo mining area had the same contamination characteristic, and the concentrations of rare earth elements were in accordance with those in the tailings. The health and stabilization of local grassland ecosystem are being threatened by excessive soil rare earth elements.
Method of making sintered ductile intermetallic-bonded ceramic composites
Plucknett, K.; Tiegs, T.N.; Becher, P.F.
1999-05-18
A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite. 2 figs.
Rare earths and other trace elements in Luna 16 soil.
NASA Technical Reports Server (NTRS)
Helmke, P. A.; Haskin, L. A.
1972-01-01
An analysis has been made of four small samples of material brought to earth by the Luna 16 mission, with the aim to determine rare earths and other trace elements in these samples. The analytical results are tabulated, and the rare earth abundances are compared with the average for chondrites. A comparison is also made with the results of similar analyses of Apollo samples.
Ternary rare earth-lanthanide sulfides
Takeshita, Takuo; Gschneidner JR., Karl A.; Beaudry, Bernard J.
1987-01-06
A new ternary rare earth sulfur compound having the formula: where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.
40 CFR 421.274 - Standards of performance for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth... Scrubber. NSPS for the Primary Rare Earth Metals Subcategory Pollutant or pollutant property Maximum for... wet rare earth chlorides Hexachlorobenzene 0.042 0.042 Chromium (total) 1.544 0.626 Lead 1.168 0.542...
40 CFR 421.274 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth... Scrubber. NSPS for the Primary Rare Earth Metals Subcategory Pollutant or pollutant property Maximum for... wet rare earth chlorides Hexachlorobenzene 0.042 0.042 Chromium (total) 1.544 0.626 Lead 1.168 0.542...
40 CFR 421.274 - Standards of performance for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth... Scrubber. NSPS for the Primary Rare Earth Metals Subcategory Pollutant or pollutant property Maximum for... wet rare earth chlorides Hexachlorobenzene 0.042 0.042 Chromium (total) 1.544 0.626 Lead 1.168 0.542...
Tunable, rare earth-doped solid state lasers
Emmett, John L.; Jacobs, Ralph R.; Krupke, William F.; Weber, Marvin J.
1980-01-01
Laser apparatus comprising combinations of an excimer pump laser and a rare earth-doped solid matrix, utilizing the 5d-4f radiative transition in a rare earth ion to produce visible and ultra-violet laser radiation with high overall efficiency in selected cases and relatively long radiative lifetimes.
40 CFR 421.274 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth... Scrubber. NSPS for the Primary Rare Earth Metals Subcategory Pollutant or pollutant property Maximum for... wet rare earth chlorides Hexachlorobenzene 0.042 0.042 Chromium (total) 1.544 0.626 Lead 1.168 0.542...
40 CFR 421.274 - Standards of performance for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth... Scrubber. NSPS for the Primary Rare Earth Metals Subcategory Pollutant or pollutant property Maximum for... wet rare earth chlorides Hexachlorobenzene 0.042 0.042 Chromium (total) 1.544 0.626 Lead 1.168 0.542...
METHOD OF SEPARATING RARE EARTHS BY ION EXCHANGE
Spedding, F.H.; Powell, J.E.
1960-10-18
A process is given for separating yttrium and rare earth values having atomic numbers of from 57 through 60 and 68 through 71 from an aqueous solution whose pH value can range from 1 to 9. All rare earths and yttrium are first adsorbed on a cation exchange resin, and they are then eluted with a solution of N-hydroxyethylethylenediaminetriacetic acid (HEDTA) in the order of decreasing atomic number, yttrium behaving like element 61; the effluents are collected in fractions. The HEDTA is recovered by elution with ammonia solution and the resin is regenerated with sulfuric acid. Rare earths are precipitated from the various effluents with oxalic acid, and each supernatant is passed over cation exchange resin for adsorption of HEDTA and nonprecipitated rare earths: the oxalic acid is not retained by the resin.
The Effect of Rare Earth on the Structure and Performance of Laser Clad Coatings
NASA Astrophysics Data System (ADS)
Bao, Ruiliang; Yu, Huijun; Chen, Chuanzhong; Dong, Qing
Laser cladding is one kind of advanced surface modification technology and has the abroad prospect in making the wear-resistant coating on metal substrates. However, the application of laser cladding technology does not achieve the people's expectation in the practical production because of many defects such as cracks, pores and so on. The addiction of rare earth can effectively reduce the number of cracks in the clad coating and enhance the coating wear-resistance. In the paper, the effects of rare earth on metallurgical quality, microstructure, phase structure and wear-resistance are analyzed in turns. The preliminary discussion is also carried out on the effect mechanism of rare earth. At last, the development tendency of rare earth in the laser cladding has been briefly elaborated.
NASA Astrophysics Data System (ADS)
Eun, H. C.; Choi, J. H.; Kim, N. Y.; Lee, T. K.; Han, S. Y.; Lee, K. R.; Park, H. S.; Ahn, D. H.
2016-11-01
The pyrochemical process, which recovers useful resources (U/TRU metals) from used nuclear fuel using an electrochemical method, generates LiCl-KCl eutectic waste salt containing radioactive rare earth chlorides (RECl3). It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste salt in a hot-cell facility. For this reason, a reactive distillation process using a chemical agent was achieved as a method to separate rare earths from the LiCl-KCl waste salt. Before conducting the reactive distillation, thermodynamic equilibrium behaviors of the reactions between rare earth (Nd, La, Ce, Pr) chlorides and the chemical agent (K2CO3) were predicted using software. The addition of the chemical agent was determined to separate the rare earth chlorides into an oxide form using these equilibrium results. In the reactive distillation test, the rare earth chlorides in LiCl-KCl eutectic salt were decontaminated at a decontamination factor (DF) of more than 5000, and were mainly converted into oxide (Nd2O3, CeO2, La2O3, Pr2O3) or oxychloride (LaOCl, PrOCl) forms. The LiCl-KCl was purified into a form with a very low concentration (<1 ppm) for the rare earth chlorides.
Ferroelectricity of domain walls in rare earth iron garnet films.
Popov, A I; Zvezdin, K A; Gareeva, Z V; Mazhitova, F A; Vakhitov, R M; Yumaguzin, A R; Zvezdin, A K
2016-11-16
In this paper, we report on electric polarization arising in a vicinity of Bloch-like domain walls in rare-earth iron garnet films. The domain walls generate an intrinsic magnetic field that breaks an antiferroelectric structure formed in the garnets due to an exchange interaction between rare earth and iron sublattices. We explore 180° domain walls whose formation is energetically preferable in the films with perpendicular magnetic anisotropy. Magnetic and electric structures of the 180° quasi-Bloch domain walls have been simulated at various relations between system parameters. Singlet, doublet ground states of rare earth ions and strongly anisotropic rare earth Ising ions have been considered. Our results show that electric polarization appears in rare earth garnet films at Bloch domain walls, and the maximum of magnetic inhomogeneity is not always linked to the maximum of electric polarization. A number of factors including the temperature, the state of the rare earth ion and the type of a wall influence magnetically induced electric polarization. We show that the value of polarization can be enhanced by the shrinking of the Bloch domain wall width, decreasing the temperature, and increasing the deviations of magnetization from the Bloch rotation that are regulated by impacts given by magnetic anisotropies of the films.
Guo, Wei; Zhao, Ren-xin; Zhao, Wen-jing; Fu, Rui-ying; Guo, Jiang-yuan; Zhang, Jun
2013-05-01
A greenhouse pot experiment was conducted to investigate the influence of arbuscular mycorrhizal (AM) fungi Glomus versiforme on the plant growth, nutrient uptake, C: N: P stoichiometric, uptake of heavy metals and rare earth elements by soybean (Glycine max) grown in rare earth mine tailings. The aim was to provide a basis for the revegetation of rare earth mine tailings. The results indicated that soybean had a high mycorrhizal colonization and symbiotic associations were successfully established with G. versiforme, with an average rate of approximately 67%. The colonization of G. versiforme significantly promoted the growth of soybean, increased P, K contents, and decreased C: N: P ratios, supporting the growth rate hypothesis. Inoculation with G. versiforme significantly decreased shoots and roots La, Ce, Pr and Nd concentrations of soybean compared to the control treatment. However, inoculation with G. versiforme had no significant effect on the heavy metal concentrations, except for significantly decreased shoot Fe and Cr concentrations and increased root Cd concentrations. The experiment demonstrates that AM fungi have a potential role for soybean to adapt the composite adversity of rare earth tailings and play a positive role in revegetation of rare earth mine tailings. Further studies on the role of AM fungi under natural conditions should be conducted.
Method for making devices having intermetallic structures and intermetallic devices made thereby
Paul, Brian Kevin; Wilson, Richard Dean; Alman, David Eli
2004-01-06
A method and system for making a monolithic intermetallic structure are presented. The structure is made from lamina blanks which comprise multiple layers of metals which are patternable, or intermetallic lamina blanks that are patternable. Lamina blanks are patterned, stacked and registered, and processed to form a monolithic intermetallic structure. The advantages of a patterned monolithic intermetallic structure include physical characteristics such as melting temperature, thermal conductivity, and corrosion resistance. Applications are broad, and include among others, use as a microreactor, heat recycling device, and apparatus for producing superheated steam. Monolithic intermetallic structures may contain one or more catalysts within the internal features.
METHOD OF MAKING ALLOYS OF SECOND RARE EARTH SERIES METALS
Baker, R.D.; Hayward, B.R.
1963-01-01
>This invention relates to a process for alloying the second rare earth series metals with Mo, Nb, or Zr. A halide of the rare earth metal is mixed with about 1 to 20 at.% of an oxide of Mo, Nb, or Zr. Iodine and an alkali or alkaline earth metal are added, and the resulting mixture is heated in an inert atmosphere to 350 deg C. (AEC)
Purification of used eutectic (LiCl-KCl) salt electrolyte from pyroprocessing
NASA Astrophysics Data System (ADS)
Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Choi, Jung-Hoon; Kim, In-Tae; Park, Geun-Il
2013-06-01
The separation characteristics of surrogate rare-earth fission products in a eutectic (LiCl-KCl) molten salt were investigated. This system is based on the eutectic salt used for the pyroprocessing treatment of used nuclear fuel (UNF). The investigation was performed using an integrated rare-earth separation apparatus comprising a precipitation reactor, a solid detachment device, and a layer separation device. To separate rare-earth fission products, a phosphate precipitation method using both Li3PO4 and K3PO4 as a precipitant was performed. The use of an equivalent phosphate precipitant composed of 0.408 molar ratio-K3PO4 and 0.592 molar ratio-Li3PO4 can preserve the original eutectic ratio, LiCl-0.592 molar ratio (or 45.2 wt%), as well as provide a high separation efficiency of over 99.5% under conditions of 550 °C and Ar sparging when using La, Nd, Ce, and Pr chlorides. The mixture of La, Nd, Ce, and Pr phosphate had a typical monoclinic (or monazite) structure, which has been proposed as a reliable host matrix for the permanent disposal of a high-level waste form. To maximize the reusability of purified eutectic waste salt after rare-earth separation, the successive rare-earth separation process, which uses both phosphate precipitation and an oxygen sparging method, were introduced and tested with eight rare-earth (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) chlorides. In the successive rare-earth separation process, the phosphate reaction was terminated within 1 h at 550 °C, and a 4-8 h oxygen sparging time were required to obtain over a 99% separation efficiency at 700-750 °C. The mixture of rare-earth precipitates separated by the successive rare-earth separation process was found to be phosphate, oxychloride, and oxide. Through the successive rare-earth separation process, the eutectic ratio of purified salt maintained its original value, and impurity content including the residual precipitant of purified salt can be minimized.
Prospective analysis of the flows of certain rare earths in Europe at the 2020 horizon.
Rollat, Alain; Guyonnet, Dominique; Planchon, Mariane; Tuduri, Johann
2016-03-01
This paper proposes a forecast of certain rare earth flows in Europe at the 2020 horizon, based on an analysis of trends influencing various actors of the rare earth industry along the value chain. While 2020 is indicated as the forecast horizon, the analysis should be considered as more representative of the next decade. The rare earths considered here are used in applications that are important for a low-carbon energy transition and/or have a significant recycling potential: NdFeB magnets (Pr, Nd, Dy), NiMH batteries (Pr, Nd) and fluorescent lamp phosphors (Eu, Tb, Y). An analysis of major trends affecting the rare earth industry in Europe along the value chain (including extraction, separation, fabrication, manufacture, use and recycling), helps to build a scenario for a material flow analysis of these rare earths in Europe. The scenario assumes in particular that during the next decade, there exists a rare earth mine in production in Europe (with Norra Kärr in Sweden as a most likely candidate) and also that recycling is in line with targets proposed in recent European legislation. Results are presented in the form of Sankey diagrams which help visualize the various flows for the three applications. For example, calculations forecast flows from extraction to separation of Pr, Nd and Dy for magnet applications in Europe, on the order of 310 tons, 980 tons and 80 tons rare earth metal resp., while recycled flows are 35 tons, 110 tons and 30 tons resp. Calculations illustrate how the relative contribution of recycling to supply strongly depends on the situation with respect to demand. Considering the balance between supply and demand, it is not anticipated any significant shortage of rare earth supply in Europe at the 2020 horizon, barring any new geopolitical crisis involving China. For some heavy rare earths, supply will in fact largely outweigh demand, as for example Europium due to the phasing out of fluorescent lights by LEDs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Talovskaya, A V; Yazikov, E G; Filimonenko, E A; Lata, J-C; Kim, J; Shakhova, T S
2017-07-20
Recognition and detailed characterization of solid particles emitted from thermal power plants into the environment is highly important due to their potential detrimental effects on human health. Snow cover is used for the identification of anthropogenic emissions in the environment. However, little is known about types, physical and chemical properties of solid airborne particles (SAP) deposited in snow around thermal power plants. The purpose of this study is to quantify and characterize in detail the traceable SAP deposited in snow near fossil fuel thermal power plant in order to identify its emissions into the environment. Applying the scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, mineral and anthropogenic phase groups in SAP deposited in snow near the plant and in fly ash were observed. We identified quartz, albite and mullite as most abundant mineral phases and carbonaceous matter, slag and spherical particles as dominate anthropogenic phases. This is the first study reporting that zircon and anthropogenic sulphide-bearing, metal oxide-bearing, intermetallic compound-bearing and rare-earth element-bearing particles were detected in snow deposits near thermal power plant. The identified mineral and anthropogenic phases can be used as tracers for fossil fuel combustion emissions, especially with regard to their possible effect on human health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, G. H.; Oertel, C. -G.; Schaarschuch, R.
DyCu and YCu are representatives of the family of CsCl-type B2 rare earth intermetallic compounds that exhibit high room temperature ductility. Structure, orientation relationship, and morphology of the martensites in the equiatomic compounds DyCu and YCu are examined using transmission electron microscopy (TEM). TEM studies show that the martensite structures in DyCu and YCu alloys are virtually identical. The martensite is of orthorhombic CrB-type B33 structure with lattice parameters a = 0.38 nm, b = 1.22 nm, and c = 0.40 nm. (021¯) twins were observed in the B33 DyCu and YCu martensites. The orientation relationship of B33 and B2more » phases is (111¯)[112]B33 || (110)[001]B2. The simulated electron diffraction patterns of the B33 phase are consistent with those of experimental observations. TEM investigations also reveal that a dominant orthorhombic FeB-type B27 martensite with lattice parameters a = 0.71 nm, b = 0.45 nm, and c = 0.54 nm exists in YCu alloy. (11¯ 1) twins were observed in the B27 YCu martensite. As a result, the formation mechanism of B2 to B33 and B2 to B27 phase transformation is discussed.« less
Reverse engineering nuclear properties from rare earth abundances in the r process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumpower, Matthew Ryan; McLaughlin, G. C.; Surman, R.
The bulk of the rare earth elements are believed to be synthesized in the rapid neutron capture process or r process of nucleosynthesis. The solar r-process residuals show a small peak in the rare earths aroundmore » $$A\\sim 160$$, which is proposed to be formed dynamically during the end phase of the r process by a pileup of material. This abundance feature is of particular importance as it is sensitive to both the nuclear physics inputs and the astrophysical conditions of the main r process. Here, we explore the formation of the rare earth peak from the perspective of an inverse problem, using Monte Carlo studies of nuclear masses to investigate the unknown nuclear properties required to best match rare earth abundance sector of the solar isotopic residuals. When nuclear masses are changed, we recalculate the relevant β-decay properties and neutron capture rates in the rare earth region. The feedback provided by this observational constraint allows for the reverse engineering of nuclear properties far from stability where no experimental information exists. We investigate a range of astrophysical conditions with this method and show how these lead to different predictions in the nuclear properties influential to the formation of the rare earth peak. Finally, we conclude that targeted experimental campaigns in this region will help to resolve the type of conditions responsible for the production of the rare earth nuclei, and will provide new insights into the longstanding problem of the astrophysical site(s) of the r process.« less
Reverse engineering nuclear properties from rare earth abundances in the r process
Mumpower, Matthew Ryan; McLaughlin, G. C.; Surman, R.; ...
2017-02-01
The bulk of the rare earth elements are believed to be synthesized in the rapid neutron capture process or r process of nucleosynthesis. The solar r-process residuals show a small peak in the rare earths aroundmore » $$A\\sim 160$$, which is proposed to be formed dynamically during the end phase of the r process by a pileup of material. This abundance feature is of particular importance as it is sensitive to both the nuclear physics inputs and the astrophysical conditions of the main r process. Here, we explore the formation of the rare earth peak from the perspective of an inverse problem, using Monte Carlo studies of nuclear masses to investigate the unknown nuclear properties required to best match rare earth abundance sector of the solar isotopic residuals. When nuclear masses are changed, we recalculate the relevant β-decay properties and neutron capture rates in the rare earth region. The feedback provided by this observational constraint allows for the reverse engineering of nuclear properties far from stability where no experimental information exists. We investigate a range of astrophysical conditions with this method and show how these lead to different predictions in the nuclear properties influential to the formation of the rare earth peak. Finally, we conclude that targeted experimental campaigns in this region will help to resolve the type of conditions responsible for the production of the rare earth nuclei, and will provide new insights into the longstanding problem of the astrophysical site(s) of the r process.« less
Ames Lab 101: Rare-Earth Recycling
Ryan Ott
2017-12-22
Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.
Willbold, Elmar; Gu, Xuenan; Albert, Devon; Kalla, Katharina; Bobe, Katharina; Brauneis, Maria; Janning, Carla; Nellesen, Jens; Czayka, Wolfgang; Tillmann, Wolfgang; Zheng, Yufeng; Witte, Frank
2015-01-01
Rare earth elements are promising alloying element candidates for magnesium alloys used as biodegradable devices in biomedical applications. Rare earth elements have significant effects on the high temperature strength as well as the creep resistance of alloys and they improve magnesium corrosion resistance. We focused on lanthanum, neodymium and cerium to produce magnesium alloys with commonly used rare earth element concentrations. We showed that low concentrations of rare earth elements do not promote bone growth inside a 750 μm broad area around the implant. However, increased bone growth was observed at a greater distance from the degrading alloys. Clinically and histologically, the alloys and their corrosion products caused no systematic or local cytotoxicological effects. Using microtomography and in vitro experiments, we could show that the magnesium-rare earth element alloys showed low corrosion rates, both in in vitro and in vivo. The lanthanum- and cerium-containing alloys degraded at comparable rates, whereas the neodymium-containing alloy showed the lowest corrosion rates. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Are C1 chondrites chemically fractionated - A trace element study
NASA Technical Reports Server (NTRS)
Ebihara, M.; Wolf, R.; Anders, E.
1982-01-01
Six C1 chondrite samples and a C2 xenolith from the Plainview H5 chondrite were analyzed by radiochemical neutron activation for a large variety of elements, including rare earths. The sample processing is described, including the irradiation, chemical procedure, rare earths separation, counting techniques, radiochemical purity check, and chemical yields. The results of consistency checks on a number of elements are discussed. Abundances for siderophiles, volatiles, and rare earths are presented and discussed. Tests are presented for fractionation of rare earths and other refractories, compositional uniformity of C1's, and interelement correlations. There is no conclusive evidence for nebular fractionation affecting C1's. Three fractionation-prone rare earths have essentially the same relative abundances in C1's and all other chondrite classes, and hence are apparently not fractionated in C1's.
Assessment of Trading Partners for China's Rare Earth Exports Using a Decision Analytic Approach
He, Chunyan; Lei, Yalin; Ge, Jianping
2014-01-01
Chinese rare earth export policies currently result in accelerating its depletion. Thus adopting an optimal export trade selection strategy is crucial to determining and ultimately identifying the ideal trading partners. This paper introduces a multi-attribute decision-making methodology which is then used to select the optimal trading partner. In the method, an evaluation criteria system is established to assess the seven top trading partners based on three dimensions: political relationships, economic benefits and industrial security. Specifically, a simple additive weighing model derived from an additive utility function is utilized to calculate, rank and select alternatives. Results show that Japan would be the optimal trading partner for Chinese rare earths. The criteria evaluation method of trading partners for China's rare earth exports provides the Chinese government with a tool to enhance rare earth industrial policies. PMID:25051534
RECOVERY OF THORIUM AND URANIUM VALUES FROM AQUEOUS SOLUTIONS
Calkins, G.D.
1958-02-18
This patent deals with the separation and recovery of uranium from monazite sand. After initial treatment of the sand with sodium hydroxide, a precipitate is obtuined which contains the uranium, thorium, rare earths and some phosphorus. This precipitate is then dissolved in nitric acid. The bulk of the rare earths are removed from thls soiution by adding aa excess of alkali carbonate, causing precipitation of the rare earths together with part of the thorium present. The solution still contains a considerable amount of thorium, some rare earths, and practically all of the uranium originally present. Thorium and rare earth values are readily precipitated from such solution, and the uranium values thus isolated, by the addition of an excess hydrogen peroxide. The pH value of the solution is preferably adjusted to at least 9 prior to the addition of the peroxide.
Assessment of trading partners for China's rare earth exports using a decision analytic approach.
He, Chunyan; Lei, Yalin; Ge, Jianping
2014-01-01
Chinese rare earth export policies currently result in accelerating its depletion. Thus adopting an optimal export trade selection strategy is crucial to determining and ultimately identifying the ideal trading partners. This paper introduces a multi-attribute decision-making methodology which is then used to select the optimal trading partner. In the method, an evaluation criteria system is established to assess the seven top trading partners based on three dimensions: political relationships, economic benefits and industrial security. Specifically, a simple additive weighing model derived from an additive utility function is utilized to calculate, rank and select alternatives. Results show that Japan would be the optimal trading partner for Chinese rare earths. The criteria evaluation method of trading partners for China's rare earth exports provides the Chinese government with a tool to enhance rare earth industrial policies.
Aluminum/alkaline earth metal composites and method for producing
Russell, Alan M; Anderson, Iver E; Kim, Hyong J; Freichs, Andrew E
2014-02-11
A composite is provided having an electrically conducting Al matrix and elongated filaments comprising Ca and/or Sr and/or Ba disposed in the matrix and extending along a longitudinal axis of the composite. The filaments initially comprise Ca and/or Sr and/or Ba metal or allow and then may be reacted with the Al matrix to form a strengthening intermetallic compound comprising Al and Ca and/or Sr and/or Ba. The composite is useful as a long-distance, high voltage power transmission conductor.
Rieken, Joel R.; Heidloff, Andrew J.
2014-09-09
A tubular melt containment member for transient containment of molten metals and alloys, especially reactive metals and alloys, includes a melt-contacting layer or region that comprises an oxygen-deficient rare earth oxide material that is less reactive as compared to the counterpart stoichiometric rare earth oxide. The oxygen-deficient (sub-stoichiometric) rare earth oxide can comprise oxygen-deficient yttria represented by Y.sub.2O.sub.3-x wherein x is from 0.01 to 0.1. Use of the oxygen-deficient rare earth oxide as the melt-contacting layer or region material reduces reaction with the melt for a given melt temperature and melt contact time.
Krupke, W.F.
1975-10-31
A high energy gas laser with light output in the infrared or visible region of the spectrum is described. Laser action is obtained by generating vapors of rare earth halides, particularly neodymium iodide or, to a lesser extent, neodymium bromide, and disposing the rare earth vapor medium in a resonant cavity at elevated temperatures; e.g., approximately 1200/sup 0/ to 1400/sup 0/K. A particularly preferred gaseous medium is one involving a complex of aluminum chloride and neodymium chloride, which exhibits tremendously enhanced vapor pressure compared to the rare earth halides per se, and provides comparable increases in stored energy densities.
Perspectives on Permanent Magnetic Materials for Energy Conversion and Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, LH; Jimenez-Villacorta, F
2012-07-18
Permanent magnet development has historically been driven by the need to supply larger magnetic energy in ever smaller volumes for incorporation in an enormous variety of applications that include consumer products, transportation components, military hardware, and clean energy technologies such as wind turbine generators and hybrid vehicle regenerative motors. Since the 1960s, the so-called rare-earth "supermagnets," composed of iron, cobalt, and rare-earth elements such as Nd, Pr, and Sm, have accounted for the majority of global sales of high-energy-product permanent magnets for advanced applications. In rare-earth magnets, the transition-metal components provide high magnetization, and the rare-earth components contribute a verymore » large magnetocrystalline anisotropy that donates high resistance to demagnetization. However, at the end of 2009, geopolitical influences created a worldwide strategic shortage of rare-earth elements that may be addressed, among other actions, through the development of rare-earth-free magnetic materials harnessing sources of magnetic anisotropy other than that provided by the rare-earth components. Materials engineering at the micron scale, nanoscale, and Angstrom scales, accompanied by improvements in the understanding and characterization of nanoscale magnetic phenomena, is anticipated to result in new types of permanent magnetic materials with superior performance. DOI: 10.1007/s11661-012-1278-2 (C) The Minerals, Metals & Materials Society and ASM International 2012« less
Rare earth element recycling from waste nickel-metal hydride batteries.
Yang, Xiuli; Zhang, Junwei; Fang, Xihui
2014-08-30
With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
Addressing Rare-Earth Element Criticality: An Example from the Aviation Industry
NASA Astrophysics Data System (ADS)
Ku, Anthony Y.; Dosch, Christopher; Grossman, Theodore R.; Herzog, Joseph L.; Maricocchi, Antonio F.; Polli, Drew; Lipkin, Don M.
2014-11-01
Rare-earth (RE) elements are enablers for a wide range of technologies, including high-strength permanent magnets, energy-efficient lighting, high-temperature thermal barrier coatings, and catalysts. While direct material substitution is difficult in many of these applications because of the specific electronic, optical, or electrochemical properties imparted by the individual rare-earth elements, we describe an example from the aviation industry where supply chain optimization may be an option. Ceramic matrix composite engine components require environmental barrier coatings (EBCs) to protect them from extreme temperatures and adverse reactions with water vapor in the hot gas path. EBC systems based on rare-earth silicates offer a unique combination of environmental resistance, thermal expansion matching, thermal conductivity, and thermal stability across the service temperature window. Several pure rare-earth silicates and solid solutions have been demonstrated in EBC applications. However, all rely on heavy rare-earth elements (HREEs) for phase stability. This article considers the possibility of using separation tailings containing a mixture of HREEs as a source material in lieu of using the high-purity HREE oxides. This option arises because the desired properties of RE-silicate EBCs derive from the average cation size rather than the electronic properties of the individual rare-earth cations. Because separation tailings have not incurred the costs associated with the final stages of separation, they offer an economical alternative to high-purity oxides for this emerging application.
Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy
Zhang, Ying; Yu, Chenguang; Huang, Guanyi; Wang, Changli; Wen, Longping
2010-01-01
Four rare earth oxides have been shown to induce autophagy. Interestingly, we often noticed plentiful vacuolization, which was not always involved in this autophagic process. In this study, we investigated three other rare-earth elements, including Yttrium (Y), Ytterbium (Yb), and Lanthanum (La). Autophagic effect could be induced by all of them but only Y2O3 and Yb2O3 could cause massive vacuolization. Y2O3 and Yb2O3 treated by sonication or centrifugation to reduce particle size were used to test vacuolization level in HeLa cell lines. The results showed that rare earth oxides-induced vacuolization is size-dependent and differs from autophagic pathway. To further clarify the characteristics of this autophagic process, we used MEF Atg-5 (autophagy associated gene 5) knockout cell line, and the result showed that the autophagic process induced by rare earth oxides is Atg-5-dependent and the observed vacuolization was independent from autophagy. Similar results could also be observed in our tests on 3-methyladenine(3-MA), a well-known autophagy inhibitor. In conclusion, for the first time, we clarified the relationship between massive vacuolization and autophagic process induced by rare earth oxides and pointed out the size effect of rare earth oxides on the formation of vacuoles, which give clues to further investigation on the mechanisms underlying their biological effects. PMID:20856835
Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy.
Zhang, Ying; Yu, Chenguang; Huang, Guanyi; Wang, Changli; Wen, Longping
2010-09-07
Four rare earth oxides have been shown to induce autophagy. Interestingly, we often noticed plentiful vacuolization, which was not always involved in this autophagic process. In this study, we investigated three other rare-earth elements, including Yttrium (Y), Ytterbium (Yb), and Lanthanum (La). Autophagic effect could be induced by all of them but only Y(2)O(3) and Yb(2)O(3) could cause massive vacuolization. Y(2)O(3) and Yb(2)O(3) treated by sonication or centrifugation to reduce particle size were used to test vacuolization level in HeLa cell lines. The results showed that rare earth oxides-induced vacuolization is size-dependent and differs from autophagic pathway. To further clarify the characteristics of this autophagic process, we used MEF Atg-5 (autophagy associated gene 5) knockout cell line, and the result showed that the autophagic process induced by rare earth oxides is Atg-5-dependent and the observed vacuolization was independent from autophagy. Similar results could also be observed in our tests on 3-methyladenine(3-MA), a well-known autophagy inhibitor. In conclusion, for the first time, we clarified the relationship between massive vacuolization and autophagic process induced by rare earth oxides and pointed out the size effect of rare earth oxides on the formation of vacuoles, which give clues to further investigation on the mechanisms underlying their biological effects.
Ternary rare earth-lanthanide sulfides
Takeshita, Takuo; Gschneidner, Jr., Karl A.; Beaudry, Bernard J.
1987-01-06
A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.
An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium.
Bogart, Justin A; Lippincott, Connor A; Carroll, Patrick J; Schelter, Eric J
2015-07-06
Rare-earth metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare earths. To incentivize recycling there is a clear need for simple methods for targeted separations of mixtures of rare-earth metal salts. Metal complexes of a tripodal nitroxide ligand [{(2-(t) BuNO)C6 H4 CH2 }3 N](3-) (TriNOx(3-) ), feature a size-sensitive aperture formed of its three η(2) -(N,O) ligand arms. Exposure of metal cations in the aperture induces a self-associative equilibrium comprising [M(TriNOx)thf]/ [M(TriNOx)]2 (M=rare-earth metal). Differences in the equilibrium constants (Keq ) for early and late metals enables simple Nd/Dy separations through leaching with a separation ratio SNd/Dy =359. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bandara, H M Dhammika; Darcy, Julia W; Apelian, Diran; Emmert, Marion H
2014-06-17
In order to facilitate the development of recycling technologies for rare earth magnets from postconsumer products, we present herein an analysis of the neodymium (Nd) content in shredder scrap. This waste stream has been chosen on the basis of current business practices for the recycling of steel, aluminum, and copper from cars and household appliances, which contain significant amounts of rare earth magnets. Using approximations based on literature data, we have calculated the average Nd content in the ferrous shredder product stream to be between 0.13 and 0.29 kg per ton of ferrous scrap. A value analysis considering rare earth metal prices between 2002 and 2013 provides values between $1.32 and $145 per ton of ferrous scrap for this material, if recoverable as pure Nd metal. Furthermore, we present an analysis of the content and value of other rare earths (Pr, Dy, Tb).
Contributed Review: A review of the investigation of rare-earth dopant profiles in optical fibers.
Sidiroglou, F; Roberts, A; Baxter, G
2016-04-01
Rare-earth doped optical fibers have captivated the interest of many researchers around the world across the past three decades. The growth of this research field has been stimulated primarily through their application in optical communications as fiber lasers and amplifiers, although rare-earth doped optical fiber based devices are now finding important uses in many other scientific and industrial areas (for example, medicine, sensing, the military, and material processing). Such wide commercial interest has provided a strong incentive for innovative fiber designs, alternative glass compositions, and novel fabrication processes. A prerequisite for the ongoing progress of this research field is developing the capacity to provide high resolution information about the rare-earth dopant distribution profiles within the optical fibers. This paper constitutes a comprehensive review of the imaging techniques that have been utilized in the analysis of the distribution of the rare-earth ion erbium within the core of optical fibers.
Loparite, a rare-earth ore (Ce, Na, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3
Hedrick, James B.; Sinha, Shyama P.; Kosynkin, Valery D.
1997-01-01
The mineral loparite (Ce, NA, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3 is the principal ore of the light-group rare-earth elements (LREE) in Russia. The complex oxide has a perovskite (ABO3) structure with coupled substitutions, polymorphism, defect chemistry and a tendency to become metamict. The A site generally contains weakly bonded, easily exchanged cations of the LREE, Na and Ca. The B site generally contains smaller, highly charged cations of Ti, Nb or Fe+3. Mine production is from Russia's Kola Peninsula. Ore is beneficiated to produce a 95% loparite concentrate containing 30% rare-earth oxides. Loparite concentrate is refined by either a chlorination process or acid decomposition process to recover rare-earths, titanium, niobium and tantalum. Rare-earths are separated by solvent extraction and selective precipitation/dissolution. The concentrate is processed at plants in Russia, Estonia and Kazakstan.
Rare earth element scavenging in seawater
NASA Astrophysics Data System (ADS)
Byrne, Robert H.; Kim, Ki-Hyun
1990-10-01
Examinations of rare earth element (REE) adsorption in seawater, using a variety of surface-types, indicated that, for most surfaces, light rare earth elements (LREEs) are preferentially adsorbed compared to the heavy rare earths (HREEs). Exceptions to this behavior were observed only for silica phases (glass surfaces, acid-cleaned diatomaceous earth, and synthetic SiO 2). The affinity of the rare earths for surfaces can be strongly affected by thin organic coatings. Glass surfaces which acquired an organic coating through immersion in Tampa Bay exhibited adsorptive behavior typical of organic-rich, rather than glass, surfaces. Models of rare earth distributions between seawater and carboxylate-rich surfaces indicate that scavenging processes which involve such surfaces should exhibit a strong dependence on pH and carbonate complexation. Scavenging models involving carboxylate surfaces produce relative REE abundance patterns in good general agreement with observed shale-normalized REE abundances in seawater. Scavenging by carboxylate-rich surfaces should produce HREE enrichments in seawater relative to the LREEs and may produce enrichments of lanthanum relative to its immediate trivalent neighbors. Due to the origin of distribution coefficients as a difference between REE solution complexation (which increases strongly with atomic number) and surface complexation (which apparently also increases with atomic number) the relative solution abundance patterns of the REEs produced by scavenging reactions can be quite complex.
Resistivity and magnetoresistivity of amorphous rare-earth alloys
NASA Astrophysics Data System (ADS)
Borchi, E.; Poli, M.; De Gennaro, S.
1982-05-01
The resistivity and magnetoresistivity of amorphous rare-earth alloys are studied starting from the general approach of Van Peski-Tinbergen and Dekker. The random axial crystal-field and the magnetic correlations between the rare-earth ions are consistently taken into account. The characteristic features of the available experimental data are explained both of the case of random ferromagnetic and antiferromagnetic order.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Tai
Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.
Rare earth element (REE) based Nd-Fe-B and Sm-Co permanent magnets have been widely used because of their excellent magnetic properties. The applications of Nd-Fe-B and Sm-Co rare earth permanent magnets include hybrid electric vehicles (HEVs), power generators for wind tur...
Membrane assisted solvent extraction for rare earth element recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhave, Ramesh R.; Kim, Daejin; Peterson, Eric S.
Systems and methods for the recovery of rare earth elements are provided. The systems and methods generally include membrane assisted solvent extraction using permeable hollow fibers having an immobilized organic phase within the pores of the hollow fibers. The permeable hollow fibers are generally in contact with an acidic aqueous feed on one side thereof and a strip solution on another side thereof. The systems and methods generally include the simultaneous extraction and stripping of rare earth elements as a continuous recovery process that is well suited for post-consumer products, end-of-life products, and other recovery sources of rare earth elements.
Morey, G.B.; Setterholm, D.R.
1997-01-01
The relative abundance of rare earth elements in sediments has been suggested as a tool for determining their source rocks. This correlation requires that weathering, erosion, and sedimentation do not alter the REE abundances, or do so in a predictable manner. We find that the rare earth elements are mobilized and fractionated by weathering, and that sediments derived from the weathered materials can display modifications of the original pattern of rare earth elements of some due to grain-size sorting of the weathered material. However, the REE distribution pattern of the provenance terrane can be recognized in the sediments.
Wang, Xun; Li, Yadong
2003-11-21
Various low-dimensional nanostructures, such as nanowires, nanotubes, nanosheets, and fullerene-like nanoparticles have been selectively synthesized from rare-earth compounds (hydroxides, fluorides) based on a facile hydrothermal method. The subsequent dehydration, sulfidation, and fluoridation processes lead to the formation of rare-earth oxide, oxysulfide, and oxyhalide nanostructures, which can be functionalized further by doping with other rare-earth ions or by coating with metal nanoparticles. Owing to the interesting combination of novel nanostructures and functional compounds, these nanostructures can be expected to bring new opportunities in the vast research areas of and application in biology, catalysts, and optoelectronic devices.
Crystallographic phases in heavy rare earth metals under megabar pressures
NASA Astrophysics Data System (ADS)
Samudrala, G. K.; Vohra, Y. K.
2012-07-01
Experiments aimed at understanding the crystallographic phases of heavy rare earth metals were carried out in a diamond anvil cell at the Advanced Photon Source, Argonne National Laboratory. Heavy rare earth metals dysprosium (Dy), holmium (Ho), erbium (Er) and thulium (Tm) were compressed to multi-megabar pressures. The rare earth crystal sequence hcp→Sm-type→dhcp→distorted-fcc (dfcc) is observed in all four elements. Upon further compression, a structural transformation to a monoclinic C2/m phase has been observed. We summarize the results from these experiments and present Rietveld structural refinements on high pressure phases for the specific case of dysprosium.
Fascinating Magnetic Energy Storage Nanomaterials: A Brief Review.
Sreenivasulu, Kummari V; Srikanth, Vadali V S S
2017-07-10
In this brief review, the importance of nanotechnology in developing novel magnetic energy storage materials is discussed. The discussion covers recent patents on permanent magnetic materials and especially covers processing of permanent magnets (rare-earth and rare-earth free magnets), importance of rare-earth permanent magnets and necessity of rare-earth free permanent magnets. Magnetic energy storage materials are those magnetic materials which exhibit very high energy product (BH)max (where B is the magnetic induction in Gauss (G) whereas H is the applied magnetic field in Oersted (Oe)). (BH)max is the direct measure of the ability of a magnetic material to store energy. In this context, processing of magnetic energy storage composite materials constituted by soft and hard magnetic materials played a predominant role in achieving high (BH)max values due to the exchange coupling phenomenon between the soft and hard magnetic phases within the composite. Magnetic energy storage composites are normally composed of rare-earth magnetic materials as well as rare-earth free magnetic materials. Nanotechnology's influence on the enhancement of energy product due to the exchange coupling phenomenon is of great prominence and therefore discussed in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Lee, Sang-Joon; Park, Sung Soo; Lee, Sang Hyun; Hong, Sang-Hyun; Ha, Chang-Sik
2013-11-01
Transparent mesoporous silica plates doped with rare-earth metal oxide were prepared using solvent-evaporation method based on the self-organization between structure-directing agent and silicate in a non-aqueous solvent. A triblock copolymer, Pluronic (F127 or P123), was used as the structure-directing agent, while tetraethyl orthosilicate (TEOS) was used as a silica source. The pore diameter and the surface area of the mesoporous silica plate prepared with the optimized conditions were ca 40 A and 600 m2 g(-1), respectively, for both structure-directing agent. Rare-earth metal oxides (Eu, Tb, Tm oxide) in mesochannel were formed via one-step synthetic route based on the preparation method of a silica plate. Optical properties of rare-earth metal oxide-doped mesoporous silica plates were investigated by UV irradiation and photoluminescence (PL) spectroscopy. Under the exitation wavelength of 254 nm, the doped mesoporous silica plates emitted red, green and blue for Eu, Tb and Tm oxides, respectively. Rare-earth metal oxide-doped mesoporous silica plates showed enhanced PL intensity compared to that of the bulk rare-earth metal oxide.
2016-02-02
Earths ”, MS&T15-Materials Science and Technology 2015 Conference, Columbus, Ohio, October 4-8, 2015. 3. Dulikrvich, G.S., Reddy, S., Orlande, H.R.B...Schwartz, J.and Koch, C.C., “Multi-Objective Design and Optimization of Hard Magnetic Alloys Free of Rare Earths ”, MS&T15-Materials Science and Technology...AFRL-AFOSR-VA-TR-2016-0091 (BRI) Direct and Inverse Design Optimization of Magnetic Alloys with Minimized Use of Rare Earth Elements George
Spectral engineering of optical fiber through active nanoparticle doping
NASA Astrophysics Data System (ADS)
Lindstrom-James, Tiffany
The spectral engineering of optical fiber is a method of intentional doping of the core region in order to absorb/emit specific wavelengths of light therby providing enhanced performance over current fibers. Efforts here focused on developing an understanding of optically active nanoparticles based on alkaline earth fluorides that could be easily and homogeneously incorporated into the core of a silica based optical fiber preform and result in efficient and tailorable spectral emissions. Doped and undoped calcium, strontium and barium fluoride nanoparticles were successfully synthesized and characterized for their physical, chemical, and optical behavior. Distinct spectroscopic differences as a result of different host materials, varying rare earth doping levels and processing conditions, indicated the ability to influence the spectral behavior of the doped nanoparticle. By using photoluminescence to predict diffusion behavior, the application of a simple one dimensional model for diffusion provided a method for predicting the diffusion coefficient of europium ions in alkaline earth fluorides with order of magnitude accuracy. Modified chemical vapor deposition derived silica preforms were individually solution doped with europium doped alkaline earth fluoride nanoparticles. By using the rare earth doped alkaline earth fluoride nanoparticles as the dopant materials in the core of optical fiber preforms, the resultant optical properties of the glass were significantly influenced by their presence in the core. The incorporation of these rare earth doped alkaline earth fluoride nanoparticles was found to significantly influence the local chemical and structural environment about the rare earth ion, demonstrated homogeneity and uniform distribution of the rare earth dopant and resulted in specifically unique spectral behavior when compared to conventional doping methods. A more detailed structural model of the doped core glass region has been developed based on the spectral behavior of these active fiber preforms. It has been shown that rare earth doping of alkaline earth fluoride nanoparticles provides a material which can be 'tuned' to specific applications through the use of different host materials, processing conditions and doping levels of the rare earth and when used as dopant materials for active optical fibers, provides a means to tailor the optical behavior.
China's Rare Earth Supply Chain: Illegal Production, and Response to new Cerium Demand
NASA Astrophysics Data System (ADS)
Nguyen, Ruby Thuy; Imholte, D. Devin
2016-07-01
As the demand for personal electronic devices, wind turbines, and electric vehicles increases, the world becomes more dependent on rare earth elements. Given the volatile, Chinese-concentrated supply chain, global attempts have been made to diversify supply of these materials. However, the overall effect of supply diversification on the entire supply chain, including increasing low-value rare earth demand, is not fully understood. This paper is the first attempt to shed some light on China's supply chain from both demand and supply perspectives, taking into account different Chinese policies such as mining quotas, separation quotas, export quotas, and resource taxes. We constructed a simulation model using Powersim Studio that analyzes production (both legal and illegal), production costs, Chinese and rest-of-world demand, and market dynamics. We also simulated new demand of an automotive aluminum-cerium alloy in the US market starting from 2018. Results showed that market share of the illegal sector has grown since 2007-2015, ranging between 22% and 25% of China's rare earth supply, translating into 59-65% illegal heavy rare earths and 14-16% illegal light rare earths. There will be a shortage in certain light and heavy rare earths given three production quota scenarios and constant demand growth rate from 2015 to 2030. The new simulated Ce demand would require supply beyond that produced in China. Finally, we illustrate revenue streams for different ore compositions in China in 2015.
China’s rare earth supply chain: Illegal production, and response to new cerium demand
Nguyen, Ruby Thuy; Imholte, D. Devin
2016-03-29
As the demand for personal electronic devices, wind turbines, and electric vehicles increases, the world becomes more dependent on rare earth elements. Given the volatile, Chinese-concentrated supply chain, global attempts have been made to diversify supply of these materials. However, the overall effect of supply diversification on the entire supply chain, including increasing low-value rare earth demand, is not fully understood. This paper is the first attempt to shed some light on China’s supply chain from both demand and supply perspectives, taking into account different Chinese policies such as mining quotas, separation quotas, export quotas, and resource taxes. We constructedmore » a simulation model using Powersim Studio that analyzes production (both legal and illegal), production costs, Chinese and rest-of-world demand, and market dynamics. We also simulated new demand of an automotive aluminum-cerium alloy in the U.S. market starting from 2018. Results showed that market share of the illegal sector has grown since 2007 to 2015, ranging between 22% and 25% of China’s rare earth supply, translating into 59–65% illegal heavy rare earths and 14–16% illegal light rare earths. There would be a shortage in certain light and heavy rare earths given three production quota scenarios and constant demand growth rate from 2015 to 2030. The new simulated Ce demand would require supply beyond that produced in China. Lastly, we illustrated revenue streams for different ore compositions in China in 2015.« less
Bonnail, Estefanía; Pérez-López, Rafael; Sarmiento, Aguasanta M; Nieto, José Miguel; DelValls, T Ángel
2017-09-15
Lanthanide series have been used as a record of the water-rock interaction and work as a tool for identifying impacts of acid mine drainage (lixiviate residue derived from sulphide oxidation). The application of North-American Shale Composite-normalized rare earth elements patterns to these minority elements allows determining the origin of the contamination. In the current study, geochemical patterns were applied to rare earth elements bioaccumulated in the soft tissue of the freshwater clam Corbicula fluminea after exposure to different acid mine drainage contaminated environments. Results show significant bioaccumulation of rare earth elements in soft tissue of the clam after 14 days of exposure to acid mine drainage contaminated sediment (ΣREE=1.3-8μg/gdw). Furthermore, it was possible to biomonitor different degrees of contamination based on rare earth elements in tissue. The pattern of this type of contamination describes a particular curve characterized by an enrichment in the middle rare earth elements; a homologous pattern (E MREE =0.90) has also been observed when applied NASC normalization in clam tissues. Results of lanthanides found in clams were contrasted with the paucity of toxicity studies, determining risk caused by light rare earth elements in the Odiel River close to the Estuary. The current study purposes the use of clam as an innovative "bio-tool" for the biogeochemical monitoring of pollution inputs that determines the acid mine drainage networks affection. Copyright © 2017 Elsevier B.V. All rights reserved.
Fulle, Kyle; Sanjeewa, Liurukara D; McMillen, Colin D; Kolis, Joseph W
2017-10-01
Structural variations across a series of barium rare earth (RE) tetrasilicates are studied. Two different formulas are observed, namely those of a new cyclo-silicate fluoride, BaRE 2 Si 4 O 12 F 2 (RE = Er 3+ -Lu 3+ ) and new compounds in the Ba 2 RE 2 Si 4 O 13 (RE = La 3+ -Ho 3+ ) family, covering the whole range of ionic radii for the rare earth ions. The Ba 2 RE 2 Si 4 O 13 series is further subdivided into two polymorphs, also showing a dependence on rare earth ionic radius (space group P{\\overline 1} for La 3+ -Nd 3+ , and space group C2/c for Sm 3+ -Ho 3+ ). Two of the structure types identified are based on dinuclear rare earth units that differ in their crystal chemistries, particularly with respect to the role of fluorine as a structural director. The broad study of rare earth ions provides greater insight into understanding structural variations within silicate frameworks and the nature of f-block incorporation in oxyanion frameworks. The single crystals are grown from high-temperature (ca 953 K) hydrothermal fluids, demonstrating the versatility of the technique to access new phases containing recalcitrant rare earth oxides, enabling the study of structural trends.
Moriwaki, Hiroshi; Koide, Remi; Yoshikawa, Ritsuko; Warabino, Yuya; Yamamoto, Hiroki
2013-04-01
The aim of this study is to investigate the potential of cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis 168 to adsorb rare earth ions. Freeze-dried cell powders prepared from both strains were used for the evaluation of adsorption ability for the rare earth ions, namely, La(III), Eu(III), and Tm(III). The rare earth ions were efficiently adsorbed onto powders of both wild-type strain (WT powder) and lipoteichoic acid-defective strain (∆LTA powder) at pH 3. The maximum adsorption capacities for Tm(III) by WT and ∆LTA powders were 43 and 37 mg g(-1), respectively. Removal (in percent) of Tm(III), La(III), and Eu(III) from aqueous solution by WT powder was greater than by ∆LTA powder. These results indicate that rare earth ions are adsorbed to functional groups, such as phosphate and carboxyl groups, of lipoteichoic acid. We observed coagulated ∆LTA powder in the removal of rare earth ions (1-20 mg L(-1)) from aqueous solution. In contrast, sedimentation of WT powder did not occur under the same conditions. This unique feature of ∆LTA powder may be caused by the difference of the distribution between lipoteichoic acid and wall teichoic acid. It appears that ∆LTA powder is useful for removal of rare earth ions by adsorption, because aggregation allows for rapid separation of the adsorbent by filtration.
Energy Efficient Materials Manufacturing from Secondary Resources
NASA Astrophysics Data System (ADS)
Apelian, Diran; Mishra, Brajendra
Rare earths metals, including yttrium and scandium, are being increasingly used in clean energy technologies, colored phosphors, lasers and high intensity magnets. There are important defense applications such as fighter jet engines, missile guidance systems and space based satellite and communication systems, based on these metals. The commitment to clean energy technologies by various governments, as well as the projected growth in power and transportation sectors across the globe will certainly escalate the demand for rare earth metals and compounds. This demand implies that to ensure unhindered technological innovation, it is essential to possess secure supply chains for rare earth elements. The United States continues to be one of the largest consumers and importer of rare earths and the trend is expected to continue as the demand increases. In order to ensure secure rare earth supply and attenuate supply-demand imbalances post 2014, it is not only necessary to encourage and support exploration of newer reserves, build a rare earth stockpile, but it is also of utmost importance to look at opportunities to recycle and reuse Rare Earth Elements (REE) from secondary sources, such as post-consumer and manufacturing process wastes. This research describes the technological developments made to convert these valuable resources into functional manufactured materials for lighting industry, automotive and petroleum refining catalysts, and high density permanent magnets. In addition, production of rhenium from advanced aerospace alloys is also discussed from the perspective that it can be recovered for introduction in turbine alloys.
China’s rare earth supply chain: Illegal production, and response to new cerium demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ruby Thuy; Imholte, D. Devin
As the demand for personal electronic devices, wind turbines, and electric vehicles increases, the world becomes more dependent on rare earth elements. Given the volatile, Chinese-concentrated supply chain, global attempts have been made to diversify supply of these materials. However, the overall effect of supply diversification on the entire supply chain, including increasing low-value rare earth demand, is not fully understood. This paper is the first attempt to shed some light on China’s supply chain from both demand and supply perspectives, taking into account different Chinese policies such as mining quotas, separation quotas, export quotas, and resource taxes. We constructedmore » a simulation model using Powersim Studio that analyzes production (both legal and illegal), production costs, Chinese and rest-of-world demand, and market dynamics. We also simulated new demand of an automotive aluminum-cerium alloy in the U.S. market starting from 2018. Results showed that market share of the illegal sector has grown since 2007 to 2015, ranging between 22% and 25% of China’s rare earth supply, translating into 59–65% illegal heavy rare earths and 14–16% illegal light rare earths. There would be a shortage in certain light and heavy rare earths given three production quota scenarios and constant demand growth rate from 2015 to 2030. The new simulated Ce demand would require supply beyond that produced in China. Lastly, we illustrated revenue streams for different ore compositions in China in 2015.« less
Replacing the Rare Earth Intellectual Capital
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gschneidner, Jr., Karl
2011-04-01
The rare earth crisis slowly evolved during a 10 to 15 year period beginning in the mid-1980s, when the Chinese began to export mixed rare earth concentrates. In the early 1990s, they started to move up the supply chain and began to export the individual rare earth oxides and metals. By the late 1990s the Chinese exported higher value products, such as magnets, phosphors, polishing compounds, catalysts; and in the 21st century they supplied finished products including electric motors, computers, batteries, liquid-crystal displays (LCDs), TVs and monitors, mobile phones, iPods and compact fluorescent lamp (CFL) light bulbs. As they movedmore » to higher value products, the Chinese slowly drove the various industrial producers and commercial enterprises in the US, Europe and Japan out of business by manipulating the rare earth commodity prices. Because of this, the technically trained rare earth engineers and scientists who worked in areas from mining to separations, to processing to production, to manufacturing of semifinished and final products, were laid-off and moved to other fields or they retired. However, in the past year the Chinese have changed their philosophy of the 1970s and 1980s of forming a rare earth cartel to control the rare earth markets to one in which they will no longer supply the rest of the world (ROW) with their precious rare earths, but instead will use them internally to meet the growing demand as the Chinese standard of living increases. To this end, they have implemented and occasionally increased export restrictions and added an export tariff on many of the high demand rare earth elements. Now the ROW is quickly trying to start up rare earth mines, e.g. Molycorp Minerals in the US and Lynas Corp. in Australia, to cover this shortfall in the worldwide market, but it will take about five years for the supply to meet the demand, even as other mines in the ROW become productive. Unfortunately, today there is a serious lack of technically trained personnel to bring the entire rare earth industry, from mining to original equipment manufacturers (OEM), up to full speed in the next few years. Accompanying this decline in technical expertise, innovation and new products utilizing rare earth elements has slowed dramatically, and it may take a decade or more to recapture America's leading role in technological advancements of rare earth containing products. Before the disruption of the US rare earth industry, about 25,000 people were employed in all aspects of the industry from mining to OEM. Today, only about 1,500 people are employed in these fields. The ratio of non-technically trained persons to those with college degrees in the sciences or engineering varies from about 8 to 1 to about 4 to 1, depending on the particular area of the industry. Assuming an average of 6 to 1, the number of college degree scientists and engineers has decreased from about 4,000 to 250 employed today. In the magnetic industry the approximate numbers are: 6,000 total with 750 technically trained people in the 1980s to 500 totally employed today of which 75 have degrees. The paucity of scientists and engineers with experience and/or training in the various aspects of production and commercialization of the rare earths is a serious limitation to the ability of the US to satisfy its own needs for materials and technologies (1) to maintain our military strength and posture, (2) to assume leadership in critical energy technologies, and (3) to bring new consumer products to the marketplace. The lack of experts is of even greater national importance than the halting in the 1990s and the recent restart of the mining/benification/separation effort in the US; and thus governmental intervention and support for at least five to 10 years will be required to ameliorate this situation. To respond quickly, training programs should be established in conjunction with a national research center at an educational institution with a long tradition in multiple areas of rare earth and other critical elements research and technology. This center should form close affiliations with other universities, governmental laboratories and non-profit research organizations having complementary strengths. In addition, single investigators or small teams of rare earthers at other universities should be supported by the usual grants from NSF, DOD and DOE. These investigators may or may not be affiliated with the center.« less
Pujari, Vimal K.; Vartabedian, Ara; Collins, William T.; Woolley, David; Bateman, Charles
2012-12-18
The present invention relates generally to a multi-layered article suitable for service in severe environments. The article may be formed of a substrate, such as silicon carbide and/or silicon nitride. The substrate may have a first layer of a mixture of a rare earth silicate and Cordierite. The substrate may also have a second layer of a rare earth silicate or a mixture of a rare earth silicate and cordierite.
The impact of rare earth cobalt permanent magnets on electromechanical device design
NASA Technical Reports Server (NTRS)
Fisher, R. L.; Studer, P. A.
1979-01-01
Specific motor designs which employ rare earth cobalt magnets are discussed with special emphasis on their unique properties and magnetic field geometry. In addition to performance improvements and power savings, high reliability devices are attainable. Both the mechanism and systems engineering should be aware of the new performance levels which are currently becoming available as a result of the rare earth cobalt magnets.
The Hall Effect in Hydrided Rare Earth Films
NASA Astrophysics Data System (ADS)
Koon, D. W.; Azofeifa, D. E.; Clark, N.
We describe two new techniques for measuring the Hall effect in capped rare earth films during hydriding. In one, we simultaneously measure resistivity and the Hall coefficient for a rare earth film covered with four different thicknesses of Pd, recovering the charge transport quantities for both materials. In the second technique, we replace Pd with Mn as the covering layer. We will present results from both techniques.
Effects of Rare Earth Metals on Steel Microstructures
Pan, Fei; Zhang, Jian; Chen, Hao-Long; Su, Yen-Hsun; Kuo, Chia-Liang; Su, Yen-Hao; Chen, Shin-Hau; Lin, Kuan-Ju; Hsieh, Ping-Hung; Hwang, Weng-Sing
2016-01-01
Rare earth metals are used in semiconductors, solar cells and catalysts. This review focuses on the background of oxide metallurgy technologies, the chemical and physical properties of rare earth (RE) metals, the background of oxide metallurgy, the functions of RE metals in steelmaking, and the influences of RE metals on steel microstructures. Future prospects for RE metal applications in steelmaking are also presented. PMID:28773545
NASA Astrophysics Data System (ADS)
Jacobsohn, Luiz G.; Ballato, John
2017-06-01
Since the inaugural meeting in 2005, the Photoluminescence in Rare Earths: Photonic Materials and Devices (PRE) workshop has grown into a global forum for material scientists, chemists and physicists to discuss and debate the state of the art and future perspectives for photonic materials based on rare earth ions.
Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Ruhlandt-Senge, Karin; St Prix, Courtney; Zuniga, Maria F
2009-01-01
Treatment of a rare earth metal (Ln) and a potential divalent rare earth metal (Ln') or an alkaline earth metal (Ae) with 2,6-diphenylphenol (HOdpp) at elevated temperatures (200-250 degrees C) afforded heterobimetallic aryloxo complexes, which were structurally characterised. A charge-separated species [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] was obtained for a range of metals, demonstrating the similarities between the chemistry of the divalent rare earth metals and the alkaline earth metals. The [(Ln'/Ae)(2)(Odpp)(3)](+) cation in the heterobimetallic structures is unusual in that it consists solely of bridging aryloxide ligands. A molecular heterobimetallic species [AeEu(Odpp)(4)] (Ae = Ca, Sr, Ba) was obtained by treating an alkaline earth metal and Eu metal with HOdpp at elevated temperatures. Similarly, [BaSr(Odpp)(4)] was prepared by treating Ba metal and Sr metal with HOdpp. Treatment of [Ba(2)(Odpp)(4)] with [Mg(Odpp)(2)(thf)(2)] in toluene afforded [Ba(2)(Odpp)(3)][Mg(Odpp)(3)(thf)]. Analogous solution-based syntheses were not possible for [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] complexes, for which the free-metal route was essential. As a result of the absence of additional donor ligands, the crystal structures of the heterobimetallic complexes feature extensive pi-Ph-metal interactions involving the pendant phenyl groups of the Odpp ligands, thus enabling the large electropositive metal atoms to attain coordination saturation. The charge-separated heterobimetallic species were purified by extraction with toluene/thf mixtures at ambient temperature (Ba-containing compounds) or by extraction with toluene under pressure above the boiling point of the solvent (other products). In donor solvents, heterobimetallic complexes other than those containing barium were found to fragment into homometallic species.
Quaternary borocarbides: New class of intermetallic superconductors
NASA Technical Reports Server (NTRS)
Nagarajan, R.; Gupta, L. C.; Dhar, S. K.; Mazumdar, Chandan; Hossain, Zakir; Godart, C.; Levy-Clement, C.; Padalia, B. D.; Vijayaraghavan, R.
1995-01-01
Our recent discovery of superconductivity (SC) in the four-element multiphase Y-Ni-B-C system at an elevated temperature (TC approximately 12 K) has opened up great possibilities of identifying new superconducting materials and generating new physics. Superconductivity with Tc (greater than 20 K) higher than that known so far in bulk intermetallics has been observed in multiphase Y-Pd-B-C and Th-Pd-B-C systems and a family of single phase materials RENi2B2C (RE= Y, rare earth) have been found. Our investigations show YNi2B2C to be a strong coupling hard type-II SC. HC2(T) exhibits an unconventional temperature dependence. Specific heat and magnetization studies reveal coexistence of SC and magnetism in RNi2B2C (R = Ho, Er, Tm) with magnetic ordering temperatures (Tc approximately 8 K, 10.5 K, 11 K and Tm approximately 5 K, approximately 7K, approximately 4 K respectively) that are remarkably higher than those in known magnetic superconductors . Mu-SR studies suggest the possibility of Ni atoms carrying a moment in TmNi2B2C. Resistivity results suggests a double re-entrant transition (SC-normal-SC) in HoNi2B2C. RENi2B2C (RE = Ce, Nd, Gd) do not show SC down to 4.2 K. The Nd- and Gd-compounds order magnetically at approximately 4.5 K and approximately 19.5 K, respectively. Two SC transitions are observed in Y-Pd-B-C (Tc approximately 22 K, approximately 10 K) and in Th-Pd-B-C (Tc approximately 20 K, approximately 14 K) systems, which indicate that there are at least two structures which support SC in these borocarbides. In our multiphase ThNi2B2C we observe SC at approximately 6 K. No SC was seen in multiphase UNi2B2C, UPd2B2C, UOs2Ge2C and UPd5B3C(0.35) down to 4.2 K. Tc in YNi2B2C is depressed by substitutions (Gd, Th and U at Y-sites and Fe, Co at Ni-sites).
NASA Astrophysics Data System (ADS)
Hart, Matthew
This paper develops scenarios of future rare-earth-magnet metal (neodymium, dysprosium, terbium, and praseodymium) consumption in the permanent magnets used in wind turbines and hybrid electric vehicles. The scenarios start with naive base-case scenarios for growth in wind-turbine and hybrid-electric-vehicle sales over the period 2011 to 2020, using historical data for each good. These naive scenarios assume that future growth follows time trends in historical data and does not depend on any exogenous variable. Specifically, growth of each technological market follows historical time trends, and the amount of rare earths used per unit of technology remains fixed. The chosen reference year is 2010. Implied consumptions of the rare earth magnet metals are calculated from these scenarios. Assumptions are made for the material composition of permanent magnets, the market share of permanent-magnet wind turbines and vehicles, and magnet weight per unit of technology. Different scenarios estimate how changes in factors like the material composition of magnets, growth of the economy, and the price of a substitute could affect future consumption. Each scenario presents a different method for reducing rare earth consumption and could be interpreted as potential policy choices. In 2010, the consumption (metric tons, rare-earth-oxide equivalent) of each rare-earth-magnet metal was as follows. Total neodymium consumption in the world for both technologies was 995 tons; dysprosium consumption was 133 tons; terbium consumption was 50 tons; praseodymium consumption was zero tons. The base scenario for wind turbines shows there could be strong, exponential growth in the global wind turbine market. New U.S. sales of hybrid vehicles would decline (in line with the current economic recession) while non-U.S. sales increase through 2020. There would be an overall increase in the total amount of magnetic rare earths consumed in the world. Total consumption of each rare earth in the short-term (2015) and mid-term (2020) scenarios could be between: 1,984 to 6,475 tons (2015) and 3,487 to 13,763 tons (2020) of neodymium; 331 to 864 tons (2015) and 587 to 1,834 tons (2020) of dysprosium; 123 to 325 tons (2015) and 219 to 687 tons (2020) of terbium; finally, zero to 871 tons (2015) and zero to 1,493 tons (2020) of praseodymium. Hybrid vehicle sales in non-U.S. countries could account for a large portion of magnetic rare earth consumption. Wind turbine and related rare earth consumption growth will also be driven by non-U.S. countries, especially developing nations like China. Despite wind turbines using bigger magnets, the sheer volume of hybrids sold and non-U.S. consumers could account for most future consumption of permanent magnets and their rare earths.
NASA Astrophysics Data System (ADS)
Gorla, Sai Prasanth
Chemistry of intermetallic bonded diamond is studied. The impact resistance and energies of intermetallic bonded diamond is compared to current poly crystalline diamond compacts. IBD's are found to have high standards of hardness and have more impact energies absorbed. Intermetallic bonded diamond composite comprises of diamond particles dispersed in Tungsten carbide using Nickel aluminide (Ni3Al) as binder. In previous research conducted on IBD's, diamonds are successfully dispersed in intermetallic alloy of nickel aluminide and processed at 1350°C such that diamond particles remain intact without forming graphite. Composites are formed by milling, pressing the intermetallic binder and diamond particles and sintering at high temperature conditions.
Synthesis and characterization of rare-earth-doped calcium tungstate nanocrystals
NASA Astrophysics Data System (ADS)
Suneeta, P.; Rajesh, Ch.; Ramana, M. V.
2018-02-01
In this paper, we report synthesis and characterization of rare-earth-ion-doped calcium tungstate (CaWO4) nanocrystals (NCs). Rare-earth ions, such as gadolinium (Gd), neodymium (Nd), praseodymium (Pr), samarium (Sm) and holmium (Ho), were successfully doped in the CaWO4 NCs by changing the synthesis conditions. The adopted synthesis route was found to be fast and eco-friendly. Structural characterizations, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and compositional analysis, were performed using energy dispersive analysis of X-rays (EDAX) on as-synthesized NCs. The results indicate the size of the NCs ranging between 47 to 68nm and incorporation of rare-earth ions in CaWO4 NCs.
Method for treating rare earth-transition metal scrap
Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.
1992-12-29
Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a prefused, rare earth fluoride-bearing flux of CaF.sub.2, CaCl.sub.2 or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy.
Method for treating rare earth-transition metal scrap
Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.
1992-12-29
Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a rare earth fluoride-bearing flux of CaF[sub 2], CaCl[sub 2] or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy. 3 figs.
Calcium-bismuth electrodes for large-scale energy storage (liquid metal batteries)
NASA Astrophysics Data System (ADS)
Kim, Hojong; Boysen, Dane A.; Ouchi, Takanari; Sadoway, Donald R.
2013-11-01
Calcium is an attractive electrode material for use in grid-scale electrochemical energy storage due to its low electronegativity, earth abundance, and low cost. The feasibility of combining a liquid Ca-Bi positive electrode with a molten salt electrolyte for use in liquid metal batteries at 500-700 °C was investigated. Exhibiting excellent reversibility up to current densities of 200 mA cm-2, the calcium-bismuth liquid alloy system is a promising positive electrode candidate for liquid metal batteries. The measurement of low self-discharge current suggests that the solubility of calcium metal in molten salt electrolytes can be sufficiently suppressed to yield high coulombic efficiencies >98%. The mechanisms giving rise to Ca-Bi electrode overpotentials were investigated in terms of associated charge transfer and mass transport resistances. The formation of low density Ca11Bi10 intermetallics at the electrode-electrolyte interface limited the calcium deposition rate capability of the electrodes; however, the co-deposition of barium into bismuth from barium-containing molten salts suppressed Ca-Bi intermetallic formation thereby improving the discharge capacity.
Yin, Shaohua; Pei, Jiannan; Jiang, Feng; Li, Shiwei; Peng, Jinhui; Zhang, Libo; Ju, Shaohua; Srinivasakannan, Chandrasekar
2018-03-01
The in situ leaching process of China's unique ion-adsorption rare earth ores has caused severe environmental damages due to the use of (NH 4 ) 2 SO 4 solution. This study reports that magnesium sulfate (MgSO 4 ) as a leaching agent would replace (NH 4 ) 2 SO 4 by ultrasonically assisted leaching to deal with the ammonia-nitrogen pollution problem and enhance leaching process. At leaching conditions of 3wt% MgSO 4 concentration, 3:1L/S ratio and 30min, the total rare earth leaching efficiency reaches 75.5%. Ultrasound-assisted leaching experiments show that the leaching efficiency of rare earths is substantially increased by introducing ultrasound, and nearly completely leached out after two stage leaching process. Thus, ultrasonic-assisted leaching process with MgSO 4 is not only effective but also environmentally friendly, and beneficial to leach rare earths at laboratory scale. Copyright © 2017 Elsevier B.V. All rights reserved.
Contributed Review: A review of the investigation of rare-earth dopant profiles in optical fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidiroglou, F.; Baxter, G.; Roberts, A.
Rare-earth doped optical fibers have captivated the interest of many researchers around the world across the past three decades. The growth of this research field has been stimulated primarily through their application in optical communications as fiber lasers and amplifiers, although rare-earth doped optical fiber based devices are now finding important uses in many other scientific and industrial areas (for example, medicine, sensing, the military, and material processing). Such wide commercial interest has provided a strong incentive for innovative fiber designs, alternative glass compositions, and novel fabrication processes. A prerequisite for the ongoing progress of this research field is developingmore » the capacity to provide high resolution information about the rare-earth dopant distribution profiles within the optical fibers. This paper constitutes a comprehensive review of the imaging techniques that have been utilized in the analysis of the distribution of the rare-earth ion erbium within the core of optical fibers.« less
Catalytic Graphitization of Coal-Based Carbon Materials with Light Rare Earth Elements.
Wang, Rongyan; Lu, Guimin; Qiao, Wenming; Yu, Jianguo
2016-08-30
The catalytic graphitization mechanism of coal-based carbon materials with light rare earth elements was investigated using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, selected-area electron diffraction, and high-resolution transmission electron microscopy. The interface between light rare earth elements and carbon materials was carefully observed, and two routes of rare earth elements catalyzing the carbon materials were found: dissolution-precipitation and carbide formation-decomposition. These two simultaneous processes certainly accelerate the catalytic graphitization of carbon materials, and light rare earth elements exert significant influence on the microstructure and thermal conductivity of graphite. Moreover, by virtue of praseodymium (Pr), it was found that a highly crystallographic orientation of graphite was induced and formed, which was reasonably attributed to the similar arrangements of the planes perpendicular to (001) in both graphite and Pr crystals. The interface between Pr and carbon was found to be an important factor for the orientation of graphite structure.
Separation of the rare-earth fission product poisons from spent nuclear fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christian, Jerry D.; Sterbentz, James W.
A method for the separation of the rare-earth fission product poisons comprising providing a spent nuclear fuel. The spent nuclear fuel comprises UO.sub.2 and rare-earth oxides, preferably Sm, Gd, Nd, Eu oxides, with other elements depending on the fuel composition. Preferably, the provided nuclear fuel is a powder, preferably formed by crushing the nuclear fuel or using one or more oxidation-reduction cycles. A compound comprising Th or Zr, preferably metal, is provided. The provided nuclear fuel is mixed with the Th or Zr, thereby creating a mixture. The mixture is then heated to a temperature sufficient to reduce the UO.sub.2more » in the nuclear fuel, preferably to at least to 850.degree. C. for Th and up to 600.degree. C. for Zr. Rare-earth metals are then extracted to form the heated mixture thereby producing a treated nuclear fuel. The treated nuclear fuel comprises the provided nuclear fuel having a significant reduction in rare-earths.« less
Hong, Jianquan; Tian, Haiwen; Zhang, Lixin; Zhou, Xigeng; Del Rosal, Iker; Weng, Linhong; Maron, Laurent
2018-01-22
The preferential substitution of oxo ligands over alkyl ones of rare-earth complexes is commonly considered as "impossible" due to the high oxophilicity of metal centers. Now, it has been shown that simply assembling mixed methyl/oxo rare-earth complexes to a rigid trinuclear cluster framework cannot only enhance the activity of the Ln-oxo bond, but also protect the highly reactive Ln-alkyl bond, thus providing a previously unrecognized opportunity to selectively manipulate the oxo ligand in the presence of numerous reactive functionalities. Such trimetallic cluster has proved to be a suitable platform for developing the unprecedented non-redox rare-earth-mediated oxygen atom transfer from ketones to CS 2 and PhNCS. Controlled experiments and computational studies shed light on the driving force for these reactions, emphasizing the importance of the sterical accessibility and multimetallic effect of the cluster framework in promoting reversal of reactivity of rare-earth oxo complexes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Xiaobo; Jin, Xiaozhe; Pan, Wei; Wang, Jinping
2014-11-26
In the present paper, La, Eu and Yb were selected to represent light, middle and heavy rare earths to form complexes with polysaccharides through chelating coordination of carboxyl groups, which were added into polysaccharide chains by means of carboxymethylation. Their antifungal activities against plant pathogenic fungi were evaluated using growth rate method. These rare earth complexes exhibited various antifungal activities against the tested fungi, depending on rare earth elements, polysaccharide types and fungal species. Among these three metal elements (i.e. La, Eu and Yb), Yb formed the complexes with the most effective antifungal properties. Furthermore, the results showed that ligands of carboxymethylated polysaccharides played a key role in promoting cytotoxicity of the rare earth complexes. Carboxymethylated Ganoderma applanatum polysaccharide (CGAP) was found to be the most effective ligand to form complexes with antifungal activities, followed by carboxymethylated lentinan (CLNT) and carboxymethylated Momordica charantia polysaccharide (CMCP). Copyright © 2014 Elsevier Ltd. All rights reserved.
Micromagnetics of rare-earth efficient permanent magnets
NASA Astrophysics Data System (ADS)
Fischbacher, Johann; Kovacs, Alexander; Gusenbauer, Markus; Oezelt, Harald; Exl, Lukas; Bance, Simon; Schrefl, Thomas
2018-05-01
The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficiently high magnetic anisotropy. In addition to the intrinsic magnetic properties the microstructure of the magnet plays a significant role in establishing coercivity. The influence of the microstructure on coercivity, remanence, and energy density product can be understood by using micromagnetic simulations. With advances in computer hardware and numerical methods, hysteresis curves of magnets can be computed quickly so that the simulations can readily provide guidance for the development of permanent magnets. The potential of rare-earth reduced and rare-earth free permanent magnets is investigated using micromagnetic simulations. The results show excellent hard magnetic properties can be achieved in grain boundary engineered NdFeB, rare-earth magnets with a ThMn12 structure, Co-based nano-wires, and L10-FeNi provided that the magnet’s microstructure is optimized.
Du, Shanshan; Yin, Jianhao; Chi, Yue; Xu, Ling; Zhang, Wen-Xiong
2017-12-11
The [3+1] fragmentation reaction of rare-earth metallacyclopentadienes 1 a-c with 0.5 equivalents of P 4 affords a series of rare-earth metal cyclo-P 3 complexes 2 a-c and a phospholyl anion 3. 2 a-c demonstrate an unusual η 3 coordination mode with one P-P bond featuring partial π-bonding character. 2 a-c are the first cyclo-P 3 complexes of rare-earth metals, and also the first organo-substituted polyphosphides in the category of Group 3 and f-block elements. Rare-earth metallacyclopentadienes play a dual role in the combination of aromatization and Diels-Alder reaction. Compounds 2 a-c can coordinate to one or two [W(CO) 5 ] units, yielding 4 a-c or 5 c, respectively. Furthermore, oxidation of 2 a with p-benzoquinone produces its corresponding phospholyllithium and regenerated P 4 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanoparticulate-catalyzed oxygen transfer processes
Hunt, Andrew T [Atlanta, GA; Breitkopf, Richard C [Dunwoody, GA
2009-12-01
Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen. Stages can be alone or combined. Parallel reactors can provide continuous reactant flow. Each of the processes can be carried out individually.
Rare earths: Market disruption, innovation, and global supply chains
Eggert, Roderick; Wadia, Cyrus; Anderson, Corby; Bauer, Diana; Fields, Fletcher; Meinert, Lawrence D.; Taylor, Patrick
2016-01-01
Rare earths, sometimes called the vitamins of modern materials, captured public attention when their prices increased more than ten-fold in 2010 and 2011. As prices fell between 2011 and 2016, rare earths receded from public view—but less visibly they became a major focus of innovative activity in companies, government laboratories and universities. Geoscientists worked to better understand the resource base and improve our knowledge about mineral deposits that will be mines in the future. Process engineers carried out research that is making primary production and recycling more efficient. Materials scientists and engineers searched for substitutes that will require fewer or no rare earths while providing properties comparable or superior to those of existing materials. As a result, even though global supply chains are not significantly different now than they were before the market disruption, the innovative activity motivated by the disruption likely will have far-reaching, if unpredictable, consequences for supply chains of rare earths in the future.
NASA Astrophysics Data System (ADS)
Chen, Zhenping; Zhang, Jincang; Su, Yuling; Xue, Yuncai; Cao, Shixun
2006-02-01
The effects of rare-earth ionic size on the local electron structure, lattice parameters and superconductivity have been investigated by positron annihilation technique (PAT) and related experiments for RBa 2Cu 3O 7- δ (R = Tm, Dy, Gd, Eu, Nd and Y) superconductors. The local electron density ne is evaluated as a function of the rare-earth radius. The results show that both the bulk-lifetime τB and the defect lifetime τ2 increase with increasing rare-earth ionic radius, while the local electron density ne decrease with increasing rare-earth ionic radius. These results prove that the changes of ne, the degree of orthorhombic distortion and the coupling between the Cu-O chains and the CuO 2 planes all have an effect on the superconductivity of RBa 2Cu 3O 7- δ systems.
The Rare Earth Magnet Industry and Rare Earth Price in China
NASA Astrophysics Data System (ADS)
Ding, Kaihong
2014-07-01
In the past four years, the price of rare earth metal fluctuates sharply for many reasons. Currently, it has become more stable and more reasonable. This presentation is focused on the effect about the rare earth metal price. Some motor manufacturers have shifted from rare earth permanent magnet to ferrite magnet. Many motor manufacturers changed the design for the motor cooling system to make the motor function at a lower temperature. Thus the consumption of Dy can be markedly reduced. As for manufacturer of NdFeB magnet, we are also trying to optimize our process to reduce to dependence of HREE such as Dy and Tb. HS process have been introduced to solve the problem. With more and more people focusing and engaging on the REE industry, the price of REE will be more transparent without too many fluctuations. China is considering the problems of balancing the environment, energy sources, and labor sources. The application field about NdFeB such as wind turbine generator, HEV/EV, FA /OA is flourishing.
Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong
2016-01-29
Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (<1.0 wt %) to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al-5Mg-Mn alloy with low Fe content (<0.1 wt %), intermetallic Al₆(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al₆(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al-5Mg-Mn alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.
Krikorian, Oscar H.; Curtis, Paul G.
1992-01-01
An improved molten metal containment vessel is disclosed in which wetting of the vessel's inner wall surfaces by molten metal is inhibited by coating at least the inner surfaces of the containment vessel with one or more rare earth oxysulfide or rare earth sulfide compounds to inhibit wetting and or adherence by the molten metal to the surfaces of the containment vessel.
Optical Properties of Nd Doped Rare Earth Vanadates (Preprint)
2010-07-01
Rare earth orthovanadates are being used as substitute for traditional solid state laser hosts such as yttrium aluminium garnet (YAG). While the most...common of these is yttrium orthovanadate, other rare earth vanadates such as lutetium vanadate and gadolinium vanadate are being used for their... gadolinium vanadate are being used for their special properties in certain applications. We report new measurements of the refractive indices and thermo
Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Buttleman, Kim P.
2011-01-01
There is increased concern about the future availability of rare earth elements (REE) because of China's dominance as the supplier of more than 95 percent of world REE output, their decision to restrict exports of rare earth products, and the rapid increase in world-wide consumption of rare earth product. As a result, countries such as the United States, Japan, and member nations of the European Union face a future of tight supplies and high prices for rare earth products unless other sources of REE are found and developed (Long and others, 2010; U.S. Geological Survey, 2011, p. 128-129, 184-185). We report and describe a significant new deposit of light rare earth elements (LREE), estimated at 1 Mt, within the Khanneshin carbonatite complex of south Afghanistan. The potential resource is located in a remote and rugged part of the igneous complex in a region previously identified by Soviet geologists in the 1970s. This report reviews the geologic setting of LREE deposit, presents new geochemical data documenting the grade of LREE mineralization, briefly describes the mineralogy and mineralogical associations of the deposit, and presents a preliminary estimate of LREE resources based on our current understanding of the geology.
Computational search for rare-earth free hard-magnetic materials
NASA Astrophysics Data System (ADS)
Flores Livas, José A.; Sharma, Sangeeta; Dewhurst, John Kay; Gross, Eberhard; MagMat Team
2015-03-01
It is difficult to over state the importance of hard magnets for human life in modern times; they enter every walk of our life from medical equipments (NMR) to transport (trains, planes, cars, etc) to electronic appliances (for house hold use to computers). All the known hard magnets in use today contain rare-earth elements, extraction of which is expensive and environmentally harmful. Rare-earths are also instrumental in tipping the balance of world economy as most of them are mined in limited specific parts of the world. Hence it would be ideal to have similar characteristics as a hard magnet but without or at least with reduced amount of rare-earths. This is the main goal of our work: search for rare-earth-free magnets. To do so we employ a combination of density functional theory and crystal prediction methods. The quantities which define a hard magnet are magnetic anisotropy energy (MAE) and saturation magnetization (Ms), which are the quantities we maximize in search for an ideal magnet. In my talk I will present details of the computation search algorithm together with some potential newly discovered rare-earth free hard magnet. J.A.F.L. acknowledge financial support from EU's 7th Framework Marie-Curie scholarship program within the ``ExMaMa'' Project (329386).
Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements
NASA Astrophysics Data System (ADS)
Kato, Yasuhiro; Fujinaga, Koichiro; Nakamura, Kentaro; Takaya, Yutaro; Kitamura, Kenichi; Ohta, Junichiro; Toda, Ryuichi; Nakashima, Takuya; Iwamori, Hikaru
2011-08-01
World demand for rare-earth elements and the metal yttrium--which are crucial for novel electronic equipment and green-energy technologies--is increasing rapidly. Several types of seafloor sediment harbour high concentrations of these elements. However, seafloor sediments have not been regarded as a rare-earth element and yttrium resource, because data on the spatial distribution of these deposits are insufficient. Here, we report measurements of the elemental composition of over 2,000 seafloor sediments, sampled at depth intervals of around one metre, at 78 sites that cover a large part of the Pacific Ocean. We show that deep-sea mud contains high concentrations of rare-earth elements and yttrium at numerous sites throughout the eastern South and central North Pacific. We estimate that an area of just one square kilometre, surrounding one of the sampling sites, could provide one-fifth of the current annual world consumption of these elements. Uptake of rare-earth elements and yttrium by mineral phases such as hydrothermal iron-oxyhydroxides and phillipsite seems to be responsible for their high concentration. We show that rare-earth elements and yttrium are readily recovered from the mud by simple acid leaching, and suggest that deep-sea mud constitutes a highly promising huge resource for these elements.
The Link Between Rare-Earth Peak Formation and the Astrophysical Site of the R Process
Mumpower, Matthew R.; McLaughlin, Gail C.; Surman, Rebecca; ...
2016-12-20
The primary astrophysical source of the rare-earth elements is the rapid neutron capture process (r process). The rare-earth peak that is seen in the solar r-process residuals has been proposed to originate as a pile-up of nuclei during the end of the r process. Here, we introduce a new method utilizing Monte Carlo studies of nuclear masses in the rare-earth region, that includes self-consistently adjusting β-decay rates and neutron capture rates, to find the mass surfaces necessary for the formation of the rare-earth peak. We demonstrate our method with two types of astrophysical scenario, one corresponding to conditions typical ofmore » hot winds from core-collapse supernovae and stellar-mass accretion disks, and one corresponding to conditions typical of the ejection of the material from the tidal tails of neutron star mergers. In each type of astrophysical condition, this method successfully locates a region of enhanced stability in the mass surface that is responsible for the rare-earth peak. Finally, for each scenario, we find that the change in the mass surface has qualitatively different features, thus future measurements can shed light on the type of environment in which the r process occurred.« less
Rare Earth Extraction from NdFeB Magnet Using a Closed-Loop Acid Process.
Kitagawa, Jiro; Uemura, Ryohei
2017-08-14
There is considerable interest in extraction of rare earth elements from NdFeB magnets to enable recycling of these elements. In practical extraction methods using wet processes, the acid waste solution discharge is a problem that must be resolved to reduce the environmental impact of the process. Here, we present an encouraging demonstration of rare earth element extraction from a NdFeB magnet using a closed-loop hydrochloric acid (HCl)-based process. The extraction method is based on corrosion of the magnet in a pretreatment stage and a subsequent ionic liquid technique for Fe extraction from the HCl solution. The rare earth elements are then precipitated using oxalic acid. Triple extraction has been conducted and the recovery ratio of the rare earth elements from the solution is approximately 50% for each extraction process, as compared to almost 100% recovery when using a one-shot extraction process without the ionic liquid but with sufficient oxalic acid. Despite its reduced extraction efficiency, the proposed method with its small number of procedures at almost room temperature is still highly advantageous in terms of both cost and environmental friendliness. This study represents an initial step towards realization of a closed-loop acid process for recycling of rare earth elements.
Yin, Dongguang; Liu, Yumin; Zhao, Feifei; Zhang, Xinyu; Zhang, Tingting; Wu, Chenglong; Chang, Na; Chen, Zhiwen
2018-05-01
It has been reported that coupling TiO2 with rare earth upconversion nanocrystals (UCNCs) is an efficient strategy to significantly improve photocatalytic activity of TiO2. However, the rare earth materials are scarcity and cost, and the synthesis process of UCNCs using the rare earth materials is complicated. In the present study, we have designed a new approach using a rare earth-free upconversion nanocrystal (REF-UCNCs) as upconversion luminescent material to replace the rare earth UCNCs. A novel nanocomposite photocatalyst of REF-UCNCs@P25: Mo/GN was developed for the first time. Based on the designed structure, the REF-UCNCs, Mo-doping, and GN (graphene) have a synergistic effect that can improve catalytic activity of P25 significantly. The results of photocatalytic experiments using RhB as a model pollutant under simulated solar light irradiation show that the photocatalytic efficiency of the as-prepared catalyst is 3-folds higher than that of benchmark substance P25. This work provides a new strategy for efficiently improving catalytic activity of semiconductor photocatalysts by coupling with REF-UCNCs. This approach is facile and low-cost which can be widely applied for modification of semiconductor photocatalysts and facilitates their applications in environmental protection issues using solar light.
The Link Between Rare-Earth Peak Formation and the Astrophysical Site of the R Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumpower, Matthew R.; McLaughlin, Gail C.; Surman, Rebecca
The primary astrophysical source of the rare-earth elements is the rapid neutron capture process (r process). The rare-earth peak that is seen in the solar r-process residuals has been proposed to originate as a pile-up of nuclei during the end of the r process. Here, we introduce a new method utilizing Monte Carlo studies of nuclear masses in the rare-earth region, that includes self-consistently adjusting β-decay rates and neutron capture rates, to find the mass surfaces necessary for the formation of the rare-earth peak. We demonstrate our method with two types of astrophysical scenario, one corresponding to conditions typical ofmore » hot winds from core-collapse supernovae and stellar-mass accretion disks, and one corresponding to conditions typical of the ejection of the material from the tidal tails of neutron star mergers. In each type of astrophysical condition, this method successfully locates a region of enhanced stability in the mass surface that is responsible for the rare-earth peak. Finally, for each scenario, we find that the change in the mass surface has qualitatively different features, thus future measurements can shed light on the type of environment in which the r process occurred.« less
THE LINK BETWEEN RARE-EARTH PEAK FORMATION AND THE ASTROPHYSICAL SITE OF THE R PROCESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumpower, Matthew R.; McLaughlin, Gail C.; Surman, Rebecca
The primary astrophysical source of the rare-earth elements is the rapid neutron capture process ( r process). The rare-earth peak that is seen in the solar r -process residuals has been proposed to originate as a pile-up of nuclei during the end of the r process. We introduce a new method utilizing Monte Carlo studies of nuclear masses in the rare-earth region, that includes self-consistently adjusting β -decay rates and neutron capture rates, to find the mass surfaces necessary for the formation of the rare-earth peak. We demonstrate our method with two types of astrophysical scenario, one corresponding to conditionsmore » typical of hot winds from core-collapse supernovae and stellar-mass accretion disks, and one corresponding to conditions typical of the ejection of the material from the tidal tails of neutron star mergers. In each type of astrophysical condition, this method successfully locates a region of enhanced stability in the mass surface that is responsible for the rare-earth peak. For each scenario, we find that the change in the mass surface has qualitatively different features, thus future measurements can shed light on the type of environment in which the r process occurred.« less
Zeng, Chang-yu; Ding, Ru-xin; Li, Hong-zhong; Zhou, Yong-zhang; Niu, Jia; Zhang, Jie-tang
2015-11-01
Pangxidong composite granitoid pluton located in the southwestern margin of Yunkai massif. The metamorphic grade of this pluton increases from outside to inside, that is, banded-augen granitic gneisses, gneissoid granites and granites distribute in order from edge to core. X-Ray Fluorescence Spectroscopy and Plasma Mass Spectrometry are conducted to study the geochemical characteristics of the three types of rocks. The result shows that all the three types of rocks are peraluminous rocks and their contents of main elements and rare earth elements change gradually. From granitic gneisses to granites, the contents of Al₂O₃, CaO, MgO, TiO₂, total rare earth elements and light rare earth elements increase, but the contents of SiO₂ and heavy rare earth elements decrease. It is suggested that the phylogenetic relationship exists between granitic gneisses, gneissoid granites and granites during the multi-stage tectonic evolution process. Furthermore, the remelting of metamorphosed supracrustal rocks in Yunkai massif is probably an important cause of granitoid rocks forming. The evolutionary mechanism is probably that SiO₂ and heavy rare earth elements were melt out from the protolith and gradually enriched upward, but Al₂O₃, CaO, MgO, TiO₂ and light rare earth elements enriched downward.
Effects of rare earth doping on multi-core iron oxide nanoparticles properties
NASA Astrophysics Data System (ADS)
Petran, Anca; Radu, Teodora; Borodi, Gheorghe; Nan, Alexandrina; Suciu, Maria; Turcu, Rodica
2018-01-01
New multi-core iron oxide magnetic nanoparticles doped with rare earth metals (Gd, Eu) were obtained by a one step synthesis procedure using a solvothermal method for potential biomedical applications. The obtained clusters were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray microanalysis (EDX), X-ray photoelectron spectroscopy (XPS) and magnetization measurements. They possess high colloidal stability, a saturation magnetization of up to 52 emu/g, and nearly spherical shape. The presence of rare earth ions in the obtained samples was confirmed by EDX and XPS. XRD analysis proved the homogeneous distribution of the trivalent rare earth ions in the inverse-spinel structure of magnetite and the increase of crystal strain upon doping the samples. XPS study reveals the valence state and the cation distribution on the octahedral and tetrahedral sites of the analysed samples. The observed shift of the XPS valence band spectra maximum in the direction of higher binding energies after rare earth doping, as well as theoretical valence band calculations prove the presence of Gd and Eu ions in octahedral sites. The blood protein adsorption ability of the obtained samples surface, the most important factor of the interaction between biomaterials and body fluids, was assessed by interaction with bovine serum albumin (BSA). The rare earth doped clusters surface show higher afinity for binding BSA. In vitro cytotoxicity test results for the studied samples showed no cytotoxicity in low and medium doses, establishing a potential perspective for rare earth doped MNC to facilitate multiple therapies in a single formulation for cancer theranostics.
Solidification Based Grain Refinement in Steels
2010-07-20
methods which worked in the SVSU foundry. However, additions of NbO powder, FeTi, misch metal , and rare earth silicide were successful. Misch metal ...and rare earth silicide additions at the ladle are the most promising from an industrial stand point. The project group has begun preparing for the... metal and rare earth silicide additions have also reduced grain size and improved hardness. Instructions: You may use this MS Word file to submit the
Dean Stull
2016-05-24
Experimental results from several studies exploring the impact of pH and acid volume on the stripping of rare earth elements (REEs) loaded onto ligand-based media via an active column. The REEs in this experiment were loaded onto the media through exposure to a simulated geothermal brine with known mineral concentrations. The data include the experiment results, rare earth element concentrations, and the experimental parameters varied.
Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles
Fulton, John L.; Hoffmann, Markus M.
2003-12-23
A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.
Rare earth oxide fluoride nanoparticles and hydrothermal method for forming nanoparticles
Fulton, John L [Richland, WA; Hoffmann, Markus M [Richland, WA
2001-11-13
A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.
Calkins, G.D.; Bohlmann, E.G.
1957-12-01
A process for the recovery of thorium, uranium, and rare earths from monazite sands is presented. The sands are first digested and dissolved in concentrated NaOH, and the solution is then diluted causing precipitation of uranium, thorium and rare earth hydroxides. The precipitate is collected and dissolved in HCl, and the pH of this solution is adjusted to about 6, precipitating the hydroxides of thorium and uranium but leaving the rare earths in solution. The rare earths are then separated from the solution by precipitation at a still higher pH. The thorium and uranium containing precipitate is redissolved in HNO/sub 3/ and the two elements are separated by extraction into tributyl phosphate and back extraction with a weakly acidic solution to remove the thorium.
Rare earth-doped materials with enhanced thermoelectric figure of merit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkatasubramanian, Rama; Cook, Bruce Allen; Levin, Evgenii M.
A thermoelectric material and a thermoelectric converter using this material. The thermoelectric material has a first component including a semiconductor material and a second component including a rare earth material included in the first component to thereby increase a figure of merit of a composite of the semiconductor material and the rare earth material relative to a figure of merit of the semiconductor material. The thermoelectric converter has a p-type thermoelectric material and a n-type thermoelectric material. At least one of the p-type thermoelectric material and the n-type thermoelectric material includes a rare earth material in at least one ofmore » the p-type thermoelectric material or the n-type thermoelectric material.« less
Novel online security system based on rare-earth-doped glass microbeads
NASA Astrophysics Data System (ADS)
Officer, Simon; Prabhu, G. R.; Pollard, Pat; Hunter, Catherine; Ross, Gary A.
2004-06-01
A novel fluorescent security label has been produced that could replace numerous conventional fluorescent dyes in document security. This label utilizes rare earth ions doped in a borosilicate glass matrix to produce sharp spectral fluorescence peaks with characteristic long lifetimes due to the rare earth ions. These are subsequently detected by an online detection system based on fluorescence and the long lifetimes to avoid any interference from other fluorophores present in the background. Security is further enhanced by the interaction of the rare earth ions with each other and the effect of the host on the emission spectra and therefore the number of permutations that could be produced. This creates a very secure label with various applications for the security market.
Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong
2016-01-01
Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (<1.0 wt %) to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al–5Mg–Mn alloy with low Fe content (<0.1 wt %), intermetallic Al6(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe), intermetallic Al6(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn) to become the primary phase at a lower Mn content. PMID:28787888
The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.
Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A
2010-03-01
This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.
Structure Defect Property Relationships in Binary Intermetallics
NASA Astrophysics Data System (ADS)
Medasani, Bharat; Ding, Hong; Chen, Wei; Persson, Kristin; Canning, Andrew; Haranczyk, Maciej; Asta, Mark
2015-03-01
Ordered intermetallics are light weight materials with technologically useful high temperature properties such as creep resistance. Knowledge of constitutional and thermal defects is required to understand these properties. Vacancies and antisites are the dominant defects in the intermetallics and their concentrations and formation enthalpies could be computed by using first principles density functional theory and thermodynamic formalisms such as dilute solution method. Previously many properties of the intermetallics such as melting temperatures and formation enthalpies were statistically analyzed for large number of intermetallics using structure maps and data mining approaches. We undertook a similar exercise to establish the dependence of the defect properties in binary intermetallics on the underlying structural and chemical composition. For more than 200 binary intermetallics comprising of AB, AB2 and AB3 structures, we computed the concentrations and formation enthalpies of vacancies and antisites in a small range of stoichiometries deviating from ideal stoichiometry. The calculated defect properties were datamined to gain predictive capabilities of defect properties as well as to classify the intermetallics for their suitability in high-T applications. Supported by the US DOE under Contract No. DEAC02-05CH11231 under the Materials Project Center grant (Award No. EDCBEE).
Staatz, M.H.
1983-01-01
The Bear Lodge Mountains are a small northerly trending range approximately 16 km northwest of the Black Hills in the northeast corner of Wyoming. Thorium and rare-earth deposits occur over an area of 16 km 2 in the southern part of these mountains. These deposits occur in the core of the Bear Lodge dome in a large multiple intrusive body made up principally of trachyte and phonolite. Two types of deposits are recognized: disseminated deposits and veins. The disseminated deposits are made up of altered igneous rocks cut by numerous crisscrossing veinlets. The disseminated deposits contain thorium and rare-earth minerals in a matrix consisting principally of potassium feldspar, quartz, and iron and manganese oxides. Total rare-earth content of these deposits is about 27 times that of the thorium content. The general size and shape of the disseminated deposits were outlined by making a radiometric map using a scintillation counter of the entire Bear Lodge core, an area of approximately 30 km 2 . The most favorable part of this area, which was outlined by the 40 countJs (count-per-second) isograd on the radiometric map, was sampled in detail. A total of 341 samples were taken over an area of 10.6 km 2 and analyzed for as many as 60 elements. Rare earths and thorium are the principal commodities of interest in these deposits. Total rare-earth content of these samples ranged from 47 to 27,145 ppm (parts per million), and the thorium content from 9.3 to 990 ppm. The amount of total rare earths of individual samples shows little correlation with that of thorium. Contour maps were constructed using the analytical data for total rare earths, thorium, uranium, and potassium. The total rare-earth and thorium maps can be used to define the size of the deposits based on what cut-off grade may be needed during mining. The size is large as the 2,000 ppm total rare-earth isograd encloses several areas that total 3.22 km 2 in size, and the 200 ppm thorium isograd encloses several areas that total 1.69 km 2 . These deposits could be mined by open pit. The Bear Lodge disseminated deposits have one of the largest resources of both total rare earths and thorium in the United States, and although the grade of both commodities is lower than some other deposits, their large size and relative cheapness of mining make them an important future resource. Vein deposits in the Bear Lodge Mountains include all tabular bodies at least 5 cm thick. Twenty-six veins were noted in this area. These veins are thin and short; the longest vein was traced for only 137 m. Minerals vary greatly in the amount present. Gangue minerals are commonly potassium feldspar, quartz, or cristobalite intermixed with varying amounts of limonite, hematite, and various manganese oxides. Rare earths and thorium occur in the minerals monazite, brockite, and bastnaesite. Thorium content of 35 samples ranged from 0.01 to 1.2 percent, and the total rare-earth content of 21 samples from 0.23 to 9.8 percent. Indicated reserves were calculated to a depth of one-third the exposed length of the vein. Inferred reserves lie in a block surrounding indicated reserves. Indicated reserves of all veins are only 50 t of Th0 2 and 1,360 t of total rare-earth oxides; inferred reserves are 250 t of Th0 2 and 6,810 t of total rare-earth oxides. The Bear Lodge dome, which underlies the greater part of this area, is formed by multiple intrusive bodies of Tertiary age that dome up the surrounding sedimentary rocks. In the southern part of the core, the younger intrusive bodies surround and partly replace a granite of Precambrian age. This granite is approximately 2.6 b.y. old. The sedimentary rocks around the core are (from oldest to youngest): Deadwood Formation of Late Cambrian and Early Ordovician age, Whitewood Limestone of Late Ordovician age, Pahasapa Limestone of Early Mississippian age, Minnelusa Sandstone of Pennsylvanian and Early Permian age, Opeche Formation of Permian age, Minnek
Casting a Wider Net: Rational Synthesis Design of Low-Dimensional Bulk Materials.
Benavides, Katherine A; Oswald, Iain W H; Chan, Julia Y
2018-01-16
The discovery of novel magnetic and electronic properties in low-dimensional materials has led to the pursuit of hierarchical materials with specific substructures. Low-dimensional solids are highly anisotropic by nature and show promise in new quantum materials leading to exotic physical properties not realized in three-dimensional materials. We have the opportunity to extend our synthetic strategy of the flux-growth method to designing single crystalline low-dimensional materials in bulk. The goal of this Account is to highlight the synthesis and physical properties of several low-dimensional intermetallic compounds containing specific structural motifs that are linked to desirable magnetic and electrical properties. We turned our efforts toward intermetallic compounds consisting of antimony nets because they are closely linked to properties such as high carrier mobility (the velocity of an electron moving through a material under a magnetic field) and large magnetoresistance (the change in resistivity with an applied magnetic field), both of which are desirable properties for technological applications. The SmSb 2 structure type is of particular interest because it is comprised of rectangular antimony nets and rare earth ions stacked between the antimony nets in a square antiprismatic environment. LnSb 2 (Ln = La-Nd, Sm) have been shown to be highly anisotropic with SmSb 2 exhibiting magnetoresistance of over 50000% for H∥c axis and ∼2400% for H∥ab. Using this structure type as an initial building block, we envision the insertion of transition metal substructures into the SmSb 2 structure type to produce ternary materials. We describe compounds adopting the HfCuSi 2 structure type as an insertion of a tetrahedral transition metal-antimony subunit into the LnSb 2 host structure. We studied LnNi 1-x Sb 2 (Ln = Y, Gd-Er), where positive magnetoresistance reaching above 100% was found for the Y, Gd, and Ho analogues. We investigated the influence of the transition metal sublattice by substituting Ni into Ce(Cu 1-x Ni x ) y Sb 2 (y < 0.8) and found that the material is highly anisotropic and metamagnetic transitions appear at ∼0.5 and 1 T in compounds with higher Ni concentration. Metamagnetism is characterized by a sharp increase in the magnetic response of a material with increasing applied magnetic field, which was also observed in LnSb 2 (Ln = Ce-Nd). We also endeavored to study materials that possess a transition metal sublattice with the potential for geometric frustration. An example is the La 2 Fe 4 Sb 5 structure type, which consists of antimony square nets and an iron-based network arranged in nearly equilateral triangles, a feature found in magnetically frustrated systems. We discovered spin glass behavior in Ln 2 Fe 4 Sb 5 (Ln = La-Nd, Sm) and evidence that the transition metal sublattice contributes to the magnetic interactions of Ln 2 Fe 4 Sb 5 . We investigated the magnetic properties of Pr 2 Fe 4-x Co x Sb 5 (x < 2.3) and found that as the Co concentration increases, a second magnetic transition leads from a localized to an itinerant system. The La 2 Fe 4 Sb 5 structure type is quite robust and allows for the incorporation of other transition metals, thereby making it an excellent candidate to study competing magnetic interactions in lanthanide-containing intermetallic compounds. In this manuscript, we aim to share our experiences of bulk intermetallic compounds to inspire the development of new low-dimensional materials.
[Effects of rare earth compounds on human peripheral mononuclear cell telomerase and apoptosis].
Yu, Li; Dai, Yu-Cheng; Yuan, Zhao-Kang; Li, Jie
2004-07-01
To study the effects of rare earth exposure on human telomerase and apoptosis of human peripheral mononuclear cells (PBMNs). Rare earth mine lot in Xunwu county, the biggest ion absorptive rare earth mine lot of China, was selected as the study site. Another village of Xunwu county, with comparable geological structure and social environment was selected as the control site. Thirty healthy adults were randomly selected from the study site as exposure group and another 30 healthy adults randomly selected from the control site as control group. The blood content of 15 rare earth elements, including La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y, were determined by inductive coupled plasma-source mass spectrometry (ICP-MS). The total contents of rare earth elements in the blood were calculated. The TRAP and FCM assays were carried out to analyse the telomerase and apoptosis of human PBMNCs respectively. In the exposure group, the concentration of La, Ce, Dy and Y were significantly higher (P<0.001), and Pr, Nd, Sm, Gd and Yb were higher than those in the control group (P<0.05). The total content of rare earth in the blood of exposure group showed significant difference compared with control group (P<0.001). Telomerase activity in PBMNs of the exposure group was higher than that in the control group (P<0.05); there were 11 adults in the exposure group (30 adults) and 5 adults in control group (30 adults) showed positive telomerase activity. The average age of the exposure group was (38.69 +/- 8.02) years-old, while the control group was (40.45 +/- 9.02) years-old (P >0.05). It was found that there was a significant relationship between telomerase activity and the total content of rare earth elements (P <0.01). 3. The proportion of apoptosis was not different between the two groups (P >0.05), but the cells in the S-phase and G2-M phase were increased (P <0.01) in the exposed group. The telomerase activity of PBMNs in the rare earth elements exposed group was higher than that of the control group, and there is no effect on apoptotic rate of PBMNs, but may promote the diploid DNA replication, and increase the percentage of G2/M and S phase cells.
Real World of Industrial Chemistry: Technology of the Rare Earths.
ERIC Educational Resources Information Center
Kremers, Howard E.
1985-01-01
The 17 rare earth elements account for one-fifth of the 83 naturally occurring elements and collectively rank as the 22nd most abundant "element." Properties of these elements (including their chemical similarity), their extraction from the earth, and their uses are discussed. (JN)
Bao, T M; Tian, Y; Wang, L X; Wu, T; Lu, L N; Ma, H Y; Wang, L
2018-02-20
Objective: To investigate the levels of lanthanum, cerium, praseodymium, and neodymium in the blood, urine, and hair samples from residents in the rare earth mining area of a city in China, and to provide a scientific basis for the control of rare earth pollution and the protection of population health. Methods: A total of 147 residents who had lived in the rare earth mining area of a city for a long time were selected as the exposure group, and 108 residents in Guyang County of this city who lived 91 km away from the rare earth mining area were selected as the control group. Blood, urine, and hair samples were collected from the residents in both groups. Inductively coupled plasma mass spectrometry was used to determine the content of lanthanum, cerium, praseodymium, and neodymium in blood, urine, and hair samples. Results: In the exposure group, the median levels of lanthanum, cerium, praseodymium, and neodymium were 0.854, 1.724, 0.132, and 0.839 μg/L, respectively, in blood samples, 0.420, 0.920, 0.055, and 0.337 μg/L, respectively, in urine samples, and 0.052, 0.106, 0.012, and 0.045 μg/g, respectively, in hair samples. The exposure group had significantly higher levels of the four rare earth elements in blood, urine, and hair samples than the control group ( P <0.01) . Conclusion: The residents in the rare earth mining area of this city have higher content of lanthanum, cerium, praseodymium, and neodymium in blood, urine, and hair than those in the non-mining area; the content of cerium is highest, followed by lanthanum, neodymium, and praseodymium.
Magnetic Partitioning Nanofluid for Rare Earth Extraction from Geothermal Fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrail, Bernard P.; Thallapally, Praveen K.; Liu, Jian
Rare earth metals are critical materials in a wide variety of applications in generating and storing renewable energy and in designing more energy efficient devices. Extracting rare earth metals from geothermal brines is a very challenging problem due to the low concentrations of these elements and engineering challenges with traditional chemical separations methods involving packed sorbent beds or membranes that would impede large volumetric flow rates of geothermal fluids transitioning through the plant. We are demonstrating a simple and highly cost-effective nanofluid-based method for extracting rare earth metals from geothermal brines. Core-shell composite nanoparticles are produced that contain a magneticmore » iron oxide core surrounded by a shell made of silica or metal-organic framework (MOF) sorbent functionalized with chelating ligands selective for the rare earth elements. By introducing the nanoparticles at low concentration (≈0.05 wt%) into the geothermal brine after it passes through the plant heat exchanger, the brine is exposed to a very high concentration of chelating sites on the nanoparticles without need to pass through a large and costly traditional packed bed or membrane system where pressure drop and parasitic pumping power losses are significant issues. Instead, after a short residence time flowing with the brine, the particles are effectively separated out with an electromagnet and standard extraction methods are then applied to strip the rare earth metals from the nanoparticles, which are then recycled back to the geothermal plant. Recovery efficiency for the rare earths at ppm level has now been measured for both silica and MOF sorbents functionalized with a variety of chelating ligands. A detailed preliminary techno-economic performance analysis of extraction systems using both sorbents showed potential to generate a promising internal rate of return (IRR) up to 20%.« less
NASA Astrophysics Data System (ADS)
Ferdowsi, Ali; Yoozbashizadeh, Hossein
2017-12-01
Solvent extraction of rare earths from nitrate leach liquor of apatite using mixtures of tributyl phosphate (TBP) and di-(2-ethylhexyl) phosphoric acid (D2EHPA) was studied. The effects of nitrate and hydrogen ion concentration of the aqueous phase as well as the composition and concentration of extractants in the organic phase on the extraction behavior of lanthanum, cerium, neodymium, and yttrium were investigated. The distribution ratio of REEs increases by increasing the nitrate concentration in aqueous phase and concentration of extractants in organic phase, but the hydrogen ion concentration in aqueous phase has a decreasing effect. Yttrium as a heavy rare earth is more sensitive to these parameters than light rare earth elements. Although the composition of organic phase has a minor effect on the extraction of light rare earths, the percent of extraction of yttrium decreases dramatically by increasing the TBP content of organic phase. Mixtures of TBP and D2EHPA can show either synergism or antagonism extraction depending on the concentration and composition of extractants in organic phase. The best condition for separating rare earth elements in groups of heavy and light REEs can be achieved at high nitrate concentration, low H+ concentration, and high concentration of D2EHPA in organic phase. Separation of Ce and La by TBP and D2EHPA is practically impossible in the studied conditions; however, low nitrate concentration and high hydrogen ion concentration in aqueous phase and low concentration of extractants in organic phase favor the separation of Nd from other light rare earth elements.
NASA Astrophysics Data System (ADS)
Bazyleva, O. A.; Povarova, K. B.; Kazanskaya, N. K.; Drozdov, A. A.
2009-04-01
The possibility of increasing the life of heterophase cast light Ni3Al-based superalloys at temperatures higher than 0.8 T m of Ni3Al is studied when their directional structure is additionally stabilized by nanoprecipitates, which form upon additional alloying of these alloys by refractory and active metals, and using special methods for preparing and melting of an alloy charge. The effect of the method of introducing the main components and refractory reaction-active and surface-active alloying elements into Ni3Al-based cast superalloys, which are thermally stable natural composite materials of the eutectic type, on the structure-phase state and the life of these alloys is studied. When these alloys are melted, it is necessary to perform a set of measures to form particles of refractory oxide cores covered with the β-NiAl phase and, then, γ'prim-Ni3Al phase precipitates during solidification. The latter phase forms the outer shell of grain nuclei, which provides high thermal stability and hot strength of an intermetallic compound-based alloy. As a result, a modified structure that is stabilized by the nanoprecipitates of nickel and aluminum lanthanides and the nanoprecipitates of phases containing refractory metals is formed. This structure enhances the life of the alloy at 1000 °C by a factor of 1.8-2.5.
NASA Astrophysics Data System (ADS)
Park, Inmyong; Jeong, Sangkwon
2017-12-01
The experimental investigation of an active magnetic regenerative refrigerator (AMRR) operating between 77 K and 20 K is discussed in this paper, with detailed energy transfer analysis. A multi-layered active magnetic regenerator (AMR) is used, which consists of four different rare earth intermetallic compounds in the form of irregular powder. Numerical simulation confirms that the AMR can attain its target operating temperature range. Magnetic field alternation throughout the AMR is generated by a high temperature superconducting (HTS) magnet. The HTS magnet is cooled by a two stage Gifford-McMahon (GM) cryocooler. Helium gas was employed as a working fluid and its oscillating flow in the AMR is controlled in accordance with the magnetic field variation. The AMR is divided into two stages and each stage has a different mass flow rate as needed to achieve the desired cooling performance. The temperature variation of the AMR during the experiment is monitored by temperature sensors installed inside the AMR. The experimental results show that the AMRR is capable of achieving no-load temperature of 25.4 K while the warm end temperature is 77 K. The performance of the AMRR is analyzed by observing internal temperature variations at cyclic steady state. Furthermore, numerical estimation of the cooling capacity and the temperature variation of the AMR are examined and compared with the experimental results.
Metastable bcc mischmetal-magnesium alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabariz, A.L.R.
1989-02-01
The bcc phase in the MM-Mg system can be metastably retained at room temperature for magnesium composition within the range 16 at.% - 20 at.%. The retention of a lower composition was restricted by quenching rate and at higher concentrations by intermetallic compound precipitation. The lattice parameter for the pure bcc mischmetal phase was determined by extrapolation. The value obtained (a/sub E/ = 4.131 /angstrom/) was in good agreement with the theoretical value (a/sub t/ = 4.156 /angstrom/). Magnetic susceptibility data suggested that bcc mischmetal-magnesium alloys underwent a change from paramagnetic to antiferromagnetic behavior on cooling at /approximately/20 K, independentmore » of magnesium composition. The value found for the magnetic effective moment per gram-atom-magnetic-rare earth of each bcc MM-Mg alloy examined (MM - 16 Mg, MM - 18 Mg and MM - 20 Mg) was found to be constant (p/sub eff/ approx. 1.62 ..mu../sub B/), independent of the magnesium composition. The observed Curie-Weiss temperature values decreasing with the magnesium content increasing were due to magnetic dilution. The equilibrium reaction bcc ..-->.. dhcp + MMMg presented an undercooling effect of /approximately/40/degree/C around the eutectoid composition (/approximately/17 at.% Mg). The sluggish character of this reaction was considered the strongest effect for the bcc structure retention in the mischmetal-magnesium system. 16 refs., 27 figs.« less
Temperature and magnetic field induced multiple magnetic transitions in DyAg(2).
Arora, Parul; Chattopadhyay, M K; Sharath Chandra, L S; Sharma, V K; Roy, S B
2011-02-09
The magnetic properties of the rare-earth intermetallic compound DyAg(2) are studied in detail with the help of magnetization and heat capacity measurements. It is shown that the multiple magnetic phase transitions can be induced in DyAg(2) both by temperature and magnetic field. The detailed magnetic phase diagram of DyAg(2) is determined experimentally. It was already known that DyAg(2) undergoes an incommensurate to commensurate antiferromagnetic phase transition close to 10 K. The present experimental results highlight the first order nature of this phase transition, and show that this transition can be induced by magnetic field as well. It is further shown that another isothermal magnetic field induced transition or metamagnetic transition exhibited by DyAg(2) at still lower temperatures is also of first order nature. The multiple magnetic phase transitions in DyAg(2) give rise to large peaks in the temperature dependence of the heat capacity below 17 K, which indicates its potential as a magnetic regenerator material for cryocooler related applications. In addition it is found that because of the presence of the temperature and field induced magnetic phase transitions, and because of short range magnetic correlations deep inside the paramagnetic regime, DyAg(2) exhibits a fairly large magnetocaloric effect over a wide temperature window, e.g., between 10 and 60 K.
The Influence of Novel Alloying Additions on the Performance of Magnesium Alloy AZ31B
2013-11-01
More recently, alloys using a variety of the rare earth elements have been developed. Typically, these alloys have shown significant improvements...in mechanical properties and to a lesser degree in corrosion performance. However, rare earth elements are often costly and heavier than Mg. Thus...1.0 0.004 Max — — Note: Fe = iron; RE = rare earth . SEM micrograph and energy-dispersive x-ray (EDX) results for selected alloys are shown in
Rare Earth Optical Temperature Sensor
NASA Technical Reports Server (NTRS)
Chubb, Donald L. (Inventor); Jenkins, Phillip (Inventor)
2004-01-01
A rare earth optical temperature sensor is disclosed for measuring high temperatures. Optical temperature sensors exist that channel emissions from a sensor to a detector using a light pipe. The invention uses a rare earth emitter to transform the sensed thermal energy into a narrow band width optical signal that travels to a detector using a light pipe. An optical bandpass filter at the detector removes any noise signal outside of the band width of the signal from the emitter.
China’s Ace in the Hole Rare Earth Elements
2010-01-01
before losing magnetism. 11 Europium sesquioxide (Eu203) has been tested as neutron absorbers for control rods in (fast breeder ) nuclear reactors ...sources of rare earth around the world, it could take anywhere from 10 to 15 years from the time of discovery to begin a full- scale rare earth...television/computer screens, it is being studied for possible use in nuclear reactors .11 Erbium is used as an amplifier for fiber optic data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selle, J.E.
A modification was made to the Kaufman method of calculating binary phase diagrams to permit calculation of intra-rare earth diagrams. Atomic volumes for all phases, real or hypothetical, are necessary to determine interaction parameters for calculation of complete diagrams. The procedures used to determine unknown atomic volumes are describes. Also, procedures are described for determining lattice stability parameters for unknown transformations. Results are presented on the calculation of intra-rare earth diagrams between both trivalent and divalent rare earths. 13 refs., 36 figs., 11 tabs.
NASA Astrophysics Data System (ADS)
Ananth, M. V.; Raju, M.; Manimaran, K.; Balachandran, G.; Nair, Lekshmi M.
AB 5-type MH alloys with Mm (Misch metal) as the A part (with varied rare earth contents in Mm) were investigated for rare earth by XRF analysis and battery performance by life cycle tests with an objective of understanding the influence of rare earth content on electrochemical hydrogen storage. The La/Ce ratio was found to vary from 0.51 to 18.73. The capacity output varied between 179 and 266 mAh g -1. The results show that the La/Ce ratio has a strong influence on the performance, with the best performance realized with samples having an La/Ce ratio of around 12. La enhancement facilitates easy activation due to refinement in grain size and interstitial dimensions. Also, an orderly influence on crystalline structure could be seen. The study demonstrates that the rare earth content is an essential factor in determining the maximum capacity output because of its influence on crystal orientation as well as an increase in the radius of the interstitials, lattice constants and cell volumes.
Kim, M K; Moon, J Y; Choi, H Y; Oh, S H; Lee, N; Choi, Y J
2015-10-28
We have successfully synthesized the series of the double-perovskite R2CoMnO6 (R = rare earth: La to Lu) single crystals and have investigated their magnetic properties. The ferromagnetic order of Co(2+)/Mn(4+) spins emerges mainly along the c axis. Upon decreasing the size of rare earth ion, the magnetic transition temperature decreases linearly from 204 K for La2CoMnO6 to 48 K for Lu2CoMnO6, along with the enhancement of monoclinic distortion. The temperature and magnetic-field dependences of magnetization reveal the various magnetic characteristics such as the metamagnetic transition in R = Eu, the isotropic nature of rare earth moment in R = Gd, and the reversal of magnetic anisotropy in R = Tb and Dy. Our results offer comprehensive information for understanding the roles of mixed-valent magnetic ions and rare earth magnetic moments on the magnetic properties.
NASA Astrophysics Data System (ADS)
Yan, Ping; He, Man; Chen, Beibei; Hu, Bin
2017-10-01
In this work, di(2-ethylhexyl)phosphoric acid (P204) grafted magnetic nanoparticles were synthesized by fabricating P204 onto Fe3O4@TiO2 nanoparticles based on Lewis acid-base interaction between Ti and phosphate group under weakly acidic condition. The prepared Fe3O4@TiO2@P204 nanoparticles exhibited excellent selectivity for rare earth elements, and good anti-interference ability. Based on it, a method of magnetic solid phase extraction (MSPE) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for fast preconcentration and determination of trace rare earth elements in environmental samples. Under the optimal conditions, the detection limits of rare earth elements were in the range of 0.01 (Tm)-0.12 (Nd) ng L- 1 with an enrichment factor of 100-fold, and the relative standard deviations ranged from 4.9 (Pr) to 10.7% (Er). The proposed method was successfully applied to the determination of rare earth elements in environmental samples, including river water, lake water, seawater and sediment.
GROWTH AND CHARACTERIZATION OF SINGLE CRYSTALS OF RARE EARTH COMPOUNDS.
SINGLE CRYSTALS, CRYSTAL GROWTH), (*CRYSTAL GROWTH, SINGLE CRYSTALS), (*RARE EARTH COMPOUNDS, SINGLE CRYSTALS), EPITAXIAL GROWTH, SODIUM COMPOUNDS, CHLORIDES, VAPOR PLATING, ELECTROSTATIC FIELDS, ENERGY, ATOMIC PROPERTIES , BONDING
Arendt, Paul N.; Foltyn, Stephen R.; Stan, Liliana; Usov, Igor O.; Wang, Haiyan
2010-06-15
Articles are provided including a base substrate having a layer of an IBAD oriented material thereon, and, a layer of barium-containing material selected from the group consisting of barium zirconate, barium hafnate, barium titanate, barium strontium titanate, barium dysprosium zirconate, barium neodymium zirconate and barium samarium zirconate, or a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the layer of an IBAD oriented material. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of barium-containing material selected from the group consisting of barium zirconate, barium hafnate, barium titanate, barium strontium titanate, barium dysprosium zirconate, barium neodymium zirconate and barium samarium zirconate, or a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates.
Method of forming magnetostrictive rods from rare earth-iron alloys
McMasters, O.D.
1986-09-02
Rods of magnetostrictive alloys of iron with rare earth elements are formed by flowing a body of rare earth-iron alloy in a crucible enclosed in a chamber maintained under an inert gas atmosphere, forcing such molten rare-earth-iron alloy into a hollow mold tube of refractory material positioned with its lower end portion within the molten body by means of a pressure differential between the chamber and mold tube and maintaining a portion of the molten alloy in the crucible extending to a level above the lower end of the mold tube so that solid particles of higher melting impurities present in the alloy collect at the surface of the molten body and remain within the crucible as the rod is formed in the mold tube. 5 figs.
Superposition-model analysis of rare-earth doped BaY2F8
NASA Astrophysics Data System (ADS)
Magnani, N.; Amoretti, G.; Baraldi, A.; Capelletti, R.
The energy level schemes of four rare-earth dopants (Ce3+ , Nd3+ , Dy3+ , and Er3+) in BaY2 F-8 , as determined by optical absorption spectra, were fitted with a single-ion Hamiltonian and analysed within Newman's Superposition Model for the crystal field. A unified picture for the four dopants was obtained, by assuming a distortion of the F- ligand cage around the RE site; within the framework of the Superposition Model, this distortion is found to have a marked anisotropic behaviour for heavy rare earths, while it turns into an isotropic expansion of the nearest-neighbours polyhedron for light rare earths. It is also inferred that the substituting ion may occupy an off-center position with respect to the original Y3+ site in the crystal.
Method of forming magnetostrictive rods from rare earth-iron alloys
McMasters, O. Dale
1986-09-02
Rods of magnetrostructive alloys of iron with rare earth elements are formed by flowing a body of rare earth-iron alloy in a crucible enclosed in a chamber maintained under an inert gas atmosphere, forcing such molten rare-earth-iron alloy into a hollow mold tube of refractory material positioned with its lower end portion within the molten body by means of a pressure differential between the chamber and mold tube and maintaining a portion of the molten alloy in the crucible extending to a level above the lower end of the mold tube so that solid particles of higher melting impurities present in the alloy collect at the surface of the molten body and remain within the crucible as the rod is formed in the mold tube.
40 CFR 421.271 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals... rare earths to about 94-99 percent. The balance of tha alloy includes traces of other elements and one...
Intermetallic compounds in heterogeneous catalysis—a quickly developing field
Armbrüster, Marc; Schlögl, Robert; Grin, Yuri
2014-01-01
The application of intermetallic compounds for understanding in heterogeneous catalysis developed in an excellent way during the last decade. This review provides an overview of concepts and developments revealing the potential of intermetallic compounds in fundamental as well as applied catalysis research. Intermetallic compounds may be considered as platform materials to address current and future catalytic challenges, e.g. in respect to the energy transition. PMID:27877674
Brushing up on the history of intermetallics in dentistry
NASA Astrophysics Data System (ADS)
Waterstrat, Richard M.
1990-03-01
Employing a silver-tin-mercury intermetallic to repair cavities may seem a little unusual, but intermetallics are quite common in dentistry, ranging from gold crowns to braces. Although the human mouth can be unfriendly territory for a brittle intermetallic alloy, dental amalgam has been around since 659 A.D., and its technology has been developed to the point where a filling can be expected to last 30 years or more.
The Solidification Behavior of AA2618 Aluminum Alloy and the Influence of Cooling Rate
Liu, Yulin; Liu, Ming; Luo, Lei; Wang, Jijie; Liu, Chunzhong
2014-01-01
In AA2618 aluminum alloy, the iron- and nickel-rich intermetallics formed during solidification are of great effect on the mechanical properties of the alloy at both room temperature and elevated temperatures. However, the solidification behavior of the alloy and the formation mechanism of the intermetallics during solidification of the alloy are not clear. This research fills the gap and contributes to understanding the intermetallic of the alloy. The results showed that cooling rate was of great influence on the formation of the intermetallics. Under the condition of slow cooling, the as-cast microstructures of the alloy were complex with many coarse eutectic compounds including Al9FeNi, Al7(CuNi)5, Si, Al2Cu and Al2CuMg. The phase Al9FeNi was the dominant intermetallic compound, which precipitated at the earlier stage of the solidification by eutectic reaction L → α-Al + Al9FeNi. Increasing the cooling rate would suppress the formation of the coarse eutectic intermetallics. Under the condition of near-rapid cooling, the as-cast microstructures of the alloy consisted of metastable intermetallics Al9FeNi and Al2Cu; the equilibrium eutectic compounds were suppressed. This research concluded that intermetallics could be refined to a great extent by near-rapid cooling. PMID:28788281
Voltage Control of Rare-Earth Magnetic Moments at the Magnetic-Insulator-Metal Interface
NASA Astrophysics Data System (ADS)
Leon, Alejandro O.; Cahaya, Adam B.; Bauer, Gerrit E. W.
2018-01-01
The large spin-orbit interaction in the lanthanides implies a strong coupling between their internal charge and spin degrees of freedom. We formulate the coupling between the voltage and the local magnetic moments of rare-earth atoms with a partially filled 4 f shell at the interface between an insulator and a metal. The rare-earth-mediated torques allow the power-efficient control of spintronic devices by electric-field-induced ferromagnetic resonance and magnetization switching.
Thermal Expansion and Thermal Conductivity of Rare Earth Silicates
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Lee, Kang N.; Bansal, Narottam P.
2006-01-01
Rare earth silicates are considered promising candidate materials for environmental barrier coatings applications at elevated temperature for ceramic matrix composites. High temperature thermophysical properties are of great importance for coating system design and development. In this study, the thermal expansion and thermal conductivity of hot-pressed rare earth silicate materials were characterized at temperatures up to 1400 C. The effects of specimen porosity, composition and microstructure on the properties were also investigated. The materials processing and testing issues affecting the measurements will also be discussed.
Energetic Ionic Liquids Based on Anionic Rare Earth Nitrate Complexes (Preprint)
2008-07-10
a glass transition temperature (Tg) at -46 oC. However, it is only stable in dry air, and thus must be protected from water. At 75 oC, clear weight...involved highly toxic and corrosive chemicals, N2O4 and NOCl. Ligands which coordinate via oxygen atoms to a rare earth metal ion give rise to stable...complexes. Thus higher air and thermal stabilities may be obtained by introducing rare earth metal nitrates as main components of ionic liquids. We
Rare-Earth Metals and Their Applications in Aviation
1984-08-01
metals are not as common as iron and steel which are visible everywhere, yet they are not unfamiliar to us. We often encounter them in everyday life...the flint of a lighter. It is an alloy of rare-earth metal and iron . It contains about 30% iron and the remainder is a composite rare-earth alloy...used to manufacture the detonators of bullets and shells as well as the pyrophoric alloys of firing devices. This type of alloy has a 49.5% content of
NASA Astrophysics Data System (ADS)
Han, Seung Zeon; Kang, Joonhee; Kim, Sung-Dae; Choi, Si-Young; Kim, Hyung Giun; Lee, Jehyun; Kim, Kwangho; Lim, Sung Hwan; Han, Byungchan
2015-10-01
We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0 GPa and elastic modulus of 60.6 GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors.
Han, Seung Zeon; Kang, Joonhee; Kim, Sung-Dae; Choi, Si-Young; Kim, Hyung Giun; Lee, Jehyun; Kim, Kwangho; Lim, Sung Hwan; Han, Byungchan
2015-10-12
We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0 GPa and elastic modulus of 60.6 GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors.
Huang, Boyuan; Song, Chunyan; Liu, Yang; Gui, Yongliang
2017-02-04
Intermetallic compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni-Mo-Si system was fabricated by arc-melting process with commercially pure metal powders as starting materials. The chemical composition of this intermetallic composite is 45Ni-40Mo-15Si (at %), selected according to the ternary alloy diagram. The microstructure was characterized using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS), and the wear-resistant properties at room temperature were evaluated under different wear test conditions. Microstructure characterization showed that the composite has a dense and uniform microstructure. XRD results showed that the intermetallic composite is constituted by a binary intermetallic compound NiMo and a ternary Mo₂Ni₃Si metal silicide phase. Wear test results indicated that the intermetallic composite has an excellent wear-resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases NiMo and Mo₂Ni₃Si.
Magneto-Optical Experiments on Rare Earth Garnet Films.
ERIC Educational Resources Information Center
Tanner, B. K.
1980-01-01
Describes experiments in which inexpensive or standard laboratory equipment is used to measure several macroscopic magnetic properties of thin rare earth garnet films used in the manufacture of magnetic bubble devices. (Author/CS)
Rare Earth Geochemistry of Rock Core form WY Reservoirs
Quillinan, Scott; Bagdonnas, Davin; McLaughlin, J. Fred; Nye, Charles
2016-10-01
These data include major, minor, trace and rare earth element concentration of geologic formations in Wyoming oil and gas fields. *Note - Link below contains updated version of spreadsheet (6/14/2017)
75 FR 25850 - Materials Strategy Request for Information
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-10
... (DOE) is seeking information from stakeholders on rare earth elements and other materials used in... strategic plan for addressing the role of rare earth elements and other materials in energy technologies and...
Xie, Kefeng; Jia, Qiangqiang; Wang, Yizhe; Zhang, Wenxue; Xu, Jingcheng
2018-01-24
The electronic and optical properties of the rare earth metal atom-doped anatase TiO₂ have been investigated systematically via density functional theory calculations. The results show that TiO₂ doped by Ce or Pr is the optimal choice because of its small band gap and strong optical absorption. Rare earth metal atom doping induces several impurity states that tune the location of valence and conduction bands and an obvious lattice distortion that should reduce the probability of electron-hole recombination. This effect of band change originates from the 4 f electrons of the rare earth metal atoms, which leads to an improved visible light absorption. This finding indicates that the electronic structure of anatase TiO₂ is tuned by the introduction of impurity atoms.
Xie, Kefeng; Jia, Qiangqiang; Wang, Yizhe; Zhang, Wenxue; Xu, Jingcheng
2018-01-01
The electronic and optical properties of the rare earth metal atom-doped anatase TiO2 have been investigated systematically via density functional theory calculations. The results show that TiO2 doped by Ce or Pr is the optimal choice because of its small band gap and strong optical absorption. Rare earth metal atom doping induces several impurity states that tune the location of valence and conduction bands and an obvious lattice distortion that should reduce the probability of electron–hole recombination. This effect of band change originates from the 4f electrons of the rare earth metal atoms, which leads to an improved visible light absorption. This finding indicates that the electronic structure of anatase TiO2 is tuned by the introduction of impurity atoms. PMID:29364161
NASA Astrophysics Data System (ADS)
Zhang, Jishu; Zhang, Yingzi; Tao, Jin; Zhu, Yanan
2018-04-01
In order to find out the light color mixing mechanism of rare earth luminescent materials used in anti-counterfeiting fibers, we prepared three kinds of rare earth luminescent materials according to RGB tri-primary color, and mixed it together to form different mixtures in certain proportion. The phase structures of the luminescent material monomers were measured by x-ray diffractometer. The photochromic properties of the luminescent materials were tested and analyzed by fluorescence spectrophotometer. The results show that the light color mixing was consistent with the blending principle of additive color, but not the same because of the photochromic properties of rare earth luminescent materials, and we explored the reasons in the light wavelength and intensity. It was found that the enhancement of the luminescence intensity of the mixture on account of the superimposing of luminescence.
Refining and Mutual Separation of Rare Earths Using Biomass Wastes
NASA Astrophysics Data System (ADS)
Inoue, Katsutoshi; Alam, Shafiq
2013-10-01
Two different types of adsorption gels were prepared from biomass wastes. The first gel was produced from astringent persimmon peel rich in persimmon tannin, a polyphenol compound, which was prepared by means of simple dehydration condensation reaction using concentrated sulfuric acid for crosslinking. This adsorption gel was intended to be employed for the removal of radioactive elements, uranium (U(VI)) and thorium (Th(IV)), from rare earths. The second gel was prepared from chitosan, a basic polysaccharide, produced from shells of crustaceans such as crabs, shrimps, prawns, and other biomass wastes generated in marine product industry, by immobilizing functional groups of complexanes such as ethylendiaminetetraacetic acid and diethylentriaminepentaacetic acid (DTPA). This gel was developed for the mutual separation of rare earths. Of the two adsorption gels evaluated, the DTPA immobilized chitosan exhibited the most effective mutual separation among light rare earths.
METHOD OF PROCESSING MONAZITE SAND
Welt, M.A.; Smutz, M.
1958-08-26
A process is described for recovering thorium, uranium, and rare earth values from monazite sand. The monazite sand is first digested with sulfuric acid and the resulting "monazite sulfate" solution is adjusted to a pH of between 0.4 and 3.0, and oxalate anions are added causing precipitation of the thorium and the rare earths as the oxalates. The oxalate precipitate is separated from the uranium containing supernatant solution, and is dried and calcined to the oxides. The thorium and rare earth oxides are then dissolved in nitric acid and the solution is contacted with tribntyl phosphate whereby an organic extract phase containing the cerium and thorium values is obtained, together with an aqueous raffinate containing the other rare earth values. The organic phase is then separated from the aqueous raffinate and the cerium and thorium are back extracted with an aqueous medium.
Composition of monazites from pegmatites in eastern Minas Gerais, Brazil
Murata, K.J.; Dutra, C.V.; da Costa, M.T.; Branco, J.J.R.
1959-01-01
Two zoned pegmatites in south-eastern Minas Gerais were sampled in detail for their content of monazite and xenotime and the monazite was analysed for certain of the rare-earth elements and thorium. The ratio of xenotime to monazite increases in both pegmatites from the wall toward the quartz core. The content of the less basic rare-earth elements and of thorium in monazite rises in the same direction. These variation trends suggest that during the crystallization of these pegmatites there was a fractionation of the elements leading to a more or less steady enrichment of the less basic rare-earth elements and of thorium in the residual fluids. One mode of explaining these observed effects postulates that the rare-earth elements and thorium were present in pegmatitic fluids as co-ordination complexes rather than as simple cations. ?? 1959.
Duncan, Paul G.
2002-01-01
Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.
Wilmarth, V.R.; Johnson, D.H.
1953-01-01
An area about 6 miles north of Sundance, in the Bear Lodge Mountains, in Crook County, Wyo., was examined during August 1950 for thorium, uranium, and rare-earth oxides and samples were collected. Uranium is known to occur in fluorite veins and iron-manganese veins and in the igneous rocks of Tertiary age that compose the core of the Bear Lodge Mountains. The uranium content of the samples ranges from 0.001 to 0.015 percent in those from the fluorite veins, from 0.005 to 0.018 percent in those from the iron-manganese veins, and from 0.001 to 0.017 percent in those from the igneous rocks. The radioactivity of the samples is more than that expected from the uranium content. Thorium accounts for most of this discrepancy. The thorium oxide content of samples ranges from 0.07 to 0.25 percent in those from the iron-manganese veins and from 0.07 to 0.39 percent in those from the sedimentary rocks, and from0.04 to 0.30 in those from the igneous rocks. Rare-earth oxides occur in iron-manganese veins and in zones of altered igneous rocks. The veins contain from 0.16 to 12.99 percent rare-earth oxides, and the igneous rocks, except for two localities, contain from 0.01 to 0.42 percent rare-earth oxides. Inclusions of metamorphosed sedimentary rocks in the intrusive rocks contain from 0.07 to 2.01 percent rare-earth oxides.
Luminescence properties of erbium doped sodium barium borate glass with silver nanoparticles
NASA Astrophysics Data System (ADS)
Rajeshree Patwari, D.; Eraiah, B.
2018-02-01
Alteration in the absorption features of rare earth (RE) doped glasses with silver nanoparticles is ever-challenging in photonics. Erbium (Er3+) doped glasses with composition (60-x-y)B2O3-30Na2CO3-10BaO-xEr2O3-yAgCl where (x=0.5, 1.0 and y=1.0 mol %) are synthesized using melt-quenching method. The density is determined by Archimedes principle and molar volumes are calculated. Glass samples were characterized by XRD and UV-Visible spectroscopy. UV-Visible spectra shows eleven prominent absorption peaks centred around 366, 378, 408, 442, 452, 489, 521, 547, 652, 800 and 977 nm equivalent to the rare earth (Er3+) ion transitions. The sample without rare earth shows no peaks which specifies that rare earth ion plays a spirited role in the glass matrix. The glass samples with silver and without rare earth ion shows plasmon peak on heat treatment. The energy band gap values calculated for direct and indirect transitions are in the range of 3.126-3.440eV and 2.58-3.177eV respectively. The refractive indices and Urbach energies are also determined. Photoluminescence spectra are recorded and studied for excitation of the most intense peaks of wavelengths 378 and 521nm. The luminescence of erbium ion is enhanced by the presence of silver when the concentration of rare earth ion is less than that of silver.
Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules
2015-07-14
A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.
Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.
2015-11-20
A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.
Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.
2017-01-03
A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.
Microstructure and tribological properties of TiCu2Al intermetallic compound coating
NASA Astrophysics Data System (ADS)
Guo, Chun; Zhou, Jiansong; Zhao, Jierong; Wang, Linqian; Yu, Youjun; Chen, Jianmin; Zhou, Huidi
2011-04-01
TiCu2Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu2Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu2Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu2Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.
A divalent rare earth oxide semiconductor: Yttrium monoxide
NASA Astrophysics Data System (ADS)
Kaminaga, Kenichi; Sei, Ryosuke; Hayashi, Kouichi; Happo, Naohisa; Tajiri, Hiroo; Oka, Daichi; Fukumura, Tomoteru; Hasegawa, Tetsuya
Rare earth sesquioxides like Y2O3 are known as widegap insulators with the highly stable closed shell trivalent rare earth ions. On the other hand, rare earth monoxides such as YO have been recognized as gaseous phase, and only EuO and YbO were thermodynamically stable solid-phase rock salt monoxides. In this study, solid-phase rock salt yttrium monoxide, YO, was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO possesses unusual valence of Y2+ ([Kr] 4d1) . In contrast with Y2O3, YO was narrow gap semiconductor with dark-brown color. The electrical conductivity was tunable from 10-1 to 103 Ω-1 cm-1 by introducing oxygen vacancies as electron donor. Weak antilocalization behavior was observed indicating significant spin-orbit coupling owing to 4 d electron carrier. The absorption spectral shape implies the Mott-Hubbard insulator character of YO. Rare earth monoixdes will be new platform of functional oxides. This work was supported by JST-CREST, the Japan Society for the Promotion of Science (JSPS) with Grant-in-Aid for Scientific Research on Innovative Areas (Nos. 26105002 and 26105006), and Nanotechnology Platform (Project No.12024046) of MEXT, Japan.
A study on artificial rare earth (RE2O3) based neutron absorber.
Kim, Kyung-O; Kyung Kim, Jong
2015-11-01
A new concept of a neutron absorption material (i.e., an artificial rare earth compound) was introduced for criticality control in a spent fuel storage system. In particular, spent nuclear fuels were considered as a potential source of rare earth elements because the nuclear fission of uranium produces a full range of nuclides. It was also found that an artificial rare earth compound (RE2O3) as a High-Level Waste (HLW) was naturally extracted from pyroprocessing technology developed for recovering uranium and transuranic elements (TRU) from spent fuels. In this study, various characteristics (e.g., activity, neutron absorption cross-section) were analyzed for validating the application possibility of this waste compound as a neutron absorption material. As a result, the artificial rare earth compound had a higher neutron absorption probability in the entire energy range, and it can be used for maintaining sub-criticality for more than 40 years on the basis of the neutron absorption capability of Boral™. Therefore, this approach is expected to vastly improve the efficiency of radioactive waste management by simultaneously keeping HLW and spent nuclear fuel in a restricted space. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lei; Solomon, Jonathan M.; Asta, Mark
2015-09-01
The energetics of rare earth substituted UO2 solid solutions (U1-xLnxO2-0.5x+y, where Ln = La, Y, and Nd) are investigated employing a combination of calorimetric measurements and density functional theory based computations. Calculated and measured formation enthalpies agree within 10 kJ/mol for stoichiometric oxygen/metal compositions. To better understand the factors governing the stability and defect binding in rare earth substituted urania solid solutions, systematic trends in the energetics are investigated based on the present results and previous computational and experimental thermochemical studies of rare earth substituted fluorite oxides (A1-xLnxO2-0.5x, where A = Hf, Zr, Ce, and Th). A consistent trend towardsmore » increased energetic stability with larger size mismatch between the smaller host tetravalent cation and the larger rare earth trivalent cation is found for both actinide and non-actinide fluorite oxide systems where aliovalent substitution of Ln cations is compensated by oxygen vacancies. However, the large exothermic oxidation enthalpy in the UO2 based systems favors oxygen rich compositions where charge compensation occurs through the formation of uranium cations with higher oxidation states.« less
Helmeczi, Erick; Wang, Yong; Brindle, Ian D
2016-11-01
Short-wavelength infrared radiation has been successfully applied to accelerate the acid digestion of refractory rare-earth ore samples. Determinations were achieved with microwave plasma-atomic emission spectrometry (MP-AES) and dynamic reaction cell - inductively coupled plasma-mass spectrometry (DRC-ICP-MS). The digestion method developed was able to tackle high iron-oxide and silicate matrices using only phosphoric acid in a time frame of only 8min, and did not require perchloric or hydrofluoric acid. Additionally, excellent recoveries and reproducibilities of the rare earth elements, as well as uranium and thorium, were achieved. Digestions of the certified reference materials OREAS-465 and REE-1, with radically different mineralogies, delivered results that mirror those obtained by fusion processes. For the rare-earth CRM OKA-2, whose REE data are provisional, experimental data for the rare-earth elements were generally higher than the provisional values, often exceeding z-values of +2. Determined values for Th and U in this reference material, for which certified values are available, were in excellent agreement. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Hong Jian; Liu, Xiao Qiang; Chen, Xiang Ming; Bellaiche, L.
2014-11-01
The effects of chemical and hydrostatic pressures on structural, magnetic, and electronic properties of R2NiMn O6 double perovskites, with R being a rare-earth ion, have been systematically studied by using specific first-principles calculations. These latter reproduce well the correlation between several properties (e.g., lattice parameters, Ni-O-Mn bond angles, magnetic Curie temperature, and electronic band gap) and the rare-earth ionic radius (i.e., the chemical pressure). They also provide novel predictions awaiting experimental confirmation, such as (i) that many physical quantities respond in dramatically different manners to chemical versus hydrostatic pressure, unlike as commonly thought for perovskites containing rare-earth ions, and (ii) a dependence of antipolar displacements on chemical and hydrostatic pressures, which would further explain why the recently predicted electrical polarization of L a2NiMn O6/R2NiMn O6 superlattices [H. J. Zhao, W. Ren, Y. Yang, J. Íñiguez, X. M. Chen, and L. Bellaiche, Nat. Commun. 5, 4021 (2014), 10.1038/ncomms5021] can be created and controlled by playing with the rare-earth element.
Adsorption Behavior of Rare Earth Metal Cations in the Interlayer Space of γ-ZrP.
Takei, Takahiro; Iidzuka, Kiyoaki; Miura, Akira; Yanagida, Sayaka; Kumada, Nobuhiro; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro
2016-10-04
Adsorption competencies of rare earth metal cations in γ-zirconium phosphate were examined by ICP, synchrotron X-ray diffraction (SXRD), and ab initio simulation. The adsorption amounts are around 0.06-0.10 per zirconium phosphate. From the SXRD patterns of the adsorbed samples, the basal spacing estimated by c sin β increased linearly with an increasing ionic radius of rare earth metal cation, though a and b lattice constants show no change. These SXRD patterns can be classified into four groups that have different super lattices. The four superlattices have multiplicities of x131, x241, and x221 for the xabc axis, and the location of the rare earth metal cation in the original unit cell changes depending on the superlattice cell. In the x131 superlattice, Yb and Er occupied the site near the zirconium phosphate layer, though La and Ce in the x221 superlattice remained in the center position between the phosphate sheet. For the ab initio simulation of γ-ZrP with the typical rare earth metal cations (Tb, Eu, Dy, and La), the results of simulation show a similar tendency of the position estimated by SXRD refinements.
Effect of Solution Treatment on Microstructure and Properties of Gd - AZ91 Magnesium Alloy
NASA Astrophysics Data System (ADS)
Li, Yao; Wang, Huiling
2018-01-01
In this paper, the Gd-AZ91 alloy was manufactured by adding rare earth element Gd in AZ91 magnesium alloy. The effects of solution treatment on the microstructures of rare earth elements Gd were investigated by means of optical microscopy, scanning electron microscopy, X-ray diffraction analysis and equipment for testing mechanical properties. The experimental results show that the addition of rare earth element Gd in AZ91 magnesium alloy can refine the alloy grain, turn β-Mg17Al12 phase into a discontinuous network or point structure, and produce granular compound Al2Gd in the alloy; when solution temperature is about 380 °C, the alloy structure is the best, the tensile strength of the alloy is the largest with the value larger than 250Mpa; when the solution temperature exceeds 380 °C, the alloy structure is coarsened and the mechanical properties of the alloy are reduced. With the increase of rare earth element Gd content, the tensile strength of the alloy shows a tendency to increase gradually, which Indicates that the addition of a certain amount of rare earth elements Gd can improve the plasticity of the alloy.
Arumugam, Balamurugan; Tamaki, Takanori; Yamaguchi, Takeo
2015-08-05
Design of Pt alloy catalysts with enhanced activity and durability is a key challenge for polymer electrolyte membrane fuel cells. In the present work, we compare the durability of the ordered intermetallic face-centered tetragonal (fct) PtFeCu catalyst for the oxygen reduction reaction (ORR) relative to its counterpart bimetallic catalysts, i.e., the ordered intermetallic fct-PtFe catalyst and the commercial catalyst from Tanaka Kikinzoku Kogyo, TKK-PtC. Although both fct catalysts initially exhibited an ordered structure and mass activity approximately 2.5 times higher than that of TKK-Pt/C, the presence of Cu at the ordered intermetallic fct-PtFeCu catalyst led to a significant enhancement in durability compared to that of the ordered intermetallic fct-PtFe catalyst. The ordered intermetallic fct-PtFeCu catalyst retained more than 70% of its mass activity and electrochemically active surface area (ECSA) over 10 000 durability cycles carried out at 60 °C. In contrast, the ordered intermetallic fct-PtFe catalyst maintained only about 40% of its activity. The temperature of the durability experiment is also shown to be important: the catalyst was more severely degraded at 60 °C than at room temperature. To obtain insight into the observed enhancement in durability of fct-PtFeCu catalyst, a postmortem analysis of the ordered intermetallic fct-PtFeCu catalyst was carried out using scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX) line scan. The STEM-EDX line scans of the ordered intermetallic fct-PtFeCu catalyst over 10 000 durability cycles showed a smaller degree of Fe and Cu dissolution from the catalyst. Conversely, large dissolution of Fe was identified in the ordered intermetallic fct-PtFe catalyst, indicating a lesser retention of Fe that causes the destruction of ordered structure and gives rise to poor durability. The enhancement in the durability of the ordered intermetallic fct-PtFeCu catalyst is ascribed to the synergistic effects of Cu presence and the ordered structure of catalyst.
2012-04-11
Acquired by NASA Terra spacecraft, this image shows a mine in Baiyun Ebo, Inner Mongolia, China, the site of almost half the world rare earth production. China is responsible for over 95% of global production of rare earth elements.
Rare Earth Element Geochemistry for Produced Waters, WY
Quillinan, Scott; Nye, Charles; McLing, Travis; Neupane, Hari
2016-06-30
These data represent major, minor, trace, isotopes, and rare earth element concentrations in geologic formations and water associated with oil and gas production. *Note - Link below contains updated version of spreadsheet (6/14/2017)
Pamela M. Kinsey
2015-09-30
The work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials demonstrated high performance for collection of trace REEs, precious and valuable metals. The nanostructured materials typically performed better than commercially available sorbents. Data contains organic and inorganic sorbent removal efficiency, Sharkey Hot Springs (Idaho) water chemsitry analysis, and rare earth removal efficiency from select sorbents.
Hedge, C.E.; Futa, K.; Engel, C.G.; Fisher, R.L.
1979-01-01
Basalts dredged from the Mid-Indian Ocean Ridge System have rare earth, Rb, and Sr concentrations like those from other mid-ocean ridges, but have slightly higher Sr87/Sr86 ratios. Underlying gabbroic complexes are similar to the basalts in Sr87/Sr86, but are poorer K, Rb, and in rare earths. The chemical and isotopic data, as well as the geologic relations suggest a cumulate origin for the bulk of the gabbroic complexes. ?? 1979 Springer-Verlag.
Rare earth-transition metal scrap treatment method
Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.; Lincoln, Lanny P.
1992-02-11
Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets.
Rare earth-transition metal scrap treatment method
Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.; Lincoln, L.P.
1992-02-11
Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. 3 figs.
Electron traps in Gd3Ga3Al2O12:Ce garnets doped with rare-earth ions
NASA Astrophysics Data System (ADS)
Khanin, V. M.; Rodnyi, P. A.; Wieczorek, H.; Ronda, C. R.
2017-05-01
The curves of thermally stimulated luminescence of Gd3Ga3Al2O12:Ce3+ ceramics (a nominally pure sample and samples doped with rare-earth ions) are measured in the temperature range of 80-550 K. The depth and the frequency factor of electron traps established by Eu and Yb impurities are determined. An energy-level diagram of rare-earth ions in the bandgap of Gd3Ga3Al2O12 is presented.
Thermophysical properties of liquid rare earth metals
NASA Astrophysics Data System (ADS)
Thakor, P. B.; Sonvane, Y. A.; Patel, H. P.; Jani, A. R.
2013-06-01
The thermodynamical properties like long wavelength limit S(0), iso-thermal compressibility (χT), thermal expansion coefficient (αV), thermal pressure coefficient (γV), specific heat at constant volume (CV) and specific heat at constant pressure (CP) are calculated for liquid rare earth metals. Our newly constructed parameter free model potential is used to describe the electron ion interaction due to Sarkar et al (S) local field correction function. Lastly, we conclude that our newly constructed model potential is capable to explain the thermophysical properties of liquid rare earth metals.
Chen, Xiaoyan; Sun, Congting; Wu, Sixin; Xue, Dongfeng
2017-03-29
Rare earth ions can be used to construct a variety of novel structures and are favorable to chemical bonding regulation and design. In this study, the chemical bonding paradigm between rare earth ions (Ln 3+ ) and urea molecules in an aqueous solution can be tracked by the evolution of C[double bond, length as m-dash]O, NH 2 , and CN vibration bands during the urea nucleation stage. Rare earth ions such as La 3+ , Gd 3+ , and Lu 3+ can manipulate the nucleation time of urea via regulating the nucleation-dependant N-C[double bond, length as m-dash]OH-N hydrogen-bonding between urea molecules. Two types of chemical bondings between Ln 3+ and urea molecules have been confirmed, which are Ln 3+ O[double bond, length as m-dash]C-N and Ln 3+ NH 2 -C. Compared with Ln 3+ NH 2 -C, Ln 3+ prefers to coordinate with the O[double bond, length as m-dash]C bond in urea. With a higher concentration of rare earth ions in the solution, some N-C[double bond, length as m-dash]OH-N hydrogen bonds are broken as a consequence of the incorporation of Ln 3+ into the lattice, resulting in the decreased symmetry of local urea molecules in the crystalline nuclei and the consequent Ln 3+ concentration-dependent nucleation time of urea. Moreover, using the ionic electronegativity scale of Ln 3+ , the different effects of La 3+ , Gd 3+ , and Lu 3+ on urea nucleation can be further distinguished. The present study provides basic data for unrevealing the chemical bonding regulation role of rare earth ions in the formation of hydrogen bonded materials, which may give insight into the design and fabrication of novel materials utilizing rare earth ions to adjust the chemical bonding process.
Metal- and intermetallic-matrix composites for aerospace propulsion and power systems
NASA Technical Reports Server (NTRS)
Doychak, J.
1992-01-01
The requirements for high specific strength refractory materials of prospective military, civil, and space propulsion systems are presently addressed in the context of emerging capabilities in metal- and intermetallic-matrix composites. The candidate systems encompass composite matrix compositions of superalloy, Nb-Zr refractory alloy, Cu-base, and Ti-base alloy types, as well as such intermetallics as TiAl, Ti3Al, NiAl, and MoSi2. The brittleness of intermetallic matrices remains a major consideration, as does their general difficulty of fabrication.
Topology optimization of reduced rare-earth permanent magnet arrays with finite coercivity
NASA Astrophysics Data System (ADS)
Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Rowe, A.
2018-05-01
The supply chain risk of rare-earth permanent magnets has yielded research efforts to improve both materials and magnetic circuits. While a number of magnet optimization techniques exist, literature has not incorporated the permanent magnet failure process stemming from finite coercivity. To address this, a mixed-integer topology optimization is formulated to maximize the flux density of a segmented Halbach cylinder while avoiding permanent demagnetization. The numerical framework is used to assess the efficacy of low-cost (rare-earth-free ferrite C9), medium-cost (rare-earth-free MnBi), and higher-cost (Dy-free NdFeB) permanent magnet materials. Novel magnet designs are generated that produce flux densities 70% greater than the segmented Halbach array, albeit with increased magnet mass. Three optimization formulations are then explored using ferrite C9 that demonstrates the trade-off between manufacturability and design sophistication, generating flux densities in the range of 0.366-0.483 T.
Substitution of Nd with other rare earth elements in melt spun Nd{sub 2}Fe{sub 14}B magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D. N.; Lau, D.; Chen, Z.
2016-05-15
This is a contemporary study of rapidly quenched Nd{sub 1.6}X{sub 0.4}Fe{sub 14}B magnetic materials (where X= Nd, Y, Ce, La, Pr, Gd and Ho). A 20% substitution of the Nd component from Nd{sub 2}Fe{sub 14}B can bring about some commercial advantage. However, there will be some compromise to the magnetic performance. Light rare earth elements are definitely more abundant (Y, Ce, La) than the heavier rare earth elements, but when they are included in RE{sub 2}Fe{sub 14}B magnets they tend to lower magnetic performance and thermal stability. Substituting heavy rare earth elements (Gd, Ho) for Nd in Nd{sub 2}Fe{sub 14}Bmore » improves the thermal stability of magnets but causes a loss in magnet remanence.« less
Yttrium and rare earth stabilized fast reactor metal fuel
Guon, Jerold; Grantham, LeRoy F.; Specht, Eugene R.
1992-01-01
To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.
Rare earth phosphors and phosphor screens
Buchanan, Robert A.; Maple, T. Grant; Sklensky, Alden F.
1981-01-01
This invention relates to rare earth phosphor screens for converting image carrying incident radiation to image carrying visible or near-visible radiation and to the rare earth phosphor materials utilized in such screens. The invention further relates to methods for converting image carrying charged particles to image carrying radiation principally in the blue and near-ultraviolet region of the spectrum and to stabilized rare earth phosphors characterized by having a continuous surface layer of the phosphors of the invention. More particularly, the phosphors of the invention are oxychlorides and oxybromides of yttrium, lanthanum and gadolinium activated with trivalent cerium and the conversion screens are of the type illustratively including x-ray conversion screens, image amplifier tube screens, neutron imaging screens, cathode ray tube screens, high energy gamma ray screens, scintillation detector screens and screens for real-time translation of image carrying high energy radiation to image carrying visible or near-visible radiation.
Rose, H.J.; Murata, K.J.; Carron, M.K.
1954-01-01
In a combined chemical-spectrochemical procedure for quantitatively determining rare earth elements in cerium minerals, cerium is determined volumetrically, a total rare earths plus thoria precipitate is separated chemically, the ceria content of the precipitate is raised to 80??0 percent by adding pure ceria, and the resulting mixture is analyzed for lanthanum, praseodymium, neodymium, samarium, gadolinium, yttrium, and thorium spectrochemically by means of the d.c. carbon arc. Spectral lines of singly ionized cerium are used as internal standard lines in the spectrochemical determination which is patterned after Fassel's procedure [1]. Results of testing the method with synthetic mixtures of rare earths and with samples of chemically analyzed cerium minerals show that the coefficient of variation for a quadruplicate determination of any element does not exceed 5??0 (excepting yttrium at concentrations less than 1 percent) and that the method is free of serious systematic error. ?? 1954.
CARBONATE METHOD OF SEPARATION OF TETRAVALENT PLUTONIUM FROM FISSION PRODUCT VALUES
Duffield, R.B.; Stoughton, R.W.
1959-02-01
It has been found that plutonium forms an insoluble precipitate with carbonate ion when the carbonate ion is present in stoichiometric proportions, while an excess of the carbonate ion complexes plutonium and renders it soluble. A method for separating tetravalent plutonium from lanthanum-group rare earths has been based on this discovery, since these rare earths form insoluble carbonates in approximately neutral solutions. According to the process the pH is adjusted to between 5 and 7, and approximately stoichiometric amounts of carbonate ion are added to the solution causing the formation of a precipitate of plutonium carbonate and the lanthanum-group rare earth carbonates. The precipitate is then separated from the solution and contacted with a carbonate solution of a concentration between 1 M and 3 M to complex and redissolve the plutonium precipitate, and thus separate it from the insoluble rare earth precipitate.
Phase transformations and indications for acoustic mode softening in Tb-Gd orthophosphate
Tschauner, Oliver; Ushakov, Sergey V.; Navrotsky, Alexandra; ...
2016-01-06
At ambient conditions the anhydrous rare-earth orthophosphates assume either the xenotime (zircon) or the monazite structure, with the latter favored for the heavier rare earths. Tb 0.5Gd 0.5PO 4 assumes the xenotime structure at ambient conditions but is at the border between the xenotime and monazite structures. Here we show that, at high pressure, Tb 0.5Gd 0.5PO 4 does not transform directly to monazite but through an intermediate anhydrite-type structure. We show softening of (c 1133 + c 1313) combined elastic moduli close to the transition from the anhydrite to the monazite structure. Stress response of rare-earth orthophosphate ceramics canmore » be affected by both formation of the anhydrite-type phase and the elastic softening in the vicinity of the monazite-phase. In conclusion, we report the first structural data for an anhydrite-type rare earth orthophosphate.« less
Laminated rare earth structure and method of making
Senor, David J [West Richland, WA; Johnson, Roger N [Richland, WA; Reid, Bruce D [Pasco, WA; Larson, Sandra [Richland, WA
2002-07-30
A laminated structure having two or more layers, wherein at least one layer is a metal substrate and at least one other layer is a coating comprising at least one rare earth element. For structures having more than two layers, the coating and metal substrate layers alternate. In one embodiment of the invention, the structure is a two-layer laminate having a rare earth coating electrospark deposited onto a metal substrate. In another embodiment of the invention, the structure is a three-layer laminate having the rare earth coating electrospark deposited onto a first metal substrate and the coating subsequently abonded to a second metal substrate. The bonding of the coating to the second metal substrate may be accomplished by hot pressing, hot rolling, high deformation rate processing, or combinations thereof. The laminated structure may be used in nuclear components where reactivity control or neutron absorption is desired and in non-nuclear applications such as magnetic and superconducting films.
Ritter, C.; Provino, A.; Manfrinetti, P.; ...
2015-11-09
In this study, the magnetic properties and magnetic structures of the R 5Ni 2In 4 and the microfibrous R 11Ni 4In 9 compounds with R = Tb and Ho have been examined using magnetization, heat capacity, and neutron diffraction data. Rare earth atoms occupy three and five symmetrically inequivalent rare earth sites in R 5Ni 2In 4 and R 11Ni 4In 9 compounds, respectively. As a result of the intra- and inter-magnetic sublattice interactions, the magnetic exchange interactions are different for various rare earth sites; this leads to a cascade of magnetic transitions with a strong hierarchy in the temperaturemore » dependence of the magnetic orderings.« less
Method for preparing high cure temperature rare earth iron compound magnetic material
Huang, Yuhong; Wei, Qiang; Zheng, Haixing
2002-01-01
Insertion of light elements such as H,C, or N in the R.sub.2 Fe.sub.17 (R=rare earth metal) series has been found to modify the magnetic properties of these compounds, which thus become prospective candidates for high performance permanent magnets. The most spectacular changes are increases of the Curie temperature, T.sub.c, of the magnetization, M.sub.s, and of coercivity, H.sub.c, upon interstitial insertion. A preliminary product having a component R--Fe--C,N phase is produced by a chemical route. Rare earth metal and iron amides are synthesized followed by pyrolysis and sintering in an inert or reduced atmosphere, as a result of which, the R--Fe--C,N phases are formed. Fabrication of sintered rare earth iron nitride and carbonitride bulk magnet is impossible via conventional process due to the limitation of nitridation method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, R.L., E-mail: ruiliangliu@126.com; Yan, M.F., E-mail: yanmufu@hit.edu.cn; Wu, Y.Q.
2010-01-15
The effect of rare earth addition in the carrier gas on plasma nitrocarburizing of 17-4PH steel was studied. The microstructure and crystallographically of the phases in the surface layer as well as surface morphology of the nitrocarburized specimens were characterized by optical microscope, X-ray diffraction and scanning tunneling microscope, respectively. The hardness of the surface layer was measured by using a Vickers hardness test. The results show that the incorporation of rare earth elements in the carrier gas can increase the nitrocarburized layer thickness up to 55%, change the phase proportion in the nitrocarburized layer, refine the nitrides in surfacemore » layer, and increase the layer hardness above 100HV. The higher surface hardening effect after rare earth addition is caused by improvement in microstructure and change in the phase proportion of the nitrocarburized layer.« less
Combinatorial search of rare-earth free permanent magnets
NASA Astrophysics Data System (ADS)
Gao, Tieren; Takeuchi, Ichiro; Fackler, Sean; Fang, Lei; Zhang, Ying; Krammer, Matthew; Anderson, Iver; McCallum, Bill; University of Maryland Collaboration; Ames Laboratory Collaboration
2013-03-01
Permanent magnets play important roles in modern technologies such as in generators, motors, speakers, and relays. Today's high performance permanent magnets contain at least one rare earth element such as Nd, Sm, Pr and Dy. However, rare earth elements are increasingly rare and expensive, and alternative permanent magnet materials which do not contain them are needed by the industry. We are using the thin film composition spread technique to explore novel compositions of permanent magnets without rare-earth. Ternary co-sputtering is used to generate composition spreads. We have thus far looked at Mo doped Fe-Co as one of the initial systems to search for possible compounds with enhanced coercive fields. The films were deposited on Si (100) substrates and annealed at different temperatures. The structural properties of films are mapped by synchrotron diffraction. We find that there is a structural transition from a crystalline to an amorphous state at about 20% atomic Mo. With increasing annealing temperature, the Mo onset concentration of the structural transition increases from 25% for 600°C to 35% for 700°C. We find that some of compounds display enhanced coercive field. With increasing Mo concentration, the magnetization of Fe-Co-Mo begins to switch from in-plane to out-of-plane direction. This work is funded by the BREM (Beyond Rare-earth Magnet) project (DOE EERE).
Technological pretreatment of the synchysite non-oxidized ore
NASA Astrophysics Data System (ADS)
Munkhtsetseg, B.; Burmaa, G.
2013-06-01
Mongolia has rich deposits of rare, precious, and poly-metallic ores. Nowadays, it is important to research separation of rare earth elements oxides concentrates from the ores, analyze their unique physical chemical characteristics, and purified it. Our investigation on raw materials focuses on rare earth non-oxidized ores. Main mineral in this rock sample is Synchysite (LnCa(CO3)2F. We did technological and thermal pretreatment: direct sulphurization (H2SO4), sulphurization with subsequent roasting (800°C+H2SO4), sulphurization prior to roasting (H2SO4+650°C). Sulphurization method based on dissolution of rare earth mineral into sulfuric acid (93%) according to the reaction. The amount of rare earth element oxides is almost 10 times greater (29.16%) after direct sulphurization process, almost 8 times greater (21.14%) after sulphurization with subsequent roasting, and almost 20 times greater (44.62%) after sulphurization prior to roasting process. After those technological pretreatment raw material's micro elements Thorium and Uranium contents are reduced as follows: H2SO4>800°C+H2SO4>H2SO4+650°C. These results show that cerium group rare earth elements have very good solubility in water at +2°C temperature and decreasing micro elements content uranium and thorium good pretreatment condition is prior to roasting (H2SO4+650°C) of synchysite non-oxidized ore.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemmens, B.
While Si additions to Al are widely used to reduce the thickness of the brittle intermetallic seam formed at the interface during joining of Al alloys to steel, the underlying mechanisms are not clarified yet. The developed approach for the site specific atom probe tomography analysis revealed Si enrichments at grain and phase boundaries between the θ (Fe{sub 4}Al{sub 13}) and η (Fe{sub 2}Al{sub 5}) phase, up to about ten times that of the concentration in Al. The increase in Si concentration could play an important role for the growth kinetics of the intermetallic phases formed for example in hot-dipmore » aluminizing of steel. - Highlights: •Si additions to Al reduce thickness of intermetallic seam in joining with steel. •Approach developed for the site specific APT analysis of the intermetallic seam •Si enrichment at grain and phase boundaries possibly affects growth of intermetallics.« less
Microstructure and tribological properties of TiAg intermetallic compound coating
NASA Astrophysics Data System (ADS)
Guo, Chun; Chen, Jianmin; Zhou, Jiansong; Zhao, Jierong; Wang, Linqian; Yu, Youjun; Zhou, Huidi
2011-10-01
TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.
NASA Astrophysics Data System (ADS)
Yang, S. C.; Ho, C. E.; Chang, C. W.; Kao, C. R.
2007-04-01
Massive spalling of intermetallic compounds has been reported in the literature for several solder/substrate systems, including SnAgCu soldered on Ni substrate, SnZn on Cu, high-Pb PbSn on Cu, and high-Pb PbSn on Ni. In this work, a unified thermodynamic argument is proposed to explain this rather unusual phenomenon. According to this argument, two necessary conditions must be met. The number one condition is that at least one of the reactive constituents of the solder must be present in a limited amount, and the second condition is that the soldering reaction has to be very sensitive to its concentration. With the growth of intermetallic, more and more atoms of this constituent are extracted out of the solder and incorporated into the intermetallic. As the concentration of this constituent decreases, the original intermetallic at the interface becomes a nonequilibrium phase, and the spalling of the original intermetallic occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, S. C.; Ho, C. E.; Chang, C. W.
2007-04-15
Massive spalling of intermetallic compounds has been reported in the literature for several solder/substrate systems, including SnAgCu soldered on Ni substrate, SnZn on Cu, high-Pb PbSn on Cu, and high-Pb PbSn on Ni. In this work, a unified thermodynamic argument is proposed to explain this rather unusual phenomenon. According to this argument, two necessary conditions must be met. The number one condition is that at least one of the reactive constituents of the solder must be present in a limited amount, and the second condition is that the soldering reaction has to be very sensitive to its concentration. With themore » growth of intermetallic, more and more atoms of this constituent are extracted out of the solder and incorporated into the intermetallic. As the concentration of this constituent decreases, the original intermetallic at the interface becomes a nonequilibrium phase, and the spalling of the original intermetallic occurs.« less
Ab Initio Study of Ultracold Polar Molecules in Optical Lattices
2010-01-01
collisions of Li and alkaline-earth or rare- earth atoms, such LiSr and LiYb. Finally, we calculated the isotropic and anisotropic interaction potentials... LiSr and LiYb molecules. To the best of our knowledge, only LiMg was experimentally investigated [3], which allowed us to compare our predictions...alkaline-earth or rare-earth atoms. Interest in the LiSr and LiYb molecules stems from prospects to achieve optical Feshbach tuning of scattering properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cursino, Ana Cristina Trindade, E-mail: anacursino@ufpr.br; Rives, Vicente, E-mail: vrives@usal.es; Arizaga, Gregorio Guadalupe Carbajal, E-mail: gregoriocarbajal@yahoo.com.mx
2015-10-15
Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide salts intercalated with nitrate anions were synthesized, followed by exchange with 2-aminobenzoate. The UV absorption ability was improved after intercalation/grafting in relation to that shown by the parent material. - Highlights: • Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide were synthesized. • Intercalated nitrate anions were exchanged by 2-aminobenzoate. • In all the 2-aminobenzoate containing compounds, the grafting reaction was detected. • The UV absorption ability was improved after the exchange reactions. • Rare earth hydroxide salts are potential matrixes to produce luminescentmore » materials. - Abstract: Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide salts intercalated with nitrate anions were synthesized, followed by exchange with 2-aminobenzoate. The obtained compounds were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) and ultraviolet visible (UV–vis) spectroscopies, fluorescence measurements and thermal analysis (TGA/DTA). The results from FTIR spectroscopy suggest a direct coordination of 2-aminobenzoate to the metal cations of the inorganic layered structure. The organic derivative products from the intercalation reactions absorb a broader range of UV-light in relation to that shown by the parent material; the photoluminescence measurements present a strong violet, blue and green luminescence under UV-light excitation for layered compounds with, Zn, Y and Tb, respectively. Rare earth hydroxide salts (RE-LHS) are potential alternative matrices for the immobilization of organic species to produce luminescent materials.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-22
... substances identified generically as complex strontium aluminum, rare earth doped, which were the subject of... chemical substances identified generically as complex strontium aluminum, rare earth doped, which were the...
NETL’s Rare Earth Elements Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The National Energy Technology Laboratory has established a Rare Earth Elements (REE) program. REEs are a series of 17 chemical elements found in the Earth’s crust. They are an essential component to technology, health care, transportation and national defense.
International strategic minerals inventory summary report; rare-earth oxides
Jackson, W.D.; Christiansen, Grey
1993-01-01
Bastnaesite, monazite, and xenotime are currently the most important rare-earth minerals. Bastnaesite occurs as a primary mineral in carbonatites. Monazite and xenotime also can be found in primary deposits but are recovered principally from heavy-mineral placers that are mined for titanium or tin. Each of these minerals has a different composition of the 15 rare-earth elements. World resources of economically exploitable rare-earth oxides (REO) are estimated at 93.4 million metric tons in place, composed of 93 percent in primary deposits and 7 percent in placers. The average mineral composition is 83 percent bastnaesite, 13 percent monazite, and 4 percent of 10 other minerals. Annual global production is about 67,000 metric tons of which 41 percent is from placers and 59 percent is from primary deposits; mining methods consist of open pits (94 percent) and dredging (6 percent). This output could be doubled if the operations that do not currently recover rare earths would do so. Resources are more than sufficient to meet the demand for the predictable future. About 52 percent of the world's REO resources are located in China. Ranking of other countries is as follows: Namibia (22 percent), the United States (15 percent), Australia (6 percent), and India (3 percent); the remainder is in several other countries. Conversely, 38 percent of the production is in China, 33 percent in the United States, 12 percent in Australia, and 5 percent each in Malaysia and India. Several other countries, including Brazil, Canada, South Africa, Sri Lanka, and Thailand, make up the remainder. Markets for rare earths are mainly in the metallurgical, magnet, ceramic, electronic, chemical, and optical industries. Rare earths improve the physical and rolling properties of iron and steel and add corrosion resistance and strength to structural members at high temperatures. Samarium and neodymium are used in lightweight, powerful magnets for electric motors. Cerium and yttrium increase the density and heat resistance of sintered ceramics. Yttrium and gadolinium contribute to the efficiency of electronic switches and sensors. Cerium improves the effectiveness of catalysts in the petroleum and automotive industries. Cerium oxides speed glass melting and are used to polish glass by chemical, rather than mechanical, means. Cerium, europium, terbium, and yttrium, as phosphoric compounds, promote the vivid colors of television screens. Consumption of rare earths is expected to grow by about 2.6 percent per year.
NASA Astrophysics Data System (ADS)
Ogneva, T. S.; Lazurenko, D. V.; Bataev, I. A.; Mali, V. I.; Esikov, M. A.; Bataev, A. A.
2016-04-01
The Ni-Al multilayer composite was fabricated using explosive welding. The zones of mixing of Ni and Al are observed at the composite interfaces after the welding. The composition of these zones is inhomogeneous. Continuous homogeneous intermetallic layers are formed at the interface after heat treatment at 620 °C during 5 h These intermetallic layers consist of NiAl3 and Ni2Al3 phases. The presence of mixed zones significantly accelerates the growth rate of intermetallic phases at the initial stages of heating.
Containerless automated processing of intermetallic compounds and composites
NASA Technical Reports Server (NTRS)
Johnson, D. R.; Joslin, S. M.; Reviere, R. D.; Oliver, B. F.; Noebe, R. D.
1993-01-01
An automated containerless processing system has been developed to directionally solidify high temperature materials, intermetallic compounds, and intermetallic/metallic composites. The system incorporates a wide range of ultra-high purity chemical processing conditions. The utilization of image processing for automated control negates the need for temperature measurements for process control. The list of recent systems that have been processed includes Cr, Mo, Mn, Nb, Ni, Ti, V, and Zr containing aluminides. Possible uses of the system, process control approaches, and properties and structures of recently processed intermetallics are reviewed.
Intermetallics as innovative CRM-free materials
NASA Astrophysics Data System (ADS)
Novák, Pavel; Jaworska, Lucyna; Cabibbo, Marcello
2018-03-01
Many of currently used technical materials cannot be imagined without the use of critical raw materials. They require chromium (e.g. in stainless and tool steels), tungsten and cobalt (tool materials, heat resistant alloys), niobium (steels and modern biomaterials). Therefore there is a need to find substitutes to help the European economy. A promising solution can be the application of intermetallics. These materials offer wide variety of interesting properties, such as high hardness and wear resistance or high chemical resistance. In this paper, the overview of possible substitute materials among intermetallics is presented. Intermetallics based on aluminides and silicides are shown as corrosion resistant materials, composites composed of ceramics in intermetallic matrix as possible tool materials. The manufacturing processes are being developed to minimize the disadvantages of these materials, mainly the room-temperature brittleness.
Atomic interaction of the MEAM type for the study of intermetallics in the Al-U alloy
NASA Astrophysics Data System (ADS)
Pascuet, M. I.; Fernández, J. R.
2015-12-01
Interaction for both pure Al and Al-U alloys of the MEAM type are developed. The obtained Al interatomic potential assures its compatibility with the details of the framework presently adopted. The Al-U interaction fits various properties of the Al2U, Al3U and Al4U intermetallics. The potential verifies the stability of the intermetallic structures in a temperature range compatible with that observed in the phase diagram, and also takes into account the greater stability of these structures relative to others that are competitive in energy. The intermetallics are characterized by calculating elastic and thermal properties and point defect parameters. Molecular dynamics simulations show a growth of the Al3U intermetallic in the Al/U interface in agreement with experimental evidence.
Nguyen, Quoc Manh; Huang, Shyh-Chour
2015-01-01
Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer’s formation. PMID:28793708
Nguyen, Quoc Manh; Huang, Shyh-Chour
2015-12-02
Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer's formation.
Process to remove rare earth from IFR electrolyte
Ackerman, John P.; Johnson, Terry R.
1994-01-01
The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.
Diversification of the rare-earth business in the existing enterprises
NASA Astrophysics Data System (ADS)
Bogdanov, S. V.; Grishaev, S. I.; Yazev, V. A.
2013-12-01
The development of the modern rare-earth business is analyzed, and the possibilities of using a mathematical description of the prospects of this business on the basis of nonlinear evolution equations are estimated. The well-known methods of describing the life cycle of the economic activity of a commercial company in the closed multisector model of market economics is used to determine the boundaries of changing the average labor productivity during the diversification of business on operating Russian enterprises that produce a wide range of products and are intended to manufacture new types of high-technology rare-earth metal products.
1985-06-04
compounds were employed since 1979. The polyfunc- studied using time-resolved spectro- tlonal ligands (L) included crown ethers scopy, and the...structure of rare earth * Aqueous complexes with cyclic poly - compounds (for example Cs3Ln2X9), was ethers crown ethers , Alstad, Univer- presented by A...Approved for public release; distribution unlimited U.S. Office of Naval Research, London ag - ’ 3 k) I 5.’ - ~1 I 9 ’<I. A -i I. 4. -A kA IS7 ASS
Process to remove rare earth from IFR electrolyte
Ackerman, J.P.; Johnson, T.R.
1992-01-01
The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.
Process to remove rare earth from IFR electrolyte
Ackerman, J.P.; Johnson, T.R.
1994-08-09
The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner. 1 fig.
Ground-state properties of rare-earth metals: an evaluation of density-functional theory.
Söderlind, Per; Turchi, P E A; Landa, A; Lordi, V
2014-10-15
The rare-earth metals have important technological applications due to their magnetic properties, but are scarce and expensive. Development of high-performance magnetic materials with less rare-earth content is desired, but theoretical modeling is hampered by complexities of the rare earths electronic structure. The existence of correlated (atomic-like) 4f electrons in the vicinity of the valence band makes any first-principles theory challenging. Here, we apply and evaluate the efficacy of density-functional theory for the series of lanthanides (rare earths), investigating the influence of the electron exchange and correlation functional, spin-orbit interaction, and orbital polarization. As a reference, the results are compared with those of the so-called 'standard model' of the lanthanides in which electrons are constrained to occupy 4f core states with no hybridization with the valence electrons. Some comparisons are also made with models designed for strong electron correlations. Our results suggest that spin-orbit coupling and orbital polarization are important, particularly for the magnitude of the magnetic moments, and that calculated equilibrium volumes, bulk moduli, and magnetic moments show correct trends overall. However, the precision of the calculated properties is not at the level of that found for simpler metals in the Periodic Table of Elements, and the electronic structures do not accurately reproduce x-ray photoemission spectra.
Crystalline rare-earth activated oxyorthosilicate phosphor
McClellan, Kenneth J.; Cooke, D. Wayne
2004-02-10
Crystalline, transparent, rare-earth activated lutetium oxyorthosilicate phosphor. The phosphor consists essentially of lutetium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of lutetium gadolinium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Gd.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of gadolinium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Gd(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor may be optically coupled to a photodetector to provide a radiation detector.
Zhang, Lin; Chen, Beibei; He, Man; Hu, Bin
2013-07-01
A rapid and sensitive method based on polymer monolithic capillary microextraction combined on-line with microconcentric nebulization inductively coupled plasma MS has been developed for the determination of trace/ultratrace rare earth elements in biological samples. For this purpose, the iminodiacetic acid modified poly(glycidyl methacrylate-trimethylolpropane trimethacrylate) monolithic capillary was prepared and characterized by SEM and FTIR spectroscopy. Factors affecting the extraction efficiency, such as sample pH, sample flow rate, sample/eluent volume, and coexisting ions were investigated in detail. Under the optimal conditions, the LODs for rare earth elements were in the range of 0.08 (Er) to 0.97 ng/L (Nd) with a sampling frequency of 8.5 h(-1), and the RSDs were between 1.5% (Sm) and 7.4% (Nd) (c = 20 ng/L, n = 7). The proposed method was successfully applied to the analysis of trace/ultratrace rare earth elements in human urine and serum samples, and the recoveries for the spiked samples were in the range of 82-105%. The developed method was simple, rapid, sensitive, and favorable for the analysis of trace/ultratrace rare earth elements in biological samples with limited sample volume. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Onions, R. K.
1994-01-01
The degassing of the Earth during accretion is constrained by Pu-U-I-Xe systematics. Degassing was much more efficient during the first 100-200 Ma than subsequently, and it was more complete for Xe than for the lighter gases. More than 90 percent of the degassed Xe escaped from the atmosphere during this period. The combination of fractional degassing of melts and rare gas escape from the atmosphere is able to explain the deficit of terrestrial Xe as a simple consequence of this early degassing history. By the time Xe was quantitatively retained in the atmosphere, the abundances of Kr and the lighter gases in the Earth's interior were similar to or higher than the present-day atmospheric abundances. Subsequent transfer of these lighter rare gases into the atmosphere requires a high rate of post-accretion degassing and melt production. Considerations of Pu-U-Xe systematics suggest that relatively rapid post-accretion degassing was continued to ca. 4.1-4.2 Ga. The present-day degassing history of the Earth is investigated through consideration of rare gas isotope abundances. Although the Earth is a highly degassed body, depleted in rare gases by many orders of magnitude relative to their solar abundances, it is at the present-day losing primordial rare gases which were trapped at the time of accretion.
High pressure phase transitions in the rare earth metal erbium to 151 GPa.
Samudrala, Gopi K; Thomas, Sarah A; Montgomery, Jeffrey M; Vohra, Yogesh K
2011-08-10
High pressure x-ray diffraction studies have been performed on the heavy rare earth metal erbium (Er) in a diamond anvil cell at room temperature to a pressure of 151 GPa and Er has been compressed to 40% of its initial volume. The rare earth crystal structure sequence hcp → Sm type → dhcp → distorted fcc (hcp: hexagonal close packed; fcc: face centered cubic; dhcp: double hcp) is observed in Er below 58 GPa. We have carried out Rietveld refinement of crystal structures in the pressure range between 58 GPa and 151 GPa. We have examined various crystal structures that have been proposed for the distorted fcc (dfcc) phase and the post-dfcc phase in rare earth metals. We find that the hexagonal hR 24 structure is the best fit between 58 and 118 GPa. Above 118 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.9%. We have also established a clear trend for the pressure at which a post-dfcc phase is formed in rare earth metals and show that there is a monotonic increase in this pressure with the filling of 4f shell.
High pressure phase transitions in the rare earth metal erbium to 151 GPa
NASA Astrophysics Data System (ADS)
Samudrala, Gopi K.; Thomas, Sarah A.; Montgomery, Jeffrey M.; Vohra, Yogesh K.
2011-08-01
High pressure x-ray diffraction studies have been performed on the heavy rare earth metal erbium (Er) in a diamond anvil cell at room temperature to a pressure of 151 GPa and Er has been compressed to 40% of its initial volume. The rare earth crystal structure sequence {hcp} \\to {Sm}~ {type} \\to {dhcp} \\to {distorted} fcc (hcp: hexagonal close packed; fcc: face centered cubic; dhcp: double hcp) is observed in Er below 58 GPa. We have carried out Rietveld refinement of crystal structures in the pressure range between 58 GPa and 151 GPa. We have examined various crystal structures that have been proposed for the distorted fcc (dfcc) phase and the post-dfcc phase in rare earth metals. We find that the hexagonal hR 24 structure is the best fit between 58 and 118 GPa. Above 118 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.9%. We have also established a clear trend for the pressure at which a post-dfcc phase is formed in rare earth metals and show that there is a monotonic increase in this pressure with the filling of 4f shell.
Theoretical Study of pKa Values for Trivalent Rare-Earth Metal Cations in Aqueous Solution.
Yu, Donghai; Du, Ruobing; Xiao, Ji-Chang; Xu, Shengming; Rong, Chunying; Liu, Shubin
2018-01-18
Molecular acidity of trivalent rare-earth metal cations in aqueous solution is an important factor dedicated to the efficiency of their extraction and separation processes. In this work, the aqueous acidity of these metal ions has been quantitatively investigated using a few theoretical approaches. Our computational results expressed in terms of pK a values agree well with the tetrad effect of trivalent rare-earth ions extensively reported in the extraction and separation of these elements. Strong linear relationships have been observed between the acidity and quantum electronic descriptors such as the molecular electrostatic potential on the acidic nucleus and the sum of the valence natural atomic orbitals energies of the dissociating proton. Making use of the predicted pK a values, we have also predicted the major ionic forms of these species in the aqueous environment with different pH values, which can be employed to rationalize the behavior difference of different rare-earth metal cations during the extraction process. Our present results should provide needed insights not only for the qualitatively understanding about the extraction and separation between yttrium and lanthanide elements but also for the prediction of novel and more efficient rare-earth metal extractants in the future.
Potential synergy: the thorium fuel cycle and rare earths processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ault, T.; Wymer, R.; Croff, A.
2013-07-01
The use of thorium in nuclear power programs has been evaluated on a recurring basis. A concern often raised is the lack of 'thorium infrastructure'; however, for at least a part of a potential thorium fuel cycle, this may less of a problem than previously thought. Thorium is frequently encountered in association with rare earth elements and, since the U.S. last systematically evaluated the large-scale use of thorium (the 1970's,) the use of rare earth elements has increased ten-fold to approximately 200,000 metric tons per year. Integration of thorium extraction with rare earth processing has been previously described and top-levelmore » estimates have been done on thorium resource availability; however, since ores and mining operations differ markedly, what is needed is process flowsheet analysis to determine whether a specific mining operation can feasibly produce thorium as a by-product. Also, the collocation of thorium with rare earths means that, even if a thorium product stream is not developed, its presence in mining waste streams needs to be addressed and there are previous instances where this has caused issues. This study analyzes several operational mines, estimates the mines' ability to produce a thorium by-product stream, and discusses some waste management implications of recovering thorium. (authors)« less
Rare Earth Garnet Selective Emitter
NASA Technical Reports Server (NTRS)
Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.
1994-01-01
Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional impurities, in the development of solid state laser crystals. Doping, dependent on the particular ion and crystal structure, may be as high as 100 at. % (complete substitution of yttrium ion with the rare earth ion). These materials have high melting points, 1940 C for YAG (Yttrium Aluminum Garnet), and low emissivity in the near infrared making them excellent candidates for a thin film selective emitter. As previously stated, the spectral emittance of a rare earth emitter is characterized by one or more well defined emission bands. Outside the emission band the emittance(absorptance) is much lower. Therefore, it is expected that emission outside the band for a thin film selective emitter will be dominated by the emitter substrate. For an efficient emitter (power in the emission band/total emitted power) the substrate must have low emittance, epsilon(sub S). This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium(Ho) and erbium (Er) doped YAG thin film selective emitters at (1500 K), and compares those results with the theoretical spectral emittance.
A LOW-COST RARE EARTH ELEMENTS RECOVERY TECHNOLOGY - PHASE I
Cloud Chemistry of Fallout Formation
1968-01-31
SILICATES ....... 19 LEACHING STUDIES ..... ............................ 26 HIGH-TEMPERATURE MASS SPECTROMETRY ............... 31 Rare-Earth Oxide ...reactions between technetium oxides ................. 39 TABLES 1 . Small Boy particle size-weight fraction description (each particle size fraction...29 9. Rare-earth oxide thermodynamics (Reaction 15) ............... 32 10. Enthalpies for gas-phase reactions
Rare Earth Element Concentrations in Submarine Hydrothermal Fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, Andrew; Zierenberg, Robert
Rare earth element concentrations in submarine hydrothermal fluids from Alarcon Rise, East Pacific Rise, REE concentrations in submarine hydrothermal fluids from Pescadero Basin, Gulf of California, and the Cleft vent field, southern Juan de Fuca Ridge. Data are not corrected to zero Mg.
High Temperature Chemistry of Rare Earth Compounds: Dramatic Examples of Periodicity.
ERIC Educational Resources Information Center
Cater, E. David
1978-01-01
Reports that energy required to promote a 4f electron to the 5d level has a profound and predictable influence on the systematics of reactions involving conversion of rare earth atoms from combined to free states. (Author/MA)
Non-rare earth magnetic nanoparticles
Carpenter, Everett E.; Huba, Zachary J.; Carroll, Kyler J.; Farghaly, Ahmed; Khanna, Shiv N.; Qian, Meichun; Bertino, Massimo
2017-09-26
Continuous flow synthetic methods are used to make single phase magnetic metal alloy nanoparticles that do not contain rare earth metals. Soft and hard magnets made from the magnetic nanoparticles are used for a variety of purposes, e.g. in electric motors, communication devices, etc.
NASA Astrophysics Data System (ADS)
Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu
2016-11-01
In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Li-Ping; Zhang, Qiang; State Key Laboratory of Pollution Control and Resource Reuse
Graphical abstract: Lanthanide ions doped bare earth rare earth fluoride nanocrystals are synthesized by hydrothermal technology and characterized. The down/up-conversion luminescence of them are discussed. - Highlights: • Mixed hydrothermal system H{sub 2}O–OA (EDA)–O-A(LO-A) is used for synthesis. • Barium rare earth fluoride nanocrystals are synthesized comprehensively. • Luminescence for down-conversion and up-conversion are obtained for these systems. - Abstract: Mixed hydrothermal system H{sub 2}O–OA (EDA)–O-A(LO-A) is developed to synthesize barium rare earth fluorides nanocrystals (OA = oleylamine, EDA = ethylenediamine, O-A = oleic acid and LO-A = linoleic acid). They are presented as BaREF{sub 5} (RE = Ce, Pr,more » Nd, Eu, Gd, Tb, Dy, Y, Tm, Lu) and Ba{sub 2}REF{sub 7} (RE = La, Sm, Ho, Er, Yb). The influence of reaction parameters (rare earth species, hydrothermal system and temperature) is checked on the phase and shape evolution of the fluoride nanocrystals. It is found that reaction time and temperature of these nanocrystals using EDA (180 °C, 6 h) is lower than those of them using OA (220 °C, 10 h). The photoluminescence properties of these fluorides activated by some rare earth ions (Nd{sup 3+}, Eu{sup 3+}, Tb{sup 3+}) are studied, and especially up-conversion luminescence of the four fluoride nanocrystal systems (Ba{sub 2}LaF{sub 7}:Yb, Tm(Er), Ba{sub 2}REF{sub 7}:Yb, Tm(Er) (RE = Gd, Y, Lu)) is observed.« less
Magnesium transport extraction of transuranium elements from LWR fuel
Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Miller, William E.; Pierce, R. Dean
1992-01-01
A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a U-Fe alloy containing not less than about 84% by weight uranium at a temperature in the range of from about 800.degree. C. to about 850.degree. C. to produce additional uranium metal which dissolves in the U-Fe alloy raising the uranium concentration and having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The U-Fe alloy having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with Mg metal which takes up the actinide and rare earth fission product metals. The U-Fe alloy retains the noble metal fission products and is stored while the Mg is distilled and recycled leaving the transuranium actinide and rare earth fission products isolated.
Innocenzi, Valentina; Ippolito, Nicolò Maria; De Michelis, Ida; Medici, Franco; Vegliò, Francesco
2016-12-15
Terbium and rare earths recovery from fluorescent powders of exhausted lamps by acid leaching with hydrochloric acid was the objective of this study. In order to investigate the factors affecting leaching a series of experiments was performed in according to a full factorial plan with four variables and two levels (4 2 ). The factors studied were temperature, concentration of acid, pulp density and leaching time. Experimental conditions of terbium dissolution were optimized by statistical analysis. The results showed that temperature and pulp density were significant with a positive and negative effect, respectively. The empirical mathematical model deducted by experimental data demonstrated that terbium content was completely dissolved under the following conditions: 90 °C, 2 M hydrochloric acid and 5% of pulp density; while when the pulp density was 15% an extraction of 83% could be obtained at 90 °C and 5 M hydrochloric acid. Finally a flow sheet for the recovery of rare earth elements was proposed. The process was tested and simulated by commercial software for the chemical processes. The mass balance of the process was calculated: from 1 ton of initial powder it was possible to obtain around 160 kg of a concentrate of rare earths having a purity of 99%. The main rare earths elements in the final product was yttrium oxide (86.43%) following by cerium oxide (4.11%), lanthanum oxide (3.18%), europium oxide (3.08%) and terbium oxide (2.20%). The estimated total recovery of the rare earths elements was around 70% for yttrium and europium and 80% for the other rare earths. Copyright © 2016 Elsevier Ltd. All rights reserved.
Meshram, Pratima; Pandey, B D; Mankhand, T R
2016-05-01
Nickel-metal hydride batteries (Ni-MH) contain not only the base metals, but valuable rare earth metals (REMs) viz. La, Sm, Nd, Pr and Ce as well. In view of the importance of resource recycling and assured supply of the contained metals in such wastes, the present study has focussed on the leaching of the rare earth metals from the spent Ni-MH batteries. The conditions for the leaching of REMs from the spent batteries were optimized as: 2M H2SO4, 348K temperature and 120min of time at a pulp density (PD) of 100g/L. Under this condition, the leaching of 98.1% Nd, 98.4% Sm, 95.5% Pr and 89.4% Ce was achieved. Besides the rare earth metals, more than 90% of base metals (Ni, Co, Mn and Zn) were also leached out in this condition. Kinetic data for the dissolution of all the rare earth metals showed the best fit to the chemical control shrinking core model. The leaching of metals followed the mechanism involving the chemical reaction proceeding on the surface of particles by the lixiviant, which was corroborated by the XRD phase analysis and SEM-EDS studies. The activation energy of 7.6, 6.3, 11.3 and 13.5kJ/mol was acquired for the leaching of neodymium, samarium, praseodymium and cerium, respectively in the temperature range 305-348K. From the leach liquor, the mixed rare earth metals were precipitated at pH∼1.8 and the precipitated REMs was analyzed by XRD and SEM studies to determine the phases and the morphological features. Copyright © 2015. Published by Elsevier Ltd.
Hu, Allen H; Kuo, Chien-Hung; Huang, Lance H; Su, Chao-Chin
2017-02-01
Rare earth elements are key raw materials in high-technology industries. Mining activities and manufacturing processes of such industries have caused considerable environmental impacts, such as soil erosion, vegetation destruction, and various forms of pollution. Sustaining the long-term supply of rare earth elements is difficult because of the global shortage of rare earth resources. The diminishing supply of rare earth elements has attracted considerable concern because many industrialized countries regarded such elements as important strategic resources for economic growth. This study aims to explore the carbon footprints of yttrium and europium recovery techniques from phosphor. Two extraction recovery methods, namely, acid extraction and solvent extraction, were selected for the analysis and comparison of carbon footprints. The two following functional units were used: (1) the same phosphor amounts for specific Y and Eu recovery concentrations, and (2) the same phosphor amounts for extraction. For acid extraction method, two acidic solutions (H 2 SO 4 and HCl) were used at two different temperatures (60 and 90°C). For solvent extraction method, acid leaching was performed followed by ionic liquid extraction. Carbon footprints from acid and solvent extraction methods were estimated to be 10.1 and 10.6kgCO 2 eq, respectively. Comparison of the carbon emissions of the two extraction methods shows that the solvent extraction method has significantly higher extraction efficiency, even though acid extraction method has a lower carbon footprint. These results may be used to develop strategies for life cycle management of rare earth resources to realize sustainable usage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Song; Zhu, Xiancui; Zhou, Shuangliu; Wang, Shaowu; Feng, Zhijun; Wei, Yun; Miao, Hui; Guo, Liping; Wang, Fenhua; Zhang, Guangchao; Gu, Xiaoxia; Mu, Xiaolong
2014-02-14
The reactions of different pyrrolyl-functionalized indoles with rare-earth metal(III) amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Er, Dy, Eu, Y) produced different kinds of rare-earth metal amido complexes. Reactions of N-((1H-pyrrol-2-yl)methylene)-2-(1H-indol-3-yl)ethanamine with rare-earth metal amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Er, Dy, Eu, Y) in toluene or THF at temperatures of 75-80 °C afforded the novel trinuclear rare-earth metal amido complexes incorporating the indolyl ligand in μ-η(5):η(1) bonding modes and a μ3-O group, which is believed to originate from cleavage of the THF ring based on experimental results. Reactions of 2-(1H-indol-3-yl)-N-((1-methyl-1H-pyrrol-2-yl)methylene)ethanamine with rare-earth metal(III) amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Dy) produced mononuclear ytterbium and dysprosium amides having the indolyl ligand in an η(1) bonding fashion. The results indicate that substituents not only have an influence on reactivity, but also have an influence on the bonding of the indolyl ligands with metals. The catalytic activities of the novel lanthanide amido complexes for the hydrophosphonylation of both aromatic and aliphatic aldehydes and ketones were explored. The results indicate that these complexes display a high catalytic activity for the C-P bond formation under mild conditions when using low catalyst loadings (0.1 mol% for aldehydes and ketones). Thus, it provides a potential way to prepare α-hydroxy phosphonates.
Ding, Yunfei; Lin, Jixing; Wen, Cuie; Zhang, Dongmei; Li, Yuncang
2016-01-01
Our previous studies have demonstrated that Mg-Zr-Sr alloys can be anticipated as excellent biodegradable implant materials for load-bearing applications. In general, rare earth elements (REEs) are widely used in magnesium (Mg) alloys with the aim of enhancing the mechanical properties of Mg-based alloys. In this study, the REE holmium (Ho) was added to an Mg-1Zr-2Sr alloy at different concentrations of Mg1Zr2SrxHo alloys (x = 0, 1, 3, 5 wt. %) and the microstructure, mechanical properties, degradation behaviour and biocompatibility of the alloys were systematically investigated. The results indicate that the addition of Ho to Mg1Zr2Sr led to the formation of the intermetallic phases MgHo3, Mg2Ho and Mg17Sr2 which resulted in enhanced mechanical strength and decreased degradation rates of the Mg-Zr-Sr-Ho alloys. Furthermore, Ho addition (≤5 wt. %) to Mg-Zr-Sr alloys led to enhancement of cell adhesion and proliferation of osteoblast cells on the Mg-Zr-Sr-Ho alloys. The in vitro biodegradation and the biocompatibility of the Mg-Zr-Sr-Ho alloys were both influenced by the Ho concentration in the Mg alloys; Mg1Zr2Sr3Ho exhibited lower degradation rates than Mg1Zr2Sr and displayed the best biocompatibility compared with the other alloys. PMID:27553403
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.
Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co and Ti within the AlNi-based matrix phase. In our paper we report the results of first-principles calculations of the site preference of ternarymore » alloying additions in DO 3 Fe 3Al, Co 3Al and Ni 3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which corresponds to experimental situation, Ti and Fe are found to occupy the sites, while Co and Ni prefer the sites of the DO 3 lattice. Finally, an important finding is that the magnetic moments of transition metals in Fe 3Al and Co 3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co are added as a ternary element.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samolyuk, G. D.; Stocks, G. M.; Újfalussy, B.
Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co, and Ti within the AlNi-based matrix phase. In this paper, we report the results of first-principles calculations of the site preference of ternarymore » alloying additions in DO{sub 3} Fe{sub 3}Al, Co{sub 3}Al, and Ni{sub 3}Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which correspond to experimental situation, Ti and Fe are found to occupy the α sites, while Co and Ni prefer the γ sites of the DO{sub 3} lattice. An important finding is that the magnetic moments of transition metals in Fe{sub 3}Al and Co{sub 3}Al are ordered ferromagnetically, whereas the Ni{sub 3}Al were found to be nonmagnetic unless the Fe or Co is added as a ternary element.« less
Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.
2014-11-07
Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co and Ti within the AlNi-based matrix phase. In our paper we report the results of first-principles calculations of the site preference of ternarymore » alloying additions in DO 3 Fe 3Al, Co 3Al and Ni 3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which corresponds to experimental situation, Ti and Fe are found to occupy the sites, while Co and Ni prefer the sites of the DO 3 lattice. Finally, an important finding is that the magnetic moments of transition metals in Fe 3Al and Co 3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co are added as a ternary element.« less
Electride and superconductivity behaviors in Mn5Si3-type intermetallics
NASA Astrophysics Data System (ADS)
Zhang, Yaoqing; Wang, Bosen; Xiao, Zewen; Lu, Yangfan; Kamiya, Toshio; Uwatoko, Yoshiya; Kageyama, Hiroshi; Hosono, Hideo
2017-08-01
Electrides are unique in the sense that they contain localized anionic electrons in the interstitial regions. Yet they exist with a diversity of chemical compositions, especially under extreme conditions, implying generalized underlying principles for their existence. What is rarely observed is the combination of electride state and superconductivity within the same material, but such behavior would open up a new category of superconductors. Here, we report a hexagonal Nb5Ir3 phase of Mn5Si3-type structure that falls into this category and extends the electride concept into intermetallics. The confined electrons in the one-dimensional cavities are reflected by the characteristic channel bands in the electronic structure. Filling these free spaces with foreign oxygen atoms serves to engineer the band topology and increase the superconducting transition temperature to 10.5 K in Nb5Ir3O. Specific heat analysis indicates the appearance of low-lying phonons and two-gap s-wave superconductivity. Strong electron-phonon coupling is revealed to be the pairing glue with an anomalously large ratio between the superconducting gap Δ0 and Tc, 2Δ0/kBTc = 6.12. The general rule governing the formation of electrides concerns the structural stability against the cation filling/extraction in the channel site.
Han, Seung Zeon; Kang, Joonhee; Kim, Sung-Dae; Choi, Si-Young; Kim, Hyung Giun; Lee, Jehyun; Kim, Kwangho; Lim, Sung Hwan; Han, Byungchan
2015-01-01
We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0 GPa and elastic modulus of 60.6 GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors. PMID:26456769
Gambogi, J.
2013-01-01
Global mine production of rare earths was estimated to have declined slightly in 2012 relative to 2011 (Fig. 1). Production in China was estimated to have decreased to 95 from 105 kt (104,700 from 115,700 st) in 2011, while new mine production in the United States and Australia increased.
Uncovering the end uses of the rare earth elements.
Du, Xiaoyue; Graedel, T E
2013-09-01
The rare earth elements (REE) are a group of fifteen elements with unique properties that make them indispensable for a wide variety of emerging and conventional established technologies. However, quantitative knowledge of REE remains sparse, despite the current heightened interest in future availability of the resources. Mining is heavily concentrated in China, whose monopoly position and potential restriction of exports render primary supply vulnerable to short term disruption. We have drawn upon the published literature and unpublished materials in different languages to derive the first quantitative annual domestic production by end use of individual rare earth elements from 1995 to 2007. The information is illustrated in Sankey diagrams for the years 1995 and 2007. Other years are available in the supporting information. Comparing 1995 and 2007, the production of the rare earth elements in China, Japan, and the US changed dramatically in quantities and structure. The information can provide a solid foundation for industries, academic institutions and governments to make decisions and develop strategies. Copyright © 2013 Elsevier B.V. All rights reserved.
Extraction of rare earth elements from low-grade Bauxite via precipitation reaction
NASA Astrophysics Data System (ADS)
Kusrini, E.; Nurani, Y.; Bahari, ZJ
2018-03-01
The aim of this research was to determine the optimum hydrometallurgical parameters to extract the rare earth elements (REE) from low-grade bauxite through acid leaching and precipitation reaction. REE or lanthanide recovery by a precipitation method with sodium sulphate and sodium phosphate as precipitation agents is reported where the effect of pH and recovery of REE are described. The metal composition of REE in low-grade bauxite after treatment were analyzed by ICP-OES. The total recovery values of REE elements at the first precipitation reaction using sodium sulphate as the precipitation agent at pH 3.5 showed ~68.2% of lanthanum, ~18.9% cerium, and ~7.8% yttrium. Lanthanum was the rare-earth element present at the highest concentration in the low-grade bauxite after the series treatments. An optimum pH of 3.5 for precipitation of rare-earth elements using sodium sulphate was demonstrated where this method is recommended for the extraction of REE elements from low-grade bauxite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, Donna L.; Fox, Robert V.; Case, Mary E.
A new tri- n-butylphosphate–nitric acid (TBP–HNO 3) adduct was prepared by combining TBP and fuming (90%) HNO 3. The adduct was characterized, and its phase-equilibrium behavior in supercritical carbon dioxide is reported. Supercritical carbon dioxide (sc-CO 2) was modified with this new adduct [TBP(HNO 3) 5.2(H 2O) 1.7], and the extraction efficacies of selected rare earth oxides (Y, Ce, Eu, Tb, and Dy) at 338 K and 34.5 MPa were compared with those obtained using an adduct formed from concentrated (70%) HNO 3 and TBP [TBP(HNO 3) 1.7(H 2O) 0.6]. All rare earth oxides tested with both adduct species couldmore » be extracted with the exception of cerium oxide. Furthermore, the water and acid concentrations in the different adducts were found to play a significant role in rare earth oxide extraction efficiency.« less
All-optical control of long-lived nuclear spins in rare-earth doped nanoparticles.
Serrano, D; Karlsson, J; Fossati, A; Ferrier, A; Goldner, P
2018-05-29
Nanoscale systems that coherently couple to light and possess spins offer key capabilities for quantum technologies. However, an outstanding challenge is to preserve properties, and especially optical and spin coherence lifetimes, at the nanoscale. Here, we report optically controlled nuclear spins with long coherence lifetimes (T 2 ) in rare-earth-doped nanoparticles. We detect spins echoes and measure a spin coherence lifetime of 2.9 ± 0.3 ms at 5 K under an external magnetic field of 9 mT, a T 2 value comparable to those obtained in bulk rare-earth crystals. Moreover, we achieve spin T 2 extension using all-optical spin dynamical decoupling and observe high fidelity between excitation and echo phases. Rare-earth-doped nanoparticles are thus the only nano-material in which optically controlled spins with millisecond coherence lifetimes have been reported. These results open the way to providing quantum light-atom-spin interfaces with long storage time within hybrid architectures.
Geng, Wei; Zhang, Haitao; Zhao, Xuefei; Zan, Wenyan; Gao, Xionghou; Yao, Xiaojun
2015-01-01
In this work, the adsorption behavior of nitrogen containing compounds including NH3, pyridine, quinoline, and carbazole on Na(I)Y and rare earth exchanged La(III)Y, Pr(III)Y, Nd(III)Y zeolites was investigated by density functional theory (DFT) calculations. The calculation results demonstrate that rare earth exchanged zeolites have stronger adsorption ability for nitrogen containing compounds than Na(I)Y. Rare earth exchanged zeolites exhibit strongest interaction with quinoline while weakest with carbazole. Nd(III)Y zeolites are found to have strongest adsorption to all the studied nitrogen containing compounds. The analysis of the electronic total charge density and electron orbital overlaps show that nitrogen containing compounds interact with zeolites by π-electrons of the compounds and the exchanged metal atom. Mulliken charge population analysis also proves that adsorption energies are strongly dependent on the charge transfer between the nitrogen containing molecules and exchanged metal atom in the zeolites.
Baek, Donna L.; Fox, Robert V.; Case, Mary E.; ...
2016-06-14
A new tri- n-butylphosphate–nitric acid (TBP–HNO 3) adduct was prepared by combining TBP and fuming (90%) HNO 3. The adduct was characterized, and its phase-equilibrium behavior in supercritical carbon dioxide is reported. Supercritical carbon dioxide (sc-CO 2) was modified with this new adduct [TBP(HNO 3) 5.2(H 2O) 1.7], and the extraction efficacies of selected rare earth oxides (Y, Ce, Eu, Tb, and Dy) at 338 K and 34.5 MPa were compared with those obtained using an adduct formed from concentrated (70%) HNO 3 and TBP [TBP(HNO 3) 1.7(H 2O) 0.6]. All rare earth oxides tested with both adduct species couldmore » be extracted with the exception of cerium oxide. Furthermore, the water and acid concentrations in the different adducts were found to play a significant role in rare earth oxide extraction efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vohra, Yogesh K.; Sangala, Bagvanth Reddy; Stemshorn, Andrew K.
2008-07-01
High-pressure studies have been performed on heavy rare earth metals Terbium (Tb) to 155 GPa and Holmium (Ho) to 134 GPa in a diamond anvil cell at room temperature. The following crystal structure sequence was observed in both metals hcp {yields} Sm-type {yields} dhcp {yields} distorted fcc (hR-24) {yields} monoclinic (C2/m) with increasing pressure. The last transformation to a low symmetry monoclinic phase is accompanied by a volume collapse of 5 % for Tb at 51 GPa and a volume collapse of 3 % for Ho at 103 GPa. This volume collapse under high pressure is reminiscent of f-shell delocalizationmore » in light rare earth metal Cerium (Ce), Praseodymium (Pr), and heavy actinide metals Americium (Am) and Curium (Cm). The orthorhombic Pnma phase that has been reported in Am and Cm after f-shell delocalization is not observed in heavy rare earth metals under high pressures. (authors)« less
NASA Astrophysics Data System (ADS)
Wu, Yuewen; Hao, Haixia; Wu, Qingyao; Gao, Zihan; Xie, Hongde
2018-06-01
A series of novel polymer-rare earth complexes with Eu3+ ions have been synthesized and investigated successfully, including the binary complexes containing the single ligand poly(ethylene-co-acrylic acid) (EAA) and the ternary complexes using 1,10-phenanthroline (phen), dibenzoylmethane (DBM) or thenoyltrifluoroacetone (TTA) as the second ligand. Their structures have been characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis and X-ray diffraction (XRD), which confirm that both EAA and small molecules participate in the coordination reaction with rare earth ions, and they can disperse homogeneously in the polymer matrixes. Both ultraviolet-visible (UV-vis) absorption and photoluminescence tests for the complexes have been recorded. The relationship between fluorescence intensity of polymer-rare earth complexes and the quantity of ligand EAA has been studied and discussed. The films casted from the complexes solution can emit strong characteristic red light under UV light excitation. All these results suggest that the complexes possess potential application as luminescent materials.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan James
2014-01-01
Advanced hafnia-rare earth oxides, rare earth aluminates and silicates have been developed for thermal environmental barrier systems for aerospace propulsion engine and thermal protection applications. The high temperature stability, low thermal conductivity, excellent oxidation resistance and mechanical properties of these oxide material systems make them attractive and potentially viable for thermal protection systems. This paper will focus on the development of the high performance and high temperature capable ZrO2HfO2-rare earth based alloy and compound oxide materials, processed as protective coating systems using state-or-the-art processing techniques. The emphasis has been in particular placed on assessing their temperature capability, stability and suitability for advanced space vehicle entry thermal protection systems. Fundamental thermophysical and thermomechanical properties of the material systems have been investigated at high temperatures. Laser high-heat-flux testing has also been developed to validate the material systems, and demonstrating durability under space entry high heat flux conditions.
Application of far infrared rare earth mineral composite materials to liquefied petroleum gas.
Zhu, Dongbin; Liang, Jinsheng; Ding, Yan; Xu, Anping
2010-03-01
Far infrared rare earth mineral composite materials were prepared by the coprecipitation method using tourmaline, cerium acetate, and lanthanum acetate as raw materials. The results of Fourier transform infrared spectroscopy show that tourmaline modified with the rare earths La and Ce has a better far infrared emitting performance. Through XRD analysis, we attribute the improved far infrared emission properties of the tourmaline to the unit cell shrinkage of the tourmaline arising from La enhancing the redox properties of nano-CeO2. The effect of the composite materials on the combustion of liquefied petroleum gas (LPG) was studied by the flue gas analysis and water boiling test. Based on the results, it was found that the composite materials could accelerate the combustion of LPG, and that the higher the emissivity of the rare earth mineral composite materials, the better the effects on combustion of LPG. In all activation styles, both air and LPG to be activated has a best effect, indicating the activations having a cumulative effect.
Mechanical Components from Highly Recoverable, Low Apparent Modulus Materials
NASA Technical Reports Server (NTRS)
Padula, Santo, II (Inventor); Noebe, Ronald D. (Inventor); Stanford, Malcolm K. (Inventor); DellaCorte, Christopher (Inventor)
2015-01-01
A material for use as a mechanical component is formed of a superelastic intermetallic material having a low apparent modulus and a high hardness. The superelastic intermetallic material is conditioned to be dimensionally stable, devoid of any shape memory effect and have a stable superelastic response without irrecoverable deformation while exhibiting strains of at least 3%. The method of conditioning the superelastic intermetallic material is described. Another embodiment relates to lightweight materials known as ordered intermetallics that perform well in sliding wear applications using conventional liquid lubricants and are therefore suitable for resilient, high performance mechanical components such as gears and bearings.
Titanium aluminide intermetallic alloys with improved wear resistance
Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.
2014-07-08
The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.
Pressure-induced structural modifications of rare-earth hafnate pyrochlore
NASA Astrophysics Data System (ADS)
Turner, Katlyn M.; Rittman, Dylan R.; Heymach, Rachel A.; Tracy, Cameron L.; Turner, Madison L.; Fuentes, Antonio F.; Mao, Wendy L.; Ewing, Rodney C.
2017-06-01
Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A2Hf2O7) form the pyrochlore structure for A = La-Tb and the defect-fluorite structure for A = Dy-Lu. High-pressure transformations in A2Hf2O7 pyrochlore (A = Sm, Eu, Gd) and defect-fluorite (A = Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy2Hf2O7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr4+ and Hf4+, rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.
Pressure-induced structural modifications of rare-earth hafnate pyrochlore.
Turner, Katlyn M; Rittman, Dylan R; Heymach, Rachel A; Tracy, Cameron L; Turner, Madison L; Fuentes, Antonio F; Mao, Wendy L; Ewing, Rodney C
2017-06-28
Complex oxides with the pyrochlore (A 2 B 2 O 7 ) and defect-fluorite ((A,B) 4 O 7 ) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A 2 Hf 2 O 7 ) form the pyrochlore structure for A = La-Tb and the defect-fluorite structure for A = Dy-Lu. High-pressure transformations in A 2 Hf 2 O 7 pyrochlore (A = Sm, Eu, Gd) and defect-fluorite (A = Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy 2 Hf 2 O 7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr 4+ and Hf 4+ , rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.
Lithium-aluminum-magnesium electrode composition
Melendres, Carlos A.; Siegel, Stanley
1978-01-01
A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.
SEPARATION PROCESS FOR THORIUM SALTS
Bridger, G.L.; Whatley, M.E.; Shaw, K.G.
1957-12-01
A process is described for the separation of uranium, thorium, and rare earths extracted from monazite by digesting with sulfuric acid. By carefully increasing the pH of the solution, stepwise, over the range 0.8 to 5.5, a series of selective precipitations will be achieved, with the thorium values coming out at lower pH, the rare earths at intermediate pH and the uranium last. Some mixed precipitates will be obtained, and these may be treated by dissolving in HNO/sub 3/ and contacting with dibutyl phosphate, whereby thorium or uranium are taken up by the organic phase while the rare earths preferentially remain in the aqueous solution.
Rare Earth Doped GaN Laser Structures Using Metal Modulated Epitaxy
2015-03-30
from Eu-doped GaN,” Appl. Phys. Lett., vol. 75, pp. 1189–1191, 1999. 24. D. S . Lee and A. J. Steckl, “Room-temperature-grown rare- earth -doped GaN...luminescent thin films,” Appl. Phys. Lett., vol. 79, pp. 1962–1964,2001. 25. D. S . Lee and A. J. Steckl, “Lateral color integration on rare- earth doped... s . 0.259nm/ s =1.14E13cm-2/ s =1 ML/ s .Our plasma source was optimized to work at 1.5 sccm and 230 W RF power and it provides a growth rate of 0.8 ML/ s
Production yield of rare-earth ions implanted into an optical crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kornher, Thomas, E-mail: t.kornher@physik.uni-stuttgart.de; Xia, Kangwei; Kolesov, Roman
2016-02-01
Rare-earth (RE) ions doped into desired locations of optical crystals might enable a range of novel integrated photonic devices for quantum applications. With this aim, we have investigated the production yield of cerium and praseodymium by means of ion implantation. As a measure, the collected fluorescence intensity from both implanted samples and single centers was used. With a tailored annealing procedure for cerium, a yield up to 53% was estimated. Praseodymium yield amounts up to 91%. Such high implantation yield indicates a feasibility of creation of nanopatterned rare-earth doping and suggests strong potential of RE species for on-chip photonic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritter, C.; Provino, A.; Manfrinetti, P.
In this study, the magnetic properties and magnetic structures of the R 5Ni 2In 4 and the microfibrous R 11Ni 4In 9 compounds with R = Tb and Ho have been examined using magnetization, heat capacity, and neutron diffraction data. Rare earth atoms occupy three and five symmetrically inequivalent rare earth sites in R 5Ni 2In 4 and R 11Ni 4In 9 compounds, respectively. As a result of the intra- and inter-magnetic sublattice interactions, the magnetic exchange interactions are different for various rare earth sites; this leads to a cascade of magnetic transitions with a strong hierarchy in the temperaturemore » dependence of the magnetic orderings.« less
Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal.
O'Brien, Christopher; Lauk, Nikolai; Blum, Susanne; Morigi, Giovanna; Fleischhauer, Michael
2014-08-08
We propose a scheme to couple short single photon pulses to superconducting qubits. An optical photon is first absorbed into an inhomogeneously broadened rare-earth doped crystal using controlled reversible inhomogeneous broadening. The optical excitation is then mapped into a spin state using a series of π pulses and subsequently transferred to a superconducting qubit via a microwave cavity. To overcome the intrinsic and engineered inhomogeneous broadening of the optical and spin transitions in rare-earth doped crystals, we make use of a special transfer protocol using staggered π pulses. We predict total transfer efficiencies on the order of 90%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yurdakul, Hilmi; Idrobo Tapia, Juan C; Pennycook, Stephen J
2011-01-01
Direct visualization of rare earths in {alpha}- and {beta}-SiAlON unit-cells is performed through Z-contrast imaging technique in an aberration-corrected scanning transmission electron microscope. The preferential occupation of Yb and Ce atoms in different interstitial locations of {beta}-SiAlON lattice is demonstrated, yielding higher solubility for Yb than Ce. The triangular-like host sites in {alpha}-SiAlON unit cell accommodate more Ce atoms than hexagonal sites in {beta}-SiAlON. We think that our results will be applicable as guidelines for many kinds of rare-earth-doped materials.
METHOD OF SEPARATING TETRAVALENT PLUTONIUM VALUES FROM CERIUM SUB-GROUP RARE EARTH VALUES
Duffield, R.B.; Stoughton, R.W.
1959-02-01
A method is presented for separating plutonium from the cerium sub-group of rare earths when both are present in an aqueous solution. The method consists in adding an excess of alkali metal carbonate to the solution, which causes the formation of a soluble plutonium carbonate precipitate and at the same time forms an insoluble cerium-group rare earth carbonate. The pH value must be adjusted to bctween 5.5 and 7.5, and prior to the precipitation step the plutonium must be reduced to the tetravalent state since only tetravalent plutonium will form the soluble carbonate complex.
Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R
2010-07-14
The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.
The New Element Americium (Atomic Number 95)
DOE R&D Accomplishments Database
Seaborg, G.T.; James, R.A.; Morgan, L.O.
1948-01-01
Several isotopes of the new element 95 have been produced and their radiations characterized. The chemical properties of this tripositive element are similar to those of the typical tripositive lanthanide rare-earth elements. Element 95 is different from the latter in the degree and rate of formation of certain compounds of the complex ion type, which makes possible the separation of element 95 from the lanthanide rare-earths. The name americium (after the Americas) and the symbol Am are suggested for the element on the basis of its position as the sixth member of the actinide rare-earth series, analogous to europium, Eu, of the lanthanide series.
Effects of various additives on sintering of aluminum nitride
NASA Technical Reports Server (NTRS)
Komeya, K.; Inoue, H.; Tsuge, A.
1982-01-01
Effects of thirty additives on sintering A/N were investigated. The addition of alkali earth oxides and rare earth oxides gave fully densified aluminum nitride. This is due to the formation of nitrogen-containing aluminate liquid in the system aluminum nitride-alkali earth oxides or rare earth oxides. Microstructural studies of the sintered specimens with the above two types of additives suggested that the densification was due to the liquid phase sintering. Additions of silicon compounds resulted in poor densification by the formation of highly refractory compounds such as A/N polytypes.
Composite nanoparticles containing rare earth metal and methods of preparation thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandapallil, Binil Itty Ipe; Krishnan, Lakshmi; Johnson, Francis
The present invention is directed to composite nanoparticles comprising a metal, a rare earth element, and, optionally, a complexing ligand. The invention is also directed to composite nanoparticles having a core-shell structure and to processes for preparation of composite nanoparticles of the invention.
Rare Earth or Cosmic Zoo: Testing the Frequency of Complex Life in the Universe
NASA Astrophysics Data System (ADS)
Bains, W.; Schulze-Makuch, D.
2017-02-01
We propose how to test between two major hypotheses about the frequency of life in the universe (Rare Earth and Cosmic Zoo) using future remote sensing capabilities targeted at exoplanets and site visits of planetary bodies in our solar system.
Characteristics and genesis of Rare Earth Element (REE) in western Indonesia
NASA Astrophysics Data System (ADS)
Handoko, A. D.; Sanjaya, E.
2018-02-01
Rare Earth Element (REE) has unique properties that have been used in many hightech applications. The demand of REE increased recently in the world due to its special properties. Although REE concentration in the crust is higher than gold, economically viable deposits are still rare. Reduction of REE exports by China cause increased prices of REE. Due to this condition, exploration of potential REE mines emerged. Indonesia also participates in this phenomenon, and explore the possibility of REE mines in its area. This review will discuss the characteristics and genesis of REE and its occurrence in western Indonesia; focused in Sumatera, Tin Island, and Kalimantan. The review is done based on literature research from several resources about characteristics of rare earth element in general and in the given area. The research shows that the potential REE mines can be found in several different locations in Indonesia, such as Tin Island, Sumatera, and Kalimantan. Most of them are composed of monazite, zircon, and xenotime as rare earth minerals. Monazite iss known for its elevated number of radioactive elements, so study about radioactive content and more environment friendly ore processing becomes compulsory.
Sen Gupta, Arnab; Akamatsu, Hirofumi; Brown, Forrest G.; ...
2016-12-06
We report the discovery of noncentrosymmetry in the family of HRTiO 4 (R = Eu, Gd, Dy) layered oxides possessing a Ruddlesden-Popper derivative structure, by second harmonic generation and synchrotron x-ray diffraction with the support of density functional theory calculations. These oxides were previously thought to possess inversion symmetry. Here, inversion symmetry is broken by oxygen octahedral rotations, a mechanism that is not active in simple perovskites. We discover a competition between oxygen octahedral rotations and sliding of the octahedral perovskite blocks at the OH layers. For the smaller rare earth ions, R = Eu, Gd, Dy, which favor themore » octahedral rotations, noncentrosymmetry is present but the sliding at the OH layer is absent. For the larger rare earth ions, R = Nd and Sm, the octahe-dral rotations are absent, but sliding of the octahedral blocks at the OH layer is present, likely to optimize the hydrogen bond length arising from the directional nature of these bonds in the crystal structure. The study reveals a new mechanism for inducing noncentrosymmetry in layered oxides, and chemical-structural effects related to rare earth ion size and hydrogen bonding that can turn this mechanism on and off. In conclusion, we construct a complete phase diagram of temperature versus rare earth ionic radius for the HRTiO 4 family.« less
Tuning Frustration in Rare Earth Pyrochlores by Platinum Substitution
NASA Astrophysics Data System (ADS)
Hallas, Alannah; Gaudet, Jonathan; Sharma, Arzoo; Wilson, Murray; Cai, Yipeng; Tachibana, Makoto; Wiebe, Chris; Gaulin, Bruce; Luke, Graeme
A successful mechanism for exploring the rich physics of rare earth pyrochlores, R2B2O7, is to substitute the non-magnetic B-site. Varying the ionic radius of the B-site induces an internal chemical pressure. Some rare earths are robust to substitutions; for example, the holmium-based pyrochlores all exhibit a dipolar spin ice state. In the case of other rare earths such as ytterbium, the ground states are remarkably fragile to chemical pressure. In this talk, I will introduce two materials with a new non-magnetic B-site: platinum. The ionic radius of platinum is comparable to that of titanium, which occupies the B-site in the most well-studied family of pyrochlores. Thus, platinum does not induce a strong chemical pressure on the lattice. Nevertheless, using Gd2Pt2O7 and Er2Pt2O7 as examples, I will show that platinum does affect a dramatic change on the magnetic properties. We trace this effect to platinum's empty eg orbitals, which mediate superexchange pathways not available in other rare earth pyrochlores. In Gd2Pt2O7, this results in a striking 160% enhancement of TN as compared to other Gd-based pyrochlores. In Er2Pt2O7, the ordering temperature is strongly suppressed and the ground state is altered.
Hughes, J.M.; Bloodaxe, E.S.; Hanchar, J.M.; Foord, E.E.
1997-01-01
The atomic arrangement of a natural rare-earth-rich titanite and two synthetic rare-earth-doped titanites have been refined in space group A2/a, and the atomic arrangement of an undoped P21/a synthetic titanite was also refined for comparison. Previous work has shown that titanite possesses a domain structure, with domains formed of like-displaced Ti atoms in the [100] octahedral chains. P21/a titanite results when the crystal is formed of a single domain, but as Ti-reversal sites occur in the octahedral chain the apparent A2/a structure results from the average of antiphase domains. Antiphase boundaries occur at O1, which is alternately overbonded or underbonded at the boundaries, depending on the displacement of the neighboring Ti atoms. Type 2 antiphase boundaries exist where two Ti atoms are displaced away from the intervening O1 atom and are energetically unfavorable because of underbonding of that O1 atom. However, substitution of a trivalent rare earth element in the adjacent Ca2+ site relieves that underbonding, favoring the creation of type 2 antiphase boundaries and stabilization of the A2/a dimorph. The results of high-precision crystal structure analyses demonstrate that rare earth substituents for Ca stabilize the A2/a dimorph at lower substitution levels than required for octahedral substitutions.
Impact of rare earth element added filters on the X-ray beam spectra: a Monte Carlo approach.
Eskandarlou, Amir; Jafari, Amir Abbas; Mohammadi, Mohammad; Zehtabian, Mehdi; Faghihi, Reza; Shokri, Abbas; Pourolajal, Jalal
2014-01-01
The effectiveness of added filters including conventional and rare earth materials for dental radiography tasks was investigated using a simulation approach. Current study focuses on the combination of a range of various filters to investigate the reduction of radiation absorbed dose and improving the quality of a radiography image. To simulate the X-ray beam spectrum, a MCNP5 code was applied. Relative intensity, beam quality, and mean energy were investigated for a typical dental radiography machine. The impact of different rare-earth materials with different thicknesses and tube voltages on the X-ray spectrum was investigated. For Aluminum as a conventional filter, the modeled X-ray spectra and HVL values were in a good agreement with those reported by IPEM. The results showed that for a 70 kVp voltage, with an increase of the thickness and atomic number of a given added filters, an increase of HVL values were observed. However, with the increase of the attenuator thickness, X-ray beam intensity decreases. For mean energy, different results were observed. It was also found that rare earth made filters reduce high energy X-ray radiation due to k-edge absorption. This leads to an ideal beam for intra-oral radiography tasks. However, as a disadvantage of rare earth added filters, the reduction of the tube output levels should also be considered.
Multi-objective optimization of chromatographic rare earth element separation.
Knutson, Hans-Kristian; Holmqvist, Anders; Nilsson, Bernt
2015-10-16
The importance of rare earth elements in modern technological industry grows, and as a result the interest for developing separation processes increases. This work is a part of developing chromatography as a rare earth element processing method. Process optimization is an important step in process development, and there are several competing objectives that need to be considered in a chromatographic separation process. Most studies are limited to evaluating the two competing objectives productivity and yield, and studies of scenarios with tri-objective optimizations are scarce. Tri-objective optimizations are much needed when evaluating the chromatographic separation of rare earth elements due to the importance of product pool concentration along with productivity and yield as process objectives. In this work, a multi-objective optimization strategy considering productivity, yield and pool concentration is proposed. This was carried out in the frame of a model based optimization study on a batch chromatography separation of the rare earth elements samarium, europium and gadolinium. The findings from the multi-objective optimization were used to provide with a general strategy for achieving desirable operation points, resulting in a productivity ranging between 0.61 and 0.75 kgEu/mcolumn(3), h(-1) and a pool concentration between 0.52 and 0.79 kgEu/m(3), while maintaining a purity above 99% and never falling below an 80% yield for the main target component europium. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rai, Amarendra K.; Schmitt, Michael P.; Dorfman, Mitchell R.; Zhu, Dongming; Wolfe, Douglas E.
2018-04-01
Rare-earth zirconates have been the focus of advanced thermal barrier coating research for nearly two decades; however, their lack of toughness prevents a wide-scale adoption due to lack of erosion and thermal cyclic durability. There are generally two methods of improving toughness: intrinsic modification of the coating chemistry and extrinsic modification of the coating structure. This study compares the efficacy of these two methods for a similar overall rare-earth content via the air plasma spray process. The extrinsically toughened coatings were comprised of a two-phase composite containing 30 wt.% Gd2Zr2O7 (GZO) combined with 70 wt.% of a tougher t' low-k material (ZrO2-2Y2O3-1Gd2O3-1Yb2O3; mol.%), while a single-phase fluorite with the overall rare-earth content equivalent to the two-phase composite (13 mol.% rare-earth) was utilized to explore intrinsically toughened concept. The coatings were then characterized via x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy, and their performance was evaluated via erosion, thermal conductivity, thermal annealing (500 h), and thermal cycling. It was shown that the extrinsic method provided an improved erosion and thermal conductivity response over the single phase, but at the expense of high-temperature stability and cyclic life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen Gupta, Arnab; Akamatsu, Hirofumi; Brown, Forrest G.
We report the discovery of noncentrosymmetry in the family of HRTiO 4 (R = Eu, Gd, Dy) layered oxides possessing a Ruddlesden-Popper derivative structure, by second harmonic generation and synchrotron x-ray diffraction with the support of density functional theory calculations. These oxides were previously thought to possess inversion symmetry. Here, inversion symmetry is broken by oxygen octahedral rotations, a mechanism that is not active in simple perovskites. We discover a competition between oxygen octahedral rotations and sliding of the octahedral perovskite blocks at the OH layers. For the smaller rare earth ions, R = Eu, Gd, Dy, which favor themore » octahedral rotations, noncentrosymmetry is present but the sliding at the OH layer is absent. For the larger rare earth ions, R = Nd and Sm, the octahe-dral rotations are absent, but sliding of the octahedral blocks at the OH layer is present, likely to optimize the hydrogen bond length arising from the directional nature of these bonds in the crystal structure. The study reveals a new mechanism for inducing noncentrosymmetry in layered oxides, and chemical-structural effects related to rare earth ion size and hydrogen bonding that can turn this mechanism on and off. In conclusion, we construct a complete phase diagram of temperature versus rare earth ionic radius for the HRTiO 4 family.« less
Wang, Lili; Li, Bin; Zhao, Xiaohong; Chen, Chunxia; Cao, Jingjing
2012-01-01
Background The study on the rare earth (RE)-doped layered double hydroxides (LDHs) has received considerable attention due to their potential applications in catalysts. However, the use of RE-doped LDHs as polymer halogen-free flame retardants was seldom investigated. Furthermore, the effect of rare earth elements on the hydrophobicity of LDHs materials and the compatibility of LDHs/polymer composite has seldom been reported. Methodology/Principal Findings The stearate sodium surface modified Ni-containing LDHs and RE-doped Ni-containing LDHs were rapidly synthesized by a coprecipitation method coupled with the microwave hydrothermal treatment. The influences of trace amounts of rare earth ions La, Ce and Nd on the amount of water molecules, the crystallinity, the morphology, the hydrophobicity of modified Ni-containing LDHs and the adsorption of modifier in the surface of LDHs were investigated by TGA, XRD, TEM, contact angle and IR, respectively. Moreover, the effects of the rare earth ions on the interfacial compatibility, the flame retardancy and the mechanical properties of ethylene vinyl acetate copolymer (EVA)/LDHs composites were also explored in detail. Conclusions/Significance S-Ni0.1MgAl-La displayed more uniform dispersion and better interfacial compatibility in EVA matrix compared with other LDHs. Furthermore, the S-Ni0.1MgAl-La/EVA composite showed the best fire retardancy and mechanical properties in all composites. PMID:22693627
Laser Spectroscopy Characterization of Materials for Frequency Agile Solid State Laser Systems
1991-03-15
Lasing Properties of Nd3+:Ba2 ZnGe 2O 7 III. SPECTROSCOPIC PROPERTIES OF CHROMIUM -DOPED LASER CRYSTALS III.1 Laser-Induced Grating Spectroscopy of...rare earth- and chromium -doped Iasor crystals, rare earth-doped glasses, and potassium niobate. Ilas or- spectroscopy techniques were used to...being investigated: rare ea’-Lh-doped laser crystals; chromium -doped laser crystals; and photorefractive crystals and glasses. The important results
Formation of intermetallic compound coating on magnesium AZ91 cast alloy
NASA Astrophysics Data System (ADS)
Zhu, Tianping; Gao, Wei
2009-08-01
This study describes an intermetallic compound coating formed on AZ91 Mg cast alloy. The Al sputtered on AZ91 cast alloy reacted with substrate during a short period of heat treatment at 435°C, resulting in the formation of a continuous intermetallic compound layer. The short period treatment has the advantage of minimizing the negative effect on the microstructure of substrate and the mechanical properties, comparing with the reported diffusion coatings. DSC measurement and examination on the cross-section of Al sputtered samples show that local melting occurred along the Al/substrate interface at the temperature range between 430~435°C. The formation mechanism of intermetallic compound coating is proposed in terms of the local melting at Al/substrate interface. The salt water immersion test showed significant improvement in corrosion resistance of the intermetallic compound coated AZ91 cast alloy compared with the as-cast alloys.
3D study of intermetallics and their effect on the corrosion morphology of rheocast aluminium alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mingo, B.; Arrabal, R., E-mail: rarrabal@ucm.es; Pardo, A.
In the present study, the effect of heat treatment T6.1 on the microstructure and corrosion behaviour of rheocast aluminium alloy A356 is investigated on the basis of 2D/3D characterization techniques and electrochemical and SKPFM measurements. Heat treatment strengthens the α-Al matrix, modifies the intermetallic particles and spheroidizes eutectic Si. These changes do not modify significantly the corrosion behaviour of the alloy. 3D SEM-Tomography clearly shows that the corrosion advances in the shape of narrow paths between closely spaced intermetallics without a major influence of eutectic Si. - Highlights: • T6.1 spheroidizes Si, strengthens the matrix and modifies the intermetallics. •more » Electrochemical behaviour of untreated and heat-treated alloys is similar. • 3D SEM-Tomography provides additional information on the corrosion morphology. • Corrosion advances as paths between intermetallics with little influence of Si.« less
Corrosion protection of steel in ammonia/water heat pumps
Mansfeld, Florian B.; Sun, Zhaoli
2003-10-14
Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.
IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR CERIUM OXIDE (STABLE) AND COMPOUNDS
Cerium is a member of the lanthanoid series of rare earth metals. It is also the most abundant and most reactive of the rare earth metals. Cerium oxidizes at room temperature and forms a variety of salt compounds including oxides, hydroxides, sulfates and chlorides. Cerium is ...
Rare earth elements (REEs) are a group of 15 chemical elements in the periodic table, specifically the lanthanides. Two other elements, scandium and yttrium, have a similar physiochemistry to the lanthanides, are commonly found in the same mineral assemblages, and are often refe...
Fluid rare earth element anlayses from wells RN-12 and RN-19, Reykjanes, Iceland
Andrew Fowler
2015-07-24
Results for fluid rare earth elment analyses from Reykjanes wells RN-12 and RN-19. The data have not been corrected for flashing. Samples preconcetrated using chelating resin with IDA functional group (InertSep ME-1). Analyzed using and Element magnetic sctor ICP-MS.
Karl A. Gschneidner Jr (1930–2016)
Pecharsky, Vitalij K.
2016-09-23
Presented here is the obituary for Karl Albert Gschneidner Jr. He died on 27 April 2016. Nicknamed Mr Rare Earth, he holds an unparalleled place as the renowned authority in just about every aspect related to the science, technology and history of a very special family of elements — the rare earths.
Thermal treatment for increasing magnetostrictive response of rare earth-iron alloy rods
Verhoeven, J.D.; McMasters, O.D.
1989-07-18
Magnetostrictive rods formed from rare earth-iron alloys are subjected to a short time heat treatment to increase their magnetostrictive response under compression. The heat treatment is preferably carried out at a temperature of from 900 to 1,000 C for 20 minutes to six hours.
Interactions between exogenous rare earth elements and phosphorus leaching in packed soil columns
USDA-ARS?s Scientific Manuscript database
Rare earth elements (REEs) increasingly used in agriculture as an amendment for crop growth may help to lessen environmental losses of phosphorus (P) from heavily fertilized soils. The vertical transport characteristics of P and REEs, lanthanum (La), neodymium (Nd), samarium (Sm), and cerium (Ce), w...
Mixing rare earth elements with manures to control phosphorus loss in runoff and track manure fate
USDA-ARS?s Scientific Manuscript database
Concern over the enrichment of agricultural runoff with phosphorus (P) from land applied livestock manures has prompted the development of manure amendments that minimize P solubility. We evaluated the effect of mixing two rare earth chlorides, lanthanum chloride and ytterbium chloride, with poultr...
A simple enrichment correction factor for improving erosion estimation by rare earth oxide tracers
USDA-ARS?s Scientific Manuscript database
Spatially distributed soil erosion data are needed to better understanding soil erosion processes and validating distributed erosion models. Rare earth element (REE) oxides were used to generate spatial erosion data. However, a general concern on the accuracy of the technique arose due to selective ...