Time-evolution of electronic states in a Rashba anisotropic two-dimensional quantum dot
NASA Astrophysics Data System (ADS)
Amiri, F.; Shirkani, H.; Golshan, M. M.
2011-10-01
In this article we present the time evolution of the electronic spin and subbands states, of an electron in an anisotropic two dimensional Rashba quantum dot, to which a magnetic field of arbitrary strength is applied. We also explicitly include the confining (gate) effects as a two dimensional anisotropic harmonic oscillator. From the governing Hamiltonian we compute the time evolution of the initial state, leading to spin and subbands averages as functions of time. Our results indicate that the spin, on the average, precesses about the magnetic field, on an ellipse with intrinsic wobbling. The subbands populations, similar to the case of atom-photon interaction, follow the pattern of collapse-revivals.
Large Tunable Rashba Spin Splitting of a Two-Dimensional Electron Gas in Bi2Se3
NASA Astrophysics Data System (ADS)
King, P. D. C.; Hatch, R. C.; Bianchi, M.; Ovsyannikov, R.; Lupulescu, C.; Landolt, G.; Slomski, B.; Dil, J. H.; Guan, D.; Mi, J. L.; Rienks, E. D. L.; Fink, J.; Lindblad, A.; Svensson, S.; Bao, S.; Balakrishnan, G.; Iversen, B. B.; Osterwalder, J.; Eberhardt, W.; Baumberger, F.; Hofmann, Ph.
2011-08-01
We report a Rashba spin splitting of a two-dimensional electron gas in the topological insulator Bi2Se3 from angle-resolved photoemission spectroscopy. We further demonstrate its electrostatic control, and show that spin splittings can be achieved which are at least an order-of-magnitude larger than in other semiconductors. Together these results show promise for the miniaturization of spintronic devices to the nanoscale and their operation at room temperature.
Chiral-like tunneling of electrons in two-dimensional semiconductors with Rashba spin-orbit coupling
Ang, Yee Sin; Ma, Zhongshui; Zhang, C.
2014-01-01
The unusual tunneling effects of massless chiral fermions (mCF) and massive chiral fermions (MCF) in a single layer graphene and bilayer graphene represent some of the most bizarre quantum transport phenomena in condensed matter system. Here we show that in a two-dimensional semiconductor with Rashba spin-orbit coupling (R2DEG), the real-spin chiral-like tunneling of electrons at normal incidence simultaneously exhibits features of mCF and MCF. The parabolic branch of opposite spin in R2DEG crosses at a Dirac-like point and has a band turning point. These features generate transport properties not found in usual two-dimensional electron gas. Albeit its π Berry phase, electron backscattering is present in R2DEG. An electron mimics mCF if its energy is in the vicinity of the subband crossing point or it mimics MCF if its energy is near the subband minima. PMID:24445394
Perpendicular magnetic anisotropy of two-dimensional Rashba ferromagnets
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Whan; Lee, Kyung-Jin; Lee, Hyun-Woo; Stiles, M. D.
2016-11-01
We compute the magnetocrystalline anisotropy energy within two-dimensional Rashba models. For a ferromagnetic free-electron Rashba model, the magnetic anisotropy is exactly zero regardless of the strength of the Rashba coupling, unless only the lowest band is occupied. For this latter case, the model predicts in-plane anisotropy. For a more realistic Rashba model with finite band width, the magnetic anisotropy evolves from in-plane to perpendicular and back to in-plane as bands are progressively filled. This evolution agrees with first-principles calculations on the interfacial anisotropy, suggesting that the Rashba model captures energetics leading to anisotropy originating from the interface provided that the model takes account of the finite Brillouin zone. The results show that the electron density modulation by doping or an external voltage is more important for voltage-controlled magnetic anisotropy than the modulation of the Rashba parameter.
Biswas, Tutul; Ghosh, Tarun Kanti
2013-07-03
We theoretically study the phonon-drag contribution to the thermoelectric power and the hot-electron energy-loss rate in a Rashba spin-orbit coupled two-dimensional electron system in the Bloch-Gruneisen (BG) regime. We assume that electrons interact with longitudinal acoustic phonons through a deformation potential and with both longitudinal and transverse acoustic phonons through a piezoelectric potential. The effect of the Rashba spin-orbit interaction on the magnitude and temperature dependence of the phonon-drag thermoelectric power and hot-electron energy-loss rate is discussed. We numerically extract the exponent of temperature dependence of the phonon-drag thermopower and the energy-loss rate. We find that the exponents are suppressed due to the presence of the Rashba spin-orbit coupling.
NASA Astrophysics Data System (ADS)
Eremeev, S. V.; Nechaev, I. A.; Koroteev, Yu. M.; Echenique, P. M.; Chulkov, E. V.
2012-06-01
Spintronics is aimed at actively controlling and manipulating the spin degrees of freedom in semiconductor devices. A promising way to achieve this goal is to make use of the tunable Rashba effect that relies on the spin-orbit interaction in a two-dimensional electron system immersed in an inversion-asymmetric environment. The spin-orbit-induced spin splitting of the two-dimensional electron state provides a basis for many theoretically proposed spintronic devices. However, the lack of semiconductors with large Rashba effect hinders realization of these devices in actual practice. Here we report on a giant Rashba-type spin splitting in two-dimensional electron systems that reside at tellurium-terminated surfaces of bismuth tellurohalides. Among these semiconductors, BiTeCl stands out for its isotropic metallic surface-state band with the Γ¯-point energy lying deep inside the bulk band gap. The giant spin splitting of this band ensures a substantial spin asymmetry of the inelastic mean free path of quasiparticles with different spin orientations.
NASA Astrophysics Data System (ADS)
Yudin, Dmitry; Shelykh, Ivan A.
2016-10-01
A nonperturbative interaction of an electronic system with a laser field can substantially modify its physical properties. In particular, in two-dimensional (2D) materials with a lack of inversion symmetry, the achievement of a regime of strong light-matter coupling allows direct optical tuning of the strength of the Rashba spin-orbit interaction (SOI). Capitalizing on these results, we build a theory of the dynamical conductivity of a 2D electron gas with both Rashba and Dresselhaus SOIs coupled to an off-resonant high-frequency electromagnetic wave. We argue that strong light-matter coupling modifies qualitatively the dispersion of the electrons and can be used as a powerful tool to probe and manipulate the coupling strengths and adjust the frequency range where optical conductivity is essentially nonzero.
NASA Astrophysics Data System (ADS)
Narayanapillai, Kulothungasagaran; Go, Gyungchoon; Ramaswamy, Rajagopalan; Gopinadhan, Kalon; Go, Dongwook; Lee, Hyun-Woo; Venkatesan, Thirumalai; Lee, Kyung-Jin; Yang, Hyunsoo
2017-08-01
We report the angular dependence of magnetoresistance in the two-dimensional electron gas at the LaAlO3/SrTiO3 interface. We find that this interfacial magnetoresistance exhibits a similar angular dependence to the spin Hall magnetoresistance observed in ferromagnet/heavy metal bilayers, which has been so far discussed in the framework of the bulk spin Hall effect of the heavy metal layer. The observed magnetoresistance is in qualitative agreement with a theoretical model calculation including both Rashba spin-orbit coupling and an exchange interaction. Our result suggests that magnetic interfaces subject to spin-orbit coupling can generate a non-negligible contribution to the spin Hall magnetoresistance, and the interfacial spin-orbit coupling effect is therefore key to the understanding of various spin-orbit-coupling-related phenomena in magnetic/nonmagnetic bilayers.
NASA Astrophysics Data System (ADS)
Rupprecht, B.; Heedt, S.; Hardtdegen, H.; Schäpers, Th.; Heyn, Ch.; Wilde, M. A.; Grundler, D.
2013-01-01
With the direct measurement of the quantum oscillatory magnetization M of a two-dimensional electron system (2DES) in an InGaAs/InP asymmetric quantum well we discover a frequency anomaly of the de Haas-van Alphen effect which is not consistent with existing theories on spin-orbit interaction (SOI). Strikingly, the oscillatory magnetoresistance of the same heterostructure, that is, the Shubnikov-de Haas effect conventionally used to explore SOI, does not show the frequency anomaly. This explains why our finding has not been reported for almost three decades. The understanding of the ground state energy of a 2DES is evidenced to be incomplete when SOI is present.
NASA Astrophysics Data System (ADS)
Tojo, Tatsuki; Inui, Masashi; Ooi, Ryo; Takeda, Kyozaburo; Tokura, Yasuhiro
2017-07-01
We theoretically study the energetics of the Rashba spin-orbit interaction (SOI) in the two-dimensional (2D) system by comparing the numerical calculation of the exact diagonalization with the analytical calculation based on the perturbation approach and also with the unitary transformed effective Hamiltonian method. The Rashba SOI consists of ls-like and Zeeman-like components, and the out-of-plane application of the external electric field generates the ls-like component, whereas the in-plane application generates the Zeeman-like part. Accordingly, we can separate them by tuning the direction of the applied external electric field. Interestingly, these features do not change provided the confinement is isotropic. The unitary transformation of the total Hamiltonian and the Liouvillian operator expansion technique demonstrate that the Rashba SOI energetics is represented fully in terms of the six orders, in the Rashba coupling. Consequently, the second-order perturbation approach satisfactorily describes the inherent features. When anisotropy is introduced in the confinement, the angular momentum is no longer a good quantum number. The resulting energetics of the Rashba SOI is then unified into the isotropic ground-state type (l = 0).
2014-09-26
linear electronic specific heat disappears in strong magnetic fields if Landau levels are not broadened. Thus, the amplitude of the magnetothermal...Molec. Crys. Liq. Crys. 121, 169 (1984). In consideration of mixing of low-lying Landau levels, the magneto- conductance of two-dimensional electrons...and narrowing can be explained when the Landau level filling factor v is larger than 1. Actually, we have shown that the resonance phenomena are
Eremeev, Sergey V.; Tsirkin, Stepan S.; Nechaev, Ilya A.; Echenique, Pedro M.; Chulkov, Evgueni V.
2015-01-01
Intriguing phenomena and novel physics predicted for two-dimensional (2D) systems formed by electrons in Dirac or Rashba states motivate an active search for new materials or combinations of the already revealed ones. Being very promising ingredients in themselves, interplaying Dirac and Rashba systems can provide a base for next generation of spintronics devices, to a considerable extent, by mixing their striking properties or by improving technically significant characteristics of each other. Here, we demonstrate that in BiTeI@PbSb2Te4 composed of a BiTeI trilayer on top of the topological insulator (TI) PbSb2Te4 weakly- and strongly-coupled Dirac-Rashba hybrid systems are realized. The coupling strength depends on both interface hexagonal stacking and trilayer-stacking order. The weakly-coupled system can serve as a prototype to examine, e.g., plasmonic excitations, frictional drag, spin-polarized transport, and charge-spin separation effect in multilayer helical metals. In the strongly-coupled regime, within ~100 meV energy interval of the bulk TI projected bandgap a helical state substituting for the TI surface state appears. This new state is characterized by a larger momentum, similar velocity, and strong localization within BiTeI. We anticipate that our findings pave the way for designing a new type of spintronics devices based on Rashba-Dirac coupled systems. PMID:26239268
Eremeev, Sergey V; Tsirkin, Stepan S; Nechaev, Ilya A; Echenique, Pedro M; Chulkov, Evgueni V
2015-08-04
Intriguing phenomena and novel physics predicted for two-dimensional (2D) systems formed by electrons in Dirac or Rashba states motivate an active search for new materials or combinations of the already revealed ones. Being very promising ingredients in themselves, interplaying Dirac and Rashba systems can provide a base for next generation of spintronics devices, to a considerable extent, by mixing their striking properties or by improving technically significant characteristics of each other. Here, we demonstrate that in BiTeI@PbSb2Te4 composed of a BiTeI trilayer on top of the topological insulator (TI) PbSb2Te4 weakly- and strongly-coupled Dirac-Rashba hybrid systems are realized. The coupling strength depends on both interface hexagonal stacking and trilayer-stacking order. The weakly-coupled system can serve as a prototype to examine, e.g., plasmonic excitations, frictional drag, spin-polarized transport, and charge-spin separation effect in multilayer helical metals. In the strongly-coupled regime, within ~100 meV energy interval of the bulk TI projected bandgap a helical state substituting for the TI surface state appears. This new state is characterized by a larger momentum, similar velocity, and strong localization within BiTeI. We anticipate that our findings pave the way for designing a new type of spintronics devices based on Rashba-Dirac coupled systems.
NASA Astrophysics Data System (ADS)
Dolcini, Fabrizio
2017-02-01
The effects of Rashba interaction and electromagnetic field on the edge states of a two-dimensional topological insulator are investigated in a nonperturbative way. We show that the electron dynamics is equivalent to a problem of massless Dirac fermions propagating with an inhomogeneous velocity, enhanced by the Rashba profile with respect to the bare Fermi value vF. Despite the inelastic and time-reversal breaking processes induced by the electromagnetic field, no backscattering occurs without interaction. The photoexcited electron densities are explicitly obtained in terms of the electric field and the Rashba interaction, and are shown to fulfill generalized chiral anomaly equations. The case of a Gaussian electromagnetic pulse is analyzed in detail. When the photoexcitation occurs far from the Rashba region, the latter effectively acts as a "superluminal gate" boosting the photoexcited wave packet outside the light-cone determined by vF. In contrast, for an electric pulse overlapping the Rashba region, the emerging wave packets are squeezed in a manner that depends on the overlap area. The electron-electron interaction effects are also discussed, for both intraspin and interspin density-density coupling. The results suggest that Rashba interaction, often considered as an unwanted disorder effect, may be exploited to tailor the shape and the propagation time of photoexcited spin-polarized wave packets.
Quantum ratchet in two-dimensional semiconductors with Rashba spin-orbit interaction
Ang, Yee Sin; Ma, Zhongshui; Zhang, Chao
2015-01-01
Ratchet is a device that produces direct current of particles when driven by an unbiased force. We demonstrate a simple scattering quantum ratchet based on an asymmetrical quantum tunneling effect in two-dimensional electron gas with Rashba spin-orbit interaction (R2DEG). We consider the tunneling of electrons across a square potential barrier sandwiched by interface scattering potentials of unequal strengths on its either sides. It is found that while the intra-spin tunneling probabilities remain unchanged, the inter-spin-subband tunneling probabilities of electrons crossing the barrier in one direction is unequal to that of the opposite direction. Hence, when the system is driven by an unbiased periodic force, a directional flow of electron current is generated. The scattering quantum ratchet in R2DEG is conceptually simple and is capable of converting a.c. driving force into a rectified current without the need of additional symmetry breaking mechanism or external magnetic field. PMID:25598490
NASA Astrophysics Data System (ADS)
Yao, Qun-Fang; Cai, Jia; Tong, Wen-Yi; Gong, Shi-Jing; Wang, Ji-Qing; Wan, Xiangang; Duan, Chun-Gang; Chu, J. H.
2017-04-01
Transition-metal dichalcogenide (TMD) monolayers M X Y (M =Mo ,W ;X ≠Y =S ,Se ,Te ) are two-dimensional polar semiconductors. Setting the WSeTe monolayer as an example and using density functional theory calculations, we investigate the manipulation of Rashba spin-orbit coupling (SOC) in the MXY monolayer. It is found that the intrinsic out-of-plane electric field due to the mirror symmetry breaking induces the large Rashba spin splitting around the Γ point, which, however, can be easily tuned by applying the in-plane biaxial strain. Through a relatively small strain (from -2 % to 2%), a large tunability (from around -50 % to 50%) of Rashba SOC can be obtained due to the modified orbital overlap, which can in turn modulate the intrinsic electric field. The orbital selective external potential method further confirms the significance of the orbital overlap between W -dz2 and Se -pz in Rashba SOC. In addition, we also explore the influence of the external electric field on Rashba SOC in the WSeTe monolayer, which is less effective than strain. By calculating the electric-field-induced Rashba SOC in all six M X2 monolayers, the rule of the electric-field influence on Rashba SOC in TMD monolayers is demonstrated. The large Rashba spin splitting, together with the valley spin splitting in MXY monolayers, may make a special contribution to semiconductor spintronics and valleytronics.
NASA Astrophysics Data System (ADS)
Singh, Sobhit; Romero, Aldo H.
2017-04-01
The search for novel two-dimensional giant Rashba semiconductors is a crucial step in the development of the forthcoming nanospintronic technology. Using first-principles calculations, we study a stable two-dimensional crystal phase of BiSb having buckled honeycomb lattice geometry, which is yet unexplored. The phonon, room temperature molecular dynamics, and elastic constant calculations verify the dynamical and mechanical stability of the monolayer at 0 K and at room temperature. The calculated electronic band structure reveals the direct band gap semiconducting nature of a BiSb monolayer with the presence of a highly mobile two-dimensional electron gas (2DEG) near the Fermi level. Inclusion of spin-orbit coupling yields the giant Rashba spin-splitting of a 2DEG near the Fermi level. The calculated Rashba energy and Rashba splitting constant are 13 meV and 2.3 eVÅ, respectively, which are amongst the largest yet known Rashba spin splitting parameters in 2D materials. We demonstrate that the strength of the Rashba spin splitting can be significantly tuned by applying in-plane biaxial strain on the BiSb monolayer. The presence of the giant Rashba spin splitting together with the large electronic band gap (1.6 eV) makes this system of peculiar interest for optoelectronics applications. Furthermore, we study the electronic properties of BiSb/AlN heterostructures having a lattice mismatch of 1.3% at the interface. Our results suggest that a BiSb monolayer and BiSb/AlN heterostructure systems could be potentially used to develop highly efficient spin field-effect transistors, optoelectronics, and nanospintronic devices. Thus, this comprehensive study of two-dimensional BiSb systems can expand the range of possible applications in future spintronic technology.
Two-dimensional S-N-S junction with Rashba spin-orbit coupling
Dimitrova, O. V. Feigel'man, M. V.
2006-04-15
The effect of Rashba spin-orbit coupling on the supercurrent in S-2DEG-S proximity junctions is investigated in the clean limit. A generalization of Beenakker's formula for Andreev levels to the case of spin-orbit scattering is presented. Spin-orbit induced splitting of Andreev bound states is predicted for an infinite-width junction with nonvanishing normal backscattering at S-N interfaces. However, a semiclassical average of the Josephson current is insensitive to the Rashba coupling as long as the electron-electron interaction in 2DEG is neglected.
Zhang, Shou-Juan; Ji, Wei-Xiao; Zhang, Chang-Wen; Li, Ping; Wang, Pei-Ji
2017-04-03
The coexistence of nontrivial topology and giant Rashba splitting, however, has rare been observed in two-dimensional (2D) films, limiting severely its potential applications at room temperature. Here, we through first-principles calculations to propose a series of inversion-asymmetric group-IV films, ABZ2 (A ≠ B = Si, Ge, Sn, Pb; Z = F, Cl, Br), whose stability are confirmed by phonon spectrum calculations. The analyses of electronic structures reveal that they are intrinsic 2D TIs with a bulk gap as large as 0.74 eV, except for GeSiF2, SnSiCl2, GeSiCl2 and GeSiBr2 monolayers which can transform from normal to topological phases under appropriate tensile strain of 4, 4, 5, and 4%, respectively. The nontrivial topology is identified by Z2 topological invariant together with helical edge states, as well as the berry curvature of these systems. Another prominent intriguing feature is the giant Rashba spin splitting with a magnitude reaching 0.15 eV, the largest value reported in 2D films so far. The tunability of Rashba SOC and band topology can be realized through achievable compressive/tensile strains (-4 ~ 6%). Also, the BaTe semiconductor is an ideal substrate for growing ABZ2 films without destroying their nontrivial topology.
Zhang, Shou-juan; Ji, Wei-xiao; Zhang, Chang-wen; Li, Ping; Wang, Pei-ji
2017-01-01
The coexistence of nontrivial topology and giant Rashba splitting, however, has rare been observed in two-dimensional (2D) films, limiting severely its potential applications at room temperature. Here, we through first-principles calculations to propose a series of inversion-asymmetric group-IV films, ABZ2 (A ≠ B = Si, Ge, Sn, Pb; Z = F, Cl, Br), whose stability are confirmed by phonon spectrum calculations. The analyses of electronic structures reveal that they are intrinsic 2D TIs with a bulk gap as large as 0.74 eV, except for GeSiF2, SnSiCl2, GeSiCl2 and GeSiBr2 monolayers which can transform from normal to topological phases under appropriate tensile strain of 4, 4, 5, and 4%, respectively. The nontrivial topology is identified by Z2 topological invariant together with helical edge states, as well as the berry curvature of these systems. Another prominent intriguing feature is the giant Rashba spin splitting with a magnitude reaching 0.15 eV, the largest value reported in 2D films so far. The tunability of Rashba SOC and band topology can be realized through achievable compressive/tensile strains (−4 ~ 6%). Also, the BaTe semiconductor is an ideal substrate for growing ABZ2 films without destroying their nontrivial topology. PMID:28368035
NASA Astrophysics Data System (ADS)
Saberi-Pouya, S.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M.; Peeters, F. M.
2017-08-01
We calculate the optical conductivity of an anisotropic two-dimensional system with Rashba spin-flip excitation within the Kubo formalism. We show that the anisotropic Rashba effect caused by an external field significantly changes the magnitude of the spin splitting. Furthermore, we obtain an analytical expression for the longitudinal optical conductivity associated with interband transitions as a function of the frequency for arbitrary polarization angle. We find that the diagonal components of the optical conductivity tensor are direction dependent and the optical absorption spectrum exhibits a strongly anisotropic absorption window. The height and width of this absorption window are very sensitive to the anisotropy of the system. While the height of absorption peak increases with increasing effective mass anisotropy ratio, the peak intensity is larger when the light polarization is along the armchair direction. Moreover, the absorption peak width becomes broader as the density-of-states mass or Rashba interaction is enhanced. These features in the optical absorption spectrum can be used to determine parameters relevant for spintronics.
Photocontrol of Dirac electrons in a bulk Rashba semiconductor
NASA Astrophysics Data System (ADS)
Ogawa, N.; Bahramy, M. S.; Kaneko, Y.; Tokura, Y.
2014-09-01
We demonstrate the generation of circularly polarized light induced current of bulk Dirac electrons at room temperature by exploiting a giant Rashba effect in a bulk semiconductor. The photocurrent is spin polarized due to the spin-momentum locking of the electronic states, which is manifested by a sign reversal upon flipping either the photon helicity or the sign of the Rashba parameter, without any stray current. The action spectra revealed the photon energy range, where the photocurrent is carried by the Dirac electrons at the inner Fermi surface. This photogalvanic control is enabled by the sizable spin splittings both at the valence and conduction bands with the same helicity, and also by a number of optical transition pathways compared to those in the two-dimensional Rashba systems. An efficient coupling between the photon field and large spin-orbit interaction is accordingly proposed to allow the universal control of Dirac electrons.
Unconventional dc Transport in Rashba Electron Gases.
Brosco, Valentina; Benfatto, Lara; Cappelluti, Emmanuele; Grimaldi, Claudio
2016-04-22
We discuss the transport properties of a disordered two-dimensional electron gas with strong Rashba spin-orbit coupling. We show that in the high-density regime where the Fermi energy overcomes the energy associated with spin-orbit coupling, dc transport is accurately described by a standard Drude's law, due to a nontrivial compensation between the suppression of backscattering and the relativistic correction to the quasiparticle velocity. On the contrary, when the system enters the opposite dominant spin-orbit regime, Drude's paradigm breaks down and the dc conductivity becomes strongly sensitive to the spin-orbit coupling strength, providing a suitable tool to test the entanglement between spin and charge degrees of freedom in these systems.
Theory of Hall effect in two-dimensional giant Rashba systems
NASA Astrophysics Data System (ADS)
Suzuura, Hidekatsu; Ando, Tsuneya
2016-07-01
The weak-field Hall conductivity of disordered two-dimensional systems with strong Rashba spin-orbit interaction is studied in a self-consistent Born approximation. Explicit numerical results are obtained for scatterers with a Gaussian potential and for charged impurities. The singular behavior associated with a conelike crossing band appears only in the case of scatterers with a long-range Gaussian potential, which do not cause mixing with the outer band. In the case of more realistic scatterers such as charged impurities, the singularity is completely removed except the presence of a weak steplike feature. The Hall conductivity associated with the spin-Zeeman energy is also strongly reduced by interband mixing and generally remains much smaller than the orbital contribution.
NASA Astrophysics Data System (ADS)
Cuan, R.; Diago-Cisneros, L.
2015-06-01
Based on the standard \\textbf{k}\\cdot\\textbf{p} (8 × 8) multiband Hamiltonian, we have deduced an explicit analytical expression for the Rashba-coupling parameter which clarifies its anomalous behavior for heavy holes (hh) , gated in quasi-two-dimensional (Q2D) systems, by letting the density grow. Our modelling agrees remarkably better with experimental results in comparison with earlier theoretical models, while it recovers the expected cubic dependence on the quasi-momentum. For quasi-one-dimensional (Q1D) hh systems, we have formally derived an effective Rashba Hamiltonian with two competitive terms on the quasi-momentum, a linear term and a cubic one as predicted from suitable approximations to the Q2D scope. The Rashba-coupling parameters also behave anomalously and qualitatively support recent experiments in core/shell nanowires. Furthermore, they exhibit an essential asymptotic discontinuity in the low-density regime as a function of the lateral confinement length. For hh, we present closed schemes to accurately quote the Rashba-coupling parameters both for the Q2D and Q1D systems, which become unprecedented for holes.
Electronics based on two-dimensional materials.
Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi
2014-10-01
The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.
Two-Dimensional Superconductor with a Giant Rashba Effect: One-Atom-Layer Tl-Pb Compound on Si(111)
NASA Astrophysics Data System (ADS)
Matetskiy, A. V.; Ichinokura, S.; Bondarenko, L. V.; Tupchaya, A. Y.; Gruznev, D. V.; Zotov, A. V.; Saranin, A. A.; Hobara, R.; Takayama, A.; Hasegawa, S.
2015-10-01
A one-atom-layer compound made of one monolayer of Tl and one-third monolayer of Pb on a Si(111) surface having √{3 }×√{3 } periodicity was found to exhibit a giant Rashba-type spin splitting of metallic surface-state bands together with two-dimensional superconducting transport properties. Temperature-dependent angle-resolved photoelectron spectroscopy revealed an enhanced electron-phonon coupling for one of the spin-split bands. In situ micro-four-point-probe conductivity measurements with and without magnetic field demonstrated that the (Tl, Pb)/Si(111) system transformed into the superconducting state at 2.25 K, followed by the Berezinskii-Kosterlitz-Thouless mechanism. The 2D Tl-Pb compound on Si(111) is believed to be the prototypical object for prospective studies of intriguing properties of the superconducting 2D system with lifted spin degeneracy, bearing in mind that its composition, atomic and electron band structures, and spin texture are already well established.
Rashba Spin Orbit Interaction and Birefringent Electron Optics in Graphene
NASA Astrophysics Data System (ADS)
Asmar, Mahmoud; Ulloa, Sergio
2013-03-01
Analogies between geometrical optics and electron trajectories have resulted in a number of interesting proposals for device applications, where material interfaces play a similar role to that of transparent interfaces in physical optics. Optical birefringence in materials arising from crystal anisotropies are manifested as different group velocities for different polarizations of light. By making use of analytical solutions of the Dirac equation, and extending the partial wave component method of scattering to include spin dependent observables, we show that an equivalent phenomenon to optical birefringence in electron optics is feasible in two dimensional graphene. The electronic birefringence arises from the intrinsic graphene structure and requires the presence of Rashba spin-orbit interaction. The different group velocities depend on the chirality of the electronic states, mimicking the light polarization dependence of the group velocities in optical birefringent materials. In circular regions containing large Rashba interaction and reversed charge density (Veselago lenses), we predict the formation of sets of double caustics and cusps, where the spacing between the two different chiral cusps is proportional to the strength of the Rashba interaction in the system. Supported by NSF MWN/CIAM and NSF PIRE.
Kirigami for Two-Dimensional Electronic Membranes
NASA Astrophysics Data System (ADS)
Qi, Zenan; Bahamon, Dario; Campbell, David; Park, Harold
2015-03-01
Two-dimensional materials have recently drawn tremendous attention because of their unique properties. In this work, we introduce the notion of two-dimensional kirigami, where concepts that have been used almost exclusively for macroscale structures are applied to dramatically enhance their stretchability. Specifically, we show using classical molecular dynamics simulations that the yield and fracture strains of graphene and MoS2 can be enhanced by about a factor of three using kirigami as compared to standard monolayers. Finally, using graphene as an example, we demonstrate that the kirigami structure may open up interesting opportunities in coupling to the electronic behavior of 2D materials. Authors acknowledge Mechanical Engineering and Physics departments at Boston University, and Mackgrafe at Mackenzie Presbyterian University.
NASA Astrophysics Data System (ADS)
Moskalenko, Sveatoslav A.; Podlesny, Igor V.; Dumanov, Evgheni V.; Liberman, Michael A.
2015-09-01
We consider the energy spectrum of the two-dimensional cavity polaritons under the influence of a strong magnetic and electric fields perpendicular to the surface of the GaAs-type quantum wells (QWs) with p-type valence band embedded into the resonators. As the first step in this direction the Landau quantization (LQ) of the electrons and heavy-holes (hh) was investigated taking into account the Rashba spin-orbit coupling (RSOC) with third-order chirality terms for hh and with nonparabolicity terms in their dispersion low including as well the Zeeman splitting (ZS) effects. The nonparabolicity term is proportional to the strength of the electric field and was introduced to avoid the collapse of the semiconductor energy gap under the influence of the third order chirality terms. The exact solutions for the eigenfunctions and eigenenergies were obtained using the Rashba method [E.I. Rashba, Fiz. Tverd. Tela 2, 1224 (1960) [Sov. Phys. Solid State 2, 1109 (1960)
Interplay between Rashba spin-orbit coupling and adiabatic rotation in a two-dimensional Fermi gas
NASA Astrophysics Data System (ADS)
Doko, E.; Subaşı, A. L.; Iskin, M.
2017-01-01
We explore the trap profiles of a two-dimensional atomic Fermi gas in the presence of a Rashba spin-orbit coupling and under an adiabatic rotation. We first consider a noninteracting gas and show that the competition between the effects of Rashba coupling on the local density of single-particle states and the Coriolis effects caused by rotation gives rise to a characteristic ring-shaped density profile that survives at experimentally accessible temperatures. Furthermore, Rashba splitting of the Landau levels gives the density profiles a ziggurat shape in the rapid-rotation limit. We then consider an interacting gas under the BCS mean-field approximation for local pairing, and study the pair-breaking mechanism that is induced by the Coriolis effects on superfluidity, where we calculate the critical rotation frequencies both for the onset of pair breaking and for the complete destruction of superfluidity in the system. In particular, by comparing the results of a fully-quantum-mechanical Bogoliubov-de Gennes approach with those of a semiclassical local-density approximation, we construct extensive phase diagrams for a wide range of parameter regimes in the trap where the aforementioned competition may, e.g., favor an outer normal edge that is completely phase separated from the central superfluid core by vacuum.
NASA Astrophysics Data System (ADS)
Moriya, Rai; Sawano, Kentarou; Hoshi, Yusuke; Masubuchi, Satoru; Shiraki, Yasuhiro; Wild, Andreas; Neumann, Christian; Abstreiter, Gerhard; Bougeard, Dominique; Koga, Takaaki; Machida, Tomoki
2014-08-01
The spin-orbit interaction (SOI) of a two-dimensional hole gas in the inversion symmetric semiconductor Ge is studied in a strained-Ge /SiGe quantum well structure. We observe weak antilocalization (WAL) in the magnetoconductivity measurement, revealing that the WAL feature can be fully described by the k-cubic Rashba SOI theory. Furthermore, we demonstrate electric field control of the Rashba SOI. Our findings reveal that the heavy hole (HH) in strained Ge is a purely cubic Rashba system, which is consistent with the spin angular momentum mj=±3/2 nature of the HH wave function.
Microscopic theory of the residual surface resistivity of Rashba electrons
NASA Astrophysics Data System (ADS)
Bouaziz, Juba; Lounis, Samir; Blügel, Stefan; Ishida, Hiroshi
2016-07-01
A microscopic expression of the residual electrical resistivity tensor is derived in linear response theory for Rashba electrons scattering at a magnetic impurity with cylindrical or noncylindrical potential. The behavior of the longitudinal and transversal residual resistivity is obtained analytically and computed for an Fe impurity at the Au(111) surface. We studied the evolution of the resistivity tensor elements as a function of the Rashba spin-orbit strength and the magnetization direction of the impurity. We found that the absolute values of longitudinal resistivity reduce with increasing spin-orbit strength of the substrate and that the scattering of the conduction electrons at magnetic impurities with magnetic moments pointing in directions not perpendicular to the surface plane produce a planar Hall effect and an anisotropic magnetoresistance even if the impurity carries no spin-orbit interaction. Functional forms are provided describing the anisotropy of the planar Hall effect and the anisotropic magnetoresistance with respect to the direction of the impurity moment. In the limit of no spin-orbit interaction and a nonmagnetic impurity of cylindrical symmetry, the expression of the residual resistivity of a two-dimensional electron gas has the same simplicity and form as for the three-dimensional electron gas [J. Friedel, J. Nuovo. Cim. 7, 287 (1958), 10.1007/BF02751483] and can also be expressed in terms of scattering phase shifts.
Strongly anisotropic spin-orbit splitting in a two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Michiardi, Matteo; Bianchi, Marco; Dendzik, Maciej; Miwa, Jill A.; Hoesch, Moritz; Kim, Timur K.; Matzen, Peter; Mi, Jianli; Bremholm, Martin; Iversen, Bo Brummerstedt; Hofmann, Philip
2015-01-01
Near-surface two-dimensional electron gases on the topological insulator Bi2Te2Se are induced by electron doping and studied by angle-resolved photoemission spectroscopy. A pronounced spin-orbit splitting is observed for these states. The k -dependent splitting is strongly anisotropic to a degree where a large splitting (≈0.06 Å-1) can be found in the Γ ¯M ¯ direction while the states are hardly split along Γ ¯K ¯ . The direction of the anisotropy is found to be qualitatively inconsistent with results expected for a third-order anisotropic Rashba Hamiltonian. However, a k .p model that includes the possibility of band structure anisotropy as well as both isotropic and anisotropic third order Rashba splitting can explain the results. The isotropic third order contribution to the Rashba Hamiltonian is found to be negative, reducing the energy splitting at high k . The interplay of band structure, higher order Rashba effect, and tunable doping offers the opportunity to engineer not only the size of the spin-orbit splitting but also its direction.
Two-dimensional vibrational-electronic spectroscopy
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira
2015-10-21
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a
NASA Astrophysics Data System (ADS)
Lee, Juhee; Kim, Dong-Hee
2017-03-01
We investigate the Gorkov-Melik-Barkhudarov (GM) correction to superfluid transition temperature in two-dimensional Fermi gases with Rashba spin-orbit coupling (SOC) across the SOC-driven BCS-BEC crossover. In the calculation of the induced interaction, we find that the spin-component mixing due to SOC can induce both of the conventional screening and additional antiscreening contributions that interplay significantly in the strong SOC regime. While the GM correction generally lowers the estimate of transition temperature, it turns out that at a fixed weak interaction, the correction effect exhibits a crossover behavior where the ratio between the estimates without and with the correction first decreases with SOC and then becomes insensitive to SOC when it goes into the strong SOC regime. We demonstrate the applicability of the GM correction by comparing the zero-temperature condensate fraction with the recent quantum Monte Carlo results.
Two dimensional electron gas at oxide interfaces
NASA Astrophysics Data System (ADS)
Janicka, Karolina
2011-12-01
Extraordinary phenomena can occur at the interface between two oxide materials. A spectacular example is a formation of a two-dimensional electron gas (2DEG) at the SrTiO3/LaAlO3 interface. In this dissertation the properties of the 2DEG are investigated from first principles. The spatial extent of the 2DEG formed at the SrTiO3/LaAlO 3 n-type interface is studied. It is shown that the confinement of the 2DEG is controlled by metal induced gap states formed in the band gap of SrTiO 3. The confinement width is then determined by the attenuation length of the metal induced gap states into SrTiO3 which is governed by the lowest decay rate evanescent states of bulk SrTiO3 which in turn can be found from the complex band structure of bulk SrTiO3. Magnetic properties of the 2DEG formed at the n-type interface of the SrTiO3/LaAlO3 superlattices are investigated. It is found that for a thin SrTiO3 film the interface is ferromagnetic but for a thicker SrTiO3 film the magnetic moment decreases and eventually disappears. This is a result of delocalization of the 2DEG that spreads over thicker SrTiO3 film which leads to violation of the Stoner criterion. Further, it is shown that inclusion of the Hubbard U interaction enhances the Stoner parameter and stabilizes the magnetism. The effect of the 2DEG and the polar interfaces for the thin film ferroelectricity is investigated using both first principles and model calculations. Using a TiO2-terminated BaTiO3 film with LaO monolayers at the two interfaces it is shown that the intrinsic electric field produced by the polar interface forces ionic displacements in BaTiO3 to produce the electric polarization directed into the interior of the BaTiO 3 layer. This creates a ferroelectric dead layer near the interfaces that is non-switchable and thus detrimental to ferroelectricity. It is found that the effect is stronger for a larger effective ionic charge at the interface and longer screening length due to a stronger intrinsic electric
NASA Astrophysics Data System (ADS)
Cangas, R.; Hidalgo, M. A.
2015-09-01
In this paper, we review the contribution of the Rashba spin-orbit coupling to the magnetoconduction of a two-dimensional electron system (2DES) confined in an inversion layer under quantum Hall regime (low temperature and low defects and impurities). The study is based on a semi-classical model for the magnetoconductivities of the 2DES. This model reproduces the measurements of the Shubnikov-de Haas (SdH) oscillations obtained in systems confined in III-V heterostructures, and also the quantum Hall magnetoconductivity (magnetoresistivity). We also discuss the Rashba and Zeeman competition and its effect on the magnetoconductivity.
Two-dimensional supramolecular electron spin arrays.
Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya
2013-05-07
A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-dimensional materials and their prospects in transistor electronics.
Schwierz, F; Pezoldt, J; Granzner, R
2015-05-14
During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.
Electron spin resonance and Rashba field in GaN-based materials
NASA Astrophysics Data System (ADS)
Wolos, A.; Wilamowski, Z.; Skierbiszewski, C.; Drabinska, A.; Lucznik, B.; Grzegory, I.; Porowski, S.
2011-07-01
We discuss problem of Rashba field in bulk GaN and in GaN/AlxGa1-xN two-dimensional electron gas, basing on results of X-band microwave resonance experiments. We point at large difference in spin-orbit coupling between bulk material and heterostructures. We observe coupled plasmon-cyclotron resonance from the two-dimensional electron gas, but no spin resonance, being consistent with large zero-field spin splitting due to the Rashba field reported in the literature. In contrast, small anisotropy of g-factor of GaN effective mass donors indicates rather weak Rashba spin-orbit coupling in bulk material, not exceed 400 G, αBIA<4×10-13 eVcm. Furthermore, we observe new kind of electron spin resonance in GaN, which we attribute to surface electron accumulation layer. We conclude that the sizable Rashba field in GaN/AlxGa1-xN heterostructures originates from properties of the interface.
Triola, Christopher; Badiane, Driss M; Balatsky, Alexander V; Rossi, E
2016-06-24
We obtain the general conditions for the emergence of odd-frequency superconducting pairing in a two-dimensional (2D) electronic system proximity coupled to a superconductor, making minimal assumptions about both the 2D system and the superconductor. Using our general results we show that a simple heterostructure formed by a monolayer of a group VI transition metal dichalcogenide, such as molybdenum disulfide, and an s-wave superconductor with Rashba spin-orbit coupling exhibits odd-frequency superconducting pairing. Our results allow the identification of a new class of systems among van der Waals heterostructures in which odd-frequency superconductivity should be present.
NASA Astrophysics Data System (ADS)
Rossi, Enrico; Triola, Christopher; Badiane, Driss; Balatsky, Alexander V.
We obtain the general conditions for the emergence of odd-frequency superconducting pairing in a two-dimensional (2D) electronic system proximity-coupled to a superconductor, making minimal assumptions about both the 2D system and the superconductor. Using our general results we show that a simple heterostructure formed by a monolayer of a group VI transition metal dichalcogenide, such as molybdenum disulfide, and an s-wave superconductor with Rashba spin-orbit coupling will exhibit odd-frequency superconducting pairing. Work supported by US DOE BES E304, KAW, ACS-PRF-53581-DNI5, and NSF-DMR-1455233.
Electronic properties of two-dimensional carbon
Peres, N.M.R.; Guinea, F.; Castro Neto, A.H. . E-mail: neto@bu.edu
2006-07-15
We present a theoretical description of the electronic properties of graphene in the presence of disorder, electron-electron interactions, and particle-hole symmetry breaking. We show that while particle-hole asymmetry, long-range Coulomb interactions, and extended defects lead to the phenomenon of self-doping, local defects determine the transport and spectroscopic properties. Our results explain recent experiments in graphitic devices and predict new electronic behavior.
Herranz, Gervasi; Singh, Gyanendra; Bergeal, Nicolas; ...
2015-01-13
We find the discovery of two-dimensional electron gases (2DEGs) at oxide interfaces—involving electrons in narrow d-bands—has broken new ground, enabling the access to correlated states that are unreachable in conventional semiconductors based on s- and p- electrons. There is a growing consensus that emerging properties at these novel quantum wells—such as 2D superconductivity and magnetism—are intimately connected to specific orbital symmetries in the 2DEG sub-band structure. Here we show that crystal orientation allows selective orbital occupancy, disclosing unprecedented ways to tailor the 2DEG properties. By carrying out electrostatic gating experiments in LaAlO3/SrTiO3 wells of different crystal orientations, we show thatmore » the spatial extension and anisotropy of the 2D superconductivity and the Rashba spin–orbit field can be largely modulated by controlling the 2DEG sub-band filling. Such an orientational tuning expands the possibilities for electronic engineering of 2DEGs at LaAlO3/SrTiO3 interfaces.« less
Herranz, Gervasi; Singh, Gyanendra; Bergeal, Nicolas; Jouan, Alexis; Lesueur, Jérôme; Gázquez, Jaume; Varela, María; Scigaj, Mateusz; Dix, Nico; Sánchez, Florencio; Fontcuberta, Josep
2015-01-01
The discovery of two-dimensional electron gases (2DEGs) at oxide interfaces—involving electrons in narrow d-bands—has broken new ground, enabling the access to correlated states that are unreachable in conventional semiconductors based on s- and p- electrons. There is a growing consensus that emerging properties at these novel quantum wells—such as 2D superconductivity and magnetism—are intimately connected to specific orbital symmetries in the 2DEG sub-band structure. Here we show that crystal orientation allows selective orbital occupancy, disclosing unprecedented ways to tailor the 2DEG properties. By carrying out electrostatic gating experiments in LaAlO3/SrTiO3 wells of different crystal orientations, we show that the spatial extension and anisotropy of the 2D superconductivity and the Rashba spin–orbit field can be largely modulated by controlling the 2DEG sub-band filling. Such an orientational tuning expands the possibilities for electronic engineering of 2DEGs at LaAlO3/SrTiO3 interfaces. PMID:25583368
Two Dimensional Synthetic Electron Cyclotron Emission Imaging
NASA Astrophysics Data System (ADS)
Shi, Lei; Valeo, Ernest J.; Tobias, Benjamin J.; Kramer, Gerrit J.; Liu, Chang; Tang, William M.
2016-10-01
Electron Cyclotron Emission (ECE) has been widely used as a measurement of the electron temperature profile in magnetically confined plasmas. The ECE Imaging (ECEI) system provides additional vertical resolutions, and is used to measure the electron temperature fluctuations. The vertical resolution is typically a few centi-meters which is sometimes comparable to the vertical wave length of the underlying fluctuations. The ray-tracing technique used in most synthetic ECE codes to determine the origin and spatial extent of the ECE radiations is not accurate when the refraction and diffraction due to the fluctuations are important. In this presentation, we introduce a new synthetic ECEI code which solves the wave propagation up to the 2nd order of the WKB approximation, and provides full 2D information of the ECE source. We'll show that when the ECE frequency is near the cutoff, the refraction due to the fluctuations is important. A ``trapping'' of the ECE source by the density fluctuations is identified, and is potentially useful for determining the cross phase between electron temperature and density fluctuations. The new formalism is also used to study the Runaway Electrons contribution to the ECE signal, and provides insights to the measured ECE spectrum on DIII-D. This work has been funded by the US Department of Energy under Contract Number DE-AC02-09CH11466.
Two-Dimensional Electron-Spin Resonance
NASA Astrophysics Data System (ADS)
Freed, Jack H.
2000-03-01
The extension of the concepts of 2D-NMR to ESR posed significant technological challenges, especially for liquids. ESR relaxation times are very short, as low as 10-15 ns. for T_2's. Spectral bandwidths are 100-250 MHz for nitroxide spin labels. Adequate coverage is obtained with 3-5 ns. π/2 (9-17 GHz) microwave pulses into a small low Q resonator. Dead-times are currently 25-30 ns. Additional requirements are rapid phase shifting for phase cycling, nsec. data acquisition, and fast repetition rates (10-100 kHz). 2D-ELDOR (electron-electron double resonance), which is a 3-pulse 2D-exchange experiment, takes about 30 minutes with just 0.5 nanomole spin-probe in solution (SNR 200). 2D-ELDOR is very useful in studies of molecular dynamics and local structure in complex fluids. For such media, the slow rotational dynamics requires a theory based upon the stochastic Liouville equation which enables quantitative interpretation of 2D-ELDOR experiments. In studies of spin-probes in a liquid crystal new insights could be obtained on the dynamic structure in different phases. One obtains, in addition to ordering and reorientation rates of the probes, details of the local dynamic cage: its orienting potential and (slow) relaxation rate. 2D-ELDOR overcomes the loss of resolution resulting from microscopically ordered but macroscopically disordered complex fluids. This is illustrated by studies of the dynamic structure of lipid membrane vesicles, and the effects of adding a peptide. The short dead times enable the observation of both the bulk lipids and the more immobilized lipids that coat (or are trapped) by the (aggregates of) peptides. Also, new developments of multi-quantum (2D) FT-ESR from nitroxide spin labels interacting by dipolar interactions show considerable promise in measuring distances of ca. 15-70A in macromolecules.
Two-dimensional electronic spectroscopy using incoherent light: theoretical analysis.
Turner, Daniel B; Howey, Dylan J; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J
2013-07-25
Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I((4)) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and new opportunities.
General solution of the Dirac equation for quasi-two-dimensional electrons
Eremko, Alexander; Brizhik, Larissa; Loktev, Vadim
2016-06-15
The general solution of the Dirac equation for quasi-two-dimensional electrons confined in an asymmetric quantum well, is found. The energy spectrum of such a system is exactly calculated using special unitary operator and is shown to depend on the electron spin polarization. This solution contains free parameters, whose variation continuously transforms one known particular solution into another. As an example, two different cases are considered in detail: electron in a deep and in a strongly asymmetric shallow quantum well. The effective mass renormalized by relativistic corrections and Bychkov–Rashba coefficients are analytically obtained for both cases. It is demonstrated that the general solution transforms to the particular solutions, found previously (Eremko et al., 2015) with the use of spin invariants. The general solution allows to establish conditions at which a specific (accompanied or non-accompanied by Rashba splitting) spin state can be realized. These results can prompt the ways to control the spin degree of freedom via the synthesis of spintronic heterostructures with the required properties.
General solution of the Dirac equation for quasi-two-dimensional electrons
NASA Astrophysics Data System (ADS)
Eremko, Alexander; Brizhik, Larissa; Loktev, Vadim
2016-06-01
The general solution of the Dirac equation for quasi-two-dimensional electrons confined in an asymmetric quantum well, is found. The energy spectrum of such a system is exactly calculated using special unitary operator and is shown to depend on the electron spin polarization. This solution contains free parameters, whose variation continuously transforms one known particular solution into another. As an example, two different cases are considered in detail: electron in a deep and in a strongly asymmetric shallow quantum well. The effective mass renormalized by relativistic corrections and Bychkov-Rashba coefficients are analytically obtained for both cases. It is demonstrated that the general solution transforms to the particular solutions, found previously (Eremko et al., 2015) with the use of spin invariants. The general solution allows to establish conditions at which a specific (accompanied or non-accompanied by Rashba splitting) spin state can be realized. These results can prompt the ways to control the spin degree of freedom via the synthesis of spintronic heterostructures with the required properties.
Two-dimensional optimization of free-electron-laser designs
Prosnitz, D.; Haas, R.A.
1982-05-04
Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.
Two-dimensional optimization of free electron laser designs
Prosnitz, Donald; Haas, Roger A.
1985-01-01
Off-axis, two-dimensional designs for free electron lasers that maintain correspondence of a light beam with a "synchronous electron" at an optimal transverse radius r>0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.
Melting of a two-dimensional crystal of electrons
NASA Astrophysics Data System (ADS)
Grimes, C. C.
1981-03-01
Experiments show that a sheet of electrons in image-potential-induced states outside a helium surface forms at low temperatures a two-dimensional crystal (the classical, two-dimensional analog of a Wigner crystal). At higher temperatures the electron crystal melts to form a two-dimensional, classical, one-component plasma. The melting transition occurs at Γm = 131 ± 7 where Γ is a measure of the ratio of Coulomb potential energy to kinetic energy per electron. This measured value of Γm is consistent with a value obtained by Morf from a calculation based on the Kosterlitz and Thouless theory of dislocation mediated melting in two-dimensions.
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.
Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S
2012-11-01
The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Effects of structural spin-orbit coupling in two dimensional electron and hole liquids
NASA Astrophysics Data System (ADS)
Chesi, Stefano
The recent interest in spin-dependent phenomena in semiconductor heterostructures motivates our detailed study of the structural spin-orbit coupling present in clean two-dimensional electron and hole liquids. Interesting polarization effects are produced in a system out of equilibrium, as when a finite current flows in the sample. In particular, the consequences of a lateral confinement creating a quasi one-dimensional wire are studied in detail, partially motivated by a recent experimental investigation of the point-contact transmission for two-dimensional holes. We also address the role of the electron-electron interaction in the presence of spin-orbit coupling, which has received little attention in the literature. We discuss the formulation of the Hartree-Fock approximation in the particular case of linear Rashba spin-orbit. We establish the form of the mean-field phase diagram in the homogeneous case, which shows a complex interplay between paramagnetic and ferromagnetic states. The latter can be polarized in the plane or in a transverse direction, and are characterized by a complex spin structure and nontrivial occupation. The generality of the Hartree-Fock method allows a simple treatment of the Pauli spin susceptibility, and the application to different forms of spin-orbit coupling. Correlation corrections can be obtained in an analytic form for particular asymptotic regimes. For linear Rashba spin-orbit we identified the relevance of the large spin-orbit limit, dominated by many-body effects, and explicitly treated the high density limit, in which the system is asymptotically noninteracting. As a special case, we derive a new exact formula for the polarization dependence of the ring-diagram correlation energy.
Biswas, Tutul; Ghosh, Tarun Kanti
2013-01-23
We study the interaction between electron and acoustic phonons in a Rashba spin-orbit coupled two-dimensional electron gas using Boltzmann transport theory. Both the deformation potential and piezoelectric scattering mechanisms are considered in the Bloch-Grüneisen (BG) regime as well as in the equipartition (EP) regime. The effect of the Rashba spin-orbit interaction on the temperature dependence of the resistivity in the BG and EP regimes is discussed. We find that the effective exponent of the temperature dependence of the resistivity in the BG regime decreases due to spin-orbit coupling.
Landau level crossing in a spin-orbit coupled two-dimensional electron gas
Wu, Xing-Jun; Li, Ting-Xin; Zhang, Chi; Du, Rui-Rui
2015-01-05
We have studied experimentally the Landau level (LL) spectrum of a two-dimensional electron gas (2DEG) in an In{sub 0.53}Ga{sub 0.47}As/InP quantum well structure by means of low-temperature magneto-transport coincidence measurement in vector magnetic fields. It is well known that LL crossing occurs in tilted magnetic fields due to a competition between cyclotron energy and Zeeman effect. Remarkably, here we observe an additional type of level-crossing resulting from a competition between Rashba and Zeeman splitting in a small magnetic field, consistent with the theoretical prediction for strongly spin-orbit coupled 2DEG.
Control of spin dynamics in a two-dimensional electron gas by electromagnetic dressing
NASA Astrophysics Data System (ADS)
Pervishko, A. A.; Kibis, O. V.; Morina, S.; Shelykh, I. A.
2015-11-01
We solved the Schrödinger problem for a two-dimensional electron gas (2DEG) with the Rashba spin-orbit interaction in the presence of a strong high-frequency electromagnetic field (dressing field). The found eigenfunctions and eigenenergies of the problem are used to describe the spin dynamics of the dressed 2DEG within the formalism of the density matrix response function. Solving the equations of spin dynamics, we show that the dressing field can switch the spin relaxation in the 2DEG between the cases corresponding to the known Elliott-Yafet and D'yakonov-Perel' regimes. As a result, the spin properties of the 2DEG can be tuned by a high-frequency electromagnetic field. The present effect opens an unexplored way for controlling the spin with light and, therefore, forms the physical prerequisites for creating light-tuned spintronics devices.
Spin-polarized dynamic transport in tubular two-dimensional electron gases
NASA Astrophysics Data System (ADS)
Rothstein, E. A.; Horovitz, B.; Entin-Wohlman, O.; Aharony, A.
2014-12-01
The ac conductance of a finite tubular two-dimensional electron gas is studied in the presence of the Rashba spin-orbit interaction. When the tube is coupled to two reservoirs, that interaction splits the steps in the dc current, introducing energy ranges with spin-polarized currents. For this setup, we calculate the current-current correlations (the noise spectrum) and show that the existence of these dc spin-polarized currents can be deduced from the shot noise. We also find that the Wigner-Smith time delay is almost unaffected by the spin-orbit interaction. When the tube is coupled to a single reservoir, we calculate the quantum capacitance and the charge-relaxation resistance, and find that they exhibit singularities near the openings of new channels.
Anderson transition of two-dimensional spinful electrons in the Gaussian unitary ensemble
NASA Astrophysics Data System (ADS)
Wang, C.; Wang, X. R.
2017-09-01
We study the Anderson localization of disordered two-dimensional electron gases (2DEGs) on a square lattice subject to a perpendicular magnetic field B , random scalar potentials, and Rashba spin-orbit interactions. Our focus is on the weak magnetic field region, motivated by the intriguing question of how those extended states, existing in the absence of the magnetic field (B =0 ) when the 2DEGs are the Gaussian symplectic ensemble, change with B . Using highly accurate numerical procedures based on the transfer matrix technique and the level statistics, we found that a metallic phase exists at weak magnetic fields, in contrast to the predictions of the one-parameter scaling theory that all states are localized at weak fields except at zero field, and the metallic phase evolves continuously into those at strong magnetic fields. A schematic phase diagram drawn in the field-energy plane elucidates the occurrence and evolution of extended states.
Toward the Accurate Simulation of Two-Dimensional Electronic Spectra
NASA Astrophysics Data System (ADS)
Giussani, Angelo; Nenov, Artur; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Dumont, Elise; Mukamel, Shaul; Garavelli, Marco
2015-06-01
Two-dimensional pump-probe electronic spectroscopy is a powerful technique able to provide both high spectral and temporal resolution, allowing the analysis of ultrafast complex reactions occurring via complementary pathways by the identification of decay-specific fingerprints. [1-2] The understanding of the origin of the experimentally recorded signals in a two-dimensional electronic spectrum requires the characterization of the electronic states involved in the electronic transitions photoinduced by the pump/probe pulses in the experiment. Such a goal constitutes a considerable computational challenge, since up to 100 states need to be described, for which state-of-the-art methods as RASSCF and RASPT2 have to be wisely employed. [3] With the present contribution, the main features and potentialities of two-dimensional electronic spectroscopy are presented, together with the machinery in continuous development in our groups in order to compute two-dimensional electronic spectra. The results obtained using different level of theory and simulations are shown, bringing as examples the computed two-dimensional electronic spectra for some specific cases studied. [2-4] [1] Rivalta I, Nenov A, Cerullo G, Mukamel S, Garavelli M, Int. J. Quantum Chem., 2014, 114, 85 [2] Nenov A, Segarra-Martí J, Giussani A, Conti I, Rivalta I, Dumont E, Jaiswal V K, Altavilla S, Mukamel S, Garavelli M, Faraday Discuss. 2015, DOI: 10.1039/C4FD00175C [3] Nenov A, Giussani A, Segarra-Martí J, Jaiswal V K, Rivalta I, Cerullo G, Mukamel S, Garavelli M, J. Chem. Phys. submitted [4] Nenov A, Giussani A, Fingerhut B P, Rivalta I, Dumont E, Mukamel S, Garavelli M, Phys. Chem. Chem. Phys. Submitted [5] Krebs N, Pugliesi I, Hauer J, Riedle E, New J. Phys., 2013,15, 08501
Kocharian, Armen N.; Fernando, Gayanath W.; Fang, Kun; Palandage, Kalum; Balatsky, Alexander V.
2016-05-15
Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.
Spatially resolved two-dimensional Fourier transform electron spin resonance
NASA Astrophysics Data System (ADS)
Ewert, Uwe; Crepeau, Richard H.; Lee, Sanghyuk; Dunnam, Curt R.; Xu, Dajiang; Freed, Jack H.
1991-09-01
Fourier transform ESR methods have been extended to permit spatially resolved two-dimensional (2D)-ESR experiments. This is illustrated for the case of 2D-electron-electron double resonance (2D-ELDOR) spectra of nitroxides in a liquid that exhibits appreciable cross-peaks due to Heisenberg spin exchange. The use of spin-echo decays in spatially resolved FT-ESR is also demonstrated.
Manifestations of two-dimensional electron gas in molecular crystals
NASA Astrophysics Data System (ADS)
Kuklja, Maija M.; Sharia, Onise; Tsyshevsky, Roman
2017-03-01
The existence of two-dimensional electron gas in molecular materials has not been reported or discussed. Intriguing properties of two-dimensional electron gas observed on interfaces of polar and nonpolar oxides spurred oxide electronics and advanced nanotechnology. Here we discover how an electrostatic instability occurs on polar surfaces of molecular crystals and explore its manifestations, chemical degradation of surfaces, charge separation, electrical conductivity, optical band-gap closure and surface metallization. A thin layer of polar surface of a dielectric molecular crystal becomes metallic due to interactions of polar molecules. Our findings are illustrated with two polymorphs of cyclotetramethylene-tetranitramine crystals, the polar δ-phase and nonpolar β-phase. Our theory offers an explanation to a relative stability of the β-phase versus the explosive reactivity of δ-phase and to the experimentally observed difference in conductivity of these crystals. We predict that the electrostatic instability takes place on all polar molecular materials.
Two-dimensional attosecond electron wave-packet interferometry.
Xie, Xinhua
2015-05-01
We propose a two-dimensional interferometry based on the electron wave-packet interference by using a cycle-shaped orthogonally polarized two-color laser field. With such a method, the subcycle and intercycle interferences can be disentangled into different directions in the measured photoelectron momentum spectra. The Coulomb influence can be minimized and the overlapping of interference fringes with the complicated low-energy structures can be avoided as well. The contributions of the excitation effect and the long-range Coulomb potential can be traced in the Fourier domain of the photoelectron distribution. Because of these advantages, precise information on valence electron dynamics of atoms or molecules with attosecond temporal resolution and additional spatial information with angstrom resolution can be obtained with the two-dimensional electron wave-packet interferometry.
NASA Astrophysics Data System (ADS)
Paul, Jagannath
Advent of ultrashort lasers made it possible to probe various scattering phenomena in materials that occur in a time scale on the order of few femtoseconds to several tens of picoseconds. Nonlinear optical spectroscopy techniques, such as pump-probe, transient four wave mixing (TFWM), etc., are very common to study the carrier dynamics in various material systems. In time domain, the transient FWM uses several ultrashort pulses separated by time delays to obtain the information of dephasing and population relaxation times, which are very important parameters that govern the carrier dynamics of materials. A recently developed multidimensional nonlinear optical spectroscopy is an enhanced version of TFWM which keeps track of two time delays simultaneously and correlate them in the frequency domain with the aid of Fourier transform in a two dimensional map. Using this technique, the nonlinear complex signal field is characterized both in amplitude and phase. Furthermore, this technique allows us to identify the coupling between resonances which are rather difficult to interpret from time domain measurements. This work focuses on the study of the coherent response of a two dimensional electron gas formed in a modulation doped GaAs/AlGaAs quantum well both at zero and at high magnetic fields. In modulation doped quantum wells, the excitons are formed as a result of the inter- actions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the formation of Mahan excitons, which is also referred to as Fermi edge singularity (FES). Polarization and temperature dependent rephasing 2DFT spectra in combination with TI-FWM measurements, provides insight into the dephasing mechanism of the heavy hole (HH) Mahan exciton. In addition to that strong quantum coherence between the HH and LH Mahan excitons is observed, which is rather surprising at this high doping concentration. The binding energy of Mahan excitons is expected to be greatly
Suspended two-dimensional electron and hole gases
Kazazis, D.; Bourhis, E.; Gierak, J.; Gennser, U.; Bourgeois, O.; Antoni, T.
2013-12-04
We report on the fabrication of fully suspended two-dimensional electron and hole gases in III-V heterostructures. Low temperature transport measurements verify that the properties of the suspended gases are only slightly degraded with respect to the non-suspended gases. Focused ion beam technology is used to pattern suspended nanostructures with minimum damage from the ion beam, due to the small width of the suspended membrane.
Magnetotransport in two-dimensional electron gas in helical nanomembranes.
Vorobyova, Julia S; Vorob'ev, Alexander B; Prinz, Victor Y; Toropov, Alexander I; Maude, Duncan K
2015-03-11
Heterostructures containing high-mobility two-dimensional electron gas were rolled into freestanding helically shaped contacted Hall bars. Magnetotransport measurements in these structures at high magnetic fields revealed minima in the longitudinal magnetoresistance corresponding to integer and fractional filling factors. A strong asymmetry of the longitudinal magnetoresistance with respect to the external magnetic field direction was observed. For this new type of structures, an edge state picture was considered, and calculations based on the Landauer-Büttiker formalism are performed.
Two-dimensional electron gas magnetic field sensors
NASA Astrophysics Data System (ADS)
Heremans, J.; Partin, D. L.; Morelli, D. T.; Fuller, B. K.; Thrush, C. M.
1990-07-01
We describe the use of accumulation layers of electron charge in applications as magnetoresistive devices. We consider two such systems: an InGaAs/InP heterostructure in which we identify a two-dimensional electron gas from the observation of the quantum Hall effect, and InAs films, in which a strong surface accumulation of charge is inferred from depth profiling studies of the galvanomagnetic coefficients. Magnetoresistive devices fabricated from these materials exhibit outstanding field sensitivity and temperature stability due to the existence of electrons of relatively high density and mobility in the accumulation regions. We also model the magnetosensitivity of our devices.
Two-dimensional Electronic Double-Quantum Coherence Spectroscopy
Kim, Jeongho; Mukamel, Shaul
2009-01-01
CONSPECTUS The theory of electronic structure of many-electron systems like molecules is extraordinarily complicated. A lot can be learned by considering how electron density is distributed, on average, in the average field of the other electrons in the system. That is, mean field theory. However, to describe quantitatively chemical bonds, reactions, and spectroscopy requires consideration of the way that electrons avoid each other by the way they move; this is called electron correlation (or in physics, the many-body problem for fermions). While great progress has been made in theory, there is a need for incisive experimental tests that can be undertaken for large molecular systems in the condensed phase. Here we report a two-dimensional (2D) optical coherent spectroscopy that correlates the double excited electronic states to constituent single excited states. The technique, termed two-dimensional double-coherence spectroscopy (2D-DQCS), makes use of multiple, time-ordered ultrashort coherent optical pulses to create double- and single-quantum coherences over time intervals between the pulses. The resulting two-dimensional electronic spectrum maps the energy correlation between the first excited state and two-photon allowed double-quantum states. The principle of the experiment is that when the energy of the double-quantum state, viewed in simple models as a double HOMO to LUMO excitation, equals twice that of a single excitation, then no signal is radiated. However, electron-electron interactions—a combination of exchange interactions and electron correlation—in real systems generates a signal that reveals precisely how the energy of the double-quantum resonance differs from twice the single-quantum resonance. The energy shift measured in this experiment reveals how the second excitation is perturbed by both the presence of the first excitation and the way that the other electrons in the system have responded to the presence of that first excitation. We
NASA Astrophysics Data System (ADS)
Zhu, Song; Liu, Hui-Ping; Yi, Lin
2010-09-01
A generalized finite element formulation is proposed for the study of the spin-dependent ballistic transport of electron through the two-dimensional quantum structures with Rashba spin-orbit interactions (SOI). The transmission coefficient, conductance, the total and local polarization are numerically calculated and discussed as the Rashba coefficient, the geometric sizes, and incident energy are changed in the T-shaped devices. Some interesting features are found in the proper parameter regime. The polarization has an enhancement as the Rashba coefficient becomes stronger. The polarization valley is rigid in the regime of the conductance plateaus since the local interference among the polarized multi-wave modes. The Rashba interactions coupling to geometry in sizes could form the structure-induced Fano-Rashba resonance. In the wider stub, the localized spin lattice of electron could be produced. The conductance plateaus correspond to weak polarizations. Strong polarizations appear when the stub sizes, incident energy, and the Rashba coupling coefficient are matched. The resonances are formed in a wide Fermi energy segment easily.
Intersubband relaxation of two-dimensional electrons in heterostructures
NASA Astrophysics Data System (ADS)
Fal'ko, Vladimir I.
1993-05-01
We calculate the lifetime of a nonequilibrium electron in the first excited subband in the low-density heterostructure where this photocreated carrier occurs at the last stage of its cooling. The electron interaction with acoustic phonons gives the dominant intersubband relaxation mechanism, if the intersubband energy splitting and the Fermi energy splitting are relatively small, 1>ɛF/Δ10>0.7-0.8. In GaAs-AlxGa1-xAs heterostructures the intersubband relaxation determines the excited-electron lifetime to be of the order of τphon~nanoseconds, which depends slightly on the value of the two-dimensional electron density. When the ratio ɛF/Δ10 is smaller, the intersubband relaxation is determined by the Auger-like electron-electron scattering whose rate can increase up to the value τ-1Aug~10-10 sec-1.
Two-dimensional electronic spectroscopy of molecular excitons.
Milota, Franz; Sperling, Jaroslaw; Nemeth, Alexandra; Mancal, Tomás; Kauffmann, Harald F
2009-09-15
Understanding of the nuclear and electronic structure and dynamics of molecular systems has advanced considerably through probing the nonlinear response of molecules to sequences of pulsed electromagnetic fields. The ability to control various degrees of freedom of the excitation pulses-such as duration, sequence, frequency, polarization, and shape-has led to a variety of time-resolved spectroscopic methods. The various techniques that researchers use are commonly classified by their dimensionality, which refers to the number of independently variable time delays between the pulsed fields that induce the signal. Though pico- and femtosecond time-resolved spectroscopies of electronic transitions have come of age, only recently have researchers been able to perform two-dimensional electronic spectroscopy (2D-ES) in the visible frequency regime and correlate transition frequencies that evolve in different time intervals. The two-dimensional correlation plots and their temporal evolution allow one to access spectral information that is not exposed directly in other one-dimensional nonlinear methods. In this Account, we summarize our studies of a series of increasingly complex molecular chromophores. We examine noninteracting dye molecules, a monomer-dimer equilibrium of a prototypical dye molecule, and finally a supramolecular assembly of electronically coupled absorbers. By tracing vibronic signal modulations, differentiating line-broadening mechanisms, analyzing distinctly different relaxation dynamics, determining electronic coupling strengths, and directly following excitation energy transfer pathways, we illustrate how two-dimensional electronic spectroscopy can image physical phenomena that underlie the optical response of a particular system. Although 2D-ES is far from being a "turn-key" method, we expect that experimental progress and potential commercialization of instrumentation will make 2D-ES accessible to a much broader scientific audience, analogous to
Anisotropic electronic conduction in stacked two-dimensional titanium carbide
Hu, Tao; Zhang, Hui; Wang, Jiemin; Li, Zhaojin; Hu, Minmin; Tan, Jun; Hou, Pengxiang; Li, Feng; Wang, Xiaohui
2015-01-01
Stacked two-dimensional titanium carbide is an emerging conductive material for electrochemical energy storage which requires an understanding of the intrinsic electronic conduction. Here we report the electronic conduction properties of stacked Ti3C2T2 (T = OH, O, F) with two distinct stacking sequences (Bernal and simple hexagonal). On the basis of first-principles calculations and energy band theory analysis, both stacking sequences give rise to metallic conduction with Ti 3d electrons contributing most to the conduction. The conduction is also significantly anisotropic due to the fact that the effective masses of carriers including electrons and holes are remarkably direction-dependent. Such an anisotropic electronic conduction is evidenced by the I−V curves of an individual Ti3C2T2 particulate, which demonstrates that the in-plane electrical conduction is at least one order of magnitude higher than that vertical to the basal plane. PMID:26548439
Anisotropic electronic conduction in stacked two-dimensional titanium carbide
NASA Astrophysics Data System (ADS)
Hu, Tao; Zhang, Hui; Wang, Jiemin; Li, Zhaojin; Hu, Minmin; Tan, Jun; Hou, Pengxiang; Li, Feng; Wang, Xiaohui
2015-11-01
Stacked two-dimensional titanium carbide is an emerging conductive material for electrochemical energy storage which requires an understanding of the intrinsic electronic conduction. Here we report the electronic conduction properties of stacked Ti3C2T2 (T = OH, O, F) with two distinct stacking sequences (Bernal and simple hexagonal). On the basis of first-principles calculations and energy band theory analysis, both stacking sequences give rise to metallic conduction with Ti 3d electrons contributing most to the conduction. The conduction is also significantly anisotropic due to the fact that the effective masses of carriers including electrons and holes are remarkably direction-dependent. Such an anisotropic electronic conduction is evidenced by the I-V curves of an individual Ti3C2T2 particulate, which demonstrates that the in-plane electrical conduction is at least one order of magnitude higher than that vertical to the basal plane.
Anisotropic electronic conduction in stacked two-dimensional titanium carbide.
Hu, Tao; Zhang, Hui; Wang, Jiemin; Li, Zhaojin; Hu, Minmin; Tan, Jun; Hou, Pengxiang; Li, Feng; Wang, Xiaohui
2015-11-09
Stacked two-dimensional titanium carbide is an emerging conductive material for electrochemical energy storage which requires an understanding of the intrinsic electronic conduction. Here we report the electronic conduction properties of stacked Ti3C2T2 (T = OH, O, F) with two distinct stacking sequences (Bernal and simple hexagonal). On the basis of first-principles calculations and energy band theory analysis, both stacking sequences give rise to metallic conduction with Ti 3d electrons contributing most to the conduction. The conduction is also significantly anisotropic due to the fact that the effective masses of carriers including electrons and holes are remarkably direction-dependent. Such an anisotropic electronic conduction is evidenced by the I-V curves of an individual Ti3C2T2 particulate, which demonstrates that the in-plane electrical conduction is at least one order of magnitude higher than that vertical to the basal plane.
NASA Astrophysics Data System (ADS)
Sakaguchi, Hidetsugu; Sherman, E. Ya.; Malomed, Boris A.
2016-09-01
We present an analysis of two-dimensional (2D) matter-wave solitons, governed by the pseudospinor system of Gross-Pitaevskii equations with self- and cross attraction, which includes the spin-orbit coupling (SOC) in the general Rashba-Dresselhaus form, and, separately, the Rashba coupling and the Zeeman splitting. Families of semivortex (SV) and mixed-mode (MM) solitons are constructed, which exist and are stable in free space, as the SOC terms prevent the onset of the critical collapse and create the otherwise missing ground states in the form of the solitons. The Dresselhaus SOC produces a destructive effect on the vortex solitons, while the Zeeman term tends to convert the MM states into the SV ones, which eventually suffer delocalization. Existence domains and stability boundaries are identified for the soliton families. For physically relevant parameters of the SOC system, the number of atoms in the 2D solitons is limited by ˜1.5 ×104 . The results are obtained by means of combined analytical and numerical methods.
Sakaguchi, Hidetsugu; Sherman, E Ya; Malomed, Boris A
2016-09-01
We present an analysis of two-dimensional (2D) matter-wave solitons, governed by the pseudospinor system of Gross-Pitaevskii equations with self- and cross attraction, which includes the spin-orbit coupling (SOC) in the general Rashba-Dresselhaus form, and, separately, the Rashba coupling and the Zeeman splitting. Families of semivortex (SV) and mixed-mode (MM) solitons are constructed, which exist and are stable in free space, as the SOC terms prevent the onset of the critical collapse and create the otherwise missing ground states in the form of the solitons. The Dresselhaus SOC produces a destructive effect on the vortex solitons, while the Zeeman term tends to convert the MM states into the SV ones, which eventually suffer delocalization. Existence domains and stability boundaries are identified for the soliton families. For physically relevant parameters of the SOC system, the number of atoms in the 2D solitons is limited by ∼1.5×10^{4}. The results are obtained by means of combined analytical and numerical methods.
Disordered two-dimensional electron systems with chiral symmetry
NASA Astrophysics Data System (ADS)
Markoš, P.; Schweitzer, L.
2012-10-01
We review the results of our recent numerical investigations on the electronic properties of disordered two dimensional systems with chiral unitary, chiral orthogonal, and chiral symplectic symmetry. Of particular interest is the behavior of the density of states and the logarithmic scaling of the smallest Lyapunov exponents in the vicinity of the chiral quantum critical point in the band center at E=0. The observed peaks or depressions in the density of states, the distribution of the critical conductances, and the possible non-universality of the critical exponents for certain chiral unitary models are discussed.
Dispersion-free continuum two-dimensional electronic spectrometer
Zheng, Haibin; Caram, Justin R.; Dahlberg, Peter D.; Rolczynski, Brian S.; Viswanathan, Subha; Dolzhnikov, Dmitriy S.; Khadivi, Amir; Talapin, Dmitri V.; Engel, Gregory S.
2015-01-01
Electronic dynamics span broad energy scales with ultrafast time constants in the condensed phase. Two-dimensional (2D) electronic spectroscopy permits the study of these dynamics with simultaneous resolution in both frequency and time. In practice, this technique is sensitive to changes in nonlinear dispersion in the laser pulses as time delays are varied during the experiment. We have developed a 2D spectrometer that uses broadband continuum generated in argon as the light source. Using this visible light in phase-sensitive optical experiments presents new challenges in implementation. We demonstrate all-reflective interferometric delays using angled stages. Upon selecting an ~180 nm window of the available bandwidth at ~10 fs compression, we probe the nonlinear response of broadly absorbing CdSe quantum dots and electronic transitions of Chlorophyll a. PMID:24663470
Transport Studies in Parallel Two-Dimensional Electron Gases
NASA Astrophysics Data System (ADS)
Katayama, Yasunao
This thesis presents electron transport studies in GaAs-AlAs double quantum wells (DQW's) where a system of nearby parallel two-dimensional electron gases is formed. It starts from a systematic modeling of the system from a circuit level down to a microscopic quantum mechanical level based on a single electron model. A new concept of "virtual separation of node", in which different circuit nodes represent energies at the Fermi level and at the subband edge of the quantum well, enables the hierarchical modeling of the system, significantly reducing the computation time of the transient analysis. Then, two experiments, done in low temperature, demonstrate physics beyond the above framework. The first experiment shows a sudden charge transfer, when the wells are biased, associated with strong inter-layer Coulomb scattering. The other finds a strong temperature dependence of the resonant tunneling between the two wells in contrast to ordinary electron tunneling process in metal-insulator-metal junctions or semiconductors. It is argued that the electron-electron correlation originating from the small inter-layer electron spacing comparable to the intra-layer electron spacing is responsible for the former and the interaction with the external phonon bath usually neglected at low temperature for the latter. Finally, a couple of possibilities to make device building blocks out of DQW systems are discussed. In particular, a new type of junction, dubbed SD-junction, which consists of an abrupt interface between double- to single-QW interface, is proposed.
Electron-Spin Filters Based on the Rashba Effect
NASA Technical Reports Server (NTRS)
Ting, David Z.-Y.; Cartoixa, Xavier; McGill, Thomas C.; Moon, Jeong S.; Chow, David H.; Schulman, Joel N.; Smith, Darryl L.
2004-01-01
Semiconductor electron-spin filters of a proposed type would be based on the Rashba effect, which is described briefly below. Electron-spin filters more precisely, sources of spin-polarized electron currents have been sought for research on, and development of, the emerging technological discipline of spintronics (spin-based electronics). There have been a number of successful demonstrations of injection of spin-polarized electrons from diluted magnetic semiconductors and from ferromagnetic metals into nonmagnetic semiconductors. In contrast, a device according to the proposal would be made from nonmagnetic semiconductor materials and would function without an applied magnetic field. The Rashba effect, named after one of its discoverers, is an energy splitting, of what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. The present proposal evolved from recent theoretical studies that suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling. Accordingly, a device according to the proposal would be denoted an asymmetric resonant interband tunneling diode [a-RITD]. An a-RITD could be implemented in a variety of forms, the form favored in the proposal being a double-barrier heterostructure containing an asymmetric quantum well. It is envisioned that a-RITDs would be designed and fabricated in the InAs/GaSb/AlSb material system for several reasons: Heterostructures in this material system are strong candidates for pronounced Rashba spin splitting because InAs and GaSb exhibit large spin-orbit interactions and because both InAs and GaSb would be available for the construction of highly asymmetric
Dirac Fermions in a Nanopatterned Two-Dimensional Electron Gas
NASA Astrophysics Data System (ADS)
Park, Cheol-Hwan
2013-03-01
If a lateral periodic potential with triangular (or honeycomb) lattice symmetry is applied to a conventional two-dimensional electron gas (2DEG), the charge carriers behave like massless Dirac ferions. A very interesting and useful point of these newly-generated massless Dirac fermions is that, unlike the case of graphene, their properties can be tuned through the external periodic potential. In this presentation, I will review the electronic properties of those newly-generated massless Dirac fermions in an artificial 2DEG superlattice system and will discuss how the elecctronic structure of those massless Dirac fermions changes depending on the external periodic potential. This work was partly supported by Research Settlement Fund for the new faculty of SNU.
Two-dimensional electron beam charging model for polymer films
NASA Technical Reports Server (NTRS)
Reeves, R. D.; Balmain, K. G.
1981-01-01
A two-dimensional model is developed to describe the charging of strips of thin polymer films above a grounded substrate exposed to a uniform mono-energetic electron beam. The study is motivated by the observed anomalous behavior of geosynchronous satellites, which has been attributed to differential charging of the satellite surfaces exposed to magnetospheric electrons. Surface and bulk electric fields are calcuated at steady state in order to identify regions of high electrical stress, with emphasis on behavior near the material's edge. The model is used to study the effects of some of the experimental parameters, notably beam energy, beam angle of incidence, beam current density, material thickness and material width. Also examined are the consequences of a central gap in the material and a discontinuity in the material thickness.
Microwave Reflection Spectroscopy of a Two-Dimensional Electron Gas
NASA Astrophysics Data System (ADS)
Zhang, Jie; Liu, Ruiyuan; Du, Lingjie; Du, Rui-Rui; Pfeiffer, Loren; West, Ken
Cyclotron resonance (CR) is a standard method to determine the carrier effective mass in two-dimensional electron systems, typically by measuring/analyzing the absorption or transmission signal. Here we report a microwave spectrometer utilizing the reflection signal. In our experiment setup based on a top-loading helium3 cryostat and a superconducting solenoid, the microwave (up to 40GHz) is sent down via a coax cable to the sample surface, and the reflection signal is then collected by the same cable and fed upward to a directional coupler, and being detected. We demonstrate the applicability of the spectrometer by measuring the CR of high-mobility electrons or holes in GaAs/AlGaAs quantum wells. The construction of spectrometer, preliminary data, and brief discussions will be presented. The work at Rice was supported by Welch Foundation Grant C-1682.
Electronic transport in two-dimensional high dielectric constant nanosystems
Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.
2015-04-10
There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.
Electronic transport in two-dimensional high dielectric constant nanosystems
Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; ...
2015-04-10
There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screeningmore » length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.« less
Electronic transport in two-dimensional high dielectric constant nanosystems
NASA Astrophysics Data System (ADS)
Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.
2015-04-01
There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.
Electronic transport in two-dimensional high dielectric constant nanosystems
Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.
2015-01-01
There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials. PMID:25860804
Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy
Paul, J.; Dey, P.; Tokumoto, T.; ...
2014-10-07
The dephasing of excitons in a modulation doped single quantum well was carefully measured using time integrated four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. These are the first 2DFT measurements performed on a modulation doped single quantum well. The inhomogeneous and homogeneous excitonic line widths were obtained from the diagonal and cross-diagonal profiles of the 2DFT spectra. The laser excitation density and temperature were varied and 2DFT spectra were collected. A very rapid increase of the dephasing decay, and as a result, an increase in the cross-diagonal 2DFT linewidths with temperature was observed. Furthermore, the lineshapes of themore » 2DFT spectra suggest the presence of excitation induced dephasing and excitation induced shift.« less
Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy
Paul, J.; Dey, P.; Tokumoto, T.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.
2014-10-07
The dephasing of excitons in a modulation doped single quantum well was carefully measured using time integrated four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. These are the first 2DFT measurements performed on a modulation doped single quantum well. The inhomogeneous and homogeneous excitonic line widths were obtained from the diagonal and cross-diagonal profiles of the 2DFT spectra. The laser excitation density and temperature were varied and 2DFT spectra were collected. A very rapid increase of the dephasing decay, and as a result, an increase in the cross-diagonal 2DFT linewidths with temperature was observed. Furthermore, the lineshapes of the 2DFT spectra suggest the presence of excitation induced dephasing and excitation induced shift.
Electron excitations in two-dimensional buckled honeycomb lattices
NASA Astrophysics Data System (ADS)
Shih, Po-Hsin; Chiu, Yu-Huang; Lin, Min-Fa
2015-03-01
The two-dimensional buckled honeycomb lattices system exhibits the rich Coulomb excitation spectra, being dominated by the free carrier density, band structure, and transferred momentum (q). There are two kinds of plasmon peaks in the energy loss spectra, calculated from the random phase approximation. They are, respectively, revealed at low and middle frequencies. The former, which arises from the free carriers, belongs to acoustic mode. It's frequency depends on √{ q} at long wavelength limit. On the other hand, the latter is due to all the π-electronic collective excitations is an optical mode. Whether such plasmon can service is mainly determined by q. The frequencies and intensities of plasmon modes are very different among graphene, silicene, germanene, and Tin. Thanks the Ministry of Science and Technology of Taiwan (ROC) for funding support.
Two-dimensional electronic spectroscopy with birefringent wedges
Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio
2014-12-15
We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.
Two-Dimensional Electronic Spectroscopy in the Ultraviolet Wavelength Range.
West, Brantley A; Moran, Andrew M
2012-09-20
Coherent two-dimensional (2D) spectroscopies conducted at visible and infrared wavelengths are having a transformative impact on the understanding of numerous processes in condensed phases. The extension of 2D spectroscopy to the ultraviolet spectral range (2DUV) must contend with several challenges, including the attainment of adequate laser bandwidth, interferometric phase stability, and the suppression of undesired nonlinearities in the sample medium. Solutions to these problems are motivated by the study of a wide range of biological systems whose lowest-frequency electronic resonances are found in the UV. The development of 2DUV spectroscopy also makes possible the attainment of new insights into elementary chemical reaction dynamics (e.g., electrocyclic ring opening in cycloalkenes). Substantial progress has been made in both the implementation and application of 2DUV spectroscopy in the past several years. In this Perspective, we discuss 2DUV methodology, review recent applications, and speculate on what the future will hold.
Hanle spin precession in a two-dimensional electron system
NASA Astrophysics Data System (ADS)
Kuczmik, T.; Oltscher, M.; Bayer, A.; Schuh, D.; Bougeard, D.; Ciorga, M.; Weiss, D.
2017-05-01
We investigate the nonlocal Hanle effect in high mobility two-dimensional electron systems using (Ga,Mn)As/GaAs spin Esaki diodes as spin selective contacts. Spin signals in these systems can be strongly affected by dynamic nuclear polarization, which mimics long spin-relaxation times extracted from the measured Hanle curves. Here, we introduce a method which largely suppresses these effects by using an ac injection-detection setup. This allows us to extract from the measurements realistic spin lifetimes on the order of single nanoseconds. As the detection of Hanle signals is also strongly affected by offset signals we discuss the magnetic field dependence of these background voltages observed in lateral nonlocal spin injection devices. We show how the strength of the background magnetoresistance can be minimized by choosing a proper device geometry.
A ballistic two-dimensional-electron-gas Andreev interferometer
Amado, M. Fornieri, A.; Sorba, L.; Giazotto, F.; Biasiol, G.
2014-06-16
We report the realization and investigation of a ballistic Andreev interferometer based on an InAs two dimensional electron gas coupled to a superconducting Nb loop. We observe strong magnetic modulations in the voltage drop across the device due to quasiparticle interference within the weak-link. The interferometer exhibits flux noise down to ∼80 μΦ{sub 0}/√(Hz) and a robust behavior in temperature with voltage oscillations surviving up to ∼7 K. Besides this remarkable performance, the device represents a crucial first step for the realization of a fully-tunable ballistic superconducting magnetometer and embodies a potential advanced platform for the investigation of Majorana bound states, non-local entanglement of Cooper pairs, as well as the manipulation and control of spin triplet correlations.
Two-dimensional spectroscopy of electronic couplings in photosynthesis.
Brixner, Tobias; Stenger, Jens; Vaswani, Harsha M; Cho, Minhaeng; Blankenship, Robert E; Fleming, Graham R
2005-03-31
Time-resolved optical spectroscopy is widely used to study vibrational and electronic dynamics by monitoring transient changes in excited state populations on a femtosecond timescale. Yet the fundamental cause of electronic and vibrational dynamics--the coupling between the different energy levels involved--is usually inferred only indirectly. Two-dimensional femtosecond infrared spectroscopy based on the heterodyne detection of three-pulse photon echoes has recently allowed the direct mapping of vibrational couplings, yielding transient structural information. Here we extend the approach to the visible range and directly measure electronic couplings in a molecular complex, the Fenna-Matthews-Olson photosynthetic light-harvesting protein. As in all photosynthetic systems, the conversion of light into chemical energy is driven by electronic couplings that ensure the efficient transport of energy from light-capturing antenna pigments to the reaction centre. We monitor this process as a function of time and frequency and show that excitation energy does not simply cascade stepwise down the energy ladder. We find instead distinct energy transport pathways that depend sensitively on the detailed spatial properties of the delocalized excited-state wavefunctions of the whole pigment-protein complex.
Giant spin splitting of the two-dimensional electron gas at the surface of SrTiO3.
Santander-Syro, A F; Fortuna, F; Bareille, C; Rödel, T C; Landolt, G; Plumb, N C; Dil, J H; Radović, M
2014-12-01
Two-dimensional electron gases (2DEGs) forming at the interfaces of transition metal oxides exhibit a range of properties, including tunable insulator-superconductor-metal transitions, large magnetoresistance, coexisting ferromagnetism and superconductivity, and a spin splitting of a few meV (refs 10, 11). Strontium titanate (SrTiO3), the cornerstone of such oxide-based electronics, is a transparent, non-magnetic, wide-bandgap insulator in the bulk, and has recently been found to host a surface 2DEG (refs 12-15). The most strongly confined carriers within this 2DEG comprise two subbands, separated by an energy gap of 90 meV and forming concentric circular Fermi surfaces. Using spin- and angle-resolved photoemission spectroscopy (SARPES), we show that the electron spins in these subbands have opposite chiralities. Although the Rashba effect might be expected to give rise to such spin textures, the giant splitting of almost 100 meV at the Fermi level is far larger than anticipated. Moreover, in contrast to a simple Rashba system, the spin-polarized subbands are non-degenerate at the Brillouin zone centre. This degeneracy can be lifted by time-reversal symmetry breaking, implying the possible existence of magnetic order. These results show that confined electronic states at oxide surfaces can be endowed with novel, non-trivial properties that are both theoretically challenging to anticipate and promising for technological applications.
Giant spin splitting of the two-dimensional electron gas at the surface of SrTiO3
NASA Astrophysics Data System (ADS)
Santander-Syro, A. F.; Fortuna, F.; Bareille, C.; Rödel, T. C.; Landolt, G.; Plumb, N. C.; Dil, J. H.; Radović, M.
2014-12-01
Two-dimensional electron gases (2DEGs) forming at the interfaces of transition metal oxides exhibit a range of properties, including tunable insulator-superconductor-metal transitions, large magnetoresistance, coexisting ferromagnetism and superconductivity, and a spin splitting of a few meV (refs , ). Strontium titanate (SrTiO3), the cornerstone of such oxide-based electronics, is a transparent, non-magnetic, wide-bandgap insulator in the bulk, and has recently been found to host a surface 2DEG (refs , , , ). The most strongly confined carriers within this 2DEG comprise two subbands, separated by an energy gap of 90 meV and forming concentric circular Fermi surfaces. Using spin- and angle-resolved photoemission spectroscopy (SARPES), we show that the electron spins in these subbands have opposite chiralities. Although the Rashba effect might be expected to give rise to such spin textures, the giant splitting of almost 100 meV at the Fermi level is far larger than anticipated. Moreover, in contrast to a simple Rashba system, the spin-polarized subbands are non-degenerate at the Brillouin zone centre. This degeneracy can be lifted by time-reversal symmetry breaking, implying the possible existence of magnetic order. These results show that confined electronic states at oxide surfaces can be endowed with novel, non-trivial properties that are both theoretically challenging to anticipate and promising for technological applications.
Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy
Paul, J.; Dey, P.; Karaiskaj, D.; Tokumoto, T.; Hilton, D. J.; Reno, J. L.
2014-10-07
The dephasing of the Fermi edge singularity excitations in two modulation doped single quantum wells of 12 nm and 18 nm thickness and in-well carrier concentration of ∼4 × 10{sup 11} cm{sup −2} was carefully measured using spectrally resolved four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. Although the absorption at the Fermi edge is broad at this doping level, the spectrally resolved FWM shows narrow resonances. Two peaks are observed separated by the heavy hole/light hole energy splitting. Temperature dependent “rephasing” (S{sub 1}) 2DFT spectra show a rapid linear increase of the homogeneous linewidth with temperature. The dephasing rate increases faster with temperature in the narrower 12 nm quantum well, likely due to an increased carrier-phonon scattering rate. The S{sub 1} 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations. Distinct 2DFT lineshapes were observed for co-linear and cross-linear polarizations, suggesting the existence of polarization dependent contributions. The “two-quantum coherence” (S{sub 3}) 2DFT spectra for the 12 nm quantum well show a single peak for both co-linear and co-circular polarizations.
Stability and electronic properties of two-dimensional indium iodide
NASA Astrophysics Data System (ADS)
Wang, Jizhang; Dong, Baojuan; Guo, Huaihong; Yang, Teng; Zhu, Zhen; Hu, Gan; Saito, Riichiro; Zhang, Zhidong
2017-01-01
Based on ab initio density functional calculations, we studied the stability and electronic properties of two-dimensional indium iodide (InI). The calculated results show that monolayer and few-layer InI can be as stable as its bulk counterpart. The stability of the monolayer structure is further supported by examining the electronic and dynamic stability. The interlayer interaction is found to be fairly weak (˜160 meV/atom) and mechanical exfoliation to obtain monolayer and few-layer structures will be applicable. A direct band gap of 1.88 eV of the bulk structure is obtained from the hybrid functional method, and is comparable to the experimental one (˜2.00 eV). The electronic structure can be tuned by layer stacking and external strain. The size of the gap is a linear function of an inverse number of layers, suggesting that we can design few-layer structures for optoelectronic applications in the visible optical range. In-plane tensile or hydrostatic compressive stress is found to be useful not only in varying the gap size to cover the whole visible optical range, but also in inducing a semiconductor-metal transition with an experimentally accessible stress. The present result strongly supports the strategy of broadening the scope of group-V semiconductors by looking for isoelectronic III-VII atomic-layered materials.
Electronic nanobiosensors based on two-dimensional materials
NASA Astrophysics Data System (ADS)
Ping, Jinglei
Atomically-thick two-dimensional (2D) nanomaterials have tremendous potential to be applied as transduction elements in biosensors and bioelectronics. We developed scalable methods for synthesis and large-area transfer of two-dimensional nanomaterials, particularly graphene and metal dichalcogenides (so called ``MX2'' materials). We also developed versatile fabrication methods for large arrays of field-effect transistors (FETs) and micro-electrodes with these nanomaterials based on either conventional photolithography or innovative approaches that minimize contamination of the 2D layer. By functionalizing the FETs with a computationally redesigned water-soluble mu-opioid receptor, we created selective and sensitive biosensors suitable for detection of the drug target naltrexone and the neuropeptide enkephalin at pg/mL concentrations. We also constructed DNA-functionalized biosensors and nano-particle decorated biosensors by applying related bio-nano integration techniques. Our methodology paves the way for multiplexed nanosensor arrays with all-electronic readout suitable for inexpensive point-of-care diagnostics, drug-development and biomedical research. With graphene field-effect transistors, we investigated the graphene/solution interface and developed a quantitative model for the effect of ionic screening on the graphene carrier density based on theories of the electric double layer. Finally, we have developed a technique for measuring low-level Faradaic charge-transfer current (fA) across the graphene/solution interface via real-time charge monitoring of graphene microelectrodes in ionic solution. This technique enables the development of flexible and transparent pH sensors that are promising for in vivo applications. The author acknowledges the support from the Defense Advanced Research Projects Agency (DARPA) and the U. S. Army Research Office under Grant Number W911NF1010093.
Quantum magnetotransport in a modulated two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Park, Tae-ik; Gumbs, Godfrey
1997-09-01
Quantum mechanical calculations of the magnetotransport coefficients of a modulated two-dimensional electron gas in a perpendicular magnetic field are presented using the Kubo method. The model modulation potential used is such that the effect of the steepness of the potential and its strength on the band part of the longitudinal resistivity ρxxand the Hall resistivity ρxycould be studied. In the extreme limit of a very steep potential, a two-dimensional square array of antidots is simulated. Impurity scattering is included in the self-consistent t-matrix approximation. The results show that for a strong lateral superlattice potential, ρxyis quenched in the low magnetic field regime and as the magnetic field increases there is a large negative Hall resistivity. The intensity of this negative peak is suppressed as the strength of the modulation potential is decreased. It is also shown that the height of the negative peak depends on the steepness of the potential. The longitudinal resistivity also has some interesting features. There are Aharonov-Bohm oscillations and a double peak structure which depends on both the strength of the modulation potential as well as its slope. The numerical results show that the position and intensity of the lower peak is not very sensitive to a change in the strength of the lattice potential or its steepness. However, the upper peak is greatly reduced when the lattice potential is diminished in strength. The double peak feature in ρxxand the negative peak and quenching of the Hall effect at low magnetic fields have been observed experimentally for antidots in both the quasiclassical and quantum regimes.
Quantum holographic encoding in a two-dimensional electron gas
Moon, Christopher
2010-05-26
The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures - 'molecular holograms' - which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as {approx}0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm{sup 2} and place tens of bits into a single fermionic state.
Two-dimensional material electronics and photonics (Presentation Recording)
NASA Astrophysics Data System (ADS)
Zhu, Wenjuan
2015-09-01
Two-dimensional (2D) materials has attracted intense interest in research in recent years. As compared to their bulk counterparts, these 2D materials have many unique properties due to their reduced dimensionality and symmetry. A key difference is the band structures, which lead to distinct electronic and photonic properties. The 2D nature of the materials also plays an important role in defining their exceptional properties of mechanical strength, surface sensitivity, thermal conductivity, tunable band-gap and interaction with light. These unique properties of 2D materials open up broad territories of applications in computing, communication, energy, and medicine. In this talk, I will present our work on understanding the electrical properties of graphene and MoS2, in particular current transport and band-gap engineering in graphene, interface between gate dielectrics and graphene, and gap states in MoS2. I will also present our work on the nano-scale electronic devices (RF and logic devices) and photonic devices (plasmonic devices and photo-detectors) based on graphene and transition metal dichalcogenides.
Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects.
Liu, Yuanyue; Xiao, Hai; Goddard, William A
2016-05-11
Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gap states. We show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them.
Anomalous electron doping independent two-dimensional superconductivity
NASA Astrophysics Data System (ADS)
Zhou, Wei; Xing, Xiangzhuo; Zhao, Haijun; Feng, Jiajia; Pan, Yongqiang; Zhou, Nan; Zhang, Yufeng; Qian, Bin; Shi, Zhixiang
2017-07-01
Transition metal (Co and Ni) co-doping effects are investigated on an underdoped Ca0.94La0.06Fe2As2 compound. It is discovered that electron doping from substituting Fe with transition metal (TM = Co, Ni) can trigger high-{T}{{c}} superconductivity around 35 K, which emerges abruptly before the total suppression of the innate spin-density-wave/anti-ferromagnetism (SDW/AFM) state. Remarkably, the critical temperature for the high-{T}{{c}} superconductivity remains constant against a wide range of TM doping levels. And the net electron doping density dependence of the superconducting {T}{{c}} based on the rigid band model can be nicely scaled into a single curve for Co and Ni substitutions, in stark contrast to the case of Ba(Fe1-x TM x )2As2. This carrier density independent superconductivity and the unusual scaling behavior are presumably resulted from the interface superconductivity based on the similarity with the interface superconductivity in a La2-x Sr x CuO4-La2CuO4 bilayer. Evidence of the two-dimensional character of the superfluid by angle-resolved magneto-resistance measurements can further strengthen the interface nature of the high-{T}{{c}} superconductivity.
Two-dimensional materials based transparent flexible electronics
NASA Astrophysics Data System (ADS)
Yu, Lili; Ha, Sungjae; El-Damak, Dina; McVay, Elaine; Ling, Xi; Chandrakasan, Anantha; Kong, Jing; Palacios, Tomas
2015-03-01
Two-dimensional (2D) materials have generated great interest recently as a set of tools for electronics, as these materials can push electronics beyond traditional boundaries. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. These thin, lightweight, bendable, highly rugged and low-power devices may bring dramatic changes in information processing, communications and human-electronic interaction. In this report, for the first time, we demonstrate two complex transparent flexible systems based on molybdenum disulfide (MoS2) grown by chemical vapor method: a transparent active-matrix organic light-emitting diode (AMOLED) display and a MoS2 wireless link for sensor nodes. The 1/2 x 1/2 square inch, 4 x 5 pixels AMOLED structures are built on transparent substrates, containing MoS2 back plane circuit and OLEDs integrated on top of it. The back plane circuit turns on and off the individual pixel with two MoS2 transistors and a capacitor. The device is designed and fabricated based on SPICE simulation to achieve desired DC and transient performance. We have also demonstrated a MoS2 wireless self-powered sensor node. The system consists of as energy harvester, rectifier, sensor node and logic units. AC signals from the environment, such as near-field wireless power transfer, piezoelectric film and RF signal, are harvested, then rectified into DC signal by a MoS2 diode. CIQM, CICS, SRC.
Two-Dimensional Plasmonics in Massive and Massless Electron Gases
NASA Astrophysics Data System (ADS)
Yoon, Hosang
Plasmonic waves in solid-state are caused by collective oscillation of mobile charges inside or at the surface of conductors. In particular, surface plasmonic waves propagating at the skin of metals have recently attracted interest, as they reduce the wavelength of electromagnetic waves coupled to them by up to ˜10 times, allowing one to create miniaturized wave devices at optical frequencies. In contrast, plasmonic waves on two-dimensional (2D) conductors appear at much lower infrared and THz-GHz frequencies, near or in the electronics regime, and can achieve far stronger wavelength reduction factor reaching well above 100. In this thesis, we study the unique machinery of 2D plasmonic waves behind this ultra-subwavelength confinement and explore how it can be used to create various interesting devices. To this end, we first develop a physically intuitive theoretical formulation of 2D plasmonic waves, whose two main components---the Coulomb restoration force and inertia of the collectively oscillating charges---are combined into a transmission-line-like model. We then use this formulation to create various ultra-subwavelength 2D plasmonic devices. For the 2D conductor, we first choose GaAs/AlGaAs heterostructure---a 2D electron gas consisting of massive (m* > 0) electrons---demonstrating plasmonic bandgap crystals, interferometers, and negatively refracting metamaterials. We then examine a 2D plasmonic device based on graphene, a 2D electron gas consisting of effectively massless (m* = 0) electrons. We theoretically show and experimentally demonstrate that the massless electrons in graphene can surprisingly exhibit a collective mass when subjected to a collective excitation, providing the inertia that is essential for the propagation of 2D plasmonic waves. Lastly, we theoretically investigate the thermal current fluctuation behaviors in massive and massless electron gases. While seemingly unrelated on first sight, we show that the thermal current fluctuation is
Compact design for two-dimensional electronic spectroscopy
NASA Astrophysics Data System (ADS)
Huang, Zheng; Wang, Peng; Shen, Xiong; Yan, Tian-Min; Zhang, Yizhu; Liu, Jun
2016-03-01
We present a passively phase-stabilized two-dimensional electronic spectroscopy (2DES) with a compact size, and the ease of implementation and maintenance. Our design relies on a mask beam-splitter with four holes to form non-collinear box geometry, and a homebuilt stacked retroreflector, which introduces the phase-locked pulse sequence, remedying the instability of commonly used translation stages. The minimized size of the setup suppresses the influences of optical path-length fluctuations during measurements, improving the phase stability and precise timing of pulse sequences. In our 2DES, only few conventional optical components are used, which make this sophisticated instrumentation convenient to establish and particularly easy to conduct alignment. In data analysis, the self-referencing spectral interferometry (SRSI) method is first introduced to extract the complex-valued signal from spectral interferometry in 2DES. The alternative algorithm achieves the improvement of the signal-to-noise ratio (SNR) and considerable reduction of data acquisition time. The new setup is suitable over a tunable range of spectroscopic wavelength, from ultraviolet (UV) to the near-infrared (NIR) regime, and for ultra-broadband bandwidth, few-cycle laser pulses.
Two dimensional electron spin resonance: Structure and dynamics of biomolecules
NASA Astrophysics Data System (ADS)
Saxena, Sunil; Freed, Jack H.
1998-03-01
The potential of two dimensional (2D) electron spin resonance (ESR) for measuring the structural properties and slow dynamics of labeled biomolecules will be presented. Specifically, it will be shown how the recently developed method of double quantum (DQ) 2D ESR (S. Saxena and J. H. Freed, J. Chem. Phys. 107), 1317, (1997) can be used to measure large interelectron distances in bilabeled peptides. The need for DQ ESR spectroscopy, as well as the challenges and advantages of this method will be discussed. The elucidation of the slow reorientational dynamics of this peptide (S. Saxena and J. H. Freed, J. Phys. Chem. A, 101) 7998 (1997) in a glassy medium using COSY and 2D ELDOR ESR spectroscopy will be demonstrated. The contributions to the homogeneous relaxation time, T_2, from the overall and/or internal rotations of the nitroxide can be distinguished from the COSY spectrum. The growth of spectral diffusion cross-peaks^2 with mixing time in the 2D ELDOR spectra can be used to directly determine a correlation time from the experiment which can be related to the rotational correlation time.
Two-dimensional electronic spectroscopy signatures of the glass transition
Lewis, K. L. .. M.; Myers, J. A.; Fuller, F.; ...
2010-01-01
Two-dimensional electronic spectroscopy is a sensitive probe of solvation dynamics. Using a pump–probe geometry with a pulse shaper [ Optics Express 15 (2007), 16681-16689; Optics Express 16 (2008), 17420-17428], we present temperature dependent 2D spectra of laser dyes dissolved in glass-forming solvents. At low waiting times, the system has not yet relaxed, resulting in a spectrum that is elongated along the diagonal. At longer times, the system loses its memory of the initial excitation frequency, and the 2D spectrum rounds out. As the temperature is lowered, the time scale of this relaxation grows, and the elongation persists for longermore » waiting times. This can be measured in the ratio of the diagonal width to the anti-diagonal width; the behavior of this ratio is representative of the frequency–frequency correlation function [ Optics Letters 31 (2006), 3354–3356]. Near the glass transition temperature, the relaxation behavior changes. Understanding this change is important for interpreting temperature-dependent dynamics of biological systems.« less
NASA Astrophysics Data System (ADS)
Sawada, A.; Koga, T.
2017-02-01
We have developed a method to calculate the weak localization and antilocalization corrections based on the real-space simulation, where we provide 147 885 predetermined return orbitals of quasi-two-dimensional electrons with up to 5000 scattering events that are repeatedly used. Our model subsumes that of Golub [L. E. Golub, Phys. Rev. B 71, 235310 (2005), 10.1103/PhysRevB.71.235310] when the Rashba spin-orbit interaction (SOI) is assumed. Our computation is very simple, fast, and versatile, where the numerical results, obtained all at once, cover wide ranges of the magnetic field under various one-electron interactions H' exactly. Thus, it has straightforward extensibility to incorporate interactions other than the Rashba SOI, such as the linear and cubic Dresselhaus SOIs, Zeeman effect, and even interactions relevant to the valley and pseudo spin degrees of freedom, which should provide a unique tool to study new classes of materials like emerging 2D materials. Using our computation, we also demonstrate the robustness of a persistent spin helix state against the cubic Dresselhaus SOI.
Electronic, Vibrational and Thermoelectric Properties of Two-Dimensional Materials
NASA Astrophysics Data System (ADS)
Wickramaratne, Darshana
The discovery of graphene's unique electronic and thermal properties has motivated the search for new two-dimensional materials. Examples of these materials include the layered two-dimensional transition metal dichalcogenides (TMDC) and metal mono-chalcogenides. The properties of the TMDCs (eg. MoS 2, WS2, TaS2, TaSe2) and the metal mono-chalcogenides (eg. GaSe, InSe, SnS) are diverse - ranging from semiconducting, semi-metallic and metallic. Many of these materials exhibit strongly correlated phenomena and exotic collective states such as exciton condensates, charge density waves, Lifshitz transitions and superconductivity. These properties change as the film thickness is reduced down to a few monolayers. We use first-principles simulations to discuss changes in the electronic and the vibrational properties of these materials as the film thickness evolves from a single atomic monolayer to the bulk limit. In the semiconducting TMDCs (MoS2, MoSe2, WS2 and WSe2) and monochalcogenides (GaS, GaSe, InS and InSe) we show confining these materials to their monolayer limit introduces large band degeneracies or non-parabolic features in the electronic structure. These changes in the electronic structure results in increases in the density of states and the number of conducting modes. Our first-principles simulations combined with a Landauer approach show these changes can lead to large enhancements up to an order of magnitude in the thermoelectric performance of these materials when compared to their bulk structure. Few monolayers of the TMDCs can be misoriented with respect to each other due to the weak van-der-Waals (vdW) force at the interface of two monolayers. Misorientation of the bilayer semiconducting TMDCs increases the interlayer van-der-Waals gap distance, reduces the interlayer coupling and leads to an increase in the magnitude of the indirect bandgap by up to 100 meV compared to the registered bilayer. In the semi-metallic and metallic TMDC compounds (TiSe2, Ta
Herranz, Gervasi; Singh, Gyanendra; Bergeal, Nicolas; Jouan, Alexis; Lesueur, Jérôme; Gázquez, Jaume; Varela, María; Scigaj, Mateusz; Dix, Nico; Sánchez, Florencio; Fontcuberta, Josep
2015-01-13
We find the discovery of two-dimensional electron gases (2DEGs) at oxide interfaces—involving electrons in narrow d-bands—has broken new ground, enabling the access to correlated states that are unreachable in conventional semiconductors based on s- and p- electrons. There is a growing consensus that emerging properties at these novel quantum wells—such as 2D superconductivity and magnetism—are intimately connected to specific orbital symmetries in the 2DEG sub-band structure. Here we show that crystal orientation allows selective orbital occupancy, disclosing unprecedented ways to tailor the 2DEG properties. By carrying out electrostatic gating experiments in LaAlO_{3}/SrTiO_{3} wells of different crystal orientations, we show that the spatial extension and anisotropy of the 2D superconductivity and the Rashba spin–orbit field can be largely modulated by controlling the 2DEG sub-band filling. Such an orientational tuning expands the possibilities for electronic engineering of 2DEGs at LaAlO_{3}/SrTiO_{3} interfaces.
NASA Astrophysics Data System (ADS)
Shen, Ka; Raimondi, R.; Vignale, G.
2014-12-01
Spin-orbit interactions in two-dimensional electron liquids are responsible for many interesting transport phenomena in which particle currents are converted to spin polarizations and spin currents and vice versa. Prime examples are the spin Hall effect, the Edelstein effect, and their inverses. By similar mechanisms, it is also possible to partially convert an optically induced electron-hole density wave to a spin density wave and vice versa. In this paper, we present a unified theoretical treatment of these effects based on quantum kinetic equations that include not only the intrinsic spin-orbit coupling from the band structure of the host material, but also the spin-orbit coupling due to an external electric field and a random impurity potential. The drift-diffusion equations we derive in the diffusive regime are applicable to a broad variety of experimental situations, both homogeneous and nonhomogeneous, and include on equal footing "skew scattering" and "side jump" from electron-impurity collisions. As a demonstration of the strength and usefulness of the theory we apply it to the study of several effects of current experimental interest: the inverse Edelstein effect, the spin-current swapping effect, and the partial conversion of an electron-hole density wave to a spin density wave in a two-dimensional electron gas with Rashba and Dresselhaus spin-orbit couplings, subject to an electric field.
Rashba spin-splitting of single electrons and Cooper pairs
NASA Astrophysics Data System (ADS)
Shekhter, R. I.; Entin-Wohlman, O.; Jonson, M.; Aharony, A.
2017-02-01
Electric weak links, the term used for those parts of an electrical circuit that provide most of the resistance against the flow of an electrical current, are important elements of many nanodevices. Quantum dots, nanowires and nano-constrictions that bridge two bulk conductors (or superconductors) are examples of such weak links. Here we consider nanostructures where the electronic spin-orbit interaction is strong in the weak link but is un-important in the bulk conductors, and explore theoretically the role of the spin-orbit active weak link (which we call a "Rashba spin splitter") as a source of new spin-based functionality in both normal and superconducting devices. Some recently predicted phenomena, including mechanically-controlled spin- and charge currents as well as the effect of spin polarization of superconducting Cooper pairs, are reviewed.
NASA Astrophysics Data System (ADS)
McKeown Walker, S.; Riccò, S.; Bruno, F. Y.; de la Torre, A.; Tamai, A.; Golias, E.; Varykhalov, A.; Marchenko, D.; Hoesch, M.; Bahramy, M. S.; King, P. D. C.; Sánchez-Barriga, J.; Baumberger, F.
2016-06-01
We reinvestigate the putative giant spin splitting at the surface of SrTiO3 reported by Santander-Syro et al. [Nat. Mater. 13, 1085 (2014), 10.1038/nmat4107]. Our spin- and angle-resolved photoemission experiments on fractured (001) oriented surfaces supporting a two-dimensional electron liquid with high carrier density show no detectable spin polarization in the photocurrent. We demonstrate that this result excludes a giant spin splitting while it is consistent with the unconventional Rashba-like splitting seen in band structure calculations that reproduce the experimentally observed ladder of quantum confined subbands.
Two-dimensional NQR using ultra-broadband electronics
NASA Astrophysics Data System (ADS)
Mandal, S.; Song, Y.-Q.
2014-03-01
We have recently developed an ultra-broadband instrument that can effectively excite and detect NMR and NQR signals over a wide frequency range. Our current system operates between 100 kHz and 3.2 MHz using an un-tuned sample coil. The major benefits of this instrument compared to conventional NQR/NMR systems include increased robustness, ease of use (in particular for multi-frequency experiments), and elimination of the need for tuning adjustments in the hardware. Here we describe its use for performing two-dimensional (2D) scans, which allow improved interpretation of complex NQR spectra by detecting the connected resonances. Our method relies on population transfers between the three energy levels of spin-1 nuclei (such as 14N) by using multi-frequency excitation and a single RF coil. Experimental results on pure samples and mixtures are also presented.
Two-dimensional NQR using ultra-broadband electronics.
Mandal, S; Song, Y-Q
2014-03-01
We have recently developed an ultra-broadband instrument that can effectively excite and detect NMR and NQR signals over a wide frequency range. Our current system operates between 100 kHz and 3.2 MHz using an un-tuned sample coil. The major benefits of this instrument compared to conventional NQR/NMR systems include increased robustness, ease of use (in particular for multi-frequency experiments), and elimination of the need for tuning adjustments in the hardware. Here we describe its use for performing two-dimensional (2D) scans, which allow improved interpretation of complex NQR spectra by detecting the connected resonances. Our method relies on population transfers between the three energy levels of spin-1 nuclei (such as (14)N) by using multi-frequency excitation and a single RF coil. Experimental results on pure samples and mixtures are also presented. Copyright © 2014 Elsevier Inc. All rights reserved.
Kondo spin screening cloud in two-dimensional electron gas with spin-orbit couplings.
Feng, Xiao-Yong; Zhang, Fu-Chun
2011-03-16
A spin-1/2 Anderson impurity in a semiconductor quantum well with Rashba and Dresselhaus spin-orbit couplings is studied by using a variational wavefunction method. The local magnetic moment is found to be quenched at low temperatures. The spin-spin correlations of the impurity and the conduction electron density show anisotropy in both spatial and spin spaces, which interpolates the Kondo spin screenings of a conventional metal and of a surface of three-dimensional topological insulators.
Polarization-dependent plasmonic photocurrents in two-dimensional electron systems
Popov, V. V.
2016-06-27
Plasmonic polarization dependent photocurrents in a homogeneous two-dimensional electron system are studied. Those effects are completely different from the photon drag and electronic photogalvanic effects as well as from the plasmonic ratchet effect in a density modulated two-dimensional electron system. Linear and helicity-dependent contributions to the photocurrent are found. The linear contribution can be interpreted as caused by the longitudinal and transverse plasmon drag effect. The helicity-dependent contribution originates from the non-linear electron convection and changes its sign with reversing the plasmonic field helicity. It is shown that the helicity-dependent component of the photocurrent can exceed the linear one by several orders of magnitude in high-mobility two-dimensional electron systems. The results open possibilities for all-electronic detection of the radiation polarization states by exciting the plasmonic photocurrents in two-dimensional electron systems.
Chiral magnetism of magnetic adatoms generated by Rashba electrons
NASA Astrophysics Data System (ADS)
Bouaziz, Juba; dos Santos Dias, Manuel; Ziane, Abdelhamid; Benakki, Mouloud; Blügel, Stefan; Lounis, Samir
2017-02-01
We investigate long-range chiral magnetic interactions among adatoms mediated by surface states spin-splitted by spin–orbit coupling. Using the Rashba model, the tensor of exchange interactions is extracted wherein a thepseudo-dipolar interaction is found, in addition to the usual isotropic exchange interaction and the Dzyaloshinskii–Moriya interaction. We find that, despite the latter interaction, collinear magnetic states can still be stabilized by the pseudo-dipolar interaction. The interadatom distance controls the strength of these terms, which we exploit to design chiral magnetism in Fe nanostructures deposited on a Au(111) surface. We demonstrate that these magnetic interactions are related to superpositions of the out-of-plane and in-plane components of the skyrmionic magnetic waves induced by the adatoms in the surrounding electron gas. We show that, even if the interatomic distance is large, the size and shape of the nanostructures dramatically impacts on the strength of the magnetic interactions, thereby affecting the magnetic ground state. We also derive an appealing connection between the isotropic exchange interaction and the Dzyaloshinskii–Moriya interaction, which relates the latter to the first-order change of the former with respect to spin–orbit coupling. This implies that the chirality defined by the direction of the Dzyaloshinskii–Moriya vector is driven by the variation of the isotropic exchange interaction due to the spin–orbit interaction.
Von Neumann entropy in a Rashba-Dresselhaus nanodot; dynamical electronic spin-orbit entanglement
NASA Astrophysics Data System (ADS)
Safaiee, Rosa; Golshan, Mohammad Mehdi
2017-06-01
The main purpose of the present article is to report the characteristics of von Neumann entropy, thereby, the electronic hybrid entanglement, in the heterojunction of two semiconductors, with due attention to the Rashba and Dresselhaus spin-orbit interactions. To this end, we cast the von Neumann entropy in terms of spin polarization and compute its time evolution; with a vast span of applications. It is assumed that gate potentials are applied to the heterojunction, providing a two dimensional parabolic confining potential (forming an isotropic nanodot at the junction), as well as means of controlling the spin-orbit couplings. The spin degeneracy is also removed, even at electronic zero momentum, by the presence of an external magnetic field which, in turn, leads to the appearance of Landau states. We then proceed by computing the time evolution of the corresponding von Neumann entropy from a separable (spin-polarized) initial state. The von Neumann entropy, as we show, indicates that electronic hybrid entanglement does occur between spin and two-dimensional Landau levels. Our results also show that von Neumann entropy, as well as the degree of spin-orbit entanglement, periodically collapses and revives. The characteristics of such behavior; period, amplitude, etc., are shown to be determined from the controllable external agents. Moreover, it is demonstrated that the phenomenon of collapse-revivals' in the behavior of von Neumann entropy, equivalently, electronic hybrid entanglement, is accompanied by plateaus (of great importance in quantum computation schemes) whose durations are, again, controlled by the external elements. Along these lines, we also make a comparison between effects of the two spin-orbit couplings on the entanglement (von Neumann entropy) characteristics. The finer details of the electronic hybrid entanglement, which may be easily verified through spin polarization measurements, are also accreted and discussed. The novel results of the present
Gaynor, James D; Khalil, Munira
2017-09-07
Two-Dimensional Electronic-Vibrational (2D EV) spectroscopy and Two-Dimensional Vibrational-Electronic (2D VE) spectroscopy are new coherent four-wave mixing spectroscopies that utilize both electronically resonant and vibrationally resonant field-matter interactions to elucidate couplings between electronic and vibrational degrees of freedom. A system Hamiltonian is developed here to lay a foundation for interpreting the 2D EV and 2D VE signals that arise from a vibronically coupled molecular system in the condensed phase. A molecular system consisting of one anharmonic vibration and two electronic states is modeled. Equilibrium displacement of the vibrational coordinate and vibrational frequency shifts upon excitation to the first electronic excited state are included in our Hamiltonian through linear and quadratic vibronic coupling terms. We explicitly consider the nuclear dependence of the electronic transition dipole moment and demonstrate that these spectroscopies are sensitive to non-Condon effects. A series of simulations of 2D EV and 2D VE spectra obtained by varying parameters of the system, system-bath, and interaction Hamiltonians demonstrate that one of the following conditions must be met to observe signals: (1) non-zero linear and/or quadratic vibronic coupling in the electronic excited state, (2) vibrational-coordinate dependence of the electronic transition dipole moment, or (3) electronic-state-dependent vibrational dephasing dynamics. We explore how these vibronic interactions are manifested in the positions, amplitudes, and line shapes of the peaks in 2D EV and 2D VE spectroscopies.
NASA Astrophysics Data System (ADS)
Gaynor, James D.; Khalil, Munira
2017-09-01
Two-Dimensional Electronic-Vibrational (2D EV) spectroscopy and Two-Dimensional Vibrational-Electronic (2D VE) spectroscopy are new coherent four-wave mixing spectroscopies that utilize both electronically resonant and vibrationally resonant field-matter interactions to elucidate couplings between electronic and vibrational degrees of freedom. A system Hamiltonian is developed here to lay a foundation for interpreting the 2D EV and 2D VE signals that arise from a vibronically coupled molecular system in the condensed phase. A molecular system consisting of one anharmonic vibration and two electronic states is modeled. Equilibrium displacement of the vibrational coordinate and vibrational frequency shifts upon excitation to the first electronic excited state are included in our Hamiltonian through linear and quadratic vibronic coupling terms. We explicitly consider the nuclear dependence of the electronic transition dipole moment and demonstrate that these spectroscopies are sensitive to non-Condon effects. A series of simulations of 2D EV and 2D VE spectra obtained by varying parameters of the system, system-bath, and interaction Hamiltonians demonstrate that one of the following conditions must be met to observe signals: (1) non-zero linear and/or quadratic vibronic coupling in the electronic excited state, (2) vibrational-coordinate dependence of the electronic transition dipole moment, or (3) electronic-state-dependent vibrational dephasing dynamics. We explore how these vibronic interactions are manifested in the positions, amplitudes, and line shapes of the peaks in 2D EV and 2D VE spectroscopies.
Ferroelectric control of two dimensional electron gas in oxide heterointerface
NASA Astrophysics Data System (ADS)
Thanh, Tra Vu; Chen, Jhih-Wei; Yeh, Chao-Hui; Chen, Yi-Chun; Wu, Chung-Lin; Lin, Jiunn Yuan; Chu, Ying-Hao
2012-02-01
Oxide heterointerfaces are emerging as one of the most exciting materials systems in condensed-matter science. One remarkable example is the LaAlO3 /SrTiO3 (LAO/STO) interface, a model system in which a highly mobile electron gas forms between two band insulators. Our study to manipulate the conductivity at this interface by using ferroeletricity of Pb(Zr,Ti)O3. Our transport data strongly suggests that down polarization direction depletes the conducting interface of LAO/STO. After switching the polarization direction (up), it becomes accumulation. In addition, our experiments show there is obvious the band structure changed by cross-sectional scanning tunneling microscopy and combining with X-ray photoelectron spectroscopy (XPS) measurements. The transport properties are measured to build up the connection between macroscopic properties and local electronic structures that have been applied to study this structure. Controlling the conductivity of this oxide interface suggests that this technique may not only extend more generally to other oxide systems but also open much potential to ferroelectric field effect transistors.
Tunneling Under Microwave Illumination in Bilayer Two Dimensional Electron Systems
NASA Astrophysics Data System (ADS)
Bonetti, J. A.; Pfeiffer, L. N.
2005-03-01
The striking Josephson-like effect recently observed [1] in bilayer 2D electron systems at νt=1 raises important questions about the nature of photon-assisted tunneling in this system. For instance, it is unknown whether Shapiro steps will arise, or whether the presence of radiation will lead to photon- assisted sidebands [2]. In order to address these questions, we have examined the effect of microwave radiation on tunneling in bilayer electron systems. Several aspects of coupling radiation into the sample will be presented, including issues of heating and gating. Preliminary results demonstrate a conduction enhancement near gate voltages corresponding to top and bottom layer depletion. The frequency and power dependence of this enhancement will be presented. This work is supported by the NSF and DOE. [1] I.B. Spielman, J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, Phys. Rev. Lett. 84, 5808 (2000). [2]Ady Stern, S. M. Girvin, A. H. MacDonald, and Ning Ma, Phys. Rev. Lett. 86, 1829 (2001)
Dipolar quantum electrodynamics of the two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Todorov, Yanko
2015-03-01
Similarly to a previous work on the homogeneous electron gas [Y. Todorov, Phys. Rev. B 89, 075115 (2014), 10.1103/PhysRevB.89.075115], we apply the Power-Zienau-Wooley (PZW) formulation of the quantum electrodynamics to the case of an electron gas quantum confined by one-dimensional potential. We provide a microscopic description of all collective plasmon modes of the gas, oscillating both along and perpendicular to the direction of quantum confinement. Furthermore, we study the interaction of the collective modes with a photonic structure, planar metallic waveguide, by using the full expansion of the electromagnetic field into normal modes. We show how the boundary conditions for the electromagnetic field influence both the transverse light-matter coupling and the longitudinal particle-particle interactions. The PZW descriptions appear thus as a convenient tool to study semiconductor quantum optics in geometries where quantum-confined particles interact with strongly confined electromagnetic fields in microresonators, such as the ones used to achieve the ultrastrong light-matter coupling regime.
Electronic and magnetic properties of Fe and Mn doped two dimensional hexagonal germanium sheets
Soni, Himadri R. Jha, Prafulla K.
2014-04-24
Using first principles density functional theory calculations, the present paper reports systematic total energy calculations of the electronic properties such as density of states and magnetic moment of pristine and iron and manganese doped two dimensional hexagonal germanium sheets.
Heterodyne Hall effect in a two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Oka, Takashi; Bucciantini, Leda
2016-10-01
We study the hitherto unaddressed phenomenon of the quantum Hall effect with a magnetic and electric field oscillating in time with resonant frequencies. This phenomenon highlights an example of a heterodyne device with the magnetic field acting as a driving force, and it is analyzed in detail in its classical and quantum versions using Floquet theory. A bulk current flowing perpendicularly to the applied electric field is found, with a frequency shifted by integer multiples of the driving frequency. When the ratio of the cyclotron and driving frequency takes special values, the electron's classical trajectory forms a loop and the effective mass diverges, while in the quantum case we find an analog of the Landau quantization. A possible realization using metamaterial plasmonics is discussed.
Limit of the electrostatic doping in two-dimensional electron gases of LaXO3(X = Al, Ti)/SrTiO3
Biscaras, J.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R. C.; Reyren, N.; Lesne, E.; Lesueur, J.; Bergeal, N.
2014-01-01
In LaTiO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures, the bending of the SrTiO3 conduction band at the interface forms a quantum well that contains a superconducting two-dimensional electron gas (2-DEG). Its carrier density and electronic properties, such as superconductivity and Rashba spin-orbit coupling can be controlled by electrostatic gating. In this article we show that the Fermi energy lies intrinsically near the top of the quantum well. Beyond a filling threshold, electrons added by electrostatic gating escape from the well, hence limiting the possibility to reach a highly-doped regime. This leads to an irreversible doping regime where all the electronic properties of the 2-DEG, such as its resistivity and its superconducting transition temperature, saturate. The escape mechanism can be described by the simple analytical model we propose. PMID:25346028
Effect of electron-electron interactions on Rashba-like and spin-split systems
NASA Astrophysics Data System (ADS)
Alexandradinata, A.; Hirsch, J. E.
2010-11-01
The role of electron-electron interactions is analyzed for Rashba-like and spin-split systems within a tight-binding single-band Hubbard model with on-site and all nearest-neighbor matrix elements of the Coulomb interaction. By Rashba-like systems we refer to the Dresselhaus and Rashba spin-orbit-coupled phases while spin-split systems have spin-up and spin-down Fermi surfaces shifted relative to each other. Both systems break parity but preserve time-reversal symmetry. They belong to a class of symmetry-breaking ground states that satisfy: (i) electron crystal momentum is a good quantum number, (ii) these states have no net magnetic moment, and (iii) their distribution of “polarized spin” in momentum space breaks the lattice symmetry. For all members of this class, the relevant Coulomb matrix elements are found to be nearest-neighbor exchange J , pair hopping J' , and nearest-neighbor repulsion V . These ground states lower their energy most effectively through J , hence we name them class J states. The competing effects of V-J' on the direct and exchange energies determine the relative stability of class J states. We show that the spin-split and Rashba-like phases are the most favored ground states within class J because they have the minimum anisotropy in polarized spin. We analyze these two states on a square lattice and find that the spin-split phase is always favored for near-empty bands; above a critical filling, we predict a transition from the paramagnetic to the Rashba-like phase at a critical J(Jc1) and a second transition from the Rashba-like to the spin-split state at Jc2>Jc1 . An energetic comparison with ferromagnetism highlights the importance of the role of V in the stability of class J states. We discuss the relevance of our results to (i) the α and β phases proposed by Wu and Zhang in the Fermi-liquid formalism and (ii) experimental observations of spin-orbit splitting in Au(111) surface states.
Nonlinear effects in two-dimensional & layered electronic systems
NASA Astrophysics Data System (ADS)
Lee, Changjin
In this dissertation, nonlinear effects of strongly correlated 2D and layered electronic system are focused on within the framework of quasi-localized charge approximation (QLCA) and dynamic mean field theory (DMFT). In Part I, it is shown that QLCA scheme can be generalized beyond the harmonic approximation into the nonlinear regime, as a powerful tool to handle with not only the liquid phase but also the solid phase of the strongly correlated classical bilayer system. (a) The quadratic order equation of a single quasi-localized charge (QLC) for the strongly coupled classical bilayer system interacting via any general isotropic scalar potential has been derived in real space from first principle, and it is applied to the strongly coupled Coulomb bilayer system (b) The quadratic order collective mode QLCA equation has been derived in real space. (c) The Fourier space representation of quadratic QLCA equation is obtained. (d) Some difficulties for solving quadratic order QLCA equation are emphasized for the future study. In Part II, (a) the formal derivation of the longitudinal quadratic Density Response Function (qDRF) will be given in terms of the modified three-point Density Correlation Function (DCF: symbolized as F-function) not only to extract the naive symmetry of 2D qDRF in imaginary frequency space, but also to point out that the modified DCF does not stand alone because it can violate Pauli principle. (b) The modified three-point longitudinal DCF (F-function) has been calculated with the mathematical rigor. (c) It is shown that the static qDRF develops strong peaks as well as fore-reported properties of vanishing and discontinuity. (d) The mathematical mechanism of vanishing and discontinuity of static qDRF will be given. (e) The vanishing of qDRF is shown not limited to the static qDRF.
Many-body effects in electron liquids with Rashba spin-orbit coupling
NASA Astrophysics Data System (ADS)
Simion, George E.
The main topic of the present thesis is represented by the many-body effects which characterize the physical behavior of an electron liquid in various realizations. We begin by studying the problem of the response of an otherwise homogeneous electron liquid to the potential of an impurity embedded in its bulk. The most dramatic consequence of this perturbation is the existence of so called Friedel density oscillations. We present calculations of their amplitude valid in two as well as in three dimensions. The second problem we will discuss is that of the correlation effects in a three dimensional electron liquid in the metallic density regime. A number of quasiparticle properties are evaluated: the electron self-energy, the quasiparticle effective mass and the renormalization constant. We also present an analysis of the effective Lande g-factor as well as the compressibility. The effects of the Coulomb interactions beyond the random phase approximation have been treated by means of an approach based on the many-body local field factors theory and by utilizing the latest numerical results of Quantum Monte Carlo numerical simulations. The final chapter includes the results of our extensive work on various aspects regarding the two dimensional Fermi liquid in the presence of linear Rashba spin-orbit coupling. By using a number of many-body techniques, we have studied the interplay between spin-orbit coupling and electron-electron interaction. After proving an extension to the famous Overhauser Hartree-Fock instability theorem, a considerable amount of work will be presented on the problem of the density and spin response functions. For the study of the spin response, we will present the results of extensive numerical calculations based on the time dependent mean field theory approach.
Kohda, M.; Altmann, P.; Salis, G.; Schuh, D.; Ganichev, S. D.; Wegscheider, W.
2015-10-26
A method is presented that enables the measurement of spin-orbit coefficients in a diffusive two-dimensional electron gas without the need for processing the sample structure, applying electrical currents or resolving the spatial pattern of the spin mode. It is based on the dependence of the average electron velocity on the spatial distance between local excitation and detection of spin polarization, resulting in a variation of spin precession frequency that in an external magnetic field is linear in the spatial separation. By scanning the relative positions of the exciting and probing spots in a time-resolved Kerr rotation microscope, frequency gradients along the [100] and [010] crystal axes of GaAs/AlGaAs QWs are measured to obtain the Rashba and Dresselhaus spin-orbit coefficients, α and β. This simple method can be applied in a variety of materials with electron diffusion for evaluating spin-orbit coefficients.
Spin polarization of two-dimensional electronic gas decoupled from structural asymmetry environment
NASA Astrophysics Data System (ADS)
Pieczyrak, B.; Szary, M.; Jurczyszyn, L.; Radny, M. W.
2016-05-01
It is shown, using density functional theory, that a 2D electron gas induced in a monolayer of Pb or Tl adatoms on the Si (111 )-1 ×1 surface is insensitive to the structural asymmetry of the system and its spin polarization is governed by the interaction between the adlayer and the substrate. It is demonstrated that this interaction changes the in-plane inversion symmetry of the charge distribution within the monolayer and can either suppress [Pb/Si(111)] or enhance [Tl/Si(111)] the adatom intra-atomic spin-orbit effect on a Rashba-Bychkov-type spin splitting.
Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; ...
2015-05-07
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions« less
Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.
2015-05-07
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.
Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.
2015-05-07
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions
Dong, Hui; Lewis, Nicholas H C; Oliver, Thomas A A; Fleming, Graham R
2015-05-07
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.
Two-Dimensional Crystallization of the Ca(2+)-ATPase for Electron Crystallography.
Glaves, John Paul; Primeau, Joseph O; Young, Howard S
2016-01-01
Electron crystallography of two-dimensional crystalline arrays is a powerful alternative for the structure determination of membrane proteins. The advantages offered by this technique include a native membrane environment and the ability to closely correlate function and dynamics with crystalline preparations and structural data. Herein, we provide a detailed protocol for the reconstitution and two-dimensional crystallization of the sarcoplasmic reticulum calcium pump (also known as Ca(2+)-ATPase or SERCA) and its regulatory subunits phospholamban and sarcolipin.
Electronic structure of boron based single and multi-layer two dimensional materials
NASA Astrophysics Data System (ADS)
Miyazato, Itsuki; Takahashi, Keisuke
2017-09-01
Two dimensional nanosheets based on boron and Group VA elements are designed and characterized using first principles calculations. B-N, B-P, B-As, B-Sb, and B-Bi are found to possess honeycomb structures where formation energies indicate exothermic reactions. Contrary to B-N, the cases of B-P, B-As, B-Sb, and B-Bi nanosheets are calculated to possess narrow band gaps. In addition, calculations reveal that the electronegativity difference between B and Group VA elements in the designed materials is a good indicator to predict the charge transfer and band gap of the two dimensional materials. Hydrogen adsorption over defect-free B-Sb and B-Bi results in exothermic reactions, while defect-free B-N, B-P, and B-As result in endothermic reactions. The layerability of the designed two dimensional materials is also investigated where the electronic structure of two-layered two dimensional materials is strongly coupled with how the two dimensional materials are layered. Thus, one can consider that the properties of two dimensional materials can be controlled by the composition of two dimensional materials and the structure of layers.
The Rashba effect and indirect electron-hole recombination in hybrid organic-inorganic perovskites.
Yu, Zhi-Gang
2017-06-14
Slow electron-hole recombination, characterized by the bimolecular coefficient k2 in hybrid organic-inorganic perovskites (HOIPs), is a key to their outstanding photovoltaic performance. The measured k2 in HOIPs strongly deviates from k2 ∝ T(-3/2) (T is the temperature) in typical direct-gap semiconductors. Here we show that the observed temperature dependence can be quantitatively accounted for by phonon-assisted recombination of electrons and holes located at the band extrema, which become indirect due to the Rashba effect. Polar optical phonons are most effective in facilitating this indirect recombination. The variation in k2 in HOIPs among different studies in the literature can be attributed to different Rashba strengths in their samples. Our results indicate that the confluence of the Rashba effect and polar coupling transform HOIPs into a unique indirect semiconductor that can accommodate both strong optical absorption and slow carrier dynamics.
Taylor, R J E; Childs, D T D; Ivanov, P; Stevens, B J; Babazadeh, N; Crombie, A J; Ternent, G; Thoms, S; Zhou, H; Hogg, R A
2015-08-20
We demonstrate a semiconductor PCSEL array that uniquely combines an in-plane waveguide structure with nano-scale patterned PCSEL elements. This novel geometry allows two-dimensional electronically controllable coherent coupling of remote vertically emitting lasers. Mutual coherence of the PCSEL elements is verified through the demonstration of a two-dimensional Young's Slits experiment. In addition to allowing the all-electronic control of the interference pattern, this type of device offers new routes to power and brightness scaling in semiconductor lasers, and opportunities for all-electronic beam steering.
NASA Astrophysics Data System (ADS)
Taylor, R. J. E.; Childs, D. T. D.; Ivanov, P.; Stevens, B. J.; Babazadeh, N.; Crombie, A. J.; Ternent, G.; Thoms, S.; Zhou, H.; Hogg, R. A.
2015-08-01
We demonstrate a semiconductor PCSEL array that uniquely combines an in-plane waveguide structure with nano-scale patterned PCSEL elements. This novel geometry allows two-dimensional electronically controllable coherent coupling of remote vertically emitting lasers. Mutual coherence of the PCSEL elements is verified through the demonstration of a two-dimensional Young’s Slits experiment. In addition to allowing the all-electronic control of the interference pattern, this type of device offers new routes to power and brightness scaling in semiconductor lasers, and opportunities for all-electronic beam steering.
Two-dimensional electron gas in monolayer InN quantum wells
Pan, Wei; Dimakis, Emmanouil; Wang, George T.; ...
2014-11-24
We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in monolayer InN quantum wells embedded in GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5×1015 cm-2 and 420 cm2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.
Two-dimensional electron gas in monolayer InN quantum wells
Pan, Wei; Dimakis, Emmanouil; Wang, George T.; Moustakas, Theodore D.; Tsui, Daniel C.
2014-11-24
We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in monolayer InN quantum wells embedded in GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5×10^{15} cm^{-2} and 420 cm^{2 }/Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.
Taylor, R. J. E.; Childs, D. T. D.; Ivanov, P.; Stevens, B. J.; Babazadeh, N.; Crombie, A. J.; Ternent, G.; Thoms, S.; Zhou, H.; Hogg, R. A.
2015-01-01
We demonstrate a semiconductor PCSEL array that uniquely combines an in-plane waveguide structure with nano-scale patterned PCSEL elements. This novel geometry allows two-dimensional electronically controllable coherent coupling of remote vertically emitting lasers. Mutual coherence of the PCSEL elements is verified through the demonstration of a two-dimensional Young’s Slits experiment. In addition to allowing the all-electronic control of the interference pattern, this type of device offers new routes to power and brightness scaling in semiconductor lasers, and opportunities for all-electronic beam steering. PMID:26289621
NASA Astrophysics Data System (ADS)
Muraguchi, M.; Endoh, T.; Takada, Y.; Sakurai, Y.; Nomura, S.; Shiraishi, K.; Ikeda, M.; Makihara, K.; Miyazaki, S.; Shigeta, Y.
2010-09-01
We report the unexpected temperature dependence of electron tunneling from the two-dimensional electron gas (2DEG) to the Si-dot in a Si-dots floating gate metal-oxide-semiconductor (MOS) capacitor. We indicate that this temperature dependence of the electron tunneling cannot be explained by the conventional one-dimensional tunneling model, and show that it is necessary for a new model which includes the geometrical factor of the system. To extract a mechanism of the electron injection process from the 2DEG to the nano-structure, we have employed the numerical simulation, which includes both the geometrical condition of the system and the experimental setup. We suggest in our new tunneling model that the main contribution to the electron tunneling is induced by the wave-packet-like state of the electron below the Si-dots. We successfully show that the temperature dependence of the electron injection voltage in the Si-dots floating gate MOS capacitor fits our model. This indicates that the spatial distribution of electron density in the two-dimensional electron gas would play a crucial role in the electron tunneling.
Rashba Spin-Orbit Coupling in Image Potential States
NASA Astrophysics Data System (ADS)
Tognolini, S.; Achilli, S.; Longetti, L.; Fava, E.; Mariani, C.; Trioni, M. I.; Pagliara, S.
2015-07-01
The search in two-dimensional condensed matter systems of Rashba-type spin-polarized electronic states is aimed by the possibility to control and manipulate the spin orientation. In this Letter, for the first time, we report on the experimental evidence of a Rashba-type spin splitting in the n =1 image potential state. The image potential state Rashba splitting here measured at the graphene/Ir(111) interface, as confirmed by theoretical considerations, can be detectable to any metal surface with a significant spin-orbit coupling.
Spin eigen-states of Dirac equation for quasi-two-dimensional electrons
Eremko, Alexander; Brizhik, Larissa; Loktev, Vadim
2015-10-15
Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shown that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.
Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J.; Pfeiffer, Loren N.; West, Ken W.; Rokhinson, Leonid P.
2015-01-01
Search for Majorana fermions renewed interest in semiconductor–superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor–superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields. PMID:26067452
Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J; Pfeiffer, Loren N; West, Ken W; Rokhinson, Leonid P
2015-06-11
Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields.
Two-dimensional electronic spectra of the photosynthetic apparatus of green sulfur bacteria
Kramer, Tobias; Rodriguez, Mirta
2017-01-01
Advances in time resolved spectroscopy have provided new insight into the energy transmission in natural photosynthetic complexes. Novel theoretical tools and models are being developed in order to explain the experimental results. We provide a model calculation for the two-dimensional electronic spectra of Cholorobaculum tepidum which correctly describes the main features and transfer time scales found in recent experiments. From our calculation one can infer the coupling of the antenna chlorosome with the environment and the coupling between the chlorosome and the Fenna-Matthews-Olson complex. We show that environment assisted transport between the subunits is the required mechanism to reproduce the experimental two-dimensional electronic spectra. PMID:28345621
Two-dimensional electronic spectra of the photosynthetic apparatus of green sulfur bacteria.
Kramer, Tobias; Rodriguez, Mirta
2017-03-27
Advances in time resolved spectroscopy have provided new insight into the energy transmission in natural photosynthetic complexes. Novel theoretical tools and models are being developed in order to explain the experimental results. We provide a model calculation for the two-dimensional electronic spectra of Cholorobaculum tepidum which correctly describes the main features and transfer time scales found in recent experiments. From our calculation one can infer the coupling of the antenna chlorosome with the environment and the coupling between the chlorosome and the Fenna-Matthews-Olson complex. We show that environment assisted transport between the subunits is the required mechanism to reproduce the experimental two-dimensional electronic spectra.
From spin flip excitations to the spin susceptibility enhancement of a two-dimensional electron gas.
Perez, F; Aku-leh, C; Richards, D; Jusserand, B; Smith, L C; Wolverson, D; Karczewski, G
2007-07-13
The g-factor enhancement of the spin-polarized two-dimensional electron gas was measured directly over a wide range of spin polarizations, using spin flip resonant Raman scattering spectroscopy on two-dimensional electron gases embedded in Cd(1-x)Mn(x)Te semimagnetic quantum wells. At zero Raman transferred momentum, the single-particle spin flip excitation, energy Z*, coexists in the Raman spectrum with the spin flip wave of energy Z, the bare giant Zeeman splitting. We compare the measured g-factor enhancement with recent spin-susceptibility enhancement theories and deduce the spin-polarization dependence of the mass renormalization.
Effects of finite laser pulse width on two-dimensional electronic spectroscopy
NASA Astrophysics Data System (ADS)
Leng, Xuan; Yue, Shuai; Weng, Yu-Xiang; Song, Kai; Shi, Qiang
2017-01-01
We combine the hierarchical equations of motion method and the equation-of-motion phase-matching approach to calculate two-dimensional electronic spectra of model systems. When the laser pulse is short enough, the current method reproduces the results based on third-order response function calculations in the impulsive limit. Finite laser pulse width is found to affect both the peak positions and shapes, as well as the time evolution of diagonal and cross peaks. Simulations of the two-color two-dimensional electronic spectra also show that, to observe quantum beats in the diagonal and cross peaks, it is necessary to excite the related excitonic states simultaneously.
Two-dimensional electronic spectra of the photosynthetic apparatus of green sulfur bacteria
NASA Astrophysics Data System (ADS)
Kramer, Tobias; Rodriguez, Mirta
2017-03-01
Advances in time resolved spectroscopy have provided new insight into the energy transmission in natural photosynthetic complexes. Novel theoretical tools and models are being developed in order to explain the experimental results. We provide a model calculation for the two-dimensional electronic spectra of Cholorobaculum tepidum which correctly describes the main features and transfer time scales found in recent experiments. From our calculation one can infer the coupling of the antenna chlorosome with the environment and the coupling between the chlorosome and the Fenna-Matthews-Olson complex. We show that environment assisted transport between the subunits is the required mechanism to reproduce the experimental two-dimensional electronic spectra.
2013-01-01
In J-aggregates of cyanine dyes, closely packed molecules form mesoscopic tubes with nanometer-diameter and micrometer-length. Their efficient energy transfer pathways make them suitable candidates for artificial light harvesting systems. This great potential calls for an in-depth spectroscopic analysis of the underlying energy deactivation network and coherence dynamics. We use two-dimensional electronic spectroscopy with sub-10 fs laser pulses in combination with two-dimensional decay-associated spectra analysis to describe the population flow within the aggregate. Based on the analysis of Fourier-transform amplitude maps, we distinguish between vibrational or vibronic coherence dynamics as the origin of pronounced oscillations in our two-dimensional electronic spectra. PMID:23461650
King, P.D.C.
2012-03-01
We demonstrate the formation of a two-dimensional electron gas (2DEG) at the (100) surface of the 5d transition-metal oxide KTaO{sub 3}. From angle-resolved photoemission, we find that quantum confinement lifts the orbital degeneracy of the bulk band structure and leads to a 2DEG composed of ladders of subband states of both light and heavy carriers. Despite the strong spin-orbit coupling, we find no experimental signatures of a Rashba spin splitting, which has important implications for the interpretation of transport measurements in both KTaO{sub 3}- and SrTiO{sub 3}-based 2DEGs. The polar nature of the KTaO{sub 3}(100) surface appears to help mediate formation of the 2DEG as compared to non-polar SrTiO{sub 3}(100).
NASA Astrophysics Data System (ADS)
Wang, Zhigang; Zhang, Wei; Zhang, Ping
2009-06-01
We study the de Haas-van Alphen (dHvA) oscillations in the magnetization of a two-dimensional electron gas under the influence of the edge states and/or the Rashba spin-orbit interaction (SOI). The boundaries of the systems lift partially the degeneracies of Landau levels (LLs) and the resulting edge states lead to the changes in both the center and the amplitude of the sawtoothlike magnetization oscillation. The SOI mixes the spin-up and spin-down states of neighboring LLs into two unequally spaced energy branches. The inclusion of SOI changes the well-defined sawtooth pattern of the dHvA oscillations in the magnetization. The weaker the magnetic field is, the larger the change in the dHvA oscillations is due to the edge effect and/or the spin-orbit coupling. Some theoretical results are compared with the experimental data.
Spin-dependent electron transport in a Rashba quantum wire with rough edges
NASA Astrophysics Data System (ADS)
Xiao, X. B.; Li, H. L.; Zhou, G. H.; Liu, N. H.
2012-09-01
We investigate theoretically the spin-dependent electron transport in a Rashba quantum wire with rough edges. The charge and spin conductances are calculated as function of the electron energy and wire length by adopting the spin-resolved lattice Green function method. For a single disordered Rashba wire, it is found that the charge conductance quantization is destroyed by the edge disorder. However, a nonzero spin conductance can be generated and its amplitude can be manipulated by varying the wire length, which is attributed to the broken structure symmetries and the spin-dependent quantum interference induced by the rough boundaries. For a large ensemble of disordered Rashba wires, the average charge conductance decreases monotonically, however, the average spin conductance increases to a maximum value and then decreases, with increasing wire length. Further study shows that the influence of the rough edges on the charge and spin conductances can be eliminated by applying a perpendicular magnetic field to the wire. In addition, a very large magnitude of the spin conductance can be achieved when the electron energy lies between the two thresholds of each pair of subbands. These findings may not only benefit to further apprehend the transport properties of the Rashba low-dimensional systems but also provide some theoretical instructions to the application of spintronics devices.
NASA Astrophysics Data System (ADS)
Yang, Chunlei
This thesis focuses on the two important parts in the spintronic devices based on the spin field effect transistor: (1) the ferromagnetic GaMnAs thin films which is the source-drain material and (2) the Rashba spin-orbit coupling in a two-dimensional electron gas in which the spin can be transported and its polarization can be tuned by external gates. We have grown GaMnAs samples using molecular beam epitaxy (MBE) with Mn composition up to 8%. The intrinsic and extrinsic contribution to the lattice parameter of the low temperature grown GaMnAs is discussed. The influence of the defects on the electrical and magnetic properties of GaMnAs thin films is presented. We have also studied optical properties of GaMnAs thin films and quantum wells using absorption spectrum. The magnetic circular dichroism is employed to study the p-d exchange interaction induced spin splitting. The Rashba spin-orbit coupling in a InGaAs/InAlAs two dimensional electron gas (2DEG) is demonstrated by the beating patterns in the Shubnikov de Hass oscillation. Based on the coupling between the spin and orbit momentum, we demonstrate the ways to use spin to drive current by the circular photo galvanic effect (CPGE) and the spin galvanic effect (SGE) with interband excitation. And conversely we show, for the first time, that an electric current can induce spin polarization in a 2DEG, which provides us the opportunity to manipulate spin using electric field instead of magnetic field for the future spintronic devices.
Numerical Studies of Collective Phenomena in Two-Dimensional Electron and Cold Atom Systems
Rezayi, Edward
2013-07-25
Numerical calculations were carried out to investigate a number of outstanding questions in both two-dimensional electron and cold atom systems. These projects aimed to increase our understanding of the properties of and prospects for non-Abelian states in quantum Hall matter.
Model of two-dimensional electron gas formation at ferroelectric interfaces
Aguado-Puente, P.; Bristowe, N. C.; Yin, B.; Shirasawa, R.; Ghosez, Philippe; Littlewood, P. B.; Artacho, Emilio
2015-07-01
The formation of a two-dimensional electron gas at oxide interfaces as a consequence of polar discontinuities has generated an enormous amount of activity due to the variety of interesting effects it gives rise to. Here, we study under what circumstances similar processes can also take place underneath ferroelectric thin films. We use a simple Landau model to demonstrate that in the absence of extrinsic screening mechanisms, a monodomain phase can be stabilized in ferroelectric films by means of an electronic reconstruction. Unlike in the LaAlO3/SrTiO3 heterostructure, the emergence with thickness of the free charge at the interface is discontinuous. This prediction is confirmed by performing first-principles simulations of free-standing slabs of PbTiO3. The model is also used to predict the response of the system to an applied electric field, demonstrating that the two-dimensional electron gas can be switched on and off discontinuously and in a nonvolatile fashion. Furthermore, the reversal of the polarization can be used to switch between a two-dimensional electron gas and a two-dimensional hole gas, which should, in principle, have very different transport properties. We discuss the possible formation of polarization domains and how such configuration competes with the spontaneous accumulation of free charge at the interfaces.
THE TWO-DIMENSIONAL VALENCE ELECTRONIC STRUCTURE OF A MONOLYAER OF Ag ON Cu(00l)
Tobin, J.G.; Robey, S.W.; Shirley, D.A.
1985-05-01
The metal overlayer system c(10x2)Ag/Cu(001) was studied at coverages near one monolayer with angle-resolved photoemission. The observed spectroscopic features indicate a two-dimensional d-band electronic structure that can be interpreted using a model with planar, hexagonal symmetry in which crystal field effects dominate over spin-orbit effects.
2002-06-01
available Silvaco AtlasTM software for modeling and simulation. The polarization properties are suspected to enhance the two-dimensional electron gas (2DEG...polarization, piezoelectric (PZ) and spontaneous, properties utilizing the commercially available Silvaco AtlasTM software for modeling and simulation. The...
Raman scattering in a two-dimensional electron gas: Boltzmann equation approach
NASA Astrophysics Data System (ADS)
Mishchenko, E. G.
1999-06-01
The inelastic light scattering in a two-dimensional electron gas is studied theoretically using the Boltzmann equation techniques. Electron-hole excitations produce the Raman spectrum essentially different from the one predicted for the 3D case. In the clean limit it has the form of a strong nonsymmetric resonance due to the square-root singularity at the electron-hole frequency ω=vk, while in the opposite dirty limit the usual Lorentzian shape of the cross section is reestablished. The effects of electromagnetic field are considered self-consistently, and the contribution from collective plasmon modes is found. It is shown that unlike 3D metals where plasmon excitations are unobservable (because of very large required transferred frequencies), the two-dimensional electron system gives rise to a low-frequency (ω~k1/2) plasmon peak. A measurement of the width of this peak can provide data on the magnitude of the electron-scattering rate.
Two-dimensional electromagnetic Child-Langmuir law of a short-pulse electron flow
Chen, S. H.; Tai, L. C.; Liu, Y. L.; Ang, L. K.; Koh, W. S.
2011-02-15
Two-dimensional electromagnetic particle-in-cell simulations were performed to study the effect of the displacement current and the self-magnetic field on the space charge limited current density or the Child-Langmuir law of a short-pulse electron flow with a propagation distance of {zeta} and an emitting width of W from the classical regime to the relativistic regime. Numerical scaling of the two-dimensional electromagnetic Child-Langmuir law was constructed and it scales with ({zeta}/W) and ({zeta}/W){sup 2} at the classical and relativistic regimes, respectively. Our findings reveal that the displacement current can considerably enhance the space charge limited current density as compared to the well-known two-dimensional electrostatic Child-Langmuir law even at the classical regime.
NASA Astrophysics Data System (ADS)
Marocchino, A.; Lapenta, G.; Evstatiev, E. G.; Nebel, R. A.; Park, J.
2006-10-01
Theoretical works by Barnes and Nebel [D. C. Barnes and R. A. Nebel, Phys. Plasmas 5, 2498 (1998); R. A. Nebel and D. C. Barnes, Fusion Technol. 38, 28 (1998)] have suggested that a tiny oscillating ion cloud (referred to as the periodically oscillating plasma sphere or POPS) may undergo a self-similar collapse in a harmonic oscillator potential formed by a uniform electron background. A major uncertainty in this oscillating plasma scheme is the stability of the virtual cathode that forms the harmonic oscillator potential. The electron-electron two-stream stability of the virtual cathode has previously been studied with a fluid model, a slab kinetic model, a spherically symmetric kinetic model, and experimentally [R. A. Nebel and J. M. Finn, Phys. Plasmas 8, 1505 (2001); R. A. Nebel et al., Phys. Plasmas 12, 040501 (2005)]. Here the mode is studied with a two-dimensional particle-in-cell code. Results indicate stability limits near those of the previously spherically symmetric case.
The effect of depolarization fields on the electronic properties of two-dimensional materials
NASA Astrophysics Data System (ADS)
Shin, Young-Han; Kim, Hye Jung; Noor-A-Alam, Mohammad
2015-03-01
Graphene is a two-dimensional semimetal with a zero band gap. By weakening the sp2 covalent bonding of graphene with additional elements such as hydrogen or fluorine, however, it is possible to make it insulating. We can expect that the band gap converges to that of a three-dimensional analogue by repeating such two-dimensional layers along the normal to the layer. If we control the position of additional elements to make a dipole monolayer, the system will have an intrinsic internal field decreases as the number of layers increases. But, for two-dimensional bilayers, depolarization field is so strong that its electronic properties can be much different from its monolayer analogue. In this presentation, we show that the internal fields induced by dipole moments can change electronic properties of two-dimensional materials such as graphene-like structures and complex metal oxides. This work was supported by the National Research Foundation of Korea Grant by the Ministry of Education, Science, and Technology (2009-0093818, 2012-014007, 2014M3A7B4049367)
Two-dimensional electron gas in monolayer InN quantum wells
Pan, W. E-mail: e.dimakis@hzdr.de; Wang, G. T.; Dimakis, E. E-mail: e.dimakis@hzdr.de; Moustakas, T. D.; Tsui, D. C.
2014-11-24
We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in a superlattice structure of 40 InN quantum wells consisting of one monolayer of InN embedded between 10 nm GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5 × 10{sup 15 }cm{sup −2} (or 1.25 × 10{sup 14 }cm{sup −2} per InN quantum well, assuming all the quantum wells are connected by diffused indium contacts) and 420 cm{sup 2}/Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.
Finite two-dimensional electron gas in a patterned semiconductor system
NASA Astrophysics Data System (ADS)
Ciftja, Orion; Livingston, Victoria; Thomas, Elsa; Saganti, Seth
On various occasions, fabrication of a two-dimensional semiconductor quantum dot leads to a small system of electrons confined in a domain that is not circular and may have a pronounced square (or rectangular) shape. In this work we consider a square-shaped semiconductor quantum dot configuration and treat the system of electrons as a finite two-dimensional electron gas. Within this framework, we adopt a Hartree-Fock approach and study the properties of a small two-dimensional system of electrons confined in a finite square region. We calculate the energy for various finite systems of fully spin-polarized (spinless) electrons interacting with a Coulomb potential. The results give a fairly accurate picture of how the energy of the finite system evolves towards the bulk value as the size of the system increases. The calculations for a square domain are challenging since expressions depend in each component of particle's position and not the radial distance from the center of the square-shaped semiconductor quantum dot. Therefore, we also consider a possible circularly symmetric approximation to the problem. We assess the quality of this approximation and discuss instances where its use is not only desirable, but also accurate. This research was supported in part by U.S. Army Research Office (ARO) Grant No. W911NF-13-1-0139 and National Science Foundation (NSF) Grant No. DMR-1410350.
Electron compound nature in a surface atomic layer of a two-dimensional hexagonal lattice
NASA Astrophysics Data System (ADS)
Matsuda, Iwao; Nakamura, Fumitaka; Kubo, Keisuke; Hirahara, Toru; Yamazaki, Shiro; Choi, Won Hoon; Yeom, Han Woong; Narita, Hisashi; Fukaya, Yuki; Hashimoto, Mie; Kawasuso, Atsuo; Ono, Masanori; Hasegawa, Yukio; Hasegawa, Shuji; Kobayashi, Katsuyoshi
2010-10-01
The two-dimensional (2D) ordered phase of monovalent metal alloy, 21×21 , is formed on the Si(111) surface with the constant electron/atom ratio, indicating electron compound nature. Two conventional theories of the Hume-Rothery compounds, Jones model (nearly-free-electron model), and pseudopotential model (interionic interaction model), were applied to examine stability of the 2D phase. We found breakdown of the former and confirmation of the latter approaches with importance of medium-range interatomic interaction, mediated by the 2D surface-state electrons, in the latter approach.
Transport signatures of correlated disorder in a two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Heinzel, T.; Jäggi, R.; Ribeiro, E.; Waldkirch, M. v.; Ensslin, K.; Ulloa, S. E.; Medeiros-Ribeiro, G.; Petroff, P. M.
2003-03-01
We report electronic transport measurements on two-dimensional electron gases in a Ga[Al]As heterostructure with an embedded layer of InAs self-assembled quantum dots. At high InAs dot densities, pronounced Altshuler-Aronov-Spivak magnetoresistance oscillations are observed, which indicate short-range ordering of the potential landscape formed by the charged dots and the strain fields. The presence of these oscillations coincides with the observation of a metal-insulator transition, and a maximum in the electron mobility as a function of the electron density. Within a model based on correlated disorder, we establish a relation between these effects.
Commensurability oscillations by snake-orbit magnetotransport in two-dimensional electron gases
NASA Astrophysics Data System (ADS)
Leuschner, A.; Schluck, J.; Cerchez, M.; Heinzel, T.; Pierz, K.; Schumacher, H. W.
2017-04-01
Commensurate magnetoresistance periodic oscillations generated by transversal electron snake orbits are found experimentally. A two-dimensional electron gas is exposed to a magnetic field that changes sign along the current longitudinal direction and is homogeneous in the transverse direction. The change in sign of the magnetic field directs the electron flow along the transversal direction, in snake orbits. This generates resistance oscillations with a predictable periodicity that is commensurate with the width of the electron gas. Numerical simulations are used to reveal the character of the oscillations.
Generalov, Alexander; Otrokov, Mikhail M; Chikina, Alla; Kliemt, Kristin; Kummer, Kurt; Höppner, Marc; Güttler, Monika; Seiro, Silvia; Fedorov, Alexander; Schulz, Susanne; Danzenbächer, Steffen; Chulkov, Evgueni V; Geibel, Christoph; Laubschat, Clemens; Dudin, Pavel; Hoesch, Moritz; Kim, Timur; Radovic, Milan; Shi, Ming; Plumb, Nicholas C; Krellner, Cornelius; Vyalikh, Denis V
2017-02-08
Finding ways to create and control the spin-dependent properties of two-dimensional electron states (2DESs) is a major challenge for the elaboration of novel spin-based devices. Spin-orbit and exchange-magnetic interactions (SOI and EMI) are two fundamental mechanisms that enable access to the tunability of spin-dependent properties of carriers. The silicon surface of HoRh2Si2 appears to be a unique model system, where concurrent SOI and EMI can be visualized and controlled by varying the temperature. The beauty and simplicity of this system lie in the 4f moments, which act as a multiple tuning instrument on the 2DESs, as the 4f projections parallel and perpendicular to the surface order at essentially different temperatures. Here we show that the SOI locks the spins of the 2DESs exclusively in the surface plane when the 4f moments are disordered: the Rashba-Bychkov effect. When the temperature is gradually lowered and the system experiences magnetic order, the rising EMI progressively competes with the SOI leading to a fundamental change in the spin-dependent properties of the 2DESs. The spins rotate and reorient toward the out-of-plane Ho 4f moments. Our findings show that the direction of the spins and the spin-splitting of the two-dimensional electrons at the surface can be manipulated in a controlled way by using only one parameter: the temperature.
NASA Astrophysics Data System (ADS)
Ma, Hui; Jiang, Chongyun; Liu, Yu; Zhu, Laipan; Qin, Xudong; Chen, Yonghai
2013-06-01
We investigate the circular photogalvanic effect (CPGE) excited by sub-bandgap radiation in a GaAs/Al0.3Ga0.7As two dimensional electron gas and tune its amplitude by synchronously imposing an above-bandgap unpolarized light at normal incidence. With this photo-modulation technique, we identify two microscopic mechanisms of CPGE according to the dramatic change of apparent Rashba and Dresselhaus effects. We suggest the optical transitions to be Franz-Keldysh and intraband regime, respectively. Both regimes coexist in conventional CPGE and the intraband regime dominates at sufficient modulation power.
Two-dimensional crystallization of integral membrane proteins for electron crystallography.
Stokes, David L; Rice, William J; Hu, Minghui; Kim, Changki; Ubarretxena-Belandia, Iban
2010-01-01
Although membrane proteins make up 30% of the proteome and are a common target for therapeutic drugs, determination of their atomic structure remains a technical challenge. Electron crystallography represents an alternative to the conventional methods of X-ray diffraction and NMR and relies on the formation of two-dimensional crystals. These crystals are produced by reconstituting purified, detergent-solubilized membrane proteins back into the native environment of a lipid bilayer. This chapter reviews methods for producing two-dimensional crystals and for screening them by negative stain electron microscopy. In addition, we show examples of the different morphologies that are commonly obtained and describe basic image analysis procedures that can be used to evaluate their promise for structure determination by cryoelectron microscopy.
NASA Astrophysics Data System (ADS)
Kim, Young Cheol; Jang, Sung Ho; Kim, Gun Ho; Chung, Chin Wook
2009-10-01
Real time two-dimensional spatial distribution measurement method of electron temperature and plasma density was developed. It is based on a floating probe method [1] because the floating probe has high time resolution. Two-dimensional array of sensors on a 300 mm diameter wafer-shaped printed circuit board (PCB) and a high speed multiplexer circuit were used for real time distribution measurement. The method was tested at various powers and pressures, spatial distributions of the electron temperature and the plasma density could be obtained. And in the measurement results, asymmetric plasma density distributions caused by pumping port effect could be observed. This method can measure spatial distribution of plasma parameters on the wafer in real time without plasma perturbation, therefore it will be expected to improve the uniformity of processing plasmas such as etching and deposition. [4pt] [1] M. H. Lee, S. H. Jang, C. W. Chung, J. Appl. Phys. 101, 033305 (2007).
Two-Dimensional Crystallization of Integral Membrane Proteins for Electron Crystallography
Stokes, David L.; Rice, William J.; Hu, Minghui; Kim, Changki; Ubarretxena, Iban
2011-01-01
Although membrane proteins make up 30% of the proteome and are a common target for therapeutic drugs, determination of their atomic structure remains a technical challenge. Electron crystallography represents an alternative to the conventional methods of X-ray diffraction and NMR and relies on the formation of two-dimensional crystals. These crystals are produced by reconstituting purified, detergent-solubilized membrane proteins back into the native environment of a lipid bilayer. This chapter reviews methods for producing two-dimensional crystals and for screening them by negative stain electron microscopy. In addition, we show examples of the different morphologies that are commonly obtained and describe basic image analysis procedures that can be used to evaluate their promise for structure determination by cryoelectron microsopy. PMID:20665267
Orbital dependent Rashba splitting and electron-phonon coupling of 2D Bi phase on Cu(100) surface
Gargiani, Pierluigi; Lisi, Simone; Betti, Maria Grazia; Ibrahimi, Amina Taleb; Bertran, François; Le Fèvre, Patrick; Chiodo, Letizia
2013-11-14
A monolayer of bismuth deposited on the Cu(100) surface forms a highly ordered c(2×2) reconstructed phase. The low energy single particle excitations of the c(2×2) Bi/Cu(100) present Bi-induced states with a parabolic dispersion in the energy region close to the Fermi level, as observed by angle-resolved photoemission spectroscopy. The electronic state dispersion, the charge density localization, and the spin-orbit coupling have been investigated combining photoemission spectroscopy and density functional theory, unraveling a two-dimensional Bi phase with charge density well localized at the interface. The Bi-induced states present a Rashba splitting, when the charge density is strongly localized in the Bi plane. Furthermore, the temperature dependence of the spectral density close to the Fermi level has been evaluated. Dispersive electronic states offer a large number of decay channels for transitions coupled to phonons and the strength of the electron-phonon coupling for the Bi/Cu(100) system is shown to be stronger than for Bi surfaces and to depend on the electronic state symmetry and localization.
Ohm-Kirchhoff's law and screening in two-dimensional electron liquid
NASA Astrophysics Data System (ADS)
Mareš, J. J.; Krištofik, J.; Hubík, P.
2002-01-01
Analysing some experimental facts, a modification of Ohm-Kirchhoff's constitutive transport relation containing diffusion-related term was established. Simultaneous application of this formula and basic ideas of stochastic electrodynamics to a two-dimensional electron liquid (2DEL) enabled us to obtain relations coupling screening and transport properties of the 2DEL, which may be useful, e.g. for the interpretation of low-temperature magneto-capacitance experiments.
Consistent calculation of the stopping power for slow ions in two-dimensional electron gases
Wang, You-Nian |; Ma, Teng-Gai
1997-03-01
Within the framework of quantum scattering theory, we present a consistent calculation of the stopping power for slow protons and antiprotons moving in two-dimensional electron gases. The Friedel sum rule is used to determine the screening constant in the scattering potential. For the stopping power our results are compared with that of the random-phase approximation dielectric theory and that predicted by the linear Thomas-Fermi potential. {copyright} {ital 1997} {ital The American Physical Society}
NASA Astrophysics Data System (ADS)
Armigliato, A.; Balboni, R.; Carnevale, G. P.; Pavia, G.; Piccolo, D.; Frabboni, S.; Benedetti, A.; Cullis, A. G.
2003-03-01
A method of obtaining quantitative two-dimensional (2D) maps of strain by the convergent beam electron diffraction technique in a transmission electron microscope is described. It is based on the automatic acquisition of a series of diffraction patterns generated from digital rastering the electron spot in a matrix of points within a selected area of the sample. These patterns are stored in a database and the corresponding strain tensor at each point is calculated, thus yielding a 2D strain map. An example of application of this method to cross-sectioned cells fabricated for the 0.15 μm technology of flash memories is reported.
Gaur, Gurudatt; Sundar, Sita; Yadav, Sharad K.; Das, Amita; Kaw, Predhiman; Sharma, Sarveshwar
2009-07-15
The electron magnetohydrodynamic (EMHD) model represents an incompressible electron fluid flow against a static neutralizing background ion species. In contrast to hydrodynamic fluid models the EMHD model contains intrinsic length (the electron skin depth) and time scale (the whistler period). The paper discusses the role of skin depth and the existence of whistler waves on a prominent fluid instability, namely, the velocity shear driven Kelvin-Helmholtz instability in the context of two-dimensional EMHD. Numerical simulations are also carried out to understand the role played by the whistler waves in the nonlinear saturated regime of the instability.
Layer-by-Layer Evolution of a Two-Dimensional Electron Gas Near an Oxide Interface
NASA Astrophysics Data System (ADS)
Chang, Young Jun; Moreschini, Luca; Bostwick, Aaron; Gaines, Geoffrey A.; Kim, Yong Su; Walter, Andrew L.; Freelon, Byron; Tebano, Antonello; Horn, Karsten; Rotenberg, Eli
2013-09-01
We report the momentum-resolved measurement of a two-dimensional electron gas at the LaTiO3/SrTiO3 interface by angle-resolved photoemission spectroscopy (ARPES). Thanks to an advanced sample preparation technique, the orbital character of the conduction electrons and the electronic correlations can be accessed quantitatively as each unit cell layer is added. We find that all of these quantities change dramatically with distance from the interface. These findings open the way to analogous studies on other heterostructures, which are traditionally a forbidden field for ARPES.
Collective Tunneling Model between Two-Dimensional Electron Gas to Si-Nano Dot
NASA Astrophysics Data System (ADS)
Muraguchi, M.; Sakurai, Y.; Takada, Y.; Nomura, S.; Shiraishi, K.; Makihara, K.; Ikeda, M.; Miyazaki, S.; Shigeta, Y.; Endoh, T.
2011-12-01
We study the temperature dependence of electron injection voltage in Si-Nano-Dot (Si-NDs) Floating Gate MOS capacitor by using the collective tunneling model, which models the tunneling between two-dimensional electron gas (2DEG) and the Si-NDs. We clarify the temperature dependence by numerical calculation, which emulate the experiment in this system, and we obtained a new insight into the origin of the temperature dependence. We have revealed that the collective tunneling model can reproduce the temperature dependence of electron tunneling.
3D PIC modeling of laser acceleration of electrons from two-dimensional inhomogeneous plasma corona
NASA Astrophysics Data System (ADS)
Pugachev, L. P.; Levashov, P. R.; Andreev, N. E.
2015-11-01
This paper presents the results of three-dimensional (3D3V) particle-in-cell modeling of the interaction of a femtosecond laser pulse with a two-dimensional inhomogeneous plasma corona of subcritical density. It was shown that in the presence of sufficiently steep temporal pulse edge the excitation of plasma waves, electron trapping and generation of collimated beams of accelerated electrons with energy of about 0.2-0.5 MeV may occur. The simulation results are compared with experiments on the generation of collimated beams of accelerated electrons from metal targets irradiated by intense femtosecond laser radiation.
Interaction induced staggered spin-orbit order in two-dimensional electron gas
Das, Tanmoy
2012-06-05
Decoupling spin and charge transports in solids is among the many prerequisites for realizing spin electronics, spin caloritronics, and spin-Hall effect. Beyond the conventional method of generating and manipulating spin current via magnetic knob, recent advances have expanded the possibility to optical and electrical method which are controllable both internally and externally. Yet, due to the inevitable presence of charge excitations and electrical polarizibility in these methods, the separation between spin and charge degrees of freedom of electrons remains a challenge. Here we propose and formulate an interaction induced staggered spin-orbit order as a new emergent phase of matter. We show that when some form of inherent spin-splitting via Rashba-type spin-orbit coupling renders two helical Fermi surfaces to become significantly nested, a Fermi surface instability arises. To lift this degeneracy, a spontaneous symmetry breaking spin-orbit density wave develops, causing a surprisingly large quasiparticle gapping with chiral electronic states, with no active charge excitations. Since the staggered spin-orbit order is associated with a condensation energy, quantified by the gap value, destroying such spin-orbit interaction costs sufficiently large perturbation field or temperature or de-phasing time. BiAg2 surface state is shown to be a representative system for realizing such novel spin-orbit interaction with tunable and large strength, and the spin-splitting is decoupled from charge excitations.
Fidler, Andrew F.; Singh, Ved P.; Long, Phillip D.; Dahlberg, Peter D.; Engel, Gregory S.
2014-01-01
Time-resolved ultrafast optical probes of chiral dynamics provide a new window allowing us to explore how interactions with such structured environments drive electronic dynamics. Incorporating optical activity into time-resolved spectroscopies has proven challenging due to the small signal and large achiral background. Here, we demonstrate that two-dimensional electronic spectroscopy can be adapted to detect chiral signals and that these signals reveal how excitations delocalize and contract following excitation. We dynamically probe the evolution of chiral electronic structure in the light harvesting complex 2 of purple bacteria following photoexcitation by creating a chiral two-dimensional mapping. The dynamics of the chiral two-dimensional signal directly reports on changes in the degree of delocalization of the excitonic state following photoexcitation. The mechanism of energy transfer in this system may enhance transfer probability due to the coherent coupling among chromophores while suppressing fluorescence that arises from populating delocalized states. This generally applicable spectroscopy will provide an incisive tool to probe ultrafast transient molecular fluctuations that are obscured in non-chiral experiments. PMID:24504144
Electron spin rotations induced by oscillating Rashba interaction in a quantum wire
NASA Astrophysics Data System (ADS)
Pawłowski, J.; Szumniak, P.; Bednarek, S.
2016-01-01
A method and nanodevice are introduced that allows us to rotate the single electron spin confined in a gated electrostatic InSb nanowire quantum dot. The proposed method does not require the application of any (oscillating or static) external magnetic fields. Our proposal instead employs spatial and time modulation of confining potential induced by electric gates, which, in turn leads to oscillating Rashba-type spin-orbit coupling. Moving electron back and forth in such a variable Rashba field allows for the realization of spin rotations around two different axes separately without using an external magnetic field. The results are supported by realistic three-dimensional time-dependent Poisson-Schrödinger calculations for systems and material parameters corresponding to experimentally accessible structures.
A CMOS VLSI IC for real-time opto-electronic two-dimensional histogram generation
NASA Astrophysics Data System (ADS)
Richstein, James K.
1993-12-01
Histogram generation, a standard image processing operation, is a record of the intensity distribution in the image. Histogram generation has straightforward implementations on digital computers using high level languages. A prototype of an optical-electronic histogram generator was designed and tested for 1-D objects using wirewrapped MSI TTL components. The system has shown to be fairly modular in design. The aspects of the extension to two dimensions and the VLSI implementation of this design are discussed. In this paper, we report a VLSI design to be used in a two-dimensional real-time histogram generation scheme. The overall system design is such that the electronic signal obtained from the optically scanned two-dimensional semi-opaque image is processed and displayed within a period of one cycle of the scanning process. Specifically, in the VLSI implementation of the two-dimensional histogram generator, modifications were made to the original design. For the two-dimensional application, the output controller was analyzed as a finite state machine. The process used to describe the required timing signals and translate them to a VLSI finite state machine using Computer Aided Design Tools is discussed. In addition, the circuitry for sampling, binning, and display were combined with the timing circuitry on one IC. In the original design, the pulse width of the electronically sampled photodetector is limited with an analog one-shot. The high sampling rates associated with the extension to two dimensions requires significant reduction in the original 1-D prototype's sample pulse width of approximately 75 ns. The alternate design using VLSI logic gates will provide one-shot pulse widths of approximately 3 ns.
Edge spin accumulation in a two-dimensional electron gas with two subbands
NASA Astrophysics Data System (ADS)
Khaetskii, Alexander; Egues, J. Carlos
We have studied the edge spin accumulation in 2D electron gas due to the intrinsic mechanism of spin-orbit interaction for the case of a two-subband structure. This study is strongly motivated by recent experiments which observed the spin accumulation near the edges of a high mobility 2D electron system in a bilayer symmetric GaAs structure in contrast to zero effect in a single-layer configuration. Our theoretical explanation is based on the Rashba-like spin-orbit interaction which arises as a result of the coupling between two subband states of opposite parities in a symmetric quantum well. Following the method developed in, we have calculated the edge spin density in a quasi-ballistic regime, and explained the experimental results, in particular, a large magnitude of the edge spin density. We showed that one can easily proceed from the regime of strong spin accumulation to the regime of weak one. It opens up a possibility to construct an interesting new spintronic device Supported by FAPESP (Brazil).
Two-dimensional numerical model of the tapered wiggler free-electron laser
Prosnitz, D.; Haas, R.A.; Doss, S.; Gelinas, R.J.
1982-08-31
A two-dimensional numerical model of a high-gain (electron-beam power > input laser beam power) free-electron laser (FEL) has been constructed which includes the effects of diffraction, refraction, and off-axis electron-beam current density and wiggler field variations. In this model, laser beam propagation is governed by a paraxial wave equation with FEL source terms. Conventional resonant electron analysis is used to represent the trapping and deceleration of electrons by the electromagnetic field. The trapped electron-beam current density is forced to decrease as the size of the trapping potential decreases so that detrapping can be simulated. The variable-parameter wiggler field is chosen so that synchronism can be maintained at a single, arbitrary radial position. The magnetic field varies at other radial positions in accordance with Maxwell's equations.
Electromagnetic Aharonov-Bohm effect in a two-dimensional electron gas ring
NASA Astrophysics Data System (ADS)
van der Wiel, W. G.; Nazarov, Yu. V.; de Franceschi, S.; Fujisawa, T.; Elzerman, J. M.; Huizeling, E. W.; Tarucha, S.; Kouwenhoven, L. P.
2003-01-01
We define a mesoscopic ring in a two-dimensional electron gas interrupted by two tunnel barriers, enabling us to apply a well-defined potential difference between the two halves of the ring. The electron interference in the ring is modified using a perpendicular magnetic field and a bias voltage. We observe clear Aharonov-Bohm oscillations up to the quantum Hall regime as a function of both parameters. The electron travel time between the barriers is found to increase with the applied magnetic field. Introducing a scattering model, we develop a method to measure the nonequilibrium electron dephasing time, which becomes very short at high voltages and magnetic fields. The relevance of electron-electron interactions is discussed.
Spin coherence of the two-dimensional electron gas in a GaAs quantum well
Larionov, A. V.
2015-01-15
The coherent spin dynamics of the quasi-two-dimensional electron gas in a GaAs quantum well is experimentally investigated using the time-resolved spin Kerr effect in an optical cryostat with a split coil inducing magnetic fields of up to 6 T at a temperature of about 2 K. The electron spin dephasing times and degree of anisotropy of the spin relaxation of electrons are measured in zero magnetic field at different electron densities. The dependence of the spin-orbit splitting on the electron-gas density is established. In the integral quantum-Hall-effect mode, the unsteady behavior of the spin dephasing time of 2D electrons of the lower Landau spin sublevel near the odd occupation factor ν = 3 is found. The experimentally observed unsteady behavior of the spin dephasing time can be explained in terms of new-type cyclotron modes that occur in a liquid spin texture.
Quantum Hall effect in black phosphorus two-dimensional electron system.
Li, Likai; Yang, Fangyuan; Ye, Guo Jun; Zhang, Zuocheng; Zhu, Zengwei; Lou, Wenkai; Zhou, Xiaoying; Li, Liang; Watanabe, Kenji; Taniguchi, Takashi; Chang, Kai; Wang, Yayu; Chen, Xian Hui; Zhang, Yuanbo
2016-07-01
The development of new, high-quality functional materials has been at the forefront of condensed-matter research. The recent advent of two-dimensional black phosphorus has greatly enriched the materials base of two-dimensional electron systems (2DESs). Here, we report the observation of the integer quantum Hall effect in a high-quality black phosphorus 2DES. The high quality is achieved by embedding the black phosphorus 2DES in a van der Waals heterostructure close to a graphite back gate; the graphite gate screens the impurity potential in the 2DES and brings the carrier Hall mobility up to 6,000 cm(2) V(-1) s(-1). The exceptional mobility enabled us to observe the quantum Hall effect and to gain important information on the energetics of the spin-split Landau levels in black phosphorus. Our results set the stage for further study on quantum transport and device application in the ultrahigh mobility regime.
Two-dimensional electron-hole capture in a disordered hopping system
NASA Astrophysics Data System (ADS)
Greenham, N. C.; Bobbert, P. A.
2003-12-01
We model the two-dimensional recombination of electrons and holes in a system where the mean free path is short compared with the thermal capture radius. This recombination mechanism is relevant to the operation of bilayer organic light-emitting diodes (LED’s), where electrons and holes accumulate on either side of the internal heterojunction. The electron-hole recombination rate can be limited by the time taken for these charge carriers to drift and diffuse to positions where electrons and holes are directly opposite to each other on either side of the interface, at which point rapid formation of an emissive neutral state can occur. In this paper, we use analytical and numerical techniques to find the rate of this two-dimensional electron-hole capture process. Where one species of carrier is significantly less mobile than the other, we find that the recombination rate depends superlinearly on the density of the less mobile carrier. Numerical simulations allow the effects of disorder to be taken into account in a microscopic hopping model. Direct solution of the master equation for hopping provides more efficient solutions than Monte Carlo simulations. The rate constants extracted from our model are consistent with efficient emission from bilayer LED’s without requiring independent hopping of electrons and holes over the internal barrier at the heterojunction.
Transverse plasmon mode in a screened two-dimensional electron system
Fateev, D. V. Melnikova, V. S.; Popov, V. V.
2015-02-15
The dispersion and damping of the transverse plasmon mode in a screened two-dimensional (2D) electron system are theoretically studied. It is shown that the transverse plasmon mode has a much larger quality factor and a smaller retardation factor at terahertz (THz) frequencies in comparison with those known for the longitudinal plasmon mode. In addition, the electric dipole moment of the transverse plasmon mode in the screened 2D electron system can be comparable with the dipole moment of the longitudinal plasmon mode. These properties of the transverse plasmon mode make it attractive for use in plasmon devices of the THz frequency range.
Amplification and directional emission of surface acoustic waves by a two-dimensional electron gas
Shao, Lei; Pipe, Kevin P.
2015-01-12
Amplification of surface acoustic waves (SAWs) by electron drift in a two-dimensional electron gas (2DEG) is analyzed analytically and confirmed experimentally. Calculations suggest that peak power gain per SAW radian occurs at a more practical carrier density for a 2DEG than for a bulk material. It is also shown that SAW emission with tunable directionality can be achieved by modulating a 2DEG's carrier density (to effect SAW generation) in the presence of an applied DC field that amplifies SAWs propagating in a particular direction while attenuating those propagating in the opposite direction.
Giant Andreev reflection in a two-dimensional electron gas coupled to superconductors
NASA Astrophysics Data System (ADS)
van Wees, Bart J.
1998-03-01
I will review recent experiments on ballistic transport in a two- dimensional electron gas coupled to superconductors (Work done in collaboration with A.F. Morpurgo, S.G. den Hartog, and T.M. Klapwijk). This system has made it possible to study various aspects of coherent Andreev reflection, such as the modification of the conductance of a quantum point contact due to retroreflected holes, and the formation of Andreev bound states between two superconductors. In particular I will discuss the phenomenon of giant Andreev reflection, where, despite of the presence of disorder, electrons injected through a quantum point contact can be Andreev reflected with probability one.
Electron- and photon-induced plasmonic excitations in two-dimensional silver nanostructures
Hoang, C. V.; Rana, M.; Nagao, T.
2014-06-23
Plasmons are the quasi particles of collective oscillations of electrons and form the basis of plasmonics and optical metamaterials. We combined electron spectroscopy and optical spectroscopy techniques to study plasmons in atomically smooth Ag films and in epitaxial Ag nanodisks to map the momentum-energy dispersion curves of the two-dimensional (2D) sheet plasmon and the quasi-2D plasmons to clarify the essential differences between them. Our experimental results combined with the results of numerical electromagnetic simulations showed that the bulk-like nature of the silver plasmon starts in layers that are only two atoms thick.
Lyo, Sungkwun K.; Pan, Wei
2014-08-07
In this paper, we study the Bloch oscillations of a two-dimensional electron gas with a strong periodic potential-modulation and miniband transport along the field at low temperatures, assuming a free motion in the transverse direction. The dependence of the current on the field, the electron density, and the temperature is investigated by using a relaxation-time approximation for inelastic scattering. Moreover, for a fixed total scattering rate, the field dependence of the current is sensitive to the ratio of the elastic and inelastic scattering rates in contrast with the recent result of a multiband but otherwise similar model with a weak potential modulation.
Zener tunneling between landau orbits in a high-mobility two-dimensional electron gas.
Yang, C L; Zhang, J; Du, R R; Simmons, J A; Reno, J L
2002-08-12
Magnetotransport in a laterally confined two-dimensional electron gas (2DEG) can exhibit modified scattering channels owing to a tilted Hall potential. Transitions of electrons between Landau levels with shifted guiding centers can be accomplished through a Zener tunneling mechanism, and make a significant contribution to the magnetoresistance. A remarkable oscillation effect in weak field magnetoresistance has been observed in high-mobility 2DEGs in GaAs -Al Ga 0.3As (0.7) heterostructures, and can be well explained by the Zener mechanism.
Quantum transport in Rashba spin-orbit materials: a review.
Bercioux, Dario; Lucignano, Procolo
2015-10-01
In this review article we describe spin-dependent transport in materials with spin-orbit interaction of Rashba type. We mainly focus on semiconductor heterostructures, however we consider topological insulators, graphene and hybrid structures involving superconductors as well. We start from the Rashba Hamiltonian in a two dimensional electron gas and then describe transport properties of two- and quasi-one-dimensional systems. The problem of spin current generation and interference effects in mesoscopic devices is described in detail. We address also the role of Rashba interaction on localisation effects in lattices with nontrivial topology, as well as on the Ahronov-Casher effect in ring structures. A brief section, in the end, describes also some related topics including the spin-Hall effect, the transition from weak localisation to weak anti localisation and the physics of Majorana fermions in hybrid heterostructures involving Rashba materials in the presence of superconductivity.
NASA Astrophysics Data System (ADS)
Ramaswamy, Rahul
Two-dimensional electron gas (2DEG) in semiconductor heterostructures was identified as a promising medium for hot-electron bolometers (HEB) in the early 90s. Up until now all research based on 2DEG HEBs is done using high mobility AlGaAs/GaAs heterostructures. These systems have demonstrated very good performance, but only in the sub terahertz (THz) range. However, above ˜0.5 THz the performance of AlGaAs/GaAs detectors drastically deteriorates. It is currently understood, that detectors fabricated from standard AlGaAs/GaAs heterostructures do not allow for reasonable coupling to THz radiation while maintaining high conversion efficiency. In this work we have developed 2DEG HEBs based on disordered Gallium Nitride (GaN) semiconductor, that operate at frequencies beyond 1THz at room temperature. We observe strong free carrier absorption at THz frequencies in our disordered 2DEG film due to Drude absorption. We show the design and fabrication procedures of novel micro-bolometers having ultra-low heat capacities. In this work the mechanism of 2DEG response to THz radiation is clearly identified as bolometric effect through our direct detection measurements. With optimal doping and detector geometry, impedances of 10--100 O have been achieved, which allow integration of these devices with standard THz antennas. We also demonstrate performance of the antennas used in this work in effectively coupling THz radiation to the micro-bolometers through polarization dependence and far field measurements. Finally heterodyne mixing due to hot electrons in the 2DEG micro-bolometer has been performed at sub terahertz frequencies and a mixing bandwidth greater than 3GHz has been achieved. This indicates that the characteristic cooling time in our detectors is fast, less than 50ps. Due to the ultra-low heat capacity; these detectors can be used in a heterodyne system with a quantum cascade laser (QCL) as a local oscillator (LO) which typically provides output powers in the micro
The Instability of Terahertz Plasma Waves in Two Dimensional Gated and Ungated Quantum Electron Gas
NASA Astrophysics Data System (ADS)
Zhang, Liping
2016-04-01
The instability of terahertz (THz) plasma waves in two-dimensional (2D) quantum electron gas in a nanometer field effect transistor (FET) with asymmetrical boundary conditions has been investigated. We analyze THz plasma waves of two parts of the 2D quantum electron gas: gated and ungated regions. The results show that the radiation frequency and the increment (radiation power) in 2D ungated quantum electron gas are much higher than that in 2D gated quantum electron gas. The quantum effects always enhance the radiation power and enlarge the region of instability in both cases. This allows us to conclude that 2D quantum electron gas in the transistor channel is important for the emission and detection process and both gated and ungated parts take part in that process. supported by National Natural Science Foundation of China (No. 10975114)
Resistance oscillations of two-dimensional electrons in crossed electric and tilted magnetic fields
NASA Astrophysics Data System (ADS)
Mayer, William; Vitkalov, Sergey; Bykov, A. A.
2016-06-01
The effect of dc electric field on transport of highly mobile two-dimensional electrons is studied in wide GaAs single quantum wells placed in titled magnetic fields. The study shows that in perpendicular magnetic field resistance oscillates due to electric-field induced Landau-Zener transitions between quantum levels that correspond to geometric resonances between cyclotron orbits and periodic modulation of electron density of states. Magnetic field tilt inverts these oscillations. Surprisingly the strongest inverted oscillations are observed at a tilt corresponding to nearly absent modulation of the electron density of states in regime of magnetic breakdown of semiclassical electron orbits. This phenomenon establishes an example of quantum resistance oscillations due to Landau quantization, which occur in electron systems with a constant density of states.
Electronic structure and anisotropic Rashba spin-orbit coupling in monolayer black phosphorus
NASA Astrophysics Data System (ADS)
Popović, Z. S.; Kurdestany, Jamshid Moradi; Satpathy, S.
2015-07-01
We investigate the electronic structure of the monolayer black phosphorus (BP) using density-functional methods both with and without an applied electric field. We find that a simple one-band tight-binding Hamiltonian based on the pz orbitals and nearest-neighbor hopping is sufficient to describe the band structure in the gap region rather well and justification for this is given from symmetry arguments. The anisotropic nature of the band structure leads in turn to an anisotropic Rashba effect, where the magnitude of the spin splitting caused by an applied electric field is not only momentum dependent, but also depends on the direction of k ⃗. The Rashba Hamiltonian is generalized for the anisotropic case, which reads: HR=αR(σ ⃗×k⃗') .z ̂ , where the scaled momentum k⃗' contains the anisotropy effect. The Rashba effect is studied quantitatively for BP from ab initio density-functional calculations in the presence of an applied electric field. A byproduct of this work is the demonstration that the strength of the spin-orbit coupling for the outermost electrons in the atoms, which are relevant for the solids, increases only as the Landau-Lifshitz Z2 scaling with the atomic number Z , rather than the higher power Z4 scaling, as sometimes thought.
Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics
NASA Astrophysics Data System (ADS)
Kim, Seongsu; Kim, Tae Yun; Lee, Kang Hyuck; Kim, Tae-Ho; Cimini, Francesco Arturo; Kim, Sung Kyun; Hinchet, Ronan; Kim, Sang-Woo; Falconi, Christian
2017-06-01
Gates can electrostatically control charges inside two-dimensional materials. However, integrating independent gates typically requires depositing and patterning suitable insulators and conductors. Moreover, after manufacturing, gates are unchangeable. Here we introduce tunnelling triboelectrification for localizing electric charges in very close proximity of two-dimensional materials. As representative materials, we use chemical vapour deposition graphene deposited on a SiO2/Si substrate. The triboelectric charges, generated by friction with a Pt-coated atomic force microscope tip and injected through defects, are trapped at the air-SiO2 interface underneath graphene and act as ghost floating gates. Tunnelling triboelectrification uniquely permits to create, modify and destroy p and n regions at will with the spatial resolution of atomic force microscopes. As a proof of concept, we draw rewritable p/n+ and p/p+ junctions with resolutions as small as 200 nm. Our results open the way to time-variant two-dimensional electronics where conductors, p and n regions can be defined on demand.
Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics
Kim, Seongsu; Kim, Tae Yun; Lee, Kang Hyuck; Kim, Tae-Ho; Cimini, Francesco Arturo; Kim, Sung Kyun; Hinchet, Ronan; Kim, Sang-Woo; Falconi, Christian
2017-01-01
Gates can electrostatically control charges inside two-dimensional materials. However, integrating independent gates typically requires depositing and patterning suitable insulators and conductors. Moreover, after manufacturing, gates are unchangeable. Here we introduce tunnelling triboelectrification for localizing electric charges in very close proximity of two-dimensional materials. As representative materials, we use chemical vapour deposition graphene deposited on a SiO2/Si substrate. The triboelectric charges, generated by friction with a Pt-coated atomic force microscope tip and injected through defects, are trapped at the air–SiO2 interface underneath graphene and act as ghost floating gates. Tunnelling triboelectrification uniquely permits to create, modify and destroy p and n regions at will with the spatial resolution of atomic force microscopes. As a proof of concept, we draw rewritable p/n+ and p/p+ junctions with resolutions as small as 200 nm. Our results open the way to time-variant two-dimensional electronics where conductors, p and n regions can be defined on demand. PMID:28649986
Hydrostatic pressure response of an oxide-based two-dimensional electron system
NASA Astrophysics Data System (ADS)
Zabaleta, J.; Borisov, V. S.; Wanke, R.; Jeschke, H. O.; Parks, S. C.; Baum, B.; Teker, A.; Harada, T.; Syassen, K.; Kopp, T.; Pavlenko, N.; Valentí, R.; Mannhart, J.
2016-06-01
Two-dimensional electron systems with fascinating properties exist in multilayers of standard semiconductors, on helium surfaces, and in oxides. Compared to the two-dimensional (2D) electron gases of semiconductors, the 2D electron systems in oxides are typically more strongly correlated and more sensitive to the microscopic structure of the hosting lattice. This sensitivity suggests that the oxide 2D systems are highly tunable by hydrostatic pressure. Here we explore the effects of hydrostatic pressure on the well-characterized 2D electron system formed at LaAlO3-SrTiO3 interfaces [A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004), 10.1038/nature02308] and measure a pronounced, unexpected response. Pressure of ˜2 GPa reversibly doubles the 2D carrier density ns at 4 K. Along with the increase of ns, the conductivity and mobility are reduced under pressure. First-principles pressure simulations reveal the same behavior of the carrier density and suggest a possible mechanism of the mobility reduction, based on the dielectric properties of both materials and their variation under external pressure.
High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential
Lu, T. M.; Laroche, D.; Huang, S.-H.; Chuang, Y.; Li, J.-Y.; Liu, C. W.
2016-01-01
In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned over a wide range, from 4.4 × 1010 cm−2 to 1.8 × 1011 cm−2, with a peak mobility of 6.4 × 105 cm2/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. This result is then compared to a conventional lateral superlattice model potential. PMID:26865160
High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential
Lu, Tzu -Ming; Laroche, Dominique; Huang, S. -H.; ...
2016-01-01
In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned overmore » a wide range, from 4.4 × 1010 cm–2 to 1.8 × 1011 cm–2, with a peak mobility of 6.4 × 105 cm2/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. Lastly, this result is then compared to a conventional lateral superlattice model potential.« less
High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential
Lu, Tzu -Ming; Laroche, Dominique; Huang, S. -H.; Chuang, Y.; Li, J. -Y.; Liu, C. W.
2016-01-01
In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned over a wide range, from 4.4 × 10^{10} cm^{–2} to 1.8 × 10^{11} cm^{–2}, with a peak mobility of 6.4 × 10^{5} cm^{2}/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. Lastly, this result is then compared to a conventional lateral superlattice model potential.
Two-dimensional quasi-double-layers in two-electron-temperature, current-free plasmas
Merino, Mario; Ahedo, Eduardo
2013-02-15
The expansion of a plasma with two disparate electron populations into vacuum and channeled by a divergent magnetic nozzle is analyzed with an axisymmetric model. The purpose is to study the formation and two-dimensional shape of a current-free double-layer in the case when the electric potential steepening can still be treated within the quasineutral approximation. The properties of this quasi-double-layer are investigated in terms of the relative fraction of the high-energy electron population, its radial distribution when injected into the nozzle, and the geometry and intensity of the applied magnetic field. The two-dimensional double layer presents a curved shape, which is dependent on the natural curvature of the equipotential lines in a magnetically expanded plasma and the particular radial distribution of high-energy electrons at injection. The double layer curvature increases the higher the nozzle divergence is, the lower the magnetic strength is, and the more peripherally hot electrons are injected. A central application of the study is the operation of a helicon plasma thruster in space. To this respect, it is shown that the curvature of the double layer does not increment the thrust, it does not modify appreciably the downstream divergence of the plasma beam, but it increases the magnetic-to-pressure thrust ratio. The present study does not attempt to cover current-free double layers involving plasmas with multiple populations of positive ions.
High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential.
Lu, T M; Laroche, D; Huang, S-H; Chuang, Y; Li, J-Y; Liu, C W
2016-02-11
In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned over a wide range, from 4.4 × 10(10) cm(-2) to 1.8 × 10(11) cm(-2), with a peak mobility of 6.4 × 10(5) cm(2)/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. This result is then compared to a conventional lateral superlattice model potential.
NASA Astrophysics Data System (ADS)
Wu, Xiaoguang
2016-11-01
The exchange effect and the magneto-plasmon mode dispersion are studied theoretically for an anisotropic two-dimensional electronic system in the presence of a uniform perpendicular magnetic field. Employing an effective low-energy model with anisotropic effective masses, which is relevant for a monolayer of phosphorus, the exchange effect due to the electron-electron interaction is treated within the self-consistent Hartree-Fock approximation. The magneto-plasmon mode dispersion is obtained by solving a Bethe-Salpeter equation for the electron density-density correlation function within the ladder diagram approximation. It is found that the exchange effect is reduced in the anisotropic system in comparison with the isotropic one. The magneto-plasmon mode dispersion shows a clear dependence on the direction of the wave vector. Project supported by the National Natural Science Foundation of China (Grant Nos. 61076092 and 61290303).
Ultrafast extreme-ultraviolet ARPES studies of electronic dynamics in two-dimensional materials
NASA Astrophysics Data System (ADS)
Buss, Jan Heye; Maklar, Julian; Joucken, Frédéric; Wang, He; Xu, Yiming; Mo, Sung-Kwan; Lanzara, Alessandra; Kaindl, Robert A.
2017-02-01
The intriguing electronic properties of two-dimensional materials motivates experiments to resolve their rapid, microscopic interactions and dynamics across momentum space. Essential insight into the electronic momentum-space dynamics can be obtained directly via time- and angle-resolved photoemission spectroscopy (trARPES). We discuss the development of a high-repetition rate trARPES setup that employs a bright source of narrowband, extreme-UV harmonics around 22.3 eV, and its application to sensitive studies of materials dynamics. In the bulk transition-metal dichalcogenide MoSe2 momentum-space quasiparticle scattering is observed after resonant excitation at the K-point exciton line, resulting in the time-delayed buildup of electrons at the Σ-point conduction band minimum. We will discuss this and other aspects of the non-equilibrium electronic response accessible with the extreme-UV trARPES probe.
Observation of axisymmetric dark plasma excitations in a two-dimensional electron system
NASA Astrophysics Data System (ADS)
Muravev, V. M.; Andreev, I. V.; Belyanin, V. N.; Gubarev, S. I.; Kukushkin, I. V.
2017-07-01
Resonant microwave absorption of two-dimensional electron systems in AlGaAs/GaAs heterostructures with a single Corbino disk geometry has been studied. Axisymmetric dark plasmon modes have been excited using a near-field excitation technique, and their magnetodispersion have been determined in the presence of a perpendicular magnetic field. Plasma excitations observed have been compared to bright plasmon modes in a single disk of identical geometry. Dark plasmon modes have been found to have considerably longer lifetimes compared to bright plasmon modes due to the inhibition of superradiant losses.
Lo, C. C.; Lang, V.; George, R. E.; Morton, J. J. L.; Tyryshkin, A. M.; Lyon, A.; Bokor, J.; Schenkel, T.
2011-04-20
We have measured the electrically detected magnetic resonance of donor-doped silicon field-effect transistors in resonant X- (9.7 GHz) and W-band (94 GHz) microwave cavities. The two-dimensional electron gas (2DEG) resonance signal increases by two orders of magnitude from X- to W-band, while the donor resonance signals are enhanced by over one order of magnitude. Bolometric effects and spin-dependent scattering are inconsistent with the observations. We propose that polarization transfer from the donor to the 2DEG is the main mechanism giving rise to the spin resonance signals.
NASA Astrophysics Data System (ADS)
Giliberti, Valeria; Di Gaspare, Alessandra; Giovine, Ennio; Ortolani, Michele; Sorba, Lucia; Biasiol, Giorgio; Popov, Vyacheslav V.; Fateev, Denis V.; Evangelisti, Florestano
2015-04-01
We have measured the electric signal downconverted from a terahertz frequency by an unbiased high mobility two-dimensional electron-gas (2DEG) device. The 2DEG was confined in an asymmetric plasmonic microcavity, and the radiation frequency was continuously tuned in the 0.2-0.4 THz range. The presence of resonant peaks at three frequencies corresponding to three plasma oscillation modes of the ungated 2DEG clearly points to the intrinsic nature of the hydrodynamic nonlinearity responsible for the downconversion as opposed to previously proposed plasmonic cavity configurations where the 2DEG oscillates under the metal gate that also acts as the source of the nonlinearity.
Zhang, Miao-Lei; Deng, Guang-Wei; Li, Shu-Xiao; Li, Hai-Ou; Cao, Gang; Tu, Tao; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping; Jiang, Hong-Wen; Siddiqi, Irfan
2014-02-24
We have designed and fabricated a half-wavelength reflection line resonator that consists of a pair of coupled microstrip lines on a GaAs/AlGaAs heterostructure. By changing the top gate voltage on a small square with a two-dimensional electron gas under the resonator, the quality factor was tuned over a large range from 2700 to below 600. Apart from being of fundamental interest, this gate modulation technique has the potential for use in on-chip resonator applications.
Proper Orthogonal Decomposition of two-dimensional turbulence in a pure electron plasma
Lepreti, F.; Vecchio, A.; Carbone, V.
2010-06-16
The free-decaying two-dimensional (2D) turbulence in a pure electron plasma confined in the Malmberg-Penning trap ELTRAP is investigated experimentally and analyzed through the Proper Orthogonal Decomposition (POD). POD is used to extract coherent structures of the flow from a sequence of plasma density measurements, which represent the vorticity of the 2D fluid. The coherent structures that are energetically dominant are identified and their spatio-temporal dynamics is studied over the time evolution of turbulence. The results suggests the the dominant POD modes can be identified with diocotron modes which appear to be active during both the onset and relaxation phases of turbulence.
Temperature Distribution in Two-Dimensional Electron Gases under a Strong Magnetic Field
NASA Astrophysics Data System (ADS)
Hirayama, Naomi; Endo, Akira; Fujita, Kazuhiro; Hasegawa, Yasuhiro; Hatano, Naomichi; Nakamura, Hiroaki; Shirasaki, Ryōen; Yonemitsu, Kenji
2011-05-01
Two-dimensional electron gases having an electrochemical potential gradient under a magnetic field are numerically examined using the finite-difference method. The temperature, voltage, electric current, and heat flux are calculated from transport equations describing thermoelectric and thermomagnetic effects, namely the Hall, Nernst, Ettingshausen, and Righi-Leduc effects. The results show that a magnetic field distorts equipotential lines and generates an uneven temperature distribution. In particular, a part of the system is found to become colder than the temperature of the heat baths. The cooling effect under a strong magnetic field is due primarily to the Ettingshausen and Hall effects.
Non-diffusive spin dynamics in a two-dimensional electron gas
Weber, C.P.
2010-04-28
We describe measurements of spin dynamics in the two-dimensional electron gas in GaAs/GaAlAs quantum wells. Optical techniques, including transient spin-grating spectroscopy, are used to probe the relaxation rates of spin polarization waves in the wavevector range from zero to 6 x 10{sup 4} cm{sup -1}. We find that the spin polarization lifetime is maximal at nonzero wavevector, in contrast with expectation based on ordinary spin diffusion, but in quantitative agreement with recent theories that treat diffusion in the presence of spin-orbit coupling.
New edge magnetoplasmon for a two-dimensional electron gas in a ring geometry
NASA Astrophysics Data System (ADS)
Proetto, C. R.
1992-09-01
The dynamical response of a classical two-dimensional electron gas confined in a ring geometry under a perpendicular magnetic field is analyzed. Within the hydrodynamical approach and in the strong magnetic field limit, a new set of antidot edge magnetoplasmons is obtained, corresponding to density oscillations circulating along the inner boundary of the ring and whose frequency increases with magnetic field. The associated self-induced distribution of densities and currents are presented, together with an analysis of the size dependence of these perimeter waves.
NASA Astrophysics Data System (ADS)
Song, R.; Zhong, Y. C.; Noble, C. J.; Pilbrow, J. R.; Hutton, D. R.
1995-05-01
A new six-pulse two-dimensional electron spin echo envelope modulation (2D ESEEM) method is introduced. It is based on augmenting the five-pulse sequence proposed by Gemperle, Schweiger and Ernst with an additional π pulse. It is shown that the intensity ratio of cross peaks to diagonal peaks is significantly enhanced compared with the four-pulse 2D ESEEM method of Höfer, Grupp, Nebenführ and Mehring. A single crystal of KCl doped with Fe(CN) 63- is used to demonstrate this new 2D ESEEM spectroscopy together with an effective phase cycling scheme.
Shevyrin, A A; Pogosov, A G; Bakarov, A K; Shklyaev, A A
2016-07-01
The electrical response of a two-dimensional electron gas to vibrations of a nanomechanical cantilever containing it is studied. Vibrations of perpendicularly oriented cantilevers are experimentally shown to oppositely change the conductivity near their bases. This indicates the piezoelectric nature of electromechanical coupling. A physical model is developed, which quantitatively explains the experiment. It shows that the main origin of the conductivity change is a rapid change in the mechanical stress on the boundary between suspended and nonsuspended areas, rather than the stress itself.
NASA Astrophysics Data System (ADS)
Shevyrin, A. A.; Pogosov, A. G.; Bakarov, A. K.; Shklyaev, A. A.
2016-07-01
The electrical response of a two-dimensional electron gas to vibrations of a nanomechanical cantilever containing it is studied. Vibrations of perpendicularly oriented cantilevers are experimentally shown to oppositely change the conductivity near their bases. This indicates the piezoelectric nature of electromechanical coupling. A physical model is developed, which quantitatively explains the experiment. It shows that the main origin of the conductivity change is a rapid change in the mechanical stress on the boundary between suspended and nonsuspended areas, rather than the stress itself.
NASA Astrophysics Data System (ADS)
Shevyrin, A. A.; Pogosov, A. G.; Bakarov, A. K.; Shklyaev, A. A.
2017-06-01
A physical model describing the piezoelectric-effect-mediated influence of bending of a thin suspended cantilever with a two-dimensional electron gas on the conductivity is proposed. The model shows that the conductivity change is almost entirely caused by the rapid change in mechanical stress near the boundary of suspended and non-suspended areas, rather than by the stress itself. An experiment confirming that the electromechanical coupling is associated with the piezoelectric effect is performed. The experimentally measured conductance sensitivity to the cantilever’s vibrations agree with the developed physical model.
NASA Astrophysics Data System (ADS)
Wu, Mingyu; Lu, Quanming; Huang, Can; Wang, Shui
2010-10-01
A multidimensional electron phase-space hole (electron hole) is considered to be unstable to the transverse instability. In this paper, we perform two-dimensional (2D) particle-in-cell (PIC) simulations to study the evolution of electron holes at different plasma conditions; we find that the evolution is determined by combined actions between the transverse instability and the stabilization by the background magnetic field. In very weakly magnetized plasma (Ωe $\\ll$ ωpe, where Ωe and ωpe are the electron gyrofrequency and plasma frequency, respectively), the transverse instability dominates the evolution of the electron holes. The parallel cut of the perpendicular electric field (E$\\perp$) has bipolar structures, accompanied by the kinking of the electron holes. Such structures last for only tens of electron plasma periods. With the increase of the background magnetic field, the evolution of the electron holes becomes slower. The bipolar structures of the parallel cut of E$\\perp$ in the electron holes can evolve into unipolar structures. In very strongly magnetized plasma (Ωe $\\gg$ ωpe), the unipolar structures of the parallel cut of E$\\perp$ can last for thousands of electron plasma periods. At the same time, the perpendicular electric field (E$\\perp$) in the electron holes can also influence electron trajectories passing through the electron holes, which results in variations of charge density along the direction perpendicular to the background magnetic field outside of the electron holes. When the amplitude of the electron hole is sufficiently strong, streaked structures of E$\\perp$ can be formed outside of the electron holes, which then emit electrostatic whistler waves because of the interactions between the streaked structures of E$\\perp$ and vibrations of the kinked electron holes.
NASA Astrophysics Data System (ADS)
Wu, M.; Lu, Q.; Huang, C.; Wang, S.
2010-12-01
A multi-dimensional electron phase-space hole (electron hole) is considered to be unstable to the transverse instability. In this paper, we perform two-dimensional (2D) particle-in-cell (PIC) simulations to study the evolution of electron holes at different plasma conditions, and find that the evolution is determined by combined actions between the transverse instability and the stabilization of the background magnetic field. In very weakly magnetized plasma (Ωe<<ωpe, where Ωe andωpe are the electron gyrofrequency and plasma frequency, respectively), the transverse instability dominates the evolution of the electron holes. Accompanied by the kinking of the electron holes, the parallel cut of the perpendicular electric field (E⊥) has bipolar structures. Such structures last for only tens of electron plasma periods. With the increase of the background magnetic field, the evolution of the electron holes becomes slower. The bipolar structures of the parallel cut of E⊥ in the electron holes can evolve into unipolar structures. In very strongly magnetized plasma (Ωe>>ωpe), the unipolar structures of the parallel cut of E⊥ can last for thousands of electron plasma periods. At the same time, the perpendicular electric field (E⊥) in electron holes can also influence electron trajectories passing through the electron holes, which results in the variations of charge density along the direction perpendicular to the background magnetic field outside of the electron holes. When the amplitude of the electron hole is sufficiently strong, streaked structures of E⊥ can be formed outside of the electron holes, which then emit electrostatic whistler waves due to the interactions between the streaked structures of E⊥ and vibrations of the kinked electron hole.
Camargo, Franco V A; Anderson, Harry L; Meech, Stephen R; Heisler, Ismael A
2015-01-08
In this work we present experimental and calculated two-dimensional electronic spectra for a 5,15-bisalkynyl porphyrin chromophore. The lowest energy electronic Qy transition couples mainly to a single 380 cm(-1) vibrational mode. The two-dimensional electronic spectra reveal diagonal and cross peaks which oscillate as a function of population time. We analyze both the amplitude and phase distribution of this main vibronic transition as a function of excitation and detection frequencies. Even though Feynman diagrams provide a good indication of where the amplitude of the oscillating components are located in the excitation-detection plane, other factors also affect this distribution. Specifically, the oscillation corresponding to each Feynman diagram is expected to have a phase that is a function of excitation and detection frequencies. Therefore, the overall phase of the experimentally observed oscillation will reflect this phase dependence. Another consequence is that the overall oscillation amplitude can show interference patterns resulting from overlapping contributions from neighboring Feynman diagrams. These observations are consistently reproduced through simulations based on third order perturbation theory coupled to a spectral density described by a Brownian oscillator model.
Quantum point contacts on two-dimensional electron gases with a strong spin-orbit coupling
NASA Astrophysics Data System (ADS)
Lee, Joon Sue; Pendaharkar, Mihir; Shojaei, Borzoyeh; McFadden, Anthony P.; Palmstrøm, Chris
Studies of electrical transport in one-dimensional semiconductors in a presence of a strong spin-orbit interaction are crucial not only for exploring the emergent phenomena, such as topological superconductivity, but also for potential spintronic applications by controlling of the electron spins. We investigate the electrical transport properties of one-dimensional confinement defined by electrostatic potentials on large area two-dimensional electron gases of InAs and InSb, which have a strong spin-orbit coupling. The high-quality InAs and InSb quantum wells are grown on antimonide buffers by molecular beam epitaxy, and the gate-tunable regions are created using Al2O3 or HfO2 gate dielectrics by atomic layer deposition. We will discuss the modulation of spin-orbit coupling in the two-dimensional electron gases and the spin-orbit-induced spin splitting by the split-gate quantum point contacts. This work was supported by Microsoft Research.
Observation of anomalous Hall effect in a non-magnetic two-dimensional electron system
NASA Astrophysics Data System (ADS)
Maryenko, D.; Mishchenko, A. S.; Bahramy, M. S.; Ernst, A.; Falson, J.; Kozuka, Y.; Tsukazaki, A.; Nagaosa, N.; Kawasaki, M.
2017-03-01
Anomalous Hall effect, a manifestation of Hall effect occurring in systems without time-reversal symmetry, has been mostly observed in ferromagnetically ordered materials. However, its realization in high-mobility two-dimensional electron system remains elusive, as the incorporation of magnetic moments deteriorates the device performance compared to non-doped structure. Here we observe systematic emergence of anomalous Hall effect in various MgZnO/ZnO heterostructures that exhibit quantum Hall effect. At low temperatures, our nominally non-magnetic heterostructures display an anomalous Hall effect response similar to that of a clean ferromagnetic metal, while keeping a large anomalous Hall effect angle θAHE~20°. Such a behaviour is consistent with Giovannini-Kondo model in which the anomalous Hall effect arises from the skew scattering of electrons by localized paramagnetic centres. Our study unveils a new aspect of many-body interactions in two-dimensional electron systems and shows how the anomalous Hall effect can emerge in a non-magnetic system.
NASA Astrophysics Data System (ADS)
Richter, Nils; Hernandez, Yenny R.; Schweitzer, Sebastian; Kim, June-Seo; Patra, Ajit Kumar; Englert, Jan; Lieberwirth, Ingo; Liscio, Andrea; Palermo, Vincenzo; Feng, Xinliang; Hirsch, Andreas; Müllen, Klaus; Kläui, Mathias
2017-02-01
We report on the electronic properties of turbostratic graphitic microdisks, rotationally stacked systems of graphene layers, where interlayer twisting leads to electronic decoupling resulting in charge-transport properties that retain the two dimensionality of graphene, despite the presence of a large number of layers. A key fingerprint of this reduced dimensionality is the effect of weak charge-carrier localization that we observe at low temperatures. The disks' resistivity measured as a function of magnetic field changes its shape from parabolic at room temperature to linear at a temperature of 2.7 K indicating further this type of two-dimensional transport. Compared to Bernal stacked graphite, turbostratic graphene is mechanically much more robust, and it exhibits almost negligible variations of the electrical properties between samples. We demonstrate a reproducible resistivity of (3.52 ±0.11 ) ×10-6 Ω m , which is a particularly low value for graphitic systems. Combined with large charge-carrier mobilities demonstrated at low temperatures of up to 7 ×104 cm2/V s , typical for carbon-based crystalline conductors, such disks are highly interesting from a scientific point of view and, in particular, for applications where robust electronic properties are required.
Hybrid two-dimensional electronic systems and other applications of sp-2 bonded light elements
NASA Astrophysics Data System (ADS)
Kessler, Brian Maxwell
The field-effect is a cornerstone of modern technology lying at the heart of transistors in consumer electronics. Experimentally, it allows one to continuously vary the carrier concentration in a material while studying its properties. The recent isolation of graphene, the first truly two-dimensional crystal, allows application of the field effect to a much wider range of physical situations. In the first part of the thesis, we investigate hybrid materials formed by coupling metals to the two-dimensional electron gas (2DEG) in graphene. We couple superconducting materials to the graphene sheet by cluster deposition. This material displays a superconducting phase whose properties are tuned by the carrier density via the field effect. The transition temperature is well-described by Berezinskii-Kosterlitz-Thouless vortex unbinding. The ground state properties show interesting effects due to the distribution of cluster spacings. Observations related to other hybrid electronic systems including ferromagnets and normal metals are presented. The second part of this thesis involves energy applications of light element materials. The mechanisms affecting coating of carbon nanotubes using atomic layer deposition is developed and applied to photovoltaic systems. The gas adsorption properties of activated boron nitride are investigated and the relative influence of surface area and hydrogen binding affinity is elaborated. The third part of this thesis explores electromechanical properties of suspended graphene membranes. We investigate buckling and strain in exfoliated graphene membranes as well as their deformation under an applied gate potential.
Observation of anomalous Hall effect in a non-magnetic two-dimensional electron system
Maryenko, D.; Mishchenko, A. S.; Bahramy, M. S.; Ernst, A.; Falson, J.; Kozuka, Y.; Tsukazaki, A.; Nagaosa, N.; Kawasaki, M.
2017-01-01
Anomalous Hall effect, a manifestation of Hall effect occurring in systems without time-reversal symmetry, has been mostly observed in ferromagnetically ordered materials. However, its realization in high-mobility two-dimensional electron system remains elusive, as the incorporation of magnetic moments deteriorates the device performance compared to non-doped structure. Here we observe systematic emergence of anomalous Hall effect in various MgZnO/ZnO heterostructures that exhibit quantum Hall effect. At low temperatures, our nominally non-magnetic heterostructures display an anomalous Hall effect response similar to that of a clean ferromagnetic metal, while keeping a large anomalous Hall effect angle θAHE≈20°. Such a behaviour is consistent with Giovannini–Kondo model in which the anomalous Hall effect arises from the skew scattering of electrons by localized paramagnetic centres. Our study unveils a new aspect of many-body interactions in two-dimensional electron systems and shows how the anomalous Hall effect can emerge in a non-magnetic system. PMID:28300133
NASA Astrophysics Data System (ADS)
Lu, Q.; Wu, M.; Huang, C.; Wang, S.
2011-12-01
A multi-dimensional electron phase-space hole (electron hole) is considered to be unstable to the transverse instability. We perform two-dimensional (2D) particle-in-cell (PIC) simulations to study the evolution of electron holes at different plasma conditions; we find that the evolution is determined by combined actions between the transverse instability and the stabilization by the ackground magnetic field. In very weakly magnetized plasma, the transverse instability dominates the evolution of the electron holes. The parallel cut of the perpendicular electric field has bipolar structures, accompanied by the kinking of the electron holes. Such structures last for only tens of electron plasma periods. With the increase of the background magnetic field, the evolution of the electron holes becomes slower. The bipolar structures of the parallel cut of the perpendicular electric field in the electron holes can evolve into unipolar structures. In very strongly magnetized plasma, the unipolar structures of the parallel cut of the perpendicular electric field can last for thousands of electron plasma periods. At the same time, the perpendicular electric field in the electron holes can also influence electron trajectories passing through the electron holes, which results in variations of charge density along the direction perpendicular to the background magnetic field outside of the electron holes. When the amplitude of the electron hole is sufficiently strong, streaked structures of the perpendicular electric field can be formed outside of the electron holes, which then emit electrostatic whistler waves because of the interactions between the streaked structures of the perpendicular electric field and vibrations of the kinked electron holes.
Dynamical correlation effects on structure factor of spin-polarized two-dimensional electron gas
Singh, Gurvinder; Moudgil, R. K.; Kumar, Krishan; Garg, Vinayak
2015-06-24
We report a theoretical study on static density structure factor S(q) of a spin-polarized two-dimensional electron gas over a wide range of electron number density r{sub s}. The electron correlations are treated within the dynamical version of the self-consistent mean-field theory of Singwi, Tosi, Land, and Sjolander, the so-called qSTLS approach. The calculated S(q) exhibits almost perfect agreement with the quantum Monte Carlo simulation data at r{sub s}=1. However, the extent of agreement somewhat diminishes with increasing r{sub s}, particularly for q around 2k{sub F}. Seen in conjunction with the success of qSTLS theory in dealing with correlations in the unpolarized phase, our study suggests that the otherwise celebrated qSTLS theory is not that good in treating the like-spin correlations.
Two-dimensional electron gas in GaAs/SrHfO3 heterostructure
NASA Astrophysics Data System (ADS)
Wang, Jianli; Yuan, Mengqi; Tang, Gang; Li, Huichao; Zhang, Junting; Guo, Sandong
2016-06-01
The III-V/perovskite-oxide system can potentially create new material properties and new device applications by combining the rich properties of perovskite-oxides together with the superior optical and electronic properties of III-Vs. The structural and electronic properties of the surface and interface are studied using first-principles calculations for the GaAs/SrHfO3 heterostructure. We investigate the specific adsorption sites and the atomic structure at the initial growth stage of GaAs on the SrHfO3 (001) substrate. Ga and As adsorption atoms preferentially adsorb at the top sites of oxygen atoms under different coverage. The energetically favorable interfaces are presented among the atomic arrangements of the GaAs/SrHfO3 interfaces. Our calculations predict the existing of the two-dimensional electron gas in the GaAs/SrHfO3 heterostructure.
NASA Astrophysics Data System (ADS)
Albert, Julian; Falge, Mirjam; Gomez, Sandra; Sola, Ignacio R.; Hildenbrand, Heiko; Engel, Volker
2015-07-01
We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.
Anisotropic two-dimensional electron gas at SrTiO3(110)
Wang, Zhiming; Zhong, Zhicheng; Hao, Xianfeng; Gerhold, Stefan; Stöger, Bernhard; Schmid, Michael; Sánchez-Barriga, Jaime; Varykhalov, Andrei; Franchini, Cesare; Held, Karsten; Diebold, Ulrike
2014-01-01
Two-dimensional electron gases (2DEGs) at oxide heterostructures are attracting considerable attention, as these might one day substitute conventional semiconductors at least for some functionalities. Here we present a minimal setup for such a 2DEG––the SrTiO3(110)-(4 × 1) surface, natively terminated with one monolayer of tetrahedrally coordinated titania. Oxygen vacancies induced by synchrotron radiation migrate underneath this overlayer; this leads to a confining potential and electron doping such that a 2DEG develops. Our angle-resolved photoemission spectroscopy and theoretical results show that confinement along (110) is strikingly different from the (001) crystal orientation. In particular, the quantized subbands show a surprising “semiheavy” band, in contrast with the analog in the bulk, and a high electronic anisotropy. This anisotropy and even the effective mass of the (110) 2DEG is tunable by doping, offering a high flexibility to engineer the properties of this system. PMID:24591596
Rajan, Arunkumar Chitteth; Rezapour, Mohammad Reza; Yun, Jeonghun; Cho, Yeonchoo; Cho, Woo Jong; Min, Seung Kyu; Lee, Geunsik; Kim, Kwang S
2014-02-25
Laser-driven molecular spectroscopy of low spatial resolution is widely used, while electronic current-driven molecular spectroscopy of atomic scale resolution has been limited because currents provide only minimal information. However, electron transmission of a graphene nanoribbon on which a molecule is adsorbed shows molecular fingerprints of Fano resonances, i.e., characteristic features of frontier orbitals and conformations of physisorbed molecules. Utilizing these resonance profiles, here we demonstrate two-dimensional molecular electronics spectroscopy (2D MES). The differential conductance with respect to bias and gate voltages not only distinguishes different types of nucleobases for DNA sequencing but also recognizes methylated nucleobases which could be related to cancerous cell growth. This 2D MES could open an exciting field to recognize single molecule signatures at atomic resolution. The advantages of the 2D MES over the one-dimensional (1D) current analysis can be comparable to those of 2D NMR over 1D NMR analysis.
Quantum pump effect induced by a linearly polarized microwave in a two-dimensional electron gas.
Song, Juntao; Liu, Haiwen; Jiang, Hua
2012-05-30
A quantum pump effect is predicted in an ideal homogeneous two-dimensional electron gas (2DEG) that is normally irradiated by linearly polarized microwaves (MW). Without considering effects from spin-orbital coupling or the magnetic field, it is found that a polarized MW can continuously pump electrons from the longitudinal to the transverse direction, or from the transverse to the longitudinal direction, in the central irradiated region. The large pump current is obtained for both the low frequency limit and the high frequency case. Its magnitude depends on sample properties such as the size of the radiated region, the power and frequency of the MW, etc. Through the calculated results, the pump current should be attributed to the dominant photon-assisted tunneling processes as well as the asymmetry of the electron density of states with respect to the Fermi energy.
Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko; Engel, Volker; Gomez, Sandra; Sola, Ignacio R.
2015-07-28
We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.
NASA Astrophysics Data System (ADS)
Andreev, Pavel A.
2017-02-01
The hydrodynamics analysis of waves in a two-dimensional degenerate electron gas with a separate spin evolution is presented. The transverse electric field is included along with the longitudinal electric field. The Coulomb exchange interaction is included in the analysis. In contrast with the three-dimensional plasma-like media, the contribution of the transverse electric field is rather small, but it decreases the frequency of the extraordinary wave at small wave vectors. We show the decrease in the frequency of both the extraordinary (Langmuir) wave and the spin-electron acoustic wave due to the exchange interaction. Moreover, spin-electron acoustic waves have negative dispersion at the relatively large spin-polarization. The corresponding dispersion dependencies are presented and analyzed.
Probing Electron Correlations in Molecules by Two-Dimensional Coherent Optical Spectroscopy
Li, Zhenyu; Abramavicius, Darius; Mukamel, Shaul
2010-01-01
The nonlinear optical signal generated in phenol by three femtosecond pulses with wavevectors k1, k2, and k3 in the phase-matching direction k1 + k2 − k3 is simulated. This two-dimensional coherent spectroscopy (2DCS) signal has a rich pattern containing information on double-excitation states. The signal vanishes for uncorrelated electrons due to interference among quantum pathways and, thus, provides direct signatures of correlated many-electron wavefunctions. This is illustrated by the very different 2DCS signals predicted by two levels of electronic structure calculations: state-averaged complete active space self-consistent field (SA-CASSCF) and multistate multiconfigurational second-order perturbation theory (MS-CASPT2). PMID:18288841
Kuchinskii, E. Z. Nekrasov, I. A. Sadovskii, M. V.
2012-04-15
We theoretically study the electronic structure (spectral functions and Fermi surfaces) of incommensurate pseudogap and charge density wave (CDW) and commensurate CDW phases of quasi-two-dimensional diselenides 2H-TaSe{sub 2} and 2H-NbSe{sub 2}. The incommensurate pseudogap regime is described within the scenario based on short-range-order CDW fluctuations, considered within the static Gaussian random field model. In contrast, e.g., to high-T{sub c} cuprates, layered dichalcogenides have several different CDW scattering vectors and an electronic spectrum with two bands at the Fermi level. For this, we present a theoretical background for the description of multiple scattering processes within a multiple-band electronic spectrum. Theoretical spectral functions and Fermi surfaces thus obtained are compared with recent ARPES experimental data, demonstrating rather good qualitative agreement.
Albert, Julian; Falge, Mirjam; Gomez, Sandra; Sola, Ignacio R; Hildenbrand, Heiko; Engel, Volker
2015-07-28
We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.
NASA Astrophysics Data System (ADS)
Ogilvie, Jennifer
2010-03-01
Two-dimensional (2D) Fourier transform electronic spectroscopy has recently emerged as a powerful tool for the study of energy transfer in complex condensed-phase systems. Its experimental implementation is challenging but can be greatly simplified by implementing a pump-probe geometry, where the two phase-stable collinear pump pulses are created with an acousto-optic pulse-shaper. This approach also allows the use of a continuum probe pulse, expanding the available frequency range of the detection axis and allowing studies of energy transfer and electronic coupling over a broad range of frequencies. We discuss several benefits of 2D electronic spectroscopy and present 2D data on the D1-D2 reaction center complex of Photosystem II from spinach. We discuss the ability of 2D spectroscopy to distinguish between current models of energy and charge transfer in this system.
Two-dimensional electron gas in GaAs/SrHfO{sub 3} heterostructure
Wang, Jianli; Yuan, Mengqi; Tang, Gang; Li, Huichao; Zhang, Junting; Guo, Sandong
2016-06-21
The III-V/perovskite-oxide system can potentially create new material properties and new device applications by combining the rich properties of perovskite-oxides together with the superior optical and electronic properties of III-Vs. The structural and electronic properties of the surface and interface are studied using first-principles calculations for the GaAs/SrHfO{sub 3} heterostructure. We investigate the specific adsorption sites and the atomic structure at the initial growth stage of GaAs on the SrHfO{sub 3} (001) substrate. Ga and As adsorption atoms preferentially adsorb at the top sites of oxygen atoms under different coverage. The energetically favorable interfaces are presented among the atomic arrangements of the GaAs/SrHfO{sub 3} interfaces. Our calculations predict the existing of the two-dimensional electron gas in the GaAs/SrHfO{sub 3} heterostructure.
Single-electron tunneling by using a two-dimensional Corbino nano-scale disk
Taira, H.; Suzuki, A.
2015-09-15
We investigate a single-electron tunneling effect of two-dimensional electron systems formed in the Corbino nano-scale disk. By controlling bias and gate voltages, the transistor using this effect is able to control electrons one by one. The present study focuses on the electronic transmission probability affected by the charging energy in the Corbino-type single-electron transistor. We reformulated the Schrödinger equation for an electron in the Corbino disk in order to consider the effect of the curvature of the disk, taking into account the charging effect on the performance of the Corbino-type single-electron transistor. We formulated the transmission probability of the electron by applying the Wentzel-Kramers-Brillouin (WKB) method. The electron’s energy in the formula of the transmission probability is then associated to the energy eigenvalue of the Schrödinger equation for an electron in an effective confining potential. We numerically solved the Schrödinger equation to evaluate the transmission probability. Our results show that the transmission probability strongly depends on the charging energy stored in the Corbino disk depending on its size.
Rashba diamond in an Aharonov-Casher ring
NASA Astrophysics Data System (ADS)
Wang, Xuhui; Manchon, Aurelien
2011-10-01
Spin interference due to Rashba spin-orbit interaction (SOI) in a ballistic two-dimensional electron gas ring conductor submitted to a bias voltage is investigated theoretically. We calculate the scattering matrices and differential conductance with lead-ring junction coupling as an adjustable parameter. Due to the interference of electronic waves traversing the ring, the differential conductance modulated by both bias voltage and SOI exhibits a diamond-shaped pattern, thus termed as Rashba diamond. This feature offers a supplementary degree of freedom to manipulate phase interference.
NASA Astrophysics Data System (ADS)
Cui, Juan; Yang, Yong-Hong; Wang, Jun
2009-11-01
We report a theoretic study on modulating the spin polarization of charge current in a mesoscopic four-terminal device of cross structure by using the inverse spin hall effect. The scattering region of device is a two-dimensional electron gas (2DEG) with Rashba spin orbital interaction (RSOI), one of lead is ferromagnetic metal and other three leads are spin-degenerate normal metals. By using Landauer-Büttiker formalism, we found that when a longitudinal charge current flows through 2DEG scattering region from FM lead by external bias, the transverse current can be either a pure spin current or full-polarized charge current due to the combined effect of spin hall effect and its inverse process, and the polarization of this transverse current can be easily controlled by several device parameters such as the Fermi energy, ferromagnetic magnetization, and the RSOI constant. Our method may pave a new way to control the spin polarization of a charge current.
NASA Astrophysics Data System (ADS)
Khan, Mahtab; Erementchouk, Mikhail; Leuenberger, Michael
Defects play an important role in tailoring electronic and optical properties of two-dimensional monolayer transition metal dichalcogenides (TMDCs). Recently it has been shown that the presence of vacancy defects (VDs) in two-dimensional monolayer MoS_2 induces localized states which give rise to extra resonance peaks in both in-plane χ∥ and out-of-plane χ⊥ susceptibilities.1 In-plane χ∥ and out-of-plane χ⊥ susceptibilities are related to the presence of even and odd states with respect to the Mo plane, respectively1. Moreover, monolayer TMDCs have a large spin orbit coupling (SOC), originating from d-orbitals of heavy transition metals and being of the order of a few 100 meV. We present a more general picture of the electronic and optical properties of defected monolayer TMDCs. In particular, we consider MoS2, MoSe2, WS2 and WSe2 with three types of VDs (i) Mo, W vacancy, (ii) S2, Se2 vacancy, and (iii) S, Se vacancy. In addition, we investigate the effects of SOC on the band structures and the optical susceptibilities of VDs in TMDCs. 1. Mikhail Erementchouk, M. A. Khan, and Michael N. Leuenberger, Phys. Rev. B 92, 121401(R) (2015).
Two-dimensional group-IV monochalcogenides: structural, electronic and optical properties
NASA Astrophysics Data System (ADS)
Gomes, Lidia; Carvalho, Alexandra; Castro Neto, A. H.
Two-dimensional materials have attracted a massive attention of the scientific and industrial communities due to their unusual and interesting properties. The layered group-IV monochalcogenides-SnS, SnSe, GeS and GeSe- has gained attention as a promising group with potentially useful applications in diverse fields. The bulk SnS, a naturally occurring mineral, has been considered as an alternative to be used in film PV cells, due to its electronic and optical properties. We use first principles calculations to explore structural, electronic and optical properties of this group, with focus in their two-dimensional forms. We show that all those binary compounds are semiconducting, with bandgap energies covering most of the visible range. They have multiple valleys in the valence and conduction bands, with spin-orbit splitting of the order of 19-86 meV. An enhanced static dielectric permittivity is found for the monolayers. Structural analysis shows that the 2D form of these materials presents very high piezoelectric constants, exceeding values recently observed for other 2D-systems. The existence of a negative Poisson ratio is predicted for the GeS compound. We acknowledge the NRF-CRP award ``Novel 2D materials with tailored properties: beyond graphene'' (R-144-000-295-281).
Torres, Manuel; Kunold, Alejandro
2006-04-26
In this work we study the microwave photoconductivity of a two-dimensional electron system (2DES) in the presence of a magnetic field and a two-dimensional modulation (2D). The model includes the microwave and Landau contributions in a non-perturbative exact way; the periodic potential is treated perturbatively. The Landau-Floquet states provide a convenient base with respect to which the lattice potential becomes time dependent, inducing transitions between the Landau-Floquet levels. Based on this formalism, we provide a Kubo-like formula that takes into account the oscillatory Floquet structure of the problem. The total longitudinal conductivity and resistivity exhibit strong oscillations, determined by ϵ = ω/ω(c), with ω the radiation frequency and ω(c) the cyclotron frequency. The oscillations follow a pattern with minima centred at [Formula: see text], and maxima centred at [Formula: see text], where j = 1,2,3..., δ∼1/5 is a constant shift and l is the dominant multipole contribution. Negative resistance states (NRSs) develop as the electron mobility and the intensity of the microwave power are increased. These NRSs appear in a narrow window region of values of the lattice parameter (a), around a∼l(B), where l(B) is the magnetic length. It is proposed that these phenomena may be observed in artificially fabricated arrays of periodic scatterers at the interface of ultraclean GaAs /Al(x)Ga(1-x)As heterostructures.
Electron counting and a large family of two-dimensional semiconductors
NASA Astrophysics Data System (ADS)
Miao, Maosheng; Botana, Jorge; Zurek, Eva; Liu, Jingyao; Yang, Wen
Two-dimensional semiconductors (2DSC) are currently the focus of many studies, thanks to their novel and superior transport properties that may greatly influence future electronic devices. The potential applications of 2DSCs range from low-dimensional electronics, topological insulators and vallytronics all the way to novel photolysis. However, compared with the conventional semiconductors that are comprised of main group elements and cover a large range of band gaps and lattice constants, the choice of 2D materials is very limited. In this work, we propose and demonstrate a large family of 2DSCs, all adopting the same structure and consisting of only main group elements. Using advanced density functional calculations, we demonstrate the attainability of these materials, and show that they cover a large range of lattice constants, band gaps and band edge states, making them good candidate materials for heterojunctions. This family of two dimensional materials may be instrumental in the fabrication of 2DSC devices that may rival the currently employed 3D semiconductors.
NASA Astrophysics Data System (ADS)
Moskalenko, S. A.; Liberman, M. A.; Moskalenko, E. S.; Dumanov, E. V.; Podlesny, I. V.
2013-08-01
The spontaneous breaking of the continuous symmetries of a two-dimensional electron-hole system in a strong magnetic field perpendicular to the plane leads to the formation of new ground states and determines the energy spectrum of collective elementary excitations that appear above these new ground states. In this review, the main attention is paid to the electron-hole system formed from coplanar magnetoexcitons under conditions of Bose-Einstein condensation in the ground state with the wave vector k = 0 taking into account the influence of excited Landau levels, when exciton-type elementary excitations coexist with plasmon-type oscillations. At the same time, the properties of a two-component system consisting of a two-dimensional electron gas and a two-dimensional hole gas spatially separated in a double quantum well under conditions of the fractional quantum Hall effect are of great interest, because these properties can affect the quantum states of magnetic excitons that are formed when the distance between the layers tends to zero. Bilayer electron systems are also considered under conditions of the fractional quantum Hall effect with the one-half filling factor for each layer and the total filling factor equal to unity for both layers. The coherence between the electron states in the two layers is equivalent to the formation of excitons in a macroscopic coherent state. This makes it possible to compare the energy spectrum of collective elementary excitations of Bose-Einstein condensed excitons under conditions of the quantum Hall effect and coplanar magnetoexcitons. The breaking of the global gauge symmetry or of the continuous rotational symmetry leads to the formation of a gapless spectrum of the Nambu-Goldstone type, whereas the breaking of the local gauge symmetry is accompanied by the appearance of a gap in the energy spectrum (Higgs phenomenon). These phenomena are equivalent to the formation of massless and massive particles in the relativistic
NASA Astrophysics Data System (ADS)
Hroblak, Erica E.; Principi, Alessandro; Zhao, Hui; Vignale, Giovanni
2017-08-01
We show that the negative electronic compressibility of two-dimensional electronic systems at sufficiently low density enables the generation of charge-density waves through the application of a uniform force field, provided no current is allowed to flow. The wavelength of the density oscillations is controlled by the magnitude of the (negative) screening length, and their amplitude is proportional to the applied force. Both are electrically tunable.
NASA Astrophysics Data System (ADS)
Gökçek, N.
2017-08-01
The effect of Rashba spin-orbit interaction on the electronic spectrum of gapped graphene with a hydrogenic impurity in the presence of topological defects is analyzed analytically. Degenerate perturbation theory is used to investigate the dependence of electronic spectrum of gapped graphene on the strengths of impurity and Rashba spin-orbit coupling. The results show that, as the strength of Rashba spin-orbit coupling increases, pseudo-Zeeman splitting of energy levels induced by topological defects is enhanced. Therefore, it is possible to tune this pseudo-Zeeman splitting through the strength of Rashba spin-orbit coupling and of the strength of hydrogenic impurity.
Ho Park, Youn; Kim, Hyung-jun; Chang, Joonyeon; Hee Han, Suk; Eom, Jonghwa; Choi, Heon-Jin; Cheol Koo, Hyun
2013-12-16
The Rashba spin-orbit interaction effective field is always in the plane of the two-dimensional electron gas and perpendicular to the carrier wavevector but the direction of the Dresselhaus field depends on the crystal orientation. These two spin-orbit interaction parameters can be determined separately by measuring and analyzing the Shubnikov-de Haas oscillations for various crystal directions. In the InAs quantum well system investigated, the Dresselhaus term is just 5% of the Rashba term. The gate dependence of the oscillation patterns clearly shows that only the Rashba term is modulated by an external electric field.
Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas
NASA Astrophysics Data System (ADS)
Yang, Luyi
Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This thesis presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly suppressed
Two-body problem for two-dimensional electrons in the Bernervig-Hughes-Zhang model
NASA Astrophysics Data System (ADS)
Sablikov, Vladimir A.
2017-02-01
We study the two-body problem for two-dimensional electron systems in a symmetrized Bernevig-Hughes-Zhang model, which is widely used to describe topological and conventional insulators. The main result is that two interacting electrons can form bound states with the energy in the gap of the band spectrum. The pairing mechanism can be interpreted as the formation of a negative reduced effective mass of two electrons. The problem is complicated because the relative motion of the electrons is coupled to the center-of-mass motion. We consider the case of zero total momentum. Detail calculations are carried out for the repulsive interaction potential of steplike form. The states are classified according to their spin structure and two-particle basis functions that form a given bound state. We analyze the spectra and electronic structure of the bound states in the case of both topological and trivial phases and especially focus on effects originating from the band inversion and the coupling of the electron and hole bands. In the trivial phase and the topological phase with the large coupling parameter a , the bound state spectra are qualitatively similar. However, when a is less a certain value, the situation changes dramatically. In the topological phase, new states arise with a higher binding energy at lower interaction potential, which evidences that the band inversion can favor pairing the electrons.
Takahashi, Lauren; Takahashi, Keisuke
2017-03-27
An octagonal allotrope of two dimensional boron nitride is explored through first principles calculations. Calculations show that two dimensional octagonal boron nitride can be formed with a binding energy comparable to two dimensional hexagonal boron nitride. In addition, two dimensional octagonal boron nitride is found to have a band gap smaller than two dimensional hexagonal boron nitride, suggesting the possibility of semiconductive attributes. Two dimensional octagonal boron nitride also has the ability to layer through physisorption. Defects present within two dimensional octagonal boron nitride also lead toward the introduction of a magnetic moment through the absence of boron atoms. The presence of defects is also found to render both hexagonal and octagonal boron nitrides reactive against hydrogen, where greater reactivity is seen in the presence of nitrogen. Thus, two dimensional octagonal boron nitride is confirmed with potential to tailor properties and reactivity through lattice shape and purposeful introduction of defects.
Huard; Cox; Saminadayar; Arnoult; Tatarenko
2000-01-03
The dependence of the optical absorption spectrum of a semiconductor quantum well on two-dimensional electron concentration n(e) is studied using CdTe samples. The trion peak (X-) seen at low n(e) evolves smoothly into the Fermi edge singularity at high n(e). The exciton peak (X) moves off to high energy, weakens, and disappears. The X,X- splitting is linear in n(e) and closely equal to the Fermi energy plus the trion binding energy. For Cd0.998Mn0.002Te quantum wells in a magnetic field, the X,X- splitting reflects unequal Fermi energies for M = +/-1/2 electrons. The data are explained by Hawrylak's theory of the many-body optical response including spin effects.
Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas.
Smolka, Stephan; Wuester, Wolf; Haupt, Florian; Faelt, Stefan; Wegscheider, Werner; Imamoglu, Ataç
2014-10-17
Light-matter interaction has played a central role in understanding as well as engineering new states of matter. Reversible coupling of excitons and photons enabled groundbreaking results in condensation and superfluidity of nonequilibrium quasiparticles with a photonic component. We investigated such cavity-polaritons in the presence of a high-mobility two-dimensional electron gas, exhibiting strongly correlated phases. When the cavity was on resonance with the Fermi level, we observed previously unknown many-body physics associated with a dynamical hole-scattering potential. In finite magnetic fields, polaritons show distinct signatures of integer and fractional quantum Hall ground states. Our results lay the groundwork for probing nonequilibrium dynamics of quantum Hall states and exploiting the electron density dependence of polariton splitting so as to obtain ultrastrong optical nonlinearities. Copyright © 2014, American Association for the Advancement of Science.
Bizimana, Laurie A; Brazard, Johanna; Carbery, William P; Gellen, Tobias; Turner, Daniel B
2015-10-28
Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.
Denteneer, P J H; Scalettar, R T
2003-06-20
The effect of a Zeeman magnetic field coupled to the spin of the electrons on the conducting properties of the disordered Hubbard model is studied. Using the determinant quantum Monte Carlo method, the temperature- and magnetic-field-dependent conductivity is calculated, as well as the degree of spin polarization. We find that the Zeeman magnetic field suppresses the metallic behavior present for certain values of interaction and disorder strength and is able to induce a metal-insulator transition at a critical field strength. It is argued that the qualitative features of magnetoconductance in this microscopic model containing both repulsive interactions and disorder are in agreement with experimental findings in two-dimensional electron and hole gases in semiconductor structures.
Bizimana, Laurie A.; Brazard, Johanna; Carbery, William P.; Gellen, Tobias; Turner, Daniel B.
2015-10-28
Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.
Terahertz Radiation Heterodyne Detector Using Two-Dimensional Electron Gas in a GaN Heterostructure
NASA Technical Reports Server (NTRS)
Karasik, Boris S.; Gill, John J.; Mehdi, Imran; Crawford, Timothy J.; Sergeev, Andrei V.; Mitin, Vladimir V.
2012-01-01
High-resolution submillimeter/terahertz spectroscopy is important for studying atmospheric and interstellar molecular gaseous species. It typically uses heterodyne receivers where an unknown (weak) signal is mixed with a strong signal from the local oscillator (LO) operating at a slightly different frequency. The non-linear mixer devices for this frequency range are unique and are not off-the-shelf commercial products. Three types of THz mixers are commonly used: Schottky diode, superconducting hot-electron bolometer (HEB), and superconductor-insulation-superconductor (SIS) junction. A HEB mixer based on the two-dimensional electron gas (2DEG) formed at the interface of two slightly dissimilar semiconductors was developed. This mixer can operate at temperatures between 100 and 300 K, and thus can be used with just passive radiative cooling available even on small spacecraft.
Energy Transfer Observed in Live Cells Using Two-Dimensional Electronic Spectroscopy
Dahlberg, Peter D.; Fidler, Andrew F.; Caram, Justin R.; Long, Phillip D.; Engel, Gregory S.
2013-01-01
Two-dimensional electronic spectroscopy (2DES) elucidates electronic structure and dynamics on a femtosecond time scale and has proven to be an incisive tool for probing congested linear spectra of biological systems. However, samples that scatter light intensely frustrate 2DES analysis, necessitating the use of isolated protein chromophore complexes when studying photosynthetic energy transfer processes. We present a method for conducting 2DES experiments that takes only seconds to acquire thousands of 2DES spectra and permits analysis of highly scattering samples, specifically whole cells of the purple bacterium Rhodobacter sphaeroides. These in vivo 2DES experiments reveal similar timescales for energy transfer within the antennae complex (light harvesting complex 2, LH2) both in the native photosynthetic membrane environment and in isolated detergent micelles. PMID:24478821
Evidence for Two Different Solid Phases of Two-Dimensional Electrons in High Magnetic Fields
NASA Astrophysics Data System (ADS)
Chen, Yong P.; Lewis, R. M.; Engel, L. W.; Tsui, D. C.; Ye, P. D.; Wang, Z. H.; Pfeiffer, L. N.; West, K. W.
2004-11-01
We have observed two different rf resonances in the frequency dependent real diagonal conductivity of very high quality two-dimensional electron systems in the high magnetic field insulating phase and interpret them as coming from two different pinned electron solid phases (labeled as “A” and “B”). The “A” resonance is observable for Landau level filling ν<2/9 [reentrant around the ν=1/5 fractional quantum Hall effect (FQHE)] and then crosses over to the different “B” resonance which dominates at sufficiently low ν. Moreover, the “A” resonance is found to show dispersion with respect to the size of the transmission line, indicating that the “A” phase has a large correlation length. We suggest that quantum correlations such as those responsible for FQHE may play an important role in giving rise to such different solids.
Lyo, Sungkwun K.; Pan, Wei
2014-08-07
In this paper, we study the Bloch oscillations of a two-dimensional electron gas with a strong periodic potential-modulation and miniband transport along the field at low temperatures, assuming a free motion in the transverse direction. The dependence of the current on the field, the electron density, and the temperature is investigated by using a relaxation-time approximation for inelastic scattering. Moreover, for a fixed total scattering rate, the field dependence of the current is sensitive to the ratio of the elastic and inelastic scattering rates in contrast with the recent result of a multiband but otherwise similar model with a weakmore » potential modulation.« less
NASA Astrophysics Data System (ADS)
Lee, H.; Campbell, N.; Ryu, S.; Chang, W.; Irwin, J.; Lindemann, S.; Mahanthappa, M. K.; Rzchowski, M. S.; Eom, C. B.
2016-11-01
Reversible control over the electrical properties of the two-dimensional electron gas (2DEG) in oxide heterostructures is a key capability enabling practical applications. Herein, we report an efficient method to reversibly tune the charge carrier density of the 2DEG by surface modification. We demonstrate both increasing and decreasing the carrier density of the LaAlO3/SrTiO3 2DEG interface via application of functional phosphonic acids with molecular dipoles pointing either toward or away from the interface, respectively. In addition, in the case of the enhanced 2DEG, we recovered the initial conduction properties by exposing the samples to a basic solution. The tuning processes were highly reversible over repetitive cycles. These results reveal that the surface modification is an efficient way to tune the carrier density of 2DEG in oxide heterostructures. This simple chemical approach offers a vast range of fabrication possibilities in versatile electronic device applications.
Two-Dimensional Electronic-Vibrational Spectroscopy of Chlorophyll a and b.
Lewis, Nicholas H C; Fleming, Graham R
2016-03-03
We present two-dimensional electronic-vibrational (2DEV) spectra of isolated chlorophyll a and b in deuterated ethanol. We excite the Q-band electronic transitions and measure the effects on the carbonyl and C ═ C double-bond stretch region of the infrared spectrum. With the aid of density functional theory calculations, we provide assignments for the major features of the spectrum. We show how the 2DEV spectra can be used to readily distinguish different solvation states of the chlorophyll, with features corresponding to the minority pentacoordinate magnesium (Mg) species being resolved along each dimension of the 2DEV spectra from the dominant hexacoordinate Mg species. These assignments represent a crucial first step toward the application of 2DEV spectroscopy to chlorophyll-containing pigment-protein complexes.
Energy Transfer Observed in Live Cells Using Two-Dimensional Electronic Spectroscopy.
Dahlberg, Peter D; Fidler, Andrew F; Caram, Justin R; Long, Phillip D; Engel, Gregory S
2013-10-11
Two-dimensional electronic spectroscopy (2DES) elucidates electronic structure and dynamics on a femtosecond time scale and has proven to be an incisive tool for probing congested linear spectra of biological systems. However, samples that scatter light intensely frustrate 2DES analysis, necessitating the use of isolated protein chromophore complexes when studying photosynthetic energy transfer processes. We present a method for conducting 2DES experiments that takes only seconds to acquire thousands of 2DES spectra and permits analysis of highly scattering samples, specifically whole cells of the purple bacterium Rhodobacter sphaeroides. These in vivo 2DES experiments reveal similar timescales for energy transfer within the antennae complex (light harvesting complex 2, LH2) both in the native photosynthetic membrane environment and in isolated detergent micelles.
Current switching of electronic structures in two-dimensional 1 T -Ta S2 crystals
NASA Astrophysics Data System (ADS)
Yoshida, Masaro; Gokuden, Takashi; Suzuki, Ryuji; Nakano, Masaki; Iwasa, Yoshihiro
2017-03-01
We report that a high electric field and current triggers the switching of multiple states in two-dimensional (2D) crystals of 1 T -Ta S2 , accompanying a metamorphosis of the electronic structure. We fabricated four-terminal devices of nanometer-thick crystals of 1 T -Ta S2 with charge-density-wave (CDW) phases. By applying in-plane electric fields and concomitantly injecting currents, we realized nonvolatile switching among normal metals, Mott insulators, and thermally inaccessible semimetals. The field and current not only interact with the CDW but also generate Joule heat, and both effects contribute to the switching. The results indicate the potential existence of multiple electronic states accessible only in 2D crystals.
Zero-field thermopower of a thin heterostructure membrane with a two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Schmidt, M.; Schneider, G.; Heyn, Ch.; Stemmann, A.; Hansen, W.
2012-02-01
We study the low-temperature thermopower of micrometer-sized free-standing membranes containing a two-dimensional electron system. Suspended membranes of 320 nm thickness, including a high-electron-mobility structure in the Hall bar geometry of 34μm length are prepared from GaAs/AlGaAs heterostructures grown by molecular-beam epitaxy. Joule heating on the central region of the membrane generates a thermal gradient with respect to the suspension points where the membrane is attached to cold reservoirs. Temperature measurements on the membrane reveal strong thermal gradients due to the low-thermal conductivity. We measure the zero-field thermopower and find that the phonon-drag contribution is suppressed at low temperatures up to 7 K.
Interface states in two-dimensional electron systems with spin-orbital interaction.
Sukhanov, Aleksei A; Sablikov, Vladimir A
2011-10-05
Interface states at a boundary between regions with different spin-orbit interactions (SOIs) in two-dimensional (2D) electron systems are investigated within the one-band effective mass method with generalized boundary conditions for envelope functions. We have found that the interface states unexpectedly exist even if the effective interface potential equals zero. Depending on the system parameters, the energy of these states can lie in either or both forbidden and conduction bands of bulk states. The interface states have chiral spin texture similar to that of the edge states in 2D topological insulators. However, their energy spectrum is more sensitive to the interfacial potential, the largest effect being produced by the spin-dependent component of the interfacial potential. We have also studied the size quantization of the interface states in a strip of 2D electron gas with SOI and found an unusual (non-monotonic) dependence of the quantization energy on the strip width.
Structural and electronic properties of two-dimensional stanene and graphene heterostructure.
Wu, Liyuan; Lu, Pengfei; Bi, Jingyun; Yang, Chuanghua; Song, Yuxin; Guan, Pengfei; Wang, Shumin
2016-12-01
Structural and electronic properties of two-dimensional stanene and graphene heterostructure (Sn/G) are studied by using first-principles calculations. Various supercell models are constructed in order to reduce the strain induced by the lattice mismatch. The results show that stanene interacts overall weakly with graphene via van der Waals (vdW) interactions. Multiple phases of different crystalline orientation of stanene and graphene could coexist at room temperature. Moreover, interlayer interactions in stanene and graphene heterostructure can induce tunable band gaps at stanene's Dirac point, and weak p-type and n-type doping of stanene and graphene, respectively, generating a small amount of electron transfer from stanene to graphene. Interestingly, for model [Formula: see text] , there emerges a band gap about 34 meV overall the band structure, indicating it shows semiconductor feature.
Terahertz time-domain spectroscopy of two-dimensional electron gasses at high magnetic fields
NASA Astrophysics Data System (ADS)
Curtis, Jeremy A.
This dissertation covers two projects that were in the logical path to studying decoherence in a high mobility GaAs two--dimensional electron gas at high magnetic fields. The first project is the ultrafast non--degenerate pump--probe spectroscopic study of bulk GaAs in the Split Florida Helix at the National High Magnetic Field Laboratory at Florida State University. This project was undertaken as a proof of concept that ultrafast optics could be done in the Split Florida Helix so that we might study a high mobility two dimensional electron gas using THz time--domain spectroscopy at high magnetic fields, which is a much more complicated measurement than the pump--probe discussed here. This demonstration was a success. We completed the first ultrafast optical study of any kind in the Florida Split Helix. We collected differential reflection data from this bulk sample that exhibited electronic and oscillatory components. These components were treated independently in the analysis by treating the electronic dynamics with a four level approximation. The electronic transition rates were extracted and agreed well with published values. This agreement is a demonstration that the spectrometer functioned as desired. The oscillatory response was found to be a result of the emission of coherent phonons upon electronic transition between the four levels. The frequency of the oscillatory response was extracted and agreed well with the theoretical value. The second project is the study of the temperature dependence of the cyclotron decay lifetimes in a Landau quantized GaAs high mobility two dimensional electron gas using THz time--domain spectroscopy at relatively low magnetic field (1.25 T). We find that the cyclotron decay lifetimes decrease monotonically with increasing temperature from 0.4 K to 100 K and that the primary pulse amplitudes increase from 0.4 K to 1.2 K, saturates above 1.2 K up to 50 K, and decreases rapidly above 50 K. We attribute this rapid drop in
A new equation in two dimensional fast magnetoacoustic shock waves in electron-positron-ion plasmas
Masood, W.; Jehan, Nusrat; Mirza, Arshad M.
2010-03-15
Nonlinear properties of the two dimensional fast magnetoacoustic waves are studied in a three-component plasma comprising of electrons, positrons, and ions. In this regard, Kadomtsev-Petviashvili-Burger (KPB) equation is derived using the small amplitude perturbation expansion method. Under the condition that the electron and positron inertia are ignored, Burger-Kadomtsev-Petviashvili (Burger-KP) for a fast magnetoacoustic wave is derived for the first time, to the best of author's knowledge. The solutions of both KPB and Burger-KP equations are obtained using the tangent hyperbolic method. The effects of positron concentration, kinematic viscosity, and plasma beta are explored both for the KPB and the Burger-KP shock waves and the differences between the two are highlighted. The present investigation may have relevance in the study of nonlinear electromagnetic shock waves both in laboratory and astrophysical plasmas.
Electronic Structure and Surface Physics of Two-dimensional Material Molybdenum Disulfide
NASA Astrophysics Data System (ADS)
Jin, Wencan
The interest in two-dimensional materials and materials physics has grown dramatically over the past decade. The family of two-dimensional materials, which includes graphene, transition metal dichalcogenides, phosphorene, hexagonal boron nitride, etc., can be fabricated into atomically thin films since the intralayer bonding arises from their strong covalent character, while the interlayer interaction is mediated by weak van der Waals forces. Among them, molybdenum disulfide (MoS2) has attracted much interest for its potential applications in opto-electronic and valleytronics devices. Previously, much of the experimental studies have concentrated on optical and transport measurements while neglecting direct experimental determination of the electronic structure of MoS2, which is crucial to the full understanding of its distinctive properties. In particular, like other atomically thin materials, the interactions with substrate impact the surface structure and morphology of MoS2, and as a result, its structural and physical properties can be affected. In this dissertation, the electronic structure and surface structure of MoS2 are directly investigated using angle-resolved photoemission spectroscopy and cathode lens microscopy. Local-probe angle-resolved photoemission spectroscopy measurements of monolayer, bilayer, trilayer, and bulk MoS 2 directly demonstrate the indirect-to-direct bandgap transition due to quantum confinement as the MoS2 thickness is decreased from multilayer to monolayer. The evolution of the interlayer coupling in this transition is also investigated using density functional theory calculations. Also, the thickness-dependent surface roughness is characterized using selected-area low energy electron diffraction (LEED) and the surface structural relaxation is investigated using LEED I-V measurements combined with dynamical LEED calculations. Finally, bandgap engineering is demonstrated via tuning of the interlayer interactions in van der Waals
NASA Astrophysics Data System (ADS)
Ren, Li; Mi, Yi-Ming
2010-09-01
Based on the Kubo formalism, the anomalous Hall effect in a magnetic two-dimensional hole gas with cubic-Rashba spin-orbit coupling is studied in the presence of δ-function scattering potential. When the weak, short-ranged disorder scattering is considered in the Born approximation, we find that the self-energy becomes diagonal in the helicity basis and its value is independent of the wave number, and the vertex correction to the anomalous Hall conductivity due to impurity scattering vanishes when both subbands are occupied. That is to say, the anomalous Hall effect is not vanishing or influenced by the vertex correction for two-dimensional heavy-hole system, which is in sharp contrast to the case of linear-Rashba spin-orbit coupling in the electron band when the short-range disorder scattering is considered and the extrinsic mechanism as well as the effect of external electric field on the SO interaction are ignored.
Two-dimensional Fourier transform electronic spectroscopy at a conical intersection
Kitney-Hayes, Katherine A.; Ferro, Allison A.; Tiwari, Vivek; Jonas, David M.
2014-03-28
We report measurement and modeling of two-dimensional (2D) electronic spectra of a silicon naphthalocyanine (SiNc) in benzonitrile, a system for which the polarization anisotropy reveals passage through a square-symmetric Jahn-Teller conical intersection in ∼100 fs [D. A. Farrow, W. Qian, E. R. Smith, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 128, 144510 (2008)]. The measured 2D Fourier transform (FT) spectra indicate loss of electronic coherence on a similar timescale. The 2D spectra arising from femtosecond vibronic dynamics through the conical funnel are modeled by full non-adiabatic treatment of the coupled electronic and vibrational dynamics for a pair of un-damped Jahn-Teller active vibrations responsible for both electronic decoherence and population transfer. Additional damped Jahn-Teller active modes that can cause only decoherence or population transfer are treated with analytical response functions that can be incorporated into the numerical non-adiabatic calculation by exploiting symmetry assignment of degenerate vibronic eigenstates to one of two electronic states. Franck-Condon active totally symmetric modes are incorporated analytically. The calculations reveal that these conical intersection dynamics alone are incapable of destroying the coherence of the initially prepared wavepacket on the experimentally observed timescale and predict an unobserved recurrence in the photon echo slice at ∼200 fs. Agreement with the experimental two-dimensional electronic spectra necessitates a role for totally symmetric vibrational dynamics in causing the echo slice to decay on a ∼100 fs timescale. This extended model also reproduces the ∼100 fs ultrafast electronic anisotropy decay in SiNc when an “asymmetric solvation mode” with a small stabilization energy of ∼2 cm{sup −1} is included. Although calculations show that inhomogeneities in the energy gap between excited states can broaden the anti-diagonal 2D lineshape, the anti-diagonal width is
High-Current Gain Two-Dimensional MoS₂-Base Hot-Electron Transistors.
Torres, Carlos M; Lan, Yann-Wen; Zeng, Caifu; Chen, Jyun-Hong; Kou, Xufeng; Navabi, Aryan; Tang, Jianshi; Montazeri, Mohammad; Adleman, James R; Lerner, Mitchell B; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong; Wang, Kang L
2015-12-09
The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications.
Jiang Chongyun; Chen Yonghai; Ma Hui; Yu Jinling; Liu Yu
2011-06-06
In this letter we investigated the InAs/InAlAs quantum wires (QWRs) superlattice by optically exciting the structure with near-infrared radiation. By varying the helicity of the radiation at room temperature we observed the circular photogalvanic effect related to the C{sub 2v} symmetry of the structure, which could be attributed to the formation of a quasi-two-dimensional system underlying in the vicinity of the QWRs pattern. The ratio of Rashba and Dresselhaus terms shows an evolution of the spin-orbit interaction in quasi-two-dimensional structure with the QWR layer deposition thickness.
Bordács, Sándor; Checkelsky, Joseph G; Murakawa, Hiroshi; Hwang, Harold Y; Tokura, Yoshinori
2013-10-18
Optical excitations of BiTeI with large Rashba spin splitting have been studied in an external magnetic field (B) applied parallel to the polar axis. A sequence of transitions between the Landau levels (LLs), whose energies are in proportion to √B were observed, being characteristic of massless Dirac electrons. The large separation energy between the LLs makes it possible to detect the strongest cyclotron resonance even at room temperature in moderate fields. Unlike in 2D Dirac systems, the magnetic field induced rearrangement of the conductivity spectrum is directly observed.
High-Resolution Two-Dimensional Optical Spectroscopy of Electron Spins
NASA Astrophysics Data System (ADS)
Salewski, M.; Poltavtsev, S. V.; Yugova, I. A.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Yakovlev, D. R.; Akimov, I. A.; Meier, T.; Bayer, M.
2017-07-01
Multidimensional coherent optical spectroscopy is one of the most powerful tools for investigating complex quantum mechanical systems. While it was conceived decades ago in magnetic resonance spectroscopy using microwaves and radio waves, it has recently been extended into the visible and UV spectral range. However, resolving MHz energy splittings with ultrashort laser pulses still remains a challenge. Here, we analyze two-dimensional Fourier spectra for resonant optical excitation of resident electrons to localized trions or donor-bound excitons in semiconductor nanostructures subject to a transverse magnetic field. Particular attention is devoted to Raman coherence spectra, which allow one to accurately evaluate tiny splittings of the electron ground state and to determine the relaxation times in the electron spin ensemble. A stimulated steplike Raman process induced by a sequence of two laser pulses creates a coherent superposition of the ground-state doublet which can be retrieved only optically because of selective excitation of the same subensemble with a third pulse. This provides the unique opportunity to distinguish between different complexes that are closely spaced in energy in an ensemble. The related experimental demonstration is based on photon-echo measurements in an n -type CdTe /(Cd ,Mg )Te quantum-well structure detected by a heterodyne technique. The difference in the sub-μ eV range between the Zeeman splittings of donor-bound electrons and electrons localized at potential fluctuations can be resolved even though the homogeneous linewidth of the optical transitions is larger by 2 orders of magnitude.
Automated Electron Microscopy for Evaluating Two-dimensional Crystallization of Membrane Proteins
Hu, Minghui; Vink, Martin; Kim, Changki; Derr, KD; Koss, John; D'Amico, Kevin; Cheng, Anchi; Pulokas, James; Ubarretxena-Belandia, Iban; Stokes, David
2010-01-01
Membrane proteins fulfill many important roles in the cell and represent the target for a large number of therapeutic drugs. Although structure determination of membrane proteins has become a major priority, it has proven to be technically challenging. Electron microscopy of two-dimensional (2D) crystals has the advantage of visualizing membrane proteins in their natural lipidic environment, but has been underutilized in recent structural genomics efforts. To improve the general applicability of electron crystallography, high-throughput methods are needed for screening large numbers of conditions for 2D crystallization, thereby increasing the chances of obtaining well ordered crystals and thus achieving atomic resolution. Previous reports describe devices for growing 2D crystals on a 96-well format. The current report describes a system for automated imaging of these screens with an electron microscope. Samples are inserted with a two-part robot: a SCARA robot for loading samples into the microscope holder, and a Cartesian robot for placing the holder into the electron microscope. A standard JEOL 1230 electron microscope was used, though a new tip was designed for the holder and a toggle switch controlling the airlock was rewired to allow robot control. A computer program for controlling the robots was integrated with the Leginon program, which provides a module for automated imaging of individual samples. The resulting images are uploaded into the Sesame laboratory information management system database where they are associated with other data relevant to the crystallization screen. PMID:20197095
Oscillatory Dyakonov-Perel spin dynamics in two-dimensional electron gases
NASA Astrophysics Data System (ADS)
Leyland, W. J. H.; Harley, R. T.; Henini, M.; Shields, A. J.; Farrer, I.; Ritchie, D. A.
2007-11-01
Optical pump-probe measurements of spin dynamics at temperatures down to 1.5K are described for a series of (001)-oriented GaAs/AlGaAs quantum well samples containing high mobility two-dimensional electron gases (2DEGs). For well widths ranging from 5to20nm and 2DEG sheet densities from 1.75×1011to3.5×1011cm-2 , the evolution of a small injected spin population is found to be a damped oscillation rather than an exponential relaxation, consistent with the quasi-collision-free regime of the Dyakonov-Perel spin dynamics. A Monte Carlo simulation method is used to extract the spin-orbit-induced electron spin precession frequency ∣Ω(kF)∣ and electron momentum scattering time τp* at the Fermi wave vector. The spin decay time passes through a minimum at a temperature corresponding to the transition from collision-free to collision-dominated regimes and τp* is found to be close to the ensemble momentum scattering time τp obtained from Hall measurements of electron mobility. The values of ∣Ω(kF)∣ give the Dresselhaus or bulk inversion asymmetry (BIA) coefficient of spin-orbit interaction as a function of electron confinement energy in the quantum wells and show, qualitatively, the behavior expected from k•p theory.
Guo, Hongxuan E-mail: msxu@zju.edu.cn; Gao, Jianhua; Ishida, Nobuyuki; Xu, Mingsheng E-mail: msxu@zju.edu.cn; Fujita, Daisuke
2014-01-20
Characterization of the structural and physical properties of two-dimensional (2D) materials, such as layer number and inelastic mean free path measurements, is very important to optimize their synthesis and application. In this study, we characterize the layer number and morphology of hexagonal boron nitride (h-BN) nanosheets on a metallic substrate using field emission scanning electron microscopy (FE-SEM) and scanning helium ion microscopy (HIM). Using scanning beams of various energies, we could analyze the dependence of the intensities of secondary electrons on the thickness of the h-BN nanosheets. Based on the interaction between the scanning particles (electrons and helium ions) and h-BN nanosheets, we deduced an exponential relationship between the intensities of secondary electrons and number of layers of h-BN. With the attenuation factor of the exponential formula, we calculate the inelastic mean free path of electrons and helium ions in the h-BN nanosheets. Our results show that HIM is more sensitive and consistent than FE-SEM for characterizing the number of layers and morphology of 2D materials.
NASA Astrophysics Data System (ADS)
Guo, Hongxuan; Gao, Jianhua; Ishida, Nobuyuki; Xu, Mingsheng; Fujita, Daisuke
2014-01-01
Characterization of the structural and physical properties of two-dimensional (2D) materials, such as layer number and inelastic mean free path measurements, is very important to optimize their synthesis and application. In this study, we characterize the layer number and morphology of hexagonal boron nitride (h-BN) nanosheets on a metallic substrate using field emission scanning electron microscopy (FE-SEM) and scanning helium ion microscopy (HIM). Using scanning beams of various energies, we could analyze the dependence of the intensities of secondary electrons on the thickness of the h-BN nanosheets. Based on the interaction between the scanning particles (electrons and helium ions) and h-BN nanosheets, we deduced an exponential relationship between the intensities of secondary electrons and number of layers of h-BN. With the attenuation factor of the exponential formula, we calculate the inelastic mean free path of electrons and helium ions in the h-BN nanosheets. Our results show that HIM is more sensitive and consistent than FE-SEM for characterizing the number of layers and morphology of 2D materials.
NASA Astrophysics Data System (ADS)
Inada, Yuki; Ono, Ryo; Kumada, Akiko; Hidaka, Kunihiko; Maeyama, Mitsuaki
2016-09-01
The electron density of streamer discharges propagating in atmospheric-pressure air is crucially important for systematic understanding of the production mechanisms of reactive species utilized in wide ranging applications such as medical treatment, plasma-assisted ignition and combustion, ozone production and environmental pollutant processing. However, electron density measurement during the propagation of the atmospheric-pressure streamers is extremely difficult by using the conventional localized type measurement systems due to the streamer initiation jitters and the irreproducibility in the discharge paths. In order to overcome the difficulties, single-shot two-dimensional electron density measurement was conducted by using a Shack-Hartmann type laser wavefront sensor. The Shack-Hartmann sensor with a temporal resolution of 2 ns was applied to pulsed positive streamer discharges generated in an air gap between pin-to-plate electrodes. The electron density a few ns after the streamer initiation was 7*1021m-3 and uniformly distributed along the streamer channel. The electron density and its distribution profile were compared with a previous study simulating similar streamers, demonstrating good agreement. This work was supported in part by JKA and its promotion funds from KEIRIN RACE. The authors like to thank Mr. Kazuaki Ogura and Mr. Kaiho Aono of The University of Tokyo for their support during this work.
New perspectives for Rashba spin-orbit coupling
NASA Astrophysics Data System (ADS)
Manchon, A.; Koo, H. C.; Nitta, J.; Frolov, S. M.; Duine, R. A.
2015-09-01
In 1984, Bychkov and Rashba introduced a simple form of spin-orbit coupling to explain the peculiarities of electron spin resonance in two-dimensional semiconductors. Over the past 30 years, Rashba spin-orbit coupling has inspired a vast number of predictions, discoveries and innovative concepts far beyond semiconductors. The past decade has been particularly creative, with the realizations of manipulating spin orientation by moving electrons in space, controlling electron trajectories using spin as a steering wheel, and the discovery of new topological classes of materials. This progress has reinvigorated the interest of physicists and materials scientists in the development of inversion asymmetric structures, ranging from layered graphene-like materials to cold atoms. This Review discusses relevant recent and ongoing realizations of Rashba physics in condensed matter.
Effective mass, Landè factor, and spin susceptibility of a two dimensional electron gas
NASA Astrophysics Data System (ADS)
Polini, Marco C.; Davoudi, Bahman; Giuliani, Gabriele F.; Tosi, Mario P.
2002-03-01
We present a detailed calculation of the quasiparticle properties of a two-dimensional electron gas following an earlier microscopic theory developed by Yarlagadda and Giuliani [Solid state Commun. 69, 677 (1989)]. This approach incorporates in the calculation of the quasiparticle energy the vertex corrections associated with charge- and spin-density fluctuations through the symmetric and antisymmetric many-body local-field factors. In our calculations, these functions are taken to be static, analytical expressions which reproduce the diffusion Monte Carlo data, and embody the exact asymptotic behaviors at both small and large wave number q. It is shown that this choice improves the results obtained by a simple Hubbard-like form, as previously employed in the literature.
A conceptual design study for a two-dimensional, electronically scanned thinned array radiometer
NASA Technical Reports Server (NTRS)
Mutton, Philip; Chromik, Christopher C.; Dixon, Iain; Statham, Richard B.; Stillwagen, Frederic H.; Vontheumer, Alfred E.; Sasamoto, Washito A.; Garn, Paul A.; Cosgrove, Patrick A.; Ganoe, George G.
1993-01-01
A conceptual design for the Two-Dimensional, Electronically Steered Thinned Array Radiometer (ESTAR) is described. This instrument is a synthetic aperture microwave radiometer that operates in the L-band frequency range for the measurement of soil moisture and ocean salinity. Two auxiliary instruments, an 8-12 micron, scanning infrared radiometer and a 0.4-1.0 micron, charge coupled device (CCD) video camera, are included to provided data for sea surface temperature measurements and spatial registration of targets respectively. The science requirements were defined by Goddard Space Flight Center. Instrument and the spacecraft configurations are described for missions using the Pegasus and Taurus launch vehicles. The analyses and design trades described include: estimations of size, mass and power, instrument viewing coverage, mechanical design trades, structural and thermal analyses, data and communications performance assessments, and cost estimation.
NASA Technical Reports Server (NTRS)
Schacham, S. E.; Mena, R. A.; Haugland, E. J.; Alterovitz, S. A.
1993-01-01
A technique for determination of room-temperature two-dimensional electron gas (2DEG) concentration and mobility in heterostructures is presented. Using simultaneous fits of the longitudinal and transverse voltages as a function of applied magnetic field, we were able to separate the parameters associated with the 2DEG from those of the parallel layer. Comparison with the Shubnikov-de Haas data derived from measurements at liquid helium temperatures proves that the analysis of the room-temperature data provides an excellent estimate of the 2DEG concentration. In addition we were able to obtain for the first time the room-temperature mobility of the 2DEG, an important parameter to device application. Both results are significantly different from those derived from conventional Hall analysis.
NASA Astrophysics Data System (ADS)
Heisler, Ismael A.; Moca, Roberta; Camargo, Franco V. A.; Meech, Stephen R.
2014-06-01
We report an improved experimental scheme for two-dimensional electronic spectroscopy (2D-ES) based solely on conventional optical components and fast data acquisition. This is accomplished by working with two choppers synchronized to a 10 kHz repetition rate amplified laser system. We demonstrate how scattering and pump-probe contributions can be removed during 2D measurements and how the pump probe and local oscillator spectra can be generated and saved simultaneously with each population time measurement. As an example the 2D-ES spectra for cresyl violet were obtained. The resulting 2D spectra show a significant oscillating signal during population evolution time which can be assigned to an intramolecular vibrational mode.
Imaginary time density-density correlations for two-dimensional electron gases at high density
Motta, M.; Galli, D. E.; Moroni, S.; Vitali, E.
2015-10-28
We evaluate imaginary time density-density correlation functions for two-dimensional homogeneous electron gases of up to 42 particles in the continuum using the phaseless auxiliary field quantum Monte Carlo method. We use periodic boundary conditions and up to 300 plane waves as basis set elements. We show that such methodology, once equipped with suitable numerical stabilization techniques necessary to deal with exponentials, products, and inversions of large matrices, gives access to the calculation of imaginary time correlation functions for medium-sized systems. We discuss the numerical stabilization techniques and the computational complexity of the methodology and we present the limitations related to the size of the systems on a quantitative basis. We perform the inverse Laplace transform of the obtained density-density correlation functions, assessing the ability of the phaseless auxiliary field quantum Monte Carlo method to evaluate dynamical properties of medium-sized homogeneous fermion systems.
Local interlayer tunneling between two-dimensional electron systems in the ballistic regime
NASA Astrophysics Data System (ADS)
Luna, Katherine; Kim, Eun-Ah; Oreto, Paul; Kivelson, Steven A.; Goldhaber-Gordon, David
2010-12-01
We study a theoretical model of virtual scanning tunneling microscopy (VSTM) [A. Sciambi, M. Pelliccione, M. Lilly, S. Bank, A. Gossard, L. Pfeiffer, K. West, and D. Goldhaber-Gordon, arXiv:1008.0668 (unpublished); A. Sciambi, M. Pelliccione, S. R. Bank, A. C. Gossard, and D. Goldhaber-Gordon, Appl. Phys. Lett. 97, 132103 (2010)10.1063/1.3492440]: a proposed application of interlayer tunneling in a bilayer system to locally probe a two-dimensional electron system (2DES) in a semiconductor heterostructure. We consider tunneling for the case where transport in the 2DESs is ballistic and show that the zero-bias anomaly is suppressed by extremely efficient screening. Since such an anomaly would complicate the interpretation of data from VSTM, this result is encouraging for efforts to implement such a microscopy technique.
Dielectric response of metal/SrTiO{sub 3}/two-dimensional electron liquid heterostructures
Mikheev, Evgeny; Raghavan, Santosh; Stemmer, Susanne
2015-08-17
Maximizing the effective dielectric constant of the gate dielectric stack is important for electrostatically controlling high carrier densities inherent to strongly correlated materials. SrTiO{sub 3} is uniquely suited for this purpose, given its extremely high dielectric constant, which can reach 10{sup 4}. Here, we present a systematic study of the thickness dependence of the dielectric response and leakage of SrTiO{sub 3} that is incorporated into a vertical structure on a high-carrier-density two-dimensional electron liquid (2DEL). A simple model can be used to interpret the data. The results show a need for improved interface control in the design of metal/SrTiO{sub 3}/2DEL devices.
Berl, M. Tiemann, L.; Dietsche, W.; Wegscheider, W.; Karl, H.
2016-03-28
We present a reliable method to obtain patterned back gates compatible with high mobility molecular beam epitaxy via local oxygen ion implantation that suppresses the conductivity of an 80 nm thick silicon doped GaAs epilayer. Our technique was optimized to circumvent several constraints of other gating and implantation methods. The ion-implanted surface remains atomically flat which allows unperturbed epitaxial overgrowth. We demonstrate the practical application of this gating technique by using magneto-transport spectroscopy on a two-dimensional electron system (2DES) with a mobility exceeding 20 × 10{sup 6} cm{sup 2}/V s. The back gate was spatially separated from the Ohmic contacts of the 2DES, thus minimizing the probability for electrical shorts or leakage and permitting simple contacting schemes.
Tunable electronic and optical behaviors of two-dimensional germanium carbide
NASA Astrophysics Data System (ADS)
Xu, Zhuo; Li, Yangping; Li, Chenxi; Liu, Zhengtang
2016-03-01
The electronic and optical properties of two-dimensional graphene-like germanium carbide (2D-GeC) are calculated using first-principle calculation based on density functional theory. Monolayer GeC has a direct band gap of 2.19 eV. The imaginary part of the dielectric function shows a wide energy range of absorption spectrum for monolayer GeC. Tunable band structures are found for monolayer GeC through in-plane strain. In addition, the band structures and optical properties of bilayer GeC under strain along the c axis are analyzed. Multilayer GeC exhibits a direct band gap like monolayer GeC, and new options of interband transitions are found between layers. The results suggest that 2D-GeC could be a good candidate for optoelectronic such as light-emitting diodes, photodiodes, and solar cells.
NASA Astrophysics Data System (ADS)
Buchner, M.; Kuczmik, T.; Oltscher, M.; Ciorga, M.; Korn, T.; Loher, J.; Schuh, D.; Schüller, C.; Bougeard, D.; Weiss, D.; Back, C. H.
2017-01-01
We report on electrical spin injection from (Ga,Mn)As into a high-mobility two-dimensional electron gas confined at an (Al,Ga)As/GaAs interface. Besides standard nonlocal electrical detection, we use a magneto-optical approach which provides cross-sectional images of the spin accumulation at the cleaved edge of the sample, yielding spin decay lengths on the order of 2 μ m . In some cases we find a nonmonotonic bias voltage dependence of the spin signal, which may be linked to ballistic tunneling effects during spin injection. We observe a clear Hanle depolarization using a technique which is free of dynamic nuclear polarization effects. Fitting the data with the standard drift-diffusion model of spin injection suggests averaged in-plane spin lifetimes on the order of 1 ns.
Scattering of two-dimensional massless Dirac electrons by a circular potential barrier
NASA Astrophysics Data System (ADS)
Wu, Jhih-Sheng; Fogler, Michael M.
2014-12-01
We calculate the differential, total, and transport cross-sections for scattering of two-dimensional massless Dirac electrons by a circular barrier. For scatterer of a small radius, the cross-sections are dominated by quantum effects such as resonant scattering that can be computed using the partial-wave series. Scattering by larger size barriers is better described within the classical picture of reflection and refraction of rays, which leads to phenomena of caustics, rainbow, and critical scattering. Refraction can be negative if the potential of the scatterer is repulsive, so that a p -n junction forms at its boundary. Qualitative differences of this case from the n -N doping case are examined. Quantum interference effects beyond the classical ray picture are also considered, such as normal and anomalous diffraction, and also whispering-gallery resonances. Implications of these results for transport and scanned-probe experiments in graphene and topological insulators are discussed.
Instability of the QHE induced by a nearby two-dimensional-electron system
NASA Astrophysics Data System (ADS)
Jörger, C.; Wegscheider, W.; Dietsche, W.; von Klitzing, K.
1998-12-01
We report on the observation of structures in the longitudinal resistance of a single two-dimensional electron gas (2DEG) in a perpendicular magnetic field at filling factor ν≅1±0.1. The observed structures can be switched off by depleting a second 2DEG, which is separated from the first by a 30 nm or a 60 nm AlGaAs-barrier, using a gate-electrode. Measurements as a function of temperature and drive current indicate that these structures are precursors of the breakdown of the quantum-Hall-effect (QHE) at ν=1. The QHE becomes unstable when another 2DEG is in the neighbourhood. This effect is most likely due to macroscopic effects like screening, because other coupling processes between these two 2DEGs, such as frictional drag, are weak.
Surface electron states on the quasi-two-dimensional excess-electron compounds Ca2N and Y2C
NASA Astrophysics Data System (ADS)
Inoshita, Takeshi; Takemoto, Seiji; Tada, Tomofumi; Hosono, Hideo
2017-04-01
Compounds having excess electrons from the formal valence viewpoint (electrides) are a new class of materials, which often take low-dimensional structures. We studied the (001) surface electronic structures of quasi-two-dimensional electrides Ca2N and Y2C by density functional theory using a slab model. Both materials were found to have a clean surface state well separated in energy from the bulk states. Furthermore, this state virtually floats above the surface and may be considered to be a hallmark of two-dimensional electrides. For Ca2N , a tight-binding model in the Wannier representation was derived and analyzed, from which we concluded that the surface state, described by extra-surface s -like orbitals, is a Tamm state originating from an abrupt increase in potential energy at the surface.
Enabling two-dimensional fourier transform electronic spectroscopy on quantum dots
NASA Astrophysics Data System (ADS)
Hill, Robert John, Jr.
Colloidal semiconductor nanocrystals exhibit unique properties not seen in their bulk counterparts. Quantum confinement of carriers causes a size-tunable bandgap, making them attractive candidates for solar cells. Fundamental understanding of their spectra and carrier dynamics is obscured by inhomogeneous broadening arising from the size distribution. Because quantum dots have long excited state lifetimes and are sensitive to both air and moisture, there are many potential artifacts in femtosecond experiments. Two-dimensional electronic spectroscopy promises insight into the photo-physics, but required key instrumental advances. Optics that can process a broad bandwidth without distortion are required for a two-dimensional optical spectrometer. To control pathlength differences for femtosecond time delays, hollow retro-reflectors are used on actively stabilized delay lines in interferometers. The fabrication of rigid, lightweight, precision hollow rooftop retroreflectors that allow beams to be stacked while preserving polarization is described. The rigidity and low mass enable active stabilization of an interferometer to within 0.6 nm rms displacement, while the return beam deviation is sufficient for Fourier transform spectroscopy with a frequency precision of better than 1 cm -1. Keeping samples oxygen and moisture free while providing fresh sample between laser shots is challenging in an interferometer. A low-vibration spinning sample cell was designed and built to keep samples oxygen free for days while allowing active stabilization of interferometer displacement to ˜1 nm. Combining these technologies has enabled 2D short-wave infrared spectroscopy on colloidal PbSe nanocrystals. 2D spectra demonstrate the advantages of this key instrumentation while providing valuable insight into the low-lying electronic states of colloidal quantum dots.
Akhtar, Parveen; Zhang, Cheng; Liu, Zhengtang; Tan, Howe-Siang; Lambrev, Petar H
2017-08-14
Photosystem I is a robust and highly efficient biological solar engine. Its capacity to utilize virtually every absorbed photon's energy in a photochemical reaction generates great interest in the kinetics and mechanisms of excitation energy transfer and charge separation. In this work, we have employed room-temperature coherent two-dimensional electronic spectroscopy and time-resolved fluorescence spectroscopy to follow exciton equilibration and excitation trapping in intact Photosystem I complexes as well as core complexes isolated from Pisum sativum. We performed two-dimensional electronic spectroscopy measurements with low excitation pulse energies to record excited-state kinetics free from singlet-singlet annihilation. Global lifetime analysis resolved energy transfer and trapping lifetimes closely matches the time-correlated single-photon counting data. Exciton energy equilibration in the core antenna occurred on a timescale of 0.5 ps. We further observed spectral equilibration component in the core complex with a 3-4 ps lifetime between the bulk Chl states and a state absorbing at 700 nm. Trapping in the core complex occurred with a 20 ps lifetime, which in the supercomplex split into two lifetimes, 16 ps and 67-75 ps. The experimental data could be modelled with two alternative models resulting in equally good fits-a transfer-to-trap-limited model and a trap-limited model. However, the former model is only possible if the 3-4 ps component is ascribed to equilibration with a "red" core antenna pool absorbing at 700 nm. Conversely, if these low-energy states are identified with the P700 reaction centre, the transfer-to-trap-model is ruled out in favour of a trap-limited model.
NASA Astrophysics Data System (ADS)
Li, Jiun-Yun; Huang, Chiao-Ti; Rokhinson, Leonid P.; Sturm, James C.
2013-10-01
Both depletion-mode and enhancement-mode two-dimensional electron gases (2DEGs) in isotopically enriched 28Si with extremely high mobility (522 000 cm2/V s) are presented. The samples were grown by chemical vapor deposition using enriched silane. The fraction of the spin-carrying isotope 29Si was reduced to the level of 800 ppm by 28Si enrichment, with the electron spin dephasing time expected to be as long as 2 μs. Remote impurity charges from ionized dopants and the Si/Al2O3 interface were suggested to be the dominant source for electron scattering in the enriched 28Si 2DEGs.
Electron-phonon vertex in the two-dimensional one-band Hubbard model
NASA Astrophysics Data System (ADS)
Huang, Z. B.; Hanke, W.; Arrigoni, E.; Scalapino, D. J.
2003-12-01
Using quantum Monte Carlo techniques, we study the effects of electronic correlations on the effective electron-phonon (el-ph) coupling in a two-dimensional one-band Hubbard model. We consider a momentum-independent bare ionic el-ph coupling. In the weak- and intermediate-correlation regimes, we find that the on-site Coulomb interaction U acts to effectively suppress the ionic el-ph coupling at all electron and phonon momenta. In this regime, our numerical simulations are in good agreement with the results of perturbation theory to order U2. However, entering the strong-correlation regime, we find that the forward-scattering process stops decreasing and begins to substantially increase as a function of U, leading to an effective el-ph coupling which is peaked in the forward direction. Whereas at weak and intermediate Coulomb interactions, screening is the dominant correlation effect suppressing the el-ph coupling, at larger U values irreducible vertex corrections become more important and give rise to this increase. These vertex corrections depend crucially on the renormalized electronic structure of the strongly correlated system.
Two-Dimensional Electronic Spectroscopy of Chlorophyll a: Solvent Dependent Spectral Evolution.
Moca, Roberta; Meech, Stephen R; Heisler, Ismael A
2015-07-09
The interaction of the monomeric chlorophyll Q-band electronic transition with solvents of differing physical-chemical properties is investigated through two-dimensional electronic spectroscopy (2DES). Chlorophyll constitutes the key chromophore molecule in light harvesting complexes. It is well-known that the surrounding protein in the light harvesting complex fine-tunes chlorophyll electronic transitions to optimize energy transfer. Therefore, an understanding of the influence of the environment on the monomeric chlorophyll electronic transitions is important. The Q-band 2DES is inhomogeneous at early times, particularly in hydrogen bonding polar solvents, but also in nonpolar solvents like cyclohexane. Interestingly this inhomogeneity persists for long times, even up to the nanosecond time scale in some solvents. The reshaping of the 2DES occurs over multiple time scales and was assigned mainly to spectral diffusion. At early times the reshaping is Gaussian-like, hinting at a strong solvent reorganization effect. The temporal evolution of the 2DES response was analyzed in terms of a Brownian oscillator model. The spectral densities underpinning the Brownian oscillator fitting were recovered for the different solvents. The absorption spectra and Stokes shift were also properly described by this model. The extent and nature of inhomogeneous broadening was a strong function of solvent, being larger in H-bonding and viscous media and smaller in nonpolar solvents. The fastest spectral reshaping components were assigned to solvent dynamics, modified by interactions with the solute.
NASA Astrophysics Data System (ADS)
Dahlberg, Peter D.; Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S.
2015-09-01
Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850∗ states of LH2 in each of the 3 samples with a lifetime of ˜40-60 fs.
Dahlberg, Peter D.; Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S.
2015-01-01
Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850∗ states of LH2 in each of the 3 samples with a lifetime of ∼40-60 fs. PMID:26373989
Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics.
Yu, Lili; Lee, Yi-Hsien; Ling, Xi; Santos, Elton J G; Shin, Yong Cheol; Lin, Yuxuan; Dubey, Madan; Kaxiras, Efthimios; Kong, Jing; Wang, Han; Palacios, Tomás
2014-06-11
Two-dimensional (2D) materials have generated great interest in the past few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2), and insulating boron nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. In this paper, we demonstrate a novel technology for constructing large-scale electronic systems based on graphene/molybdenum disulfide (MoS2) heterostructures grown by chemical vapor deposition. We have fabricated high-performance devices and circuits based on this heterostructure, where MoS2 is used as the transistor channel and graphene as contact electrodes and circuit interconnects. We provide a systematic comparison of the graphene/MoS2 heterojunction contact to more traditional MoS2-metal junctions, as well as a theoretical investigation, using density functional theory, of the origin of the Schottky barrier height. The tunability of the graphene work function with electrostatic doping significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on this 2D heterostructure pave the way for practical flexible transparent electronics.
A deterministic computational model for the two dimensional electron and photon transport
NASA Astrophysics Data System (ADS)
Badavi, Francis F.; Nealy, John E.
2014-12-01
A deterministic (non-statistical) two dimensional (2D) computational model describing the transport of electron and photon typical of space radiation environment in various shield media is described. The 2D formalism is casted into a code which is an extension of a previously developed one dimensional (1D) deterministic electron and photon transport code. The goal of both 1D and 2D codes is to satisfy engineering design applications (i.e. rapid analysis) while maintaining an accurate physics based representation of electron and photon transport in space environment. Both 1D and 2D transport codes have utilized established theoretical representations to describe the relevant collisional and radiative interactions and transport processes. In the 2D version, the shield material specifications are made more general as having the pertinent cross sections. In the 2D model, the specification of the computational field is in terms of a distance of traverse z along an axial direction as well as a variable distribution of deflection (i.e. polar) angles θ where -π/2<θ<π/2, and corresponding symmetry is assumed for the range of azimuth angles (0<φ<2π). In the transport formalism, a combined mean-free-path and average trajectory approach is used. For candidate shielding materials, using the trapped electron radiation environments at low Earth orbit (LEO), geosynchronous orbit (GEO) and Jupiter moon Europa, verification of the 2D formalism vs. 1D and an existing Monte Carlo code are presented.
Density of states in a two-dimensional electron gas: Impurity bands and band tails
NASA Astrophysics Data System (ADS)
Gold, A.; Serre, J.; Ghazali, A.
1988-03-01
We calculate the density of states of a two-dimensional electron gas in the presence of charged impurities within Klauder's best multiple-scattering approach. The silicon metal-oxide-semiconductor (MOS) system with impurities at the interface is studied in detail. The finite extension of the electron wave function into the bulk is included as well as various dependences of the density of states on the electron, the depletion, and the impurity densities. The transition from an impurity band at low impurity concentration to a band tail at high impurity concentration is found to take place at a certain impurity concentration. If the screening parameter of the electron gas is decreased, the impurity band shifts to lower energy. For low impurity density we find excited impurity bands. Our theory at least qualitatively explains conductivity and infrared-absorption experiments on impurity bands in sodium-doped MOS systems and deep band tails in the gap observed for high doping levels in these systems.
Electronic Hong-Ou-Mandel interferometry in two-dimensional topological insulators
NASA Astrophysics Data System (ADS)
Ferraro, D.; Wahl, C.; Rech, J.; Jonckheere, T.; Martin, T.
2014-02-01
The edge states of a two-dimensional topological insulator are characterized by their helicity, a very remarkable property which is related to the time-reversal symmetry and the topology of the underlying system. We theoretically investigate a Hong-Ou-Mandel-type setup as a tool to probe it. Collisions of two electrons with the same spin show a Pauli dip, analogous to the one obtained in the integer quantum Hall case. Moreover, the collisions between electrons of opposite spin also lead to a dip, known as Z2 dip, which is a direct consequence of the constraints imposed by time-reversal symmetry. In contrast to the integer quantum Hall case, the visibility of these dips is reduced by the presence of the additional edge channels, and crucially depends on the properties of the quantum point contact. As a unique feature of this system, we show the possibility of three-electron interference, which leads to a total suppression of the noise independently of the point contact configuration. This is assured by the peculiar interplay between Fermi statistics and topology. This work intends to extend the domain of applicability of electron quantum optics.
NASA Astrophysics Data System (ADS)
Dabiran, Amir Massoud
The electrochemical potential (ECP) oscillations of the two-dimensional electron gas (2DEG) in GaAs/AlGaAs heterostructures (GaAs-HET) in high magnetic fields and at low temperatures has been measured by a 'floating-gate' technique. We have carried out these measurements using a very high impedence circuit (~10 ^{13}Omega) at temperatures between 1.2 and 4.2 K and in magnetic fields up to 15 Tesla on conventional GaAs-HETs by monitoring the voltage difference between the contacts to the 2DEG and a metal 'gate' evaporated on top of the samples. We have also used novel GaAs-HET samples with a substrate contact to the 2DEG through a thin (~50 nm) tunneling barrier thereby eliminating the problems associated with circulating eddy currents induced in the 2DEG layer by the changing magnetic field. These quantitative measurements of the ECP oscillations have allowed us to extract the 2DEG thermodynamic density of states (DOS) in quantizing magnetic fields. Our experimental findings bring out a dynamic picture of the DOS where nonlinear screening of the long-range scatterers (e.g. ionized impurities) causes a filling factor dependent 'breathing' of the Landau levels and the electron-electron interactions result in an oscillatory enhancement of the g-factor of electrons in GaAs.
NASA Astrophysics Data System (ADS)
Ullrich, C. A.; Vignale, G.
1998-09-01
It is well known that high-frequency collective excitations in electronic systems are not Landau damped, i.e., they cannot decay effectively into single particle-hole pairs. The leading damping mechanism in this regime is instead provided by dynamical exchange and correlation effects, such as multipair production. These effects are not captured by the widely used adiabatic local-density approximation (ALDA), which accounts for Landau damping only. In the recently developed time-dependent current density-functional formalism [G. Vignale, C. A. Ullrich, and S. Conti, Phys. Rev. Lett. 79, 4878 (1997)], exchange and correlation enter as viscoelastic stresses in the electron fluid, causing an additional damping that is not contained in the ALDA. We use this theory to derive an explicit formula for the linewidth of collective electronic excitations that are not Landau damped. The formula is then applied to calculate the linewidth of collective modes in two-dimensional (2D) quantum strips. In comparison with the corresponding modes in the homogeneous 2D electron gas, we find an order-of-magnitude enhancement of the linewidth due to the nonuniformity of the system.
Dahlberg, Peter D.; Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S.
2015-09-14
Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850{sup ∗} states of LH2 in each of the 3 samples with a lifetime of ∼40-60 fs.
NASA Astrophysics Data System (ADS)
Li, Yun-Mei; Zhou, Xiaoying; Zhang, Yan-Yang; Zhang, Dong; Chang, Kai
2017-07-01
We investigate theoretically the electronic properties of two-dimensional electron gases (2DEGs) with regular and distorted triangular antidot lattices. We show that the triangular antidot lattices embedded in 2DEGs behave like artificial graphene and host Dirac fermions. By introducing the Wannier representation, we obtain a tight-binding Hamiltonian including the second-nearest-neighboring hopping, which agrees well with the numerically exact solutions. Based on the tight-binding model, we find that spatially nonuniform distortions of the antidot lattices strongly modify the electronic structures, generate pseudomagnetic fields and the well-defined Landau levels. In contrast to graphene, we can design the nonuniform distortions to generate various configurations of pseudomagnetic fields. We show that the snake orbital states arise by designing the ±B pseudomagnetic field configuration. We find that the disorders of antidot lattices during fabrication would not affect the basic feature of the Dirac electrons, but they lead to a reduction in conductance in strong disorder cases.
Magnetic noise spectroscopy as a probe of local electronic correlations in two-dimensional systems
NASA Astrophysics Data System (ADS)
Agarwal, Kartiek; Schmidt, Richard; Halperin, Bertrand; Oganesyan, Vadim; Zaránd, Gergely; Lukin, Mikhail D.; Demler, Eugene
2017-04-01
We develop the theoretical framework for calculating magnetic noise from conducting two-dimensional (2D) materials. We describe how local measurements of this noise can directly probe the wave-vector dependent transport properties of the material over a broad range of length scales, thus providing new insight into a range of correlated phenomena in 2D electronic systems. As an example, we demonstrate how transport in the hydrodynamic regime in an electronic system exhibits a unique signature in the magnetic noise profile that distinguishes it from diffusive and ballistic transport and how it can be used to measure the viscosity of the electronic fluid. We employ a Boltzmann approach in a two-time relaxation-time approximation to compute the conductivity of graphene and quantitatively illustrate these transport regimes and the experimental feasibility of observing them. Next, we discuss signatures of isolated impurities lodged inside the conducting 2D material. The noise near an impurity is found to be suppressed compared to the background by an amount that is directly proportional to the cross-section of electrons/holes scattering off of the impurity. We use these results to outline an experimental proposal to measure the temperature dependent level shift and linewidth of the resonance associated with an Anderson impurity.
NASA Astrophysics Data System (ADS)
Zhang, Jing-Jing; Liang, Feng; Yang, Yong-Hong; Wang, Jun
2009-12-01
We report a theoretic study on the inverse spin-Hall effect (ISHE) in a two-terminal nano-device that consists of a two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling (RSOC) and two ideal leads. Based on a two-site toy model and Keldysh Green's function method, we derive an analytic result of ISHE, which shows clearly that a nonzero transverse charge current stems from the combined effect of the RSOC, the spin bias, and its spin polarization direction in spin space. Our further numerical calculations in a larger system other than two-site lattice model demonstrate that the transverse charge current, dependent on the strength of the RSOC, the Fermi energy of the system, as well as the system size, can exhibit oscillating behavior and even reverse its sign due to Rashba spin precession. These properties may be helpful for efficient detection of the spin current (spin bias) by measuring the transverse charge current in a spin-orbital coupling system.
Kanou, Manabu; Sasagawa, Takao
2013-04-03
3D Rashba materials can be a leading player in spin-related novel phenomena, ranging from the metallic extreme (unconventional superconductivity) to the transport intermediate (spin Hall effects) to the novel insulating variant (3D topological insulating states). As the essential backbone for both fundamental and applied research of such a 3D Rashba material, this study established the growth of sizeable single crystals of a candidate compound BiTeI with adjusted carrier concentrations. Three techniques (standard vertical Bridgman, modified horizontal Bridgman, and vapour transport) were employed, and BiTeI crystals (>1 × 1 × 0.2 mm(3)) with fundamentally different electronic states from metallic to insulating were successfully grown by the chosen technique. The 3D Rashba electronic states, including the Fermi surface topology, for the corresponding carrier concentrations of the obtained BiTeI crystals were revealed by relativistic first-principles calculations.
NASA Astrophysics Data System (ADS)
Inada, Y.; Matsuoka, S.; Kumada, A.; Ikeda, H.; Hidaka, K.
2017-03-01
Electrode material dependence of intense-mode vacuum arc behaviour was systematically investigated by using the Shack-Hartmann method capable of simultaneously visualising two-dimensional electron and metal vapour density distributions from single-shot recordings. The electrode materials studied included Cu, CuCr (Cu75Cr25 wt. %), WC, and AgWC (Ag40WC60 wt. %). A comparison between the Cu and CuCr electrodes showed that the metal vapour densities for the CuCr decreased in an even shorter time scale than for the Cu. In the case of the WC electrodes, the widths of the electron density distributions became narrower as the arc current decreased although the electron densities hardly decreased in the decaying process of the arc current. The density measurements conducted at the late stage of the vacuum arcs demonstrated that the metal vapour densities around the anode were maintained at the highest value for the AgWC among the electrode materials in this study.
High-mobility two-dimensional electron gases at oxide interfaces: Origin and opportunities
NASA Astrophysics Data System (ADS)
Chen, Yun-Zhong; Nini, Pryds; Sun, Ji-Rong; Shen, Bao-Gen; Søren, Linderoth
2013-11-01
Our recent experimental work on metallic and insulating interfaces controlled by interfacial redox reactions in SrTiO3-based heterostructures is reviewed along with a more general background of two-dimensional electron gas (2DEG) at oxide interfaces. Due to the presence of oxygen vacancies at the SrTiO3 surface, metallic conduction can be created at room temperature in perovskite-type interfaces when the overlayer oxide ABO3 has Al, Ti, Zr, or Hf elements at the B sites. Furthermore, relying on interface-stabilized oxygen vacancies, we have created a new type of 2DEG at the heterointerface between SrTiO3 and a spinel γ-Al2O3 epitaxial film with compatible oxygen ion sublattices. This 2DEG exhibits an electron mobility exceeding 100000 cm2V-1s-1, more than one order of magnitude higher than those of hitherto investigated perovskite-type interfaces. Our findings pave the way for the design of high-mobility all-oxide electronic devices and open a route toward the studies of mesoscopic physics with complex oxides.
High Pressure Studies of the Second Landau Level Region of a Two-Dimensional Electron System
NASA Astrophysics Data System (ADS)
Schreiber, Katherine; Samkharadze, Nodar; Gardner, Geoffrey; Fradkin, Eduardo; Manfra, Michael; Csathy, Gabor
Hydrostatic pressure has become a prevalent tool in condensed matter systems because the application of pressure to crystalline structures results in the shrinking of the lattice constant. This allows one to tune the Bloch wavefunction of the electrons and therefore all band parameters such as effective carrier mass, carrier density, and effective g-factor. In this manner, pressure acts as a probe into various strongly interacting electronic states. Motivated in particular by the capability to discern the spin polarization of quantum Hall states, we apply hydrostatic pressure up to 10 kbar to a two dimensional electron system (2DES) in a high-mobility GaAs/AlGaAs quantum well. This 2DES is subjected to milliKelvin temperatures and strong magnetic fields to observe the effect of pressure on fractional quantum Hall states, especially those in higher Landau levels, a regime not previously studied under pressure. We report our findings, focusing on the observation of a pressure-driven transition from a fractional quantum Hall state to the quantum Hall nematic phase in the second Landau level. Grants: Researchers at Purdue and N. Samkharadze: US DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, DE-SC0006671. E. Fradkin: US NSF, DMR 1408713.
Non-linear Resistivity of a Two-Dimensional Electron Gas in a Magnetic Field
NASA Astrophysics Data System (ADS)
Vavilov, Maxim G.; Aleiner, Igor L.; Glazman, Leonid I.
2007-03-01
We develop a theory of nonlinear response to an electric field of a two-dimensional electron gas (2DEG) placed in a classically strong magnetic field. The latter leads to a non-linear current-voltage characteristic at a relatively weak electric field. The origin of the non-linearity is two-fold: the formation of a non-equilibrium electron distribution function, and the geometrical resonance in the inter-Landau-levels transitions rates. We find the dependence of the current-voltage characteristics on the electron relaxation rates in the 2DEG. Our results can be applied for analysis of measurements at low [1] and high [2,3] current densities. [1] J. Zhang, S. Vitkalov, A. A. Bykov, A. K. Kalagin and A. K. Bakarov, cond-mat/0607741. [2] C. L. Yang, J. Zhang, R. R. Du, J. A. Simmons and J. L. Reno, Phys. Rev. Lett. 89, 076801 (2002). [3] W. Zhang, H. -S. Chiang, M. A. Zudov, L. N. Pfeiffer and K. W. West, cond-mat/0608727.
Postek, Michael T; Vladár, András E; Lowney, Jeremiah R; Keery, William J
2002-01-01
Traditional Monte Carlo modeling of the electron beam-specimen interactions in a scanning electron microscope (SEM) produces information about electron beam penetration and output signal generation at either a single beam-landing location, or multiple landing positions. If the multiple landings lie on a line, the results can be graphed in a line scan-like format. Monte Carlo results formatted as line scans have proven useful in providing one-dimensional information about the sample (e.g., linewidth). When used this way, this process is called forward line scan modeling. In the present work, the concept of image simulation (or the first step in the inverse modeling of images) is introduced where the forward-modeled line scan data are carried one step further to construct theoretical two-dimensional (2-D) micrographs (i.e., theoretical SEM images) for comparison with similar experimentally obtained micrographs. This provides an ability to mimic and closely match theory and experiment using SEM images. Calculated and/or measured libraries of simulated images can be developed with this technique. The library concept will prove to be very useful in the determination of dimensional and other properties of simple structures, such as integrated circuit parts, where the shape of the features is preferably measured from a single top-down image or a line scan. This paper presents one approach to the generation of 2-D simulated images and presents some suggestions as to their application to critical dimension metrology.
Yang, Ji-Hui; Zhang, Yueyu; Yin, Wan-Jian; Gong, X G; Yakobson, Boris I; Wei, Su-Huai
2016-02-10
Two-dimensional (2D) semiconductors can be very useful for novel electronic and optoelectronic applications because of their good material properties. However, all current 2D materials have shortcomings that limit their performance. As a result, new 2D materials are highly desirable. Using atomic transmutation and differential evolution global optimization methods, we identified two group IV-VI 2D materials, Pma2-SiS and silicene sulfide. Pma2-SiS is found to be both chemically, energetically, and thermally stable. Most importantly, Pma2-SiS has shown good electronic and optoelectronic properties, including direct bandgaps suitable for solar cells, good mobility for nanoelectronics, good flexibility of property tuning by layer control and applied strain, and good air stability as well. Therefore, Pma2-SiS is expected to be a promising 2D material in the field of 2D electronics and optoelectronics. The designing principles demonstrated in identifying these two tantalizing examples have great potential to accelerate the finding of new functional 2D materials.
Origin of Hund's multiplicity rule in quasi-two-dimensional two-electron quantum dots
Sako, Tokuei; Paldus, Josef; Diercksen, Geerd H. F.
2010-02-15
The origin of Hund's multiplicity rules has been studied for a system of two electrons confined by a quasi-two-dimensional harmonic-oscillator potential by relying on a full configuration interaction wave function and Cartesian anisotropic Gaussian basis sets. In terms of appropriate normal-mode coordinates the wave function factors into a product of the center-of-mass and the internal components. The {sup 1{Pi}}{sub u} singlet state and the {sup 3{Pi}}{sub u} triplet state represent the energetically lowest pair of states to which Hund's multiplicity rule applies. They are shown to involve excitations into different degrees of freedom, namely, into the center-of-mass angular mode and the internal angular mode for the singlet and triplet states, respectively. The presence of an angular nodal line in the internal space allows then the triplet state to avoid the singularity in the electron-electron interaction potential, leading to the energy lowering of the triplet state relative to its counterpart singlet state.
Parameters affecting specimen flatness of two-dimensional crystals for electron crystallography.
Vonck, J
2000-11-01
The flatness of two-dimensional (2D) crystals on the support film is a critical factor in protein electron crystallography. The influence of the carbon support film and of different grid makes and materials on flatness was investigated, using as a criterion the sharpness of diffraction spots perpendicular to the tilt axis of electron diffraction patterns of purple membrane tilted in the microscope at 45 degrees. In a quantitative test, carbon film that had been evaporated without sparks forming gave a much larger proportion of flat crystals than "sparked" carbon. Titanium grids were superior to copper, probably because they introduce less cryo-crinkling of the carbon film when the sample is cooled to liquid nitrogen temperature, as their thermal expansion coefficient is closer to that of carbon. While the molybdenum grids from Plano were unsuitable for data collection because of their tendency of break the carbon, molybdenum grids from Pacific GridTech gave a much larger yield of flat crystals than the titanium grids. Scanning electron microscope images of the grids as supplied by the manufacturer showed that the Plano grids had very narrow and irregular grid bars, while the Pacific GridTech grids were very smooth with a large surface-to-hole ratio.
NASA Astrophysics Data System (ADS)
van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas‘ev, V. V.; Stesmans, A.
2014-09-01
We study the structural, mechanical and electronic properties of the two-dimensional (2D) allotrope of tin: tinene/stanene using first-principles calculation within density functional theory, implemented in a set of computer codes. Continuing the trend of the group-IV 2D materials graphene, silicene and germanene; tinene is predicted to have a honeycomb lattice with lattice parameter of a0 = 4.62 Å and a buckling of d0 = 0.92 Å. The electronic dispersion shows a Dirac cone with zero gap at the Fermi energy and a Fermi velocity of {{v}_{F}}=0.97\\times {{10}^{6}} m s-1 including spin-orbit coupling yields a bandgap of 0.10 eV. The monolayer is thermally stable up to 700 K, as indicated by first-principles molecular dynamics, and has a phonon dispersion without imaginary frequencies. We explore applied electric field and applied strain as functionalization mechanisms. Combining these two mechanisms allows for an induced bandgap up to 0.21 eV, whilst retaining the linear dispersion, albeit with degraded electronic transport parameters.
Stability and Electronic Properties of Two-Dimensional Silicene and Germanene on Graphene
NASA Astrophysics Data System (ADS)
Chuu, Chih-Piao; Cai, Yongmao; Wei, C.-M.; Chou, M.-Y.
2014-03-01
Recently, there have been experimental attempts to synthesize silicene, a two-dimensional (2D) graphene-like form of silicon on metal surfaces such as Ag(111) and Ir(0001). The possibility of preparing silicene on ZrB2 thin films grown on silicon wafers has also been reported. This suggests new perspectives for the applications of massless fermions in materials that are compatible with Si-based electronics. It is expected that many of the unique electronic properties of graphene can also be realized in this new 2D system. However, the interaction between the 2D silicon structure and the metal substrate is found to be quite strong, leading to distortion in the adlayer and consequently the disappearance of the Dirac cone. Therefore, finding a suitable substrate that interacts with silicene weakly and preserves the sublattice symmetry is of ultimate importance. We have performed first-principles calculations of silicene and germanene on graphene in order to understand the effect of substrate interaction on the physical properties of these systems. Of particular interest is the induced change in the electronic structure, the modification of the Fermi velocity, the gap opening, the charge doping from the substrate, and the stability of the combined system. The energetics of forming the 2D silicone structure on a substrate is carefully evaluated in comparison with possible three-dimensional cluster structures.
Electronic and magnetism properties of two-dimensional stacked nickel hydroxides and nitrides
Wei, Xiao-Lin; Tang, Zhen-Kun; Guo, Gen-Cai; Ma, Shangyi; Liu, Li-Min
2015-01-01
Two-dimensional (2D) layered materials receive a lot of attention because of their outstanding intrinsic properties and wide applications. In this work, the structural, electronic and magnetic properties of nickel hydroxides (Ni(OH)2) and nitrides XN (X = B, Al, and Ga) heterostructures are studied by first-principles calculations. The results show that the pristine monolayer Ni(OH)2 owns no macro magnetism with antiferromagnetic (AFM) coupling between two nearest Ni atoms, the electronic structure can be modulated through the heterostructures. The Ni(OH)2-GaN and Ni(OH)2-AlN heterostructures retain the AFM coupling, while Ni(OH)2-BN heterostructure have a larger magnetic moment with ferromagnetic (FM) coupling. The complete electron–hole separation is found in the Ni(OH)2-GaN heterostructure. The tunable electronic and magnetic properties of the Ni(OH)2-XN heterostructures open a new door to design the spintronic devices in the 2D stacked nanostructures. PMID:26111476
Schmidt-Krey, Ingeborg; Rubinstein, John L.
2010-01-01
Membrane protein structure and function can be studied by two powerful and highly complementary electron cryomicroscopy (cryo-EM) methods: electron crystallography of two-dimensional (2D) crystals and single particle analysis of detergent-solubilized protein complexes. To obtain the highest-possible resolution data from membrane proteins, whether prepared as 2D crystals or single particles, cryo-EM samples must be vitrified with great care. Grid preparation for cryo-EM of 2D crystals is possible by back-injection, the carbon sandwich technique, drying in sugars before cooling in the electron microscope, or plunge-freezing. Specimen grids for single particle cryo-EM studies of membrane proteins are usually produced by plunge-freezing protein solutions, supported either by perforated or a continuous carbon film substrate. This review outlines the different techniques available and the suitability of each method for particular samples and studies. Experimental considerations in sample preparation and preservation include the protein itself and the presence of lipid or detergent. The appearance of cryo-EM samples in different conditions is also discussed. PMID:20678942
High mobility one- and two-dimensional electron systems in nanowire-based quantum heterostructures.
Funk, Stefan; Royo, Miguel; Zardo, Ilaria; Rudolph, Daniel; Morkötter, Stefanie; Mayer, Benedikt; Becker, Jonathan; Bechtold, Alexander; Matich, Sonja; Döblinger, Markus; Bichler, Max; Koblmüller, Gregor; Finley, Jonathan J; Bertoni, Andrea; Goldoni, Guido; Abstreiter, Gerhard
2013-01-01
Free-standing semiconductor nanowires in combination with advanced gate-architectures hold an exceptional promise as miniaturized building blocks in future integrated circuits. However, semiconductor nanowires are often corrupted by an increased number of close-by surface states, which are detrimental with respect to their optical and electronic properties. This conceptual challenge hampers their potentials in high-speed electronics and therefore new concepts are needed in order to enhance carrier mobilities. We have introduced a novel type of core-shell nanowire heterostructures that incorporate modulation or remote doping and hence may lead to high-mobility electrons. We demonstrate the validity of such concepts using inelastic light scattering to study single modulation-doped GaAs/Al0.16Ga0.84As core-multishell nanowires grown on silicon. We conclude from a detailed experimental study and theoretical analysis of the observed spin and charge density fluctuations that one- and two-dimensional electron channels are formed in a GaAs coaxial quantum well spatially separated from the donor ions. A total carrier density of about 3 × 10(7) cm(-1) and an electron mobility in the order of 50,000 cm(2)/(V s) are estimated. Spatial mappings of individual GaAs/Al0.16Ga0.84As core-multishell nanowires show inhomogeneous properties along the wires probably related to structural defects. The first demonstration of such unambiguous 1D- and 2D-electron channels and the respective charge carrier properties in these advanced nanowire-based quantum heterostructures is the basis for various novel nanoelectronic and photonic devices.
Controlling the two-dimensional electron gas at complex oxide interfaces
NASA Astrophysics Data System (ADS)
Janotti, Anderson
2014-03-01
Heterostructures of complex oxides have attracted great interest since the demonstration of a high-density two-dimensional electron gas (2DEG) at the SrTiO3/LaAlO3 (STO/LAO) interface. Still, the density of the 2DEG is only one tenth of what was expected from simple electron counting, i.e., 1/2 electron per unit-cell area. Since then, the origin and amount of the charge, the electrical properties of the 2DEG, the role of native defects, and the abrupt variation of the electron density with the thickness of the LAO top layer have been the subject of numerous theoretical and experimental studies. More recently, a 2DEG with the full density of 1/2 electron per unit cell area has been observed at the interface between the band insulator STO and the Mott insulator GdTiO3 (GTO), shedding additional light on the origin of the 2DEG, and raising important questions on the differences between the STO/LAO and STO/GTO heterostructures. Here we will discuss the similarities of the 2DEG at the STO/LAO and STO/GTO heterostructures from the perspective of first-principles simulations. We will address the differences in band alignments in the STO/LAO and STO/GTO heterostructures, and how the 2DEG is affected by the surface of the LAO top layer in the STO/LAO, but apparently not in the STO/GTO case. Finally, we will also discuss how heterostructures can be used to drastically alter the electronic structure of STO, transforming it from a band insulator into a Mott insulator. This work was performed in collaboration with Lars Bjaalie, Luke Gordon, Burak Himmetoglu, and Chris G. Van de Walle, and supported by ARO and NSF.
Transmission electron microscopy of structural disorder in two-dimensional materials
NASA Astrophysics Data System (ADS)
Huang, Pinshane Yeh
Transmission electron microscopy (TEM) of two-dimensional materials (2D) offers an unprecedented opportunity to study disordered systems down to the single-atom level. The reduced dimensionality of these systems provides a two-fold opportunity: first, 2D materials serve as model systems for exploring direct correlations between the structure and properties of individual atomic features. Second, these studies enable the development of new 2D materials and devices with precisely tailored optical, electronic, and mechanical properties. The experiments presented in this thesis show the first atomic-resolution images of extended one- and two-dimensional disorder in 2D materials and the extraordinary range of consequences they have on the local materials properties. The thesis begins with studies that probe the structure and properties of the 1D defects that make up grain boundaries in atomically-thin layers of graphene and molybdenum disulfide. These experiments span length scales across five orders of magnitude to image every atom at the grain boundaries through atomic-resolution scanning TEM and rapidly map the location, orientation, and shape of several hundred grains with dark-field TEM. Correlating these images with local probes of electrical, mechanical, and optical properties reveals that grain boundaries have effects that range from the unmeasurable to the extreme. A second set of projects utilizes aberration-corrected electron microscopy of a newly discovered 2D polymorph of SiO2 to conduct some of the first atomic resolution studies of glass. Images of the atomic structure of 2D SiO2 strikingly resemble Zachariasen's foundational cartoon models of glasses and reveal distributions of medium-range ordering that will be critical for refining theoretical models for how and why glasses form. Additional experiments use the electron beam to excite and image atomic rearrangements in this 2D SiO2, producing dramatic videos that visualize the structural building blocks
Electron Localization and Superconductivity in Two-Dimensional Metal Film Systems
NASA Astrophysics Data System (ADS)
Burns, Michael Joseph
The low temperature electrical transport properties of very thin polycrystalline palladium and palladium-gold films grown on glass or fused quartz, and also the properties of epitaxially grown silver films on germanium (001), have been investigated. These, and other two dimensional electronic systems, display a nonmetallic conductivity which has been attributed to electron localization and/or electron-electron interaction effects. According to the various theories, some of the transport properties should display different behaviors, thus allowing one to distinguish between the two effects. Measurements of Pd and Pd-Au film resistivities as a function of temperature, electric and magnetic field, plus the thermopower, were performed on films ranging from 18 to 30 Angstroms in thickness, having resistivities from 600 to 500000 ohms/square at 10(DEGREES)K. The magnetotransport properties imply the presence of strong spin-orbit coupling, although the temperature dependence of the resistivity of these films does not. All 'metallic' samples (resistivities less than 30000 ohms/square) have a material specific thermopower which tends to zero as the temperature goes to zero. Samples whose resistivities increase above 30000 ohms/square have thermopowers which diverge as the temperature approaches zero. Thus the density of states for the electronic transport is zero at the Fermi energy (i.e. an energy gap opens in the density of states at 30000 ohms/square) for high -resistivity films. The very thin (2.5 monolayer) silver films epitaxially grown on Ge (001) consist of a monolayer coverage plus isolated three dimensional islands. Below 70(DEGREES)K the conductivity is dominated by the metal film and displays the temperature and electric and magnetic field dependencies characteristic of metallic weak localization in two dimensions. Below about 2(DEGREES)K, the resistance drops rapidly in a manner resembling an incomplete superconducting transition. The resistance is restored by
Hexagonal boron nitride: Ubiquitous layered dielectric for two-dimensional electronics
NASA Astrophysics Data System (ADS)
Jain, Nikhil
Hexagonal boron nitride (h-BN), a layer-structured dielectric with very similar crystalline lattice to that of graphene, has been studied as a ubiquitous dielectric for two-dimensional electronics. While 2D materials may lead to future platform for electronics, traditional thin-film dielectrics (e.g., various oxides) make highly invasive interface with graphene. Multiple key roles of h-BN in graphene electronics are explored in this thesis. 2D graphene/h-BN heterostructures are designed and implemented in diverse configurations in which h-BN is evaluated as a supporting substrate, a gate dielectric, a passivation layer, or an interposing barrier in "3D graphene" superlattice. First, CVD-grown graphene on h-BN substrate shows improved conductivity and resilience to thermally induced breakdown, as compared with graphene on SiO2, potentially useful for high-speed graphene devices and on-chip interconnects. h-BN is also explored as a gate dielectric for graphene field-effect transistor with 2D heterostructure design. The dielectric strength and tunneling behavior of h-BN are investigated, confirming its robust nature. Next, h-BN is studied as a passivation layer for graphene electronics. In addition to significant improvement in current density and breakdown threshold, fully encapsulated graphene exhibits minimal environmental sensitivity, a key benefit to 2D materials which have only surfaces. Lastly, reduction in interlayer carrier scattering is observed in a double-layered graphene setup with ultrathin h-BN multilayer as an interposing layer. The DFT simulation and Raman spectral analysis indicate reduction in interlayer scattering. The decoupling of the two graphene monolayers is further confirmed by electrical characterization, as compared with other referencing mono- and multilayer configurations. The heterostructure serves as the building element in "3D graphene", a versatile platform for future electronics.
The Two-dimensional Electron Gas at the Lanthanum Aluminate - Strontium Titanate Heterointerface
NASA Astrophysics Data System (ADS)
Hernandez, Tomas
Since the discovery of the conducting two dimensional electron gas (2DEG) at the interface of insulating oxide materials LaAlO3 and SrTiO 3 in 2004, this system has shown a vast diversity of physical properties including superconductivity, ferromagnetism and field induced metal-insulator phase transitions. In this dissertation we discuss three advances by our collaboration that bolster applicability of this interfacial system. In an all thin-film LaAlO3/SrTiO3 system we identified two different conduction regimes, where the effect of oxygen partial pressure during growth directly affects the carrier density of the system. In the lower carrier density regime (˜ 1013 cm-2) we found a metallic to insulating temperature dependence and strong localization by disorder, whereas in the higher regime (> 1014 cm-2) we find metallic dependence with signs of weak localization. This is understood in the occupation of Ti 3d bands farther from the interface as carrier density is increased. Our work in the electronic properties of all-thin-film LaAlO 3/SrTiO3 pioneers the understanding and implementations of this 2DEG to harness the richness of this oxide interface and its integration to industry standard substrates. Furthermore, we showed the first conducting LaAlO3/SrTiO3 two-dimensional system grown by the physical vapor deposition technique: 90° off-axis sputtering. Films grown with this scalable technique have excellent crystalline quality and transport characteristics similar to those grown by (mostly research employed) pulsed laser deposition. Writing of circuits on the nanoscale using conducting-tip atomic force microscopy is demonstrated in sputtered LaAlO3 on SrTiO3, opening the doors to nanoelectronic application of this novel interfacial system. Moreover, we are among the first groups in the world to demonstrate conducting [111]-oriented LaAlO3/SrTiO3 heterostructures, a crystallographic orientation that proves to be challenging due to the large polar nature of
Local electronic properties of the graphene-protected giant Rashba-split BiAg2 surface
NASA Astrophysics Data System (ADS)
Tesch, Julia; Voloshina, Elena; Jubitz, Milan; Dedkov, Yuriy; Fonin, Mikhail
2017-04-01
We report the preparation of an interface between graphene and a strong Rashba-split BiAg2 surface alloy and an investigation of its structure as well as the electronic properties by means of scanning tunneling microscopy/spectroscopy and density functional theory calculations. Upon evaluation of the quasiparticle interference patterns, an unperturbed linear dispersion for the π band of n -doped graphene is observed. Our results also reveal the intact nature of the giant Rashba-split surface states of the BiAg2 alloy, which demonstrate only a moderate downward energy shift due to the presence of graphene. This effect is explained in the framework of density functional theory by an inward relaxation of the Bi atoms at the interface and subsequent delocalization of the wave function of the surface states. Our findings demonstrate a realistic pathway to prepare a graphene-protected giant Rashba-split BiAg2 for possible spintronic applications.
Two-Dimensional Electron Gases in Nanomembrane-based Epitaxial Si/SiGe Heterostructures
NASA Astrophysics Data System (ADS)
Li, Yize; Sookchoo, Pornsatit; Cui, Xiaorui; Mohr, Robert; Savage, Donald; Foote, Ryan; Jacobson, Rb; Sanchez-Perez, Jose; Wu, Xian; Ward, Dan; Coppersmith, Susan; Eriksson, Mark; Lagally, Max
2015-03-01
To assess possible improvements in the electronic performance of two-dimensional electron gases (2DEGs) in silicon, SiGe/Si/SiGe heterostructures are grown on fully elastically relaxed single-crystal SiGe nanomembranes fabricated through a strain engineering approach. This procedure eliminates the formation of dislocations in the heterostructure. Top-gated Hall bar devices are fabricated to enable magnetoresistance and Hall effect measurements. Both Shubnikov de Haas oscillations and the quantum Hall effect are observed at low temperatures, demonstrating the formation of high-quality 2DEGs. Values of charge carrier mobility as a function of carrier density extracted from these measurements are at least as high or higher than those obtained from companion measurements made on heterostructures grown on conventional strain graded substrates. In all samples impurity scattering appears to limit the mobility. Supported by U.S. Dept. of Defense. The views and conclusions are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the U.S. Government. Facilities support: DOE.
NASA Astrophysics Data System (ADS)
Carr, Stephen; Massatt, Daniel; Fang, Shiang; Cazeaux, Paul; Luskin, Mitchell; Kaxiras, Efthimios
2017-02-01
The ability in experiments to control the relative twist angle between successive layers in two-dimensional (2D) materials offers an approach to manipulating their electronic properties; we refer to this approach as "twistronics." A major challenge to theory is that, for arbitrary twist angles, the resulting structure involves incommensurate (aperiodic) 2D lattices. Here, we present a general method for the calculation of the electronic density of states of aperiodic 2D layered materials, using parameter-free Hamiltonians derived from ab initio density-functional theory. We use graphene, a semimetal, and MoS2, a representative of the transition-metal dichalcogenide family of 2D semiconductors, to illustrate the application of our method, which enables fast and efficient simulation of multilayered stacks in the presence of local disorder and external fields. We comment on the interesting features of their density of states as a function of twist angle and local configuration and on how these features can be experimentally observed.
High-k Dielectric Nanosheets for Two-Dimensional material Electronics
NASA Astrophysics Data System (ADS)
Hao, Yufeng; Cui, Xu; Yin, Jun; Lee, Gwan-Hyoung; Arefe, Ghidewon; Osada, Minoru; Sasaki, Takayoshi; Hone, James
2015-03-01
Two-dimensional (2D) materials, such as graphene, hexagonal boron nitride (hBN), transition metal dichalcogenides, have shown great potential in nano-electronics because of their unique and superior physical properties. Among them, hBN has been known as an alternative dielectric that is atomically flat and free of trapped charges, which drastically enhance the mobility of graphene or MoS2. However, low dielectric constant (k ~ 3.5) of hBN limits its use in transistors as gate lengths are scaled down to tens of nanometers. Here we demonstrate high performance graphene and MoS2 field effect transistors by using ultrathin Ca2NaNb4O13 nanosheet as a dielectric and mechanically stacking 2D materials. We developed a facile transfer strategy to build 2D materials devices based on the Ca2NaNb4O13 nanosheets. We measured and found that the oxide nanosheet has high dielectric strength, along with high dielectric constant at thickness of a few tens of nanometer. Therefore, multiple-stacked heterostructure of 2D materials shows high mobility at small operating voltage. This study shows possibility of high-k dielectric nanosheets for 2D electronics.
Pelliccione, M.; Bartel, J.; Goldhaber-Gordon, D.; Sciambi, A.; Pfeiffer, L. N.; West, K. W.
2014-11-03
Correlated electron states in high mobility two-dimensional electron systems (2DESs), including charge density waves and microemulsion phases intermediate between a Fermi liquid and Wigner crystal, are predicted to exhibit complex local charge order. Existing experimental studies, however, have mainly probed these systems at micron to millimeter scales rather than directly mapping spatial organization. Scanning probes should be well-suited to study the spatial structure of these states, but high mobility 2DESs are found at buried semiconductor interfaces, beyond the reach of conventional scanning tunneling microscopy. Scanning techniques based on electrostatic coupling to the 2DES deliver important insights, but generally with resolution limited by the depth of the 2DES. In this letter, we present our progress in developing a technique called “virtual scanning tunneling microscopy” that allows local tunneling into a high mobility 2DES. Using a specially designed bilayer GaAs/AlGaAs heterostructure where the tunnel coupling between two separate 2DESs is tunable via electrostatic gating, combined with a scanning gate, we show that the local tunneling can be controlled with sub-250 nm resolution.
Plasmonic terahertz modulator based on a grating-coupled two-dimensional electron system
NASA Astrophysics Data System (ADS)
Huang, Y. D.; Yu, Y.; Qin, H.; Sun, J. D.; Zhang, Z. P.; Li, X. X.; Huang, J. J.; Cai, Y.
2016-11-01
Electrically driven broadband modulator with large modulation depth and high speed is in high demand to meet the technical advancing and applications in terahertz fields recently. So far, the single-particle non-resonant absorption mechanism described by the Drude conductivity has been utilized in most of the related researches but is still not efficient enough. Here we proposed and demonstrated a terahertz modulator based on the collective electron plasma excitations (plasmons) in a grating-coupled two-dimensional electron gas in GaN/AlGaN heterostructure. By switching between the resonant and non-resonant conditions of the 2D plasmon excitation enabled by applying proper gate biases, the transmission of terahertz electromagnetic waves can be efficiently manipulated. Taking advantage of its resonant characteristic combined with the strong electric field enhancement in the active region, we experimentally achieved a maximum intensity modulation depth of 93%, a 3 dB operation bandwidth of ˜400 kHz, and a small required driving voltage amplitude of 2 V at a cryogenic temperature of 8.7 K. Owing to its excellent performances, this active plasmon-based terahertz modulator may offer some promising solutions in several fields of terahertz technology in the future.
Luo, Chen; Wang, Chaolun; Wu, Xing; Zhang, Jian; Chu, Junhao
2017-08-07
Two-dimensional (2D) ultra-thin materials beyond graphene with rich physical properties and unique layered structures are promising for applications in electronics, chemistry, energy, and bioscience, etc. The interaction mechanisms among the structures, chemical compositions and physical properties of 2D layered materials are critical for fundamental nanosciences and the practical fabrication of next-generation nanodevices. Transmission electron microscopy (TEM), with its high spatial resolution and versatile external fields, is undoubtedly a powerful tool for the static characterization and dynamic manipulation of nanomaterials and nanodevices at the atomic scale. The rapid development of thin-film and precision microelectromechanical systems (MEMS) techniques allows 2D layered materials and nanodevices to be probed and engineered inside TEM under external stimuli such as thermal, electrical, mechanical, liquid/gas environmental, optical, and magnetic fields at the nanoscale. Such advanced technologies leverage the traditional static TEM characterization into an in situ and interactive manipulation of 2D layered materials without sacrificing the resolution or the high vacuum chamber environment, facilitating exploration of the intrinsic structure-property relationship of 2D layered materials. In this Review, the dynamic properties tailored and observed by the most advanced and unprecedented in situ TEM technology are introduced. The challenges in spatial, time and energy resolution are discussed also. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Li, Xinming; Tao, Li; Chen, Zefeng; Fang, Hui; Li, Xuesong; Wang, Xinran; Xu, Jian-Bin; Zhu, Hongwei
2017-06-01
The exfoliation and identification of the two-dimensional (2D) single atomic layer of carbon have opened the opportunity to explore graphene and related 2D materials due to their unique properties. 2D materials are regarded as one of the most exciting solutions for next generation electronics and optoelectronics in the technological evolution of semiconductor technology. In this review, we focus on the core concept of "structure-property relationships" to explain the state-of-the-art of 2D materials and summarize the unique electrical and light-matter interaction properties in 2D materials. Based on this, we discuss and analyze the structural properties of 2D materials, such as defects and dopants, the number of layers, composition, phase, strain, and other structural characteristics, which could significantly alter the properties of 2D materials and hence affect the performance of semiconductor devices. In particular, the building blocks principles and potential electronic and optoelectronic applications based on 2D materials are explained and illustrated. Indeed, 2D materials and related heterostructures offer the promise for challenging the existing technologies and providing the chance to have social impact. More efforts are expected to propel this exciting field forward.
2015-01-01
Time-resolved two-dimensional (2D) electronic spectra (ES) tracking the evolution of the excited state manifolds of the retinal chromophore have been simulated along the photoisomerization pathway in bovine rhodopsin, using a state-of-the-art hybrid QM/MM approach based on multiconfigurational methods. Simulations of broadband 2D spectra provide a useful picture of the overall detectable 2D signals from the near-infrared (NIR) to the near-ultraviolet (UV). Evolution of the stimulated emission (SE) and excited state absorption (ESA) 2D signals indicates that the S1 → SN (with N ≥ 2) ESAs feature a substantial blue-shift only after bond inversion and partial rotation along the cis → trans isomerization angle, while the SE rapidly red-shifts during the photoinduced skeletal relaxation of the polyene chain. Different combinations of pulse frequencies are proposed in order to follow the evolution of specific ESA signals. These include a two-color 2DVis/NIR setup especially suited for tracking the evolution of the S1 → S2 transitions that can be used to discriminate between different photochemical mechanisms of retinal photoisomerization as a function of the environment. The reported results are consistent with the available time-resolved pump–probe experimental data, and may be used for the design of more elaborate transient 2D electronic spectroscopy techniques. PMID:24794143
NASA Astrophysics Data System (ADS)
Massote, Daniel V. P.; Liang, Liangbo; Kharche, Neerav; Meunier, Vincent
2016-11-01
Compared to graphene, the synthesis of large area atomically thin boron materials is particularly challenging, owing to the electronic shell structure of B, which does not lend itself to the straightforward assembly of pure B materials. This difficulty is evidenced by the fact that the first synthesis of a pure two-dimensional boron was only very recently reported, using silver as a growing substrate. In addition to experimentally observed 2D boron allotropes, a number of other stable and metastable 2D boron materials are predicted to exist, depending on growth conditions and the use of a substrate during growth. This first-principles study based on density functional theory aims at providing guidelines for the identification of these materials. To this end, this report presents a comparative description of a number of possible 2D B allotropes. Electronic band structures, phonon dispersion curves, Raman scattering spectra, and scanning tunneling microscopy images are simulated to highlight the differences between five distinct realizations of these B systems. The study demonstrates the existence of clear experimental signatures that constitute a solid basis for the unambiguous experimental identification of layered B materials.
Massote, Daniel V. P.; Liang, Liangbo; Kharche, Neerav; Meunier, Vincent
2016-11-11
Compared to graphene, the synthesis of large area atomically thin boron materials is particularly challenging, owing to the electronic shell structure of B, which does not lend itself to the straightforward assembly of pure B materials. This difficulty is evidenced by the fact that the first synthesis of a pure two-dimensional boron was only very recently reported, using silver as a growing substrate. In addition to experimentally observed 2D boron allotropes, a number of other stable and metastable 2D boron materials are predicted to exist, depending on growth conditions and the use of a substrate during growth. This first-principles study based on density functional theory aims at providing guidelines for the identification of these materials. To this end, this report presents a comparative description of a number of possible 2D B allotropes. Electronic band structures, phonon dispersion curves, Raman scattering spectra, and scanning tunneling microscopy images are simulated to highlight the differences between five distinct realizations of these B systems. In conclusion, this study demonstrates the existence of clear experimental signatures that constitute a solid basis for the unambiguous experimental identification of layered B materials.
Massote, Daniel V. P.; Liang, Liangbo; Kharche, Neerav; ...
2016-11-11
Compared to graphene, the synthesis of large area atomically thin boron materials is particularly challenging, owing to the electronic shell structure of B, which does not lend itself to the straightforward assembly of pure B materials. This difficulty is evidenced by the fact that the first synthesis of a pure two-dimensional boron was only very recently reported, using silver as a growing substrate. In addition to experimentally observed 2D boron allotropes, a number of other stable and metastable 2D boron materials are predicted to exist, depending on growth conditions and the use of a substrate during growth. This first-principles studymore » based on density functional theory aims at providing guidelines for the identification of these materials. To this end, this report presents a comparative description of a number of possible 2D B allotropes. Electronic band structures, phonon dispersion curves, Raman scattering spectra, and scanning tunneling microscopy images are simulated to highlight the differences between five distinct realizations of these B systems. In conclusion, this study demonstrates the existence of clear experimental signatures that constitute a solid basis for the unambiguous experimental identification of layered B materials.« less
Density-Functional Study of the Two-Dimensional Electron Gas at the Perovskite Titanate Interface
NASA Astrophysics Data System (ADS)
Nanda, Ranjit; Popovic, Zoran; Thulasi, Sunita; Satpathy, Sashi
2006-03-01
Oxide superlattices and microstructures hold the promise for creating a new class of devices with unprecedented functionalities. Density-functional studies^1 of the recently fabricated, lattice-matched perovskite titanates^2 (SrTiO3)n/(LaTiO3)m reveal a classic wedge-shaped potential well for the monolayer structure, originating from the Coulomb potential of a charged La sheet. The potential in turn confines the electrons in the Airy-function-localized states. This resulting two-dimensional electron gas may be described in terms of the simplified jellium model^3 and it describes reasonably well the observed charge modulation of the Ti atoms near the interface. Concerning magnetism, it is suppressed for the monolayer LaTiO3 structure, while in structures with a thicker LaTiO3 part, bulk antiferromagnetism is recovered, with a narrow transition region separating the magnetic LaTiO3 and the non-magnetic SrTiO3. 1. Z. S. Popovic and S. Satpathy, Phys. Rev. Lett. 94, 176805 (2005) 2. A. Ohtomo et al., Nature 419, 378 (2002) 3. S. Thulasi and S. Satpathy, Phys. Rev. B (2006)
Two dimensional planar and nonplanar ion acoustic shock waves in electron-positron-ion plasmas
Masood, W.; Rizvi, H.
2009-09-15
Two dimensional ion acoustic shock waves (IASWs) are studied in an unmagnetized plasma consisting of electrons, positrons, and adiabatically hot positive ions. This is done by deriving the nonplanar Kadomstev-Petviashvili-Burgers (KPB) equation under the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. The limiting cases of the nonplanar KPB equation are also discussed. The analytical solution of the planar KPB equation is obtained using the tangent hyperbolic method that is used as the initial profile to numerically solve the nonplanar KPB equation. It is found that the strength of IASW is maximum for spherical, intermediate for cylindrical, and minimum for planar geometry. It is observed that the positron concentration and the plasma kinematic viscosity significantly modify the shock structure. Finally, the temporal evolution of the nonplanar IASW is investigated and the results are discussed from the numerical stand point. The results of the present study may be applicable in the study of small amplitude localized electrostatic shock structures in electron-positron-ion plasmas.
The Density of States in the Two-Dimensional Electron Gas and Quantum Dots.
NASA Astrophysics Data System (ADS)
Ashoori, Raymond Cameron
The density of states (DOS) in both the two-dimensional (2d) electron gas and arrays of "quantum dots" is studied using capacitive and tunneling techniques. A capacitance bridge described in this thesis is used to make high sensitivity capacitance measurements on GaAs samples produced using molecular beam epitaxy. We have made quantitative determinations of the "thermodynamic" DOS of Landau levels in a 2d system whose electronic density can be varied by means of a gate bias. A novel technique which, by taking advantage of two normalization conditions based on knowledge of the Landau level degeneracy and level spacing, allows extraction of the DOS from capacitance data using no sample parameters. The method yields the DOS as a function of Fermi energy in the 2d electron gas. We find that Lorentzian lineshapes give an excellent fit to the Landau level lineshapes observed. Further, the widths of these lineshapes are independent of the strength of the magnetic field. In high fields, the exchange enhanced spin splitting is observed and the exchange energy is determined. The "single-particle" DOS is measured in the same samples. Zero bias tunneling of electrons between a quantum well and an n^{+} substrate is studied with excitation voltages smaller than k _{B}T. At low temperatures and only with magnetic field applied perpendicular to the plane of the electron gas in the well, the tunneling rate develops a novel temperature dependent suppression. The data are interpreted in terms of a magnetic field induced energy gap, at the Fermi level, in the single-particle spectrum of electrons in the well. We laterally confine electrons in a quantum well into arrays of quantum dots using a technique which requires only slight (300A) surface corrugation of the sample. Electron beam lithography and reactive ion etching techniques are used to produce this corrugation. These samples are studied using a capacitance method which has allowed us to determine the lateral area of dots
Wu, Jingbo; Mayorov, Alexander S.; Wood, Christopher D.; Mistry, Divyang; Li, Lianhe; Muchenje, Wilson; Rosamond, Mark C.; Chen, Li; Linfield, Edmund H.; Davies, A. Giles; Cunningham, John E.
2015-01-01
Terahertz frequency time-domain spectroscopy employing free-space radiation has frequently been used to probe the elementary excitations of low-dimensional systems. The diffraction limit, however, prevents its use for the in-plane study of individual laterally-defined nanostructures. Here, we demonstrate a planar terahertz frequency plasmonic circuit in which photoconductive material is monolithically integrated with a two-dimensional electron system. Plasmons with a broad spectral range (up to ~ 400 GHz) are excited by injecting picosecond-duration pulses, generated and detected by a photoconductive semiconductor, into a high mobility two-dimensional electron system. Using voltage modulation of a Schottky gate overlying the two-dimensional electron system, we form a tuneable plasmonic cavity, and observe electrostatic manipulation of the plasmon resonances. Our technique offers a direct route to access the picosecond dynamics of confined electron transport in a broad range of lateral nanostructures. PMID:26487263
Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas
Yang, Luyi
2013-05-17
Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly
NASA Astrophysics Data System (ADS)
Heisz, Jeffrey Maurice
This thesis is a theoretical examination of zero temperature electronic transport in the two dimensional electron gas (2DEG) contained at the interfaces of GaAs/ Al/it xGa1-[/it x]As heterostructures. The transport calculations have been performed in the semi-classical limit (i.e., neglecting Landau level quantization) using a multi-subband Boltzmann equation. The standard transport equations have been reformulated in order to deal with the anisotropic electronic structures found in the 2DEGs in the presence of a parallel magnetic field. In addition, a realistic model of impurity scattering has been utilized, with a simple extension of the RPA-based screening potential that accounts for the effects of the magnetic field. As a first application, the transport behaviour of a conventional heterojunction is examined. Distinct anisotropies in the energy structures are found, along with very anisotropic scattering rates and lifetimes. These translate into complex parallel field transport phenomena, which are in most cases similar to those found experimentally. In addition, the occurrence of a transverse magnetoresistance dip is fully quantified and excellent agreement with experiment is obtained. We next perform similar transport calculations for single and double quantum well models. In this situation, virtual crossings of the Fermi contours are possible, and significant anisotropies are found in the scattering rates and lifetimes. Magnetically induced resistance resonances (attributable to these crossings) are observed, in qualitative agreement with experiment. The resistance resonance effect has also been probed using external gating voltages, and the relationship between the symmetrized condition and the observed resonance has been explained. Calculations of the transverse magnetoresistance have suggested a method to experimentally determine the exact gated symmetrization point. Finally, the effects of a parallel magnetic field on the gated resonance condition have
Spin Filtering in a Rashba Electron Waveguide Induced by Edge Disorder
NASA Astrophysics Data System (ADS)
Xiao, Xian-Bo; Li, Fei; Liu, Nian-Hua
2012-08-01
We theoretically study the spin-dependent electron transport in a Rashba electron waveguide with rough edges, attached to ideal leads without spin-orbit interaction. The influence of the edge disorder on the charge and spin conductances is clarified by using the spin-resolved lattice Green function method. It is found that a spin-polarized current can be generated in the output lead and its spin polarization can be manipulated by varying the waveguide length. The underlying physics is attributed to the broken longitudinal symmetry and the spin-dependent quantum interference induced by the rough boundaries. Our results may provide a new method to design a spin filter without using magnetic materials or applying a magnetic field.
Fateev, D. V. Mashinsky, K. V.; Bagaeva, T. Yu.; Popov, V. V.
2015-01-15
The problem of the rectification of terahertz radiation due to plasmonic nonlinearities in a periodic two-dimensional electron system upon the excitation of plasma oscillations by the attenuated total reflection method is solved. This model allows the independent study of different plasmonic rectification mechanisms, i.e., plasmonic electron drag and plasmonic ratchet effects.
Huang, Bing; Zhuang, Houlong L.; Yoon, Mina; ...
2015-01-01
We report that the discovery of stable two-dimensional, earth-abundant, semiconducting materials is of great interest and may impact future electronic technologies. By combining global structural prediction and first-principles calculations, we have theoretically discovered several previously unknown semiconducting silicon phosphides (SixPy) monolayers, which could be formed stably at the stoichiometries of y/x ≥1. Unexpectedly, some of these compounds, i.e., P-6m2 Si1P1 and Pm Si1P2, have comparable or even lower formation enthalpies than their previously known bulk allotropes. The band gaps (Eg) of SixPy compounds can be dramatically tuned in an extremely wide range (0< Eg < 3 eV) by simply changingmore » the number of layers or applying an in-plane strain. Furthermore, we find that carrier doping can drive the ground state of C2/m Si1P3 from a nonmagnetic state into a robust half-metallic spin-polarized state, originating from its unique valence band structure, which can extend the use of Si-related compounds for spintronics.« less
Huang, Bing; Zhuang, Houlong L.; Yoon, Mina; Sumpter, Bobby G.; Wei, Su-Huai
2015-01-01
We report that the discovery of stable two-dimensional, earth-abundant, semiconducting materials is of great interest and may impact future electronic technologies. By combining global structural prediction and first-principles calculations, we have theoretically discovered several previously unknown semiconducting silicon phosphides (Si_{x}P_{y}) monolayers, which could be formed stably at the stoichiometries of y/x ≥1. Unexpectedly, some of these compounds, i.e., P-6m2 Si_{1}P_{1} and Pm Si_{1}P_{2}, have comparable or even lower formation enthalpies than their previously known bulk allotropes. The band gaps (Eg) of Si_{x}P_{y} compounds can be dramatically tuned in an extremely wide range (0< E_{g} < 3 eV) by simply changing the number of layers or applying an in-plane strain. Furthermore, we find that carrier doping can drive the ground state of C2/m Si_{1}P_{3} from a nonmagnetic state into a robust half-metallic spin-polarized state, originating from its unique valence band structure, which can extend the use of Si-related compounds for spintronics.
NASA Astrophysics Data System (ADS)
Gorcester, Jeff; Rananavare, Shankar B.; Freed, Jack H.
1989-05-01
Electron spin-echo (ESE) and two-dimensional electron-electron double resonance (2D ELDOR) experiments have been performed as a function of director orientation and temperature in the smectic A phase of the liquid crystal S2 for the spin-probe PD-tempone(2×10-3 M). Over the entire temperature range studied (288-323 K) we observe significant 2D ELDOR cross peaks only for ΔMI =±1 indicative of 14N spin-relaxation and negligible Heisenberg exchange. From the angular dependent 14N spin-relaxation rates we obtain the dipolar spectral densities at the hyperfine (hf) frequency, whereas from a combination of ESE and 2D ELDOR we obtain the dipolar and Zeeman-dipolar spectral densities at zero frequency. The angular dependent spectral densities were successfully decomposed into their basic components in accordance with theory. The angular dependent spectral densities at the hf frequency are not predicted by a model of anisotropic rotational diffusion in a nematic orienting potential, but are consistent with predictions of a model due to Moro and Nordio of solute rototranslational diffusion in a McMillan-type potential. The angular dependence also indicates that order director fluctuations in the smectic phase are suppressed at frequencies on the order of 10 MHz. An additional contribution to solute reorientation due to cooperative hydrocarbon chain fluctuations is suggested to account for the behavior of the observed spectral densities at zero frequency. An evaluation of the relevance of several other dynamical models to this experimental work is also presented.
Time domain capacitance spectroscopy of tunneling electrons in the two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Ashoori, R. C.; Chan, H. B.
2003-07-01
We have developed a technique capable of measuring the tunneling current into both localized and conducting states in a 2D electron system (2DES). The method yields I-V characteristics for tunneling with no distortions arising from low 2D in-plane conductivity. We have used the technique to determine the pseudogap energy spectrum for electron tunneling into and out of a 2D system and, further, we have demonstrated that such tunneling measurements reveal spin relaxation times within the 2DEG. Pseudogap: In a 2DEG in perpendicular magnetic field, a pseudogap develops in the tunneling density of states at the Fermi energy. We resolve a linear energy dependence of this pseudogap at low excitations. The slopes of this linear gap are strongly field dependent. No existing theory predicts the observed behavior. Spin relaxation: We explore the characteristics of equilibrium tunneling of electrons from a 3D electrode into a high mobility 2DES. For most 2D Landau level filling factors, we find that electrons tunnel with a single, well-defined tunneling rate. However, for spin-polarized quantum Hall states ( ν=1, 3 and 1/3) tunneling occurs at two distinct rates that differ by up to two orders of magnitude. The dependence of the two rates on temperature and tunnel barrier thickness suggests that slow in-plane spin relaxation creates a bottleneck for tunneling of electrons.
Radiation modulation of circular photogalvanic effect in two-dimensional electron gas system
NASA Astrophysics Data System (ADS)
Jiang, Chongyun; Ma, Hui; Yu, Jinling; Liu, Yu; Chen, Yonghai
2012-12-01
We report on the observation of a modulation on the circular photogalvanic effect (CPGE) imposed by an extra optical radiation in a GaAs-based two dimensional electron gas system. The wavelength of the radiation for exciting the CPGE is 1064 nm and the wavelength of the modulation is 532 nm. The experiment is carried out from 77 K up to room temperature. The 1064 nm induced CPGE modulated by the 532 nm radiation increases as the increasing temperature. We also vary the power of the modulation beam to investigate the intensity dependence of the modulation effect. The modulation exhibits a linear dependence at low intensity. As the intensity increasing, we observe a saturation at certain level of the intensity and a suppression of the modulation when the intensity is further increased. The investigation of photoconductivity reveals that the change of the photoexcited charge carrier density has little contribution to the radiation modulation effect. Therefore, the microscopic mechanism of the radiation modulation effect can be attributed to the modulation of spin-orbit interaction in the structure.
Two-Dimensional Fourier Transform Electronic Spectroscopy of Peridinin and Peridinin Analogs
NASA Astrophysics Data System (ADS)
Khosravi, Soroush; Bishop, Michael; Obaid, Razib; Whitelock, Hope; Carroll, Ann Marie; Lafountain, Amy; Frank, Harry; Beck, Warren; Gibson, George; Berrah, Nora
2016-05-01
The peridinin chlorophyll- a protein (PCP) is a light harvesting complex in dinoflagellates that exhibits a carotenoid-to-chlorophyll (Chl) a excitation energy transfer (EET) efficiency of 85-95%. Unlike most light harvesting complexes, where the number of carotenoids is less than Chl, each subunit of PCP contains eight tightly-packed peridinins surrounding two Chl a molecules. The unusual solvent polarity dependence of the lowest excited S1 state of peridinin suggests the presence of an intramolecular charge-transfer (ICT) state. The nature of the ICT state, its coupling to the S1 of peridinin, and whether it enables the high EET efficiency is still unclear. Two-dimensional electronic Fourier transform spectroscopy (2DES) is a powerful method capable of examining these issues. The present work examines the ICT state of peridinin and peridinin analogs that have diminished ICT character. 2DES data adding new insight into the spectral signatures and nature of the ICT state in peridinin will be presented. Funded by the DoE-BES, Grant No. DE-SC0012376.
Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy
NASA Astrophysics Data System (ADS)
Ferretti, Marco; Hendrikx, Ruud; Romero, Elisabet; Southall, June; Cogdell, Richard J.; Novoderezhkin, Vladimir I.; Scholes, Gregory D.; van Grondelle, Rienk
2016-02-01
Energy transfer and trapping in the light harvesting antennae of purple photosynthetic bacteria is an ultrafast process, which occurs with a quantum efficiency close to unity. However the mechanisms behind this process have not yet been fully understood. Recently it was proposed that low-lying energy dark states, such as charge transfer states and polaron pairs, play an important role in the dynamics and directionality of energy transfer. However, it is difficult to directly detect those states because of their small transition dipole moment and overlap with the B850/B870 exciton bands. Here we present a new experimental approach, which combines the selectivity of two-dimensional electronic spectroscopy with the availability of genetically modified light harvesting complexes, to reveal the presence of those dark states in both the genetically modified and the wild-type light harvesting 2 complexes of Rhodopseudomonas palustris. We suggest that Nature has used the unavoidable charge transfer processes that occur when LH pigments are concentrated to enhance and direct the flow of energy.
Simulated two-dimensional electronic spectroscopy of the eight-bacteriochlorophyll FMO complex
NASA Astrophysics Data System (ADS)
Yeh, Shu-Hao; Kais, Sabre
2014-12-01
The Fenna-Matthews-Olson (FMO) protein-pigment complex acts as a molecular wire conducting energy between the outer antenna system and the reaction center; it is an important photosynthetic system to study the transfer of excitonic energy. Recent crystallographic studies report the existence of an additional (eighth) bacteriochlorophyll a (BChl a) in some of the FMO monomers. To understand the functionality of this eighth BChl, we simulated the two-dimensional electronic spectra of both the 7-site (apo form) and the 8-site (holo form) variant of the FMO complex from green sulfur bacteria, Prosthecochloris aestuarii. By comparing the spectrum, it was found that the eighth BChl can affect two different excitonic energy transfer pathways: (1) it is directly involved in the first apo form pathway (6 → 3 → 1) by passing the excitonic energy to exciton 6; and (2) it facilitates an increase in the excitonic wave function overlap between excitons 4 and 5 in the second pathway (7 → 4,5 → 2 → 1) and thus increases the possible downward sampling routes across the BChls.
NASA Astrophysics Data System (ADS)
Wiebe, Jens
2011-03-01
Magnetic atoms doped into a semiconductor are the building blocks for bottom up spintronic and quantum logic devices. They also provide model systems for the investigation of fundamental effects. In order to correlate the dopant's atomic structure with its magnetism magnetically sensitive techniques with atomic resolution are a prerequisite. Here, I show electrical excitation and read-out [ 1 ] of single magnetic dopant associated spins in a two-dimensional electron gas (2DEG) confined to a semiconductor surface [ 2 ] using spin-resolved scanning tunneling spectroscopy [ 3 ] . I will review our real-space study of the quantum Hall transition in the 2DEG [ 2 ] and of the magnetic properties of the dopants [ 1 ] . Finally, I will demonstrate that the dopant serves as an atomic scale probe for local magnetometry of the 2DEG. This work was done in collaboration with A. A. Khajetoorians, B. Chillian, S. Schuwalow, F. Lechermann, K. Hashimoto, C. Sohrmann, T. Inaoka, F. Meier, Y. Hirayama, R. A. Römer, M. Morgenstern, and R. Wiesendanger. [ 1 ] A. A. Khajetoorians et al., Nature 467, 1084 (2010). [ 2 ] K. Hashimoto et al., Phys. Rev. Lett. 101, 256802 (2008). [ 3 ] J. Wiebe et al., Rev. Sci. Instrum. 75, 4871 (2004). We acknowledge financial support from ERC Advanced Grant ``FURORE'', by the DFG via SFB668 and GrK1286, and by the city of Hamburg via the cluster of excellence ``Nanospintronics''.
Dielectric response of an inhomogeneous quasi-two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Fernández-Velicia, F. J.; García-Moliner, F.; Velasco, V. R.
1996-01-01
The solution of the integral equation required to invert the dielectric function of a confined quasi-two-dimensional electron gas is studied by means of a formal analysis which yields a convergent algorithm. The dielectric function can then be inverted in real space for an arbitrary number of populated subbands and taking into account the effect of intersubband excitations involving empty subbands to any desired degree of accuracy. Plasma modes and screened potential can then be easily studied by using a basis which bears out explicitly the consequences of symmetry in symmetric systems. A model calculation of dynamical screening at frequencies of the order of those of confined polar optical modes in usual GaAs wells indicates that the empty states may play a quite significant role and the screened potential, explicitly obtained in real space, may exhibit a great variety of behaviors: the sign of the potential may change and its magnitude may be either reduced (ordinary screening) or enhanced (antiscreening).
Electrical detection of spin transport in Si two-dimensional electron gas systems
NASA Astrophysics Data System (ADS)
Chang, Li-Te; Fischer, Inga Anita; Tang, Jianshi; Wang, Chiu-Yen; Yu, Guoqiang; Fan, Yabin; Murata, Koichi; Nie, Tianxiao; Oehme, Michael; Schulze, Jörg; Wang, Kang L.
2016-09-01
Spin transport in a semiconductor-based two-dimensional electron gas (2DEG) system has been attractive in spintronics for more than ten years. The inherent advantages of high-mobility channel and enhanced spin-orbital interaction promise a long spin diffusion length and efficient spin manipulation, which are essential for the application of spintronics devices. However, the difficulty of making high-quality ferromagnetic (FM) contacts to the buried 2DEG channel in the heterostructure systems limits the potential developments in functional devices. In this paper, we experimentally demonstrate electrical detection of spin transport in a high-mobility 2DEG system using FM Mn-germanosilicide (Mn(Si0.7Ge0.3)x) end contacts, which is the first report of spin injection and detection in a 2DEG confined in a Si/SiGe modulation doped quantum well structure (MODQW). The extracted spin diffusion length and lifetime are l sf = 4.5 μm and {τ }{{s}}=16 {{ns}} at 1.9 K respectively. Our results provide a promising approach for spin injection into 2DEG system in the Si-based MODQW, which may lead to innovative spintronic applications such as spin-based transistor, logic, and memory devices.
NASA Astrophysics Data System (ADS)
Hell, Michael; Flensberg, Karsten; Leijnse, Martin
2017-07-01
Two-dimensional electron gases with strong spin-orbit coupling covered by a superconducting layer offer a flexible and potentially scalable platform for Majorana networks. We predict Majorana bound states (MBSs) to appear for experimentally achievable parameters and realistic gate potentials in two designs: either underneath a narrow stripe of a superconducting layer (S stripes) or where a narrow stripe has been removed from a uniform layer (N stripes). The coupling of the MBSs can be tuned for both types in a wide range (<1 neV to >10 μ eV ) using gates placed adjacent to the stripes. For both types, we numerically compute the local density of states for two parallel Majorana-stripe ends as well as Majorana trijunctions formed in a tuning-fork geometry. The MBS coupling between parallel Majorana stripes can be suppressed below 1 neV for potential barriers in the meV range for separations of about 200 nm. We further show that the MBS couplings in a trijunction can be gate controlled in a range similar to the intrastripe coupling while maintaining a sizable gap to the excited states (tens of μ eV ). Altogether, this suggests that braiding can carried out on a time scale of 10-100 ns.
Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy
Ferretti, Marco; Hendrikx, Ruud; Romero, Elisabet; Southall, June; Cogdell, Richard J.; Novoderezhkin, Vladimir I.; Scholes, Gregory D.; van Grondelle, Rienk
2016-02-09
Energy transfer and trapping in the light harvesting antennae of purple photosynthetic bacteria is an ultrafast process, which occurs with a quantum efficiency close to unity. However the mechanisms behind this process have not yet been fully understood. Recently it was proposed that low-lying energy dark states, such as charge transfer states and polaron pairs, play an important role in the dynamics and directionality of energy transfer. However, it is difficult to directly detect those states because of their small transition dipole moment and overlap with the B850/B870 exciton bands. Here we present a new experimental approach, which combines the selectivity of two-dimensional electronic spectroscopy with the availability of genetically modified light harvesting complexes, to reveal the presence of those dark states in both the genetically modified and the wild-type light harvesting 2 complexes of Rhodopseudomonas palustris. In conclusion, we suggest that Nature has used the unavoidable charge transfer processes that occur when LH pigments are concentrated to enhance and direct the flow of energy.
Stability and electronic structure of two-dimensional allotropes of group-IV materials
NASA Astrophysics Data System (ADS)
Matusalem, Filipe; Marques, Marcelo; Teles, Lara K.; Bechstedt, Friedhelm
2015-07-01
We study six different two-dimensional (2D) allotropes of carbon, silicon, germanium, and tin by means of the ab initio density functional theory for the ground state and approximate methods to calculate their electronic structures, including quasiparticle effects. Four of the investigated allotropes are based on dumbbell geometries, one on a kagome lattice, and one on the graphenelike hexagonal structure for comparison. Concerning carbon, our calculations of the cohesive energies clearly show that the hexagonal structure (graphene) is most stable. However, in the case of Si and Ge, the dumbbell structures, particularly the large honeycomb dumbbell (LHD) geometries, are energetically favored compared to the s p2/s p3 -bonded hexagonal lattice (i.e., silicene and germanene). The main reason for this is the opening of a band gap in the honeycomb dumbbell arrangements. The LHD sheet crystals represent indirect semiconductors with a K →Γ gap of about 0.5 eV. In the Sn case we predict the MoS2-like symmetry to be more stable, in contrast to the stanene and LHD geometries predicted in literature. Our results for freestanding group-IV layers shine new light on recent experimental studies of group-IV overlayers on various substrates.
NASA Astrophysics Data System (ADS)
Lim, James; Ing, David J.; Rosskopf, Joachim; Jeske, Jan; Cole, Jared H.; Huelga, Susana F.; Plenio, Martin B.
2017-01-01
We investigate how correlated fluctuations affect oscillatory features in rephasing and non-rephasing two-dimensional (2D) electronic spectra of a model dimer system. Based on a beating map analysis, we show that non-secular environmental couplings induced by uncorrelated fluctuations lead to oscillations centered at both cross- and diagonal-peaks in rephasing spectra as well as in non-rephasing spectra. Using an analytical approach, we provide a quantitative description of the non-secular effects in terms of the Feynman diagrams and show that the environment-induced mixing of different inter-excitonic coherences leads to oscillations in the rephasing diagonal-peaks and non-rephasing cross-peaks. We demonstrate that as correlations in the noise increase, the lifetime of oscillatory 2D signals is enhanced at rephasing cross-peaks and non-rephasing diagonal-peaks, while the other non-secular oscillatory signals are suppressed. We discuss that the asymmetry of 2D lineshapes in the beating map provides information on the degree of correlations in environmental fluctuations. Finally we investigate how the oscillatory features in 2D spectra are affected by inhomogeneous broadening.
Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy
Ferretti, Marco; Hendrikx, Ruud; Romero, Elisabet; ...
2016-02-09
Energy transfer and trapping in the light harvesting antennae of purple photosynthetic bacteria is an ultrafast process, which occurs with a quantum efficiency close to unity. However the mechanisms behind this process have not yet been fully understood. Recently it was proposed that low-lying energy dark states, such as charge transfer states and polaron pairs, play an important role in the dynamics and directionality of energy transfer. However, it is difficult to directly detect those states because of their small transition dipole moment and overlap with the B850/B870 exciton bands. Here we present a new experimental approach, which combines themore » selectivity of two-dimensional electronic spectroscopy with the availability of genetically modified light harvesting complexes, to reveal the presence of those dark states in both the genetically modified and the wild-type light harvesting 2 complexes of Rhodopseudomonas palustris. In conclusion, we suggest that Nature has used the unavoidable charge transfer processes that occur when LH pigments are concentrated to enhance and direct the flow of energy.« less
Current-Induced Cooling Phenomenon in a Two-Dimensional Electron Gas Under a Magnetic Field
NASA Astrophysics Data System (ADS)
Hirayama, Naomi; Endo, Akira; Fujita, Kazuhiro; Hasegawa, Yasuhiro; Hatano, Naomichi; Nakamura, Hiroaki; Shirasaki, Ryōen; Yonemitsu, Kenji
2013-07-01
We investigate the spatial distribution of temperature induced by a dc current in a two-dimensional electron gas (2DEG) subjected to a perpendicular magnetic field. We numerically calculate the distributions of the electrostatic potential ϕ and the temperature T in a 2DEG enclosed in a square area surrounded by insulated-adiabatic (top and bottom) and isopotential-isothermal (left and right) boundaries (with ϕ left< ϕ right and T left= T right), using a pair of nonlinear Poisson equations (for ϕ and T) that fully take into account thermoelectric and thermomagnetic phenomena, including the Hall, Nernst, Ettingshausen, and Righi-Leduc effects. We find that, in the vicinity of the left-bottom corner, the temperature becomes lower than the fixed boundary temperature, contrary to the naive expectation that the temperature is raised by the prevalent Joule heating effect. The cooling is attributed to the Ettingshausen effect at the bottom adiabatic boundary, which pumps up the heat away from the bottom boundary. In order to keep the adiabatic condition, downward temperature gradient, hence the cooled area, is developed near the boundary, with the resulting thermal diffusion compensating the upward heat current due to the Ettingshausen effect.
Bordajandi, Luisa R; Ramos, Lourdes; González, María José
2006-09-01
Comprehensive two-dimensional gas chromatography with micro electron-capture detection (GC x GC-microECD) has been evaluated for the enantioseparation of five chiral toxaphenes typically found in real-life samples (Parlar 26, 32, 40, 44 and 50). From the two enantioselective beta-cyclodextrin-based columns evaluated as first dimension column, BGB-176SE and BGB-172, the latter provided the best results and was further combined with three non-enantioselective columns in the second dimension: HT-8, BPX-50 and Supelcowax-10. The combination BGB-172 x BPX-50 was finally selected because it provided a complete separation among all enantiomers. A satisfactory repeatability and reproducibility of the retention times in both the first and the second dimension were observed for all target compounds (RSDs below 0.8%, n = 4). Linear responses in the tested range of 10-200 pg/microl and limits of detection in the range of 2-6 pg/microl were obtained. The repeatability and reproducibility at a concentration of 100 pg/microl, evaluated as the RSDs calculated for the enantiomeric fraction (EF), was better than 11% (n = 4) in all instances. The feasibility of the method developed for real-life analyses was illustrated by the determination of the enantiomeric ratios and concentration levels of the test compounds in four commercial fish oil samples. These results were compared to those obtained by heart-cut multidimensional gas chromatography using the same enantioselective column.
Electrical detection of spin transport in Si two-dimensional electron gas systems.
Chang, Li-Te; Fischer, Inga Anita; Tang, Jianshi; Wang, Chiu-Yen; Yu, Guoqiang; Fan, Yabin; Murata, Koichi; Nie, Tianxiao; Oehme, Michael; Schulze, Jörg; Wang, Kang L
2016-09-09
Spin transport in a semiconductor-based two-dimensional electron gas (2DEG) system has been attractive in spintronics for more than ten years. The inherent advantages of high-mobility channel and enhanced spin-orbital interaction promise a long spin diffusion length and efficient spin manipulation, which are essential for the application of spintronics devices. However, the difficulty of making high-quality ferromagnetic (FM) contacts to the buried 2DEG channel in the heterostructure systems limits the potential developments in functional devices. In this paper, we experimentally demonstrate electrical detection of spin transport in a high-mobility 2DEG system using FM Mn-germanosilicide (Mn(Si0.7Ge0.3)x) end contacts, which is the first report of spin injection and detection in a 2DEG confined in a Si/SiGe modulation doped quantum well structure (MODQW). The extracted spin diffusion length and lifetime are l sf = 4.5 μm and [Formula: see text] at 1.9 K respectively. Our results provide a promising approach for spin injection into 2DEG system in the Si-based MODQW, which may lead to innovative spintronic applications such as spin-based transistor, logic, and memory devices.
Lim, James; Ing, David J; Rosskopf, Joachim; Jeske, Jan; Cole, Jared H; Huelga, Susana F; Plenio, Martin B
2017-01-14
We investigate how correlated fluctuations affect oscillatory features in rephasing and non-rephasing two-dimensional (2D) electronic spectra of a model dimer system. Based on a beating map analysis, we show that non-secular environmental couplings induced by uncorrelated fluctuations lead to oscillations centered at both cross- and diagonal-peaks in rephasing spectra as well as in non-rephasing spectra. Using an analytical approach, we provide a quantitative description of the non-secular effects in terms of the Feynman diagrams and show that the environment-induced mixing of different inter-excitonic coherences leads to oscillations in the rephasing diagonal-peaks and non-rephasing cross-peaks. We demonstrate that as correlations in the noise increase, the lifetime of oscillatory 2D signals is enhanced at rephasing cross-peaks and non-rephasing diagonal-peaks, while the other non-secular oscillatory signals are suppressed. We discuss that the asymmetry of 2D lineshapes in the beating map provides information on the degree of correlations in environmental fluctuations. Finally we investigate how the oscillatory features in 2D spectra are affected by inhomogeneous broadening.
Simulated two-dimensional electronic spectroscopy of the eight-bacteriochlorophyll FMO complex
Yeh, Shu-Hao; Kais, Sabre
2014-12-21
The Fenna-Matthews-Olson (FMO) protein-pigment complex acts as a molecular wire conducting energy between the outer antenna system and the reaction center; it is an important photosynthetic system to study the transfer of excitonic energy. Recent crystallographic studies report the existence of an additional (eighth) bacteriochlorophyll a (BChl a) in some of the FMO monomers. To understand the functionality of this eighth BChl, we simulated the two-dimensional electronic spectra of both the 7-site (apo form) and the 8-site (holo form) variant of the FMO complex from green sulfur bacteria, Prosthecochloris aestuarii. By comparing the spectrum, it was found that the eighth BChl can affect two different excitonic energy transfer pathways: (1) it is directly involved in the first apo form pathway (6 → 3 → 1) by passing the excitonic energy to exciton 6; and (2) it facilitates an increase in the excitonic wave function overlap between excitons 4 and 5 in the second pathway (7 → 4,5 → 2 → 1) and thus increases the possible downward sampling routes across the BChls.
Yu, P.N.; Ginzburg, N.S.; Sergeev, A.S.
1995-12-31
In the report we present a time domain approach to the theory of FELs with one and two dimensional Bragg resonators. It is demonstrated that traditional 1-D Bragg resonators provide possibilities for effective longitudinal mode control. In particular, simulation of the FEL realized in the joint experiment of JINR (Dybna) and IAP (N. Novgord) confirms achievement of the single mode operating regime with high efficiency of about 20%. However, 1-D Bragg resonators lose their selectivity as the transverse size of the system is increased. We simulate mode competition in FELs with coaxial 1-D Bragg resonators and observe a progressively more complicated azimuthal mode competition pattern as the perimeter of the resonator is increased. At the same time, using 2-D Bragg resonators for the same electron beam and microwave system perimeter gives very fast establishment of the single frequency regime with an azimuthally symmetric operating mode. Therefore, FELs utilising 2-D Bragg resonators with coaxial and planar geometry may be considered as attractive sources of high power spatially coherent radiation in the mm and sub-mm wave bands.
Separation of transport lifetimes in SrTi O3 -based two-dimensional electron liquids
NASA Astrophysics Data System (ADS)
Mikheev, Evgeny; Freeze, Christopher R.; Isaac, Brandon J.; Cain, Tyler A.; Stemmer, Susanne
2015-04-01
Deviations from Landau Fermi-liquid behavior are ubiquitous features of the normal state of unconventional superconductors. Despite several decades of investigation, the underlying mechanisms of these properties are still not completely understood. In this work, we show that two-dimensional electron liquids at SrTi O3/R Ti O3 (R =Gd or Sm) interfaces reveal strikingly similar physics. Analysis of Hall and resistivity data shows a clear separation of transport and Hall scattering rates, also known as "two-lifetime" behavior. This framework gives a remarkably simple and general description of the temperature dependence of the Hall coefficient. Distinct transport lifetimes accurately describe the transport phenomena irrespective of the nature of incipient magnetic ordering, the degree of disorder, confinement, or the emergence of non-Fermi-liquid behavior. The Hall scattering rate diverges at a critical quantum well thickness, coinciding with a quantum phase transition. Collectively, these results introduce constraints on the existing microscopic theories of lifetime separation and point to the need for unified understanding.
Ogilvie, Jennifer P.
2016-11-22
Photosystem II (PSII) is the only known natural enzyme that uses solar energy to split water, making the elucidation of its design principles critical for our fundamental understanding of photosynthesis and for our ability to mimic PSII’s remarkable properties. This report discusses progress towards addressing key open questions about the PSII RC. It describes new spectroscopic methods that were developed to answer these questions, and summarizes the outcomes of applying these methods to study the PSII RC. Using 2D electronic spectroscopy and 2D electronic Stark spectroscopy, models for the PSII RC were tested and refined. Work is ongoing to use the collected data to elucidate the charge separation mechanism in the PSII RC. Coherent dynamics were also observed in the PSII RC for the first time. Through extensive characterization and modeling we have assigned these coherences as vibronic in nature, and believe that they reflect resonances between key vibrational pigment modes and electronic energy gaps that may facilitate charge separation. Work is ongoing to definitively test the functional relevance of electronic-vibrational resonances.
NASA Astrophysics Data System (ADS)
Xiao, Xian-Bo; Li, Xiao-Mao; Chen, Yu-Guang
2009-12-01
We investigate theoretically the spin-dependent electron transport in a straight waveguide with Rashba spin-orbit coupling (SOC) under the irradiation of a transversely polarized electromagnetic (EM) field. Spin-dependent electron conductance and spin polarization are calculated as functions of the emitting energy of electrons or the strength of the EM field by adopting the mode matching approach. It is shown that the spin polarization can be manipulated by external parameters when the strength of Rashba SOC is strong. Furthermore, a sharp step structure is found to exist in the total electron conductance. These results can be understood by the nontrivial Rashba subbands intermixing and the electron intersubband transition when a finite-range transversely polarized EM field irradiates a straight waveguide.
Strain-modulated electronic and thermal transport properties of two-dimensional O-silica
NASA Astrophysics Data System (ADS)
Han, Yang; Qin, Guangzhao; Jungemann, Christoph; Hu, Ming
2016-07-01
Silica is one of the most abundant materials in the Earth’s crust and is a remarkably versatile and important engineering material in various modern science and technology. Recently, freestanding and well-ordered two-dimensional (2D) silica monolayers with octahedral (O-silica) building blocks were found to be theoretically stable by (Wang G et al 2015 J. Phys. Chem. C 119 15654-60). In this paper, by performing first-principles calculations, we systematically investigated the electronic and thermal transport properties of 2D O-silica and also studied how these properties can be tuned by simple mechanical stretching. Unstrained 2D O-silica is an insulator with an indirect band gap of 6.536 eV. The band gap decreases considerably with bilateral strain up to 29%, at which point a semiconductor-metal transition occurs. More importantly, the in-plane thermal conductivity of freestanding 2D O-silica is found to be unusually high, which is around 40 to 50 times higher than that of bulk α-quartz and more than two orders of magnitude higher than that of amorphous silica. The thermal conductivity of O-silica decreases by almost two orders of magnitude when the bilateral stretching strain reaches 10%. By analyzing the mode-dependent phonon properties and phonon-scattering channel, the phonon lifetime is found to be the dominant factor that leads to the dramatic decrease of the lattice thermal conductivity under strain. The very sensitive response of both band gap and phonon transport properties to the external mechanical strain will enable 2D O-silica to easily adapt to the different environment of realistic applications. Our study is expected to stimulate experimental exploration of further physical and chemical properties of 2D silica systems, and offers perspectives on modulating the electronic and thermal properties of related low-dimensional structures for applications such as thermoelectric, photovoltaic, and optoelectronic devices.
Transition to zero resistance in a two-dimensional electron gas driven with microwaves
NASA Astrophysics Data System (ADS)
Alicea, Jason; Balents, Leon; Fisher, Matthew P. A.; Paramekanti, Arun; Radzihovsky, Leo
2005-06-01
High-mobility two-dimensional electron systems in a perpendicular magnetic field exhibit zero-resistance states (ZRSs) when driven with microwave radiation. We study the nonequilibrium phase transition into the ZRS using phenomenological equations of motion to describe the electron current and density fluctuations in the presence of a magnetic field. We focus on two models to describe the transition into a time-independent steady state. In model I the equations of motion are invariant under a global uniform change in the density. This model is argued to describe physics on small length scales where the density does not vary appreciably from its mean. The ordered state that arises in this case spontaneously breaks rotational invariance in the plane and consists of a uniform current and a transverse Hall field. We discuss some properties of this state, such as stability to fluctuations and the appearance of a Goldstone mode associated with the continuous symmetry breaking. Using dynamical renormalization group techniques, we find that with short-range interactions this model can admit a continuous transition described by mean-field theory, whereas with long-range interactions the transition is driven first order. In model II, we relax the invariance under global density shifts as appropriate for describing the system on longer length scales, and in this case we predict a first-order transition with either short- or long-range interactions. We discuss implications for experiments, including a possible way to detect the Goldstone mode in the ZRS, scaling relations expected to hold in the case of an apparent continuous transition into the ZRS, and a possible signature of a first-order transition in larger samples. Our framework for describing the phase transition into the ZRS also highlights the connection of this problem to the well-studied phenomenon of “bird flocking.”
NASA Astrophysics Data System (ADS)
Spokoyny, Boris M.
Ultrafast spectroscopy offers an unprecedented view on the dynamic nature of chemical reactions. From charge transfer in semiconductors to folding and isomerization of proteins, these all important processes can now be monitored and in some instances even controlled on real, physical timescales. One of the biggest challenges of ultrafast science is the incredible energetic complexity of most systems. It is not uncommon to encounter macromolecules or materials with absorption spectra spanning significant portions of the visible spectrum. Monitoring a multitude of electronic and vibrational transitions, all dynamically interacting with each other on femtosecond timescales poses a truly daunting experimental task. The first part of this thesis deals with the development of a novel Two-Dimensional Electronic Spectroscopy (2DES) and its associated, advanced detection methodologies. Owing to its ultra-broadband implementation, this technique enables us to monitor femtosecond chemical dynamics that span the energetic landscape of the entire visible spectrum. In order to demonstrate the utility of our method, we apply it to two laser dye molecules, IR-144 and Cresyl Violet. Variation of photophysical properties on a microscopic scale in either man-made or naturally occurring systems can have profound implications on how we understand their macroscopic properties. Recently, inorganic hybrid perovskites have been tapped as the next generation solar energy harvesting materials. Their remarkable properties include low exciton binding energy, low exciton recombination rates and long carrier diffusion lengths. Nevertheless, considerable variability in device properties made with nearly identical preparation methods has puzzled the community. In the second part of this thesis we use non-linear pump probe microscopy to study the heterogeneous nature of femtosecond carrier dynamics in thin film perovskites. We show that the local morphology of the perovskite thin films has a
Stability of Quasi-Two-Dimensional Electron-Hole Liquid in Semiconductor Structures of the Type-II
NASA Astrophysics Data System (ADS)
Vasilchenko, A. A.; Kopytov, G. F.; Krivobok, V. S.; Ermokhin, D. A.
2017-02-01
Analytical expressions are obtained for the energy of a quasi-two-dimensional electron-hole liquid (EHL) and the threshold value of the barrier height for electrons, above which formation of the direct EHL is impossible. It is shown that the state with a quasi-two-dimensional EHL can be energetically favorable in semiconductors with the anisotropy of masses and (or) a large number of equivalent valleys. A comparison of the calculation results with the experimental data for the Si/SiGe/Si structure is made.
NASA Astrophysics Data System (ADS)
de A. Camargo, Franco V.; Grimmelsmann, Lena; Anderson, Harry L.; Meech, Stephen R.; Heisler, Ismael A.
2017-01-01
The observation of coherent quantum effects in photosynthetic light-harvesting complexes prompted the question whether quantum coherence could be exploited to improve the efficiency in new energy materials. The detailed characterization of coherent effects relies on sensitive methods such as two-dimensional electronic spectroscopy (2D-ES). However, the interpretation of the results produced by 2D-ES is challenging due to the many possible couplings present in complex molecular structures. In this work, we demonstrate how the laser spectral profile can induce electronic coherencelike signals in monomeric chromophores, potentially leading to data misinterpretation. We argue that the laser spectrum acts as a filter for certain coherence pathways and thus propose a general method to differentiate vibrational from electronic coherences.
Functional two-dimensional electronic gases at interfaces of oxide heterostructures
NASA Astrophysics Data System (ADS)
Wang, Yong
2011-12-01
A quasi-two dimensional electron gas (2DEG) in oxide heterostructures such as LaAlO3/SrTiO3 has unique properties that are promising for applications in all-oxide electronic devices. In this dissertation, we focus on understanding and predicting novel properties of the 2DEG by performing first-principles electronic calculations within the frame work of density-functional theory (DFT). The investigation is made upon adding new functionalities in oxide heterostructures, such as ferroelectric polarization, epitaxial strain, and spin polarization that can be employed to control 2DEG properties. Based on first-principles calculations the effects of different polarization magnitudes and alignments in all-oxide heterostructures incorporating different ferroelectric constituents, such as KNbO3/ATiO3 (A = Sr, Ba, Pb), are investigated. It is found that screening charge at the interface that counteracts the depolarizing electric field in the ferroelectric material significantly changes the free electron density of 2DEG at the interface. Using this mechanism, nonvolatile metal-insulating transition can be achieved at the interface by switching the ferroelectric spontaneous polarization. Growing on different substrates, LaAlO3/SrTiO3 heterostructures experience different epitaxial strains. Our first-principles calculations reveal that compressive epitaxial strain introduces a polarization in SrTiO3 pointing away from the interface, which is consistent with the experimental observations. This polarization strongly affects the 2DEG carrier density through a polarization charge formed at the interface. Our theoretical investigation finds that the critical thickness to form a 2DEG at the interface of the heterostructure increases with the compressive strain, while the saturated carrier density decreases which is consistent with the experimental results. Adding a spin degree of freedom to 2DEG may be interesting for the application of 2DEGs in a spintronic device. We explore a La
Two-dimensional electronic-vibrational spectra: modeling correlated electronic and nuclear motion.
Terenziani, F; Painelli, A
2015-05-21
We calculate 2D electronic-vibrational (2D-EV) spectra of solvated organic dyes modeled in terms of a reduced set of electronic diabatic states (the essential states) non-adiabatically coupled to molecular vibrations. An effective overdamped coordinate, whose dynamics is described by the Smoluchowski diffusion equation, accounts for polar solvation. Results are discussed for two dyes with distinctively different spectroscopic behavior: 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) and 8-(N,N-dibutylamino)-2-azachrysene (AAC). Linear absorption and fluorescence spectra of DCM are well reproduced based on a minimal two-state model. The same model leads to 2D-EV spectra in good agreement with the recent experimental data reported by Oliver and coworkers for DCM in DMSO. In contrast, linear spectra of AAC show a subtle interplay between a locally-excited (LE) and a charge-transfer (CT) excitation, calling for a three-state model. Calculated 2D-EV spectra for AAC show a qualitatively different behavior, demonstrating that the experimental data for DCM do not support a LE/CT interplay. This resolves the long-lasting discussion about the nature of low-lying excitations of DCM in favor of the simplest picture.
NASA Astrophysics Data System (ADS)
Neogi, Suneeta Shamanna
The purpose of this research has been to develop a methodologoy to map two-dimensional dopant distributions in silicon and investigate the factors that influence the interpretation of the results. The analysis exploits the image contrast obtained by transmission electron microscopy (TEM) using cross-section specimens which have undergone selective chemical etching. The appearance of iso-thickness contours in a selectively etched TEM sample must represent iso-concentration contours when imaged under constant diffraction conditions. The application of this technique is two-fold: (1) to establish a physical metrology of semiconductor devices for the purpose of research and development efforts that impact on future nodes outlined in the semiconductor roadmap and (2) to provide physical data for validation of simulation tools in technology computer aided design (TCAD). The research involves an investigation into the selective removal of doped regions for both test and device structures, followed by an analysis to obtain two-dimensional (2-D) dopant profiles. The critical issues which arise in the development of a methodology to profile dopant distributions and which are addressed in this investigation are, wedge technique versus conventional dimple and ion-mill procedures for thin-film preparation, thin-film versus bulk chemical etching, data acquisition using TEM and choice of diffraction conditions, sensitivity in terms of the etch detection limit, resolution influenced by the effective extinction length of the operating reflection, digital image processing to extract profiles from thickness contours, calibration of the 2-D profiles using a one-dimensional (1-D) calibrator and role of structure/dopant interactions such as stress, interfaces and point defects in test structures and real device structures containing additional processing sequences. Selective chemical etching in combination with TEM has the sensitivity, resolution and reproducibility required to be used
Two-dimensional crystallization and cryo-electron microscopy of photosystem II.
Nakazato, K; Toyoshima, C; Enami, I; Inoue, Y
1996-03-29
Two dimensional (2D) crystals of photosystem II (PSII) were obtained from n-heptyl-beta-D-thioglucoside-solubilized monomers of spinach PSII complex by conventional detergent dialysis. The 2D crystals were either large cylindrical vesicles (1 to 2 micrometer by 4 to 6 micrometer as flattened vesicles) or large monolayer sheets (ca. 1 micrometer X 1 micrometer), both suitable for cryo-electron microscopy. Images of unstained crystals embedded in ice were recorded using low-dose microscopy and analyzed by digital image processing. Both types of crystals had the same unit cell size and the same packing arrangement of PSII particles. The plane group was p22(1)2(1) and the unit cell was rectangular with dimensions of 16.7 nm X 15.3 nm containing four monomers (two face-up and two face-down). SDS-PAGE and immunoblot analyses of the 2D crystal indicated that the constituent subunits of particles in the 2D were CP47, D1, D2, cytochrome b-559 and psbI protein. A projection map of 20 A resolution revealed that each monomer has asymmetrical shape with a length of 8.1 nm and a maximal width of 7.5 nm consisting of four areas of density. Two high-density areas with similar sizes were located close to each other to form a roughly rectangular core of 4.0 nm X 6.5 nm. From its size similarity to the size of the L/M heterodimer of the bacterial reaction center, this high density core area was tentatively assigned to the D1/D2 heterodimer. The remaining large and small areas were also tentatively assigned to CP47 and cytochrome b-559 plus psbI protein respectively.
NASA Astrophysics Data System (ADS)
Ruhe, N.; Stracke, G.; Heyn, Ch.; Heitmann, D.; Hardtdegen, H.; Schäpers, Th.; Rupprecht, B.; Wilde, M. A.; Grundler, D.
2009-09-01
We have studied experimentally the nonequilibrium currents (NECs) induced by sweeping either the magnetic field B or the carrier density nS of a two-dimensional electron system (2DES). The gated 2DES resided in a modulation-doped GaAs/AlxGa1-xAs heterostructure and was integrated into a micromechanical cantilever. The NECs provoke a magnetic moment which we have detected via torque magnetometry down to 300 mK. Additional electrical leads allowed for simultaneous magnetotransport measurements. We find a hysteretic behavior of the NECs and a striking asymmetry of the corresponding magnetic moment around integer filling factors ν=hnS/eB . Surprisingly, the shape of the hysteresis loops is the same for sweeps of B or nS if plotted versus ν . In a certain parameter regime each NEC signal exhibits a characteristic slope which is found to depend only on the filling factor at large B or nS . Based on a model considering capacitive coupling between 2DES and gate we attribute the slopes to the conductance quantization of the quantum Hall effect. The NECs are found to be limited by the time-dependent buildup of the radial Hall field governed by the gate capacitance. These findings are in contrast to a floating 2DES without a gate where the breakdown of the quantum Hall effect was previously reported to limit the NECs. Our model also explains the observed shape and dependence on temperature as well as sweep rate. The in situ measurement of the longitudinal resistance allows us to directly correlate the magnetic behavior with both the magnetic field and temperature-dependent resistance of the 2DES.
Temperature Dependent Transport of Two-Dimensional Electrons in the Integral Quantum Hall Regime.
NASA Astrophysics Data System (ADS)
Wei, Hsuang-Ping
This thesis is concerned with the temperature (T) dependent electronic transport properties of a two dimensional electron gas subject to background potential fluctuations and a perpendicular magnetic field. We have carried out an extensive temperature dependent study of the transport coefficients, in the region of an integral quantum plateau, in an In(,x)Ga(,1-x)As/InP heterostructure for 4.2K < T < 50K. By assuming a simple thermal activation picture, we demonstrate a quantitative deduction of the electron density of states. Our results indicate that there exists a significant number of states (1 x 10('10)cm(' -2)meV('-1)) even at the middle between two Landau levels, which is unexpected from model calculations based on short ranged randomness. In addition, the different T dependent behavior of (rho)(,xx) between the states in the tails and those near the center of a Landau level, indicates the existence of different electron states in a Landau level. Moreover, we have performed T dependent trans- port measurements in the transition region between two quantum plateaus, in several different materials. In the In(,x)Ga(,1-x)As/InP sample, when T(, )> 4K, the transport behavior can be attributed to the T dependent distribution function. When T(, )< 4K, our experi- mental T-driven (sigma)(,xx) vs. (sigma)(,xy) flow diagram is consistent with the pre- dicted theoretical renormalization group flow diagram, and suggests the existence of a critical point related to the localization to delocali- zation transition. However, in the GaAs/Al(,x)Ga(,1-x)As samples there is a difference in the T dependent behavior of (sigma)(,xx), between N = 1(UPARR) and 1(DARR) electrons. First, (sigma)(,xx)(1(UPARR)) decreases with decreasing T; whereas (sigma)(,xx)(1(DARR)) increases with decreasing T for 0.3K(, )< T < 4.2K. Second, (sigma)(,xx)('max) (1(DARR)) ('(TURN)) 3(sigma)(,xx)('max) (1(UPARR)) at T('(TURN))0.5K in all of our samples. These results indicate the existence of spin
Understanding and engineering two-dimensional electron gases in complex oxides
NASA Astrophysics Data System (ADS)
Bjaalie, Lars Gunnar Tangen
The next generation of electronic devices faces the challenge of adequately containing and controlling extremely high charge densities within structures of nanometer dimensions. Atomic-scale transistors must be thin and be able to control extremely high charge densities (>10e13/cm. 2). Silicon devicestypically have two-dimensional electron gas (2DEG) densities around 10e12/cm. 2.Nitride-based devices can sustain densities an order of magnitude higher. The "complex oxides" have recently emerged as an attractive materials system to support these developments. The demonstration of a 2DEG at the SrTiO 3/LaAlO3 interface has triggered an avalanche of research, including the unprecedentedly high density of 3x10e14/cm. 2 at SrTiO3/GdTiO3and SrTiO3/SmTiO3 interfaces. Metal-insulator (Mott) transitions that are inherent to some of these complex oxides could offer even greater prospects for enhanced functionality or novel device concepts. The materials and heterostructures that have been explored to date are clearly only a small subset of the vast number of materials combinations that could lead to interesting phenomena. In this work we use first-principles methods to build greater understanding of the interface phenomena, so that searches can be better informed and more focused. We also develop a set of criteria that the materials and their heterostructures should satisfy to develop a high-performance 2DEG-based device. We focus in particular on the band alignment, calculating it for a variety of different potential materials. Next, we study GdTiO3/SrTiO3/GdTiO3 heterostructures in depth, where each interface contributes excess electrons into the SrTiO3. We calculate the 2DEG formation for a superlattice containing six layers of SrTiO3, and compare with angle-resolved photoemission spectroscopy results. Together, the experimental and theoretical results conclusively show that the 2DEG results from the interface itself, and does not originate from a secondary source such as
Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.; Fleming, Graham R.
2015-05-07
Two-dimensional electronic-vibrational (2DEV) spectroscopy is an experimental technique that shows great promise in its ability to provide detailed information concerning the interactions between the electronic and vibrational degrees of freedom in molecular systems. The physical quantities 2DEV is particularly suited for measuring have not yet been fully determined, nor how these effects manifest in the spectra. In this work, we investigate the use of the center line slope of a peak in a 2DEV spectrum as a measure of both the dynamic and static correlations between the electronic and vibrational states of a dye molecule in solution. We show how this center line slope is directly related to the solvation correlation function for the vibrational degrees of freedom. We also demonstrate how the strength with which the vibration on the electronic excited state couples to its bath can be extracted from a set of 2DEV spectra. These analytical techniques are then applied to experimental data from the laser dye 3,3′-diethylthiatricarbocyanine iodide in deuterated chloroform, where we determine the lifetime of the correlation between the electronic transition frequency and the transition frequency for the backbone C = C stretch mode to be ∼1.7 ps. Furthermore, we find that on the electronic excited state, this mode couples to the bath ∼1.5 times more strongly than on the electronic ground state.
NASA Astrophysics Data System (ADS)
Stoll, Tatjana; Branchi, Federico; Rehault, Julien; Kriegel, Ilka; Scotognella, Francesco; Tassone, Francesco; Cerullo, Giulio
2017-02-01
In this work we study the ultrafast exciton dynamics in CdTe nanorods by using two-dimensional electronic spectroscopy (2DES). By simultaneously exciting the lowest three excitonic transitions (i.e. S1, S2 and S3) we extract the electron and hole relaxation pathways, owing to the combined temporal and spectral resolution of 2DES. In particular, we directly observe hot hole relaxation from the second to the first exciton state in about 30 fs by excitation of the S2 transition. Additionally, we extract a direct charge relaxation to S1 by disentangling the overlapping bleach and excited state induced energy level shifts after excitation of S3.
NASA Astrophysics Data System (ADS)
Dorozhkin, S. I.
2015-07-01
Self-oscillations of a microwave photovoltage with irregular interruptions have been discovered in the states with vanishing dc dissipation emerging in two-dimensional electron systems under microwave irradiation. The observed picture can be caused by transitions between a stable pole and a limiting cycle in the phase space of the systems (Andronov-Hopf bifurcation) that occur owing to fluctuations.
Study of two-dimensional device-error-redundant single-electron oscillator system
NASA Astrophysics Data System (ADS)
Murakami, Yoshisato; Oya, Takahide
2012-10-01
This paper reports the study of a two-dimensional device-error-redundant single-electron (SE) circuit. The circuit is an SE reaction-diffusion (RD) circuit that imitates the unique behavior of the chemical RD system and is expected to be a new information processing system. The original RD system is a complex chemical system that is said to express selforganizing dynamics in nature. It can also be assumed to operate as parallel information processing systems. Therefore, by imitating the original RD system for SE circuits, this SE-RD circuit can perform parallel information processing that is based on a natural phenomenon. However, the circuit is very sensitive to noise because it is controlled by a very small amount of energy. It is also sensitive to device errors (e.g., circuit parameter fluctuations in the fabrication process). Generally, fluctuations caused by errors introduced in manufacturing the circuit components trigger incorrect circuit operations, including noises. To overcome such noises, the circuit requires redundant properties for noise. To address this issue, we consider mimicking the information processing method of the natural world for the circuit to obtain noise redundancy. Actually, we previously proposed a unique method based on a model of neural networks with a stochastic resonance (SR) for the circuit. The SR phenomenon, which was discovered in studies of living things (e.g., insects), can be considered a type of noise-energy-harnessing system. Many researchers have proposed SR-based applications for novel electronic devices or systems. In networks where SR exists, signals can generally be distinguished from noise by harnessing noise energy. We previously designed SE-SR systems and succeeded in making an architecture for an SE circuit that has thermal noise redundancy. At the time, we applied an SR model proposed by Collins to our circuit. Prior to our current study, however, it had not yet been confirmed whether SE circuits have device
NASA Astrophysics Data System (ADS)
Yang, Bowen; Lohmann, Mark; Barroso, David; Liao, Ingrid; Lin, Zhisheng; Liu, Yawen; Bartels, Ludwig; Watanabe, Kenji; Taniguchi, Takashi; Shi, Jing
2017-07-01
Despite its extremely weak intrinsic spin-orbit coupling (SOC), graphene has been shown to acquire considerable SOC by proximity coupling with exfoliated transition metal dichalcogenides (TMDs). Here we demonstrate strong induced Rashba SOC in graphene that is proximity coupled to a monolayer TMD film, Mo S2 or WS e2 , grown by chemical-vapor deposition with drastically different Fermi level positions. Graphene/TMD heterostructures are fabricated with a pickup-transfer technique utilizing hexagonal boron nitride, which serves as a flat template to promote intimate contact and therefore a strong interfacial interaction between TMD and graphene as evidenced by quenching of the TMD photoluminescence. We observe strong induced graphene SOC that manifests itself in a pronounced weak-antilocalization (WAL) effect in the graphene magnetoconductance. The spin-relaxation rate extracted from the WAL analysis varies linearly with the momentum scattering time and is independent of the carrier type. This indicates a dominantly Dyakonov-Perel spin-relaxation mechanism caused by the induced Rashba SOC. Our analysis yields a Rashba SOC energy of ˜1.5 meV in graphene/WS e2 and ˜0.9 meV in graphene/Mo S2 . The nearly electron-hole symmetric nature of the induced Rashba SOC provides a clue to possible underlying SOC mechanisms.
Fermi surface distortion induced by interaction between Rashba and Zeeman effects
Choi, Won Young; Koo, Hyun Cheol; Chang, Joonyeon; Kim, Hyung-jun; Lee, Kyung-Jin
2015-05-07
To evaluate Fermi surface distortion induced by interaction between Rashba and Zeeman effects, the channel resistance in an InAs quantum well layer is investigated with an in-plane magnetic field transverse to the current direction. In the magnetoresistance curve, the critical point occurs at ∼3.5 T, which is approximately half of the independently measured Rashba field. To get an insight into the correlation between the critical point in magnetoresistance curve and the Rashba strength, the channel conductivity is calculated using a two-dimensional free-electron model with relaxation time approximation. The critical point obtained from the model calculation is in agreement with the experiment, suggesting that the observation of critical point can be an alternative method to experimentally determine the Rashba parameter.
Vortex Core Structure in Multilayered Rashba Superconductors
NASA Astrophysics Data System (ADS)
Higashi, Y.; Nagai, Y.; Yoshida, T.; Yanase, Y.
2014-12-01
We numerically study the electronic structure of a single vortex in two dimensional superconducting bilayer systems within the range of the mean-field theory. The lack of local inversion symmetry in the system is taken into account through the layer dependent Rashba spin-orbit coupling. The spatial profiles of the pair potential and the local quasiparticle density of states are calculated in the clean spin-singlet superconductor on the basis of the quasiclassical theory. In particular, we discuss the characteristic core structure in the pair-density wave state, which is spatially modulated exotic superconducting phase in a high magnetic field.
Li, Zhenyu; Abramavicius, Darius; Zhuang, Wei; Mukamel, Shaul
2007-11-15
The two dimensional (2D) photon echo spectrum of the amide ultraviolet (UV) bands of proteins are simulated. Two effective exciton Hamiltonian parameter sets developed by Woody and Hirst, which predict similar CD spectra, may be distinguished by their very different 2DUV spectra. These differences are enhanced in specific configurations of pulse polarizations which provide chirality-induced signals.
Magnetoabsorption and radiation-induced resistance oscillations in two-dimensional electron systems
Inarrea, J.; Platero, G.
2011-12-23
Magnetoabsorption and resistance oscillations in two-dimensional systems are calculated in the framework of the same theory: the microwave driven Larmor orbit model. On the one hand, this theory allows to obtain resistance oscillations with multiple peaks, depending on the microwave frequency. On the other hand, it permits also to calculate the microwave magnetoabsorption..
Two-Dimensional van der Waals Materials: Characterization and Electronic Device Applications
NASA Astrophysics Data System (ADS)
Samnakay, Rameez Rauf
The successful exfoliation of graphene and studies into its unique electrical and thermal properties has motivated searches for other quasi two-dimensional (2D) materials with interesting properties that could be used for practical applications. In this dissertation, I describe my research of the properties of inorganic van der Waals materials - layered transition metal dichalcogenides and devices based on these materials. The first part of the dissertation deals with the selective gas sensing using MoS2 thin-film transistors. The sensing is enabled by the change in the channel conductance, characteristic transient time, and spectral density of the low-frequency current fluctuations. The back-gated MoS2 thin-film field-effect transistors were fabricated on Si/SiO2 substrates. The exposure to ethanol, acetonitrile, toluene, chloroform, and methanol vapors resulted in drastic changes in the source-drain current. It was established that the transient time of the current change and the normalized spectral density of the low-frequency current fluctuations can be used as additional sensing parameters for selective gas detection with thin-film MoS2 transistors. The second part of this dissertation involves the Raman study of 1T-TaSe2 thin-films. Bulk 1T-TaSe2 exhibits unusually high charge density wave (CDW) transition temperatures of 600 and 473 K below which the material exists in the incommensurate (I-CDW) and the commensurate (C-CDW) charge-density-wave phases, respectively. The C-CDW reconstruction of the lattice coincides with new Raman peaks resulting from zone-folding of phonon modes from middle regions of the original Brillouin zone back to Γ. The C-CDW transition temperatures as a function of film thickness were determined from the evolution of these new Raman peaks, and they are found to decrease from 473 to 413 K as the film thicknesses decrease from 150 to 35 nm. The results of the dissertation contribute to better understanding of properties of 2D materials
Masutomi, Ryuichi; Triyama, Naotaka; Okamoto, Tohru
2013-12-04
We have performed not only magnetotransport measurements on two-dimensional electron systems (2DESs) formed at the cleaved surfaces of p-InAs but also observations of the surface morphology of the adsorbate atoms, which induced the 2DES at the surfaces of narrow band-gap semiconductors, with use of a scanning tunneling microscopy. The electron density of the 2DESs is compared to the atomic density of the isolated Ag adatoms on InAs surfaces.
Kammerlander, David; Marques, Miguel A. L.; Castro, Alberto
2011-04-15
Quantum optimal control theory is a powerful tool for engineering quantum systems subject to external fields such as the ones created by intense lasers. The formulation relies on a suitable definition for a target functional, that translates the intended physical objective to a mathematical form. We propose the use of target functionals defined in terms of the one-particle density and its current. A strong motivation for this is the possibility of using time-dependent density-functional theory for the description of the system dynamics. We exemplify this idea by defining an objective functional that on one hand attempts a large overlap with a target density and on the other hand minimizes the current. The latter requirement leads to optimized states with increased stability, which we prove with a few examples of one- and two-dimensional one-electron systems.
Lewis, Nicholas H. C.; Gruenke, Natalie L.; Oliver, Thomas A. A.; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.
2016-10-05
Light-harvesting complex II (LHCII) serves a central role in light harvesting for oxygenic photosynthesis and is arguably the most important photosynthetic antenna complex. In this article, we present two-dimensional electronic–vibrational (2DEV) spectra of LHCII isolated from spinach, demonstrating the possibility of using this technique to track the transfer of electronic excitation energy between specific pigments within the complex. We assign the spectral bands via comparison with the 2DEV spectra of the isolated chromophores, chlorophyll a and b, and present evidence that excitation energy between the pigments of the complex are observed in these spectra. Lastly, we analyze the essential components of the 2DEV spectra using singular value decomposition, which makes it possible to reveal the relaxation pathways within this complex.
NASA Astrophysics Data System (ADS)
Avetisyan, Siranush; Chakraborty, Tapash; Pietiläinen, Pekka
2016-07-01
Magnetization of anisotropic quantum dots in the presence of the Rashba spin-orbit interaction has been studied for three and four interacting electrons in the dot for non-zero values of the applied magnetic field. We observe unique behaviors of magnetization that are direct reflections of the anisotropy and the spin-orbit interaction parameters independently or concurrently. In particular, there are saw-tooth structures in the magnetic field dependence of the magnetization, as caused by the electron-electron interaction, that are strongly modified in the presence of large anisotropy and high strength of the spin-orbit interactions. We also report the temperature dependence of magnetization that indicates the temperature beyond which these structures due to the interactions disappear. Additionally, we found the emergence of a weak sawtooth structure in magnetization for three electrons in the high anisotropy and large spin-orbit interaction limit that was explained as a result of merging of two low-energy curves when the level spacings evolve with increasing values of the anisotropy and the spin-orbit interaction strength.
Theory of two-dimensional Fourier transform electron spin resonance for ordered and viscous fluids
NASA Astrophysics Data System (ADS)
Lee, Sanghyuk; Budil, David E.; Freed, Jack H.
1994-10-01
A comprehensive theory for interpreting two-dimensional Fourier transform (2D-FT) electron spin resonance (ESR) experiments that is based on the stochastic Liouville equation is presented. It encompasses the full range of motional rates from fast through very slow motions, and it also provides for microscopic as well as macroscopic molecular ordering. In these respects it is as sophisticated in its treatment of molecular dynamics as the theory currently employed for analyzing cw ESR spectra. The general properties of the pulse propagator superoperator, which describes the microwave pulses in Liouville space, are analyzed in terms of the coherence transfer pathways appropriate for COSY (correlation spectroscopy), SECSY (spin-echo correlation spectroscopy), and 2D-ELDOR (electron-electron double resonance) sequences wherein either the free-induction decay (FID) or echo decay is sampled. Important distinctions are made among the sources of inhomogeneous broadening, which include (a) incomplete spectral averaging in the slow-motional regime, (b) unresolved superhyperfine structure and related sources, and (c) microscopic molecular ordering but macroscopic disorder (MOMD). The differing effects these sources of inhomogeneous broadening have on the two mirror image coherence pathways observed in the dual quadrature 2D experiments, as well as on the auto vs crosspeaks of 2D-ELDOR, is described. The theory is applied to simulate experiments of nitroxide spin labels in complex fluids such as membrane vesicles, where the MOMD model applies and these distinctions are particularly relevant, in order to extract dynamic and ordering parameters. The recovery of homogeneous linewidths from FID-based COSY experiments on complex fluids with significant inhomogeneous broadening is also described. The theory is applied to the ultraslow motional regime, and a simple method is developed to determine rotational rates from the broadening of the autopeaks of the 2D-ELDOR spectra as a
Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy
Caram, Justin R.; Zheng, Haibin; Dahlberg, Peter D.; Rolczynski, Brian S.; Griffin, Graham B.; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.; Engel, Gregory S.
2014-01-01
Development of optoelectronic technologies based on quantum dots depends on measuring, optimizing, and ultimately predicting charge carrier dynamics in the nanocrystal. In such systems, size inhomogeneity and the photoexcited population distribution among various excitonic states have distinct effects on electron and hole relaxation, which are difficult to distinguish spectroscopically. Two-dimensional electronic spectroscopy can help to untangle these effects by resolving excitation energy and subsequent nonlinear response in a single experiment. Using a filament-generated continuum as a pump and probe source, we collect two-dimensional spectra with sufficient spectral bandwidth to follow dynamics upon excitation of the lowest three optical transitions in a polydisperse ensemble of colloidal CdSe quantum dots. We first compare to prior transient absorption studies to confirm excitation-state-dependent dynamics such as increased surface-trapping upon excitation of hot electrons. Second, we demonstrate fast band-edge electron-hole pair solvation by ligand and phonon modes, as the ensemble relaxes to the photoluminescent state on a sub-picosecond time-scale. Third, we find that static disorder due to size polydispersity dominates the nonlinear response upon excitation into the hot electron manifold; this broadening mechanism stands in contrast to that of the band-edge exciton. Finally, we demonstrate excitation-energy dependent hot-carrier relaxation rates, and we describe how two-dimensional electronic spectroscopy can complement other transient nonlinear techniques. PMID:24588185
Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy
Caram, Justin R.; Zheng, Haibin; Rolczynski, Brian S.; Griffin, Graham B.; Engel, Gregory S.; Dahlberg, Peter D.; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.
2014-02-28
Development of optoelectronic technologies based on quantum dots depends on measuring, optimizing, and ultimately predicting charge carrier dynamics in the nanocrystal. In such systems, size inhomogeneity and the photoexcited population distribution among various excitonic states have distinct effects on electron and hole relaxation, which are difficult to distinguish spectroscopically. Two-dimensional electronic spectroscopy can help to untangle these effects by resolving excitation energy and subsequent nonlinear response in a single experiment. Using a filament-generated continuum as a pump and probe source, we collect two-dimensional spectra with sufficient spectral bandwidth to follow dynamics upon excitation of the lowest three optical transitions in a polydisperse ensemble of colloidal CdSe quantum dots. We first compare to prior transient absorption studies to confirm excitation-state-dependent dynamics such as increased surface-trapping upon excitation of hot electrons. Second, we demonstrate fast band-edge electron-hole pair solvation by ligand and phonon modes, as the ensemble relaxes to the photoluminescent state on a sub-picosecond time-scale. Third, we find that static disorder due to size polydispersity dominates the nonlinear response upon excitation into the hot electron manifold; this broadening mechanism stands in contrast to that of the band-edge exciton. Finally, we demonstrate excitation-energy dependent hot-carrier relaxation rates, and we describe how two-dimensional electronic spectroscopy can complement other transient nonlinear techniques.
Caram, Justin R; Zheng, Haibin; Dahlberg, Peter D; Rolczynski, Brian S; Griffin, Graham B; Dolzhnikov, Dmitriy S; Talapin, Dmitri V; Engel, Gregory S
2014-02-28
Development of optoelectronic technologies based on quantum dots depends on measuring, optimizing, and ultimately predicting charge carrier dynamics in the nanocrystal. In such systems, size inhomogeneity and the photoexcited population distribution among various excitonic states have distinct effects on electron and hole relaxation, which are difficult to distinguish spectroscopically. Two-dimensional electronic spectroscopy can help to untangle these effects by resolving excitation energy and subsequent nonlinear response in a single experiment. Using a filament-generated continuum as a pump and probe source, we collect two-dimensional spectra with sufficient spectral bandwidth to follow dynamics upon excitation of the lowest three optical transitions in a polydisperse ensemble of colloidal CdSe quantum dots. We first compare to prior transient absorption studies to confirm excitation-state-dependent dynamics such as increased surface-trapping upon excitation of hot electrons. Second, we demonstrate fast band-edge electron-hole pair solvation by ligand and phonon modes, as the ensemble relaxes to the photoluminescent state on a sub-picosecond time-scale. Third, we find that static disorder due to size polydispersity dominates the nonlinear response upon excitation into the hot electron manifold; this broadening mechanism stands in contrast to that of the band-edge exciton. Finally, we demonstrate excitation-energy dependent hot-carrier relaxation rates, and we describe how two-dimensional electronic spectroscopy can complement other transient nonlinear techniques.
Bian, Guang; Wang, Zhengfei; Wang, Xiao-Xiong; Xu, Caizhi; Xu, SuYang; Miller, Thomas; Hasan, M Zahid; Liu, Feng; Chiang, Tai-Chang
2016-03-22
We report on the fabrication of a two-dimensional topological insulator Bi(111) bilayer on Sb nanofilms via a sequential molecular beam epitaxy growth technique. Our angle-resolved photoemission measurements demonstrate the evolution of the electronic band structure of the heterostructure as a function of the film thickness and reveal the existence of a two-dimensional spinful massless electron gas within the top Bi bilayer. Interestingly, our first-principles calculation extrapolating the observed band structure shows that, by tuning down the thickness of the supporting Sb films into the quantum dimension regime, a pair of isolated topological edge states emerges in a partial energy gap at 0.32 eV above the Fermi level as a consequence of quantum confinement effect. Our results and methodology of fabricating nanoscale heterostructures establish the Bi bilayer/Sb heterostructure as a platform of great potential for both ultra-low-energy-cost electronics and surface-based spintronics.
NASA Astrophysics Data System (ADS)
Sing, Michael; Jeschke, Harald O.; Lechermann, Frank; Valentí, Roser; Claessen, Ralph
2017-07-01
The insulator SrTiO3 can host high-mobility two-dimensional electron systems on its surfaces and at interfaces with other oxides. While for the bare surface a two-dimensional electron system can only be induced by oxygen vacancies, it is believed that the metallicity of heterostructure interfaces as in LaAlO3/SrTiO3 is caused by other mechanisms related to the polar discontinuity at the interface. Based on calculations using density functional and dynamical mean-field theory as well as on experimental results using photoemission spectroscopy we elucidate the role of oxygen vacancies, thereby highlighting their importance for the electronic and magnetic properties of the systems under study.
NASA Astrophysics Data System (ADS)
Wu, Haiping; Qian, Yan; Lu, Ruifeng; Tan, Weishi
2016-02-01
Motivated by the recent synthesis of bulk MoN2 which exhibits the layered structure just like the bulk MoS2, the monolayered MoN2 exfoliated from the bulk counterpart is investigated systematically by using density-functional calculations in this work. The result shows that the ground-state two-dimensional monolayered MoN2 behaves as an indirect band gap semiconductor with the energy gap of ∼0.12 eV. Subsequently, the external strain from -6% to 6% is employed to engineer the band structure, and the energy gap can be efficiently tuned from 0 to 0.70 eV. Notably, when the strain is beyond 5% or -3%, the two-dimensional monolayered MoN2 would transfer from an indirect band gap to a direct band gap semiconductor. This work introduces a new member of two-dimensional transition-metal family, which is important for industry applications, especially for the utilization in the long-wavelength infrared field.
NASA Astrophysics Data System (ADS)
Deng, Nianpei
The two dimensional electron gas subjected to a magnetic field has been a model system in contemporary condensed matter physics which generated many beautiful experiments as well as novel fundamental concepts. These novel concepts are of broad interests and have benefited other fields of research. For example, the observations of conventional odd-denominator fractional quantum Hall states have enriched many-body physics with important concepts such as fractional statistics and composite fermions. The subsequent discovery of the enigmatic even-denominator nu=5/2 fractional quantum Hall state has led to more interesting concepts such as non-Abelian statistics and pairing of composite fermions which can be intimately connected to the electron pairing in superconductivity. Moreover, the observations of stripe phases and reentrant integer quantum Hall states have stimulated research on exotic electron solids which have more intricate structures than the Wigner Crystal. In contrast to fractional quantum Hall states and stripes phases, the reentrant integer quantum Hall states are very little studied and their ground states are the least understood. There is a lack of basic information such as exact filling factors, temperature dependence and energy scales for the reentrant integer quantum Hall states. A critical experimental condition in acquiring this information is a stable ultra-low temperature environment. In the first part of this dissertation, I will discuss our unique setup of 3He immersion cell in a state-of-art dilution refrigerator which achieves the required stability of ultra-low temperature. With this experimental setup, we are able to observe for the first time very sharp magnetotransport features of reentrant integer quantum Hall states across many Landau levels for the first time. I will firstly present our results in the second Landau level. The temperature dependence measurements reveal a surprisingly sharp peak signature that is unique to the reentrant
NASA Astrophysics Data System (ADS)
Singh, Vijeta; Pulikkotil, J. J.
2017-02-01
The origin of quasi-two dimensional electron gas at the interface of polar-nonpolar oxide hetero-structure, such as LaAlO3/SrTiO3, is debated over electronic reconstruction and defects/disorder models. Common to these models is the partial valence transformation of substrate Ti ions from its equilibrium 4 + state to an itinerant 3 + state. Given that the Hf ions have a lower ionization potential than Ti due to the 4 f orbital screening, one would expect a hetero-interface conductivity in the polar-nonpolar LaAlO3/SrHfO3 system as well. However, our first principles calculations show the converse. Unlike the Ti3+ -Ti4+ valence transition which occur at a nominal energy cost, the barrier energy associated with its isoelectronic Hf3+ -Hf4+ counterpart is very high, hence suppressing the formation of quasi-two dimensional electron gas at LaAlO3/SrHfO3 hetero-interface. These calculations, therefore, emphasize on the propensity of mixed valence at the interface as a necessary condition for an oxide hetero-structure to exihibit quasi two-dimensional electron gas.
Shamim, S; Mahapatra, S; Scappucci, G; Klesse, W M; Simmons, M Y; Ghosh, A
2014-06-13
We report experimental evidence of a remarkable spontaneous time-reversal symmetry breaking in two-dimensional electron systems formed by atomically confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si) and germanium (Ge). Weak localization corrections to the conductivity and the universal conductance fluctuations were both found to decrease rapidly with decreasing doping in the Si:P and Ge:P delta layers, suggesting an effect driven by Coulomb interactions. In-plane magnetotransport measurements indicate the presence of intrinsic local spin fluctuations at low doping, providing a microscopic mechanism for spontaneous lifting of the time-reversal symmetry. Our experiments suggest the emergence of a new many-body quantum state when two-dimensional electrons are confined to narrow half-filled impurity bands.
Yeager, Mark; Dryden, Kelly A; Ganser-Pornillos, Barbie K
2013-01-01
Electron microscopy provides an efficient method for rapidly assessing whether a solution of macromolecules is homogeneous and monodisperse. If the macromolecules can be induced to form two-dimensional crystals that are a single layer in thickness, then electron crystallography of frozen-hydrated crystals has the potential of achieving three-dimensional density maps at sub-nanometer or even atomic resolution. Here we describe the lipid monolayer and sparse matrix screening methods for growing two-dimensional crystals and present successful applications to soluble macromolecular complexes: carboxysome shell proteins and HIV CA, respectively. Since it is common to express recombinant proteins with poly-His tags for purification by metal affinity chromatography, the monolayer technique using bulk lipids doped with Ni(2+) lipids has the potential for broad application. Likewise, the sparse matrix method uses screening conditions for three-dimensional crystallization and is therefore of broad applicability.
NASA Astrophysics Data System (ADS)
Huang, Zhishuo; Zhang, Wenxu; Zhang, Wanli
2016-08-01
We calculated the electron mobility of 14 two dimensional semiconductors with composition of MX$_2$, where M (= Mo, W, Sn, Hf, Zr and Pt) is the transition metal, and X is S, Se and Te. We treated the scattering matrix by deformation potential approximation. Long wave longitudinal acoustical and optical phonon scatterings are included. Piezoelectric scattering in the compounds without inversion symmetry is also taken into account. We found that out of the 14 compounds, WSe$_2$, PtS$_2$ and PtSe$_2$, are promising regarding to the possible high electron mobility and finite band gap. The phonon limited mobility in PtSe$_2$ reaches about 3000 cm$^2$V$^{-1}$s$^{-1}$ at room temperature which is the highest among the compounds. The bandgap under the local density approximation is 1.25 eV. Our results can be a guide for experiments to search for better two-dimensional materials for future semiconductor devices.
NASA Astrophysics Data System (ADS)
Politano, A.; Chiarello, G.; Cupolillo, A.
2015-08-01
The discovery of quasi-two-dimensional (Q2D) crystals has started a new era of materials science. Novel materials, atomically thin and mechanically, thermally and chemically stable, with a large variety of electronic properties are available and they can be assembled in ultrathin flexible devices. Understanding collective electronic excitations (plasmons) in Q2D systems is mandatory for engineering applications in plasmonics. In view of recent developments in the emerging field of graphene-based plasmonics, the correspondence between the theoretically calculated quantities and the observables experimentally measured in Q2D crystals is still unsatisfactory. Motivated by recent Nazarov’s findings (Nazarov 2015 New J. Phys. 17 073018), here we discuss some crucial issues of current theoretical approaches as well as the computational methods applied to two-dimensional materials with special emphasis to cover their peculiarities, range of application and pitfalls.
Anomalous-circular photogalvanic effect in a GaAs/AlGaAs two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Tang, C. G.; Chen, Y. H.; Liu, Y.; Wang, Z. G.
2009-09-01
We have studied the circular photogalvanic effect (CPGE) in a GaAs/AlGaAs two-dimensional electron gas excited by near infrared light at room temperature. The anomalous CPGE observed under normal incidence indicates a swirling current which is realized by a radial spin current via the reciprocal spin-Hall effect. The anomalous CPGE exhibits a cubic cosine dependence on the incidence angle, which is discussed in line with the above interpretation.
Anomalous-circular photogalvanic effect in a GaAs/AlGaAs two-dimensional electron gas.
Tang, C G; Chen, Y H; Liu, Y; Wang, Z G
2009-09-16
We have studied the circular photogalvanic effect (CPGE) in a GaAs/AlGaAs two-dimensional electron gas excited by near infrared light at room temperature. The anomalous CPGE observed under normal incidence indicates a swirling current which is realized by a radial spin current via the reciprocal spin-Hall effect. The anomalous CPGE exhibits a cubic cosine dependence on the incidence angle, which is discussed in line with the above interpretation.
Belitz, D; Kirkpatrick, T R
2016-12-02
We present a scaling description of a metal-insulator transition in two-dimensional electron systems that is driven by a vanishing compressibility rather than a vanishing diffusion coefficient. A small set of basic assumptions leads to a consistent theoretical framework that is compatible with existing transport and compressibility measurements, and allows us to make predictions for other observables. We also discuss connections between these ideas and other theories of transitions to an incompressible quantum fluid.
Ovchinnikov, S.Y.; Macek, J.H. |
1994-12-31
The two-dimensional resonances in the problem of two Coulomb centers are discussed. The ab initio calculation of electron energy and angular distributions of saddle-point and S-promotion electrons for ionization in proton-hydrogen atom collisions are presented. The calculation is based on an outgoing wave Sturmian expansion in the frequency domain. It goes beyond the usual Born-Oppenheimer separation of electron and nuclei motions and displays the ``{upsilon}/2`` peak and the continuum cusp, missing in previous theories.
Yu, Chao; Wei, Hui; Wang, Xu; Le, Anh -Thu; Lu, Ruifeng; Lin, C. D.
2015-10-27
Imaging the transient process of molecules has been a basic way to investigate photochemical reactions and dynamics. Based on laser-induced electron diffraction and partial one-dimensional molecular alignment, here we provide two effective methods for reconstructing two-dimensional structure of polyatomic molecules. We demonstrate that electron diffraction images in both scattering angles and broadband energy can be utilized to retrieve complementary structure information, including positions of light atoms. Lastly, with picometre spatial resolution and the inherent femtosecond temporal resolution of lasers, laser-induced electron diffraction method offers significant opportunities for probing atomic motion in a large molecule in a typical pump-probe measurement.
Lo, Shun-Tsung; Hsu, Chang-Shun; Lin, Y. M.; Lin, S.-D.; Lee, C. P.; Ho, Sheng-Han; Chuang, Chiashain; Wang, Yi-Ting; Liang, C.-T.
2014-07-07
We study interference and interactions in an InAs/InAsSb two-dimensional electron system. In such a system, spin-orbit interactions are shown to be strong, which result in weak antilocalization (WAL) and thereby positive magnetoresistance around zero magnetic field. After suppressing WAL by the magnetic field, we demonstrate that classical positive magnetoresistance due to spin-orbit coupling plays a role. With further increasing the magnetic field, the system undergoes a direct insulator-quantum Hall transition. By analyzing the magnetotransport behavior in different field regions, we show that both electron-electron interactions and spin-related effects are essential in understanding the observed direct transition.
Rashba-type spin splitting and the electronic structure of ultrathin Pb/MoTe2 heterostructure
NASA Astrophysics Data System (ADS)
Du, X.; Wang, Z. Y.; Huang, G. Q.
2016-11-01
The spin-polarized band structures of the Pb(111)/MoTe2 heterostructure are studied by the first-principles calculations. Due to strong spin-orbit coupling and space inversion asymmetry, large Rashba spin splitting of electronic bands appears in this hybrid system. The spin splitting is completely out-of-plane and opposite at \\bar{K} and {\\bar{K}}\\prime points. Rashba spin splitting also appears along the in-plane momentum direction around the \\bar{{{Γ }}} point due to the existence of surface potential gradient induced by charge transfer at interface. Furthermore, our calculations show that the spin-polarized bands closely approach the Fermi level in Pb/MoTe2 heterostructure, showing that this heterostructure may be a good candidate in valleytronics or spintronics.
NASA Astrophysics Data System (ADS)
Guo, X. G.; Gu, L. L.; Dong, M.; Cao, J. C.; Liu, H. C.; Guo, F. M.
2013-05-01
Negative differential resistance (NDR) behavior existing in dark current-voltage (IV) curves of terahertz quantum-well photodetectors (QWPs) is theoretically investigated. Due to electron-electron scattering, the localized two-dimensional (2D) electrons in terahertz QWPs are thermalized. In steady state, the effective temperature of the 2D electrons is found to be higher than that of lattice. A self-consistent model is used to simulate the dark IV curves of terahertz QWPs, taking into account the thermalization effect of the 2D electrons. The NDR behavior is qualitatively reproduced. The periodic structures of electric-field domain and 2D electron occupation are formed in the NDR regime. The improved self-consistent model is useful for further understanding of the electron transport properties and improving the performance of terahertz QWPs.
Rashba torque beyond the Boltzmann regime
NASA Astrophysics Data System (ADS)
Xiao, Cong; Niu, Qian
2017-07-01
We study spin torques induced by Rashba spin-orbit coupling in two-dimensional ferromagnets under the good-metal condition ɛFτ /ℏ ≫1 (ɛF the Fermi energy, τ the electron lifetime) by employing the Kubo formula. We find that in the presence of spin-dependent disorder the Rashba torque changes greatly as the system evolves out of the weak-disorder limit where ℏ /τ is much smaller than any intrinsic energy scale characterizing the multiband structure. The antidamping-like component of Rashba torque can be comparable to and larger than the field-like one out of the weak-disorder limit. The semiclassical Boltzmann theory produces the same results as microscopic linear response calculations only in the weak-disorder limit. Our analysis indicates that rich behaviors of various nonequilibrium phenomena beyond the Boltzmann theory may also be present even when ɛFτ /ℏ ≫1 in multiband systems where ɛF is not the unique intrinsic energy scale.
Strongly enhanced Rashba splittings in an oxide heterostructure: A tantalate monolayer on BaHfO3
NASA Astrophysics Data System (ADS)
Kim, Minsung; Ihm, Jisoon; Chung, Suk Bum
2016-09-01
In the two-dimensional electron gas emerging at the transition metal oxide surface and interface, various exotic electronic ordering and topological phases can become experimentally more accessible with the stronger Rashba spin-orbit interaction. Here, we present a promising route to realize significant Rashba-type band splitting using a thin film heterostructure. Based on first-principles methods and analytic model analyses, a tantalate monolayer on BaHfO3 is shown to host two-dimensional bands originating from Ta t2 g states with strong Rashba spin splittings, nearly 10% of the bandwidth, at both the band minima and saddle points. An important factor in this enhanced splitting is the significant t2 g-eg interband coupling, which can generically arise when the inversion symmetry is maximally broken due to the strong confinement of the 2DEG on a transition metal oxide surface. Our results could be useful in realizing topological superconductivity at oxide surfaces.
Popov, V. G. Dubrovskii, Yu. V.; Portal, J.-C.
2006-04-15
The results of experimental investigation of the vertical electron transport in a GaAs/Al{sub 0.3}Ga{sub 0.7}As/GaAs single-barrier tunneling heterostructure with a doped barrier are presented. Two-dimensional accumulation layers appear on different sides of the barrier as a result of the ionization of Si donors in the barrier layer. The nonmonotonic shift of the current peak is found in the I-V curve of the tunneling diode in a magnetic field perpendicular to the planes of two-dimensional layers. Such a behavior is shown to be successfully explained in the model of appearing the Coulomb pseudogap and the pinning of the spin-split Landau levels at the Fermi levels of the contacts. In this explanation, it is necessary to assume that the Lande factor is independent of the filling factors of the Landau levels and is g* = 7.5 for both layers.
Vostokov, N. V. Shashkin, V. I.
2015-11-28
We consider the problem of non-resonant detection of terahertz signals in a short gate length field-effect transistor having a two-dimensional electron channel with zero external bias between the source and the drain. The channel resistance, gate-channel capacitance, and quadratic nonlinearity parameter of the transistor during detection as a function of the gate bias voltage are studied. Characteristics of detection of the transistor connected in an antenna with real impedance are analyzed. The consideration is based on both a simple one-dimensional model of the transistor and allowance for the two-dimensional distribution of the electric field in the transistor structure. The results given by the different models are discussed.
Nersisyan, Hrachya B.; Das, Amal K.
2009-07-15
The results of a theoretical investigation on the stopping power of ions moving in a two-dimensional degenerate electron gas are presented. The stopping power for an ion is calculated employing linear-response theory using the dielectric function approach. The collisions, which lead to a damping of plasmons and quasiparticles in the electron gas, is taken into account through a relaxation-time approximation in the linear-response function. The stopping power for an ion is calculated in both the low- and high-velocity limits. In order to highlight the effects of damping, we present a comparison of our analytical and numerical results, in the case of pointlike ions, obtained for a nonzero damping with those for a vanishing damping. It is shown that the equipartition sum rule first formulated by Lindhard and Winther for three-dimensional degenerate electron gas does not necessarily hold in two dimensions. We have generalized this rule introducing an effective dielectric function. In addition, some results for two-dimensional interacting electron gas have been obtained. In this case, the exchange-correlation interactions of electrons are considered via local-field corrected dielectric function.
Bound states of a negative test charge due to many-body effects in the two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Ghazali, A.; Gold, A.
1995-12-01
Bound states of a negative test electron in the low-density regime of the two-dimensional electron gas are obtained when many-body effects (exchange and correlation) are incorporated in the screening function via the local-field correction. Using the Green's-function method and a variational method we determine the energies and the wave functions of the ground state and the excited states as functions of the electron density. For high electron density no bound state is found. Below a critical density the number and the energy of bound states increase with decreasing electron density. The ground state is described by the wave function ψ2s~r exp(-r/α).
NASA Astrophysics Data System (ADS)
Kang, Sungmu
In this thesis, devices using the ballistic transport of two dimensional electron gas (2DEG) in GaAs High Electron Mobility Transistor(HEMT) structure is fabricated and their dc and ac properties are characterized. This study gives insight on operation and applications of modern submicron devices with ever reduced gate length comparable to electron mean free path. The ballistic transport is achieved using both temporal and spatial limits in this thesis. In temporal limit, when frequency is higher than the scattering frequency (1/(2pitau)), ballistic transport can be achieved. At room temperature, generally the scattering frequency is around 500 GHz but at cryogenic temperature (≤4K) with high mobility GaAs HEMT structure, the frequency is much lower than 2 GHz. On this temporal ballistic transport regime, effect of contact impedance and different dc mobility on device operation is characterized with the ungated 2DEG of HEMT structure. In this ballistic regime, impedance and responsivity of plasma wave detector are investigated using the gated 2DEG of HEMT at different ac boundary conditions. Plasma wave is generated at asymmetric ac boundary conditions of HEMTs, where source is short to ground and drain is open while rf power is applied to gate. The wave velocity can be tuned by gate bias voltage and induced drain to source voltage(Vds ) shows the resonant peak at odd number of fundamental frequency. Quantitative power coupling to plasma wave detector leads to experimental characterization of resonant response of plasma wave detector as a function of frequency. Because plasma wave resonance is not limited by transit time, the physics learned in this study can be directly converted to room temperature terahertz detection by simply reducing gate length(Lgate) to submicron for the terahertz application such as non destructive test, bio medical analysis, homeland security, defense and space. In same HEMT structure, the dc and rf characterization on device is also
Effects of finite pulse width on two-dimensional Fourier transform electron spin resonance
NASA Astrophysics Data System (ADS)
Liang, Zhichun; Crepeau, Richard H.; Freed, Jack H.
2005-12-01
Two-dimensional (2D) Fourier transform ESR techniques, such as 2D-ELDOR, have considerably improved the resolution of ESR in studies of molecular dynamics in complex fluids such as liquid crystals and membrane vesicles and in spin labeled polymers and peptides. A well-developed theory based on the stochastic Liouville equation (SLE) has been successfully employed to analyze these experiments. However, one fundamental assumption has been utilized to simplify the complex analysis, viz. the pulses have been treated as ideal non-selective ones, which therefore provide uniform irradiation of the whole spectrum. In actual experiments, the pulses are of finite width causing deviations from the theoretical predictions, a problem that is exacerbated by experiments performed at higher frequencies. In the present paper we provide a method to deal with the full SLE including the explicit role of the molecular dynamics, the spin Hamiltonian and the radiation field during the pulse. The computations are rendered more manageable by utilizing the Trotter formula, which is adapted to handle this SLE in what we call a "Split Super-Operator" method. Examples are given for different motional regimes, which show how 2D-ELDOR spectra are affected by the finite pulse widths. The theory shows good agreement with 2D-ELDOR experiments performed as a function of pulse width.
Two-dimensional plasma expansion in a magnetic nozzle: Separation due to electron inertia
Ahedo, Eduardo; Merino, Mario
2012-08-15
A previous axisymmetric model of the supersonic expansion of a collisionless, hot plasma in a divergent magnetic nozzle is extended here in order to include electron-inertia effects. Up to dominant order on all components of the electron velocity, electron momentum equations still reduce to three conservation laws. Electron inertia leads to outward electron separation from the magnetic streamtubes. The progressive plasma filling of the adjacent vacuum region is consistent with electron-inertia being part of finite electron Larmor radius effects, which increase downstream and eventually demagnetize the plasma. Current ambipolarity is not fulfilled and ion separation can be either outwards or inwards of magnetic streamtubes, depending on their magnetization. Electron separation penalizes slightly the plume efficiency and is larger for plasma beams injected with large pressure gradients. An alternative nonzero electron-inertia model [E. Hooper, J. Propul. Power 9, 757 (1993)] based on cold plasmas and current ambipolarity, which predicts inwards electron separation, is discussed critically. A possible competition of the gyroviscous force with electron-inertia effects is commented briefly.
Spectroscopy and Dynamics of a Two-Dimensional Electron Gas on Ultrathin Helium Films on Cu(111)
NASA Astrophysics Data System (ADS)
Armbrust, N.; Güdde, J.; Höfer, U.; Kossler, S.; Feulner, P.
2016-06-01
Electrons in image-potential states on the surface of bulk helium represent a unique model system of a two-dimensional electron gas. Here, we investigate their properties in the extreme case of reduced film thickness: a monolayer of helium physisorbed on a single-crystalline (111)-oriented Cu surface. For this purpose we have utilized a customized setup for time-resolved two-photon photoemission at very low temperatures under ultrahigh vacuum conditions. We demonstrate that the highly polarizable metal substrate increases the binding energy of the first (n =1 ) image-potential state by more than 2 orders of magnitude as compared to the surface of liquid helium. An electron in this state is still strongly decoupled from the metal surface due to the large negative electron affinity of helium and we find that even 1 monolayer of helium increases its lifetime by 1 order of magnitude compared to the bare Cu(111) surface.
NASA Astrophysics Data System (ADS)
Pugachev, L. P.; Andreev, N. E.; Levashov, P. R.; Malkov, Yu. A.; Stepanov, A. N.; Yashunin, D. A.
2015-07-01
The electron acceleration mechanism associated with the generation of a plasma wave due to self-modulation instability of laser radiation in a subcritical plasma produced by a laser prepulse coming 10 ns before the arrival of the main intense femtosecond pulse is considered. Three-dimensional particle-in-cell simulations of the interaction of laser radiation with two-dimensionally inhomogeneous subcritical plasma have shown that, for a sufficiently strong plasma inhomogeneity and a sharp front of the laser pulse, efficient plasma wave excitation, electron trapping, and generation of collimated electron beams with energies on the order of 0.2-0.5 MeV can occur. The simulation results agree with experiments on the generation of collimated beams of accelerated electrons from metal targets irradiated by intense femtosecond laser pulses.
Spectroscopy and Dynamics of a Two-Dimensional Electron Gas on Ultrathin Helium Films on Cu(111).
Armbrust, N; Güdde, J; Höfer, U; Kossler, S; Feulner, P
2016-06-24
Electrons in image-potential states on the surface of bulk helium represent a unique model system of a two-dimensional electron gas. Here, we investigate their properties in the extreme case of reduced film thickness: a monolayer of helium physisorbed on a single-crystalline (111)-oriented Cu surface. For this purpose we have utilized a customized setup for time-resolved two-photon photoemission at very low temperatures under ultrahigh vacuum conditions. We demonstrate that the highly polarizable metal substrate increases the binding energy of the first (n=1) image-potential state by more than 2 orders of magnitude as compared to the surface of liquid helium. An electron in this state is still strongly decoupled from the metal surface due to the large negative electron affinity of helium and we find that even 1 monolayer of helium increases its lifetime by 1 order of magnitude compared to the bare Cu(111) surface.
Pugachev, L. P. Andreev, N. E. Levashov, P. R.; Malkov, Yu. A. Stepanov, A. N. Yashunin, D. A.
2015-07-15
The electron acceleration mechanism associated with the generation of a plasma wave due to self-modulation instability of laser radiation in a subcritical plasma produced by a laser prepulse coming 10 ns before the arrival of the main intense femtosecond pulse is considered. Three-dimensional particle-in-cell simulations of the interaction of laser radiation with two-dimensionally inhomogeneous subcritical plasma have shown that, for a sufficiently strong plasma inhomogeneity and a sharp front of the laser pulse, efficient plasma wave excitation, electron trapping, and generation of collimated electron beams with energies on the order of 0.2–0.5 MeV can occur. The simulation results agree with experiments on the generation of collimated beams of accelerated electrons from metal targets irradiated by intense femtosecond laser pulses.
NASA Astrophysics Data System (ADS)
Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui
2015-01-01
Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data.
Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui
2015-01-15
Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data.
NASA Astrophysics Data System (ADS)
Lin, Yanzhang; Yao, Haizi; Ren, Zhiying; Chen, Ying; Wang, Xiangfeng
2017-07-01
We utilized a coherent terahertz time-domain spectroscopy system to measure the dynamic conductivity of an InAs two-dimensional electron gas. Based on the theoretical transmission analysis, the real and imaginary parts of the complex conductivity of the sample were extracted from the transmitted terahertz time-domain waveforms. We also measured the sample at low temperatures and fitted the real and imaginary parts of the conductivity with the Drude model to extract its densities and mobilities. The dominant scattering mechanisms are discussed according to the temperature dependence of the extracted densities and mobilities.
Roslyak, O.; Gumbs, Godfrey; Mukamel, S.
2012-01-01
We study the localization of dressed Dirac electrons in a cylindrical quantum dot (QD) formed on monolayer and bilayer graphene by spatially different potential profiles. Short lived excitonic states which are too broad to be resolved in linear spectroscopy are revealed by cross peaks in the photon-echo nonlinear technique. Signatures of the dynamic gap in the two-dimensional spectra are discussed. The effect of the Coulomb induced exciton-exciton scattering and the formation of biexciton molecules are demonstrated. PMID:22612079
Bykov, A. A.; Marchishin, I. V.; Goran, A. V.; Dmitriev, D. V.
2010-08-23
Microwave induced photoconductivity of a two-dimensional electron gas in selectively doped GaAs/AlAs heterostructures has been studied using the Corbino geometry with capacitive contacts at a temperature T=1.6 K and magnetic field B up to 0.5 T. Zero-conductance states have been observed in the samples under study subject to microwave radiation, similarly to the samples with Ohmic contacts. It has been shown that Ohmic contacts do not play a significant role for observation of zero-conductance states induced by microwave radiation.
Derrien, G; Le Menn, G
1995-07-01
This study evaluated the reproduction of detail by Fuji-rock artificial stone, Epoxydent epoxy resin, and Steady-plast polyurethane resin. A polyvinyl siloxane impression was made of a disk-shaped calibration model, with etched grooves ranging from 1 to 46 microns in depth. The die materials were poured in the silicone impression of the disk, then examined with a scanning electron microscope and two-dimensional profilometer. The results revealed that the artificial stone could not reproduce details smaller than 20 microns because of the size of the crystalline structure, whereas epoxy resin and polyurethane resin accurately reproduced details of 1 to 2 microns.
den Hartog, S.G.; van Wees, B.J.; Klapwijk, T.M.; Nazarov, Y.V.; Borghs, G.
1997-10-01
We have investigated the superconducting-phase-modulated reduction in the resistance of a ballistic quantum point contact (QPC) connected via a disordered two-dimensional electron gas (2DEG) to superconductors. We show that this reduction is caused by coherent Andreev backscattering of holes through the QPC, which increases monotonically by reducing the bias voltage to zero. In contrast, the magnitude of the phase-dependent resistance of the disordered 2DEG displays a nonmonotonic reentrant behavior versus bias voltage. {copyright} {ital 1997} {ital The American Physical Society}
den Hartog, S.G.; van Wees, B.J.; Klapwijk, T.M.; Nazarov, Y.V.; Borghs, G.
1997-12-01
We have investigated the bias-voltage dependence of the phase-dependent differential resistance of a disordered T-shaped two-dimensional electron gas coupled to two superconducting terminals. The resistance oscillations first increase upon lowering the energy. For bias voltages below the Thouless energy, the resistance oscillations are suppressed and disappear almost completely at zero bias voltage. We find a qualitative agreement with the calculated reentrant behavior of the resistance and discuss quantitative deviations. {copyright} {ital 1997} {ital The American Physical Society}
NASA Astrophysics Data System (ADS)
Hai, Guo-Qiang; Peeters, François M.
2015-01-01
Based on the metastable electron-pair energy band in a two-dimensional (2D) periodic potential obtained previously by Hai and Castelano [J. Phys.: Condens. Matter 26, 115502 (2014)], we present in this work a Hamiltonian of many electrons consisting of single electrons and electron pairs in the 2D system. The electron-pair states are metastable of energies higher than those of the single-electron states at low electron density. We assume two different scenarios for the single-electron band. When it is considered as the lowest conduction band of a crystal, we compare the obtained Hamiltonian with the phenomenological model Hamiltonian of a boson-fermion mixture proposed by Friedberg and Lee [Phys. Rev. B 40, 6745 (1989)]. Single-electron-electron-pair and electron-pair-electron-pair interaction terms appear in our Hamiltonian and the interaction potentials can be determined from the electron-electron Coulomb interactions. When we consider the single-electron band as the highest valence band of a crystal, we show that holes in this valence band are important for stabilization of the electron-pair states in the system.
Long wavelength plasmon damping in the two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Bachlechner, Martina E.; Böhm, Helga M.; Schinner, Andreas
1993-07-01
The damping of the long wavelength plasmon in a homogeneos electron layer is determined by two-electron-hole excitations. Analytical and numerical results for the corresponding imaginary part of the dielectric function and the plasmon half width are presented for various densities and different manners of screening.
Very large capacitance enhancement in a two-dimensional electron system.
Li, Lu; Richter, C; Paetel, S; Kopp, T; Mannhart, J; Ashoori, R C
2011-05-13
Increases in the gate capacitance of field-effect transistor structures allow the production of lower-power devices that are compatible with higher clock rates, driving the race for developing high-κ dielectrics. However, many-body effects in an electronic system can also enhance capacitance. Onto the electron system that forms at the LaAlO(3)/SrTiO(3) interface, we fabricated top-gate electrodes that can fully deplete the interface of all mobile electrons. Near depletion, we found a greater than 40% enhancement of the gate capacitance. Using an electric-field penetration measurement method, we show that this capacitance originates from a negative compressibility of the interface electron system. Capacitance enhancement exists at room temperature and arises at low electron densities, in which disorder is strong and the in-plane conductance is much smaller than the quantum conductance.
NASA Astrophysics Data System (ADS)
Guo, Zhifang; Wu, Mingyu; Du, Aimin
2017-07-01
Electron acceleration in the near-Earth magnetotail during the substorm period is still an unresolved question. In this paper, by tracing electron trajectories in the dynamically evolving electromagnetic fields obtained from a two-dimensional (2D) global hybrid simulation, we investigate electron acceleration in the near-Earth magnetotail during dipolarization. In our simulation, electrons with energies above several keV can gain energy in the plasma sheet due to the adiabatic acceleration mechanism when these electrons propagate earthward. In the near-Earth magnetotail (about 9-15 RE from the Earth), these electrons can be accelerated by betatron acceleration which is due to the compression of magnetic field associated with dipolarization of magnetotail. Additionally, in the middle and high latitudes of the near-Earth magnetotail, the parallel electric field carrying by kinetic Alfvén waves can also accelerate electrons when these electrons bounce between the mirror points. The combination effects of these three acceleration mechanisms can accelerate electrons from several keV to about one hundred keV. Our results indicate that both the large-scale structure and wave-particle interactions need to be taken into account for electron acceleration in the near-Earth magnetotail.
The electronic properties of bare and alkali metal adsorbed two-dimensional GeSi alloy sheet
NASA Astrophysics Data System (ADS)
Qiu, Wenhao; Ye, Han; Yu, Zhongyuan; Liu, Yumin
2016-09-01
In this paper, the structural and electronic properties of both bare and alkali metal (AM) atoms adsorbed two-dimensional GeSi alloy sheet (GeSiAS) are investigated by means of first-principles calculations. The band gaps of bare GeSiAS are shown slightly opened at Dirac point with the energy dispersion remain linear due to the spin-orbit coupling effect at all concentrations of Ge atoms. For metal adsorption, AM atoms (including Li, Na and K) prefer to occupy the hexagonal hollow site of GeSiAS and the primary chemical bond between AM adatom and GeSiAS is ionic. The adsorption energy has an increase tendency with the increase of the Ge concentration in supercell. Besides, single-side adsorption of AM atoms introduces band gap at Dirac point, which can be tuned by the Ge concentration and the species of AM atoms. The strong relation between the band gaps and the distribution of Si and Ge atoms inside GeSiAS are also demonstrated. The opened band gaps of AM covered GeSiAS range from 14.8 to 269.1 meV along with the effective masses of electrons ranging from 0.013 to 0.109 me, indicating the high tunability of band gap as well as high mobility of carriers. These results provide a development in two-dimensional alloys and show potential applications in novel micro/nano-electronic devices.
Prediction of novel perovskite-type oxyhydride KTi(O2H) with two-dimensional electronic states
NASA Astrophysics Data System (ADS)
Sato, Nobuya; Tsuneyuki, Shinji
2015-03-01
Perovskite-type oxides AB O3 have been widely studied for its dielectricity. The properties of these materials significantly change by substituting A or B cations, while compositions of A and B cations are limited to (A2+, B4+) and (A3+, B3+) for charge neutrality. Recently, it has been demonstrated that oxygen anions in BaTiO3 can be partially substituted with hydride ions (H-), suggesting that more varieties of compositions might be realized (e.g., (A+, B4+)) combined with oxygen substitution. In this work, using first-principles calculations, we investigate an unsynthesized model composition with the oxygen substitution, KTi(O2H). This compound is expected to crystalize into the perovskite-type structure from its tolerance factor. We confirm its stability with the crystal structure optimization and calculation of its formation energy for possible reactions. The material is insulating with large electronic polarization and has two-dimensional low-energy electronic states within Ti-O-H planes. For its unconventional composition and the peculiar two-dimensional property, this material may realize novel electronic properties. N. S. was supported by Japan Society for the Promotion of Science through Program for Leading Graduate Schools (MERIT).
Atomic structure and electronic properties of the two-dimensional (Au ,Al )/Si (111 )2 ×2 compound
NASA Astrophysics Data System (ADS)
Gruznev, D. V.; Bondarenko, L. V.; Matetskiy, A. V.; Tupchaya, A. Y.; Chukurov, E. N.; Hsing, C. R.; Wei, C. M.; Eremeev, S. V.; Zotov, A. V.; Saranin, A. A.
2015-12-01
A combination of scanning tunneling microscopy, angle-resolved photoelectron spectroscopy, ab initio random structure searching, and density functional theory electronic structure calculations was applied to elucidate the atomic arrangement and electron band structure of the (Au ,Al )/Si (111 )2 ×2 two-dimensional compound formed upon Al deposition onto the mixed 5 ×2 /√{3 }×√{3 } Au/Si(111) surface. It was found that the most stable 2 ×2 -(Au, Al) compound incorporates four Au atoms, three Al atoms, and two Si atoms per 2 ×2 unit cell. Its atomic arrangement can be visualized as an array of meandering Au atomic chains with two-thirds of the Al atoms incorporated into the chains and one-third of the Al atoms interconnecting the chains. The compound is metallic and its electronic properties can be controlled by appropriate Al dosing since energetic location of the bands varies by ˜0.5 eV during increasing of Al contents. The 2 ×2 -(Au, Al) structure appears to be lacking the C3 v symmetry typical for the hexagonal lattices. The consequence of the peculiar atomic structure of the two-dimensional alloy is spin splitting of the metallic states, which should lead to anisotropy of the current-induced in-plane spin polarization.
Heating and cooling of a two-dimensional electron gas by terahertz radiation
Budkin, G. V.; Tarasenko, S. A.
2011-04-15
The absorption of terahertz radiation by free charge carriers in n-type semiconductor quantum wells accompanied by the interaction of electrons with acoustic and optical phonons is studied. It is shown that intrasubband optical transitions can cause both heating and cooling of the electron gas. The cooling of charge carriers occurs in a certain temperature and radiation frequency region where light is most efficiently absorbed due to intrasubband transitions with emission of optical phonons. In GaAs quantum wells, the optical cooling of electrons occurs most efficiently at liquid nitrogen temperatures, while cooling is possible even at room temperature in GaN heterostructures.
Two-dimensional numerical model of electron cyclotron resonance discharge with pointwise mappings
Eruhimov, V.; Semenov, V.
2006-03-15
We suggest a new approach to numerical modeling of electron distribution function in an electron cyclotron resonance (ECR) discharge. The method is based on a pointwise mapping of electron velocity over a single bounce oscillation. We limit our consideration to ECR heating, collisions, ionization, and ambipolar losses from the trap although other processes can be accounted for as well. The method gives a solution close to the brute-force particle-in-cell integration but is incomparably faster. Initial results of experiments are presented.
Two dimensional electrostatic shock waves in relativistic electron positron ion plasmas
Masood, W.; Rizvi, H.
2010-05-15
Ion-acoustic shock waves (IASWs) are studied in an unmagnetized plasma consisting of electrons, positrons and hot ions. In this regard, Kadomtsev-Petviashvili-Burgers (KPB) equation is derived using the small amplitude perturbation expansion method. The dependence of the IASWs on various plasma parameters is numerically investigated. It is observed that ratio of ion to electron temperature, kinematic viscosity, positron concentration, and the relativistic ion streaming velocity affect the structure of the IASW. Limiting case of the KPB equation is also discussed. Stability of KPB equation is also presented. The present investigation may have relevance in the study of electrostatic shock waves in relativistic electron-positron-ion plasmas.
Electronic, Mechanical, and Dielectric Properties of Two-Dimensional Atomic Layers of Noble Metals
NASA Astrophysics Data System (ADS)
Kapoor, Pooja; Kumar, Jagdish; Kumar, Arun; Kumar, Ashok; Ahluwalia, P. K.
2017-01-01
We present density functional theory-based electronic, mechanical, and dielectric properties of monolayers and bilayers of noble metals (Au, Ag, Cu, and Pt) taken with graphene-like hexagonal structure. The Au, Ag, and Pt bilayers stabilize in AA-stacked configuration, while the Cu bilayer favors the AB stacking pattern. The quantum ballistic conductance of the noble-metal mono- and bilayers is remarkably increased compared with their bulk counterparts. Among the studied systems, the tensile strength is found to be highest for the Pt monolayer and bilayer. The noble metals in mono- and bilayer form show distinctly different electron energy loss spectra and reflectance spectra due to the quantum confinement effect on going from bulk to the monolayer limit. Such tunability of the electronic and dielectric properties of noble metals by reducing the degrees of freedom of electrons offers promise for their use in nanoelectronics and optoelectronics applications.
Two-dimensional single-stream electron motion in a coaxial diode with magnetic insulation
NASA Astrophysics Data System (ADS)
Fuks, Mikhail I.; Schamiloglu, Edl
2014-05-01
One of the most widespread models of electrons drifting around the cathode in magnetrons is the single-stream state, which is the Brillouin stream with purely azimuthal motion. We describe a single-stream state in which electrons not only move in the azimuthal direction, but also along the axial direction, which is useful for consideration, for example, of relativistic magnetrons, MILOs, and coaxial transmission lines. Relations are given for the conditions of magnetic insulation for 2D electron motion, for 1D azimuthal and axial motion, and for synchronism of these streams with the operating waves of M-type microwave sources. Relations are also provided for the threshold of generation in magnetrons with 2D electron motion.
Two-dimensional single-stream electron motion in a coaxial diode with magnetic insulation
Fuks, Mikhail I.; Schamiloglu, Edl
2014-05-15
One of the most widespread models of electrons drifting around the cathode in magnetrons is the single-stream state, which is the Brillouin stream with purely azimuthal motion. We describe a single-stream state in which electrons not only move in the azimuthal direction, but also along the axial direction, which is useful for consideration, for example, of relativistic magnetrons, MILOs, and coaxial transmission lines. Relations are given for the conditions of magnetic insulation for 2D electron motion, for 1D azimuthal and axial motion, and for synchronism of these streams with the operating waves of M-type microwave sources. Relations are also provided for the threshold of generation in magnetrons with 2D electron motion.
Idrobo Tapia, Juan Carlos; Zhou, Wu
2017-03-01
Here we present a short historical account of when single adatom impurities where first identified in two-dimensional materials by scanning transmission electron microscopy (STEM). We also present a study of the graphene low-loss (below 50 eV) response as a function of number of layers using electron energy-loss spectroscopy (EELS). The study shows that as few as three layers of graphene behave as bulk graphite for losses above 10 eV We also show examples of how point and extended defects can easily be resolved and structural dynamics can be readily capture by using aberration-corrected STEM imaging. Lastly, we show that themore » new generation of monochromators has opened up possibilities to explore new physics with an electron microscope. All these capabilities were enabled by the development of spherical aberration correctors and monochromators, where Ondrej Krivanek has played a key role.« less
Zeng, Shengwei; Lü, Weiming; Huang, Zhen; Liu, Zhiqi; Han, Kun; Gopinadhan, Kalon; Li, Changjian; Guo, Rui; Zhou, Wenxiong; Ma, Haijiao Harsan; Jian, Linke; Venkatesan, Thirumalai; Ariando
2016-04-26
Electric field effect in electronic double layer transistor (EDLT) configuration with ionic liquids as the dielectric materials is a powerful means of exploring various properties in different materials. Here, we demonstrate the modulation of electrical transport properties and extremely high mobility of two-dimensional electron gas at LaAlO3/SrTiO3 (LAO/STO) interface through ionic liquid-assisted electric field effect. With a change of the gate voltages, the depletion of charge carrier and the resultant enhancement of electron mobility up to 19 380 cm(2)/(V s) are realized, leading to quantum oscillations of the conductivity at the LAO/STO interface. The present results suggest that high-mobility oxide interfaces, which exhibit quantum phenomena, could be obtained by ionic liquid-assisted field effect.
Betbeder-Matibet, O.; Combescot, M.
1996-10-01
We calculate the {ital T}=0 total Coulomb energy of a quasi-two-dimensional electron-hole plasma in a quantum well, taking into account the finite width of the well. We consider 2D plasma densities low enough to have electrons and holes in their lowest subband only, but large enough to ensure the validity of the usual perturbative expansion in Coulomb interaction. We derive explicit expressions of the Hartree, exchange, and correlation energies in terms of the {ital exact} free-electron and hole wave functions in the well, in order to allow calculations of these energies for finite barrier heights. In a last part, we recover the intuitive Schr{umlt o}dinger equation for excitons in a quantum well, using the ladder diagram approach. {copyright} {ital 1996 The American Physical Society.}
Studies of scattering mechanisms in gate tunable InAs/(Al,Ga)Sb two dimensional electron gases
Shojaei, B.; McFadden, A.; Schultz, B. D.; Shabani, J.; Palmstrøm, C. J.
2015-06-01
A study of scattering mechanisms in gate tunable two dimensional electron gases confined to InAs/(Al,Ga)Sb heterostructures with varying interface roughness and dislocation density is presented. By integrating an insulated gate structure the evolution of the low temperature electron mobility and single-particle lifetime was determined for a previously unexplored density regime, 10{sup 11}–10{sup 12 }cm{sup −2}, in this system. Existing theoretical models were used to analyze the density dependence of the electron mobility and single particle lifetime in InAs quantum wells. Scattering was found to be dominated by charged dislocations and interface roughness. It was demonstrated that the growth of InAs quantum wells on nearly lattice matched GaSb substrate results in fewer dislocations, lower interface roughness, and improved low temperature transport properties compared to growth on lattice mismatched GaAs substrates.
Goswami, Srijit; Aamir, Mohammed Ali; Shamim, Saquib; Ghosh, Arindam; Siegert, Christoph; Farrer, Ian; Ritchie, David A.; Pepper, Michael
2013-12-04
We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.
NASA Astrophysics Data System (ADS)
Gredeskul, S. A.; Zusman, M.; Avishai, Y.; Azbel', M. Ya.
1997-09-01
Electron spectral properties and localization in a two-dimensional system with point potentials subject to a perpendicular magnetic field are studied. A brief review of the known results concerning electron dynamics in such systems is presented. For a set of periodic point potentials, exact dispersion laws and energy-flux diagram (Hofstadter-type butterfly) are obtained. It is shown that, in the case of one-dimensional disorder, the electron localization in a strong magnetic field is described by the random Harper equation. Energy-flux diagram for the localization length is presented and the fractal structure of the localization length is demonstrated. Near the Landau levels an exact formula for the localization length as a function of energy and disorder is obtained. The corresponding critical exponent is equal to unity which is reminiscent of one-dimensional characteristics.
NASA Astrophysics Data System (ADS)
Cao, Lei; Fu, Qiang; Wu, Bang; Xiong, Yongqian
2017-10-01
The high electron concentration in GaN-based heterostructures necessitate the consideration of nonlocal corrections in the magnetoconductivity for the study of magnetoplasmon-polaritons (MPPs) in the lossy two dimensional electron gas system with grating couplers. With the complete set of Maxwell equations, the complex dispersion frequency and absorption spectrum are calculated numerically at different magnetic field (B max = 10 T) and plasmon wavevectors (k max = 5 × 107 m-1). Taking the AlGaN/GaN structure as a representative case, we observe the cyclotron resonance and its high order harmonics, as well as the MPP modes. The effective aspect ratio of the grating is determined according to the absorption spectrum. Effects of the nonlocal corrections on the dispersion frequency and absorption spectrum are analyzed in detail. The contributions of LO phonons, electron collisions, THz wave polarizations and retardations are also discussed.
Shi, Likun; Lou, Wenkai; Cheng, F.; Zou, Y. L.; Yang, Wen; Chang, Kai
2015-01-01
Based on the Born-Oppemheimer approximation, we divide the total electron Hamiltonian in a spin-orbit coupled system into the slow orbital motion and the fast interband transition processes. We find that the fast motion induces a gauge field on the slow orbital motion, perpendicular to the electron momentum, inducing a topological phase. From this general designing principle, we present a theory for generating artificial gauge field and topological phase in a conventional two-dimensional electron gas embedded in parabolically graded GaAs/InxGa1−xAs/GaAs quantum wells with antidot lattices. By tuning the etching depth and period of the antidot lattices, the band folding caused by the antidot potential leads to the formation of minibands and band inversions between neighboring subbands. The intersubband spin-orbit interaction opens considerably large nontrivial minigaps and leads to many pairs of helical edge states in these gaps. PMID:26471126
NASA Astrophysics Data System (ADS)
Shi, Likun; Lou, Wenkai; Cheng, F.; Zou, Y. L.; Yang, Wen; Chang, Kai
2015-10-01
Based on the Born-Oppemheimer approximation, we divide the total electron Hamiltonian in a spin-orbit coupled system into the slow orbital motion and the fast interband transition processes. We find that the fast motion induces a gauge field on the slow orbital motion, perpendicular to the electron momentum, inducing a topological phase. From this general designing principle, we present a theory for generating artificial gauge field and topological phase in a conventional two-dimensional electron gas embedded in parabolically graded GaAs/InxGa1-xAs/GaAs quantum wells with antidot lattices. By tuning the etching depth and period of the antidot lattices, the band folding caused by the antidot potential leads to the formation of minibands and band inversions between neighboring subbands. The intersubband spin-orbit interaction opens considerably large nontrivial minigaps and leads to many pairs of helical edge states in these gaps.
Idrobo, Juan C; Zhou, Wu
2017-09-01
Here we present a short historical account of when single adatom impurities where first identified in two-dimensional materials by scanning transmission electron microscopy (STEM). We also present a study of the graphene low-loss (below 50eV) response as a function of number of layers using electron energy-loss spectroscopy (EELS). The study shows that as few as three layers of graphene behave as bulk graphite for losses above 10eV We also show examples of how point and extended defects can easily be resolved and structural dynamics can be readily capture by using aberration-corrected STEM imaging. Finally, we show that the new generation of monochromators has opened up possibilities to explore new physics with an electron microscope. All these capabilities were enabled by the development of spherical aberration correctors and monochromators, where Ondrej Krivanek has played a key role. Copyright © 2017. Published by Elsevier B.V.
Effects of thickness on the spin susceptibility of the two dimensional electron gas.
De Palo, S; Botti, M; Moroni, S; Senatore, Gaetano
2005-06-10
Using available quantum Monte Carlo predictions for a strictly 2D electron gas, we estimate the spin susceptibility of electrons in actual devices taking into account the effect of the finite transverse thickness and finding very good agreement with experiments. A weak disorder, as found in very clean devices and/or at densities not too low, just brings about a minor enhancement of the susceptibility.
Two-dimensional numerical simulation of a continuous needle-like argon electron-beam plasma
NASA Astrophysics Data System (ADS)
Bai, Xiaoyan; Chen, Chen; Li, Hong; Liu, Wandong
2017-05-01
The fluid-Poisson equations coupled with the Monte Carlo method were used to simulate the spatio-temporal behavior of a needle-like argon electron-beam plasma. Based on the Monte Carlo simulation, three coupled parameters characterizing the electron beam propagation for initial energies above several keV were expressed using a universal dimensionless shape function given in terms of the beam range multiplied by a normalized coefficient. Therefore, a single run of the Monte Carlo code was sufficient for the simulations over a wide range of conditions. The spatial potential as a function of space and time was studied from the fluid-Poisson equations. The results indicate that the time evolution of the spatial potential was influenced by the presence of the slowed-down electrons and the flying beam electrons, whereas the potential in quasi-equilibrium was mainly determined from the spatial distribution of the secondary electron. The potential in quasi-equilibrium was positive near the beam entrance and most negative along the tip of the beam range, which was a result of ambipolar diffusion. When the enclosing boundary surfaces were moved within the beam range, the potential was nearly positive everywhere. The calculation on the diffusion-drift flux indicated that the net current of the secondary electrons flowing back to the incident plane in quasi-equilibrium balanced the incident beam current, which was the so-called return current in the three-dimensional space.
Two-Dimensional Simulations of Electron Shock Ignition at the Megajoule Scale
NASA Astrophysics Data System (ADS)
Shang, W.; Betti, R.
2016-10-01
Shock ignition uses a late strong shock to ignite the hot spot of an inertial confinement fusion capsule. In the standard shock-ignition scheme, an ignitor shock is launched by the ablation pressure from a spike in laser intensity. Recent experiments on OMEGA have shown that focused beams with intensity up to 6 ×1015 W /cm2 can produce copious amounts of hot electrons. The hot electrons are produced by laser-plasma instabilities (LPI's) and can carry up to 15 % of the instantaneous laser power. Megajoule-scale targets will likely produce even more hot electrons because of the large plasma scale length. We show that it is possible to design ignition targets with low implosion velocities that can be shock ignited using LPI-generated hot electrons to obtain high energy gains. These designs are robust to low-mode asymmetries and they ignite even for highly distorted implosions. Electron shock ignition requires tens of kilojoules of hot electrons, which can only be produced on a large laser facility like the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Monisha, P J; Sankar, I V; Sil, Shreekantha; Chatterjee, Ashok
2016-02-01
Persistent current in a correlated quantum ring threaded by an Aharonov-Bohm flux is studied in the presence of electron-phonon interactions and Rashba spin-orbit coupling. The quantum ring is modeled by the Holstein-Hubbard-Rashba Hamiltonian and the energy is calculated by performing the conventional Lang-Firsov transformation followed by the diagonalization of the effective Hamiltonian within a mean-field approximation. The effects of Aharonov-Bohm flux, temperature, spin-orbit and electron-phonon interactions on the persistent current are investigated. It is shown that the electron-phonon interactions reduce the persistent current, while the Rashba coupling enhances it. It is also shown that temperature smoothens the persistent current curve. The effect of chemical potential on the persistent current is also studied.
Monisha, P. J.; Sankar, I. V.; Sil, Shreekantha; Chatterjee, Ashok
2016-01-01
Persistent current in a correlated quantum ring threaded by an Aharonov-Bohm flux is studied in the presence of electron-phonon interactions and Rashba spin-orbit coupling. The quantum ring is modeled by the Holstein-Hubbard-Rashba Hamiltonian and the energy is calculated by performing the conventional Lang-Firsov transformation followed by the diagonalization of the effective Hamiltonian within a mean-field approximation. The effects of Aharonov-Bohm flux, temperature, spin-orbit and electron-phonon interactions on the persistent current are investigated. It is shown that the electron-phonon interactions reduce the persistent current, while the Rashba coupling enhances it. It is also shown that temperature smoothens the persistent current curve. The effect of chemical potential on the persistent current is also studied. PMID:26831831
Oliver, Thomas A. A.; Lewis, Nicholas H. C.; Fleming, Graham R.
2014-01-01
Multidimensional nonlinear spectroscopy, in the electronic and vibrational regimes, has reached maturity. To date, no experimental technique has combined the advantages of 2D electronic spectroscopy and 2D infrared spectroscopy, monitoring the evolution of the electronic and nuclear degrees of freedom simultaneously. The interplay and coupling between the electronic state and vibrational manifold is fundamental to understanding ensuing nonradiative pathways, especially those that involve conical intersections. We have developed a new experimental technique that is capable of correlating the electronic and vibrational degrees of freedom: 2D electronic–vibrational spectroscopy (2D-EV). We apply this new technique to the study of the 4-(di-cyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H-pyran (DCM) laser dye in deuterated dimethyl sulfoxide and its excited state relaxation pathways. From 2D-EV spectra, we elucidate a ballistic mechanism on the excited state potential energy surface whereby molecules are almost instantaneously projected uphill in energy toward a transition state between locally excited and charge-transfer states, as evidenced by a rapid blue shift on the electronic axis of our 2D-EV spectra. The change in minimum energy structure in this excited state nonradiative crossing is evident as the central frequency of a specific vibrational mode changes on a many-picoseconds timescale. The underlying electronic dynamics, which occur on the hundreds of femtoseconds timescale, drive the far slower ensuing nuclear motions on the excited state potential surface, and serve as a excellent illustration for the unprecedented detail that 2D-EV will afford to photochemical reaction dynamics. PMID:24927586
Franck, John M.; Chandrasekaran, Siddarth; Dzikovski, Boris; Dunnam, Curt R.; Freed, Jack H.
2015-06-07
The development, applications, and current challenges of the pulsed ESR technique of two-dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually in the form of spin-probes or spin-labels. As a result, it required the extension to much higher frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has proven very useful for studying molecular dynamics in complex fluids, and spectral results can be explained by fitting theoretical models (also described) that provide a detailed analysis of the molecular dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the ability to tune the resonance frequency, in order to probe different motional ranges, while challenges include the high ratio of the detection dead time vs. the relaxation times. We review several important 2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic → crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically aligned sample, as well as responding to local site fluctuations. (2) Several examples involving model phospholipid membranes are provided, including the dynamic structural characterization of the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma membrane
NASA Astrophysics Data System (ADS)
Franck, John M.; Chandrasekaran, Siddarth; Dzikovski, Boris; Dunnam, Curt R.; Freed, Jack H.
2015-06-01
The development, applications, and current challenges of the pulsed ESR technique of two-dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually in the form of spin-probes or spin-labels. As a result, it required the extension to much higher frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has proven very useful for studying molecular dynamics in complex fluids, and spectral results can be explained by fitting theoretical models (also described) that provide a detailed analysis of the molecular dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the ability to tune the resonance frequency, in order to probe different motional ranges, while challenges include the high ratio of the detection dead time vs. the relaxation times. We review several important 2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic → crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically aligned sample, as well as responding to local site fluctuations. (2) Several examples involving model phospholipid membranes are provided, including the dynamic structural characterization of the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma membrane
Franck, John M; Chandrasekaran, Siddarth; Dzikovski, Boris; Dunnam, Curt R; Freed, Jack H
2015-06-07
The development, applications, and current challenges of the pulsed ESR technique of two-dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually in the form of spin-probes or spin-labels. As a result, it required the extension to much higher frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has proven very useful for studying molecular dynamics in complex fluids, and spectral results can be explained by fitting theoretical models (also described) that provide a detailed analysis of the molecular dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the ability to tune the resonance frequency, in order to probe different motional ranges, while challenges include the high ratio of the detection dead time vs. the relaxation times. We review several important 2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic → crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically aligned sample, as well as responding to local site fluctuations. (2) Several examples involving model phospholipid membranes are provided, including the dynamic structural characterization of the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma membrane
Franck, John M.; Dzikovski, Boris; Freed, Jack H.
2015-01-01
The development, applications, and current challenges of the pulsed ESR technique of two-dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually in the form of spin-probes or spin-labels. As a result, it required the extension to much higher frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has proven very useful for studying molecular dynamics in complex fluids, and spectral results can be explained by fitting theoretical models (also described) that provide a detailed analysis of the molecular dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the ability to tune the resonance frequency, in order to probe different motional ranges, while challenges include the high ratio of the detection dead time vs. the relaxation times. We review several important 2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic → crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically aligned sample, as well as responding to local site fluctuations. (2) Several examples involving model phospholipid membranes are provided, including the dynamic structural characterization of the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma membrane
LaTiO₃/KTaO₃ interfaces: A new two-dimensional electron gas system
Zou, K.; Ismail-Beigi, Sohrab; Kisslinger, Kim; Shen, Xuan; Su, Dong; Walker, F. J.; Ahn, C. H.
2015-03-01
We report a new 2D electron gas (2DEG) system at the interface between a Mott insulator, LaTiO₃, and a band insulator, KTaO₃. For LaTiO₃/KTaO₃ interfaces, we observe metallic conduction from 2 K to 300 K. One serious technological limitation of SrTiO₃-based conducting oxide interfaces for electronics applications is the relatively low carrier mobility (0.5-10 cm²/V s) of SrTiO₃ at room temperature. By using KTaO₃, we achieve mobilities in LaTiO₃/KTaO₃ interfaces as high as 21 cm²/V s at room temperature, over a factor of 3 higher than observed in doped bulk SrTiO₃. By density functional theory, we attribute the higher mobility in KTaO₃ 2DEGs to the smaller effective mass for electrons in KTaO₃.
LaTiO₃/KTaO₃ interfaces: A new two-dimensional electron gas system
Zou, K.; Ismail-Beigi, Sohrab; Kisslinger, Kim; ...
2015-03-01
We report a new 2D electron gas (2DEG) system at the interface between a Mott insulator, LaTiO₃, and a band insulator, KTaO₃. For LaTiO₃/KTaO₃ interfaces, we observe metallic conduction from 2 K to 300 K. One serious technological limitation of SrTiO₃-based conducting oxide interfaces for electronics applications is the relatively low carrier mobility (0.5-10 cm²/V s) of SrTiO₃ at room temperature. By using KTaO₃, we achieve mobilities in LaTiO₃/KTaO₃ interfaces as high as 21 cm²/V s at room temperature, over a factor of 3 higher than observed in doped bulk SrTiO₃. By density functional theory, we attribute the higher mobilitymore » in KTaO₃ 2DEGs to the smaller effective mass for electrons in KTaO₃.« less
Electronic transport in two-dimensional systems in the quantum hall regime
NASA Astrophysics Data System (ADS)
Tarquini, Vinicio
The integer and the fractional quantum Hall effects are essential to the exploration of quantum matters characterized by topological phases. A quantum Hall system hosts one-dimensional (1D) chiral edge channels that manifest zero magnetoresistance, dissipationless due to the broken time reversal symmetry, and quantized Hall resistance vhe2 with v being the topological invariant (or Chern number). The 1-1 correspondence between the conducting gapless edge channels to the gapped incompressible bulk states is a defining character of a topological insulator (TI). Understanding this correspondence in real systems, especially the origin of its robustness (in terms of the limit of breakdown), is important both fundamentally and practically (i.e. in relation to spintronics). However, the breakdown mechanism, especially in light of the edge-bulk correlation, is still an open question. We adopt GaAs two-dimensional (2D) high-mobility hole systems confined in a 20 nm wide (100)-GaAs quantum wells and have perform transport measurement for a range of charge densities between 4 and 5 x 1010 cm -2 with a carrier mobility of 2 - 4 x 106 cm 2/V·s down to millikelvin temperatures. Systematic characterization of the 2D systems through Shubnikov-de Haas (SdH) oscillations yields an effective mass between 0.30 and 0.50me, in good agreement with the cyclotron resonance results. We then modify a regular Hall bar system into a unique anti-Hall bar geometry that provides an extra set of independent chiral edge channels without altering the topological invariant. We perform systematic measurement of quantum oscillations via chiral edges while simultaneously probing the bulk dynamics, through measuring across independent edges, in respond to the edge excitations. The edge-bulk correspondence reveals a non-equilibrium dynamical development of the incompressible bulk states that leads to a novel asymmetrical 1-0 Hall potential distribution. Moreover, probing the breakdown via inner and outer
Sandonas, Leonardo Medrano; Gutierrez, Rafael; Pecchia, Alessandro; Seifert, Gotthard; Cuniberti, Gianaurelio
2017-01-04
Novel two-dimensional (2D) materials show unusual physical properties which combined with strain engineering open up the possibility of new potential device applications in nanoelectronics. In particular, transport properties have been found to be very sensitive to applied strain. In the present work, using a density-functional based tight-binding (DFTB) method in combination with Green's function (GF) approaches, we address the effect of strain engineering of the transport setup (contact-device(scattering)-contact regions) on the electron and phonon transport properties of two-dimensional materials, focusing on hexagonal boron-nitride (hBN), phosphorene, and MoS2 monolayers. Considering unstretched contact regions, we show that the electronic bandgap displays an anomalous behavior and the thermal conductance continuously decreases after increasing the strain level in the scattering region. However, when the whole system (contact and device regions) is homogeneously strained, the bandgap for hBN and MoS2 monolayers decreases, while for phosphorene it first increases and then tends to zero with larger strain levels. Additionally, the thermal conductance shows specific strain dependence for each of the studied 2D materials. These effects can be tuned by modifying the strain level in the stretched contact regions.