Science.gov

Sample records for rat anococcygeus muscle

  1. Enhanced noradrenergic transmission in the spontaneously hypertensive rat anococcygeus muscle

    PubMed Central

    Jiménez-Altayó, Francesc; Giraldo, Jesús; McGrath, John C; Vila, Elisabet

    2003-01-01

    There is a long-known hyper-responsiveness of vascular adrenergic transmission in the spontaneously hypertensive rat (SHR) that is uncovered specifically in the presence of cocaine and attributed to blockade of the neuronal monoamine transporter. We have now used the rat anococcygeus muscle to investigate whether this phenomenon is generic to sympathetic transmission to smooth muscle rather than a purely vascular phenomenon. We sought the origin of the effect by successively blocking the buffering effects of the neuronal monoamine transporter, prejunctional α2-adrenoceptors and NO from nitrergic nerves with desipramine (0.1 μM), rauwolscine (0.01 μM) and L-NG-nitro-arginine (100 μM). In the presence of desipramine, contractile responses to electrical field stimulation but not to noradrenaline (1 nM–100 μM) were greater in SHR than in Wistar–Kyoto (WKY). Neither inhibition of prejunctional α2-adrenoceptors nor the blockade of neuronal nitric oxide synthase (nNOS) accounted for the differential enhancement of response in SHR. The enhanced effectiveness of motor neurotransmission in SHR becomes most apparent when all known major buffering mechanisms are removed. When nitrergic responses were isolated pharmacologically (phentolamine 1 μM and guanethidine 30 μM; tone raised with carbachol 50 μM), they were not different between SHR and WKY. Western blots showed that both nNOS and tyrosine hydroxylase are expressed to a similar extent in anococcygeus muscle from SHR and WKY, suggesting similar adrenergic and nitrergic innervations in the two strains. This suggests that enhanced motor transmission is due to increased transmitter release per varicosity rather than there being normal transmission from a greater number of sites. We conclude that there is a generic enhancement of sympathetic transmission in SHR rather than this being a vascular phenomenon. PMID:14504140

  2. The effect of hypoxia on neuroeffector transmission in the bovine retractor penis and rat anococcygeus muscles.

    PubMed Central

    Bowman, A.; McGrath, J. C.

    1985-01-01

    The effects of reducing the PO2 of the bathing fluid were studied on non-adrenergic non-cholinergic (NANC) transmission in isolated preparations of the bovine retractor penis muscle, the rat anococcygeus muscle, the guinea-pig taenia caeci and the guinea-pig urinary bladder. Hypoxia rapidly and reversibly impaired NANC transmission in the bovine retractor penis and rat anococcygeus muscles but did not affect transmission in the guinea-pig taenia caeci or bladder, suggesting that different NANC mechanisms are involved. Although neurally-evoked relaxation of the bovine retractor penis was impaired by hypoxia, relaxations produced by vasoactive intestinal peptide, prostaglandin E1, sodium nitroprusside or an inhibitory factor isolated from the bovine retractor penis were unaffected. Since the inhibitory factor is similar to, and may actually be the NANC transmitter, the results suggest that the site of action of hypoxia in impairing transmission is prejunctional at the inhibitory nerve endings. PMID:2994787

  3. Effects of TRIM on tension, intracellular calcium and nitrergic transmission in the rat anococcygeus muscle.

    PubMed

    Che, Yan; Potocnik, Simon; Ellis, Anthie; Li, Chun Guang

    2007-02-01

    The effects of the putatively selective inhibitor of neuronal nitric oxide synthase (nNOS) 1-(2-trifluoromethylphenyl) imidazole (TRIM) were investigated on contractility, intracellular calcium and nitrergic relaxations in the rat anococcygeus muscle. TRIM (100-1000 microM) reduced the tension of rat anococcygeus muscles when contracted with guanethidine (10 microM) and clonidine (0.1 microM). Relaxations to TRIM persisted in the presence of the non-selective NOS inhibitor L-NAME (100 microM) and the inhibitor of soluble guanylate cyclase ODQ (1 microM). TRIM also reduced tension when muscles were contracted with phenylephrine (3 microM), noradrenaline (3 microM) or high K physiological salt solution (high KPSS; 60mM). Influx of calcium ([Ca(2+)](i)) in response to high KPSS was significantly reduced in the presence of TRIM (1mM). TRIM also inhibited the influx of (45)Ca(2+) induced by KPSS, but had no effect on the influx induced by phenylephrine (10 microM). TRIM (300 microM) had a modest, but significant, inhibitory effect on nitrergic relaxations that were evoked by electrical field stimulation (1-10 Hz, 15 V, 10s trains) in muscles contracted with guanethidine and clonidine. In contrast, L-NAME (1-100 microM) inhibited these nitrergic responses with an IC(50) of 9.31+/-0.87 microM (n=4). The results suggest that the smooth muscle relaxant effect of TRIM in the rat anococcygeus muscle may affect the entry of Ca(2+) possibly through voltage-operated calcium channels. Furthermore, the relatively modest effect of TRIM on nitrergic responses indicates that it is not a particularly reliable inhibitor of nNOS.

  4. Inhibitory action of gamma-aminobutyric acid on the excitatory but not inhibitory innervation of the rat anococcygeus muscle.

    PubMed

    Hughes, P R; Morgan, P F; Stone, T W

    1982-12-01

    1 The effects of gamma-aminobutyric acid (GABA), ethylenediamine, 3-aminopropane sulphonic acid and (+/-)-baclofen have been examined on the responses to stimulation of the adrenergic excitatory and non-adrenergic non-cholinergic inhibitory innervation of the rat anococcygeus muscle in vitro. 2 GABA produced a dose-related depression of the contractile responses to field stimulation. Ethylenediamine and baclofen also depressed the contractile responses, though they were less potent than GABA. 3-Aminopropane sulphonic acid was almost inactive. The inhibitory action of GABA was not modified by phentolamine, propranolol or bicuculline methylbromide. 3 GABA did not affect the contractile responses of the anococcygeus muscle to noradrenaline, phenylephrine or carbachol in untreated muscles or those treated with 6-hydroxydopamine in vitro. 4 In preparations in which tone was raised by continuous perfusion with carbachol in the presence of phentolamine, field stimulation relaxed the muscle. GABA had no effect on this inhibitory response, and did not itself produce any relaxation. 5 It is concluded that GABA exerts a presynaptic inhibitory action on the excitatory adrenergic but not on the inhibitory innervation of the anococcygeus muscle, and that the GABA receptor involved exhibits properties of the previously described GABAB site.

  5. 3-Aminopropylphosphinic acid--a potent, selective GABAB receptor agonist in the guinea-pig ileum and rat anococcygeus muscle.

    PubMed

    Hills, J M; Dingsdale, R A; Parsons, M E; Dolle, R E; Howson, W

    1989-08-01

    1. 3-Aminopropylphosphinic acid, a gamma-aminobutyric acid (GABA) analogue, was tested for activity on guinea-pig isolated ileum and rat isolated anococcygeus muscle preparations. The effects of 3-aminopropylphosphinic acid were compared with those of GABA and baclofen. 2. In the electrically stimulated ileum, 3-aminopropylphosphinic acid, like GABA and baclofen, caused a concentration-dependent inhibition of the cholinergic twitch contraction, the IC50 value being 1.84 +/- 0.23 microM (n = 12). Unlike GABA, but like baclofen, 3-aminopropylphosphinic acid did not produce an initial contraction. 3. The inhibitory effects of 3-aminopropylphosphinic acid and baclofen in the guinea-pig ileum were not significantly antagonized by bicuculline (10 microM), phentolamine plus propranolol (both 1 microM), yohimbine (1 microM), naloxone (1 microM), impromidine (1 microM) or 8-phenyltheophylline (10 microM). The inhibitory effects of 3-aminopropylphosphinic acid, but not of baclofen, were however antagonized by phaclofen (500 microM). In addition the effects of 3-aminopropylphosphinic acid were abolished by baclofen desensitization in the guinea-pig ileum. 4. 3-Aminopropylphosphinic acid, GABA and baclofen reduced the twitch contraction evoked by electrical field stimulation in the rat anococcygeus muscle. The IC50 for 3-aminopropylphosphinic acid inhibition of the anococcygeus contraction was 0.89 +/- 0.15 microM (n = 8). 5. It is concluded that 3-aminopropylphosphinic acid is a potent, selective GABAB agonist, being seven times more potent than baclofen in the guinea-pig ileum and five times more potent than baclofen in the rat anococcygues muscle preparations.

  6. Effects of ethanol and other aliphatic alcohols on NO-mediated relaxations in rat anococcygeus muscles and gastric fundus strips.

    PubMed Central

    Rand, M. J.; Li, C. G.

    1994-01-01

    1. In anococcygeus muscles, ethanol (20-500 mM) slightly increased the tone and inhibited relaxations elicited by nitrergic nerve stimulation (0.5-5 Hz) in a concentration-dependent manner. 2. Other aliphatic alcohols decreased the tone but had inhibitory effects similar to ethanol on stimulation-induced relaxations, the EC50 (mM) values being: methanol 280, ethanol 80, propan-1-ol 20, propan-2-ol 55, propan 1,2-diol 135, butan-1-ol 120, butan-2-ol 15 and pentan-1-ol 3. 3. Relaxations induced by sodium nitroprusside (SNP, 10 nM) were inhibited by ethanol (20-500 mM) in a concentration-dependent manner and by propan-2-ol (100 mM). Relaxations induced by NO (1 microM) were inhibited by high concentrations of ethanol (200-300 mM) and by propan-2-ol (100 mM). 4. In gastric fundus strips, ethanol (60-200 mM) did not affect the resting tone but inhibited NO-mediated relaxations elicited by low frequency (1 Hz) field stimulation and reduced the initial relaxation by high frequency field stimulation (10 Hz) and by SNP (50 nM). The relaxant action of isoprenaline (10 nM) was not reduced although it was slightly slower in onset. Other aliphatic alcohols tested decreased the tone and inhibited relaxations elicited by field stimulation. 5. Acetaldehyde (1-10 mM) inhibited relaxations elicited by field stimulation and SNP in both the rat anococcygeus muscles and gastric fundus strips. The tone of gastric fundus strips was decreased by acetaldehyde but it was transiently increased in anococcygeus muscles.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8032595

  7. Antispasmodic and relaxant effects of the hidroalcoholic extract of Pimpinella anisum (Apiaceae) on rat anococcygeus smooth muscle.

    PubMed

    Tirapelli, Carlos R; de Andrade, Claudia R; Cassano, Adriano O; De Souza, Fernando A; Ambrosio, Sergio R; da Costa, Fernando B; de Oliveira, Ana M

    2007-03-01

    The present work describes the mechanisms involved in the muscle relaxant effect of ethanol:water (40:60, 60:40 and 80:20) aerial parts extracts of Pimpinella anisum. Three hidroalcoholic extracts in which the proportion of ethanol was 40% (HA(40%)), 60% (HA(60%)) or 80% (HA(80%)) were tested for activity in the rat anococcygeus smooth muscle. The three extracts (50 microg/mL) inhibited acetylcholine-induced contraction. The extract HA(60%) (5-50 microg/mL) concentration dependently relaxed acetylcholine-pre-contracted tissues (31.55+/-3.56%). Conversely, HA(40%) and HA(80%) did not exert relaxant action. Pre-incubation of the preparations with N(G)-nitro-L-arginine methyl ester (L-NAME, 100 microM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 3 microM) and oxyhemoglobin (10 microM) reduced the relaxation induced by HA(60%) (percentage of relaxation: 6.81+/-1.86%, 13.13+/-5.87% and 2.12+/-1.46%, respectively). Neither indomethacin (10 microM) nor tetraethylammonium (1 mM) affected the relaxation induced by HA(60%). Incubation of the tissues with L-NAME significantly enhanced the maximal contraction induced by acetylcholine, indicating an inhibitory role for NO in the modulation of the contractile response of anococcygeus smooth muscle to acetylcholine. However, simultaneous addition of L-NAME and HA(60%) resulted in an effect similar to that observed with L-NAME alone, further confirming the observation that Pimpinella anisum acts by realizing NO. Additionally, HA(60%) did not alter CaCl(2)-induced contraction. Collectively, our results provide functional evidence that the effects elicited by the hidroalcoholic extract of Pimpinella anisum involve the participation of NO and subsequent activation of the NO-cGMP pathway. The relaxant action displayed by Pimpinella anisum justifies its use in the folk medicine as an antispasmodic agent.

  8. The effect of ethanol on inhibitory and motor responses in the rat and rabbit anococcygeus and the bovine retractor penis muscles.

    PubMed Central

    Gillespie, J. S.; Hunter, J. C.; McKnight, A. T.

    1982-01-01

    1 Ethanol (200 mM) reduced the response to inhibitory nerve stimulation in the rat and rabbit anococcygeus and the bovine retractor penis (BRP) muscles. Ethanol also reduced the response to the inhibitory extract from the BRP consistent with the inhibitory factor in these extracts playing some part in the response to inhibitory nerve stimulation. 2 Ethanol's effect on the response to other inhibitory stimuli was examined in the rabbit anococcygeus and the BRP. In the anococcygeus the response to carbachol was reduced, to bradykinin and isobutylmethylxanthine (IBMX) unaltered, and to isoprenaline and adenosine 5'-triphosphate (ATP) potentiated. In the BRP responses to IBMX and sodium nitroprusside were unaltered but in this tissue the response to isoprenaline was reduced. Ethanol's ability to reduce inhibitory responses is, therefore, selective and confined to inhibitory nerve stimulation, inhibitory extract, carbachol, and, in the BRP, isoprenaline. 3 Ethanol reduced the rate of development of inhibition even where the magnitude of the inhibitory response was unaltered. 4 In the rat anococcygeus, ethanol (200 mM) potentiated the response to motor nerve stimulation and to noradrenaline (NA) at low frequencies and low concentrations respectively. Higher ethanol concentrations (400 mM) reduced the response to both motor nerve stimulation and NA. The motor response to carbachol was also reduced. 5 Ethanol (200 mM) itself caused an easily reversible contraction in all three tissues. This was not due to the release of NA but was highly sensitive to the removal of external calcium from the medium. 6 A unified explanation of these varied effects of ethanol based on a reduction in membrane binding of calcium and a reduced efficiency of receptor coupling is suggested. PMID:7074282

  9. A comparative study of sildenafil, NCX-911 and BAY41-2272 on the anococcygeus muscle of diabetic rats.

    PubMed

    Kalsi, Jasjit S; Ralph, David J; Madge, David J; Kell, Phil D; Cellek, Selim

    2004-12-01

    We compared the effects of a nitric oxide (NO)-releasing sildenafil (NCX-911), NO-independent soluble guanylate cyclase activator (BAY41-2272) and sildenafil on the anococcygeus muscle from streptozotocin-induced 16-weeks diabetic rats. NCX-911, BAY41-2272 and sildenafil reduced the phenylephrine-induced tone in the control group (EC50=1088.8+/-165.0, 151.6+/-9.3 and 827.1+/-167.3 nM, respectively). The potencies of NCX-911 and BAY41-2272 were not altered, but that of sildenafil was significantly reduced in the diabetic group. EC50 values for NCX-911, BAY41-2272 and sildenafil in the diabetic group were 1765.9+/-303.5, 209.7+/-27.3 and 2842.2+/-640.3 nM, respectively (P<0.05 for sildenafil). Nitrergic relaxation responses were significantly decreased in the diabetic group. The remaining nitrergic relaxation responses were potentiated by BAY41-2272 but not by sildenafil or NCX-911. These results confirm that endogenous NO derived from nitrergic nerves is significantly decreased in diabetes, and suggest that NO-releasing PDE5 inhibitors and NO-independent soluble guanylate cyclase activators could be more useful than PDE5 inhibitors in the treatment of ED in long-term diabetes.

  10. Some electrical properties of the rabbit anococcygeus muscle and a comparison of the effects of inhibitory nerve stimulation in the rat and rabbit

    PubMed Central

    Creed, Kate E.; Gillespie, J. S.

    1977-01-01

    1. Simultaneous recordings of mechanical activity and membrane potential of individual smooth muscle cells have been made in the rabbit anococcygeus muscle and the effect of field stimulation on these examined. 2. In the absence of tone the mean resting membrane potential was - 48 mV. In the stretched muscle spontaneous tone and rhythmic activity quite frequently appeared and this was associated with depolarization of the muscle cells. 3. The response to field stimulation depended on the frequency of stimulation, the level of membrane potential and the presence of myogenic tone. The usual response to single pulses or low frequency stimulation was a hyperpolarization of up to 30 mV (mean 14±6·8 mV) after a latency of 185 msec and accompanied by muscle relaxation. Higher frequencies (over 8 Hz) produced an initial depolarization often with a spike potential and followed by hyperpolarization. The mechanical response in these instances was contraction or contraction followed by relaxation. At all frequencies rebound depolarization and an associated contraction followed the end of stimulation). 4. Phentolamine (5×10-6 M) and guanethidine (10-6 M) blocked the initial depolarization and contraction but had no effect on hyperpolarization, muscle relaxation or rebound depolarization and contraction. 5. The effect of field stimulation in the presence of guanethidine (4×10-5 M) was re-examined in the rat anococcygeus. Single pulses were ineffective, repetitive stimulation produced muscle relaxation but no hyperpolarization comparable to the rabbit. Any oscillations in membrane potential were damped during field stimulation and sometimes a small hyperpolarization was produced with a maximum amplitude of 13 mV and a mean of 1·9±1·2 mV. 6. The transmembrane potential at the peak of hyperpolarization in the rabbit was rarely more than -70 mV. Passive displacement of the membrane potential by current pulses altered the amplitude of the hyperpolarization and suggested that

  11. Force and intracellular Ca2+ during cyclic nucleotide-mediated relaxation of rat anococcygeus muscle and the effects of cyclopiazonic acid.

    PubMed Central

    Raymond, G. L.; Wendt, I. R.

    1996-01-01

    1. Simultaneous recordings of tension and [Ca2+]i were made in rat anococcygeus muscle strips to investigate possible mechanisms involved during cyclic nucleotide-mediated relaxation. Relaxation of pre-contracted muscles was induced by sodium nitroprusside (SNP) or forskolin and the effects of cyclopiazonic acid (CPA) on these responses were examined. 2. In muscles pre-contracted with 0.2 microM phenylephrine addition of SNP (10 microM) caused a rapid and near complete relaxation of force. This was accompanied by a decrease in [Ca2+]i, however, this was not of a comparable magnitude to the decrease in force. The level of [Ca2+]i in muscles relaxed with SNP was shown to be associated with substantially higher force levels in the absence of SNP. Forskolin (10 microM) caused a slower, essentially complete relaxation which was associated with a proportional decrease in [Ca2+]i. 3. In muscles pretreated with SNP or forskolin subsequent responses to phenylephrine were attenuated with both force and [Ca2+]i rising slowly to attain eventually levels similar to those observed when the relaxant was applied to pre-contracted muscles. 4. Exposure of the muscles to the sarcoplasmic reticulum Ca(2+)-ATPase inhibitor, CPA (10 microM), resulted in a sustained increase in [Ca2+]i which, in most cases, was not associated with any force development. The relaxation and decrease in [Ca2+]i in response to both SNP and forskolin were attenuated and substantially slowed in the presence of CPA. Overall the extent of this attenuation was greater for SNP. For both SNP and forskolin, CPA attenuated the decrease in [Ca2+]i to a greater extent than the decrease in force. In some cases, SNP-mediated relaxation in the presence of CPA was observed with almost no detectable change in [Ca2+]i. 5. The results suggest that, in the rat anococcygeus muscle under normal circumstances, a lowering of [Ca2+]i can fully account for the relaxation induced by forskolin but not for that induced by SNP, where

  12. An oxytocin receptor in anococcygeus muscles isolated from male mice.

    PubMed Central

    Gibson, A.

    1986-01-01

    The nature of the neurohypophyseal peptide receptor in the anococcygeus muscles from male mice was investigated. The rank order of potency of naturally occurring peptides was oxytocin greater than Arg-vasotocin greater than Arg-vasopressin greater than Lys-vasopressin, which is similar to that found in the uterus and mammary gland. Selective agonists on the oxytocin (OT) receptors of the uterus and mammary gland (Thr4-OT; Gly7-OT; Thr4-Gly7-OT) were also potent agonists in the mouse anococcygeus. Competitive antagonists of uterine responses to oxytocin (dP-TyrMe-Thr4-OT; dP-TyrMe-OT; dP-Thr4-OT; dp-Orn8-OT) were also competitive antagonists of oxytocin-induced contractions of the mouse anococcygeus. It is concluded that the neurohypophyseal peptide receptor of the male mouse anococcygeus is of the oxytocin type; antagonist pA2 values suggest that this receptor resembles, but may not be identical to, the uterine oxytocin receptor. Possible physiological and pharmacological implications of these observations are discussed. PMID:3011170

  13. Cellular mechanisms underlying carbachol-induced oscillations of calcium-dependent membrane current in smooth muscle cells from mouse anococcygeus

    PubMed Central

    Wayman, Christopher P; McFadzean, Ian; Gibson, Alan; Tucker, John F

    1997-01-01

    At a holding potential of −40 mV, carbachol (50 μM) produced a complex pattern of inward currents in single smooth muscle cells freshly isolated from the mouse anococcygeus. Membrane currents were monitored by the whole-cell configuration of the patch-clamp technique. Previous work has identified the first, transient component as a calcium-activated chloride current (ICl(Ca)) and the second sustained component as a store depletion-operated non-selective cation current (IDOC). The object of the present study was to examine the cellular mechanisms underlying the third component, a series of inward current oscillations (Ioscil) superimposed on IDOC.Carbachol-induced Ioscil (amplitude 97±11 pA; frequency 0.26±0.02 Hz) was inhibited by the chloride channel blocker anthracene-9-carboxylic acid (A-9-C; 1 mM), and by inclusion of 1 mM EGTA in the patch-pipette filling solution.In calcium-free extracellular medium (plus 1 mM EGTA), carbachol produced an initial burst of oscillatory current which lasted 94 s before decaying to zero; Ioscil could be restored by re-admission of calcium. The frequency, but not the amplitude, of Ioscil increased with increasing concentrations of extracellular calcium (0.5–10 mM).Inclusion of the inositol triphosphate (IP3) receptor antagonist heparin (5 mg ml−1) in the patch-pipette filling solution, or pretreatment of cells with the sarcoplasmic reticulum (SR) calcium ATPase inhibitor cyclopiazonic acid (CPA; 10 μM), prevented the activation of Ioscil by carbachol. Caffeine (10 mM) activated both ICl(Ca) and IDOC and prevented the induction of Ioscil by carbachol. Caffeine and CPA also abolished Ioscil in the presence of carbachol, as did both a low (3 μM) and a high (30 μM) concentration of ryanodine.Carbachol-induced Ioscil was abolished by the general calcium entry blocker SKF 96365 (10 μM) and by Cd2+ (100 μM), but was unaffected by La3+ (400 μM). As found previously, IDOC was also blocked by

  14. Angiotensin II-induced relaxation of anococcygeus smooth muscle via desensitization of AT1 receptor, and activation of AT2 receptor associated with nitric-oxide synthase pathway.

    PubMed

    de Godoy, Márcio A F; de Oliveira, Ana Maria; Rattan, Satish

    2004-10-01

    We evaluated the role of receptor desensitization, activation of AT(2) receptors, and enzymatic degradation of angiotensin II (Ang II) by amino/neutral endopeptidases in rat anococcygeus smooth muscle (ASM) relaxation. Ang II (0.3 nM to 10 microM) produced contractions (E(max) = 21.50 +/- 5.73%) followed by passive relaxations (E(max) reduced to 9.08 +/- 2.55%). Contractions were inhibited (E(max) = 13.67 +/- 2.03%) by losartan (0.1 microM; AT(1) antagonist) but not by PD123,319 [S-(+)-1-([4-(dimethylamino)-3-methylphenyl]methyl)-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo(4,5-c)pyridine-6-carboxylic acid] (0.1 microM; AT(2) antagonist). Conversely, the passive relaxation was inhibited (E(max) = 18.00 +/- 3.45%) by PD123,319 but not by losartan. Ang II (0.3 microM to 100 microM) produced initial contractions (E(max) = 11.49 +/- 9.39%) followed by active relaxations [I(max) (maximum inhibition elicited by the agonist) = 47.85 +/- 4.23%] on strips precontracted by bethanechol (100 microM). A second administration of Ang II on the background of bethanechol (1 h later) resulted in stronger relaxations (I(max) = 64.03 +/- 5.47%) without the initial contractions. N(G)-Nitro-l-arginine methyl ester [nitric-oxide synthase (NOS) inhibitor], ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; guanylate cyclase inhibitor), PD123,319, and tetrodotoxin (neurotoxin) inhibited the relaxations. The presence of AT(1) and AT(2) receptors was confirmed by Western blot. Experiments with amastatin (1 microM) and thiorphan (1 microM), aminopeptidase, and neutral endopeptidase inhibitors, respectively, excluded the involvement of enzymatic degradation in Ang II-induced relaxation of ASM. In conclusion, the rat ASM relaxation by Ang II is the result of active and passive relaxations. The passive relaxation depends on desensitization of excitatory AT(1) receptors, and the active relaxation is mediated by stimulation of AT(2) receptors and activation of the neuronal NOS/soluble guanylate

  15. Release of [3H-noradrenaline from the motor adrenergic nerves of the anococcygeus muscle by lysergic acid diethylamide, tyramine or nerve stimulation.

    PubMed Central

    McGrath, J C; Olverman, H J

    1978-01-01

    1 A method is described for labelling the neuronal noradrenaline (NA) stores of rat anococcygeus with [3H]-NA and detecting subsequent release of 3H from the superfused tissue by nerve stimulation or drugs. 2 Lysergic acid diethylamide (LSD) or tyramine but not barium chloride or carbachol increased the efflux of 3H although each drug produced an equivalent contractile response. This confirms that LDS has an indirect sympathomimetic action. 3 LSD was found to produce a proportionately smaller reduction of the nerve-induced efflux of 3H than of the accompanying contractile response. 4 The inhibition of nerve-induced contractile responses by LSD was shown to be independent of the neuronal uptake of noradrenaline and any post-junctional inhibition demonstrated to be non-specific. PMID:728688

  16. Structural limits on force production and shortening of smooth muscle.

    PubMed

    Siegman, Marion J; Davidheiser, Sandra; Mooers, Susan U; Butler, Thomas M

    2013-02-01

    This study determined the factors that limit force production and shortening in two smooth muscles having very different relationships between active and passive force as a function of muscle length. The rat anococcygeus muscle develops active force over the range of lengths 0.2-2.0× the optimum length for force production (Lo). Passive tension due to extension of the resting muscle occurs only at lengths exceeding Lo. In contrast, the rabbit taenia coli develops force in the range of lengths 0.4-1.1 Lo, and passive force which is detectable at 0.56 Lo, increases to ~0.45 maximum active force at Lo, and increases sharply with further extension. The anococcygeus muscle can shorten to 0.2 Lo and the taenia coli to 0.4 Lo. Dynamic stiffness and energy usage at short muscle lengths suggest that the limit of shortening in the taenia coli, in contrast to the anococcygeus muscle, is not due to a failure of cross bridge interaction. Phosphorylation of the regulatory myosin light chains in intact muscles decreased to a small extent at short lengths compared to the decrease in force production. The differences in force production and the extent of shortening in the two muscles was maintained even when, following permeabilization, the myosin light chains were irreversibly phosphorylated with ATPγS, indicating that differences in activation played little, if any role. Ultrastructural studies on resting and activated muscles show that the taenia coli, which is rich in connective tissue (unlike the anococcygeus muscle) undergoes marked cellular twisting and contractile filament misalignment at short lengths with compression of the extracellular matrix. As a result, force is not transmitted in the longitudinal axis of the muscle, but is dissipated against an internal load provided by the compressed extracellular matrix. These observations on two very different normal smooth muscles reveal how differences in the relative contribution of active and passive structural elements

  17. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    PubMed

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc.

  18. Skeletal muscle metabolism in hypokinetic rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.

    1984-01-01

    Muscle growth, protein metabolism, and amino acid metabolism were studied in various groups of rats. Certain groups were adrenaliectomized; some rats were suspended while others (the controls) were weight bearing. Results show that: (1) metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating glucocorticoids; (2) metabolic changes in the soleus muscle due to higher steroid levels are probably potentiated by greater numbers of steroid receptors; and (3) not all metabolic responses of the soleus muscle to unloading are due to the elevated levels of glucocorticoids or the increased sensitivity of this muscle to these hormones.

  19. Muscle Contractile Properties in Severely Burned Rats

    PubMed Central

    Wu, Xiaowu; Wolf, Steven E.; Walters, Thomas J.

    2010-01-01

    Burn induces a sustained catabolic response which causes massive loss of muscle mass after injury. A better understanding of the dynamics of muscle wasting and its impact on muscle function is necessary for the development of effective treatments. Male Sprague-Dawley rats underwent either a 40% total body surface area (TBSA) scald burn or sham burn, and were further assigned to subgroups at four time points after injury (days 3, 7, 14 and 21). In situ isometric contractile properties were measured including twitch tension (Pt), tetanic tension (Po) and fatigue properties. Body weight decreased in burn and sham groups through day 3, however, body weight in the sham groups recovered and increased over time compared to burned groups, which progressively decreased until day 21 after injury. Significant differences in muscle wet weight and protein weight were found between sham and burn. Significant differences in muscle contractile properties were found at day 14 with lower absolute Po as well as specific Po in burned rats compared to sham. After burn, the muscle twitch tension was significantly higher than the sham at day 21. No significant difference in fatigue properties was found between the groups. This study demonstrates dynamics of muscle atrophy and muscle contractile properties after severe burn; this understanding will aid in the development of approaches designed to reduce the rate and extent of burn induced muscle loss and function. PMID:20381255

  20. Selective inhibition of thapsigargin-induced contraction and capacitative calcium entry in mouse anococcygeus by trifluoromethylphenylimidazole (TRIM)

    PubMed Central

    Gibson, Alan; Fernandes, Filomena; Wallace, Pat; McFadzean, Ian

    2001-01-01

    This study examined the effects of trifluoromethylphenylimidazole (TRIM) on tone, and calcium entry, in mouse anococcygeus stimulated by either thapsigargin (Tg; 100 nM) which activates capacitative calcium entry (CCE), or high K (60 mM) which activates voltage-operated calcium channels. TRIM (1 – 333 μM) produced concentration-related relaxation of Tg-induced tone (EC50, 42 μM) but was much less effective against high K. In single smooth muscle cells loaded with FURA-2, TRIM reduced the increase in fluorescence ratio produced by Tg but had no effect on that produced by high K. The relaxations of Tg-induced tone, and reduction in fluorescence ratio, were obtained in the presence of L-NG-nitroarginine and were thus independent of nitric oxide synthase inhibition; further, TRIM had no discernible effect on nitrergic responses. TRIM provides a novel drug for the selective inhibition of CCE and a template for the development of more potent inhibitors. PMID:11564639

  1. Influence of spaceflight on rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Martin, Thomas P.; Edgerton, V. Reggie; Grindeland, Richard E.

    1988-01-01

    The effect of a 7-day spaceflight (aboard NASA's SL-3) on the size and the metabolism of single fibers from several rat muscles was investigated along with the specificity of these responses as related to the muscle type and the size of fibers. It was found that the loss of mass after flight was varied from 36 percent in the soleus to 15 percent in the extensor digitorum longus. Results of histochemical analyses showed that the succinate dehydrogenase (SDH) activity in muscles of flight-exposed rats was maintained at the control levels, whereas the alpha-glycerol phosphate dehydrogenase (GPD) activity was either maintained or increased. The analyses of the metabolic profiles of ATPase, SDH, and GPD indicated that, in some muscles, there was an increase in the poportion of fast oxidative-glycolytic fibers.

  2. Chronic Paraspinal Muscle Injury Model in Rat

    PubMed Central

    Cho, Tack Geun; Kim, Young Baeg

    2016-01-01

    Objective The objective of this study is to establish an animal model of chronic paraspinal muscle injury in rat. Methods Fifty four Sprague-Dawley male rats were divided into experimental group (n=30), sham (n=15), and normal group (n=9). Incision was done from T7 to L2 and paraspinal muscles were detached from spine and tied at each level. The paraspinal muscles were exposed and untied at 2 weeks after surgery. Sham operation was done by paraspinal muscles dissection at the same levels and wound closure was done without tying. Kyphotic index and thoracolumbar Cobb's angle were measured at preoperative, 2, 4, 8, and 12 weeks after the first surgery for all groups. The rats were sacrificed at 4, 8, and 12 weeks after the first surgery, and performed histological examinations. Results At 4 weeks after surgery, the kyphotic index decreased, but, Cobb's angle increased significantly in the experimental group (p<0.05), and then that were maintained until the end of the experiment. However, there were no significant differences of the kyphotic index and Cobb's angle between sham and normal groups. In histological examinations, necrosis and fibrosis were observed definitely and persisted until 12 weeks after surgery. There were also presences of regenerated muscle cells which nucleus is at the center of cytoplasm, centronucleated myofibers. Conclusion Our chronic injury model of paraspinal muscles in rats shows necrosis and fibrosis in the muscles for 12 weeks after surgery, which might be useful to study the pathophysiology of the degenerative thoracolumbar kyphosis or degeneration of paraspinal muscles. PMID:27651859

  3. THE HISTOGENESIS OF RAT INTERCOSTAL MUSCLE

    PubMed Central

    Kelly, A. M.; Zacks, S. I.

    1969-01-01

    Intercostal muscle from fetal and newborn rats was examined with the electron microscope. At 16 days' gestation, the developing muscle was composed of primary generations of myotubes, many of which were clustered together in groups. Within these groups, the membranes of neighboring myotubes were interconnected by specialized junctions, including tight junctions. Morphologically undifferentiated cells surrounded the muscle groups, frequently extended pseudopodia along the interspace between adjacent myotubes, and appeared to separate neighboring myotubes from one another. At 18 and 20 days' gestation, the muscle was also composed of groups of cells but the structure of the groups differed from that of the groups observed at 16 days. Single, well differentiated myotubes containing much central glycogen and peripheral myofibrils dominated each group. These large cells were interpreted as primary myotubes. Small, less differentiated muscle cells and undifferentiated cells clustered around their walls. Each cluster was ensheated by a basal lamina. The small cells were interpreted as primordia of new generations of muscle cells which differentiated by appositional growth along the walls of the large primary myotubes. All generations of rat intercostal muscle cells matured to myofibers between 20 days' gestation and birth. Coincidentally, large and small myofibers diverged from each other, leading to disintegration of the groups of muscle cells. Undifferentiated cells frequently occurred in the interspaces between neighboring muscle cells at the time of separation. Myofibers arising at different stages of muscle histogenesis intermingled in a checkerboard fashion as a result of this asynchronous mode of development. The possibility of fusion between neighboring muscle cells in this developing system is discussed. PMID:5786979

  4. Effects of microgravity on rat muscle

    NASA Technical Reports Server (NTRS)

    Riley, D. A.

    1990-01-01

    It is well known that humans exposed to long term spaceflight experience undesirable progressive muscle weakness and increased fatigability. This problem has prompted the implementation of inflight exercise programs because most investigators believe that the major cause of diminished muscle performance is a combination of disuse and decreased workload. Inflight exercise has improved muscle health, but deficits have persisted, indicating that either the regimens utilized were suboptimal or there existed additional debilitating factors which were not remedied by exercise. Clarification of this question requires an improved understanding of the cellular and molecular basis of spaceflight-induced muscle deterioration. To this end, multiple investigations have been performed on the muscles from rats orbited 5 to 22 days in Cosmos biosatellites and Spacelab-3 (2,4,5,8,10 to 14,16,18,19,21 to 23,25,27,28). The eight Cosmos 1887 investigations examined the structural and biochemical changes in skeletal and cardiac muscles of rats exposed to microgravity for 12.5 days and returned to terrestrial gravity 2.3 days before tissues were collected. Even though interpretation of these results was complicated by the combination of inflight and postflight induced alterations, the consensus is that there is marked heterogeneity in both degree and type of responses from the whole muscle level down to the molecular level. Collectively, the muscle investigations of Cosmos 1887 clearly illustrate the wide diversity of muscle tissue responses to spaceflight. Judging from the summary report of this mission, heterogeneity of responses is not unique to muscle tissue. Elucidating the mechanism underlying this heterogeneity holds the key to explaining adaptation of the organism to prolonged spaceflight.

  5. Insulin binding to individual rat skeletal muscles

    SciTech Connect

    Koerker, D.J.; Sweet, I.R.; Baskin, D.G. )

    1990-10-01

    Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white (extensor digitorum longus (EDL), gastrocnemius) muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding.

  6. Cardiac Muscle Studies with Rat Ventricular Strips

    ERIC Educational Resources Information Center

    Whitten, Bert K.; Faleschini, Richard J.

    1977-01-01

    Details undergraduate physiology laboratory experiments that demonstrate mechanical properties of cardiac muscle, using strips from the ventricle of a rat heart. Includes procedures for obtaining length-tension curves, demonstrating the role of calcium in excitation-contraction coupling, and showing effects of several cardiovascular drugs…

  7. Cardiac Muscle Studies with Rat Ventricular Strips

    ERIC Educational Resources Information Center

    Whitten, Bert K.; Faleschini, Richard J.

    1977-01-01

    Details undergraduate physiology laboratory experiments that demonstrate mechanical properties of cardiac muscle, using strips from the ventricle of a rat heart. Includes procedures for obtaining length-tension curves, demonstrating the role of calcium in excitation-contraction coupling, and showing effects of several cardiovascular drugs…

  8. Muscle bioenergetics in obese Zucker rats.

    PubMed

    Klein, M; Kaminsky, P; Walker, P M; Straczek, J; Barbe, F; Duc, M; Burlet, C

    1994-03-01

    The purpose of this study was to investigate the energetic metabolism in obese Zucker rats, using phosphorus nuclear magnetic resonance spectroscopy at rest and during a 2-Hz muscle stimulation and subsequent recovery. Animals were anesthetized with ketamine (150 mg/kg ip). Fed obese rats and 2-day-fasted obese rats were compared with their normally fed and 2-day-fasted lean litter mates. No differences were found between the two groups for ATP, total creatine, phosphocreatine (PCr), and intracellular pH. Starvation in lean rats resulted in a significant fall in inorganic phosphate (Pi), increased resting ADP level, and decreased PCr and ADP recovery after stimulation. The obese rats exhibited a decreased PCr/Pi and increased ADP at rest and a decreased PCr resynthesis and ADP metabolization rate after stimulation. Muscle stimulation in fasted obese rats induced higher PCr depletion and more pronounced acidosis. These results suggest an in vivo mitochondrial metabolism dysfunction in fasted lean as well as in fed and fasted obese rats.

  9. Segmental fibre type composition of the rat iliopsoas muscle.

    PubMed

    Vlahovic, Hrvoje; Bazdaric, Ksenija; Marijancic, Verner; Soic-Vranic, Tamara; Malnar, Daniela; Arbanas, Juraj

    2017-01-18

    The iliopsoas of the rat is composed of two muscles - the psoas major muscle and the iliacus muscle. The psoas major muscle arises from all the lumbar vertebrae and the iliacus muscle from the fifth and sixth lumbar vertebrae and ilium. Their common insertion point is the lesser trochanter of the femur, and their common action is the lateral rotation of the femur and flexion of the hip joint. Unlike humans, the rat is a quadruped and only occasionally rises up on its hind legs. Therefore, it is expected that the fibre type composition of the rat iliopsoas muscle will be different than that of humans. The iliopsoas muscle of the rat is generally considered to be a fast muscle. However, previous studies of the fibre type composition of the rat psoas muscle showed different results. Moreover, very little is known about the composition of the rat iliacus muscle. The aim of our study was to examine the fibre type composition of the rat iliopsoas muscle in order to better understand the complex function of the listed muscle. The psoas major muscle was examined segmentally at four different levels of its origin. Type I, IIA, IIB and IIX muscle fibres were typed using monoclonal antibodies for myosin heavy chain identification. The percentage of muscle fibre types and muscle fibre cross-sectional areas were calculated. In our study we showed that in the rat iliopsoas muscle both the iliacus and the psoas major muscles had a predominance of fast muscle fibre types, with the highest percentage of the fastest IIB muscle fibres. Also, the IIB muscle fibres showed the largest cross-sectional area (CSA) in both muscles. As well, the psoas major muscle showed segmental differences of fibre type composition. Our results showed changes in percentages, as well as the CSAs of muscle fibre types in cranio-caudal direction. The most significant changes were visible in type IIB muscle fibres, where there was a decrease of percentages and the CSAs from the cranial towards the caudal part

  10. Testosterone and muscle hypertrophy in female rats

    NASA Technical Reports Server (NTRS)

    Kuhn, F. E.; Max, S. R.

    1985-01-01

    The effects of chronic treatment with testosterone propionate (TP) on compensatory muscle hypertropy in female rats are examined. The 48 female rats were placed in one of four test groups: (1) no overload (synergist removal), no TP, (2) overload, no TP, (3) no overload + TP, and (4) overload + TP. The technique used to administer the TP is described. The preparation of the plantaris muscle, the analysis of pyruvate oxidation and the determination of malate and lactate dehydrogenases and the noncollogen protein are explained. The results which reveal the effect of overload and TP on body weight, noncollogen protein concentration, lactate and malate dehydrogenase activities, and pyruvate oxidation are presented and discussed. It is concluded that in terms of body weight, protein content, pyruvate, glycolysis, and oxidative metabolisms chronic TP treatments do not change compensatory muscle hypertropy.

  11. Testosterone and muscle hypertrophy in female rats

    NASA Technical Reports Server (NTRS)

    Kuhn, F. E.; Max, S. R.

    1985-01-01

    The effects of chronic treatment with testosterone propionate (TP) on compensatory muscle hypertropy in female rats are examined. The 48 female rats were placed in one of four test groups: (1) no overload (synergist removal), no TP, (2) overload, no TP, (3) no overload + TP, and (4) overload + TP. The technique used to administer the TP is described. The preparation of the plantaris muscle, the analysis of pyruvate oxidation and the determination of malate and lactate dehydrogenases and the noncollogen protein are explained. The results which reveal the effect of overload and TP on body weight, noncollogen protein concentration, lactate and malate dehydrogenase activities, and pyruvate oxidation are presented and discussed. It is concluded that in terms of body weight, protein content, pyruvate, glycolysis, and oxidative metabolisms chronic TP treatments do not change compensatory muscle hypertropy.

  12. Distribution of slow muscle fiber of muscle spindle in postnatal rat masseter muscle.

    PubMed

    Sato, Iwao; Imura, Kosuke; Miwa, Yoko; Ide, Yoshiaki; Murata, Megumi; Sunohara, Masataka

    2007-11-01

    We investigated the properties of the muscle spindle in the masseter muscle at an immunohistochemical level in rats fed for 6 weeks. Slow myosin heavy chain (MyHC) isoforms were measured and intrafusal fibers in the muscle spindle were studied to determine the relationship between the superficial and deep regions of rat masseter muscle after alternated feeding pattern. However, muscle spindles were found in both regions, mainly in the deep region of the posterior superficial region of masseter muscle. The total number of the slow fiber in the intrafusal fiber and number of muscle spindle in the deep region were high from 5 to 8 weeks old in spite of various dimensions of data such as diameter and the compositions of the intrafusal fiber. The relationship of the protein expression of slow MyHC in the two regions at 5 weeks old reversed five weeks later (10 weeks old). This period is an important stage because the mastication system in masseter muscle with muscle spindle may be changed during the alternated feeding pattern of suckling to mastication. The changes may be a marker of the feeding system and of the control by the tension receptor of muscle spindle in this stage of masseter muscle after postnatal development.

  13. Microdialysis of triamcinolone acetonide in rat muscle.

    PubMed

    Rojas, Cioli; Nagaraja, Nelamangala V; Webb, Alistair I; Derendorf, Hartmut

    2003-02-01

    The objective of this study was to compare plasma and muscle concentrations of triamcinolone acetonide (TA) in the rat by microdialysis. Microdialysis experiments were carried out at steady state in rats after an initial I.V. bolus 50 mg/kg of the phosphate ester of TA (TAP) followed by 23 mg/kg/h infusion. In vivo recovery was calculated by retrodialysis. The concentration determined at steady state in microdialysate, corrected for recovery, was 2.73 +/- 0.42 microg/mL compared to 21.9 +/- 2.3 microg/mL in plasma. The pharmacokinetics of TA in plasma was described by an open two-compartment model with a terminal half-life of 2.7 h. The clearance of TA in rats determined by compartmental analysis was 0.94 L/h/kg. The measured microdialysate levels of TA in muscle, corrected for recovery, were comparable to the predicted free drug levels in the peripheral compartment. Protein binding in rat plasma, measured by ultrafiltration, was 90.1%. The microdialysis in vivo recovery in muscle was similar to the in vitro recovery under stirred conditions. The results show the applicability of microdialysis to measure free tissue concentrations of TA in rats.

  14. Regenerated rat skeletal muscle after periodic contusions.

    PubMed

    Minamoto, V B; Bunho, S R; Salvini, T F

    2001-11-01

    In the present study we evaluated the morphological aspect and changes in the area and incidence of muscle fiber types of long-term regenerated rat tibialis anterior (TA) muscle previously submitted to periodic contusions. Animals received eight consecutive traumas: one trauma per week, for eight weeks, and were evaluated one (N = 8) and four (N = 9) months after the last contusion. Serial cross-sections were evaluated by toluidine blue staining, acid phosphatase and myosin ATPase reactions. The weight of injured muscles was decreased compared to the contralateral intact one (one month: 0.77 +/- 0.15 vs 0.91 +/- 0.09 g, P = 0.03; four months: 0.79 +/- 0.14 vs 1.02 +/- 0.07 g, P = 0.0007, respectively) and showed abundant presence of split fibers and fibers with centralized nuclei, mainly in the deep portion. Damaged muscles presented a higher incidence of undifferentiated fibers when compared to the intact one (one month: 3.4 +/- 2.1 vs 0.5 +/- 0.3%, P = 0.006; four months: 2.3 +/- 1.6 vs 0.3 +/- 0.3%, P = 0.007, respectively). Injured TA evaluated one month later showed a decreased area of muscle fibers when compared to the intact one (P = 0.003). Thus, we conclude that: a) muscle fibers were damaged mainly in the deep portion, probably because they were compressed against the tibia; b) periodic contusions in the TA muscle did not change the percentage of type I and II muscle fibers; c) periodically injured TA muscles took four months to reach a muscle fiber area similar to that of the intact muscle.

  15. Muscle fibre types in the suprahyoid muscles of the rat

    PubMed Central

    COBOS, A. R.; SEGADE, L. A. G.; FUENTES, I.

    2001-01-01

    Five muscle fibre types (I, IIc, IIa, IIx and IIb) were found in the suprahyoid muscles (mylohyoid, geniohyoid, and the anterior and posterior bellies of the digastric) of the rat using immuno and enzyme histochemical techniques. More than 90% of fibres in the muscles examined were fast contracting fibres (types IIa, IIx and IIb). The geniohyoid and the anterior belly of the digastric had the greatest number of IIb fibres, whilst the mylohyoid was almost exclusively formed by aerobic fibres. The posterior belly of the digastric contained a greater percentage of aerobic fibres (83.4%) than the anterior belly (67.8%). With the exception of the geniohyoid, the percentage of type I and IIc fibres, which have slow myosin heavy chain (MHCβ), was relatively high and greater than has been previously reported in the jaw-closing muscles of the rat, such as the superficial masseter. The geniohyoid and mylohyoid exhibited a mosaic fibre type distribution, without any apparent regionalisation, although in the later MHCβ-containing fibres (types I and IIc) were primarily located in the rostral 2/3 region. In contrast, the anterior and posterior bellies of the digastric revealed a clear regionalisation. In the anterior belly of the digastric 2 regions were observed: both a central region, which was almost exclusively formed by aerobic fibres and where all of the type I and IIc fibres were located, and a peripheral region, where type IIb fibres predominated. The posterior belly of the digastric showed a deep aerobic region which was greater in size and where type I and IIc fibres were confined, and a superficial region, where primarily type IIx and IIb fibres were observed. PMID:11322721

  16. Muscle fiber types composition and type identified endplate morphology of forepaw intrinsic muscles in the rat.

    PubMed

    Pan, Feng; Mi, Jing-Yi; Zhang, Yan; Pan, Xiao-Yun; Rui, Yong-Jun

    2016-06-01

    The failure to accept reinnervation is considered to be one of the reasons for the poor motor functional recovery of intrinsic hand muscles (IHMs) after nerve injury. Rat could be a suitable model to be used in simulating motor function recovery of the IHMs after nerve injury as to the similarities in function and anatomy of the muscles between human and rat. However, few studies have reported the muscle fiber types composition and endplate morphologic characteristics of intrinsic forepaw muscles (IFMs) in the rat. In this study, the myosin heavy chain isoforms and acetylcholine receptors were stained by immunofluorescence to show the muscle fiber types composition and endplates on type-identified fibers of the lumbrical muscles (LMs), interosseus muscles (IMs), abductor digiti minimi (AM) and flexor pollicis brevis (FM) in rat forepaw. The majority of IFMs fibers were labeled positively for fast-switch fiber. However, the IMs were composed of only slow-switch fiber. With the exception of the IMs, the other IFMs had a part of hybrid fibers. Two-dimensional morphological characteristics of endplates on I and IIa muscle fiber had no significant differences among the IFMs. The LMs is the most suitable IFMs of rat to stimulate reinnervation of the IHMs after nerve injury. Gaining greater insight into the muscle fiber types composition and endplate morphology in the IFMs of rat may help understand the pathological and functional changes of IFMs in rat model stimulating reinnervation of IHMs after peripheral nerve injury.

  17. Distraction of skeletal muscle: evolution of a rat model.

    PubMed

    Green, Stuart A; Horton, Eric; Baker, Michael; Utkan, Ali; Caiozzo, Vincent

    2002-10-01

    To better study the effects of limb lengthening on skeletal muscle, the authors developed a rat model that uses a miniature external skeletal fixator applied to the tibia of an adult Sprague-Dawley rat. The mounting and lengthening protocols follow the principles developed by Ilizarov. With the initial version of the fixator, the rats had progressive equinus contractures develop because the calf muscles resisted elongation. By incorporating a footplate in the distraction apparatus, tibial lengthening can be achieved without concomitant equinus.

  18. Age-related changes in rat intrinsic laryngeal muscles: analysis of muscle fibers, muscle fiber proteins, and subneural apparatuses.

    PubMed

    Nishida, Naoya; Taguchi, Aki; Motoyoshi, Kazumi; Hyodo, Masamitsu; Gyo, Kiyofumi; Desaki, Junzo

    2013-03-01

    We compared age-related changes in the intrinsic laryngeal muscles of aged and young adult rats by determining the number and diameter of muscle fibers, contractile muscle protein (myosin heavy chain isoforms, MHC) composition, and the morphology of the subneural apparatuses. In aged rats, both the numbers and the diameters of muscle fibers decreased in the cricothyroid (CT) muscle. The number of fibers, but not diameter, decreased in the thyroarytenoid (TA) muscle. In the posterior cricoarytenoid (PCA) muscle, neither the number nor the diameter of fibers changed significantly. Aging was associated with a decrease in type IIB and an increase in type IIA MHC isoform levels in CT muscle, but no such changes were observed in the TA or PCA muscles. Morphological examination of primary synaptic clefts of the subneural apparatus revealed that aging resulted in decreased labyrinthine and increased depression types in only the CT muscle. In the aged group, morphologically immature subneural apparatuses were found infrequently in the CT muscle, indicating continued tissue remodeling. We suggest, therefore, that age-related changes in the intrinsic laryngeal muscles primarily involve the CT muscle, whereas the structures of the TA and PCA muscles may better resist aging processes and therefore are less vulnerable to functional impairment. This may reflect differences in their roles; the CT muscle controls the tone of the vocal folds, while the TA and PCA muscles play an essential role in vital activities such as respiration and swallowing.

  19. Cyclic muscle twitch contraction inhibits immobilization-induced muscle contracture and fibrosis in rats.

    PubMed

    Yoshimura, Ayana; Sakamoto, Junya; Honda, Yuichiro; Kataoka, Hideki; Nakano, Jiro; Okita, Minoru

    2017-09-01

    We investigated the effects of cyclic muscle twitch contraction caused by neuromuscular electrical stimulation (NMES) on immobilization-induced muscle contracture and fibrosis in rats. Twenty-nine rats were divided into control, immobilization, and immobilization with muscle contraction groups. The ankle joints of the immobilization and muscle contraction rats were fixed in full plantar flexion with a plaster cast for 4 weeks. In the muscle contraction group, cyclic muscle twitch contraction of the soleus muscle was induced using a commercial device (1 Hz, 4 ± 2 mA, 60 min/day, 5 times/week) with the ankle joint immobilized. The dorsiflexion range of ankle joint motion in the muscle contraction group was significantly greater than that in the immobilization group. The expressions of fibrosis-related genes (i.e., hypoxia inducible factor-1α, transforming growth factor-β1, α-smooth muscle actin, and types I and III collagen) were significantly decreased in the muscle contraction group compared to the immobilization group. The fluorescence intensities of type I and type III collagen in the perimysium and endomysium in the muscle contraction group were significantly decreased compared to the immobilization group. These results suggest that cyclic muscle twitch contraction induced by NMES might alleviate skeletal muscle fibrosis, reducing immobilization-induced muscle contracture.

  20. Muscles involved in naris dilation and nose motion in rat

    PubMed Central

    Deschênes, Martin; Haidarliu, Sebastian; Demers, Maxime; Moore, Jeffrey; Kleinfeld, David; Ahissar, Ehud

    2016-01-01

    In a number of mammals muscle dilator nasi (naris) is known as a muscle that reduces nasal airflow resistance by dilating the nostrils. Here we show that in rats the tendon of this muscle inserts into the aponeurosis above the nasal cartilage. Electrical stimulation of this muscle lifts the nose and deflects it sideway towards the side of stimulation, but does not change the size of the nares. In the head-fixed alert rat, electromyographic activity of muscle dilator nasi is tightly coupled to nose motion, not to opening of the nares. Yet, contraction of muscle dilator nasi occurs during the pre-inspiratory phase of the respiratory cycle, suggesting a role in sniffing and sampling odorants. We also show that opening of the nares results from contraction of pars maxillaris profunda of the muscle nasolabialis profundus. This muscle attaches to the outer wall of the nasal cartilage and to the plate of the mystacial pad. Contraction of this muscle exerts a dual action: it pulls the lateral nasal cartilage outwardly, thus dilating the naris, and it drags the plate of the mystacial pad rostralward, provoking a slight retraction of the whiskers. On the basis of these results, we propose that muscle dilator nasi of the rat be renamed muscle deflector nasi, and that pars maxillaris profunda of the muscle nasolabialis profundus be named muscle dilator nasi. PMID:25257748

  1. REM sleep deprivation impairs muscle regeneration in rats.

    PubMed

    Mônico-Neto, Marcos; Dáttilo, Murilo; Ribeiro, Daniel Araki; Lee, Kil Sun; de Mello, Marco Túlio; Tufik, Sergio; Antunes, Hanna Karen Moreira

    2017-02-01

    The aim was observe the influence of sleep deprivation (SD) and sleep recovery on muscle regeneration process in rats submitted to cryolesion. Thirty-two Wistar rats were randomly allocated in four groups: control (CTL), SD for 96 h (SD96), control plus sleep recovery period (CTL + R) and SD96h plus 96 h of sleep recovery (SD96 + R). The animals were submitted to muscle injury by cryolesioning, after to SD and sleep recovery. The major outcomes of this study were the reduction of muscular IGF-1 in both legs (injured and uninjured) and a delay in muscle regeneration process of animals submitted to SD compared to animals that slept, with increase connective tissue, inflammatory infiltrate and minor muscle fibers. SD impairs muscle regeneration in rats, moreover reduces muscular IGF-1 and sleep recovery was able to restore it to basal levels, but it was not enough to normalize the muscle regeneration.

  2. Skeletal muscle metabolism in hypokinetic rats

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.

    1993-01-01

    This grant focused on the mechanisms of metabolic changes associated with unweighting atrophy and reduced growth of hind limb muscles of juvenile rats. Metabolic studies included a number of different areas. Amino acid metabolic studies placed particular emphasis on glutamine and branched-chain amino acid metabolism. These studies were an outgrowth of understanding stress effects and the role of glucocorticoids in these animals. Investigations on protein metabolism were largely concerned with selective loss of myofibrillar proteins and the role of muscle proteolysis. These investigations lead to finding important differences from denervation and atrophy and to define the roles of cytosolic versus lysosomal proteolysis in these atrophy models. A major outgrowth of these studies was demonstrating an ability to prevent atrophy of the unweighted muscle for at least 24 hours. A large amount of work concentrated on carbohydrate metabolism and its regulation by insulin and catecholamines. Measurements focused on glucose transport, glycogen metabolism, and glucose oxidation. The grant was used to develop an important new in situ approach for studying protein metabolism, glucose transport, and hormonal effects which involves intramuscular injection of various agents for up to 24 hours. Another important consequence of this project was the development and flight of Physiological-Anatomical Rodent Experiment-1 (PARE-1), which was launched aboard Space Shuttle Discovery in September 1991. Detailed descriptions of these studies can be found in the 30 peer-reviewed publications, 15 non-reviewed publications, 4 reviews and 33 abstracts (total 82 publications) which were or are scheduled to be published as a result of this project. A listing of these publications grouped by area (i.e. amino acid metabolism, protein metabolism, carbohydrate metabolism, and space flight studies) are included.

  3. Mangiferin protects against adverse skeletal muscle changes and enhances muscle oxidative capacity in obese rats

    PubMed Central

    Acevedo, Luz M.; Raya, Ana I.; Martínez-Moreno, Julio M.

    2017-01-01

    Obesity-related skeletal muscle changes include muscle atrophy, slow-to-fast fiber-type transformation, and impaired mitochondrial oxidative capacity. These changes relate with increased risk of insulin resistance. Mangiferin, the major component of the plant Mangifera indica, is a well-known anti-inflammatory, anti-diabetic, and antihyperlipidemic agent. This study tested the hypothesis that mangiferin treatment counteracts obesity-induced fiber atrophy and slow-to-fast fiber transition, and favors an oxidative phenotype in skeletal muscle of obese rats. Obese Zucker rats were fed gelatin pellets with (15 mg/kg BW/day) or without (placebo group) mangiferin for 8 weeks. Lean Zucker rats received the same gelatin pellets without mangiferin and served as non-obese and non-diabetic controls. Lesser diameter, fiber composition, and histochemical succinic dehydrogenase activity (an oxidative marker) of myosin-based fiber-types were assessed in soleus and tibialis cranialis muscles. A multivariate discriminant analysis encompassing all fiber-type features indicated that obese rats treated with mangiferin displayed skeletal muscle phenotypes significantly different compared with both lean and obese control rats. Mangiferin significantly decreased inflammatory cytokines, preserved skeletal muscle mass, fiber cross-sectional size, and fiber-type composition, and enhanced muscle fiber oxidative capacity. These data demonstrate that mangiferin attenuated adverse skeletal muscle changes in obese rats. PMID:28253314

  4. Mangiferin protects against adverse skeletal muscle changes and enhances muscle oxidative capacity in obese rats.

    PubMed

    Acevedo, Luz M; Raya, Ana I; Martínez-Moreno, Julio M; Aguilera-Tejero, Escolástico; Rivero, José-Luis L

    2017-01-01

    Obesity-related skeletal muscle changes include muscle atrophy, slow-to-fast fiber-type transformation, and impaired mitochondrial oxidative capacity. These changes relate with increased risk of insulin resistance. Mangiferin, the major component of the plant Mangifera indica, is a well-known anti-inflammatory, anti-diabetic, and antihyperlipidemic agent. This study tested the hypothesis that mangiferin treatment counteracts obesity-induced fiber atrophy and slow-to-fast fiber transition, and favors an oxidative phenotype in skeletal muscle of obese rats. Obese Zucker rats were fed gelatin pellets with (15 mg/kg BW/day) or without (placebo group) mangiferin for 8 weeks. Lean Zucker rats received the same gelatin pellets without mangiferin and served as non-obese and non-diabetic controls. Lesser diameter, fiber composition, and histochemical succinic dehydrogenase activity (an oxidative marker) of myosin-based fiber-types were assessed in soleus and tibialis cranialis muscles. A multivariate discriminant analysis encompassing all fiber-type features indicated that obese rats treated with mangiferin displayed skeletal muscle phenotypes significantly different compared with both lean and obese control rats. Mangiferin significantly decreased inflammatory cytokines, preserved skeletal muscle mass, fiber cross-sectional size, and fiber-type composition, and enhanced muscle fiber oxidative capacity. These data demonstrate that mangiferin attenuated adverse skeletal muscle changes in obese rats.

  5. Muscle Contractile Properties in Severely Burned Rats

    DTIC Science & Technology

    2010-01-01

    the groups. This study demonstrates dynamics of muscle atrophy and muscle contractile properties after severe burn; this understanding will aid in the...muscle loss on muscle function, as well as the ability to develop strategies to reduce early muscle wasting following burn would be aided by a...G, Ward PS. Changes in rodent muscle fibre types during post-natal growth, undernutrition and exercise. J Physiol 1979;296(November):453–69. [25

  6. Myofascial force transmission between transferred rat flexor carpi ulnaris muscle and former synergistic palmaris longus muscle

    PubMed Central

    Maas, Huub; Huijing, Peter A.

    2011-01-01

    Summary We investigated the extent of mechanical interaction between rat flexor carpi ulnaris (FCU) and palmaris longus (PL) muscles following transfer of FCU to the distal tendons of extensor carpi radialis brevis and longus (ECRB/L) muscles. Five weeks after recovery from surgery, isometric forces exerted at the distal tendons of FCU and PL were quantified at various FCU lengths. PL was kept at a constant length. Changing the muscle-tendon complex length of transferred FCU (by maximally 3.5 mm) decreased PL force significantly (by 7%). A linear relationship was found between changes in FCU muscle belly length, being a measure of muscle relative positions, and PL force. These results indicate that despite transfer of FCU muscle to the extensor side of the forearm, changing FCU length still affects force transmission of its, now, antagonistic PL muscle. We conclude that a transferred muscle may still be mechanically linked to its former synergistic muscles. PMID:23738260

  7. Inhibition of capacitative calcium entry is not obligatory for relaxation of the mouse anococcygeus by the NO/cyclic GMP signalling pathway

    PubMed Central

    Ayman, Sinem; Gibson, Alan; McFadzean, Ian; Reynolds, Martyn; Wallace, Pat

    2001-01-01

    The object of this study was to determine whether inhibition of capacitative calcium entry is essential for relaxation of the mouse anococcygeus via the NO/cyclic GMP signalling pathway. In intact muscles, thapsigargin (Tg; 100 nM)-induced tone was relaxed by NO, sodium nitroprusside (SNP), 8-Br-cyclic GMP, and nitrergic field stimulation. The relaxations were similar in magnitude to those observed against carbachol (50 μM) tone and, with the exception of those to 8-Br-cyclic GMP, were reduced by the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxodiazolo[4,3-a]quinoxalin-1-one (ODQ, 5 μM). In single smooth muscle cells, loaded with Fura-2, both carbachol and Tg produced sustained elevations in cytoplasmic calcium levels ([Ca2+]i). SNP inhibited the rise in [Ca2+]i produced by carbachol, an effect attenuated by ODQ. In contrast, neither SNP nor 8-Br-cyclic GMP reduced the elevated [Ca2+]i associated with Tg. In β-escin skinned preparations, NO had no effect on tone induced by calcium (1 μM in the presence of 100 μM GTP). Carbachol and Tg produced further increases in calcium/GTP-induced tone and, in both cases, this additional tone was relaxed by NO and 8-Br-cyclic GMP. The results support the hypothesis that the NO/cyclic GMP pathway inhibits capacitative calcium entry by refilling the internal stores, since reduction in [Ca2+]i was not observed in the presence of Tg. However, as muscle relaxation was still observed, impairment of capacitative calcium entry cannot be considered obligatory for relaxation. Results from skinned tissues suggest that inhibition of calcium sensitization processes, perhaps associated with store-depletion, may be an important mechanism of NO/cyclic GMP-induced relaxation. PMID:11181421

  8. The Impact of Muscle Disuse on Muscle Atrophy in Severely Burned Rats

    PubMed Central

    Wu, Xiaowu; Baer, Lisa A; Wolf, Steven E.; Wade, Charles E; Walters, Thomas J.

    2010-01-01

    Background Severe burn induces a sustained hypermetabolic response, which causes long-term loss of muscle mass and decrease in muscle strength. In this study, we sought to determine whether muscle disuse has additional impact on muscle atrophy after severe burn using a rat model combining severe cutaneous burn and hindlimb unloading. Methods Forty Sprague-Dawley rats (≈300g) were randomly assigned to sham ambulatory (S/A), sham hindlimb unloading (S/HLU), burn ambulatory (B/A) or burn hindlimb unloading (B/HLU) groups. Rats received a 40% total body surface (TBSA) full thickness scald burn, and rats with hindlimb unloading were placed in a tail traction system. At day 14, lean body mass (LBM) was determined using DEXA scan, followed by measurement of the isometric mechanical properties in the predominantly fast-twitch plantaris muscle (PL) and the predominantly slow-twitch soleus muscle (SL). Muscle weight (wt), protein wt, and wet/dry wt were determined. Results At day 14, body weight had decreased significantly in all treatment groups; B/HLU resulted in significantly greater loss compared to the B/A, S/HLU and S/A. The losses could be attributed to loss of LBM. PL muscle wt and Po were lowest in the B/HLU group (<0.05 vs. S/A, S/HLU or B/A). SL muscle wt and Po were significantly less in both S/HLU and B/HLU compared that of S/A and B/A; no significant difference was found between S/HLU and B/HLU. Conclusions Cutaneous burn and hindlimb unloading have an additive effect on muscle atrophy, characterized by loss of muscle mass and decrease in muscle strength in both fast (PL) and slow (SL) twitch muscles. Of the two, disuse appeared to be the dominant factor for continuous muscle wasting after acute burn in this model. PMID:20888588

  9. Tongue muscle plasticity following hypoglossal nerve stimulation in aged rats

    PubMed Central

    Connor, Nadine P.; Russell, John A.; Jackson, Michelle A.; Kletzien, Heidi; Wang, Hao; Schaser, Allison J.; Leverson, Glen E.; Zealear, David L.

    2012-01-01

    Introduction Age-related decreases in tongue muscle mass and strength have been reported. It may be possible to prevent age-related tongue muscle changes using neuromuscular electrical stimulation (NMES). Our hypothesis was that alterations in muscle contractile properties and myosin heavy chain composition would be found following NMES. Methods Fifty-four young, middle-aged and old Fischer 344/Brown Norway rats were included. Twenty-four rats underwent bilateral electrical stimulation of the hypoglossal nerves for 8 weeks and were compared with control or sham rats. Muscle contractile properties and myosin heavy chain (MHC) in the genioglossus (GG), styloglossus (SG) and hyoglossus (HG) muscles were examined. Results In comparison with unstimulated control rats, we found reduced muscle fatigue, increased contraction and half decay times and increased twitch and tetanic tension. Increased Type I MHC was found, except for GG in old and middle-aged rats. Discussion Transitions in tongue muscle contractile properties and phenotype were found following NMES. PMID:23169566

  10. Rat muscle blood flows during high-speed locomotion

    SciTech Connect

    Armstrong, R.B.; Laughlin, M.H.

    1985-10-01

    We previously studied blood flow distribution within and among rat muscles as a function of speed from walking (15 m/min) through galloping (75 m/min) on a motor-driven treadmill. The results showed that muscle blood flows continued to increase as a function of speed through 75 m/min. The purpose of the present study was to have rats run up to maximal treadmill speeds to determine if blood flows in the muscles reach a plateau as a function of running speed over the animals normal range of locomotory speeds. Muscle blood flows were measured with radiolabeled microspheres at 1 min of running at 75, 90, and 105 m/min in male Sprague-Dawley rats. The data indicate that even at these relatively high treadmill speeds there was still no clear evidence of a plateau in blood flow in most of the hindlimb muscles. Flows in most muscles continued to increase as a function of speed. These observed patterns of blood flow vs. running speed may have resulted from the rigorous selection of rats that were capable of performing the high-intensity exercise and thus only be representative of a highly specific population of animals. On the other hand, the data could be interpreted to indicate that the cardiovascular potential during exercise is considerably higher in laboratory rats than has normally been assumed and that inadequate blood flow delivery to the muscles does not serve as a major limitation to their locomotory performance.

  11. Leucine supplementation improves regeneration of skeletal muscles from old rats.

    PubMed

    Pereira, Marcelo G; Silva, Meiricris T; da Cunha, Fernanda M; Moriscot, Anselmo S; Aoki, Marcelo S; Miyabara, Elen H

    2015-12-01

    The decreased regenerative capacity of old skeletal muscles involves disrupted turnover of proteins. This study investigated whether leucine supplementation in old rats could improve muscle regenerative capacity. Young and old male Wistar rats were supplemented with leucine; then, the muscles were cryolesioned and examined after 3 and 10 days. Leucine supplementation attenuated the decrease in the expression of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1) and eukaryotic translation initiation factor 4E (eIF4E) in young and old muscles on day 3 post-injury and promoted an increase in the cross-sectional area of regenerating myofibers from both young and old soleus muscles on day 10 post-injury. This supplementation decreased the levels of ubiquitinated proteins and increased the proteasome activity in young regenerating muscles, but the opposite effect was observed in old regenerating muscles. Moreover, leucine decreased the inflammation area and induced an increase in the number of proliferating satellite cells in both young and old muscles. Our results suggest that leucine supplementation improves the regeneration of skeletal muscles from old rats, through the preservation of certain biological responses upon leucine supplementation. Such responses comprise the decrease in the inflammation area, increase in the number of proliferating satellite cells and size of regenerating myofibers, combined with the modulation of components of the phosphoinositide 3-kinase/Akt-protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway and ubiquitin-proteasome system.

  12. Atrophy of rat skeletal muscles in simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Feller, D. D.; Ginoza, H. S.; Morey, E. R.

    1982-01-01

    A hypokinetic rat model was used for elucidation of the mechanism of skeletal muscle wasting which occurs in weightlessness. Rats were suspended from a back-harness with the head tilted downward and the hind limbs totally unloaded. A progressive decrease in the size of the soleus muscle from suspended rats was observed as a function of time. The rate of protein degradation of the homogenates from the soleus muscles of suspended and control animals was not significantly different. The rate of cell-free protein synthesis was severely repressed in the atrophied muscle. An initial rise in the levels of plasma glucose and corticosterone was observed on the second day of suspension, but they subsequently returned to normal values.

  13. Atrophy of rat skeletal muscles in simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Feller, D. D.; Ginoza, H. S.; Morey, E. R.

    1982-01-01

    A hypokinetic rat model was used for elucidation of the mechanism of skeletal muscle wasting which occurs in weightlessness. Rats were suspended from a back-harness with the head tilted downward and the hind limbs totally unloaded. A progressive decrease in the size of the soleus muscle from suspended rats was observed as a function of time. The rate of protein degradation of the homogenates from the soleus muscles of suspended and control animals was not significantly different. The rate of cell-free protein synthesis was severely repressed in the atrophied muscle. An initial rise in the levels of plasma glucose and corticosterone was observed on the second day of suspension, but they subsequently returned to normal values.

  14. [Electrophysiological characteristics of the isolated muscle spindle in rats].

    PubMed

    Zhao, Xue-Hong; Fan, Xiao-Li; Song, Xin-Ai; Shi, Lei

    2011-06-25

    The aim of this study was to observe the electrophysiological characteristics of the isolated rat muscle spindle. The muscle spindle was isolated from rat soleus and the afferent discharge of the isolated muscle spindle was recorded by air-gap technique. In the basic physiological salt solution, the spontaneous impulses of muscle spindle were at a lower level with irregular intervals. The mean frequency of afferents was (51.78 ± 25.63) impulses/1 000 s (n = 13). The muscle spindle afferents were significantly increased and maintained over time by the addition of certain amino acids during the observation. The number of the action potential recorded per 1 000 s was 200-1 000 [mean: (687.62 ± 312.56) impulses/1 000 s, n = 17]. In addition to the typical propagated action potential, a large number of abortive spikes were observed. The results indicate that the activities of isolated muscle spindles in rats can be well maintained by the addition of certain amino acids. The results initially establish and provide the possibility for further research conducted in isolated rat muscle spindles.

  15. Myosin heavy chain expression in respiratory muscles of the rat.

    PubMed

    LaFramboise, W A; Watchko, J F; Brozanski, B S; Daood, M J; Guthrie, R D

    1992-03-01

    Myosin heavy chain (MHC) isoforms of hind limb adult rat muscles and muscles with a range of respiratory activities were analyzed by a sodium dodecyl sulfate polyacrylamide gel electrophoresis technique that allowed electrophoretic separation of the three fast and one slow MHC isoform found in typical rat muscle. Costal and crural diaphragm muscle samples expressed a mixture of MHC beta/slow, MHC2A, and MHC2X but little MHC2B. In contrast, MHC2B was the dominant MHC isoform in the genioglossus, intercostal, and three abdominal muscles, all of which exhibited minimal expression of MHC beta/slow. The amount of MHC2X (relative to total MHC composition) was similar in the diaphragm, genioglossus, and transversus abdominis muscles, while considerably less was detected in the rectus abdominis and external oblique muscles. These results indicate that MHC2X is broadly and variably distributed among respiratory muscles. Furthermore, these data suggest that a large portion of 2X fibers (containing MHC2X), which cannot be detected by standard histochemical analysis, may be present in the genioglossus and transversus abdominis muscles as has been demonstrated for the diaphragm muscle. We speculate that an association exists between the level of MHC2X expression and frequency of respiratory recruitment.

  16. The effect of age on rat rotator cuff muscle architecture.

    PubMed

    Swan, Malcolm A; Sato, Eugene; Galatz, Leesa M; Thomopoulos, Stavros; Ward, Samuel R

    2014-12-01

    Understanding rotator cuff muscle function during disease development and after repair is necessary for preventing degeneration and improving postsurgical outcomes, respectively. The rat is a commonly used rotator cuff animal model; however, unlike humans, rats continue to grow throughout their lifespan, so age-related changes in muscle structure may complicate an understanding of muscle adaptations to injury. Infraspinatus and supraspinatus muscle mass, fiber length, pennation angle, sarcomere length, and physiological cross-sectional area (PCSA) were measured in Sprague-Dawley rats (n = 30) with a body mass ranging from 51 to 814 g (approximately 3 weeks to approximately 18 months). Both the supraspinatus and infraspinatus showed a striking conservation of sarcomere length throughout growth. There was linear growth in muscle mass and PCSA, nonlinear growth in muscle length and fiber bundle length, and a linear relationship between humeral head diameter and fiber bundle length, suggesting that muscle fiber length (serial sarcomere number) adjusted according to skeletal dimensions. These muscle growth trajectories allowed sarcomere length to remain nearly constant. During the typical rat rotator cuff experimental period (animal mass, 400-600 g), muscle mass will increase by 30%, fiber length will increase by 7%, and PCSA will increase by 27%, but sarcomere lengths are nearly constant. Therefore, these normal growth-induced changes in architecture must be considered when muscle atrophy or fiber shortening is measured after rotator cuff tears in this model. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  17. Three Intermittent Sessions of Cryotherapy Reduce the Secondary Muscle Injury in Skeletal Muscle of Rat

    PubMed Central

    Oliveira, Nuno M. L.; Rainero, Elaine P.; Salvini, Tania F.

    2006-01-01

    Although cryotherapy associated to compression is recommended as immediate treatment after muscle injury, the effect of intermittent sessions of these procedures in the area of secondary muscle injury is not established. This study examined the effect of three sessions of cryotherapy (30 min of ice pack each 2h) and muscle compression (sand pack) in the muscle-injured area. Twenty-four Wistar rats (312 ± 20g) were evaluated. In three groups, the middle belly of tibialis anterior (TA) muscle was injured by a frozen iron bar and received one of the following treatments: a) three sessions of cryotherapy; b) three sessions of compression; c) not treated. An uninjured group received sessions of cryotherapy. Frozen muscles were cross- sectioned (10 µm) and stained for the measurement of injured and uninjured muscle area. Injured muscles submitted to cryotherapy showed the smallest injured area (29.83 ± 6.6%), compared to compressed (39.2 ± 2.8%, p= 0.003) and untreated muscles (41.74 ± 4.0%, p = 0.0008). No difference was found between injured compressed and injured untreated muscles. In conclusion, three intermittent sessions of cryotherapy applied immediately after muscle damage was able to reduce the secondary muscle injury, while only the muscle compression did not provide the same effectiveness. Key Points Three sessions of cryotherapy (30 min each 2 hours) applied immediately after muscle damage reduce the secondary muscle injury. Sessions of compression applied after muscle damage are not able to reduce the secondary muscle injury. PMID:24259995

  18. Functional characteristics of the rat jaw muscles: daily muscle activity and fiber type composition

    PubMed Central

    Kawai, Nobuhiko; Sano, Ryota; Korfage, Joannes A M; Nakamura, Saika; Tanaka, Eiji; van Wessel, Tim; Langenbach, Geerling E J; Tanne, Kazuo

    2009-01-01

    Skeletal muscles have a heterogeneous fiber type composition, which reflects their functional demand. The daily muscle use and the percentage of slow-type fibers have been shown to be positively correlated in skeletal muscles of larger animals but for smaller animals there is no information. The examination of this relationship in adult rats was the purpose of this study. We hypothesized a positive relationship between the percentage of fatigue-resistant fibers in each muscle and its total duration of use per day. Fourteen Wistar strain male rats (410–450 g) were used. A radio-telemetric device was implanted to record muscle activity continuously from the superficial masseter, deep masseter, anterior belly of digastric and anterior temporalis muscles. The degree of daily muscle use was quantified by the total duration of muscle activity per day (duty time) exceeding specified levels of the peak activity (2, 5, 20 and 50%). The fiber type composition of the muscles was examined by the myosin heavy chain content of the fibers by means of immunohistochemical staining. At lower activity levels (exceeding 2 and 5% of the peak activity), the duty time of the anterior belly of digastric muscle was significantly (P < 0.01) longer than those of the other muscles. The anterior belly of digastric muscle also contained the highest percentage of slow-type fibers (type I fiber and hybrid fiber co-expressing myosin heavy chain I + IIA) (ca. 11%; P < 0.05). By regression analysis for all four muscles, an inter-muscular comparison showed a positive relationship between the duty time (exceeding 50% of the peak activity) and the percentage of type IIX fibers (P < 0.05), which demonstrate intermediate physiological properties relative to type IIA and IIB fibers. For the jaw muscles of adult male rats, the variations of fiber type composition and muscle use suggest that the muscle containing the largest amounts of slow-type fibers (the anterior belly of digastric muscle) is mainly

  19. Functional characteristics of the rat jaw muscles: daily muscle activity and fiber type composition.

    PubMed

    Kawai, Nobuhiko; Sano, Ryota; Korfage, Joannes A M; Nakamura, Saika; Tanaka, Eiji; van Wessel, Tim; Langenbach, Geerling E J; Tanne, Kazuo

    2009-12-01

    Skeletal muscles have a heterogeneous fiber type composition, which reflects their functional demand. The daily muscle use and the percentage of slow-type fibers have been shown to be positively correlated in skeletal muscles of larger animals but for smaller animals there is no information. The examination of this relationship in adult rats was the purpose of this study. We hypothesized a positive relationship between the percentage of fatigue-resistant fibers in each muscle and its total duration of use per day. Fourteen Wistar strain male rats (410-450 g) were used. A radio-telemetric device was implanted to record muscle activity continuously from the superficial masseter, deep masseter, anterior belly of digastric and anterior temporalis muscles. The degree of daily muscle use was quantified by the total duration of muscle activity per day (duty time) exceeding specified levels of the peak activity (2, 5, 20 and 50%). The fiber type composition of the muscles was examined by the myosin heavy chain content of the fibers by means of immunohistochemical staining. At lower activity levels (exceeding 2 and 5% of the peak activity), the duty time of the anterior belly of digastric muscle was significantly (P < 0.01) longer than those of the other muscles. The anterior belly of digastric muscle also contained the highest percentage of slow-type fibers (type I fiber and hybrid fiber co-expressing myosin heavy chain I + IIA) (ca. 11%; P < 0.05). By regression analysis for all four muscles, an inter-muscular comparison showed a positive relationship between the duty time (exceeding 50% of the peak activity) and the percentage of type IIX fibers (P < 0.05), which demonstrate intermediate physiological properties relative to type IIA and IIB fibers. For the jaw muscles of adult male rats, the variations of fiber type composition and muscle use suggest that the muscle containing the largest amounts of slow-type fibers (the anterior belly of digastric muscle) is mainly

  20. Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles.

    PubMed

    Hokari, Fumi; Kawasaki, Emi; Sakai, Atsushi; Koshinaka, Keiichi; Sakuma, Kunihiro; Kawanaka, Kentaro

    2010-08-01

    Sirt3, a member of the sirtuin family, is known to control cellular mitochondrial function. Furthermore, because sirtuins require NAD for their deacetylase activity, nicotinamide phosphoribosyltransferase (Nampt), which is a rate-limiting enzyme in the intracellular NAD biosynthetic pathway, influences their activity. We examined the effects of exercise training and normal postural contractile activity on Sirt3 and Nampt protein expression in rat skeletal muscles. Male rats were trained by treadmill running at 20 m/min, 60 min/day, 7 days/wk for 4 wk. This treadmill training program increased the Sirt3 protein expression in the soleus and plantaris muscles by 49% and 41%, respectively (P < 0.05). Moreover, a 4-wk voluntary wheel-running program also induced 66% and 95% increases in Sirt3 protein in the plantaris and triceps muscles of rats, respectively (P < 0.05). Treadmill-running and voluntary running training induced no significant changes in Nampt protein expression in skeletal muscles. In resting rats, the soleus muscle, which is recruited during normal postural activity, possessed the greatest expression levels of the Sirt3 and Nampt proteins, followed by the plantaris and triceps muscles. Furthermore, the Sirt3, but not Nampt, protein level was reduced in the soleus muscles from immobilized hindlimbs compared with that shown in the contralateral control muscle. These results demonstrated that 1) Sirt3 protein expression is upregulated by exercise training in skeletal muscles and 2) local postural contractile activity plays an important role in maintaining a high level of Sirt3 protein expression in postural muscle.

  1. Protein turnover in skeletal muscle of suckling rats.

    PubMed

    Davis, T A; Fiorotto, M L; Nguyen, H V; Reeds, P J

    1989-11-01

    To determine the normal changes in protein turnover of skeletal muscle in vivo during the suckling period of rats, protein synthesis was measured in soleus, plantaris, anterior tibialis, and extensor digitorum longus (EDL) muscles of 1- to 28-day-old rats using a flooding dose of L-[4-3H]phenylalanine. Protein mass of hind-limb muscles increased nearly 100-fold, and RNA increased approximately 20-fold between 1 and 28 days of age. The total amount of protein synthesized per day increased 34-fold. Fractional protein synthesis rates (Ks) decreased two- to threefold between 1 and 28 days postpartum as a result of a decrease in protein synthetic capacity (RNA/protein). Protein synthetic efficiency (total protein synthesized/RNA) increased during this period. Ks were similar among the four muscles at 1-10 days. At 16 days, Ks increased in soleus and plantaris as a result of increases in protein synthetic efficiency; Ks did not increase in anterior tibialis and EDL. These data suggest that, during the suckling period, protein synthetic capacity in skeletal muscles of rats declines, while protein synthetic efficiency increases. The increase in translational efficiency occurred earlier in weight-bearing muscles (soleus, plantaris) than in non-weight-bearing muscles (anterior tibialis and EDL) and was associated with the appearance of mobility.

  2. Calcium overload increases oxidative stress in old rat gastrocnemius muscle.

    PubMed

    Capel, F; Demaison, L; Maskouri, F; Diot, A; Buffiere, C; Patureau Mirand, P; Mosoni, L

    2005-09-01

    In order to challenge in vivo muscle Ca2+ homeostasis and analyze consequences on mitochondrial H2O2 release (MHR) and sarcopenia, we injected Ca2+ ionophore A23187 (200 microg/kg, ip) in adult and old rats and measured gastrocnemius mass and mitochondrial Ca2+ content (MCC) using radioactive Ca2+ 48 h after injection. In a second experiment performed in old rats, we measured isocitrate dehydrogenase (ICDH) activity as an index of MCC, MHR, mitochondrial respiration, citrate synthase, COX and antioxydant enzyme activities 24 h after a 150 microg/kg injection. In adult rats, muscle mass and MCC were unchanged by A23187. In old rats, MCC increased 24 h after injection as reflected by a significant increase in ICDH activity; measured MCC tended to increase at 48 h. MHR and Mn-SOD activity were significantly increased at 24 h, and GPX activity was reduced. Muscle mass was unchanged but was negatively correlated with MCC in control and treated old rats. In conclusion, in old rats, A23187 probably induced a mitochondrial Ca2+ overload responsible for the observed increase in MHR without leading to muscle atrophy on a short term basis.

  3. Autophagy Signaling in Skeletal Muscle of Infarcted Rats

    PubMed Central

    Jannig, Paulo R.; Moreira, Jose B. N.; Bechara, Luiz R. G.; Bozi, Luiz H. M.; Bacurau, Aline V.; Monteiro, Alex W. A.; Dourado, Paulo M.; Wisløff, Ulrik; Brum, Patricia C.

    2014-01-01

    Background Heart failure (HF)-induced skeletal muscle atrophy is often associated to exercise intolerance and poor prognosis. Better understanding of the molecular mechanisms underlying HF-induced muscle atrophy may contribute to the development of pharmacological strategies to prevent or treat such condition. It has been shown that autophagy-lysosome system is an important mechanism for maintenance of muscle mass. However, its role in HF-induced myopathy has not been addressed yet. Therefore, the aim of the present study was to evaluate autophagy signaling in myocardial infarction (MI)-induced muscle atrophy in rats. Methods/Principal Findings Wistar rats underwent MI or Sham surgeries, and after 12 weeks were submitted to echocardiography, exercise tolerance and histology evaluations. Cathepsin L activity and expression of autophagy-related genes and proteins were assessed in soleus and plantaris muscles by fluorimetric assay, qRT-PCR and immunoblotting, respectively. MI rats displayed exercise intolerance, left ventricular dysfunction and dilation, thereby suggesting the presence of HF. The key findings of the present study were: a) upregulation of autophagy-related genes (GABARAPL1, ATG7, BNIP3, CTSL1 and LAMP2) was observed only in plantaris while muscle atrophy was observed in both soleus and plantaris muscles, and b) Cathepsin L activity, Bnip3 and Fis1 protein levels, and levels of lipid hydroperoxides were increased specifically in plantaris muscle of MI rats. Conclusions Altogether our results provide evidence for autophagy signaling regulation in HF-induced plantaris atrophy but not soleus atrophy. Therefore, autophagy-lysosome system is differentially regulated in atrophic muscles comprising different fiber-types and metabolic characteristics. PMID:24427319

  4. [Respondence to electricity in the muscles of rat's jaw].

    PubMed

    Chen, Mengshi; Li, Liang; Song, Yiping; Lai, Shengxiang

    2002-12-01

    15 male Wistar rats of 8 weeks old were used in this experment. After deeply anesthesia, the masseter muscles, digastric muscles, lateral pterygoid muscles were stimulated in the apartment that was made by us. The curves that express the relations of force-electronic stimulates were recorded and the constitutive equations of these muscles were given. When a single electronic signal stimulates the muscle, the respondence of the muscles can be expressed as F = A(e-alpha t - e-beta t) and the constant A, alpha, beta were determined. When the frequency of the electronic stimulation was higher than 3 Hz, the respondence was expressed as F = Ce-gamma/t + Dsin omega t and the constants C, D and gamma were determined. When the frequency of the electronic stimulation was thirty or higher, the tetanic convulsion occurred.

  5. Sumoylated α-skeletal muscle actin in the skeletal muscle of adult rats.

    PubMed

    Uda, Munehiro; Kawasaki, Hiroaki; Iizumi, Kyoichi; Shigenaga, Ayako; Baba, Takeshi; Naito, Hisashi; Yoshioka, Toshitada; Yamakura, Fumiyuki

    2015-11-01

    Skeletal muscles are composed of two major muscle fiber types: slow-twitch oxidative fibers and fast-twitch glycolytic fibers. The proteins in these muscle fibers are known to differ in their expression, relative abundance, and post-translational modifications. In this study, we report a previously unreported post-translational modification of α-skeletal muscle actin in the skeletal muscles of adult male F344 rats in vivo. Using two-dimensional electrophoresis (2D-PAGE), we first examined the differences in the protein expression profiles between the soleus and plantaris muscles. We found higher intensity protein spots at approximately 60 kDa and pH 9 on 2D-PAGE for the soleus muscle compared with the plantaris muscle. These spots were identified as α-skeletal muscle actin by liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry and western blot analyses. In addition, we found that the 60 kDa α-skeletal muscle actin is modified by small ubiquitin-like modifier (SUMO) 1, using 2D-PAGE and western blot analyses. Furthermore, we found that α-skeletal muscle actin with larger molecular weight was localized in the nuclear and cytosol of the skeletal muscle, but not in the myofibrillar fraction by the combination of subcellular fractionation and western blot analyses. These results suggest that α-skeletal muscle actin is modified by SUMO-1 in the skeletal muscles, localized in nuclear and cytosolic fractions, and the extent of this modification is much higher in the slow muscles than in the fast muscles. This is the first study to show the presence of SUMOylated actin in animal tissues.

  6. Reduction-oxidation state and protein degradation in skeletal muscle of fasted and refed rats

    NASA Technical Reports Server (NTRS)

    Fagan, Julie M.; Tischler, Marc E.

    1986-01-01

    Redox state and protein degradation were measured in isolated muscles of fasted (up to 10 d) and refed (up to 4 d) 7- to 14-wk-old rats. Protein degradation in the extensor digitorum longus muscle, but not in the soleus muscle, was greater in the fasted rats than in weight-matched muscle from fed rats. The NAD couple was more oxidized in incubated and fresh extensor digitorum longus muscles and in some incubated soleus muscles of fasted rats than in weight-matched muscle from fed rats. In the extensor digitorum longus muscle of refed or prolonged fasted rats, protein degradation was slower and the NAD couple was more reduced than in the fed state. Therefore, oxidation of the NAD couple was associated with increased muscle breakdown during fasting, whereas reduction of the NAD couple was associated with muscle conservation and deposition.

  7. Reduction-oxidation state and protein degradation in skeletal muscle of fasted and refed rats

    NASA Technical Reports Server (NTRS)

    Fagan, Julie M.; Tischler, Marc E.

    1986-01-01

    Redox state and protein degradation were measured in isolated muscles of fasted (up to 10 d) and refed (up to 4 d) 7- to 14-wk-old rats. Protein degradation in the extensor digitorum longus muscle, but not in the soleus muscle, was greater in the fasted rats than in weight-matched muscle from fed rats. The NAD couple was more oxidized in incubated and fresh extensor digitorum longus muscles and in some incubated soleus muscles of fasted rats than in weight-matched muscle from fed rats. In the extensor digitorum longus muscle of refed or prolonged fasted rats, protein degradation was slower and the NAD couple was more reduced than in the fed state. Therefore, oxidation of the NAD couple was associated with increased muscle breakdown during fasting, whereas reduction of the NAD couple was associated with muscle conservation and deposition.

  8. Ultrastructural organization of muscle fiber types and their distribution in the rat superior rectus extraocular muscle.

    PubMed

    Rashed, Rashed M; El-Alfy, Sherif H

    2012-05-01

    Extraocular muscles (EOMs) are unique as they show greater variation in anatomical and physiological properties than any other skeletal muscles. To investigate the muscle fiber types and to understand better the structure-function correlation of the extraocular muscles, the present study examined the ultrastructural characteristics of the superior rectus muscle of rat. The superior rectus muscle is organized into two layers: a central global layer of mainly large-diameter fibers and an outer C-shaped orbital layer of principally small-diameter fibers. Six morphologically distinct fiber types were identified within the superior rectus muscle. Four muscle fiber types, three single innervated fibers (SIFs) and one multiple innervated fiber (MIF), were recognized in the global layer. The single innervated fibers included red, white and intermediate fibers. They differed from one another with respect to diameter, mitochondrial size and distribution, sarcoplasmic reticulum and myofibrillar size. The orbital layer contained two distinct MIFs in addition to the red and intermediate SIFs. The orbital MIFs were categorized into low oxidative and high oxidative types according to their mitochondrial content and distribution. The highly specialized function of the superior rectus extraocular muscle is reflected in the multiplicity of its fiber types, which exhibit unique structural features. The unique ultrastructural features of the extraocular muscles and their possible relation to muscle function are discussed. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. [Effect of prednisolon on trachea smooth muscle of normal rats and rats with fibrosing alveolitis].

    PubMed

    Fedin, A N; Nekrasova, E A; Frolova, S A; Danilov, L N; Lebedeva, E S; Il'kovich, M M

    2007-01-01

    Effect of prednisolone on isolated preparations of trachea of normal rats and rats with fibrosing alveolitis was studied. Prednisolone at a concentration of 0.4 microg/l decreased responses of smooth muscle on stimulation of preganglionar nerve fibers at trachea areas with intramural ganglia in rats with acute alveolitis by 48%, while in normal rats--by 19% of control. In trachea preparations without ganglia, prednisolone at a dose of 10 microg/l decreased responses of muscle to the nerve fiber stimulation by 21.3%. The higher prednisolone doses were less efficient: 0.1-10 microg/l glucocorticoid practically did not affect the smooth muscle responses produced by stimulation of muscle cells. In rats with fibrosing alveolitis, 10 microg/l prednisolone restored the smooth muscle responses to control values in preparations of trachea with intramural ganglia. After the prednisolone treatment, amplitude of the rat trachea muscle contraction in response to the nerve fiber electric stimulation did not differ statistically significantly from control and 0.1-10 microg/l prednisolone did not change the response value. The conclusion is made that prednisolone affected the diseased rats more efficiently than the healthy animals. The character of the glucocorticoid effect depends on the presence of intramural ganglia in the trachea wall.

  10. Ultrastructural alterations in skeletal muscle fibers of rats after exercise

    NASA Technical Reports Server (NTRS)

    Akuzawa, M.; Hataya, M.

    1982-01-01

    Ultrastructural alterations in skeletal muscle fibers were electron microscopically studied in rats forced to run on the treadmill until all-out. When they were mild and limited to relatively small areas, the reconstruction of filaments ensued within 10 days without infiltration of cells. When they were severe and extensive, phagocytes infiltrated in the lesions and removed degenerative sacroplasmic debris from muscle fibers. A little later, myoblasts appeared and regeneration was accomplished in 30 days in much the same manner as in myogenesis.

  11. Endogenous L-Carnosine Level in Diabetes Rat Cardiac Muscle

    PubMed Central

    Liu, Yali; Su, Dan; Zhang, Ling; Wei, Shaofeng; Liu, Kuangyi; Peng, Mi; Li, Hanyun; Song, Yonggui

    2016-01-01

    A novel method for quantitation of cardiac muscle carnosine levels using HPLC-UV is described. In this simple and reliable method, carnosine from the rat cardiac muscle and the internal standard, thymopentin, were extracted by protein precipitation with acetonitrile. The method was linear up to 60.96 μg·mL−1 for L-carnosine. The calibration curve was linear in concentration ranges from 0.5 to 60.96 μg·mL−1. The relative standard deviations obtained for intra- and interday precision were lower than 12% and the recoveries were higher than 90% for both carnosine and internal standard. We successfully applied this method to the analysis of endogenous carnosine in cardiac muscle of the diabetes rats and healthy control rats. The concentration of carnosine was significantly lower in the diabetes rats group, compared to that in the healthy control rats. These results support the usefulness of this method as a means of quantitating carnosine and illustrate the important role of L-carnosine in cardiac muscle. PMID:27190533

  12. Abdominal expiratory muscle activity in anesthetized vagotomized neonatal rats.

    PubMed

    Iizuka, Makito

    2009-05-01

    The pattern of respiratory activity in abdominal muscles was studied in anesthetized, spontaneously breathing, vagotomized neonatal rats at postnatal days 0-3. Anesthesia (2.0% isoflurane, 50% O(2)) depressed breathing and resulted in hypercapnia. Under this condition, abdominal muscles showed discharge late in the expiratory phase (E2 activity) in most rats. As the depth of anesthesia decreased, the amplitude of discharges in the diaphragm and abdominal muscles increased. A small additional burst frequently occurred in abdominal muscles just after the termination of diaphragmatic inspiratory activity (E1 or postinspiratory activity). Since this E1 activity is not often observed in adult rats, the abdominal respiratory pattern likely changes during postnatal development. Anoxia-induced gasping after periodic expiratory activity without inspiratory activity, and in most rats, abdominal expiratory activity disappeared before terminal apnea. These results suggest that a biphasic abdominal motor pattern (a combination of E2 and E1 activity) is a characteristic of vagotomized neonatal rats during normal respiration.

  13. Endogenous L-Carnosine Level in Diabetes Rat Cardiac Muscle.

    PubMed

    Liu, Yali; Su, Dan; Zhang, Ling; Wei, Shaofeng; Liu, Kuangyi; Peng, Mi; Li, Hanyun; Song, Yonggui

    2016-01-01

    A novel method for quantitation of cardiac muscle carnosine levels using HPLC-UV is described. In this simple and reliable method, carnosine from the rat cardiac muscle and the internal standard, thymopentin, were extracted by protein precipitation with acetonitrile. The method was linear up to 60.96 μg·mL(-1) for L-carnosine. The calibration curve was linear in concentration ranges from 0.5 to 60.96 μg·mL(-1). The relative standard deviations obtained for intra- and interday precision were lower than 12% and the recoveries were higher than 90% for both carnosine and internal standard. We successfully applied this method to the analysis of endogenous carnosine in cardiac muscle of the diabetes rats and healthy control rats. The concentration of carnosine was significantly lower in the diabetes rats group, compared to that in the healthy control rats. These results support the usefulness of this method as a means of quantitating carnosine and illustrate the important role of L-carnosine in cardiac muscle.

  14. Endurance training facilitates myoglobin desaturation during muscle contraction in rat skeletal muscle.

    PubMed

    Takakura, Hisashi; Furuichi, Yasuro; Yamada, Tatsuya; Jue, Thomas; Ojino, Minoru; Hashimoto, Takeshi; Iwase, Satoshi; Hojo, Tatsuya; Izawa, Tetsuya; Masuda, Kazumi

    2015-03-24

    At onset of muscle contraction, myoglobin (Mb) immediately releases its bound O2 to the mitochondria. Accordingly, intracellular O2 tension (PmbO2) markedly declines in order to increase muscle O2 uptake (mVO2). However, whether the change in PmbO2 during muscle contraction modulates mVO2 and whether the O2 release rate from Mb increases in endurance-trained muscles remain unclear. The purpose of this study was, therefore, to determine the effect of endurance training on O2 saturation of Mb (SmbO2) and PmbO2 kinetics during muscle contraction. Male Wistar rats were subjected to a 4-week swimming training (Tr group; 6 days per week, 30 min × 4 sets per day) with a weight load of 2% body mass. After the training period, deoxygenated Mb kinetics during muscle contraction were measured using near-infrared spectroscopy under hemoglobin-free medium perfusion. In the Tr group, the VmO2peak significantly increased by 32%. Although the PmbO2 during muscle contraction did not affect the increased mVO2 in endurance-trained muscle, the O2 release rate from Mb increased because of the increased Mb concentration and faster decremental rate in SmbO2 at the maximal twitch tension. These results suggest that the Mb dynamics during muscle contraction are contributing factors to faster VO2 kinetics in endurance-trained muscle.

  15. The ischiourethralis muscle of the rat: anatomy, innervation, and function.

    PubMed

    Dail, W G; Sachs, B D

    1991-02-01

    The ischiourethralis (IU), a striated perineal muscle presumed to be involved in sexual reflexes, was studied in the rat. The paired muscle arises from the penile crus and the penile bulb and unites in a raphe over the deep dorsal vein of the penis. Retrograde tracing studies show that the muscle is innervated by neurons in the dorsolateral nucleus of the lumbar spinal cord, a pudendal nerve motor nucleus which also innervates the ischiocavernosus muscle. Excision of the IU muscle did not interfere with the ability of males to display normal copulatory behavior, nor did it affect significantly the number and intensity of reflexive erections. It nevertheless remains possible that the IU may contribute to intense glans erection by compressing the deep dorsal vein.

  16. Astaxanthin intake attenuates muscle atrophy caused by immobilization in rats.

    PubMed

    Shibaguchi, Tsubasa; Yamaguchi, Yusuke; Miyaji, Nobuyuki; Yoshihara, Toshinori; Naito, Hisashi; Goto, Katsumasa; Ohmori, Daijiro; Yoshioka, Toshitada; Sugiura, Takao

    2016-08-01

    Astaxanthin is a carotenoid pigment and has been shown to be an effective inhibitor of oxidative damage. We tested the hypothesis that astaxanthin intake would attenuate immobilization-induced muscle atrophy in rats. Male Wistar rats (14-week old) were fed for 24 days with either astaxanthin or placebo diet. After 14 days of each experimental diet intake, the hindlimb muscles of one leg were immobilized in plantar flexion position using a plaster cast. Following 10 days of immobilization, both the atrophic and the contralateral plantaris muscles were removed and analyzed to determine the level of muscle atrophy along with measurement of the protein levels of CuZn-superoxide dismutase (CuZn-SOD) and selected proteases. Compared with placebo diet animals, the degree of muscle atrophy in response to immobilization was significantly reduced in astaxanthin diet animals. Further, astaxanthin supplementation significantly prevented the immobilization-induced increase in the expression of CuZn-SOD, cathepsin L, calpain, and ubiquitin in the atrophied muscle. These results support the postulate that dietary astaxanthin intake attenuates the rate of disuse muscle atrophy by inhibiting oxidative stress and proteolysis via three major proteolytic pathways. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  17. Electrical stimulation delays reinnervation in denervated rat muscle.

    PubMed

    Pinheiro-Dardis, Clara M; Erbereli, Bruna T; Gigo-Benato, Davilene; Castro, Paula A T S; Russo, Thiago L

    2017-01-24

    It is not clear if electrical stimulation (ES) can affect muscle reinnervation. This study aimed to verify if ES affects neuromuscular recovery after nerve crush injury in rats. Denervated muscles were electrically stimulated daily for 6 or 14 days. Neuromuscular performance and excitability, and muscle morphology were determined. Muscle trophism markers (atrogin-1, MuRF-1, and myoD), as well as neuromuscular junction (NMJ) organization (muscle-specific receptor tyrosine kinase [MuSK], cytoplasmic protein downstream of kinase-7 [Dok-7], nicotinic ACh receptor [nAChR], and neural cell adhesion molecule [N-CAM]) were assessed. ES impaired neuromuscular recovery at day 14 postdenervation. Muscle hypoexcitability was accentuated by ES at 6 and 14 days postdenervation. Although ES reduced the accumulation of atrogin-1, MuRF1, and myoD mRNAs, it increased muscle atrophy. Gene expression of MuSK, Dok-7, nAChR, and the content of N-CAM protein were altered by ES. ES can delay the reinnervation process by modulating factors related to NMJ stability and organization, and inducing dysfunction, hypoexcitability, and muscle atrophy. Muscle Nerve, 2017. © 2017 Wiley Periodicals, Inc.

  18. Leucine Supplementation Improves Skeletal Muscle Regeneration after Cryolesion in Rats

    PubMed Central

    Pereira, Marcelo G.; Baptista, Igor L.; Carlassara, Eduardo O. C.; Moriscot, Anselmo S.; Aoki, Marcelo S.; Miyabara, Elen H.

    2014-01-01

    This study was undertaken in order to provide further insight into the role of leucine supplementation in the skeletal muscle regeneration process, focusing on myofiber size and strength recovery. Young (2-month-old) rats were subjected or not to leucine supplementation (1.35 g/kg per day) started 3 days prior to cryolesion. Then, soleus muscles were cryolesioned and continued receiving leucine supplementation until 1, 3 and 10 days later. Soleus muscles from leucine-supplemented animals displayed an increase in myofiber size and a reduction in collagen type III expression on post-cryolesion day 10. Leucine was also effective in reducing FOXO3a activation and ubiquitinated protein accumulation in muscles at post-cryolesion days 3 and 10. In addition, leucine supplementation minimized the cryolesion-induced decrease in tetanic strength and increase in fatigue in regenerating muscles at post-cryolesion day 10. These beneficial effects of leucine were not accompanied by activation of any elements of the phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin signalling pathway in the regenerating muscles. Our results show that leucine improves myofiber size gain and strength recovery in regenerating soleus muscles through attenuation of protein ubiquitination. In addition, leucine might have therapeutic effects for muscle recovery following injury and in some muscle diseases. PMID:24416379

  19. A Rat Model for Muscle Regeneration in the Soft Palate

    PubMed Central

    Carvajal Monroy, Paola L.; Grefte, Sander; Kuijpers-Jagtman, Anne M.; Helmich, Maria P. A. C.; Ulrich, Dietmar J. O.; Von den Hoff, Johannes W.; Wagener, Frank A. D. T. G.

    2013-01-01

    Background Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. Despite successful surgical repositioning of the muscles, optimal function is often not achieved. Scar formation and defective regeneration may hamper the functional recovery of the muscles after cleft palate repair. Therefore, the aim of this study is to investigate the anatomy and histology of the soft palate in rats, and to establish an in vivo model for muscle regeneration after surgical injury. Methods Fourteen adult male Sprague Dawley rats were divided into four groups. Groups 1 (n = 4) and 2 (n = 2) were used to investigate the anatomy and histology of the soft palate, respectively. Group 3 (n = 6) was used for surgical wounding of the soft palate, and group 4 (n = 2) was used as unwounded control group. The wounds (1 mm) were evaluated by (immuno)histochemistry (AZAN staining, Pax7, MyoD, MyoG, MyHC, and ASMA) after 7 days. Results The present study shows that the anatomy and histology of the soft palate muscles of the rat is largely comparable with that in humans. All wounds showed clinical evidence of healing after 7 days. AZAN staining demonstrated extensive collagen deposition in the wound area, and initial regeneration of muscle fibers and salivary glands. Proliferating and differentiating satellite cells were identified in the wound area by antibody staining. Conclusions This model is the first, suitable for studying muscle regeneration in the rat soft palate, and allows the development of novel adjuvant strategies to promote muscle regeneration after cleft palate surgery. PMID:23554995

  20. Reference values of respiratory and peripheral muscle function in rats.

    PubMed

    Barreiro, E; Marín-Corral, J; Sanchez, F; Mielgo, V; Alvarez, F J; Gáldiz, J B; Gea, J

    2010-12-01

    Skeletal muscle dysfunction is a common systemic manifestation in several prevalent diseases. Predictive values are useful tools for the diagnosis and prognosis of diseases. In experimental animals, no reference values of muscle function evaluation have been so far reported. The objective was to obtain predictive values of maximal inspiratory pressure (MIP) and grip strength measurements in healthy rats. In 70 healthy rats, MIP and grip strength were measured in vivo weekly for five consecutive weeks using non-invasive methodologies. Three ranges of rat body weights (250-299, 300-349 and 350-399 g) and lengths (37.0-41.0, 41.1-42.0 and 42.1-44.0 cm) were established. MIP and grip strength measurements falling within the ranges of weight 350-399 and 300-349 g and length 42.1-44.0 cm were significantly greater than values falling within 250-299 g and 37.0-41.0 cm ranges respectively. Specific weight- and length-percentile distributions for MIP and grip strength measurements were calculated. As significant direct correlations were observed between rat weights and lengths and either MIP or grip strength measurements, regression equations relating all these variables were also determined. Skeletal muscle dysfunction is frequently associated with highly prevalent conditions. The significant predictive equations described for both MIP and grip strength measurements will enable scientists to better estimate the respiratory and peripheral muscle dysfunctions of laboratory animals, especially when conducting follow-up and/or intervention investigations.

  1. Rat rotator cuff muscle responds differently from hindlimb muscle to a combined tendon-nerve injury.

    PubMed

    Davies, Michael R; Ravishankar, Bharat; Laron, Dominique; Kim, Hubert T; Liu, Xuhui; Feeley, Brian T

    2015-07-01

    Rotator cuff tears (RCTs) are among the most common musculoskeletal injuries seen by orthopaedic surgeons. Clinically, massive cuff tears lead to unique pathophysiological changes in rotator cuff muscle, including atrophy, and massive fatty infiltration, which are rarely seen in other skeletal muscles. Studies in a rodent model for RCT have demonstrated that these histologic findings are accompanied by activation of the Akt/mammalian target of rapamycin (mTOR) and transforming growth factor-β (TGF-β) pathways following combined tendon-nerve injury. The purpose of this study was to compare the histologic and molecular features of rotator cuff muscle and gastrocnemius muscle--a major hindlimb muscle, following combined tendon-nerve injury. Six weeks after injury, the rat gastrocnemius did not exhibit notable fatty infiltration compared to the rotator cuff. Likewise, the adipogenic markers SREBP-1 and PPARγ as well as the TGF-β canonical pathway were upregulated in the rotator cuff, but not the gastrocnemius. Our study suggests that the rat rotator cuff and hindlimb muscles differ significantly in their response to a combined tendon-nerve injury. Clinically, these findings highlight the unique response of the rotator cuff to injury, and may begin to explain the poor outcomes of massive RCTs compared to other muscle-tendon injuries.

  2. Bone and muscle atrophy with suspension of the rat

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Marsh, C.; Evans, H.; Johnson, P.; Schneider, V.; Jhingran, S.

    1985-01-01

    In order to identify a suitable model for the study of muscle atrophy due to suspension in space, a modified version of the Morey tail suspension model was used to measure the atrophic responses of rat bone and muscle to 14-30 days of unloading of the hindlimbs. The progress of atrophy was measured by increases in methylene diphosphonate (MDP) uptake. It is found that bone uptake of methylene diphosphonate followed a phasic pattern similar to changes in the bone formation rate of immobilized dogs and cats. Increased MDP uptake after a period of 60 days indicated an accelerated bone metabolism. Maximum muscle atrophy in the suspended rats was distinctly different from immobilization atrophy. On the basis of the experimental results, it is concluded that the tail suspension model is an adequate simulation of bone atrophy due to suspension.

  3. Bone and muscle atrophy with suspension of the rat

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Marsh, C.; Evans, H.; Johnson, P.; Schneider, V.; Jhingran, S.

    1985-01-01

    In order to identify a suitable model for the study of muscle atrophy due to suspension in space, a modified version of the Morey tail suspension model was used to measure the atrophic responses of rat bone and muscle to 14-30 days of unloading of the hindlimbs. The progress of atrophy was measured by increases in methylene diphosphonate (MDP) uptake. It is found that bone uptake of methylene diphosphonate followed a phasic pattern similar to changes in the bone formation rate of immobilized dogs and cats. Increased MDP uptake after a period of 60 days indicated an accelerated bone metabolism. Maximum muscle atrophy in the suspended rats was distinctly different from immobilization atrophy. On the basis of the experimental results, it is concluded that the tail suspension model is an adequate simulation of bone atrophy due to suspension.

  4. Establishment of bipotent progenitor cell clone from rat skeletal muscle.

    PubMed

    Murakami, Yousuke; Yada, Erica; Nakano, Shin-ichi; Miyagoe-Suzuki, Yuko; Hosoyama, Tohru; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2011-12-01

    The present study describes the isolation, cloning and characterization of adipogenic progenitor cells from rat skeletal muscle. Among the obtained 10 clones, the most highly adipogenic progenitor, 2G11 cells, were further characterized. In addition to their adipogenicity, 2G11 cells retain myogenic potential as revealed by formation of multinucleated myotubes when co-cultured with myoblasts. 2G11 cells were resistant to an inhibitory effect of basic fibroblast growth factor on adipogenesis, while adipogenesis of widely used preadipogenic cell line, 3T3-L1 cells, was suppressed almost completely by the same treatment. In vivo transplantation experiments revealed that 2G11 cells are able to possess both adipogenicity and myogenicity in vivo. These results indicate the presence of bipotent progenitor cells in rat skeletal muscle, and suggest that such cells may contribute to ectopic fat formation in skeletal muscle. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  5. Compensatory effects of chronic electrostimulation on unweighted rat soleus muscle.

    PubMed

    Leterme, D; Falempin, M

    1994-01-01

    The purpose of this study was to investigate the effects of electrostimulation in counteracting the transformation of the unweighted rat soleus muscle. The stimulation resembled the firing patterns of normal slow motor units and was imposed during hindlimb suspension. For the 10-day hindlimb suspended rats, the transformation of the slow soleus muscle towards a faster type was characterized by a decrease in the time to peak tension and the half-relaxation time of the twitch, a reduction in the P20/P0 index, i.e. the ratio of the subtetanic tension at 20 Hz relative to the tetanic tension, and a decrease in the percentage distributions of type I fibres accompanied by an increase of type IIa and IIc fibres. These changes were prevented by electrostimulation since, for the parameters mentioned above, no significant difference was observed in the soleus of the suspended rats that received electrostimulation when compared with the control rats. Nevertheless, neither the loss of mass nor the decrease in force output in the suspended rats were prevented by electrostimulation. The present results suggest a positive compensation of the suspension-induced alterations in the contractile and histochemical properties of the soleus muscle by means of chronic electrostimulation, which, however, do not prevent atrophy or the loss of contractile force.

  6. Dexamethasone regulates glutamine synthetase expression in rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Konagaya, Masaaki; Konagaya, Yoko; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa

    1986-01-01

    The regulation of glutamine synthetase by glucocorticoids in rat skeletal muscles was studied. Administration of dexamethasone strikingly enhanced glutamine synthetase activity in plantaris and soleus muscles. The dexamethasone-mediated induction of glutamine synthetase activity was blocked to a significant extent by orally administered RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves dramatically increased levels of glutamine synthetase mRNA. The induction of glutamine synthetase was selective in that glutaminase activity of soleus and plantaris muscles was not increased by dexamethasone. Furthermore, dexamethasone treatment resulted in only a small increase in glutamine synthetase activity in the heart. Accordingly, there was only a slight change in glutamine synthetase mRNA level in this tissue. Thus, glucocorticoids regulate glutamine synthetase gene expression in rat muscles at the transcriptional level via interaction with intracellular glutamine production by muscle and to mechanisms underlying glucocorticoid-induced muscle atrophy.

  7. Effects of prolonged space flight on rat skeletal muscle.

    PubMed

    Nesterov, V P; Zheludkova, Z P; Kuznetsova, L A

    1979-10-01

    The effect of a 20-day space flight on water, Na+, K+, Mg2+, Ca2+ and glycogen contents as well as on activities of glycogen metabolism enzymes--glycogen synthetase and glycogen phosphorylase--of rat skeletal muscles was studied. This data is regarded as an integral test characterizing the state of contractile tissue of the animals at the final stage of flight aboard biosatellites. The measurements indicate that there were no significant changes of cations and glycogen contents nor of the enzymic activities in fast-twitch muscles during the 20-day spaceflight. At the same time dehydration in these muscles was observed, which disappeared on the 25th postflight day. In slow-twitch antigravitational skeletal muscle (m. soleus) there was a decrease of K+ and increase of Na+ in the tissue contents. The changes disappeared at the end of the on-earth readaptation period. From the pattern of these observations, we can conclude that the 20-day space flight leads to some reversible biochemical changes of the rat skeletal muscles. A conclusion can be drawn about necessity of creating, aboard the spaceship, an artificial load on antigravitational skeletal muscles.

  8. Angiotensin II induces differential insulin action in rat skeletal muscle.

    PubMed

    Surapongchai, Juthamard; Prasannarong, Mujalin; Bupha-Intr, Tepmanas; Saengsirisuwan, Vitoon

    2017-03-01

    Angiotensin II (ANGII) is reportedly involved in the development of skeletal muscle insulin resistance. The present investigation evaluated the effects of two ANGII doses on the phenotypic characteristics of insulin resistance syndrome and insulin action and signaling in rat skeletal muscle. Male Sprague-Dawley rats were infused with either saline (SHAM) or ANGII at a commonly used pressor dose (100 ng/kg/min; ANGII-100) or a higher pressor dose (500 ng/kg/min; ANGII-500) via osmotic minipumps for 14 days. We demonstrated that ANGII-100-infused rats exhibited the phenotypic features of non-obese insulin resistance syndrome, including hypertension, impaired glucose tolerance and insulin resistance of glucose uptake in the soleus muscle, whereas ANGII-500-treated rats exhibited diabetes-like symptoms, such as post-prandial hyperglycemia, impaired insulin secretion and hypertriglyceridemia. At the cellular level, insulin-stimulated glucose uptake in the soleus muscle of the ANGII-100 group was 33% lower (P < 0.05) than that in the SHAM group and was associated with increased insulin-stimulated IRS-1 Ser(307) and decreased Akt Ser(473) and AS160 Thr(642) phosphorylation and GLUT-4 expression. However, ANGII-500 infusion did not induce skeletal muscle insulin resistance or impair insulin signaling elements as initially anticipated. Moreover, we found that insulin-stimulated glucose uptake in the ANGII-500 group was accompanied by the enhanced expression of ACE2 and MasR proteins, which are the key elements in the non-classical pathway of the renin-angiotensin system. Collectively, this study demonstrates for the first time that chronic infusion with these two pressor doses of ANGII induced differential metabolic responses at both the systemic and skeletal muscle levels. © 2017 Society for Endocrinology.

  9. Brainstem cholinergic modulation of muscle tone in infant rats.

    PubMed

    Gall, Andrew J; Poremba, Amy; Blumberg, Mark S

    2007-06-01

    In week-old rats, lesions of the dorsolateral pontine tegmentum (DLPT) and nucleus pontis oralis (PnO) have opposing effects on nuchal muscle tone. Specifically, pups with DLPT lesions exhibit prolonged bouts of nuchal muscle atonia (indicative of sleep) and pups with PnO lesions exhibit prolonged bouts of high nuchal muscle tone (indicative of wakefulness). Here we test the hypothesis that nuchal muscle tone is modulated, at least in part, by cholinergically mediated interactions between these two regions. First, in unanesthetized pups, we found that chemical infusion of the cholinergic agonist carbachol (22 mm, 0.1 microL) within the DLPT produced high muscle tone. Next, chemical lesions of the PnO were used to produce a chronic state of high nuchal muscle tone, at which time the cholinergic antagonist scopolamine (10 mm, 0.1 microL) was infused into the DLPT. Scopolamine effectively decreased nuchal muscle tone, thus suggesting that lesions of the PnO increase muscle tone via cholinergic activation of the DLPT. Using 2-deoxyglucose autoradiography, metabolic activation throughout the DLPT was observed after PnO lesions. Finally, consistent with the hypothesis that PnO inactivation produces high muscle tone, infusion of the sodium channel blocker lidocaine (2%) into the PnO of unanesthetized pups produced rapid increases in muscle tone. We conclude that, even early in infancy, the DLPT is critically involved in the regulation of muscle tone and behavioral state, and that its activity is modulated by a cholinergic mechanism that is directly or indirectly controlled by the PnO.

  10. Mechanisms mediating cholinergic antral circular smooth muscle contraction in rats

    PubMed Central

    Wrzos, Helena F; Tandon, Tarun; Ouyang, Ann

    2004-01-01

    AIM: To investigate the pathway (s) mediating rat antral circular smooth muscle contractile responses to the cholinomimetic agent, bethanechol and the subtypes of muscarinic receptors mediating the cholinergic contraction. METHODS: Circular smooth muscle strips from the antrum of Sprague-Dawley rats were mounted in muscle baths in Krebs buffer. Isometric tension was recorded. Cumulative concentration-response curves were obtained for (+)-cis-dioxolane (cD), a nonspecific muscarinic agonist, at 10-8-10-4 mol/L, in the presence of tetrodotoxin (TTX, 10-7 mol/L). Results were normalized to cross sectional area. A repeat concentration-response curve was obtained after incubation of the muscle for 90 min with antagonists for M1 (pirenzepine), M2 (methoctramine) and M3 (darifenacin) muscarinic receptor subtypes. The sensitivity to PTX was tested by the ip injection of 100 mg/kg of PTX 5 d before the experiment. The antral circular smooth muscles were removed from PTX-treated and non-treated rats as strips and dispersed smooth muscle cells to identify whether PTX-linked pathway mediated the contractility to bethanechol. RESULTS: A dose-dependent contractile response observed with bethanechol, was not affected by TTX. The pretreatment of rats with pertussis toxin decreased the contraction induced by bethanechol. Lack of calcium as well as the presence of the L-type calcium channel blocker, nifedipine, also inhibited the cholinergic contraction, with a reduction in response from 2.5 ± 0.4 g/mm2 to 1.2 ± 0.4 g/mm2 (P < 0.05). The dose-response curves were shifted to the right by muscarinic antagonists in the following order of affinity: darifenacin (M3) > methocramine (M2) > pirenzepine (M1). CONCLUSION: The muscarinic receptors-dependent contraction of rat antral circular smooth muscles was linked to the signal transduction pathway(s) involving pertussis-toxin sensitive GTP-binding proteins and to extracellular calcium via L-type voltage gated calcium channels. The

  11. Acid phosphatase and protease activities in immobilized rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Troup, J. P.; Fitts, R. H.

    1982-01-01

    The effect of hind-limb immobilization on selected Iysosomal enzyme activities was studied in rat hing-limb muscles composed primarily of type 1. 2A, or 2B fibers. Following immobilization, acid protease and acid phosphatase both exhibited signifcant increases in their activity per unit weight in all three fiber types. Acid phosphatase activity increased at day 14 of immobilization in the three muscles and returned to control levels by day 21. Acid protease activity also changed biphasically, displaying a higher and earlier rise than acid phosphatase. The pattern of change in acid protease, but not acid phosphatase, closely parallels observed muscle wasting. The present data therefore demonstrate enhanced proteolytic capacity of all three fiber types early during muscular atrophy. In addition, the data suggest a dependence of basal hydrolytic and proteolytic activities and their adaptive response to immobilization on muscle fiber composition.

  12. Acid phosphatase and protease activities in immobilized rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Troup, J. P.; Fitts, R. H.

    1982-01-01

    The effect of hind-limb immobilization on selected Iysosomal enzyme activities was studied in rat hing-limb muscles composed primarily of type 1. 2A, or 2B fibers. Following immobilization, acid protease and acid phosphatase both exhibited signifcant increases in their activity per unit weight in all three fiber types. Acid phosphatase activity increased at day 14 of immobilization in the three muscles and returned to control levels by day 21. Acid protease activity also changed biphasically, displaying a higher and earlier rise than acid phosphatase. The pattern of change in acid protease, but not acid phosphatase, closely parallels observed muscle wasting. The present data therefore demonstrate enhanced proteolytic capacity of all three fiber types early during muscular atrophy. In addition, the data suggest a dependence of basal hydrolytic and proteolytic activities and their adaptive response to immobilization on muscle fiber composition.

  13. Proteomic Profiling of Rat Thyroarytenoid Muscle

    ERIC Educational Resources Information Center

    Welham, Nathan V.; Marriott, Gerard; Bless, Diane M.

    2006-01-01

    Purpose: Proteomic methodologies offer promise in elucidating the systemwide cellular and molecular processes that characterize normal and diseased thyroarytenoid (TA) muscle. This study examined methodological issues central to the application of 2-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D SDS-PAGE) to the study of…

  14. Proteomic Profiling of Rat Thyroarytenoid Muscle

    ERIC Educational Resources Information Center

    Welham, Nathan V.; Marriott, Gerard; Bless, Diane M.

    2006-01-01

    Purpose: Proteomic methodologies offer promise in elucidating the systemwide cellular and molecular processes that characterize normal and diseased thyroarytenoid (TA) muscle. This study examined methodological issues central to the application of 2-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D SDS-PAGE) to the study of…

  15. Classification of muscle spindle afferents innervating the masseter muscle in rats.

    PubMed

    Masri, Radi; Ro, Jin Y; Dessem, Dean; Capra, Norman

    2006-09-01

    Taylor et al. [Taylor, A., Durbaba, R., Rodgers, J.F., 1992a. The classification of afferents from muscle spindles of the jaw-closing muscles of the cat. J Physiol 456, 609-628] developed a method to classify muscle spindle afferents using succinylcholine (Sch) and ramp and hold stretches. They demonstrated that cat jaw muscle spindle afferents show high proportion of intermediate responses to ramp and hold jaw stretch. Together with observations on the responses to Sch their data suggests that the majority of jaw muscle spindle afferents are influenced by a combination of nuclear bag(2) and nuclear chain fibres. Relatively few are influenced solely by nuclear bag(1) fibres. The purpose of this study was to categorize jaw muscle spindle afferent in rodents in response to ramp and hold stretches. Several measures were used to classify spindle afferents including (1) conduction velocity, (2) coefficient of variation (C.V.) of the interspike interval during jaw opening, and (3) the dynamic sensitivity and the initial discharge of spindle afferents before and after succinylcholine infusion (Sch, 100mg/kg, i.v.). Consistent with observations in the cat jaw muscles, the distribution of the conduction velocity and the C.V. of Vmes masseter afferents were unimodal. Therefore, these parameters were of little value in functional classification of spindle innervation. Succinylcholine injection either markedly increased the dynamic sensitivity or produced no change in Vmes afferents. Unlike cat jaw muscle spindle afferents, the effect of Sch on the initial discharge was not clearly separable from those responding or not responding to Sch. These results suggest that rat jaw muscle spindle afferents, have physiological properties that are primarily intermediate in nature and are likely to reflect a predominance of influence from nuclear bag(2) and chain fibres. However, the distinction between bag(2) and chain fibres influences is not as clearly defined in the rat compared to

  16. Influence of icing on muscle regeneration after crush injury to skeletal muscles in rats.

    PubMed

    Takagi, Ryo; Fujita, Naoto; Arakawa, Takamitsu; Kawada, Shigeo; Ishii, Naokata; Miki, Akinori

    2011-02-01

    The influence of icing on muscle regeneration after crush injury was examined in the rat extensor digitorum longus. After the injury, animals were randomly divided into nonicing and icing groups. In the latter, ice packs were applied for 20 min. Due to the icing, degeneration of the necrotic muscle fibers and differentiation of satellite cells at early stages of regeneration were retarded by ∼1 day. In the icing group, the ratio of regenerating fibers showing central nucleus at 14 days after the injury was higher, and cross-sectional area of the muscle fibers at 28 days was evidently smaller than in the nonicing group. Besides, the ratio of collagen fibers area at 14 and 28 days after the injury in the icing group was higher than in the nonicing group. These findings suggest that icing applied soon after the injury not only considerably retarded muscle regeneration but also induced impairment of muscle regeneration along with excessive collagen deposition. Macrophages were immunohistochemically demonstrated at the injury site during degeneration and early stages of regeneration. Due to icing, chronological changes in the number of macrophages and immunohistochemical expression of transforming growth factor (TGF)-β1 and IGF-I were also retarded by 1 to 2 days. Since it has been said that macrophages play important roles not only for degeneration, but also for muscle regeneration, the influence of icing on macrophage activities might be closely related to a delay in muscle regeneration, impairment of muscle regeneration, and redundant collagen synthesis.

  17. Sex steroids do not affect muscle weight, oxidative metabolism or cytosolic androgen reception binding of functionally overloaded rat Plantaris muscles

    NASA Technical Reports Server (NTRS)

    Max, S. R.; Rance, N.

    1983-01-01

    The effects of sex steroids on muscle weight and oxidative capacity of rat planaris muscles subjected to functional overload by removal of synergistic muscles were investigated. Ten weeks after bilateral synergist removal, plantaris muscles were significantly hypertrophic compared with unoperated controls. After this period, the ability of the muscles to oxide three substrates of oxidative metabolism was assessed. Experimental procedures are discussed and results are presented herein. Results suggest a lack of beneficial effect of sex hormone status on the process of hypertrophy and on biochemical changes in overloaded muscle. Such findings are not consistent with the idea of synergistic effects of sex steroids and muscle usage.

  18. Effects of taurine administration in rat skeletal muscles on exercise.

    PubMed

    Yatabe, Yoshihisa; Miyakawa, Shumpei; Miyazaki, Teruo; Matsuzaki, Yasushi; Ochiai, Naoyuki

    2003-01-01

    To investigate the effects of taurine administration on exercise, we studied taurine concentrations in rat skeletal muscles after endurance running and the duration of running time to exhaustion, with and without taurine administration. For study 1 we divided 40 male SD rats into two groups: endurance exercise group ( n = 20) and sedentary control group ( n = 20). Each was further divided into two groups; one received distilled water ( n = 10) and the other taurine solution in water 0.5 g/kg/day orally ( n = 10) for 2 weeks. The exercise group performed treadmill running (60 min) once only after their nursing period. For study 2, we divided 10 male SD rats into two groups; one ( n = 5) received taurine 0.5 g/kg/day, and the other ( n = 5) received no taurine for 2 weeks; the two groups then performed treadmill running to exhaustion. In study 1, taurine administration increased taurine concentrations in leg skeletal muscles, whereas the concentrations were significantly lower in the exercised groups without taurine administration. Taurine administration reduced the decrease in taurine concentration in skeletal muscles on exercise. In study 2, the duration of running time to exhaustion was significantly increased by taurine administration. We concluded that peroral administration of taurine maintains the taurine concentration in skeletal muscle on exercise and up-regulates physical endurance.

  19. Mitochondria-associated apoptotic signalling in denervated rat skeletal muscle

    PubMed Central

    Siu, Parco M; Alway, Stephen E

    2005-01-01

    Apoptosis has been implicated in the regulation of denervation-induced muscle atrophy. However, the activation of apoptotic signal transduction during muscle denervation has not been fully elucidated. The present study examined the apoptotic responses to denervation in rat gastrocnemius muscle. Following 14 days of denervation, the extent of apoptotic DNA fragmentation as determined by a cytosolic nucleosome ELISA was increased by 100% in the gastrocnemius muscle. RT-PCR and immunoblot analyses indicated that Bax was dramatically upregulated while Bcl-2 was modestly increased; however, the Bax/Bcl-2 ratio was significantly increased in denervated muscles relative to control muscles. Analyses of ELISA and immunoblots from mitochondria-free cytosol extracts showed a significant increase in mitochondria-associated apoptotic factors, including cytochrome c, Smac/DIABLO and apoptosis-inducing factor (AIF). In addition to the upregulation of caspase-3 and -9 mRNA, pro-/cleaved caspase protein and proteolytic activity levels, the X-linked inhibitor of apoptosis (XIAP) protein level was downregulated. The cleaved product of poly(ADP-ribose) polymerase (PARP) was detected in muscle samples following denervation. Although we did not find a difference in the inhibitor of DNA binding/ differentiation-2 (Id2) and c-Myc protein contents between the denervated and control muscles, the protein content of tumour suppressor p53 was significantly increased in both the nuclear and the cytosolic fractions with denervation. Moreover, denervation increased the protein content of HSP70, whereas the MnSOD (a mitochondrial isoform of superoxide dismutase) protein content was diminished, which indicated that denervation might have induced cellular and/or oxidative stress. Our data show that mitochondria-associated apoptotic signalling is upregulated during muscle denervation. We interpret these findings to indicate that apoptosis has a physiologically important role in regulating denervation

  20. Dissemination of Walker 256 carcinoma cells to rat skeletal muscle

    SciTech Connect

    Ueoka, H.; Hayashi, K.; Namba, T.; Grob, D.

    1986-03-05

    After injection of 10/sup 6/ Walker 256 carcinoma cells labelled with /sup 125/I-5-iodo-2'-deoxyuridine into the tail vein, peak concentration in skeletal muscle was 46 cells/g at 60 minutes, which was lower than 169202, 1665, 555, 198 and 133 cells/g, respectively, at 30 or 60 minutes in lung, liver, spleen, kidney and heart. Because skeletal muscle constitutes 37.4% of body weight, the total number of tumor cells was 2323 cells, which was much greater than in spleen, kidney and heart with 238, 271, and 85 cells, respectively, and only less than in lung and liver, at 222857 and 11700 cells, respectively. The total number in skeletal muscle became greater than in liver at 4 hours and than in lung at 24 hours. Ten minutes after injection of 7.5 x 10/sup 6/ Walker 256 carcinoma cells into the abdominal aorta of rats, a mean of 31 colony-forming cells were recovered from the gastrocnemius, while 106 cells were recovered from the lung after injection into the tail vein. These results indicate that a large number of viable tumor cells can be arrested in skeletal muscle through circulation. The rare remote metastasis of malignancies into skeletal muscle despite constantly circulating tumor cells does not appear to be due to poor dissemination of tumor cells into muscle but due to unhospitable environment of skeletal muscle.

  1. An evaluation of the reliability of muscle fiber cross-sectional area and fiber number measurements in rat skeletal muscle

    USDA-ARS?s Scientific Manuscript database

    Background: The reliability of estimating muscle fiber cross-sectional area (measure of muscle fiber size) and fiber number from only a subset of fibers in rat hindlimb muscle cross-sections has not been systematically evaluated. This study examined the variability in mean estimates of fiber cross-s...

  2. Rat hindlimb muscle responses to suspension hypokinesia/hypodynamia

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, J. M.; Deavers, D. R.

    1983-01-01

    Hypokinetic/hyupodynamic (H/H) whole body suspension of rats eliminates hindlimb load bearing functions while permitting continued use of the forelimbs. Responses of hindlimb muscles were assessed in terms of absolute and relative weights during 1 and 2 weeks of H/H suspension. Muscle mass loss was in the order soleus greater than gastrocnemius equal to plantaris greater than extensor digitorum longus (EDL). The soleus, a postural antigravity muscle composed mainly of slow twitch fibers, was most sensitive, losing 35 and 45 percent of its weight during the first and second weeks, respectively. The gastrocnemius and plantaris showed losses during the first week but no significant loss during the second wee. The EDL showed little or no weight loss. During post suspension recovery all muscles showed a weight gain. H/H suspended rats failed to grow; following removal from suspension they gained weight linearly, comparable to controls. Products of muscle metabolism including urea, ammonia, and 3-methylhistidine increased in the urine during H/H suspension and were significantly reduced approaching control levels during recovery. This suspension model offers considerable promise for comparison with H/H responses during weightlessness.

  3. Alterations in contractile properties of tongue muscles in old rats.

    PubMed

    Ota, Fumikazu; Connor, Nadine P; Konopacki, Richard

    2005-10-01

    Fatigue and weakness are well-known signs of aging that are related to sarcopenia, or loss of skeletal muscle mass, organization, and strength. Sarcopenia may affect swallowing. The tongue plays a vital role in swallowing, but there is limited knowledge regarding age-related changes in lingual muscle contractile properties. Our purpose was to determine whether alterations in tongue force, temporal features of tongue muscle contraction, and fatigability are manifested as a function of aging in old rats. We evaluated tongue muscle contractile properties in young and old Fischer 344/Brown Norway rats. Contractions were elicited via bilateral electrical stimulation of the hypoglossal nerves. Maximum tongue forces and fatigability were not significantly altered in old animals, but aging was associated with significantly longer twitch contraction time and longer half-decay recovery time intervals (p < .01). The results indicated that old animals generated sufficient maximum tongue forces, but were slower in achieving these forces than young animals. These findings are consistent with reports of altered temporal parameters of tongue actions during swallowing in humans, and suggest that a disruption in the timing of muscle contraction onset and recovery may contribute to the altered tongue kinetics observed with aging.

  4. Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model.

    PubMed

    Nakasa, Tomoyuki; Ishikawa, Masakazu; Shi, Ming; Shibuya, Hayatoshi; Adachi, Nobuo; Ochi, Mitsuo

    2010-10-01

    MicroRNA (miRNA)s are a class of non-coding RNAs that regulate gene expression post-transcriptionally. Muscle-specific miRNA, miRNA (miR)-1, miR-133 and miR-206 play a crucial role in the regulation of muscle development and homeostasis. Muscle injuries are a common musculoskeletal disorder, and the most effective treatment has not been established yet. The purpose of this study was to demonstrate that a local injection of double-stranded (ds) miR-1, miR-133 and 206 can accelerate muscle regeneration in a rat skeletal muscle injury model. After the laceration of the rat tibialis anterior muscle, ds miR-1, 133 and 206 mixture mediated atelocollagen was injected into the injured site. The control group was injected with control siRNA. At 1 week after injury, an injection of miRNAs could enhance muscle regeneration morphologically and physiologically, and prevent fibrosis effectively compared to the control siRNA. Administration of exogenous miR-1, 133 and 206 can induce expression of myogenic markers, MyoD1, myogenin and Pax7 in mRNA and expression in the protein level at 3 and 7 days after injury. The combination of miR-1, 133 and 206 can promote myotube differentiation, and the expression of MyoD1, myogenin and Pax7 were up-regulated in C2C12 cells in vitro. Local injection of miR-1, 133 and 206 could be a novel therapeutic strategy in the treatment of skeletal muscle injury. © 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  5. Manual therapy ameliorates delayed-onset muscle soreness and alters muscle metabolites in rats.

    PubMed

    Urakawa, Susumu; Takamoto, Kouichi; Nakamura, Tomoya; Sakai, Shigekazu; Matsuda, Teru; Taguchi, Toru; Mizumura, Kazue; Ono, Taketoshi; Nishijo, Hisao

    2015-02-01

    Delayed-onset muscle soreness (DOMS) can be induced by lengthening contraction (LC); it can be characterized by tenderness and movement-related pain in the exercised muscle. Manual therapy (MT), including compression of exercised muscles, is widely used as physical rehabilitation to reduce pain and promote functional recovery. Although MT is beneficial for reducing musculoskeletal pain (i.e. DOMS), the physiological mechanisms of MT remain unclear. In the present study, we first developed an animal model of MT in DOMS; LC was applied to the rat gastrocnemius muscle under anesthesia, which induced mechanical hyperalgesia 2-4 days after LC. MT (manual compression) ameliorated mechanical hyperalgesia. Then, we used capillary electrophoresis time-of-flight mass spectroscopy (CE-TOFMS) to investigate early effects of MT on the metabolite profiles of the muscle experiencing DOMS. The rats were divided into the following three groups; (1) normal controls, (2) rats with LC application (LC group), and (3) rats undergoing MT after LC (LC + MT group). According to the CE-TOFMS analysis, a total of 171 metabolites were detected among the three groups, and 19 of these metabolites were significant among the groups. Furthermore, the concentrations of eight metabolites, including branched-chain amino acids, carnitine, and malic acid, were significantly different between the LC + MT and LC groups. The results suggest that MT significantly altered metabolite profiles in DOMS. According to our findings and previous data regarding metabolites in mitochondrial metabolism, the ameliorative effects of MT might be mediated partly through alterations in metabolites associated with mitochondrial respiration.

  6. Manual therapy ameliorates delayed-onset muscle soreness and alters muscle metabolites in rats

    PubMed Central

    Urakawa, Susumu; Takamoto, Kouichi; Nakamura, Tomoya; Sakai, Shigekazu; Matsuda, Teru; Taguchi, Toru; Mizumura, Kazue; Ono, Taketoshi; Nishijo, Hisao

    2015-01-01

    Delayed-onset muscle soreness (DOMS) can be induced by lengthening contraction (LC); it can be characterized by tenderness and movement-related pain in the exercised muscle. Manual therapy (MT), including compression of exercised muscles, is widely used as physical rehabilitation to reduce pain and promote functional recovery. Although MT is beneficial for reducing musculoskeletal pain (i.e. DOMS), the physiological mechanisms of MT remain unclear. In the present study, we first developed an animal model of MT in DOMS; LC was applied to the rat gastrocnemius muscle under anesthesia, which induced mechanical hyperalgesia 2–4 days after LC. MT (manual compression) ameliorated mechanical hyperalgesia. Then, we used capillary electrophoresis time-of-flight mass spectroscopy (CE-TOFMS) to investigate early effects of MT on the metabolite profiles of the muscle experiencing DOMS. The rats were divided into the following three groups; (1) normal controls, (2) rats with LC application (LC group), and (3) rats undergoing MT after LC (LC + MT group). According to the CE-TOFMS analysis, a total of 171 metabolites were detected among the three groups, and 19 of these metabolites were significant among the groups. Furthermore, the concentrations of eight metabolites, including branched-chain amino acids, carnitine, and malic acid, were significantly different between the LC + MT and LC groups. The results suggest that MT significantly altered metabolite profiles in DOMS. According to our findings and previous data regarding metabolites in mitochondrial metabolism, the ameliorative effects of MT might be mediated partly through alterations in metabolites associated with mitochondrial respiration. PMID:25713324

  7. Hypoglossal nucleus projections to the rat masseter muscle.

    PubMed

    Mameli, O; Stanzani, S; Russo, A; Pellitteri, R; Spatuzza, M; Caria, M A; Mulliri, G; De Riu, P L

    2009-08-04

    We investigated in the rat whether hypoglossal innervation extended to facial muscles other than the extrinsic musculature of the mystacial pad. Results showed that hypoglossal neurons also innervate the masseter muscle. Dil injected into the XII nucleus showed hypoglossal axons in the ipsilateral main trunk of the trigeminal nerve. After Gasser's ganglion crossing, the axons entered into the infraorbital division of the trigeminal nerve and targeted the extrinsic muscles of the mystacial pad. They also spread into the masseter branch of the trigeminal nerve to target the polar portions of the masseter muscle spindles. Retrograde double labelling, performed by injecting Dil into the pad and True Blue into the ipsilateral masseter muscle, showed labelled hypoglossal neurons in the medio-dorsal portion of the XII nucleus. The majority of these neurons were small (15-20 microm diameter), showed fluorescence for Dil and projected to the mystacial pad. Other medium-size neurons (25 microm diameter) were instead labelled with True Blue and projected to the masseter muscle. Finally, in the same area, other small hypoglossal neurons showed double labelling and projected to both structures. Functional hypotheses on the role of these hypoglossal projections have been discussed.

  8. Low intensity laser therapy accelerates muscle regeneration in aged rats

    PubMed Central

    Vatansever, Fatma; Rodrigues, Natalia C.; Assis, Livia L.; Peviani, Sabrina S.; Durigan, Joao L.; Moreira, Fernando M.A.; Hamblin, Michael R.; Parizotto, Nivaldo A.

    2013-01-01

    Background Elderly people suffer from skeletal muscle disorders that undermine their daily activity and quality of life; some of these problems can be listed as but not limited to: sarcopenia, changes in central and peripheral nervous system, blood hypoperfusion, regenerative changes contributing to atrophy, and muscle weakness. Determination, proliferation and differentiation of satellite cells in the regenerative process are regulated by specific transcription factors, known as myogenic regulatory factors (MRFs). In the elderly, the activation of MRFs is inefficient which hampers the regenerative process. Recent studies found that low intensity laser therapy (LILT) has a stimulatory effect in the muscle regeneration process. However, the effects of this therapy when associated with aging are still unknown. Objective This study aimed to evaluate the effects of LILT (λ=830 nm) on the tibialis anterior (TA) muscle of aged rats. Subjects and methods The total of 56 male Wistar rats formed two population sets: old and young, with 28 animals in each set. Each of these sets were randomly divided into four groups of young rats (3 months of age) with n=7 per group and four groups of aged rats (10 months of age) with n=7 per group. These groups were submitted to cryoinjury + laser irradiation, cryoinjury only, laser irradiation only and the control group (no cryoinjury/no laser irradiation). The laser treatment was performed for 5 consecutive days. The first laser application was done 24 h after the injury (on day 2) and on the seventh day, the TA muscle was dissected and removed under anesthesia. After this the animals were euthanized. Histological analyses with toluidine blue as well as hematoxylin-eosin staining (for counting the blood capillaries) were performed for the lesion areas. In addition, MyoD and VEGF mRNA was assessed by quantitative polymerase chain reaction. Results The results showed significant elevation (p<0.05) in MyoD and VEGF genes expression levels

  9. Role of nerve and muscle factors in the development of rat muscle spindles.

    PubMed

    Kucera, J; Walro, J M; Reichler, J

    1989-10-01

    The soleus muscles of fetal rats were examined by electron microscopy to determine whether the early differentiation of muscle spindles is dependent upon sensory innervation, motor innervation, or both. Simple unencapsulated afferent-muscle contacts were observed on the primary myotubes at 17 and 18 days of gestation. Spindles, encapsulations of muscle fibers innervated by afferents, could be recognized early on day 18 of gestation. The full complement of spindles in the soleus muscle was present at day 19, in the region of the neuromuscular hilum. More afferents innervated spindles at days 18 and 19 of gestation than at subsequent developmental stages, or in adult rats; hence, competition for available myotubes may exist among afferents early in development. Some of the myotubes that gave rise to the first intrafusal (bag2) fiber had been innervated by skeletomotor (alpha) axons prior to their incorporation into spindles. However, encapsulated intrafusal fibers received no motor innervation until fusimotor (gamma) axons innervated spindles 3 days after the arrival of afferents and formation of spindles, at day 20. The second (bag1) intrafusal fiber was already formed when gamma axons arrived. Thus, the assembly of bag1 and bag2 intrafusal fibers occurs in the presence of sensory but not gamma motor innervation. However, transient innervation of future bag2 fibers by alpha axons suggests that both sensory and alpha motor neurons may influence the initial stages of bag2 fiber assembly. The confinement of nascent spindles to a localized region of the developing muscle and the limited number of spindles in developing muscles in spite of an abundance of afferents raise the possibility that afferents interact with a special population of undifferentiated myotubes to form intrafusal fibers.

  10. Influence of suspension hypokinesia on rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Templeton, G. H.; Padalino, M.; Manton, J.; Glasberg, M.; Silver, C. J.; Silver, P.; Demartino, G.; Leconey, T.; Klug, G.; Hagler, H.

    1984-01-01

    Hindlimb hypokinesia was induced in rats by the Morey method to characterize the response of the soleus muscle. Rats suspended for 1-4 wk exhibited continuous and significant declines in soleus mass, function, and contractile duration. Soleus speeding was in part explained by an alteration in fiber type. The normal incidence of 70-90 percent type I fibers in the soleus muscle was reduced after 4 wk of suspension to 50 percent or less in 9 of 11 rats. A significant decline in type I myosin isozyme content occurred without a change in that of type II. Other observed histochemical changes were characteristic of denervation. Consistent with soleus atrophy, there was a significant increase in lysosomal (acid) protease activity. One week of recovery after a 2-wk suspension was characterized by a return to values not significantly different from control for muscle wet weights, peak contraction force, one-half relaxation time, and type I myosin. Persistent differences from control were observed in maximal rate of tension development, contraction time, and denervation-like changes.

  11. Influence of suspension hypokinesia on rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Templeton, G. H.; Padalino, M.; Manton, J.; Glasberg, M.; Silver, C. J.; Silver, P.; Demartino, G.; Leconey, T.; Klug, G.; Hagler, H.

    1984-01-01

    Hindlimb hypokinesia was induced in rats by the Morey method to characterize the response of the soleus muscle. Rats suspended for 1-4 wk exhibited continuous and significant declines in soleus mass, function, and contractile duration. Soleus speeding was in part explained by an alteration in fiber type. The normal incidence of 70-90 percent type I fibers in the soleus muscle was reduced after 4 wk of suspension to 50 percent or less in 9 of 11 rats. A significant decline in type I myosin isozyme content occurred without a change in that of type II. Other observed histochemical changes were characteristic of denervation. Consistent with soleus atrophy, there was a significant increase in lysosomal (acid) protease activity. One week of recovery after a 2-wk suspension was characterized by a return to values not significantly different from control for muscle wet weights, peak contraction force, one-half relaxation time, and type I myosin. Persistent differences from control were observed in maximal rate of tension development, contraction time, and denervation-like changes.

  12. Age effects on rat hindlimb muscle atrophy during suspension unloading

    NASA Technical Reports Server (NTRS)

    Steffen, Joseph M.; Fell, Ronald D.; Geoghegan, Thomas E.; Ringel, Lisa C.; Musacchia, X. J.

    1990-01-01

    The effects of hindlimb unloading on muscle mass and biochemical responses were examined and compared in adult (450-g) and juvenile (200-g) rats after 1, 7, or 14 days of whole-body suspension. Quantitatively and qualitatively the soleus, gastrocnemius, plantaris, and extensor digitorum longus (EDL) muscles of the hindlimb exhibited a differential sensitivity to suspension and weightlessness unloading in both adults and juveniles. The red slow-twitch soleus exhibited the most pronounced atrophy under both conditions, with juvenile responses being greater than adult. In contrast, the fast-twitch EDL hypertrophied during suspension and atrophied during weightlessness, with no significant difference between adults and juveniles. Determination of biochemical parameters (total protein, RNA, and DNA) indicates a less rapid rate of response in adult muscles.

  13. Low level laser therapy on injured rat muscle

    NASA Astrophysics Data System (ADS)

    Mantineo, M.; Pinheiro, J. P.; Morgado, A. M.

    2013-06-01

    Although studies show the clinical effectiveness of low level laser therapy (LLLT) in facilitating the muscle healing process, scientific evidence is still required to prove the effectiveness of LLLT and to clarify the cellular and molecular mechanisms triggered by irradiation. Here we evaluate the effect of different LLLT doses, using continuous illumination (830 nm), in the treatment of inflammation induced in the gastrocnemius muscle of Wistar rats, through the quantification of cytokines in systemic blood and histological analysis of muscle tissue. We verified that all applied doses produce an effect on reducing the number of inflammatory cells and the concentration of pro-inflammatory TNF-α and IL-1β cytokines. The best results were obtained for 40 mW. The results may suggest a biphasic dose response curve.

  14. Temperature-dependent transitions in isometric contractions of rat muscle.

    PubMed Central

    Ranatunga, K W; Wylie, S R

    1983-01-01

    The effect of temperature on tetanic tension development was examined in extensor digitorum longus (fast-twitch) and soleus (slow-twitch) muscles of the rat, in vitro and with direct stimulation. The temperature range was from 35 to 10 degrees C. 2. The maximum tetanic tension decreased slightly on cooling from 35 to 25 degrees C. Cooling below 20 degrees C resulted in a marked depression of tetanic tension. The results were similar in the two muscles. 3. Analysis (in the form of Arrhenius plots) of the rate of tetanic tension development and relaxation clearly showed the occurrence of two phases in their temperature dependence, due to an increased temperature sensitivity below about 25 degrees C. Arrhenius activation energy estimates for temperatures lower than 21 degrees C were around twice as high as those for temperatures higher than 24 degrees C in both muscles. PMID:6887040

  15. Age effects on rat hindlimb muscle atrophy during suspension unloading

    NASA Technical Reports Server (NTRS)

    Steffen, Joseph M.; Fell, Ronald D.; Geoghegan, Thomas E.; Ringel, Lisa C.; Musacchia, X. J.

    1990-01-01

    The effects of hindlimb unloading on muscle mass and biochemical responses were examined and compared in adult (450-g) and juvenile (200-g) rats after 1, 7, or 14 days of whole-body suspension. Quantitatively and qualitatively the soleus, gastrocnemius, plantaris, and extensor digitorum longus (EDL) muscles of the hindlimb exhibited a differential sensitivity to suspension and weightlessness unloading in both adults and juveniles. The red slow-twitch soleus exhibited the most pronounced atrophy under both conditions, with juvenile responses being greater than adult. In contrast, the fast-twitch EDL hypertrophied during suspension and atrophied during weightlessness, with no significant difference between adults and juveniles. Determination of biochemical parameters (total protein, RNA, and DNA) indicates a less rapid rate of response in adult muscles.

  16. Procedures for Rat in situ Skeletal Muscle Contractile Properties

    PubMed Central

    MacIntosh, Brian R.; Esau, Shane P.; Holash, R. John; Fletcher, Jared R.

    2011-01-01

    There are many circumstances where it is desirable to obtain the contractile response of skeletal muscle under physiological circumstances: normal circulation, intact whole muscle, at body temperature. This includes the study of contractile responses like posttetanic potentiation, staircase and fatigue. Furthermore, the consequences of disease, disuse, injury, training and drug treatment can be of interest. This video demonstrates appropriate procedures to set up and use this valuable muscle preparation. To set up this preparation, the animal must be anesthetized, and the medial gastrocnemius muscle is surgically isolated, with the origin intact. Care must be taken to maintain the blood and nerve supplies. A long section of the sciatic nerve is cleared of connective tissue, and severed proximally. All branches of the distal stump that do not innervate the medial gastrocnemius muscle are severed. The distal nerve stump is inserted into a cuff lined with stainless steel stimulating wires. The calcaneus is severed, leaving a small piece of bone still attached to the Achilles tendon. Sonometric crystals and/or electrodes for electromyography can be inserted. Immobilization by metal probes in the femur and tibia prevents movement of the muscle origin. The Achilles tendon is attached to the force transducer and the loosened skin is pulled up at the sides to form a container that is filled with warmed paraffin oil. The oil distributes heat evenly and minimizes evaporative heat loss. A heat lamp is directed on the muscle, and the muscle and rat are allowed to warm up to 37°C. While it is warming, maximal voltage and optimal length can be determined. These are important initial conditions for any experiment on intact whole muscle. The experiment may include determination of standard contractile properties, like the force-frequency relationship, force-length relationship, and force-velocity relationship. With care in surgical isolation, immobilization of the origin of the

  17. Procedures for rat in situ skeletal muscle contractile properties.

    PubMed

    MacIntosh, Brian R; Esau, Shane P; Holash, R John; Fletcher, Jared R

    2011-10-15

    There are many circumstances where it is desirable to obtain the contractile response of skeletal muscle under physiological circumstances: normal circulation, intact whole muscle, at body temperature. This includes the study of contractile responses like posttetanic potentiation, staircase and fatigue. Furthermore, the consequences of disease, disuse, injury, training and drug treatment can be of interest. This video demonstrates appropriate procedures to set up and use this valuable muscle preparation. To set up this preparation, the animal must be anesthetized, and the medial gastrocnemius muscle is surgically isolated, with the origin intact. Care must be taken to maintain the blood and nerve supplies. A long section of the sciatic nerve is cleared of connective tissue, and severed proximally. All branches of the distal stump that do not innervate the medial gastrocnemius muscle are severed. The distal nerve stump is inserted into a cuff lined with stainless steel stimulating wires. The calcaneus is severed, leaving a small piece of bone still attached to the Achilles tendon. Sonometric crystals and/or electrodes for electromyography can be inserted. Immobilization by metal probes in the femur and tibia prevents movement of the muscle origin. The Achilles tendon is attached to the force transducer and the loosened skin is pulled up at the sides to form a container that is filled with warmed paraffin oil. The oil distributes heat evenly and minimizes evaporative heat loss. A heat lamp is directed on the muscle, and the muscle and rat are allowed to warm up to 37°C. While it is warming, maximal voltage and optimal length can be determined. These are important initial conditions for any experiment on intact whole muscle. The experiment may include determination of standard contractile properties, like the force-frequency relationship, force-length relationship, and force-velocity relationship. With care in surgical isolation, immobilization of the origin of the

  18. Quercetin protects rat skeletal muscle from ischemia reperfusion injury.

    PubMed

    Ekinci Akdemir, Fazile Nur; Gülçin, İlhami; Karagöz, Berna; Soslu, Recep

    2016-01-01

    In this study, we investigated the potential beneficial effects of quercetin on skeletal muscle ischemia reperfusion injury. Twenty-four Sprague-Dawley type rats were randomly divided into four groups. In the sham group, only gastrocnemius muscle were removed and given no quercetin. In ischemia group, all the femoral artery, vein and collaterals were occluded in the left hindlimb by applying tourniquate under general anaesthesia for three hours but reperfusion was not done. In the Quercetin + Ischemia reperfusion group, quercetin (200 mg kg(-1) dose orally) was given during one-week reoperation and later ischemia reperfusion model was done. Finally, gastrocnemius muscle samples were removed to measure biochemical parameters. The biomarkers, MDA levels, SOD, CAT and GPx activities, were evaluated related to skeletal muscle ischemia reperfusion injury. MDA levels reduced and SOD, CAT and GPx activities increased significantly in Quercetin + Ischemia reperfusion group. Results clearly showed that Quercetin have a protective role against oxidative damage induced by ischemia reperfusion in rats.

  19. Endurance training increases the efficiency of rat skeletal muscle mitochondria.

    PubMed

    Zoladz, Jerzy A; Koziel, Agnieszka; Woyda-Ploszczyca, Andrzej; Celichowski, Jan; Jarmuszkiewicz, Wieslawa

    2016-10-01

    Endurance training enhances mitochondrial oxidative capacity, but its effect on mitochondria functioning is poorly understood. In the present study, the influence of an 8-week endurance training on the bioenergetic functioning of rat skeletal muscle mitochondria under different assay temperatures (25, 35, and 42 °C) was investigated. The study was performed on 24 adult 4-month-old male Wistar rats, which were randomly assigned to either a treadmill training group (n = 12) or a sedentary control group (n = 12). In skeletal muscles, endurance training stimulated mitochondrial biogenesis and oxidative capacity. In isolated mitochondria, endurance training increased the phosphorylation rate and elevated levels of coenzyme Q. Moreover, a decrease in mitochondrial uncoupling, including uncoupling protein-mediated proton leak, was observed after training, which could explain the increased reactive oxygen species production (in nonphosphorylating mitochondria) and enhanced oxidative phosphorylation efficiency. At all studied temperatures, endurance training significantly augmented H2O2 production (and coenzyme Q reduction level) in nonphosphorylating mitochondria and decreased H2O2 production (and coenzyme Q reduction level) in phosphorylating mitochondria. Endurance training magnified the hyperthermia-induced increase in oxidative capacity and attenuated the hyperthermia-induced decline in oxidative phosphorylation efficiency and reactive oxygen species formation of nonphosphorylating mitochondria via proton leak enhancement. Thus, endurance training induces both quantitative and qualitative changes in muscle mitochondria that are important for cell signaling as well as for maintaining muscle energy homeostasis, especially at high temperatures.

  20. Activation of two types of fibres in rat extraocular muscles.

    PubMed Central

    Chiarandini, D J

    1976-01-01

    1. The contractile responses of the inferior rectus, one of the extraocular muscles of the rat, to a depolarization induced by an elevation of the potassium concentration in the external medium ([K]O) have been studied 'in vitro'. 2. The elevation of [K]O to 20 and 30 mM-K produced contractures that consisted of a sustained or tonic tension. When [K]O was increased to 50 mM or more a well-defined transient or phasic tension appeared before the tonic response. The increment of [K]O above 50 mM enhanced the phasic component and depressed the tonic tension. The maximal tonic tension, usually evoked by 50 mM-K, is about 50% of the tetanic tension, shows a gradual decline with time and lasts for hours. Control experiments performed in diaphragm showed that this muscle only responds with phasic tensions. 3. The difference in the repriming of the phasic and tonic responses when tensions were induced with salines containing low or normal [Cl] suggests that the muscle fibres responsible for the tonic tension are poorly permeable to Cl-. 4. The amplitude of the tonic tension was reduced by Ca deprivation and by an elevation of [Ca] in the saline to 10 mM. 5. It is concluded that in rat extraocular muscles, an increase in [K]O activates two types of muscle fibres: singly and multiply innervated. These appear to be functionally equivalent to the twitch and slow fibres of amphibian and avian muscle and would give rise to the phasic and tonic components of the contracture, respectively. PMID:957210

  1. Basal and insulin-stimulated skeletal muscle sugar transport in endotoxic and bacteremic rats

    SciTech Connect

    Westfall, M.V.; Sayeed, M.M.

    1988-04-01

    Membrane glucose transport with and without insulin was studied in soleus muscle from 5-h endotoxic rats (40 mg/kg Salmonella enteritidis lipopolysaccharide), and in soleus and epitrochlearis muscles from 12-h bacteremic (Escherichia coli, 4 X 10(10) CFU/kg) rats. Glucose transport was measured in muscles by evaluating the fractional efflux of /sup 14/C-labeled 3-O-methylglucose (/sup 14/C-3-MG) after loading muscles with /sup 14/C-3-MG. Basal 3-MG transport was elevated in soleus muscles from endotoxic as well as in soleus and epitrochlearis muscles from bacteremic rats compared with time-matched controls. Low insulin concentrations stimulated /sup 14/C-3-MG transport more in bacteremic and endotoxic rat muscles than in controls. However, sugar transport in the presence of high insulin dose was attenuated in soleus and epitrochlearis muscles from bacteremic rats and soleus muscles from endotoxic rats compared with controls. Analysis of the dose-response relationship with ALLFIT revealed that the maximal transport response to insulin was significantly decreased in both models of septic shock. Sensitivity to insulin (EC50) was increased in endotoxic rat muscles, and a somewhat similar tendency was observed in bacteremic rat soleus muscles. Neural and humoral influences and/or changes in cellular metabolic energy may contribute to the increase in basal transport. Shifts in insulin-mediated transport may be due to alterations in insulin-receptor-effector coupling and/or the number of available glucose transporters.

  2. Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats

    NASA Technical Reports Server (NTRS)

    Marsh, D. R.; Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1997-01-01

    Myogenic factor mRNA expression was examined during muscle regeneration after bupivacaine injection in Fischer 344/Brown Norway F1 rats aged 3, 18, and 31 mo of age (young, adult, and old, respectively). Mass of the tibialis anterior muscle in the young rats had recovered to control values by 21 days postbupivacaine injection but in adult and old rats remained 40% less than that of contralateral controls at 21 and 28 days of recovery. During muscle regeneration, myogenin mRNA was significantly increased in muscles of young, adult, and old rats 5 days after bupivacaine injection. Subsequently, myogenin mRNA levels in young rat muscle decreased to postinjection control values by day 21 but did not return to control values in 28-day regenerating muscles of adult and old rats. The expression of MyoD mRNA was also increased in muscles at day 5 of regeneration in young, adult, and old rats, decreased to control levels by day 14 in young and adult rats, and remained elevated in the old rats for 28 days. In summary, either a diminished ability to downregulate myogenin and MyoD mRNAs in regenerating muscle occurs in old rat muscles, or the continuing myogenic effort includes elevated expression of these mRNAs.

  3. Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats

    NASA Technical Reports Server (NTRS)

    Marsh, D. R.; Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1997-01-01

    Myogenic factor mRNA expression was examined during muscle regeneration after bupivacaine injection in Fischer 344/Brown Norway F1 rats aged 3, 18, and 31 mo of age (young, adult, and old, respectively). Mass of the tibialis anterior muscle in the young rats had recovered to control values by 21 days postbupivacaine injection but in adult and old rats remained 40% less than that of contralateral controls at 21 and 28 days of recovery. During muscle regeneration, myogenin mRNA was significantly increased in muscles of young, adult, and old rats 5 days after bupivacaine injection. Subsequently, myogenin mRNA levels in young rat muscle decreased to postinjection control values by day 21 but did not return to control values in 28-day regenerating muscles of adult and old rats. The expression of MyoD mRNA was also increased in muscles at day 5 of regeneration in young, adult, and old rats, decreased to control levels by day 14 in young and adult rats, and remained elevated in the old rats for 28 days. In summary, either a diminished ability to downregulate myogenin and MyoD mRNAs in regenerating muscle occurs in old rat muscles, or the continuing myogenic effort includes elevated expression of these mRNAs.

  4. Implantation of muscle satellite cells overexpressing myogenin improves denervated muscle atrophy in rats.

    PubMed

    Shen, H; Lv, Y; Shen, X Q; Xu, J H; Lu, H; Fu, L C; Duan, T

    2016-02-01

    This study evaluated the effect of muscle satellite cells (MSCs) overexpressing myogenin (MyoG) on denervated muscle atrophy. Rat MSCs were isolated and transfected with the MyoG-EGFP plasmid vector GV143. MyoG-transfected MSCs (MTMs) were transplanted into rat gastrocnemius muscles at 1 week after surgical denervation. Controls included injections of untransfected MSCs or the vehicle only. Muscles were harvested and analyzed at 2, 4, and 24 weeks post-transplantation. Immunofluorescence confirmed MyoG overexpression in MTMs. The muscle wet weight ratio was significantly reduced at 2 weeks after MTM injection (67.17±6.79) compared with muscles injected with MSCs (58.83±5.31) or the vehicle (53.00±7.67; t=2.37, P=0.04 and t=3.39, P=0.007, respectively). The muscle fiber cross-sectional area was also larger at 2 weeks after MTM injection (2.63×10³±0.39×10³) compared with MSC injection (1.99×10³±0.58×10³) or the vehicle only (1.57×10³±0.47×10³; t=2.24, P=0.049 and t=4.22, P=0.002, respectively). At 4 and 24 weeks post-injection, the muscle mass and fiber cross-sectional area were similar across all three experimental groups. Immunohistochemistry showed that the MTM group had larger MyoG-positive fibers. The MTM group (3.18±1.13) also had higher expression of MyoG mRNA than other groups (1.41±0.65 and 1.03±0.19) at 2 weeks after injection (t=2.72, P=0.04). Transplanted MTMs delayed short-term atrophy of denervated muscles. This approach can be optimized as a novel stand-alone therapy or as a bridge to surgical re-innervation of damaged muscles.

  5. Antioxidant protection of NO-induced relaxations of the mouse anococcygeus against inhibition by superoxide anions, hydroquinone and carboxy-PTIO.

    PubMed

    Lilley, E; Gibson, A

    1996-09-01

    1. The potential protective effect of several antioxidants [Cu/Zn superoxide dismutase (Cu/Zn SOD), ascorbate, reduced glutathione (GSH), and alpha-tocopherol (alpha-TOC)] on relaxations of the mouse anococcygeus muscle to nitric oxide (NO; 15 microM) and, where appropriate, nitrergic field stimulation (10 Hz; 10 s trains) was investigated. 2. The superoxide anion generating drug duroquinone (100 microM) reduced relaxations to exogenous NO by 54 +/- 6%; this inhibition was partially reversed by Cu/Zn SOD (250 u ml-1), and by ascorbate (500 microM). Following inhibition of endogenous Cu/Zn SOD activity with diethyldithiocarbamate (DETCA), duroquinone (50 microM) also reduced relaxations to nitrergic field stimulation (by 53 +/- 6%) and this effect was again reversed by Cu/Zn SOD and by ascorbate. Neither GSH (500 microM) nor alpha-TOC (400 microM) afforded any protection against duroquinone. 3. Xanthine (20 mu ml-1); xanthine oxidase (100 microM) inhibited NO-induced relaxations by 73 +/- 14%, but had no effect on those to nitrergic field stimulation, even after DETCA treatment. The inhibition of exogenous NO was reduced by Cu/Zn SOD (250 u ml-1) and ascorbate (400 microM), but was unaffected by GSH or alpha-TOC (both 400 microM). 4. Hydroquinone (100 microM) also inhibited relaxations to NO (by 52 +/- 10%), but not nitrergic stimulation. In this case, however, the inhibition was reversed by GSH (5-100 microM) and ascorbate (100-400 microM), although Cu/Zn SOD and alpha-TOC were ineffective. 5. 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO, 50 microM) inhibited NO-induced relaxations by 50 +/- 4%, but had no effect on nitrergic responses; the inhibition was reduced by ascorbate (2-200 microM) and alpha-TOC (10-200 microM), but not by Cu/Zn SOD or GSH. 6. Hydroxocobalamin (5-100 microM) inhibited, equally, relaxations to both NO (-logIC40 3.14 +/- 0.33) and nitrergic stimulation (-logIC40 3.17 +/- 0.22). 7. Thus, a number of

  6. Immunomodulatory effects of massage on nonperturbed skeletal muscle in rats

    PubMed Central

    Waters-Banker, Christine; Dupont-Versteegden, Esther E.

    2013-01-01

    Massage is an ancient manual therapy widely utilized by individuals seeking relief from various musculoskeletal maladies. Despite its popularity, the majority of evidence associated with massage benefits is anecdotal. Recent investigations have uncovered physiological evidence supporting its beneficial use following muscle injury; however, the effects of massage on healthy, unperturbed skeletal muscle are unknown. Utilizing a custom-fabricated massage mimetic device, the purpose of this investigation was to elucidate the effects of various loading magnitudes on healthy skeletal muscle with particular interest in the gene expression profile and modulation of key immune cells involved in the inflammatory response. Twenty-four male Wistar rats (200 g) were subjected to cyclic compressive loading (CCL) over the right tibialis anterior muscle for 30 min, once a day, for 4 consecutive days using four loading conditions: control (0N), low load (1.4N), moderate load (4.5N), and high load (11N). Microarray analysis showed that genes involved with the immune response were the most significantly affected by application of CCL. Load-dependent changes in cellular abundance were seen in the CCL limb for CD68+ cells, CD163+ cells, and CD43+cells. Surprisingly, load-independent changes were also discovered in the non-CCL contralateral limb, suggesting a systemic response. These results show that massage in the form of CCL exerts an immunomodulatory response to uninjured skeletal muscle, which is dependent upon the applied load. PMID:24201707

  7. Twitch tension, muscle weight, and fiber area of exercised reinnervating rat skeletal muscle.

    PubMed

    Hie, H B; van Nie, C J; Vermeulen-van der Zee, E

    1982-12-01

    The purpose of this study was to evaluate the effect of dynamic exercise on weight and isometric twitch tension of the reinnervating rat gastrocnemius-plantaris muscle complex as well as on histology of the reinnervating plantaris muscle. Two groups of 6-week-old female Wistar rats, 1 control (n = 17) and 1 experimental (n = 17), were denervated unilaterally by cutting and resecting the sciatic nerve. To effect reinnervation a skin grafting operation was carried out on the nerve so that the gap caused by resection was bridged. The experimental group began exercising on a motor-driven treadmill 18 days following the graft. A progressive training program of 18 weeks of treadmill running, 5 days/week, was carried out by the animals. Training intensity was gradually increased until during the final 3 weeks they were running up a 25% grade at a speed of 720m/hour for 2 hours a day. Exercise did not damage the reinnervating muscle. Absolute wet weight and maximum isometric twitch tension of the reinnervating gastrocnemius-plantaris muscle complex were increased significantly, by 15 1/2% and 30% respectively, after exercise. Training resulted in a significant increase in fiber and muscle cross-sectional areas of the reinnervating plantaris, by 28% and 23% respectively. Exercise brought about no change in total relative amount of connective tissue in the reinnervating plantaris. This study indicates that dynamic exercise has a significant positive effect on the weight, twitch tension and histologic appearance of the reinnervating gastrocnemius-plantaris muscle and thus may enhance their functional recovery. It is likely that this type of training is also effective in the treatment of patients recovering from peripheral nerve injuries.

  8. Spontaneously tonic smooth muscle has characteristically higher levels of RhoA/ROK compared with the phasic smooth muscle.

    PubMed

    Patel, Chirag A; Rattan, Satish

    2006-11-01

    The internal anal sphincter (IAS) tone is important for the rectoanal continence. The RhoA/Rho kinase (ROK) pathway has been associated with the agonist-induced sustained contraction of the smooth muscle, but its role in the spontaneously tonic smooth muscle is not known. Present studies compared expression of different components of the RhoA/ROK pathway between the IAS (a truly tonic SM), the rectal smooth muscle (RSM) (a mixture of phasic and tonic), and anococcygeus smooth muscle (ASM) (a purely phasic SM) of rat. RT-PCR and Western blot analyses were performed to determine RhoA, ROCK-II, CPI-17, MYPT1, and myosin light-chain 20 (MLC20). Phosphorylated CPI-17 at threonine-38 residue (p(Thr38)-CPI-17), MYPT1 at threonine-696 residue (p(Thr696)-MYPT1), and MLC20 at threonine-18/serine-19 residues (p(Thr18/Ser19)-MLC20) were also determined in the basal state and after pretreatment with the ROK inhibitor Y 27632. In addition, we compared the effect of Y 27632 on the basal isometric tension and ROK activity in the IAS vs. the RSM. Our data show the highest levels of RhoA, ROCK-II, CPI-17, MLC20, and of phospho-MYPT1, -CPI-17, and -MLC20 in the IAS followed by in the RSM and ASM. Conversely, MYPT1 levels were lowest in the IAS and highest in the ASM. In the IAS, Y 27632 caused a concentration-dependent decrease in the basal tone, levels of phospho-MYPT1, -CPI-17, and -MLC20, and ROK activity. We conclude that RhoA/ROK plays a critical role in the basal tone in the IAS by the inhibition of MLC phosphatase via the phosphorylation of MYPT1 and CPI-17.

  9. Ranolazine recruits muscle microvasculature and enhances insulin action in rats

    PubMed Central

    Fu, Zhuo; Zhao, Lina; Chai, Weidong; Dong, Zhenhua; Cao, Wenhong; Liu, Zhenqi

    2013-01-01

    Ranolazine, an anti-anginal compound, has been shown to significantly improve glycaemic control in large-scale clinical trials, and short-term ranolazine treatment is associated with an improvement in myocardial blood flow. As microvascular perfusion plays critical roles in insulin delivery and action, we aimed to determine if ranolazine could improve muscle microvascular blood flow, thereby increasing muscle insulin delivery and glucose use. Overnight-fasted, anaesthetized Sprague-Dawley rats were used to determine the effects of ranolazine on microvascular recruitment using contrast-enhanced ultrasound, insulin action with euglycaemic hyperinsulinaemic clamp, and muscle insulin uptake using 125I-insulin. Ranolazine's effects on endothelial nitric oxide synthase (eNOS) phosphorylation, cAMP generation and endothelial insulin uptake were determined in cultured endothelial cells. Ranolazine-induced myographical changes in tension were determined in isolated distal saphenous artery. Ranolazine at therapeutically effective dose significantly recruited muscle microvasculature by increasing muscle microvascular blood volume (∼2-fold, P < 0.05) and increased insulin-mediated whole body glucose disposal (∼30%, P= 0.02). These were associated with an increased insulin delivery into the muscle (P < 0.04). In cultured endothelial cells, ranolazine increased eNOS phosphorylation and cAMP production without affecting endothelial insulin uptake. In ex vivo studies, ranolazine exerted a potent vasodilatatory effect on phenylephrine pre-constricted arterial rings, which was partially abolished by endothelium denudement. In conclusion, ranolazine treatment vasodilatates pre-capillary arterioles and increases microvascular perfusion, which are partially mediated by endothelium, leading to expanded microvascular endothelial surface area available for nutrient and hormone exchanges and resulting in increased muscle delivery and action of insulin. Whether these actions contribute

  10. Diaphragm Muscle Sarcopenia in Fischer 344 and Brown Norway Rats

    PubMed Central

    Elliott, Jonathan E.; Omar, Tanya S.; Mantilla, Carlos B.; Sieck, Gary C.

    2016-01-01

    The risk for respiratory diseases increases in adults >65 years of age, which may be partially due to ageing-related weakening and atrophy (i.e., sarcopenia) of the diaphragm muscle (DIAm). However, mechanisms underlying DIAm sarcopenia remain unknown. Based on existing evidence, we hypothesized that sarcopenia is most evident in type IIx and/or IIb DIAm fibres comprising more fatigable motor units. Currently, the USA National Institute on Aging supports Fischer 344 (F344) and Brown Norway (BN) rat strains for ageing related research, yet DIAm sarcopenia has not been comprehensively evaluated in either strain. Thus, the current study examined DIAm sarcopenia in older adult (24 month, 50% survival) F344 and (32 month, 50% survival) BN rats, compared to young adult (6 month) F344 and BN rats. Measurements of contractility, contractile protein concentration, fibre type distribution and fibre cross-sectional area were obtained from midcostal DIAm strips. Maximal specific force was reduced by ∼24% and ∼13% in older F344 and BN rats, respectively. Additionally, although cross-sectional area of type I and IIa DIAm fibres was unchanged in both F344 and BN rats, cross-sectional area of type IIx and/or IIb DIAm fibres was reduced by ∼20% and ∼15% in F344 and BN rats, respectively. Thus, although there was ageing-related DIAm weakness and atrophy, selective to type IIx and/or IIb DIAm fibres in both F344 and BN rats, the sarcopenic phenotype was more pronounced in F344 rats. PMID:27126607

  11. Cardiac, skeletal muscle and serum irisin responses to with or without water exercise in young and old male rats: cardiac muscle produces more irisin than skeletal muscle.

    PubMed

    Aydin, Suna; Kuloglu, Tuncay; Aydin, Suleyman; Eren, Mehmet Nesimi; Celik, Ahmet; Yilmaz, Musa; Kalayci, Mehmet; Sahin, İbrahim; Gungor, Orhan; Gurel, Ali; Ogeturk, Murat; Dabak, Ozlem

    2014-02-01

    Irisin converts white adipose tissue (WAT) into brown adipose tissue (BAT), as regulated by energy expenditure. The relationship between irisin concentrations after exercise in rats compared humans after exercise remains controversial. We therefore: (1) measured irisin expression in cardiac and skeletal muscle, liver, kidney, peripheral nerve sheath and skin tissues, as also serum irisin level in 10 week-old rats without exercise, and (2) measured tissue supernatant irisin levels in cardiac and skeletal muscle, and in response to exercise in young and old rats to establishing which tissues produced most irisin. Young (12 months) and old rats (24 months) with or without 10min exercise (water floating) and healthy 10 week-old Sprague-Dawley rats without exercise were used. Irisin was absent from sections of skeletal muscle of unexercised rats, the only part being stained being the perimysium. In contrast, cardiac muscle tissue, peripheral myelin sheath, liver, kidneys, and skin dermis and hypodermis were strongly immunoreactivity. No irisin was seen in skeletal muscle of unexercised young and old rats, but a slight amount was detected after exercise. Strong immunoreactivity occurred in cardiac muscle of young and old rats with or without exercise, notably in pericardial connective tissue. Serum irisin increased after exercise, being higher in younger than older rats. Irisin in tissue supernatants (cardiac and skeletal muscle) was high with or without exercise. High supernatant irisin could come from connective tissues around skeletal muscle, especially nerve sheaths located within it. Skeletal muscle is probably not a main irisin source. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Early changes in muscle atrophy and muscle fiber type conversion after spinal cord transection and peripheral nerve transection in rats.

    PubMed

    Higashino, Kosaku; Matsuura, Tetsuya; Suganuma, Katsuyoshi; Yukata, Kiminori; Nishisho, Toshihiko; Yasui, Natsuo

    2013-05-20

    Spinal cord transection and peripheral nerve transection cause muscle atrophy and muscle fiber type conversion. It is still unknown how spinal cord transection and peripheral nerve transection each affect the differentiation of muscle fiber type conversion mechanism and muscle atrophy. The aim of our study was to evaluate the difference of muscle weight change, muscle fiber type conversion, and Peroxisome proliferator-activated receptor-γ coactivatior-1α (PGC-1α) expression brought about by spinal cord transection and by peripheral nerve transection. Twenty-four Wistar rats underwent surgery, the control rats underwent a laminectomy; the spinal cord injury group underwent a spinal cord transection; the denervation group underwent a sciatic nerve transection. The rats were harvested of the soleus muscle and the TA muscle at 0 week, 1 week and 2 weeks after surgery. Histological examination was assessed using hematoxylin and eosin (H&E) staining and immunofluorescent staing. Western blot was performed with 3 groups. Both sciatic nerve transection and spinal cord transection caused muscle atrophy with the effect being more severe after sciatic nerve transection. Spinal cord transection caused a reduction in the expression of both sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection produced an increase in expression of sMHC protein and PGC-1α protein in the soleus muscle. The results of the expression of PGC-1α were expected in other words muscle atrophy after sciatic nerve transection is less than after spinal cord transection, however muscle atrophy after sciatic nerve transection was more severe than after spinal cord transection. In the conclusion, spinal cord transection diminished the expression of sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection enhanced the expression of sMHC protein and PGC-1α protein in the soleus muscle.

  13. Early changes in muscle atrophy and muscle fiber type conversion after spinal cord transection and peripheral nerve transection in rats

    PubMed Central

    2013-01-01

    Background Spinal cord transection and peripheral nerve transection cause muscle atrophy and muscle fiber type conversion. It is still unknown how spinal cord transection and peripheral nerve transection each affect the differentiation of muscle fiber type conversion mechanism and muscle atrophy. The aim of our study was to evaluate the difference of muscle weight change, muscle fiber type conversion, and Peroxisome proliferator-activated receptor-γ coactivatior-1α (PGC-1α) expression brought about by spinal cord transection and by peripheral nerve transection. Methods Twenty-four Wistar rats underwent surgery, the control rats underwent a laminectomy; the spinal cord injury group underwent a spinal cord transection; the denervation group underwent a sciatic nerve transection. The rats were harvested of the soleus muscle and the TA muscle at 0 week, 1 week and 2 weeks after surgery. Histological examination was assessed using hematoxylin and eosin (H&E) staining and immunofluorescent staing. Western blot was performed with 3 groups. Results Both sciatic nerve transection and spinal cord transection caused muscle atrophy with the effect being more severe after sciatic nerve transection. Spinal cord transection caused a reduction in the expression of both sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection produced an increase in expression of sMHC protein and PGC-1α protein in the soleus muscle. The results of the expression of PGC-1α were expected in other words muscle atrophy after sciatic nerve transection is less than after spinal cord transection, however muscle atrophy after sciatic nerve transection was more severe than after spinal cord transection. Conclusion In the conclusion, spinal cord transection diminished the expression of sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection enhanced the expression of sMHC protein and PGC-1α protein in the soleus

  14. 2-D protein maps of rat gastrocnemius and soleus muscles: a tool for muscle plasticity assessment.

    PubMed

    Gelfi, Cecilia; Viganò, Agnese; De Palma, Sara; Ripamonti, Marilena; Begum, Shajna; Cerretelli, Paolo; Wait, Robin

    2006-01-01

    Functional characterization of muscle fibers relies on ATPase activity and on differential measurements of metabolic proteins, including mitochondrial and glycolytic enzymes, glucose, lactate and lactic acid transporters, calcium cycling proteins and components of the contractile machinery. The recent introduction of microarray technology has enabled detailed gene expression studies under different physiological and pathological conditions, thus generating novel hypotheses on muscle function. However, microarray approaches are limited by the incomplete genome coverage of currently available chips, and by poor correlation between mRNA concentration and protein expression level. We have used 2-DE and MS to build a reference map of proteins from rat mixed gastrocnemius and soleus muscle, and to assess qualitative and quantitative differences in protein distribution between these two functionally dissimilar muscles. More than 800 spots on each gel were detected by silver staining, of which 167 were excised, digested in-gel with trypsin and analyzed by ESI-MS/MS. One hundred and twenty eight distinct gene products were identified, including metabolic, transport and contractile proteins. Forty one spots displayed differences in relative expression level between mixed gastrocnemius and soleus samples. These data not only enable differentiation of functionally distinct slow-twitch and fast-twitch fiber types, but also provide tools for investigating muscle plasticity in response to physiological and environmental conditions such as aging or hypoxia.

  15. Toxicity of statins on rat skeletal muscle mitochondria.

    PubMed

    Kaufmann, P; Török, M; Zahno, A; Waldhauser, K M; Brecht, K; Krähenbühl, S

    2006-10-01

    We investigated mitochondrial toxicity of four lipophilic stains (cerivastatin, fluvastatin, atorvastatin, simvastatin) and one hydrophilic statin (pravastatin). In L6 cells (rat skeletal muscle cell line), the four lipophilic statins (100 micromol/l) induced death in 27-49% of the cells. Pravastatin was not toxic up to 1 mmol/l. Cerivastatin, fluvastatin and atorvastatin (100 micromol/l) decreased the mitochondrial membrane potential by 49-65%, whereas simvastatin and pravastatin were less toxic. In isolated rat skeletal muscle mitochondria, all statins, except pravastatin, decreased glutamate-driven state 3 respiration and respiratory control ratio. Beta-oxidation was decreased by 88-96% in the presence of 100 micromol/l of the lipophilic statins, but only at higher concentrations by pravastatin. Mitochondrial swelling, cytochrome c release and DNA fragmentation was induced in L6 cells by the four lipophilic statins, but not by pravastatin. Lipophilic statins impair the function of skeletal muscle mitochondria, whereas the hydrophilic pravastatin is significantly less toxic.

  16. Effects of insulin and exercise on rat hindlimb muscles after simulated microgravity

    NASA Technical Reports Server (NTRS)

    Stump, Craig S.; Balon, Thomas W.; Tipton, Charles M.

    1992-01-01

    The effect of simulated microgravity on the insulin- and exercise-stimulated glucose uptake and metabolism in the hindlimb muscles of rats was investigated using three groups of rats suspended at 45 head-down tilt (SUS) for 14 days: (1) cage control, (2) exercising (treadmill running) control, and (3) rats subjected to suspension followed by exercise (SUS-E). It was found that the suspension of rats with hindlimbs non-weight bearing led to enhanced muscle responses to insulin and exercise, when these stimuli were applied separately. However, the insulin affect appeared to be impaired after exercise for the SUS-E rats, especially for the soleus muscle.

  17. Effects of insulin and exercise on rat hindlimb muscles after simulated microgravity

    NASA Technical Reports Server (NTRS)

    Stump, Craig S.; Balon, Thomas W.; Tipton, Charles M.

    1992-01-01

    The effect of simulated microgravity on the insulin- and exercise-stimulated glucose uptake and metabolism in the hindlimb muscles of rats was investigated using three groups of rats suspended at 45 head-down tilt (SUS) for 14 days: (1) cage control, (2) exercising (treadmill running) control, and (3) rats subjected to suspension followed by exercise (SUS-E). It was found that the suspension of rats with hindlimbs non-weight bearing led to enhanced muscle responses to insulin and exercise, when these stimuli were applied separately. However, the insulin affect appeared to be impaired after exercise for the SUS-E rats, especially for the soleus muscle.

  18. Muscarinic receptor subtypes in human and rat colon smooth muscle.

    PubMed

    Gómez, A; Martos, F; Bellido, I; Marquez, E; Garcia, A J; Pavia, J; Sanchez de la Cuesta, F

    1992-06-09

    Muscarinic receptor subtypes in human and rat colon smooth muscle homogenates were characterized with [3H]N-methylscopolamine ([3H]NMS) by ligand binding studies. [3H]NMS saturation experiments show the existence of a homogeneous population of non-interacting binding sites with similar affinity (KD values of 1.38 +/- 0.20 nM in human colon smooth muscle and 1.48 +/- 0.47 nM in rat colon smooth muscle) and with Hill slopes close to unity in both samples of tissue. However, a significant (P less than 0.01) increase in muscarinic receptor density (Bmax) is found in human colon (29.9 +/- 2.9 fmol/mg protein) compared with rat colon (17.2 +/- 1.5 fmol/mg protein). Inhibition of [3H]NMS binding by non-labelled compounds shows the following order in human colon: atropine greater than AF-DX 116 greater than pirenzepine. Whereas in rat colon the rank order obtained is atropine greater than pirenzepine greater than AF-DX 116. Atropine and pirenzepine bind to a homogeneous population of binding sites, although pirenzepine shows higher affinity to bind to the sites present in rat colon (Ki = 1.08 +/- 0.08 microM) than those in human colon (Ki = 1.74 +/- 0.02 microM) (P less than 0.05). Similarly, IC50 values obtained in AF-DX 116 competition experiments were significantly different (P less than 0.01) in human colon (IC50 = 1.69 +/- 0.37 microM) than in rat colon (IC50 = 3.78 +/- 0.75 microM). Unlike atropine and pirenzepine, the inhibition of [3H]NMS binding by AF-DX 116 did not yield a simple mass-action binding curve (nH less than 1, P less than 0.01) suggesting the presence of more than one subtype of muscarinic receptor in both species. Computer analysis of these curves with a two binding site model suggests the presence of two populations of receptor. The apparent Ki1 value for the high affinity binding site is 0.49 +/- 0.07 microM for human colon smooth muscle and 0.33 +/- 0.05 microM for rat colon smooth muscle. The apparent Ki2 for the low affinity binding site is 8

  19. Effects of acidification and increased extracellular potassium on dynamic muscle contractions in isolated rat muscles.

    PubMed

    Overgaard, Kristian; Højfeldt, Grith Westergaard; Nielsen, Ole Bækgaard

    2010-12-15

    Since accumulation of both H(+) and extracellular K(+) have been implicated in the reduction in dynamic contractile function during intense exercise, we investigated the effects of acidification and high K(+) on muscle power and the force-velocity relation in non-fatigued rat soleus muscles. Contractions were elicited by supramaximal electrical stimulation at 60 Hz. Force-velocity (FV) curves were obtained by fitting data on force and shortening velocity at different loads to the Hill equation. Acidification of the muscles by incubation with up to 24 mm lactic acid produced no significant changes in maximal power (P(max)) at 30 °C. More pronounced acidification, obtained by increasing CO(2) levels in the equilibration gas from 5% to 53%, markedly decreased P(max) and maximal isometric force (F(max)), increased the curvature of the FV relation, but left maximal shortening velocity (V(max)) unchanged. Increase of extracellular K(+) from 4 to 10 mm caused a depression of 58% in P(max) and 52% in F(max), but had no significant effect on V(max) or curvature of the FV curve. When muscles at 10 mM K(+) were acidified by 20 mm lactic acid, P(max) and F(max) recovered completely to the initial control level at 4 mm K(+). CO(2) acidification also induced significant recovery of dynamic contractions, but not entirely to control levels. These results demonstrate that in non-fatigued muscles severe acidification can be detrimental to dynamic contractile function, but in muscles depolarised by exposure to high extracellular [K(+)], approaching the [K(+)] level seen during intense fatiguing exercise, acidification can have positive protective effects on dynamic muscle function.

  20. Effects of prolonged voluntary wheel-running on muscle structure and function in rat skeletal muscle.

    PubMed

    Kariya, Fumihiko; Yamauchi, Hideki; Kobayashi, Keizo; Narusawa, Mistuo; Nakahara, Yoshibumi

    2004-06-01

    We examined the effects of prolonged voluntary wheel-running on skeletal muscle functional and/or structural characteristics in rats. Male Sprague-Dawley rats (5 weeks old) were divided into five groups: (1) 15W-SC, sedentary controls housed in normal plastic cages until age 15 weeks; (2) 15W-VE, housed in a voluntary-exercise (running-wheel) device equipped with housing space until age 15 weeks; (3) 35W-SC, housed in normal plastic cages until age 35 weeks; (4) 35W-VE, housed in the voluntary-exercise device until age 35 weeks, and (5) 35W-MVE, housed in normal plastic cages until age 15 weeks, then in the voluntary-exercise device from age 16 weeks to 35 weeks ("middle age"). At the end of each rat's experimental period, the plantaris muscle was dissected from each hindlimb for analysis of the muscle's functional and/or structural characteristics. Total running distance was similar in 15W-VE and 35W-VE, both being significantly greater than in 35-MVE. The percentage of type IIb myosin heavy chain isoform was significantly lower in each VE group than in the corresponding SC group. This shift from type IIb was significantly greater for 35W-VE than for the other VE groups, which were similar to each other. The cross-sectional area of type IIx fibers was significantly greater in 35W-VE than in 35W-SC, but this was not true for 15W-VE versus 15W-SC or for 35W-MVE versus 35W-SC. No significant difference in citrate synthase activity was detected between any VE group and the corresponding SC group. These results suggest that a prolongation of voluntary wheel-running leads to some advantageous enhancements of functional and/or structural characteristics in rat plantaris.

  1. Characteristics of locomotion, muscle strength, and muscle tissue in regenerating rat skeletal muscles.

    PubMed

    Iwata, Akira; Fuchioka, Satoshi; Hiraoka, Koichi; Masuhara, Mitsuhiko; Kami, Katsuya

    2010-05-01

    Although numerous studies have aimed to elucidate the mechanisms used to repair the structure and function of injured skeletal muscles, it remains unclear how and when movement recovers following damage. We performed a temporal analysis to characterize the changes in movement, muscle function, and muscle structure after muscle injury induced by the drop-mass technique. At each time-point, movement recovery was determined by ankle kinematic analysis of locomotion, and functional recovery was represented by isometric force. As a histological analysis, the cross-sectional area of myotubes was measured to examine structural regeneration. The dorsiflexion angle of the ankle, as assessed by kinematic analysis of locomotion, increased after injury and then returned to control levels by day 14 post-injury. The isometric force returned to normal levels by day 21 post-injury. However, the size of the myotubes did not reach normal levels, even at day 21 post-injury. These results indicate that recovery of locomotion occurs prior to recovery of isometric force and that functional recovery occurs earlier than structural regeneration. Thus, it is suggested that recovery of the movement and function of injured skeletal muscles might be insufficient as markers for estimating the degree of neuromuscular system reconstitution.

  2. Estimation of pyruvate decarboxylation in perfused rat skeletal muscle.

    PubMed

    Schadewaldt, P; Münch, U; Prengel, M; Staib, W

    1983-10-31

    By the determination of pyruvate dehydrogenase activity in tissue homogenates only limited information is gained on the actual metabolic flux. We therefore determined pyruvate decarboxylation in isolated rat hindlimbs non recirculating perfused with physiological (1-14C)pyruvate levels. On the basis of perfusate pyruvate specific activity a 14CO2 production of 15.8 +/- 0.5 nmol/min per g muscle was measured. However, by this method the actual pyruvate flux through the enzyme complex is underestimated by a factor of 7 due to the intracellular dilution of label.

  3. Altered Muscle Metabolism in Rats After Thermal Injury

    DTIC Science & Technology

    1982-12-01

    by Herndon et a-ketoglutarate. 600 mM L -alanine, 0.18 mM NADH. 1.2 U/ml al." Briefly, this procedure consists of anesthetizing the rat (50 mg lactate...whole homogenates of the gastrocnemius muscle 9 sec and the abdomen for 3 sec in 980C water. Saline (20 ml) was to oxidize pyruvate- l -"C to "CO, was...the same time Econofluor (New England Nuclear, Boston. Mass.) and 10% metha- of day. nol. Oleate- l -’C oxidation rates by whole gastrocnemius homoge

  4. Direct observations of muscle arterioles and venules following contraction of skeletal muscle fibres in the rat.

    PubMed Central

    Marshall, J M; Tandon, H C

    1984-01-01

    Direct observations have been made of responses of individual arterioles and venules of rat spinotrapezius muscle to contraction of the skeletal muscle fibres. Stimuli of 4-6 V intensity, 0.1 ms duration, delivered via a micro-electrode inserted into the spinotrapezius, evoked contraction of a small bundle of skeletal muscle fibres, followed by vasodilatation which was limited to all those arterioles and venules which crossed or ran alongside activated muscle fibres. Since venules outside the region of contraction, but supplied by dilating arterioles, were not passively distended by the attendant rise in intravascular pressure, it is concluded that both the arterioles and venules dilated actively in response to muscle contraction. All arterioles responded to a single twitch contraction, the terminal arterioles (7-13 micron i.d.) showing the largest increase in diameter. Collecting venules (9-18 micron i.d.) responded to just two twitches in 1 s and larger venules to five twitches in 1 s. When twitch contractions were continuously evoked for 10 s, the responses in individual arterioles and venules were graded with twitch frequency, the fastest and largest response occurring at 6-8 Hz. Tetanic contraction, at 40 Hz for 1 s, produced faster responses in all vessels, a maximum 55% increase from resting internal diameter being attained in only 8 s in some terminal arterioles. In all vessels the responses to tetanic contraction were equal to the maximal dilatation induced by papaverine. These results, in contrast with conclusions drawn from indirect estimates of venous responses, show that venules, like arterioles, dilate actively in response to muscle contraction. Venule dilatation may reduce the rise in capillary hydrostatic pressure, thereby limiting the outward filtration of fluid. PMID:6747856

  5. Regulatory Mechanism of Muscle Disuse Atrophy in Adult Rats

    NASA Technical Reports Server (NTRS)

    1993-01-01

    During the last phase of NAG 2-386 we completed three studies. The effects of 14 days of weightlessness; the vastus medialis (VM) from flight rats in COSMOS 2044 was compared with the VM from tail suspended rats and other controls. The type I and II fibers in the mixed fiber portion of the VM were significantly reduced in flight rats and capillary densities paralleled the fiber density changes. The results of this project compared favorably with those in the extensor digitorum longus following seven days of flight in SL 3. The cardiovascular projects focused on the blood pressure changes in head down tilted rats (HDT) and non-head down tilted (N-HDT) rats. Blood pressures (MAP, SP and DP) were significantly elevated through seven days of HDT and rapidly returned to control levels within one day after removal from the HDT position. The N-HDT showed some slight rise in blood pressure but these were not as great and they were not as rapid. The HDT rats were characterized as exhibiting transient hypertension. These results led to some of the microvascular and vascular graduate student projects of Dr. Bernhard Stepke. Also our results refute or, at least, do not agree with previous reports from other laboratories. Each animal, in our blood pressure projects, served as its own control thereby providing more accurate results. Also, our experiments focused on recovery studies which can, in and of themselves, provide guidelines for flight experiments concerned with blood pressure changes. Another experiment was conducted to examine the role of testicular atrophy in whole body suspended (WBS) and tail suspended (TS) rats. We worked in conjunction with Dr. D.R. Deaver's laboratory at Pennsylvania State University and Dr. R. P. Amann at Colorado State University. In the TS rats the testes are retracted into the abdominal cavity, unless a ligature is placed to maintain them in the external scrotal sac. The cryptorchid condition in TS rats results in atrophy of the testes and

  6. Botulinum neurotoxin effects on masseter muscle fibre in WNIN obese rats-Scanning electron microscope analysis.

    PubMed

    Nemani, Shivaram; Putchha, Uday K; Periketi, Madhusudhanachary; Pothana, Sailaja; Nappanveettil, Giridharan; Nemani, Harishankar

    2016-09-01

    WNIN/Ob obese mutant rats are unique in comparison to similar rodent models of obesity established in the West. The present study is aimed to evaluate the masticatory function and histological changes in masseter muscle fibres treated with botulinum toxin type A (BoNT/A) in WNIN/Ob rats. Twelve WNIN/Ob obese rats and 12 lean rats at 35 days of age were taken and divided into four groups (6 rats in each group): Group-I (WNIN/Ob) and Group-II (lean) rats were injected with BoNT/A (1 unit) into right side of masseter muscle. For control left masseter of both phenotypes was injected with saline. Group-III (WNIN/Ob) and Group-IV (lean) rats were without any treatment. Growth and food intake was monitored daily for 45 days. Rats were euthanized and gross necropsy was carried out to check any abnormalities. Masseter muscles were dissected and mean muscle mass was recorded. Small portion of muscle was stored in 10% formalin for hematoxylin-eosin (H&E) staining and remaining tissue stored in gluteraldehyde for scanning electron microscopy (SEM). There is a significant decrease in the body weights and food intake of BoNT/A treated obese rats. The H&E staining of the masseter muscle in both groups showed normal morphology and orientation. The SEM analysis showed that, fibre size in BoNT/A treated masseter muscle of obese rats increased more than the saline treated side and in control rats. The increase in the muscle fibre size and transition of muscle fibre subtypes may be due to the reduced masticatory function of the masseter muscle. SCANNING 38:396-402, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  7. Differences in Age-Related Alterations in Muscle Contraction Properties in Rat Tongue and Hindlimb

    ERIC Educational Resources Information Center

    Connor, Nadine P.; Ota, Fumikazu; Nagai, Hiromi; Russell, John A.; Leverson, Glen

    2008-01-01

    Purpose: Because of differences in muscle architecture and biomechanics, the purpose of this study was to determine whether muscle contractile properties of rat hindlimb and tongue were differentially affected by aging. Method: Deep peroneal and hypoglossal nerves were stimulated in 6 young and 7 old Fischer 344-Brown Norway rats to allow…

  8. Differences in Age-Related Alterations in Muscle Contraction Properties in Rat Tongue and Hindlimb

    ERIC Educational Resources Information Center

    Connor, Nadine P.; Ota, Fumikazu; Nagai, Hiromi; Russell, John A.; Leverson, Glen

    2008-01-01

    Purpose: Because of differences in muscle architecture and biomechanics, the purpose of this study was to determine whether muscle contractile properties of rat hindlimb and tongue were differentially affected by aging. Method: Deep peroneal and hypoglossal nerves were stimulated in 6 young and 7 old Fischer 344-Brown Norway rats to allow…

  9. Electrical stimulation using sine waveform prevents unloading-induced muscle atrophy in the deep calf muscles of rat.

    PubMed

    Tanaka, Minoru; Hirayama, Yusuke; Fujita, Naoto; Fujino, Hidemi

    2014-09-01

    The aim of this study was to compare the effects of electrical stimulation by using rectangular and sine waveforms in the prevention of deep muscle atrophy in rat calf muscles. Rats were randomly divided into the following groups: control, hindlimb unloading (HU), and HU plus electrical stimulation (ES). The animals in the ES group were electrically stimulated using rectangular waveform (RS) on the left calves and sine waveform (SS) on the right calves, twice a day, for 2 weeks during unloading. HU for 2 weeks resulted in a loss of the muscle mass, a decrease in the cross-sectional area of the muscle fibers, and overexpression of ubiquitinated proteins in the gastrocnemius and soleus muscles. In contrast, electrical stimulation with RS attenuated the HU-induced reduction in the cross-sectional area of muscle fibers and the increase of ubiquitinated proteins in the gastrocnemius muscle. However, electrical stimulation with RS failed to prevent muscle atrophy in the deep portion of the gastrocnemius and the soleus muscles. Nevertheless, electrical stimulation with SS attenuated the HU-induced muscle atrophy and the up-regulation of ubiquitinated proteins in both gastrocnemius and soleus muscles. This indicates that SS was more effective in the prevention of deep muscle atrophy than RS. Since the skin muscle layers act like the plates of a capacitor, separated by the subcutaneous adipose layer, the SS can pass through this capacitor more easily than the RS. Hence, SS can prevent the progressive loss of muscle fibers in the deep portion of the calf muscles.

  10. Satellite cell activity in muscle regeneration after contusion in rats.

    PubMed

    Srikuea, Ratchakrit; Pholpramool, Chumpol; Kitiyanant, Yindee; Yimlamai, Tossaporn

    2010-11-01

    1. The role of satellite cells in muscle growth during development is well documented, but the involvement of these cells in muscle repair after contusion is less well known. In the present study, we investigated the time-course of satellite cell activity (from 3h to 7days) after contusion of rat gastrocnemius muscle using specific molecular markers for immunofluorescence and real-time polymerase chain reaction (PCR). 2. Inflammation of the injured muscle occurred within 6h, followed by disintegration of the damaged myofibres within 12h. Newly formed myofibres appeared by Day 7. 3. The number of MyoD-positive nuclei (activated satellite cells) in the injured muscle was significantly increased by 6h, reaching a maximum by 12h after contusion. However, the number of MyoD-positive nuclei decreased towards control levels by Day 7. Changes in the number of bromodeoxyuridine-labelled nuclei (proliferating satellite cells) paralleled the changes seen in the number of MyoD-positive nuclei. Conversely, expression of myogenin protein was not apparent until Day 3 and increased further by Day 7. Colabelling of MyoD and myogenin was seen in only a few cells. 4. The time-course of MyoD mRNA expression corresponded with MyoD protein expression. However, there were two peaks in myogenin mRNA expression: 6h and Day 7 after contusion. The second peak coincided with upregulation of myostatin mRNA levels. 5. The results of the present study suggest that contusion activates a homogeneous population of satellite cells to proliferate within 3days, followed by differentiation to form new myofibres. The latter may be regulated, in part, by myostatin.

  11. Oxygen exchange profile in rat muscles of contrasting fibre types

    PubMed Central

    Behnke, Brad J; McDonough, Paul; Padilla, Danielle J; Musch, Timothy I; Poole, David C

    2003-01-01

    To determine whether fibre type affects the O2 exchange characteristics of skeletal muscle at the microcirculatory level we tested the hypothesis that, following the onset of contractions, muscle comprising predominately type I fibres (soleus, Sol, 86 % type I) would, based on demonstrated blood flow responses, exhibit a blunted microvascular PO2 (PO2,m, which is determined by the O2 delivery () to O2 uptake () ratio) profile (assessed via phosphorescence quenching) compared to muscle of primarily type II fibres (peroneal, Per, 84 % type II). PO2,m was measured at rest, and following the rest-contractions (twitch, 1 Hz, 2–4 V for 120 s) transition in Sol (n = 6) and Per (n = 6) muscles of Sprague-Dawley rats. Both muscles exhibited a delay followed by a mono-exponential decrease in PO2,m to the steady state. However, compared with Sol, Per demonstrated (1) a larger change in baseline minus steady state contracting PO2,m (ΔPO2,m) (Per, 13.4 ± 1.7 mmHg; Sol, 8.6 ± 0.9 mmHg, P < 0.05); (2) a faster mean response time (i.e. time delay (TD) plus time constant (τ); Per, 23.8 ± 1.5 s; Sol, 39.6 ± 4.3 s, P < 0.05); and therefore (3) a greater rate of PO2,m decline (ΔPO2,m/τ; Per, 0.92 ± 0.08 mmHg s−1; Sol, 0.42 ± 0.05 mmHg s−1, P < 0.05). These data demonstrate an increased microvascular pressure head of O2 at any given point after the initial time delay for Sol versus Per following the onset of contractions that is probably due to faster dynamics relative to those of . PMID:12692174

  12. Effect of swimming on myostatin expression in white and red gastrocnemius muscle and in cardiac muscle of rats.

    PubMed

    Matsakas, Antonios; Bozzo, Cyrille; Cacciani, Nicola; Caliaro, Francesca; Reggiani, Carlo; Mascarello, Francesco; Patruno, Marco

    2006-11-01

    The aim of this study was to test the hypothesis that swimming training might impact differentially myostatin expression in skeletal muscles, depending on fibre type composition, and in cardiac muscle of rats. Myostatin expression was analysed by real time reverse transcriptase-polymerase chain reaction, Western blot and immunohistochemistry of the red deep portion (mainly composed of slow and type II A fibres) and in the superficial, white portion (composed of fast type II X and II B fibres) of the gastrocnemius muscle in adult male Wistar rats: (i) subjected to two consecutive swimming bouts for 3 h; (ii) subjected to intensive swimming training for 4 weeks; and (iii) sedentary control rats. Myostatin mRNA content was in all cases higher in white than in red muscles. Two bouts of swimming did not alter myostatin expression, whereas swimming training for 4 weeks resulted in a significant reduction of myostatin mRNA contents, significant both in white and red muscles but more pronounced in white muscles. Western blot did not detect any change in the amount of myostatin protein. Immunohistochemistry showed that, in control rats, myostatin was localized in presumptive satellite cells of a few muscle fibres. After training, the number of myostatin-positive spots decreased significantly. Myostatin mRNA content in cardiac muscle was lower than in skeletal muscle and was significantly increased by swimming training. In conclusion, the results obtained showed that intense training caused a decreased expression of myostatin mRNA in white and red skeletal muscles but an increase in cardiac muscle.

  13. Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles

    PubMed Central

    Neyroud, Daria; Cheng, Arthur J.; Bourdillon, Nicolas; Kayser, Bengt; Place, Nicolas; Westerblad, Håkan

    2016-01-01

    The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on–1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on–3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased “voluntary activation.” In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT. PMID:27445844

  14. Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles.

    PubMed

    Neyroud, Daria; Cheng, Arthur J; Bourdillon, Nicolas; Kayser, Bengt; Place, Nicolas; Westerblad, Håkan

    2016-01-01

    The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on-1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on-3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased "voluntary activation." In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT.

  15. [Amino acid composition of the rat quadriceps femoris muscle after a flight on the Kosmos-936 biosatellite].

    PubMed

    Vlasova, T F; Miroshnikova, E B; Poliakov, V V; Murugova, T P

    1982-01-01

    The amino acid composition of the quadriceps muscle of rats flown onboard the biosatellite Cosmos-936 and exposed to the ground-based synchronous control experiment was studied. The weightless rats showed changes in the amino acid concentration in the quadriceps muscle. The centrifuged flight and synchronous rats displayed an accumulation of free amino acids in the above muscle.

  16. Muscle glucose uptake in the rat after suspension with single hindlimb weight bearing

    NASA Technical Reports Server (NTRS)

    Stump, Craig S.; Woodman, Christopher R.; Fregosi, Ralph F.; Tipton, Charles M.

    1993-01-01

    An examination is conducted of the effect of nonweight-bearing conditions, and the systemic influences of simulated microgravity on rat hindlimb muscles. The results obtained suggest that the increases in hindlimb muscle glucose uptake and extracellular space associated with simulated microgravity persist with hindlimb weightbearing, despite the prevention of muscle atrophy. The mechanism (or mechanisms) responsible for these effects are currently unknown.

  17. Botulinum toxin injection causes hyper-reflexia and increased muscle stiffness of the triceps surae muscle in the rat.

    PubMed

    Pingel, Jessica; Wienecke, Jacob; Lorentzen, Jakob; Nielsen, Jens Bo

    2016-12-01

    Botulinum toxin is used with the intention of diminishing spasticity and reducing the risk of development of contractures. Here, we investigated changes in muscle stiffness caused by reflex activity or elastic muscle properties following botulinum toxin injection in the triceps surae muscle in rats. Forty-four rats received injection of botulinum toxin in the left triceps surae muscle. Control measurements were performed on the noninjected contralateral side in all rats. Acute experiments were performed, 1, 2, 4, and 8 wk following injection. The triceps surae muscle was dissected free, and the Achilles tendon was cut and attached to a muscle puller. The resistance of the muscle to stretches of different amplitudes and velocities was systematically investigated. Reflex-mediated torque was normalized to the maximal muscle force evoked by supramaximal stimulation of the tibial nerve. Botulinum toxin injection caused severe atrophy of the triceps surae muscle at all time points. The force generated by stretch reflex activity was also strongly diminished but not to the same extent as the maximal muscle force at 2 and 4 wk, signifying a relative reflex hyperexcitability. Passive muscle stiffness was unaltered at 1 wk but increased at 2, 4, and 8 wk (P < 0.01). These data demonstrate that botulinum toxin causes a relative increase in reflex stiffness, which is likely caused by compensatory neuroplastic changes. The stiffness of elastic elements in the muscles also increased. The data are not consistent with the ideas that botulinum toxin is an efficient antispastic medication or that it may prevent development of contractures.

  18. The influence of rat suspension-hypokinesia on the gastrocnemius muscle

    NASA Technical Reports Server (NTRS)

    Templeton, G. H.; Padalino, M.; Manton, J.; Leconey, T.; Hagler, H.; Glasberg, M.

    1984-01-01

    Hind-limb hypokinesia was induced in rats by the Morey method to characterize the response of the gastrocnemius muscle. A comparison of rats suspended for 2 weeks with weight, sex, and litter-matched control rats indicate no difference in gastrocnemius wet weight, contraction, or one-half relaxation times, but less contractile function as indicated by lowered dP/dt. Myosin ATPase staining identified uniform Type I (slow-twitch) and II (fast-twitch) atrophy in the muscles from 4 of 10 rats suspended for 2 weeks and 1 of 12 rats suspended for 4 weeks; muscles from three other rats of the 4-week group displayed greater Type I atrophy. Other histochemical changes were characteristic of a neuropathy. These data together with recently acquired soleus data (29) indicate the Morey model, like space flight, evokes greater changes in the Type I or slow twitch fibers of the gastrocnemius and soleus muscles.

  19. Alterations in Skeletal Muscle Microcirculation of Head-Down Tilted Rats

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Stepke, Bernhard; Fleming, John T.; Joshua, Irving G.

    1992-01-01

    In this study we assessed the function of microscopic blood vessels in skeletal muscle (cremaster muscle) for alterations which may contribute to the observed elevation of blood pressure associated with head-down tilted whole body suspension (HDT/WBS), a model of weightlessness. Arteriolar baseline diameters, vasoconstrictor responses to norepinephrine (NE) and vasodilation to nitroprusside (NP) were assessed in control rats, rats suspended for 7 or 14 day HDT/WBS rats, and rats allowed to recover for 1 day after 7 days HDT/WBS. Neither baseline diameters nor ability to dilate were influenced by HDT/WBS. Maximum vasoconstriction to norepinephrine was significantly greater in arterioles of hypertensive 14 day HDT/WBS rats. This first study of the intact microvasculature in skeletal muscle indicates that an elevated contractility of arterioles to norepinephrine in suspended rats, and suggests an elevated peripheral resistance in striated muscle may contribute to the increase in blood pressures among animals subjected to HDT/WBS.

  20. The influence of rat suspension-hypokinesia on the gastrocnemius muscle

    NASA Technical Reports Server (NTRS)

    Templeton, G. H.; Padalino, M.; Manton, J.; Leconey, T.; Hagler, H.; Glasberg, M.

    1984-01-01

    Hind-limb hypokinesia was induced in rats by the Morey method to characterize the response of the gastrocnemius muscle. A comparison of rats suspended for 2 weeks with weight, sex, and litter-matched control rats indicate no difference in gastrocnemius wet weight, contraction, or one-half relaxation times, but less contractile function as indicated by lowered dP/dt. Myosin ATPase staining identified uniform Type I (slow-twitch) and II (fast-twitch) atrophy in the muscles from 4 of 10 rats suspended for 2 weeks and 1 of 12 rats suspended for 4 weeks; muscles from three other rats of the 4-week group displayed greater Type I atrophy. Other histochemical changes were characteristic of a neuropathy. These data together with recently acquired soleus data (29) indicate the Morey model, like space flight, evokes greater changes in the Type I or slow twitch fibers of the gastrocnemius and soleus muscles.

  1. Expression of nestin, desmin and vimentin in intact and regenerating muscle spindles of rat hind limb skeletal muscles.

    PubMed

    Cízková, Dana; Soukup, Tomás; Mokrý, Jaroslav

    2009-02-01

    We describe the expression and distribution patterns of nestin, desmin and vimentin in intact and regenerating muscle spindles of the rat hind limb skeletal muscles. Regeneration was induced by intramuscular isotransplantation of extensor digitorum longus (EDL) or soleus muscles from 15-day-old rats into the EDL muscle of adult female inbred Lewis rats. The host muscles with grafts were excised after 7-, 16-, 21- and 29-day survival and immunohistochemically stained. Nestin expression in intact spindles in host muscles was restricted to Schwann cells of sensory and motor nerves. In transplanted muscles, however, nestin expression was also found in regenerating "spindle fibers", 7 and 16 days after grafting. From the 21st day onwards, the regenerated spindle fibers were devoid of nestin immunoreactivity. Desmin was detected in spindle fibers at all developmental stages in regenerating as well as in intact spindles. Vimentin was expressed in cells of the outer and inner capsules of all muscle spindles and in newly formed myoblasts and myotubes of regenerating spindles 7 days after grafting. Our results show that the expression pattern of these intermediate filaments in regenerating spindle fibers corresponds to that found in regenerating extrafusal fibers, which supports our earlier suggestion that they resemble small-diameter extrafusal fibers.

  2. Functional Effects of Hyperthyroidism on Cardiac Papillary Muscle in Rats

    PubMed Central

    Vieira, Fabricio Furtado; Olivoto, Robson Ruiz; da Silva, Priscyla Oliveira; Francisco, Julio Cesar; Fogaça, Rosalvo Tadeu Hochmuller

    2016-01-01

    Background Hyperthyroidism is currently recognized to affect the cardiovascular system, leading to a series of molecular and functional changes. However, little is known about the functional influence of hyperthyroidism in the regulation of cytoplasmic calcium and on the sodium/calcium exchanger (NCX) in the cardiac muscle. Objectives To evaluate the functional changes in papillary muscles isolated from animals with induced hyperthyroidism. Methods We divided 36 Wistar rats into a group of controls and another of animals with hyperthyroidism induced by intraperitoneal T3 injection. We measured in the animals' papillary muscles the maximum contraction force, speed of contraction (+df/dt) and relaxation (-df/dt), contraction and relaxation time, contraction force at different concentrations of extracellular sodium, post-rest potentiation (PRP), and contraction force induced by caffeine. Results In hyperthyroid animals, we observed decreased PRP at all rest times (p < 0.05), increased +df/dt and -df/dt (p < 0.001), low positive inotropic response to decreased concentration of extracellular sodium (p < 0.001), reduction of the maximum force in caffeine-induced contraction (p < 0.003), and decreased total contraction time (p < 0.001). The maximal contraction force did not differ significantly between groups (p = 0.973). Conclusion We hypothesize that the changes observed are likely due to a decrease in calcium content in the sarcoplasmic reticulum, caused by calcium leakage, decreased expression of NCX, and increased expression of a-MHC and SERCA2.

  3. Entry of decamethonium in rat muscle studied by autoradiography

    PubMed Central

    Creese, R.; Maclagan, Jennifer

    1970-01-01

    1. When a steady plasma level of decamethonium was maintained by infusion in rats, the labelled compound became concentrated in the region of the end-plate of skeletal muscle, as shown by scintillation counting. 2. The distribution of tritium-labelled decamethonium in single muscle fibres was studied by autoradiography of frozen sections, with resolution less than 1 μ. 3. After intravenous injection of a dose of decamethonium which produced partial paralysis it was shown that the labelled compound had entered muscle fibres in the region of the end-plate, and for several hundred microns on either side of the end-plate. 4. Entry of decamethonium could be demonstrated as early as 30 sec after intra-arterial injection. There was no evidence of any redistribution of labelled drug for a period of 2 hr after the initial entry. 5. Previous administration of tubocurarine markedly reduced the entry of labelled decamethonium. ImagesabPlate 5Plate 6Plate 7Plate 1Plate 2Plate 3 PMID:5509874

  4. Functional Effects of Hyperthyroidism on Cardiac Papillary Muscle in Rats.

    PubMed

    Vieira, Fabricio Furtado; Olivoto, Robson Ruiz; Silva, Priscyla Oliveira da; Francisco, Julio Cesar; Fogaça, Rosalvo Tadeu Hochmuller

    2016-12-01

    Hyperthyroidism is currently recognized to affect the cardiovascular system, leading to a series of molecular and functional changes. However, little is known about the functional influence of hyperthyroidism in the regulation of cytoplasmic calcium and on the sodium/calcium exchanger (NCX) in the cardiac muscle. To evaluate the functional changes in papillary muscles isolated from animals with induced hyperthyroidism. We divided 36 Wistar rats into a group of controls and another of animals with hyperthyroidism induced by intraperitoneal T3 injection. We measured in the animals' papillary muscles the maximum contraction force, speed of contraction (+df/dt) and relaxation (-df/dt), contraction and relaxation time, contraction force at different concentrations of extracellular sodium, post-rest potentiation (PRP), and contraction force induced by caffeine. In hyperthyroid animals, we observed decreased PRP at all rest times (p < 0.05), increased +df/dt and -df/dt (p < 0.001), low positive inotropic response to decreased concentration of extracellular sodium (p < 0.001), reduction of the maximum force in caffeine-induced contraction (p < 0.003), and decreased total contraction time (p < 0.001). The maximal contraction force did not differ significantly between groups (p = 0.973). We hypothesize that the changes observed are likely due to a decrease in calcium content in the sarcoplasmic reticulum, caused by calcium leakage, decreased expression of NCX, and increased expression of a-MHC and SERCA2.

  5. Pioglitazone treatment restores in vivo muscle oxidative capacity in a rat model of diabetes.

    PubMed

    Wessels, B; Ciapaite, J; van den Broek, N M A; Houten, S M; Nicolay, K; Prompers, J J

    2015-01-01

    To determine the effect of pioglitazone treatment on in vivo and ex vivo muscle mitochondrial function in a rat model of diabetes. Both the lean, healthy rats and the obese, diabetic rats are Zucker Diabetic Fatty (ZDF) rats. The homozygous fa/fa ZDF rats are obese and diabetic. The heterozygous fa/+ ZDF rats are lean and healthy. Diabetic Zucker Diabetic Fatty rats were treated with either pioglitazone (30 mg/kg/day) or water as a control (n = 6 per group), for 2 weeks. In vivo ¹H and ³¹P magnetic resonance spectroscopy was performed on skeletal muscle to assess intramyocellular lipid (IMCL) content and muscle oxidative capacity, respectively. Ex vivo muscle mitochondrial respiratory capacity was evaluated using high-resolution respirometry. In addition, several markers of mitochondrial content were determined. IMCL content was 14-fold higher and in vivo muscle oxidative capacity was 26% lower in diabetic rats compared with lean rats, which was, however, not caused by impairments of ex vivo mitochondrial respiratory capacity or a lower mitochondrial content. Pioglitazone treatment restored in vivo muscle oxidative capacity in diabetic rats to the level of lean controls. This amelioration was not accompanied by an increase in mitochondrial content or ex vivo mitochondrial respiratory capacity, but rather was paralleled by an improvement in lipid homeostasis, that is lowering of plasma triglycerides and muscle lipid and long-chain acylcarnitine content. Diminished in vivo muscle oxidative capacity in diabetic rats results from mitochondrial lipid overload and can be alleviated by redirecting the lipids from the muscle into adipose tissue using pioglitazone treatment. © 2014 John Wiley & Sons Ltd.

  6. The anatomy of the cremaster muscle during inguinoscrotal testicular descent in the rat.

    PubMed

    Harnaen, Efrant J; Na, Angelika F; Shenker, Natalie S; Sourial, Magdy; Farmer, Pamela J; Southwell, Bridget R; Hutson, John M

    2007-12-01

    Extrapolation of rat testicular descent studies to humans has been criticized because of anatomical differences of the cremaster muscle. Human cremaster is described as a thin strip rather than a large, complete sac as in rats, which is proposed to be more important in propelling the testis during descent. This study investigated cremaster muscle anatomy and ontogeny in both normal and cryptorchid rat models. Gubernacula from 4 groups of neonatal rats were sectioned longitudinally and transversely: normal Sprague-Dawley, capsaicin pretreated, flutamide pretreated, and congenital cryptorchid rats. Gubernacula were stained with hematoxylin-eosin, Masson trichrome, and desmin immunohistochemistry to study muscle development. Myoblasts are more numerous at the gubernacular tip, whereas the most differentiated muscle is proximal. Rat cremaster develops as an elongated strip rather than a complete sac derived from abdominal wall muscles. Flutamide and capsaicin pretreatment disrupts development. Rat cremaster muscle develops as a strip, bearing close resemblance to human cremaster muscle, permitting extrapolation of cremaster function to human testicular descent. The cremaster muscle appears to differentiate from the gubernacular tip during elongation to the scrotum, and requires intact sensory innervation and androgen.

  7. Low-level laser irradiation promotes the recovery of atrophied gastrocnemius skeletal muscle in rats.

    PubMed

    Nakano, Jiro; Kataoka, Hideki; Sakamoto, Jyunya; Origuchi, Tomoki; Okita, Minoru; Yoshimura, Toshiro

    2009-09-01

    Low-level laser (LLL) irradiation promotes proliferation of muscle satellite cells, angiogenesis and expression of growth factors. Satellite cells, angiogenesis and growth factors play important roles in the regeneration of muscle. The objective of this study was to examine the effect of LLL irradiation on rat gastrocnemius muscle recovering from disuse muscle atrophy. Eight-week-old rats were subjected to hindlimb suspension for 2 weeks, after which they were released and recovered. During the recovery period, rats underwent daily LLL irradiation (Ga-Al-As laser; 830 nm; 60 mW; total, 180 s) to the right gastrocnemius muscle through the skin. The untreated left gastrocnemius muscle served as the control. In conjunction with LLL irradiation, 5-bromo-2-deoxyuridine (BrdU) was injected subcutaneously to label the nuclei of proliferating cells. After 2 weeks, myofibre diameters of irradiated muscle increased in comparison with those of untreated muscle, but did not recover back to normal levels. Additionally, in the superficial region of the irradiated muscle, the number of capillaries and fibroblast growth factor levels exhibited significant elevation relative to those of untreated muscle. In the deep region of irradiated muscle, BrdU-positive nuclei of satellite cells and/or myofibres increased significantly relative to those of the untreated muscle. The results of this study suggest that LLL irradiation can promote recovery from disuse muscle atrophy in association with proliferation of satellite cells and angiogenesis.

  8. Effect of one stretch a week applied to the immobilized soleus muscle on rat muscle fiber morphology.

    PubMed

    Gomes, A R S; Coutinho, E L; França, C N; Polonio, J; Salvini, T F

    2004-10-01

    We determined the effect of stretching applied once a week to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Twenty-six male Wistar rats weighing 269 +/- 26 g were divided into three groups. Group I, the left soleus was immobilized in the shortened position for 3 weeks; group II, the soleus was immobilized in the shortened position and stretched once a week for 3 weeks; group III, the soleus was submitted only to stretching once a week for 3 weeks. The medial part of the soleus muscle was frozen for histology and muscle fiber area evaluation and the lateral part was used for the determination of number and length of serial sarcomeres. Soleus muscle submitted only to immobilization showed a reduction in weight (44 +/- 6%, P = 0.002), in serial sarcomere number (23 +/- 15%) and in cross-sectional area of the fibers (37 +/- 31%, P < 0.001) compared to the contralateral muscles. The muscle that was immobilized and stretched showed less muscle fiber atrophy than the muscles only immobilized (P < 0.05). Surprisingly, in the muscles submitted only to stretching, fiber area was decreased compared to the contralateral muscle (2548 +/- 659 vs 2961 +/- 806 microm(2), respectively, P < 0.05). In conclusion, stretching applied once a week for 40 min to the soleus muscle immobilized in the shortened position was not sufficient to prevent the reduction of muscle weight and of serial sarcomere number, but provided significant protection against muscle fiber atrophy. In contrast, stretching normal muscles once a week caused a reduction in muscle fiber area.

  9. Potassium, Na+,K+-pumps and fatigue in rat muscle.

    PubMed

    Clausen, Torben; Nielsen, Ole Baekgaard

    2007-10-01

    During contractile activity, skeletal muscles undergo a net loss of cytoplasmic K(+) to the interstitial space. During intense exercise, plasma K(+) in human arterial blood may reach 8 mm, and interstitial K(+) 10-12 mm. This leads to depolarization, loss of excitability and contractile force. However, little is known about the effects of these physiological increases in extracellular K(+) ([K(+)](o)) on contractile endurance. Soleus muscles from 4-week-old rats were mounted on transducers for isometric contractions in Krebs-Ringer bicarbonate buffer containing 4-10 mm K(+), and endurance assessed by recording the rate of force decline during continuous stimulation at 60 Hz. Increasing [K(+)](o) from 4 to 8 or 10 mm and equilibrating the muscles for 40 or 20 min augmented the rate of force decline 2.4-fold and 7.2-fold, respectively (P < 0.001). The marked loss of endurance elicited by exposure to 8 or 10 mm K(+) was alleviated or significantly reduced by stimulating the Na(+),K(+)-pumps by intracellular Na(+) loading, the beta(2)-agonist salbutamol, adrenaline, calcitonin gene related peptide, insulin or repeated excitation. In conclusion, excitation-induced increase in [K(+)](o) is an important cause of high-frequency fatigue, and the Na(+),K(+)-pumps are essential for the maintenance of contractile force in the physiological range of [K(+)](o). Recordings of contractile force during continuous stimulation at 8-10 mm K(+) may be used to analyse the effects of agents or conditions influencing the excitability of working isolated muscles.

  10. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations.

    PubMed Central

    Hespel, P; Richter, E A

    1990-01-01

    1. Glucose uptake and transport, muscle glycogen, free glucose and glucose-6-phosphate concentrations were studied in perfused resting and contracting rat skeletal muscle with different pre-contraction glycogen concentrations. Rats were pre-conditioned by a combination of swimming exercise and diet, resulting in either low (glycogen-depleted rats), normal (control rats) or high (supercompensated rats) muscle glycogen concentrations at the time their hindlimbs were perfused. 2. Compared with control rats, pre-contraction muscle glycogen concentration was approximately 40% lower in glycogen-depleted rats, whereas it was 40% higher in supercompensated rats. Muscle glycogen break-down correlated positively (r = 0.76; P less than 0.001) with pre-contraction muscle glycogen concentration. 3. Glucose uptake during contractions was approximately 50% higher in glycogen-depleted hindquarters than in control hindquarters; in supercompensated hindquarters it was 30% lower. When rats with similar muscle glycogen concentrations were compared, glucose uptake in hindquarters from rats that had exercised on the preceding day was approximately 20% higher than in hindquarters from rats that had not exercised on the preceding day. 4. Muscle membrane glucose transport, as measured by the rate of accumulation of 14C-3-O-methylglucose in the contracting muscles, was 25% lower in supercompensated than in glycogen-depleted muscles at the onset as well as at the end of the 15 min contraction period. 5. Intracellular concentrations of free glucose and glucose-6-phosphate were higher at rest and during the entire 15-min stimulation period in supercompensated muscles than in glycogen-depleted muscles, and glucose uptake during contractions correlated negatively with free glucose (r = -0.52; P less than 0.01) as well as with glucose-6-phosphate (r = -0.49; P less than 0.01) concentrations. 6. It is concluded that: (a) The rate of glucose uptake in contracting skeletal muscle is dependent on the

  11. Leucine-enriched essential amino acids attenuate inflammation in rat muscle and enhance muscle repair after eccentric contraction.

    PubMed

    Kato, Hiroyuki; Miura, Kyoko; Nakano, Sayako; Suzuki, Katsuya; Bannai, Makoto; Inoue, Yoshiko

    2016-09-01

    Eccentric exercise results in prolonged muscle damage that may lead to muscle dysfunction. Although inflammation is essential to recover from muscle damage, excessive inflammation may also induce secondary damage, and should thus be suppressed. In this study, we investigated the effect of leucine-enriched essential amino acids on muscle inflammation and recovery after eccentric contraction. These amino acids are known to stimulate muscle protein synthesis via mammalian target of rapamycin (mTOR), which, is also considered to alleviate inflammation. Five sets of 10 eccentric contractions were induced by electrical stimulation in the tibialis anterior muscle of male SpragueDawley rats (8-9 weeks old) under anesthesia. Animals received a 1 g/kg dose of a mixture containing 40 % leucine and 60 % other essential amino acids or distilled water once a day throughout the experiment. Muscle dysfunction was assessed based on isometric dorsiflexion torque, while inflammation was evaluated by histochemistry. Gene expression of inflammatory cytokines and myogenic regulatory factors was also measured. We found that leucine-enriched essential amino acids restored full muscle function within 14 days, at which point rats treated with distilled water had not fully recovered. Indeed, muscle function was stronger 3 days after eccentric contraction in rats treated with amino acids than in those treated with distilled water. The amino acid mix also alleviated expression of interleukin-6 and impeded infiltration of inflammatory cells into muscle, but did not suppress expression of myogenic regulatory factors. These results suggest that leucine-enriched amino acids accelerate recovery from muscle damage by preventing excessive inflammation.

  12. Effects of Resveratrol on the Recovery of Muscle Mass Following Disuse in the Plantaris Muscle of Aged Rats

    PubMed Central

    Bennett, Brian T.; Mohamed, Junaith S.; Alway, Stephen E.

    2013-01-01

    Aging is associated with poor skeletal muscle regenerative ability following extended periods of hospitalization and other forms of muscular disuse. Resveratrol (3,5,4’-trihydroxystilbene) is a natural phytoalexin which has been shown in skeletal muscle to improve oxidative stress levels in muscles of aged rats. As muscle disuse and reloading after disuse increases oxidative stress, we hypothesized that resveratrol supplementation would improve muscle regeneration after disuse. A total of thirty-six male Fisher 344 × Brown Norway rats (32 mo.) were treated with either a water vehicle or resveratrol via oral gavage. The animals received hindlimb suspension for 14 days. Thereafter, they were either sacrificed or allowed an additional 14 day period of cage ambulation during reloading. A total of six rats from the vehicle and the resveratrol treated groups were used for the hindlimb suspension and recovery protocols. Furthermore, two groups of 6 vehicle treated animals maintained normal ambulation throughout the experiment, and were used as control animals for the hindlimb suspension and reloading groups. The data show that resveratrol supplementation was unable to attenuate the decreases in plantaris muscle wet weight during hindlimb suspension but it improved muscle mass during reloading after hindlimb suspension. Although resveratrol did not prevent fiber atrophy during the period of disuse, it increased the fiber cross sectional area of type IIA and IIB fibers in response to reloading after hindlimb suspension. There was a modest enhancement of myogenic precursor cell proliferation in resveratrol-treated muscles after reloading, but this failed to reach statistical significance. The resveratrol-associated improvement in type II fiber size and muscle mass recovery after disuse may have been due to decreases in the abundance of pro-apoptotic proteins Bax, cleaved caspase 3 and cleaved caspase 9 in reloaded muscles. Resveratrol appears to have modest therapeutic

  13. Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats.

    PubMed

    Ramaswamy, Krishnan S; Palmer, Mark L; van der Meulen, Jack H; Renoux, Abigail; Kostrominova, Tatiana Y; Michele, Daniel E; Faulkner, John A

    2011-03-01

    The dystrophin–glycoprotein complex (DGC) provides an essential link from the muscle fibre cytoskeleton to the extracellular matrix. In dystrophic humans and mdx mice, mutations in the dystrophin gene disrupt the structure of the DGC causing severe damage to muscle fibres. In frog muscles, transmission of force laterally from an activated fibre to the muscle surface occurs without attenuation, but lateral transmission of force has not been demonstrated in mammalian muscles. A unique ‘yoke' apparatus was developed that attached to the epimysium of muscles midway between the tendons and enabled the measurement of lateral force. We now report that in muscles of young wild-type (WT) mice and rats, compared over a wide range of longitudinal forces, forces transmitted laterally showed little or no decrement. In contrast, for muscles of mdx mice and very old rats, forces transmitted laterally were impaired severely. Muscles of both mdx mice and very old rats showed major reductions in the expression of dystrophin. We conclude that during contractions, forces developed by skeletal muscles of young WT mice and rats are transmitted laterally from fibre to fibre through the DGC without decrement. In contrast, in muscles of dystrophic or very old animals, disruptions in DGC structure and function impair lateral transmission of force causing instability and increased susceptibility of fibres to contraction-induced injury.

  14. Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats

    PubMed Central

    Ramaswamy, Krishnan S; Palmer, Mark L; van der Meulen, Jack H; Renoux, Abigail; Kostrominova, Tatiana Y; Michele, Daniel E; Faulkner, John A

    2011-01-01

    The dystrophin–glycoprotein complex (DGC) provides an essential link from the muscle fibre cytoskeleton to the extracellular matrix. In dystrophic humans and mdx mice, mutations in the dystrophin gene disrupt the structure of the DGC causing severe damage to muscle fibres. In frog muscles, transmission of force laterally from an activated fibre to the muscle surface occurs without attenuation, but lateral transmission of force has not been demonstrated in mammalian muscles. A unique ‘yoke’ apparatus was developed that attached to the epimysium of muscles midway between the tendons and enabled the measurement of lateral force. We now report that in muscles of young wild-type (WT) mice and rats, compared over a wide range of longitudinal forces, forces transmitted laterally showed little or no decrement. In contrast, for muscles of mdx mice and very old rats, forces transmitted laterally were impaired severely. Muscles of both mdx mice and very old rats showed major reductions in the expression of dystrophin. We conclude that during contractions, forces developed by skeletal muscles of young WT mice and rats are transmitted laterally from fibre to fibre through the DGC without decrement. In contrast, in muscles of dystrophic or very old animals, disruptions in DGC structure and function impair lateral transmission of force causing instability and increased susceptibility of fibres to contraction-induced injury. PMID:21224224

  15. The Fine Structure of Muscle Spindles in the Lumbrical Muscles of the Rat

    PubMed Central

    Merrillees, Neil C. R.

    1960-01-01

    Lumbrical muscles of young rats were fixed with OsO4 and embedded in methacrylate for electron microscopy. The spindle capsule was found to be continuous with and similar in structure to the sheath of Henle surrounding the nerves supplying the spindle. The capsule consists of several closely applied concentric cytoplasmic sheets. Each sheet is about 1,000 A thick and has no fenestrations. Many caveolae and vesicles in the cytoplasm suggest active transport through the sheets. The periaxial space fluid contains much solid material. It is suggested that the capsule and periaxial space regulate internal chemical environment. The interfibrillar structures are less evident in the polar regions of intrafusal fibres than in extrafusal fibres. Simple motor end-plates occur on the polar regions of intrafusal fibres. In the myotube region of the intrafusal fibre a peripheral zone of myofibrils surrounds a cytoplasmic core containing nuclei, mitochondria, Golgi bodies, reticulum, and a few lipid-like granules. Naked sensory endings lie on the myotube "in parallel" with the underlying myofilaments. Naked processes of the primary sensory ending deeply indent the muscle plasma membrane and the underlying wisps of myofilament in the nuclear bag region. The plasma membranes of sensory nerve ending and intrafusal muscle fibre are about 200 A apart. PMID:13856156

  16. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle

    PubMed Central

    Vieira Ramos, Gracielle; Pinheiro, Clara Maria; Messa, Sabrina Peviani; Delfino, Gabriel Borges; Marqueti, Rita de Cássia; Salvini, Tania de Fátima; Durigan, Joao Luiz Quagliotti

    2016-01-01

    The application of cryotherapy is widely used in sports medicine today. Cooling could minimize secondary hypoxic injury through the reduction of cellular metabolism and injury area. Conflicting results have also suggested cryotherapy could delay and impair the regeneration process. There are no definitive findings about the effects of cryotherapy on the process of muscle regeneration. The aim of the present study was to evaluate the effects of a clinical-like cryotherapy on inflammation, regeneration and extracellular matrix (ECM) remodeling on the Tibialis anterior (TA) muscle of rats 3, 7 and 14 days post-injury. It was observed that the intermittent application of cryotherapy (three 30-minute sessions, every 2 h) in the first 48 h post-injury decreased inflammatory processes (mRNA levels of TNF-α, NF-κB, TGF-β and MMP-9 and macrophage percentage). Cryotherapy did not alter regeneration markers such as injury area, desmin and Myod expression. Despite regulating Collagen I and III and their growth factors, cryotherapy did not alter collagen deposition. In summary, clinical-like cryotherapy reduces the inflammatory process through the decrease of macrophage infiltration and the accumulation of the inflammatory key markers without influencing muscle injury area and ECM remodeling. PMID:26725948

  17. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle.

    PubMed

    Vieira Ramos, Gracielle; Pinheiro, Clara Maria; Messa, Sabrina Peviani; Delfino, Gabriel Borges; Marqueti, Rita de Cássia; Salvini, Tania de Fátima; Durigan, Joao Luiz Quagliotti

    2016-01-04

    The application of cryotherapy is widely used in sports medicine today. Cooling could minimize secondary hypoxic injury through the reduction of cellular metabolism and injury area. Conflicting results have also suggested cryotherapy could delay and impair the regeneration process. There are no definitive findings about the effects of cryotherapy on the process of muscle regeneration. The aim of the present study was to evaluate the effects of a clinical-like cryotherapy on inflammation, regeneration and extracellular matrix (ECM) remodeling on the Tibialis anterior (TA) muscle of rats 3, 7 and 14 days post-injury. It was observed that the intermittent application of cryotherapy (three 30-minute sessions, every 2 h) in the first 48 h post-injury decreased inflammatory processes (mRNA levels of TNF-α, NF-κB, TGF-β and MMP-9 and macrophage percentage). Cryotherapy did not alter regeneration markers such as injury area, desmin and Myod expression. Despite regulating Collagen I and III and their growth factors, cryotherapy did not alter collagen deposition. In summary, clinical-like cryotherapy reduces the inflammatory process through the decrease of macrophage infiltration and the accumulation of the inflammatory key markers without influencing muscle injury area and ECM remodeling.

  18. Multiple stimulations for muscle-nerve-blood vessel unit in compensatory hypertrophied skeletal muscle of rat surgical ablation model.

    PubMed

    Tamaki, Tetsuro; Uchiyama, Yoshiyasu; Okada, Yoshinori; Tono, Kayoko; Nitta, Masahiro; Hoshi, Akio; Akatsuka, Akira

    2009-07-01

    Tissue inflammation and multiple cellular responses in the compensatory enlarged plantaris (OP Plt) muscle induced by surgical ablation of synergistic muscles (soleus and gastrocnemius) were followed over 10 weeks after surgery. Contralateral surgery was performed in adult Wistar male rats. Cellular responses in muscle fibers, blood vessels and nerve fibers were analyzed by immunohistochemistry and electron microscopy. Severe muscle fiber damage and disappearance of capillaries associated with apparent tissue edema were observed in the peripheral portion of OP Plt muscles during the first week, whereas central portions were relatively preserved. Marked cell activation/proliferation was also mainly observed in peripheral portions. Similarly, activated myogenic cells were seen not only inside but also outside of muscle fibers. The former were likely satellite cells and the latter may be interstitial myogenic cells. One week after surgery, small muscle fibers, small arteries and capillaries and several branched-muscle fibers were evident in the periphery, thus indicating new muscle fiber and blood vessel formation. Proliferating cells were also detected in the nerve bundles in the Schwann cell position. These results indicate that the compensatory stimulated/enlarged muscle is a suitable model for analyzing multiple physiological cellular responses in muscle-nerve-blood vessel units under continuous stretch stimulation.

  19. Inhibitory pathways in the circular muscle of rat jejunum

    PubMed Central

    Vanneste, Gwen; Robberecht, Patrick; Lefebvre, Romain A

    2004-01-01

    Conflicting data have been reported on the contribution of nitric oxide (NO) to inhibitory neurotransmission in rat jejunum. Therefore, the mechanism of relaxation and contribution to inhibitory neurotransmission of NO, adenosine 5′-triphosphate (ATP), vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) was examined in the circular muscle of Wistar–Han rat jejunum. Mucosa-free circular muscle strips were precontracted with methacholine in the presence of guanethidine and exposed to electrical field stimulation (EFS) and exogenous NO, ATP, VIP and PACAP. All stimuli induced reduction of tone and inhibition of phasic motility. Only electrically induced responses were sensitive to tetrodotoxin (3 × 10−6 M). NO (10−6–10−4 M)-induced concentration-dependent relaxations that were inhibited by the soluble guanylyl cyclase inhibitor 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (ODQ; 10−5 M) and the small conductance Ca2+-activated K+-channel blocker apamin (APA; 3 × 10−8 M). Relaxations elicited by exogenous ATP (10−4–10−3 M) were inhibited by the P2Y purinoceptor antagonist reactive blue 2 (RB2; 3 × 10−4 M), but not by APA and ODQ. The inhibitory responses evoked by 10−7 M VIP and 3 × 10−8 M PACAP were decreased by the selective PAC1 receptor antagonist PACAP6–38 (3 × 10−6 M) and APA. The VPAC2 receptor antagonist PG99-465 (3 × 10−7 M) reduced relaxations caused by VIP, but not those by PACAP, while the VPAC1 receptor antagonist PG97-269 (3 × 10−7 M) had no influence. EFS-induced relaxations were inhibited by the NO-synthase inhibitor Nω-nitro-L-arginine methyl ester (3 × 10−4 M), ODQ and APA, but not by RB2, PG97-269, PG99-465 and PACAP6–38. These results suggest that NO is the main inhibitory neurotransmitter in the circular muscle of Wistar–Han rat jejunum acting through a rise in cyclic guanosine monophosphate levels and activation of small conductance Ca2+-dependent K

  20. Sensory Protection of Rat Muscle Spindles following Peripheral Nerve Injury and Reinnervation

    PubMed Central

    Elsohemy, Amal; Butler, Richard; Bain, James R.; Fahnestock, Margaret

    2012-01-01

    Background Skeletal muscle structure and function are dependent on intact Richard Butler, Ph.D. innervation. Prolonged muscle denervation results in irreversible muscle fiber James R. Bain, M.D. atrophy, connective tissue hyperplasia, and deterioration of muscle spindles, Margaret Fahnestock, Ph.D. specialized sensory receptors necessary for proper skeletal muscle function. The protective effect of temporary sensory innervation on denervated muscle, before motor nerve repair, has been shown in the rat. Sensory-protected muscles exhibit less fiber atrophy and connective tissue hyperplasia and maintain greater functional capacity than denervated muscles. The purpose of this study was to determine whether temporary sensory innervation also protects muscle spindles from degeneration. Methods Rat tibial nerve was transected and repaired with either the saphenous or the original transected nerve. Negative controls remained denervated. After 3 to 6 months, the electrophysiologic response of the nerve to stretch in the rat gastrocnemius muscle was measured (n = 3 per group). After the animals were euthanized, the gastrocnemius muscle was removed, sectioned, stained, and examined for spindle number (n = 3 per group) and morphology (one rat per group). Immunohistochemical assessment of muscle spindle innervation was examined in four additional animals. Results Significant deterioration of muscle spindles was seen in denervated muscle, whereas in muscle reinnervated with the tibial or the saphenous nerve, spindle number and morphology were improved. Histologic and functional evidence of spindle reinnervation by the sensory nerve was obtained. Conclusion These findings add to the known means by which motor or sensory nerves exert protective effects on denervated muscle, and further promote the use of sensory protection for improving the outcome after peripheral nerve injury. PMID:19952642

  1. Reduction-oxidation state and protein degradation in skeletal muscles of growing rats

    NASA Technical Reports Server (NTRS)

    Fagan, Julie M.; Tischler, Marc E.

    1986-01-01

    The relationship between the NAD redox state and protein degradation during growth was studied in isolated soleus and extensor digitorum longus muscles of 4- to 14-week-old rats. As muscle size increased with age, protein breakdown slowed and the muscles became progressively more reduced as shown by higher ratios of lactate/pyruvate in incubated and fresh-frozen muscle. Correlations were strong between redox state of protein degradation, and muscle mass, and between redox state and protein degradation. This relationship may be important in the slowing of muscle breakdown that occurs with age.

  2. Reduction-oxidation state and protein degradation in skeletal muscles of growing rats

    NASA Technical Reports Server (NTRS)

    Fagan, Julie M.; Tischler, Marc E.

    1986-01-01

    The relationship between the NAD redox state and protein degradation during growth was studied in isolated soleus and extensor digitorum longus muscles of 4- to 14-week-old rats. As muscle size increased with age, protein breakdown slowed and the muscles became progressively more reduced as shown by higher ratios of lactate/pyruvate in incubated and fresh-frozen muscle. Correlations were strong between redox state of protein degradation, and muscle mass, and between redox state and protein degradation. This relationship may be important in the slowing of muscle breakdown that occurs with age.

  3. Epimuscular myofascial force transmission occurs in the rat between the deep flexor muscles and their antagonistic muscles.

    PubMed

    Yucesoy, Can A; Baan, Guus; Huijing, Peter A

    2010-02-01

    The goal of the present study was to test the hypothesis that epimuscular myofascial force transmission occurs between deep flexor muscles of the rat and their antagonists: previously unstudied mechanical effects of length changes of deep flexors on the anterior crural muscles (i.e., extensor digitorum longus (EDL), as well as tibialis anterior and extensor hallucis longus muscle complex (TA+EHL) and peroneal (PER) muscles were assessed experimentally. These muscles or muscle groups were kept at constant length, whereas, distal length changes were imposed on deep flexor (DF) muscles before performing isometric contractions. Distal forces of all muscle-tendon complexes were measured simultaneously, in addition to EDL proximal force. Distal lengthening of DF caused substantial significant effects on its antagonistic muscles: (1) increase in proximal EDL total force (maximally 19.2%), (2) decrease in distal EDL total (maximally 8.4%) and passive (maximally 49%) forces, (3) variable proximo-distal total force differences indicating net proximally directed epimuscular myofascial loads acting on EDL at lower DF lengths and net distally directed loads at higher DF lengths, (4) decrease in TA+EHL total (maximally 50%) and passive (maximally 66.5%) forces and (5) decrease in PER total force (maximally 51.3%). It is concluded that substantial inter-antagonistic epimuscular myofascial force transmission occurs between deep flexor, anterior crural and peroneal muscles. In the light of our present results and recently reported evidence on inter-antagonistic interaction between anterior crural, peroneal and triceps surae muscles, we concluded that epimuscular myofascial force transmission is capable of causing major effects within the entire lower leg of the rat. Implications of such large scale myofascial force transmission are discussed and expected to be crucial to muscle function in healthy, as well as pathological conditions.

  4. Stimulation of post-traumatic regeneration of skeletal muscles of old rats after x-ray irradiation

    SciTech Connect

    Bulyakova, N.V.; Popova, M.F.

    1987-09-01

    The authors seek a method of stimulating restorative processes in irradiated muscles of old animals. Rats were used in the experiments. Different series of experiments were performed, including complete transverse section of the gastrocnemius muscle after local x-ray irradiation, and laser therapy of the transversly divided gastrocnemius muscle. Post-traumatic regeneration of the gastrocnemius muscle of old rats is illustrated schematically. The experimental data showed that pulsed laser therapy or grafting of minced unirradiated muscle tissue can largely restore the regenerative capacity of the gastrocnemius muscle of old rats when depressed by x-ray irradiation, but the method of grafting minced unirradiated muscle tissue was more effective.

  5. Supplementing healthy rats with a high-niacin dose has no effect on muscle fiber distribution and muscle metabolic phenotype.

    PubMed

    Scholz, Kristen; Kynast, Anna Marie; Couturier, Aline; Mooren, Frank-Christoph; Krüger, Karsten; Most, Erika; Eder, Klaus; Ringseis, Robert

    2014-08-01

    It was recently shown that niacin prevents the obesity-induced type I to type II fiber switching in skeletal muscle of obese rats and favors the development of a more oxidative metabolic phenotype and thereby increases whole body utilization of fatty acids. Whether niacin also causes type II to type I fiber switching in skeletal muscle of healthy rats has not been investigated yet. Thus, the present study aimed to investigate whether niacin supplementation influences fiber distribution and metabolic phenotype of different skeletal muscles with a distinct type I-to-type II fiber ratio in healthy rats. Twenty-four male, 10-week-old Sprague-Dawley rats were randomly assigned into two groups of 12 rats each and fed either a control diet with 30 mg supplemented niacin/kg diet (control group) or a high-niacin diet with 780 mg supplemented niacin/kg diet (high-niacin group). After 27 days of treatment, the percentage number of type I fibers in rectus femoris, gastrocnemius, and tibialis anterior muscles was 5-10% greater in the niacin group than in the control group, but did not differ between groups in soleus and vastus intermedius muscles. Transcript levels of genes encoding transcription factors regulating fiber switching, fiber-specific myosin heavy chain isoforms, and proteins involved in fatty acid utilization, oxidative phosphorylation, and angiogenesis did not differ between groups. The results show that niacin has only negligible effects on fiber distribution and its regulation as well as the metabolic phenotype of skeletal muscle in healthy rats.

  6. Evidence for increased peroxidative activity in muscles from streptozotocin-diabetic rats

    SciTech Connect

    Lammi-Keefe, C.J.; Swan, P.B.; Hegarty, P.V.J.

    1984-05-01

    The ability of cardiac and skeletal muscles from diabetic rats to metabolize superoxide and hydrogen peroxide was determined by the activities of superoxide dismutase (SOD) and catalase, respectively. Male and female Sprague-Dawley rats, 43 days old, were made diabetic with a single intravenous injection of streptozotocin (70 mg/kg body weight). On the 80th day after injection the blood glucose concentration of these rats was increased fourfold, and the plasma insulin concentration was decreased four- to fivefold compared to controls. Body weights of male diabetic rats were 61% and those of female diabetic rats were 66% of their ad libitum-fed controls. The seven different skeletal muscles examined weighed less in the diabetic rats than in controls of the same age and body weight. Comparison to the body weight controls allowed the distinction of specific effects due to lack of insulin from effects due to retardation in muscle growth. Increased catalase activity in all muscles examined from diabetic rats (plantaris, gastrocnemius, and heart) suggested a response in catalase activity similar to that of starved rats. SOD activity was not altered in the diabetic rat skeletal muscles and erythrocytes, but was somewhat decreased in the heart.

  7. Leucine-enriched essential amino acids attenuate muscle soreness and improve muscle protein synthesis after eccentric contractions in rats.

    PubMed

    Kato, Hiroyuki; Suzuki, Hiromi; Mimura, Masako; Inoue, Yoshiko; Sugita, Mayu; Suzuki, Katsuya; Kobayashi, Hisamine

    2015-06-01

    Eccentric exercise results in prolonged muscle weakness and muscle soreness, which are typical symptoms of muscle damage. Recovery from muscle damage is related to mammalian target of rapamycin (mTOR) activity. Leucine-enriched essential amino acids (LEAAs) stimulate muscle protein synthesis via activation of the mTOR pathway. Therefore, we investigated the effect of LEAAs on muscle protein synthesis and muscle soreness after eccentric contractions (EC). Male Sprague-Dawley rats (9-11 weeks old) were administered an LEAA solution (AminoL40; containing 40 % leucine and 60 % other essential amino acids) at 1 g/kg body weight or distilled water (control) 30 min before and 10 min after EC. Tibialis anterior (TA) muscle was exposed to 500 EC by electrical stimulation under anesthesia. The fractional synthesis rate (FSR; %/h) in the TA muscle was measured by incorporating L-[ring-(2)H5] phenylalanine into skeletal muscle protein. Muscle soreness was evaluated by the paw withdrawal threshold using the Randal-Selitto test with some modifications from 1 to 3 days after EC. The FSR in the EC-control group (0.147 ± 0.016 %/h) was significantly lower than in the sedentary group (0.188 ± 0.016 %/h, p < 0.05). AminoL40 administration significantly mitigated the EC-induced impairment of the FSR (0.172 ± 0.018 %/h). EC decreased the paw withdrawal threshold at 1 and 2 days after EC, which indicated that EC induced muscle soreness. Furthermore, AminoL40 administration alleviated the decreased paw withdrawal threshold. These findings suggest that LEAA supplementation improves the rate of muscle protein synthesis and ameliorates muscle soreness after eccentric exercise.

  8. Ontogenetic, gravity-dependent development of rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Ohira, Y.; Tanaka, T.; Yoshinaga, T.; Kawano, F.; Nomura, T.; Nonaka, I.; Allen, D. L.; Roy, R. R.; Edgerton, V. R.

    2001-01-01

    We tested the hypothesis that rat soleus muscle fiber growth and changes in myosin phenotype during the postnatal, preweaning period would be largely independent of weight bearing. The hindlimbs of one group of pups were unloaded intermittently from postnatal day 4 to day 21: the pups were isolated from the dam for 5 h during unloading and returned for nursing for 1 h. Control pups were either maintained with the dam as normal or put on an alternating feeding schedule as described above. The enlargement of mass (approximately 3 times), increase in myonuclear number (approximately 1.6 times) and myonuclear domain (approximately 2.6 times), and transformation toward a slow fiber phenotype (from 56 to 70% fibers expressing type I myosin heavy chain) observed in controls were inhibited by hindlimb unloading. These properties were normalized to control levels or higher within 1 mo of reambulation beginning immediately after the unloading period. Therefore, chronic unloading essentially stopped the ontogenetic developmental processes of 1) net increase in DNA available for transcription, 2) increase in amount of cytoplasm sustained by that DNA pool, and 3) normal transition of myosin isoforms that occur in some fibers from birth to weaning. It is concluded that normal ontogenetic development of a postural muscle is highly dependent on the gravitational environment even during the early postnatal period, when full weight-bearing activity is not routine.

  9. Ontogenetic, gravity-dependent development of rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Ohira, Y.; Tanaka, T.; Yoshinaga, T.; Kawano, F.; Nomura, T.; Nonaka, I.; Allen, D. L.; Roy, R. R.; Edgerton, V. R.

    2001-01-01

    We tested the hypothesis that rat soleus muscle fiber growth and changes in myosin phenotype during the postnatal, preweaning period would be largely independent of weight bearing. The hindlimbs of one group of pups were unloaded intermittently from postnatal day 4 to day 21: the pups were isolated from the dam for 5 h during unloading and returned for nursing for 1 h. Control pups were either maintained with the dam as normal or put on an alternating feeding schedule as described above. The enlargement of mass (approximately 3 times), increase in myonuclear number (approximately 1.6 times) and myonuclear domain (approximately 2.6 times), and transformation toward a slow fiber phenotype (from 56 to 70% fibers expressing type I myosin heavy chain) observed in controls were inhibited by hindlimb unloading. These properties were normalized to control levels or higher within 1 mo of reambulation beginning immediately after the unloading period. Therefore, chronic unloading essentially stopped the ontogenetic developmental processes of 1) net increase in DNA available for transcription, 2) increase in amount of cytoplasm sustained by that DNA pool, and 3) normal transition of myosin isoforms that occur in some fibers from birth to weaning. It is concluded that normal ontogenetic development of a postural muscle is highly dependent on the gravitational environment even during the early postnatal period, when full weight-bearing activity is not routine.

  10. Muscle-specific changes in length-force characteristics of the calf muscles in the spastic Han-Wistar rat.

    PubMed

    Olesen, Annesofie T; Jensen, Bente R; Uhlendorf, Toni L; Cohen, Randy W; Baan, Guus C; Maas, Huub

    2014-11-01

    The purpose of the present study was to investigate muscle mechanical properties and mechanical interaction between muscles in the lower hindlimb of the spastic mutant rat. Length-force characteristics of gastrocnemius (GA), soleus (SO), and plantaris (PL) were assessed in anesthetized spastic and normally developed Han-Wistar rats. In addition, the extent of epimuscular myofascial force transmission between synergistic GA, SO, and PL, as well as between the calf muscles and antagonistic tibialis anterior (TA), was investigated. Active length-force curves of spastic GA and PL were narrower with a reduced maximal active force. In contrast, active length-force characteristics of spastic SO were similar to those of controls. In reference position (90° ankle and knee angle), higher resistance to ankle dorsiflexion and increased passive stiffness was found for the spastic calf muscle group. At optimum length, passive stiffness and passive force of spastic GA were decreased, whereas those of spastic SO were increased. No mechanical interaction between the calf muscles and TA was found. As GA was lengthened, force from SO and PL declined despite a constant muscle-tendon unit length of SO and PL. However, the extent of this interaction was not different in spastic rats. In conclusion, the effects of spasticity on length-force characteristics were muscle specific. The changes observed for GA and PL muscles are consistent with the changes in limb mechanics reported for human patients. Our results indicate that altered mechanics in spastic rats cannot be attributed to differences in mechanical interaction, but originate from individual muscular structures.

  11. Insulin effect on amino acid uptake by unloaded rat hindlimb muscles

    NASA Technical Reports Server (NTRS)

    Jaspers, S. R.; Tischler, M. E.

    1988-01-01

    The effect of insulin on the uptake of alpha-amino-isobutyric acid (AIB) by unloaded rat hindlimb muscles was investigated using soleus and extensor digitorum longus (EDL) muscles from intact and adrenalectomized (ADX) rats that were tail-casted for six days. It was found that, at insulin levels above 0.00001 units/ml, the in vitro rate of AIB uptake by muscles from intact animals was stimulated more in the weight bearing muscles than in unloaded ones. In ADX animals, this differential response to insulin was abolished.

  12. Changes in antioxidant enzymes and lipid peroxidation in extensor digitorum longus muscles of streptozotocin-diabetic rats may contribute to muscle atrophy.

    PubMed

    Nonaka, Koji; Une, S; Tatsuta, N; Ito, K; Akiyama, J

    2014-12-01

    We investigated muscle atrophy, major antioxidant enzymes and lipid peroxidation in the extensor digitorum longus (EDL, predominantly fast fibers) and soleus (predominantly slow fibers) muscle of streptozotocin-diabetic rats. Female Wistar rats were divided into a control (n = 5) and streptozotocin-induced diabetic group (n = 5). Eight weeks after diabetes induction the EDL and soleus muscles were removed and catalase (CAT), glutathione peroxidase (GPX) and superoxide dismutase activity (SOD), and thiobarbituric acid reactive substances (TBARS) levels measured. The CAT activity increased in both the EDL and soleus muscles of the diabetic rats (p < 0.01), whereas the GPX and SOD activities were increased only in the EDL muscle (p < 0.01 and p < 0.05). The TBARS levels were only increased in the EDL muscle of the diabetic rats (p < 0.01). Both muscles showed significant atrophy but the EDL muscle elicited the greatest atrophy. In conclusion, it appears that adaptive responses to oxidative stress were adequate in the soleus muscle, but not in the EDL muscle, of diabetic rats. Thus fast twitch muscle fibers may be more susceptible to oxidative stress than slow twitch muscle fibers and this may contribute to muscle atrophy under diabetic conditions.

  13. Age-related physiological and morphological changes of muscle spindles in rats.

    PubMed

    Kim, Gee Hee; Suzuki, Shuji; Kanda, Kenro

    2007-07-15

    Age-related physiological and morphological changes of muscle spindles were examined in rats (male Fischer 344/DuCrj: young, 4-13 months; middle-aged, 20-22 months; old, 28-31 months). Single afferent discharges of the muscle spindles in gastrocnemius muscles were recorded from a finely split dorsal root during ramp-and-hold (amplitude, 2.0 mm; velocity, 2-20 mm s(-1)) or sinusoidal stretch (amplitude, 0.05-1.0 mm; frequency, 0.5-2 Hz). Respective conduction velocities (CVs) were then measured. After electrophysiological experimentation, the muscles were dissected. The silver-impregnated muscle spindles were teased and then analysed using a light microscope. The CV and dynamic response to ramp-and-hold stretch of many endings were widely overlapped in old rats because of the decreased CV and dynamic response of primary endings. Many units in old rats showed slowing of discharge during the release phase under ramp-and-hold stretch and continuous discharge under sinusoidal stretch, similarly to secondary endings in young and middle-aged rats. Morphological studies revealed that primary endings of aged rat muscle spindles were less spiral or non-spiral in appearance, but secondary endings appeared unchanged. These results suggest first that primary muscle spindles in old rats are indistinguishable from secondary endings when determined solely by previously used physiological criteria. Secondly, these physiological results reflect drastic age-related morphological changes in spindle primary endings.

  14. Age-related physiological and morphological changes of muscle spindles in rats

    PubMed Central

    Kim, Gee Hee; Suzuki, Shuji; Kanda, Kenro

    2007-01-01

    Age-related physiological and morphological changes of muscle spindles were examined in rats (male Fischer 344/DuCrj: young, 4–13 months; middle-aged, 20–22 months; old, 28–31 months). Single afferent discharges of the muscle spindles in gastrocnemius muscles were recorded from a finely split dorsal root during ramp-and-hold (amplitude, 2.0 mm; velocity, 2–20 mm s−1) or sinusoidal stretch (amplitude, 0.05–1.0 mm; frequency, 0.5–2 Hz). Respective conduction velocities (CVs) were then measured. After electrophysiological experimentation, the muscles were dissected. The silver-impregnated muscle spindles were teased and then analysed using a light microscope. The CV and dynamic response to ramp-and-hold stretch of many endings were widely overlapped in old rats because of the decreased CV and dynamic response of primary endings. Many units in old rats showed slowing of discharge during the release phase under ramp-and-hold stretch and continuous discharge under sinusoidal stretch, similarly to secondary endings in young and middle-aged rats. Morphological studies revealed that primary endings of aged rat muscle spindles were less spiral or non-spiral in appearance, but secondary endings appeared unchanged. These results suggest first that primary muscle spindles in old rats are indistinguishable from secondary endings when determined solely by previously used physiological criteria. Secondly, these physiological results reflect drastic age-related morphological changes in spindle primary endings. PMID:17495047

  15. Contractile function and energy metabolism of skeletal muscle in rats with secondary carnitine deficiency.

    PubMed

    Roberts, Paul A; Bouitbir, Jamal; Bonifacio, Annalisa; Singh, François; Kaufmann, Priska; Urwyler, Albert; Krähenbühl, Stephan

    2015-08-01

    The consequences of carnitine depletion upon metabolic and contractile characteristics of skeletal muscle remain largely unexplored. Therefore, we investigated the effect of N-trimethyl-hydrazine-3-propionate (THP) administration, a carnitine analog inhibiting carnitine biosynthesis and renal reabsorption of carnitine, on skeletal muscle function and energy metabolism. Male Sprague-Dawley rats were fed a standard rat chow in the absence (CON; n = 8) or presence of THP (n = 8) for 3 wk. Following treatment, rats were fasted for 24 h prior to excision of their soleus and EDL muscles for biochemical characterization at rest and following 5 min of contraction in vitro. THP treatment reduced the carnitine pool by ∼80% in both soleus and EDL muscles compared with CON. Carnitine depletion was associated with a 30% decrease soleus muscle weight, whereas contractile function (expressed per gram of muscle), free coenzyme A, and water content remained unaltered from CON. Muscle fiber distribution and fiber area remained unaffected, whereas markers of apoptosis were increased in soleus muscle of THP-treated rats. In EDL muscle, carnitine depletion was associated with reduced free coenzyme A availability (-25%, P < 0.05), impaired peak tension development (-44%, P < 0.05), and increased glycogen hydrolysis (52%, P < 0.05) during muscle contraction, whereas PDC activation, muscle weight, and water content remained unaltered from CON. In conclusion, myopathy associated with carnitine deficiency can have different causes. Although muscle atrophy, most likely due to increased apoptosis, is predominant in muscle composed predominantly of type I fibers (soleus), disturbance of energy metabolism appears to be the major cause in muscle composed of type II fibers (EDL).

  16. Distinct muscle apoptotic pathways are activated in muscles with different fiber types in a rat model of critical illness myopathy.

    PubMed

    Barnes, Benjamin T; Confides, Amy L; Rich, Mark M; Dupont-Versteegden, Esther E

    2015-06-01

    Critical illness myopathy (CIM) is associated with severe muscle atrophy and fatigue in affected patients. Apoptotic signaling is involved in atrophy and is elevated in muscles from patients with CIM. In this study we investigated underlying mechanisms of apoptosis-related pathways in muscles with different fiber type composition in a rat model of CIM using denervation and glucocorticoid administration (denervation and steroid-induced myopathy, DSIM). Soleus and tibialis anterior (TA) muscles showed severe muscle atrophy (40-60% of control muscle weight) and significant apoptosis in interstitial as well as myofiber nuclei that was similar between the two muscles with DSIM. Caspase-3 and -8 activities, but not caspase-9 and -12, were elevated in TA and not in soleus muscle, while the caspase-independent proteins endonuclease G (EndoG) and apoptosis inducing factor (AIF) were not changed in abundance nor differentially localized in either muscle. Anti-apoptotic proteins HSP70, -27, and apoptosis repressor with a caspase recruitment domain (ARC) were elevated in soleus compared to TA muscle and ARC was significantly decreased with induction of DSIM in soleus. Results indicate that apoptosis is a significant process associated with DSIM in both soleus and TA muscles, and that apoptosis-associated processes are differentially regulated in muscles of different function and fiber type undergoing atrophy due to DSIM. We conclude that interventions combating apoptosis with CIM may need to be directed towards inhibiting caspase-dependent as well as -independent mechanisms to be able to affect muscles of all fiber types.

  17. Distinct muscle apoptotic pathways are activated in muscles with different fiber types a rat model of critical illness myopathy

    PubMed Central

    Barnes, Benjamin T.; Confides, Amy L.; Rich, Mark M.; Dupont-Versteegden, Esther E.

    2015-01-01

    Critical illness myopathy (CIM) is associated with severe muscle atrophy and fatigue in affected patients. Apoptotic signaling is involved in atrophy and is elevated in muscles from patients with CIM. In this study we investigated underlying mechanisms of apoptosis-related pathways in muscles with different fiber type composition in a rat model of CIM using denervation and glucocorticoid administration (denervation and steroid-induced myopathy, DSIM). Soleus and tibialis anterior (TA) muscles showed severe muscle atrophy (40–60% of control muscle weight) and significant apoptosis in interstitial as well as myofiber nuclei that was similar between the two muscles with DSIM. Caspase-3 and −8 activities, but not caspase-9 and −12, were elevated in TA and not in soleus muscle, while the caspase-independent proteins endonuclease G (EndoG) and apoptosis inducing factor (AIF) were not changed in abundance nor differentially localized in either muscle. Anti-apoptotic proteins HSP70, −27, and apoptosis repressor with a caspase recruitment domain (ARC) were elevated in soleus compared to TA muscle and ARC was significantly decreased with induction of DSIM in soleus. Results indicate that apoptosis is a significant process associated with DSIM in both soleus and TA muscles, and that apoptosis-associated processes are differentially regulated in muscles of different function and fiber type undergoing atrophy due to DSIM. We conclude that interventions combating apoptosis with CIM may need to be directed towards inhibiting caspase-dependent as well as -independent mechanisms to be able to affect muscles of all fiber types. PMID:25740800

  18. Muscle fatigue examined at different temperatures in experiments on intact mammalian (rat) muscle fibers

    PubMed Central

    Roots, H.; Ball, G.; Talbot-Ponsonby, J.; King, M.; McBeath, K.; Ranatunga, K. W.

    2009-01-01

    In experiments on small bundles of intact fibers from a rat fast muscle, in vitro, we examined the decline in force in repeated tetanic contractions; the aim was to characterize the effect of shortening and of temperature on the initial phase of muscle fatigue. Short tetanic contractions were elicited at a control repetition rate of 1/60 s, and fatigue was induced by raising the rate to 1/5 s for 2–3 min, both in isometric mode (no shortening) and in shortening mode, in which each tetanic contraction included a ramp shortening at a standard velocity. In experiments at 20°C (n = 12), the force decline during a fatigue run was 25% in the isometric mode but was significantly higher (35%) in the shortening mode. In experiments at different temperatures (10–30°C, n = 11), the tetanic frequency and duration were adjusted as appropriate, and for shortening mode, the velocity was adjusted for maximum power output. In isometric mode, fatigue of force was significantly less at 30°C (∼20%) than at 10°C (∼30%); the power output (force × velocity) was >10× higher at 30°C than at 10°C, and power decline during a fatigue run was less at 30°C (∼20–30%) than at 10°C (∼50%). The finding that the extent of fatigue is increased with shortening contractions and is lower at higher temperatures is consistent with the view that force depression by inorganic phosphate, which accumulates within fibers during activity, may be a primary cause of initial muscle fatigue. PMID:19057001

  19. Muscle respiration in rats is influenced by the type and level of dietary fat.

    PubMed

    Early, R J; Spielman, S P

    1995-06-01

    Experiments were conducted to elucidate the role of muscle in the enhanced thermogenic response found in rats fed diets enriched with polyunsaturated fatty acids. Isolated soleus muscle respiration and plasma cholesterol and triglyceride concentrations were determined in rats (approximately 128 g wt, 5 wk age) fed diets (minimum 3 wk) containing coconut oil, beef tallow or safflower oil at 20, 40 or 60% of the total dietary energy in a 3 x 3 factorial design (5-6 rats per treatment). Diet type did not affect plasma cholesterol concentrations but plasma triglycerides were lower (P < 0.01) in rats fed safflower oil-based diets. Greater levels of fat in the diet resulted in higher (P < 0.01) plasma cholesterol concentrations and lower (P < 0.01) plasma triglyceride concentrations. Rats fed coconut oil had lower (P < 0.05) rats of soleus muscle respiration compared with rats fed the other two diets. This lower respiration rate was not related to changes in protein synthesis (cycloheximide-sensitive respiration). However, this change may partially be related to enhanced Na+,K+ transport (ouabain-sensitive respiration). The results indicate that muscle is partially responsible for the enhanced thermogenic response found in rats fed diets enriched with polyunsaturated fatty acids and that enhanced ion transport contributes to this response in muscle.

  20. The comparative effects of aminoglycoside antibiotics and muscle relaxants on electrical field stimulation response in rat bladder smooth muscle.

    PubMed

    Min, Chang Ho; Min, Young Sil; Lee, Sang Joon; Sohn, Uy Dong

    2016-06-01

    It has been reported that several aminoglycoside antibiotics have a potential of prolonging the action of non-depolarizing muscle relaxants by drug interactions acting pre-synaptically to inhibit acetylcholine release, but antibiotics itself also have a strong effect on relaxing the smooth muscle. In this study, four antibiotics of aminoglycosides such as gentamicin, streptomycin, kanamycin and neomycin were compared with skeletal muscle relaxants baclofen, tubocurarine, pancuronium and succinylcholine, and a smooth muscle relaxant, papaverine. The muscle strips isolated from the rat bladder were stimulated with pulse trains of 40 V in amplitude and 10 s in duration, with pulse duration of 1 ms at the frequency of 1-8 Hz, at 1, 2, 4, 6, 8 Hz respectively. To test the effect of four antibiotics on bladder smooth muscle relaxation, each of them was treated cumulatively from 1 μM to 0.1 mM with an interval of 5 min. Among the four antibiotics, gentamicin and neomycin inhibited the EFS response. The skeletal muscle relaxants (baclofen, tubocurarine, pancuronium and succinylcholine) and inhibitory neurotransmitters (GABA and glycine) did not show any significant effect. However, papaverine, had a significant effect in the relaxation of the smooth muscle. It was suggested that the aminoglycoside antibiotics have inhibitory effect on the bladder smooth muscle.

  1. Volitional Weight-Lifting in Rats Promotes Adaptation via Performance and Muscle Morphology prior to Gains in Muscle Mass

    PubMed Central

    Rader, Erik P; Miller, G Roger; Chetlin, Robert D; Wirth, Oliver; Baker, Brent A

    2014-01-01

    Investigation of volitional animal models of resistance training has been instrumental in our understanding of adaptive training. However, these studies have lacked reactive force measurements, a precise performance measure, and morphological analysis at a distinct phase of training – when initial strength gains precede muscle hypertrophy. Our aim was to expose rats to one month of training (70 or 700 g load) on a custom-designed weight-lifting apparatus for analysis of reactive forces and muscle morphology prior to muscle hypertrophy. Exclusively following 700 g load training, forces increased by 21% whereas muscle masses remained unaltered. For soleus (SOL) and tibialis anterior (TA) muscles, 700 g load training increased muscle fiber number per unit area by ∼20% and decreased muscle fiber area by ∼20%. Additionally, number of muscle fibers per section increased by 18% for SOL muscles. These results establish that distinct morphological alterations accompany early strength gains in a volitional animal model of load-dependent adaptive resistance training. PMID:25392697

  2. Effect of seven days of spaceflight on hindlimb muscle protein, RNA and DNA in adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1985-01-01

    Effects of seven days of spaceflight on skeletal muscle (soleus, gastrocnemius, EDL) content of protein, RNA and DNA were determined in adult rats. Whereas total protein contents were reduced in parallel with muscle weights, myofibrillar protein appeared to be more affected. There were no significant changes in absolute DNA contents, but a significant (P less than 0.05) increase in DNA concentration (microgram/milligram) in soleus muscles from flight rats. Absolute RNA contents were significantly (P less than 0.025) decreased in the soleus and gastrocnemius muscles of flight rats, with RNA concentrations reduced 15-30 percent. These results agree with previous ground-based observations on the suspended rat with unloaded hindlimbs and support continued use of this model.

  3. Effect of seven days of spaceflight on hindlimb muscle protein, RNA and DNA in adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1985-01-01

    Effects of seven days of spaceflight on skeletal muscle (soleus, gastrocnemius, EDL) content of protein, RNA and DNA were determined in adult rats. Whereas total protein contents were reduced in parallel with muscle weights, myofibrillar protein appeared to be more affected. There were no significant changes in absolute DNA contents, but a significant (P less than 0.05) increase in DNA concentration (microgram/milligram) in soleus muscles from flight rats. Absolute RNA contents were significantly (P less than 0.025) decreased in the soleus and gastrocnemius muscles of flight rats, with RNA concentrations reduced 15-30 percent. These results agree with previous ground-based observations on the suspended rat with unloaded hindlimbs and support continued use of this model.

  4. Skeletal muscle response to spaceflight, whole body suspension, and recovery in rats

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, J. M.; Fell, R. D.; Dombrowski, M. J.

    1990-01-01

    The effects of a 7-day spaceflight (SF), 7- and 14-day-long whole body suspension (WBS), and 7-day-long recovery on the muscle weight and the morphology of the soleus and the extensor digitorum longus (EDL) of rats were investigated. It was found that the effect of 7-day-long SF and WBS were highly comparable for both the soleus and the EDL, although the soleus muscle from SF rats showed greater cross-sectional area reduction than that from WBS rats. With a longer duration of WBS, there was a continued reduction in cross-sectional fast-twitch fiber area. Muscle plasticity, in terms of fiber and capillary responses, showed differences in responses of the two types of muscles, indicating that antigravity posture muscles are highly susceptible to unloading.

  5. Motor Unit Changes Seen With Skeletal Muscle Sarcopenia in Oldest Old Rats

    PubMed Central

    Kung, Theodore A.; van der Meulen, Jack H.; Urbanchek, Melanie G.; Kuzon, William M.; Faulkner, John A.

    2014-01-01

    Sarcopenia leads to many changes in skeletal muscle that contribute to atrophy, force deficits, and subsequent frailty. The purpose of this study was to characterize motor unit remodeling related to sarcopenia seen in extreme old age. Whole extensor digitorum longus muscle and motor unit contractile properties were measured in 19 adult (11–13 months) and 12 oldest old (36–37 months) Brown-Norway rats. Compared with adults, oldest old rats had significantly fewer motor units per muscle, smaller muscle cross-sectional area, and lower muscle specific force. However, mean motor unit force generation was similar between the two groups due to an increase in innervation ratio by the oldest old rats. These findings suggest that even in extreme old age both fast- and slow-twitch motor units maintain the ability to undergo motor unit remodeling that offsets some effects of sarcopenia. PMID:24077596

  6. A New Surgical Model of Skeletal Muscle Injuries in Rats Reproduces Human Sports Lesions.

    PubMed

    Contreras-Muñoz, P; Fernández-Martín, A; Torrella, R; Serres, X; De la Varga, M; Viscor, G; Järvinen, T A H; Martínez-Ibáñez, V; Peiró, J L; Rodas, G; Marotta, M

    2016-03-01

    Skeletal muscle injuries are the most common sports-related injuries in sports medicine. In this work, we have generated a new surgically-induced skeletal muscle injury in rats, by using a biopsy needle, which could be easily reproduced and highly mimics skeletal muscle lesions detected in human athletes. By means of histology, immunofluorescence and MRI imaging, we corroborated that our model reproduced the necrosis, inflammation and regeneration processes observed in dystrophic mdx-mice, a model of spontaneous muscle injury, and realistically mimicked the muscle lesions observed in professional athletes. Surgically-injured rat skeletal muscles demonstrated the longitudinal process of muscle regeneration and fibrogenesis as stated by Myosin Heavy Chain developmental (MHCd) and collagen-I protein expression. MRI imaging analysis demonstrated that our muscle injury model reproduces the grade I-II type lesions detected in professional soccer players, including edema around the central tendon and the typically high signal feather shape along muscle fibers. A significant reduction of 30% in maximum tetanus force was also registered after 2 weeks of muscle injury. This new model represents an excellent approach to the study of the mechanisms of muscle injury and repair, and could open new avenues for developing innovative therapeutic approaches to skeletal muscle regeneration in sports medicine.

  7. Contractile properties of esophageal striated muscle: comparison with cardiac and skeletal muscles in rats.

    PubMed

    Shiina, Takahiko; Shima, Takeshi; Masuda, Kazuaki; Hirayama, Haruko; Iwami, Momoe; Takewaki, Tadashi; Kuramoto, Hirofumi; Shimizu, Yasutake

    2010-01-01

    The external muscle layer of the mammalian esophagus consists of striated muscles. We investigated the contractile properties of esophageal striated muscle by comparison with those of skeletal and cardiac muscles. Electrical field stimulation with single pulses evoked twitch-like contractile responses in esophageal muscle, similar to those in skeletal muscle in duration and similar to those in cardiac muscle in amplitude. The contractions of esophageal muscle were not affected by an inhibitor of gap junctions. Contractile responses induced by high potassium or caffeine in esophageal muscle were analogous to those in skeletal muscle. High-frequency stimulation induced a transient summation of contractions followed by sustained contractions with amplitudes similar to those of twitch-like contractions, although a large summation was observed in skeletal muscle. The results demonstrate that esophageal muscle has properties similar but not identical to those of skeletal muscle and that some specific properties may be beneficial for esophageal peristalsis.

  8. Identification and characterization of a tissue kallikrein in rat skeletal muscles.

    PubMed Central

    Shimojo, N; Chao, J; Chao, L; Margolius, H S; Mayfield, R K

    1987-01-01

    A tissue kallikrein was purified from rat skeletal muscle. Characterization of the enzyme showed that it has alpha-N-tosyl-L-arginine methylesterase activity and releases kinin from purified bovine low-Mr kininogen substrate. The pH optimum (9.0) of its esterase activity and the profile of inhibition by serine-proteinase inhibitors are identical with those of purified RUK (rat urinary kallikrein). Skeletal-muscle kallikrein also behaved identically with urinary kallikrein in a radioimmunoassay using a polyclonal anti-RUK antiserum. On Western-blot analysis, rat muscle kallikrein was recognized by affinity-purified monoclonal anti-kallikrein antibody at a position similar to that of RUK (Mr 38,000). Immunoreactive-kallikrein levels were measured in skeletal muscles which have different fibre types. The soleus, a slow-contracting muscle with high mitochondrial oxidative-enzyme activity, had higher kallikrein content than did the extensor digitorum longus or gastrocnemius, both fast-contracting muscles with low oxidative-enzyme activity. Streptozotocin-induced diabetes reduced muscle weights, but did not alter the level of kallikrein (pg/mg of protein) in skeletal muscle, suggesting that insulin is not a regulator of kallikrein in this tissue. Although the role of kallikrein in skeletal muscle is unknown, its localization and activity in relation to muscle functions and disease can now be studied. Images Fig. 4. PMID:3311022

  9. Changes of contractile responses due to simulated weightlessness in rat soleus muscle

    NASA Astrophysics Data System (ADS)

    Elkhammari, A.; Noireaud, J.; Léoty, C.

    1994-08-01

    Some contractile and electrophysiological properties of muscle fibers isolated from the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of rats were compared with those measured in SOL muscles from suspended rats. In suspendede SOL (21 days of tail-suspension) membrane potential (Em), intracellular sodium activity (aiNa) and the slope of the relationship between Em and log [K]o were typical of fast-twitch muscles. The relation between the maximal amplitude of K-contractures vs Em was steeper for control SOL than for EDL and suspended SOL muscles. After suspension, in SOL muscles the contractile threshold and the inactivation curves for K-contractures were shifted to more positive Em. Repriming of K-contractures was unaffected by suspencion. The exposure of isolated fibers to perchlorate (ClO4-)-containing (6-40 mM) solutions resulted ina similar concentration-dependent shift to more negative Em of activation curves for EDL and suspended SOL muscles. On exposure to a Na-free TEA solution, SOL from control and suspended rats, in contrast to EDL muscles, generated slow contractile responses. Suspended SOL showed a reduced sensitivity to the contracture-producing effect of caffeine compared to control muscles. These results suggested that the modification observed due to suspension could be encounted by changes in the characteristics of muscle fibers from slow to fast-twitch type.

  10. Fatigue and contraction of slow and fast muscles in hypokinetic/hypodynamic rats

    NASA Technical Reports Server (NTRS)

    Fell, R. D.; Gladden, L. B.; Steffen, J. M.; Musacchia, X. J.

    1985-01-01

    The effects of hypokinesia/hypodynamia (H/H) on the fatigability and contractile properties of the rat soleus (S) and gastrocnemius (G) muscles have been investigated experimentally. Whole body suspension for one week was used to induce H/H, and fatigue was brought on by train stimulation for periods of 45 and 16 minutes. Following stimulation, rapid rates of fatigue were observed in the G-muscles of the suspended rats, while minimal fatigue was observed in the S-muscles. The twitch and tetanic contractile properties of the muscles were measured before and after train stimulation. It is found that H/H suspension increased twitch tension in the G-muscles, but did not change any contractile properties in the S-muscles. The peak twitch, train, tetanic tensions and time to peak were unchanged in the S-muscles of the suspended rats. On the basis of the experimental results, it is concluded that 1 wk of muscle atropy induced by H/H significantly increases fatigability in G-muscles, but does not affect the contractile properties of fast-twitch and slow-twitch muscles.

  11. Effect of diltiazem on skeletal muscle 3-O-methylglucose transport in bacteremic rats

    SciTech Connect

    Westfall, M.V.; Sayeed, M.M.

    1989-03-01

    This study examined whether alterations in cellular Ca2+ regulation contribute to previously observed changes in skeletal muscle sugar transport during bacteremia. Fasted male rats received saline (control) or bacteria (4 X 10(10) Escherichia coli/kg) intraperitoneally. Twelve hours later, basal and insulin-mediated 3-O-methylglucose (3MG) transport was measured in isolated soleus muscles. Measurements of 3MG transport in the presence of cytochalasin b or at a low temperature (0.5 degree C) indicated that altered sugar transport in bacteremic rat muscles was not due to nonspecific membrane permeability changes. To determine the role of Ca2+ in the pathogenesis of altered sugar transport during bacteremia, rats were treated with the Ca2+ antagonist diltiazem (DZ, 0.6-2.4 mg/kg) at various times (0, 0 + 7.5, 10 h) after saline or bacterial injection. In bacteremic rats given 2.4 mg/kg DZ at 10 h, basal and insulin-mediated transport were similar to control values. This dose of DZ had little effect on control muscles. The addition of 20 microM DZ to the incubation media did not affect basal or insulin-mediated 3MG transport in bacteremic rat muscles. Addition of the Ca2+ agonist BAY K 8644 to the incubation media had no effect on sugar transport in bacteremic rat muscles but caused alterations in control rat muscles that were comparable to those observed in bacteremia. These results suggest that alterations in Ca2+ regulation could contribute to the previously observed changes in sugar transport in skeletal muscles from bacteremic rats.

  12. Gated /sup 31/P NMR study of tetanic contraction in rat muscle depleted of phosphocreatine

    SciTech Connect

    Shoubridge, E.A.; Radda, G.K.

    1987-05-01

    Rats were fed a diet containing 1% ..beta..-guanidino-propionic acid (GPA) for 6-12 wk to deplete their muscles of phosphocreatine (PCr). Gated /sup 31/P nuclear magnetic resonance (NMR) spectra were obtained from the gastrocnemius-plantaris muscle at various time points during either a 1- or 3-s isometric tetanic contraction using a surface coil. The energy cost of a 1-s tetanus in unfatigued control rat muscle was 48.4 ..mu..mol ATP x g dry wt/sup -1/ x s/sup -1/ and was largely supplied by PCr; anaerobic glycogenolysis was negligible. In GPA-fed rats PCr was undetectable after 400 ms. This had no effect on initial force generated per gram, which was not significantly different from controls. Developed tension in a 3-s tetanus in GPA-fed rats could be divided into a peak phase (duration 0.8-0.9 s) and a plateau phase (65% peak tension) in which PCr was undetectable and the (ATP) was < 20% of that in control muscle. Energy from glycogenolysis was sufficient to maintain force generation at this submaximal level. Mean net glycogen utilization per 3-s tetanus was 78% greater than in control muscle. However, the observed decrease in intracellular pH was less than that expected from energy budget calculations, suggesting either increased buffering capacity or modulation of ATP hydrolysis in the muscles of GPA-fed rats. The results demonstrate that the transport role of PCr is not essential in contracting muscle in GPA-fed rats. PCr is probably important in this regard in the larger fibers of control muscle. Although fast-twitch muscles depleted of PCr have nearly twice the glycogen reserves of control muscle, glycogenolysis is limited in its capacity to fill the role of PCr as an energy buffer under conditions of maximum ATP turnover.

  13. Effects of hypokinesia and hypodynamia upon protein turnover in hindlimb muscles of the rat

    NASA Technical Reports Server (NTRS)

    Loughna, Paul T.; Goldspink, David F.; Goldspink, Geoffrey

    1987-01-01

    Hypokinesia/hypodynamia was induced in the hindlimb muscles of the rat, using a suspension technique. This caused differing degrees of atrophy in different muscles. However, this atrophy was reduced in muscles held in a lenghthened position. The greatest degree of wasting was observed in the unstretched soleus, a slow postural muscle, where both Type 1 and Type 2a fibers atrophied to the same degree. However, wasting of the gastrocnemius muscle was associated with a reduction in the size of the Type 2b fibers. In both slow-postural and fast-phasic hindlimb muscles, atrophy was brought about by a reduction in the rate of protein synthesis in conjunction with an elevation in the rate of protein degradation. When inactive muscles were passively stretched, both protein synthesis and degradation were dramatically elevated. Even periods of stretch of as little as 0.5 h/d were found to significantly decrease atrophy in inactive muscles.

  14. Effect of collagen digestion on the passive elastic properties of diaphragm muscle in rat.

    PubMed

    Rowe, Justin; Chen, Qingshan; Domire, Zachary J; McCullough, Matthew B; Sieck, Gary; Zhan, Wen-Zhi; An, Kai-Nan

    2010-01-01

    Effects of collagen digestion have been defined up to the fibril level. However, the question remains as to whether the alteration of skeletal muscle extracellular matrix (ECM) affects a muscle's passive elastic response. Various elastography methods have been applied as tools for evaluating the mechanical properties and ECM content of skeletal muscle. In an effort to develop an ECM altered skeletal muscle model, this study determined the effect of collagen digestion on the passive elastic properties of skeletal muscle. Passive mechanical properties of rat diaphragms were evaluated in various degrees of collagen digestion. Between cyclic loading tests, muscle strips were immersed in various concentrations of clostridium histolyticum derived bacterial collagenase. All samples were later viewed via light microscopy. Cyclic testing revealed linear relationships between passive muscle stiffness and digestion time at multiple concentrations. These results demonstrate that collagenase digestion of the ECM in skeletal muscle could be used as a simple and reliable model of mechanically altered in vitro tissue samples.

  15. Effects of hypokinesia and hypodynamia upon protein turnover in hindlimb muscles of the rat

    NASA Technical Reports Server (NTRS)

    Loughna, Paul T.; Goldspink, David F.; Goldspink, Geoffrey

    1987-01-01

    Hypokinesia/hypodynamia was induced in the hindlimb muscles of the rat, using a suspension technique. This caused differing degrees of atrophy in different muscles. However, this atrophy was reduced in muscles held in a lenghthened position. The greatest degree of wasting was observed in the unstretched soleus, a slow postural muscle, where both Type 1 and Type 2a fibers atrophied to the same degree. However, wasting of the gastrocnemius muscle was associated with a reduction in the size of the Type 2b fibers. In both slow-postural and fast-phasic hindlimb muscles, atrophy was brought about by a reduction in the rate of protein synthesis in conjunction with an elevation in the rate of protein degradation. When inactive muscles were passively stretched, both protein synthesis and degradation were dramatically elevated. Even periods of stretch of as little as 0.5 h/d were found to significantly decrease atrophy in inactive muscles.

  16. Mitochondrial respiration in muscle and liver from cold-acclimated hypothyroid rats.

    PubMed

    Zaninovich, Angel A; Rebagliati, Ines; Raices, Marcela; Ricci, Conrado; Hagmuller, Karl

    2003-10-01

    The effects of long-term cold exposure on muscle and liver mitochondrial oxygen consumption in hypothyroid and normal rats were examined. Thyroid ablation was performed after 8-wk acclimation to 4 degrees C. Hypothyroid and normal controls remained in the cold for an additional 8 wk. At the end of 16-wk cold exposure, all hypothyroid rats were alive and normothermic and had normal body weight. At ambient temperature (24 degrees C), thyroid ablation induced a 65% fall in muscle mitochondrial oxygen consumption, which was reversed by thyroxine but not by norepinephrine administration. After cold acclimation was reached, suppression of thyroid function reduced muscle mitochondrial respiration by 30%, but the hypothyroid values remained about threefold higher than those in hypothyroid muscle in the warm. Blockade of beta- and alpha1-adrenergic receptors in both hypothyroid and normal rats produced hypothermia in vivo and a fall in muscle, liver, and brown adipose tissue mitochondria respiration in vitro. In normal rats, cold acclimation enhanced muscle respiration by 35%, in liver 18%, and in brown adipose tissue 450% over values in the warm. The results demonstrate that thyroid hormones, in the presence of norepinephrine, are major determinants of thermogenic activity in muscle and liver of cold-acclimated rats. After thyroid ablation, cold-induced nonshivering thermogenesis replaced 3,5,3'-triiodothyronine-induced thermogenesis, and normal body temperature was maintained.

  17. Metabolic adaptations of skeletal muscle to voluntary wheel running exercise in hypertensive heart failure rats.

    PubMed

    Schultz, R L; Kullman, E L; Waters, R P; Huang, H; Kirwan, J P; Gerdes, A M; Swallow, J G

    2013-01-01

    The Spontaneously Hypertensive Heart Failure (SHHF) rat mimics the human progression of hypertension from hypertrophy to heart failure. However, it is unknown whether SHHF animals can exercise at sufficient levels to observe beneficial biochemical adaptations in skeletal muscle. Thirty-seven female SHHF and Wistar-Furth (WF) rats were randomized to sedentary (SHHFsed and WFsed) and exercise groups (SHHFex and WFex). The exercise groups had access to running wheels from 6-22 months of age. Hindlimb muscles were obtained for metabolic measures that included mitochondrial enzyme function and expression, and glycogen utilization. The SHHFex rats ran a greater distance and duration as compared to the WFex rats (P<0.05), but the WFex rats ran at a faster speed (P<0.05). Skeletal muscle citrate synthase and beta-hydroxyacyl-CoA dehydrogenase enzyme activity was not altered in the SHHFex group, but was increased (P<0.05) in the WFex animals. Citrate synthase protein and gene expression were unchanged in SHHFex animals, but were increased in WFex rats (P<0.05). In the WFex animals muscle glycogen was significantly depleted after exercise (P<0.05), but not in the SHHFex group. We conclude that despite robust amounts of aerobic activity, voluntary wheel running exercise was not sufficiently intense to improve the oxidative capacity of skeletal muscle in adult SHHF animals, indicating an inability to compensate for declining heart function by improving peripheral oxidative adaptations in the skeletal muscle.

  18. Isolation and characterization of primary skeletal muscle satellite cells from rats.

    PubMed

    Liu, Yuan; Chen, Sifan; Li, Wenxue; Du, Hongyan; Zhu, Wei

    2012-11-01

    The purpose of this study was to isolate and characterize skeletal muscle satellite cells from rats using tissue block culture method. Specific Pathogen Free (SPF) level Sprague-Dawley (SD) rats were used to isolate skeletal muscle satellite cells. Morphology, expression and distribution of α-actin and Desmin within the cytoplasm of skeletal muscle satellite cells were compared with those of C2C12 myoblasts. The results showed that tissue block culturing method achieved robust proliferation and excellent differentiation of skeletal muscle satellite cells. Immunofluorescence and immunohistochemistry results showed that α-actin and Desmin proteins were expressed in the cytoplasm of both skeletal muscle satellite cells and myoblasts. We concluded that tissue block culturing method can obtain highly purified skeletal muscle satellite cells with robust proliferation and excellent differentiation capabilities.

  19. [Morphohistochemical study of skeletal muscles in rats after experimental flight on "Kosmos-1887"].

    PubMed

    Il'ina-Kakueva, E I

    1990-01-01

    Morphometric and histochemical methods were used to examine the soleus, gastrocnemius (medial portion), quadriceps femoris (central portion) and biceps brachii muscles of Wistar SPF rats two days after the 13-day flight on Cosmos-1887. It was found that significant atrophy developed only in the soleus muscle. The space flight did not change the percentage content of slow (type I) and fast (type II) fibers in fast twitch muscles. During two days at 1 g the slow soleus muscle developed substantial circulation disorders, which led to interstitial edema and necrotic changes. The gastrocnemius muscle showed small foci containing necrotic myofibers. Two days after recovery no glycogen aggregates were seen in myofibers, which were previously observed in other rats examined 4--8 hours after flight. An initial stage of muscle readaptation to 1 g occurred, when NAD.H2-dehydrogenase activity was decreased.

  20. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats.

    PubMed

    Alway, Stephen E; Bennett, Brian T; Wilson, Joseph C; Sperringer, Justin; Mohamed, Junaith S; Edens, Neile K; Pereira, Suzette L

    2015-02-01

    In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (-24.8% vs. -10.7%, P < 0.05) and tetanic force (-43.7% vs. -25.9%, P <0.05) during HLS. Although GTE failed to further improve recovery of muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (-25.2% vs. -16.0%, P < 0.05) and force (-45.7 vs. -34.4%, P < 0.05) after the reloading periods. In addition, compared with vehicle treatment, GTE attenuated muscle fiber cross-sectional area loss in both plantaris (-39.9% vs. -23.9%, P < 0.05) and soleus (-37.2% vs. -17.6%) muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (-45.6% vs. -21.5%, P <0.05) and soleus muscle fiber cross-sectional area (-38.7% vs. -10.9%, P <0.05). GTE increased satellite cell proliferation and differentiation in plantaris and soleus muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is by itself insufficient to

  1. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats

    PubMed Central

    Bennett, Brian T.; Wilson, Joseph C.; Sperringer, Justin; Mohamed, Junaith S.; Edens, Neile K.; Pereira, Suzette L.

    2014-01-01

    In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (−24.8% vs. −10.7%, P < 0.05) and tetanic force (−43.7% vs. −25.9%, P <0.05) during HLS. Although GTE failed to further improve recovery of muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (−25.2% vs. −16.0%, P < 0.05) and force (−45.7 vs. −34.4%, P < 0.05) after the reloading periods. In addition, compared with vehicle treatment, GTE attenuated muscle fiber cross-sectional area loss in both plantaris (−39.9% vs. −23.9%, P < 0.05) and soleus (−37.2% vs. −17.6%) muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (−45.6% vs. −21.5%, P <0.05) and soleus muscle fiber cross-sectional area (−38.7% vs. −10.9%, P <0.05). GTE increased satellite cell proliferation and differentiation in plantaris and soleus muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is

  2. Is regulation of proteolysis associated with redox-state changes in rat skeletal muscle?

    PubMed Central

    Tischler, M E

    1980-01-01

    In isolated rat diaphragms, only those substrates that increased the tissue NADH/NAD+ ratio lowered the rate of proteolysis. However, direct inhibition of proteinase activity by leupeptin promoted oxidation of the NAD couple of the muscles. These results suggest that changes in muscle reduction-oxidation state may be important in the regulation of proteolysis. PMID:7236250

  3. The bile duct ligated rat: A relevant model to study muscle mass loss in cirrhosis.

    PubMed

    Bosoi, Cristina R; Oliveira, Mariana M; Ochoa-Sanchez, Rafael; Tremblay, Mélanie; Ten Have, Gabriella A; Deutz, Nicolaas E; Rose, Christopher F; Bemeur, Chantal

    2017-04-01

    Muscle mass loss and hepatic encephalopathy (complex neuropsychiatric disorder) are serious complications of chronic liver disease (cirrhosis) which impact negatively on clinical outcome and quality of life and increase mortality. Liver disease leads to hyperammonemia and ammonia toxicity is believed to play a major role in the pathogenesis of hepatic encephalopathy. However, the effects of ammonia are not brain-specific and therefore may also affect other organs and tissues including muscle. The precise pathophysiological mechanisms underlying muscle wasting in chronic liver disease remains to be elucidated. In the present study, we characterized body composition as well as muscle protein synthesis in cirrhotic rats with hepatic encephalopathy using the 6-week bile duct ligation (BDL) model which recapitulates the main features of cirrhosis. Compared to sham-operated control animals, BDL rats display significant decreased gain in body weight, altered body composition, decreased gastrocnemius muscle mass and circumference as well as altered muscle morphology. Muscle protein synthesis was also significantly reduced in BDL rats compared to control animals. These findings demonstrate that the 6-week BDL experimental rat is a relevant model to study liver disease-induced muscle mass loss.

  4. The effect of creatine supplementation on mass and performance of rat skeletal muscle.

    PubMed

    Young, Robert E; Young, John C

    2007-08-09

    This study investigated the effect of dietary creatine supplementation on hypertrophy and performance of rat skeletal muscle. Male Sprague-Dawley rats underwent either tibialis anterior ablation or partial ablation of the plantaris/gastrocnemius to induce compensatory hypertrophy of the extensor digitorum longus (EDL) or soleus respectively, or sham surgery. Creatine (300 mg/kg) was administered to one half of each group for 5 weeks, after which force production was measured. With the leg fixed at the knee and ankle, the distal tendon of the EDL or soleus was attached to a force transducer and the muscle was electrically stimulated via the sciatic nerve. Synergist ablation resulted in a significant increase in EDL mass and in soleus mass relative to control muscles. However, no effect of creatine supplementation on muscle mass or performance was found between control and either group of creatine-treated rats. Despite an apparent increase in muscle creatine content, creatine supplementation did not augment muscle hypertrophy or force production in rat EDL or soleus muscle, providing evidence that the potential benefits of creatine supplementation are not due to a direct effect on muscle but rather to an enhanced ability to train.

  5. Electrophysiological, histochemical, and hormonal adaptation of rat muscle after prolonged hindlimb suspension

    NASA Astrophysics Data System (ADS)

    Kourtidou-Papadeli, Chrysoula; Kyparos, Antonios; Albani, Maria; Frossinis, Athanasios; Papadelis, Christos L.; Bamidis, Panagiotis; Vivas, Ana; Guiba-Tziampiri, Olympia

    2004-05-01

    The perspective of long-duration flights for future exploration, imply more research in the field of human adaptation. Previous studies in rat muscles hindlimb suspension (HLS), indicated muscle atrophy and a change of fibre composition from slow-to-fast twitch types. However, the contractile responses to long-term unloading is still unclear. Fifteen adult Wistar rats were studied in 45 and 70 days of muscle unweighting and soleus (SOL) muscle as well as extensor digitorum longus (EDL) were prepared for electrophysiological recordings (single, twitch, tetanic contraction and fatigue) and histochemical stainings. The loss of muscle mass observed was greater in the soleus muscle. The analysis of electrophysiological properties of both EDL and SOL showed significant main effects of group, of number of unweighting days and fatigue properties. Single contraction for soleus muscle remained unchanged but there was statistically significant difference for tetanic contraction and fatigue. Fatigue index showed a decrease for the control rats, but increase for the HLS rats. According to the histochemical findings there was a shift from oxidative to glycolytic metabolism during HLS. The data suggested that muscles atrophied, but they presented an adaptation pattern, while their endurance in fatigue was decreased.

  6. Changes in rat soleus muscle phenotype consecutive to a growth in hypergravity followed by normogravity.

    PubMed

    Picquet, F; Bouet, V; Cochon, L; Lacour, M; Falempin, M

    2005-07-01

    It has been demonstrated that a long-term stay in hypergravity (HG: 2G) modified the phenotype and the contractile properties of rat soleus muscle. The ability of this muscle to contract was drastically reduced, which is a sign of anticipated aging. Consequently, our aim was to determine whether rats conceived, born, and reared in hypergravity showed adaptative capacities in normogravity (NG: 1G). This study was performed on rats divided into two series: the first was reared in HG until 100 days and was submitted to normogravity until 115 to 220 postnatal days (HG-NG rats); the second was made up of age paired groups reared in normogravity (NG rats). The contractile, morphological, and phenotypical properties of soleus muscle were studied. Our results showed that the NG rats were characterized by coexpressions of slow and fast myosin, respectively, 76.5 and 23.5% at 115 days. During their postnatal maturation, the fast isoform was gradually replaced by slow myosin. At 220 days, the relative proportions were respectively 91.05% and 8.95%. From 115 to 220 days, the HG-NG rats expressed 100% of slow myosin isoform and they presented a slower contractile behavior compared with their age-matched groups; at 115 days, the whole muscle contraction time was increased by 35%, and by 15%, at 220 days. Our study underlined the importance of gravity in the muscular development and suggested the existence of critical periods in muscle phenotype installation.

  7. Length-tension relationships are altered in regenerating muscles of the rat after bupivacaine injection.

    PubMed

    Plant, David R; Beitzel, Felice; Lynch, Gordon S

    2005-06-01

    Intramuscular injection of bupivacaine causes complete degeneration of fibers in extensor digitorum longus (EDL) muscles of rats, followed by complete regeneration within 60 days. Previous studies have shown that regenerated EDL muscles are protected from contraction-induced injury 60 days after bupivacaine injection. It is possible that these regenerated muscles have altered length-tension relations because of fiber remodeling. We tested the hypothesis that length-tension relations are different in bupivacaine-injected and noninjected control muscles. EDL and soleus muscles of the right hindlimb of deeply anesthetized rats were injected with bupivacaine and then allowed to recover for 7, 14, 21, or 60 days (7D, 14D, 21D, 60D), and isometric contractile properties were assessed. Muscles of the contralateral limb were not injected and served as control. EDL muscles recovered from bupivacaine injection more rapidly than soleus muscles, with mass restored to control levels at 21D, and isometric tetanic force (P(o)) restored to control at 60D. In contrast, mass and P(o) of injected soleus muscles was not restored to control even at 60D. In 7D EDL muscles, length-tension curves were shifted leftward compared with control, but in 21D and 60D EDL muscles length-tension curves were right shifted significantly (treatment x muscle length: P < 0.001). Although no clear shift in the position of the length-tension curve was observed in regenerating soleus muscles, force production was enhanced on the descending limb of the curve in 60D soleus muscles (treatment x relative muscle length: P < 0.01). The rightward shift in the length-tension curve of EDL muscles 60 days after bupivacaine injection is likely to contribute to the mechanism for their previously observed protection from contraction-induced injury.

  8. Identification of motoneurons supplying multiply- or singly-innervated extraocular muscle fibers in the rat.

    PubMed

    Eberhorn, A C; Büttner-Ennever, J A; Horn, A K E

    2006-02-01

    In mammals, the extraocular muscle fibers can be categorized in singly-innervated and multiply-innervated muscle fibers. In the monkey oculomotor, trochlear and abducens nucleus the motoneurons of multiply-innervated muscle fibers lie separated from those innervating singly-innervated muscle fibers and show different histochemical properties. In order to discover, if this organization is a general feature of the oculomotor system, we investigated the location of singly-innervated muscle fiber and multiply-innervated muscle fiber motoneurons in the rat using combined tract-tracing and immunohistochemical techniques. The singly-innervated muscle fiber and multiply-innervated muscle fiber motoneurons of the medial and lateral rectus muscle were identified by retrograde tracer injections into the muscle belly or the distal myotendinous junction. The belly injections labeled the medial rectus muscle subgroup of the oculomotor nucleus or the greatest part of abducens nucleus, including some cells outside the medial border of abducens nucleus. In contrast, the distal injections labeled only a subset of the medial rectus muscle motoneurons and exclusively cells outside the medial border of abducens nucleus. The tracer detection was combined with immunolabeling using antibodies for perineuronal nets (chondroitin sulfate proteoglycan) and non-phosphorylated neurofilaments. In monkeys both antibodies permit a distinction between singly-innervated muscle fiber and multiply-innervated muscle fiber motoneurons. The experiments revealed that neurons labeled from a distal injection lack both markers and are assumed to represent multiply-innervated muscle fiber motoneurons, whereas those labeled from a belly injection are chondroitin sulfate proteoglycan- and non-phosphorylated neurofilament-immunopositive and assumed to represent singly-innervated muscle fiber motoneurons. The overall identification of multiply-innervated muscle fiber and singly-innervated muscle fiber motoneurons

  9. Coexistence of twitch potentiation and tetanic force decline in rat hindlimb muscle

    NASA Technical Reports Server (NTRS)

    Rankin, Lucinda L.; Enoka, Roger M.; Volz, Kathryn A.; Stuart, Douglas G.

    1988-01-01

    The effect of whole-muscle fatigue on the isometric twitch was investigated in various hindlimb muscles of anesthetized rats, using an experimental protocol designed to assess the levels of fatigability in motor units. The results of EMG and force measurements revealed the existence of a linear relationship between fatigability and the magnitude of the twitch force following the fatigue test in both soleus and extensor digitorum longus muscles.

  10. Leucine Protects Against Skeletal Muscle Atrophy in Lipopolysaccharide-Challenged Rats.

    PubMed

    Wan, Jin; Chen, Daiwen; Yu, Bing; Luo, Yuheng; Mao, Xiangbing; Zheng, Ping; Yu, Jie; Luo, Junqiu; He, Jun

    2017-01-01

    Skeletal muscle atrophy is a decrease in muscle mass that occurs when protein degradation exceeds protein synthesis. Leucine (Leu), an essential branched-chain amino acid in animal nutrition, regulates skeletal muscle protein metabolism. Two experiments were conducted to evaluate whether Leu could alleviate lipopolysaccharide (LPS)-induced skeletal muscle wasting by modulating skeletal muscle protein synthesis and degradation. A total of 24 rats were randomly allocated into three groups (n = 8): (1) non-challenged control; (2) LPS-challenged control; and (3) LPS +3.0% Leu. Rats were fed with control or Leu-supplemented (part of the casein was replaced with 3.0% Leu) diets throughout the trial and were injected intraperitoneally with sterile saline or LPS at days 6, 11, 16, and 21. On the morning of day 22, serum samples were collected and rats were then sacrificed for liver and muscle analysis. In vitro protein degradation, nuclear factor-κB (NF-κB) activity, and proteolytic enzyme activities of the muscles from immune-challenged rats were also measured. Our results showed that the LPS challenge resulted in not only enhanced serum interleukin-1 and liver C-reactive protein (CRP) concentrations but also decreased the average daily body weight gain and muscle fiber diameter. However, dietary Leu inclusion attenuated the increase in CRP level and the decrease in muscle fiber diameter. Importantly, the LPS challenge caused a significant elevation in the muscle proteolysis rate, but dietary Leu supplementation significantly blocked the muscle proteolysis. The mRNA expression of NF-κB, muscle atrophy F-box (MAFbx), and muscle ring finger 1 (MuRF1) was upregulated by the LPS challenge in gastrocnemius muscles, but was downregulated by Leu supplementation. Interestingly, when muscles from the LPS-challenged rats were incubated with Leu in vitro, proteasome-, calpain-, and cathepsin-L-dependent muscle proteolysis and NF-κB activity were decreased. Collectively, the

  11. Regional variations in intramyocellular lipid concentration correlate with muscle fiber type distribution in rat tibialis anterior muscle.

    PubMed

    De Feyter, Henk M M L; Schaart, Gert; Hesselink, Matthijs K; Schrauwen, Patrick; Nicolay, Klaas; Prompers, Jeanine J

    2006-07-01

    1H MR spectroscopy (MRS) has proved to be a valuable noninvasive tool to measure intramyocellular lipids (IMCL) in research focused on insulin resistance and type II diabetes in both humans and rodents. An important determinant of IMCL is the muscle fiber type, since oxidative type I fibers can contain up to three times more IMCL than glycolytic type II muscle fibers. Because these different muscle fiber types are inhomogeneously distributed in rodent muscle, in the present study we investigated the distribution of IMCL within the rat tibialis anterior muscle (TA) in vivo using single-voxel 1H MRS along with the muscle fiber distribution in the TA ex vivo determined from immunohistological assays. IMCL levels in the TA differed by up to a factor of 3 depending on the position of the voxel. The distribution of IMCL over the TA cross section was not random, but emerged in a pattern similar to the distribution of the predominantly oxidative muscle fiber types. Dietary interventions, such as high-fat feeding and 15 hr of fasting, did not significantly change this typical fiber type-dependent pattern of IMCL content. These results stress the importance of voxel positioning when single-voxel 1H MRS is used to study IMCL in rodent muscle. Copyright (c) 2006 Wiley-Liss, Inc.

  12. Effects of oxygen deprivation on incubated rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Fagan, Julie M.; Tischler, Marc E.

    1989-01-01

    Isolated soleus muscle deprived of oxygen produces more lactate and alanine than oxygen-supplied muscle. Oxygenated muscle synthesized glutamine, while anoxic muscle used this amino acid. Oxygen deprivation decreased adenine nucleotides leading to the efflux of nucleosides. Protein synthesis and degradation responded differently to anoxia. Synthesis almost completely ceased, while proteolysis increased. Therefore, protein degradation in soleus muscle is enhanced when energy supplies and oxygen tension are low.

  13. Effects of oxygen deprivation on incubated rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Fagan, Julie M.; Tischler, Marc E.

    1989-01-01

    Isolated soleus muscle deprived of oxygen produces more lactate and alanine than oxygen-supplied muscle. Oxygenated muscle synthesized glutamine, while anoxic muscle used this amino acid. Oxygen deprivation decreased adenine nucleotides leading to the efflux of nucleosides. Protein synthesis and degradation responded differently to anoxia. Synthesis almost completely ceased, while proteolysis increased. Therefore, protein degradation in soleus muscle is enhanced when energy supplies and oxygen tension are low.

  14. Differential RNA Expression Profile of Skeletal Muscle Induced by Experimental Autoimmune Myasthenia Gravis in Rats

    PubMed Central

    Kaminski, Henry J.; Himuro, Keiichi; Alshaikh, Jumana; Gong, Bendi; Cheng, Georgiana; Kusner, Linda L.

    2016-01-01

    The differential susceptibility of skeletal muscle by myasthenia gravis (MG) is not well understood. We utilized RNA expression profiling of extraocular muscle (EOM), diaphragm (DIA), and extensor digitorum (EDL) of rats with experimental autoimmune MG (EAMG) to evaluate the hypothesis that muscles respond differentially to injury produced by EAMG. EAMG was induced in female Lewis rats by immunization with acetylcholine receptor purified from the electric organ of the Torpedo. Six weeks later after rats had developed weakness and serum antibodies directed against the AChR, animals underwent euthanasia and RNA profiling performed on DIA, EDL, and EOM. Profiling results were validated by qPCR. Across the three muscles between the experiment and control groups, 359 probes (1.16%) with greater than 2-fold changes in expression in 7 of 9 series pairwise comparisons from 31,090 probes were identified with approximately two-thirds being increased. The three muscles shared 16 genes with increased expression and 6 reduced expression. Functional annotation demonstrated that these common expression changes fell predominantly into categories of metabolism, stress response, and signaling. Evaluation of specific gene function indicated that EAMG led to a change to oxidative metabolism. Genes related to muscle regeneration and suppression of immune response were activated. Evidence of a differential immune response among muscles was not evident. Each muscle had a distinct RNA profile but with commonality in gene categories expressed that are focused on muscle repair, moderation of inflammation, and oxidative metabolism. PMID:27891095

  15. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle

    SciTech Connect

    Ploug, T.; Stallknecht, B.M.; Pedersen, O.; Kahn, B.B.; Ohkuwa, T.; Vinten, J.; Galbo, H. )

    1990-12-01

    The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers and an increase of approximately 33% for contraction-stimulated transport in slow-twitch red fibers compared with nonexercised sedentary muscle. A fully additive effect of insulin and contractions was observed both in trained and untrained muscle. Compared with transport in control rats subjected to an almost exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased number of glucose transporters.

  16. Changes in activity and structure of jaw muscles in Parkinson's disease model rats.

    PubMed

    Nakamura, S; Kawai, N; Ohnuki, Y; Saeki, Y; Korfage, J A M; Langenbach, G E J; Kitayama, T; Watanabe, M; Sano, R; Tanne, K; Tanaka, E

    2013-03-01

    Parkinson's disease (PD), a major neurological disease, is characterised by a marked loss of dopaminergic neurons in the substantia nigra. Patients with PD frequently show chewing and swallowing dysfunctions, but little is known about the characteristics of their stomatognathic functions. The purpose of this study was to evaluate the influence of PD on jaw muscle fibre and functions. PD model rats were made by means of the injection of 6-hydroxydopamine (6-OHDA) into the striatum of 8-week-old Sprague-Dawley male rats. Five weeks after the injection, a radio-telemetric device was implanted to record muscle activity continuously from the superficial masseter and anterior belly of digastric muscles. Muscle activity was recorded for 3 days and was evaluated by the total duration of muscle activity per day (duty time). After recording the muscle activities, jaw muscles were isolated for immunohistochemical and PCR analyses. In PD model rats, the following findings of the digastrics muscles verify that compared to the control group: (i) the higher duty time exceeding 5% of the peak activity level, (ii) the higher expression of the mRNA of myosin heavy chain type I, and (iii) the tendency for fast to slow fibre-type transition. With respect to the masseter muscle, there were no significant differences in all analyses. In conclusion, PD leads to the changes in the jaw behaviours, resulting in a PD-specific chewing and swallowing dysfunctions.

  17. Periurethral muscle-derived mononuclear cell injection improves urethral sphincter restoration in rats.

    PubMed

    Turco, Marcelo Pitelli; de Souza, Alex Balduino; de Campos Sousa, Isida; Fratini, Paula; Veras, Mariana Matera; Rodrigues, Marcio Nogueira; de Bessa, José; Brolio, Marina Pandolphi; Leite, Katia Ramos Moreira; Bruschini, Homero; Srougi, Miguel; Miglino, Maria Angélica; Gomes, Cristiano Mendes

    2017-03-27

    Investigate the effect of a novel cell-based therapy with skeletal muscle-derived mononuclear cells (SMDMCs) in a rat model of stress urinary incontinence. Male Wistar-Kyoto rats' hind limb muscles were enzymatically dissociated, and SMDMCs were isolated without needing expansion. The cell population was characterized. Twenty female rats underwent urethrolysis. One week later, 10 rats received periurethral injection of 10(6) cells (SMDMC group), and 10 rats received saline injections (Saline group). Ten rats underwent sham surgery (Sham group). Four weeks after injection, animals were euthanized and the urethra was removed. The incorporation of SMDMCs in the female urethra was evaluated with fluorescence in situ hybridization for the detection of Y-chromosomes. Hematoxylin and eosin, Masson's trichrome staining, and immunohistochemistry for actin and myosin were performed. The muscle/connective tissue, actin and myosin ratios were calculated. Morphological evaluation of the urethral diameters and fractional areas of the lumen, mucosa, and muscular layer was performed. SMDMCs population was consistent with the presence of muscle cells, muscle satellite cells, perivascular cells, muscle progenitor cells, and endothelial cells. SMDMCs were incorporated into the urethra. A significant decrease in the muscle/connective tissue ratio was observed in the Saline group compared with the SMDMC and Sham groups. The proportions of actin and myosin were significantly decreased in the Saline group. No differences were observed in the morphometric parameters. SDMSC were incorporated into the rat urethra and promoted histological recovery of the damaged urethral sphincter, resulting in decreased connective tissue deposition and increased muscle content. © 2017 Wiley Periodicals, Inc.

  18. Titin isoform size is not correlated with thin filament length in rat skeletal muscle

    PubMed Central

    Greaser, Marion L.; Pleitner, Jonathan M.

    2014-01-01

    The mechanisms controlling thin filament length (TFL) in muscle remain controversial. It was recently reported that TFL was related to titin size, and that the latter might be involved in TFL determination. Titin plays several crucial roles in the sarcomere, but its function as it pertains to the thin filament has not been explored. We tested this relationship using several muscles from wild type rats and from a mutant rat model (Greaser et al., 2008) which results in increased titin size. Myofibrils were isolated from skeletal muscles [extensor digitorum longus (EDL), external oblique (EO), gastrocnemius (GAS), longissimus dorsi (LD), psoas major (PM), and tibialis anterior(TA)] using both adult wild type (WT) and homozygous mutant (HM) rats (n = 6 each). Phalloidin and antibodies against tropomodulin-4 (Tmod-4) and nebulin's N-terminus were used to determine TFL. The WT rats studied express skeletal muscle titin sizes ranging from 3.2 to 3.7 MDa, while the HM rats express a giant titin isoform sized at 3.8 MDa. No differences in phalloidin based TFL, nebulin distance, or Tmod distance were observed across genotypes. However, the HM rats demonstrated a significantly increased (p < 0.01) rest sarcomere length relative to the WT phenotype. It appears that the increased titin size, predominantly observed in HM rats' middle Ig domain, allows for increased extensibility. The data indicates that, although titin performs many sarcomeric functions, its correlation with TFL and structure could not be demonstrated in the rat. PMID:24550844

  19. Intercostal muscle motor behavior during tracheal occlusion conditioning in conscious rats

    PubMed Central

    Jaiswal, Poonam B.

    2016-01-01

    A respiratory load compensation response is characterized by increases in activation of primary respiratory muscles and/or recruitment of accessory respiratory muscles. The contribution of the external intercostal (EI) muscles, which are a primary respiratory muscle group, during normal and loaded breathing remains poorly understood in conscious animals. Consciousness has a significant role on modulation of respiratory activity, as it is required for the integration of behavioral respiratory responses and voluntary control of breathing. Studies of respiratory load compensation have been predominantly focused in anesthetized animals, which make their comparison to conscious load compensation responses challenging. Using our established model of intrinsic transient tracheal occlusions (ITTO), our aim was to evaluate the motor behavior of EI muscles during normal and loaded breathing in conscious rats. We hypothesized that 1) conscious rats exposed to ITTO will recruit the EI muscles with an increased electromyogram (EMG) activation and 2) repeated ITTO for 10 days would potentiate the baseline EMG activity of this muscle in conscious rats. Our results demonstrate that conscious rats exposed to ITTO respond by recruiting the EI muscle with a significantly increased EMG activation. This response to occlusion remained consistent over the 10-day experimental period with little or no effect of repeated ITTO exposure on the baseline ∫EI EMG amplitude activity. The pattern of activation of the EI muscle in response to an ITTO is discussed in detail. The results from the present study demonstrate the importance of EI muscles during unloaded breathing and respiratory load compensation in conscious rats. PMID:26823339

  20. Response of muscle protein synthesis to fasting in suckling and weaned rats.

    PubMed

    Davis, T A; Fiorotto, M L; Nguyen, H V; Burrin, D G; Reeds, P J

    1991-12-01

    Protein synthetic efficiency (KRNA) is low in immature skeletal muscle of suckling rats and increases toward the end of the suckling period. To determine whether immature skeletal muscle is able to further reduce KRNA in response to fasting, suckling (5, 10, and 16 days of age) and weaned (28 days of age) rats were fed, fasted for 10 h, or fasted for 18 h and injected with a flooding dose of L-[4-3H]phenylalanine for measurement of muscle protein synthesis in vivo. In fed rats, fractional rates of protein synthesis (KS) and protein synthetic capacity decreased during the suckling period. KRNA increased toward the end of the suckling period. In 5-day-old rats, fasting for 10 h produced a 50% decline in KS of extensor digitorum longus and plantaris muscles, but KS did not change further after 18 h of fasting. In older suckled and weaned rats, 10 h of fasting decreased KS of extensor digitorum longus and plantaris muscles 30%; after 18 h of fasting, values had declined to 50% of those in fed animals. The reductions in KS in soleus muscles with 10 and 18 h of fasting were similar to those in other muscles at 5 and 10 days but were less than those in other muscles at 16 and 28 days. Changes in KRNA were similar to those for KS in all muscles from all age groups fasted for 10 and 18 h. Protein synthetic capacity decreased approximately 12% after 18 h of fasting, but this effect did not differ between age groups or muscle types.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Purinergic Effects on Na,K-ATPase Activity Differ in Rat and Human Skeletal Muscle

    PubMed Central

    Juel, Carsten; Nordsborg, Nikolai B.; Bangsbo, Jens

    2014-01-01

    Background P2Y receptor activation may link the effect of purines to increased maximal in vitro activity of the Na,K-ATPase in rat muscle. The hypothesis that a similar mechanism is present in human skeletal muscle was investigated with membranes from rat and human skeletal muscle. Results Membranes purified from rat and human muscles were used in the Na,K-ATPase assay. Incubation with ADP, the stable ADP analogue MeS-ADP and UDP increased the Na+ dependent Na,K-ATPase activity in rat muscle membranes, whereas similar treatments of human muscle membranes lowered the Na,K-ATPase activity. UTP incubation resulted in unchanged Na,K-ATPase activity in humans, but pre-incubation with the antagonist suramin resulted in inhibition with UTP, suggesting that P2Y receptors are involved. The Na,K-ATPase in membranes from both rat and human could be stimulated by protein kinase A and C activation. Thus, protein kinase A and C activation can increase Na,K-ATPase activity in human muscle but not via P2Y receptor stimulation. Conclusion The inhibitory effects of most purines (with the exception of UTP) in human muscle membranes are probably due to mass law inhibition of ATP hydrolysis. This inhibition could be blurred in rat due to receptor mediated activation of the Na,K-ATPase. The different effects could be related to a high density of ADP sensitive P2Y1 and P2Y13 receptors in rat, whereas the UTP sensitive P2Y11 could be more abundant in human. Alternatively, rat could possesses a mechanism for protein-protein interaction between P2Y receptors and the Na,K-ATPase, and this mechanism could be absent in human skeletal muscle (perhaps with the exception of the UTP sensitive P2Y11 receptor). Perspective Rat muscle is not a reliable model for purinergic effects on Na,K-ATPase in human skeletal muscle. PMID:24614174

  2. Regrowth after skeletal muscle atrophy is impaired in aged rats, despite similar responses in signaling pathways

    PubMed Central

    White, Jena R.; Confides, Amy L.; Moore-Reed, Stephanie; Hoch, Johanna M.; Dupont-Versteegden, Esther E.

    2015-01-01

    Skeletal muscle regrowth after atrophy is impaired in the aged and in this study we hypothesized that this can be explained by a blunted response of signaling pathways and cellular processes during reloading after hind limb suspension in muscles from old rats. Male Brown Norway Fisher 344 rats at 6 (young) and 32 (old) months of age were subjected to normal ambulatory conditions (amb), hind limb suspension for 14 days (HS), and HS followed by reloading through normal ambulation for 14 days (RE); soleus muscles were used for analysis of intracellular signaling pathways and cellular processes. Soleus muscle regrowth was blunted in old compared to young rats which coincided with a recovery of serum IGF-1 and IGFBP-3 levels in young but not old. However, the response to reloading for p-Akt, p-p70s6k and p-GSK3β protein abundance was similar between muscles from young and old rats, even though main effects for age indicate an increase in activation of this protein synthesis pathway in the aged. Similarly, MAFbx mRNA levels in soleus muscle from old rats recovered to the same extent as in the young, while Murf-1 was unchanged. mRNA abundance of autophagy markers Atg5 and Atg7 showed an identical response in muscle from old compared to young rats, but beclin did not. Autophagic flux was not changed at either age at the measured time point. Apoptosis was elevated in soleus muscle from old rats particularly with HS, but recovered in HSRE and these changes were not associated with differences in caspase-3, -8 or-9 activity in any group. Protein abundance of apoptosis repressor with caspase-recruitment domain (ARC), cytosolic EndoG, as well as cytosolic and nuclear apoptosis inducing factor (AIF) were lower in muscle from old rats, and there was no age-related difference in the response to atrophy or regrowth. Soleus muscles from old rats had a higher number of ED2 positive macrophages in all groups and these decreased with HS, but recovered in HSRE in the old, while no

  3. Regrowth after skeletal muscle atrophy is impaired in aged rats, despite similar responses in signaling pathways.

    PubMed

    White, Jena R; Confides, Amy L; Moore-Reed, Stephanie; Hoch, Johanna M; Dupont-Versteegden, Esther E

    2015-04-01

    Skeletal muscle regrowth after atrophy is impaired in the aged and in this study we hypothesized that this can be explained by a blunted response of signaling pathways and cellular processes during reloading after hind limb suspension in muscles from old rats. Male Brown Norway Fisher 344 rats at 6 (young) and 32 (old) months of age were subjected to normal ambulatory conditions (amb), hind limb suspension for 14 days (HS), and HS followed by reloading through normal ambulation for 14 days (RE); soleus muscles were used for analysis of intracellular signaling pathways and cellular processes. Soleus muscle regrowth was blunted in old compared to young rats which coincided with a recovery of serum IGF-1 and IGFBP-3 levels in young but not old. However, the response to reloading for p-Akt, p-p70s6k and p-GSK3β protein abundance was similar between muscles from young and old rats, even though main effects for age indicate an increase in activation of this protein synthesis pathway in the aged. Similarly, MAFbx mRNA levels in soleus muscle from old rats recovered to the same extent as in the young, while Murf-1 was unchanged. mRNA abundance of autophagy markers Atg5 and Atg7 showed an identical response in muscle from old compared to young rats, but beclin did not. Autophagic flux was not changed at either age at the measured time point. Apoptosis was elevated in soleus muscle from old rats particularly with HS, but recovered in HSRE and these changes were not associated with differences in caspase-3, -8 or -9 activity in any group. Protein abundance of apoptosis repressor with caspase-recruitment domain (ARC), cytosolic EndoG, as well as cytosolic and nuclear apoptosis inducing factor (AIF) were lower in muscle from old rats, and there was no age-related difference in the response to atrophy or regrowth. Soleus muscles from old rats had a higher number of ED2 positive macrophages in all groups and these decreased with HS, but recovered in HSRE in the old, while no

  4. Rat diaphragm muscle contraction with and without oxygen enrichment.

    PubMed

    Gölgeli, A; Coşkun, A; Ozesmi, C

    1995-10-01

    We investigated the effect of deprivation of oxygen circulation in the organ bath on the tension generation of the diaphragm in vitro. Adult male Swiss Albino rats were quickly killed and the left hemidiaphragms removed. Isolated phrenic nerve-diaphragmatic strip preparations were placed in an individual organ chamber containing Krebs solution and were connected to a force displacement transducer. The solution was maintained at 32 degrees C and bubbled with 95% O2-5% CO2. For the measurement of isometric twitch characteristics, supramaximal voltage was delivered via phrenic nerve electrodes. After turning off the gas circulation, isometric twitch characteristics were determined at 5, 10, 15, and 20 minutes. Then the muscle was allowed to recover under aerobic conditions (i.e., while bathed in a fresh solution, gassed with 95% O2-5% CO2). The isometric contractile properties were determined at the same intervals. In spite of no change in contraction time (CT) and relaxation time (1/2 RT), twitch amplitude (Pt) decreased following the termination of oxygen circulation (p < 0.05). The twitch tension improved in the recovery period but the decrease of tension developed more rapidly than the increase of tension development. We suggest that the decrease in the twitch tension was possibly due to a direct effect of intracellular acidosis. This study shows that no important change occurred in Ca+2 release and/or in the uptake in the sarcoplasmic reticulum, because of the finding of the CT and 1/2 RT values.

  5. Extracellular calcium sensing in rat aortic vascular smooth muscle cells

    SciTech Connect

    Smajilovic, Sanela; Hansen, Jakob Lerche; Christoffersen, Tue E.H.

    2006-10-06

    Extracellular calcium (Ca2+o) can act as a first messenger in many cell types through a G protein-coupled receptor, calcium-sensing receptor (CaR). It is still debated whether the CaR is expressed in vascular smooth muscle cells (VSMCs). Here, we report the expression of CaR mRNA and protein in rat aortic VSMCs and show that Ca2+o stimulates proliferation of the cells. The effects of Ca2+o were attenuated by pre-treatment with MAPK kinase 1 (MEK1) inhibitor, as well as an allosteric modulator, NPS 2390. Furthermore, stimulation of the VSMCs with Ca2+o-induced phosphorylation of ERK1/2, but surprisingly did not cause inositol phosphate accumulation. We were not able to conclusively state that the CaR mediates Ca2+o-induced cell proliferation. Rather, an additional calcium-sensing mechanism may exist. Our findings may be of importance with regard to atherosclerosis, an inflammatory disease characterized by abnormal proliferation of VSMCs and high local levels of calcium.

  6. Mitochondrial nitric oxide metabolism in rat muscle during endotoxemia.

    PubMed

    Alvarez, Silvia; Boveris, Alberto

    2004-11-01

    In this study, heart and diaphragm mitochondria produced 0.69 and 0.77 nmol nitric oxide (NO)/min mg protein, rates that account for 67 and 24% of maximal cellular NO production, respectively. Endotoxemia and septic shock occur with an exacerbated inflammatory response that damages tissue mitochondria. Skeletal muscle seems to be one of the main target organs in septic shock, showing an increased NO production and early oxidative stress. The kinetic properties of mitochondrial nitric oxide synthase (mtNOS) of heart and diaphragm were determined. For diaphragm, the KM values for O2 and L-Arg were 4.6 and 37 microM and for heart were 3.3 and 36 microM. The optimal pH for mtNOS activity was 6.5 for diaphragm and 7.0 for heart. A marked increase in mtNOS activity was observed in endotoxemic rats, 90% in diaphragm and 30% in heart. Diaphragm and heart mitochondrial O2*- and H2O2 production were 2- to 3-fold increased during endotoxemia and Mn-SOD activity showed a 2-fold increase in treated animals, whereas catalase activity was unchanged. One of the current hypotheses for the molecular mechanisms underlying the complex condition of septic shock is that the enhanced NO production by mtNOS leads to excessive peroxynitrite production and protein nitration in the mitochondrial matrix, causing mitochondrial dysfunction and contractile failure.

  7. Enhancement of Skeletal Muscle in Aged Rats Following High-Intensity Stretch-Shortening Contraction Training.

    PubMed

    Rader, Erik P; Naimo, Marshall A; Layner, Kayla N; Triscuit, Alyssa M; Chetlin, Robert D; Ensey, James; Baker, Brent A

    2017-04-01

    Exercise is the most accessible, efficacious, and multifactorial intervention to improve health and treat chronic disease. High-intensity resistance exercise, in particular, also maximizes skeletal muscle size and strength-outcomes crucial at advanced age. However, such training is capable of inducing muscle maladaptation when misapplied at old age. Therefore, characterization of parameters (e.g., mode and frequency) that foster adaptation is an active research area. To address this issue, we utilized a rodent model that allowed training at maximal intensity in terms of muscle activation and tested the hypothesis that muscles of old rats adapt to stretch-shortening contraction (SSC) training, provided the training frequency is sufficiently low. At termination of training, normalized muscle mass (i.e., muscle mass divided by tibia length) and muscle quality (isometric force divided by normalized muscle mass) were determined. For young rats, normalized muscle mass increased by ∼20% regardless of training frequency. No difference was observed for muscle quality values after 2 days versus 3 days per week training (0.65 ± 0.09 N/mg/mm vs. 0.59 ± 0.05 N/mg/mm, respectively). For old rats following 3 days per week training, normalized muscle mass was unaltered and muscle quality was 30% lower than young levels. Following 2 days per week training at old age, normalized muscle mass increased by 17% and muscle quality was restored to young levels. To investigate this enhanced response, oxidative stress was assessed by lipid peroxidation quantification. For young rats, lipid peroxidation levels were unaltered by training. With aging, baseline levels of lipid peroxidation increased by 1.5-fold. For old rats, only 2 days per week training decreased lipid peroxidation to levels indistinguishable from young values. These results imply that, appropriately scheduled high-intensity SSC training at old age is capable of restoring muscle to a younger phenotype in terms

  8. [Skeletal muscle mixed fiber tissue metabolism in rats after a flight on the Kosmos-690 biosatellite].

    PubMed

    Gaevskaia, M S; Belitskaia, R A; Kolganova, N S; Kolchina, E V; Kurkina, L M

    1979-01-01

    On the R+O day the quadriceps muscle of rats showed a decrease in the content of T protein and an inhibition of LDH activity of sacroplasmatic proteins. These changes resulted from the combined affect of space flight factors and gamma-irradiation, and may be considered as a decline of compensatory synthetic processes responsible for the recovery of muscle proteins in weightlessness. Inhibition of the age-associated shift of the M:H ratio of LDH found on the R+25 day can be attributed to the inhibitory effect of gamma-irradiation. No change in the content of glycogen in the gastrocnemius muscle of flight rats was noted.

  9. Effect of denervation or unweighting on GLUT-4 protein in rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Rodnick, Kenneth J.; Mondon, Carl E.; James, David E.; Holloszy, John O.

    1991-01-01

    The study is intended to test the hypothesis that the decreased capacity for glucose transport in the denervated rat soleus and the increased capacity for glucose transport in the unweighted rat soleus are related to changes in the expression of the regulatable glucose transporter protein in skeletal muscle (GLUT-4). Results obtained indicate that altered GLUT-4 expression may be a major contributor to the changes in insulin-stimulated glucose transport that are observed with denervation and unweighting. It is concluded that muscle activity is an important factor in the regulation of the GLUT-4 expression in skeletal muscle.

  10. Experimental evaluation of the effects of pravastatin on electrophysiological parameters of rat skeletal muscle.

    PubMed

    Pierno, S; De Luca, A; Tricarico, D; Ferrannini, E; Conte, T; D'Alò, G; Camerino, D C

    1992-11-01

    The effects of daily chronic treatment for 6 months with pravastatin was evaluated on the performance of the skeletal muscle system of different rat groups. At all doses (0.1 mg/kg-20 mg/kg) the righting reflex and the electromyographic signals observed in vivo did not show any abnormality. At the end of the treatment the Extensor digitorum longus muscles were dissected from treated and control rats and their passive and active electrical parameters were analyzed in vitro by standard microelectrodes technique. Pravastatin did not modify the chloride conductance nor the excitability characteristics of the fibers. Chronic treatment with pravastatin does not produce any alteration of skeletal muscle function.

  11. Fatigue resistance of rat extraocular muscles does not depend on creatine kinase activity.

    PubMed

    McMullen, Colleen A; Hayess, Katrin; Andrade, Francisco H

    2005-08-17

    Creatine kinase (CK) links phosphocreatine, an energy storage system, to cellular ATPases. CK activity serves as a temporal and spatial buffer for ATP content, particularly in fast-twitch skeletal muscles. The extraocular muscles are notoriously fast and active, suggesting the need for efficient ATP buffering. This study tested the hypotheses that (1) CK isoform expression and activity in rat extraocular muscles would be higher, and (2) the resistance of these muscles to fatigue would depend on CK activity. We found that mRNA and protein levels for cytosolic and mitochondrial CK isoforms were lower in the extraocular muscles than in extensor digitorum longus (EDL). Total CK activity was correspondingly decreased in the extraocular muscles. Moreover, cytoskeletal components of the sarcomeric M line, where a fraction of CK activity is found, were downregulated in the extraocular muscles as was shown by immunocytochemistry and western blotting. CK inhibition significantly accelerated the development of fatigue in EDL muscle bundles, but had no major effect on the extraocular muscles. Searching for alternative ATP buffers that could compensate for the relative lack of CK in extraocular muscles, we determined that mRNAs for two adenylate kinase (AK) isoforms were expressed at higher levels in these muscles. Total AK activity was similar in EDL and extraocular muscles. These data indicate that the characteristic fatigue resistance of the extraocular muscles does not depend on CK activity.

  12. Morphological changes in hind limb muscles elicited by adjuvant-induced arthritis of the rat knee.

    PubMed

    Ozawa, J; Kurose, T; Kawamata, S; Yamaoka, K

    2010-02-01

    We investigated qualitative and quantitative changes in rat hind limb muscles caused by complete Freund's adjuvant (CFA)-induced knee joint pain. One week after CFA injection, muscle atrophy was induced only on the CFA-injected side. Wet weight of the rectus femoris (RF) and soleus (SOL) muscles were significantly decreased by 20% and 19%, respectively. The reduction in cross-sectional areas by CFA was similar for fast and slow muscle fibers in the RF (10% vs 15%, respectively) and SOL muscles (16% vs 16%, respectively). At the light microscopic level, pathological changes were not found in the RF muscles on both sides, although the infiltration of mononuclear cells and muscle regeneration were found in the SOL muscles on CFA-injected and contralateral control sides. On the other hand, electron microscopy revealed degenerative changes in the RF and SOL muscles on the CFA-injected side. Interestingly, sarcomere hypercontraction, indicating overexercise, was observed to a limited extent in the SOL muscles on the control side. In conclusions, knee joint pain can trigger the rapid development of muscle atrophy with degenerative changes not only in thigh but also calf muscles. This indicates that early interventions to inhibit joint pain or inflammation may prevent muscle atrophy.

  13. Assessment of the Potential Role of Muscle Spindle Mechanoreceptor Afferents in Chronic Muscle Pain in the Rat Masseter Muscle

    PubMed Central

    Sadeghi, Somayeh; Athanassiadis, Tuija; Caram Salas, Nadia; Auclair, François; Thivierge, Benoît; Arsenault, Isabel; Rompré, Pierre; Westberg, Karl-Gunnar; Kolta, Arlette

    2010-01-01

    Background The phenotype of large diameter sensory afferent neurons changes in several models of neuropathic pain. We asked if similar changes also occur in “functional” pain syndromes. Methodology/Principal Findings Acidic saline (AS, pH 4.0) injections into the masseter muscle were used to induce persistent myalgia. Controls received saline at pH 7.2. Nocifensive responses of Experimental rats to applications of Von Frey Filaments to the masseters were above control levels 1–38 days post-injection. This effect was bilateral. Expression of c-Fos in the Trigeminal Mesencephalic Nucleus (NVmes), which contains the somata of masseter muscle spindle afferents (MSA), was above baseline levels 1 and 4 days after AS. The resting membrane potentials of neurons exposed to AS (n = 167) were hyperpolarized when compared to their control counterparts (n = 141), as were their thresholds for firing, high frequency membrane oscillations (HFMO), bursting, inward and outward rectification. The amplitude of HFMO was increased and spontaneous ectopic firing occurred in 10% of acid-exposed neurons, but never in Controls. These changes appeared within the same time frame as the observed nocifensive behaviour. Ectopic action potentials can travel centrally, but also antidromically to the peripheral terminals of MSA where they could cause neurotransmitter release and activation of adjacent fibre terminals. Using immunohistochemistry, we confirmed that annulospiral endings of masseter MSA express the glutamate vesicular transporter VGLUT1, indicating that they can release glutamate. Many capsules also contained fine fibers that were labelled by markers associated with nociceptors (calcitonin gene-related peptide, Substance P, P2X3 receptors and TRPV1 receptors) and that expressed the metabotropic glutamate receptor, mGluR5. Antagonists of glutamatergic receptors given together with the 2nd injection of AS prevented the hypersensitivity observed bilaterally but were

  14. Muscle pain induced by static contraction in rats is modulated by peripheral inflammatory mechanisms.

    PubMed

    Santos, Diogo Francisco da Silva Dos; Melo Aquino, Bruna de; Jorge, Carolina Ocanha; Azambuja, Graciana de; Schiavuzzo, Jalile Garcia; Krimon, Suzy; Neves, Juliana Dos Santos; Parada, Carlos Amilcar; Oliveira-Fusaro, Maria Claudia Gonçalves

    2017-09-01

    Muscle pain is an important health issue and frequently related to static force exertion. The aim of this study is to evaluate whether peripheral inflammatory mechanisms are involved with static contraction-induced muscle pain in rats. To this end, we developed a model of muscle pain induced by static contraction performed by applying electrical pulses through electrodes inserted into muscle. We also evaluated the involvement of neutrophil migration, bradykinin, sympathetic amines and prostanoids. A single session of sustained static contraction of gastrocnemius muscle induced acute mechanical muscle hyperalgesia without affecting locomotor activity and with no evidence of structural damage in muscle tissue. Static contraction increased levels of creatine kinase but not lactate dehydrogenase, and induced neutrophil migration. Dexamethasone (glucocorticoid anti-inflammatory agent), DALBK (bradykinin B1 antagonist), Atenolol (β1 adrenoceptor antagonist), ICI 118,551 (β2 adrenoceptor antagonist), indomethacin (cyclooxygenase inhibitor), and fucoidan (non-specific selectin inhibitor) all reduced static contraction-induced muscle hyperalgesia; however, the bradykinin B2 antagonist, bradyzide, did not have an effect on static contraction-induced muscle hyperalgesia. Furthermore, an increased hyperalgesic response was observed when the selective bradykinin B1 agonist des-Arg(9)-bradykinin was injected into the previously stimulated muscle. Together, these findings demonstrate that static contraction induced mechanical muscle hyperalgesia in gastrocnemius muscle of rats is modulated through peripheral inflammatory mechanisms that are dependent on neutrophil migration, bradykinin, sympathetic amines and prostanoids. Considering the clinical relevance of muscle pain, we propose the present model of static contraction-induced mechanical muscle hyperalgesia as a useful tool for the study of mechanisms underlying static contraction-induced muscle pain. Copyright © 2017 IBRO

  15. Resistance training increases heat shock protein levels in skeletal muscle of young and old rats.

    PubMed

    Murlasits, Zsolt; Cutlip, Robert G; Geronilla, Kenneth B; Rao, K Murali K; Wonderlin, William F; Alway, Stephen E

    2006-04-01

    Heat shock proteins (HSP) HSP72, HSC70 and HSP25 protein levels and mRNA levels of HSP72 genes (Hsp72-1, Hsp72-2, Hsp72-3) and HSC70 were examined in tibialis anterior muscles from young and old rats following 4.5 weeks of heavy resistance exercise. Young (3 months) (n=10) and old (30 months) (n=9) rats were subjected to 14 sessions of electrically evoked resistance training using stretch-shortening contractions of the left limb that activated the dorsiflexor muscle group, including the tibialis anterior muscle, while the right side served as the intra-animal control. Muscle wet weight of the left tibialis anterior increased by 15.6% in young animals compared to the untrained right side, while the aged rats demonstrated no significant hypertrophy based on muscle wet weight. There were no differences in mRNA expression between the control and experimental muscles in either the old or the young animals for any of the four genes examined. On the other hand, HSP72 levels as determined by Western blots were significantly (p<0.01) higher (968.8 and 409.1%) in the trained as compared to the contralateral control muscle in young and old animals, respectively. HSP25 expression was increased significantly (p<0.01) by training in muscles of young rats (943.1%) and old rats (420.3%). Moreover, there was no training by age interaction for HSP72, while a significant age and training by age effects were found in muscles for HSP25. There was no change in HSC70 protein expression in response to the training intervention in either age group. SOD-1 enzyme level increased by 66.6% in the trained muscles of the young rats, while this enzyme was 33% lower in trained muscles compared to the untrained control side in old rats. Moreover, a significant (p<0.05) training by age interaction was found for SOD-1 enzyme levels. This study suggests that fast contracting muscles in young and old animals are capable of increasing HSP expression in response to high intensity contractile stress

  16. Rubidium influx into rat skeletal muscles in relation to electrical activity

    PubMed Central

    Kernan, R. P.; McDermott, Mary

    1973-01-01

    1. Rates of 86Rb influx were compared in vivo over 2, 4 and 6 hr periods in various tonic and phasic muscles of rat following its I.P. injection. During the 2 hr period its influx rate into soleus was about 4 times that of the vastus with the EDL muscles at an intermediate rate. Uptake by diaphragm was fastest reaching equilibrium within 2 hr. 2. Unilateral section of the sciatic nerve 48 hr before 86Rb injection reduced isotope uptake into soleus to about 50% of its contralateral control muscle over a 4 hr period. In EDL muscles on the other hand nerve section increased influx by about 75% of control in conscious rats and more than doubled influx in anaesthetized rats. 3. Tenotomy of soleus reduced 86Rb influx to 40% of control, but tenotomy in EDL was without effect in influx. 4. Uptake of urea into muscles within 5 min of its I.V. injection was used to determine the possibility of muscle blood flow determining 86Rb influx. Accumulation of urea was not significantly different in control and denervated EDL muscles nor between soleus and vastus muscles in anaesthetized rats, so it seems unlikely that blood flow is important here. 5. Membrane depolarization in response to addition of 30 mM rubidium to external bathing fluid was greater in the case of denervated than in control EDL muscles which was in keeping with the greater 86Rb influx seen in the former muscles. The ouabain sensitivity of rubidium-induced depolarization in the denervated EDL muscles would suggest, however, that rubidium enters the fibres actively. PMID:4747232

  17. beta-adrenergic effects on carbohydrate metabolism in the unweighted rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Kirby, Christopher R.; Tischler, Marc E.

    1990-01-01

    The effect of unweighting on the response of the soleus-muscle carbohydrate metabolism to a beta-adrenergic agonist (isoproterenol) was investigated in rats that were subjected to three days of tail-cast suspension. It was found that isoproterenol promoted glycogen degradation in soleus from suspended rats to a higher degree than in weighted soleus from control rats, and had no effect in unweighted digitorum longus. However, isoproterenol did not have a greater inhibitory effect on the net uptake of tritium-labeled 2-deoxy-glucose by the unweighted soleus and that isoproterenol inhibited hexose phosphorylation less in the unweighted than in the control muscle.

  18. [Contractile properties of skeletal muscles of rats after flight on "Kosmos-1887"].

    PubMed

    Oganov, V S; Skuratova, S A; Murashko, L M

    1991-01-01

    Contractile properties of skeletal muscles of rats were investigated using glycerinated muscle preparations that were obtained from Cosmos-1887 animals flown for 13 days (plus 2 days on the ground) and from rats that remained hypokinetic for 13 days on the ground. In the flow rats, the absolute mass of postural muscles remained unchanged while their relative mass increased; this may be attributed to their enhanced hydration which developed during the first 2 days after landing. Strength losses of the postural muscles were less significant than after previous flights. Comparison of the Cosmos-1887 and hypokinesia control data has shown that even 2-day exposure to 1 G after 13-day flight can modify drastically flight-induced changes.

  19. Morphometric analysis of rat muscle fibers following space flight and hypogravity

    NASA Technical Reports Server (NTRS)

    Chui, L. A.; Castleman, K. R.

    1982-01-01

    The effect of hypogravity on striate muscles, containing both fast twitch glycolytic and slow twitch oxidative fibers, was studied in rats aboard two Cosmos biosatellites. Results of a computer-assisted image analysis of extensor digitorum muscles from five rats, exposed to 18.5 days of hypogravity and processed for the alkaline ATPase reaction, showed a reduction of the mean fiber diameter (41.32 + or - 0.55 microns), compared to synchronous (46.32 + or - 0.55 microns) and vivarium (49 + or - 0.5 microns) controls. A further experiment studied the ratio of fast to slow twitch fibers in 25 rats exposed to 18.5 days of hypogravity and analyzed at four different periods of recovery following the space flight. Using the previous techniques, the gastrocnemius muscle showed a reduction of the total muscle fiber area in square microns and a reduction in the percentage of slow fibers of flight animals compared to the control animals.

  20. Lithium Visibility in Rat Brain and Muscle in Vivoby 7Li NMR Imaging

    NASA Astrophysics Data System (ADS)

    Komoroski, Richard A.; Pearce, John M.; Newton, Joseph E. O.

    1998-07-01

    The apparent concentration of lithium (Li)in vivowas determined for several regions in the brain and muscle of rats by7Li NMR imaging at 4.7 T with inclusion of an external standard of known concentration and visibility. The average apparent concentrations were 10.1 mM for muscle, and 4.2-5.3 mM for various brain regions under the dosing conditions used. The results were compared to concentrations determinedin vitroby high-resolution7Li NMR spectroscopy of extracts of brain and muscle tissue from the same rats. The comparison provided estimates of the7Li NMR visibility of the Li cation in each tissue region. Although there was considerable scatter of the calculated visibilities among the five rats studied, the results suggested essentially full visibility (96%) for Li in muscle, and somewhat reduced visibility (74-93%) in the various brain regions.

  1. Effect of exercise on glutamine synthesis and transport in skeletal muscle from rats.

    PubMed

    dos Santos, Ronaldo V T; Caperuto, Erico C; de Mello, Marco T; Batista, Miguel L; Rosa, Luis F B P C

    2009-08-01

    1. Reductions in plasma glutamine are observed after prolonged exercise. Three hypotheses can explain such a decrease: (i) high demand by the liver and kidney; (ii) impaired release from muscles; and (iii) decreased synthesis in skeletal muscle. The present study investigated the effects of exercise on glutamine synthesis and transport in rat skeletal muscle. 2. Rats were divided into three groups: (i) sedentary (SED; n = 12); (ii) rats killed 1 h after the last exercise bout (EX-1; n = 15); and (iii) rats killed 24 h after the last exercise bout (EX-24; n = 15). Rats in the trained groups swam 1 h/day, 5 days/week for 6 weeks with a load equivalent to 5.5% of their bodyweight. 3. Plasma glutamine and insulin were lower and corticosterone was higher in EX-1 compared with SED rats (P < 0.05 and P < 0.01, respectively). Twenty-four hours after exercise (EX-24), plasma glutamine was restored to levels seen in SED rats, whereas insulin levels were higher (P < 0.001) and corticosterone levels were lower (P < 0.01) than in EX-1. In the soleus, ammonia levels were lower in EX-1 than in SED rats (P < 0.001). After 24 h, glutamine, glutamate and ammonia levels were lower in EX-24 than in SED and EX-1 rats (P < 0.001). Soleus glutamine synthetase (GS) activity was increased in EX-1 and was decreased in EX-24 compared with SED rats (both P < 0.001). 4. The decrease in plasma glutamine concentration in EX-1 is not mediated by GS or glutamine transport in skeletal muscle. However, 24 h after exercise, lower GS may contribute to the decrease in glutamine concentration in muscle.

  2. Transcriptional profiling of rat skeletal muscle hypertrophy under restriction of blood flow.

    PubMed

    Xu, Shouyu; Liu, Xueyun; Chen, Zhenhuang; Li, Gaoquan; Chen, Qin; Zhou, Guoqing; Ma, Ruijie; Yao, Xinmiao; Huang, Xiao

    2016-12-15

    Blood flow restriction (BFR) under low-intensity resistance training (LIRT) can produce similar effects upon muscles to that of high-intensity resistance training (HIRT) while overcoming many of the restrictions to HIRT that occurs in a clinical setting. However, the potential molecular mechanisms of BFR induced muscle hypertrophy remain largely unknown. Here, using a BFR rat model, we aim to better elucidate the mechanisms regulating muscle hypertrophy as induced by BFR and reveal possible clinical therapeutic targets for atrophy cases. We performed genome wide screening with microarray analysis to identify unique differentially expressed genes during rat muscle hypertrophy. We then successfully separated the differentially expressed genes from BRF treated soleus samples by comparing the Affymetrix rat Genome U34 2.0 array with the control. Using qRT-PCR and immunohistochemistry (IHC) we also analyzed other related differentially expressed genes. Results suggested that muscle hypertrophy induced by BFR is essentially regulated by the rate of protein turnover. Specifically, PI3K/AKT and MAPK pathways act as positive regulators in controlling protein synthesis where ubiquitin-proteasome acts as a negative regulator. This represents the first general genome wide level investigation of the gene expression profile in the rat soleus after BFR treatment. This may aid our understanding of the molecular mechanisms regulating and controlling muscle hypertrophy and provide support to the BFR strategies aiming to prevent muscle atrophy in a clinical setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Lack of Effect of Experimental Hypovolemia on Imipenem Muscle Distribution in Rats Assessed by Microdialysis

    PubMed Central

    Marchand, Sandrine; Dahyot, Claire; Lamarche, Isabelle; Plan, Elodie; Mimoz, Olivier; Couet, William

    2005-01-01

    The aim of this study was to investigate the influence of hypovolemia on the distribution of imipenem in muscle extracellular fluid determined by microdialysis in awake rats. Microdialysis probes were inserted into the jugular vein and hind leg muscle. Imipenem recoveries in muscle and blood were determined in each rat by retrodialysis by drug before drug administration. Hypovolemia was induced by removing 40% of the initial blood volume over 30 min. Imipenem was infused intravenously at a dose of 70 mg · kg−1 over 30 min, and microdialysis samples were collected for 120 min from hypovolemic (n = 8) and control (n = 8) rats. The decay of the free concentrations in blood and muscle with time were monoexponential, and the concentration profiles in muscle and blood were virtually superimposed in both groups. Accordingly, the ratios of the area under the concentration-time curve (AUC) for tissue (muscle) to the AUC for blood were always virtually equal to 1. Hypovolemia induced a 23% decrease in the clearance (P < 0.05) of imipenem, with no statistically significant alteration of its volume of distribution. This study showed that imipenem elimination was altered in hypovolemic rats, probably due to decreased renal blood flow, but its distribution characteristics were not. In particular, free imipenem concentrations in blood and muscle were always virtually identical. PMID:16304160

  4. Prevention of metabolic alterations caused by suspension hypokinesia in leg muscles of rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.; Fagan, J. M.

    1983-01-01

    Rats were subjected to tail-cast suspension hypokinesia for 6 days with one leg immobilized in dorsal flexion by casting. Control animals were also tail-casted. The soleus, gastrocnemius and plantaris muscles of uncasted hypokinetic legs were smaller than control muscles. Dorsal flexion prevented atrophy of these muscles and caused the soleus to hypertrophy. The anterior muscles were unaffected by hypokinesia. The smaller size of the soleus of the uncasted leg relative to the dorsal flexed and weight bearing limbs correlated with slower protein synthesis and faster proteolysis. The capacity of this muscle to synthesize glutamine (gln), which carries nitrogenous waste from muscle was also measured. Although tissue homogenates showed higher activities of gln synthetase, the rate of de novo synthesis was not altered in intact muscle but the tissue ratio of gln/glutamate was decreased. Glutamate and ATP were not limiting for gln synthesis, but availability of ammonia may be a limiting factor for this process in hypokinesia.

  5. Prevention of metabolic alterations caused by suspension hypokinesia in leg muscles of rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.; Fagan, J. M.

    1983-01-01

    Rats were subjected to tail-cast suspension hypokinesia for 6 days with one leg immobilized in dorsal flexion by casting. Control animals were also tail-casted. The soleus, gastrocnemius and plantaris muscles of uncasted hypokinetic legs were smaller than control muscles. Dorsal flexion prevented atrophy of these muscles and caused the soleus to hypertrophy. The anterior muscles were unaffected by hypokinesia. The smaller size of the soleus of the uncasted leg relative to the dorsal flexed and weight bearing limbs correlated with slower protein synthesis and faster proteolysis. The capacity of this muscle to synthesize glutamine (gln), which carries nitrogenous waste from muscle was also measured. Although tissue homogenates showed higher activities of gln synthetase, the rate of de novo synthesis was not altered in intact muscle but the tissue ratio of gln/glutamate was decreased. Glutamate and ATP were not limiting for gln synthesis, but availability of ammonia may be a limiting factor for this process in hypokinesia.

  6. Statin-induced myopathy in the rat: relationship between systemic exposure, muscle exposure and myopathy.

    PubMed

    Sidaway, J; Wang, Y; Marsden, A M; Orton, T C; Westwood, F R; Azuma, C T; Scott, R C

    2009-01-01

    Rare instances of myopathy are associated with all statins, but cerivastatin was withdrawn from clinical use due to a greater incidence of myopathy. The mechanism of statin-induced myopathy with respect to tissue disposition was investigated by measuring the systemic, hepatic, and skeletal muscle exposure of cerivastatin, rosuvastatin, and simvastatin in rats before and after muscle damage. The development of myopathy was not associated with the accumulation of statins in skeletal muscle. For each statin exposure was equivalent in muscles irrespective of their fibre-type sensitivity to myopathy. The low amount of each statin in skeletal muscle relative to the liver does not support a significant role for transporters in the disposition of statins in skeletal muscle. Finally, the concentration of cerivastatin necessary to cause necrosis in skeletal muscle was considerably lower than rosuvastatin or simvastatin, supporting the concept cerivastatin is intrinsically more myotoxic than other statins.

  7. Electrical Stimulation of Denervated Rat Skeletal Muscle Ameliorates Bone Fragility and Muscle Loss in Early-Stage Disuse Musculoskeletal Atrophy.

    PubMed

    Tamaki, Hiroyuki; Yotani, Kengo; Ogita, Futoshi; Hayao, Keishi; Nakagawa, Kouki; Sugawara, Kazuhiro; Kirimoto, Hikari; Onishi, Hideaki; Kasuga, Norikatsu; Yamamoto, Noriaki

    2017-04-01

    We tested whether daily muscle electrical stimulation (ES) can ameliorate the decrease in cortical bone strength as well as muscle and bone geometric and material properties in the early stages of disuse musculoskeletal atrophy. 7-week-old male F344 rats were randomly divided into three groups: age-matched control group (Cont); a sciatic denervation group (DN); and a DN + direct electrical stimulation group (DN + ES). Denervated tibialis anterior (TA) muscle in the DN + ES group received ES with 16 mA at 10 Hz for 30 min/day, 6 days/week. Micro CT, the three-point bending test, and immunohistochemistry were used to characterize cortical bone mechanical, structural, and material properties of tibiae. TA muscle in the DN + ES group showed significant improvement in muscle mass and myofiber cross-sectional area relative to the DN group. Maximal load and stiffness of tibiae, bone mineral density estimated by micro CT, and immunoreactivity of DMP1 in the cortical bone tissue were also significantly greater in the DN + ES group than in the DN group. These results suggest that daily ES-induced muscle contraction treatment reduced the decrease in muscle mass and cortical bone strength in early-stage disuse musculoskeletal atrophy and is associated with a beneficial effect on material properties such as mineralization of cortical bone tissue.

  8. Respiratory Muscle Training Improves Diaphragm Citrate Synthase Activity and Hemodynamic Function in Rats with Heart Failure.

    PubMed

    Jaenisch, Rodrigo Boemo; Bertagnolli, Mariane; Borghi-Silva, Audrey; Arena, Ross; Lago, Pedro Dal

    2017-01-01

    Enhanced respiratory muscle strength in patients with heart failure positively alters the clinical trajectory of heart failure. In an experimental model, respiratory muscle training in rats with heart failure has been shown to improve cardiopulmonary function through mechanisms yet to be entirely elucidated. The present report aimed to evaluate the respiratory muscle training effects in diaphragm citrate synthase activity and hemodynamic function in rats with heart failure. Wistar rats were divided into four experimental groups: sedentary sham (Sed-Sham, n=8), trained sham (RMT-Sham, n=8), sedentary heart failure (Sed-HF, n=7) and trained heart failure (RMT-HF, n=7). The animals were submitted to a RMT protocol performed 30 minutes a day, 5 days/week, for 6 weeks. In rats with heart failure, respiratory muscle training decreased pulmonary congestion and right ventricular hypertrophy. Deleterious alterations in left ventricular pressures, as well as left ventricular contractility and relaxation, were assuaged by respiratory muscle training in heart failure rats. Citrate synthase activity, which was significantly reduced in heart failure rats, was preserved by respiratory muscle training. Additionally, a negative correlation was found between citrate synthase and left ventricular end diastolic pressure and positive correlation was found between citrate synthase and left ventricular systolic pressure. Respiratory muscle training produces beneficial adaptations in the diaphragmatic musculature, which is linked to improvements in left ventricular hemodynamics and blood pressure in heart failure rats. The RMT-induced improvements in cardiac architecture and the oxidative capacity of the diaphragm may improve the clinical trajectory of patients with heart failure.

  9. Induction of Muscle Hypertrophy in Rats through Low Intensity Eccentric Contraction.

    PubMed

    Tsumiyama, Wakako; Oki, Sadaaki; Takamiya, Naomi; Umei, Namiko; Shimizu, Michele Eisemann; Ono, Takeya; Otsuka, Akira

    2014-10-01

    [Purpose] The purpose of this study was to examine whether a low intensity exercise using an eccentric contraction would result in skeletal muscle hypertrophy in rats. [Subjects and Methods] Eighteen female Wistar rats were used in this study. The rats were randomly divided into three groups. The control group performed no exercise. The level group ran on a treadmill on a 0° incline. The downhill group ran on a treadmill on a -16° incline. The two exercise groups ran on a treadmill at 16 m/min for 90 minutes, once every three days for a total of twenty sessions. [Results] The muscle wet weights, the relative weight ratios, and the muscle fiber cross-section minor axes of the downhill group were significantly larger than those of the control and level groups. There were no differences in the muscle wet weights, the relative weight ratios, and the muscle fiber cross-section minor axes between the control group and the level group. [Conclusion] The stimulation from the low intensity eccentric contraction may have produced enough mechanical stress to induce muscle hypertrophy without the over-stressing that might have produced muscle fiber damage. These results indicate that this technique may be an effective method of inducing hypertrophy in skeletal muscle.

  10. Effects of aging on the lateral transmission of force in rat skeletal muscle.

    PubMed

    Zhang, Chi; Gao, Yingxin

    2014-03-21

    The age-related reduction in muscle force cannot be fully explained by the loss of muscle fiber mass or degeneration of myofibers. Our previous study showed that changes in lateral transmission of force could affect the total force transmitted to the tendon. The extracellular matrix (ECM) of skeletal muscle plays an important role in lateral transmission of force. The objective of this study was to define the effects of aging on lateral transmission of force in skeletal muscles, and explore possible underlying mechanisms. In vitro contractile tests were performed on extensor digitorum longus (EDL) muscle of young and old rats with series of tenotomy and myotomy. We concluded that lateral transmission of force was impaired in the old rats, and this deficit could be partly due to increased thickness of the ECM induced by aging.

  11. Increased myogenic repressor Id mRNA and protein levels in hindlimb muscles of aged rats.

    PubMed

    Alway, Stephen E; Degens, Hans; Lowe, Dawn A; Krishnamurthy, Gururaj

    2002-02-01

    The objective of this study was to determine if levels of repressors to myogenic regulatory factors (MRFs) differ between muscles from young adult and aged animals. Total RNA from plantaris, gastrocnemius, and soleus muscles of Fischer 344 x Brown Norway rats aged 9 mo (young adult, n = 10) and 37 mo (aged, n = 10) was reverse transcribed and then amplified by PCR. To obtain a semiquantitative measure of the mRNA levels, PCR signals were normalized to cyclophilin or 18S signals from the corresponding reverse transcription product. Normalization to cyclophilin and 18S gave similar results. The mRNA levels of MyoD and myogenin were approximately 275-650% (P < 0.001) and approximately 500-1,100% (P < 0.001) greater, respectively, in muscles from aged compared with young adults. In contrast, the protein levels were lower in plantaris and gastrocnemius muscles and similar in the soleus muscle of aged vs. young adult rats. Id repressor mRNA levels were approximately 300-900% greater in fast and slow muscles of aged animals (P < or = 0.02), and Mist 1 mRNA was approximately 50% greater in the plantaris and gastrocnemius muscles (P < 0.01). The mRNA level of Twist mRNA was not significantly affected by aging. Id-1, Id-2, and Id-3 protein levels were approximately 17-740% greater (P < 0.05) in hindlimb muscles of aged rats compared with young adult rats. The elevated levels of Id mRNA and protein suggest that MRF repressors may play a role in gene regulation of fast and slow muscles in aged rats.

  12. Architectural and morphological assessment of rat abdominal wall muscles: comparison for use as a human model

    PubMed Central

    Brown, Stephen H M; Banuelos, Karina; Ward, Samuel R; Lieber, Richard L

    2010-01-01

    The abdominal wall is a composite of muscles that are important for the mechanical stability of the spine and pelvis. Tremendous clinical attention is given to these muscles, yet little is known about how they function in isolation or how they interact with one another. Given the morphological, vascular, and innervation complexities associated with these muscles and their proximity to the internal organs, an appropriate animal model is important for understanding their physiological and mechanical significance during function. To determine the extent to which the rat abdominal wall resembles that of human, 10 adult male Sprague-Dawley rats were killed and formalin-fixed for architectural and morphological analyses of the four abdominal wall muscles (rectus abdominis, external oblique, internal oblique, and transversus abdominis). Physiological cross-sectional areas and optimal fascicle lengths demonstrated a pattern that was similar to human abdominal wall muscles. In addition, sarcomere lengths measured in the neutral spine posture were similar to human in their relation to optimal sarcomere length. These data indicate that the force-generating and length change capabilities of these muscles, relative to one another, are similar in rat and human. Finally, the fiber lines of action of each abdominal muscle were similar to human over most of the abdominal wall. The main exception was in the lower abdominal region (inferior to the pelvic crest), where the external oblique becomes aponeurotic in human but continues as muscle fibers into its pelvic insertion in the rat. We conclude that, based on the morphology and architecture of the abdominal wall muscles, the adult male Sprague-Dawley rat is a good candidate for a model representation of human, particularly in the middle and upper abdominal wall regions. PMID:20646108

  13. Architectural and morphological assessment of rat abdominal wall muscles: comparison for use as a human model.

    PubMed

    Brown, Stephen H M; Banuelos, Karina; Ward, Samuel R; Lieber, Richard L

    2010-09-01

    The abdominal wall is a composite of muscles that are important for the mechanical stability of the spine and pelvis. Tremendous clinical attention is given to these muscles, yet little is known about how they function in isolation or how they interact with one another. Given the morphological, vascular, and innervation complexities associated with these muscles and their proximity to the internal organs, an appropriate animal model is important for understanding their physiological and mechanical significance during function. To determine the extent to which the rat abdominal wall resembles that of human, 10 adult male Sprague-Dawley rats were killed and formalin-fixed for architectural and morphological analyses of the four abdominal wall muscles (rectus abdominis, external oblique, internal oblique, and transversus abdominis). Physiological cross-sectional areas and optimal fascicle lengths demonstrated a pattern that was similar to human abdominal wall muscles. In addition, sarcomere lengths measured in the neutral spine posture were similar to human in their relation to optimal sarcomere length. These data indicate that the force-generating and length change capabilities of these muscles, relative to one another, are similar in rat and human. Finally, the fiber lines of action of each abdominal muscle were similar to human over most of the abdominal wall. The main exception was in the lower abdominal region (inferior to the pelvic crest), where the external oblique becomes aponeurotic in human but continues as muscle fibers into its pelvic insertion in the rat. We conclude that, based on the morphology and architecture of the abdominal wall muscles, the adult male Sprague-Dawley rat is a good candidate for a model representation of human, particularly in the middle and upper abdominal wall regions.

  14. Kinetics of GLUT4 Trafficking in Rat and Human Skeletal Muscle

    PubMed Central

    Karlsson, Håkan K.R.; Chibalin, Alexander V.; Koistinen, Heikki A.; Yang, Jing; Koumanov, Francoise; Wallberg-Henriksson, Harriet; Zierath, Juleen R.; Holman, Geoffrey D.

    2009-01-01

    OBJECTIVE In skeletal muscle, insulin stimulates glucose transport activity three- to fourfold, and a large part of this stimulation is associated with a net translocation of GLUT4 from an intracellular compartment to the cell surface. We examined the extent to which insulin or the AMP-activated protein kinase activator AICAR can lead to a stimulation of the exocytosis limb of the GLUT4 translocation pathway and thereby account for the net increase in glucose transport activity. RESEARCH DESIGN AND METHODS Using a biotinylated photoaffinity label, we tagged endogenous GLUT4 and studied the kinetics of exocytosis of the tagged protein in rat and human skeletal muscle in response to insulin or AICAR. Isolated epitrochlearis muscles were obtained from male Wistar rats. Vastus lateralis skeletal muscle strips were prepared from open muscle biopsies obtained from six healthy men (age 39 ± 11 years and BMI 25.8 ± 0.8 kg/m2). RESULTS In rat epitrochlearis muscle, insulin exposure leads to a sixfold stimulation of the GLUT4 exocytosis rate (with basal and insulin-stimulated rate constants of 0.010 and 0.067 min−1, respectively). In human vastus lateralis muscle, insulin stimulates GLUT4 translocation by a similar sixfold increase in the exocytosis rate constant (with basal and insulin-stimulated rate constants of 0.011 and 0.075 min−1, respectively). In contrast, AICAR treatment does not markedly increase exocytosis in either rat or human muscle. CONCLUSIONS Insulin stimulation of the GLUT4 exocytosis rate constant is sufficient to account for most of the observed increase in glucose transport activity in rat and human muscle. PMID:19188436

  15. Levosimendan improves calcium sensitivity of diaphragm muscle fibres from a rat model of heart failure.

    PubMed

    van Hees, H W H; Andrade Acuña, Gl; Linkels, M; Dekhuijzen, P N R; Heunks, L M A

    2011-02-01

    Diaphragm muscle weakness occurs in patients with heart failure (HF) and is associated with exercise intolerance and increased mortality. Reduced sensitivity of diaphragm fibres to calcium contributes to diaphragm weakness in HF. Here we have investigated the ability of the calcium sensitizer levosimendan to restore the reduced calcium sensitivity of diaphragm fibres from rats with HF. Coronary artery ligation in rats was used as an animal model for HF. Sham-operated rats served as controls. Fifteen weeks after induction of HF or sham operations animals were killed and muscle fibres were isolated from the diaphragm. Diaphragm fibres were skinned and activated with solutions containing incremental calcium concentrations and 10 µM levosimendan or vehicle (0.02% DMSO). Developed force was measured at each calcium concentration, and force-calcium concentration relationships were plotted. Calcium sensitivity of force generation was reduced in diaphragm muscle fibres from HF rats, compared with fibres from control rats (P < 0.01). Maximal force generation was ∼25% lower in HF diaphragm fibres than in control fibres (P < 0.05). Levosimendan significantly increased calcium sensitivity of force generation in diaphragm fibres from HF and control rats, without affecting maximal force generation. Levosimendan enhanced the force generating capacity of diaphragm fibres from HF rats by increasing the sensitivity of force generation to calcium concentration. These results provide strong support for testing the effect of calcium sensitizers on diaphragm muscle weakness in patients with HF. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  16. Using wavelet analysis to reveal the muscle functional recovery following nerve reinnervation in a rat model.

    PubMed

    Zhou, Hui; Yang, Lin; Zhang, Liangqing; Wu, Fengxia; Huang, Jianping; Li, Guanglin

    2014-01-01

    Targeted muscle reinnervation (TMR) technique has been successful in many amputees for providing sufficient electromyography (EMG) signal to control advanced prosthetics. However, it seems to lack further understanding of the recovery progress of muscle functions after targeted muscle reinneveration surgery. In this study, a rat TMR model was developed to investigate intramuscular EMG activity changes after reinnervation. Using the discrete wavelet decomposition and average rectified algorithm, the recorded EMG showed a gradual improvement in the reinnervated muscle within four weeks. Future work will be performed to further assess the efficiency of reinnveration therapy after the surgery.

  17. Influence of exercise training on the oxidative capacity of rat abdominal muscles

    NASA Technical Reports Server (NTRS)

    Uribe, J. M.; Stump, C. S.; Tipton, C. M.; Fregosi, R. F.

    1992-01-01

    Our purpose was to determine if endurance exercise training would increase the oxidative capacity of the abdominal expiratory muscles of the rat. Accordingly, 9 male rats were subjected to an endurance training protocol (1 h/day, 6 days/week, 9 weeks) and 9 litter-mates served as controls. Citrate synthase (CS) activity was used as an index of oxidative capacity, and was determined in the following muscles: soleus, plantaris, costal diaphragm, crural diaphragm, and in all four abdominal muscles: rectus abdominis, transversus abdominis, external oblique, and internal oblique. Compared to their non-trained litter-mates, the trained rats had higher peak whole body oxygen consumption rates (+ 16%) and CS activities in plantaris (+34%) and soleus (+36%) muscles. Thus, the training program caused substantial systemic and locomotor muscle adaptations. The CS activity of costal diaphragm was 20% greater in the trained animals, but no difference was observed in crural diaphragm. The CS activity in the abdominal muscles was less than one-half of that in locomotor and diaphragm muscles, and there were no significant changes with training except in the rectus abdominis where a 26% increase was observed. The increase in rectus abdominis CS activity may reflect its role in postural support and/or locomotion, as none of the primary expiratory pumping muscles adapted to the training protocol. The relatively low levels of CS activity in the abdominal muscles suggests that they are not recruited frequently at rest, and the lack of an increase with training indicates that these muscles do not contribute significantly to the increased ventilatory activity accompanying exercise in the rat.

  18. Influence of exercise training on the oxidative capacity of rat abdominal muscles

    NASA Technical Reports Server (NTRS)

    Uribe, J. M.; Stump, C. S.; Tipton, C. M.; Fregosi, R. F.

    1992-01-01

    Our purpose was to determine if endurance exercise training would increase the oxidative capacity of the abdominal expiratory muscles of the rat. Accordingly, 9 male rats were subjected to an endurance training protocol (1 h/day, 6 days/week, 9 weeks) and 9 litter-mates served as controls. Citrate synthase (CS) activity was used as an index of oxidative capacity, and was determined in the following muscles: soleus, plantaris, costal diaphragm, crural diaphragm, and in all four abdominal muscles: rectus abdominis, transversus abdominis, external oblique, and internal oblique. Compared to their non-trained litter-mates, the trained rats had higher peak whole body oxygen consumption rates (+ 16%) and CS activities in plantaris (+34%) and soleus (+36%) muscles. Thus, the training program caused substantial systemic and locomotor muscle adaptations. The CS activity of costal diaphragm was 20% greater in the trained animals, but no difference was observed in crural diaphragm. The CS activity in the abdominal muscles was less than one-half of that in locomotor and diaphragm muscles, and there were no significant changes with training except in the rectus abdominis where a 26% increase was observed. The increase in rectus abdominis CS activity may reflect its role in postural support and/or locomotion, as none of the primary expiratory pumping muscles adapted to the training protocol. The relatively low levels of CS activity in the abdominal muscles suggests that they are not recruited frequently at rest, and the lack of an increase with training indicates that these muscles do not contribute significantly to the increased ventilatory activity accompanying exercise in the rat.

  19. Vitamin E levels in soleus muscles of experimentally induced hyperthyroid rats differ consequent to feeding of edible oils.

    PubMed

    Merican, Z; Suboh, B; Marzuki, A; Khalid, B A

    1999-12-01

    It has been shown that lipid peroxidation product levels in the soleus muscles of rats fed palm olein were lower than in the soleus muscles of rats fed soya bean oil. A study was carried out to test our hypothesis that the lower level of lipid peroxidation products in the soleus muscle of palm olein-fed rats is due, at least partly, to the higher amount of vitamin E in their soleus muscles. Experimentally induced hyperthyroid rats were fed either ground rat chow or ground rat chow mixed with palm olein oil or soya bean oil for a period of 8 weeks. Euthyroid rats fed ground rat chow for a similar period served as controls. At the end of the 8-week period, the rats were sacrificed and the α-tocopherol and tocotrienol levels in their soleus muscles were measured using high pressure liquid chromatography. It was found that the levels of α-tocopherol (23.682 ± 0.363), α-tocotrienol (1.974 ± 0.040) and γ-tocotrienol (1.418 ± 0.054) in μg/g tissue wet weight in the soleus muscles of hyperthyroid rats fed palm olein oil were statistically significantly higher than those found in the soleus muscles of hyperthyroid rats fed soya bean oil, which were 14.299 ± 0.378, 0.053 ± 0.053 and 0.184 ± 0.120μg/g tissue wet weight, respectively. The result shows that the increased level of a-tocopherol and tocotrienols found in the soleus muscles of hyperthyroid rats fed palm olein oil is responsible, at least partly, for the lower amount of lipid peroxidation products in these muscles compared with the soleus muscles of hyperthyroid rats fed soya bean oil in our earlier study.

  20. The effects of Creatine Long-Term Supplementation on Muscle Morphology and Swimming Performance in Rats.

    PubMed

    Yildiz, Ahmet; Ozdemir, Ercan; Gulturk, Sefa; Erdal, Sena

    2009-01-01

    Creatine (Cr) has been shown to increase the total muscle mass. The purpose of this study was to investigate the effect of Cr supplementation on muscle morphology and swimming performance, using an animal model. Each rat was subjected to exercise 15-minute period daily for the 12 weeks. The rats were randomly divided into four groups: no Cr supplementation (CON), no Cr supplementation and incomplete food intake (lacking lysine and methionine in diet for rats) (INCO), Cr supplementation 1 g·kg(-1)·day(-1) (CREAT-I) and Cr supplementation 2 g·kg(-1)·day(-1) (CREAT-II). Three months later, all groups adult rats exercised in swimming pool chambers. Swimming time was recorded as minute for each rat. Following swimming performance period, the animals were killed by cervical dislocation and the gastrocnemius and diaphragm muscles were dissected. Serial slices of 5-7 μm were allocated paraffin wax and histochemical staining procedure of cross-sections was carried out with heamatoxylin-eosin technics. All groups gained body weight at the end of 12 weeks but there was no statistical difference among them. Swimming time values were statistical difference between CREAT-II and CON group as well as between CREAT-I and CON group (p < 0.05). In the INCO group was determined increased connective tissue cell of the muscle sample. In contrast, in the CREAT-I and CREAT-II group, the basic histological changes were large-scale muscle fibers and hypertrophic muscle cells. These results suggest that long-term creatine supplementation increased the number of muscle fibers and enhanced endurance swimming performance in rats. Key pointsThere is no study about the effects of creatine long-term supplementation on muscle morphology and swimming performance in rats.Long-term creatine supplementation increase muscle hypertrophy (but not body weight) and enhance endurance swimming performance in rats.The quantitative analysis indicated that the number of muscle fibers per defined area

  1. The muscle contraction mode determines lymphangiogenesis differentially in rat skeletal and cardiac muscles by modifying local lymphatic extracellular matrix microenvironments.

    PubMed

    Greiwe, L; Vinck, M; Suhr, F

    2016-05-01

    Lymphatic vessels are of special importance for tissue homeostasis, and increases of their density may foster tissue regeneration. Exercise could be a relevant tool to increase lymphatic vessel density (LVD); however, a significant lack of knowledge remains to understand lymphangiogenesis in skeletal muscles upon training. Interestingly, training-induced lymphangiogenesis has never been studied in the heart. We studied lymphangiogenesis and LVD upon chronic concentric and chronic eccentric muscle contractions in both rat skeletal (Mm. Edl and Sol) and cardiac muscles. We found that LVD decreased in both skeletal muscles specifically upon eccentric training, while this contraction increased LVD in cardiac tissue. These observations were supported by opposing local remodelling of lymphatic vessel-specific extracellular matrix components in skeletal and cardiac muscles and protein levels of lymphatic markers (Lyve-1, Pdpn, Vegf-C/D). Confocal microscopy further revealed transformations of lymphatic vessels into vessels expressing both blood (Cav-1) and lymphatic (Vegfr-3) markers upon eccentric training specifically in skeletal muscles. In addition and phenotype supportive, we found increased inflammation (NF-κB/p65, Il-1β, Ifn-γ, Tnf-α and MPO(+) cells) in eccentrically stressed skeletal, but decreased levels in cardiac muscles. Our data provide novel mechanistic insights into lymphangiogenic processes in skeletal and cardiac muscles upon chronic muscle contraction modes and demonstrate that both tissues adapt in opposing manners specifically to eccentric training. These data are highly relevant for clinical applications, because eccentric training serves as a sufficient strategy to increase LVD and to decrease inflammation in cardiac tissue, for example in order to reduce tissue abortion in transplantation settings. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  2. [Effects of antioxidant on reduction of hindlimb muscle atrophy induced by cisplatin in rats].

    PubMed

    Kim, Jin il; Choe, Myoung-Ae

    2014-08-01

    The purpose of this study was to examine the effects of Cu/Zn SOD on reduction of hindlimb muscular atrophy induced by cisplatin in rats. Forty-two rats were assigned to three groups; control group, Cisplatin (CDDP) group and cisplatin with Cu/Zn SOD (CDDP-SOD) group. At day 35 hindlimb muscles were dissected. Food intake, activity, withdrawal threshold, muscle weight, and Type I, II fiber cross-sectional area (CSA) of dissected muscles were measured. Relative SOD activity and expression of MHC and phosphorylated Akt, ERK were measured after dissection. Muscle weight and Type I, II fiber CSA of hindlimb muscles in the CDDP group were significantly less than the control group. Muscle weight and Type I, II fiber CSA of hindlimb muscles, food intake, activity, and withdrawal thresholds of the CDDP-SOD group were significantly greater than the CDDP group. There were no significant differences in relative SOD activities of hindlimb muscles between the CDDP-SOD and CDDP groups. MHC expression and phosphorylated Akt, ERK of hindlimb muscles in the CDDP-SOD group were significantly greater than the CDDP group. Cu/Zn SOD attenuates hindlimb muscular atrophy induced by cisplatin through increased food intake and activity. Increment of phosphorylated Akt, ERK may relate to attenuation of hindlimb muscular atrophy.

  3. Effective therapy of transected quadriceps muscle in rat: Gastric pentadecapeptide BPC 157.

    PubMed

    Staresinic, Mario; Petrovic, Igor; Novinscak, Tomislav; Jukic, Ivana; Pevec, Damira; Suknaic, Slaven; Kokic, Neven; Batelja, Lovorka; Brcic, Luka; Boban-Blagaic, Alenka; Zoric, Zdenka; Ivanovic, Domagoj; Ajduk, Marko; Sebecic, Bozidar; Patrlj, Leonardo; Sosa, Tomislav; Buljat, Gojko; Anic, Tomislav; Seiwerth, Sven; Sikiric, Predrag

    2006-05-01

    We report complete transection of major muscle and the systemic peptide treatment that induces healing of quadriceps muscle promptly and then maintains the healing with functional restoration. Initially, stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, M.W. 1419, PL-10, PLD-116, PL 14736 Pliva, Croatia; in trials for inflammatory bowel disease; wound treatment; no toxicity reported; effective alone without carrier) also superiorly accelerates the healing of transected Achilles tendon. Regularly, quadriceps muscle completely transected transversely 1.0 cm proximal to patella presents a definitive defect that cannot be compensated in rat. BPC 157 (10 microg, 10 ng, 10 pg/kg) is given intraperitoneally, once daily; the first application 30 min posttransection, the final 24 h before sacrifice. It consistently improves muscle healing throughout the whole 72-day period. Improved are: (i) biomechanic (load of failure increased); (ii) function (walking recovery and extensor postural thrust/motor function index returned toward normal healthy values); (iii) microscopy/immunochemistry [i.e., mostly muscle fibers connect muscle segments; absent gap; significant desmin positivity for ongoing regeneration of muscle; larger myofibril diameters on both sides, distal and proximal (normal healthy rat-values reached)]; (iv) macroscopic presentation (stumps connected; subsequently, atrophy markedly attenuated; finally, presentation close to normal noninjured muscle, no postsurgery leg contracture). Thus, posttransection healing-consistently improved-may suggest this peptide therapeutic application in muscle disorders.

  4. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats.

    PubMed

    Javadov, Sabzali; Jang, Sehwan; Rodriguez-Reyes, Natividad; Rodriguez-Zayas, Ana E; Soto Hernandez, Jessica; Krainz, Tanja; Wipf, Peter; Frontera, Walter

    2015-11-24

    Mitochondrial dysfunction plays a central role in the pathogenesis of sarcopenia associated with a loss of mass and activity of skeletal muscle. In addition to energy deprivation, increased mitochondrial ROS damage proteins and lipids in aged skeletal muscle. Therefore, prevention of mitochondrial ROS is important for potential therapeutic strategies to delay sarcopenia. This study elucidates the pharmacological efficiency of the new developed mitochondria-targeted ROS and electron scavenger, XJB-5-131 (XJB) to restore muscle contractility and mitochondrial function in aged skeletal muscle. Male adult (5-month old) and aged (29-month old) Fischer Brown Norway (F344/BN) rats were treated with XJB for four weeks and contractile properties of single skeletal muscle fibres and activity of mitochondrial ETC complexes were determined at the end of the treatment period. XJB-treated old rats showed higher muscle contractility associated with prevention of protein oxidation in both muscle homogenate and mitochondria compared with untreated counterparts. XJB-treated animals demonstrated a high activity of the respiratory complexes I, III, and IV with no changes in citrate synthase activity. These data demonstrate that mitochondrial ROS play a causal role in muscle weakness, and that a ROS scavenger specifically targeted to mitochondria can reverse age-related alterations of mitochondrial function and improve contractile properties in skeletal muscle.

  5. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats

    PubMed Central

    Javadov, Sabzali; Jang, Sehwan; Rodriguez-Reyes, Natividad; Rodriguez-Zayas, Ana E.; Hernandez, Jessica Soto; Krainz, Tanja; Wipf, Peter; Frontera, Walter

    2015-01-01

    Mitochondrial dysfunction plays a central role in the pathogenesis of sarcopenia associated with a loss of mass and activity of skeletal muscle. In addition to energy deprivation, increased mitochondrial ROS damage proteins and lipids in aged skeletal muscle. Therefore, prevention of mitochondrial ROS is important for potential therapeutic strategies to delay sarcopenia. This study elucidates the pharmacological efficiency of the new developed mitochondria-targeted ROS and electron scavenger, XJB-5-131 (XJB) to restore muscle contractility and mitochondrial function in aged skeletal muscle. Male adult (5-month old) and aged (29-month old) Fischer Brown Norway (F344/BN) rats were treated with XJB for four weeks and contractile properties of single skeletal muscle fibres and activity of mitochondrial ETC complexes were determined at the end of the treatment period. XJB-treated old rats showed higher muscle contractility associated with prevention of protein oxidation in both muscle homogenate and mitochondria compared with untreated counterparts. XJB-treated animals demonstrated a high activity of the respiratory complexes I, III, and IV with no changes in citrate synthase activity. These data demonstrate that mitochondrial ROS play a causal role in muscle weakness, and that a ROS scavenger specifically targeted to mitochondria can reverse age-related alterations of mitochondrial function and improve contractile properties in skeletal muscle. PMID:26415224

  6. Changes of masseter muscle activity following injection of botulinum toxin type A in adult rats.

    PubMed

    Tsai, C Y; Lei, Y Y; Yang, L Y; Chiu, W C

    2015-11-01

    To investigate changes in masseter muscle function following intramuscular injection of different dose-dependent botulinum toxin type A (BTXA). Department of Orthodontics at Taipei Medical University. Fifty-two, 70-day-old male Wistar rats were randomly divided into four groups. Group I received 7.5 U of BTXA (0.3 ml), Group II received 5.0 U, and Group III received 2.5 U in the right masseter muscle, respectively. Group IV is the control and received no BTXA injection. A wire electrode device was implanted to record muscle activity. One week after implantation, the rats were fed every 2 h and EMG signals were recorded during the first hour. All signals were recorded for 12 weeks. Thereafter, EMG data were analyzed for statistical calculation and weights of masseter muscles were measured. Masseter muscle activity decreased 99% during the first week after BTXA injection and gradually recovered from the 3rd week on in Groups I-III. By the 12th week, muscle activity recovered to 41% in Groups I and II and 56.26% in Group III. No significant changes of muscle activity were observed in Group IV. BTXA induced a reduction in masseter muscle activity and an increased toxin dose resulted in greater depression of muscle activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Clenbuterol in the prevention of muscle atrophy: a study of hindlimb-unweighted rats.

    PubMed

    Herrera, N M; Zimmerman, A N; Dykstra, D D; Thompson, L V

    2001-07-01

    To determine whether the administration of clenbuterol, a beta2-adrenergic agonist, prevents loss of muscle mass during a period of imposed inactivity. Randomized trial. Basic laboratory research. Thirty Fischer 344 Brown Norway F1 Hybrid rats, 12 and 30 months of age. The rats were randomly assigned to a control group, or to 1 of 2 experimental groups: hindlimb unweighted for 2 weeks (HU-2), or hindlimb unweighted with daily injections of clenbuterol for 2 weeks (HU-2Cl). Muscle mass weighed in milligrams and single fiber cross-sectional area histochemically evaluated. In both age groups, the HU-2 animals had greater muscle atrophy (decrease in muscle mass) in the soleus muscle than the extensor digitorum longus (EDL) muscle. In the HU-2Cl groups, the decline in muscle mass of both the soleus and EDL muscles was attenuated by about 4% to 20%. In the HU-2 group, single fiber cross-sectional area decreased for both fiber types (type I, 20%-40%; type II, 37%-50%) in both age groups. Clenbuterol retarded the inactivity-induced decline in single fiber cross-sectional area by 12% to 50%. In the EDL muscles of the HU-2Cl group, we found hypertrophy in both fiber types in the 30-month-old animals and in type I fibers in the 12-month-old animals. Clenbuterol attenuated the decrease in muscle mass and single fiber cross-sectional area in both age groups. By preventing the loss of muscle mass, clenbuterol administered early in rehabilitation may benefit severely debilitated patients imposed by inactivity. The attenuated muscle atrophy found with clenbuterol in the present study provides cellular evidence for the reported change in muscle strength after its administration after knee surgery. Thus, the administration of clenbuterol may lead to a more rapid rate of rehabilitation. Copyright 2001 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  8. Spaceflight effects on adult rat muscle protein, nucleic acids, and amino acids

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1986-01-01

    Exposure to conditions of weightlessness has been associated with decrements in muscle mass and strength. The present studies were undertaken to determine muscle responses at the cellular level. Male Sprague-Dawley rats (360-410 g) were exposed to 7 days of weightlessness during the Spacelab-3 shuttle flight (May 1985). Animals were killed 12 h postflight, and soleus (S), gastrocnemius (G), and extensor digitorum longus (EDL) muscles were excised. Muscle protein, RNA, and DNA were extracted and quantified. Differential muscle atrophy was accompanied by a significant (P less than 0.05) reduction in total protein only in S muscles. There were no significant changes in protein concentration (mg/g) in the muscles examined. In S muscles from flight animals, sarcoplasmic protein accounted for a significantly greater proportion of total protein that in ground controls (37.5 vs. 32.5%). Tissue concentrations (nmol/g) of asparagine-aspartate, glutamine-glutamate, glycine, histidine, and lysine were significantly reduced (from 17 to 63%) in S muscles from flight animals, but only glutamine-glutamate levels were decreased in the G and EDL. Muscle DNA content (microgram) was unchanged in the tissues examined, but S muscle DNA concentration (micrograms/mg) increased 27%. RNA content (micrograms) was significantly (P less than 0.025) reduced in S (-28%) and G(-22%) muscles following spaceflight. These results identify specific alterations in rat skeletal muscle during short term (7-day) exposure to weightlessness and compare favorably with observations previously obtained from ground-based suspension simulations.

  9. Epigallocatechin-3-gallate improves plantaris muscle recovery after disuse in aged rats.

    PubMed

    Alway, Stephen E; Bennett, Brian T; Wilson, Joseph C; Edens, Neile K; Pereira, Suzette L

    2014-02-01

    Aging exacerbates muscle loss and slows the recovery of muscle mass and function after disuse. In this study we investigated the potential that epigallocatechin-3-gallate (EGCg), an abundant catechin in green tea, would reduce signaling for apoptosis and promote skeletal muscle recovery in the fast plantaris muscle and the slow soleus muscle after hindlimb suspension (HLS) in senescent animals. Fischer 344 × Brown Norway inbred rats (age 34 months) received either EGCg (50 mg/kg body weight), or water daily by gavage. One group of animals received HLS for 14 days and a second group of rats received 14 days of HLS, then the HLS was removed and they recovered from this forced disuse for 2 weeks. Animals that received EGCg over the HLS followed by 14 days of recovery, had a 14% greater plantaris muscle weight (p<0.05) as compared to the animals treated with the vehicle over this same period. Plantaris fiber area was greater after recovery in EGCg (2715.2±113.8 μm(2)) vs. vehicle treated animals (1953.0±41.9 μm(2)). In addition, activation of myogenic progenitor cells was improved with EGCg over vehicle treatment (7.5% vs. 6.2%) in the recovery animals. Compared to vehicle treatment, the apoptotic index was lower (0.24% vs. 0.52%), and the abundance of pro-apoptotic proteins Bax (-22%), and FADD (-77%) was lower in EGCg treated plantaris muscles after recovery. While EGCg did not prevent unloading-induced atrophy, it improved muscle recovery after the atrophic stimulus in fast plantaris muscles. However, this effect was muscle specific because EGCg had no major impact in reversing HLS-induced atrophy in the slow soleus muscle of old rats. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Epigallocatechin-3-gallate improves plantaris muscle recovery after disuse in aged rats

    PubMed Central

    Alway, Stephen E.; Bennett, Brian T.; Wilson, Joseph C.; Edens, Neile K.; Pereira, Suzette L.

    2014-01-01

    Aging exacerbates muscle loss and slows the recovery of muscle mass and function after disuse. In this study we investigated the potential that epigallocatechin gallate (EGCg), an abundant catechin in green tea, would reduce signaling for apoptosis and promote skeletal muscle recovery in the fast plantaris muscle and the slow soleus muscle after hindlimb unloading (HLS) in senescent animals. Fischer 344 × Brown Norway inbred rats (age 34 mo.) received either EGCg (50 mg/kg body weight), or water daily by gavage. One group of animals received HLS for 14 days and a second group of rats received 14 days of HLS, then the HLS was removed and they recovered from this forced disuse for 2 weeks. Animals that received EGCg over the HLS followed by 14 days of recovery, had a 14% greater plantaris muscle weight (p <0.05) as compared to the animals treated with the vehicle over this same period. Plantaris fiber area was greater after recovery in EGCg (2715.2 ± 113.8 μm2) vs. vehicle treated animals (1953.0 ± 41.9 μm2). In addition, activation of myogenic progenitor cells was improved with EGCg over vehicle treatment (7.5% vs. 6.2%) in the recovery animals. Compared to vehicle treatment, the apoptotic index was lower (0.24% vs. 0.52%), and the abundance of pro-apoptotic proteins Bax (−22%), and FADD (−77%) were lower in EGCg treated plantaris muscles after recovery. While EGCg did not prevent unloading-induced atrophy, it improved muscle recovery after the atrophic stimulus in fast plantaris muscles. However, this effect was muscle specific because EGCg had no major impact in reversing HLS-induced atrophy in the slow soleus muscle of old rats. PMID:24316035

  11. Muscle Is a Target for Preservation in a Rat Limb Replantation Model

    PubMed Central

    Iijima, Yuki; Teratani, Takumi; Hoshino, Yuichi; Kobayashi, Eiji

    2013-01-01

    Background: Ischemia exceeding 6 hours makes clinical limb replantation difficult and places the patient at risk of functional deficit or limb loss. We investigated the preservation of muscle function and morphology with solutions in rat hindlimb in vivo and in vitro. Methods: Quadriceps femoris muscles from luciferase transgenic rats were preserved for 24 hours at 4°C in extracellular-type trehalose containing Kyoto (ETK), University of Wisconsin (UW), or lactated Ringer’s (LR) solution (control). Muscle luminescence was measured with a bioimaging system. Amputated limbs of Lewis rats preserved with ETK, UW, or LR for 6 or 24 hours at 4°C were transplanted orthotopically. At week 8, terminal latency and amplitude were measured in the tibialis anterior muscle. The muscles were also analyzed histologically. Results: Isolated muscles preserved in ETK or UW had significantly higher luminescence than did muscles immersed in LR (P < 0.05). In the 6-hour-preserved limb transplantation model, although the 3 groups had almost the same terminal latency, electrical amplitude was significantly lower in the LR group. Histologically, muscles preserved with LR showed the most atrophic changes. In the 24-hour-preserved model, the survival rate of the LR group was 37.5% in contrast to 80% in the ETK and UW groups. Electrical signals were not detected in the LR group owing to severe muscle atrophy and fibrosis. The ETK and UW groups showed good muscle function electrophysiologically. Conclusions: Preservation solutions can protect muscle function and morphology in ischemia–reperfusion limbs and improve recipient survival rates after transplantation of long-term-preserved limbs. PMID:25289265

  12. Gene response of the gastrocnemius and soleus muscles to an acute aerobic run in rats.

    PubMed

    McKenzie, Michael J; Goldfarb, Allan H; Kump, David S

    2011-01-01

    Genes can be activated or inhibited by signals within the tissues in response to an acute bout of exercise. It is unclear how a particular aerobic exercise bout may influence two muscles with similar actions to the activity. Therefore, the purposes of this investigation was to determine the gene response of selected genes involved in the "stress" response of the gastrocnemius (fast-twitch) and soleus (slow-twitch) muscles to a single two hour aerobic exercise bout in female Sprague-Dawley Rats at the 1 hour time point after the exercise. Exercised rats were run (n=8) for 2 hours at 20 m.min(-1) and one hour after the completion of the bout had their soleus (S) and gastrocnemius (G) muscles removed. Age and timed matched sedentary control rats had both S and G muscles removed also. RNA was isolated from all muscles. Real-time PCR analysis was performed on the following genes: NFκB, TNFα, and Atf3. GAPDH was used as the housekeeping gene for both muscles. S muscle showed more genes altered (n = 52) vs G (n = 26). NFκB gene expression was 0.83 ± 0.14 in the exercised S but was + 1.36 ± 0.58 in the exercised G and was not significantly different between the muscles. TNFα was altered 1.30 ± 0. 34 in the exercised S and 1.36 ± 0.71 in the exercised G and was not significantly different between the muscles. The gene Atf3 was significantly altered at 4.97 ± 1.01 in the exercised S, while it was not significantly altered in the exercised G (0.70 ± 0.55). This study demonstrates that an acute bout of aerobic exercise can alter gene expression to a different extent in both the S and G muscles. It is highly likely that muscle recruitment was a factor which influenced the gene expression in theses muscles. It is interesting to note that some genes were similarly activated in these two muscles but other genes may demonstrate a varied response to the same exercise bout depending on the type of muscle. Key pointsThe soleus (primarily slow twitch) and the gastrocnemius

  13. Heat stress attenuates skeletal muscle atrophy of extensor digitorum longus in streptozotocin-induced diabetic rats.

    PubMed

    Nonaka, K; Une, S; Akiyama, J

    2015-09-01

    To investigate whether heat stress attenuates skeletal muscle atrophy of the extensor digitorum longus (EDL) muscle in streptozotocin-induced diabetic rats, 12-week-old male Wistar rats were randomly assigned to four groups (n = 6 per group): control (Con), heat stress (HS), diabetes mellitus (DM), and diabetes mellitus/heat stress (DM + HS). Diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg). Heat stress was induced in the HS and DM + HS groups by immersion of the lower half of the body in hot water at 42 °C for 30 min; it was initiated 7 days after injection of streptozotocin, and was performed once a day, five times a week for 3 weeks. The muscle fiber cross-sectional area of EDL muscles from diabetic and non-diabetic rats was determined; heat stress protein (HSP) 72 and HSP25 expression levels were also analyzed by western blotting. Diabetes-induced muscle fiber atrophy was attenuated upon heat stress treatment in diabetic rats. HSP72 and HSP25 expression was upregulated in the DM + HS group compared with the DM group. Our findings suggest that heat stress attenuates atrophy of the EDL muscle by upregulating HSP72 and HSP25 expression.

  14. Effect of cigarette smoke exposure in vivo on bronchial smooth muscle contractility in vitro in rats.

    PubMed

    Chiba, Yoshihiko; Murata, Masahiko; Ushikubo, Hiroko; Yoshikawa, Yuji; Saitoh, Akiyoshi; Sakai, Hiroyasu; Kamei, Junzo; Misawa, Miwa

    2005-12-01

    Cigarette smoking is a risk factor for the development of airway hyperresponsiveness and chronic obstructive pulmonary disease. Little is known concerning the effect of cigarette smoking on the contractility of airway smooth muscle. The current study was performed to determine the responsiveness of bronchial smooth muscles isolated from rats that were subacutely exposed to mainstream cigarette smoke in vivo. Male Wistar rats were exposed to diluted mainstream cigarette smoke for 2 h/d every day for 2 wk. Twenty-four hours after the last cigarette smoke exposure, a marked airway inflammation (i.e., increases in numbers of neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid and peribronchial tissues) was observed. In these subacutely cigarette smoke-exposed animals, the responsiveness of isolated intact (nonpermeabilized) bronchial smooth muscle to acetylcholine, but not to high K+ -depolarization, was significantly augmented when compared with the air-exposed control group. In alpha-toxin-permeabilized bronchial smooth muscle strips, the acetylcholine-induced Ca2+ sensitization of contraction was significantly augmented in rats exposed to cigarette smoke, although the contraction induced by Ca2+ was control level. Immunoblot analyses revealed an increased expression of RhoA protein in the bronchial smooth muscle of rats that were exposed to cigarette smoke. Taken together, these findings suggest that the augmented agonist-induced, RhoA-mediated Ca2+ sensitization may be responsible for the enhanced bronchial smooth muscle contraction induced by cigarette smoking, which has relevance to airway hyperresponsiveness in patients with chronic obstructive pulmonary disease.

  15. Molecular and functional evidence for Na(+)-K(+)-2Cl(-) cotransporter expression in rat skeletal muscle.

    PubMed

    Wong, J A; Fu, L; Schneider, E G; Thomason, D B

    1999-07-01

    Doubt has been raised about the expression of a functional Na(+)-K(+)-2Cl(-) cotransporter in rat skeletal muscle. In this study we present molecular and functional evidence for expression of a protein having the characteristics of a cotransporter. RT-PCR of RNA isolated from rat soleus muscle with primers to a conserved putative membrane-spanning domain resulted in a single product of predicted size. Sequencing of the product showed that it bears >90% homology with known rodent NKCC1 (BSC2) cotransporters. RNase protection assay of RNA isolated from the rat soleus muscle also identified this sequence. Immunologic detection of the cotransporter with two different antibodies indicated the presence of cotransporter protein, perhaps more than one, in blots of total muscle protein. Immunohistochemical detection by confocal microscopy localized the majority of expression of the protein to the muscle fibers. Functional studies of cotransport activity also indicate the appropriate sensitivity to inhibitors and ion dependence. Taken together, these data support the presence and function of Na(+)-K(+)-2Cl(-) cotransporter activity in the soleus muscle of the rat.

  16. [Forskolin inhibits spontaneous contraction of gastric antral smooth muscle in rats].

    PubMed

    Jiang, Jing-Zhi; Sun, Qian; Xu, Dong-Yuan; Zhang, Mo-Han; Piao, Li-Hua; Cai, Ying-Lan; Jin, Zheng

    2013-04-25

    The aim of the present study was to investigate the effects of cyclic adenosine monophosphate (cAMP) on rat gastric antral circular smooth muscle function. Forskolin, a direct activator of adenylyl cyclase (AC), was used to observe the influences of cAMP. Multi-channel physiological recorder was used to record spontaneous contraction activity of gastric antral circular muscle from Wistar rats. And ELISA method was used to detect the change of cAMP production in perfusate. The results showed that forskolin concentration-dependently suppressed the amplitude and frequency of the spontaneous contraction of the gastric antral muscle, and lowered the baseline of contraction movement significantly. Forskolin concentration-dependently increased the production of cAMP in the perfusate, which showed a significant negative correlation with the contraction amplitude of gastric antral ring muscle. The inhibitory effect of forskolin on spontaneous contraction activity of rat gastric antral circular muscle could be blocked by cAMP-dependent protein kinase (PKA) inhibitor H-89. These results suggest forskolin increases cAMP production and then activates PKA pathway, resulting in the inhibition of the spontaneous contraction activity of rat gastric antral circular smooth muscle.

  17. Role of afferent input and mechanical load for size regulation of rat soleus muscle

    NASA Astrophysics Data System (ADS)

    Kawano, Fuminori; Matsuka, Yoshikazu; Oke, Yoshihiko; Higo, Yoko; Terada, Masahiro; Umemoto, Shiori; Kawabe, Naoko; Wang, Xiao Dong; Shinoda, Yo; Lan, Yong Bo; Fukuda, Hiroyuki; Ohmi, Shinobu; Ohira, Yoshinobu

    2005-08-01

    Effects of deafferentation on the phosphorylation of ribosomal protein S6 (S6), 27 kDa heat shock protein (HSP27) and extracellular signal-regulated kinase (ERK) 1/2 were studied in rat soleus muscle. Adult male Wistar rats were randomly separated into the pre- and post- experimental control, functionally overloaded (FO), sham-operated, deafferentated (DA), FO+DA, and hindlimb-unloaded (U) groups. The distal tendons of left plantaris and gastrocnemius muscles were transected in the FO rats. The left dorsal roots of the spinal cord at the L4-5 segmental levels were transected in the DA rats. The rats in U were tail-suspended. The sampling of the soleus muscle was performed 2 weeks after the treatments shown above. The cytoplasmic fraction of the soleus muscle homogenate was used for the quantitative analyses of the phosphorylation levels of S6, HSP27, and ERK 1/2. The phosphorylation levels of these proteins were up-regulated by FO. On the contrary, the phosphorylation of all of these proteins was down-regulated by U and DA. Further, the FO-related increase of the protein phosphorylation was inhibited by additional treatment with DA. These results indicated that the afferent feedback plays crucial roles in the intramuscular regulation of the soleus muscle mass.

  18. Impaired Exercise Performance and Skeletal Muscle Mitochondrial Function in Rats with Secondary Carnitine Deficiency

    PubMed Central

    Bouitbir, Jamal; Haegler, Patrizia; Singh, François; Joerin, Lorenz; Felser, Andrea; Duthaler, Urs; Krähenbühl, Stephan

    2016-01-01

    Purpose: The effects of carnitine depletion upon exercise performance and skeletal muscle mitochondrial function remain largely unexplored. We therefore investigated the effect of N-trimethyl-hydrazine-3-propionate (THP), a carnitine analog inhibiting carnitine biosynthesis and renal carnitine reabsorption, on physical performance and skeletal muscle mitochondrial function in rats. Methods: Male Sprague Dawley rats were treated daily with water (control rats; n = 12) or with 20 mg/100 g body weight THP (n = 12) via oral gavage for 3 weeks. Following treatment, half of the animals of each group performed an exercise test until exhaustion. Results: Distance covered and exercise performance were lower in THP-treated compared to control rats. In the oxidative soleus muscle, carnitine depletion caused atrophy (–24%) and impaired function of complex II and IV of the mitochondrial electron transport chain. The free radical leak (ROS production relative to oxygen consumption) was increased and the cellular glutathione pool decreased. Moreover, mRNA expression of markers of mitochondrial biogenesis and mitochondrial DNA were decreased in THP-treated compared to control rats. In comparison, in the glycolytic gastrocnemius muscle, carnitine depletion was associated with impaired function of complex IV and increased free radical leak, whilst muscle weight and cellular glutathione pool were maintained. Markers of mitochondrial proliferation and mitochondrial DNA were unaffected. Conclusions: Carnitine deficiency is associated with impaired exercise capacity in rats treated with THP. THP-induced carnitine deficiency is associated with impaired function of the electron transport chain in oxidative and glycolytic muscle as well as with atrophy and decreased mitochondrial DNA in oxidative muscle. PMID:27559315

  19. Glucose transport and cell surface GLUT-4 protein in skeletal muscle of the obese Zucker rat.

    PubMed

    Etgen, G J; Wilson, C M; Jensen, J; Cushman, S W; Ivy, J L

    1996-08-01

    The relationship between 3-O-methyl-D-glucose transport and 2-N-4-(1-azi-2,2,2-trifluoroethyl)-benzoyl-1, 3-bis-(D-mannos-4-yloxy)-2-propylamine (ATB-BMPA)-labeled cell surface GLUT-4 protein was assessed in fast-twitch (epitrochlearis) and slow-twitch (soleus) muscles of lean and obese (fa/fa) Zucker rats. In the absence of insulin, glucose transport as well as cell surface GLUT-4 protein was similar in both epitrochlearis and soleus muscles of lean and obese rats. In contrast, insulin-stimulated glucose transport rates were significantly higher for lean than obese rats in both soleus (0.74 +/- 0.05 vs. 0.40 +/- 0.02 mumol.g-1.10 min-1) and epitrochlearis (0.51 +/- 0.05 vs. 0.17 +/- 0.02 mumol.g-1.10 min-1) muscles. The ability of insulin to enhance glucose transport in fast- and slow-twitch muscles from both lean and obese rats corresponded directly with changes in cell surface GLUT-4 protein. Muscle contraction elicited similar increases in glucose transport in lean and obese rats, with the effect being more pronounced in fast-twitch (0.70 +/- 0.07 and 0.77 +/- 0.04 mumol.g-1.10 min-1 for obese and lean, respectively) than in slow-twitch muscle (0.36 +/- 0.03 and 0.40 +/- 0.02 mumol.g-1.10 min-1 for obese and lean, respectively). The contraction-induced changes in glucose transport directly corresponded with the observed changes in cell surface GLUT-4 protein. Thus the reduced glucose transport response to insulin in skeletal muscle of the obese Zucker rat appears to result directly from an inability to effectively enhance cell surface GLUT-4 protein.

  20. Slow- and fast-twitch hindlimb skeletal muscle phenotypes 12 wk after ⅚ nephrectomy in Wistar rats of both sexes.

    PubMed

    Acevedo, Luz M; Peralta-Ramírez, Alan; López, Ignacio; Chamizo, Verónica E; Pineda, Carmen; Rodríguez-Ortiz, Maria E; Rodríguez, Mariano; Aguilera-Tejero, Escolástico; Rivero, José-Luis L

    2015-10-01

    This study describes fiber-type adaptations in hindlimb muscles, the interaction of sex, and the role of hypoxia on this response in 12-wk ⅚ nephrectomized rats (Nx). Contractile, metabolic, and morphological features of muscle fiber types were assessed in the slow-twitch soleus and the fast-twitch tibialis cranialis muscles of Nx rats, and compared with sham-operated controls. Rats of both sexes were considered in both groups. A slow-to-fast fiber-type transformation occurred in the tibialis cranialis of Nx rats, particularly in males. This adaptation was accomplished by impaired oxidative capacity and capillarity, increased glycolytic capacity, and no changes in size and nuclear density of muscle fiber types. An oxidative-to-glycolytic metabolic transformation was also found in the soleus muscle of Nx rats. However, a modest fast-to-slow fiber-type transformation, fiber hypertrophy, and nuclear proliferation were observed in soleus muscle fibers of male, but not of female, Nx rats. Serum testosterone levels decreased by 50% in male but not in female Nx rats. Hypoxia-inducible factor-1α protein level decreased by 42% in the tibialis cranialis muscle of male Nx rats. These data demonstrate that 12 wk of Nx induces a muscle-specific adaptive response in which myofibers do not change (or enlarge minimally) in size and nuclear density, but acquire markedly different contractile and metabolic characteristics, which are accompanied by capillary rarefaction. Muscle function and sex play relevant roles in these adaptations.

  1. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats.

    PubMed

    Mendias, Christopher L; Lynch, Evan B; Gumucio, Jonathan P; Flood, Michael D; Rittman, Danielle S; Van Pelt, Douglas W; Roche, Stuart M; Davis, Carol S

    2015-04-15

    Myostatin is a negative regulator of skeletal muscle and tendon mass. Myostatin deficiency has been well studied in mice, but limited data are available on how myostatin regulates the structure and function of muscles and tendons of larger animals. We hypothesized that, in comparison to wild-type (MSTN(+/+) ) rats, rats in which zinc finger nucleases were used to genetically inactivate myostatin (MSTN(Δ/Δ) ) would exhibit an increase in muscle mass and total force production, a reduction in specific force, an accumulation of type II fibres and a decrease and stiffening of connective tissue. Overall, the muscle and tendon phenotype of myostatin-deficient rats was markedly different from that of myostatin-deficient mice, which have impaired contractility and pathological changes to fibres and their extracellular matrix. Extensor digitorum longus and soleus muscles of MSTN(Δ/Δ) rats demonstrated 20-33% increases in mass, 35-45% increases in fibre number, 20-57% increases in isometric force and no differences in specific force. The insulin-like growth factor-1 pathway was activated to a greater extent in MSTN(Δ/Δ) muscles, but no substantial differences in atrophy-related genes were observed. Tendons of MSTN(Δ/Δ) rats had a 20% reduction in peak strain, with no differences in mass, peak stress or stiffness. The general morphology and gene expression patterns were similar between tendons of both genotypes. This large rodent model of myostatin deficiency did not have the negative consequences to muscle fibres and extracellular matrix observed in mouse models, and suggests that the greatest impact of myostatin in the regulation of muscle mass may not be to induce atrophy directly, but rather to block hypertrophy signalling.

  2. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats

    PubMed Central

    Mendias, Christopher L; Lynch, Evan B; Gumucio, Jonathan P; Flood, Michael D; Rittman, Danielle S; Van Pelt, Douglas W; Roche, Stuart M; Davis, Carol S

    2015-01-01

    Myostatin is a negative regulator of skeletal muscle and tendon mass. Myostatin deficiency has been well studied in mice, but limited data are available on how myostatin regulates the structure and function of muscles and tendons of larger animals. We hypothesized that, in comparison to wild-type (MSTN+/+) rats, rats in which zinc finger nucleases were used to genetically inactivate myostatin (MSTNΔ/Δ) would exhibit an increase in muscle mass and total force production, a reduction in specific force, an accumulation of type II fibres and a decrease and stiffening of connective tissue. Overall, the muscle and tendon phenotype of myostatin-deficient rats was markedly different from that of myostatin-deficient mice, which have impaired contractility and pathological changes to fibres and their extracellular matrix. Extensor digitorum longus and soleus muscles of MSTNΔ/Δ rats demonstrated 20–33% increases in mass, 35–45% increases in fibre number, 20–57% increases in isometric force and no differences in specific force. The insulin-like growth factor-1 pathway was activated to a greater extent in MSTNΔ/Δ muscles, but no substantial differences in atrophy-related genes were observed. Tendons of MSTNΔ/Δ rats had a 20% reduction in peak strain, with no differences in mass, peak stress or stiffness. The general morphology and gene expression patterns were similar between tendons of both genotypes. This large rodent model of myostatin deficiency did not have the negative consequences to muscle fibres and extracellular matrix observed in mouse models, and suggests that the greatest impact of myostatin in the regulation of muscle mass may not be to induce atrophy directly, but rather to block hypertrophy signalling. PMID:25640143

  3. Supplementing obese Zucker rats with niacin induces the transition of glycolytic to oxidative skeletal muscle fibers.

    PubMed

    Ringseis, Robert; Rosenbaum, Susann; Gessner, Denise K; Herges, Lea; Kubens, Johanna F; Mooren, Frank-Christoph; Krüger, Karsten; Eder, Klaus

    2013-02-01

    In the present study, we tested the hypothesis that niacin increases the oxidative capacity of muscle by increasing the oxidative type I muscle fiber content. Twenty-four obese Zucker rats were assigned to 2 groups of 12 rats that were fed either a control diet (O group) or a diet supplemented with 750 mg/kg diet niacin (O+N group) for 4 wk. In addition, one group of lean rats (L group) was included in the experiment and fed the control diet for 4 wk. Plasma and liver concentrations of TG were markedly greater in obese groups than in the L group but markedly lower in the O+N group than in the O group (P < 0.05). Rats of the O+N group had a higher percentage of oxidative type I fibers and higher mRNA levels of genes encoding regulators of muscle fiber composition (Ppard, Ppargc1a, Ppargc1b), angiogenic factors (Vegfa, Vegfb), and genes involved in fatty acid utilization (Cpt1b, Slc25a20, Slc22a4, Slc22a5, Slc27a1) and oxidative phosphorylation (Cox4i1, Cox6a2) and a higher activity of the mitochondrial oxidative enzyme succinate dehydrogenase in muscle than rats of the O and L groups (P < 0.05). These niacin-induced changes in muscle metabolic phenotype are indicative of an increased capacity of muscle for oxidative utilization of fatty acids and are likely mediated by the upregulation of Ppard, Ppargc1a, and Ppargc1b, which are key regulators of muscle fiber composition, mitochondrial biogenesis, angiogenesis, and genes involved in fatty acid catabolism and oxidative phosphorylation. The increased utilization of fatty acids by muscle might contribute to the strong TG-lowering effect of niacin treatment.

  4. Oxidative stress and enhanced sympathetic vasoconstriction in contracting muscles of nitrate-tolerant rats and humans.

    PubMed

    Fadel, Paul J; Farias Iii, Martin; Gallagher, Kevin M; Wang, Zhongyun; Thomas, Gail D

    2012-01-15

    Sympathetic vasoconstriction is normally attenuated in exercising muscle, but this functional sympatholysis is impaired in rats with hypertension or heart failure due to elevated levels of reactive oxygen species (ROS) in muscle. Whether ROS have a similar effect in the absence of cardiovascular disease or whether these findings extend to humans is not known. We therefore tested the hypothesis that chronic treatment with nitroglycerin (NTG) to induce nitrate tolerance, which is associated with excessive ROS production, impairs functional sympatholysis in healthy rats and humans. NTG treatment increased ethidium fluorescence in rat muscles and urinary F(2)-isoprostanes in humans, demonstrating oxidative stress. In vehicle-treated rats, sympathetic nerve stimulation (1 to 5 Hz) evoked decreases in femoral vascular conductance at rest (range, -30 to -63%) that were attenuated during hindlimb contraction (range, -2 to -31%; P < 0.05). In NTG-treated rats, vasoconstrictor responses were similar at rest, but were enhanced during contraction (range, -17 to -50%; P < 0.05 vs. vehicle). Infusion of the ROS scavenger tempol restored sympatholysis in these rats. In humans, reflex sympathetic activation during lower body negative pressure (LBNP) evoked decreases in muscle oxygenation in resting forearm (-12 ± 1%) that were attenuated during handgrip exercise (-3 ± 1%; P < 0.05). When these subjects became nitrate tolerant, LBNP-induced decreases in muscle oxygenation were unaffected at rest, but were enhanced during exercise (-9 ± 1%; P < 0.05 vs. before NTG). Collectively, these data indicate that functional sympatholysis is impaired in otherwise healthy nitrate-tolerant rats and humans by a mechanism probably involving muscle oxidative stress.

  5. Automated muscle fiber type population analysis with ImageJ of whole rat muscles using rapid myosin heavy chain immunohistochemistry.

    PubMed

    Bergmeister, Konstantin D; Gröger, Marion; Aman, Martin; Willensdorfer, Anna; Manzano-Szalai, Krisztina; Salminger, Stefan; Aszmann, Oskar C

    2016-08-01

    Skeletal muscle consists of different fiber types which adapt to exercise, aging, disease, or trauma. Here we present a protocol for fast staining, automatic acquisition, and quantification of fiber populations with ImageJ. Biceps and lumbrical muscles were harvested from Sprague-Dawley rats. Quadruple immunohistochemical staining was performed on single sections using antibodies against myosin heavy chains and secondary fluorescent antibodies. Slides were scanned automatically with a slide scanner. Manual and automatic analyses were performed and compared statistically. The protocol provided rapid and reliable staining for automated image acquisition. Analyses between manual and automatic data indicated Pearson correlation coefficients for biceps of 0.645-0.841 and 0.564-0.673 for lumbrical muscles. Relative fiber populations were accurate to a degree of ± 4%. This protocol provides a reliable tool for quantification of muscle fiber populations. Using freely available software, it decreases the required time to analyze whole muscle sections. Muscle Nerve 54: 292-299, 2016. © 2016 Wiley Periodicals, Inc.

  6. Age, fatigue, and excitation-contraction coupling in masseter muscles of rats.

    PubMed

    Norton, M W; Mejia, W; McCarter, R J

    2001-02-01

    The purpose of this study was to determine if masseter muscle endurance changes with increasing age and, if so, to examine mechanisms of fatigue. Characteristics of fatigue were measured under isometric conditions using high-frequency stimulation of anterior deep masseter (ADM) muscles of male Fischer 344 rats, 5 to 24 months old, and fed a hard (HD) or a soft (SD) diet. Potentiating effects of caffeine on ADM muscle performance in vitro were also examined. Fatigability increased by 48% with age in muscles of HD rats. Muscles of SD rats were highly fatigable at all ages. Increased HD fatigability was associated with significantly decreased concentrations of Na+/K+-adenosine triphosphatase (22%) and decreased responsiveness to caffeine postfatigue (29%). The pH levels decreased similarly in fatigued muscles of all groups. We conclude that the age-related increase in fatigability is associated with alterations in excitation-contraction coupling mechanisms. However, differences between SD and HD on ADM muscles represent possible fiber-type transitions.

  7. Increased rat neonatal activity influences adult cytokine levels and relative muscle mass

    PubMed Central

    Buchowicz, Bryce; Yu, Tiffany; Nance, Dwight M.; Zaldivar, Frank P.; Cooper, Dan M.; Adams, Gregory R.

    2011-01-01

    Little is known about the effect of physical activity in early life on subsequent growth and regulation of inflammation. We previously reported that exposure of muscles in growing rats to IL-6 results in decreased muscle growth apparently due to a state of resistance to growth factors such IGF-I and that running exercise could ameliorate this growth defect. Herein we hypothesized that increased activity, for a brief period during neonatal life, would pattern the adult rat towards a less inflammatory phenotype. Neonatal rats were induced to move about their cage for brief periods from day 5 to day 15 postpartum. Additional groups were undisturbed controls (CON) and handled (HAND). Sub-groups of rats were sampled at 30 and 65 days of age. Relative to CON and HAND, neonatal exercise (EX) results in decreased circulating levels of TNFα, IL-6 and IL-1β in adulthood, primarily in male rats. In addition, adult male EX rats had lower body mass and increased skeletal muscle mass suggesting a leaner phenotype. The results of this study suggest that moderate increases in activity early in life can influence the adult toward a more healthy phenotype with regard to inflammatory mediators and relative muscle mass. PMID:20657345

  8. Effects of microgravity on myogenic factor expressions during postnatal development of rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Inobe, Manabu; Inobe, Ikuko; Adams, Gregory R.; Baldwin, Kenneth M.; Takeda, Shin'Ichi

    2002-01-01

    To clarify the role of gravity in the postnatal development of skeletal muscle, we exposed neonatal rats at 7 days of age to microgravity. After 16 days of spaceflight, tibialis anterior, plantaris, medial gastrocnemius, and soleus muscles were removed from the hindlimb musculature and examined for the expression of MyoD-family transcription factors such as MyoD, myogenin, and MRF4. For this purpose, we established a unique semiquantitative method, based on RT-PCR, using specific primers tagged with infrared fluorescence. The relative expression of MyoD in the tibialis anterior and plantaris muscles and that of myogenin in the plantaris and soleus muscles were significantly reduced (P < 0.001) in the flight animals. In contrast, MRF4 expression was not changed in any muscle. These results suggest that MyoD and myogenin, but not MRF4, are sensitive to gravity-related stimuli in some skeletal muscles during postnatal development.

  9. Effects of microgravity on myogenic factor expressions during postnatal development of rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Inobe, Manabu; Inobe, Ikuko; Adams, Gregory R.; Baldwin, Kenneth M.; Takeda, Shin'Ichi

    2002-01-01

    To clarify the role of gravity in the postnatal development of skeletal muscle, we exposed neonatal rats at 7 days of age to microgravity. After 16 days of spaceflight, tibialis anterior, plantaris, medial gastrocnemius, and soleus muscles were removed from the hindlimb musculature and examined for the expression of MyoD-family transcription factors such as MyoD, myogenin, and MRF4. For this purpose, we established a unique semiquantitative method, based on RT-PCR, using specific primers tagged with infrared fluorescence. The relative expression of MyoD in the tibialis anterior and plantaris muscles and that of myogenin in the plantaris and soleus muscles were significantly reduced (P < 0.001) in the flight animals. In contrast, MRF4 expression was not changed in any muscle. These results suggest that MyoD and myogenin, but not MRF4, are sensitive to gravity-related stimuli in some skeletal muscles during postnatal development.

  10. Contractile properties of the rat external abdominal oblique and diaphragm muscles during development.

    PubMed

    Watchko, J F; Brozanski, B S; O'Day, T L; Guthrie, R D; Sieck, G C

    1992-04-01

    We studied the in vitro contractile and fatigue properties of the rat external abdominal oblique (EAO) and costal diaphragm (DIA) muscles during postnatal development. Isometric twitch contraction (CT) and half-relaxation (RT1/2) times were longer in both the EAO and DIA muscles during the early postnatal period and decreased with age. In the first postnatal week, the CT and RT1/2 were longer in the EAO than the DIA muscle. At 14 days of age and thereafter, the CT and RT1/2 were shorter in the EAO than in the DIA muscle. Force-frequency relationships of the EAO and DIA muscles changed during postnatal development such that the relative force (percent maximum) generated at lower frequencies (less than 15 pulses/s) decreased with age. Moreover the relative force generated by the EAO muscle at lower frequencies was greater than that of the DIA muscle during the early postnatal period but less than that of the DIA muscle in adults. The specific force of both the EAO and DIA muscles increased progressively with age. There were no differences in specific force between the EAO and DIA muscles at any age. The fatigability of the EAO and DIA muscles was comparable during the early postnatal period and increased in both muscles with postnatal development. In adults the EAO muscle was more fatigable than the DIA muscle. We conclude that the contractile and fatigue properties of the EAO and DIA muscles undergo significantly different postnatal transitions, which may reflect their functional involvement in sustaining ventilation.

  11. The Effects of Phrenic Nerve Degeneration by Axotomy and Crush on the Electrical Activities of Diaphragm Muscles of Rats.

    PubMed

    Alkiş, Mehmet Eşref; Kavak, Servet; Sayır, Fuat; Him, Aydin

    2016-03-01

    The aim of this study was to investigate the effect of axotomy and crush-related degeneration on the electrical activities of diaphragm muscle strips of experimental rats. In the present study, twenty-one male Wistar-albino rats were used and divided into three groups. The animals in the first group were not crushed or axotomized and served as controls. Phrenic nerves of the rats in the second and third groups were crushed or axotomized in the diaphragm muscle. Resting membrane potential (RMP) was decreased significantly in both crush and axotomy of diaphragm muscle strips of experimental rats (p < 0.05). Depolarization time (T DEP) and half-repolarization (1/2 RT) time were significantly prolonged in crush and axotomy rats (p < 0.05). Crushing or axotomizing the phrenic nerves may produce electrical activities in the diaphragm muscle of the rat by depolarization time and half-repolarization time prolonged in crush and axotomy rats.

  12. Satellite cell proliferation is reduced in muscles of obese Zucker rats but restored with loading.

    PubMed

    Peterson, Jonathan M; Bryner, Randall W; Alway, Stephen E

    2008-08-01

    The obese Zucker rat (OZR) is a model of metabolic syndrome, which has lower skeletal muscle size than the lean Zucker rat (LZR). Because satellite cells are essential for postnatal muscle growth, this study was designed to determine whether reduced satellite cell proliferation contributes to reduced skeletal mass in OZR vs. LZR. Satellite cell proliferation was determined by a constant-release 5-bromo-2-deoxyuridine (BrdU) pellet that was placed subcutaneously in each animal. Satellite cell proliferation, as determined by BrdU incorporation, was significantly attenuated in control soleus and plantaris muscles of the OZR compared with that shown in the LZR. To determine whether this attenuation of satellite cell activity could be rescued in OZR muscles, soleus and gastrocnemius muscles were denervated, placing a compensatory load on the plantaris muscle. In the LZR and the OZR after 21 days of loading, increases of approximately 25% and approximately 30%, respectively, were shown in plantaris muscle wet weight compared with that shown in the contralateral control muscle. The number of BrdU-positive nuclei increased similarly in loaded plantaris muscles from LZR and OZR. Myogenin, MyoD, and Akt protein expressions were lower in control muscles of OZR than in those of the LZR, but they were all elevated to similar levels in the loaded plantaris muscles of OZR and LZR. These data indicate that metabolic syndrome may reduce satellite cell proliferation, and this may be a factor that contributes to the reduced mass in control muscles of OZR; however, satellite cell proliferation can be restored with compensatory loading in OZR.

  13. Evaluation of Histological Changes in Back Muscle Injuries in Rats over Time

    PubMed Central

    Inage, Kazuhide; Sakuma, Yoshihiro; Orita, Sumihisa; Yamauchi, Kazuyo; Suzuki, Miyako; Kubota, Go; Oikawa, Yasuhiro; Sainoh, Takeshi; Sato, Jun; Fujimoto, Kazuki; Shiga, Yasuhiro; Kanamoto, Hirohito; Takahashi, Kazuhisa; Ohtori, Seiji

    2017-01-01

    Study Design Animal model study. Purpose The purpose of this study was to evaluate the histological variation in the injured muscle and production of calcitonin gene-related peptide in rats over time. Overview of Literature Vertebral surgery has been reported to cause atrophy of the back muscles, which may result in pain. However, few reports have described the time series histological variation in the injured muscle and changes in the dominant nerve. Methods We used 30 male, 8-week-old Sprague-Dawley rats. The right and left sides of the paravertebral muscle were considered as the injured and uninjured sides, respectively. A 115 g weight was dropped from a height of 1 m on the right paravertebral muscle. Hematoxylin and eosin (H&E) staining of the muscle was performed 1–3 weeks after injury for histological evaluation. Fluoro-Gold (FG) was injected into the paravertebral muscle. The L2 dorsal root ganglia on both sides were resected 1, 2, and 3 weeks after injury, and immunohistochemical staining for calcitonin gene-related peptide was performed. Results H&E staining of the paravertebral muscle showed infiltration of inflammatory cells and the presence of granulation tissue in the injured part on the ipsilateral side 1 week after injury. Muscle atrophy occurred 3 weeks after injury, but was repaired via spontaneous replacement of muscle cells/fibers. In contrast, compared with the uninjured side, the percentage of cells double-labeled with FG and calcitonin gene-related peptide in FG-positive cells in the dorsal root ganglia of the injured side was significantly increased at each time point throughout the study period. Conclusions These results suggest that sensitization of the dominant nerve in the dorsal root ganglia, which may be caused by cicatrix formation, can protract injured muscle pain. This information may be helpful in elucidating the underlying mechanism of persistent pain after back muscle injury. PMID:28243375

  14. Oxidative Stress (Glutathionylation) and Na,K-ATPase Activity in Rat Skeletal Muscle

    PubMed Central

    Juel, Carsten

    2014-01-01

    Background Changes in ion distribution across skeletal muscle membranes during muscle activity affect excitability and may impair force development. These changes are counteracted by the Na,K-ATPase. Regulation of the Na,K-ATPase is therefore important for skeletal muscle function. The present study investigated the presence of oxidative stress (glutathionylation) on the Na,K-ATPase in rat skeletal muscle membranes. Results Immunoprecipitation with an anti-glutathione antibody and subsequent immunodetection of Na,K-ATPase protein subunits demonstrated 9.0±1.3% and 4.1±1.0% glutathionylation of the α isoforms in oxidative and glycolytic skeletal muscle, respectively. In oxidative muscle, 20.0±6.1% of the β1 units were glutathionylated, whereas 14.8±2.8% of the β2-subunits appear to be glutathionylated in glycolytic muscle. Treatment with the reducing agent dithiothreitol (DTT, 1 mM) increased the in vitro maximal Na,K-ATPase activity by 19% (P<0.05) in membranes from glycolytic muscle. Oxidized glutathione (GSSG, 0–10 mM) increased the in vitro glutathionylation level detected with antibodies, and decreased the in vitro maximal Na,K-ATPase activity in a dose-dependent manner, and with a larger effect in oxidative compared to glycolytic skeletal muscle. Conclusion This study demonstrates the existence of basal glutathionylation of both the α and the β units of rat skeletal muscle Na,K-ATPase. In addition, the study suggests a negative correlation between glutathionylation levels and maximal Na,K-ATPase activity. Perspective Glutathionylation likely contributes to the complex regulation of Na,K-ATPase function in skeletal muscle. Especially, glutathionylation induced by oxidative stress may have a role in Na,K-ATPase regulation during prolonged muscle activity. PMID:25310715

  15. Bradykinin B2 receptor contributes to the exaggerated muscle mechanoreflex in rats with femoral artery occlusion

    PubMed Central

    Lu, Jian; Xing, Jihong

    2013-01-01

    Static muscle contraction activates the exercise pressor reflex, which in turn increases sympathetic nerve activity (SNA) and blood pressure (BP). Bradykinin (BK) is considered as a muscle metabolite responsible for modulation of the sympathetic and cardiovascular responses to muscle contraction. Prior studies have suggested that kinin B2 receptor mediates the effects of BK on the reflex SNA and BP responses during stimulation of skeletal muscle afferents. In patients with peripheral artery disease and a rat model with femoral artery ligation, amplified SNA and BP responses to static exercise were observed. This dysfunction of the exercise pressor reflex has previously been shown to be mediated, in part, by muscle mechanoreflex overactivity. Thus, in this report, we determined whether kinin B2 receptor contributes to the augmented mechanoreflex activity in rats with 24 h of femoral artery occlusion. First, Western blot analysis was used to examine protein expression of B2 receptors in dorsal root ganglion tissues of control limbs and ligated limbs. Our data show that B2 receptor displays significant overexpression in ligated limbs as compared with control limbs (optical density: 0.94 ± 0.02 in control and 1.87 ± 0.08 after ligation, P < 0.05 vs. control; n = 6 in each group). Second, mechanoreflex was evoked by muscle stretch and the reflex renal SNA (RSNA) and mean arterial pressure (MAP) responses to muscle stretch were examined after HOE-140, a B2 receptors blocker, was injected into the arterial blood supply of the hindlimb muscles. The results demonstrate that the stretch-evoked reflex responses were attenuated by administration of HOE-140 in control rats and ligated rats; however, the attenuating effects of HOE-140 were significantly greater in ligated rats, i.e., after 5 μg/kg of HOE-140 RSNA and MAP responses evoked by 0.5 kg of muscle tension were attenuated by 43% and 25% in control vs. 54% and 34% in ligation (P < 0.05 vs. control group; n = 11 in

  16. Rat muscle plasticity in response to simulated or real microgravity.

    PubMed

    Mayet-Sornay, M H; Desplanches, D

    1996-09-01

    Data concerning muscle plasticity in real or simulated microgravity is discussed. Possible mechanisms responsible for the muscular atrophy associated with microgravity are explored, including changes in muscle protein synthesis, fast- and slow-twitch fiber specific changes, various metabolic alterations, blood supply and other factors. The authors conclude that a combination of local and systemic factors are responsible for the observed changes in muscle physiology.

  17. Comparison of hemp and cotton fiber implants in muscle rat tissue. Study of the inflammatory response.

    PubMed

    Dorfman, S; Dorfman, D; Leonardi, R; Maroso, J; Cardozo, J; Durán, A

    1994-03-01

    Hemp fiber is obtained from the plant Musa textilis. The cost of preparation of its raw fibers is low. The purpose of this paper was to compare the inflammatory response in the rat muscle tissue originated by both hemp and cotton fibers. Both types of fibers, were implanted in gluteal muscles of Sprague Dawley rats. The rats were sacrificed at 15, 30 and 60 postoperative days. Muscle tissue sections were stained with hematoxilyneosin. The inflammatory response was measured by subtracting the suture surface area from the total granulomatous area. At 15 days, the inflammatory response was more conspicuous for hemp than for cotton fiber (P < 0.05). At 30 and 60 days, responses were similar (P > 0.05). We cannot conclude that the hemp fiber is superior to cotton, nevertheless, they behave the same. Therefore, hemp constitutes an alternative as suture material.

  18. Role of afferent input in load-dependent plasticity of rat muscle

    NASA Astrophysics Data System (ADS)

    Kawano, F.; Umemoto, S.; Higo, Y.; Kawabe, N.; Wang, X. D.; Lan, Y. B.; Ohira, Y.

    We have been studying the role of afferent input in the plasticity of skeletal muscles. The present study was performed to investigate the mechanisms responsible for the deafferentation-related inhibition of the compensatory hypertrophy in rat soleus muscle. Adult male Wistar rats were randomly separated into the control, functionally overloaded (FO), and functionally overloaded + deafferentation (FO+DA) group. The tendons of plantaris and gastrocnemius muscles were transected in the FO rats. The dorsal roots of the spinal cord at the L4-5 segmental levels were additionally transected in the FO+DA rats. The sampling of the soleus was performed 2 weeks after the surgery and ambulation recovery. The single muscle fibers were isolated in low-calcium relaxing solution. Further, the myonuclei or argyrophilic nucleolar organizer regions (AgNORs) were stained. Significant increase of the fiber cross-sectional area (CSA) was seen in the FO, but not in the FO+DA, rats. The myonuclear number in fiber was significantly decreased by FO. Addition of DA to FO further promoted the reduction of myonuclear number. The mean nucleus size and DNA content in single nucleus in all groups were identical. Although a single or double AgNORs were seen in ~90% of myonuclei in the control rats, their distributions were 72 and 76% in the FO and FO+DA rats, respectively (p<0.05). More myonuclei containing 3-5 AgNORs were noted in the FO and FO+DA rats. The mean number of the AgNORs per myonucleus was 1.7 in the control, 2.1 in both FO and FO+DA rats (p<0.05). It was suggested that the FO-related increase of the number of AgNORs may be responsible for the induction of compensatory hypertrophy. It was also indicated that intact afferent input plays an essential role in these phenomena.

  19. Effects of age on aneural regeneration of soleus muscle in rat.

    PubMed Central

    Lewis, D M; Schmalbruch, H

    1995-01-01

    1. The ability of autografted soleus muscles to regenerate without innervation was investigated in young (two groups: 17 days or 35 g and 5 weeks or 100 g) and old (10 weeks or 300 g and 19 months or 700 g) rats. 2. Tetanic force and fibre area of the regenerated muscles were followed in 35, 100 and 300 g rats and found to reach a maximum 10-15 days after the operation and then declined. 3. Maximal tetanic force and fibre area were greater in old than in young rats; the largest increase was seen between 100 and 300 g rats. The relaxation phase of the twitch became shorter in the 700 g animals. The force per cross-sectional area appeared to fall with age. The length of the new fibres, inferred from the width of the length-force curve, increased only slightly with age. 4. Ten days after grafting, autophagocytosis of necrotic fibres was completed in young but not in old rats. The new fibres in young rats had one central nucleus per cross-section and fibre size was unimodally distributed; fibres in old rats had multiple internal nuclei and the size distribution was bimodal due to the presence of large fibres. 5. Previous results indicating greater muscle regeneration in young than in old rats may reflect more vigorous reinnervation in young animals rather than a greater myogenic potential. Increased fibre size of regenerated muscles of old compared with young rats may be attributed to the larger amount of necrotic material which is mitogenic for satellite cells, or to age-dependent changes of the expression of cell adhesion molecules. Enhanced lateral fusion of myotubes would give rise to large fibres with multiple internal nuclei. Images Figure 3 Figure 4 PMID:8568686

  20. The effect of vasopressin on extracellular cation concentrations and muscle resting potentials in the rat.

    PubMed Central

    Gartside, I B; Jones, A M; Laycock, J F; Walter, S J

    1981-01-01

    1. The Na+ and K+ concentrations in plasma and cerebrospinal (c.s.f.), resting potentials in skeletal muscle fibres, cardiac beat to beat intervals and 90% repolarization times were measured in Long Evans rats (parent strain controls) and in Brattleboro rats with hypothalamic diabetes insipidus (DI). 2. Cation concentration measurements confirmed previous observations that Brattleboro DI rats are mildly hypokalaemic compared with rats of the parent Long Evans strain, and indicated that the c.s.f. [Na+] is significantly raised in the former group of animals while the [K+] in the c.s.f. samples is similar in the two groups. 3. The mean resting potential of deep skeletal muscle fibres in Brattleboro DI rats was significantly more negative than the corresponding value in the Long Evans rats, and this finding was in close agreement with the difference observed for the calculated K+ equilibrium potentials in the two groups of animals. 4. The beat to beat intervals and the 90% repolarization times of cardiac action potentials were also determined in Brattleboro DI and Long Evans rats, and the mean values for both variables were significantly shorter in the former group of animals. 5. The administration of Pitressin by subcutaneous injection (500-100 mu./24 hr) to Brattleboro rats abolished the hypokalaemia and the hyperpolarization of skeletal muscle fibre membranes but had no significant effect on c.s.f. cation concentrations. 6. The present findings suggest that the absence of vasopressin in the Brattleboro DI rats results in a hyperpolarization of muscle cell membranes, and in changes in the cardiac action potential. These effects may be partly related to the mild hypokalaemia present in these animals. PMID:7320892

  1. Influence of 14-day hind limb unloading on isolated muscle spindle activity in rats.

    PubMed

    Zhao, Xue Hong; Fan, Xiao Li; Song, Xin Ai; Wu, Su Di; Ren, Jun Chan; Chen, Ming Xia

    2010-09-01

    During hind limb unloading (HU), the soleus is often in a shortened position and the natural physiological stimulus of muscle spindles is altered, such that muscle spindle activity also changes. Using isolated spindle conditions, the present study investigates the electrophysiological activity and ultrastructure of muscle spindles following HU. Results show that muscle spindle discharges fall into either of two main patterns, single spikes or spike clusters in shortened positions, with a steady frequency of 18-38 spikes/s (mean 29.08 +/- 2.45) in an extended position. Following 14-day HU, afferent discharge activity was significantly altered in soleus muscle spindles. Duration of individual spikes was significantly prolonged, from 0.54 +/- 0.05 ms for control rats to 1.53 +/- 0.25 ms for rats in the HU group. In a shortened position, regular rhythm afferent discharges were obviously depressed, and the majority of muscle spindles became silent, while in an extended position, the discharges remained continuous but with decreased frequency. Results also show that the ultrastructure of muscle spindles experience degenerative changes during HU. Altered muscle spindle afference could possibly modify the activity of motor neurons and further affect the activity of extrafusal fibers.

  2. Antihyperalgesic Effect of Tetrodotoxin in Rat Models of Persistent Muscle Pain

    PubMed Central

    Alvarez, Pedro; Levine, Jon D.

    2015-01-01

    Persistent muscle pain is a common and disabling symptom for which available treatments have limited efficacy. Since tetrodotoxin (TTX) displays a marked antinociceptive effect in models of persistent cutaneous pain, we tested its local antinociceptive effect in rat models of muscle pain induced by inflammation, ergonomic injury and chemotherapy-induced neuropathy. While local injection of TTX (0.03-1 μg) into the gastrocnemius muscle did not affect mechanical nociceptive threshold in naïve rats, exposure to the inflammogen carrageenan produced a marked muscle mechanical hyperalgesia, which was dose-dependently inhibited by TTX. This antihyperalgesic effect was still significant at 24 hours. TTX also displayed a robust antinociceptive effect on eccentric exercise-induced mechanical hyperalgesia in the gastrocnemius muscle, a model of ergonomic pain. Finally, TTX produced a small but significant inhibition of neuropathic muscle pain induced by systemic administration of the cancer chemotherapeutic agent oxaliplatin. These results indicate that TTX-sensitive sodium currents in nociceptors play a central role in diverse states of skeletal muscle nociceptive sensitization, supporting the suggestion that therapeutic interventions based on TTX may prove useful in the treatment of muscle pain. PMID:26548414

  3. TRPV1 channel-mediated bilateral allodynia induced by unilateral masseter muscle inflammation in rats.

    PubMed

    Simonic-Kocijan, Suncana; Zhao, Xuehong; Liu, Wen; Wu, Yuwei; Uhac, Ivone; Wang, KeWei

    2013-12-30

    Pain in masticatory muscles is among the most prominent symptoms of temperomandibular disorders (TMDs) that have diverse and complex etiology. A common complaint of TMD is that unilateral pain of craniofacial muscle can cause a widespread of bilateral pain sensation, although the underlying mechanism remains unknown. To investigate whether unilateral inflammation of masseter muscle can cause a bilateral allodynia, we generated masseter muscle inflammation induced by unilateral injection of complete Freund's adjuvant (CFA) in rats, and measured the bilateral head withdrawal threshold at different time points using a von Frey anesthesiometer. After behavioral assessment, both right and left trigeminal ganglia (TRG) were dissected and examined for histopathology and transient receptor potential vanilloid 1 (TRPV1) mRNA expression using quantitative real-time PCR analysis. A significant increase in TRPV1 mRNA expression occurred in TRG ipsilateral to CFA injected masseter muscle, whereas no significant alteration in TRPV1 occurred in the contralateral TRG. Interestingly, central injection of TRPV1 antagonist 5-iodoresiniferatoxin into the hippocampus significantly attenuated the head withdrawal response of both CFA injected and non-CFA injected contralateral masseter muscle. Our findings show that unilateral inflammation of masseter muscle is capable of inducing bilateral allodynia in rats. Upregulation of TRPV1 at the TRG level is due to nociception caused by inflammation, whereas contralateral nocifensive behavior in masticatory muscle nociception is likely mediated by central TRPV1, pointing to the involvement of altered information processing in higher centers.

  4. Antihyperalgesic effect of tetrodotoxin in rat models of persistent muscle pain.

    PubMed

    Alvarez, P; Levine, J D

    2015-12-17

    Persistent muscle pain is a common and disabling symptom for which available treatments have limited efficacy. Since tetrodotoxin (TTX) displays a marked antinociceptive effect in models of persistent cutaneous pain, we tested its local antinociceptive effect in rat models of muscle pain induced by inflammation, ergonomic injury and chemotherapy-induced neuropathy. While local injection of TTX (0.03-1 μg) into the gastrocnemius muscle did not affect the mechanical nociceptive threshold in naïve rats, exposure to the inflammogen carrageenan produced a marked muscle mechanical hyperalgesia, which was dose-dependently inhibited by TTX. This antihyperalgesic effect was still significant at 24h. TTX also displayed a robust antinociceptive effect on eccentric exercise-induced mechanical hyperalgesia in the gastrocnemius muscle, a model of ergonomic pain. Finally, TTX produced a small but significant inhibition of neuropathic muscle pain induced by systemic administration of the cancer chemotherapeutic agent oxaliplatin. These results indicate that TTX-sensitive sodium currents in nociceptors play a central role in diverse states of skeletal muscle nociceptive sensitization, supporting the suggestion that therapeutic interventions based on TTX may prove useful in the treatment of muscle pain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Biomarker evaluation of skeletal muscle toxicity following clofibrate administration in rats.

    PubMed

    Bodié, Karen; Buck, Wayne R; Pieh, Julia; Liguori, Michael J; Popp, Andreas

    2016-05-01

    The use of sensitive biomarkers to monitor skeletal muscle toxicity in preclinical toxicity studies is important for the risk assessment in humans during the development of a novel compound. Skeletal muscle toxicity in Sprague Dawley Rats was induced with clofibrate at different dose levels for 7 days to compare standard clinical pathology assays with novel skeletal muscle and cardiac muscle biomarkers, gene expression and histopathological changes. The standard clinical pathology assays aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatine kinase (CK) enzyme activity were compared to novel biomarkers fatty acid binding protein 3 (Fabp3), myosin light chain 3 (Myl3), muscular isoform of CK immunoreactivity (three isoforms CKBB, CKMM, CKMB), parvalbumin (Prv), skeletal troponin I (sTnI), cardiac troponin T (cTnT), cardiac troponin I (cTnI), CKMM, and myoglobin (Myo). The biomarker elevations were correlated to histopathological findings detected in several muscles and gene expression changes. Clofibrate predominantly induced skeletal muscle toxicity of type I fibers of low magnitude. Useful biomarkers for skeletal muscle toxicity were AST, Fabp3, Myl3, (CKMB) and sTnI. Measurements of CK enzyme activity by a standard clinical assay were not useful for monitoring clofibrate-induced skeletal muscle toxicity in the rat at the doses used in this study.

  6. Differential adaptations during growth spurt and in young adult rat muscles.

    PubMed

    Barros, K M F T; Manhaes-de-Castro, R; Goubel, F; Canon, F

    2009-01-01

    During the post-weaning growth and maturation period (25/90 days after birth), rat limb muscles are submitted to specific adaptations. Our aim was to characterize the mechanical properties of two muscles that are opposite in terms of fibre-type distribution, the soleus and the extensor digitorum longus (EDL) muscles of male Wistar rats. Results showed a fast-to-slow fibre-type transition in soleus while no modification in fibre-type distribution was observed in EDL. A growth-induced increase in muscle force was observed. Soleus underwent an increase in twitch kinetics, but EDL showed no modification. Resistance to fatigue was higher in 90-day-old soleus but not modified in the EDL. Surprisingly, analysis of maximal shortening velocity showed a decrease in both soleus and EDL. Finally, tension/extension curves indicated a growth-induced increase in series elastic stiffness in the two muscles. These results suggest that during this growth period, skeletal muscles are submitted to differential adaptations. Moreover, whereas adaptation of biomechanical properties observed can be explained partly by an adaptation of fibre profile in soleus, this is not the case for EDL. It is suggested that changes in muscle architecture, which are often disregarded, could explain some variations in mechanical properties, especially when muscles undergo an increase in both mass and length.

  7. Induction of amino acid transporters expression by endurance exercise in rat skeletal muscle

    SciTech Connect

    Murakami, Taro Yoshinaga, Mariko

    2013-10-04

    Highlights: •Regulation of amino acid transporter expression in working muscle remains unclear. •Expression of amino acid transporters for leucine were induced by a bout of exercise. •Requirement of leucine in muscle cells might regulate expression of its transporters. •This information is beneficial for understanding the muscle remodeling by exercise. -- Abstract: We here investigated whether an acute bout of endurance exercise would induce the expression of amino acid transporters that regulate leucine transport across plasma and lysosomal membranes in rat skeletal muscle. Rats ran on a motor-driven treadmill at a speed of 28 m/min for 90 min. Immediately after the exercise, we observed that expression of mRNAs encoding L-type amino acid transporter 1 (LAT1) and CD98 was induced in the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles. Sodium-coupled neutral amino acid transporter 2 (SNAT2) mRNA was also induced by the exercise in those three muscles. Expression of proton-assisted amino acid transporter 1 (PAT1) mRNA was slightly but not significantly induced by a single bout of exercise in soleus and EDL muscles. Exercise-induced mRNA expression of these amino acid transporters appeared to be attenuated by repeated bouts of the exercise. These results suggested that the expression of amino acid transporters for leucine may be induced in response to an increase in the requirement for this amino acid in the cells of working skeletal muscles.

  8. Ultrasound Biomicroscopy for In vivo architectural characterization of gastrocnemius muscle from rats.

    PubMed

    Peixinho, Carolina C; Resende, Celia M C; de Oliveira, Liliam F; Machado, Joao C

    2010-01-01

    This work applies the Ultrasound Biomicroscopy (UBM) technique to quantify the pennation angle (PA) and muscle thickness (MT) of rats' gastrocnemius muscle and to determine the reliability of these measurements. UBM (40MHz) images of five Wistar female rats were acquired at two ankle positions (neutral and full extension) and in two different days. A total of 320 images were processed to quantify PA and MT and a statistical analysis assessed data variability and reliability. The coefficients of variation were 9.37 and 3.97% for PA and MT, respectively, for the ankle at full extension and 15.41 and 4.99% for the ankle at neutral position. Pearson correlation between two repeated measurements in the same image were 0.93 and 0.99 for PA and MT, respectively. The results indicate that UBM is suitable for quantitative muscle architectural characterization and can be used in future muscle biomechanical studies.

  9. Contractile properties of rat fast-twitch skeletal muscle during reinnervation - Effects of testosterone and castration

    NASA Technical Reports Server (NTRS)

    Yeagle, S. P.; Mayer, R. F.; Max, S. R.

    1983-01-01

    The peroneal nerve of subject rats were crushed 1 cm from the muscle in order to examine the isometric contractile properties of skeletal muscle in the recovery sequency during reinnervation of normal, castrated, and testosterone-treated rats. The particular muscle studied was the extensor digitorum longus, with functional reinnervation first observed 8-9 days after nerve crush. No evidence was found that either castration or testosterone injections altered the process of reinnervation after the nerve crush, with the conclusion being valid at the 0.05 p level. The most reliable index of reinnervation was found to be the twitch:tetanus ratio, a factor of use in future studies of the reinnervation of skeletal muscle.

  10. Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma

    NASA Technical Reports Server (NTRS)

    Baracos, V. E.; DeVivo, C.; Hoyle, D. H.; Goldberg, A. L.

    1995-01-01

    Rats implanted with Yoshida ascites hepatoma (YAH) show a rapid and selective loss of muscle protein due mainly to a marked increase (63-95%) in the rate of protein degradation (compared with rates in muscles of pair-fed controls). To define which proteolytic pathways contribute to this increase, epitrochlearis muscles from YAH-bearing and control rats were incubated under conditions that modify different proteolytic systems. Overall proteolysis in either group of rats was not affected by removal of Ca2+ or by blocking the Ca(2+)-dependent proteolytic system. Inhibition of lysosomal function with methylamine reduced proteolysis (-12%) in muscles from YAH-bearing rats, but not in muscles of pair-fed rats. When ATP production was also inhibited, the remaining accelerated proteolysis in muscles of tumor-bearing rats fell to control levels. Muscles of YAH-bearing rats showed increased levels of ubiquitin-conjugated proteins and a 27-kDa proteasome subunit in Western blot analysis. Levels of mRNA encoding components of proteolytic systems were quantitated using Northern hybridization analysis. Although their total RNA content decreased 20-38%, pale muscles of YAH-bearing rats showed increased levels of ubiquitin mRNA (590-880%) and mRNA for multiple subunits of the proteasome (100-215%). Liver, kidney, heart, and brain showed no weight loss and no change in these mRNA species. Muscles of YAH-bearing rats also showed small increases (30-40%) in mRNA for cathepsins B and D, but not for calpain I or heat shock protein 70. Our findings suggest that accelerated muscle proteolysis and muscle wasting in tumor-bearing rats result primarily from activation of the ATP-dependent pathway involving ubiquitin and the proteasome.

  11. Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma

    NASA Technical Reports Server (NTRS)

    Baracos, V. E.; DeVivo, C.; Hoyle, D. H.; Goldberg, A. L.

    1995-01-01

    Rats implanted with Yoshida ascites hepatoma (YAH) show a rapid and selective loss of muscle protein due mainly to a marked increase (63-95%) in the rate of protein degradation (compared with rates in muscles of pair-fed controls). To define which proteolytic pathways contribute to this increase, epitrochlearis muscles from YAH-bearing and control rats were incubated under conditions that modify different proteolytic systems. Overall proteolysis in either group of rats was not affected by removal of Ca2+ or by blocking the Ca(2+)-dependent proteolytic system. Inhibition of lysosomal function with methylamine reduced proteolysis (-12%) in muscles from YAH-bearing rats, but not in muscles of pair-fed rats. When ATP production was also inhibited, the remaining accelerated proteolysis in muscles of tumor-bearing rats fell to control levels. Muscles of YAH-bearing rats showed increased levels of ubiquitin-conjugated proteins and a 27-kDa proteasome subunit in Western blot analysis. Levels of mRNA encoding components of proteolytic systems were quantitated using Northern hybridization analysis. Although their total RNA content decreased 20-38%, pale muscles of YAH-bearing rats showed increased levels of ubiquitin mRNA (590-880%) and mRNA for multiple subunits of the proteasome (100-215%). Liver, kidney, heart, and brain showed no weight loss and no change in these mRNA species. Muscles of YAH-bearing rats also showed small increases (30-40%) in mRNA for cathepsins B and D, but not for calpain I or heat shock protein 70. Our findings suggest that accelerated muscle proteolysis and muscle wasting in tumor-bearing rats result primarily from activation of the ATP-dependent pathway involving ubiquitin and the proteasome.

  12. Melanocortin 4 Receptor Activation Attenuates Mitochondrial Dysfunction in Skeletal Muscle of Diabetic Rats.

    PubMed

    Zhang, Hao-Hao; Liu, Jiao; Qin, Gui-Jun; Li, Xia-Lian; Du, Pei-Jie; Hao, Xiao; Zhao, Di; Tian, Tian; Wu, Jing; Yun, Meng; Bai, Yan-Hui

    2017-11-01

    A previous study has confirmed that the central melanocortin system was able to mediate skeletal muscle AMP-activated protein kinase (AMPK) activation in mice fed a high-fat diet, while activation of the AMPK signaling pathway significantly induced mitochondrial biogenesis. Our hypothesis was that melanocortin 4 receptor (MC4R) was involved in the development of skeletal muscle injury in diabetic rats. In this study, we treated diabetic rats intracerebroventricularly with MC4R agonist R027-3225 or antagonist SHU9119, respectively. Then, we measured the production of reactive oxygen species (ROS), the levels of malondialdehyde (MDA) and glutathione (GSH), the mitochondrial DNA (mtDNA) content and mitochondrial biogenesis, and the protein levels of p-AMPK, AMPK, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), sirtuin 1 (SIRT1), and manganese superoxide dismutase (MnSOD) in the skeletal muscle of diabetic rats. The results showed that there was significant skeletal muscle injury in the diabetic rats along with serious oxidative stress and decreased mitochondrial biogenesis. Treatment with R027-3225 reduced oxidative stress and induced mitochondrial biogenesis in skeletal muscle, and also activated the AMPK-SIRT1-PGC-1α signaling pathway. However, diabetic rats injected with MC4R antagonist SHU9119 showed an aggravated oxidative stress and mitochondrial dysfunction in skeletal muscle. In conclusion, our results revealed that MC4R activation was able to attenuate oxidative stress and mitochondrial dysfunction in skeletal muscle induced by diabetes partially through activating the AMPK-SIRT1-PGC-1α signaling pathway. J. Cell. Biochem. 118: 4072-4079, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. [Effect of shenmai injection on L-type calcium channel of diaphragmatic muscle cells in rats].

    PubMed

    Zhao, Li-min; Xiong, Sheng-dao; Niu, Ru-ji

    2003-08-01

    To explore the effect of Shenmai Injection (SMI) on L-type calcium channel of diaphragmatic muscle cells in rats. Single diaphragmatic muscle cell of rats was obtained by the acute enzyme isolation method and the standard whole-cell patch clamp technique was used to record the inward peak L-type calcium current (IPLC) and current-voltage relationship curve of diaphragmatic muscle cells of 7 rats, and to compare the effects of SMI in various concentrations on them. When keeping the electric potential at -80 mV, stimulation frequency 0.5 Hz, clamp time 300 ms, stepped voltage 10 mV, and depolarized to +60 mV, 10 microliters/ml of SMI could only cause the mean IPLC of rat's diaphragmatic muscle cells increased from -6.9 +/- 0.6 pA/pF to -7.5 +/- 0.7 pA/pF, the amplification being (9.2 +/- 2.8)%, comparison between those of pre-treatment and post-treatment showed insignificant difference. But when the concentration of SMI increased to 50 microliters/ml and 100 microliters/ml, the mean IPLC increased to -8.4 +/- 0.6 pA/pF and -9.2 +/- 0.6 pA/pF, respectively, and the amplification was (22.4 +/- 1.7)% and (34.6 +/- 4.6)% respectively, showing significant difference to that of pre-treatment (P < 0.05). However, SMI showed no significant effect on maximal activation potential and reversal potential. SMI can activate the calcium channel of diaphragmatic muscle cells in rats, increase the influx of Ca2+, so as to strengthen the contraction of diaphragmatic muscle, which may be one of the ionic channel mechanisms of SMI in treating diaphragmatic muscle fatigue in clinical practice.

  14. Preventive Effects of the Dietary Intake of Medium-chain Triacylglycerols on Immobilization-induced Muscle Atrophy in Rats.

    PubMed

    Nishimura, Shuhei; Inai, Makoto; Takagi, Tetsuo; Nonaka, Yudai; Urashima, Shogo; Honda, Kazumitsu; Aoyama, Toshiaki; Terada, Shin

    2017-08-01

    Previous studies have shown that medium-chain triacylglycerols (MCTs) exert favorable effects on protein metabolism. This study evaluated the effects of the dietary intake of MCTs on rat skeletal muscle mass and total protein content during casting-induced hindlimb immobilization, which causes substantial protein degradation and muscle atrophy. Rats were fed a standard diet containing long-chain triacylglycerols (LCTs) or MCTs for 3 days and then a unilateral hindlimb was immobilized while they received the same diet. After immobilization for 3, 7, and 14 days, muscle mass and total protein content in immobilized soleus muscle in the LCT-fed rats had markedly decreased compared to the contralateral muscle; however, these losses were partially suppressed in MCT-fed rats. Autophagosomal membrane proteins (LC-I and -II), which are biomarkers of autophagy-lysosome activity, did not differ significantly between the LCT- and MCT-fed rats. In contrast, the immobilization-induced increase in muscle-specific E3 ubiquitin ligase MuRF-1 protein expression in immobilized soleus muscle relative to contralateral muscle was completely blocked in the MCT-fed rats and was significantly lower than that observed in the LCT-fed rats. Collectively, these results indicate that the dietary intake of MCTs at least partly alleviates immobilization-induced muscle atrophy by inhibiting the ubiquitin-proteasome pathway.

  15. The trophic effect of ciliary neurotrophic factor on injured masseter muscle in rat

    PubMed Central

    Zhang, Yujun; Wang, Xiaohui; Zhang, Mengmeng; Lin, Xuefen; Wu, Qingting; Yang, Yingying; Kong, Jingjing; Ji, Ping

    2015-01-01

    Objective(s): Occlusal trauma is one of the most common forms of oral biting dysfunction. Long-term occlusal trauma could weaken the stomatognathic system; especially damage one’s masticatory muscle. Through using the rat model, this study investigated the trophic effect of ciliary neurotrophic factor (CNTF) on injured masseter muscle. Materials and Methods: Male Wistar rats (n=36) were randomly divided into five experimental groups and one control group (6 rats per group). Animals in the experimental group were cemented modified crowns on their mandibular first molars to artificially induce occlusal trauma in 1, 3, 7, 14, and 28 days. Control group was sham-treated with forced mouth-opening for about 5 min, while no crowns were placed. After 28 days of treatment, all rats were euthanized and their masseter muscle was collected. Through immunofluorescence and real-time quantitative PCR, the expression of desmin, CNTF, and CNTFRα was investigated in rat masseter muscle. The microstructure of masseter muscle was observed by transmission electron microscope. Results: The expression of desmin showed a time-dependent decrease on traumatic and non-traumatic sides masseter, until reached the nadir at the 14th day, then restored to its normal level at the 28th day; however, the expression of CNTF and CNTFRα on the traumatic and non-traumatic sides increased from day 7, reached the peak at the 14th day, and returned to normal level on the 28th day. Conclusion: CNTF, as an important neurotrophic factor, was tightly associated to the restoring of rat injured masseter muscle, which provides new target and treatment method for clinical application. PMID:26526387

  16. Adaptation of rat soleus muscles to 4 wk of intermittent strain

    NASA Technical Reports Server (NTRS)

    Stauber, W. T.; Miller, G. R.; Grimmett, J. G.; Knack, K. K.

    1994-01-01

    The effect of repeated strains on rat soleus muscles was investigated by stretching active muscles 3 times/wk for 4 wk with two different methods of stretching. The adaptation of myofibers and noncontractile tissue was followed by histochemical techniques and computer-assisted image analysis. Muscle hypertrophy was seen in the slow-stretched muscles, which increased in mass by 13% and increased in myofiber cross-sectional area by 30%. In the fast-stretched muscle, mass increased by 10% but myofiber cross-sectional area actually decreased. This decrease in mean fiber area was the result of a population of very small fibers (population A) that coexisted with slightly smaller normal-sized fibers (population B). Fibers in population A did not have the distribution expected from atrophy compared with atrophic fibers from unloaded muscles; they were much smaller. In addition, there was a 44% increase in noncontractile tissue in the fast-stretched muscles. Thus, soleus muscles subjected to repeated strains respond differently to slow and fast stretching. Slow stretching results in typical muscle hypertrophy, whereas fast stretching produces somewhat larger muscles but with a mixture of small and normal-sized myofibers accompanied by a marked proliferation of noncontractile tissue.

  17. Skeletal muscle fiber, nerve, and blood vessel breakdown in space-flown rats

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ilyina-Kakueva, E. I.; Ellis, S.; Bain, J. L.; Slocum, G. R.; Sedlak, F. R.

    1990-01-01

    Histochemical and ultrastructural analyses were performed postflight on hind limb skeletal muscles of rats orbited for 12.5 days aboard the unmanned Cosmos 1887 biosatellite and returned to Earth 2 days before sacrifice. The antigravity adductor longus (AL), soleus, and plantaris muscles atrophied more than the non-weight-bearing extensor digitorum longus, and slow muscle fibers were more atrophic than fast fibers. Muscle fiber segmental necrosis occurred selectively in the AL and soleus muscles; primarily, macrophages and neutrophils infiltrated and phagocytosed cellular debris. Granule-rich mast cells were diminished in flight AL muscles compared with controls, indicating the mast cell secretion contributed to interstitial tissue edema. Increased ubiquitination of disrupted myofibrils implicated ubiquitin in myofilament degradation. Mitochondrial content and succinic dehydrogenase activity were normal, except for subsarcolemmal decreases. Myofibrillar ATPase activity of flight AL muscle fibers shifted toward the fast type. Absence of capillaries and extravasation of red blood cells indicated failed microcirculation. Muscle fiber regeneration from activated satellite cells was detected. About 17% of the flight AL end plates exhibited total or partial denervation. Thus, skeletal muscle weakness associated with spaceflight can result from muscle fiber atrophy and segmental necrosis, partial motor denervation, and disruption of the microcirculation.

  18. Change in fiber type in partially-denervated soleus muscle of the rat.

    PubMed

    Narusawa, M

    1985-10-01

    In 30% or less partially denervated muscle, the reinnervation of denervated muscle fiber may give rise to a change in motor unit size or number of muscle fibers innervated by a single motor neuron. This study was designed to evaluate changes in fiber type and contractibility of partially denervated rat soleus muscle. Partial denervation (by 30% or less) of the soleus nerve does not cause a decrease in the number of muscle fibers. A histochemical study was performed on frozen sections of the muscle. The total number of muscle fibers, atrophied fibers and type II fibers were counted. In the muscle 4 weeks after partial denervation, the number of type II fibers was fewer with a decrease of about 40% which was not significant. The twitch time to peak and half-relaxation time were not changed. The number of type II fibers was significantly decreased (p less than 0.01) after 8 weeks. There was a prolongation of contraction time. The decrease of type II fibers was extensive involving not only the denervated area but also the rest of the muscle area. The transformation of fiber type observed in partially denervated muscle may be attributed to a possible diminution of neurotrophic substances in intact motor neurons.

  19. Skeletal muscle fiber, nerve, and blood vessel breakdown in space-flown rats

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ilyina-Kakueva, E. I.; Ellis, S.; Bain, J. L.; Slocum, G. R.; Sedlak, F. R.

    1990-01-01

    Histochemical and ultrastructural analyses were performed postflight on hind limb skeletal muscles of rats orbited for 12.5 days aboard the unmanned Cosmos 1887 biosatellite and returned to Earth 2 days before sacrifice. The antigravity adductor longus (AL), soleus, and plantaris muscles atrophied more than the non-weight-bearing extensor digitorum longus, and slow muscle fibers were more atrophic than fast fibers. Muscle fiber segmental necrosis occurred selectively in the AL and soleus muscles; primarily, macrophages and neutrophils infiltrated and phagocytosed cellular debris. Granule-rich mast cells were diminished in flight AL muscles compared with controls, indicating the mast cell secretion contributed to interstitial tissue edema. Increased ubiquitination of disrupted myofibrils implicated ubiquitin in myofilament degradation. Mitochondrial content and succinic dehydrogenase activity were normal, except for subsarcolemmal decreases. Myofibrillar ATPase activity of flight AL muscle fibers shifted toward the fast type. Absence of capillaries and extravasation of red blood cells indicated failed microcirculation. Muscle fiber regeneration from activated satellite cells was detected. About 17% of the flight AL end plates exhibited total or partial denervation. Thus, skeletal muscle weakness associated with spaceflight can result from muscle fiber atrophy and segmental necrosis, partial motor denervation, and disruption of the microcirculation.

  20. Hindlimb unloading induces a collagen isoform shift in the soleus muscle of the rat

    NASA Technical Reports Server (NTRS)

    Miller, T. A.; Lesniewski, L. A.; Muller-Delp, J. M.; Majors, A. K.; Scalise, D.; Delp, M. D.

    2001-01-01

    To determine whether hindlimb unloading (HU) alters the extracellular matrix of skeletal muscle, male Sprague-Dawley rats were subjected to 0 (n = 11), 1 (n = 11), 14 (n = 13), or 28 (n = 11) days of unloading. Remodeling of the soleus and plantaris muscles was examined biochemically for collagen abundance via measurement of hydroxyproline, and the percentage of cross-sectional area of collagen was determined histologically with picrosirius red staining. Total hydroxyproline content in the soleus and plantaris muscles was unaltered by HU at any time point. However, the relative proportions of type I collagen in the soleus muscle decreased relative to control (Con) with 14 and 28 days HU (Con 68 +/- 5%; 14 days HU 53 +/- 4%; 28 days HU 53 +/- 7%). Correspondingly, type III collagen increased in soleus muscle with 14 and 28 days HU (Con 32 +/- 5%; 14 days HU 47 +/- 4%; 28 days HU 48 +/- 7%). The proportion of type I muscle fibers in soleus muscle was diminished with HU (Con 96 +/- 2%; 14 days HU 86 +/- 1%; 28 days HU 83 +/- 1%), and the proportion of hybrid type I/IIB fibers increased (Con 0%; 14 days HU 8 +/- 2%; 28 days HU 14 +/- 2%). HU had no effect on the proportion of type I and III collagen or muscle fiber composition in plantaris muscle. The data demonstrate that HU induces a shift in the relative proportion of collagen isoform (type I to III) in the antigravity soleus muscle, which occurs concomitantly with a slow-to-fast myofiber transformation.

  1. Adaptation of rat soleus muscles to 4 wk of intermittent strain

    NASA Technical Reports Server (NTRS)

    Stauber, W. T.; Miller, G. R.; Grimmett, J. G.; Knack, K. K.

    1994-01-01

    The effect of repeated strains on rat soleus muscles was investigated by stretching active muscles 3 times/wk for 4 wk with two different methods of stretching. The adaptation of myofibers and noncontractile tissue was followed by histochemical techniques and computer-assisted image analysis. Muscle hypertrophy was seen in the slow-stretched muscles, which increased in mass by 13% and increased in myofiber cross-sectional area by 30%. In the fast-stretched muscle, mass increased by 10% but myofiber cross-sectional area actually decreased. This decrease in mean fiber area was the result of a population of very small fibers (population A) that coexisted with slightly smaller normal-sized fibers (population B). Fibers in population A did not have the distribution expected from atrophy compared with atrophic fibers from unloaded muscles; they were much smaller. In addition, there was a 44% increase in noncontractile tissue in the fast-stretched muscles. Thus, soleus muscles subjected to repeated strains respond differently to slow and fast stretching. Slow stretching results in typical muscle hypertrophy, whereas fast stretching produces somewhat larger muscles but with a mixture of small and normal-sized myofibers accompanied by a marked proliferation of noncontractile tissue.

  2. Hindlimb unloading induces a collagen isoform shift in the soleus muscle of the rat

    NASA Technical Reports Server (NTRS)

    Miller, T. A.; Lesniewski, L. A.; Muller-Delp, J. M.; Majors, A. K.; Scalise, D.; Delp, M. D.

    2001-01-01

    To determine whether hindlimb unloading (HU) alters the extracellular matrix of skeletal muscle, male Sprague-Dawley rats were subjected to 0 (n = 11), 1 (n = 11), 14 (n = 13), or 28 (n = 11) days of unloading. Remodeling of the soleus and plantaris muscles was examined biochemically for collagen abundance via measurement of hydroxyproline, and the percentage of cross-sectional area of collagen was determined histologically with picrosirius red staining. Total hydroxyproline content in the soleus and plantaris muscles was unaltered by HU at any time point. However, the relative proportions of type I collagen in the soleus muscle decreased relative to control (Con) with 14 and 28 days HU (Con 68 +/- 5%; 14 days HU 53 +/- 4%; 28 days HU 53 +/- 7%). Correspondingly, type III collagen increased in soleus muscle with 14 and 28 days HU (Con 32 +/- 5%; 14 days HU 47 +/- 4%; 28 days HU 48 +/- 7%). The proportion of type I muscle fibers in soleus muscle was diminished with HU (Con 96 +/- 2%; 14 days HU 86 +/- 1%; 28 days HU 83 +/- 1%), and the proportion of hybrid type I/IIB fibers increased (Con 0%; 14 days HU 8 +/- 2%; 28 days HU 14 +/- 2%). HU had no effect on the proportion of type I and III collagen or muscle fiber composition in plantaris muscle. The data demonstrate that HU induces a shift in the relative proportion of collagen isoform (type I to III) in the antigravity soleus muscle, which occurs concomitantly with a slow-to-fast myofiber transformation.

  3. Dexmedetomidine ameliorates muscle wasting and attenuates the alteration of hypothalamic neuropeptides and inflammation in endotoxemic rats

    PubMed Central

    Cheng, Minhua; Gao, Tao; Xi, Fengchan; Cao, Chun; Chen, Yan; Zhao, Chenyan; Li, Qiurong

    2017-01-01

    Dexmedetomidine is generally used for sedaton in critically ill, it could shorten duration of mechanical ventilation, ICU stay and lower basic metabolism. However, the exact mechanism of these positive effects remains unkown. Here we investigated the hypothesis that dexmedetomidine could ameliorate muscle wasting in endotoxemic rats and whether it was related to hypothalamic neuropeptides alteration and inflammation. Fourty-eight adult male Sprague–Dawley rats were intraperitoneally injected with lipopolysaccharide (LPS) (5 mg/kg) or saline, followed by 50 μg/kg dexmedetomidine or saline administration via the femoral vein catheter (infusion at 5 μg·kg-1·hr-1). Twenty-four hours after injection, hypothalamus tissues and skeletal muscle were obtained. Muscle wasting was measured by the mRNA expression of two E3 ubiquitin ligases, muscle atrophy F-box (MAFbx) and muscle ring finger 1 (MuRF-1) as well as 3-methylhistidine (3-MH) and tyrosine release. Hypothalamic inflammatory markers and neuropeptides expression were also detected in all four groups. Results showed that LPS administration led to significant increase in hypothalamic inflammation together with muscle wasting. Increased hypothalamic neuropeptides, proopiomelanocortin (POMC), cocaine and amphetamine-related transcript (CART) and neuropeptides Y (NPY) and decreased agouti-related protein (AgRP) were also observed. Meanwhile dexmedetomidine administration ameliorated muscle wasting, hypothalamic inflammation and modulated the alteration of neuropeptides, POMC, CART and AgRP, in endotoxemic rats. In conclusion, dexmedetomidine could alleviate muscle wasting in endotoxemic rats, and it could also attenuate the alteration of hypothalamic neuropeptides and reduce hypothalamic inflammation. PMID:28358856

  4. Effect of short-term cold exposure on skeletal muscle protein breakdown in rats.

    PubMed

    Manfredi, L H; Zanon, N M; Garófalo, M A; Navegantes, L C C; Kettelhut, I C

    2013-11-01

    Although it is well established that carbohydrate and lipid metabolism are profoundly altered by cold stress, the effects of short-term cold exposure on protein metabolism in skeletal muscle are still poorly understood. Because cold acclimation requires that an organism adjust its metabolic flux, and muscle amino acids may be an important energy source for heat production, we hypothesize that muscle proteolysis is increased and protein synthesis is decreased under such a stress condition. Herein, cold exposure for 24 h decreased rates of protein synthesis and increased overall proteolysis in both soleus and extensor digitorum longus (EDL) muscles, but it did not affect muscle weight. An increase in proteolysis was accompanied by hyperactivity of the ubiquitin-proteasome system (UPS) in both soleus and EDL, and Ca(2+)-dependent proteolysis in EDL. Furthermore, muscles of rats exposed to cold showed increased mRNA and protein levels of atrogin-1 and muscle RING finger enzyme-1 (MuRF1). Additionally, cold stress reduced phosphorylation of Akt and Forkhead box class O1 (FoxO1), a well-known effect that increases FoxO translocation to the nucleus and leads to activation of proteolysis. Plasma insulin levels were lower, whereas catecholamines, corticosterone, and thyroid hormones were higher in cold-exposed rats compared with control rats. The present data provide the first direct evidence that short-term cold exposure for 24 h decreases rates of protein synthesis and increases the UPS and Ca(2+)-dependent proteolytic processes, and increases expression of atrogin-1 and MuRF1 in skeletal muscles of young rats. The activation of atrophy induced by acute cold stress seems to be mediated at least in part through the inactivation of Akt/FoxO signaling and activation of AMP-activated protein kinase.

  5. Overload-induced skeletal muscle hypertrophy is not impaired in STZ-diabetic rats

    PubMed Central

    Fortes, Marco Aurélio S; Pinheiro, Carlos Hermano J; Guimarães-Ferreira, Lucas; Vitzel, Kaio F; Vasconcelos, Diogo A A; Curi, Rui

    2015-01-01

    The aim of this study was to evaluate the effect of overload-induced hypertrophy on extensor digitorum longus (EDL) and soleus muscles of streptozotocin-induced diabetic rats. The overload-induced hypertrophy and absolute tetanic and twitch forces increases in EDL and soleus muscles were not different between diabetic and control rats. Phospho-Akt and rpS6 contents were increased in EDL muscle after 7 days of overload and returned to the pre-overload values after 30 days. In the soleus muscle, the contents of total and phospho-Akt and total rpS6 were increased in both groups after 7 days. The contents of total Akt in controls and total rpS6 and phospho-Akt in the diabetic rats remained increased after 30 days. mRNA expression after 7 days of overload in the EDL muscle of control and diabetic animals showed an increase in MGF and follistatin and a decrease in myostatin and Axin2. The expression of FAK was increased and of MuRF-1 and atrogin-1 decreased only in the control group, whereas Ankrd2 expression was enhanced only in diabetic rats. In the soleus muscle caused similar changes in both groups: increase in FAK and MGF and decrease in Wnt7a, MuRF-1, atrogin-1, and myostatin. Differences between groups were observed only in the increased expression of follistatin in diabetic animals and decreased Ankrd2 expression in the control group. So, insulin deficiency does not impair the overload-induced hypertrophic response in soleus and EDL muscles. However, different mechanisms seem to be involved in the comparable hypertrophic responses of skeletal muscle in control and diabetic animals. PMID:26197932

  6. Overload-induced skeletal muscle hypertrophy is not impaired in STZ-diabetic rats.

    PubMed

    Fortes, Marco Aurélio S; Pinheiro, Carlos Hermano J; Guimarães-Ferreira, Lucas; Vitzel, Kaio F; Vasconcelos, Diogo A A; Curi, Rui

    2015-07-01

    The aim of this study was to evaluate the effect of overload-induced hypertrophy on extensor digitorum longus (EDL) and soleus muscles of streptozotocin-induced diabetic rats. The overload-induced hypertrophy and absolute tetanic and twitch forces increases in EDL and soleus muscles were not different between diabetic and control rats. Phospho-Akt and rpS6 contents were increased in EDL muscle after 7 days of overload and returned to the pre-overload values after 30 days. In the soleus muscle, the contents of total and phospho-Akt and total rpS6 were increased in both groups after 7 days. The contents of total Akt in controls and total rpS6 and phospho-Akt in the diabetic rats remained increased after 30 days. mRNA expression after 7 days of overload in the EDL muscle of control and diabetic animals showed an increase in MGF and follistatin and a decrease in myostatin and Axin2. The expression of FAK was increased and of MuRF-1 and atrogin-1 decreased only in the control group, whereas Ankrd2 expression was enhanced only in diabetic rats. In the soleus muscle caused similar changes in both groups: increase in FAK and MGF and decrease in Wnt7a, MuRF-1, atrogin-1, and myostatin. Differences between groups were observed only in the increased expression of follistatin in diabetic animals and decreased Ankrd2 expression in the control group. So, insulin deficiency does not impair the overload-induced hypertrophic response in soleus and EDL muscles. However, different mechanisms seem to be involved in the comparable hypertrophic responses of skeletal muscle in control and diabetic animals.

  7. Lingual Muscle Activity Across Sleep–Wake States in Rats with Surgically Altered Upper Airway

    PubMed Central

    Rukhadze, Irma; Kalter, Julie; Stettner, Georg M.; Kubin, Leszek

    2014-01-01

    Obstructive sleep apnea (OSA) patients have increased upper airway muscle activity, including such lingual muscles as the genioglossus (GG), geniohyoid (GH), and hyoglossus (HG). This adaptation partially protects their upper airway against obstructions. Rodents are used to study the central neural control of sleep and breathing but they do not naturally exhibit OSA. We investigated whether, in chronically instrumented, behaving rats, disconnecting the GH and HG muscles from the hyoid (H) apparatus would result in a compensatory increase of other upper airway muscle activity (electromyogram, EMG) and/or other signs of upper airway instability. We first determined that, in intact rats, lingual (GG and intrinsic) muscles maintained stable activity levels when quantified based on 2 h-long recordings conducted on days 6 through 22 after instrumentation. We then studied five rats in which the tendons connecting the GH and HG muscles to the H apparatus were experimentally severed. When quantified across all recording days, lingual EMG during slow-wave sleep (SWS) was modestly but significantly increased in rats with surgically altered upper airway [8.6 ± 0.7% (SE) vs. 6.1 ± 0.7% of the mean during wakefulness; p = 0.012]. Respiratory modulation of lingual EMG occurred mainly during SWS and was similarly infrequent in both groups, and the incidence of sighs and central apneas also was similar. Thus, a weakened action of selected lingual muscles did not produce sleep-disordered breathing but resulted in a relatively elevated activity in other lingual muscles during SWS. These results encourage more extensive surgical manipulations with the aim to obtain a rodent model with collapsible upper airway. PMID:24803913

  8. Nitric oxide release in rat skeletal muscle capillary.

    PubMed

    Mitchell, D; Tyml, K

    1996-05-01

    Nitric oxide (NO) has been shown to be a potent vasodilator released from endothelial cells (EC) in large blood vessels, but NO release has not been examined in the capillary bed. Because the capillary bed represents the largest source of EC, it may be the largest source of vascular NO. In the present study, we used intravital microscopy to examine the effect of the NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), on the microvasculature of the rat extensor digitorum longus muscle. L-NAME (30 mM) applied locally to a capillary (300 micron(s) from the feeding arteriole) reduced red blood cell (RBC) velocity [VRBC; control VRBC = 238 +/- 58 (SE) micron/s; delta VRBC = -76 +/- 8%] and RBC flux (4.4 +/- 0.7 to 2.8 +/- 0.7 RBC/s) significantly in the capillary, but did not change feeding arteriole diameter (Dcon = 6.3 +/- 0.7 micron, delta D = 5 +/- 7%) or draining venule diameter (Dcon = 10.1 +/- 0.6 micron, delta D = 4 +/- 2%). Because of the VRBC change, the flux reduction was equivalent to an increased local hemoconcentration from 1.8 to 5 RBCs per 100 micron capillary length. L-NAME also caused an increase in the number of adhering leukocytes in the venule from 0.29 to 1.43 cells/100 micron. L-NAME (30 mM) applied either to arterioles or to venules did not change capillary VRBC. Bradykinin (BK) locally applied to the capillary caused significant increases in VRBC (delta VRBC = 111 +/- 23%) and in arteriolar diameter (delta D = 40 +/- 5%). This BK response was blocked by capillary pretreatment with 30 mM L-NAME (delta VRBC = -4 +/- 27%; delta D = 5 +/- 9% after BK). We concluded that NO may be released from capillary EC both basally and in response to the vasodilator BK. We hypothesize that 1) low basal levels of NO affect capillary blood flow by modulating local hemoconcentration and leukocyte adhesion, and 2) higher levels of NO (stimulated by BK) may cause a remote vasodilation to increase microvascular blood flow.

  9. Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight

    NASA Technical Reports Server (NTRS)

    Taylor, Wayne E.; Bhasin, Shalender; Lalani, Rukhsana; Datta, Anuj; Gonzalez-Cadavid, Nestor F.

    2002-01-01

    To clarify the mechanism of skeletal muscle wasting during spaceflights, we investigated whether intramuscular gene expression profiles are affected, by using DNA microarray methods. Male rats sent on the 17-day NASA STS-90 Neurolab spaceflight were sacrificed 24 hours after return to earth (MG group). Ground control rats were maintained for 17 days in flight-simulated cages (CS group). Spaceflight induced a 19% and 23% loss of tibialis anterior and gastrocnemius muscle mass, respectively, as compared to ground controls. Muscle RNA was analyzed by the Clontech Atlas DNA expression array in four rats, with two MG/ CS pairs for the tibialis anterior, and one pair for the gastrocnemius. Alterations in gene expression were verified for selected genes by reverse-transcription PCR. In both muscles of MG rats, mRNAs for 12 genes were up-regulated by over 2-fold, and 38 were down-regulated compared to controls. There was inhibition of genes for cell proliferation and growth factor cascades, including cell cycle genes and signal transduction proteins, such as p21 Cip1, retinoblastoma (Rb), cyclins G1/S, -E and -D3, MAP kinase 3, MAD3, and ras related protein RAB2. These data indicate that following exposure to microgravity, there is downregulation of genes involved in regulation of muscle satellite cell replication.

  10. Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary

    NASA Technical Reports Server (NTRS)

    Gosselink, K. L.; Grindeland, R. E.; Roy, R. R.; Zhong, H.; Bigbee, A. J.; Grossman, E. J.; Edgerton, V. R.

    1998-01-01

    There are forms of growth hormone (GH) in the plasma and pituitary of the rat and in the plasma of humans that are undetected by presently available immunoassays (iGH) but can be measured by bioassay (bGH). Although the regulation of iGH release is well documented, the mechanism(s) of bGH release is unclear. On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. To examine whether bGH secretion can be modulated by afferent input from skeletal muscle, the proximal or distal ends of severed hindlimb fast muscle nerves were stimulated ( approximately 2 times threshold) in anesthetized rats. Plasma bGH increased approximately 250%, and pituitary bGH decreased approximately 60% after proximal nerve trunk stimulation. The bGH response was independent of muscle mass or whether the muscles were flexors or extensors. Distal nerve stimulation had little or no effect on plasma or pituitary bGH. Plasma iGH concentrations were unchanged after proximal nerve stimulation. Although there may be multiple regulatory mechanisms of bGH, the present results demonstrate that the activation of low-threshold afferents from fast skeletal muscles can play a regulatory role in the release of bGH, but not iGH, from the pituitary in anesthetized rats.

  11. [Study of the influence of emotion stress on mechanical hyperalgesia of masseter muscles in rats].

    PubMed

    Huang, Fei; Miao, Li; Chen, Yong-Jin; Chen, Jun

    2008-06-01

    To study the influence of emotion stress on mechanical hyperalgesia of masseter muscles in rats through the equipment of communication box. 50 Sprague-Dawley rats were randomly divided into 5 groups: Control group, emotion stress (ES) group, drug control group, saline treated control group and footshock (FS) group, 10 rats each group. Footshock group only induced emotion stress and was not concerned with the result of the experiment. The last four groups of the rats were placed in communication box and bred under the same conditions during the experiment time. According to Rens' method, von Frey filaments were used to assess the muscle mechanical threshold, head withdrawal, leg raising and crying were observed as pain action. 1) During the adaptive period of 7 days before the emotion stress experiment, mechanical pain values of bilateral masseter muscles were descent and were stabilized in the 5 th to 7 th day. In emotion stress period, hyperalgesia of emotion stress group was induced in bilateral masseter muscles, and the peak time was the 7 th day, then it alleviated in the following days and was stabilized in the 12 th to 14 th day, but its pain threshold was lower than blank control group. 2)During the emotion stress period, the change of drug control group was similar to stress group but its pain threshold was higher. It is suggested that emotion stress can lead to the hyperalgesia of masseter muscles and antidepressant drug can lower the hyperalgsia resulted of emotion stress.

  12. Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight

    NASA Technical Reports Server (NTRS)

    Taylor, Wayne E.; Bhasin, Shalender; Lalani, Rukhsana; Datta, Anuj; Gonzalez-Cadavid, Nestor F.

    2002-01-01

    To clarify the mechanism of skeletal muscle wasting during spaceflights, we investigated whether intramuscular gene expression profiles are affected, by using DNA microarray methods. Male rats sent on the 17-day NASA STS-90 Neurolab spaceflight were sacrificed 24 hours after return to earth (MG group). Ground control rats were maintained for 17 days in flight-simulated cages (CS group). Spaceflight induced a 19% and 23% loss of tibialis anterior and gastrocnemius muscle mass, respectively, as compared to ground controls. Muscle RNA was analyzed by the Clontech Atlas DNA expression array in four rats, with two MG/ CS pairs for the tibialis anterior, and one pair for the gastrocnemius. Alterations in gene expression were verified for selected genes by reverse-transcription PCR. In both muscles of MG rats, mRNAs for 12 genes were up-regulated by over 2-fold, and 38 were down-regulated compared to controls. There was inhibition of genes for cell proliferation and growth factor cascades, including cell cycle genes and signal transduction proteins, such as p21 Cip1, retinoblastoma (Rb), cyclins G1/S, -E and -D3, MAP kinase 3, MAD3, and ras related protein RAB2. These data indicate that following exposure to microgravity, there is downregulation of genes involved in regulation of muscle satellite cell replication.

  13. Enhanced skeletal muscle insulin sensitivity in year-old rats adapted to hypergravity

    NASA Technical Reports Server (NTRS)

    Mondon, C. E.; Dolkas, C. B.; Oyama, J.

    1981-01-01

    Rats induced into a hypermetabolic state by exposure to chronic (7 mo) centrifugation at 4.15 g exhibited increased glucose uptake at lower plasma insulin levels than weight-matched control animals following oral glucose administration. In order to determine the insulin sensitivity of specific tissues, the effect of exogenous insulin on glucose uptake by isolated perfused livers and hindlim skeletal muscle from rats adapted to chronic centrifugation for one year was compared with perfused tissue from 2.5 mo-old noncentrifuged control animals of equal body weight. Metabolic glucose clearance by skeletal muscle from hypergravic rats did not prove significantly greater than control muscle when perfused in the absence of insulin (10.6 vs 8.1 microliters/min-g-muscle), but was twice as fast (23.0 vs 9.5) at perfusate insulin levels of 35 micro-U/ml. Conversely, glucose uptake by hypergravic livers was significantly decreased (P is less than 0.001) compared with control livers (10.3 vs 27.8) at perfusate insulin levels of 40 micro-U/ml. Results suggest that skeletal muscle rather than liver is primarily responsible for the enhanced sensitivity to insulin and the increased energy expenditure observed in rats subjected to hypergravity.

  14. Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary

    NASA Technical Reports Server (NTRS)

    Gosselink, K. L.; Grindeland, R. E.; Roy, R. R.; Zhong, H.; Bigbee, A. J.; Grossman, E. J.; Edgerton, V. R.

    1998-01-01

    There are forms of growth hormone (GH) in the plasma and pituitary of the rat and in the plasma of humans that are undetected by presently available immunoassays (iGH) but can be measured by bioassay (bGH). Although the regulation of iGH release is well documented, the mechanism(s) of bGH release is unclear. On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. To examine whether bGH secretion can be modulated by afferent input from skeletal muscle, the proximal or distal ends of severed hindlimb fast muscle nerves were stimulated ( approximately 2 times threshold) in anesthetized rats. Plasma bGH increased approximately 250%, and pituitary bGH decreased approximately 60% after proximal nerve trunk stimulation. The bGH response was independent of muscle mass or whether the muscles were flexors or extensors. Distal nerve stimulation had little or no effect on plasma or pituitary bGH. Plasma iGH concentrations were unchanged after proximal nerve stimulation. Although there may be multiple regulatory mechanisms of bGH, the present results demonstrate that the activation of low-threshold afferents from fast skeletal muscles can play a regulatory role in the release of bGH, but not iGH, from the pituitary in anesthetized rats.

  15. Enhanced skeletal muscle insulin sensitivity in year-old rats adapted to hypergravity

    NASA Technical Reports Server (NTRS)

    Mondon, C. E.; Dolkas, C. B.; Oyama, J.

    1981-01-01

    Rats induced into a hypermetabolic state by exposure to chronic (7 mo) centrifugation at 4.15 g exhibited increased glucose uptake at lower plasma insulin levels than weight-matched control animals following oral glucose administration. In order to determine the insulin sensitivity of specific tissues, the effect of exogenous insulin on glucose uptake by isolated perfused livers and hindlim skeletal muscle from rats adapted to chronic centrifugation for one year was compared with perfused tissue from 2.5 mo-old noncentrifuged control animals of equal body weight. Metabolic glucose clearance by skeletal muscle from hypergravic rats did not prove significantly greater than control muscle when perfused in the absence of insulin (10.6 vs 8.1 microliters/min-g-muscle), but was twice as fast (23.0 vs 9.5) at perfusate insulin levels of 35 micro-U/ml. Conversely, glucose uptake by hypergravic livers was significantly decreased (P is less than 0.001) compared with control livers (10.3 vs 27.8) at perfusate insulin levels of 40 micro-U/ml. Results suggest that skeletal muscle rather than liver is primarily responsible for the enhanced sensitivity to insulin and the increased energy expenditure observed in rats subjected to hypergravity.

  16. Intermittent Cold Exposure Causes a Muscle-Specific Shift in the Fiber Type Composition in Rats

    DTIC Science & Technology

    1993-01-01

    A69 ,,.765MU.𔃼rn ~AV!ON PAG[ .... ,er 1992 Intermittent cold exposure causes a muscle-specific shift in the fiber type composition in rats PR-212PR...the older report. blank, the abstract is assumed to be unlimited.Standard Form 298 Back (Rev. 2-89) 93-223A Intermittent cold exposure causes a... causes a muscle-specific shift in the fiber type composi- therefore, results in a much greater loss of heat, thus tion in rats. J. Appl. Physiol. 75

  17. Metabolic alterations caused by suspension hypokinesia in leg muscles of rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.

    1984-01-01

    Metabolic changes on hypokinetic rats were measured. Two groups of animals were studied: (1) weight bearing control which were tail casted but allowed to walk on all four limbs, and (2) hypokinetic with no load bearing of the hindlimbs. The control and hypokinetic rats gained weight at a steady and similar rate over 6 days. Hypokinesia for 6 days led to significantly lower relative weights of the soleus, gastrocnemius and plantaris muscles. Hypokinesia did not effect the relative mass of the anterior tibialis or extensor digitorum longus (EDL) muscles.

  18. Longitudinal and transversal displacements between triceps surae muscles during locomotion of the rat.

    PubMed

    Bernabei, Michel; van Dieën, Jaap H; Maas, Huub

    2017-02-15

    The functional consequences of differential muscle activation and contractile behavior between mechanically coupled synergists are still poorly understood. Even though synergistic muscles exert similar mechanical effects at the joint they span, differences in the anatomy, morphology and neural drive may lead to non-uniform contractile conditions. This study aimed to investigate the patterns of activation and contractile behavior of triceps surae muscles, to understand how these contribute to the relative displacement between the one-joint soleus (SO) and two-joint lateral gastrocnemius (LG) muscle bellies and their distal tendons during locomotion in the rat. In seven rats, muscle belly lengths and muscle activation during level and upslope trotting were measured by sonomicrometry crystals and electromyographic electrodes chronically implanted in the SO and LG. Length changes of muscle-tendon units (MTUs) and tendon fascicles were estimated based on joint kinematics and muscle belly lengths. Distances between implanted crystals were further used to assess longitudinal and transversal deformations of the intermuscular volume between the SO and LG. For both slope conditions, we observed differential timing of muscle activation as well as substantial differences in contraction speeds between muscle bellies (maximal relative speed 55.9 mm s(-1)). Muscle lengths and velocities did not differ significantly between level and upslope locomotion, only EMG amplitude of the LG was affected by slope. Relative displacements between SO and LG MTUs were found in both longitudinal and transversal directions, yielding an estimated maximal length change difference of 2.0 mm between their distal tendons. Such relative displacements may have implications for the force exchanged via intermuscular and intertendinous pathways.

  19. Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise.

    PubMed

    Pinho, Ricardo A; Andrades, Michael E; Oliveira, Marcos R; Pirola, Aline C; Zago, Morgana S; Silveira, Paulo C L; Dal-Pizzol, Felipe; Moreira, José Cláudio F

    2006-10-01

    The association between physical exercise and oxidative damage in the skeletal musculature has been the focus of many studies in literature, but the balance between superoxide dismutase and catalase activities and its relation to oxidative damage is not well established. Thus, the aim of the present study was to investigate the association between regular treadmill physical exercise, oxidative damage and antioxidant defenses in skeletal muscle of rats. Fifteen male Wistar rats (8-12 months) were randomly separated into two groups (trained n=9 and untrained n=6). Trained rats were treadmill-trained for 12 weeks in progressive exercise (velocity, time, and inclination). Training program consisted in a progressive exercise (10 m/min without inclination for 10 min/day). After 1 week the speed, time and inclination were gradually increased until 17 m/min at 10% for 50 min/day. After the training period animals were killed, and gastrocnemius and quadriceps were surgically removed to the determination of biochemical parameters. Lipid peroxidation, protein oxidative damage, catalase, superoxide dismutase and citrate synthase activities, and muscular glycogen content were measured in the isolated muscles. We demonstrated that there is a different modulation of CAT and SOD in skeletal muscle in trained rats when compared to untrained rats (increased SOD/CAT ratio). TBARS levels were significantly decreased and, in contrast, a significant increase in protein carbonylation was observed. These results suggest a non-described adaptation of skeletal muscle against exercise-induced oxidative stress.

  20. Metabolic and morphologic properties of single muscle fibers in the rat after spaceflight, Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Miu, B.; Martin, T. P.; Roy, R. R.; Oganov, V.; Ilyina-Kakueva, E.; Marini, J. F.; Leger, J. J.; Bodine-Fowler, S. C.; Edgerton, V. R.

    1990-01-01

    The adaptation of a slow (soleus, Sol) and a fast (medial gastrocnemius, MG) skeletal muscle to spaceflight was studied in five young male rats. The flight period was 12.5 days and the rats were killed approximately 48 h after returning to 1 g. Five other rats that were housed in cages similar to those used by the flight rats were maintained at 1 g for the same period of time to serve as ground-based controls. Fibers were classified as dark or light staining for myosin adenosine triphosphatase (ATPase). On the average, the fibers in the Sol of the flight rats atrophied twice as much as those in the MG. Further, the fibers located in the deep (close to the bone and having the highest percentage of light ATPase and high oxidative fibers in the muscle cross section) region of the MG atrophied more than the fibers located in the superficial (away from the bone and having the lowest percentage of light ATPase and high oxidative fibers in the muscle cross-section) region of the muscle. Based on quantitative histochemical assays of single muscle fibers, succinate dehydrogenase (SDH) activity per unit volume was unchanged in fibers of the Sol and MG. However, in the Sol, but not the MG, the total amount of SDH activity in a 10-microns-thick section of a fiber decreased significantly in response to spaceflight. Based on population distributions, it appears that the alpha-glycerophosphate dehydrogenase (GPD) activities were elevated in the dark ATPase fibers in the Sol, whereas the light fibers in the Sol and both fiber types in the MG did not appear to change. The ratio of GPD to SDH activities increased in the dark (but not light) fibers of the Sol and was unaffected in the MG. Immunohistochemical analyses indicate that approximately 40% of the fibers in the Sol of flight rats expressed a fast myosin heavy chain compared with 22% in control rats. Further, 31% of the fibers in the Sol of flight rats expressed both fast and slow myosin heavy chains compared with 8% in

  1. Metabolic and morphologic properties of single muscle fibers in the rat after spaceflight, Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Miu, B.; Martin, T. P.; Roy, R. R.; Oganov, V.; Ilyina-Kakueva, E.; Marini, J. F.; Leger, J. J.; Bodine-Fowler, S. C.; Edgerton, V. R.

    1990-01-01

    The adaptation of a slow (soleus, Sol) and a fast (medial gastrocnemius, MG) skeletal muscle to spaceflight was studied in five young male rats. The flight period was 12.5 days and the rats were killed approximately 48 h after returning to 1 g. Five other rats that were housed in cages similar to those used by the flight rats were maintained at 1 g for the same period of time to serve as ground-based controls. Fibers were classified as dark or light staining for myosin adenosine triphosphatase (ATPase). On the average, the fibers in the Sol of the flight rats atrophied twice as much as those in the MG. Further, the fibers located in the deep (close to the bone and having the highest percentage of light ATPase and high oxidative fibers in the muscle cross section) region of the MG atrophied more than the fibers located in the superficial (away from the bone and having the lowest percentage of light ATPase and high oxidative fibers in the muscle cross-section) region of the muscle. Based on quantitative histochemical assays of single muscle fibers, succinate dehydrogenase (SDH) activity per unit volume was unchanged in fibers of the Sol and MG. However, in the Sol, but not the MG, the total amount of SDH activity in a 10-microns-thick section of a fiber decreased significantly in response to spaceflight. Based on population distributions, it appears that the alpha-glycerophosphate dehydrogenase (GPD) activities were elevated in the dark ATPase fibers in the Sol, whereas the light fibers in the Sol and both fiber types in the MG did not appear to change. The ratio of GPD to SDH activities increased in the dark (but not light) fibers of the Sol and was unaffected in the MG. Immunohistochemical analyses indicate that approximately 40% of the fibers in the Sol of flight rats expressed a fast myosin heavy chain compared with 22% in control rats. Further, 31% of the fibers in the Sol of flight rats expressed both fast and slow myosin heavy chains compared with 8% in

  2. Oxidative stress participates in quadriceps muscle dysfunction during the initiation of osteoarthritis in rats.

    PubMed

    Hsu, Dur-Zong; Chu, Pei-Yi; Wu, Po-Ting; Shen, Po-Chuan; Jou, I-Ming

    2015-01-01

    Osteoarthritis is the most common form of arthritis, affecting approximately 15% of the population. Quadriceps muscle weakness is one of the risk factors of osteoarthritis development. Oxidative stress has been reported to play an important role in the pathogenesis of various muscle dysfunction; however, whether it is involved in osteoarthritis-associated quadriceps muscle weakness has never been investigated. The aim of the present study is to examine the involvement of oxidative stress in quadriceps muscle dysfunction in the initiation of osteoarthritis in rats. Rat osteoarthritis was initiated by conducting meniscectomy (MNX). Quadriceps muscle dysfunction was evaluated by assessing muscular interleukin-6, citrate synthase activity, and myosin heavy chain IIa mRNA expression levels. Muscular oxidative stress was assessed by determining lipid peroxidation, Nrf2 expression, reactive oxygen species, and circulating antioxidants. Increased muscular interleukin-6 production as well as decreased citrate synthase activity and myosin heavy chain IIa mRNA expression were observed at 7 and 14 days after MNX. Biomarkers of oxidative stress were significantly increased after MNX. Muscular free radical counts were increased while glutathione and glutathione peroxidase expression were decreased in MNX-treated rats. We conclude that oxidative stress may be involved in the pathogenesis of muscle dysfunction in MNX-induced osteoarthritis.

  3. Androgen-estrogen synergy in rat levator ani muscle Glucose-6-phosphate dehydrogenase

    NASA Technical Reports Server (NTRS)

    Max, S. R.

    1984-01-01

    The effects of castration and hormone administration on the activity of glucose-6-phosphate dehydrogenase in the rat levator ani muscle were studied. Castration caused a decrease in enzyme activity and in wet weight of the levator ani muscle. Chronic administration of testosterone propionate increased glucose-6-phosphate dehydrogenase activity in the levator ani muscle of castrated rats; the magnitude of the recovery of enzyme activity was related to the length of time of exposure to testosterone propionate after castration as well as to the length of time the animals were castrated. The longer the period of castration before exposure to testosterone propionate, the greater the effect. This result may be related to previously reported castration-mediated increases in androgen receptor binding in muscle. Dihydrotestosterone was less effective than testosterone propionate in enhancing glucose-6-phosphate dehydrogenase activity in the levator ani muscle from castrated rats; estradiol-17-beta alone was ineffective. Combined treatment with estradiol-17-beta and dihydrotestosterone, however, was as effective as testosterone alone. Thus, androgens and estrogens may exert synergistic effects on levator ani muscle.

  4. [Measurement of kinetic parameters of skeletal muscle protein synthesis in rats by deuterated water].

    PubMed

    Tian, Ying; Dai, Qian-Qian; Meng, Chan-Fang; Sun, Yi; Peng, Jing; Chen, Yu

    2017-06-25

    The aim of the present study was to measure the kinetic parameters of skeletal muscle protein synthesis in rats by deuterated water ((2)H2O). Twenty Sprague-Dawley (SD) rats were labeled by (2)H2O through intraperitoneal injection and drinking. At the each end of the 1st, 3rd, 5th, 6th and 10th week after the first (2)H2O labeling, four rats were sacrificed by cardiac puncture for blood plasma and quadriceps femoris sampling. Skeletal muscle protein and free amino acids in plasma were purified, hydrolyzed by hydrochloric acid and derived. The deuterium enrichments of (2)H-labeled alanyl in skeletal muscle protein and plasma protein-bound (2)H-labeled alanine were determined by gas chromatography-mass spectrometry (GC-MS). The fractional synthesis rate of skeletal muscle protein and synthetic dynamic equation were calculated. The fractional synthetic rate of skeletal muscle protein was 12.8%/week, and synthetic dynamic equation was ft = 0.158 × (1 - e(-0.128t)). The results suggest that the kinetic parameters of skeletal muscle protein synthesis can be measured by (2)H2O labeling, and the method can be applied in long-term labeling experiment.

  5. IB4-Saporin Attenuates Acute and Eliminates Chronic Muscle Pain in the Rat

    PubMed Central

    Alvarez, Pedro; Gear, Robert W.; Green, Paul G.; Levine, Jon D.

    2012-01-01

    The function of populations of nociceptors in muscle pain syndromes remain poorly understood. We compared the contribution of two major classes, isolectin B4-positive (IB4(+)) and IB4-negative (IB4(−)) nociceptors, in acute and chronic inflammatory and ergonomic muscle pain. Baseline mechanical nociceptive threshold was assessed in the gastrocnemius muscle of rats treated with IB4-saporin, which selectively destroys IB4(+) nociceptors. Rats were then submitted to models of acute inflammatory (intramuscular carrageenan)- or ergonomic intervention (eccentric exercise or vibration)-induced muscle pain, and each of the three models also evaluated for the transition from acute to chronic pain, manifest as prolongation of prostaglandin E2 (PGE2)-induced hyperalgesia, after recovery from the hyperalgesia induced by acute inflammation or ergonomic interventions. IB4-saporin treatment did not affect baseline mechanical nociceptive threshold. However, compared to controls, IB4-saporin treated rats exhibited shorter duration mechanical hyperalgesia in all three models and attenuated peak hyperalgesia in the ergonomic pain models. And, IB4-saporin treatment completely prevented prolongation of PGE2-induced mechanical hyperalgesia. Thus, IB4(+) and IB4(−) neurons contribute to acute muscle hyperalgesia induced by diverse insults. However, only IB4+ nociceptors participate in the long term consequence of acute hyperalgesia. Finally, using retrograde labelling we found that approximately 70% of sensory neurons innervating the gastrocnemius muscle are IB4(+). PMID:22206923

  6. Distribution of LYVE-1 and CD31 in postnatal rat masseter muscle.

    PubMed

    Sato, Iwao; Imura, Kosuke; Miwa, Yoko; Miyado, Mami; Sunohara, Masataka

    2008-01-01

    During the development of blood vascular systems in the masseter muscle, one functional property of the blood supply via capillaries is altered by the change in feeding pattern from suckling to mastication. The lymphatic vessel hyaluronan receptor-1 (LYVE-1) is a marker of lymphatic endothelial cells. The PECAM (CD31) is also an important marker of vascular endothelial cells and lymphatic cells. The mechanisms by which circulating lymphatic endothelial cells from blood vessels in masseter muscle form a network of lymphatic capillaries and vessels functioning in jaw muscle movement remain unknown. In our results, LYVE-1- and CD31- positive reactions were located in almost identical regions at the stages examined using double immunofluorescence staining. However, the level of protein for LYVE-1 and CD31 differed between superficial and deep regions in postnatal rat masseter muscle using Western blotting analysis. The different distribution of LYVE-1 and CD31 antibody reactions was found in the deep region in contrast to that of the superficial area in 3-7-week-old rat masseter muscles. Concomitant with the increased level of protein for CD31 in the deep region, many small vessels branch in this region during development in rat masseter muscle. Therefore, different levels of protein and immunohistochemical reactions for CD31- and LYVE-1-positive cells may reflect alterations in the functional properties of the blood supply and collection via capillaries due to the changes in feeding pattern.

  7. Androgen-estrogen synergy in rat levator ani muscle Glucose-6-phosphate dehydrogenase

    NASA Technical Reports Server (NTRS)

    Max, S. R.

    1984-01-01

    The effects of castration and hormone administration on the activity of glucose-6-phosphate dehydrogenase in the rat levator ani muscle were studied. Castration caused a decrease in enzyme activity and in wet weight of the levator ani muscle. Chronic administration of testosterone propionate increased glucose-6-phosphate dehydrogenase activity in the levator ani muscle of castrated rats; the magnitude of the recovery of enzyme activity was related to the length of time of exposure to testosterone propionate after castration as well as to the length of time the animals were castrated. The longer the period of castration before exposure to testosterone propionate, the greater the effect. This result may be related to previously reported castration-mediated increases in androgen receptor binding in muscle. Dihydrotestosterone was less effective than testosterone propionate in enhancing glucose-6-phosphate dehydrogenase activity in the levator ani muscle from castrated rats; estradiol-17-beta alone was ineffective. Combined treatment with estradiol-17-beta and dihydrotestosterone, however, was as effective as testosterone alone. Thus, androgens and estrogens may exert synergistic effects on levator ani muscle.

  8. Synthesis of amino acids in weight bearing and non-weight bearing leg muscles of suspended rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.

    1982-01-01

    The effect of hypokinesia (HYP) for 6 days on the de novo synthesis of glutamine (GLN) and glutamate (GLU), and of alanine was tested in isolated leg muscles of intact, adrenalectomized (ADX) and ADX cortisol-treated rats. The net synthesis of GLN and GLU was lower in soleus muscles of HYP animals of these three groups of rats. The synthesis of alanine was lowered by HYP in ADX animals and apparently raised by HYP in ADX cortisol-treated rats. No HYP effect was seen in the extensor digitorum longus (EDL) muscles of these animals. Although ADX lowered the synthesis of GLN and GLU in soleus muscles of control rats, while cortisol treatment restored this process to near normal, neither ADX nor cortisol treatment produced any effect in the HYP animals. However, effects of ADX and cortisol treatment on synthesis of GLN and GLU in EDL muscles and of alanine in both muscles seemed normal in HYP animals.

  9. Nociceptor interleukin 10 receptor 1 is critical for muscle analgesia induced by repeated bouts of eccentric exercise in the rat.

    PubMed

    Alvarez, Pedro; Bogen, Oliver; Green, Paul G; Levine, Jon D

    2017-08-01

    Delayed-onset muscle soreness is typically observed after strenuous or unaccustomed eccentric exercise. Soon after recovery, blunted muscle soreness is observed on repeated eccentric exercise, a phenomenon known as repeated bout effect (RBE). Although regular physical activity decreases muscle hyperalgesia, likely because of increased production of the anti-inflammatory cytokine interleukin-10 (IL-10) in the skeletal muscle, whether IL-10 also contributes to the antinociceptive effect of RBE is unknown. Furthermore, whether IL-10 attenuates muscle hyperalgesia by acting on muscle nociceptors remains to be established. Here, we explored the hypothesis that blunted muscle nociception observed in RBE depends on a local effect of IL-10, acting on IL-10 receptor 1 (IL-10R1) expressed by muscle nociceptors. Results show that after a second bout of eccentric exercise, rats exhibited decreased muscle hyperalgesia, indicative of RBE, and increased expression of IL-10 in the exercised gastrocnemius muscle. Although knockdown of IL-10R1 protein in nociceptors innervating the gastrocnemius muscle by intrathecal antisense oligodeoxynucleotide did not change nociceptive threshold in naive rats, it unveiled latent muscle hyperalgesia in rats submitted to eccentric exercise 12 days ago. Furthermore, antisense also prevented the reduction of muscle hyperalgesia observed after a second bout of eccentric exercise. These data indicate that recovery of nociceptive threshold after eccentric exercise and RBE-induced analgesia depend on a local effect of IL-10, acting on its canonical receptor in muscle nociceptors.

  10. Effects of alkali supplementation and vitamin D insufficiency on rat skeletal muscle.

    PubMed

    Ceglia, Lisa; Rivas, Donato A; Pojednic, Rachele M; Price, Lori Lyn; Harris, Susan S; Smith, Donald; Fielding, Roger A; Dawson-Hughes, Bess

    2013-10-01

    Data on the independent and potential combined effects of acid-base balance and vitamin D status on muscle mass and metabolism are lacking. We investigated whether alkali supplementation with potassium bicarbonate (KHCO3), with or without vitamin D3 (± VD3), alters urinary nitrogen (indicator of muscle proteolysis), muscle fiber cross-sectional area (FCSA), fiber number (FN), and anabolic (IGF-1, Akt, p70s6k) and catabolic (FOXO3a, MURF1, MAFbx) signaling pathways regulating muscle mass. Thirty-six, 20-month-old, Fischer 344/Brown-Norway rats were randomly assigned in a 2 × 2 factorial design to one of two KHCO3-supplemented diets (± VD3) or diets without KHCO3 (± VD3) for 12 weeks. Soleus, extensor digitorum longus (EDL), and plantaris muscles were harvested at 12 weeks. Independent of VD3 group, KHCO3 supplementation resulted in 35 % lower mean urinary nitrogen to creatinine ratio, 10 % higher mean type I FCSA (adjusted to muscle weight), but no statistically different mean type II FCSA (adjusted to muscle weight) or FN compared to no KHCO3. Among VD3-replete rats, phosphorylated-Akt protein expression was twofold higher in the KHCO3 compared to no KHCO3 groups, but this effect was blunted in rats on VD3-deficient diets. Neither intervention significantly affected serum or intramuscular IGF-1 expression, p70s6k or FOXO3a activation, or MURF1 and MAFbx gene expression. These findings provide support for alkali supplementation as a promising intervention to promote preservation of skeletal muscle mass, particularly in the setting of higher vitamin D status. Additional research is needed in defining the muscle biological pathways that are being targeted by alkali and vitamin D supplementation.

  11. Effects of alkali supplementation and vitamin D insufficiency on rat skeletal muscle

    PubMed Central

    Ceglia, Lisa; Rivas, Donato A.; Pojednic, Rachele M.; Price, Lori Lyn; Harris, Susan S.; Smith, Donald; Fielding, Roger A.; Dawson-Hughes, Bess

    2015-01-01

    Data on the independent and potential combined effects of acid–base balance and vitamin D status on muscle mass and metabolism are lacking. We investigated whether alkali supplementation with potassium bicarbonate (KHCO3), with or without vitamin D3 (±VD3), alters urinary nitrogen (indicator of muscle proteolysis), muscle fiber cross-sectional area (FCSA), fiber number (FN), and anabolic (IGF-1, Akt, p70s6k) and catabolic (FOXO3a, MURF1, MAFbx) signaling pathways regulating muscle mass. Thirty-six, 20-month-old, Fischer 344/Brown-Norway rats were randomly assigned in a 2 × 2 factorial design to one of two KHCO3-supplemented diets (±VD3) or diets without KHCO3 (±VD3) for 12 weeks. Soleus, extensor digitorum longus (EDL), and plantaris muscles were harvested at 12 weeks. Independent of VD3 group, KHCO3 supplementation resulted in 35 % lower mean urinary nitrogen to creatinine ratio, 10 % higher mean type I FCSA (adjusted to muscle weight), but no statistically different mean type II FCSA (adjusted to muscle weight) or FN compared to no KHCO3. Among VD3-replete rats, phosphorylated-Akt protein expression was twofold higher in the KHCO3 compared to no KHCO3 groups, but this effect was blunted in rats on VD3-deficient diets. Neither intervention significantly affected serum or intramuscular IGF-1 expression, p70s6k or FOXO3a activation, or MURF1 and MAFbx gene expression. These findings provide support for alkali supplementation as a promising intervention to promote preservation of skeletal muscle mass, particularly in the setting of higher vitamin D status. Additional research is needed in defining the muscle biological pathways that are being targeted by alkali and vitamin D supplementation. PMID:23666769

  12. Temporal changes in sarcomere lesions of rat adductor longus muscles during hindlimb reloading

    NASA Technical Reports Server (NTRS)

    Krippendorf, B. B.; Riley, D. A.

    1994-01-01

    Focal sarcomere disruptions were previously observed in adductor longus muscles of rats flown approximately two weeks aboard the Cosmos 1887 and 2044 biosatellite flights. These lesions, characterized by breakage and loss of myofilaments and Z-line streaming, resembled damage induced by unaccustomed exercise that includes eccentric contractions in which muscles lengthen as they develop tension. We hypothesized that sarcomere lesions in atrophied muscles of space flow rats were not produced in microgravity by muscle unloading but resulted from muscle reloading upon re-exposure to terrestrial gravity. To test this hypothesis, we examined temporal changes in sarcomere integrity of adductor longus muscles from rats subjected to 12.5 days of hindlimb suspension unloading and subsequent reloading by return to vivarium cages for 0, 6, 12, or 48 hours of normal weightbearing. Our ultrastructural observations suggested that muscle unloading (0 h reloading) induced myofibril misalignment associated with myofiber atrophy. Muscle reloading for 6 hours induced focal sarcomere lesions in which cross striations were abnormally widened. Such lesions were electron lucent due to extensive myofilament loss. Lesions in reloaded muscles showed rapid restructuring. By 12 hours of reloading, lesions were moderately stained foci and by 48 hours darkly stained foci in which the pattern of cross striations was indistinct at the light and electron microscopic levels. These lesions were spanned by Z-line-like electron dense filamentous material. Our findings suggest a new role for Z-line streaming in lesion restructuring: rather than an antecedent to damage, this type of Z-line streaming may be indicative of rapid, early sarcomere repair.

  13. The effect of insulin infusion and food intake on muscle protein synthesis in postabsorptive rats.

    PubMed Central

    Garlick, P J; Fern, M; Preedy, V R

    1983-01-01

    1. Insulin was infused into young male rats in the postabsorptive state. Rates of protein synthesis in skeletal muscle were determined during the final 10 min of infusion from the incorporation of label into protein after intravenous injection of a massive dose of [3H]phenylalanine. Rates of synthesis were not altered during the first 10 min of insulin infusion, but were increased significantly between 10 and 60 min. 2. Rats were infused with different amounts of insulin for 30 min. When concentrations were increased from 10 to 40 microunits/ml of plasma there was no change in muscle protein synthesis, but concentrations higher than 70 microunits/ml caused a significant stimulation. Concentrations below 10 microunits/ml, obtained by infusion of anti-insulin serum, did not depress synthesis below that found in the postabsorptive rat. 3. Infusion of glucose for 30 or 60 min led to an increase in plasma insulin to 40 microunits/ml, but this also failed to stimulate muscle protein synthesis. 4. Rates of synthesis in postabsorptive rats, even when stimulated maximally by insulin, were not so high as those in fed rats or in postabsorptive rats refed for 60 min. However, in fed and refed rats insulin concentrations were below that required to stimulate synthesis in postabsorptive animals. Despite this, infusion of large amounts of insulin into fed rats did not increase synthesis further. 5. The sensitivity of plasma glucose to insulin infusion was different from that of protein synthesis. A decrease in glucose concentration preceded the increase in synthesis and occurred at lower insulin concentrations. 6. It is concluded that changes in circulating insulin may have been partly responsible for the increase in muscle protein synthesis brought about by feeding, but that other factors must also play a part. PMID:6347182

  14. Histopathological changes in liver, kidney and muscles of pesticides exposed malnourished and diabetic rats.

    PubMed

    Benjamin, Nidhi; Kushwah, Ameeta; Sharma, R K; Katiyar, A K

    2006-03-01

    Histopathological changes were observed in liver, kidney and muscles of normal, protein-malnourished, diabetic as well as both protein-malnourished and diabetic albino rats when exposed to a mixture of monocrotophos, hexachlorocyclohexane and endosulfan at varying intervals. The examination revealed hepatotoxic, nephrotoxic and muscular necrotic effects in pesticides exposed rats. Toxicity was aggravated in protein-malnourished and diabetic animals and more so, if the animals were both diabetic and protein-malnourished.

  15. Loquat (Eriobotrya japonica) extract prevents dexamethasone-induced muscle atrophy by inhibiting the muscle degradation pathway in Sprague Dawley rats.

    PubMed

    Noh, Kyung Kyun; Chung, Ki Wung; Sung, Bokyung; Kim, Min Jo; Park, Chan Hum; Yoon, Changshin; Choi, Jae Sue; Kim, Mi Kyung; Kim, Cheol Min; Kim, Nam Deuk; Chung, Hae Young

    2015-09-01

    In the Orient, loquat (Eriobotrya japonica) extract (LE) is widely used in teas, food and folk medicines. The leaves of the loquat tree have been used for generations to treat chronic bronchitis, coughs, phlegm production, high fever and gastroenteric disorders. One of the major active components of loquat leaves is ursolic acid, which was recently investigated in the context of preventing muscle atrophy. The present study investigated the therapeutic potential of LE on dexamethasone‑induced muscle atrophy in rats. Daily intraperitoneal injections of dexamethasone caused muscle atrophy and evidence of muscle atrophy prevention by LE was demonstrated using various assays. In particular, dexamethasone‑induced grip strength loss was alleviated by LE and the increase in serum creatine kinase activity, a surrogate marker of muscle damage, caused by dexamethasone injection was reduced by LE. Western blot analysis and immunoprecipitation demonstrated that dexamethasone markedly increased the protein expression levels of muscle ring finger 1 (MuRF1), which causes the ubiquitination and degradation of myosin heavy chain (MyHC), and decreased the protein expression levels of MyHC as well as increased the ubiquitinated MyHC to MyHC ratio. However, LE reduced the dexamethasone‑induced protein expression levels of MuRF1 and ubiquitinated MyHC. Additional experiments revealed that LE supplementation inhibited the nuclear translocation of FoxO1 induced by dexamethasone. These findings suggested that LE prevented dexamethasone‑induced muscle atrophy by regulating the FoxO1 transcription factor and subsequently the expression of MuRF1.

  16. Effects of 8 wk of voluntary unloaded wheel running on K+ tolerance and excitability of soleus muscles in rat.

    PubMed

    Broch-Lips, Martin; de Paoli, Frank; Pedersen, Thomas Holm; Overgaard, Kristian; Nielsen, Ole Bækgaard

    2011-07-01

    During intense exercise, efflux of K(+) from working muscles increases extracellular K(+) ([K(+)](o)) to levels that can compromise muscle excitability and hence cause fatigue. In this context, the reduction in the exercise-induced elevation of [K(+)](o) observed after training in humans is suggested to contribute to the increased performance after training. Although a similar effect could be obtained by an increase in the tolerance of muscle to elevated [K(+)](o), this possibility has not been investigated. To examine this, isolated soleus muscles from sedentary (sedentary) rats and from rats that had voluntarily covered 13.1 ± 0.7 km/day in an unloaded running wheel for 8 wk (active) were compared. In muscles from active rats, the loss of force induced by exposure to an elevated [K(+)](o) of 9 mM was 42% lower than in muscles from sedentary rats (P < 0.001). This apparent increase in K(+) tolerance in active rats was associated with an increased excitability as evident from a 33% reduction in the electrical current needed to excite individual muscle fibers (P < 0.0009). Moreover, muscles from active rats had lower Cl(-) conductance, higher maximal rate of rise of single-fiber action potentials (AP), and higher Na(+)/K(+) pump content. When stimulated intermittently at 6.5 mM K(+), muscles from active rats displayed better endurance than muscles from sedentary rats, whereas no difference was found when the muscles were stimulated continuously at 30 or 120 Hz. We conclude that voluntary running increases muscle excitability, leading to improved tolerance to elevated [K(+)](o).

  17. Effects of stretching and disuse on amino acids in muscles of rat hind limbs

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Henriksen, Erik J.; Satarug, Soisungwan; Tischler, Marc E.

    1989-01-01

    The effects of disuse and passive stretch on the concentrations of amino acids and ammonia in the unloaded soleus muscle was investigated in hindquarter-suspended (for six days by casting one foot in dorsiflexion) tail-casted rats. For a comparison with the condition of unloading, amino acids and ammonia were also measured in shortened extensor digitorum longus in the same casted limb and in denervated leg muscles. The results obtained suggest that passive stretch diminishes some of the characteristic alterations of amino acid concentrations due to unloading. This effect of stretch is considered to be due to the maintenance of muscle tension.

  18. Changes in glucose 1,6-bisphosphate content in rat skeletal muscle during contraction.

    PubMed Central

    Bassols, A M; Carreras, J; Cussó, R

    1986-01-01

    Glucose 1,6-bisphosphate, fructose 2,6-bisphosphate, glycogen, lactate and other glycolytic metabolites were measured in rat gastrocnemius muscle, which was electrically stimulated in situ via the sciatic nerve. Both the frequency and the duration of stimulation were varied to obtain different rates of glycolysis. There was no apparent relationship between fructose 2,6-bisphosphate content and lactate accumulation in contracting muscle. In contrast, glucose 1,6-bisphosphate content increased with lactate concentration during contraction. It is suggested that the increase in glucose 1,6-bisphosphate could play a role in phosphofructokinase stimulation and in the activation of the glycolytic flux during muscle contraction. PMID:3827864

  19. [Effect of thyroidectomy on energetics of isometric muscle contraction in white rats].

    PubMed

    Soboliev, V I; Moskalets', T V

    2007-01-01

    The effect of thyroidactomia on parameters of energetics of isometric contractions of front shin--bone muscle of white rats is studied in in situ experiments. It is shown that experimental atiriosis lengthen considerably the latent period of muscle contractions (+95%) considerably reduce (in 5.5 times) the speed of it contraction in first phase of contraction act and also considerably increase the time (+37%), which necessery for developing maximum strength of contraction. Thyroidactomia with general negative influence on ergothropic characteristics of isometric muscle contraction decrease considerably the expenditure of thermal energy on maximum strength of contraction unit (-17%) or on middle isometric tension unit (-9.3%).

  20. Effects of stretching and disuse on amino acids in muscles of rat hind limbs

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Henriksen, Erik J.; Satarug, Soisungwan; Tischler, Marc E.

    1989-01-01

    The effects of disuse and passive stretch on the concentrations of amino acids and ammonia in the unloaded soleus muscle was investigated in hindquarter-suspended (for six days by casting one foot in dorsiflexion) tail-casted rats. For a comparison with the condition of unloading, amino acids and ammonia were also measured in shortened extensor digitorum longus in the same casted limb and in denervated leg muscles. The results obtained suggest that passive stretch diminishes some of the characteristic alterations of amino acid concentrations due to unloading. This effect of stretch is considered to be due to the maintenance of muscle tension.

  1. Statin or fibrate chronic treatment modifies the proteomic profile of rat skeletal muscle.

    PubMed

    Camerino, Giulia Maria; Pellegrino, Maria Antonietta; Brocca, Lorenza; Digennaro, Claudio; Camerino, Diana Conte; Pierno, Sabata; Bottinelli, Roberto

    2011-04-15

    Statins and fibrates can cause myopathy. To further understand the causes of the damage we performed a proteome analysis in fast-twitch skeletal muscle of rats chronically treated with different hypolipidemic drugs. The proteomic maps were obtained from extensor digitorum longus (EDL) muscles of rats treated for 2-months with 10mg/kg atorvastatin, 20 mg/kg fluvastatin, 60 mg/kg fenofibrate and control rats. The proteins differentially expressed were identified by mass spectrometry and further analyzed by immunoblot analysis. We found a significant modification in 40 out of 417 total spots analyzed in atorvastatin treated rats, 15 out of 436 total spots in fluvastatin treated rats and 21 out of 439 total spots in fenofibrate treated rats in comparison to controls. All treatments induced a general tendency to a down-regulation of protein expression; in particular, atorvastatin affected the protein pattern more extensively with respect to the other treatments. Energy production systems, both oxidative and glycolytic enzymes and creatine kinase, were down-regulated following atorvastatin administration, whereas fenofibrate determined mostly alterations in glycolytic enzymes and creatine kinase, oxidative enzymes being relatively spared. Additionally, all treatments resulted in some modifications of proteins involved in cellular defenses against oxidative stress, such as heat shock proteins, and of myofibrillar proteins. These results were confirmed by immunoblot analysis. In conclusions, the proteomic analysis showed that either statin or fibrate administration can modify the expression of proteins essential for skeletal muscle function suggesting potential mechanisms for statin myopathy.

  2. Muscle fiber-type changes induced by botulinum toxin injection in the rat larynx.

    PubMed

    Inagi, K; Connor, N P; Schultz, E; Ford, C N; Cook, C H; Heisey, D M

    1999-06-01

    This study examined muscle fiber-type alterations after single or multiple botulinum toxin (BT) injections to better understand possible morphologic changes induced by therapeutic BT injections in patients with spasmodic dysphonia. Muscle fiber staining was accomplished in rat intrinsic laryngeal muscles with antibodies to specific myosin heavy chains. Results indicated that the typical baseline distributions of type II muscle fibers (ie, types IIa, IIb, IIx, and IIL) were altered by BT injection, while no change was observed in type I fibers. Embryonic fibers were observed only along the needle insertion site at 7 days post BT injection. Although inferences from these animal data to human neuromuscular function must be made with caution, our findings provide insight into the possible cellular and molecular changes characterizing BT-injected muscles.

  3. Effects of magnetic stimulation on oxidative stress and skeletal muscle regeneration induced by mepivacaine in rat.

    PubMed

    Jimena, I; Tasset, I; López-Martos, R; Rubio, A J; Luque, E; Montilla, P; Peña, J; Túnez, I

    2009-01-01

    We investigated the effect of magnetic field stimulation (MS) on oxidative damage and skeletal muscle injury prompted by mepivacaine injection in the anterior tibial muscle of Wistar rats. The effects of mepivacaine and MS on oxidative stress were evaluated by lipid peroxidation, GSH levels and catalase activity. Muscle regeneration was analyzed by haematoxylin-eosin stained, NADH-TR histochemical reaction, desmin immunostaining as well as by morphometric parameters such as fibers density and fiber area were evaluated. Our data revealed that mepivacaine induced oxidative stress, that MS prevents the harmful effects induced by mepivacaine and that it facilitates the regeneration process of skeletal muscle. In conclusion, the results show the ability of MS to modify skeletal muscle response to mepivacaine.

  4. Hypogravity-induced atrophy of rat soleus and extensor digitorum longus muscles

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ellis, S.; Slocum, G. R.; Satyanarayana, T.; Bain, J. L.; Sedlak, F. R.

    1987-01-01

    Prolonged exposure of humans to hypogravity causes weakening of their skeletal muscles. This problem was studied in rats exposed to hypogravity for 7 days aboard Spacelab 3. Hindlimb muscles were harvested 12-16 hours postflight for histochemical, biochemical, and ultrastructural analyses. The majority of the soleus and extensor digitorum longus fibers exhibited simple cell shrinkage. However, approximately 1% of the fibers in flight soleus muscles appeared necrotic. Flight muscle fibers showed increased glycogen, lower subsarcolemmal staining for mitochondrial enzymes, and fewer subsarcolemmal mitochondria. During atrophy, myofibrils were eroded by multiple focal losses of myofilaments; lysosomal autophagy was not evident. Tripeptidylaminopeptidase and calcium-activated protease activities of flight soleus fibers were significantly increased, implying a role in myofibril breakdown. Simple fiber atrophy appears to account for muscle weakening during spaceflight, but fiber necrosis is also a contributing factor.

  5. De novo synthesis of purine nucleotides in different fiber types of rat skeletal muscle

    SciTech Connect

    Tullson, P.C.; John-Alder, H.; Hood, D.A.; Terjung, R.L.

    1986-03-01

    The contribution of de novo purine nucleotide synthesis to nucleotide metabolism in skeletal muscles is not known. The authors have determined rates of de novo synthesis in soleus (slow-twitch red), red gastrocnemius (fast-twitch red), and white gastrocnemius (fast-twitch white) using the perfused rat hindquarter. /sup 14/C glycine incorporation into ATP was linear after 1 and 2 hours of perfusion with 0.2 mM added glycine. The intracellular (I) and extracellular (E) specific activity of /sup 14/C glycine was determined by HPLC of phenylisothiocyanate derivatives of neutralized PCA extracts. The rates of de novo synthesis when expressed relative to muscle ATP content show slow and fast-twitch red muscles to be similar and about twice as great as fast-twitch white muscles. This could represent a greater turnover of the adenine nucleotide pool in more oxidative red muscle types.

  6. Hypogravity-induced atrophy of rat soleus and extensor digitorum longus muscles

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ellis, S.; Slocum, G. R.; Satyanarayana, T.; Bain, J. L.; Sedlak, F. R.

    1987-01-01

    Prolonged exposure of humans to hypogravity causes weakening of their skeletal muscles. This problem was studied in rats exposed to hypogravity for 7 days aboard Spacelab 3. Hindlimb muscles were harvested 12-16 hours postflight for histochemical, biochemical, and ultrastructural analyses. The majority of the soleus and extensor digitorum longus fibers exhibited simple cell shrinkage. However, approximately 1% of the fibers in flight soleus muscles appeared necrotic. Flight muscle fibers showed increased glycogen, lower subsarcolemmal staining for mitochondrial enzymes, and fewer subsarcolemmal mitochondria. During atrophy, myofibrils were eroded by multiple focal losses of myofilaments; lysosomal autophagy was not evident. Tripeptidylaminopeptidase and calcium-activated protease activities of flight soleus fibers were significantly increased, implying a role in myofibril breakdown. Simple fiber atrophy appears to account for muscle weakening during spaceflight, but fiber necrosis is also a contributing factor.

  7. Effect of inactivity and passive stretch on protein turnover in phasic and postural rat muscles

    NASA Technical Reports Server (NTRS)

    Loughna, P.; Goldspink, G.; Goldspink, D. F.

    1986-01-01

    Muscle atrophy in humans can occur during prolonged bed rest, plaster cast immobilization, and space flight. In the present study, the suspension model used by Musacchia et al. (1983) is employed to investigate changes in protein synthesis and degradation in fast-twitch phasic (extensor digitorum longus) and slow-twitch postural (soleus) muscles in the rat, following hypokinesia and hypodynamia. In addition, the use of passive stretch was examined as a means of preventing atrophy. The obtained results suggest that the mechanisms controlling the processes of protein synthesis and protein breakdown during muscle disuse atrophy may be independent of each other. It appears, however, that the muscle atrophy due to hypokinesia and hypodynamia can be temporarily prevented by passively stretching a muscle.

  8. Proteomic and bioinformatic analyses of spinal cord injury-induced skeletal muscle atrophy in rats

    PubMed Central

    WEI, ZHI-JIAN; ZHOU, XIAN-HU; FAN, BAO-YOU; LIN, WEI; REN, YI-MING; FENG, SHI-QING

    2016-01-01

    Spinal cord injury (SCI) may result in skeletal muscle atrophy. Identifying diagnostic biomarkers and effective targets for treatment is an important challenge in clinical work. The aim of the present study is to elucidate potential biomarkers and therapeutic targets for SCI-induced muscle atrophy (SIMA) using proteomic and bioinformatic analyses. The protein samples from rat soleus muscle were collected at different time points following SCI injury and separated by two-dimensional gel electrophoresis and compared with the sham group. The identities of these protein spots were analyzed by mass spectrometry (MS). MS demonstrated that 20 proteins associated with muscle atrophy were differentially expressed. Bioinformatic analyses indicated that SIMA changed the expression of proteins associated with cellular, developmental, immune system and metabolic processes, biological adhesion and localization. The results of the present study may be beneficial in understanding the molecular mechanisms of SIMA and elucidating potential biomarkers and targets for the treatment of muscle atrophy. PMID:27177391

  9. Effect of inactivity and passive stretch on protein turnover in phasic and postural rat muscles

    NASA Technical Reports Server (NTRS)

    Loughna, P.; Goldspink, G.; Goldspink, D. F.

    1986-01-01

    Muscle atrophy in humans can occur during prolonged bed rest, plaster cast immobilization, and space flight. In the present study, the suspension model used by Musacchia et al. (1983) is employed to investigate changes in protein synthesis and degradation in fast-twitch phasic (extensor digitorum longus) and slow-twitch postural (soleus) muscles in the rat, following hypokinesia and hypodynamia. In addition, the use of passive stretch was examined as a means of preventing atrophy. The obtained results suggest that the mechanisms controlling the processes of protein synthesis and protein breakdown during muscle disuse atrophy may be independent of each other. It appears, however, that the muscle atrophy due to hypokinesia and hypodynamia can be temporarily prevented by passively stretching a muscle.

  10. Quantifying skeletal muscle recovery in a rat injury model using ultrasound imaging.

    PubMed

    Leineweber, Matt; Gao, Yingxin; Stouffer, James R

    2015-01-21

    Monitoring skeletal muscle health during recovery or degeneration is of great interest both clinically and in research settings. This type of monitoring requires health measurements be taken at multiple time points. Contraction strength is a commonly used metric for quantifying muscle health, but it requires invasive in vitro or in situ procedures that may further damage the tissue. Ultrasound imaging can be used to visualize muscle damage, and semi-quantitative grading scales have been shown to be effective at characterizing abnormalities. Using an established functional testing procedure in a rat model as a baseline measurement of muscle strength, we show that ultrasound imaging combined with a semi-quantitative grading scale can be used to monitor recovery after contusion injury. Although additional work is needed to refine the imaging and grading procedures, ultrasound promises a fast and non-invasive alternative to functional testing for characterizing skeletal muscle health.

  11. Quantitation and immunocytochemical localization of ubiquitin conjugates within rat red and white skeletal muscles.

    PubMed

    Riley, D A; Bain, J L; Ellis, S; Haas, A L

    1988-06-01

    We employed solid-phase immunochemical methods to probe the dynamics of ubiquitin pools within selected rat skeletal muscles. The total ubiquitin content of red muscles was greater than that of white muscles, even though the fractional conjugation was similar for both types of muscle. The specificity for conjugated ubiquitin in solid-phase applications, previously demonstrated for an affinity-purified antibody against SDS-denatured ubiquitin, was retained when used as a probe for ubiquitin-protein adducts in tissue sections. Immunohistochemical localization revealed that differences in ubiquitin pools derived from the relative content of red (oxidative) vs white (glycolytic) fibers, with the former exhibiting a higher content of ubiquitin conjugates. Subsequent immunogold labeling demonstrated statistically significant enhanced localization of ubiquitin conjugates to the Z-lines in both red and white muscle fiber types.

  12. A novel insulin sensitizer (S15511) enhances insulin-stimulated glucose uptake in rat skeletal muscles.

    PubMed

    Jessen, N; Selmer Buhl, E; Pold, R; Schmitz, O; Lund, S

    2008-04-01

    Type 2 diabetes is preceded by the presence of skeletal muscle insulin resistance, and drugs that increase insulin sensitivity in skeletal muscle prevent the disease. S15511 is an original compound with demonstrated effects on insulin sensitivity in animal models of insulin resistance. However, the mechanisms behind the insulin-sensitizing effect of S15511 are unknown. The aim of our study was to explore whether S15511 improves insulin sensitivity in skeletal muscles. Insulin sensitivity was assessed in skeletal muscles from S15511-treated rats by measuring intracellular insulin-signaling activity and insulin-stimulated glucose transport in isolated muscles. In addition, GLUT4 expression and glycogen levels were assessed after treatment. S15511 treatment was associated with an increase in insulin-stimulated glucose transport in type IIb fibers, while type I fibers were unaffected. The enhanced glucose transport was mirrored by a fiber type-specific increase in GLUT4 expression, while no improvement in insulin-signaling activity was observed. S15511 is a novel insulin sensitizer that is capable of improving glucose homeostasis in nondiabetic rats. The compound enhances skeletal muscle insulin sensitivity and specifically targets type IIb muscle fibers by increasing GLUT4 expression. Together these data show S15511 to be a potentially promising new drug in the treatment and prevention of type 2 diabetes.

  13. Exercise training, glucose transporters, and glucose transport in rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Rodnick, K. J.; Henriksen, E. J.; James, D. E.; Holloszy, J. O.

    1992-01-01

    It was previously found that voluntary wheel running induces an increase in the insulin-sensitive glucose transporter, i.e., the GLUT4 isoform, in rat plantaris muscle (K. J. Rodnick, J. O. Holloszy, C. E. Mondon, and D. E. James. Diabetes 39: 1425-1429, 1990). The present study was undertaken to determine whether 1) the increase in muscle GLUT4 protein is associated with an increase in maximally stimulated glucose transport activity, 2) a conversion of type IIb to type IIa or type I muscle fibers plays a role in the increase in GLUT4 protein, and 3) an increase in the GLUT1 isoform is a component of the adaptation of muscle to endurance exercise. Five weeks of voluntary wheel running that resulted in a 33% increase in citrate synthase activity induced a 50% increase in GLUT4 protein in epitrochlearis muscles of female Sprague-Dawley rats. The rate of 2-deoxy-glucose transport maximally stimulated with insulin or insulin plus contractions was increased approximately 40% (P less than 0.05). There was no change in muscle fiber type composition, evaluated by myosin ATPase staining, in the epitrochlearis. There was also no change in GLUT1 protein concentration. We conclude that an increase in GLUT4, but not of GLUT1 protein, is a component of the adaptive response of muscle to endurance exercise and that the increase in GLUT4 protein is associated with an increased capacity for glucose transport.

  14. Somatotopy of the neurons innervating the cricothyroid, posterior cricoarytenoid, and thyroarytenoid muscles of the rat's larynx.

    PubMed

    Hernández-Morato, Ignacio; Pascual-Font, Arán; Ramírez, Carlos; Matarranz-Echeverría, Jorge; McHanwell, Stephen; Vázquez, Teresa; Sañudo, Jose R; Valderrama-Canales, Francisco J

    2013-03-01

    Neurons innervating the intrinsic muscles of the larynx are located within the nucleus ambiguus but the precise distribution of the neurons for each muscle is still a matter for debate. The purpose of this study was to finely determine the position and the number of the neurons innervating the intrinsic laryngeal muscles cricothyroid, posterior cricoarytenoid, and thyroarytenoid in the rat. The study was carried out in a total of 28 Sprague Dawley rats. The B subunit of the cholera toxin was employed as a retrograde tracer to determine the locations, within the nucleus ambiguus, of the neurons of these intrinsic laryngeal muscles following intramuscular injection. The labelled neurons were found ipsilaterally in the nucleus ambiguus grouped in discrete populations with reproducible rostrocaudal and dorsoventral locations among the sample of animals. Neurons innervating the cricothyroid muscle were located the most rostral of the three populations, neurons innervating the posterior cricoarytenoid were found more caudal, though there was a region of rostrocaudal overlap between these two populations. The most caudal were the neurons innervating the thyroarytenoid muscle, presenting a variable degree of overlap with the posterior cricoarytenoid muscle. The mean number (±SD) of labelled neurons was found to be 41 ± 9 for the cricothyroid, 39 ± 10 for the posterior cricoarytenoid and 33 ± 12 for the thyroarytenoid.

  15. Microcirculatory effects of melatonin in rat skeletal muscle after prolonged ischemia.

    PubMed

    Wang, Wei Z; Fang, Xin-Hua; Stephenson, Linda L; Baynosa, Richard C; Khiabani, Kayvan T; Zamboni, William A

    2005-08-01

    The purpose of this study was to determine microcirculatory effects and response of nitric oxide synthase (NOS) to melatonin in skeletal muscle after prolonged ischemia. A vascular pedicle isolated rat cremaster muscle model was used. Each muscle underwent 4 hr of zero-flow warm ischemia followed by 2 hr of reperfusion. Melatonin (10 mg/kg) or saline as a vehicle was given by intraperitoneal injection at 30 min prior to reperfusion and the same dose was given immediately after reperfusion. After reperfusion, microcirculation measurements including arteriole diameter, capillary perfusion and endothelial-dependent and -independent vasodilatation were performed. The cremaster muscle was then harvested to measure endothelial NOS (eNOS) and inducible NOS (iNOS) gene expression and enzyme activity. Three groups of rats were used: sham-ischemia/reperfusion (I/R), vehicle + I/R and melatonin + I/R. As compared with vehicle + I/R group, administration of melatonin significantly enhanced arteriole diameter, improved capillary perfusion, and attenuated endothelial dysfunction in the microcirculation of skeletal muscle after 4 hr warm ischemia. Prolonged warm ischemia followed by reperfusion significantly depressed eNOS gene expression and constitutive NOS activity and enhanced iNOS gene expression. Administration of melatonin did not significantly alter NOS gene expression or activity in skeletal muscle after prolonged ischemia and reperfusion. Melatonin provided a significant microvascular protection from reperfusion injury in skeletal muscle. This protection is probably attributable to the free radical scavenging effect of melatonin, but not to its anti-inflammatory effect.

  16. A method to test contractility of the supraspinatus muscle in mouse, rat, and rabbit

    PubMed Central

    Valencia, Ana P.; Iyer, Shama R.; Pratt, Stephen J. P.; Gilotra, Mohit N.

    2015-01-01

    The rotator cuff (RTC) muscles not only generate movement but also provide important shoulder joint stability. RTC tears, particularly in the supraspinatus muscle, are a common clinical problem. Despite some biological healing after RTC repair, persistent problems include poor functional outcomes with high retear rates after surgical repair. Animal models allow further exploration of the sequela of RTC injury such as fibrosis, inflammation, and fatty infiltration, but there are few options regarding contractility for mouse, rat, and rabbit. Histological findings can provide a “direct measure” of damage, but the most comprehensive measure of the overall health of the muscle is contractile force. However, information regarding normal supraspinatus size and contractile function is scarce. Animal models provide the means to compare muscle histology, imaging, and contractility within individual muscles in various models of injury and disease, but to date, most testing of animal contractile force has been limited primarily to hindlimb muscles. Here, we describe an in vivo method to assess contractility of the supraspinatus muscle and describe differences in methods and representative outcomes for mouse, rat, and rabbit. PMID:26586911

  17. Exercise training, glucose transporters, and glucose transport in rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Rodnick, K. J.; Henriksen, E. J.; James, D. E.; Holloszy, J. O.

    1992-01-01

    It was previously found that voluntary wheel running induces an increase in the insulin-sensitive glucose transporter, i.e., the GLUT4 isoform, in rat plantaris muscle (K. J. Rodnick, J. O. Holloszy, C. E. Mondon, and D. E. James. Diabetes 39: 1425-1429, 1990). The present study was undertaken to determine whether 1) the increase in muscle GLUT4 protein is associated with an increase in maximally stimulated glucose transport activity, 2) a conversion of type IIb to type IIa or type I muscle fibers plays a role in the increase in GLUT4 protein, and 3) an increase in the GLUT1 isoform is a component of the adaptation of muscle to endurance exercise. Five weeks of voluntary wheel running that resulted in a 33% increase in citrate synthase activity induced a 50% increase in GLUT4 protein in epitrochlearis muscles of female Sprague-Dawley rats. The rate of 2-deoxy-glucose transport maximally stimulated with insulin or insulin plus contractions was increased approximately 40% (P less than 0.05). There was no change in muscle fiber type composition, evaluated by myosin ATPase staining, in the epitrochlearis. There was also no change in GLUT1 protein concentration. We conclude that an increase in GLUT4, but not of GLUT1 protein, is a component of the adaptive response of muscle to endurance exercise and that the increase in GLUT4 protein is associated with an increased capacity for glucose transport.

  18. Fenofibrate administration to arthritic rats increases adiponectin and leptin and prevents oxidative muscle wasting

    PubMed Central

    Castillero, Estíbaliz; Martín, Ana Isabel; Nieto-Bona, Maria Paz; Fernández-Galaz, Carmen; López-Menduiña, María; Villanúa, María Ángeles; López-Calderón, Asunción

    2012-01-01

    Chronic inflammation induces skeletal muscle wasting and cachexia. In arthritic rats, fenofibrate, a peroxisome proliferator-activated receptor α (PPARα (PPARA)) agonist, reduces wasting of gastrocnemius, a predominantly glycolytic muscle, by decreasing atrogenes and myostatin. Considering that fenofibrate increases fatty acid oxidation, the aim of this study was to elucidate whether fenofibrate is able to prevent the effect of arthritis on serum adipokines and on soleus, a type I muscle in which oxidative metabolism is the dominant source of energy. Arthritis was induced by injection of Freund's adjuvant. Four days after the injection, control and arthritic rats were gavaged daily with fenofibrate (300 mg/kg bw) or vehicle over 12 days. Arthritis decreased serum leptin, adiponectin, and insulin (P<0.01) but not resistin levels. In arthritic rats, fenofibrate administration increased serum concentrations of leptin and adiponectin. Arthritis decreased soleus weight, cross-sectional area, fiber size, and its Ppar α mRNA expression. In arthritic rats, fenofibrate increased soleus weight, fiber size, and Ppar α expression and prevented the increase in Murf1 mRNA. Fenofibrate decreased myostatin, whereas it increased MyoD (Myod1) and myogenin expressions in the soleus of control and arthritic rats. These data suggest that in oxidative muscle, fenofibrate treatment is able to prevent arthritis-induced muscle wasting by decreasing Murf1 and myostatin expression and also by increasing the myogenic regulatory factors, MyoD and myogenin. Taking into account the beneficial action of adiponectin on muscle wasting and the correlation between adiponectin and soleus mass, part of the anticachectic action of fenofibrate may be mediated through stimulation of adiponectin secretion. PMID:23781298

  19. Expression Profile of Nerve Growth Factor after Muscle Incision in the Rat

    PubMed Central

    Wu, Chaoran; Erickson, Mark A.; Xu, Jun; Wild, Kenneth D.; Brennan, Timothy J.

    2009-01-01

    Background Previous studies have demonstrated that nerve growth factor (NGF) is an important mediator of pathologic pain. Many studies have focused on cutaneous mechanisms for NGF-induced hyperalgesia; few have examined its contribution in deeper tissues like muscle. This study examined pain behaviors and the expression of NGF in incised hind paw flexor digitorum brevis muscle. Methods Adult Sprague-Dawley rats were pretreated with anti-NGF peptibody and underwent skin or skin plus deep fascia and muscle incision. Guarding pain behaviors were measured. Muscle NGF messenger RNA (mRNA) was measured by real time polymerase chain reaction. Changes in NGF protein expression were measured using western blot, enzyme-linked immunoabsorbent assay and immunohistochemistry. In situ hybridization for NGF mRNA was also performed. Results Pretreatment with anti-NGF peptibody (100 mg/kg) decreased the guarding behavior caused by deep fascia and muscle incision. Muscle NGF mRNA increased abruptly 2 h after incision and was the same as control by postoperative day 1. NGF protein increased from 4 h after incision, and was sustained for several days. NGF was localized in many calcitonin gene related peptide positive axons, few N52 positive axons, but not isolectin B4 positive axons in incised muscle. The sources of NGF mRNA included keratinocytes in epidermis and fibroblasts in deeper tissues. Conclusion Fibroblasts adjacent to the injury are sources of NGF in incised muscle. NGF is upregulated by incision of muscle and contributes to guarding pain behavior. PMID:19104181

  20. Mild Hyperbaric Oxygen Improves Decreased Oxidative Capacity of Spinal Motoneurons Innervating the Soleus Muscle of Rats with Type 2 Diabetes.

    PubMed

    Takemura, Ai; Ishihara, Akihiko

    2016-09-01

    Rats with type 2 diabetes exhibit decreased oxidative capacity, such as reduced oxidative enzyme activity, low-intensity staining for oxidative enzymes in fibers, and no high-oxidative type IIA fibers, in the skeletal muscle, especially in the soleus muscle. In contrast, there are no data available concerning the oxidative capacity of spinal motoneurons innervating skeletal muscle of rats with type 2 diabetes. This study examined the oxidative capacity of motoneurons innervating the soleus muscle of non-obese rats with type 2 diabetes. In addition, this study examined the effects of mild hyperbaric oxygen at 1.25 atmospheres absolute with 36 % oxygen for 10 weeks on the oxidative capacity of motoneurons innervating the soleus muscle because mild hyperbaric oxygen improves the decreased oxidative capacity of the soleus muscle in non-obese rats with type 2 diabetes. Spinal motoneurons innervating the soleus muscle were identified using nuclear yellow, a retrograde fluorescent neuronal tracer. Thereafter, the cell body sizes and succinate dehydrogenase activity of identified motoneurons were analyzed. Decreased succinate dehydrogenase activity of small-sized alpha motoneurons innervating the soleus muscle was observed in rats with type 2 diabetes. The decreased succinate dehydrogenase activity of these motoneurons was improved by mild hyperbaric oxygen. Therefore, we concluded that rats with type 2 diabetes have decreased oxidative capacity in motoneurons innervating the soleus muscle and this decreased oxidative capacity is improved by mild hyperbaric oxygen.

  1. The Effect of Exercise Training on Skeletal Muscle Glucose Transorter Isoform GLUT4 Concentration in the Obese Zucker Rat

    DTIC Science & Technology

    1991-05-01

    both . It was suggested the improved muscle insulin resistance of the obese Zucker rat after exercise training was...Katz, A.L. Exercise and diet reduce muscle insulin resistance in obese Zucker rat. Am. J. Physiol. 252: (Endocrinol. Metab. 14): E299-E305, 1986...insulin resistance in the obese Zucker rat is not due to a reduced GLUT4 concentration. However, the improved insulin resistance seen with exercise

  2. The Impact of Muscle Disuse on Muscle Atrophy in Severely Burned Rats

    DTIC Science & Technology

    2010-12-01

    Herrick RE, Baldwin KM. Effect of anabolic steroids on skeletal muscle mass during hindlimb suspension. J Appl Physiol 1987;63(5):2122–2127. [PubMed...physical activity also shows advantages in enhancing and improving recovery from muscle catabolism after severe burn [49]. Similarly, both anabolic

  3. Exercise training increases protein O-GlcNAcylation in rat skeletal muscle.

    PubMed

    Hortemo, Kristin Halvorsen; Lunde, Per Kristian; Anonsen, Jan Haug; Kvaløy, Heidi; Munkvik, Morten; Rehn, Tommy Aune; Sjaastad, Ivar; Lunde, Ida Gjervold; Aronsen, Jan Magnus; Sejersted, Ole M

    2016-09-01

    Protein O-GlcNAcylation has emerged as an important intracellular signaling system with both physiological and pathophysiological functions, but the role of protein O-GlcNAcylation in skeletal muscle remains elusive. In this study, we tested the hypothesis that protein O-GlcNAcylation is a dynamic signaling system in skeletal muscle in exercise and disease. Immunoblotting showed different protein O-GlcNAcylation pattern in the prototypical slow twitch soleus muscle compared to fast twitch EDL from rats, with greater O-GlcNAcylation level in soleus associated with higher expression of the modulating enzymes O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), and glutamine fructose-6-phosphate amidotransferase isoforms 1 and 2 (GFAT1, GFAT2). Six weeks of exercise training by treadmill running, but not an acute exercise bout, increased protein O-GlcNAcylation in rat soleus and EDL There was a striking increase in O-GlcNAcylation of cytoplasmic proteins ~50 kDa in size that judged from mass spectrometry analysis could represent O-GlcNAcylation of one or more key metabolic enzymes. This suggests that cytoplasmic O-GlcNAc signaling is part of the training response. In contrast to exercise training, postinfarction heart failure (HF) in rats and humans did not affect skeletal muscle O-GlcNAcylation level, indicating that aberrant O-GlcNAcylation cannot explain the skeletal muscle dysfunction in HF Human skeletal muscle displayed extensive protein O-GlcNAcylation that by large mirrored the fiber-type-related O-GlcNAcylation pattern in rats, suggesting O-GlcNAcylation as an important signaling system also in human skeletal muscle. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  4. Comparison of soleus muscles from rats exposed to microgravity for 10 versus 14 days

    NASA Technical Reports Server (NTRS)

    Staron, R. S.; Kraemer, W. J.; Hikida, R. S.; Reed, D. W.; Murray, J. D.; Campos, G. E.; Gordon, S. E.

    1998-01-01

    The effects of two different duration space-flights on the extent of atrophy, fiber type composition, and myosin heavy chain (MHC) content of rat soleus muscles were compared. Adult male Fisher rats (n=12) were aboard flight STS-57 and exposed to 10 days of microgravity and adult ovariectomized female Spraque-Dawley rats (n=12) were aboard flight STS-62 for 14 days. Soleus muscles were bilaterally removed from the flight and control animals and frozen for subsequent analyses. Muscle wet weights, fiber types (I, IC, IIC, and IIA), cross-sectional area, and MHC content were determined. Although a significant difference was found between the soleus wet weights of the two ground-based control groups, they were similar with regard to MHC content (ca 90% MHCI and ca 10% MHCIIa) and fiber type composition. Unloading of the muscles caused slow-to-fast transformations which included a decrease in the percentage of type I fibers and MHCI, an increase in fibers classified as type IC, and the expression of two fast myosin heavy chains not found in the control rat soleus muscles (MHCIId and MHCIIb). Although the amount of atrophy (ca 26%) and the extent of slow-to-fast transformation (decrease in the percentage of MHCI from 90% to 82.5%) in the soleus muscles were similar between the two spaceflights, the percentages of the fast MHCs differed. After 14 days of spaceflight, the percentage of MHCIIa was significantly lower and the percentages of MHCIId and MHCIIb were significantly higher than the corresponding MHC content of the soleus muscles from the 10-day animals. Indeed, MHCIId became the predominant fast MHC after 14 days in space. These data suggest fast-to-faster transformations continued during the longer spaceflight.

  5. Comparison of soleus muscles from rats exposed to microgravity for 10 versus 14 days

    NASA Technical Reports Server (NTRS)

    Staron, R. S.; Kraemer, W. J.; Hikida, R. S.; Reed, D. W.; Murray, J. D.; Campos, G. E.; Gordon, S. E.

    1998-01-01

    The effects of two different duration space-flights on the extent of atrophy, fiber type composition, and myosin heavy chain (MHC) content of rat soleus muscles were compared. Adult male Fisher rats (n=12) were aboard flight STS-57 and exposed to 10 days of microgravity and adult ovariectomized female Spraque-Dawley rats (n=12) were aboard flight STS-62 for 14 days. Soleus muscles were bilaterally removed from the flight and control animals and frozen for subsequent analyses. Muscle wet weights, fiber types (I, IC, IIC, and IIA), cross-sectional area, and MHC content were determined. Although a significant difference was found between the soleus wet weights of the two ground-based control groups, they were similar with regard to MHC content (ca 90% MHCI and ca 10% MHCIIa) and fiber type composition. Unloading of the muscles caused slow-to-fast transformations which included a decrease in the percentage of type I fibers and MHCI, an increase in fibers classified as type IC, and the expression of two fast myosin heavy chains not found in the control rat soleus muscles (MHCIId and MHCIIb). Although the amount of atrophy (ca 26%) and the extent of slow-to-fast transformation (decrease in the percentage of MHCI from 90% to 82.5%) in the soleus muscles were similar between the two spaceflights, the percentages of the fast MHCs differed. After 14 days of spaceflight, the percentage of MHCIIa was significantly lower and the percentages of MHCIId and MHCIIb were significantly higher than the corresponding MHC content of the soleus muscles from the 10-day animals. Indeed, MHCIId became the predominant fast MHC after 14 days in space. These data suggest fast-to-faster transformations continued during the longer spaceflight.

  6. Metabolomic profiling reveals severe skeletal muscle group-specific perturbations of metabolism in aged FBN rats.

    PubMed

    Garvey, Sean M; Dugle, Janis E; Kennedy, Adam D; McDunn, Jonathan E; Kline, William; Guo, Lining; Guttridge, Denis C; Pereira, Suzette L; Edens, Neile K

    2014-06-01

    Mammalian skeletal muscles exhibit age-related adaptive and pathological remodeling. Several muscles in particular undergo progressive atrophy and degeneration beyond median lifespan. To better understand myocellular responses to aging, we used semi-quantitative global metabolomic profiling to characterize trends in metabolic changes between 15-month-old adult and 32-month-old aged Fischer 344 × Brown Norway (FBN) male rats. The FBN rat gastrocnemius muscle exhibits age-dependent atrophy, whereas the soleus muscle, up until 32 months, exhibits markedly fewer signs of atrophy. Both gastrocnemius and soleus muscles were analyzed, as well as plasma and urine. Compared to adult gastrocnemius, aged gastrocnemius showed evidence of reduced glycolytic metabolism, including accumulation of glycolytic, glycogenolytic, and pentose phosphate pathway intermediates. Pyruvate was elevated with age, yet levels of citrate and nicotinamide adenine dinucleotide were reduced, consistent with mitochondrial abnormalities. Indicative of muscle atrophy, 3-methylhistidine and free amino acids were elevated in aged gastrocnemius. The monounsaturated fatty acids oleate, cis-vaccenate, and palmitoleate also increased in aged gastrocnemius, suggesting altered lipid metabolism. Compared to gastrocnemius, aged soleus exhibited far fewer changes in carbohydrate metabolism, but did show reductions in several glycolytic intermediates, fumarate, malate, and flavin adenine dinucleotide. Plasma biochemicals showing the largest age-related increases included glycocholate, heme, 1,5-anhydroglucitol, 1-palmitoleoyl-glycerophosphocholine, palmitoleate, and creatine. These changes suggest reduced insulin sensitivity in aged FBN rats. Altogether, these data highlight skeletal muscle group-specific perturbations of glucose and lipid metabolism consistent with mitochondrial dysfunction in aged FBN rats.

  7. Interactive effects of growth hormone and exercise on muscle mass in suspended rats

    NASA Technical Reports Server (NTRS)

    Grindeland, Richard E.; Roy, Roland R.; Edgerton, V. Reggie; Grossman, Elena J.; Mukku, Venkat R.; Jiang, Bian; Pierotti, David J.; Rudolph, Ingrid

    1994-01-01

    Measures to attenuate muscle atrophy in rats in response to simulated microgravity (hindlimb suspension (HS)) have been only partially successful. In the present study, hypophysectomized rats were in HS for 7 days, and the effects of recombinant human growth hormone (GH), exercise (Ex), or GH+Ex on the weights, protein concentrations, and fiber cross-sectional areas (CSAs) of hindlimb muscles were determined. The weights of four extensor muscles, i.e., the soleus (Sol), medial (MG) and lateral (LG) gastrocnemius, and plantaris (Plt), and one adductor, i.e., the adductor longus (AL), were decreased by 10-22% after HS. Fiber CSAs were decreased by 34% in the Sol and by 1 17% in the MG after HS. In contrast, two flexors, i.e., the tibialis anterior (TA) and extensor digitorum longus (EDL), did not atrophy. In HS rats, GH treatment alone maintained the weights of the fast extensors (MG, LG, Plt) and flexors (TA, EDL) at or above those of control rats. This effect was not observed in the slow extensor (Sol) or AL. Exercise had no significant effect on the weight of any muscle in HS rats. A combination of GH and Ex treatments yielded a significant increase in the weights of the fast extensors and in the CSA of both fast and slow fibers of the MG and significantly increased Sol weight and CSA of the slow fibers of the Sol. The AL was not responsive to either GH or Ex treatments. Protein concentrations of the Sol and MG were higher only in the Sol of Ex and GH+Ex rats. These results suggest that while GH treatment or intermittent high intensity exercise alone have a minimal effect in maintaining the mass of unloaded muscle, there is a strong interactive effect of these two treatments.

  8. Tail muscle parvalbumin content is decreased in chronic sacral spinal cord injured rats with spasticity.

    PubMed

    Harris, R Luke; Bennett, David J; Levine, Max A; Putman, Charles T

    2011-12-01

    In rats, chronic sacral spinal isolation eliminates both descending and afferent inputs to motoneurons supplying the segmental tail muscles, eliminating daily tail muscle EMG activity. In contrast, chronic sacral spinal cord transection preserves afferent inputs, causing tail muscle spasticity that generates quantitatively normal daily EMG. Compared with normal rats, rats with spinal isolation and transection/spasticity provide a chronic model of progressive neuromuscular injury. Using normal, spinal isolated and spastic rats, we characterized the activity dependence of calcium-handling protein expression for parvalbumin, fast sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA1) and slow SERCA2. As these proteins may influence fatigue resistance, we also assayed the activities of oxidative (citrate synthase; CS) and glycolytic enzymes (glyceraldehyde phosphate dehydrogenase; GAPDH). We hypothesized that, compared with normal rats, chronic isolation would cause decreased parvalbumin, SERCA1 and SERCA2 expression and CS and GAPDH activities. We further hypothesized that chronic spasticity would promote recovery of parvalbumin, SERCA1 and SERCA2 expression and of CS and GAPDH activities. Parvalbumin, SERCA1 and SERCA2 were quantified with Western blotting. Citrate synthase and GAPDH activities were quantified photometrically. Compared with normal rats, spinal isolation caused large decreases in parvalbumin (95%), SERCA1 (70%) and SERCA2 (68%). Compared with spinal isolation, spasticity promoted parvalbumin recovery (ninefold increase) and a SERCA2-to-SERCA1 transformation (84% increase in the ratio of SERCA1 to SERCA2). Compared with normal values, CS and GAPDH activities decreased in isolated and spastic muscles. In conclusion, with complete paralysis due to spinal isolation, parvalbumin expression is nearly eliminated, but with muscle spasticity after spinal cord transection, parvalbumin expression partly recovers. Additionally, spasticity after transection causes a

  9. Melatonin prevents mitochondrial dysfunction and insulin resistance in rat skeletal muscle.

    PubMed

    Teodoro, Bruno G; Baraldi, Flavia G; Sampaio, Igor H; Bomfim, Lucas H M; Queiroz, André L; Passos, Madla A; Carneiro, Everardo M; Alberici, Luciane C; Gomis, Ramon; Amaral, Fernanda G; Cipolla-Neto, José; Araújo, Michel B; Lima, Tanes; Akira Uyemura, Sérgio; Silveira, Leonardo R; Vieira, Elaine

    2014-09-01

    Melatonin has a number of beneficial metabolic actions and reduced levels of melatonin may contribute to type 2 diabetes. The present study investigated the metabolic pathways involved in the effects of melatonin on mitochondrial function and insulin resistance in rat skeletal muscle. The effect of melatonin was tested both in vitro in isolated rats skeletal muscle cells and in vivo using pinealectomized rats (PNX). Insulin resistance was induced in vitro by treating primary rat skeletal muscle cells with palmitic acid for 24 hr. Insulin-stimulated glucose uptake was reduced by palmitic acid followed by decreased phosphorylation of AKT which was prevented my melatonin. Palmitic acid reduced mitochondrial respiration, genes involved in mitochondrial biogenesis and the levels of tricarboxylic acid cycle intermediates whereas melatonin counteracted all these parameters in insulin-resistant cells. Melatonin treatment increases CAMKII and p-CREB but had no effect on p-AMPK. Silencing of CREB protein by siRNA reduced mitochondrial respiration mimicking the effect of palmitic acid and prevented melatonin-induced increase in p-AKT in palmitic acid-treated cells. PNX rats exhibited mild glucose intolerance, decreased energy expenditure and decreased p-AKT, mitochondrial respiration, and p-CREB and PGC-1 alpha levels in skeletal muscle which were restored by melatonin treatment in PNX rats. In summary, we showed that melatonin could prevent mitochondrial dysfunction and insulin resistance via activation of CREB-PGC-1 alpha pathway. Thus, the present work shows that melatonin play an important role in skeletal muscle mitochondrial function which could explain some of the beneficial effects of melatonin in insulin resistance states.

  10. Biochemical and histochemical adaptations of skeletal muscle to rat suspension

    NASA Technical Reports Server (NTRS)

    Templeton, G. H.

    1984-01-01

    The influence of rat suspension on soleus disuse and atrophy was investigated to measure changes in fiber area and number and to determine if suspension elicited changes in lysosomal protease activity and rate of calcium uptake by the sarcoplasmic reticulum. The infuence of rat suspension on myosin light chain phosphorylation and succinate dehydrogenase activity are determined.

  11. Biochemical and histochemical adaptations of skeletal muscle to rat suspension

    NASA Technical Reports Server (NTRS)

    Templeton, G. H.

    1984-01-01

    The influence of rat suspension on soleus disuse and atrophy was investigated to measure changes in fiber area and number and to determine if suspension elicited changes in lysosomal protease activity and rate of calcium uptake by the sarcoplasmic reticulum. The infuence of rat suspension on myosin light chain phosphorylation and succinate dehydrogenase activity are determined.

  12. Systemic response to thermal injury in rats. Accelerated protein degradation and altered glucose utilization in muscle.

    PubMed Central

    Clark, A S; Kelly, R A; Mitch, W E

    1984-01-01

    Negative nitrogen balance and increased oxygen consumption after thermal injury in humans and experimental animals is related to the extent of the burn. To determine whether defective muscle metabolism is restricted to the region of injury, we studied protein and glucose metabolism in forelimb muscles of rats 48 h after a scalding injury of their hindquarters. This injury increased muscle protein degradation (PD) from 140 +/- 5 to 225 +/- 5 nmol tyrosine/g per h, but did not alter protein synthesis. Muscle lactate release was increased greater than 70%, even though plasma catecholamines and muscle cyclic AMP were not increased. Insulin dose-response studies revealed that the burn decreased the responsiveness of muscle glycogen synthesis to insulin but did not alter its sensitivity to insulin. Rates of net glycolysis and glucose oxidation were increased and substrate cycling of fructose-6-phosphate was decreased at all levels of insulin. The burn-induced increase in protein and glucose catabolism was not mediated by adrenal hormones, since they persisted despite adrenalectomy. Muscle PGE2 production was not increased by the burn and inhibition of prostaglandin synthesis by indomethacin did not inhibit proteolysis. The increase in PD required lysosomal proteolysis, since inhibition of cathepsin B with EP475 reduced PD. Insulin reduced PD 20% and the effects of EP475 and insulin were additive, reducing PD 41%. An inhibitor of muscle PD, alpha-ketoisocaproate, reduced burn-induced proteolysis 28% and lactate release 56%. The rate of PD in muscle of burned and unburned rats was correlated with the percentage of glucose uptake that was directed into lactate production (r = +0.82, P less than 0.01). Thus, a major thermal injury causes hypercatabolism of protein and glucose in muscle that is distant from the injury, and these responses may be linked to a single metabolic defect. PMID:6470144

  13. Relationship between membrane Cl- conductance and contractile endurance in isolated rat muscles.

    PubMed

    de Paoli, Frank Vincenzo; Broch-Lips, Martin; Pedersen, Thomas Holm; Nielsen, Ole Bækgaard

    2013-01-15

    Resting skeletal muscle fibres have a large membrane Cl(-) conductance (G(Cl)) that dampens their excitability. Recently, however, muscle activity was shown to induce PKC-mediated reduction in G(Cl) in rat muscles of 40-90%. To examine the physiological significance of this PKC-mediated G(Cl) reduction for the function of muscles, this study explored effects of G(Cl) reductions on contractile endurance in isolated rat muscles. Contractile endurance was assessed from the ability of muscle to maintain force during prolonged stimulation under conditions when G(Cl) was manipulated by: (i) inhibition of PKC, (ii) reduction of solution Cl(-) or (iii) inhibition of ClC-1 Cl(-) channels using 9-anthracene-carboxylic acid (9-AC). Experiments showed that contractile endurance was optimally preserved by reductions in G(Cl) similar to what occurs in active muscle. Contrastingly, further G(Cl) reductions compromised the endurance. The experiments thus show a biphasic relationship between G(Cl) and contractile endurance in which partial G(Cl) reduction improves endurance while further G(Cl) reduction compromises endurance. Intracellular recordings of trains of action potentials suggest that this biphasic dependency of contractile endurance on G(Cl) reflects that lowering G(Cl) enhances muscle excitability but low G(Cl) also increases the depolarisation of muscle fibres during excitation and reduces their ability to re-accumulate K(+) lost during excitation. If G(Cl) becomes very low, the latter actions dominate causing reduced endurance. It is concluded that the PKC-mediated ClC-1 channel inhibition in active muscle reduces G(Cl) to a level that optimises contractile endurance during intense exercise.

  14. Relationship between membrane Cl− conductance and contractile endurance in isolated rat muscles

    PubMed Central

    de Paoli, Frank Vincenzo; Broch-Lips, Martin; Pedersen, Thomas Holm; Nielsen, Ole Bækgaard

    2013-01-01

    Resting skeletal muscle fibres have a large membrane Cl− conductance (GCl) that dampens their excitability. Recently, however, muscle activity was shown to induce PKC-mediated reduction in GCl in rat muscles of 40–90%. To examine the physiological significance of this PKC-mediated GCl reduction for the function of muscles, this study explored effects of GCl reductions on contractile endurance in isolated rat muscles. Contractile endurance was assessed from the ability of muscle to maintain force during prolonged stimulation under conditions when GCl was manipulated by: (i) inhibition of PKC, (ii) reduction of solution Cl− or (iii) inhibition of ClC-1 Cl− channels using 9-anthracene-carboxylic acid (9-AC). Experiments showed that contractile endurance was optimally preserved by reductions in GCl similar to what occurs in active muscle. Contrastingly, further GCl reductions compromised the endurance. The experiments thus show a biphasic relationship between GCl and contractile endurance in which partial GCl reduction improves endurance while further GCl reduction compromises endurance. Intracellular recordings of trains of action potentials suggest that this biphasic dependency of contractile endurance on GCl reflects that lowering GCl enhances muscle excitability but low GCl also increases the depolarisation of muscle fibres during excitation and reduces their ability to re-accumulate K+ lost during excitation. If GCl becomes very low, the latter actions dominate causing reduced endurance. It is concluded that the PKC-mediated ClC-1 channel inhibition in active muscle reduces GCl to a level that optimises contractile endurance during intense exercise. PMID:23045345

  15. Effects of hindlimb unweighting and aging on rat semimembranosus muscle and myosin.

    PubMed

    Zhong, Sheng; Lowe, Dawn A; Thompson, LaDora V

    2006-09-01

    We tested the hypothesis that lower specific force (force/cross-sectional area) generated by type II fibers from hindlimb-unweighted rats resulted from structural changes in myosin (i.e., a change in the ratio of myosin cross bridges in the weak- and strong-binding state during contraction). In addition, we determined whether those changes were age dependent. Permeabilized semimembranosus muscle fibers from young adult and aged rats, some of which were hindlimb unweighted for 3 wk, were studied for Ca(2+)-activated force generation and maximal unloaded shortening velocity. Fibers were also spin labeled specifically at myosin Cys707 to assess the structural distribution of myosin during maximal isometric contraction using electron paramagnetic resonance spectroscopy. Myosin heavy chain isoform (MHC) expression and the ratio of MHC to actin were evaluated in each fiber. Fibers from the unweighted rats generated 34% less specific force than fibers from weight-bearing rats (P < 0.001), independent of age. Electron paramagnetic resonance analyses showed that the fraction of myosin heads in the strong-binding structural state during contraction was 11% lower in fibers from the unweighted rats (P = 0.019), independent of age. More fibers from unweighted rats coexpressed MHC IIB-IIX compared with fibers from weight-bearing rats (P = 0.049). Unweighting induced a slowing of maximal unloaded shortening velocity and an increase in the ratio of MHC to actin in fibers from young rats only. These data indicate that altered myosin structural distribution during contraction and a preferential loss of actin contribute to unweighting-induced muscle weakness. Furthermore, the age of the rat has an influence on some parameters of changes in muscle contractility that are induced by unweighting.

  16. Aging affects passive stiffness and spindle function of the rat soleus muscle.

    PubMed

    Rosant, Cédric; Nagel, Marie-Danielle; Pérot, Chantal

    2007-04-01

    Aging affects many motor functions, notably the spinal stretch reflexes and muscle spindle sensitivity. Spindle activation also depends on the elastic properties of the structures linked to the proprioceptive receptors. We have calculated a spindle efficacy index, SEI, for old rats. This index relates the spindle sensitivity, deduced from electroneurograms recording (ENG), to the passive stiffness of the muscle. Spindle sensitivity and passive incremental stiffness were calculated during ramp and hold stretches imposed on pseudo-isolated soleus muscles of control rats (aged 4 months, n=12) and old rats (aged 24 months, n=16). SEI were calculated for the dynamic and static phases of ramp (1-80 mm/s) and for hold (0.5-2mm) stretches imposed at two reference lengths: length threshold for spindle afferents discharges, L(n) (neurogram length) and slack length, L(s). The passive incremental stiffness was calculated from the peak and steady values of passive tension, measured under the stretch conditions used for the ENG recordings, and taking into account the muscle cross-sectional area. The pseudo-isolated soleus muscles were also stretched to establish the stress-strain relationship and to calculate muscle stiffness constant. The contralateral muscle was used to count muscle spindles and spindle fibers (ATPase staining) and immunostained to identify MyHC isoforms. L(n) and L(s) lengths were not significantly different in the control group, while L(n) was significantly greater than L(s) in old muscles. Under dynamic conditions, the SEI of old muscles was the same as in controls at L(s), but it was significantly lower than in controls at L(n) due to increased passive incremental stiffness under the stretch conditions used to analyze the ENG. Under static conditions, the SEI of old muscles was significantly lower than control values at all the stretch amplitudes and threshold lengths tested, due to increased passive incremental stiffness and decreased spindle sensitivity

  17. Pregnancy-induced adaptations in intramuscular extracellular matrix of rat pelvic floor muscles.

    PubMed

    Alperin, Marianna; Kaddis, Timothy; Pichika, Rajeswari; Esparza, Mary C; Lieber, Richard L

    2016-08-01

    Birth trauma to pelvic floor muscles is a major risk factor for pelvic floor disorders. Intramuscular extracellular matrix determines muscle stiffness, supports contractile component, and shields myofibers from mechanical strain. Our goal was to determine whether pregnancy alters extracellular matrix mechanical and biochemical properties in a rat model, which may provide insights into the pathogenesis of pelvic floor muscle birth injury. To examine whether pregnancy effects were unique to pelvic floor muscles, we also studied a hind limb muscle. Passive mechanical properties of coccygeus, iliocaudalis, pubocaudalis, and tibialis anterior were compared among 3-month old Sprague-Dawley virgin, late-pregnant, and postpartum rats. Muscle tangent stiffness was calculated as the slope of the stress-sarcomere length curve between 2.5 and 4.0 μm, obtained from a stress-relaxation protocol at a bundle level. Elastin and collagen isoform concentrations were quantified by the use of enzyme-linked immunosorbent assay. Enzymatic and glycosylated collagen crosslinks were determined by high-performance liquid chromatography. Data were compared by the use of repeated-measures, 2-way analysis of variance with Tukey post-hoc testing. Correlations between mechanical and biochemical parameters were assessed by linear regressions. Significance was set to P < .05. Results are reported as mean ± SEM. Pregnancy significantly increased stiffness in coccygeus (P < .05) and pubocaudalis (P < .0001) relative to virgin controls, with no change in iliocaudalis. Postpartum, pelvic floor muscle stiffness did not differ from virgins (P > .3). A substantial increase in collagen V in coccygeus and pubocaudalis was observed in late-pregnant, compared with virgin, animals, (P < .001). Enzymatic crosslinks decreased in coccygeus (P < .0001) and pubocaudalis (P < .02) in pregnancy, whereas glycosylated crosslinks were significantly elevated in late-pregnant rats in all pelvic floor muscles (P

  18. Aging in Rats Differentially Affects Markers of Transcriptional and Translational Capacity in Soleus and Plantaris Muscle

    PubMed Central

    Mobley, Christopher B.; Mumford, Petey W.; Kephart, Wesley C.; Haun, Cody T.; Holland, Angelia M.; Beck, Darren T.; Martin, Jeffrey S.; Young, Kaelin C.; Anderson, Richard G.; Patel, Romil K.; Langston, Gillis L.; Lowery, Ryan P.; Wilson, Jacob M.; Roberts, Michael D.

    2017-01-01

    Alterations in transcriptional and translational mechanisms occur during skeletal muscle aging and such changes may contribute to age-related atrophy. Herein, we examined markers related to global transcriptional output (i.e., myonuclear number, total mRNA and RNA pol II levels), translational efficiency [i.e., eukaryotic initiation and elongation factor levels and muscle protein synthesis (MPS) levels] and translational capacity (ribosome density) in the slow-twitch soleus and fast-twitch plantaris muscles of male Fischer 344 rats aged 3, 6, 12, 18, and 24 months (n = 9–10 per group). We also examined alterations in markers of proteolysis and oxidative stress in these muscles (i.e., 20S proteasome activity, poly-ubiquinated protein levels and 4-HNE levels). Notable plantaris muscle observations included: (a) fiber cross sectional area (CSA) was 59% (p < 0.05) and 48% (p < 0.05) greater in 12 month vs. 3 month and 24 month rats, respectively, suggesting a peak lifetime value near 12 months and age-related atrophy by 24 months, (b) MPS levels were greatest in 18 month rats (p < 0.05) despite the onset of atrophy, (c) while regulators of ribosome biogenesis [c-Myc and upstream binding factor (UBF) protein levels] generally increased with age, ribosome density linearly decreased from 3 months of age and RNA polymerase (Pol) I protein levels were lowest in 24 month rats, and d) 20S proteasome activity was robustly up-regulated in 6 and 24 month rats (p < 0.05). Notable soleus muscle observations included: (a) fiber CSA was greatest in 6 month rats and was maintained in older age groups, and (b) 20S proteasome activity was modestly but significantly greater in 24 month vs. 3/12/18 month rats (p < 0.05), and (c) total mRNA levels (suggestive of transcriptional output) trended downward in older rats despite non-significant between-group differences in myonuclear number and/or RNA Pol II protein levels. Collectively, these findings suggest that plantaris, not soleus

  19. Skeletal Muscle Satellite Cell Activation Following Cutaneous Burn in Rats

    DTIC Science & Technology

    2013-12-01

    mechanisms of long-term muscle atrophy. # 2012 Elsevier Ltd and ISBI. All rights reserved. * Corresponding author at: US Army Institute of Surgical...understanding of the impact of burn on satellite cell functionality will allow us to identify the cellular mechanisms of long-term muscle atrophy after...fibers. J Biophys Biochem Cytol 1961;9:493–5. [12] Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 2001;91

  20. Regional blood flow and skeletal muscle energy status in endotoxemic rats

    SciTech Connect

    Jepson, M.M.; Cox, M.; Bates, P.C.; Rothwell, N.J.; Stock, M.J.; Cady, E.B.; Millward, D.J.

    1987-05-01

    Endotoxins induce muscle wasting in part as a result of depressed protein synthesis. To investigate whether these changes reflect impaired energy transduction, blood flow, O/sub 2/ extraction, and high-energy phosphates in muscle and whole-body O/sub 2/ consumption (Vo/sub 2/) have been measured. Vo/sub 2/ was measured for 6 h after an initial sublethal dose of endotoxin (Escherichia coli lipopolysaccharide 0.3 mg/100 g body wt sc) or saline and during 6 h after a second dose 24 h later. In fed or fasted rats, Vo/sub 2/ was either increased or better maintained after endotoxin. In anesthetized fed rats 3-4 h after the second dose of endotoxin Vo/sub 2/ was increased, and this was accompanied by increased blood flow measured by /sup 57/Co-labelled microspheres to liver (hepatic arterial supply), kidney, and perirenal brown adipose tissue and a 57 and 64% decrease in flow to back and hindlimb muscle, respectively, with no change in any other organ. Hindlimb arteriovenous O/sub 2/ was unchanged, indicating markedly decreased aerobic metabolism in muscle, and the contribution of the hindlimb to whole-body Vo/sub 2/ decreased by 46%. Adenosine 5'-triphosphate levels in muscle were unchanged in endotoxin-treated rats, and this was confirmed by topical nuclear magnetic resonance spectroscopy, which also showed muscle pH to be unchanged. These results show that, although there is decreased blood flow and aerobic oxidation in muscle, adenosine 5'-triphosphate availability does not appear to be compromised so that the endotoxin-induced muscle catabolism and decreased protein synthesis must reflex some other mechanism.