Altered auditory function in rats exposed to hypergravic fields
NASA Technical Reports Server (NTRS)
Jones, T. A.; Hoffman, L.; Horowitz, J. M.
1982-01-01
The effect of an orthodynamic hypergravic field of 6 G on the brainstem auditory projections was studied in rats. The brain temperature and EEG activity were recorded in the rats during 6 G orthodynamic acceleration and auditory brainstem responses were used to monitor auditory function. Results show that all animals exhibited auditory brainstem responses which indicated impaired conduction and transmission of brainstem auditory signals during the exposure to the 6 G acceleration field. Significant increases in central conduction time were observed for peaks 3N, 4P, 4N, and 5P (N = negative, P = positive), while the absolute latency values for these same peaks were also significantly increased. It is concluded that these results, along with those for fields below 4 G (Jones and Horowitz, 1981), indicate that impaired function proceeds in a rostro-caudal progression as field strength is increased.
Zucki, Fernanda; Morata, Thais C; Duarte, Josilene L; Ferreira, Maria Cecília F; Salgado, Manoel H; Alvarenga, Kátia F
The literature has reported the association between lead and auditory effects, based on clinical and experimental studies. However, there is no consensus regarding the effects of lead in the auditory system, or its correlation with the concentration of the metal in the blood. To investigate the maturation state of the auditory system, specifically the auditory nerve and brainstem, in rats exposed to lead acetate and supplemented with ferrous sulfate. 30 weanling male rats (Rattus norvegicus, Wistar) were distributed into six groups of five animals each and exposed to one of two concentrations of lead acetate (100 or 400mg/L) and supplemented with ferrous sulfate (20mg/kg). The maturation state of the auditory nerve and brainstem was analyzed using Brainstem Auditory Evoked Potential before and after lead exposure. The concentration of lead in blood and brainstem was analyzed using Inductively Coupled Plasma-Mass Spectrometry. We verified that the concentration of Pb in blood and in brainstem presented a high correlation (r=0.951; p<0.0001). Both concentrations of lead acetate affected the maturation state of the auditory system, being the maturation slower in the regions corresponding to portion of the auditory nerve (wave I) and cochlear nuclei (wave II). The ferrous sulfate supplementation reduced significantly the concentration of lead in blood and brainstem for the group exposed to the lowest concentration of lead (100mg/L), but not for the group exposed to the higher concentration (400mg/L). This study indicate that the lead acetate can have deleterious effects on the maturation of the auditory nerve and brainstem (cochlear nucleus region), as detected by the Brainstem Auditory Evoked Potentials, and the ferrous sulphate can partially amend this effect. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. All rights reserved.
Gessele, Nikodemus; Garcia-Pino, Elisabet; Omerbašić, Damir; Park, Thomas J; Koch, Ursula
2016-01-01
Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals.
Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Cholinergic transmission is involved in auditory structures in the periphery and the brainstem and is altered following chlorpyrifos exposure. This study e...
Auditory responses to electric and infrared neural stimulation of the rat cochlear nucleus.
Verma, Rohit U; Guex, Amélie A; Hancock, Kenneth E; Durakovic, Nedim; McKay, Colette M; Slama, Michaël C C; Brown, M Christian; Lee, Daniel J
2014-04-01
In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses (ABRs). Pulsed INS, delivered to the surface of the cochlear nucleus via an optical fiber, evoked broad neural activation in the inferior colliculus. Strongest responses were recorded when the fiber was placed at lateral positions on the cochlear nucleus, close to the temporal bone. INS-evoked ABRs were multipeaked but longer in latency than those for electric stimulation; they resembled the responses to acoustic stimulation. After deafening, responses to electric stimulation persisted, whereas those to INS disappeared, consistent with a reported "optophonic" effect, a laser-induced acoustic artifact. Thus, for deaf individuals who use the auditory brainstem implant, INS alone did not appear promising as a new approach. Copyright © 2014 Elsevier B.V. All rights reserved.
Auditory Responses to Electric and Infrared Neural Stimulation of the Rat Cochlear Nucleus
Verma, Rohit; Guex, Amelie A.; Hancock, Kenneth E.; Durakovic, Nedim; McKay, Colette M.; Slama, Michaël C. C.; Brown, M. Christian; Lee, Daniel J.
2014-01-01
In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses (ABRs). Pulsed INS, delivered to the surface of the cochlear nucleus via an optical fiber, evoked broad neural activation in the inferior colliculus. Strongest responses were recorded when the fiber was placed at lateral positions on the cochlear nucleus, close to the temporal bone. INS-evoked ABRs were multipeaked but longer in latency than those for electric stimulation; they resembled the responses to acoustic stimulation. After deafening, responses to electric stimulation persisted, whereas those to INS disappeared, consistent with a reported “optophonic” effect, a laser-induced acoustic artifact. Thus, for deaf individuals who use the auditory brainstem implant, INS alone did not appear promising as a new approach. PMID:24508368
Arakaki, Xianghong; Galbraith, Gary; Pikov, Victor; Fonteh, Alfred N.; Harrington, Michael G.
2014-01-01
Migraine symptoms often include auditory discomfort. Nitroglycerin (NTG)-triggered central sensitization (CS) provides a rodent model of migraine, but auditory brainstem pathways have not yet been studied in this example. Our objective was to examine brainstem auditory evoked potentials (BAEPs) in rat CS as a measure of possible auditory abnormalities. We used four subdermal electrodes to record horizontal (h) and vertical (v) dipole channel BAEPs before and after injection of NTG or saline. We measured the peak latencies (PLs), interpeak latencies (IPLs), and amplitudes for detectable waveforms evoked by 8, 16, or 32 KHz auditory stimulation. At 8 KHz stimulation, vertical channel positive PLs of waves 4, 5, and 6 (vP4, vP5, and vP6), and related IPLs from earlier negative or positive peaks (vN1-vP4, vN1-vP5, vN1-vP6; vP3-vP4, vP3-vP6) increased significantly 2 hours after NTG injection compared to the saline group. However, BAEP peak amplitudes at all frequencies, PLs and IPLs from the horizontal channel at all frequencies, and the vertical channel stimulated at 16 and 32 KHz showed no significant/consistent change. For the first time in the rat CS model, we show that BAEP PLs and IPLs ranging from putative bilateral medial superior olivary nuclei (P4) to the more rostral structures such as the medial geniculate body (P6) were prolonged 2 hours after NTG administration. These BAEP alterations could reflect changes in neurotransmitters and/or hypoperfusion in the midbrain. The similarity of our results with previous human studies further validates the rodent CS model for future migraine research. PMID:24680742
Acute hyperbilirubinaemia induces presynaptic neurodegeneration at a central glutamatergic synapse
Haustein, Martin D; Read, David J; Steinert, Joern R; Pilati, Nadia; Dinsdale, David; Forsythe, Ian D
2010-01-01
There is a well-established link between hyperbilirubinaemia and hearing loss in paediatrics, but the cellular mechanisms have not been elucidated. Here we used the Gunn rat model of hyperbilirubinaemia to investigate bilirubin-induced hearing loss. In vivo auditory brainstem responses revealed that Gunn rats have severe auditory deficits within 18 h of exposure to high bilirubin levels. Using an in vitro preparation of the auditory brainstem from these rats, extracellular multi-electrode array recording from the medial nucleus of the trapezoid body (MNTB) showed longer latency and decreased amplitude of evoked field potentials following bilirubin exposure, suggestive of transmission failure at this synaptic relay. Whole-cell patch-clamp recordings confirmed that the electrophysiological properties of the postsynaptic MNTB neurons were unaffected by bilirubin, with no change in action potential waveforms or current–voltage relationships. However, stimulation of the trapezoid body was unable to elicit large calyceal EPSCs in MNTB neurons of hyperbilirubinaemic rats, indicative of damage at a presynaptic site. Multi-photon imaging of anterograde-labelled calyceal projections revealed axonal staining and presynaptic profiles around MNTB principal neuron somata. Following induction of hyperbilirubinaemia the giant synapses were largely destroyed. Electron microscopy confirmed loss of presynaptic calyceal terminals and supported the electrophysiological evidence for healthy postsynaptic neurons. MNTB neurons express high levels of neuronal nitric oxide synthase (nNOS). Nitric oxide has been implicated in mechanisms of bilirubin toxicity elsewhere in the brain, and antagonism of nNOS by 7-nitroindazole protected hearing during bilirubin exposure. We conclude that bilirubin-induced deafness is caused by degeneration of excitatory synaptic terminals in the auditory brainstem. PMID:20937712
Acute hyperbilirubinaemia induces presynaptic neurodegeneration at a central glutamatergic synapse.
Haustein, Martin D; Read, David J; Steinert, Joern R; Pilati, Nadia; Dinsdale, David; Forsythe, Ian D
2010-12-01
There is a well-established link between hyperbilirubinaemia and hearing loss in paediatrics, but the cellular mechanisms have not been elucidated. Here we used the Gunn rat model of hyperbilirubinaemia to investigate bilirubin-induced hearing loss. In vivo auditory brainstem responses revealed that Gunn rats have severe auditory deficits within 18 h of exposure to high bilirubin levels. Using an in vitro preparation of the auditory brainstem from these rats, extracellular multi-electrode array recording from the medial nucleus of the trapezoid body (MNTB) showed longer latency and decreased amplitude of evoked field potentials following bilirubin exposure, suggestive of transmission failure at this synaptic relay. Whole-cell patch-clamp recordings confirmed that the electrophysiological properties of the postsynaptic MNTB neurons were unaffected by bilirubin, with no change in action potential waveforms or current-voltage relationships. However, stimulation of the trapezoid body was unable to elicit large calyceal EPSCs in MNTB neurons of hyperbilirubinaemic rats, indicative of damage at a presynaptic site. Multi-photon imaging of anterograde-labelled calyceal projections revealed axonal staining and presynaptic profiles around MNTB principal neuron somata. Following induction of hyperbilirubinaemia the giant synapses were largely destroyed. Electron microscopy confirmed loss of presynaptic calyceal terminals and supported the electrophysiological evidence for healthy postsynaptic neurons. MNTB neurons express high levels of neuronal nitric oxide synthase (nNOS). Nitric oxide has been implicated in mechanisms of bilirubin toxicity elsewhere in the brain, and antagonism of nNOS by 7-nitroindazole protected hearing during bilirubin exposure. We conclude that bilirubin-induced deafness is caused by degeneration of excitatory synaptic terminals in the auditory brainstem.
NASA Technical Reports Server (NTRS)
Hoffman, L. F.; Horowitz, J. M.
1984-01-01
The effect of decreasing of brain temperature on the brainstem auditory evoked response (BAER) in rats was investigated. Voltage pulses, applied to a piezoelectric crystal attached to the skull, were used to evoke stimuli in the auditory system by means of bone-conducted vibrations. The responses were recorded at 37 C and 34 C brain temperatures. The peaks of the BAER recorded at 34 C were delayed in comparison with the peaks from the 37 C wave, and the later peaks were more delayed than the earlier peaks. These results indicate that an increase in the interpeak latency occurs as the brain temperature is decreased. Preliminary experiments, in which responses to brief angular acceleration were used to measure the brainstem vestibular evoked response (BVER), have also indicated increases in the interpeak latency in response to the lowering of brain temperature.
Herr, David W; Graff, Jaimie E; Moser, Virginia C; Crofton, Kevin M; Little, Peter B; Morgan, Daniel L; Sills, Robert C
2007-01-01
Carbonyl sulfide (COS), a chemical listed by the original Clean Air Act, was tested for neurotoxicity by a National Institute of Environmental Health Sciences/National Toxicology Program and U.S. Environmental Protection Agency collaborative investigation. Previous studies demonstrated that COS produced cortical and brainstem lesions and altered auditory neurophysiological responses to click stimuli. This paper reports the results of expanded neurophysiological examinations that were an integral part of the previously published experiments (Morgan et al., 2004, Toxicol. Appl. Pharmacol. 200, 131-145; Sills et al., 2004, Toxicol. Pathol. 32, 1-10). Fisher 334N rats were exposed to 0, 200, 300, or 400 ppm COS for 6 h/day, 5 days/week for 12 weeks, or to 0, 300, or 400 ppm COS for 2 weeks using whole-body inhalation chambers. After treatment, the animals were studied using neurophysiological tests to examine: peripheral nerve function, somatosensory-evoked potentials (SEPs) (tail/hindlimb and facial cortical regions), brainstem auditory-evoked responses (BAERs), and visual flash-evoked potentials (2-week study). Additionally, the animals exposed for 2 weeks were examined using a functional observational battery (FOB) and response modification audiometry (RMA). Peripheral nerve function was not altered for any exposure scenario. Likewise, amplitudes of SEPs recorded from the cerebellum were not altered by treatment with COS. In contrast, amplitudes and latencies of SEPs recorded from cortical areas were altered after 12-week exposure to 400 ppm COS. The SEP waveforms were changed to a greater extent after forelimb stimulation than tail stimulation in the 2-week study. The most consistent findings were decreased amplitudes of BAER peaks associated with brainstem regions after exposure to 400 ppm COS. Additional BAER peaks were affected after 12 weeks, compared to 2 weeks of treatment, indicating that additional regions of the brainstem were damaged with longer exposures. The changes in BAERs were observed in the absence of altered auditory responsiveness in FOB or RMA. This series of experiments demonstrates that COS produces changes in brainstem auditory and cortical somatosensory neurophysiological responses that correlate with previously described histopathological damage.
Carbonyl sulfide (COS) is a chemical intermediate in the production of pesticides and herbicides, a metabolite of carbon disulfide, a byproduct of the combustion of organic material, and a naturally occurring compound. COS was included in a Toxic Substances Control Act request fo...
Glavaski-Joksimovic, Aleksandra; Thonabulsombat, Charoensri; Wendt, Malin; Eriksson, Mikael; Palmgren, Björn; Jonsson, Anna; Olivius, Petri
2008-03-01
The poor regeneration capability of the mammalian hearing organ has initiated different approaches to enhance its functionality after injury. To evaluate a potential neuronal repair paradigm in the inner ear and cochlear nerve we have previously used embryonic neuronal tissue and stem cells for implantation in vivo and in vitro. At present, we have used in vitro techniques to study the survival and differentiation of Sox1-green fluorescent protein (GFP) mouse embryonic stem (ES) cells as a monoculture or as a coculture with rat auditory brainstem slices. For the coculture, 300 microm-thick brainstem slices encompassing the cochlear nucleus and cochlear nerve were prepared from postnatal SD rats. The slices were propagated using the membrane interface method and the cochlear nuclei were prelabeled with DiI. After some days in culture a suspension of Sox1 cells was deposited next to the brainstem slice. Following deposition Sox1 cells migrated toward the brainstem and onto the cochlear nucleus. GFP was not detectable in undifferentiated ES cells but became evident during neural differentiation. Up to 2 weeks after transplantation the cocultures were fixed. The undifferentiated cells were evaluated with antibodies against progenitor cells whereas the differentiated cells were determined with neuronal and glial markers. The morphological and immunohistochemical data indicated that Sox1 cells in monoculture differentiated into a higher percentage of glial cells than neurons. However, when a coculture was used a significantly lower percentage of Sox1 cells differentiated into glial cells. The results demonstrate that a coculture of Sox1 cells and auditory brainstem present a useful model to study stem cell differentiation.
Çeliker, Metin; Özgür, Abdulkadir; Tümkaya, Levent; Terzi, Suat; Yılmaz, Mustafa; Kalkan, Yıldıray; Erdoğan, Ender
The use of mobile phones has become widespread in recent years. Although beneficial from the communication viewpoint, the electromagnetic fields generated by mobile phones may cause unwanted biological changes in the human body. In this study, we aimed to evaluate the effects of 2100MHz Global System for Mobile communication (GSM-like) electromagnetic field, generated by an electromagnetic fields generator, on the auditory system of rats by using electrophysiological, histopathologic and immunohistochemical methods. Fourteen adult Wistar albino rats were included in the study. The rats were divided randomly into two groups of seven rats each. The study group was exposed continuously for 30days to a 2100MHz electromagnetic fields with a signal level (power) of 5.4dBm (3.47mW) to simulate the talk mode on a mobile phone. The control group was not exposed to the aforementioned electromagnetic fields. After 30days, the Auditory Brainstem Responses of both groups were recorded and the rats were sacrificed. The cochlear nuclei were evaluated by histopathologic and immunohistochemical methods. The Auditory Brainstem Responses records of the two groups did not differ significantly. The histopathologic analysis showed increased degeneration signs in the study group (p=0.007). In addition, immunohistochemical analysis revealed increased apoptotic index in the study group compared to that in the control group (p=0.002). The results support that long-term exposure to a GSM-like 2100MHz electromagnetic fields causes an increase in neuronal degeneration and apoptosis in the auditory system. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Ito, Tetsufumi; Bishop, Deborah C.; Oliver, Douglas L.
2011-01-01
Glutamate is the main excitatory neurotransmitter in the auditory system, but associations between glutamatergic neuronal populations and the distribution of their synaptic terminations have been difficult. Different subsets of glutamatergic terminals employ one of three vesicular glutamate transporters (VGLUT) to load synaptic vesicles. Recently, VGLUT1 and VGLUT2 terminals were found to have different patterns of organization in the inferior colliculus suggesting that there are different types of glutamatergic neurons in the brainstem auditory system with projections to the colliculus. To positively identify VGLUT-expressing neurons as well as inhibitory neurons in the auditory brainstem, we used in situ hybridization to identify the mRNA for VGLUT1, VGLUT2, and VIAAT (the vesicular inhibitory amino acid transporter used by GABAergic and glycinergic terminals). Similar expression patterns were found in subsets of glutamatergic and inhibitory neurons in the auditory brainstem and thalamus of adult rats and mice. Four patterns of gene expression were seen in individual neurons. 1) VGLUT2 expressed alone was the prevalent pattern. 2) VGLUT1 co-expressed with VGLUT2 was seen in scattered neurons in most nuclei but was common in the medial geniculate body and ventral cochlear nucleus. 3) VGLUT1 expressed alone was found only in granule cells. 4) VIAAT expression was common in most nuclei but dominated in some. These data show that the expression of the VGLUT1/2 and VIAAT genes can identify different subsets of auditory neurons. This may facilitate the identification of different components in auditory circuits. PMID:21165977
Efficacy of Human Adipose Tissue-Derived Stem Cells on Neonatal Bilirubin Encephalopathy in Rats.
Amini, Naser; Vousooghi, Nasim; Hadjighassem, Mahmoudreza; Bakhtiyari, Mehrdad; Mousavi, Neda; Safakheil, Hosein; Jafari, Leila; Sarveazad, Arash; Yari, Abazar; Ramezani, Sara; Faghihi, Faezeh; Joghataei, Mohammad Taghi
2016-05-01
Kernicterus is a neurological syndrome associated with indirect bilirubin accumulation and damages to the basal ganglia, cerebellum and brain stem nuclei particularly the cochlear nucleus. To mimic haemolysis in a rat model such that it was similar to what is observed in a preterm human, we injected phenylhydrazine in 7-day-old rats to induce haemolysis and then infused sulfisoxazole into the same rats at day 9 to block bilirubin binding sites in the albumin. We have investigated the effectiveness of human adiposity-derived stem cells as a therapeutic paradigm for perinatal neuronal repair in a kernicterus animal model. The level of total bilirubin, indirect bilirubin, brain bilirubin and brain iron was significantly increased in the modelling group. There was a significant decreased in all severity levels of the auditory brainstem response test in the two modelling group. Akinesia, bradykinesia and slip were significantly declined in the experience group. Apoptosis in basal ganglia and cerebellum were significantly decreased in the stem cell-treated group in comparison to the vehicle group. All severity levels of the auditory brainstem response tests were significantly decreased in 2-month-old rats. Transplantation results in the substantial alleviation of walking impairment, apoptosis and auditory dysfunction. This study provides important information for the development of therapeutic strategies using human adiposity-derived stem cells in prenatal brain damage to reduce potential sensori motor deficit.
Noise-induced tinnitus: auditory evoked potential in symptomatic and asymptomatic patients.
Santos-Filha, Valdete Alves Valentins dos; Samelli, Alessandra Giannella; Matas, Carla Gentile
2014-07-01
We evaluated the central auditory pathways in workers with noise-induced tinnitus with normal hearing thresholds, compared the auditory brainstem response results in groups with and without tinnitus and correlated the tinnitus location to the auditory brainstem response findings in individuals with a history of occupational noise exposure. Sixty individuals participated in the study and the following procedures were performed: anamnesis, immittance measures, pure-tone air conduction thresholds at all frequencies between 0.25-8 kHz and auditory brainstem response. The mean auditory brainstem response latencies were lower in the Control group than in the Tinnitus group, but no significant differences between the groups were observed. Qualitative analysis showed more alterations in the lower brainstem in the Tinnitus group. The strongest relationship between tinnitus location and auditory brainstem response alterations was detected in individuals with bilateral tinnitus and bilateral auditory brainstem response alterations compared with patients with unilateral alterations. Our findings suggest the occurrence of a possible dysfunction in the central auditory nervous system (brainstem) in individuals with noise-induced tinnitus and a normal hearing threshold.
Ouyang, Jessica; Pace, Edward; Lepczyk, Laura; Kaufman, Michael; Zhang, Jessica; Perrine, Shane A; Zhang, Jinsheng
2017-07-07
Blast-induced tinitus is the number one service-connected disability that currently affects military personnel and veterans. To elucidate its underlying mechanisms, we subjected 13 Sprague Dawley adult rats to unilateral 14 psi blast exposure to induce tinnitus and measured auditory and limbic brain activity using manganese-enhanced MRI (MEMRI). Tinnitus was evaluated with a gap detection acoustic startle reflex paradigm, while hearing status was assessed with prepulse inhibition (PPI) and auditory brainstem responses (ABRs). Both anxiety and cognitive functioning were assessed using elevated plus maze and Morris water maze, respectively. Five weeks after blast exposure, 8 of the 13 blasted rats exhibited chronic tinnitus. While acoustic PPI remained intact and ABR thresholds recovered, the ABR wave P1-N1 amplitude reduction persisted in all blast-exposed rats. No differences in spatial cognition were observed, but blasted rats as a whole exhibited increased anxiety. MEMRI data revealed a bilateral increase in activity along the auditory pathway and in certain limbic regions of rats with tinnitus compared to age-matched controls. Taken together, our data suggest that while blast-induced tinnitus may play a role in auditory and limbic hyperactivity, the non-auditory effects of blast and potential traumatic brain injury may also exert an effect.
Saliu, Aminat; Adise, Shana; Xian, Sandy; Kudelska, Kamila; Rodríguez-Contreras, Adrián
2014-04-01
The functional interactions between neurons and glial cells that are important for nervous system function are presumably established during development from the activity of progenitor cells. In this study we examined proliferation of progenitor cells in the medial nucleus of the trapezoid body (MNTB) located in the rat auditory brainstem. We performed DNA synthesis labeling experiments to demonstrate changes in cell proliferation activity during postnatal stages of development. An increase in cell proliferation correlated with MNTB growth and the presence of S100β-positive astrocytes among MNTB neurons. In additional experiments we analyzed the fate of newly born cells. At perinatal ages, newly born cells colabeled with the astrocyte marker S100β in higher numbers than when cells were generated at postnatal day 6. Furthermore, we identified newly born cells that were colabeled with caspase-3 immunohistochemistry and performed comparative experiments to demonstrate that there is a natural decrease in cell proliferation activity during postnatal development in rats, mice, gerbils, and ferrets. Lastly, we found that there is a stronger decrease in MNTB cell proliferation after performing bilateral lesions of the auditory periphery in rats. Altogether, these results identify important stages in the development of astrocytes in the MNTB and provide evidence that the proliferative activity of the progenitor cells is developmentally regulated. We propose that the developmental reduction in cell proliferation may reflect coordinated signaling between the auditory brainstem and the auditory periphery. Copyright © 2013 The Authors. Wiley Periodicals, Inc.
Brainstem Auditory Evoked Potential in HIV-Positive Adults.
Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C
2015-10-20
To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment - research groups I and II, respectively - and 30 control group individuals) were assessed through brainstem auditory evoked potential. There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment.
Mandalà, Marco; Colletti, Liliana; Colletti, Giacomo; Colletti, Vittorio
2014-12-01
To compare the outcomes (auditory threshold and open-set speech perception at 48-month follow-up) of a new near-field monitoring procedure, electrical compound action potential, on positioning the auditory brainstem implant electrode array on the surface of the cochlear nuclei versus the traditional far-field electrical auditory brainstem response. Retrospective study. Tertiary referral center. Among the 202 patients with auditory brainstem implants fitted and monitored with electrical auditory brainstem response during implant fitting, 9 also underwent electrical compound action potential recording. These subjects were matched retrospectively with a control group of 9 patients in whom only the electrical auditory brainstem response was recorded. Electrical compound action potentials were obtained using a cotton-wick recording electrode located near the surface of the cochlear nuclei and on several cranial nerves. Significantly lower potential thresholds were observed with the recording electrode located on the cochlear nuclei surface compared with the electrical auditory brainstem response (104.4 ± 32.5 vs 158.9 ± 24.2, P = .0030). Electrical brainstem response and compound action potentials identified effects on the neighboring cranial nerves on 3.2 ± 2.4 and 7.8 ± 3.2 electrodes, respectively (P = .0034). Open-set speech perception outcomes at 48-month follow-up had improved significantly in the near- versus far-field recording groups (78.9% versus 56.7%; P = .0051). Electrical compound action potentials during auditory brainstem implantation significantly improved the definition of the potential threshold and the number of auditory and extra-auditory waves generated. It led to the best coupling between the electrode array and cochlear nuclei, significantly improving the overall open-set speech perception. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.
Matas, Carla Gentile; Leite, Renata Aparecida; Magliaro, Fernanda Cristina Leite; Gonçalves, Isabela Crivellaro
2006-08-01
We examined the peripheral auditory system and the auditory brainstem pathway of children with Acquired Immunodeficiency Syndrome (AIDS). One hundred and one children, 51 with AIDS diagnosis and 50 normal children were evaluated. Audiological assessment included immittance measures, pure tone and speech audiometry and auditory brainstem response (ABR). The children with AIDS more frequently had abnormal results than did their matched controls, presenting either peripheral or auditory brainstem impairment. We suggest that AIDS be considered a risk factor for peripheral and/or auditory brainstem disorders. Further research should be carried out to investigate the auditory effects of HIV infection along the auditory pathway.
Electrophysiological Evidence for the Sources of the Masking Level Difference.
Fowler, Cynthia G
2017-08-16
The purpose of this review article is to review evidence from auditory evoked potential studies to describe the contributions of the auditory brainstem and cortex to the generation of the masking level difference (MLD). A literature review was performed, focusing on the auditory brainstem, middle, and late latency responses used in protocols similar to those used to generate the behavioral MLD. Temporal coding of the signals necessary for generating the MLD occurs in the auditory periphery and brainstem. Brainstem disorders up to wave III of the auditory brainstem response (ABR) can disrupt the MLD. The full MLD requires input to the generators of the auditory late latency potentials to produce all characteristics of the MLD; these characteristics include threshold differences for various binaural signal and noise conditions. Studies using central auditory lesions are beginning to identify the cortical effects on the MLD. The MLD requires auditory processing from the periphery to cortical areas. A healthy auditory periphery and brainstem codes temporal synchrony, which is essential for the ABR. Threshold differences require engaging cortical function beyond the primary auditory cortex. More studies using cortical lesions and evoked potentials or imaging should clarify the specific cortical areas involved in the MLD.
Calderón-Garcidueñas, Lilian; González-González, Luis O; Kulesza, Randy J; Fech, Tatiana M; Pérez-Guillé, Gabriela; Luna, Miguel Angel Jiménez-Bravo; Soriano-Rosales, Rosa Eugenia; Solorio, Edelmira; Miramontes-Higuera, José de Jesús; Gómez-Maqueo Chew, Aline; Bernal-Morúa, Alexia F; Mukherjee, Partha S; Torres-Jardón, Ricardo; Mills, Paul C; Wilson, Wayne J; Pérez-Guillé, Beatriz; D'Angiulli, Amedeo
2017-10-01
Delayed central conduction times in the auditory brainstem have been observed in Mexico City (MC) healthy children exposed to fine particulate matter (PM 2.5 ) and ozone (O 3 ) above the current United States Environmental Protection Agency (US-EPA) standards. MC children have α synuclein brainstem accumulation and medial superior olivary complex (MSO) dysmorphology. The present study used a dog model to investigate the potential effects of air pollution on the function and morphology of the auditory brainstem. Twenty-four dogs living in clean air v MC, average age 37.1 ± 26.3 months, underwent brainstem auditory evoked potential (BAEP) measurements. Eight dogs (4 MC, 4 Controls) were analysed for auditory brainstem morphology and histopathology. MC dogs showed ventral cochlear nuclei hypotrophy and MSO dysmorphology with a significant decrease in cell body size, decreased neuronal packing density with regions in the nucleus devoid of neurons and marked gliosis. MC dogs showed significant delayed BAEP absolute wave I, III and V latencies compared to controls. MC dogs show auditory nuclei dysmorphology and BAEPs consistent with an alteration of the generator sites of the auditory brainstem response waveform. This study puts forward the usefulness of BAEPs to study auditory brainstem neurodegenerative changes associated with air pollution in dogs. Recognition of the role of non-invasive BAEPs in urban dogs is warranted to elucidate novel neurodegenerative pathways link to air pollution and a promising early diagnostic strategy for Alzheimer's Disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Cochlear third window in the scala vestibuli: an animal model.
Preis, Michal; Attias, Joseph; Hadar, Tuvia; Nageris, Ben I
2009-08-01
Pathologic third window has been investigated in both animals and humans, with a third window located in the vestibular apparatus, specifically, dehiscence of the superior semicircular canal, serving as the clinical model. The present study sought to examine the effect of a cochlear third window in the scala vestibuli on the auditory thresholds in fat sand rats that have a unique anatomy of the inner ear that allows for easy surgical access. The experiment included 7 healthy 6-month-old fat sand rats (a total of 10 ears). A pathologic third window was induced by drilling a hole in the bony labyrinth over the scala vestibuli, with preservation of the membranous labyrinth. Auditory brainstem responses to high- and low-frequency acoustic stimuli delivered via air and bone conduction were recorded before and after the procedure. In the preoperative auditory brainstem response recordings, air-conduction thresholds (ACTs) to clicks and tone bursts averaged 9 and 10 dB, respectively, and bone-conduction thresholds averaged 4.5 and 2.9 dB, respectively. Postfenestration ACTs averaged 41 and 42.2 dB, and bone-conduction thresholds averaged 1.1 and 4.3 dB. The change in ACT was statistically significant (p < 0.01). The presence of a cochlear third window in the scala vestibuli affects auditory thresholds by causing a decrease in sensitivity to air-conducted sound stimuli. These findings agree with the theoretical model and clinical findings.
Jalaei, Bahram; Azmi, Mohd Hafiz Afifi Mohd; Zakaria, Mohd Normani
2018-05-17
Binaurally evoked auditory evoked potentials have good diagnostic values when testing subjects with central auditory deficits. The literature on speech-evoked auditory brainstem response evoked by binaural stimulation is in fact limited. Gender disparities in speech-evoked auditory brainstem response results have been consistently noted but the magnitude of gender difference has not been reported. The present study aimed to compare the magnitude of gender difference in speech-evoked auditory brainstem response results between monaural and binaural stimulations. A total of 34 healthy Asian adults aged 19-30 years participated in this comparative study. Eighteen of them were females (mean age=23.6±2.3 years) and the remaining sixteen were males (mean age=22.0±2.3 years). For each subject, speech-evoked auditory brainstem response was recorded with the synthesized syllable /da/ presented monaurally and binaurally. While latencies were not affected (p>0.05), the binaural stimulation produced statistically higher speech-evoked auditory brainstem response amplitudes than the monaural stimulation (p<0.05). As revealed by large effect sizes (d>0.80), substantive gender differences were noted in most of speech-evoked auditory brainstem response peaks for both stimulation modes. The magnitude of gender difference between the two stimulation modes revealed some distinct patterns. Based on these clinically significant results, gender-specific normative data are highly recommended when using speech-evoked auditory brainstem response for clinical and future applications. The preliminary normative data provided in the present study can serve as the reference for future studies on this test among Asian adults. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Escera, Carles; Leung, Sumie; Grimm, Sabine
2014-07-01
Detection of changes in the acoustic environment is critical for survival, as it prevents missing potentially relevant events outside the focus of attention. In humans, deviance detection based on acoustic regularity encoding has been associated with a brain response derived from the human EEG, the mismatch negativity (MMN) auditory evoked potential, peaking at about 100-200 ms from deviance onset. By its long latency and cerebral generators, the cortical nature of both the processes of regularity encoding and deviance detection has been assumed. Yet, intracellular, extracellular, single-unit and local-field potential recordings in rats and cats have shown much earlier (circa 20-30 ms) and hierarchically lower (primary auditory cortex, medial geniculate body, inferior colliculus) deviance-related responses. Here, we review the recent evidence obtained with the complex auditory brainstem response (cABR), the middle latency response (MLR) and magnetoencephalography (MEG) demonstrating that human auditory deviance detection based on regularity encoding-rather than on refractoriness-occurs at latencies and in neural networks comparable to those revealed in animals. Specifically, encoding of simple acoustic-feature regularities and detection of corresponding deviance, such as an infrequent change in frequency or location, occur in the latency range of the MLR, in separate auditory cortical regions from those generating the MMN, and even at the level of human auditory brainstem. In contrast, violations of more complex regularities, such as those defined by the alternation of two different tones or by feature conjunctions (i.e., frequency and location) fail to elicit MLR correlates but elicit sizable MMNs. Altogether, these findings support the emerging view that deviance detection is a basic principle of the functional organization of the auditory system, and that regularity encoding and deviance detection is organized in ascending levels of complexity along the auditory pathway expanding from the brainstem up to higher-order areas of the cerebral cortex.
Lilienthal, Hellmuth; van der Ven, Leo T M; Piersma, Aldert H; Vos, Josephus G
2009-02-25
Hexabromocyclododecane (HBCD) is a widely used brominated flame retardant which has been recently detected in many environmental matrices. Data from a subacute toxicity study indicated dose-related effects particularly on the pituitary thyroid-axis and retinoids in female rats. Brominated and chlorinated aromatic hydrocarbons are also reported to exert effects on the nervous system. Several investigations revealed a pronounced sensitivity of the dopaminergic system and auditory functions to polychlorinated biphenyls. Therefore, the present experiment should examine, whether or not HBCD affects these targets. Rats were exposed to 0, 0.1, 0.3, 1, 3, 10, 30 or 100 mg HBCD/kg body weight via the diet. Exposure started before mating and was continued during mating, gestation, lactation, and after weaning in offspring. Haloperidol-induced catalepsy and brainstem auditory evoked potentials (BAEPs) were used to assess dopamine-dependent behavior and hearing function in adult male and female offspring. On the catalepsy test, reduced latencies to movement onset were observed mainly in female offspring, indicating influences on dopamine-dependent behavior. The overall pattern of BAEP alterations, with increased thresholds and prolonged latencies of early waves, suggested a predominant cochlear effect. Effects were dose-dependent with lower bounds of benchmark doses (BMDL) between < or =1 and 10 mg/kg body weight for both catalepsy and BAEP thresholds. Tissue concentrations at the BMDL values obtained in this study were 3-4 orders of magnitude higher than current exposure levels in humans.
Transplantation of conditionally immortal auditory neuroblasts to the auditory nerve.
Sekiya, Tetsuji; Holley, Matthew C; Kojima, Ken; Matsumoto, Masahiro; Helyer, Richard; Ito, Juichi
2007-04-01
Cell transplantation is a realistic potential therapy for replacement of auditory sensory neurons and could benefit patients with cochlear implants or acoustic neuropathies. The procedure involves many experimental variables, including the nature and conditioning of donor cells, surgical technique and degree of degeneration in the host tissue. It is essential to control these variables in order to develop cell transplantation techniques effectively. We have characterized a conditionally immortal, mouse cell line suitable for transplantation to the auditory nerve. Structural and physiological markers defined the cells as early auditory neuroblasts that lacked neuronal, voltage-gated sodium or calcium currents and had an undifferentiated morphology. When transplanted into the auditory nerves of rats in vivo, the cells migrated peripherally and centrally and aggregated to form coherent, ectopic 'ganglia'. After 7 days they expressed beta 3-tubulin and adopted a similar morphology to native spiral ganglion neurons. They also developed bipolar projections aligned with the host nerves. There was no evidence for uncontrolled proliferation in vivo and cells survived for at least 63 days. If cells were transplanted with the appropriate surgical technique then the auditory brainstem responses were preserved. We have shown that immortal cell lines can potentially be used in the mammalian ear, that it is possible to differentiate significant numbers of cells within the auditory nerve tract and that surgery and cell injection can be achieved with no damage to the cochlea and with minimal degradation of the auditory brainstem response.
Auditory Brainstem Responses in Autism: Brainstem Dysfunction or Peripheral Hearing Loss?
ERIC Educational Resources Information Center
Klin, Ami
1993-01-01
A review of 11 studies of auditory brainstem response (ABR) in individuals with autism concludes that the ABR data are only suggestive (rather than supportive) of brainstem involvement in autism. The presence of peripheral hearing impairment was observed in some of the autistic individuals. (Author/DB)
Tracing the neural basis of auditory entrainment.
Lehmann, Alexandre; Arias, Diana Jimena; Schönwiesner, Marc
2016-11-19
Neurons in the auditory cortex synchronize their responses to temporal regularities in sound input. This coupling or "entrainment" is thought to facilitate beat extraction and rhythm perception in temporally structured sounds, such as music. As a consequence of such entrainment, the auditory cortex responds to an omitted (silent) sound in a regular sequence. Although previous studies suggest that the auditory brainstem frequency-following response (FFR) exhibits some of the beat-related effects found in the cortex, it is unknown whether omissions of sounds evoke a brainstem response. We simultaneously recorded cortical and brainstem responses to isochronous and irregular sequences of consonant-vowel syllable /da/ that contained sporadic omissions. The auditory cortex responded strongly to omissions, but we found no evidence of evoked responses to omitted stimuli from the auditory brainstem. However, auditory brainstem responses in the isochronous sound sequence were more consistent across trials than in the irregular sequence. These results indicate that the auditory brainstem faithfully encodes short-term acoustic properties of a stimulus and is sensitive to sequence regularity, but does not entrain to isochronous sequences sufficiently to generate overt omission responses, even for sequences that evoke such responses in the cortex. These findings add to our understanding of the processing of sound regularities, which is an important aspect of human cognitive abilities like rhythm, music and speech perception. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Pace, Edward; Zhang, Jinsheng
2013-01-01
Tinnitus has a complex etiology that involves auditory and non-auditory factors and may be accompanied by hyperacusis, anxiety and cognitive changes. Thus far, investigations of the interrelationship between tinnitus and auditory and non-auditory impairment have yielded conflicting results. To further address this issue, we noise exposed rats and assessed them for tinnitus using a gap detection behavioral paradigm combined with statistically-driven analysis to diagnose tinnitus in individual rats. We also tested rats for hearing detection, responsivity, and loss using prepulse inhibition and auditory brainstem response, and for spatial cognition and anxiety using Morris water maze and elevated plus maze. We found that our tinnitus diagnosis method reliably separated noise-exposed rats into tinnitus((+)) and tinnitus((-)) groups and detected no evidence of tinnitus in tinnitus((-)) and control rats. In addition, the tinnitus((+)) group demonstrated enhanced startle amplitude, indicating hyperacusis-like behavior. Despite these results, neither tinnitus, hyperacusis nor hearing loss yielded any significant effects on spatial learning and memory or anxiety, though a majority of rats with the highest anxiety levels had tinnitus. These findings showed that we were able to develop a clinically relevant tinnitus((+)) group and that our diagnosis method is sound. At the same time, like clinical studies, we found that tinnitus does not always result in cognitive-emotional dysfunction, although tinnitus may predispose subjects to certain impairment like anxiety. Other behavioral assessments may be needed to further define the relationship between tinnitus and anxiety, cognitive deficits, and other impairments.
Forte, Antonio Elia; Etard, Octave; Reichenbach, Tobias
2017-10-10
Humans excel at selectively listening to a target speaker in background noise such as competing voices. While the encoding of speech in the auditory cortex is modulated by selective attention, it remains debated whether such modulation occurs already in subcortical auditory structures. Investigating the contribution of the human brainstem to attention has, in particular, been hindered by the tiny amplitude of the brainstem response. Its measurement normally requires a large number of repetitions of the same short sound stimuli, which may lead to a loss of attention and to neural adaptation. Here we develop a mathematical method to measure the auditory brainstem response to running speech, an acoustic stimulus that does not repeat and that has a high ecological validity. We employ this method to assess the brainstem's activity when a subject listens to one of two competing speakers, and show that the brainstem response is consistently modulated by attention.
Calderón-Garcidueñas, Lilian; D’Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar
2011-01-01
We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3± 8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p<0.0001) and wave V (t(50)=19.730; p<0.0001) but no delay in wave I (p=0.548). They also had significantly longer latencies than controls for interwave intervals I–III, III–V, and I–V (all t(50)> 7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid 1–42. Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children’s exposure to urban air pollution increases their risk for auditory and vestibular impairment. PMID:21458557
Guidi, Luiz G; Mattley, Jane; Martinez-Garay, Isabel; Monaco, Anthony P; Linden, Jennifer F; Velayos-Baeza, Antonio
2017-01-01
Abstract Developmental dyslexia is a neurodevelopmental disorder that affects reading ability caused by genetic and non-genetic factors. Amongst the susceptibility genes identified to date, KIAA0319 is a prime candidate. RNA-interference experiments in rats suggested its involvement in cortical migration but we could not confirm these findings in Kiaa0319-mutant mice. Given its homologous gene Kiaa0319L (AU040320) has also been proposed to play a role in neuronal migration, we interrogated whether absence of AU040320 alone or together with KIAA0319 affects migration in the developing brain. Analyses of AU040320 and double Kiaa0319;AU040320 knockouts (dKO) revealed no evidence for impaired cortical lamination, neuronal migration, neurogenesis or other anatomical abnormalities. However, dKO mice displayed an auditory deficit in a behavioral gap-in-noise detection task. In addition, recordings of click-evoked auditory brainstem responses revealed suprathreshold deficits in wave III amplitude in AU040320-KO mice, and more general deficits in dKOs. These findings suggest that absence of AU040320 disrupts firing and/or synchrony of activity in the auditory brainstem, while loss of both proteins might affect both peripheral and central auditory function. Overall, these results stand against the proposed role of KIAA0319 and AU040320 in neuronal migration and outline their relationship with deficits in the auditory system. PMID:29045729
Nonlinear Processing of Auditory Brainstem Response
2001-10-25
Kraków, Poland Abstract: - Auditory brainstem response potentials (ABR) are signals calculated from the EEG signals registered as responses to an...acoustic activation of the auditory system. The ABR signals provide an objective, diagnostic method, widely applied in examinations of hearing organs
Auditory Brainstem Responses in Childhood Psychosis.
ERIC Educational Resources Information Center
Gillberg, Christopher; And Others
1983-01-01
Auditory brainstem responses (ABR) were compared in 24 autistic children, seven children with other childhood psychoses, and 31 normal children. One-third of the autistic Ss showed abnormal ABR indicating brainstem dysfunction and correlating with muscular hypotonia and severe language impairment. Ss with other psychoses and normal Ss showed…
Gordon, K A; Papsin, B C; Harrison, R V
2007-08-01
The role of apical versus basal cochlear implant electrode stimulation on central auditory development was examined. We hypothesized that, in children with early onset deafness, auditory development evoked by basal electrode stimulation would differ from that evoked more apically. Responses of the auditory nerve and brainstem, evoked by an apical and a basal implant electrode, were measured over the first year of cochlear implant use in 50 children with early onset severe to profound deafness who used hearing aids prior to implantation. Responses at initial stimulation were of larger amplitude and shorter latency when evoked by the apical electrode. No significant effects of residual hearing or age were found on initial response amplitudes or latencies. With implant use, responses evoked by both electrodes showed decreases in wave and interwave latencies reflecting decreased neural conduction time through the brainstem. Apical versus basal differences persisted with implant experience with one exception; eIII-eV interlatency differences decreased with implant use. Acute stimulation shows prolongation of basally versus apically evoked auditory nerve and brainstem responses in children with severe to profound deafness. Interwave latencies reflecting neural conduction along the caudal and rostral portions of the brainstem decreased over the first year of implant use. Differences in neural conduction times evoked by apical versus basal electrode stimulation persisted in the caudal but not rostral brainstem. Activity-dependent changes of the auditory brainstem occur in response to both apical and basal cochlear implant electrode stimulation.
Carbonyl sulfide (COS) is a chemical intermediate in the production of pesticides and herbicides, is a metabolite of carbon disulfide, is produced by the combustion of organic material, and is found occurring in nature. COS was included in a Toxic Substances Control Act request f...
Calderón-Garcidueñas, Lilian; D'Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar
2011-06-01
We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3±8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p<0.0001) and wave V (t(50)=19.730; p<0.0001) but no delay in wave I (p=0.548). They also had significantly longer latencies than controls for interwave intervals I-III, III-V, and I-V (all t(50)>7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid(1-42). Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children's exposure to urban air pollution increases their risk for auditory and vestibular impairment. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.
Pace, Edward; Zhang, Jinsheng
2013-01-01
Tinnitus has a complex etiology that involves auditory and non-auditory factors and may be accompanied by hyperacusis, anxiety and cognitive changes. Thus far, investigations of the interrelationship between tinnitus and auditory and non-auditory impairment have yielded conflicting results. To further address this issue, we noise exposed rats and assessed them for tinnitus using a gap detection behavioral paradigm combined with statistically-driven analysis to diagnose tinnitus in individual rats. We also tested rats for hearing detection, responsivity, and loss using prepulse inhibition and auditory brainstem response, and for spatial cognition and anxiety using Morris water maze and elevated plus maze. We found that our tinnitus diagnosis method reliably separated noise-exposed rats into tinnitus(+) and tinnitus(−) groups and detected no evidence of tinnitus in tinnitus(−) and control rats. In addition, the tinnitus(+) group demonstrated enhanced startle amplitude, indicating hyperacusis-like behavior. Despite these results, neither tinnitus, hyperacusis nor hearing loss yielded any significant effects on spatial learning and memory or anxiety, though a majority of rats with the highest anxiety levels had tinnitus. These findings showed that we were able to develop a clinically relevant tinnitus(+) group and that our diagnosis method is sound. At the same time, like clinical studies, we found that tinnitus does not always result in cognitive-emotional dysfunction, although tinnitus may predispose subjects to certain impairment like anxiety. Other behavioral assessments may be needed to further define the relationship between tinnitus and anxiety, cognitive deficits, and other impairments. PMID:24069375
Brainstem Auditory Evoked Potential Study in Children with Autistic Disorder.
ERIC Educational Resources Information Center
Wong, Virginia; Wong, Sik Nin
1991-01-01
Brainstem auditory evoked potentials were compared in 109 children with infantile autism, 38 with autistic condition, 19 with mental retardation, and 20 normal children. Children with infantile autism or autistic condition had significantly longer brainstem transmission time than normal children suggesting neurological damage as the basis of…
Ansari, M S; Rangasayee, R; Ansari, M A H
2017-03-01
Poor auditory speech perception in geriatrics is attributable to neural de-synchronisation due to structural and degenerative changes of ageing auditory pathways. The speech-evoked auditory brainstem response may be useful for detecting alterations that cause loss of speech discrimination. Therefore, this study aimed to compare the speech-evoked auditory brainstem response in adult and geriatric populations with normal hearing. The auditory brainstem responses to click sounds and to a 40 ms speech sound (the Hindi phoneme |da|) were compared in 25 young adults and 25 geriatric people with normal hearing. The latencies and amplitudes of transient peaks representing neural responses to the onset, offset and sustained portions of the speech stimulus in quiet and noisy conditions were recorded. The older group had significantly smaller amplitudes and longer latencies for the onset and offset responses to |da| in noisy conditions. Stimulus-to-response times were longer and the spectral amplitude of the sustained portion of the stimulus was reduced. The overall stimulus level caused significant shifts in latency across the entire speech-evoked auditory brainstem response in the older group. The reduction in neural speech processing in older adults suggests diminished subcortical responsiveness to acoustically dynamic spectral cues. However, further investigations are needed to encode temporal cues at the brainstem level and determine their relationship to speech perception for developing a routine tool for clinical decision-making.
Brainstem processing following unilateral and bilateral hearing-aid amplification.
Dawes, Piers; Munro, Kevin J; Kalluri, Sridhar; Edwards, Brent
2013-04-17
Following previous research suggesting hearing-aid experience may induce functional plasticity at the peripheral level of the auditory system, click-evoked auditory brainstem response was recorded at first fitting and 12 weeks after hearing-aid use by unilateral and bilateral hearing-aid users. A control group of experienced hearing-aid users was tested over a similar time scale. No significant alterations in auditory brainstem response latency or amplitude were identified in any group. This does not support the hypothesis of plastic changes in the peripheral auditory system induced by hearing-aid use for 12 weeks.
Auditory Detection of the Human Brainstem Auditory Evoked Response.
ERIC Educational Resources Information Center
Kidd, Gerald, Jr.; And Others
1993-01-01
This study evaluated whether listeners can distinguish human brainstem auditory evoked responses elicited by acoustic clicks from control waveforms obtained with no acoustic stimulus when the waveforms are presented auditorily. Detection performance for stimuli presented visually was slightly, but consistently, superior to that which occurred for…
Awake craniotomy for assisting placement of auditory brainstem implant in NF2 patients.
Zhou, Qiangyi; Yang, Zhijun; Wang, Zhenmin; Wang, Bo; Wang, Xingchao; Zhao, Chi; Zhang, Shun; Wu, Tao; Li, Peng; Li, Shiwei; Zhao, Fu; Liu, Pinan
2018-06-01
Auditory brainstem implants (ABIs) may be the only opportunity for patients with NF2 to regain some sense of hearing sensation. However, only a very small number of individuals achieved open-set speech understanding and high sentence scores. Suboptimal placement of the ABI electrode array over the cochlear nucleus may be one of main factors for poor auditory performance. In the current study, we present a method of awake craniotomy to assist with ABI placement. Awake surgery and hearing test via the retrosigmoid approach were performed for vestibular schwannoma resections and auditory brainstem implantations in four patients with NF2. Auditory outcomes and complications were assessed postoperatively. Three of 4 patients who underwent awake craniotomy during ABI surgery received reproducible auditory sensations intraoperatively. Satisfactory numbers of effective electrodes, threshold levels and distinct pitches were achieved in the wake-up hearing test. In addition, relatively few electrodes produced non-auditory percepts. There was no serious complication attributable to the ABI or awake craniotomy. It is safe and well tolerated for neurofibromatosis type 2 (NF2) patients using awake craniotomy during auditory brainstem implantation. This method can potentially improve the localization accuracy of the cochlear nucleus during surgery.
Brainstem Correlates of Temporal Auditory Processing in Children with Specific Language Impairment
ERIC Educational Resources Information Center
Basu, Madhavi; Krishnan, Ananthanarayan; Weber-Fox, Christine
2010-01-01
Deficits in identification and discrimination of sounds with short inter-stimulus intervals or short formant transitions in children with specific language impairment (SLI) have been taken to reflect an underlying temporal auditory processing deficit. Using the sustained frequency following response (FFR) and the onset auditory brainstem responses…
Positron Emission Tomography in Cochlear Implant and Auditory Brainstem Implant Recipients.
ERIC Educational Resources Information Center
Miyamoto, Richard T.; Wong, Donald
2001-01-01
Positron emission tomography imaging was used to evaluate the brain's response to auditory stimulation, including speech, in deaf adults (five with cochlear implants and one with an auditory brainstem implant). Functional speech processing was associated with activation in areas classically associated with speech processing. (Contains five…
Learning to Encode Timing: Mechanisms of Plasticity in the Auditory Brainstem
Tzounopoulos, Thanos; Kraus, Nina
2009-01-01
Mechanisms of plasticity have traditionally been ascribed to higher-order sensory processing areas such as the cortex, whereas early sensory processing centers have been considered largely hard-wired. In agreement with this view, the auditory brainstem has been viewed as a nonplastic site, important for preserving temporal information and minimizing transmission delays. However, recent groundbreaking results from animal models and human studies have revealed remarkable evidence for cellular and behavioral mechanisms for learning and memory in the auditory brainstem. PMID:19477149
Because of the amount of carbonyl sulfide (COS) emissions and the lack of toxicological data, COS was listed in the Clean Air Act of 1990 as a Hazardous Air Pollutant. In 1999 COS was nominated by the US EPA to the National Toxicology Program for additional toxicological investig...
Kenet, T.; Froemke, R. C.; Schreiner, C. E.; Pessah, I. N.; Merzenich, M. M.
2007-01-01
Noncoplanar polychlorinated biphenyls (PCBs) are widely dispersed in human environment and tissues. Here, an exemplar noncoplanar PCB was fed to rat dams during gestation and throughout three subsequent nursing weeks. Although the hearing sensitivity and brainstem auditory responses of pups were normal, exposure resulted in the abnormal development of the primary auditory cortex (A1). A1 was irregularly shaped and marked by internal nonresponsive zones, its topographic organization was grossly abnormal or reversed in about half of the exposed pups, the balance of neuronal inhibition to excitation for A1 neurons was disturbed, and the critical period plasticity that underlies normal postnatal auditory system development was significantly altered. These findings demonstrate that developmental exposure to this class of environmental contaminant alters cortical development. It is proposed that exposure to noncoplanar PCBs may contribute to common developmental disorders, especially in populations with heritable imbalances in neurotransmitter systems that regulate the ratio of inhibition and excitation in the brain. We conclude that the health implications associated with exposure to noncoplanar PCBs in human populations merit a more careful examination. PMID:17460041
Smit, Jasper V; Jahanshahi, Ali; Janssen, Marcus L F; Stokroos, Robert J; Temel, Yasin
2017-01-01
Recently it has been shown in animal studies that deep brain stimulation (DBS) of auditory structures was able to reduce tinnitus-like behavior. However, the question arises whether hearing might be impaired when interfering in auditory-related network loops with DBS. The auditory brainstem response (ABR) was measured in rats during high frequency stimulation (HFS) and low frequency stimulation (LFS) in the central nucleus of the inferior colliculus (CIC, n = 5) or dentate cerebellar nucleus (DCBN, n = 5). Besides hearing thresholds using ABR, relative measures of latency and amplitude can be extracted from the ABR. In this study ABR thresholds, interpeak latencies (I-III, III-V, I-V) and V/I amplitude ratio were measured during off-stimulation state and during LFS and HFS. In both the CIC and the CNBN groups, no significant differences were observed for all outcome measures. DBS in both the CIC and the CNBN did not have adverse effects on hearing measurements. These findings suggest that DBS does not hamper physiological processing in the auditory circuitry.
Maskey, Dhiraj; Kim, Hyung Gun; Suh, Myung-Whan; Roh, Gu Seob; Kim, Myeung Ju
2014-08-01
The increasing use of mobile communication has triggered an interest in its possible effects on the regulation of neurotransmitter signals. Due to the close proximity of mobile phones to hearing-related brain regions during usage, its use may lead to a decrease in the ability to segregate sounds, leading to serious auditory dysfunction caused by the prolonged exposure to radiofrequency (RF) radiation. The interplay among auditory processing, excitation and inhibitory molecule interactions plays a major role in auditory function. In particular, inhibitory molecules, such a glycine, are predominantly localized in the auditory brainstem. However, the effects of exposure to RF radiation on auditory function have not been reported to date. Thus, the aim of the present study was to investigate the effects of exposure to RF radiation on glycine receptor (GlyR) immunoreactivity (IR) in the auditory brainstem region at 835 MHz with a specific absorption rate of 4.0 W/kg for three months using free-floating immunohistochemistry. Compared with the sham control (SC) group, a significant loss of staining intensity of neuropils and cells in the different subdivisions of the auditory brainstem regions was observed in the mice exposed to RF radiation (E4 group). A decrease in the number of GlyR immunoreactive cells was also noted in the cochlear nuclear complex [anteroventral cochlear nucleus (AVCN), 31.09%; dorsal cochlear nucleus (DCN), 14.08%; posteroventral cochlear nucleus (PVCN), 32.79%] and the superior olivary complex (SOC) [lateral superior olivary nucleus (LSO), 36.85%; superior paraolivary nucleus (SPN), 24.33%, medial superior olivary nucleus (MSO), 23.23%; medial nucleus of the trapezoid body (MNTB), 10.15%] of the mice in the E4 group. Auditory brainstem response (ABR) analysis also revealed a significant threshold elevation of in the exposed (E4) group, which may be associated with auditory dysfunction. The present study suggests that the auditory brainstem region is susceptible to chronic exposure to RF radiation, which may affect the function of the central auditory system.
The Role of the Auditory Brainstem in Processing Linguistically-Relevant Pitch Patterns
ERIC Educational Resources Information Center
Krishnan, Ananthanarayan; Gandour, Jackson T.
2009-01-01
Historically, the brainstem has been neglected as a part of the brain involved in language processing. We review recent evidence of language-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem. We argue that there is enhancing…
Electrophysiological Evidence for the Sources of the Masking Level Difference
ERIC Educational Resources Information Center
Fowler, Cynthia G.
2017-01-01
Purpose: The purpose of this review article is to review evidence from auditory evoked potential studies to describe the contributions of the auditory brainstem and cortex to the generation of the masking level difference (MLD). Method: A literature review was performed, focusing on the auditory brainstem, middle, and late latency responses used…
Brainstem Encoding of Aided Speech in Hearing Aid Users with Cochlear Dead Region(s).
Hassaan, Mohammad Ramadan; Ibraheem, Ola Abdallah; Galhom, Dalia Helal
2016-07-01
Neural encoding of speech begins with the analysis of the signal as a whole broken down into its sinusoidal components in the cochlea, which has to be conserved up to the higher auditory centers. Some of these components target the dead regions of the cochlea causing little or no excitation. Measuring aided speech-evoked auditory brainstem response elicited by speech stimuli with different spectral maxima can give insight into the brainstem encoding of aided speech with spectral maxima at these dead regions. This research aims to study the impact of dead regions of the cochlea on speech processing at the brainstem level after a long period of hearing aid use. This study comprised 30 ears without dead regions and 46 ears with dead regions at low, mid, or high frequencies. For all ears, we measured the aided speech-evoked auditory brainstem response using speech stimuli of low, mid, and high spectral maxima. Aided speech-evoked auditory brainstem response was producible in all subjects. Responses evoked by stimuli with spectral maxima at dead regions had longer latencies and smaller amplitudes when compared with the control group or the responses of other stimuli. The presence of cochlear dead regions affects brainstem encoding of speech with spectral maxima perpendicular to these regions. Brainstem neuroplasticity and the extrinsic redundancy of speech can minimize the impact of dead regions in chronic hearing aid users.
Round window closure affects cochlear responses to suprathreshold stimuli.
Cai, Qunfeng; Whitcomb, Carolyn; Eggleston, Jessica; Sun, Wei; Salvi, Richard; Hu, Bo Hua
2013-12-01
The round window acts as a vent for releasing inner ear pressure and facilitating basilar membrane vibration. Loss of this venting function affects cochlear function, which leads to hearing impairment. In an effort to identify functional changes that might be used in clinical diagnosis of round window atresia, the current investigation was designed to examine how the cochlea responds to suprathreshold stimuli following round window closure. Prospective, controlled, animal study. A rat model of round window occlusion (RWO) was established. With this model, the thresholds of auditory brainstem responses (ABR) and the input/output (IO) functions of distortion product otoacoustic emissions (DPOAEs) and acoustic startle responses were examined. Round window closure caused a mild shift in the thresholds of the auditory brainstem response (13.5 ± 9.1 dB). It also reduced the amplitudes of the distortion product otoacoustic emissions and the slope of the input/output functions. This peripheral change was accompanied by a significant reduction in the amplitude, but not the threshold, of the acoustic startle reflex, a motor response to suprathreshold sounds. In addition to causing mild increase in the threshold of the auditory brainstem response, round window occlusion reduced the slopes of both distortion product otoacoustic emissions and startle reflex input/output functions. These changes differ from those observed for typical conductive or sensory hearing loss, and could be present in patients with round window atresia. However, future clinical observations in patients are needed to confirm these findings. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Cortical auditory evoked potentials in the assessment of auditory neuropathy: two case studies.
Pearce, Wendy; Golding, Maryanne; Dillon, Harvey
2007-05-01
Infants with auditory neuropathy and possible hearing impairment are being identified at very young ages through the implementation of hearing screening programs. The diagnosis is commonly based on evidence of normal cochlear function but abnormal brainstem function. This lack of normal brainstem function is highly problematic when prescribing amplification in young infants because prescriptive formulae require the input of hearing thresholds that are normally estimated from auditory brainstem responses to tonal stimuli. Without this information, there is great uncertainty surrounding the final fitting. Cortical auditory evoked potentials may, however, still be evident and reliably recorded to speech stimuli presented at conversational levels. The case studies of two infants are presented that demonstrate how these higher order electrophysiological responses may be utilized in the audiological management of some infants with auditory neuropathy.
NASA Rat Acoustic Tolerance Test 1994-1995
NASA Technical Reports Server (NTRS)
Holley, Daniel C.; Mele, Gary D.; Naidu, Sujata
1996-01-01
The major objective of this Cooperative Agreement was to develop a noise level specification for laboratory rats in the Centrifuge Facility Specimen Chambers (Space Station Biological Research Project), and to validate the specification for 3 noise octave bands: center frequencies 8 kHz, 16, kHz, and 32 kHz. This has been accomplished. Objective measures were used to verify that the chronic noise exposure was not harmful to the animals from physiological and behavioral perspectives. These measures were defined in the Stress Assessment Battery Validation for the Rat Acoustic Tolerance Test. In addition, the effects of the chronic noise exposure on rat hearing was assessed by the Brainstem Auditory Evoked Potential Method (BAER).
Plonek, M; Nicpoń, J; Kubiak, K; Wrzosek, M
2017-03-01
Auditory plasticity in response to unilateral deafness has been reported in various animal species. Subcortical changes occurring in unilaterally deaf young dogs using the brainstem auditory evoked response have not been evaluated yet. The aim of this study was to assess the brainstem auditory evoked response findings in dogs with unilateral hearing loss, and compare them with recordings obtained from healthy dogs. Brainstem auditory evoked responses (amplitudes and latencies of waves I, II, III, V, the V/I wave amplitude ratio, wave I-V, I-III and III-V interpeak intervals) were studied retrospectively in forty-six privately owned dogs, which were either unilaterally deaf or had bilateral hearing. The data obtained from the hearing ears in unilaterally deaf dogs were compared to values obtained from their healthy littermates. Statistically significant differences in the amplitude of wave III and the V/I wave amplitude ratio at 75 dB nHL were found between the group of unilaterally deaf puppies and the control group. The recordings of dogs with single-sided deafness were compared, and the results showed no statistically significant differences in the latencies and amplitudes of the waves between left- (AL) and right-sided (AR) deafness. The recordings of the brainstem auditory evoked response in canines with unilateral inborn deafness in this study varied compared to recordings from healthy dogs. Future studies looking into electrophysiological assessment of hearing in conjunction with imaging modalities to determine subcortical auditory plasticity and auditory lateralization in unilaterally deaf dogs are warranted.
Learning Disability Assessed through Audiologic and Physiologic Measures: A Case Study.
ERIC Educational Resources Information Center
Greenblatt, Edward R.; And Others
1983-01-01
The report describes a child with central auditory dysfunction, the first reported case where brain-stem dysfunction on audiologic tests were associated with specific electrophysiologic changes in the brain-stem auditory-evoked responses. (Author/CL)
Brainstem Encoding of Aided Speech in Hearing Aid Users with Cochlear Dead Region(s)
Hassaan, Mohammad Ramadan; Ibraheem, Ola Abdallah; Galhom, Dalia Helal
2016-01-01
Introduction Neural encoding of speech begins with the analysis of the signal as a whole broken down into its sinusoidal components in the cochlea, which has to be conserved up to the higher auditory centers. Some of these components target the dead regions of the cochlea causing little or no excitation. Measuring aided speech-evoked auditory brainstem response elicited by speech stimuli with different spectral maxima can give insight into the brainstem encoding of aided speech with spectral maxima at these dead regions. Objective This research aims to study the impact of dead regions of the cochlea on speech processing at the brainstem level after a long period of hearing aid use. Methods This study comprised 30 ears without dead regions and 46 ears with dead regions at low, mid, or high frequencies. For all ears, we measured the aided speech-evoked auditory brainstem response using speech stimuli of low, mid, and high spectral maxima. Results Aided speech-evoked auditory brainstem response was producible in all subjects. Responses evoked by stimuli with spectral maxima at dead regions had longer latencies and smaller amplitudes when compared with the control group or the responses of other stimuli. Conclusion The presence of cochlear dead regions affects brainstem encoding of speech with spectral maxima perpendicular to these regions. Brainstem neuroplasticity and the extrinsic redundancy of speech can minimize the impact of dead regions in chronic hearing aid users. PMID:27413404
ERIC Educational Resources Information Center
Jiang, Ze D.
1998-01-01
A study of 44 infants who suffered asphyxia during the perinatal period examined the influence of perinatal asphyxia on the maturation of auditory pathways by serial recordings of the brainstem auditory evoked potentials (BAEP). The general maturational course of the BAEP following asphyxia was similar to a control group. (Author/CR)
Exploring the Relationship between Physiological Measures of Cochlear and Brainstem Function
Dhar, S.; Abel, R.; Hornickel, J.; Nicol, T.; Skoe, E.; Zhao, W.; Kraus, N.
2009-01-01
Objective Otoacoustic emissions and the speech-evoked auditory brainstem response are objective indices of peripheral auditory physiology and are used clinically for assessing hearing function. While each measure has been extensively explored, their interdependence and the relationships between them remain relatively unexplored. Methods Distortion product otoacoustic emissions (DPOAE) and speech-evoked auditory brainstem responses (sABR) were recorded from 28 normal-hearing adults. Through correlational analyses, DPOAE characteristics were compared to measures of sABR timing and frequency encoding. Data were organized into two DPOAE (Strength and Structure) and five brainstem (Onset, Spectrotemporal, Harmonics, Envelope Boundary, Pitch) composite measures. Results DPOAE Strength shows significant relationships with sABR Spectrotemporal and Harmonics measures. DPOAE Structure shows significant relationships with sABR Envelope Boundary. Neither DPOAE Strength nor Structure is related to sABR Pitch. Conclusions The results of the present study show that certain aspects of the speech-evoked auditory brainstem responses are related to, or covary with, cochlear function as measured by distortion product otoacoustic emissions. Significance These results form a foundation for future work in clinical populations. Analyzing cochlear and brainstem function in parallel in different clinical populations will provide a more sensitive clinical battery for identifying the locus of different disorders (e.g., language based learning impairments, hearing impairment). PMID:19346159
Dyslexia risk gene relates to representation of sound in the auditory brainstem.
Neef, Nicole E; Müller, Bent; Liebig, Johanna; Schaadt, Gesa; Grigutsch, Maren; Gunter, Thomas C; Wilcke, Arndt; Kirsten, Holger; Skeide, Michael A; Kraft, Indra; Kraus, Nina; Emmrich, Frank; Brauer, Jens; Boltze, Johannes; Friederici, Angela D
2017-04-01
Dyslexia is a reading disorder with strong associations with KIAA0319 and DCDC2. Both genes play a functional role in spike time precision of neurons. Strikingly, poor readers show an imprecise encoding of fast transients of speech in the auditory brainstem. Whether dyslexia risk genes are related to the quality of sound encoding in the auditory brainstem remains to be investigated. Here, we quantified the response consistency of speech-evoked brainstem responses to the acoustically presented syllable [da] in 159 genotyped, literate and preliterate children. When controlling for age, sex, familial risk and intelligence, partial correlation analyses associated a higher dyslexia risk loading with KIAA0319 with noisier responses. In contrast, a higher risk loading with DCDC2 was associated with a trend towards more stable responses. These results suggest that unstable representation of sound, and thus, reduced neural discrimination ability of stop consonants, occurred in genotypes carrying a higher amount of KIAA0319 risk alleles. Current data provide the first evidence that the dyslexia-associated gene KIAA0319 can alter brainstem responses and impair phoneme processing in the auditory brainstem. This brain-gene relationship provides insight into the complex relationships between phenotype and genotype thereby improving the understanding of the dyslexia-inherent complex multifactorial condition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
Marler, Jeffrey A.; Champlin, Craig A.
2005-01-01
The purpose of this study was to examine the possible contribution of sensory mechanisms to an auditory processing deficit shown by some children with language-learning impairment (LLI). Auditory brainstem responses (ABRs) were measured from 2 groups of school-aged (8-10 years) children. One group consisted of 10 children with LLI, and the other…
Exposure to low levels of jet-propulsion fuel impairs brainstem encoding of stimulus intensity.
Guthrie, O'neil W; Xu, Helen; Wong, Brian A; McInturf, Shawn M; Reboulet, Jim E; Ortiz, Pedro A; Mattie, David R
2014-01-01
Jet propulsion fuel-8 (JP-8) is a kerosene-based fuel that is used in military jets. The U.S. Armed Services and North Atlantic Treaty Organization countries adopted JP-8 as a standard fuel source and the U.S. military alone consumes more than 2.5 billion gallons annually. Preliminary epidemiologic data suggested that JP-8 may interact with noise to induce hearing loss, and animal studies revealed damage to presynaptic sensory cells in the cochlea. In the current study, Long-Evans rats were divided into four experimental groups: control, noise only, JP-8 only, and JP-8 + noise. A subototoxic level of JP-8 was used alone or in combination with a nondamaging level of noise. Functional and structural assays of the presynaptic sensory cells combined with neurophysiologic studies of the cochlear nerve revealed that peripheral auditory function was not affected by individual exposures and there was no effect when the exposures were combined. However, the central auditory nervous system exhibited impaired brainstem encoding of stimulus intensity. These findings may represent important and major shifts in the theoretical framework that governs current understanding of jet fuel and/or jet fuel + noise-induced ototoxicity. From an epidemiologic perspective, results indicate that jet fuel exposure may exert consequences on auditory function that may be more widespread and insidious than what was previously shown. It is possible that a large population of military personnel who are suffering from the effects of jet fuel exposure may be misidentified because they would exhibit normal hearing thresholds but harbor a "hidden" brainstem dysfunction.
Wei, Yan; Fu, Yong; Liu, Shaosheng; Xia, Guihua; Pan, Song
2013-01-01
The purposes of the current study were to assess the feasibility of post-auricular microinjection of lentiviruses carrying enhanced green fluorescent protein (EGFP) into the scala media through cochleostomies in rats, determine the expression of viral gene in the cochlea, and record the post-operative changes in the number and auditory function of cochlear hair cells (HCs). Healthy rats were randomly divided into two groups. The left ears of the animals in group I were injected with lentivirus carrying EGFP (n=10) via scala media lateral wall cochleostomies, and the left ears of the animals in group II were similarly injected with artificial endolymph (n=10). Prior to and 30 days post-injection, auditory function was assessed with click-auditory brainstem response (ABR) testing, EGFP expression was determined with cochlear frozen sections under fluorescence microscopy, and survival of HCs was estimated based on whole mount preparations. Thirty days after surgery, click-ABR testing revealed that there were significant differences in the auditory function, EGFP expression, and survival of HCs in the left ears before and after surgery in the same rats from each group. In group I, EGFP was noted in the strial marginal cells of the scala media, the organ of Corti, spiral nerves, and spiral ganglion cells. Lentiviruses were successfully introduced into the scala media through cochleostomies in rats, and the EGFP reporter gene was efficiently expressed in the organ of Corti, spiral nerves, and spiral ganglion cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Encoding of speech sounds at auditory brainstem level in good and poor hearing aid performers.
Shetty, Hemanth Narayan; Puttabasappa, Manjula
Hearing aids are prescribed to alleviate loss of audibility. It has been reported that about 31% of hearing aid users reject their own hearing aid because of annoyance towards background noise. The reason for dissatisfaction can be located anywhere from the hearing aid microphone till the integrity of neurons along the auditory pathway. To measure spectra from the output of hearing aid at the ear canal level and frequency following response recorded at the auditory brainstem from individuals with hearing impairment. A total of sixty participants having moderate sensorineural hearing impairment with age range from 15 to 65 years were involved. Each participant was classified as either Good or Poor Hearing aid Performers based on acceptable noise level measure. Stimuli /da/ and /si/ were presented through loudspeaker at 65dB SPL. At the ear canal, the spectra were measured in the unaided and aided conditions. At auditory brainstem, frequency following response were recorded to the same stimuli from the participants. Spectrum measured in each condition at ear canal was same in good hearing aid performers and poor hearing aid performers. At brainstem level, better F 0 encoding; F 0 and F 1 energies were significantly higher in good hearing aid performers than in poor hearing aid performers. Though the hearing aid spectra were almost same between good hearing aid performers and poor hearing aid performers, subtle physiological variations exist at the auditory brainstem. The result of the present study suggests that neural encoding of speech sound at the brainstem level might be mediated distinctly in good hearing aid performers from that of poor hearing aid performers. Thus, it can be inferred that subtle physiological changes are evident at the auditory brainstem in a person who is willing to accept noise from those who are not willing to accept noise. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Evaluation of peripheral auditory pathways and brainstem in obstructive sleep apnea.
Matsumura, Erika; Matas, Carla Gentile; Magliaro, Fernanda Cristina Leite; Pedreño, Raquel Meirelles; Lorenzi-Filho, Geraldo; Sanches, Seisse Gabriela Gandolfi; Carvallo, Renata Mota Mamede
2016-11-25
Obstructive sleep apnea causes changes in normal sleep architecture, fragmenting it chronically with intermittent hypoxia, leading to serious health consequences in the long term. It is believed that the occurrence of respiratory events during sleep, such as apnea and hypopnea, can impair the transmission of nerve impulses along the auditory pathway that are highly dependent on the supply of oxygen. However, this association is not well established in the literature. To compare the evaluation of peripheral auditory pathway and brainstem among individuals with and without obstructive sleep apnea. The sample consisted of 38 adult males, mean age of 35.8 (±7.2), divided into four groups matched for age and Body Mass Index. The groups were classified based on polysomnography in: control (n=10), mild obstructive sleep apnea (n=11) moderate obstructive sleep apnea (n=8) and severe obstructive sleep apnea (n=9). All study subjects denied a history of risk for hearing loss and underwent audiometry, tympanometry, acoustic reflex and Brainstem Auditory Evoked Response. Statistical analyses were performed using three-factor ANOVA, 2-factor ANOVA, chi-square test, and Fisher's exact test. The significance level for all tests was 5%. There was no difference between the groups for hearing thresholds, tympanometry and evaluated Brainstem Auditory Evoked Response parameters. An association was observed between the presence of obstructive sleep apnea and changes in absolute latency of wave V (p=0.03). There was an association between moderate obstructive sleep apnea and change of the latency of wave V (p=0.01). The presence of obstructive sleep apnea is associated with changes in nerve conduction of acoustic stimuli in the auditory pathway in the brainstem. The increase in obstructive sleep apnea severity does not promote worsening of responses assessed by audiometry, tympanometry and Brainstem Auditory Evoked Response. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Impact of mild traumatic brain injury on auditory brain stem dysfunction in mouse model.
Amanipour, Reza M; Frisina, Robert D; Cresoe, Samantha A; Parsons, Teresa J; Xiaoxia Zhu; Borlongan, Cesario V; Walton, Joseph P
2016-08-01
The auditory brainstem response (ABR) is an electrophysiological test that examines the functionality of the auditory nerve and brainstem. Traumatic brain injury (TBI) can be detected if prolonged peak latency is observed in ABR measurements, since latency measures the neural conduction time in the brainstem, and an increase in latency can be a sign of pathological lesion at the auditory brainstem level. The ABR is elicited by brief sounds that can be used to measure hearing sensitivity as well as temporal processing. Reduction in peak amplitudes and increases in latency are indicative of dysfunction in the auditory nerve and/or central auditory pathways. In this study we used sixteen young adult mice that were divided into two groups: sham and mild traumatic brain injury (mTBI), with ABR measurements obtained prior to, and at 2, 6, and 14 weeks after injury. Abnormal ABRs were observed for the nine TBI cases as early as two weeks after injury and the deficits lasted for fourteen weeks after injury. Results indicated a significant reduction in the Peak 1 (P1) and Peak 4 (P4) amplitudes to the first noise burst, as well as an increase in latency response for P1 and P4 following mTBI. These results are the first to demonstrate auditory sound processing deficits in a rodent model of mild TBI.
Abulebda, Kamal; Patel, Vinit J; Ahmed, Sheikh S; Tori, Alvaro J; Lutfi, Riad; Abu-Sultaneh, Samer
2017-10-28
The use of diagnostic auditory brainstem response testing under sedation is currently the "gold standard" in infants and young children who are not developmentally capable of completing the test. The aim of the study is to compare a propofol-ketamine regimen to an oral chloral hydrate regimen for sedating children undergoing auditory brainstem response testing. Patients between 4 months and 6 years who required sedation for auditory brainstem response testing were included in this retrospective study. Drugs doses, adverse effects, sedation times, and the effectiveness of the sedative regimens were reviewed. 73 patients underwent oral chloral hydrate sedation, while 117 received propofol-ketamine sedation. 12% of the patients in the chloral hydrate group failed to achieve desired sedation level. The average procedure, recovery and total nursing times were significantly lower in the propofol-ketamine group. Propofol-ketamine group experienced higher incidence of transient hypoxemia. Both sedation regimens can be successfully used for sedating children undergoing auditory brainstem response testing. While deep sedation using propofol-ketamine regimen offers more efficiency than moderate sedation using chloral hydrate, it does carry a higher incidence of transient hypoxemia, which warrants the use of a highly skilled team trained in pediatric cardio-respiratory monitoring and airway management. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Speech Evoked Auditory Brainstem Response in Stuttering
Tahaei, Ali Akbar; Ashayeri, Hassan; Pourbakht, Akram; Kamali, Mohammad
2014-01-01
Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS) at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency. PMID:25215262
Neonatal Auditory Brainstem Responses Recorded from Four Electrode Montages.
ERIC Educational Resources Information Center
Stuart, Andrew; And Others
1996-01-01
Simultaneous auditory brainstem responses (ABRs) to click stimuli at 30 and 60 decibels were recorded from 16 full-term neonates with 4 different electrode arrays. Results indicated that ABR waveforms were morphologically similar to those recorded in adults. Waveform expression was variable with different electrode recording montages. (Author/DB)
Adult Plasticity in the Subcortical Auditory Pathway of the Maternal Mouse
Miranda, Jason A.; Shepard, Kathryn N.; McClintock, Shannon K.; Liu, Robert C.
2014-01-01
Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system – motherhood – is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered. PMID:24992362
Adult plasticity in the subcortical auditory pathway of the maternal mouse.
Miranda, Jason A; Shepard, Kathryn N; McClintock, Shannon K; Liu, Robert C
2014-01-01
Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.
Reduced auditory efferent activity in childhood selective mutism.
Bar-Haim, Yair; Henkin, Yael; Ari-Even-Roth, Daphne; Tetin-Schneider, Simona; Hildesheimer, Minka; Muchnik, Chava
2004-06-01
Selective mutism is a psychiatric disorder of childhood characterized by consistent inability to speak in specific situations despite the ability to speak normally in others. The objective of this study was to test whether reduced auditory efferent activity, which may have direct bearings on speaking behavior, is compromised in selectively mute children. Participants were 16 children with selective mutism and 16 normally developing control children matched for age and gender. All children were tested for pure-tone audiometry, speech reception thresholds, speech discrimination, middle-ear acoustic reflex thresholds and decay function, transient evoked otoacoustic emission, suppression of transient evoked otoacoustic emission, and auditory brainstem response. Compared with control children, selectively mute children displayed specific deficiencies in auditory efferent activity. These aberrations in efferent activity appear along with normal pure-tone and speech audiometry and normal brainstem transmission as indicated by auditory brainstem response latencies. The diminished auditory efferent activity detected in some children with SM may result in desensitization of their auditory pathways by self-vocalization and in reduced control of masking and distortion of incoming speech sounds. These children may gradually learn to restrict vocalization to the minimal amount possible in contexts that require complex auditory processing.
McCullagh, Elizabeth A; Salcedo, Ernesto; Huntsman, Molly M; Klug, Achim
2017-11-01
Hyperexcitability and the imbalance of excitation/inhibition are one of the leading causes of abnormal sensory processing in Fragile X syndrome (FXS). The precise timing and distribution of excitation and inhibition is crucial for auditory processing at the level of the auditory brainstem, which is responsible for sound localization ability. Sound localization is one of the sensory abilities disrupted by loss of the Fragile X Mental Retardation 1 (Fmr1) gene. Using triple immunofluorescence staining we tested whether there were alterations in the number and size of presynaptic structures for the three primary neurotransmitters (glutamate, glycine, and GABA) in the auditory brainstem of Fmr1 knockout mice. We found decreases in either glycinergic or GABAergic inhibition to the medial nucleus of the trapezoid body (MNTB) specific to the tonotopic location within the nucleus. MNTB is one of the primary inhibitory nuclei in the auditory brainstem and participates in the sound localization process with fast and well-timed inhibition. Thus, a decrease in inhibitory afferents to MNTB neurons should lead to greater inhibitory output to the projections from this nucleus. In contrast, we did not see any other significant alterations in balance of excitation/inhibition in any of the other auditory brainstem nuclei measured, suggesting that the alterations observed in the MNTB are both nucleus and frequency specific. We furthermore show that glycinergic inhibition may be an important contributor to imbalances in excitation and inhibition in FXS and that the auditory brainstem is a useful circuit for testing these imbalances. © 2017 Wiley Periodicals, Inc.
Deletion of Fmr1 Alters Function and Synaptic Inputs in the Auditory Brainstem
Rotschafer, Sarah E.; Marshak, Sonya; Cramer, Karina S.
2015-01-01
Fragile X Syndrome (FXS), a neurodevelopmental disorder, is the most prevalent single-gene cause of autism spectrum disorder. Autism has been associated with impaired auditory processing, abnormalities in the auditory brainstem response (ABR), and reduced cell number and size in the auditory brainstem nuclei. FXS is characterized by elevated cortical responses to sound stimuli, with some evidence for aberrant ABRs. Here, we assessed ABRs and auditory brainstem anatomy in Fmr1 -/- mice, an animal model of FXS. We found that Fmr1 -/- mice showed elevated response thresholds to both click and tone stimuli. Amplitudes of ABR responses were reduced in Fmr1 -/- mice for early peaks of the ABR. The growth of the peak I response with sound intensity was less steep in mutants that in wild type mice. In contrast, amplitudes and response growth in peaks IV and V did not differ between these groups. We did not observe differences in peak latencies or in interpeak latencies. Cell size was reduced in Fmr1 -/- mice in the ventral cochlear nucleus (VCN) and in the medial nucleus of the trapezoid body (MNTB). We quantified levels of inhibitory and excitatory synaptic inputs in these nuclei using markers for presynaptic proteins. We measured VGAT and VGLUT immunolabeling in VCN, MNTB, and the lateral superior olive (LSO). VGAT expression in MNTB was significantly greater in the Fmr1 -/- mouse than in wild type mice. Together, these observations demonstrate that FXS affects peripheral and central aspects of hearing and alters the balance of excitation and inhibition in the auditory brainstem. PMID:25679778
Parthasarathy, Aravindakshan; Bartlett, Edward
2012-07-01
Auditory brainstem responses (ABRs), and envelope and frequency following responses (EFRs and FFRs) are widely used to study aberrant auditory processing in conditions such as aging. We have previously reported age-related deficits in auditory processing for rapid amplitude modulation (AM) frequencies using EFRs recorded from a single channel. However, sensitive testing of EFRs along a wide range of modulation frequencies is required to gain a more complete understanding of the auditory processing deficits. In this study, ABRs and EFRs were recorded simultaneously from two electrode configurations in young and old Fischer-344 rats, a common auditory aging model. Analysis shows that the two channels respond most sensitively to complementary AM frequencies. Channel 1, recorded from Fz to mastoid, responds better to faster AM frequencies in the 100-700 Hz range of frequencies, while Channel 2, recorded from the inter-aural line to the mastoid, responds better to slower AM frequencies in the 16-100 Hz range. Simultaneous recording of Channels 1 and 2 using AM stimuli with varying sound levels and modulation depths show that age-related deficits in temporal processing are not present at slower AM frequencies but only at more rapid ones, which would not have been apparent recording from either channel alone. Comparison of EFRs between un-anesthetized and isoflurane-anesthetized recordings in young animals, as well as comparison with previously published ABR waveforms, suggests that the generators of Channel 1 may emphasize more caudal brainstem structures while those of Channel 2 may emphasize more rostral auditory nuclei including the inferior colliculus and the forebrain, with the boundary of separation potentially along the cochlear nucleus/superior olivary complex. Simultaneous two-channel recording of EFRs help to give a more complete understanding of the properties of auditory temporal processing over a wide range of modulation frequencies which is useful in understanding neural representations of sound stimuli in normal, developmental or pathological conditions. Copyright © 2012 Elsevier B.V. All rights reserved.
Newborn Auditory Brainstem Evoked Responses (ABRs): Longitudinal Correlates in the First Year.
ERIC Educational Resources Information Center
Murray, Ann D.
1988-01-01
Aimed to determine to what degree newborns' auditory brainstem evoked responses (ABRs) predict delayed or impaired development during the first year. When 93 infants' ABRs were evaluated at three, six, and nine months, newborn ABR was moderately sensitive for detecting hearing impairment and more sensitive than other indicators in detecting…
ERIC Educational Resources Information Center
Student, M.; Sohmer, H.
1978-01-01
In an attempt to resolve the question as to whether children with autistic traits have an organic nervous system lesion, auditory nerve and brainstem evoked responses were recorded in a group of 15 children (4 to 12 years old) with autistic traits. (Author)
Newborn Auditory Brainstem Evoked Responses (ABRs): Prenatal and Contemporary Correlates.
ERIC Educational Resources Information Center
Murray, Ann D.
1988-01-01
Presented are a literature review and new data on correlates of newborn auditory brainstem evoked responses (ABRs). Concludes that disorders of the central components of the ABR may be more of prenatal than of postnatal origin. The I-V interval had low but reliable correlations with four of 11 Brazelton scale variables. (RH)
Auditory Brainstem Responses in Young Adults with Down Syndrome.
ERIC Educational Resources Information Center
Widen, Judith E.; And Others
1987-01-01
In a study of 15 individuals (ages 15-21) with Down Syndrome, auditory brainstem response (ABR) detection levels were elevated, response amplitude reduced, and latency-intensity functions were significantly steeper than for a matched control group. Findings were associated with an impairment in hearing sensitivity at 8000 Hz for the experimental…
Degraded neural and behavioral processing of speech sounds in a rat model of Rett syndrome
Engineer, Crystal T.; Rahebi, Kimiya C.; Borland, Michael S.; Buell, Elizabeth P.; Centanni, Tracy M.; Fink, Melyssa K.; Im, Kwok W.; Wilson, Linda G.; Kilgard, Michael P.
2015-01-01
Individuals with Rett syndrome have greatly impaired speech and language abilities. Auditory brainstem responses to sounds are normal, but cortical responses are highly abnormal. In this study, we used the novel rat Mecp2 knockout model of Rett syndrome to document the neural and behavioral processing of speech sounds. We hypothesized that both speech discrimination ability and the neural response to speech sounds would be impaired in Mecp2 rats. We expected that extensive speech training would improve speech discrimination ability and the cortical response to speech sounds. Our results reveal that speech responses across all four auditory cortex fields of Mecp2 rats were hyperexcitable, responded slower, and were less able to follow rapidly presented sounds. While Mecp2 rats could accurately perform consonant and vowel discrimination tasks in quiet, they were significantly impaired at speech sound discrimination in background noise. Extensive speech training improved discrimination ability. Training shifted cortical responses in both Mecp2 and control rats to favor the onset of speech sounds. While training increased the response to low frequency sounds in control rats, the opposite occurred in Mecp2 rats. Although neural coding and plasticity are abnormal in the rat model of Rett syndrome, extensive therapy appears to be effective. These findings may help to explain some aspects of communication deficits in Rett syndrome and suggest that extensive rehabilitation therapy might prove beneficial. PMID:26321676
[Forensic application of brainstem auditory evoked potential in patients with brain concussion].
Zheng, Xing-Bin; Li, Sheng-Yan; Huang, Si-Xing; Ma, Ke-Xin
2008-12-01
To investigate changes of brainstem auditory evoked potential (BAEP) in patients with brain concussion. Nineteen patients with brain concussion were studied with BAEP examination. The data was compared to the healthy persons reported in literatures. The abnormal rate of BAEP for patients with brain concussion was 89.5%. There was a statistically significant difference between the abnormal rate of patients and that of healthy persons (P<0.05). The abnormal rate of BAEP in the brainstem pathway for patients with brain concussion was 73.7%, indicating dysfunction of the brainstem in those patients. BAEP might be helpful in forensic diagnosis of brain concussion.
Effects of chronic exposure to electromagnetic waves on the auditory system.
Özgür, Abdulkadir; Tümkaya, Levent; Terzi, Suat; Kalkan, Yıldıray; Erdivanlı, Özlem Çelebi; Dursun, Engin
2015-08-01
The results support that chronic electromagnetic field exposure may cause damage by leading to neuronal degeneration of the auditory system. Numerous researches have been done about the risks of exposure to the electromagnetic fields that occur during the use of these devices, especially the effects on hearing. The aim of this study is to evaluate the effects of the electromagnetic waves emitted by the mobile phones through the electrophysiological and histological methods. Twelve adult Wistar albino rats were included in the study. The rats were divided into two groups of six rats. The study group was exposed to the electromagnetic waves over a period of 30 days. The control group was not given any exposure to the electromagnetic fields. After the completion of the electromagnetic wave application, the auditory brainstem responses of both groups were recorded under anesthesia. The degeneration of cochlear nuclei was graded by two different histologists, both of whom were blinded to group information. The histopathologic and immunohistochemical analysis showed neuronal degeneration signs, such as increased vacuolization in the cochlear nucleus, pyknotic cell appearance, and edema in the group exposed to the electromagnetic fields compared to the control group. The average latency of wave in the ABR was similar in both groups (p > 0.05).
Clinical applications of the human brainstem responses to auditory stimuli
NASA Technical Reports Server (NTRS)
Galambos, R.; Hecox, K.
1975-01-01
A technique utilizing the frequency following response (FFR) (obtained by auditory stimulation, whereby the stimulus frequency and duration are mirror-imaged in the resulting brainwaves) as a clinical tool for hearing disorders in humans of all ages is presented. Various medical studies are discussed to support the clinical value of the technique. The discovery and origin of the FFR and another significant brainstem auditory response involved in studying the eighth nerve is also discussed.
Development of N-Methyl-D-Aspartate Receptor Subunits in Avian Auditory Brainstem
TANG, YE-ZHONG; CARR, CATHERINE E.
2012-01-01
N-methyl-D-aspartate (NMDA) receptor subunit-specific probes were used to characterize developmental changes in the distribution of excitatory amino acid receptors in the chicken’s auditory brainstem nuclei. Although NR1 subunit expression does not change greatly during the development of the cochlear nuclei in the chicken (Tang and Carr [2004] Hear. Res 191:79 – 89), there are significant developmental changes in NR2 subunit expression. We used in situ hybridization against NR1, NR2A, NR2B, NR2C, and NR2D to compare NR1 and NR2 expression during development. All five NMDA subunits were expressed in the auditory brainstem before embryonic day (E) 10, when electrical activity and synaptic responses appear in the nucleus magnocellularis (NM) and the nucleus laminaris (NL). At this time, the dominant form of the receptor appeared to contain NR1 and NR2B. NR2A appeared to replace NR2B by E14, a time that coincides with synaptic refinement and evoked auditory responses. NR2C did not change greatly during auditory development, whereas NR2D increased from E10 and remained at fairly high levels into adulthood. Thus changes in NMDA NR2 receptor subunits may contribute to the development of auditory brainstem responses in the chick. PMID:17366608
Assembly of the Auditory Circuitry by a Hox Genetic Network in the Mouse Brainstem
Di Bonito, Maria; Narita, Yuichi; Avallone, Bice; Sequino, Luigi; Mancuso, Marta; Andolfi, Gennaro; Franzè, Anna Maria; Puelles, Luis; Rijli, Filippo M.; Studer, Michèle
2013-01-01
Rhombomeres (r) contribute to brainstem auditory nuclei during development. Hox genes are determinants of rhombomere-derived fate and neuronal connectivity. Little is known about the contribution of individual rhombomeres and their associated Hox codes to auditory sensorimotor circuitry. Here, we show that r4 contributes to functionally linked sensory and motor components, including the ventral nucleus of lateral lemniscus, posterior ventral cochlear nuclei (VCN), and motor olivocochlear neurons. Assembly of the r4-derived auditory components is involved in sound perception and depends on regulatory interactions between Hoxb1 and Hoxb2. Indeed, in Hoxb1 and Hoxb2 mutant mice the transmission of low-level auditory stimuli is lost, resulting in hearing impairments. On the other hand, Hoxa2 regulates the Rig1 axon guidance receptor and controls contralateral projections from the anterior VCN to the medial nucleus of the trapezoid body, a circuit involved in sound localization. Thus, individual rhombomeres and their associated Hox codes control the assembly of distinct functionally segregated sub-circuits in the developing auditory brainstem. PMID:23408898
Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem.
Di Bonito, Maria; Narita, Yuichi; Avallone, Bice; Sequino, Luigi; Mancuso, Marta; Andolfi, Gennaro; Franzè, Anna Maria; Puelles, Luis; Rijli, Filippo M; Studer, Michèle
2013-01-01
Rhombomeres (r) contribute to brainstem auditory nuclei during development. Hox genes are determinants of rhombomere-derived fate and neuronal connectivity. Little is known about the contribution of individual rhombomeres and their associated Hox codes to auditory sensorimotor circuitry. Here, we show that r4 contributes to functionally linked sensory and motor components, including the ventral nucleus of lateral lemniscus, posterior ventral cochlear nuclei (VCN), and motor olivocochlear neurons. Assembly of the r4-derived auditory components is involved in sound perception and depends on regulatory interactions between Hoxb1 and Hoxb2. Indeed, in Hoxb1 and Hoxb2 mutant mice the transmission of low-level auditory stimuli is lost, resulting in hearing impairments. On the other hand, Hoxa2 regulates the Rig1 axon guidance receptor and controls contralateral projections from the anterior VCN to the medial nucleus of the trapezoid body, a circuit involved in sound localization. Thus, individual rhombomeres and their associated Hox codes control the assembly of distinct functionally segregated sub-circuits in the developing auditory brainstem.
Tarasenko, Melissa A; Swerdlow, Neal R; Makeig, Scott; Braff, David L; Light, Gregory A
2014-01-01
Cognitive deficits limit psychosocial functioning in schizophrenia. For many patients, cognitive remediation approaches have yielded encouraging results. Nevertheless, therapeutic response is variable, and outcome studies consistently identify individuals who respond minimally to these interventions. Biomarkers that can assist in identifying patients likely to benefit from particular forms of cognitive remediation are needed. Here, we describe an event-related potential (ERP) biomarker - the auditory brain-stem response (ABR) to complex sounds (cABR) - that appears to be particularly well-suited for predicting response to at least one form of cognitive remediation that targets auditory information processing. Uniquely, the cABR quantifies the fidelity of sound encoded at the level of the brainstem and midbrain. This ERP biomarker has revealed auditory processing abnormalities in various neurodevelopmental disorders, correlates with functioning across several cognitive domains, and appears to be responsive to targeted auditory training. We present preliminary cABR data from 18 schizophrenia patients and propose further investigation of this biomarker for predicting and tracking response to cognitive interventions.
Mechanisms of spectral and temporal integration in the mustached bat inferior colliculus
Wenstrup, Jeffrey James; Nataraj, Kiran; Sanchez, Jason Tait
2012-01-01
This review describes mechanisms and circuitry underlying combination-sensitive response properties in the auditory brainstem and midbrain. Combination-sensitive neurons, performing a type of auditory spectro-temporal integration, respond to specific, properly timed combinations of spectral elements in vocal signals and other acoustic stimuli. While these neurons are known to occur in the auditory forebrain of many vertebrate species, the work described here establishes their origin in the auditory brainstem and midbrain. Focusing on the mustached bat, we review several major findings: (1) Combination-sensitive responses involve facilitatory interactions, inhibitory interactions, or both when activated by distinct spectral elements in complex sounds. (2) Combination-sensitive responses are created in distinct stages: inhibition arises mainly in lateral lemniscal nuclei of the auditory brainstem, while facilitation arises in the inferior colliculus (IC) of the midbrain. (3) Spectral integration underlying combination-sensitive responses requires a low-frequency input tuned well below a neuron's characteristic frequency (ChF). Low-ChF neurons in the auditory brainstem project to high-ChF regions in brainstem or IC to create combination sensitivity. (4) At their sites of origin, both facilitatory and inhibitory combination-sensitive interactions depend on glycinergic inputs and are eliminated by glycine receptor blockade. Surprisingly, facilitatory interactions in IC depend almost exclusively on glycinergic inputs and are largely independent of glutamatergic and GABAergic inputs. (5) The medial nucleus of the trapezoid body (MNTB), the lateral lemniscal nuclei, and the IC play critical roles in creating combination-sensitive responses. We propose that these mechanisms, based on work in the mustached bat, apply to a broad range of mammals and other vertebrates that depend on temporally sensitive integration of information across the audible spectrum. PMID:23109917
ERIC Educational Resources Information Center
Zaitoun, Maha; Cumming, Steven; Purcell, Alison; O'Brien, Katie
2017-01-01
Purpose: This study assesses the impact of patient clinical history on audiologists' performance when interpreting auditory brainstem response (ABR) results. Method: Fourteen audiologists' accuracy in estimating hearing threshold for 16 infants through interpretation of ABR traces was compared on 2 occasions at least 5 months apart. On the 1st…
ERIC Educational Resources Information Center
Stuart, Andrew; Yang, Edward Y.
1994-01-01
Simultaneous 3- channel recorded auditory brainstem responses (ABR) were obtained from 20 neonates with various high-pass filter settings and low intensity levels. Results support the advocacy of less restrictive high-pass filtering for neonatal and infant ABR screening to air-conducted and bone-conducted clicks. (Author/JDD)
ERIC Educational Resources Information Center
Billiet, Cassandra R.; Bellis, Teri James
2011-01-01
Purpose: Studies using speech stimuli to elicit electrophysiologic responses have found approximately 30% of children with language-based learning problems demonstrate abnormal brainstem timing. Research is needed regarding how these responses relate to performance on behavioral tests of central auditory function. The purpose of the study was to…
Auditory Brainstem Evoked Responses in Newborns with Down Syndrome
ERIC Educational Resources Information Center
Kittler, Phyllis M.; Phan, Ha T. T.; Gardner, Judith M.; Miroshnichenko, Inna; Gordon, Anne; Karmel, Bernard Z.
2009-01-01
Auditory brainstem evoked responses (ABRs) were compared in 15 newborns with Down syndrome and 15 sex-, age-, and weight-matched control newborns. Participants had normal ABRs based upon values specific to 32- to 42-weeks postconceptional age. Although Wave III and Wave V component latencies and the Wave I-III interpeak latency (IPL) were shorter…
ERIC Educational Resources Information Center
Gorga, Michael P.; And Others
1989-01-01
Auditory brainstem responses (ABR) were measured in 535 children from 3 months to 3 years of age. Results suggested that changes in wave V latency with age are due to central (neural) factors and that age-appropriate norms should be used in evaluations of ABR latencies in children. (Author/DB)
Infant Temperament and the Brainstem Auditory Evoked Response in Later Childhood.
ERIC Educational Resources Information Center
Woodward, Sue A.; McManis, Mark H.; Kagan, Jerome; Deldin, Patricia; Snidman, Nancy; Lewis, Melissa; Kahn, Vali
2001-01-01
Evaluated brainstem auditory evoked responses (BAERs) on 10- to 12-year-olds who had been classified as high or low reactive to unfamiliar stimuli at 4 months of age. Found that children previously classified as high reactive at 4 months had larger wave V components than did low reactive children, possibly suggesting greater excitability in…
Auditory Brainstem Response to Complex Sounds Predicts Self-Reported Speech-in-Noise Performance
ERIC Educational Resources Information Center
Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina
2013-01-01
Purpose: To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette,…
Aberrant Lateralization of Brainstem Auditory Evoked Responses by Individuals with Down Syndrome.
ERIC Educational Resources Information Center
Miezejeski, Charles M.; And Others
1994-01-01
Brainstem auditory evoked response latencies were studied in 80 males (13 with Down's syndrome). Latencies for waves P3 and P5 were shorter for Down's syndrome subjects, who also showed a different pattern of left versus right ear responses. Results suggest decreased lateralization and receptive and expressive language ability among people with…
Screening the High-Risk Newborn for Hearing Loss: The Crib-O-Gram v the Auditory Brainstem Response.
ERIC Educational Resources Information Center
Cox, L. Clarke
1988-01-01
Presented are a rationale for identifying hearing loss in infancy and a history of screening procedures. The Crib-O-Gram and auditory brainstem response (ABR) tests are evaluated for reliability, validity, and cost-effectiveness. The ABR is recommended, and fully automated ABR instrumentation, which lowers expenses for trained personnel and…
... ears. Brainstem Implant - auditory prosthesis that bypasses the cochlea and auditory nerve. This type of implant helps individuals who cannot benefit from a cochlear implant because the auditory nerves are not working. ...
Moncho, Dulce; Poca, Maria A; Minoves, Teresa; Ferré, Alejandro; Sahuquillo, Juan
2015-10-01
Limits of the interside differences are invaluable when interpreting asymmetry in brainstem auditory evoked potentials and somatosensory evoked potentials (SEP) recordings. The aim of this study was to analyze the normal upper limits of interside latency differences of brainstem auditory evoked potentials and SEP from the posterior tibial nerve and median nerve to determine asymmetry. The authors performed a prospective study in 56 healthy subjects aged 15 to 64 years with no neurological or hearing disorders. They analyzed (1) the latencies of I, III, and V waves and I-III, III-V, and I-V intervals and the amplitude ratios V/I and IV/I for brainstem auditory evoked potentials bilaterally; (2) the latencies of N8, N22, N28, and P37 waves and the interval N22-P37 and the amplitude P37 for posterior tibial nerve SEP bilaterally; and (3) the latencies and amplitudes of N9, N13, and N20 waves and N9-N13 and N13-N20 intervals for median nerve SEP bilaterally. The interside differences for these parameters were calculated and analyzed. The authors obtained an upper limit for the interside latency differences from brainstem auditory evoked potentials that was significantly lower than the previously published data. However, the upper limits of interside latency differences for SEP were similar to those previously reported. The findings of this study should be considered when laboratories analyze asymmetry using the normative data published by another center, however temporarily, in organizing new laboratories.
Sanguebuche, Taissane Rodrigues; Peixe, Bruna Pias; Bruno, Rúbia Soares; Biaggio, Eliara Pinto Vieira; Garcia, Michele Vargas
2018-01-01
Introduction The auditory system consists of sensory structures and central connections. The evaluation of the auditory pathway at a central level can be performed through behavioral and electrophysiological tests, because they are complementary to each other and provide important information about comprehension. Objective To correlate the findings of speech brainstem-evoked response audiometry with the behavioral tests Random Gap Detection Test and Masking Level Difference in adults with hearing loss. Methods All patients were submitted to a basic audiological evaluation, to the aforementioned behavioral tests, and to an electrophysiological assessment, by means of click-evoked and speech-evoked brainstem response audiometry. Results There were no statistically significant values among the electrophysiological test and the behavioral tests. However, there was a significant correlation between the V and A waves, as well as the D and F waves, of the speech-evoked brainstem response audiometry peaks. Such correlations are positive, indicating that the increase of a variable implies an increase in another and vice versa. Conclusion It was possible to correlate the findings of the speech-evoked brainstem response audiometry with those of the behavioral tests Random Gap Detection and Masking Level Difference. However, there was no statistically significant correlation between them. This shows that the electrophysiological evaluation does not depend uniquely on the behavioral skills of temporal resolution and selective attention. PMID:29379574
Comprehensive evaluation of a child with an auditory brainstem implant.
Eisenberg, Laurie S; Johnson, Karen C; Martinez, Amy S; DesJardin, Jean L; Stika, Carren J; Dzubak, Danielle; Mahalak, Mandy Lutz; Rector, Emily P
2008-02-01
We had an opportunity to evaluate an American child whose family traveled to Italy to receive an auditory brainstem implant (ABI). The goal of this evaluation was to obtain insight into possible benefits derived from the ABI and to begin developing assessment protocols for pediatric clinical trials. Case study. Tertiary referral center. Pediatric ABI Patient 1 was born with auditory nerve agenesis. Auditory brainstem implant surgery was performed in December, 2005, in Verona, Italy. The child was assessed at the House Ear Institute, Los Angeles, in July 2006 at the age of 3 years 11 months. Follow-up assessment has continued at the HEAR Center in Birmingham, Alabama. Auditory brainstem implant. Performance was assessed for the domains of audition, speech and language, intelligence and behavior, quality of life, and parental factors. Patient 1 demonstrated detection of sound, speech pattern perception with visual cues, and inconsistent auditory-only vowel discrimination. Language age with signs was approximately 2 years, and vocalizations were increasing. Of normal intelligence, he exhibited attention deficits with difficulty completing structured tasks. Twelve months later, this child was able to identify speech patterns consistently; closed-set word identification was emerging. These results were within the range of performance for a small sample of similarly aged pediatric cochlear implant users. Pediatric ABI assessment with a group of well-selected children is needed to examine risk versus benefit in this population and to analyze whether open-set speech recognition is achievable.
ERIC Educational Resources Information Center
Shannon, Dorothy A.; And Others
1984-01-01
The brainstem auditory evoked potential (BAEP) was evaluated as a hearing screening test in 168 high-risk newborns. The BAEP was found to be a sensitive procedure for the early identification of hearing-impaired newborns. However, the yield of significant hearing abnormalities was less than predicted in other studies using BAEP. (Author/CL)
ERIC Educational Resources Information Center
Bidelman, Gavin M.; Gandour, Jackson T.; Krishnan, Ananthanarayan
2011-01-01
Neural encoding of pitch in the auditory brainstem is known to be shaped by long-term experience with language or music, implying that early sensory processing is subject to experience-dependent neural plasticity. In language, pitch patterns consist of sequences of continuous, curvilinear contours; in music, pitch patterns consist of relatively…
Auditory Brainstem Response Thresholds to Air- and Bone-Conducted CE-Chirps in Neonates and Adults
ERIC Educational Resources Information Center
Cobb, Kensi M.; Stuart, Andrew
2016-01-01
Purpose The purpose of this study was to compare auditory brainstem response (ABR) thresholds to air- and bone-conducted CE-Chirps in neonates and adults. Method Thirty-two neonates with no physical or neurologic challenges and 20 adults with normal hearing participated. ABRs were acquired with a starting intensity of 30 dB normal hearing level…
Brainstem auditory evoked responses and ophthalmic findings in llamas and alpacas in eastern Canada
Cullen, Cheryl L.; Lamont, Leigh A.
2006-01-01
Abstract Seventeen llamas and 23 alpacas of various coat and iris colors were evaluated for: 1) deafness by using brainstem auditory evoked response testing; and 2) for ocular abnormalities via complete ophthalmic examination. No animals were deaf. The most common ocular abnormalities noted were iris-to-iris persistent pupillary membranes and incipient cataracts. PMID:16536233
Reichenbach, Chagit S.; Braiman, Chananel; Schiff, Nicholas D.; Hudspeth, A. J.; Reichenbach, Tobias
2016-01-01
The auditory-brainstem response (ABR) to short and simple acoustical signals is an important clinical tool used to diagnose the integrity of the brainstem. The ABR is also employed to investigate the auditory brainstem in a multitude of tasks related to hearing, such as processing speech or selectively focusing on one speaker in a noisy environment. Such research measures the response of the brainstem to short speech signals such as vowels or words. Because the voltage signal of the ABR has a tiny amplitude, several hundred to a thousand repetitions of the acoustic signal are needed to obtain a reliable response. The large number of repetitions poses a challenge to assessing cognitive functions due to neural adaptation. Here we show that continuous, non-repetitive speech, lasting several minutes, may be employed to measure the ABR. Because the speech is not repeated during the experiment, the precise temporal form of the ABR cannot be determined. We show, however, that important structural features of the ABR can nevertheless be inferred. In particular, the brainstem responds at the fundamental frequency of the speech signal, and this response is modulated by the envelope of the voiced parts of speech. We accordingly introduce a novel measure that assesses the ABR as modulated by the speech envelope, at the fundamental frequency of speech and at the characteristic latency of the response. This measure has a high signal-to-noise ratio and can hence be employed effectively to measure the ABR to continuous speech. We use this novel measure to show that the ABR is weaker to intelligible speech than to unintelligible, time-reversed speech. The methods presented here can be employed for further research on speech processing in the auditory brainstem and can lead to the development of future clinical diagnosis of brainstem function. PMID:27303286
Lew, Henry L; Lee, Eun Ha; Miyoshi, Yasushi; Chang, Douglas G; Date, Elaine S; Jerger, James F
2004-03-01
Because of the violent nature of traumatic brain injury, traumatic brain injury patients are susceptible to various types of trauma involving the auditory system. We report a case of a 55-yr-old man who presented with communication problems after traumatic brain injury. Initial results from behavioral audiometry and Weber/Rinne tests were not reliable because of poor cooperation. He was transferred to our service for inpatient rehabilitation, where review of the initial head computed tomographic scan showed only left temporal bone fracture. Brainstem auditory-evoked potential was then performed to evaluate his hearing function. The results showed bilateral absence of auditory-evoked responses, which strongly suggested bilateral deafness. This finding led to a follow-up computed tomographic scan, with focus on bilateral temporal bones. A subtle transverse fracture of the right temporal bone was then detected, in addition to the left temporal bone fracture previously identified. Like children with hearing impairment, traumatic brain injury patients may not be able to verbalize their auditory deficits in a timely manner. If hearing loss is suspected in a patient who is unable to participate in traditional behavioral audiometric testing, brainstem auditory-evoked potential may be an option for evaluating hearing dysfunction.
Tarasenko, Melissa A.; Swerdlow, Neal R.; Makeig, Scott; Braff, David L.; Light, Gregory A.
2014-01-01
Cognitive deficits limit psychosocial functioning in schizophrenia. For many patients, cognitive remediation approaches have yielded encouraging results. Nevertheless, therapeutic response is variable, and outcome studies consistently identify individuals who respond minimally to these interventions. Biomarkers that can assist in identifying patients likely to benefit from particular forms of cognitive remediation are needed. Here, we describe an event-related potential (ERP) biomarker – the auditory brain-stem response (ABR) to complex sounds (cABR) – that appears to be particularly well-suited for predicting response to at least one form of cognitive remediation that targets auditory information processing. Uniquely, the cABR quantifies the fidelity of sound encoded at the level of the brainstem and midbrain. This ERP biomarker has revealed auditory processing abnormalities in various neurodevelopmental disorders, correlates with functioning across several cognitive domains, and appears to be responsive to targeted auditory training. We present preliminary cABR data from 18 schizophrenia patients and propose further investigation of this biomarker for predicting and tracking response to cognitive interventions. PMID:25352811
Auditory effects of aircraft noise on people living near an airport.
Chen, T J; Chen, S S; Hsieh, P Y; Chiang, H C
1997-01-01
Two groups of randomly chosen individuals who lived in two communities located different distances from the airport were studied. We monitored audiometry and brainstem auditory-evoked potentials to evaluate cochlear and retrocochlear functions in the individuals studied. The results of audiometry measurements indicated that hearing ability was reduced significantly in individuals who lived near the airport and who were exposed frequently to aircraft noise. Values of pure-tone average, high pure-tone average, and threshold at 4 kHz were all higher in individuals who lived near the airport, compared with those who lived farther away. With respect to brainstem auditory-evoked potentials, latencies between the two groups were not consistently different; however, the abnormality rate of such potentials was significantly higher in volunteers who lived near the airport, compared with less-exposed counterparts. In addition, a positive correlation was found between brainstem auditory-evoked potential latency and behavioral hearing threshold of high-frequency tone in exposed volunteers. We not only confirmed that damage to the peripheral cochlear organs occurred in individuals exposed frequently to aircraft noise, but we demonstrated involvement of the central auditory pathway.
Stein, Aryeh D; Wang, Meng; Rivera, Juan A; Martorell, Reynaldo; Ramakrishnan, Usha
2012-08-01
The evidence relating prenatal supplementation with DHA to offspring neurological development is limited. We investigated the effect of prenatal DHA supplementation on infant brainstem auditory-evoked responses and visual- evoked potentials in a double-blind, randomized controlled trial in Cuernavaca, Mexico. Pregnant women were supplemented daily with 400 mg DHA or placebo from gestation wk 18-22 through delivery. DHA and placebo groups did not differ in maternal characteristics at randomization or infant characteristics at birth. Brainstem auditory-evoked responses were measured at 1 and 3 mo in 749 and 664 infants, respectively, and visual-evoked potentials were measured at 3 and 6 mo in 679 and 817 infants, respectively. Left-right brainstem auditory-evoked potentials were moderately correlated (range, 0.26-0.43; all P < 0.001) and left-right visual-evoked potentials were strongly correlated (range, 0.79-0.94; all P < 0.001) within any assessment. Correlations across visits were modest to moderate (range, 0.09-0.38; all P < 0.01). The offspring of DHA-supplemented women did not differ from those of control women with respect to any outcome measure (all comparisons P > 0.10). We conclude that DHA supplementation during pregnancy did not influence brainstem auditory-evoked responses at 1 and 3 mo or visual-evoked potentials at 3 and 6 mo.
Rosskothen-Kuhl, Nicole; Hildebrandt, Heika; Birkenhäger, Ralf; Illing, Robert-Benjamin
2018-01-01
Neuron-glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron-glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation.
Rosskothen-Kuhl, Nicole; Hildebrandt, Heika; Birkenhäger, Ralf; Illing, Robert-Benjamin
2018-01-01
Neuron–glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron–glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation. PMID:29520220
Kim, Bong Jik; Kim, Jungyoon; Keoboutdy, Vanhnansy; Kwon, Ho-Jang; Oh, Seung-Ha; Jung, Jae Yun; Park, Il Yong; Paik, Ki Chung
2017-06-01
The central auditory pathway is known to continue its development during the postnatal critical periods and is shaped by experience and sensory inputs. Phthalate, a known neurotoxic material, has been reported to be associated with attention deficits in children, impacting many infant neurobehaviors. The objective of this study was to investigate the potential effects of neonatal phthalate exposure on the development of auditory temporal processing. Neonatal Sprague-Dawley rats were randomly assigned into two groups: The phthalate group (n = 6), and the control group (n = 6). Phthalate was given once per day from postnatal day 8 (P8) to P28. Upon completion, at P28, the Auditory Brainstem Response (ABR) and Gap Prepulse Inhibition of Acoustic Startle response (GPIAS) at each gap duration (2, 5, 10, 20, 50 and 80 ms) were measured, and gap detection threshold (GDT) was calculated. These outcomes were compared between the two groups. Hearing thresholds by ABR showed no significant differences at all frequencies between the two groups. Regarding GPIAS, no significant difference was observed, except at a gap duration of 20 ms (p = 0.037). The mean GDT of the phthalate group (44.0 ms) was higher than that of the control group (20.0 ms), but without statistical significance (p = 0.065). Moreover, the phthalate group tended to demonstrate more of a scattered distribution in the GDT group than the in the control group. Neonatal phthalate exposure may disrupt the development of auditory temporal processing in rats. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Y; Li, P; Ye, H C
2000-02-28
To explore personality test and brainstem auditory potentials (BAEPs) in patients with migraine. BAEPs and eysenck personality scale were recorded in 30 patients with migraine. The abnormal rate of BAEPs was 53%. The latency of individual wave I, III and V were prolonged, so did the interval of the wave III and wave V. The results of personality test showed that 3 patients(10%) manifested introvert personality, 12 patients (40%) extravert personality, and 17 patients (56%) the intermediate personality. It is indicated that migraine may be related to the disturbance of brainstem disfunction and personality of patients.
ERIC Educational Resources Information Center
Roth, Daphne Ari-Even; Muchnik, Chava; Shabtai, Esther; Hildesheimer, Minka; Henkin, Yael
2012-01-01
Aim: The aim of this study was to characterize the auditory brainstem responses (ABRs) of young children with suspected autism spectrum disorders (ASDs) and compare them with the ABRs of children with language delay and with clinical norms. Method: The ABRs of 26 children with suspected ASDs (21 males, five females; mean age 32.5 mo) and an age-…
Verhulst, Sarah; Altoè, Alessandro; Vasilkov, Viacheslav
2018-03-01
Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Blast-Induced Tinnitus and Hearing Loss in Rats: Behavioral and Imaging Assays
Mao, Johnny C.; Pace, Edward; Pierozynski, Paige; Kou, Zhifeng; Shen, Yimin; VandeVord, Pamela; Haacke, E. Mark; Zhang, Xueguo
2012-01-01
Abstract The current study used a rat model to investigate the underlying mechanisms of blast-induced tinnitus, hearing loss, and associated traumatic brain injury (TBI). Seven rats were used to evaluate behavioral evidence of tinnitus and hearing loss, and TBI using magnetic resonance imaging following a single 10-msec blast at 14 psi or 194 dB sound pressure level (SPL). The results demonstrated that the blast exposure induced early onset of tinnitus and central hearing impairment at a broad frequency range. The induced tinnitus and central hearing impairment tended to shift towards high frequencies over time. Hearing threshold measured with auditory brainstem responses also showed an immediate elevation followed by recovery on day 14, coinciding with behaviorally-measured results. Diffusion tensor magnetic resonance imaging results demonstrated significant damage and compensatory plastic changes to certain auditory brain regions, with the majority of changes occurring in the inferior colliculus and medial geniculate body. No significant microstructural changes found in the corpus callosum indicates that the currently adopted blast exposure mainly exerts effects through the auditory pathways rather than through direct impact onto the brain parenchyma. The results showed that this animal model is appropriate for investigation of the mechanisms underlying blast-induced tinnitus, hearing loss, and related TBI. Continued investigation along these lines will help identify pathology with injury/recovery patterns, aiding development of effective treatment strategies. PMID:21933015
Brainstem transcription of speech is disrupted in children with autism spectrum disorders
Russo, Nicole; Nicol, Trent; Trommer, Barbara; Zecker, Steve; Kraus, Nina
2009-01-01
Language impairment is a hallmark of autism spectrum disorders (ASD). The origin of the deficit is poorly understood although deficiencies in auditory processing have been detected in both perception and cortical encoding of speech sounds. Little is known about the processing and transcription of speech sounds at earlier (brainstem) levels or about how background noise may impact this transcription process. Unlike cortical encoding of sounds, brainstem representation preserves stimulus features with a degree of fidelity that enables a direct link between acoustic components of the speech syllable (e.g., onsets) to specific aspects of neural encoding (e.g., waves V and A). We measured brainstem responses to the syllable /da/, in quiet and background noise, in children with and without ASD. Children with ASD exhibited deficits in both the neural synchrony (timing) and phase locking (frequency encoding) of speech sounds, despite normal click-evoked brainstem responses. They also exhibited reduced magnitude and fidelity of speech-evoked responses and inordinate degradation of responses by background noise in comparison to typically developing controls. Neural synchrony in noise was significantly related to measures of core and receptive language ability. These data support the idea that abnormalities in the brainstem processing of speech contribute to the language impairment in ASD. Because it is both passively-elicited and malleable, the speech-evoked brainstem response may serve as a clinical tool to assess auditory processing as well as the effects of auditory training in the ASD population. PMID:19635083
Sörqvist, Patrik; Stenfelt, Stefan; Rönnberg, Jerker
2012-11-01
Two fundamental research questions have driven attention research in the past: One concerns whether selection of relevant information among competing, irrelevant, information takes place at an early or at a late processing stage; the other concerns whether the capacity of attention is limited by a central, domain-general pool of resources or by independent, modality-specific pools. In this article, we contribute to these debates by showing that the auditory-evoked brainstem response (an early stage of auditory processing) to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual-verbal version of the n-back task). Furthermore, individual differences in central/domain-general working memory capacity modulated the magnitude of the auditory-evoked brainstem response, but only in the high working memory load condition. The results support a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.
Involvement of p53 and Bcl-2 in sensory cell degeneration in aging rat cochleae.
Xu, Yang; Yang, Wei Ping; Hu, Bo Hua; Yang, Shiming; Henderson, Donald
2017-06-01
p53 and Bcl-2 (B-cell lymphoma 2) are involved in the process of sensory cell degeneration in aging cochleae. To determine molecular players in age-related hair cell degeneration, this study examined the changes in p53 and Bcl-2 expression at different stages of apoptotic and necrotic death of hair cells in aging rat cochleae. Young (3-4 months) and aging (23-24 months) Fisher 344/NHsd rats were used. The thresholds of the auditory brainstem response (ABR) were measured to determine the auditory function. Immunolabeling was performed to determine the expression of p53 and Bcl-2 proteins in the sensory epithelium. Propidium iodide staining was performed to determine the morphologic changes in hair cell nuclei. Aging rats exhibited a significant elevation in ABR thresholds at all tested frequencies (p < 0.001). The p53 and Bcl-2 immunoreactivity was increased in aging hair cells showing the early signs of apoptotic changes in their nuclei. The Bcl-2 expression increase was also observed in hair cells displaying early signs of necrosis. As the hair cell degenerative process advanced, p53 and Bcl-2 immunoreactivity became reduced or absent. In the areas where no detectable nuclear staining was present, p53 and Bcl-2 immunoreactivity was absent.
Leite, Renata Aparecida; Wertzner, Haydée Fiszbein; Gonçalves, Isabela Crivellaro; Magliaro, Fernanda Cristina Leite; Matas, Carla Gentile
2014-03-01
This study investigated whether neurophysiologic responses (auditory evoked potentials) differ between typically developed children and children with phonological disorders and whether these responses are modified in children with phonological disorders after speech therapy. The participants included 24 typically developing children (Control Group, mean age: eight years and ten months) and 23 children clinically diagnosed with phonological disorders (Study Group, mean age: eight years and eleven months). Additionally, 12 study group children were enrolled in speech therapy (Study Group 1), and 11 were not enrolled in speech therapy (Study Group 2). The subjects were submitted to the following procedures: conventional audiological, auditory brainstem response, auditory middle-latency response, and P300 assessments. All participants presented with normal hearing thresholds. The study group 1 subjects were reassessed after 12 speech therapy sessions, and the study group 2 subjects were reassessed 3 months after the initial assessment. Electrophysiological results were compared between the groups. Latency differences were observed between the groups (the control and study groups) regarding the auditory brainstem response and the P300 tests. Additionally, the P300 responses improved in the study group 1 children after speech therapy. The findings suggest that children with phonological disorders have impaired auditory brainstem and cortical region pathways that may benefit from speech therapy.
Cousineau, Marion; Bidelman, Gavin M.; Peretz, Isabelle; Lehmann, Alexandre
2015-01-01
Some combinations of musical tones sound pleasing to Western listeners, and are termed consonant, while others sound discordant, and are termed dissonant. The perceptual phenomenon of consonance has been traced to the acoustic property of harmonicity. It has been repeatedly shown that neural correlates of consonance can be found as early as the auditory brainstem as reflected in the harmonicity of the scalp-recorded frequency-following response (FFR). “Neural Pitch Salience” (NPS) measured from FFRs—essentially a time-domain equivalent of the classic pattern recognition models of pitch—has been found to correlate with behavioral judgments of consonance for synthetic stimuli. Following the idea that the auditory system has evolved to process behaviorally relevant natural sounds, and in order to test the generalizability of this finding made with synthetic tones, we recorded FFRs for consonant and dissonant intervals composed of synthetic and natural stimuli. We found that NPS correlated with behavioral judgments of consonance and dissonance for synthetic but not for naturalistic sounds. These results suggest that while some form of harmonicity can be computed from the auditory brainstem response, the general percept of consonance and dissonance is not captured by this measure. It might either be represented in the brainstem in a different code (such as place code) or arise at higher levels of the auditory pathway. Our findings further illustrate the importance of using natural sounds, as a complementary tool to fully-controlled synthetic sounds, when probing auditory perception. PMID:26720000
Stein, Aryeh D.; Wang, Meng; Rivera, Juan A.; Martorell, Reynaldo; Ramakrishnan, Usha
2012-01-01
The evidence relating prenatal supplementation with DHA to offspring neurological development is limited. We investigated the effect of prenatal DHA supplementation on infant brainstem auditory-evoked responses and visual- evoked potentials in a double-blind, randomized controlled trial in Cuernavaca, Mexico. Pregnant women were supplemented daily with 400 mg DHA or placebo from gestation wk 18–22 through delivery. DHA and placebo groups did not differ in maternal characteristics at randomization or infant characteristics at birth. Brainstem auditory-evoked responses were measured at 1 and 3 mo in 749 and 664 infants, respectively, and visual-evoked potentials were measured at 3 and 6 mo in 679 and 817 infants, respectively. Left-right brainstem auditory-evoked potentials were moderately correlated (range, 0.26–0.43; all P < 0.001) and left-right visual-evoked potentials were strongly correlated (range, 0.79–0.94; all P < 0.001) within any assessment. Correlations across visits were modest to moderate (range, 0.09–0.38; all P < 0.01). The offspring of DHA-supplemented women did not differ from those of control women with respect to any outcome measure (all comparisons P > 0.10). We conclude that DHA supplementation during pregnancy did not influence brainstem auditory-evoked responses at 1 and 3 mo or visual-evoked potentials at 3 and 6 mo. PMID:22739364
Developmental Emergence of Phenotypes in the Auditory Brainstem Nuclei of Fmr1 Knockout Mice
Rotschafer, Sarah E.
2017-01-01
Abstract Fragile X syndrome (FXS), the most common monogenic cause of autism, is often associated with hypersensitivity to sound. Several studies have shown abnormalities in the auditory brainstem in FXS; however, the emergence of these auditory phenotypes during development has not been described. Here, we investigated the development of phenotypes in FXS model [Fmr1 knockout (KO)] mice in the ventral cochlear nucleus (VCN), medial nucleus of the trapezoid body (MNTB), and lateral superior olive (LSO). We studied features of the brainstem known to be altered in FXS or Fmr1 KO mice, including cell size and expression of markers for excitatory (VGLUT) and inhibitory (VGAT) synapses. We found that cell size was reduced in the nuclei with different time courses. VCN cell size is normal until after hearing onset, while MNTB and LSO show decreases earlier. VGAT expression was elevated relative to VGLUT in the Fmr1 KO mouse MNTB by P6, before hearing onset. Because glial cells influence development and are altered in FXS, we investigated their emergence in the developing Fmr1 KO brainstem. The number of microglia developed normally in all three nuclei in Fmr1 KO mice, but we found elevated numbers of astrocytes in Fmr1 KO in VCN and LSO at P14. The results indicate that some phenotypes are evident before spontaneous or auditory activity, while others emerge later, and suggest that Fmr1 acts at multiple sites and time points in auditory system development. PMID:29291238
Dehmel, Susanne; Eisinger, Daniel; Shore, Susan E.
2012-01-01
Tinnitus or ringing of the ears is a subjective phantom sensation necessitating behavioral models that objectively demonstrate the existence and quality of the tinnitus sensation. The gap detection test uses the acoustic startle response elicited by loud noise pulses and its gating or suppression by preceding sub-startling prepulses. Gaps in noise bands serve as prepulses, assuming that ongoing tinnitus masks the gap and results in impaired gap detection. This test has shown its reliability in rats, mice, and gerbils. No data exists for the guinea pig so far, although gap detection is similar across mammals and the acoustic startle response is a well-established tool in guinea pig studies of psychiatric disorders and in pharmacological studies. Here we investigated the startle behavior and prepulse inhibition (PPI) of the guinea pig and showed that guinea pigs have a reliable startle response that can be suppressed by 15 ms gaps embedded in narrow noise bands preceding the startle noise pulse. After recovery of auditory brainstem response (ABR) thresholds from a unilateral noise over-exposure centered at 7 kHz, guinea pigs showed diminished gap-induced reduction of the startle response in frequency bands between 8 and 18 kHz. This suggests the development of tinnitus in frequency regions that showed a temporary threshold shift (TTS) after noise over-exposure. Changes in discharge rate and synchrony, two neuronal correlates of tinnitus, should be reflected in altered ABR waveforms, which would be useful to objectively detect tinnitus and its localization to auditory brainstem structures. Therefore, we analyzed latencies and amplitudes of the first five ABR waves at suprathreshold sound intensities and correlated ABR abnormalities with the results of the behavioral tinnitus testing. Early ABR wave amplitudes up to N3 were increased for animals with tinnitus possibly stemming from hyperactivity and hypersynchrony underlying the tinnitus percept. Animals that did not develop tinnitus after noise exposure showed the opposite effect, a decrease in wave amplitudes for the later waves P4–P5. Changes in latencies were only observed in tinnitus animals, which showed increased latencies. Thus, tinnitus-induced changes in the discharge activity of the auditory nerve and central auditory nuclei are represented in the ABR. PMID:22666193
Age-Related Changes in Binaural Interaction at Brainstem Level.
Van Yper, Lindsey N; Vermeire, Katrien; De Vel, Eddy F J; Beynon, Andy J; Dhooge, Ingeborg J M
2016-01-01
Age-related hearing loss hampers the ability to understand speech in adverse listening conditions. This is attributed to a complex interaction of changes in the peripheral and central auditory system. One aspect that may deteriorate across the lifespan is binaural interaction. The present study investigates binaural interaction at the level of the auditory brainstem. It is hypothesized that brainstem binaural interaction deteriorates with advancing age. Forty-two subjects of various age participated in the study. Auditory brainstem responses (ABRs) were recorded using clicks and 500 Hz tone-bursts. ABRs were elicited by monaural right, monaural left, and binaural stimulation. Binaural interaction was investigated in two ways. First, grand averages of the binaural interaction component were computed for each age group. Second, wave V characteristics of the binaural ABR were compared with those of the summed left and right ABRs. Binaural interaction in the click ABR was demonstrated by shorter latencies and smaller amplitudes in the binaural compared with the summed monaural responses. For 500 Hz tone-burst ABR, no latency differences were found. However, amplitudes were significantly smaller in the binaural than summed monaural condition. An age-effect was found for 500 Hz tone-burst, but not for click ABR. Brainstem binaural interaction seems to decline with age. Interestingly, these changes seem to be stimulus-dependent.
Garcia-Pino, Elisabet; Gessele, Nikodemus; Koch, Ursula
2017-08-02
Hypersensitivity to sounds is one of the prevalent symptoms in individuals with Fragile X syndrome (FXS). It manifests behaviorally early during development and is often used as a landmark for treatment efficacy. However, the physiological mechanisms and circuit-level alterations underlying this aberrant behavior remain poorly understood. Using the mouse model of FXS ( Fmr1 KO ), we demonstrate that functional maturation of auditory brainstem synapses is impaired in FXS. Fmr1 KO mice showed a greatly enhanced excitatory synaptic input strength in neurons of the lateral superior olive (LSO), a prominent auditory brainstem nucleus, which integrates ipsilateral excitation and contralateral inhibition to compute interaural level differences. Conversely, the glycinergic, inhibitory input properties remained unaffected. The enhanced excitation was the result of an increased number of cochlear nucleus fibers converging onto one LSO neuron, without changing individual synapse properties. Concomitantly, immunolabeling of excitatory ending markers revealed an increase in the immunolabeled area, supporting abnormally elevated excitatory input numbers. Intrinsic firing properties were only slightly enhanced. In line with the disturbed development of LSO circuitry, auditory processing was also affected in adult Fmr1 KO mice as shown with single-unit recordings of LSO neurons. These processing deficits manifested as an increase in firing rate, a broadening of the frequency response area, and a shift in the interaural level difference function of LSO neurons. Our results suggest that this aberrant synaptic development of auditory brainstem circuits might be a major underlying cause of the auditory processing deficits in FXS. SIGNIFICANCE STATEMENT Fragile X Syndrome (FXS) is the most common inheritable form of intellectual impairment, including autism. A core symptom of FXS is extreme sensitivity to loud sounds. This is one reason why individuals with FXS tend to avoid social interactions, contributing to their isolation. Here, a mouse model of FXS was used to investigate the auditory brainstem where basic sound information is first processed. Loss of the Fragile X mental retardation protein leads to excessive excitatory compared with inhibitory inputs in neurons extracting information about sound levels. Functionally, this elevated excitation results in increased firing rates, and abnormal coding of frequency and binaural sound localization cues. Imbalanced early-stage sound level processing could partially explain the auditory processing deficits in FXS. Copyright © 2017 the authors 0270-6474/17/377403-17$15.00/0.
Sparreboom, Marloes; Beynon, Andy J; Snik, Ad F M; Mylanus, Emmanuel A M
2016-07-01
In many studies evaluating the effect of sequential bilateral cochlear implantation in congenitally deaf children, device use is not taken into account. In this study, however, device use was analyzed in relation to auditory brainstem maturation and speech recognition, which were measured in children with early-onset deafness, 5-6 years after bilateral cochlear implantation. We hypothesized that auditory brainstem maturation is mostly functionally driven by auditory stimulation and is therefore influenced by device use and not mainly by inter-implant delay. Twenty-one children participated and had inter-implant delays between 1.2 and 7.2 years. The electrically-evoked auditory brainstem response was measured for both implants separately. The difference in interaural wave V latency and speech recognition between both implants were used in the analyses. Device use was measured with a Likert scale. Results showed that the less the second device is used, the larger the difference in interaural wave V latencies is, which consequently leads to larger differences in interaural speech recognition. In children with early-onset deafness, after various periods of unilateral deprivation, full-time device use can lead to similar auditory brainstem responses and speech recognition between both ears. Therefore, device use should be considered as a relevant factor contributing to outcomes after sequential bilateral cochlear implantation. These results are indicative for a longer window between implantations in children with early-onset deafness to obtain symmetrical auditory pathway maturation than is mentioned in the literature. Results, however, must be interpreted as preliminary findings as actual device use with data logging was not yet available at the time of the study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Golub, Mari S; Slotkin, Theodore A; Tarantal, Alice F; Pinkerton, Kent E
2007-06-02
The impact of perinatal exposure to environmental tobacco smoke (ETS) on cognitive development is controversial. We exposed rhesus monkeys to ETS or filtered air (5 animals per group) beginning in utero on day 50 of pregnancy and continuing throughout postnatal testing. In infancy, we evaluated both groups for visual recognition memory and auditory function (auditory brainstem response). The ETS group showed significantly less novelty preference in the visual recognition task whereas no effects on auditory function were detected. These preliminary results support the view that perinatal ETS exposure has adverse effects on cognitive function and indicate further that rhesus monkeys may provide a valuable nonhuman primate model for investigating this link.
Ototoxicity in rats exposed to ethylbenzene and to two technical xylene vapours for 13 weeks.
Gagnaire, François; Langlais, Cristina; Grossmann, Stéphane; Wild, Pascal
2007-02-01
Male Sprague-Dawley rats were exposed to ethylbenzene (200, 400, 600 and 800 ppm) and to two mixed xylenes (250, 500, 1,000 and 2,000 ppm total compounds) by inhalation, 6 h/day, 6 days/week for 13 weeks and sacrificed for morphological investigation 8 weeks after the end of exposure. Brainstem auditory-evoked responses were used to determine auditory thresholds at different frequencies. Ethylbenzene produced moderate to severe ototoxicity in rats exposed to the four concentrations studied. Increased thresholds were observed at 2, 4, 8 and 16 kHz in rats exposed to 400, 600 and 800 ppm ethylbenzene. Moderate to severe losses of outer hair cells of the organ of Corti occurred in animals exposed to the four concentrations studied. Exposure to both mixed xylenes produced ototoxicity characterized by increased auditory thresholds and losses of outer hair cells. Ototoxicity potentiation caused by ethylbenzene was observed. Depending on the mixed xylene studied and the area of the concentration-response curves taken into account, the concentrations of ethylbenzene in mixed xylenes necessary to cause a given ototoxicity were 1.7-2.8 times less than those of pure ethylbenzene. Given the high ototoxicity of ethylbenzene, the safety margin of less or equal to two (LOAEL/TWA) might be too small to protect workers from the potential risk of ototoxicity. Moreover, the enhanced ototoxicity of ethylbenzene and para-xylene observed in mixed xylenes should encourage the production of mixed xylenes with the lowest possible concentrations of ethylbenzene and para-xylene.
2016-11-28
of low spontaneous rate auditory nerve fibers (ANFs) and reduction of auditory brainstem response wave-I amplitudes. The goal of this research is...auditory nerve (AN) responses to speech stimuli under a variety of difficult listening conditions. The resulting cochlear neurogram, a spectrogram
Neurotoxicity of carbonyl sulfide in F344 rats following inhalation exposure for up to 12 weeks.
Morgan, Daniel L; Little, Peter B; Herr, David W; Moser, Virginia C; Collins, Bradley; Herbert, Ronald; Johnson, G Allan; Maronpot, Robert R; Harry, G Jean; Sills, Robert C
2004-10-15
Carbonyl sulfide (COS), a high-priority Clean Air Act chemical, was evaluated for neurotoxicity in short-term studies. F344 rats were exposed to 75-600 ppm COS 6 h per day, 5 days per week for up to 12 weeks. In rats exposed to 500 or 600 ppm for up to 4 days, malacia and microgliosis were detected in numerous neuroanatomical regions of the brain by conventional optical microscopy and magnetic resonance microscopy (MRM). After a 2-week exposure to 400 ppm, rats were evaluated using a functional observational battery. Slight gait abnormality was detected in 50% of the rats and hypotonia was present in all rats exposed to COS. Decreases in motor activity, and forelimb and hindlimb grip strength were also detected. In rats exposed to 400 ppm for 12 weeks, predominant lesions were in the parietal cortex area 1 (necrosis) and posterior colliculus (neuronal loss, microgliosis, hemorrhage), and occasional necrosis was present in the putamen, thalamus, and anterior olivary nucleus. Carbonyl sulfide specifically targeted the auditory system including the olivary nucleus, nucleus of the lateral lemniscus, and posterior colliculus. Consistent with these findings were alterations in the amplitude of the brainstem auditory evoked responses (BAER) for peaks N3, P4, N4, and N5 that represented changes in auditory transmission between the anterior olivary nucleus to the medial geniculate nucleus in animals after exposure for 2 weeks to 400 ppm COS. A concentration-related decrease in cytochrome oxidase activity was detected in the posterior colliculus and parietal cortex of exposed rats as early as 3 weeks. Cytochrome oxidase activity was significantly decreased at COS concentrations that did not cause detectable lesions, suggesting that disruption of the mitochondrial respiratory chain may precede these brain lesions. Our studies demonstrate that this environmental air contaminant has the potential to cause a wide spectrum of brain lesions that are dependent on the degree and duration of exposure.
Auditory processing deficits in individuals with primary open-angle glaucoma.
Rance, Gary; O'Hare, Fleur; O'Leary, Stephen; Starr, Arnold; Ly, Anna; Cheng, Belinda; Tomlin, Dani; Graydon, Kelley; Chisari, Donella; Trounce, Ian; Crowston, Jonathan
2012-01-01
The high energy demand of the auditory and visual pathways render these sensory systems prone to diseases that impair mitochondrial function. Primary open-angle glaucoma, a neurodegenerative disease of the optic nerve, has recently been associated with a spectrum of mitochondrial abnormalities. This study sought to investigate auditory processing in individuals with open-angle glaucoma. DESIGN/STUDY SAMPLE: Twenty-seven subjects with open-angle glaucoma underwent electrophysiologic (auditory brainstem response), auditory temporal processing (amplitude modulation detection), and speech perception (monosyllabic words in quiet and background noise) assessment in each ear. A cohort of age, gender and hearing level matched control subjects was also tested. While the majority of glaucoma subjects in this study demonstrated normal auditory function, there were a significant number (6/27 subjects, 22%) who showed abnormal auditory brainstem responses and impaired auditory perception in one or both ears. The finding that a significant proportion of subjects with open-angle glaucoma presented with auditory dysfunction provides evidence of systemic neuronal susceptibility. Affected individuals may suffer significant communication difficulties in everyday listening situations.
Klump, Georg M.; Tollin, Daniel J.
2016-01-01
The auditory brainstem response (ABR) is a sound-evoked non-invasively measured electrical potential representing the sum of neuronal activity in the auditory brainstem and midbrain. ABR peak amplitudes and latencies are widely used in human and animal auditory research and for clinical screening. The binaural interaction component (BIC) of the ABR stands for the difference between the sum of the monaural ABRs and the ABR obtained with binaural stimulation. The BIC comprises a series of distinct waves, the largest of which (DN1) has been used for evaluating binaural hearing in both normal hearing and hearing-impaired listeners. Based on data from animal and human studies, we discuss the possible anatomical and physiological bases of the BIC (DN1 in particular). The effects of electrode placement and stimulus characteristics on the binaurally evoked ABR are evaluated. We review how inter-aural time and intensity differences affect the BIC and, analyzing these dependencies, draw conclusion about the mechanism underlying the generation of the BIC. Finally, the utility of the BIC for clinical diagnoses are summarized. PMID:27232077
Durand-Rivera, A; Gonzalez-Pina, R; Hernandez-Godinez, B; Ibanez-Contreras, A; Bueno-Nava, A; Alfaro-Rodriguez, A
2012-10-01
We describe two clinical cases and examine the effects of piracetam on the brainstem auditory response in infantile female rhesus monkeys (Macaca mulatta). We found that the interwave intervals show a greater reduction in a 3-year-old rhesus monkey compared to a 1-year-old rhesus monkey. In this report, we discuss the significance of these observations. © 2012 John Wiley & Sons A/S.
Jiang, Ze D; Wang, Cui
2016-12-01
To examine brainstem auditory function at 36-37weeks of postconceptional age in preterm infants who are diagnosed to have neonatal chronic lung disease (CLD). Preterm infants, born at 31 and less weeks of gestation, were studied at 36-37weeks of postconceptional age when they were diagnosed to have neonatal CLD. Brainstem auditory evoked response (BAER) was recorded and analyzed at different click rates. Compared with healthy controls at the same postconceptional age, the CLD infants showed a slightly increase in BAER wave V latency. However, the I-V, and III-V interpeak intervals in the CLD infants were significantly increased. The III-V/I-III interval ratio was also significantly increased. The amplitudes of BAER waves III and V in the CLD infants tended to be reduced. These BAER findings were similar at all 21, 51 and 91/s clicks, although the abnormalities tended to be more significant at higher than at low click rates. At 36-37weeks of postconceptional age, BAER was abnormal in preterm infants who were diagnosed to have neonatal CLD. This suggests that at time when the diagnosis of CLD is made there is functional impairment, reflecting poor myelination, in the brainstem auditory pathway in preterm infants with neonatal CLD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Song, Mee Hyun; Bae, Mi Ran; Kim, Hee Nam; Lee, Won-Sang; Yang, Won Sun; Choi, Jae Young
2010-08-01
Cochlear implantation in patients with narrow internal auditory canal (IAC) can result in variable outcomes; however, preoperative evaluations have limitations in accurately predicting outcomes. In this study, we analyzed the outcomes of cochlear implantation in patients with narrow IAC and correlated the intracochlear electrically evoked auditory brainstem response (EABR) findings to postoperative performance to determine the prognostic significance of intracochlear EABR. Retrospective case series at a tertiary hospital. Thirteen profoundly deaf patients with narrow IAC who received cochlear implantation from 2002 to 2008 were included in this study. Postoperative performance was evaluated after at least 12 months of follow-up, and postoperative intracochlear EABR was measured to determine its correlation with outcome. The clinical significance of electrically evoked compound action potential (ECAP) was also analyzed. Patients with narrow IAC showed postoperative auditory performances ranging from CAP 0 to 4 after cochlear implantation. Intracochlear EABR measured postoperatively demonstrated prognostic value in the prediction of long-term outcomes, whereas ECAP measurements failed to show a significant correlation with outcome. Consistent with the advantages of intracochlear EABR over extracochlear EABR, this study demonstrates that intracochlear EABR has prognostic significance in predicting long-term outcomes in patients with narrow IAC. Intracochlear EABR measured either intraoperatively or in the early postoperative period may play an important role in deciding whether to continue with auditory rehabilitation using a cochlear implant or to switch to an auditory brainstem implant so as not to miss the optimal timing for language development.
Kouni, Sophia N; Giannopoulos, Sotirios; Ziavra, Nausika; Koutsojannis, Constantinos
2013-01-01
Acoustic signals are transmitted through the external and middle ear mechanically to the cochlea where they are transduced into electrical impulse for further transmission via the auditory nerve. The auditory nerve encodes the acoustic sounds that are conveyed to the auditory brainstem. Multiple brainstem nuclei, the cochlea, the midbrain, the thalamus, and the cortex constitute the central auditory system. In clinical practice, auditory brainstem responses (ABRs) to simple stimuli such as click or tones are widely used. Recently, complex stimuli or complex auditory brain responses (cABRs), such as monosyllabic speech stimuli and music, are being used as a tool to study the brainstem processing of speech sounds. We have used the classic 'click' as well as, for the first time, the artificial successive complex stimuli 'ba', which constitutes the Greek word 'baba' corresponding to the English 'daddy'. Twenty young adults institutionally diagnosed as dyslexic (10 subjects) or light dyslexic (10 subjects) comprised the diseased group. Twenty sex-, age-, education-, hearing sensitivity-, and IQ-matched normal subjects comprised the control group. Measurements included the absolute latencies of waves I through V, the interpeak latencies elicited by the classical acoustic click, the negative peak latencies of A and C waves, as well as the interpeak latencies of A-C elicited by the verbal stimulus 'baba' created on a digital speech synthesizer. The absolute peak latencies of waves I, III, and V in response to monoaural rarefaction clicks as well as the interpeak latencies I-III, III-V, and I-V in the dyslexic subjects, although increased in comparison with normal subjects, did not reach the level of a significant difference (p<0.05). However, the absolute peak latencies of the negative wave C and the interpeak latencies of A-C elicited by verbal stimuli were found to be increased in the dyslexic group in comparison with the control group (p=0.0004 and p=0.045, respectively). In the subgroup consisting of 10 patients suffering from 'other learning disabilities' and who were characterized as with 'light' dyslexia according to dyslexia tests, no significant delays were found in peak latencies A and C and interpeak latencies A-C in comparison with the control group. Acoustic representation of a speech sound and, in particular, the disyllabic word 'baba' was found to be abnormal, as low as the auditory brainstem. Because ABRs mature in early life, this can help to identify subjects with acoustically based learning problems and apply early intervention, rehabilitation, and treatment. Further studies and more experience with more patients and pathological conditions such as plasticity of the auditory system, cochlear implants, hearing aids, presbycusis, or acoustic neuropathy are necessary until this type of testing is ready for clinical application. © 2013 Elsevier Inc. All rights reserved.
Glycinergic Pathways of the Central Auditory System and Adjacent Reticular Formation of the Rat.
NASA Astrophysics Data System (ADS)
Hunter, Chyren
The development of techniques to visualize and identify specific transmitters of neuronal circuits has stimulated work on the characterization of pathways in the rat central nervous system that utilize the inhibitory amino acid glycine as its neurotransmitter. Glycine is a major inhibitory transmitter in the spinal cord and brainstem of vertebrates where it satisfies the major criteria for neurotransmitter action. Some of these characteristics are: uneven distribution in brain, high affinity reuptake mechanisms, inhibitory neurophysiological actions on certain neuronal populations, uneven receptor distribution and the specific antagonism of its actions by the convulsant alkaloid strychnine. Behaviorally, antagonism of glycinergic neurotransmission in the medullary reticular formation is linked to the development of myoclonus and seizures which may be initiated by auditory as well as other stimuli. In the present study, decreases in the concentration of glycine as well as the density of glycine receptors in the medulla with aging were found and may be responsible for the lowered threshold for strychnine seizures observed in older rats. Neuroanatomical pathways in the central auditory system and medullary and pontine reticular formation (RF) were investigated using retrograde transport of tritiated glycine to identify glycinergic pathways; immunohistochemical techniques were used to corroborate the location of glycine neurons. Within the central auditory system, retrograde transport studies using tritiated glycine demonstrated an ipsilateral glycinergic pathway linking nuclei of the ascending auditory system. This pathway has its cell bodies in the medial nucleus of the trapezoid body (MNTB) and projects to the ventrocaudal division of the ventral nucleus of the lateral lemniscus (VLL). Collaterals of this glycinergic projection terminate in the ipsilateral lateral superior olive (LSO). Other glycinergic pathways found were afferent to the VLL and have their origin in the ventral and lateral nuclei of the trapezoid body (MVPO and LVPO). Bilateral projections from the nucleus reticularis pontis oralis (RPOo), to the VLL were also identified as glycinergic. This projection may link motor output systems to ascending auditory input, generating the auditory behavioral responses seen with glycine antagonism in animal models of myoclonus and seizure.
Church, M W; Adams, B R; Anumba, J I; Jackson, D A; Kruger, M L; Jen, K-L C
2012-01-01
Antenatal corticosteroid (AC) treatment is given to pregnant women at risk for preterm birth to reduce infant morbidity and mortality by enhancing lung and brain maturation. However, there is no accepted regimen on how frequently AC treatments should be given and some studies found that repeated AC treatments can cause growth retardation and brain damage. Our goal was to assess the dose-dependent effects of repeated AC treatment and estimate the critical number of AC courses to cause harmful effects on the auditory brainstem response (ABR), a sensitive measure of brain development, neural transmission and hearing loss. We hypothesized that repeated AC treatment would have harmful effects on the offspring's ABRs and growth only if more than 3 AC treatment courses were given. To test this hypothesis, pregnant Wistar rats were given either a high regimen of AC (HAC), a moderate regimen (MAC), a low regimen (LAC), or saline (SAL). An untreated control (CON) group was also used. Simulating the clinical condition, the HAC dams received 0.2mg/kg Betamethasone (IM) twice daily for 6 days during gestation days (GD) 17-22. The MAC dams received 3 days of AC treatment followed by 3 days of saline treatment on GD 17-19 and GD 20-22, respectively. The LAC dams received 1 day of AC treatment followed by 5 days of saline treatment on GD 17 and GD 18-22, respectively. The SAL dams received 6 days of saline treatment from GD 17 to 22 (twice daily, isovolumetric to the HAC injections, IM). The offspring were ABR-tested on postnatal day 24. Results indicated that the ABR's P4 latencies (neural transmission time) were significantly prolonged (worse) in the HAC pups and that ABR's thresholds were significantly elevated (worse) in the HAC and MAC pups when compared to the CON pups. The HAC and MAC pups were also growth retarded and had higher postnatal mortality than the CON pups. The SAL and LAC pups showed little or no adverse effects. In conclusion, repeated AC treatment had harmful effects on the rat offspring's ABRs, postnatal growth and survival. The prolonged ABR latencies reflect slowed neural transmission times along the auditory nerve and brainstem auditory pathway. The elevated ABR thresholds reflect hearing deficits. We concluded that repeated AC treatment can have harmful neurological, sensory and developmental effects on the rat offspring. These effects should be considered when weighing the benefits and risks of repeated AC treatment and when monitoring and managing the prenatally exposed child for possible adverse effects. Copyright © 2011 Elsevier Inc. All rights reserved.
The Contribution of Brainstem and Cerebellar Pathways to Auditory Recognition
McLachlan, Neil M.; Wilson, Sarah J.
2017-01-01
The cerebellum has been known to play an important role in motor functions for many years. More recently its role has been expanded to include a range of cognitive and sensory-motor processes, and substantial neuroimaging and clinical evidence now points to cerebellar involvement in most auditory processing tasks. In particular, an increase in the size of the cerebellum over recent human evolution has been attributed in part to the development of speech. Despite this, the auditory cognition literature has largely overlooked afferent auditory connections to the cerebellum that have been implicated in acoustically conditioned reflexes in animals, and could subserve speech and other auditory processing in humans. This review expands our understanding of auditory processing by incorporating cerebellar pathways into the anatomy and functions of the human auditory system. We reason that plasticity in the cerebellar pathways underpins implicit learning of spectrotemporal information necessary for sound and speech recognition. Once learnt, this information automatically recognizes incoming auditory signals and predicts likely subsequent information based on previous experience. Since sound recognition processes involving the brainstem and cerebellum initiate early in auditory processing, learnt information stored in cerebellar memory templates could then support a range of auditory processing functions such as streaming, habituation, the integration of auditory feature information such as pitch, and the recognition of vocal communications. PMID:28373850
Zhai, S-Q; Guo, W; Hu, Y-Y; Yu, N; Chen, Q; Wang, J-Z; Fan, M; Yang, W-Y
2011-05-01
To explore the protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion. Recombinant adenovirus brain-derived neurotrophic factor vector, recombinant adenovirus LacZ and artificial perilymph were prepared. Guinea pigs with audiometric auditory brainstem response thresholds of more than 75 dB SPL, measured seven days after four hours of noise exposure at 135 dB SPL, were divided into three groups. Adenovirus brain-derived neurotrophic factor vector, adenovirus LacZ and perilymph were infused into the cochleae of the three groups, variously. Eight weeks later, the cochleae were stained immunohistochemically and the spiral ganglion cells counted. The auditory brainstem response threshold recorded before and seven days after noise exposure did not differ significantly between the three groups. However, eight weeks after cochlear perfusion, the group receiving brain-derived neurotrophic factor had a significantly decreased auditory brainstem response threshold and increased spiral ganglion cell count, compared with the adenovirus LacZ and perilymph groups. When administered via cochlear infusion following noise damage, brain-derived neurotrophic factor appears to improve the auditory threshold, and to have a protective effect on the spiral ganglion cells.
Brainstem origins for cortical 'what' and 'where' pathways in the auditory system.
Kraus, Nina; Nicol, Trent
2005-04-01
We have developed a data-driven conceptual framework that links two areas of science: the source-filter model of acoustics and cortical sensory processing streams. The source-filter model describes the mechanics behind speech production: the identity of the speaker is carried largely in the vocal cord source and the message is shaped by the ever-changing filters of the vocal tract. Sensory processing streams, popularly called 'what' and 'where' pathways, are well established in the visual system as a neural scheme for separately carrying different facets of visual objects, namely their identity and their position/motion, to the cortex. A similar functional organization has been postulated in the auditory system. Both speaker identity and the spoken message, which are simultaneously conveyed in the acoustic structure of speech, can be disentangled into discrete brainstem response components. We argue that these two response classes are early manifestations of auditory 'what' and 'where' streams in the cortex. This brainstem link forges a new understanding of the relationship between the acoustics of speech and cortical processing streams, unites two hitherto separate areas in science, and provides a model for future investigations of auditory function.
The Role of the Auditory Brainstem in Processing Musically Relevant Pitch
Bidelman, Gavin M.
2013-01-01
Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority) are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain. PMID:23717294
Poncelet, L; Coppens, A; Deltenre, P
2000-01-01
This study investigated whether Dalmatian puppies with normal hearing bilaterally had the same click-evoked brainstem auditory potential characteristics as age-matched dogs of another breed. Short-latency brainstem auditory potentials evoked by condensation and rarefaction clicks were recorded in 23 1.5- to 2-month-old Dalmatian puppies with normal hearing bilaterally by a qualitative brainstem auditory evoked potential test and in 16 Beagle dogs of the same age. For each stimulus intensity, from 90 dB normal hearing level down to the wave V threshold, the sum of the potentials evoked by the 2 kinds of stimuli were added, giving an equivalent to the alternate click polarity stimulation. The slope of the L segment of the wave V latency-intensity curve was steeper in Dalmatian (-40 +/- 10 micros/dB) than in Beagles (-28 +/- 5 micros/dB, P < .001) puppies. The hearing threshold was lower in the Beagle puppies (P < .05). These results suggest that interbreed differences may exist at the level of cochlear function in this age class. The wave V latency and wave V-wave I latencies differences at high stimulus intensity were different between the groups of puppies (4.3 +/- 0.2 and 2.5 +/- 0.2 milliseconds, respectively, for Beagles; and 4.1 +/- 0.2 and 2.3 +/- 0.2 milliseconds for Dalmatians, P < .05). A different maturation speed of the neural pathways is one possible explanation of this observation.
Auditory brainstem response to complex sounds: a tutorial
Skoe, Erika; Kraus, Nina
2010-01-01
This tutorial provides a comprehensive overview of the methodological approach to collecting and analyzing auditory brainstem responses to complex sounds (cABRs). cABRs provide a window into how behaviorally relevant sounds such as speech and music are processed in the brain. Because temporal and spectral characteristics of sounds are preserved in this subcortical response, cABRs can be used to assess specific impairments and enhancements in auditory processing. Notably, subcortical function is neither passive nor hardwired but dynamically interacts with higher-level cognitive processes to refine how sounds are transcribed into neural code. This experience-dependent plasticity, which can occur on a number of time scales (e.g., life-long experience with speech or music, short-term auditory training, online auditory processing), helps shape sensory perception. Thus, by being an objective and non-invasive means for examining cognitive function and experience-dependent processes in sensory activity, cABRs have considerable utility in the study of populations where auditory function is of interest (e.g., auditory experts such as musicians, persons with hearing loss, auditory processing and language disorders). This tutorial is intended for clinicians and researchers seeking to integrate cABRs into their clinical and/or research programs. PMID:20084007
NASA Astrophysics Data System (ADS)
Lauter, Judith
2002-05-01
Several noninvasive methods are available for studying the neural bases of human sensory-motor function, but their cost is prohibitive for many researchers and clinicians. The auditory cross section (AXS) test battery utilizes relatively inexpensive methods, yet yields data that are at least equivalent, if not superior in some applications, to those generated by more expensive technologies. The acronym emphasizes access to axes-the battery makes it possible to assess dynamic physiological relations along all three body-brain axes: rostro-caudal (afferent/efferent), dorso-ventral, and right-left, on an individually-specific basis, extending from cortex to the periphery. For auditory studies, a three-level physiological ear-to-cortex profile is generated, utilizing (1) quantitative electroencephalography (qEEG); (2) the repeated evoked potentials version of the auditory brainstem response (REPs/ABR); and (3) otoacoustic emissions (OAEs). Battery procedures will be explained, and sample data presented illustrating correlated multilevel changes in ear, voice, heart, brainstem, and cortex in response to circadian rhythms, and challenges with substances such as antihistamines and Ritalin. Potential applications for the battery include studies of central auditory processing, reading problems, hyperactivity, neural bases of voice and speech motor control, neurocardiology, individually-specific responses to medications, and the physiological bases of tinnitus, hyperacusis, and related treatments.
Zakaria, Mohd Normani; Jalaei, Bahram
2017-11-01
Auditory brainstem responses evoked by complex stimuli such as speech syllables have been studied in normal subjects and subjects with compromised auditory functions. The stability of speech-evoked auditory brainstem response (speech-ABR) when tested over time has been reported but the literature is limited. The present study was carried out to determine the test-retest reliability of speech-ABR in healthy children at a low sensation level. Seventeen healthy children (6 boys, 11 girls) aged from 5 to 9 years (mean = 6.8 ± 3.3 years) were tested in two sessions separated by a 3-month period. The stimulus used was a 40-ms syllable /da/ presented at 30 dB sensation level. As revealed by pair t-test and intra-class correlation (ICC) analyses, peak latencies, peak amplitudes and composite onset measures of speech-ABR were found to be highly replicable. Compared to other parameters, higher ICC values were noted for peak latencies of speech-ABR. The present study was the first to report the test-retest reliability of speech-ABR recorded at low stimulation levels in healthy children. Due to its good stability, it can be used as an objective indicator for assessing the effectiveness of auditory rehabilitation in hearing-impaired children in future studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Krishnan, Ananthanarayan; Gandour, Jackson T
2014-12-01
Pitch is a robust perceptual attribute that plays an important role in speech, language, and music. As such, it provides an analytic window to evaluate how neural activity relevant to pitch undergo transformation from early sensory to later cognitive stages of processing in a well coordinated hierarchical network that is subject to experience-dependent plasticity. We review recent evidence of language experience-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem and auditory cortex. We present evidence that shows enhanced representation of linguistically-relevant pitch dimensions or features at both the brainstem and cortical levels with a stimulus-dependent preferential activation of the right hemisphere in native speakers of a tone language. We argue that neural representation of pitch-relevant information in the brainstem and early sensory level processing in the auditory cortex is shaped by the perceptual salience of domain-specific features. While both stages of processing are shaped by language experience, neural representations are transformed and fundamentally different at each biological level of abstraction. The representation of pitch relevant information in the brainstem is more fine-grained spectrotemporally as it reflects sustained neural phase-locking to pitch relevant periodicities contained in the stimulus. In contrast, the cortical pitch relevant neural activity reflects primarily a series of transient temporal neural events synchronized to certain temporal attributes of the pitch contour. We argue that experience-dependent enhancement of pitch representation for Chinese listeners most likely reflects an interaction between higher-level cognitive processes and early sensory-level processing to improve representations of behaviorally-relevant features that contribute optimally to perception. It is our view that long-term experience shapes this adaptive process wherein the top-down connections provide selective gating of inputs to both cortical and subcortical structures to enhance neural responses to specific behaviorally-relevant attributes of the stimulus. A theoretical framework for a neural network is proposed involving coordination between local, feedforward, and feedback components that can account for experience-dependent enhancement of pitch representations at multiple levels of the auditory pathway. The ability to record brainstem and cortical pitch relevant responses concurrently may provide a new window to evaluate the online interplay between feedback, feedforward, and local intrinsic components in the hierarchical processing of pitch relevant information.
Krishnan, Ananthanarayan; Gandour, Jackson T.
2015-01-01
Pitch is a robust perceptual attribute that plays an important role in speech, language, and music. As such, it provides an analytic window to evaluate how neural activity relevant to pitch undergo transformation from early sensory to later cognitive stages of processing in a well coordinated hierarchical network that is subject to experience-dependent plasticity. We review recent evidence of language experience-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem and auditory cortex. We present evidence that shows enhanced representation of linguistically-relevant pitch dimensions or features at both the brainstem and cortical levels with a stimulus-dependent preferential activation of the right hemisphere in native speakers of a tone language. We argue that neural representation of pitch-relevant information in the brainstem and early sensory level processing in the auditory cortex is shaped by the perceptual salience of domain-specific features. While both stages of processing are shaped by language experience, neural representations are transformed and fundamentally different at each biological level of abstraction. The representation of pitch relevant information in the brainstem is more fine-grained spectrotemporally as it reflects sustained neural phase-locking to pitch relevant periodicities contained in the stimulus. In contrast, the cortical pitch relevant neural activity reflects primarily a series of transient temporal neural events synchronized to certain temporal attributes of the pitch contour. We argue that experience-dependent enhancement of pitch representation for Chinese listeners most likely reflects an interaction between higher-level cognitive processes and early sensory-level processing to improve representations of behaviorally-relevant features that contribute optimally to perception. It is our view that long-term experience shapes this adaptive process wherein the top-down connections provide selective gating of inputs to both cortical and subcortical structures to enhance neural responses to specific behaviorally-relevant attributes of the stimulus. A theoretical framework for a neural network is proposed involving coordination between local, feedforward, and feedback components that can account for experience-dependent enhancement of pitch representations at multiple levels of the auditory pathway. The ability to record brainstem and cortical pitch relevant responses concurrently may provide a new window to evaluate the online interplay between feedback, feedforward, and local intrinsic components in the hierarchical processing of pitch relevant information. PMID:25838636
NASA Astrophysics Data System (ADS)
Verhulst, Sarah; Shera, Christopher A.
2015-12-01
Forward and reverse cochlear latency and its relation to the frequency tuning of the auditory filters can be assessed using tone bursts (TBs). Otoacoustic emissions (TBOAEs) estimate the cochlear roundtrip time, while auditory brainstem responses (ABRs) to the same stimuli aim at measuring the auditory filter buildup time. Latency ratios are generally close to two and controversy exists about the relationship of this ratio to cochlear mechanics. We explored why the two methods provide different estimates of filter buildup time, and ratios with large inter-subject variability, using a time-domain model for OAEs and ABRs. We compared latencies for twenty models, in which all parameters but the cochlear irregularities responsible for reflection-source OAEs were identical, and found that TBOAE latencies were much more variable than ABR latencies. Multiple reflection-sources generated within the evoking stimulus bandwidth were found to shape the TBOAE envelope and complicate the interpretation of TBOAE latency and TBOAE/ABR ratios in terms of auditory filter tuning.
Auditory brainstem responses in the Eastern Screech Owl: An estimate of auditory thresholds
Brittan-Powell, E.F.; Lohr, B.; Hahn, D.C.; Dooling, R.J.
2005-01-01
The auditory brainstem response (ABR), a measure of neural synchrony, was used to estimate auditory sensitivity in the eastern screech owl (Megascops asio). The typical screech owl ABR waveform showed two to three prominent peaks occurring within 5 ms of stimulus onset. As sound pressure levels increased, the ABR peak amplitude increased and latency decreased. With an increasing stimulus presentation rate, ABR peak amplitude decreased and latency increased. Generally, changes in the ABR waveform to stimulus intensity and repetition rate are consistent with the pattern found in several avian families. The ABR audiogram shows that screech owls hear best between 1.5 and 6.4 kHz with the most acute sensitivity between 4?5.7 kHz. The shape of the average screech owl ABR audiogram is similar to the shape of the behaviorally measured audiogram of the barn owl, except at the highest frequencies. Our data also show differences in overall auditory sensitivity between the color morphs of screech owls.
Development of auditory sensitivity in budgerigars (Melopsittacus undulatus)
NASA Astrophysics Data System (ADS)
Brittan-Powell, Elizabeth F.; Dooling, Robert J.
2004-06-01
Auditory feedback influences the development of vocalizations in songbirds and parrots; however, little is known about the development of hearing in these birds. The auditory brainstem response was used to track the development of auditory sensitivity in budgerigars from hatch to 6 weeks of age. Responses were first obtained from 1-week-old at high stimulation levels at frequencies at or below 2 kHz, showing that budgerigars do not hear well at hatch. Over the next week, thresholds improved markedly, and responses were obtained for almost all test frequencies throughout the range of hearing by 14 days. By 3 weeks posthatch, birds' best sensitivity shifted from 2 to 2.86 kHz, and the shape of the auditory brainstem response (ABR) audiogram became similar to that of adult budgerigars. About a week before leaving the nest, ABR audiograms of young budgerigars are very similar to those of adult birds. These data complement what is known about vocal development in budgerigars and show that hearing is fully developed by the time that vocal learning begins.
Maricich, Stephen M.; Xia, Anping; Mathes, Erin L.; Wang, Vincent Y.; Oghalai, John S.; Fritzsch, Bernd; Zoghbi, Huda Y.
2009-01-01
Atoh1 is a basic helix-loop-helix transcription factor necessary for the specification of inner ear hair cells and central auditory system neurons derived from the rhombic lip. We used the Cre-loxP system and two Cre-driver lines (Egr2Cre and Hoxb1Cre) to delete Atoh1 from different regions of the cochlear nucleus (CN) and accessory auditory nuclei (AAN). Adult Atoh1-conditional knockout mice (Atoh1CKO) are behaviorally deaf, have diminished auditory brainstem evoked responses and disrupted CN and AAN morphology and connectivity. In addition, Egr2; Atoh1CKO mice lose spiral ganglion neurons in the cochlea and AAN neurons during the first 3 days of life, revealing a novel critical period in the development of these neurons. These new mouse models of predominantly central deafness illuminate the importance of the CN for support of a subset of peripheral and central auditory neurons. PMID:19741118
NASA Astrophysics Data System (ADS)
Araya, Mussie K.; Brownell, William E.
2015-12-01
Hearing requires precise detection and coding of acoustic signals by the inner ear and equally precise communication of the information through the auditory brainstem. A membrane based motor in the outer hair cell lateral wall contributes to the transformation of sound into a precise neural code. Structural, molecular and energetic similarities between the outer hair cell and auditory brainstem neurons suggest that a similar membrane based motor may contribute to signal processing in the auditory CNS. Cooperative activation of voltage gated ion channels enhances neuronal temporal processing and increases the upper frequency limit for phase locking. We explore the possibility that membrane mechanics contribute to ion channel cooperativity as a consequence of the nearly instantaneous speed of electromechanical signaling and the fact that membrane composition and mechanics modulate ion channel function.
P50 Suppression in Children with Selective Mutism: A Preliminary Report
ERIC Educational Resources Information Center
Henkin, Yael; Feinholz, Maya; Arie, Miri; Bar-Haim, Yair
2010-01-01
Evidence suggests that children with selective mutism (SM) display significant aberrations in auditory efferent activity at the brainstem level that may underlie inefficient auditory processing during vocalization, and lead to speech avoidance. The objective of the present study was to explore auditory filtering processes at the cortical level in…
Crowell, Sara E.; Wells-Berlin, Alicia M.; Therrien, Ronald E.; Yannuzzi, Sally E.; Carr, Catherine E.
2016-01-01
Auditory sensitivity was measured in a species of diving duck that is not often kept in captivity, the lesser scaup. Behavioral (psychoacoustics) and electrophysiological [the auditory brainstem response (ABR)] methods were used to measure in-air auditory sensitivity, and the resulting audiograms were compared. Both approaches yielded audiograms with similar U-shapes and regions of greatest sensitivity (2000−3000 Hz). However, ABR thresholds were higher than psychoacoustic thresholds at all frequencies. This difference was least at the highest frequency tested using both methods (5700 Hz) and greatest at 1000 Hz, where the ABR threshold was 26.8 dB higher than the behavioral measure of threshold. This difference is commonly reported in studies involving many different species. These results highlight the usefulness of each method, depending on the testing conditions and availability of the animals.
Crowell, Sara E; Wells-Berlin, Alicia M; Therrien, Ronald E; Yannuzzi, Sally E; Carr, Catherine E
2016-05-01
Auditory sensitivity was measured in a species of diving duck that is not often kept in captivity, the lesser scaup. Behavioral (psychoacoustics) and electrophysiological [the auditory brainstem response (ABR)] methods were used to measure in-air auditory sensitivity, and the resulting audiograms were compared. Both approaches yielded audiograms with similar U-shapes and regions of greatest sensitivity (2000-3000 Hz). However, ABR thresholds were higher than psychoacoustic thresholds at all frequencies. This difference was least at the highest frequency tested using both methods (5700 Hz) and greatest at 1000 Hz, where the ABR threshold was 26.8 dB higher than the behavioral measure of threshold. This difference is commonly reported in studies involving many different species. These results highlight the usefulness of each method, depending on the testing conditions and availability of the animals.
Emergence of Spatial Stream Segregation in the Ascending Auditory Pathway.
Yao, Justin D; Bremen, Peter; Middlebrooks, John C
2015-12-09
Stream segregation enables a listener to disentangle multiple competing sequences of sounds. A recent study from our laboratory demonstrated that cortical neurons in anesthetized cats exhibit spatial stream segregation (SSS) by synchronizing preferentially to one of two sequences of noise bursts that alternate between two source locations. Here, we examine the emergence of SSS along the ascending auditory pathway. Extracellular recordings were made in anesthetized rats from the inferior colliculus (IC), the nucleus of the brachium of the IC (BIN), the medial geniculate body (MGB), and the primary auditory cortex (A1). Stimuli consisted of interleaved sequences of broadband noise bursts that alternated between two source locations. At stimulus presentation rates of 5 and 10 bursts per second, at which human listeners report robust SSS, neural SSS is weak in the central nucleus of the IC (ICC), it appears in the nucleus of the brachium of the IC (BIN) and in approximately two-thirds of neurons in the ventral MGB (MGBv), and is prominent throughout A1. The enhancement of SSS at the cortical level reflects both increased spatial sensitivity and increased forward suppression. We demonstrate that forward suppression in A1 does not result from synaptic inhibition at the cortical level. Instead, forward suppression might reflect synaptic depression in the thalamocortical projection. Together, our findings indicate that auditory streams are increasingly segregated along the ascending auditory pathway as distinct mutually synchronized neural populations. Listeners are capable of disentangling multiple competing sequences of sounds that originate from distinct sources. This stream segregation is aided by differences in spatial location between the sources. A possible substrate of spatial stream segregation (SSS) has been described in the auditory cortex, but the mechanisms leading to those cortical responses are unknown. Here, we investigated SSS in three levels of the ascending auditory pathway with extracellular unit recordings in anesthetized rats. We found that neural SSS emerges within the ascending auditory pathway as a consequence of sharpening of spatial sensitivity and increasing forward suppression. Our results highlight brainstem mechanisms that culminate in SSS at the level of the auditory cortex. Copyright © 2015 Yao et al.
Auditory Implant Research at the House Ear Institute 1989–2013
Shannon, Robert V.
2014-01-01
The House Ear Institute (HEI) had a long and distinguished history of auditory implant innovation and development. Early clinical innovations include being one of the first cochlear implant (CI) centers, being the first center to implant a child with a cochlear implant in the US, developing the auditory brainstem implant, and developing multiple surgical approaches and tools for Otology. This paper reviews the second stage of auditory implant research at House – in-depth basic research on perceptual capabilities and signal processing for both cochlear implants and auditory brainstem implants. Psychophysical studies characterized the loudness and temporal perceptual properties of electrical stimulation as a function of electrical parameters. Speech studies with the noise-band vocoder showed that only four bands of tonotopically arrayed information were sufficient for speech recognition, and that most implant users were receiving the equivalent of 8–10 bands of information. The noise-band vocoder allowed us to evaluate the effects of the manipulation of the number of bands, the alignment of the bands with the original tonotopic map, and distortions in the tonotopic mapping, including holes in the neural representation. Stimulation pulse rate was shown to have only a small effect on speech recognition. Electric fields were manipulated in position and sharpness, showing the potential benefit of improved tonotopic selectivity. Auditory training shows great promise for improving speech recognition for all patients. And the Auditory Brainstem Implant was developed and improved and its application expanded to new populations. Overall, the last 25 years of research at HEI helped increase the basic scientific understanding of electrical stimulation of hearing and contributed to the improved outcomes for patients with the CI and ABI devices. PMID:25449009
Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale
2017-04-01
There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Minocycline attenuates noise-induced hearing loss in rats.
Zhang, Jing; Song, Yong-Li; Tian, Ke-Yong; Qiu, Jian-Hua
2017-02-03
Noise-induced hearing loss (NIHL) is a serious health concern and prevention of hair cell death or therapeutic intervention at the early stage of NIHL is critical to preserve hearing. Minocycline is a semi-synthetic derivative of tetracycline and has been shown to have otoprotective effects in ototoxic drug-induced hearing impairment, however, whether minocycline can protect against NIHL has not been investigated. The present study demonstrated elevated ABR (auditory brainstem response) thresholds and outer hair cell loss following traumatic noise exposure, which was mitigated by intraperitoneal administration of minocycline (45mg/kg/d) for 5 consecutive days. In conclusion, the present study demonstrated that minocycline, a clinically approved drug with a good safety profile, can attenuate NIHL in rats and may potentially be used for treatment of hearing loss in clinic. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Yang, Dong; Zhou, Huifang; Zhang, Jianning; Liu, Li
2015-06-01
The vascular endothelial growth factor (VEGF)-mediated mechanism of endothelial progenitor cell (EPC) mobilization, migration, and differentiation may occur in response to noise-induced acoustic trauma of the cochlea, leading to the protection of cochlear function. The purpose of this study was to analyze changes in the cochlear vessel under an intensive noise environment. Sixty male Sprague-Dawley rats were randomly divided into six groups. Acoustic trauma was induced by 120 dB SPL white noise for 4 h. Auditory function was evaluated by the auditory brainstem response threshold. Morphological changes of the cochleae, the expression of VEGF, and the circulation of EPCs in the peripheral blood were studied by immunohistochemistry, Western blotting analysis, scanning electron microscopy, and flow cytometry. Vascular recovery of the cochlea began after noise exposure. The change in the number of EPCs was consistent with the expression of VEGF at different time points after noise exposure. We propose that VEGF evokes specific permeable and chemotactic effects on the vascular endothelial cells. These effects can mobilize EPCs into the peripheral blood, leading the EPCs to target damaged sites and to exert a neoangiogenic effect.
Plasticity in the adult human auditory brainstem following short-term linguistic training
Song, Judy H.; Skoe, Erika; Wong, Patrick C. M.; Kraus, Nina
2009-01-01
Peripheral and central structures along the auditory pathway contribute to speech processing and learning. However, because speech requires the use of functionally and acoustically complex sounds which necessitates high sensory and cognitive demands, long-term exposure and experience using these sounds is often attributed to the neocortex with little emphasis placed on subcortical structures. The present study examines changes in the auditory brainstem, specifically the frequency following response (FFR), as native English-speaking adults learn to incorporate foreign speech sounds (lexical pitch patterns) in word identification. The FFR presumably originates from the auditory midbrain, and can be elicited pre-attentively. We measured FFRs to the trained pitch patterns before and after training. Measures of pitch-tracking were then derived from the FFR signals. We found increased accuracy in pitch-tracking after training, including a decrease in the number of pitch-tracking errors and a refinement in the energy devoted to encoding pitch. Most interestingly, this change in pitch-tracking accuracy only occurred in the most acoustically complex pitch contour (dipping contour), which is also the least familiar to our English-speaking subjects. These results not only demonstrate the contribution of the brainstem in language learning and its plasticity in adulthood, but they also demonstrate the specificity of this contribution (i.e., changes in encoding only occurs in specific, least familiar stimuli, not all stimuli). Our findings complement existing data showing cortical changes after second language learning, and are consistent with models suggesting that brainstem changes resulting from perceptual learning are most apparent when acuity in encoding is most needed. PMID:18370594
Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model
Marsh, John E.; Campbell, Tom A.
2016-01-01
The rostral brainstem receives both “bottom-up” input from the ascending auditory system and “top-down” descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e.g., speech in noise, speech in reverberatory environments. The assumptions of a new early filter model are consistent with these findings: A subcortical early filter, with a predictive selectivity based on acoustical (linguistic) context and foreknowledge, is under cholinergic top-down control. A prefrontal capacity limitation constrains this top-down control as is guided by the cholinergic processing of contextual information in working memory. PMID:27242396
Inferior colliculus contributions to phase encoding of stop consonants in an animal model
Warrier, Catherine M; Abrams, Daniel A; Nicol, Trent G; Kraus, Nina
2011-01-01
The human auditory brainstem is known to be exquisitely sensitive to fine-grained spectro-temporal differences between speech sound contrasts, and the ability of the brainstem to discriminate between these contrasts is important for speech perception. Recent work has described a novel method for translating brainstem timing differences in response to speech contrasts into frequency-specific phase differentials. Results from this method have shown that the human brainstem response is surprisingly sensitive to phase-differences inherent to the stimuli across a wide extent of the spectrum. Here we use an animal model of the auditory brainstem to examine whether the stimulus-specific phase signatures measured in human brainstem responses represent an epiphenomenon associated with far field (i.e., scalp-recorded) measurement of neural activity, or alternatively whether these specific activity patterns are also evident in auditory nuclei that contribute to the scalp-recorded response, thereby representing a more fundamental temporal processing phenomenon. Responses in anaesthetized guinea pigs to three minimally-contrasting consonant-vowel stimuli were collected simultaneously from the cortical surface vertex and directly from central nucleus of the inferior colliculus (ICc), measuring volume conducted neural activity and multiunit, near-field activity, respectively. Guinea pig surface responses were similar to human scalp-recorded responses to identical stimuli in gross morphology as well as phase characteristics. Moreover, surface recorded potentials shared many phase characteristics with near-field ICc activity. Response phase differences were prominent during formant transition periods, reflecting spectro-temporal differences between syllables, and showed more subtle differences during the identical steady-state periods. ICc encoded stimulus distinctions over a broader frequency range, with differences apparent in the highest frequency ranges analyzed, up to 3000 Hz. Based on the similarity of phase encoding across sites, and the consistency and sensitivity of response phase measured within ICc, results suggest that a general property of the auditory system is a high degree of sensitivity to fine-grained phase information inherent to complex acoustical stimuli. Furthermore, results suggest that temporal encoding in ICc contributes to temporal features measured in speech-evoked scalp-recorded responses. PMID:21945200
Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model.
Marsh, John E; Campbell, Tom A
2016-01-01
The rostral brainstem receives both "bottom-up" input from the ascending auditory system and "top-down" descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e.g., speech in noise, speech in reverberatory environments. The assumptions of a new early filter model are consistent with these findings: A subcortical early filter, with a predictive selectivity based on acoustical (linguistic) context and foreknowledge, is under cholinergic top-down control. A prefrontal capacity limitation constrains this top-down control as is guided by the cholinergic processing of contextual information in working memory.
Visual and brainstem auditory evoked potentials in infants with severe vitamin B12 deficiency.
Demir, Nihat; Koç, Ahmet; Abuhandan, Mahmut; Calik, Mustafa; Işcan, Akin
2015-01-01
Vitamin B12 plays an important role in the development of mental, motor, cognitive, and social functions via its role in DNA synthesis and nerve myelination. Its deficiency in infants might cause neuromotor retardation as well as megaloblastic anemia. The objective of this study was to investigate the effects of infantile vitamin B12 deficiency on evoked brain potentials and determine whether improvement could be obtained with vitamin B12 replacement at appropriate dosages. Thirty patients with vitamin B12 deficiency and 30 age-matched healthy controls were included in the study. Hematological parameters, visual evoked potentials, and brainstem auditory evoked potentials tests were performed prior to treatment, 1 week after treatment, and 3 months after treatment. Visual evoked potentials (VEPs) and brainstem auditory evoked potentials (BAEPs) were found to be prolonged in 16 (53.3%) and 15 (50%) patients, respectively. Statistically significant improvements in VEP and BAEP examinations were determined 3 months after treatment. Three months after treatment, VEP and BAEP examinations returned to normal in 81.3% and 53.3% of subjects with prolonged VEPs and BAEPs, respectively. These results demonstrate that vitamin B12 deficiency in infants causes significant impairment in the auditory and visual functioning tests of the brain, such as VEP and BAEP.
Grose, John H; Buss, Emily; Hall, Joseph W
2017-01-01
The purpose of this study was to test the hypothesis that listeners with frequent exposure to loud music exhibit deficits in suprathreshold auditory performance consistent with cochlear synaptopathy. Young adults with normal audiograms were recruited who either did ( n = 31) or did not ( n = 30) have a history of frequent attendance at loud music venues where the typical sound levels could be expected to result in temporary threshold shifts. A test battery was administered that comprised three sets of procedures: (a) electrophysiological tests including distortion product otoacoustic emissions, auditory brainstem responses, envelope following responses, and the acoustic change complex evoked by an interaural phase inversion; (b) psychoacoustic tests including temporal modulation detection, spectral modulation detection, and sensitivity to interaural phase; and (c) speech tests including filtered phoneme recognition and speech-in-noise recognition. The results demonstrated that a history of loud music exposure can lead to a profile of peripheral auditory function that is consistent with an interpretation of cochlear synaptopathy in humans, namely, modestly abnormal auditory brainstem response Wave I/Wave V ratios in the presence of normal distortion product otoacoustic emissions and normal audiometric thresholds. However, there were no other electrophysiological, psychophysical, or speech perception effects. The absence of any behavioral effects in suprathreshold sound processing indicated that, even if cochlear synaptopathy is a valid pathophysiological condition in humans, its perceptual sequelae are either too diffuse or too inconsequential to permit a simple differential diagnosis of hidden hearing loss.
ERIC Educational Resources Information Center
Salamy, A.
1981-01-01
Determines the frequency distribution of Brainstem Auditory Evoked Potential variables (BAEP) for premature babies at different stages of development--normal newborns, infants, young children, and adults. The author concludes that the assumption of normality underlying most "standard" statistical analyses can be met for many BAEP…
Curcumin restores diabetes induced neurochemical changes in the brain stem of Wistar rats.
Kumar, Peeyush T; George, Naijil; Antony, Sherin; Paulose, Cheramadathikudiyil Skaria
2013-02-28
Diabetes mellitus, when poorly controlled, leads to debilitating central nervous system (CNS) complications including cognitive deficits, somatosensory and motor dysfunction. The present study investigated curcumin's potential in modulating diabetes induced neurochemical changes in brainstem. Expression analysis of cholinergic, insulin receptor and GLUT-3 in the brainstem of streptozotocin (STZ) induced diabetic rats were studied. Radioreceptor binding assays, gene expression studies and immunohistochemical analysis were done in the brainstem of male Wistar rats. Our result showed that Bmax of total muscarinic and muscarinic M3 receptors were increased and muscarinic M1 receptor was decreased in diabetic rats compared to control. mRNA level of muscarinic M3, α7-nicotinic acetylcholine, insulin receptors, acetylcholine esterase, choline acetyltransferase and GLUT-3 significantly increased and M1 receptor decreased in the brainstem of diabetic rats. Curcumin and insulin treatment restored the alterations and maintained all parameters to near control. The results show that diabetes is associated with significant reduction in brainstem function coupled with altered cholinergic, insulin receptor and GLUT-3 gene expression. The present study indicates beneficial effect of curcumin in diabetic rats by regulating the cholinergic, insulin receptor and GLUT-3 in the brainstem similar to the responses obtained with insulin therapy. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhao, K.; Ao, Y.; Harper, R.M.; Go, V. L.W.; Yang, H.
2013-01-01
Thyrotropin-releasing hormone (TRH), a neuropeptide contained in neural terminals innervating brainstem vagal motor neurons, enhances vagal outflow to modify multisystemic visceral functions and food intake. Type 2 diabetes (T2D) and obesity are accompanied by impaired vagal functioning. We examined the possibility that impaired brainstem TRH action may contribute to the vagal dysregulation of food intake in Goto-Kakizaki (GK) rats, a T2D model with hyperglycemia and impaired central vagal activation by TRH. Food intake induced by intracisternal injection of TRH analog was reduced significantly by 50% in GK rats, compared to Wistar rats. Similarly, natural food intake in the dark phase or food intake after an overnight fast was reduced by 56–81% in GK rats. Fasting (48 h) and refeeding (2 h)-associated changes in serum ghrelin, insulin, peptide YY, pancreatic polypeptide and leptin, and the concomitant changes in orexigenic or anorexigenic peptide expression in the brainstem and hypothalamus, all apparent in Wistar rats, were absent or markedly reduced in GK rats, with hormone release stimulated by vagal activation, such as ghrelin and pancreatic polypeptide, decreased substantially. Fasting-induced Fos expression accompanying endogenous brainstem TRH action decreased by 66% and 91%, respectively, in the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) in GK rats, compared to Wistar rats. Refeeding abolished fasting-induced Fos-expression in the NTS, while that in the DMV remained in Wistar but not GK rats. These findings indicate that dysfunctional brainstem TRH-elicited vagal impairment contributes to the disturbed food intake in T2D GK rats, and may provide a pathophysiological mechanism which prevents further weight gain in T2D and obesity. PMID:23701881
Zhao, K; Ao, Y; Harper, R M; Go, V L W; Yang, H
2013-09-05
Thyrotropin-releasing hormone (TRH), a neuropeptide contained in neural terminals innervating brainstem vagal motor neurons, enhances vagal outflow to modify multisystemic visceral functions and food intake. Type 2 diabetes (T2D) and obesity are accompanied by impaired vagal functioning. We examined the possibility that impaired brainstem TRH action may contribute to the vagal dysregulation of food intake in Goto-Kakizaki (GK) rats, a T2D model with hyperglycemia and impaired central vagal activation by TRH. Food intake induced by intracisternal injection of TRH analog was reduced significantly by 50% in GK rats, compared to Wistar rats. Similarly, natural food intake in the dark phase or food intake after an overnight fast was reduced by 56-81% in GK rats. Fasting (48h) and refeeding (2h)-associated changes in serum ghrelin, insulin, peptide YY, pancreatic polypeptide and leptin, and the concomitant changes in orexigenic or anorexigenic peptide expression in the brainstem and hypothalamus, all apparent in Wistar rats, were absent or markedly reduced in GK rats, with hormone release stimulated by vagal activation, such as ghrelin and pancreatic polypeptide, decreased substantially. Fasting-induced Fos expression accompanying endogenous brainstem TRH action decreased by 66% and 91%, respectively, in the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) in GK rats, compared to Wistar rats. Refeeding abolished fasting-induced Fos-expression in the NTS, while that in the DMV remained in Wistar but not GK rats. These findings indicate that dysfunctional brainstem TRH-elicited vagal impairment contributes to the disturbed food intake in T2D GK rats, and may provide a pathophysiological mechanism which prevents further weight gain in T2D and obesity. Published by Elsevier Ltd.
Pinniped Hearing in Complex Acoustic Environments
2013-09-30
published] Mulsow, J. & Reichmuth, C. (2013). The binaural click-evoked auditory brainstem response of the California sea lion (Zalophus...California sea lion can keep the beat : Motor entrainment to rhythmic auditory stimuli in a non vocal mimic. Journal of Comparative Psychology, online first. [published
Cinar, Betul Cicek; Yarali, Mehmet; Atay, Gamze; Bajin, Munir Demir; Sennaroglu, Gonca; Sennaroglu, Levent
2017-09-01
The objective of the study was to discuss the findings of intraoperative electrically evoked auditory brainstem response (eABR) test results with a recently designed intracochlear test electrode (ITE) in terms of their relation to decisions of cochlear or auditory brainstem implantation. This clinical study was conducted in Hacettepe University, Department of Otolaryngology, Head and Neck Surgery and Department of Audiology. Subjects were selected from inner ear malformation (IEM) database. Eleven subjects with profound sensorineural hearing loss were included in the current study with age range from 1 year 3 months to 4 years 3 months for children with prelingual hearing loss. There was only one 42-year-old post-lingual subject. eABR was recorded with an ITE and intraoperatively with an original cochlear implant (CI) electrode in 11 cases with different IEMs. Findings of eABR with ITE and their relation to the decision for CI or auditory brainstem implant (ABI) are discussed. Positive eABR test results were found to be dependent on close to normal cochlear structures and auditory nerve. The probability of positive result decreases with increasing degree of malformation severity. The prediction value of eABR via ITE on decision for hearing restoration was found to be questionable in this study. The results of eABR with ITE have predictive value on what we will get with the actual CI electrode. ITE appears to stimulate the cochlea like an actual CI. If the eABR is positive, the results are reliable. However, if eABR is negative, the results should be evaluated with preoperative audiological testing and MRI findings.
Brainstem Transcription of Speech Is Disrupted in Children with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Russo, Nicole; Nicol, Trent; Trommer, Barbara; Zecker, Steve; Kraus, Nina
2009-01-01
Language impairment is a hallmark of autism spectrum disorders (ASD). The origin of the deficit is poorly understood although deficiencies in auditory processing have been detected in both perception and cortical encoding of speech sounds. Little is known about the processing and transcription of speech sounds at earlier (brainstem) levels or…
ERIC Educational Resources Information Center
Hall, Joseph W.; Grose, John H.
1993-01-01
This study of 14 children (ages 5-9) with a history of otitis media with effusion found that subjects had significantly reduced masking-level differences (MLD) compared to controls. Results suggest that the reduction in MLD may be related to abnormal brainstem processing. (Author/JDD)
Krizman, Jennifer; Skoe, Erika; Marian, Viorica; Kraus, Nina
2014-01-01
Auditory processing is presumed to be influenced by cognitive processes – including attentional control – in a top-down manner. In bilinguals, activation of both languages during daily communication hones inhibitory skills, which subsequently bolster attentional control. We hypothesize that the heightened attentional demands of bilingual communication strengthens connections between cognitive (i.e., attentional control) and auditory processing, leading to greater across-trial consistency in the auditory evoked response (i.e., neural consistency) in bilinguals. To assess this, we collected passively-elicited auditory evoked responses to the syllable [da] and separately obtained measures of attentional control and language ability in adolescent Spanish-English bilinguals and English monolinguals. Bilinguals demonstrated enhanced attentional control and more consistent brainstem and cortical responses. In bilinguals, but not monolinguals, brainstem consistency tracked with language proficiency and attentional control. We interpret these enhancements in neural consistency as the outcome of strengthened attentional control that emerged from experience communicating in two languages. PMID:24413593
Peeyush Kumar, T; Paul, Jes; Antony, Sherin; Paulose, C S
2011-11-01
Complications arising from diabetes mellitus include cognitive deficits, neurophysiological and structural changes in the brain. The current study investigated the expression of cholinergic, insulin, Vitamin D receptor and GLUT 3 in the brainstem of streptozotocin-induced diabetic rats. Radioreceptor binding assays and gene expression were done in the brainstem of male Wistar rats. Our results showed that B(max) of total muscarinic, muscarinic M3 receptors was increased and muscarinic M1 receptor was decreased in diabetic rats compared to control. A significant increase in gene expression of muscarinic M3, α7 nicotinic acetylcholine, insulin, Vitamin D₃ receptors, acetylcholine esterase, choline acetyl transferase and GLUT 3 were observed in the brainstem of diabetic rats. Immunohistochemistry studies of muscarinic M1, M3 and α7 nicotinic acetylcholine receptors confirmed the gene expression at protein level. Vitamin D₃ and insulin treatment reversed diabetes-induced alterations to near control. This study provides an evidence that diabetes can alter the expression of cholinergic, insulin, Vitamin D receptors and GLUT 3 in brainstem. We found that Vitamin D₃ treatment could modulate the Vitamin D receptors and plays a pivotal role in maintaining the glucose transport and expressional level of cholinergic receptors in the brainstem of diabetic rats. Thus, our results suggest a therapeutic role of Vitamin D₃ in managing neurological disorders associated with diabetes.
Topdag, M; Iseri, M; Gelenli, E; Yardimoglu, M; Yazir, Y; Ulubil, S A; Topdag, D O; Ustundag, E
2012-11-01
This study aimed to contribute to the literature on the prevention and treatment of ototoxicity due to various drugs and chemicals. This study compared the histological effects of intratympanic dexamethasone, memantine and piracetam on cellular apoptosis due to cisplatin ototoxicity, in 36 rats. Dexamethasone and memantine had significant effects on the stria vascularis, organ of Corti and spiral ganglion (p < 0.05). Although piracetam decreased the apoptosis rate, this effect was not statistically significant (p > 0.05). Dexamethasone and memantine were found superior to piracetam in reducing apoptosis due to cisplatin ototoxicity. Further studies of this subject are needed, incorporating electron microscopy and auditory brainstem response testing.
Wang, Qiuju; Gu, Rui; Han, Dongyi; Yang, Weiyan
2003-09-01
Auditory neuropathy is a sensorineural hearing disorder characterized by absent or abnormal auditory brainstem responses and normal cochlear outer hair cell function as measured by otoacoustic emission recordings. Many risk factors are thought to be involved in its etiology and pathophysiology. Four Chinese pedigrees with familial auditory neuropathy were presented to demonstrate involvement of genetic factors in the etiology of auditory neuropathy. Probands of the above-mentioned pedigrees, who had been diagnosed with auditory neuropathy, were evaluated and followed in the Department of Otolaryngology-Head and Neck Surgery, China People Liberation Army General Hospital (Beijing, China). Their family members were studied, and the pedigree maps established. History of illness, physical examination, pure-tone audiometry, acoustic reflex, auditory brainstem responses, and transient evoked and distortion-product otoacoustic emissions were obtained from members of these families. Some subjects received vestibular caloric testing, computed tomography scan of the temporal bone, and electrocardiography to exclude other possible neuropathic disorders. In most affected patients, hearing loss of various degrees and speech discrimination difficulties started at 10 to 16 years of age. Their audiological evaluation showed absence of acoustic reflex and auditory brainstem responses. As expected in auditory neuropathy, these patients exhibited near-normal cochlear outer hair cell function as shown in distortion product otoacoustic emission recordings. Pure-tone audiometry revealed hearing loss ranging from mild to profound in these patients. Different inheritance patterns were observed in the four families. In Pedigree I, 7 male patients were identified among 43 family members, exhibiting an X-linked recessive pattern. Affected brothers were found in Pedigrees II and III, whereas in pedigree IV, two sisters were affected. All the patients were otherwise normal without evidence of peripheral neuropathy at the time of writing. Patients with characteristics of nonsyndromic hereditary auditory neuropathy were identified in one large and three smaller Chinese families. Pedigree analysis suggested an X-linked, recessive hereditary pattern in one pedigree and autosomal recessive inheritances in the other three pedigrees. The phenotypes in the study were typical of auditory neuropathy; they were transmitted in different inheritance patterns, indicating clinical and genetic heterogeneity of this disorder. The observed inheritance and clinical audiological findings are different from those previously described for nonsyndromic low-frequency sensorineural hearing loss. This information should facilitate future molecular linkage analyses and positional cloning for the relative genes contributing to auditory neuropathy.
Liu, Fang; Maggu, Akshay R.; Lau, Joseph C. Y.; Wong, Patrick C. M.
2015-01-01
Congenital amusia is a neurodevelopmental disorder of musical processing that also impacts subtle aspects of speech processing. It remains debated at what stage(s) of auditory processing deficits in amusia arise. In this study, we investigated whether amusia originates from impaired subcortical encoding of speech (in quiet and noise) and musical sounds in the brainstem. Fourteen Cantonese-speaking amusics and 14 matched controls passively listened to six Cantonese lexical tones in quiet, two Cantonese tones in noise (signal-to-noise ratios at 0 and 20 dB), and two cello tones in quiet while their frequency-following responses (FFRs) to these tones were recorded. All participants also completed a behavioral lexical tone identification task. The results indicated normal brainstem encoding of pitch in speech (in quiet and noise) and musical stimuli in amusics relative to controls, as measured by FFR pitch strength, pitch error, and stimulus-to-response correlation. There was also no group difference in neural conduction time or FFR amplitudes. Both groups demonstrated better FFRs to speech (in quiet and noise) than to musical stimuli. However, a significant group difference was observed for tone identification, with amusics showing significantly lower accuracy than controls. Analysis of the tone confusion matrices suggested that amusics were more likely than controls to confuse between tones that shared similar acoustic features. Interestingly, this deficit in lexical tone identification was not coupled with brainstem abnormality for either speech or musical stimuli. Together, our results suggest that the amusic brainstem is not functioning abnormally, although higher-order linguistic pitch processing is impaired in amusia. This finding has significant implications for theories of central auditory processing, requiring further investigations into how different stages of auditory processing interact in the human brain. PMID:25646077
Liu, Fang; Maggu, Akshay R; Lau, Joseph C Y; Wong, Patrick C M
2014-01-01
Congenital amusia is a neurodevelopmental disorder of musical processing that also impacts subtle aspects of speech processing. It remains debated at what stage(s) of auditory processing deficits in amusia arise. In this study, we investigated whether amusia originates from impaired subcortical encoding of speech (in quiet and noise) and musical sounds in the brainstem. Fourteen Cantonese-speaking amusics and 14 matched controls passively listened to six Cantonese lexical tones in quiet, two Cantonese tones in noise (signal-to-noise ratios at 0 and 20 dB), and two cello tones in quiet while their frequency-following responses (FFRs) to these tones were recorded. All participants also completed a behavioral lexical tone identification task. The results indicated normal brainstem encoding of pitch in speech (in quiet and noise) and musical stimuli in amusics relative to controls, as measured by FFR pitch strength, pitch error, and stimulus-to-response correlation. There was also no group difference in neural conduction time or FFR amplitudes. Both groups demonstrated better FFRs to speech (in quiet and noise) than to musical stimuli. However, a significant group difference was observed for tone identification, with amusics showing significantly lower accuracy than controls. Analysis of the tone confusion matrices suggested that amusics were more likely than controls to confuse between tones that shared similar acoustic features. Interestingly, this deficit in lexical tone identification was not coupled with brainstem abnormality for either speech or musical stimuli. Together, our results suggest that the amusic brainstem is not functioning abnormally, although higher-order linguistic pitch processing is impaired in amusia. This finding has significant implications for theories of central auditory processing, requiring further investigations into how different stages of auditory processing interact in the human brain.
Brain-stem evoked potentials and noise effects in seagulls.
Counter, S A
1985-01-01
Brain-stem auditory evoked potentials (BAEP) recorded from the seagull were large-amplitude, short-latency, vertex-positive deflections which originate in the eighth nerve and several brain-stem nuclei. BAEP waveforms were similar in latency and configurations to that reported for certain other lower vertebrates and some mammals. BAEP recorded at several pure tone frequencies throughout the seagull's auditory spectrum showed an area of heightened auditory sensitivity between 1 and 3 kHz. This range was also found to be the primary bandwidth of the vocalization output of young seagulls. Masking by white noise and pure tones had remarkable effects on several parameters of the BAEP. In general, the tone- and click-induced BAEP were either reduced or obliterated by both pure tone and white noise maskers of specific signal to noise ratios and high intensity levels. The masking effects observed in this study may be related to the manner in which seagulls respond to intense environmental noise. One possible conclusion is that intense environmental noise, such as aircraft engine noise, may severely alter the seagull's localization apparatus and induce sonogenic stress, both of which could cause collisions with low-flying aircraft.
Lina, Ioan A; Lauer, Amanda M
2013-04-01
The notched noise method is an effective procedure for measuring frequency resolution and auditory filter shapes in both human and animal models of hearing. Briefly, auditory filter shape and bandwidth estimates are derived from masked thresholds for tones presented in noise containing widening spectral notches. As the spectral notch widens, increasingly less of the noise falls within the auditory filter and the tone becomes more detectible until the notch width exceeds the filter bandwidth. Behavioral procedures have been used for the derivation of notched noise auditory filter shapes in mice; however, the time and effort needed to train and test animals on these tasks renders a constraint on the widespread application of this testing method. As an alternative procedure, we combined relatively non-invasive auditory brainstem response (ABR) measurements and the notched noise method to estimate auditory filters in normal-hearing mice at center frequencies of 8, 11.2, and 16 kHz. A complete set of simultaneous masked thresholds for a particular tone frequency were obtained in about an hour. ABR-derived filter bandwidths broadened with increasing frequency, consistent with previous studies. The ABR notched noise procedure provides a fast alternative to estimating frequency selectivity in mice that is well-suited to high through-put or time-sensitive screening. Copyright © 2013 Elsevier B.V. All rights reserved.
Galbraith, G C; Jhaveri, S P; Kuo, J
1997-01-01
Speech-evoked brainstem frequency-following responses (FFRs) were recorded to repeated presentations of the same stimulus word. Word repetition results in illusory verbal transformations (VTs) in which word perceptions can differ markedly from the actual stimulus. Previous behavioral studies support an explanation of VTs based on changes in arousal or attention. Horizontal and vertical dipole FFRs were recorded to assess responses with putative origins in the auditory nerve and central brainstem, respectively. FFRs were recorded from 18 subjects when they correctly heard the stimulus and when they reported VTs. Although horizontal and vertical dipole FFRs showed different frequency response patterns, dipoles did not differentiate between perceptual conditions. However, when subjects were divided into low- and high-VT groups (based on percentage of VT trials), a significant Condition x Group interaction resulted. This interaction showed the largest difference in FFR amplitudes during VT trials, with the low-VT group showing increased amplitudes, and the high-VT group showing decreased amplitudes, relative to trials in which the stimulus was correctly perceived. These results demonstrate measurable subject differences in the early processing of complex signals, due to possible effects of attention on the brainstem FFR. The present research shows that the FFR is useful in understanding human language as it is coded and processed in the brainstem auditory pathway.
Talking back: Development of the olivocochlear efferent system.
Frank, Michelle M; Goodrich, Lisa V
2018-06-26
Developing sensory systems must coordinate the growth of neural circuitry spanning from receptors in the peripheral nervous system (PNS) to multilayered networks within the central nervous system (CNS). This breadth presents particular challenges, as nascent processes must navigate across the CNS-PNS boundary and coalesce into a tightly intermingled wiring pattern, thereby enabling reliable integration from the PNS to the CNS and back. In the auditory system, feedforward spiral ganglion neurons (SGNs) from the periphery collect sound information via tonotopically organized connections in the cochlea and transmit this information to the brainstem for processing via the VIII cranial nerve. In turn, feedback olivocochlear neurons (OCNs) housed in the auditory brainstem send projections into the periphery, also through the VIII nerve. OCNs are motor neuron-like efferent cells that influence auditory processing within the cochlea and protect against noise damage in adult animals. These aligned feedforward and feedback systems develop in parallel, with SGN central axons reaching the developing auditory brainstem around the same time that the OCN axons extend out toward the developing inner ear. Recent findings have begun to unravel the genetic and molecular mechanisms that guide OCN development, from their origins in a generic pool of motor neuron precursors to their specialized roles as modulators of cochlear activity. One recurrent theme is the importance of efferent-afferent interactions, as afferent SGNs guide OCNs to their final locations within the sensory epithelium, and efferent OCNs shape the activity of the developing auditory system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development. © 2018 Wiley Periodicals, Inc.
Rüb, Udo; Stratmann, Katharina; Heinsen, Helmut; Turco, Domenico Del; Seidel, Kay; Dunnen, Wilfred den; Korf, Horst-Werner
2016-01-01
The human brainstem is involved in the regulation of the sleep/waking cycle and normal sleep architectonics and is crucial for the performance of a variety of somatomotor, vital autonomic, oculomotor, vestibular, auditory, ingestive and somatosensory functions. It harbors the origins of the ascending dopaminergic, cholinergic, noradrenergic, serotonergic systems, as well the home base of the descending serotonergic system. In contrast to the cerebral cortex the affection of the brainstem in Alzheimer's disease (AD) by the neurofibrillary or tau cytoskeletal pathology was recognized only approximately fourty years ago in initial brainstem studies. Detailed pathoanatomical investigations of silver stained or tau immunostained brainstem tissue sections revealed nerve cell loss and prominent ADrelated cytoskeletal changes in the raphe nuclei, locus coeruleus, and in the compact parts of the substantia nigra and pedunculopontine nucleus. An additional conspicuous AD-related cytoskeletal pathology was also detected in the auditory brainstem system of AD patients (i.e. inferior colliculus, superior olive, dorsal cochlear nucleus), in the oculomotor brainstem network (i.e. rostral interstitial nucleus of the medial longitudinal fascicle, Edinger-Westphal nucleus, reticulotegmental nucleus of pons), autonomic system (i.e. central and periaqueductal grays, parabrachial nuclei, gigantocellular reticular nucleus, dorsal motor vagal and solitary nuclei, intermediate reticular zone). The alterations in these brainstem nuclei offered for the first time adequate explanations for a variety of less understood disease symptoms of AD patients: Parkinsonian extrapyramidal motor signs, depression, hallucinations, dysfunctions of the sleep/wake cycle, changes in sleeping patterns, attentional deficits, exaggerated pupil dilatation, autonomic dysfunctions, impairments of horizontal and vertical saccades, dysfunctional smooth pursuits. The very early occurrence of the AD-related cytoskeletal pathology in some of these brainstem nuclei points to a major and strategic role of the brainstem in the induction and brain spread of the AD-related cytoskeletal pathology.
ERIC Educational Resources Information Center
Krishnan, Ananthanarayan; Gandour, Jackson T.; Smalt, Christopher J.; Bidelman, Gavin M.
2010-01-01
Experience-dependent enhancement of neural encoding of pitch in the auditory brainstem has been observed for only specific portions of native pitch contours exhibiting high rates of pitch acceleration, irrespective of speech or nonspeech contexts. This experiment allows us to determine whether this language-dependent advantage transfers to…
The Development of Auditory Perception in Children Following Auditory Brainstem Implantation
Colletti, Liliana; Shannon, Robert V.; Colletti, Vittorio
2014-01-01
Auditory brainstem implants (ABI) can provide useful auditory perception and language development in deaf children who are not able to use a cochlear implant (CI). We prospectively followed-up a consecutive group of 64 deaf children up to 12 years following ABI implantation. The etiology of deafness in these children was: cochlear nerve aplasia in 49, auditory neuropathy in 1, cochlear malformations in 8, bilateral cochlear post-meningitic ossification in 3, NF2 in 2, and bilateral cochlear fractures due to a head injury in 1. Thirty five children had other congenital non-auditory disabilities. Twenty two children had previous CIs with no benefit. Fifty eight children were fitted with the Cochlear 24 ABI device and six with the MedEl ABI device and all children followed the same rehabilitation program. Auditory perceptual abilities were evaluated on the Categories of Auditory Performance (CAP) scale. No child was lost to follow-up and there were no exclusions from the study. All children showed significant improvement in auditory perception with implant experience. Seven children (11%) were able to achieve the highest score on the CAP test; they were able to converse on the telephone within 3 years of implantation. Twenty children (31.3%) achieved open set speech recognition (CAP score of 5 or greater) and 30 (46.9%) achieved a CAP level of 4 or greater. Of the 29 children without non-auditory disabilities, 18 (62%) achieved a CAP score of 5 or greater with the ABI. All children showed continued improvements in auditory skills over time. The long-term results of ABI implantation reveal significant auditory benefit in most children, and open set auditory recognition in many. PMID:25377987
Pryor, G T; Rebert, C S
1992-01-01
Solvent mixtures are ubiquitous in industrialized environments and are used frequently for recreational purposes. Toluene and hexane are common components of many solvent mixtures and have characteristic, but different, neurotoxic consequences. Interestingly, Takeuchi et al., (1981) reported that toluene attenuated the peripheral neuropathy caused by n-hexane, possibly by blocking its metabolism to 2,5-hexanedione (Perbellini, et al., 1982). To confirm such effects at higher concentrations and to examine effects on the central nervous system (CNS), four groups of 12 rats each were exposed to air, toluene (1200 ppm), hexane (4000 ppm), or a mixture of toluene (1200 ppm) and hexane (4,000 ppm) 14 hr/day for 9 weeks. A battery of behavioral and electrophysiologic tests was used to assess the functional consequences of their exposures. The battery consisted of measures of grip strength, locomotor gait and landing splay, sensory sensitivities during conditioned avoidance performance, the action potential of the ventral caudal nerve, and the brainstem auditory evoked response. Measures of peripheral nervous system functions (e.g., grip strength and conduction velocity) showed interactive effects like those reported by Takeuchi et al. Toluene greatly reduced the neuropathy caused by hexane. Hexane-induced abnormalities in central components of the brainstem response were much less reduced in the presence of toluene. There was no reciprocal action of hexane on the motor syndrome and hearing loss caused by toluene.
Coenzyme Q10 plus Multivitamin Treatment Prevents Cisplatin Ototoxicity in Rats
Astolfi, Laura; Simoni, Edi; Valente, Filippo; Ghiselli, Sara; Hatzopoulos, Stavros; Chicca, Milvia; Martini, Alessandro
2016-01-01
Cisplatin (Cpt) is known to induce a high level of oxidative stress, resulting in an increase of reactive oxygen species damaging the inner ear and causing hearing loss at high frequencies. Studies on animal models show that antioxidants may lower Cpt-induced ototoxicity. The aim of this study is to evaluate the ototoxic effects of two different protocols of Cpt administration in a Sprague-Dawley rat model, and to test in the same model the synergic protective effects of a solution of coenzyme Q10 terclatrate and Acuval 400®, a multivitamin supplement containing antioxidant agents and minerals (Acu-Qter). The Cpt was administered intraperitoneally in a single dose (14 mg/kg) or in three daily doses (4.6 mg/kg/day) to rats orally treated or untreated with Acu-Qter for 5 days. The auditory function was assessed by measuring auditory brainstem responses from 2 to 32 kHz at day 0 and 5 days after treatment. Similar hearing threshold and body weight alterations were observed in both Cpt administration protocols, but mortality reduced to zero when Cpt was administered in three daily doses. The Acu-Qter treatment was able to prevent and completely neutralize ototoxicity in rats treated with three daily Cpt doses, supporting the synergic protective effects of coenzyme Q terclatrate and Acuval 400® against Cpt-induced oxidative stress. The administration protocol involving three Cpt doses is more similar to common human chemotherapy protocols, therefore it appears more useful for long-term preclinical studies on ototoxicity prevention. PMID:27632426
Prolonged noise exposure-induced auditory threshold shifts in rats
Chen, Guang-Di; Decker, Brandon; Muthaiah, Vijaya Prakash Krishnan; Sheppard, Adam; Salvi, Richard
2014-01-01
Noise-induced hearing loss (NIHL) initially increases with exposure duration, but eventually reaches an asymptotic threshold shift (ATS) once the exposure duration exceeds 18-24 h. Equations for predicting the ATS have been developed for several species, but not for rats, even though this species is extensively used in noise exposure research. To fill this void, we exposed rats to narrowband noise (NBN, 16-20 kHz) for 5 weeks starting at 80 dB SPL in the first week and then increasing the level by 6 dB per week to a final level of 104 dB SPL. Auditory brainstem responses (ABR) were recorded before, during, and following the exposure to determine the amount of hearing loss. The noise induced threshold shift to continuous long-term exposure, defined as compound threshold shift (CTS), within and above 16-20 kHz increased with noise level at the rate of 1.82 dB threshold shift per dB of noise level (NL) above a critical level (C) of 77.2 dB SPL i.e. CTS = 1.82(NL-77.2). The normalized amplitude of the largest ABR peak measured at 100 dB SPL decreased at the rate of 3.1% per dB of NL above the critical level of 76.9 dB SPL, i.e., %ABR Reduction = 3.1%(NL-76.9). ABR thresholds measured >30 days post-exposure only partially recovered resulting in a permanent threshold shift of 30-40 dB along with severe hair cell loss in the basal, high-frequency region of the cochlea. In the rat, CTS increases with noise level with a slope similar to humans and chinchillas. The critical level (C) in the rat is similar to that of humans, but higher than that of chinchillas. PMID:25219503
Karmakar, Kajari; Narita, Yuichi; Fadok, Jonathan; Ducret, Sebastien; Loche, Alberto; Kitazawa, Taro; Genoud, Christel; Di Meglio, Thomas; Thierry, Raphael; Bacelo, Joao; Lüthi, Andreas; Rijli, Filippo M
2017-01-03
Tonotopy is a hallmark of auditory pathways and provides the basis for sound discrimination. Little is known about the involvement of transcription factors in brainstem cochlear neurons orchestrating the tonotopic precision of pre-synaptic input. We found that in the absence of Hoxa2 and Hoxb2 function in Atoh1-derived glutamatergic bushy cells of the anterior ventral cochlear nucleus, broad input topography and sound transmission were largely preserved. However, fine-scale synaptic refinement and sharpening of isofrequency bands of cochlear neuron activation upon pure tone stimulation were impaired in Hox2 mutants, resulting in defective sound-frequency discrimination in behavioral tests. These results establish a role for Hox factors in tonotopic refinement of connectivity and in ensuring the precision of sound transmission in the mammalian auditory circuit. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Electrically-evoked frequency-following response (EFFR) in the auditory brainstem of guinea pigs.
He, Wenxin; Ding, Xiuyong; Zhang, Ruxiang; Chen, Jing; Zhang, Daoxing; Wu, Xihong
2014-01-01
It is still a difficult clinical issue to decide whether a patient is a suitable candidate for a cochlear implant and to plan postoperative rehabilitation, especially for some special cases, such as auditory neuropathy. A partial solution to these problems is to preoperatively evaluate the functional integrity of the auditory neural pathways. For evaluating the strength of phase-locking of auditory neurons, which was not reflected in previous methods using electrically evoked auditory brainstem response (EABR), a new method for recording phase-locking related auditory responses to electrical stimulation, called the electrically evoked frequency-following response (EFFR), was developed and evaluated using guinea pigs. The main objective was to assess feasibility of the method by testing whether the recorded signals reflected auditory neural responses or artifacts. The results showed the following: 1) the recorded signals were evoked by neuron responses rather than by artifact; 2) responses evoked by periodic signals were significantly higher than those evoked by the white noise; 3) the latency of the responses fell in the expected range; 4) the responses decreased significantly after death of the guinea pigs; and 5) the responses decreased significantly when the animal was replaced by an electrical resistance. All of these results suggest the method was valid. Recording obtained using complex tones with a missing fundamental component and using pure tones with various frequencies were consistent with those obtained using acoustic stimulation in previous studies.
Speech-evoked auditory brainstem responses in children with hearing loss.
Koravand, Amineh; Al Osman, Rida; Rivest, Véronique; Poulin, Catherine
2017-08-01
The main objective of the present study was to investigate subcortical auditory processing in children with sensorineural hearing loss. Auditory Brainstem Responses (ABRs) were recorded using click and speech/da/stimuli. Twenty-five children, aged 6-14 years old, participated in the study: 13 with normal hearing acuity and 12 with sensorineural hearing loss. No significant differences were observed for the click-evoked ABRs between normal hearing and hearing-impaired groups. For the speech-evoked ABRs, no significant differences were found for the latencies of the following responses between the two groups: onset (V and A), transition (C), one of the steady-state wave (F), and offset (O). However, the latency of the steady-state waves (D and E) was significantly longer for the hearing-impaired compared to the normal hearing group. Furthermore, the amplitude of the offset wave O and of the envelope frequency response (EFR) of the speech-evoked ABRs was significantly larger for the hearing-impaired compared to the normal hearing group. Results obtained from the speech-evoked ABRs suggest that children with a mild to moderately-severe sensorineural hearing loss have a specific pattern of subcortical auditory processing. Our results show differences for the speech-evoked ABRs in normal hearing children compared to hearing-impaired children. These results add to the body of the literature on how children with hearing loss process speech at the brainstem level. Copyright © 2017 Elsevier B.V. All rights reserved.
Alsiö, Johan; Rask-Andersen, Mathias; Chavan, Rohit A; Olszewski, Pawel K; Levine, Allen S; Fredriksson, Robert; Schiöth, Helgi B
2014-01-24
A strong link between obesity and dopamine (DA) has been established by studies associating body weight status to variants of genes related to DA signalling. Human and animal studies investigating this relationship have so far focused mainly on the role of DA within the mesolimbic pathway. The aim of this study was to investigate potential DA receptor dysregulation in the brainstem, where these receptors play a potential role in meal termination, during high-fat high-sugar diet (HFHS) exposure. Expression of other key genes, including proopiomelanocortin (POMC), was also analyzed. We randomized rats into three groups; ad libitum access to HFHS (n=24), restricted HFHS access (n=10), or controls (chow-fed, n=10). After 5 weeks, brainstem gene expression was investigated by qRT-PCR. We observed an increase in POMC expression in ad libitum HFHS-fed rats compared to chow-fed controls (p<0.05). Further, expression of DA D2 receptor mRNA was down-regulated in the brainstem of the HFHS ad libitum-fed rats (p<0.05), whereas expression of the DA D1 receptor was upregulated (p<0.05) in these animals compared to chow-fed rats. In control experiments, we observed no effect relative to chow-fed controls on DA-receptor or POMC gene expression in the hypothalamus of HFHS diet-exposed rats, or in the brainstem of acutely food deprived rats. The present findings suggest brainstem POMC to be responsive to palatable foods, and that DA dysregulation after access to energy-dense diets occurs not only in striatal regions, but also in the brainstem, which could be relevant for overeating and for the development and maintenance of obesity. Copyright © 2013. Published by Elsevier Ireland Ltd.
Beneficial auditory and cognitive effects of auditory brainstem implantation in children.
Colletti, Liliana
2007-09-01
This preliminary study demonstrates the development of hearing ability and shows that there is a significant improvement in some cognitive parameters related to selective visual/spatial attention and to fluid or multisensory reasoning, in children fitted with auditory brainstem implantation (ABI). The improvement in cognitive paramenters is due to several factors, among which there is certainly, as demonstrated in the literature on a cochlear implants (CIs), the activation of the auditory sensory canal, which was previously absent. The findings of the present study indicate that children with cochlear or cochlear nerve abnormalities with associated cognitive deficits should not be excluded from ABI implantation. The indications for ABI have been extended over the last 10 years to adults with non-tumoral (NT) cochlear or cochlear nerve abnormalities that cannot benefit from CI. We demonstrated that the ABI with surface electrodes may provide sufficient stimulation of the central auditory system in adults for open set speech recognition. These favourable results motivated us to extend ABI indications to children with profound hearing loss who were not candidates for a CI. This study investigated the performances of young deaf children undergoing ABI, in terms of their auditory perceptual development and their non-verbal cognitive abilities. In our department from 2000 to 2006, 24 children aged 14 months to 16 years received an ABI for different tumour and non-tumour diseases. Two children had NF2 tumours. Eighteen children had bilateral cochlear nerve aplasia. In this group, nine children had associated cochlear malformations, two had unilateral facial nerve agenesia and two had combined microtia, aural atresia and middle ear malformations. Four of these children had previously been fitted elsewhere with a CI with no auditory results. One child had bilateral incomplete cochlear partition (type II); one child, who had previously been fitted unsuccessfully elsewhere with a CI, had auditory neuropathy; one child showed total cochlear ossification bilaterally due to meningitis; and one child had profound hearing loss with cochlear fractures after a head injury. Twelve of these children had multiple associated psychomotor handicaps. The retrosigmoid approach was used in all children. Intraoperative electrical auditory brainstem responses (EABRs) and postoperative EABRs and electrical middle latency responses (EMLRs) were performed. Perceptual auditory abilities were evaluated with the Evaluation of Auditory Responses to Speech (EARS) battery - the Listening Progress Profile (LIP), the Meaningful Auditory Integration Scale (MAIS), the Meaningful Use of Speech Scale (MUSS) - and the Category of Auditory Performance (CAP). Cognitive evaluation was performed on seven children using the Leiter International Performance Scale - Revised (LIPS-R) test with the following subtests: Figure ground, Form completion, Sequential order and Repeated pattern. No postoperative complications were observed. All children consistently used their devices for >75% of waking hours and had environmental sound awareness and utterance of words and simple sentences. Their CAP scores ranged from 1 to 7 (average =4); with MAIS they scored 2-97.5% (average =38%); MUSS scores ranged from 5 to 100% (average =49%) and LIP scores from 5 to 100% (average =45%). Owing to associated disabilities, 12 children were given other therapies (e.g. physical therapy and counselling) in addition to speech and aural rehabilitation therapy. Scores for two of the four subtests of LIPS-R in this study increased significantly during the first year of auditory brainstem implant use in all seven children selected for cognitive evaluation.
Evaluation of Hearing in Children with Autism by Using TEOAE and ABR
ERIC Educational Resources Information Center
Tas, Abdullah; Yagiz, Recep; Tas, Memduha; Esme, Meral; Uzun, Cem; Karasalihoglu, Ahmet Rifat
2007-01-01
Assessment of auditory abilities is important in the diagnosis and treatment of children with autism. The aim was to evaluate hearing objectively by using transient evoked otoacoustic emission (TEOAE) and auditory brainstem response (ABR). Tests were performed on 30 children with autism and 15 typically developing children, following otomicroscopy…
Huang, Lihui; Han, Demin; Guo, Ying; Liu, Sha; Cui, Xiaoyan; Mo, Lingyan; Qi, Beier; Cai, Zhenghua; Liu, Hui; En, Hui; Guo, Liansheng
2008-10-01
Audiological characteristics were investigated in 81 ears of 53 infants with abnormal transient evoked otoacoustic emission (TEOAE) and normal auditory brainstem response (ABR). The relationship between ABR and other hearing testing methods, including 40Hz auditory event-related potential (40Hz-AERP), auditory steady state response (ASSR), distortion product otoacoustic emission (DPOAE), tympanometry, and acoustic reflex, was analyzed. Of the 81 ears, 18 ears (22.2%) were normal, while 63 ears (77.8%) were abnormal according to the tests. Testing of the 40 Hz AERP (36 ears) and ASSR (45 ears) revealed that 14 ears (38.9%) and 27 ears (60.0%) were abnormal, respectively. Testing of DPOAE in 68 ears revealed that 50 ears (73.5%) were abnormal. Testing of tympanometry in 50 ears and acoustic reflex in 47 ears revealed that 9 ears (18%) and 27 ears (57.4%) were abnormal, respectively. The present data suggests that the hearing of infants cannot be sufficiently evaluated with ABR only and that it must be evaluated with integrative audiological testing methods.
Reiman, Milla; Parkkola, Riitta; Johansson, Reijo; Jääskeläinen, Satu K; Kujari, Harry; Lehtonen, Liisa; Haataja, Leena; Lapinleimu, Helena
2009-08-01
Preterm and low-birth-weight infants have an increased risk of sensorineural hearing loss. Brainstem auditory-evoked potentials (BAEP) are an effective method to detect subtle deficits in impulse conduction in the auditory pathway. Abnormalities on diffusion tensor imaging (DTI) have been shown to be associated with perinatal white-matter injury and reduced fractional anisotropy (FA) has been reported in patients with sensorineural hearing loss. To evaluate the possibility of a correlation between BAEP and DTI of the inferior colliculus in preterm infants. DTI at term age and BAEP measurements were performed on all very-low-birth-weight or very preterm study infants (n=56). FA and apparent diffusion coefficient (ADC) of the inferior colliculus were measured from the DTI. Shorter BAEP wave I, III, and V latencies and I-III and I-V intervals and higher wave V amplitude correlated with higher FA of the inferior colliculus. The association between the DTI findings of the inferior colliculus and BAEP responses suggests that DTI can be used to assess the integrity of the auditory pathway in preterm infants.
Moncho, Dulce; Poca, Maria-Antonia; Minoves, Teresa; Ferré, Alejandro; Rahnama, Kimia; Sahuquillo, Juan
2015-04-01
The aim of this study was to describe the abnormalities found in the recordings of evoked potentials (EPs), in particular those of brainstem auditory evoked potentials and somatosensory evoked potentials, in a homogeneous series of patients with Chiari type 1 malformation (CM-1) and study their relationship with clinical symptoms and malformation severity. CM-1 is characterized by cerebellar tonsils that descend below the foramen magnum and may be associated with EP alterations. However, only a small number of authors have described these tests in CM-1, and the patient groups studied to date have been small and heterogeneous. The clinical findings, neuroimages, and EP findings were retrospectively studied in a cohort of 50 patients with CM-1. Seventy percent of patients had EP abnormalities (brainstem auditory evoked potential: 52%, posterior tibial nerve somatosensory evoked potential: 42%, and median nerve somatosensory evoked potential: 34%). The most frequent alteration was an increased central conduction time. Morphometric measurements differed between the normal and pathological groups, although no statistical significance was found when comparing these groups. A high percentage of patients with CM-1 show EP alterations regardless of their clinical or radiological findings, thus highlighting the necessity of performing these tests, especially in patients with few or no symptoms.
Combined evoked potentials in co-occuring attention deficit hyperactivity disorder and epilepsy.
Major, Zoltán Zsigmond
2011-07-30
Evoked potentials, both stimulus related and event related, show disturbances in attention deficit-hyperactivity disorder and epilepsies, too. This study was designed to evaluate if these potentials are characteristically influenced by the presence of the two diseases, individually, and in the case of co-occurrence. Forty children were included, and four groups were formed, control group, ADHD group, epilepsy group and a group with the comorbidity of epilepsy and ADHD. Epilepsy patients were under proper antiepileptic treatment; ADHD patients were free of specific therapy. Brainstem auditory evoked potentials, visual evoked potentials and auditory P300 evaluation were performed. The latency of the P100 and N135 visual evoked potential components was significantly extended by the presence of epilepsy. If ADHD was concomitantly present, this effect was attenuated. Brainstem auditory evoked potential components were prolonged in the presence of the comorbidity, considering the waves elicited in the brainstem. P300 latencies were prolonged by the presence of co-occurring ADHD and epilepsy. Feedback parameters showed overall reduction of the tested cognitive performances in the ADHD group. Disturbances produced by the presence of ADHD-epilepsy comorbidity reveal hypothetically a linked physiopathological path for both diseases, and offers an approach with possible diagnostic importance, combined evoked potential recordings.
The protective effect of olfactory ensheathing cells on post-injury spiral ganglion cells.
Dai, Qi; Zhang, Zhicun; Liu, Quan; Yu, Hongmeng
2016-11-01
Transplantation of OECs into the cochlea may protect and increase the survival of SGCs. To investigate the protective effect of the transplantation of olfactory ensheathing cells (OECs) on injured spiral ganglion cells (SGCs) in rats. OECs were transplanted into the cochlea in rats with SGCs that were injured by kanamycin sulfate (KM). An equal volume of D-Hanks was injected into the cochlea of control rats. Auditory brainstem responses (ABRs) were recorded from the rats in both groups to monitor changes in hearing thresholds. Immunofluorescence was employed to examine the density and morphology of SGCs to assess the ototoxic condition of the cochlea. There was no significant difference in the ABR threshold at each frequency between the control and experimental groups. Notably, in the experimental group, a number of Hoechst 3334-labeled nuclei were detected from the apex to the basal turn of the cochlea, demonstrating that the OECs were successfully transplanted and survived in the cochlea. In the experimental group, most of the SGCs were tightly arranged, and the nuclear membrane, chromatin, and nucleolus were all clear. The SGCs in the control group were loosely arranged, and only a few normal SGCs were observed in this group.
McCulloch, Paul F.; Warren, Erik A.; DiNovo, Karyn M.
2016-01-01
This research was designed to investigate the role of the anterior ethmoidal nerve (AEN) during repetitive trained diving in rats, with specific attention to activation of afferent and efferent brainstem nuclei that are part of this reflexive response. The AEN innervates the nose and nasal passages and is thought to be an important component of the afferent limb of the diving response. Male Sprague-Dawley rats (N = 24) were trained to swim and dive through a 5 m underwater maze. Some rats (N = 12) had bilateral sectioning of the AEN, others a Sham surgery (N = 12). Twelve rats (6 AEN cut and 6 Sham) had 24 post-surgical dive trials over 2 h to activate brainstem neurons to produce Fos, a neuronal activation marker. Remaining rats were non-diving controls. Diving animals had significantly more Fos-positive neurons than non-diving animals in the caudal pressor area, ventral medullary dorsal horn, ventral paratrigeminal nucleus, nucleus tractus solitarius, rostral ventrolateral medulla, Raphe nuclei, A5, Locus Coeruleus, and Kölliker-Fuse area. There were no significant differences in brainstem Fos labeling in rats diving with and without intact AENs. Thus, the AENs are not required for initiation of the diving response. Other nerve(s) that innervate the nose and nasal passages, and/or suprabulbar activation of brainstem neurons, may be responsible for the pattern of neuronal activation observed during repetitive trained diving in rats. These results help define the central neuronal circuitry of the mammalian diving response. PMID:27148082
Garcia-Rill, Edgar; Simon, Christen; Smith, Kristen; Kezunovic, Nebosja; Hyde, James
2011-10-01
One element of the reticular activating system (RAS) is the pedunculopontine nucleus (PPN), which projects to the thalamus to trigger thalamocortical rhythms and the brainstem to modulate muscle tone and locomotion. The PPN is a posterior midbrain site known to induce locomotion in decerebrate animals when activated at 40-60 Hz, and has become a target for DBS in disorders involving gait deficits. We developed a research program using brainstem slices containing the PPN to study the cellular and molecular organization of this region. We showed that PPN neurons preferentially fire at gamma band frequency (30-60 Hz) when maximally activated, accounting for the effects of electrical stimulation. In addition, we developed the P13 midlatency auditory evoked potential, which is generated by PPN outputs, in freely moving rats. This allows the study of PPN cellular and molecular mechanisms in the whole animal. We also study the P50 midlatency auditory evoked potential, which is the human equivalent of the rodent P13 potential, allowing us to study PPN-related processes detected in vitro, confirmed in the whole animal, and tested in humans. Previous findings on the P50 potential in PD suggest that PPN output in this disorder is overactive. This translational research program led to the discovery of a novel mechanism of sleep-wake control based on electrical coupling, pointing the way to a number of new clinical applications in the development of novel stimulants (e.g., modafinil) and anesthetics. In addition, it provides methods for monitoring therapeutic efficacy of DBS in humans and animal models.
The pedunculopontine tegmental nucleus: from basic neuroscience to neurosurgical applications
Simon, Christen; Smith, Kristen; Kezunovic, Nebosja; Hyde, James
2011-01-01
One element of the reticular activating system (RAS) is the pedunculopontine nucleus (PPN), which projects to the thalamus to trigger thalamocortical rhythms and the brainstem to modulate muscle tone and locomotion. The PPN is a posterior midbrain site known to induce locomotion in decerebrate animals when activated at 40–60 Hz, and has become a target for DBS in disorders involving gait deficits. We developed a research program using brainstem slices containing the PPN to study the cellular and molecular organization of this region. We showed that PPN neurons preferentially fire at gamma band frequency (30–60 Hz) when maximally activated, accounting for the effects of electrical stimulation. In addition, we developed the P13 midlatency auditory evoked potential, which is generated by PPN outputs, in freely moving rats. This allows the study of PPN cellular and molecular mechanisms in the whole animal. We also study the P50 midlatency auditory evoked potential, which is the human equivalent of the rodent P13 potential, allowing us to study PPN-related processes detected in vitro, confirmed in the whole animal, and tested in humans. Previous findings on the P50 potential in PD suggest that PPN output in this disorder is overactive. This translational research program led to the discovery of a novel mechanism of sleep–wake control based on electrical coupling, pointing the way to a number of new clinical applications in the development of novel stimulants (e.g., modafinil) and anesthetics. In addition, it provides methods for monitoring therapeutic efficacy of DBS in humans and animal models. PMID:20936418
Brainstem auditory evoked potentials in children with lead exposure.
Alvarenga, Katia de Freitas; Morata, Thais Catalani; Lopes, Andrea Cintra; Feniman, Mariza Ribeiro; Corteletti, Lilian Cassia Bornia Jacob
2015-01-01
Earlier studies have demonstrated an auditory effect of lead exposure in children, but information on the effects of low chronic exposures needs to be further elucidated. To investigate the effect of low chronic exposures of the auditory system in children with a history of low blood lead levels, using an auditory electrophysiological test. Contemporary cross-sectional cohort. Study participants underwent tympanometry, pure tone and speech audiometry, transient evoked otoacoustic emissions, and brainstem auditory evoked potentials, with blood lead monitoring over a period of 35.5 months. The study included 130 children, with ages ranging from 18 months to 14 years, 5 months (mean age 6 years, 8 months ± 3 years, 2 months). The mean time-integrated cumulative blood lead index was 12 μg/dL (SD ± 5.7, range: 2.433). All participants had hearing thresholds equal to or below 20 dBHL and normal amplitudes of transient evoked otoacoustic emissions. No association was found between the absolute latencies of waves I, III, and V, the interpeak latencies I-III, III-V, and I-V, and the cumulative lead values. No evidence of toxic effects from chronic low lead exposures was observed on the auditory function of children living in a lead contaminated area. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Pasman, J W; Rotteveel, J J; de Graaf, R; Stegeman, D F; Visco, Y M
1992-12-01
Recent studies on the maturation of auditory brainstem evoked responses (ABRs) present conflicting results, whereas only sparse reports exist with respect to the maturation of middle latency auditory evoked responses (MLRs) and auditory cortical evoked responses (ACRs). The present study reports the effect of preterm birth on the maturation of auditory evoked responses in low risk preterm infants (27-34 weeks conceptional age). The ABRs indicate a consistent trend towards longer latencies for all individual ABR components and towards longer interpeak latencies in preterm infants. The MLR shows longer latencies for early component P0 in preterm infants. The ACRs show a remarkable difference between preterm and term infants. At 40 weeks CA the latencies of ACR components Na and P2 are significantly longer in term infants, whereas at 52 weeks CA the latencies of the same ACR components are shorter in term infants. The results support the hypothesis that retarded myelination of the central auditory pathway is partially responsible for differences found between preterm infants and term infants with respect to late ABR components and early MLR component P0. Furthermore, mild conductive hearing loss in preterm infants may also play its role. A more complex mechanism is implicated to account for the findings noted with respect to MLR component Na and ACR components Na and P2.
Auditory Brainstem Responses in Young Males with Fragile X Syndrome
ERIC Educational Resources Information Center
Roberts, Joanne; Hennon, Elizabeth A.; Anderson, Kathleen; Roush, Jackson; Gravel, Judith; Skinner, Martie; Misenheimer, Jan; Reitz, Patricia
2005-01-01
Fragile X syndrome (FXS) is the most common inherited cause of mental retardation resulting in developmental delays in males. Atypical outer ear morphology is characteristic of FXS and may serve as a marker for abnormal auditory function. Despite this abnormality, studies of the hearing of young males with FXS are generally lacking. A few studies…
Effects of maternal inhalation of gasoline evaporative ...
In order to assess potential health effects resulting from exposure to ethanol-gasoline blend vapors, we previously conducted neurophysiological assessment of sensory function following gestational exposure to 100% ethanol vapor (Herr et al., Toxicologist, 2012). For comparison purposes, the current study investigated the same measures after gestational exposure to 100% gasoline evaporative condensates (GVC). Pregnant Long-Evans rats were exposed to 0, 3K, 6K, or 9K ppm GVC vapors for 6.5 h/day over GD9 – GD20. Sensory evaluations of male offspring began around PND106. Peripheral nerve function (compound action potentials, NCV), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual evoked responses were assessed. Visual function assessment included pattern elicited visual evoked potentials (VEP), VEP contrast sensitivity, and electroretinograms (ERG) recorded from dark-adapted (scotopic) and light-adapted (photopic) flashes, and UV and green flicker. Although some minor statistical differences were indicated for auditory and somatosensory responses, these changes were not consistently dose- or stimulus intensity-related. Scotopic ERGs had a statistically significant dose-related decrease in the b-wave implicit time. All other parameters of ERGs and VEPs were unaffected by treatment. All physiological responses showed changes related to stimulus intensity, and provided an estimate of detectable le
Sleifer, Pricila; Didoné, Dayane Domeneghini; Keppeler, Ísis Bicca; Bueno, Claudine Devicari; Riesgo, Rudimar dos Santos
2017-01-01
Introduction The tone-evoked auditory brainstem responses (tone-ABR) enable the differential diagnosis in the evaluation of children until 12 months of age, including those with external and/or middle ear malformations. The use of auditory stimuli with frequency specificity by air and bone conduction allows characterization of hearing profile. Objective The objective of our study was to compare the results obtained in tone-ABR by air and bone conduction in children until 12 months, with agenesis of the external auditory canal. Method The study was cross-sectional, observational, individual, and contemporary. We conducted the research with tone-ABR by air and bone conduction in the frequencies of 500 Hz and 2000 Hz in 32 children, 23 boys, from one to 12 months old, with agenesis of the external auditory canal. Results The tone-ABR thresholds were significantly elevated for air conduction in the frequencies of 500 Hz and 2000 Hz, while the thresholds of bone conduction had normal values in both ears. We found no statistically significant difference between genders and ears for most of the comparisons. Conclusion The thresholds obtained by bone conduction did not alter the thresholds in children with conductive hearing loss. However, the conductive hearing loss alter all thresholds by air conduction. The tone-ABR by bone conduction is an important tool for assessing cochlear integrity in children with agenesis of the external auditory canal under 12 months. PMID:29018492
Audiological and electrophysiological assessment of professional pop/rock musicians.
Samelli, Alessandra G; Matas, Carla G; Carvallo, Renata M M; Gomes, Raquel F; de Beija, Carolina S; Magliaro, Fernanda C L; Rabelo, Camila M
2012-01-01
In the present study, we evaluated peripheral and central auditory pathways in professional musicians (with and without hearing loss) compared to non-musicians. The goal was to verify if music exposure could affect auditory pathways as a whole. This is a prospective study that compared the results obtained between three groups (musicians with and without hearing loss and non-musicians). Thirty-two male individuals participated and they were assessed by: Immittance measurements, pure-tone air conduction thresholds at all frequencies from 0.25 to 20 kHz, Transient Evoked Otoacoustic Emissions, Auditory Brainstem Response (ABR), and Cognitive Potential. The musicians showed worse hearing thresholds in both conventional and high frequency audiometry when compared to the non-musicians; the mean amplitude of Transient Evoked Otoacoustic Emissions was smaller in the musicians group, but the mean latencies of Auditory Brainstem Response and Cognitive Potential were diminished in the musicians when compared to the non-musicians. Our findings suggest that the population of musicians is at risk for developing music-induced hearing loss. However, the electrophysiological evaluation showed that latency waves of ABR and P300 were diminished in musicians, which may suggest that the auditory training to which these musicians are exposed acts as a facilitator of the acoustic signal transmission to the cortex.
Auditory evoked functions in ground crew working in high noise environment of Mumbai airport.
Thakur, L; Anand, J P; Banerjee, P K
2004-10-01
The continuous exposure to the relatively high level of noise in the surroundings of an airport is likely to affect the central pathway of the auditory system as well as the cognitive functions of the people working in that environment. The Brainstem Auditory Evoked Responses (BAER), Mid Latency Response (MLR) and P300 response of the ground crew employees working in Mumbai airport were studied to evaluate the effects of continuous exposure to high level of noise of the surroundings of the airport on these responses. BAER, P300 and MLR were recorded by using a Nicolet Compact-4 (USA) instrument. Audiometry was also monitored with the help of GSI-16 Audiometer. There was a significant increase in the peak III latency of the BAER in the subjects exposed to noise compared to controls with no change in their P300 values. The exposed group showed hearing loss at different frequencies. The exposure to the high level of noise caused a considerable decline in the auditory conduction upto the level of the brainstem with no significant change in conduction in the midbrain, subcortical areas, auditory cortex and associated areas. There was also no significant change in cognitive function as measured by P300 response.
Ear asymmetries in middle-ear, cochlear, and brainstem responses in human infants
Keefe, Douglas H.; Gorga, Michael P.; Jesteadt, Walt; Smith, Lynette M.
2008-01-01
In 2004, Sininger and Cone-Wesson examined asymmetries in the signal-to-noise ratio (SNR) of otoacoustic emissions (OAE) in infants, reporting that distortion-product (DP)OAE SNR was larger in the left ear, whereas transient-evoked (TE)OAE SNR was larger in the right. They proposed that cochlear and brainstem asymmetries facilitate development of brain-hemispheric specialization for sound processing. Similarly, in 2006 Sininger and Cone-Wesson described ear asymmetries mainly favoring the right ear in infant auditory brainstem responses (ABRs). The present study analyzed 2640 infant responses to further explore these effects. Ear differences in OAE SNR, signal, and noise were evaluated separately and across frequencies (1.5, 2, 3, and 4 kHz), and ABR asymmetries were compared with cochlear asymmetries. Analyses of ear-canal reflectance and admittance showed that asymmetries in middle-ear functioning did not explain cochlear and brainstem asymmetries. Current results are consistent with earlier studies showing right-ear dominance for TEOAE and ABR. Noise levels were higher in the right ear for OAEs and ABRs, causing ear asymmetries in SNR to differ from those in signal level. No left-ear dominance for DPOAE signal was observed. These results do not support a theory that ear asymmetries in cochlear processing mimic hemispheric brain specialization for auditory processing. PMID:18345839
Impact of monaural frequency compression on binaural fusion at the brainstem level.
Klauke, Isabelle; Kohl, Manuel C; Hannemann, Ronny; Kornagel, Ulrich; Strauss, Daniel J; Corona-Strauss, Farah I
2015-08-01
A classical objective measure for binaural fusion at the brainstem level is the so-called β-wave of the binaural interaction component (BIC) in the auditory brainstem response (ABR). However, in some cases it appeared that a reliable detection of this component still remains a challenge. In this study, we investigate the wavelet phase synchronization stability (WPSS) of ABR data for the analysis of binaural fusion and compare it to the BIC. In particular, we examine the impact of monaural nonlinear frequency compression on binaural fusion. As the auditory system is tonotopically organized, an interaural frequency mismatch caused by monaural frequency compression could negatively effect binaural fusion. In this study, only few subjects showed a detectable β-wave and in most cases only for low ITDs. However, we present a novel objective measure for binaural fusion that outperforms the current state-of-the-art technique (BIC): the WPSS analysis showed a significant difference between the phase stability of the sum of the monaurally evoked responses and the phase stability of the binaurally evoked ABR. This difference could be an indicator for binaural fusion in the brainstem. Furthermore, we observed that monaural frequency compression could indeed effect binaural fusion, as the WPSS results for this condition vary strongly from the results obtained without frequency compression.
Thirumala, Parthasarathy D; Krishnaiah, Balaji; Habeych, Miguel E; Balzer, Jeffrey R; Crammond, Donald J
2015-04-01
The primary aim of this paper is to study the pre-operative characteristics, intra-operative changes and post-operative hearing outcomes in patients after complete loss of wave V of the brainstem auditory evoked potential. We retrospectively analyzed the brainstem auditory evoked potential data of 94 patients who underwent microvascular decompression for hemifacial spasm at our institute. Patients were divided into two groups - those with and those without loss of wave V. The differences between the two groups and outcomes were assessed using t-test and chi-squared tests. In our study 23 (24%) patients out of 94 had a complete loss of wave V, with 11 (48%) patients experiencing transient loss and 12 (52%) patients experiencing permanent loss. The incidence of hearing loss in patients with no loss of wave V was 5.7% and 26% in patients who did experience wave V loss. The incidence of hearing change in patients with no loss of wave V was 12.6% and 30.43% in patients who did experience wave V loss. Loss of wave V during the procedure or at the end of procedure significantly increases the odds of hearing loss. Hearing change is a significant under-reported clinical condition after microvascular decompression in patients who have loss of wave V. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wirsching, Andreas; Müller-Felber, Wolfgang; Schoser, Benedikt
2014-08-01
Pompe disease is a multisystem autosomal recessive glycogen storage disease. Autoptic findings in patients with classic infantile and late-onset Pompe disease have proven that accumulation of glycogen can also be found in the peripheral and central nervous system. To assess the functional role of these pathologic findings, multimodal sensory evoked potentials were analyzed. Serial recordings for brainstem auditory, visual, and somatosensory evoked potentials of 11 late-onset Pompe patients were reviewed. Data at the onset of the enzyme replacement therapy with alglucosidase alfa were compared with follow-up recordings at 12 and 24 months. Brainstem auditory evoked potentials showed a delayed peak I in 1/10 patients and an increased I-III and I-V interpeak latency in 1/10 patients, respectively. The III-V interpeak latencies were in the normal range. Visual evoked potentials were completely normal. Median somatosensory evoked potentials showed an extended interpeak latency in 3/9 patients. Wilcoxon tests comparing age-matched subgroups found significant differences in brainstem auditory evoked potentials and visual evoked potentials. We found that the majority of recordings for evoked potentials were within the ranges for standard values, therefore reflecting the lack of clinically relevant central nervous system involvement. Regular surveillance by means of evoked potentials does not seem to be appropriate in late-onset Pompe patients.
Short GSM mobile phone exposure does not alter human auditory brainstem response.
Stefanics, Gábor; Kellényi, Lóránd; Molnár, Ferenc; Kubinyi, Györgyi; Thuróczy, György; Hernádi, István
2007-11-12
There are about 1.6 billion GSM cellular phones in use throughout the world today. Numerous papers have reported various biological effects in humans exposed to electromagnetic fields emitted by mobile phones. The aim of the present study was to advance our understanding of potential adverse effects of the GSM mobile phones on the human hearing system. Auditory Brainstem Response (ABR) was recorded with three non-polarizing Ag-AgCl scalp electrodes in thirty young and healthy volunteers (age 18-26 years) with normal hearing. ABR data were collected before, and immediately after a 10 minute exposure to 900 MHz pulsed electromagnetic field (EMF) emitted by a commercial Nokia 6310 mobile phone. Fifteen subjects were exposed to genuine EMF and fifteen to sham EMF in a double blind and counterbalanced order. Possible effects of irradiation was analyzed by comparing the latency of ABR waves I, III and V before and after genuine/sham EMF exposure. Paired sample t-test was conducted for statistical analysis. Results revealed no significant differences in the latency of ABR waves I, III and V before and after 10 minutes of genuine/sham EMF exposure. The present results suggest that, in our experimental conditions, a single 10 minute exposure of 900 MHz EMF emitted by a commercial mobile phone does not produce measurable immediate effects in the latency of auditory brainstem waves I, III and V.
Auditory Brainstem Circuits That Mediate the Middle Ear Muscle Reflex
Mukerji, Sudeep; Windsor, Alanna Marie; Lee, Daniel J.
2010-01-01
The middle ear muscle (MEM) reflex is one of two major descending systems to the auditory periphery. There are two middle ear muscles (MEMs): the stapedius and the tensor tympani. In man, the stapedius contracts in response to intense low frequency acoustic stimuli, exerting forces perpendicular to the stapes superstructure, increasing middle ear impedance and attenuating the intensity of sound energy reaching the inner ear (cochlea). The tensor tympani is believed to contract in response to self-generated noise (chewing, swallowing) and nonauditory stimuli. The MEM reflex pathways begin with sound presented to the ear. Transduction of sound occurs in the cochlea, resulting in an action potential that is transmitted along the auditory nerve to the cochlear nucleus in the brainstem (the first relay station for all ascending sound information originating in the ear). Unknown interneurons in the ventral cochlear nucleus project either directly or indirectly to MEM motoneurons located elsewhere in the brainstem. Motoneurons provide efferent innervation to the MEMs. Although the ascending and descending limbs of these reflex pathways have been well characterized, the identity of the reflex interneurons is not known, as are the source of modulatory inputs to these pathways. The aim of this article is to (a) provide an overview of MEM reflex anatomy and physiology, (b) present new data on MEM reflex anatomy and physiology from our laboratory and others, and (c) describe the clinical implications of our research. PMID:20870664
Källstrand, Johan; Olsson, Olle; Nehlstedt, Sara Fristedt; Sköld, Mia Ling; Nielzén, Sören
2010-01-01
Abnormal auditory information processing has been reported in individuals with autism spectrum disorders (ASD). In the present study auditory processing was investigated by recording auditory brainstem responses (ABRs) elicited by forward masking in adults diagnosed with Asperger syndrome (AS). Sixteen AS subjects were included in the forward masking experiment and compared to three control groups consisting of healthy individuals (n = 16), schizophrenic patients (n = 16) and attention deficit hyperactivity disorder patients (n = 16), respectively, of matching age and gender. The results showed that the AS subjects exhibited abnormally low activity in the early part of their ABRs that distinctly separated them from the three control groups. Specifically, wave III amplitudes were significantly lower in the AS group than for all the control groups in the forward masking condition (P < 0.005), which was not the case in the baseline condition. Thus, electrophysiological measurements of ABRs to complex sound stimuli (eg, forward masking) may lead to a better understanding of the underlying neurophysiology of AS. Future studies may further point to specific ABR characteristics in AS individuals that separate them from individuals diagnosed with other neurodevelopmental diseases. PMID:20628629
Herr, David W; Freeborn, Danielle L; Degn, Laura; Martin, Sheppard A; Ortenzio, Jayna; Pantlin, Lara; Hamm, Charles W; Boyes, William K
2016-01-01
The use of gasolines blended with a range of ethanol concentrations may result in inhalation of vapors containing a variable combination of ethanol with other volatile gasoline constituents. The possibility of exposure and potential interactions between vapor constituents suggests the need to evaluate the possible risks of this complex mixture. Previously we evaluated the effects of developmental exposure to ethanol vapors on neurophysiological measures of sensory function as a component of a larger project evaluating developmental ethanol toxicity. Here we report an evaluation using the same battery of sensory function testing in offspring of pregnant dams exposed during gestation to condensed vapors of gasoline (E0), gasoline blended with 15% ethanol (E15) or gasoline blended with 85% ethanol (E85). Pregnant Long-Evans rats were exposed to target concentrations 0, 3000, 6000, or 9000 ppm total hydrocarbon vapors for 6.5h/day over GD9 - GD20. Sensory evaluations of male offspring began as adults. The electrophysiological testing battery included tests of: peripheral nerve (compound action potentials, nerve conduction velocity [NCV]), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual functions. Visual function assessment included pattern elicited visual evoked potentials (VEP), VEP contrast sensitivity, dark-adapted (scotopic) electroretinograms (ERGs), light-adapted (photopic) ERGs, and green flicker ERGs. The results included sporadic statistically significant effects, but the observations were not consistently concentration-related and appeared to be statistical Type 1 errors related to multiple dependent measures evaluated. The exposure concentrations were much higher than can be reasonably expected from typical exposures to the general population during refueling or other common exposure situations. Overall the results indicate that gestational exposure of male rats to ethanol/gasoline vapor combinations did not cause detectable changes in peripheral nerve, somatosensory, auditory, or visual function when the offspring were assessed as adults. Published by Elsevier Inc.
Phase stability analysis of chirp evoked auditory brainstem responses by Gabor frame operators.
Corona-Strauss, Farah I; Delb, Wolfgang; Schick, Bernhard; Strauss, Daniel J
2009-12-01
We have recently shown that click evoked auditory brainstem responses (ABRs) can be efficiently processed using a novelty detection paradigm. Here, ABRs as a large-scale reflection of a stimulus locked neuronal group synchronization at the brainstem level are detected as novel instance-novel as compared to the spontaneous activity which does not exhibit a regular stimulus locked synchronization. In this paper we propose for the first time Gabor frame operators as an efficient feature extraction technique for ABR single sweep sequences that is in line with this paradigm. In particular, we use this decomposition technique to derive the Gabor frame phase stability (GFPS) of sweep sequences of click and chirp evoked ABRs. We show that the GFPS of chirp evoked ABRs provides a stable discrimination of the spontaneous activity from stimulations above the hearing threshold with a small number of sweeps, even at low stimulation intensities. It is concluded that the GFPS analysis represents a robust feature extraction method for ABR single sweep sequences. Further studies are necessary to evaluate the value of the presented approach for clinical applications.
Liu, Xinqin; Zheng, Gang; Wu, Yongxiang; Shen, Xuefeng; Jing, Jinfei; Yu, Tao; Song, Han; Chen, Jingyuan; Luo, Wenjing
2013-12-01
This study was designed to investigate the impact of lead (Pb(2+)) on the auditory system and its molecular mechanisms. Pb(AC)2 was administrated to male SD rats aged 21-22 d for 8 weeks at a dose of 300ppm. Male guinea pigs were also administrated with 50mg/kg Pb(AC)2 two times a week for 8 weeks. The auditory nerve-brainstem evoked responses (ABR) was recorded and the morphological changes of the outer hair cells (OHCs) were observed with Phallodin-FITC staining. In addition, the integrity of the blood-labyrinth barrier was observed by TEM and the expression of tight junction proteins (TJPs) in the cochlear stria vascularis was determined by immunofluorescence. Our results showed that Pb(2+) exposure resulted in increased ABR threshold in both rats and guinea pigs. Abnormal shapes and loss of OHCs were found in the cochlear basilar membrane following the Pb(2+) exposure. TEM study showed that the tight junctions between the endothelial cells and the border cells were lost and disrupted. Down-regulation of the occludin, ZO-1 and claudin-5 in the stria vascularis suggested that the increased permeability of the blood-labyrinth barrier may attribute to the Pb(2+)-induced decrease of TJPs' expression. Additionally, Fe(2+) supplement partly reversed the Pb(2+)-induced hearing loss and down-regulation of TJPs. Taken together, these data indicate that the disruption of blood-labyrinth barrier by down-regulating the expression of TJPs plays a role in the Pb(2+)-induced hearing loss, and Fe(2+) supplement protects the auditory system against Pb(2+)-induced toxicity and may have significant clinical implications. Copyright © 2013 Elsevier Inc. All rights reserved.
Brainstem auditory evoked responses in man. 1: Effect of stimulus rise-fall time and duration
NASA Technical Reports Server (NTRS)
Hecox, K.; Squires, N.; Galambos, R.
1975-01-01
Short latency (under 10 msec) evoked responses elicited by bursts of white noise were recorded from the scalp of human subjects. Response alterations produced by changes in the noise burst duration (on-time) inter-burst interval (off-time), and onset and offset shapes are reported and evaluated. The latency of the most prominent response component, wave V, was markedly delayed with increases in stimulus rise-time but was unaffected by changes in fall-time. The amplitude of wave V was insensitive to changes in signal rise-and-fall times, while increasing signal on-time produced smaller amplitude responses only for sufficiently short off-times. It is concluded that wave V of the human auditory brainstem evoked response is solely an onset response.
Keohane, Bernie M; Mason, Steve M; Baguley, David M
2004-02-01
A novel auditory brainstem response (ABR) detection and scoring algorithm, entitled the Vector algorithm is described. An independent clinical evaluation of the algorithm using 464 tests (120 non-stimulated and 344 stimulated tests) on 60 infants, with a mean age of approximately 6.5 weeks, estimated test sensitivity greater than 0.99 and test specificity at 0.87 for one test. Specificity was estimated to be greater than 0.95 for a two stage screen. Test times were of the order of 1.5 minutes per ear for detection of an ABR and 4.5 minutes per ear in the absence of a clear response. The Vector algorithm is commercially available for both automated screening and threshold estimation in hearing screening devices.
Mehraei, Golbarg; Gallardo, Andreu Paredes; Shinn-Cunningham, Barbara G.; Dau, Torsten
2017-01-01
In rodent models, acoustic exposure too modest to elevate hearing thresholds can nonetheless cause auditory nerve fiber deafferentation, interfering with the coding of supra-threshold sound. Low-spontaneous rate nerve fibers, important for encoding acoustic information at supra-threshold levels and in noise, are more susceptible to degeneration than high-spontaneous rate fibers. The change in auditory brainstem response (ABR) wave-V latency with noise level has been shown to be associated with auditory nerve deafferentation. Here, we measured ABR in a forward masking paradigm and evaluated wave-V latency changes with increasing masker-to-probe intervals. In the same listeners, behavioral forward masking detection thresholds were measured. We hypothesized that 1) auditory nerve fiber deafferentation increases forward masking thresholds and increases wave-V latency and 2) a preferential loss of low-SR fibers results in a faster recovery of wave-V latency as the slow contribution of these fibers is reduced. Results showed that in young audiometrically normal listeners, a larger change in wave-V latency with increasing masker-to-probe interval was related to a greater effect of a preceding masker behaviorally. Further, the amount of wave-V latency change with masker-to-probe interval was positively correlated with the rate of change in forward masking detection thresholds. Although we cannot rule out central contributions, these findings are consistent with the hypothesis that auditory nerve fiber deafferentation occurs in humans and may predict how well individuals can hear in noisy environments. PMID:28159652
Effects of acute brainstem compression on auditory brainstem response in the guinea pig.
Tu, T Y; Yu, L H; Chiu, J H; Shu, C H; Shiao, A S; Lien, C F
1998-11-01
The purpose of this study was to establish the norm for parameters of auditory brainstem response (ABR) in the guinea pig and to investigate if acute brainstem compression results in significant changes to these parameters. Thirty-six guinea pigs with positive Preyer's reflex were anesthetized. A craniectomy was performed to remove the right occipital bone and the dura mater was opened to expose the brain, cerebellum and cerebellopontine angle (CPA). A small inflatable balloon was placed into the CPA precisely and slowly. ABR was recorded before incision of the skin as a baseline value, after placement and after inflation of the balloon with water at 0.1-ml intervals. Five stable peaks were recorded in 27 experimental animals. When the balloon was inflated with 0.1 ml water, the absolute latency (AL) of peaks IV and V and the interpeak latency (IPL) of peaks III and IV, and IV and V were prolonged. The amplitude ratios (AR) of peaks II, III, IV and V to peak I decreased. Inflation of the balloon with 0.2 ml of water caused further elongation of ALs of peaks IV and V and decreases in each AR. When the balloon volume increased to 0.3 ml, peak V became unrecognizable and peaks III and IV showed significant elongation of AL; peaks I and II did not show significant change in ALs. Further increase of the balloon volume to 0.4 ml resulted in disappearance of peaks III, IV and V; AL of peak II was also elongated. However, the amplitude and AL of peak I remained unchanged. Similar changes were observed in IPLs. This study establishes the norm of parameters of ABR in guinea pigs and demonstrates that acute brainstem compression causes elongation of ALs and IPLs of peaks II, III, IV and V. This suggests that peaks II, III, IV and V come from the brainstem and that peak I is not generated from the brainstem in the guinea pig.
NASA Astrophysics Data System (ADS)
Mozaffarilegha, Marjan; Esteki, Ali; Ahadi, Mohsen; Nazeri, Ahmadreza
The speech-evoked auditory brainstem response (sABR) shows how complex sounds such as speech and music are processed in the auditory system. Speech-ABR could be used to evaluate particular impairments and improvements in auditory processing system. Many researchers used linear approaches for characterizing different components of sABR signal, whereas nonlinear techniques are not applied so commonly. The primary aim of the present study is to examine the underlying dynamics of normal sABR signals. The secondary goal is to evaluate whether some chaotic features exist in this signal. We have presented a methodology for determining various components of sABR signals, by performing Ensemble Empirical Mode Decomposition (EEMD) to get the intrinsic mode functions (IMFs). Then, composite multiscale entropy (CMSE), the largest Lyapunov exponent (LLE) and deterministic nonlinear prediction are computed for each extracted IMF. EEMD decomposes sABR signal into five modes and a residue. The CMSE results of sABR signals obtained from 40 healthy people showed that 1st, and 2nd IMFs were similar to the white noise, IMF-3 with synthetic chaotic time series and 4th, and 5th IMFs with sine waveform. LLE analysis showed positive values for 3rd IMFs. Moreover, 1st, and 2nd IMFs showed overlaps with surrogate data and 3rd, 4th and 5th IMFs showed no overlap with corresponding surrogate data. Results showed the presence of noisy, chaotic and deterministic components in the signal which respectively corresponded to 1st, and 2nd IMFs, IMF-3, and 4th and 5th IMFs. While these findings provide supportive evidence of the chaos conjecture for the 3rd IMF, they do not confirm any such claims. However, they provide a first step towards an understanding of nonlinear behavior of auditory system dynamics in brainstem level.
Nanofibrous scaffolds for the guidance of stem cell-derived neurons for auditory nerve regeneration.
Hackelberg, Sandra; Tuck, Samuel J; He, Long; Rastogi, Arjun; White, Christina; Liu, Liqian; Prieskorn, Diane M; Miller, Ryan J; Chan, Che; Loomis, Benjamin R; Corey, Joseph M; Miller, Josef M; Duncan, R Keith
2017-01-01
Impairment of spiral ganglion neurons (SGNs) of the auditory nerve is a major cause for hearing loss occurring independently or in addition to sensory hair cell damage. Unfortunately, mammalian SGNs lack the potential for autonomous regeneration. Stem cell based therapy is a promising approach for auditory nerve regeneration, but proper integration of exogenous cells into the auditory circuit remains a fundamental challenge. Here, we present novel nanofibrous scaffolds designed to guide the integration of human stem cell-derived neurons in the internal auditory meatus (IAM), the foramen allowing passage of the spiral ganglion to the auditory brainstem. Human embryonic stem cells (hESC) were differentiated into neural precursor cells (NPCs) and seeded onto aligned nanofiber mats. The NPCs terminally differentiated into glutamatergic neurons with high efficiency, and neurite projections aligned with nanofibers in vitro. Scaffolds were assembled by seeding GFP-labeled NPCs on nanofibers integrated in a polymer sheath. Biocompatibility and functionality of the NPC-seeded scaffolds were evaluated in vivo in deafened guinea pigs (Cavia porcellus). To this end, we established an ouabain-based deafening procedure that depleted an average 72% of SGNs from apex to base of the cochleae and caused profound hearing loss. Further, we developed a surgical procedure to implant seeded scaffolds directly into the guinea pig IAM. No evidence of an inflammatory response was observed, but post-surgery tissue repair appeared to be facilitated by infiltrating Schwann cells. While NPC survival was found to be poor, both subjects implanted with NPC-seeded and cell-free control scaffolds showed partial recovery of electrically-evoked auditory brainstem thresholds. Thus, while future studies must address cell survival, nanofibrous scaffolds pose a promising strategy for auditory nerve regeneration.
BAER - brainstem auditory evoked response
... Updated by: Sumana Jothi, MD, specialist in laryngology, Assistant Clinical Professor, UCSF Otolaryngology, NCHCS VA, SFVA, San Francisco, CA. Review provided by VeriMed Healthcare Network. Also reviewed by David Zieve, MD, MHA, ...
Melcher, J R; Knudson, I M; Fullerton, B C; Guinan, J J; Norris, B E; Kiang, N Y
1996-04-01
This paper is the first in a series aimed at identifying the cellular generators of the brainstem auditory evoked potential (BAEP) in cats. The approach involves (1) developing experimental procedures for making small selective lesions and determining the corresponding changes in BAEP waveforms, (2) identifying brainstem regions involved in BAEP generation by examining the effects of lesions on the BAEP and (3) identifying specific cell populations involved by combining the lesion results with electrophysiological and anatomical information from other kinds of studies. We created lesions in the lower brainstem by injecting kainic acid which is generally toxic for neuronal cell bodies but not for axons and terminals. This first paper describes the justifications for using kainic acid, explains the associated problems, and develops a methodology that addresses the main difficulties. The issues and aspects of the specific methods are generally applicable to physiological and anatomical studies using any neurotoxin, as well as to the present BAEP study. The methods chosen involved (1) measuring the BAEP at regular intervals until it reached a post-injection steady state and perfusing the animals with fixative shortly after the last BAEP recordings were made, (2) using objective criteria to distinguish injection-related BAEP changes from unrelated ones, (3) making control injections to identify effects not due to kainic acid toxicity, (4) verifying the anatomical and functional integrity of axons in lesioned regions, and (5) examining injected brainstems microscopically for cell loss and cellular abnormalities indicating dysfunction. This combination of methods enabled us to identify BAEP changes which are clearly correlated with lesion locations.
Block-Dependent Sedation during Epidural Anaesthesia is Associated with Delayed Brainstem Conduction
Wadhwa, Anupama; Shah, Yunus M.; Lin, Chum-Ming; Haugh, Gilbert S.; Sessler, Daniel I.
2005-01-01
Neuraxial anaesthesia produces a sedative and anesthetic-sparing effect. Recent evidence suggests that spinal cord anaesthesia modifies reticulo-thalamo-cortical arousal by decreasing afferent sensory transmission. We hypothesized that epidural anaesthesia produces sensory deafferentation-dependent sedation that is associated with impairment of brainstem transmission. We used brainstem auditory evoked potentials (BAEP) to evaluate reticular function in 11 volunteers. Epidural anaesthesia was induced with 2% 2-chloroprocaine. Hemodynamic and respiratory responses, sensory block level, sedation depth and BAEP were assessed throughout induction and resolution of epidural anaesthesia. Sedation was evaluated using verbal rating score (VRS), observer's assessment alertness/sedation (OAA/S) score, and bispectral index (BIS). Prediction probability (PK) was used to associate sensory block with sedation, as well as BIS with other sedation measures. Spearman rank order correlation was used to associate block level and sedation with the absolute and interpeak BAEP latencies. Sensory block level significantly predicted VRS (PK = 0.747), OAA/S score (PK = 0.748) and BIS. Bispectral index predicted VRS and OAA/S score (PK = 0.728). The latency of wave III of BAEP significantly correlated with sedation level (rho = 0.335, P < 0.01) and sensory block (rho = 0.394, P < 0.01). The other BAEP parameters did not change during epidural anaesthesia. Hemodynamic and respiratory responses remained stable throughout the study. Sedation during epidural anaesthesia depends on sensory block level and is associated with detectable block-dependent alterations in the brainstem auditory evoked responses. Sensory deafferentation may reduce CNS alertness through mechanisms related to brainstem neural activity. PMID:15220178
Erickson, R I; Defensor, E B; Fairchild, D G; Mirsalis, J C; Steinmetz, K L
2011-08-01
The World Health Organization currently recommends combinatorial treatment including artemisinins as first-line therapy against drug-resistant Plasmodium falciparum malaria. Although highly efficacious, artemisinin and its derivatives, including β-arteether (βAE), are associated with ototoxicity, tremors, and other autonomic and motor impairments in the clinic. Similar neurological symptoms, as well as brainstem lesions, have been observed in adult laboratory species (mice, rats, dogs, and non human primates) following acute treatment with βAE; however, few long-term, nonclinical studies have been conducted. Furthermore, the majority of deaths attributed to malarial infection occur in children under age five, yet no laboratory studies have been initiated in neonatal or juvenile animals. In the current study, neonatal 7-day-old rats were administered intramuscular doses of 1-90 mg/kg βAE in sesame oil for up to eight treatment cycles (one cycle=7 days treatment+7 days without treatment). Neonates were tested for changes in sensorimotor function, and the same animals were tested as adults in the Functional Observational Battery, for motor activity, and in the 8-arm radial maze. Pups receiving a single cycle of 60 or 90 mg/kg died within a week of treatment but had few behavioral changes and no brainstem pathology. In the long-term study, behavioral and motor changes and brainstem lesions were observed in a dose- and time-related manner. Rats given repeated cycles of 1 or 5mg/kg βAE showed subtle motor abnormalities (e.g., slight loss of righting reflex) while repeated cycles of 10mg/kg βAE treatment resulted in obvious motor and behavioral changes. Rats receiving 1mg/kg βAE had no brainstem lesions whereas some rats treated with 5mg/kg βAE and all rats treated with 10 mg/kg βAE had brainstem lesions. Brainstem lesions were observed after as few as five cycles and were characterized by gliosis, satellitosis and progressive necrosis in motor neurons of the trapezoid, vestibular, and olivary nuclei. This study shows that repeated treatment with clinically relevant doses of βAE causes motor deficits associated with brainstem damage in rodents and suggests that repeated treatment with βAE in children may elicit neurological damage. Copyright © 2011 Elsevier Inc. All rights reserved.
Effect of erythropoietin on acoustically traumatized rat cochlea: an immunohistochemical study.
Gürgen, Oğuzhan; Gürgen, Seren Gülşen; Kirkim, Günay; Kolatan, Efsun; Gürkan, Selhan; Güvenç, Yeşim; Eskiizmir, Görkem
2014-08-01
To investigate the audiological and histopathological effects of erythropoietin on acoustic overstimulation in rats. Twenty-two male Wistar albino rats were divided into 3 groups: sham group (n = 7), erythropoietin injection group (n = 8), and saline injection group (n = 7). Both erythropoietin and saline injection groups were exposed to white noise (100 decibel [dB] sound pressure level [SPL]) for 3 hours. Auditory brainstem responses were measured before, immediately after, and on the 7th day of noise exposure. All animals were sacrificed on the 7th day and temporal bones were collected. The serial sections of the cochleae were stained by caspase-3 and caspase-9 immunostaining and by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method in order to detect apoptotic cells. In the saline group statistically significant differences were detected between the baseline and immediate postacoustic overstimulation thresholds of click and 6 kHz stimuli. However, when the baseline and immediate postacoustic overstimulation thresholds of click and 6 kHz stimuli were compared in the erythropoietin injection group, no statistically significant difference was determined. Histopathologic evaluations demonstrated that erythropoietin decreased the amount of apoptotic cells in the cochlea. Erythropoietin is likely to prevent the acute threshold changes and decrease the amount of apoptosis in cochlea after acoustic overstimulation in rats.
Auditory brainstem response to complex sounds predicts self-reported speech-in-noise performance.
Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina
2013-02-01
To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette, Gudmundsen, Revit, & Banerjee, 2004) and pure-tone hearing thresholds. Participants included 111 middle- to older-age adults (range = 45-78) with audiometric configurations ranging from normal hearing levels to moderate sensorineural hearing loss. In addition to using audiometric testing, the authors also used such evaluation measures as the QuickSIN, the SSQ, and the cABR. Multiple linear regression analysis indicated that the inclusion of brainstem variables in a model with QuickSIN, hearing thresholds, and age accounted for 30% of the variance in the Speech subtest of the SSQ, compared with significantly less variance (19%) when brainstem variables were not included. The authors' results demonstrate the cABR's efficacy for predicting self-reported speech-in-noise perception difficulties. The fact that the cABR predicts more variance in self-reported speech-in-noise (SIN) perception than either the QuickSIN or hearing thresholds indicates that the cABR provides additional insight into an individual's ability to hear in background noise. In addition, the findings underscore the link between the cABR and hearing in noise.
Human auditory evoked potentials. I - Evaluation of components
NASA Technical Reports Server (NTRS)
Picton, T. W.; Hillyard, S. A.; Krausz, H. I.; Galambos, R.
1974-01-01
Fifteen distinct components can be identified in the scalp recorded average evoked potential to an abrupt auditory stimulus. The early components occurring in the first 8 msec after a stimulus represent the activation of the cochlea and the auditory nuclei of the brainstem. The middle latency components occurring between 8 and 50 msec after the stimulus probably represent activation of both auditory thalamus and cortex but can be seriously contaminated by concurrent scalp muscle reflex potentials. The longer latency components occurring between 50 and 300 msec after the stimulus are maximally recorded over fronto-central scalp regions and seem to represent widespread activation of frontal cortex.
Mechanism of auditory hypersensitivity in human autism using autism model rats.
Ida-Eto, Michiru; Hara, Nao; Ohkawara, Takeshi; Narita, Masaaki
2017-04-01
Auditory hypersensitivity is one of the major complications in autism spectrum disorder. The aim of this study was to investigate whether the auditory brain center is affected in autism model rats. Autism model rats were prepared by prenatal exposure to thalidomide on embryonic day 9 and 10 in pregnant rats. The superior olivary complex (SOC), a complex of auditory nuclei, was immunostained with anti-calbindin d28k antibody at postnatal day 50. In autism model rats, SOC immunoreactivity was markedly decreased. Strength of immunostaining of SOC auditory fibers was also weak in autism model rats. Surprisingly, the size of the medial nucleus of trapezoid body, a nucleus exerting inhibitory function in SOC, was significantly decreased in autism model rats. Auditory hypersensitivity may be, in part, due to impairment of inhibitory processing by the auditory brain center. © 2016 Japan Pediatric Society.
Church, Michael W.; Hotra, John W.; Holmes, Pamela A.; Anumba, Jennifer I.; Jackson, Desmond A.; Adams, Brittany R.
2011-01-01
Background Fetal Alcohol Syndrome is a leading cause of neurodevelopmental impairments (NDI) in developed countries. Sensory deficits can play a major role in NDI, yet few studies have investigated the effects of prenatal alcohol exposure on sensory function. In addition, there is a paucity of information on the life-long effects of prenatal alcohol exposure. Thus, we sought to investigate the effects of prenatal alcohol exposure on auditory function across the life span in an animal model. Based on prior findings with prenatal alcohol exposure and other forms of adverse prenatal environments, we hypothesized that animals prenatally exposed to alcohol would show an age-dependent pattern of (A) hearing and neurological abnormalities as post-weanling pups, (B) a substantial dissipation of such abnormalities in young adulthood, and (C) a resurgence of such abnormalities in middle-aged adulthood. Method Pregnant rats were randomly assigned to an untreated control (CON), a pair-fed control (PFC) or an alcohol treated group (ALC). The ALC dams were gavaged with 6 mg/kg alcohol daily from gestation day (GD) 6 to 21. The PFC dams were gavaged daily from GD6-21 with an isocaloric and isovolumetric water-based solution of Maltose-Dextrins and pair-fed to the ALC dams. The CON dams were the untreated group to which the ALC and CON groups were compared. Hearing and neurological functions in the offspring were assessed with the Auditory Brainstem Response (ABR) at the postnatal ages of 22, 220 and 520 days of age. Results & Conclusions In accord with our hypothesis, ABR abnormalities were first observed in the post-weanling pups, largely dissipated in young adulthood, and then resurged in middle-aged adulthood. This age-related pattern suggests that the ALC pups had a developmental delay that dissipated in young adulthood and an enhanced age-related deterioration that occurred in middle-aged adulthood. Such a pattern is consistent with the fetal programming hypothesis of adult-onset diseases (the Barker Hypothesis). Our findings have important clinical implications for the assessment and management of (A) childhood hearing disorders and their co-morbidities (i.e., speech-and-language, learning, and attention deficit disorders) and (B) enhanced age-related hearing and neurological degeneration in middle-aged adulthood that can result from prenatal alcohol exposure. We recommend hearing evaluation be a part of any long-term follow-up for FAS patients and patients exposed to any adverse prenatal environment. PMID:21815896
The auditory enhancement effect is not reflected in the 80-Hz auditory steady-state response.
Carcagno, Samuele; Plack, Christopher J; Portron, Arthur; Semal, Catherine; Demany, Laurent
2014-08-01
The perceptual salience of a target tone presented in a multitone background is increased by the presentation of a precursor sound consisting of the multitone background alone. It has been proposed that this "enhancement" phenomenon results from an effective amplification of the neural response to the target tone. In this study, we tested this hypothesis in humans, by comparing the auditory steady-state response (ASSR) to a target tone that was enhanced by a precursor sound with the ASSR to a target tone that was not enhanced. In order to record neural responses originating in the brainstem, the ASSR was elicited by amplitude modulating the target tone at a frequency close to 80 Hz. The results did not show evidence of an amplified neural response to enhanced tones. In a control condition, we measured the ASSR to a target tone that, instead of being perceptually enhanced by a precursor sound, was acoustically increased in level. This level increase matched the magnitude of enhancement estimated psychophysically with a forward masking paradigm in a previous experimental phase. We found that the ASSR to the tone acoustically increased in level was significantly greater than the ASSR to the tone enhanced by the precursor sound. Overall, our results suggest that the enhancement effect cannot be explained by an amplified neural response at the level of the brainstem. However, an alternative possibility is that brainstem neurons with enhanced responses do not contribute to the scalp-recorded ASSR.
Akhoun, Idrick; Moulin, Annie; Jeanvoine, Arnaud; Ménard, Mikael; Buret, François; Vollaire, Christian; Scorretti, Riccardo; Veuillet, Evelyne; Berger-Vachon, Christian; Collet, Lionel; Thai-Van, Hung
2008-11-15
Speech elicited auditory brainstem responses (Speech ABR) have been shown to be an objective measurement of speech processing in the brainstem. Given the simultaneous stimulation and recording, and the similarities between the recording and the speech stimulus envelope, there is a great risk of artefactual recordings. This study sought to systematically investigate the source of artefactual contamination in Speech ABR response. In a first part, we measured the sound level thresholds over which artefactual responses were obtained, for different types of transducers and experimental setup parameters. A watermelon model was used to model the human head susceptibility to electromagnetic artefact. It was found that impedances between the electrodes had a great effect on electromagnetic susceptibility and that the most prominent artefact is due to the transducer's electromagnetic leakage. The only artefact-free condition was obtained with insert-earphones shielded in a Faraday cage linked to common ground. In a second part of the study, using the previously defined artefact-free condition, we recorded speech ABR in unilateral deaf subjects and bilateral normal hearing subjects. In an additional control condition, Speech ABR was recorded with the insert-earphones used to deliver the stimulation, unplugged from the ears, so that the subjects did not perceive the stimulus. No responses were obtained from the deaf ear of unilaterally hearing impaired subjects, nor in the insert-out-of-the-ear condition in all the subjects, showing that Speech ABR reflects the functioning of the auditory pathways.
A Case of Generalized Auditory Agnosia with Unilateral Subcortical Brain Lesion
Suh, Hyee; Kim, Soo Yeon; Kim, Sook Hee; Chang, Jae Hyeok; Shin, Yong Beom; Ko, Hyun-Yoon
2012-01-01
The mechanisms and functional anatomy underlying the early stages of speech perception are still not well understood. Auditory agnosia is a deficit of auditory object processing defined as a disability to recognize spoken languages and/or nonverbal environmental sounds and music despite adequate hearing while spontaneous speech, reading and writing are preserved. Usually, either the bilateral or unilateral temporal lobe, especially the transverse gyral lesions, are responsible for auditory agnosia. Subcortical lesions without cortical damage rarely causes auditory agnosia. We present a 73-year-old right-handed male with generalized auditory agnosia caused by a unilateral subcortical lesion. He was not able to repeat or dictate but to perform fluent and comprehensible speech. He could understand and read written words and phrases. His auditory brainstem evoked potential and audiometry were intact. This case suggested that the subcortical lesion involving unilateral acoustic radiation could cause generalized auditory agnosia. PMID:23342322
A Stem Cell-Seeded Nanofibrous Scaffold for Auditory Nerve Replacement
2015-10-01
guinea pigs . Initial results show improved electrically-evoked auditory brainstem responses in cell-seeded implants compared to control, cell-free...scaffold’s conduit, but the IAM of the guinea pig and limits imposed by the surgical approach make this difficult. Alternatives are being pursued...transplantation of the seeded nanofibrous scaffold Task 13. Group 1: Pilot deafening. Confirm efficacy of ß-bungarotoxin in guinea pig and time point of
A comparison of auditory brainstem responses across diving bird species
Crowell, Sara E.; Berlin, Alicia; Carr, Catherine E.; Olsen, Glenn H.; Therrien, Ronald E.; Yannuzzi, Sally E.; Ketten, Darlene R.
2015-01-01
There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676–680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.
A comparison of auditory brainstem responses across diving bird species
Crowell, Sara E.; Wells-Berlin, Alicia M.; Carr, Catherine E.; Olsen, Glenn H.; Therrien, Ronald E.; Yannuzzi, Sally E.; Ketten, Darlene R.
2015-01-01
There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al. 1969). We therefore measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e. frequency at the greatest intensity, of all species’ vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range. PMID:26156644
A circuit for detection of interaural time differences in the nucleus laminaris of turtles.
Willis, Katie L; Carr, Catherine E
2017-11-15
The physiological hearing range of turtles is approximately 50-1000 Hz, as determined by cochlear microphonics ( Wever and Vernon, 1956a). These low frequencies can constrain sound localization, particularly in red-eared slider turtles, which are freshwater turtles with small heads and isolated middle ears. To determine if these turtles were sensitive to interaural time differences (ITDs), we investigated the connections and physiology of their auditory brainstem nuclei. Tract tracing experiments showed that cranial nerve VIII bifurcated to terminate in the first-order nucleus magnocellularis (NM) and nucleus angularis (NA), and the NM projected bilaterally to the nucleus laminaris (NL). As the NL received inputs from each side, we developed an isolated head preparation to examine responses to binaural auditory stimulation. Magnocellularis and laminaris units responded to frequencies from 100 to 600 Hz, and phase-locked reliably to the auditory stimulus. Responses from the NL were binaural, and sensitive to ITD. Measures of characteristic delay revealed best ITDs around ±200 μs, and NL neurons typically had characteristic phases close to 0, consistent with binaural excitation. Thus, turtles encode ITDs within their physiological range, and their auditory brainstem nuclei have similar connections and cell types to other reptiles. © 2017. Published by The Company of Biologists Ltd.
Specialization of the auditory processing in harbor porpoise, characterized by brain-stem potentials
NASA Astrophysics Data System (ADS)
Bibikov, Nikolay G.
2002-05-01
Brain-stem auditory evoked potentials (BAEPs) were recorded from the head surface of the three awaked harbor porpoises (Phocoena phocoena). Silver disk placed on the skin surface above the vertex bone was used as an active electrode. The experiments were performed at the Karadag biological station (the Crimea peninsula). Clicks and tone bursts were used as stimuli. The temporal and frequency selectivity of the auditory system was estimated using the methods of simultaneous and forward masking. An evident minimum of the BAEPs thresholds was observed in the range of 125-135 kHz, where the main spectral component of species-specific echolocation signal is located. In this frequency range the tonal forward masking demonstrated a strong frequency selectivity. Off-response to such tone bursts was a typical observation. An evident BAEP could be recorded up to the frequencies 190-200 kHz, however, outside the acoustical fovea the frequency selectivity was rather poor. Temporal resolution was estimated by measuring BAER recovery functions for double clicks, double tone bursts, and double noise bursts. The half-time of BAERs recovery was in the range of 0.1-0.2 ms. The data indicate that the porpoise auditory system is strongly adapted to detect ultrasonic closely spaced sounds like species-specific locating signals and echoes.
Prins, John M; Brooks, Diane M; Thompson, Charles M; Lurie, Diana I
2010-12-01
Lead (Pb) exposure is a risk factor for neurological dysfunction. How Pb produces these behavioral deficits is unknown, but Pb exposure during development is associated with auditory temporal processing deficits in both humans and animals. Pb disrupts cellular energy metabolism and efficient energy production is crucial for auditory neurons to maintain high rates of synaptic activity. The voltage-dependent anion channel (VDAC) is involved in the regulation of mitochondrial physiology and is a critical component in controlling mitochondrial energy production. We have previously demonstrated that VDAC is an in vitro target for Pb, therefore, VDAC may represent a potential target for Pb in the auditory system. In order to determine whether Pb alters VDAC expression in central auditory neurons, CBA/CaJ mice (n=3-5/group) were exposed to 0.01mM, or 0.1mM Pb acetate during development via drinking water. At P21, immunohistochemistry reveals a significant decrease for VDAC in neurons of the Medial Nucleus of the Trapezoid Body. Western blot analysis confirms that Pb results in a significant decrease for VDAC. Decreases in VDAC expression could lead to an upregulation of other cellular energy producing systems as a compensatory mechanism, and a Pb-induced increase in brain type creatine kinase is observed in auditory regions of the brainstem. In addition, comparative proteomic analysis shows that several proteins of the glycolytic pathway, the phosphocreatine circuit, and oxidative phosphorylation are also upregulated in response to developmental Pb exposure. Thus, Pb-induced decreases in VDAC could have a significant effect on the function of auditory neurons. Copyright © 2010 Elsevier Inc. All rights reserved.
Biocompatibility of Liposome Nanocarriers in the Rat Inner Ear After Intratympanic Administration
NASA Astrophysics Data System (ADS)
Zou, Jing; Feng, Hao; Sood, Rohit; Kinnunen, Paavo K. J.; Pyykko, Ilmari
2017-05-01
Liposome nanocarriers (LPNs) are potentially the future of inner ear therapy due to their high drug loading capacity and efficient uptake in the inner ear after a minimally invasive intratympanic administration. However, information on the biocompatibility of LPNs in the inner ear is lacking. The aim of the present study is to document the biocompatibility of LPNs in the inner ear after intratympanic delivery. LPNs with or without gadolinium-tetra-azacyclo-dodecane-tetra-acetic acid (Gd-DOTA) were delivered to the rats through transtympanic injection. The distribution of the Gd-DOTA-containing LPNs in the middle and inner ear was tracked in vivo using MRI. The function of the middle and inner ear barriers was evaluated using gadolinium-enhanced MRI. The auditory function was measured using auditory brainstem response (ABR). The potential inflammatory response was investigated by analyzing glycosaminoglycan and hyaluronic acid secretion and CD44 and TLR2 expression in the inner ear. The potential apoptosis was analyzed using terminal transferase (TdT) to label the free 3'OH breaks in the DNA strands of apoptotic cells with TMR-dUTP (TUNEL staining). As a result, LPNs entered the inner ear efficiently after transtympanic injection. The transtympanic injection of LPNs with or without Gd-DOTA neither disrupted the function of the middle and inner ear barriers nor caused hearing impairment in rats. The critical inflammatory biological markers in the inner ear, including glycosaminoglycan and hyaluronic acid secretion and CD44 and TLR2 expression, were not influenced by the administration of LPNs. There was no significant cell death associated with the administration of LPNs. The transtympanic injection of LPNs is safe for the inner ear, and LPNs may be applied as a drug delivery matrix in the clinical therapy of sensorineural hearing loss.
Short- and long-latency auditory evoked potentials in individuals with vestibular dysfunction.
Santos Filha, Valdete Alves Valentins Dos; Bruckmann, Mirtes; Garcia, Michele Vargas
2018-01-01
Purpose Evaluate the auditory pathway at the brainstem and cortical levels in individuals with peripheral vestibular dysfunction. Methods The study sample was composed 19 individuals aged 20-80 years that presented exam results suggestive of Peripheral Vestibular Disorder (PVD) or Vestibular Dysfunction (VD). Participants underwent evaluation of the auditory pathway through Brainstem Auditory Evoked Potentials (BAEP) (short latency) and P1, N1, P2, N2, and P300 cortical potentials (long latency). Results Nine individuals presented diagnosis of VD and 10 participants were diagnosed with PVD. The overall average of the long latency potentials of the participants was within the normal range, whereas an increased mean was observed in the short latency of waves III and V of the left ear, as well as in the I - III interpeak interval of both ears. Association of the auditory potentials with VD and PVD showed statistically significant correlation only in the III - V interpeak interval of the right ear for short latency. Comparison between the long and short latencies in the groups showed differences between VD and PVD, but without statistical significance. Conclusion No statistically significant correlation was observed between VD/PVD and the auditory evoked potentials; however, for the long latency potentials, individuals with VD presented higher latency in P1, N1, P2, and N2, where as participants with PVD showed higher latency in P300. In the short latency potentials, there was an increase in the absolute latencies in the VD group and in the interpeak intervals in the PVD group.
Brainstem auditory evoked responses in an equine patient population: part I--adult horses.
Aleman, M; Holliday, T A; Nieto, J E; Williams, D C
2014-01-01
Brainstem auditory evoked response has been an underused diagnostic modality in horses as evidenced by few reports on the subject. To describe BAER findings, common clinical signs, and causes of hearing loss in adult horses. Study group, 76 horses; control group, 8 horses. Retrospective. BAER records from the Clinical Neurophysiology Laboratory were reviewed from the years of 1982 to 2013. Peak latencies, amplitudes, and interpeak intervals were measured when visible. Horses were grouped under disease categories. Descriptive statistics and a posthoc Bonferroni test were performed. Fifty-seven of 76 horses had BAER deficits. There was no breed or sex predisposition, with the exception of American Paint horses diagnosed with congenital sensorineural deafness. Eighty-six percent (n = 49/57) of the horses were younger than 16 years of age. The most common causes of BAER abnormalities were temporohyoid osteoarthropathy (THO, n = 20/20; abnormalities/total), congenital sensorineural deafness in Paint horses (17/17), multifocal brain disease (13/16), and otitis media/interna (4/4). Auditory loss was bilateral and unilateral in 74% (n = 42/57) and 26% (n = 15/57) of the horses, respectively. The most common causes of bilateral auditory loss were sensorineural deafness, THO, and multifocal brain disease whereas THO and otitis were the most common causes of unilateral deficits. Auditory deficits should be investigated in horses with altered behavior, THO, multifocal brain disease, otitis, and in horses with certain coat and eye color patterns. BAER testing is an objective and noninvasive diagnostic modality to assess auditory function in horses. Copyright © 2014 by the American College of Veterinary Internal Medicine.
Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation.
Chambers, Anna R; Salazar, Juan J; Polley, Daniel B
2016-01-01
Neurons at higher stages of sensory processing can partially compensate for a sudden drop in peripheral input through a homeostatic plasticity process that increases the gain on weak afferent inputs. Even after a profound unilateral auditory neuropathy where >95% of afferent synapses between auditory nerve fibers and inner hair cells have been eliminated with ouabain, central gain can restore cortical processing and perceptual detection of basic sounds delivered to the denervated ear. In this model of profound auditory neuropathy, auditory cortex (ACtx) processing and perception recover despite the absence of an auditory brainstem response (ABR) or brainstem acoustic reflexes, and only a partial recovery of sound processing at the level of the inferior colliculus (IC), an auditory midbrain nucleus. In this study, we induced a profound cochlear neuropathy with ouabain and asked whether central gain enabled a compensatory plasticity in the auditory thalamus comparable to the full recovery of function previously observed in the ACtx, the partial recovery observed in the IC, or something different entirely. Unilateral ouabain treatment in adult mice effectively eliminated the ABR, yet robust sound-evoked activity persisted in a minority of units recorded from the contralateral medial geniculate body (MGB) of awake mice. Sound driven MGB units could decode moderate and high-intensity sounds with accuracies comparable to sham-treated control mice, but low-intensity classification was near chance. Pure tone receptive fields and synchronization to broadband pulse trains also persisted, albeit with significantly reduced quality and precision, respectively. MGB decoding of temporally modulated pulse trains and speech tokens were both greatly impaired in ouabain-treated mice. Taken together, the absence of an ABR belied a persistent auditory processing at the level of the MGB that was likely enabled through increased central gain. Compensatory plasticity at the level of the auditory thalamus was less robust overall than previous observations in cortex or midbrain. Hierarchical differences in compensatory plasticity following sensorineural hearing loss may reflect differences in GABA circuit organization within the MGB, as compared to the ACtx or IC.
Boyes, William K; Degn, Laura L; Martin, Sheppard A; Lyke, Danielle F; Hamm, Charles W; Herr, David W
2014-01-01
Ethanol-blended gasoline entered the market in response to demand for domestic renewable energy sources, and may result in increased inhalation of ethanol vapors in combination with other volatile gasoline constituents. It is important to understand potential risks of inhalation of ethanol vapors by themselves, and also as a baseline for evaluating the risks of ethanol combined with a complex mixture of hydrocarbon vapors. Because sensory dysfunction has been reported after developmental exposure to ethanol, we evaluated the effects of developmental exposure to ethanol vapors on neurophysiological measures of sensory function as a component of a larger project evaluating developmental ethanol toxicity. Pregnant Long-Evans rats were exposed to target concentrations 0, 5000, 10,000, or 21,000 ppm ethanol vapors for 6.5h/day over GD9-GD20. Sensory evaluations of male offspring began between PND106 and PND128. Peripheral nerve function (compound action potentials, nerve conduction velocity (NCV)), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual evoked responses were assessed. Visual function assessment included pattern elicited visual evoked potentials (VEPs), VEP contrast sensitivity, and electroretinograms recorded from dark-adapted (scotopic), light-adapted (photopic) flashes, and UV flicker and green flicker. No consistent concentration-related changes were observed for any of the physiological measures. The results show that gestational exposure to ethanol vapor did not result in detectable changes in peripheral nerve, somatosensory, auditory, or visual function when the offspring were assessed as adults. Published by Elsevier Inc.
Corona-Strauss, Farah I; Delb, Wolfgang; Bloching, Marc; Strauss, Daniel J
2008-01-01
We have recently shown that click evoked auditory brainstem responses (ABRs) single sweeps can efficiently be processed by a hybrid novelty detection system. This approach allowed for the objective detection of hearing thresholds in a fraction of time of conventional schemes, making it appropriate for the efficient implementation of newborn hearing screening procedures. It is the objective of this study to evaluate whether this approach might further be improved by different stimulation paradigms and electrode settings. In particular, we evaluate chirp stimulations which compensate the basilar-membrane dispersion and active electrodes which are less sensitive to movements. This is the first study which is directed to a single sweep processing of chirp evoked ABRs. By concentrating on transparent features and a minimum number of adjustable parameters, we present an objective comparison of click vs.chirp stimulations and active vs. passive electrodes in the ultrafast ABR detection. We show that chirp evoked brainstem responses and active electrodes might improve the single sweeps analysis of ABRs.Consequently, we conclude that a single sweep processing of ABRs for the objective determination of hearing thresholds can further be improved by the use of optimized chirp stimulations and active electrodes.
Brainstem timing: implications for cortical processing and literacy.
Banai, Karen; Nicol, Trent; Zecker, Steven G; Kraus, Nina
2005-10-26
The search for a unique biological marker of language-based learning disabilities has so far yielded inconclusive findings. Previous studies have shown a plethora of auditory processing deficits in learning disabilities at both the perceptual and physiological levels. In this study, we investigated the association among brainstem timing, cortical processing of stimulus differences, and literacy skills. To that end, brainstem timing and cortical sensitivity to acoustic change [mismatch negativity (MMN)] were measured in a group of children with learning disabilities and normal-learning children. The learning-disabled (LD) group was further divided into two subgroups with normal and abnormal brainstem timing. MMNs, literacy, and cognitive abilities were compared among the three groups. LD individuals with abnormal brainstem timing were more likely to show reduced processing of acoustic change at the cortical level compared with both normal-learning individuals and LD individuals with normal brainstem timing. This group was also characterized by a more severe form of learning disability manifested by poorer reading, listening comprehension, and general cognitive ability. We conclude that abnormal brainstem timing in learning disabilities is related to higher incidence of reduced cortical sensitivity to acoustic change and to deficient literacy skills. These findings suggest that abnormal brainstem timing may serve as a reliable marker of a subgroup of individuals with learning disabilities. They also suggest that faulty mechanisms of neural timing at the brainstem may be the biological basis of malfunction in this group.
Systematic Review of Nontumor Pediatric Auditory Brainstem Implant Outcomes.
Noij, Kimberley S; Kozin, Elliott D; Sethi, Rosh; Shah, Parth V; Kaplan, Alyson B; Herrmann, Barbara; Remenschneider, Aaron; Lee, Daniel J
2015-11-01
The auditory brainstem implant (ABI) was initially developed for patients with deafness as a result of neurofibromatosis type 2. ABI indications have recently extended to children with congenital deafness who are not cochlear implant candidates. Few multi-institutional outcome data exist. Herein, we aim to provide a systematic review of outcomes following implantation of the ABI in pediatric patients with nontumor diagnosis, with a focus on audiometric outcomes. PubMed, Embase, and Cochrane. A systematic review of literature was performed using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) recommendations. Variables assessed included age at implantation, diagnosis, medical history, cochlear implant history, radiographic findings, ABI device implanted, surgical approach, complications, side effects, and auditory outcomes. The initial search identified 304 articles; 21 met inclusion criteria for a total of 162 children. The majority of these patients had cochlear nerve aplasia (63.6%, 103 of 162). Cerebrospinal fluid leak occurred in up to 8.5% of cases. Audiometric outcomes improved over time. After 5 years, almost 50% of patients reached Categories of Auditory Performance scores >4; however, patients with nonauditory disabilities did not demonstrate a similar increase in scores. ABI surgery is a reasonable option for the habilitation of deaf children who are not cochlear implant candidates. Although improvement in Categories of Auditory Performance scores was seen across studies, pediatric ABI users with nonauditory disabilities have inferior audiometric outcomes. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.
[Development of auditory evoked potentials of the brainstem in relation to age].
Tarantino, V; Stura, M; Vallarino, R
1988-01-01
In order to study the various changes which occur in the waveform, latency and amplitude of the auditory brainstem evoked response (BSER) as a function of age, the authors recorded the BSER from the scalp's surface of 20 newborns and 50 infants, 3 months, 6 months, 1 year and 3 years old as well as from 20 normal adults. The data obtained show that the most reliable waves during the first month of life are waves I, III, V, which is often present even when other vertex-positive peaks are absent. The latencies of the various potential components decreased with maturation. Wave V, evoked by 90 dB sensation level clicks, changed in latency from 7, 12 msec at 1-4 weeks of age to 5,77 msec at 3 years of life. The auditory processes related to peripheral and central transmission were shown to mature at differential rates during the first period of life. By the 6th month, in fact, wave I latency had reached the adult value; in contrast, wave V latency did match that of the adult until approximately 1 year old. One obvious explanation for the age-related latency shift is progressive myelination of the auditory tract in infants, for this is know to occur. The authors conclude that the clinical application of this technique in paediatric patients couldn't provide reliable informations about auditory brain stem activity regardless of evaluation of the relationship between age and characteristics of BSER.
Generators of the brainstem auditory evoked potential in cat. III: Identified cell populations.
Melcher, J R; Kiang, N Y
1996-04-01
This paper examines the relationship between different brainstem cell populations and the brainstem auditory evoked potential (BAEP). First, we present a mathematical model relating the BAEP to underlying cellular activity. Then, we identify specific cellular generators of the click-evoked BAEP in cats by combining model-derived insights with key experimental data. These data include (a) a correspondence between particular brainstem regions and specific extrema in the BAEP waveform, determined from lesion experiments, and (b) values for model parameters derived from published physiological and anatomical information. Ultimately, we conclude (with varying degrees of confidence) that: (1) the earliest extrema in the BAEP are generated by spiral ganglion cells, (2) P2 is mainly generated by cochlear nucleus (CN) globular cells, (3) P3 is partly generated by CN spherical cells and partly by cells receiving inputs from globular cells, (4) P4 is predominantly generated by medial superior olive (MSO) principal cells, which are driven by spherical cells, (5) the generators of P5 are driven by MSO principal cells, and (6) the BAEP, as a whole, is generated mainly by cells with characteristic frequencies above 2 kHz. Thus, the BAEP in cats mainly reflects cellular activity in two parallel pathways, one originating with globular cells and the other with spherical cells. Since the globular cell pathway is poorly represented in humans, we suggest that the human BAEP is largely generated by brainstem cells in the spherical cell pathway. Given our conclusions, it should now be possible to relate activity in specific cell populations to psychophysical performance since the BAEP can be recorded in behaving humans and animals.
Surgical monitoring with auditory evoked potentials.
Lüders, H
1988-07-01
This comprehensive review of surgical monitoring with auditory evoked potentials (AEPs) includes a detailed discussion of techniques used for recording brainstem auditory evoked potentials, direct eight-nerve potentials, and electrocochleograms. The normal waveform of these different potentials is discussed, and the typical patterns of abnormalities seen with different insults to the peripheral or central auditory pathways are presented. The mechanisms most probably responsible for changes in AEPs during surgical procedures are analyzed. A critical analysis is made of what represents a significant change in AEPs. Also considered is the predictive value of intrasurgical changes of AEPs. Finally, attempts are made to determine whether AEPs monitoring can assist the surgeon in the prevention of postsurgical complications.
Maksimova, M Yu; Sermagambetova, Zh N; Skrylev, S I; Fedin, P A; Koshcheev, A Yu; Shchipakin, V L; Sinicyn, I A
To assess brain stem dysfunction in patients with hemodynamically significant stenosis of vertebral arteries (VA) using short latency brainstem auditory evoked potentials (BAEP). The study group included 50 patients (mean age 64±6 years) with hemodynamically significant extracranial VA stenosis. Patients with hemodynamically significant extracranial VA stenosis had BAEP abnormalities including the elongation of interpeak intervals I-V and peak V latency as well as the reduction of peak I amplitude. After transluminal balloon angioplasty with stenting of VA stenoses, there was a shortening of peak V latency compared to the preoperative period that reflected the improvement of brain stem conductive functions. Atherostenosis of vertebral arteries is characterized by the signs of brain stem dysfunction, predominantly in the pontomesencephal brain stem. After transluminal balloon angioplasty with stenting of VA, the improvement of brain stem conductive functions was observed.
An Analysis of The Parameters Used In Speech ABR Assessment Protocols.
Sanfins, Milaine D; Hatzopoulos, Stavros; Donadon, Caroline; Diniz, Thais A; Borges, Leticia R; Skarzynski, Piotr H; Colella-Santos, Maria Francisca
2018-04-01
The aim of this study was to assess the parameters of choice, such as duration, intensity, rate, polarity, number of sweeps, window length, stimulated ear, fundamental frequency, first formant, and second formant, from previously published speech ABR studies. To identify candidate articles, five databases were assessed using the following keyword descriptors: speech ABR, ABR-speech, speech auditory brainstem response, auditory evoked potential to speech, speech-evoked brainstem response, and complex sounds. The search identified 1288 articles published between 2005 and 2015. After filtering the total number of papers according to the inclusion and exclusion criteria, 21 studies were selected. Analyzing the protocol details used in 21 studies suggested that there is no consensus to date on a speech-ABR protocol and that the parameters of analysis used are quite variable between studies. This inhibits the wider generalization and extrapolation of data across languages and studies.
Mechanism of alpha-lipoic acid in attenuating kanamycin-induced ototoxicity☆
Wang, Aimei; Hou, Ning; Bao, Dongyan; Liu, Shuangyue; Xu, Tao
2012-01-01
In view of the theory that alpha-lipoic acid effectively prevents cochlear cells from injury caused by various factors such as cisplatin and noise, this study examined whether alpha-lipoic acid can prevent kanamycin-induced ototoxicity. To this end, healthy BALB/c mice were injected subcutaneously with alpha-lipoic acid and kanamycin for 14 days. Auditory brainstem response test showed that increased auditory brainstem response threshold shifts caused by kanamycin were significantly inhibited. Immunohistochemical staining and western blot analysis showed that the expression of phosphorylated p38 mitogen-activated protein kinase and phosphorylated c-Jun N-terminal kinase in mouse cochlea was significantly decreased. The experimental findings suggest that phosphorylated p38 and phosphorylated c-Jun N-terminal kinase mediated kanamycin-induced ototoxic injury in BALB/c mice. Alpha-lipoic acid effectively attenuated kanamycin ototoxicity by inhibiting the kanamycin-induced high expression of phosphorylated p38 and phosphorylated c-Jun N-terminal kinase. PMID:25317129
Greco, Maria Cristina; Navarra, Pierluigi; Tringali, Giuseppe
2016-01-15
In this study we tested the hypothesis that tapentadol inhibits GGRP release from the rat brainstem through a mechanism mediated by the inhibition of NA reuptake; as a second alternative hypothesis, we investigated whether tapentadol inhibits GGRP release via the inhibition of 5-HT reuptake. Rat brainstems were explanted and incubated in short-term experiments. CGRP released in the incubation medium was taken as a marker of CGRP release from the central terminals of trigeminal neurons within the brainstem. CGRP levels were measured by radioimmunoassay under basal conditions or in the presence of tapentadol; NA, 5-HT, clonidine, yohimbine and ondansetron were used as pharmacological tools to investigate the action mechanism of tapentadol. The α2-antagonist yohimbine failed to counteract the effects of tapentadol. Moreover, neither NA nor the α2-agonist clonidine per se inhibited K(+)-stimulated CGRP release, thereby indicating that the effects of tapentadol are nor mediated through the block of NA reuptake. Further experiments showed that 5-HT and tramadol, which inhibits both NA and 5-HT reuptake, significantly reduced K(+)-stimulated CGRP release. Moreover, the 5-HT3 antagonist ondansetron was able to counteract the effects of tapentadol in this system. This study provided pharmacological evidence that tapentadol inhibits stimulated CGRP release from the rat brainstem in vitro through a mechanism involving an increase in 5-HT levels in the system and the subsequent activation of 5-HT3 receptors. Copyright © 2015 Elsevier Inc. All rights reserved.
Lu, Wen-Hsien; Hsieh, Kai-Sheng; Lu, Pei-Jung; Wu, Yi-Shan; Ho, Wen-Yu; Lai, Chi-Cheng; Wang, Jyh-Seng; Ger, Luo-Ping; Hsiao, Michael; Tseng, Ching-Jiunn
2013-05-01
Among enterovirus 71 infections, brainstem encephalitis progressing abruptly to cardiac dysfunction and pulmonary edema causes rapid death within several hours. However, no currently known early indicators and treatments can monitor or prevent the unexpectedly fulminant course. We investigate the possible mechanisms and treatment of fatal enterovirus 71 infections to prevent the abrupt progression to cardiac dysfunction and pulmonary edema by using an animal model. Treatment study. Research laboratory. Sprague-Dawley rats. We microinjected 6-hydroxydopamine or vitamin C into nucleus tractus solitarii of the rat and evaluated the cardiopulmonary changes after treatment with ganglionic blocker. The time course of changes in the heart and lungs of rats with brainstem lesions were investigated. Rats were administered 6-hydroxydopamine to induce brainstem lesions, causing acute hypertension in 10 minutes and acute elevations of catecholamines accompanied by acute cardiac dysfunction and increased strong expressions of connexin 43 gap junction protein in heart and lung specimens by immunohistochemical staining within 3 hours. Severe pulmonary hemorrhagic edema was produced within 6 hours, and the rats expired rapidly within 7 hours. After hexamethonium treatment, it was found that the acute hypertension induced by 6-hydroxydopamine lesions was immediately reversed and the acute high rise of catecholamine serum level was significantly attenuated within 3 hours, accompanied by preserved cardiac output and decreased expressions of connexin 43 in the heart and lungs. No pulmonary edema occurred and the rats survived for more than 14 hours. Early hexamethonium treatment attenuates acute excessive release of catecholamines to prevent cardiac dysfunction and pulmonary edema for increasing survival rate.
Yang, Songbai; Mei, Zhigang; Tan, Lingjing; Ma, Wenhan; Zhang, Dingqi; Wang, Zhaojun; Li, Tiantian; Huang, Kunyan; Cai, Sanjin
2016-05-01
To explore the effects of electrical stimulation at acupoints in the distribution area of auricular vagus nerve combined with sound masking on auditory brainstem response (ABR) and contents of neurotransmitters of γ-aminobutyric acid (γ-GABA), 5-hydroxytryptamine (5-HT) and acetyl choline (Ach) in inferior colliculus of tinnitus rats. Twenty-four male adult SD rats were randomized into a control group, a model group, a 7-d treatment group and a 15-d treatment group. Except the control group, rats in the remaining groups were treated with intraperitoneal injection of 10% salicylate sodium at a dose of 350 mg/kg to establish tinnitus model. Rats in the control group were treated with injection of 0.9% NaCl. Rats in the 7-d treatment group and 15-d treatment group were treated with electrical stimulation at "Shenmen (TF₄)" and "Yidan (CO₁₁)" in the distribution area of auricular vagus nerve combined with sound masking, once a day, for 7 days and 15 days. The SigGenRP software of TDT system was applied to provide voice for single ear and collect the signal, and the voice threshold of ABR was tested. The levels of γ-GABA, 5-HT and Ach in inferior colliculus of rats were detected by enzyme linked immunosorbent assay (ELISA) and compared. Compared with the model group, the threshold values of ABR in 12 kHz and 16 kHz voice stimulation in the 7-d treatment group were significantly lower all P < 0.05); the threshold values of ABR from 4 kHz to 28 kHz voice stimulation in the 15-d treatment group were signally reduced (P < 0.05, P < 0.01), which was more significant than those in the 7-d treatment group. The level of γ-GABA in the model group was significantly lower than that in the control group (P < 0.05), and that in the 15-d treatment group was apparently higher than that in the model group (P < 0.05). The level of 5-HT in the model group was markedly higher than that in the control group (P < 0.05), and that in the 7-d treatment group was lower than that in the model group (P < 0.05), while that in the 15-d treatment group was apparently higher than that in the model group (P < 0.05). The level of Ach in the model group was obviously; lower than that in the control group (P < 0.05), and that in the 7-d treatment group was higher than that in the model group (P < 0.05). Electrical stimulation at auricular vagus nerve combined with sound masking) could regulate the threshold of ABR, especially in the 15-d treatment group. This may be ascribed to modulating the levels of neurotransmitter of γ-GABA, 5-HT and Ach in inferior colliculus.
Processing of voices in deafness rehabilitation by auditory brainstem implant.
Coez, Arnaud; Zilbovicius, Monica; Ferrary, Evelyne; Bouccara, Didier; Mosnier, Isabelle; Ambert-Dahan, Emmanuèle; Kalamarides, Michel; Bizaguet, Eric; Syrota, André; Samson, Yves; Sterkers, Olivier
2009-10-01
The superior temporal sulcus (STS) is specifically involved in processing the human voice. Profound acquired deafness by post-meningitis ossified cochlea and by bilateral vestibular schwannoma in neurofibromatosis type 2 patients are two indications for auditory brainstem implantation (ABI). In order to objectively measure the cortical voice processing of a group of ABI patients, we studied the activation of the human temporal voice areas (TVA) by PET H(2)(15)O, performed in a group of implanted deaf adults (n=7) with more than two years of auditory brainstem implant experience, with an intelligibility score average of 17%+/-17 [mean+/-SD]. Relative cerebral blood flow (rCBF) was measured in the three following conditions: during silence, while passive listening to human voice, and to non-voice stimuli. Compared to silence, the activations induced by voice and non-voice stimuli were bilaterally located in the superior temporal regions. However, compared to non-voice stimuli, the voice stimuli did not induce specific supplementary activation of the TVA along the STS. The comparison of ABI group with a normal-hearing controls group (n=7) showed that TVA activations were significantly enhanced among controls group. ABI allowed the transmission of sound stimuli to temporal brain regions but lacked transmitting the specific cues of the human voice to the TVA. Moreover, among groups, during silent condition, brain visual regions showed higher rCBF in ABI group, although temporal brain regions had higher rCBF in the controls group. ABI patients had consequently developed enhanced visual strategies to keep interacting with their environment.
Bidelman, Gavin M; Alain, Claude
2015-02-01
Natural soundscapes often contain multiple sound sources at any given time. Numerous studies have reported that in human observers, the perception and identification of concurrent sounds is paralleled by specific changes in cortical event-related potentials (ERPs). Although these studies provide a window into the cerebral mechanisms governing sound segregation, little is known about the subcortical neural architecture and hierarchy of neurocomputations that lead to this robust perceptual process. Using computational modeling, scalp-recorded brainstem/cortical ERPs, and human psychophysics, we demonstrate that a primary cue for sound segregation, i.e., harmonicity, is encoded at the auditory nerve level within tens of milliseconds after the onset of sound and is maintained, largely untransformed, in phase-locked activity of the rostral brainstem. As then indexed by auditory cortical responses, (in)harmonicity is coded in the signature and magnitude of the cortical object-related negativity (ORN) response (150-200 ms). The salience of the resulting percept is then captured in a discrete, categorical-like coding scheme by a late negativity response (N5; ~500 ms latency), just prior to the elicitation of a behavioral judgment. Subcortical activity correlated with cortical evoked responses such that weaker phase-locked brainstem responses (lower neural harmonicity) generated larger ORN amplitude, reflecting the cortical registration of multiple sound objects. Studying multiple brain indices simultaneously helps illuminate the mechanisms and time-course of neural processing underlying concurrent sound segregation and may lead to further development and refinement of physiologically driven models of auditory scene analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Darnall, Robert A.; Chen, Xi; Nemani, Krishnamurthy V.; Sirieix, Chrystelle M.; Gimi, Barjor
2017-03-01
Most premature infants born at less than 30 weeks gestation are exposed to periods of mild intermittent hypoxia (IH) associated with apnea of prematurity and periodic breathing. In adults, IH associated with sleep apnea causes neurochemical and structural alterations in the brain. However, it is unknown whether IH in the premature infant leads to neurodevelopmental impairment. Quantification of biochemical markers that can precisely identify infants at risk of adverse neurodevelopmental outcome is essential. In vivo 1H magnetic resonance spectroscopy (1H MRS) facilitates the quantification of metabolites from distinct regions of the developing brain. We report the changes in metabolite profiles in the brainstem and hippocampal regions of developing rat brains, resulting from exposure to IH. Rat pups were chosen for study because there is rapid postnatal hippocampal development that occurs during the first 4 weeks in the developing rat brain, which corresponds to the first 2-3 postnatal years of development in humans. The brainstem was examined because of our interest in respiratory control disorders in the newborn and because of brainstem gliosis described in infants who succumb to Sudden Infant Death Syndrome (SIDS). Metabolite profiles were compared between hypoxia treated rat pups (n = 9) and normoxic controls (n = 6). Metabolite profiles were acquired using the Point-RESolved spectroscopy (PRESS) MRS sequence and were quantified using the TARQUIN software. There was a significant difference in the concentrations of creatine (p = 0.031), total creatine (creatine + phosphocreatine) (p = 0.028), and total choline (p = 0.001) in the brainstem, and glycine (p = 0.031) in the hippocampal region. The changes are consistent with altered cellular bioenergetics and metabolism associated with hypoxic insult.
Stamenković, Stefan; Dučić, Tanja; Stamenković, Vera; Kranz, Alexander; Andjus, Pavle R
2017-08-15
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor and cognitive domains of the CNS. Mutations in the Cu,Zn-superoxide dismutase (SOD1) cause 20% of familial ALS and provoke formation of intracellular aggregates and copper and zinc unbinding, leading to glial activation and neurodegeneration. Therefore, we investigated glial cell morphology, intracellular SOD1 distribution, and elemental composition in the brainstem and hippocampus of the hSOD1 G93A transgenic rat model of ALS. Immunostaining for astrocytes, microglia and SOD1 revealed glial proliferation and progressive tissue accumulation of SOD1 in both brain regions of ALS rats starting already at the presymptomatic stage. Glial cell morphology analysis in the brainstem of ALS rats revealed astrocyte activation occurring before disease symptoms onset, followed by activation of microglia. Hippocampal ALS astrocytes exhibited an identical reactive profile, while microglial morphology was unchanged. Additionally, ALS brainstem astrocytes demonstrated progressive SOD1 accumulation in the cell body and processes, while microglial SOD1 levels were reduced and its distribution limited to distal cell processes. In the hippocampus both glial cell types exhibited SOD1 accumulation in the cell body. X-ray fluorescence imaging revealed decreased P and increased Ca, Cl, K, Ni, Cu and Zn in the brainstem, and higher levels of Cl, Ni and Cu, but lower levels of Zn in the hippocampus of symptomatic ALS rats. These results bring new insights into the glial response during disease development and progression in motor as well as in non-motor CNS structures, and indicate disturbed tissue elemental homeostasis as a prominent hallmark of disease pathology. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Pérez-Valenzuela, Catherine; Gárate-Pérez, Macarena F.; Sotomayor-Zárate, Ramón; Delano, Paul H.; Dagnino-Subiabre, Alexies
2016-01-01
Chronic stress impairs auditory attention in rats and monoamines regulate neurotransmission in the primary auditory cortex (A1), a brain area that modulates auditory attention. In this context, we hypothesized that norepinephrine (NE) levels in A1 correlate with the auditory attention performance of chronically stressed rats. The first objective of this research was to evaluate whether chronic stress affects monoamines levels in A1. Male Sprague–Dawley rats were subjected to chronic stress (restraint stress) and monoamines levels were measured by high performance liquid chromatographer (HPLC)-electrochemical detection. Chronically stressed rats had lower levels of NE in A1 than did controls, while chronic stress did not affect serotonin (5-HT) and dopamine (DA) levels. The second aim was to determine the effects of reboxetine (a selective inhibitor of NE reuptake) on auditory attention and NE levels in A1. Rats were trained to discriminate between two tones of different frequencies in a two-alternative choice task (2-ACT), a behavioral paradigm to study auditory attention in rats. Trained animals that reached a performance of ≥80% correct trials in the 2-ACT were randomly assigned to control and stress experimental groups. To analyze the effects of chronic stress on the auditory task, trained rats of both groups were subjected to 50 2-ACT trials 1 day before and 1 day after of the chronic stress period. A difference score (DS) was determined by subtracting the number of correct trials after the chronic stress protocol from those before. An unexpected result was that vehicle-treated control rats and vehicle-treated chronically stressed rats had similar performances in the attentional task, suggesting that repeated injections with vehicle were stressful for control animals and deteriorated their auditory attention. In this regard, both auditory attention and NE levels in A1 were higher in chronically stressed rats treated with reboxetine than in vehicle-treated animals. These results indicate that NE has a key role in A1 and attention of stressed rats during tone discrimination. PMID:28082872
Sensory-Cognitive Interaction in the Neural Encoding of Speech in Noise: A Review
Anderson, Samira; Kraus, Nina
2011-01-01
Background Speech-in-noise (SIN) perception is one of the most complex tasks faced by listeners on a daily basis. Although listening in noise presents challenges for all listeners, background noise inordinately affects speech perception in older adults and in children with learning disabilities. Hearing thresholds are an important factor in SIN perception, but they are not the only factor. For successful comprehension, the listener must perceive and attend to relevant speech features, such as the pitch, timing, and timbre of the target speaker’s voice. Here, we review recent studies linking SIN and brainstem processing of speech sounds. Purpose To review recent work that has examined the ability of the auditory brainstem response to complex sounds (cABR), which reflects the nervous system’s transcription of pitch, timing, and timbre, to be used as an objective neural index for hearing-in-noise abilities. Study Sample We examined speech-evoked brainstem responses in a variety of populations, including children who are typically developing, children with language-based learning impairment, young adults, older adults, and auditory experts (i.e., musicians). Data Collection and Analysis In a number of studies, we recorded brainstem responses in quiet and babble noise conditions to the speech syllable /da/ in all age groups, as well as in a variable condition in children in which /da/ was presented in the context of seven other speech sounds. We also measured speech-in-noise perception using the Hearing-in-Noise Test (HINT) and the Quick Speech-in-Noise Test (QuickSIN). Results Children and adults with poor SIN perception have deficits in the subcortical spectrotemporal representation of speech, including low-frequency spectral magnitudes and the timing of transient response peaks. Furthermore, auditory expertise, as engendered by musical training, provides both behavioral and neural advantages for processing speech in noise. Conclusions These results have implications for future assessment and management strategies for young and old populations whose primary complaint is difficulty hearing in background noise. The cABR provides a clinically applicable metric for objective assessment of individuals with SIN deficits, for determination of the biologic nature of disorders affecting SIN perception, for evaluation of appropriate hearing aid algorithms, and for monitoring the efficacy of auditory remediation and training. PMID:21241645
Neural Correlates of the Binaural Masking Level Difference in Human Frequency-Following Responses.
Clinard, Christopher G; Hodgson, Sarah L; Scherer, Mary Ellen
2017-04-01
The binaural masking level difference (BMLD) is an auditory phenomenon where binaural tone-in-noise detection is improved when the phase of either signal or noise is inverted in one of the ears (S π N o or S o N π , respectively), relative to detection when signal and noise are in identical phase at each ear (S o N o ). Processing related to BMLDs and interaural time differences has been confirmed in the auditory brainstem of non-human mammals; in the human auditory brainstem, phase-locked neural responses elicited by BMLD stimuli have not been systematically examined across signal-to-noise ratio. Behavioral and physiological testing was performed in three binaural stimulus conditions: S o N o , S π N o , and S o N π . BMLDs at 500 Hz were obtained from 14 young, normal-hearing adults (ages 21-26). Physiological BMLDs used the frequency-following response (FFR), a scalp-recorded auditory evoked potential dependent on sustained phase-locked neural activity; FFR tone-in-noise detection thresholds were used to calculate physiological BMLDs. FFR BMLDs were significantly smaller (poorer) than behavioral BMLDs, and FFR BMLDs did not reflect a physiological release from masking, on average. Raw FFR amplitude showed substantial reductions in the S π N o condition relative to S o N o and S o N π conditions, consistent with negative effects of phase summation from left and right ear FFRs. FFR amplitude differences between stimulus conditions (e.g., S o N o amplitude-S π N o amplitude) were significantly predictive of behavioral S π N o BMLDs; individuals with larger amplitude differences had larger (better) behavioral B MLDs and individuals with smaller amplitude differences had smaller (poorer) behavioral B MLDs. These data indicate a role for sustained phase-locked neural activity in BMLDs of humans and are the first to show predictive relationships between behavioral BMLDs and human brainstem responses.
[Auditory function in children with Brachmann-de Lange syndrom].
Kozłowski, Jacek; Wierzba, Jolanta; Narozny, Waldemar; Balcerska, Anna; Stankiewicz, Czesław; Kuczkowski, Jerzy
2006-01-01
The aim of the research work is the evaluation of auditory function in children with rare, genetically determined Brachmann-de Lange syndrome. Test material came from 18 children (7 girls and 11 boys) between 11 months and 18 years of age with Brachmann-de Lange syndrome who have been diagnosed and treated at ENT Department and Department of Paediatrics, Haematology, Oncology and Endocrinology Medical University of Gdansk with support of Cornelia de Lange Association - Poland. In all children examinations of brainstem auditory evoked potential have been carried out as well as tympanometric examination in case of finding hearing loss. All these examinations were carried out in ENT Department of Medical University of Gdansk, using Racia-Alvar Centor C apparatus and Madsen-Zodiak 901. 9 (50%) of patients demonstrated hearing loss. In 3 (16.7%) cases the conduction hearing loss was connected with the chronic diseases of middle ear which required medical treatment. In remaining 6 (33.3%) cases due to sensorineural hearing loss children had hearing aids applied and underwent rehabilitation. The results indicate that all children with Brachmann-de Lange syndrome should undergo examinations of brainstem auditory evoked potential. It enables to detect hypoacusis and initiate proper treatment. Lack of the opportunity of having a hearing aid applied and further rehabilitation deepens the social isolation of the little patients and inhibits their natural progress in communication. In such cases mental retardation may subsequently occur.
A novel method of brainstem auditory evoked potentials using complex verbal stimuli.
Kouni, Sophia N; Koutsojannis, Constantinos; Ziavra, Nausika; Giannopoulos, Sotirios
2014-08-01
The click and tone-evoked auditory brainstem responses are widely used in clinical practice due to their consistency and predictability. More recently, the speech-evoked responses have been used to evaluate subcortical processing of complex signals, not revealed by responses to clicks and tones. Disyllable stimuli corresponding to familiar words can induce a pattern of voltage fluctuations in the brain stem resulting in a familiar waveform, and they can yield better information about brain stem nuclei along the ascending central auditory pathway. We describe a new method with the use of the disyllable word "baba" corresponding to English "daddy" that is commonly used in many other ethnic languages spanning from West Africa to the Eastern Mediterranean all the way to the East Asia. This method was applied in 20 young adults institutionally diagnosed as dyslexic (10 subjects) or light dyslexic (10 subjects) who were matched with 20 sex, age, education, hearing sensitivity, and IQ-matched normal subjects. The absolute peak latencies of the negative wave C and the interpeak latencies of A-C elicited by verbal stimuli "baba" were found to be significantly increased in the dyslexic group in comparison with the control group. The method is easy and helpful to diagnose abnormalities affecting the auditory pathway, to identify subjects with early perception and cortical representation abnormalities, and to apply the suitable therapeutic and rehabilitation management.
Bandara, Suren B; Sadowski, Renee N; Schantz, Susan L; Gilbert, Mary E
2017-01-01
Developmental PCB exposure impairs hearing and induces brainstem audiogenic seizures in adult offspring. The degree to which this enhanced susceptibility to seizure is manifest in other brain regions has not been examined. Thus, electrical kindling of the amygdala was used to evaluate the effect of developmental exposure to an environmentally relevant PCB mixture on seizure susceptibility in the rat. Female Long-Evans rats were dosed orally with 0 or 6mg/kg/day of the PCB mixture dissolved in corn oil vehicle 4 weeks prior to mating and continued through gestation and up until postnatal day (PND) 21. On PND 21, pups were weaned, and two males from each litter were randomly selected for the kindling study. As adults, the male rats were implanted bilaterally with electrodes in the basolateral amygdala. For each animal, afterdischarge (AD) thresholds in the amygdala were determined on the first day of testing followed by once daily stimulation at a standard 200μA stimulus intensity until three stage 5 generalized seizures (GS) ensued. Developmental PCB exposure did not affect the AD threshold or total cumulative AD duration, but PCB exposure did increase the latency to behavioral manifestations of seizure propagation. PCB exposed animals required significantly more stimulations to reach stage 2 seizures compared to control animals, indicating attenuated focal (amygdala) excitability. A delay in kindling progression in the amygdala stands in contrast to our previous finding of increased susceptibility to brainstem-mediated audiogenic seizures in PCB-exposed animals in response to a an intense auditory stimulus. These seemingly divergent results are not unexpected given the distinct source, type, and mechanistic underpinnings of these different seizure models. A delay in epileptogenesis following focal amygdala stimulation may reflect a decrease in neuroplasticity following developmental PCB exposure consistent with reductions in use-dependent synaptic plasticity that have been reported in the hippocampus of developmentally PCB exposed animals. Copyright © 2016 Elsevier B.V. All rights reserved.
Kopelovich, Jonathan C; Cagaanan, Alain P; Miller, Charles A; Abbas, Paul J; Green, Steven H
2013-11-01
To establish the intracellular consequences of electrical stimulation to spiral ganglion neurons after deafferentation. Here we use a rat model to determine the effect of both low and high pulse rate acute electrical stimulation on activation of the proapoptotic transcription factor Jun in deafferented spiral ganglion neurons in vivo. Experimental animal study. Hearing research laboratories of the University of Iowa Departments of Biology and Otolaryngology. A single electrode was implanted through the round window of kanamycin-deafened rats at either postnatal day 32 (P32, n = 24) or P60 (n = 22) for 4 hours of stimulation (monopolar, biphasic pulses, amplitude twice electrically evoked auditory brainstem response [eABR] threshold) at either 100 or 5000 Hz. Jun phosphorylation was assayed by immunofluorescence to quantitatively assess the effect of electrical stimulation on proapoptotic signaling. Jun phosphorylation was reliably suppressed by 100 Hz stimuli in deafened cochleae of P32 but not P60 rats. This effect was not significant in the basal cochlear turns. Stimulation frequency may be consequential: 100 Hz was significantly more effective than was 5 kHz stimulation in suppressing phospho-Jun. Suppression of Jun phosphorylation occurs in deafferented spiral ganglion neurons after only 4 hours of electrical stimulation. This finding is consistent with the hypothesis that electrical stimulation can decrease spiral ganglion neuron death after deafferentation.
Zhang, Qing; Kaga, Kimitaka; Hayashi, Akimasa
2011-07-01
A 27-year-old female showed auditory agnosia after long-term severe hydrocephalus due to congenital spina bifida. After years of hydrocephalus, she gradually suffered from hearing loss in her right ear at 19 years of age, followed by her left ear. During the time when she retained some ability to hear, she experienced severe difficulty in distinguishing verbal, environmental, and musical instrumental sounds. However, her auditory brainstem response and distortion product otoacoustic emissions were largely intact in the left ear. Her bilateral auditory cortices were preserved, as shown by neuroimaging, whereas her auditory radiations were severely damaged owing to progressive hydrocephalus. Although she had a complete bilateral hearing loss, she felt great pleasure when exposed to music. After years of self-training to read lips, she regained fluent ability to communicate. Clinical manifestations of this patient indicate that auditory agnosia can occur after long-term hydrocephalus due to spina bifida; the secondary auditory pathway may play a role in both auditory perception and hearing rehabilitation.
Engineer, C.T.; Centanni, T.M.; Im, K.W.; Borland, M.S.; Moreno, N.A.; Carraway, R.S.; Wilson, L.G.; Kilgard, M.P.
2014-01-01
Although individuals with autism are known to have significant communication problems, the cellular mechanisms responsible for impaired communication are poorly understood. Valproic acid (VPA) is an anticonvulsant that is a known risk factor for autism in prenatally exposed children. Prenatal VPA exposure in rats causes numerous neural and behavioral abnormalities that mimic autism. We predicted that VPA exposure may lead to auditory processing impairments which may contribute to the deficits in communication observed in individuals with autism. In this study, we document auditory cortex responses in rats prenatally exposed to VPA. We recorded local field potentials and multiunit responses to speech sounds in primary auditory cortex, anterior auditory field, ventral auditory field. and posterior auditory field in VPA exposed and control rats. Prenatal VPA exposure severely degrades the precise spatiotemporal patterns evoked by speech sounds in secondary, but not primary auditory cortex. This result parallels findings in humans and suggests that secondary auditory fields may be more sensitive to environmental disturbances and may provide insight into possible mechanisms related to auditory deficits in individuals with autism. PMID:24639033
Song, Yu; Liu, Junxiu; Ma, Furong; Mao, Lanqun
2016-12-01
Diazepam can reduce the excitability of lateral amygdala and eventually suppress the excitability of the auditory cortex in rats following salicylate treatment, indicating the regulating effect of lateral amygdala to the auditory cortex in the tinnitus procedure. To study the spontaneous firing rates (SFR) of the auditory cortex and lateral amygdala regulated by diazepam in the tinnitus rat model induced by sodium salicylate. This study first created a tinnitus rat modal induced by sodium salicylate, and recorded SFR of both auditory cortex and lateral amygdala. Then diazepam was intraperitoneally injected and the SFR changes of lateral amygdala recorded. Finally, diazepam was microinjected on lateral amygdala and the SFR changes of the auditory cortex recorded. Both SFRs of the auditory cortex and lateral amygdala increased after salicylate treatment. SFR of lateral amygdala decreased after intraperitoneal injection of diazepam. Microinjecting diazepam to lateral amygdala decreased SFR of the auditory cortex ipsilaterally and contralaterally.
Subcortical encoding of speech cues in children with attention deficit hyperactivity disorder.
Jafari, Zahra; Malayeri, Saeed; Rostami, Reza
2015-02-01
There is little information about processing of nonspeech and speech stimuli at the subcortical level in individuals with attention deficit hyperactivity disorder (ADHD). The auditory brainstem response (ABR) provides information about the function of the auditory brainstem pathways. We aim to investigate the subcortical function in neural encoding of click and speech stimuli in children with ADHD. The subjects include 50 children with ADHD and 34 typically developing (TD) children between the ages of 8 and 12 years. Click ABR (cABR) and speech ABR (sABR) with 40 ms synthetic /da/ syllable stimulus were recorded. Latencies of cABR in waves of III and V and duration of V-Vn (P⩽0.027), and latencies of sABR in waves A, D, E, F and O and duration of V-A (P⩽0.034) were significantly longer in children with ADHD than in TD children. There were no apparent differences in components the sustained frequency following response (FFR). We conclude that children with ADHD have deficits in temporal neural encoding of both nonspeech and speech stimuli. There is a common dysfunction in the processing of click and speech stimuli at the brainstem level in children with suspected ADHD. Copyright © 2015. Published by Elsevier Ireland Ltd.
Dykstra, Andrew R; Burchard, Daniel; Starzynski, Christian; Riedel, Helmut; Rupp, Andre; Gutschalk, Alexander
2016-08-01
We used magnetoencephalography to examine lateralization and binaural interaction of the middle-latency and late-brainstem components of the auditory evoked response (the MLR and SN10, respectively). Click stimuli were presented either monaurally, or binaurally with left- or right-leading interaural time differences (ITDs). While early MLR components, including the N19 and P30, were larger for monaural stimuli presented contralaterally (by approximately 30 and 36 % in the left and right hemispheres, respectively), later components, including the N40 and P50, were larger ipsilaterally. In contrast, MLRs elicited by binaural clicks with left- or right-leading ITDs did not differ. Depending on filter settings, weak binaural interaction could be observed as early as the P13 but was clearly much larger for later components, beginning at the P30, indicating some degree of binaural linearity up to early stages of cortical processing. The SN10, an obscure late-brainstem component, was observed consistently in individuals and showed linear binaural additivity. The results indicate that while the MLR is lateralized in response to monaural stimuli-and not ITDs-this lateralization reverses from primarily contralateral to primarily ipsilateral as early as 40 ms post stimulus and is never as large as that seen with fMRI.
[A case of transient auditory agnosia and schizophrenia].
Kanzaki, Jin; Harada, Tatsuhiko; Kanzaki, Sho
2011-03-01
We report a case of transient functional auditory agnosia and schizophrenia and discuss their relationship. A 30-year-old woman with schizophrenia reporting bilateral hearing loss was found in history taking to be able to hear but could neither understand speech nor discriminate among environmental sounds. Audiometry clarified normal but low speech discrimination. Otoacoustic emission and auditory brainstem response were normal. Magnetic resonance imaging (MRI) elsewhere evidenced no abnormal findings. We assumed that taking care of her grandparents who had been discharged from the hospital had unduly stressed her, and her condition improved shortly after she stopped caring for them, returned home and started taking a minor tranquilizer.
Developmental Changes in Short-Term Plasticity at the Rat Calyx of Held Synapse
Crins, Tom T. H.; Rusu, Silviu I.; Rodríguez-Contreras, Adrian; Borst, J. Gerard G.
2015-01-01
The calyx of Held synapse of the medial nucleus of the trapezoid body functions as a relay synapse in the auditory brainstem. In vivo recordings have shown that this synapse displays low release probability and that the average size of synaptic potentials does not depend on recent history. We used a ventral approach to make in vivo extracellular recordings from the calyx of Held synapse in rats aged postnatal day 4 (P4) to P29 to study the developmental changes that allow this synapse to function as a relay. Between P4 and P8, we observed evidence for the presence of large short-term depression, which was counteracted by short-term facilitation at short intervals. Major changes occurred in the last few days before the onset of hearing for air-borne sounds, which happened at P13. The bursting pattern changed into a primary-like pattern, the amount of depression and facilitation decreased strongly, and the decay of facilitation became much faster. Whereas short-term plasticity was the most important cause of variability in the size of the synaptic potentials in immature animals, its role became minor around hearing onset and afterward. Similar developmental changes were observed during stimulation experiments both in brain slices and in vivo following cochlear ablation. Our data suggest that the strong reduction in release probability and the speedup of the decay of synaptic facilitation that happen just before hearing onset are important events in the transformation of the calyx of Held synapse into an auditory relay synapse. PMID:21832200
Kavalactones and dihydrokavain modulate GABAergic activity in a rat gastric-brainstem preparation.
Yuan, Chun-Su; Dey, Lucy; Wang, Anbao; Mehendale, Sangeeta; Xie, Jing-Tian; Aung, Han H; Ang-Lee, Michael K
2002-12-01
Using an in vitro neonatal rat gastric-brainstem preparation, the activity of majority neurons recorded in the nucleus tractus solitarius (NTS) of the brainstem were significantly inhibited by GABA A receptor agonist, muscimol (30 microM), and this inhibition was reversed by selective GABA A receptor antagonist, bicuculline (10 microM). Application of kavalactones (300 microg/ml) and dihydrokavain (300 microM) into the brainstem compartment of the preparation also significantly reduced the discharge rate of these NTS neurons (39 % and 32 %, respectively, compared to the control level), and this reduction was partially reversed by bicuculline (10 microM). Kavalactones or dihydrokavain induced inhibitory effects were not reduced after co-application of saclofen (10 microM; a selective GABA B receptor antagonist) or naloxone (100 nM; an opioid receptor antagonist). Pretreatment with kavalactones (300 microg/ml) or dihydrokavain (300 microM) significantly decreased the NTS inhibitory effects induced by muscimol (30 microM), approximately from 51 % to 36 %. Our results demonstrated modulation of brainstem GABAergic mechanism by kavalactones and dihydrokavain, and suggested that these compounds may play an important role in regulation of GABAergic neurotransmission.
Bramhall, Naomi F; Konrad-Martin, Dawn; McMillan, Garnett P
2018-01-15
To determine whether auditory brainstem response (ABR) wave I amplitude is associated with measures of auditory perception in young people with normal distortion product otoacoustic emissions (DPOAEs) and varying levels of noise exposure history. Tinnitus, loudness tolerance, and speech perception ability were measured in 31 young military Veterans and 43 non-Veterans (19 to 35 years of age) with normal pure-tone thresholds and DPOAEs. Speech perception was evaluated in quiet using Northwestern University Auditory Test (NU-6) word lists and in background noise using the words in noise (WIN) test. Loudness discomfort levels were measured using 1-, 3-, 4-, and 6-kHz pulsed pure tones. DPOAEs and ABRs were collected in each participant to assess outer hair cell and auditory nerve function. The probability of reporting tinnitus in this sample increased by a factor of 2.0 per 0.1 µV decrease in ABR wave I amplitude (95% Bayesian confidence interval, 1.1 to 5.0) for males and by a factor of 2.2 (95% confidence interval, 1.0 to 6.4) for females after adjusting for sex and DPOAE levels. Similar results were obtained in an alternate model adjusted for pure-tone thresholds in addition to sex and DPOAE levels. No apparent relationship was found between wave I amplitude and either loudness tolerance or speech perception in quiet or noise. Reduced ABR wave I amplitude was associated with an increased risk of tinnitus, even after adjusting for DPOAEs and sex. In contrast, wave III and V amplitudes had little effect on tinnitus risk. This suggests that changes in peripheral input at the level of the inner hair cell or auditory nerve may lead to increases in central gain that give rise to the perception of tinnitus. Although the extent of synaptopathy in the study participants cannot be measured directly, these findings are consistent with the prediction that tinnitus may be a perceptual consequence of cochlear synaptopathy.
Cobb, Kensi M; Stuart, Andrew
The purpose of the study was to examine the differences in auditory brainstem response (ABR) latency and amplitude indices to the CE-Chirp stimuli in neonates versus young adults as a function of stimulus level, rate, polarity, frequency and gender. Participants were 168 healthy neonates and 20 normal-hearing young adults. ABRs were obtained to air- and bone-conducted CE-Chirps and air-conducted CE-Chirp octave band stimuli. The effects of stimulus level, rate, and polarity were examined with air-conducted CE-Chirps. The effect of stimulus level was also examined with bone-conducted CE-Chirps and CE-Chirp octave band stimuli. The effect of gender was examined across all stimulus manipulations. In general, ABR wave V amplitudes were significantly larger (p < 0.0001) and latencies were significantly shorter (p < 0.0001) for adults versus neonates for all air-conducted CE-Chirp stimuli with all stimulus manipulations. For bone-conducted CE-Chirps, infants had significantly shorter wave V latencies than adults at 15 dB nHL and 45 dB nHL (p = 0.02). Adult wave V amplitude was significantly larger for bone-conducted CE-Chirps only at 30 dB nHL (p = 0.02). The effect of gender was not statistically significant across all measures (p > 0.05). Significant differences in ABR latencies and amplitudes exist between newborns and young adults using CE-Chirp stimuli. These differences are consistent with differences to traditional click and tone burst stimuli and reflect maturational differences as a function of age. These findings continue to emphasize the importance of interpreting ABR results using age-based normative data.
Zhang, Daogong; Fan, Zhaomin; Han, Yuechen; Wang, Mingming; Xu, Lei; Luo, Jianfen; Ai, Yu; Wang, Haibo
2012-01-01
To investigate the diagnostic value of vestibular test and high stimulus rate auditory brainstem response (ABR) test and the possible mechanism responsible for benign paroxysmal vertigo of childhood (BPVC). Data of 56 patients with BPVC in vertigo clinic of our hospital from May 2007 to September 2008 were retrospectively analyzed in this study. Patients with BPVC were tested with pure tone audiometry, high stimulus rate auditory brainstem response test (ABR), transcranial Doppler sonography (TCD), bithermal caloric test, and VEMP. The results of the hearing and vestibular function test were compared and analyzed. There were 56 patients with BPVC, including 32 men, 24 women, aged 3-12 years old, with an average of 6.5 years. Among 56 cases of BPVC patients, the results of pure tone audiometry were all normal. High stimulus rate ABR was abnormal in 66.1% (37/56) of cases. TCD showed 57.1% abnormality in 56 cases, including faster flow rate in 28 cases and slower flow rate in 4 cases. High stimulus rate ABR and TCD were both abnormal in 48.2% (27/56) of cases. Bithermal caloric test was abnormal in 14.3% (8/56) of cases. VEMP showed 32.1% abnormality, including amplitude abnormality in 16 cases and latency abnormality in 2 cases. The abnormal rate of VEMP was much higher than that of caloric test. Vascular mechanisms might be involved in the pathogenesis of BPVC and there is strong evidence for close relationship between BPVC and migraine. High stimulus rate ABR is helpful in the diagnosis of BPVC. The inferior vestibular pathway is much more impaired than the superior vestibular pathway in BPVC. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Auditory pathways: anatomy and physiology.
Pickles, James O
2015-01-01
This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described. © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Cone-Wesson, Barbara
1995-01-01
This article discusses the accuracy of bone-conduction auditory brainstem response (BC-ABR) tests to determine the presence and severity of conductive hearing impairment. It provides warnings about technical pitfalls and recommends incorporating BC-ABR protocols for routine clinical use. It concludes that the method allows estimating cochlear…
Identification and Treatment of Very Young Children with Hearing Loss.
ERIC Educational Resources Information Center
Madell, Jane R.
1988-01-01
Hearing loss in infants and young children can be identified through behavioral observation audiometry, visual reinforcement audiometry, or auditory brainstem response testing. Habilitation may involve amplification with hearing aids, other assistive listening devices, or cochlear implants. Expectations for children with different degrees of…
Brainstem auditory evoked responses in man. 1: Effect of stimulus rise-fall time and duration
NASA Technical Reports Server (NTRS)
Hecox, K.; Squires, N.; Galambos, R.
1975-01-01
Short latency (under 10 msec) responses elicited by bursts of white noise were recorded from the scalps of human subjects. Response alterations produced by changes in the noise burst duration (on-time), inter-burst interval (off-time), and onset and offset shapes were analyzed. The latency of the most prominent response component, wave V, was markedly delayed with increases in stimulus rise time but was unaffected by changes in fall time. Increases in stimulus duration, and therefore in loudness, resulted in a systematic increase in latency. This was probably due to response recovery processes, since the effect was eliminated with increases in stimulus off-time. The amplitude of wave V was insensitive to changes in signal rise and fall times, while increasing signal on-time produced smaller amplitude responses only for sufficiently short off-times. It was concluded that wave V of the human auditory brainstem evoked response is solely an onset response.
Rado-Triveño, Julia; Alen-Ayca, Jaime
2016-01-01
To determine the validity of the use of acoustic otoacoustic emissions in comparison with the evoked potentials Auditory brainstem examination (PEATC), a study was carried out with 96 children between 0 and 4 years of age that went to Instituto Nacional de Rehabilitación in Lima, Peru. The results show a cut-off point corresponding to 1 in (+): 17.67 in right ear and 16.72 in left ear, and LR (-): 0.25 in ear right and 0.24 in left ear; ROC curve with area under the right ear curve of 0.830 (p<0.001) was obtained and in left ear of 0.829 (p<0.001). According to the results of LR (+) the sensitivity is 76% in the right ear and 65% In the left ear that coincides with the conformation of the ROC curve. In conclusion, acoustic emissions would not represent an alternative sufficiently discriminatory alternative as a screening test in this population.
Corona-Strauss, Farah I; Delb, Wolfgang; Schick, Bernhard; Strauss, Daniel J
2010-01-01
Auditory Brainstem Responses (ABRs) are used as objective method for diagnostics and quantification of hearing loss. Many methods for automatic recognition of ABRs have been developed, but none of them include the individual measurement setup in the analysis. The purpose of this work was to design a fast recognition scheme for chirp-evoked ABRs that is adjusted to the individual measurement condition using spontaneous electroencephalographic activity (SA). For the classification, the kernel-based novelty detection scheme used features based on the inter-sweep instantaneous phase synchronization as well as energy and entropy relations in the time-frequency domain. This method provided SA discrimination from stimulations above the hearing threshold with a minimum number of sweeps, i.e., 200 individual responses. It is concluded that the proposed paradigm, processing procedures and stimulation techniques improve the detection of ABRs in terms of the degree of objectivity, i.e., automation of procedure, and measurement time.
Gender Disparities in Speech-evoked Auditory Brainstem Response in Healthy Adults.
Jalaei, Bahram; Zakaria, Mohd Normani; Mohd Azmi, Mohd Hafiz Afifi; Nik Othman, Nik Adilah; Sidek, Dinsuhaimi
2017-04-01
Gender disparities in speech-evoked auditory brainstem response (speech-ABR) outcomes have been reported, but the literature is limited. The present study was performed to further verify this issue and determine the influence of head size on speech-ABR results between genders. Twenty-nine healthy Malaysian subjects (14 males and 15 females) aged 19 to 30 years participated in this study. After measuring the head circumference, speech-ABR was recorded by using synthesized syllable /da/ from the right ear of each participant. Speech-ABR peaks amplitudes, peaks latencies, and composite onset measures were computed and analyzed. Significant gender disparities were noted in the transient component but not in the sustained component of speech-ABR. Statistically higher V/A amplitudes and less steeper V/A slopes were found in females. These gender differences were partially affected after controlling for the head size. Head size is not the main contributing factor for gender disparities in speech-ABR outcomes. Gender-specific normative data can be useful when recording speech-ABR for clinical purposes.
Lee, Jyung Hyun; Park, Hyo Soon; Wei, Qun; Kim, Myoung Nam; Cho, Jin-Ho
2017-01-02
ABSTACT To ensure the safety and efficacy of implantable hearing aids, animal experiments are an essential developmental procedure, in particular, auditory brainstem responses (ABRs) can be used to verify the objective effectiveness of implantable hearing aids. This study measured and compared the ABRs generated when applying the same vibration stimuli to an oval window and round window. The ABRs were measured using a TDT system 3 (TDT, USA), while the vibration stimuli were applied to a round window and oval window in 4 guinea pigs using a piezo-electric transducer with a proper contact tip. A paired t-test was used to determine any differences between the ABR amplitudes when applying the stimulation to an oval window and round window. The paired t-test revealed a significant difference between the ABR amplitudes generated by the round and oval window stimulation (t = 10.079, α < .0001). Therefore, the results confirmed that the biological response to round window stimulation was not the same as that to oval window stimulation.
Sensitization of trigeminal brainstem pathways in a model for tear deficient dry eye
Rahman, Mostafeezur; Okamoto, Keiichiro; Thompson, Randall; Katagiri, Ayano; Bereiter, David A.
2015-01-01
Abstract Chronic dry eye disease (DE) is associated with an unstable tear film and symptoms of ocular discomfort. The characteristics of symptoms suggest a key role for central neural processing; however, little is known about central neuroplasticity and DE. We used a model for tear deficient DE and assessed effects on eye blink behavior, orbicularis oculi muscle activity (OOemg), and trigeminal brainstem neural activity in male rats. Ocular-responsive neurons were recorded at the interpolaris/caudalis transition (Vi/Vc) and Vc/upper cervical cord (Vc/C1) regions under isoflurane, whereas OOemg activity was recorded under urethane. Spontaneous tear volume was reduced by ∼50% at 14 days after exorbital gland removal. Hypertonic saline–evoked eye blink behavior in awake rats was enhanced throughout the 14 days after surgery. Saline-evoked neural activity at the Vi/Vc transition and in superficial and deep laminae at the Vc/C1 region was greatly enhanced in DE rats. Neurons from DE rats classified as wide dynamic range displayed enlarged convergent periorbital receptive fields consistent with central sensitization. Saline-evoked OOemg activity was markedly enhanced in DE rats compared with controls. Synaptic blockade at the Vi/Vc transition or the Vc/C1 region greatly reduced hypertonic saline–evoked OOemg activity in DE and sham rats. These results indicated that persistent tear deficiency caused sensitization of ocular-responsive neurons at multiple regions of the caudal trigeminal brainstem and enhanced OOemg activity. Central sensitization of ocular-related brainstem circuits is a significant factor in DE and likely contributes to the apparent weak correlation between peripheral signs of tear dysfunction and symptoms of irritation. PMID:25734990
Prospects for Replacement of Auditory Neurons by Stem Cells
Shi, Fuxin; Edge, Albert S.B.
2013-01-01
Sensorineural hearing loss is caused by degeneration of hair cells or auditory neurons. Spiral ganglion cells, the primary afferent neurons of the auditory system, are patterned during development and send out projections to hair cells and to the brainstem under the control of largely unknown guidance molecules. The neurons do not regenerate after loss and even damage to their projections tends to be permanent. The genesis of spiral ganglion neurons and their synapses forms a basis for regenerative approaches. In this review we critically present the current experimental findings on auditory neuron replacement. We discuss the latest advances with a focus on (a) exogenous stem cell transplantation into the cochlea for neural replacement, (b) expression of local guidance signals in the cochlea after loss of auditory neurons, (c) the possibility of neural replacement from an endogenous cell source, and (d) functional changes from cell engraftment. PMID:23370457
Control of Phasic Firing by a Background Leak Current in Avian Forebrain Auditory Neurons
Dagostin, André A.; Lovell, Peter V.; Hilscher, Markus M.; Mello, Claudio V.; Leão, Ricardo M.
2015-01-01
Central neurons express a variety of neuronal types and ion channels that promote firing heterogeneity among their distinct neuronal populations. Action potential (AP) phasic firing, produced by low-threshold voltage-activated potassium currents (VAKCs), is commonly observed in mammalian brainstem neurons involved in the processing of temporal properties of the acoustic information. The avian caudomedial nidopallium (NCM) is an auditory area analogous to portions of the mammalian auditory cortex that is involved in the perceptual discrimination and memorization of birdsong and shows complex responses to auditory stimuli We performed in vitro whole-cell patch-clamp recordings in brain slices from adult zebra finches (Taeniopygia guttata) and observed that half of NCM neurons fire APs phasically in response to membrane depolarizations, while the rest fire transiently or tonically. Phasic neurons fired APs faster and with more temporal precision than tonic and transient neurons. These neurons had similar membrane resting potentials, but phasic neurons had lower membrane input resistance and time constant. Surprisingly phasic neurons did not express low-threshold VAKCs, which curtailed firing in phasic mammalian brainstem neurons, having similar VAKCs to other NCM neurons. The phasic firing was determined not by VAKCs, but by the potassium background leak conductances, which was more prominently expressed in phasic neurons, a result corroborated by pharmacological, dynamic-clamp, and modeling experiments. These results reveal a new role for leak currents in generating firing diversity in central neurons. PMID:26696830
Musical Sophistication and the Effect of Complexity on Auditory Discrimination in Finnish Speakers.
Dawson, Caitlin; Aalto, Daniel; Šimko, Juraj; Vainio, Martti; Tervaniemi, Mari
2017-01-01
Musical experiences and native language are both known to affect auditory processing. The present work aims to disentangle the influences of native language phonology and musicality on behavioral and subcortical sound feature processing in a population of musically diverse Finnish speakers as well as to investigate the specificity of enhancement from musical training. Finnish speakers are highly sensitive to duration cues since in Finnish, vowel and consonant duration determine word meaning. Using a correlational approach with a set of behavioral sound feature discrimination tasks, brainstem recordings, and a musical sophistication questionnaire, we find no evidence for an association between musical sophistication and more precise duration processing in Finnish speakers either in the auditory brainstem response or in behavioral tasks, but they do show an enhanced pitch discrimination compared to Finnish speakers with less musical experience and show greater duration modulation in a complex task. These results are consistent with a ceiling effect set for certain sound features which corresponds to the phonology of the native language, leaving an opportunity for music experience-based enhancement of sound features not explicitly encoded in the language (such as pitch, which is not explicitly encoded in Finnish). Finally, the pattern of duration modulation in more musically sophisticated Finnish speakers suggests integrated feature processing for greater efficiency in a real world musical situation. These results have implications for research into the specificity of plasticity in the auditory system as well as to the effects of interaction of specific language features with musical experiences.
Musical Sophistication and the Effect of Complexity on Auditory Discrimination in Finnish Speakers
Dawson, Caitlin; Aalto, Daniel; Šimko, Juraj; Vainio, Martti; Tervaniemi, Mari
2017-01-01
Musical experiences and native language are both known to affect auditory processing. The present work aims to disentangle the influences of native language phonology and musicality on behavioral and subcortical sound feature processing in a population of musically diverse Finnish speakers as well as to investigate the specificity of enhancement from musical training. Finnish speakers are highly sensitive to duration cues since in Finnish, vowel and consonant duration determine word meaning. Using a correlational approach with a set of behavioral sound feature discrimination tasks, brainstem recordings, and a musical sophistication questionnaire, we find no evidence for an association between musical sophistication and more precise duration processing in Finnish speakers either in the auditory brainstem response or in behavioral tasks, but they do show an enhanced pitch discrimination compared to Finnish speakers with less musical experience and show greater duration modulation in a complex task. These results are consistent with a ceiling effect set for certain sound features which corresponds to the phonology of the native language, leaving an opportunity for music experience-based enhancement of sound features not explicitly encoded in the language (such as pitch, which is not explicitly encoded in Finnish). Finally, the pattern of duration modulation in more musically sophisticated Finnish speakers suggests integrated feature processing for greater efficiency in a real world musical situation. These results have implications for research into the specificity of plasticity in the auditory system as well as to the effects of interaction of specific language features with musical experiences. PMID:28450829
A Novel Method of Brainstem Auditory Evoked Potentials Using Complex Verbal Stimuli
Kouni, Sophia N; Koutsojannis, Constantinos; Ziavra, Nausika; Giannopoulos, Sotirios
2014-01-01
Background: The click and tone-evoked auditory brainstem responses are widely used in clinical practice due to their consistency and predictability. More recently, the speech-evoked responses have been used to evaluate subcortical processing of complex signals, not revealed by responses to clicks and tones. Aims: Disyllable stimuli corresponding to familiar words can induce a pattern of voltage fluctuations in the brain stem resulting in a familiar waveform, and they can yield better information about brain stem nuclei along the ascending central auditory pathway. Materials and Methods: We describe a new method with the use of the disyllable word “baba” corresponding to English “daddy” that is commonly used in many other ethnic languages spanning from West Africa to the Eastern Mediterranean all the way to the East Asia. Results: This method was applied in 20 young adults institutionally diagnosed as dyslexic (10 subjects) or light dyslexic (10 subjects) who were matched with 20 sex, age, education, hearing sensitivity, and IQ-matched normal subjects. The absolute peak latencies of the negative wave C and the interpeak latencies of A-C elicited by verbal stimuli “baba” were found to be significantly increased in the dyslexic group in comparison with the control group. Conclusions: The method is easy and helpful to diagnose abnormalities affecting the auditory pathway, to identify subjects with early perception and cortical representation abnormalities, and to apply the suitable therapeutic and rehabilitation management. PMID:25210677
Parreira, Gabriela Machado; Resende, Maria Daniela Aparecida; Garcia, Israel José Pereira; Sartori, Daniela Bueno; Umeoka, Eduardo Henrique de Lima; Godoy, Lívea Dornela; Garcia-Cairasco, Norberto; Barbosa, Leandro Augusto; Santos, Hérica de Lima; Tilelli, Cristiane Queixa
2018-01-15
The Wistar Audiogenic Rat (WAR) is a well-characterized seizure-prone, inbred rodent strain that, when acutely stimulated with high-intensity sounds, develops brainstem-dependent tonic-clonic seizures that can evolve to limbic-like, myoclonic (forebrain) seizures when the acoustic stimuli are presented chronically (audiogenic kindling). In order to investigate possible mechanisms underlying WAR susceptibility to seizures, we evaluated Na,K-ATPase activity, Ca-ATPase activity, Mg-ATPase activity, lipid membrane composition and oxidative stress markers in whole forebrain and whole brainstem samples of naïve WAR, as compared to samples from control Wistar rats. We also evaluated the expression levels of α1 and α3 isoforms of Na,K-ATPase in forebrain samples. We observed increased Na,K-ATPase activity in forebrain samples and increased oxidative stress markers (lipid peroxidation, glutathione peroxidase and superoxide dismutase) in brainstem samples of WAR. The Ca-ATPase activity, Mg-ATPase activity, lipid membrane composition and expression levels of α1 and α3 isoforms of Na,K-ATPase were unaltered. In view of previous data showing that the membrane potentials from naïve WAR's neurons are less negative than that from neurons from Wistar rats, we suggest that Na,K-ATPase increased activity might be involved in a compensatory mechanism necessary to maintain WAR's brains normal activity. Additionally, ongoing oxidative stress in the brainstem could bring Na,K-ATPase activity back to normal levels, which may explain why WAR's present increased susceptibility to seizures triggered by high-intensity sound stimulation. Copyright © 2017 Elsevier B.V. All rights reserved.
Wahlström, Viktor; Åhlander, Fredrik; Wynn, Rolf
2015-02-12
Psychiatric disorders, such as schizophrenia, attention deficit hyperactivity disorder (ADHD), and bipolar disorder, may sometimes be difficult to diagnose. There is a great need for a valid and reliable diagnostic tool to aid clinicians in arriving at the diagnoses in a timely and accurate manner. Prior studies have suggested that patients suffering from schizophrenia and ADHD may process certain sound stimuli in the brainstem in an unusual manner. When these patient groups have been examined with the electrophysiological method of brainstem audiometry, some studies have found illness-specific aberrations. Such aberrations may also exist for patients suffering from bipolar disorder. In this study, we will examine whether the method of brainstem audiometry can be used as a diagnostic tool for patients suffering from schizophrenia, ADHD, and bipolar disorder. The method includes three steps: (1) auditory stimulation with specific sound stimuli, (2) simultaneous measurement of brainstem activity, and (3) automated interpretation of the resulting brain stem audiograms with data-based signal analysis. We will compare three groups of 12 individuals with confirmed diagnoses of schizophrenia, ADHD, or bipolar disorder with 12 healthy subjects under blinded conditions for a total of 48 participants. The extent to which the method can be used to reach the correct diagnosis will be investigated. The project is now in a recruiting phase. When all patients and controls have been recruited and the measurements have been performed, the data will be analyzed according to a previously arranged algorithm. We expect the recruiting phase and measurements to be completed in early 2015, the analyses to be performed in mid-2015, and the results of the study to be published in early 2016. If the results support previous findings, this will lend strength to the idea that brainstem audiometry can offer objective diagnostic support for patients suffering from schizophrenia, ADHD, and bipolar disorder. A positive result from the study could imply that brainstem audiometry could become an important supportive tool for clinicians in their efforts to diagnose patients with these disorders in a timely and accurate manner. ClinicalTrials.gov NCT01629355; https://clinicaltrials.gov/ct2/show/NCT01629355 (Archived by WebCite at http://www.webcitation.org/6VBfTwx5H).
Neonatal brainstem dysfunction risks infant social engagement
Sopher, Koreen; Kurtzman, Lea; Galili, Giora; Feldman, Ruth; Kuint, Jacob
2013-01-01
The role of the brainstem in mediating social signaling in phylogenetic ancestral organisms has been demonstrated. Evidence for its involvement in social engagement in human infants may deepen the understanding of the evolutionary pathway of humans as social beings. In this longitudinal study, neonatal brainstem functioning was measured by auditory brainstem-evoked responses (ABRs) in 125 healthy neonates born prematurely before 35 weeks’ gestational age. At 4 months, infants were tested in a set of structured vignettes that required varying levels of social engagement and cardiac vagal tone was assessed. Data show that neonates with a disrupted I–V waveform, evident mostly by delayed wave V, exhibit shorter latencies to gaze averts in episodes involving direct face-to-face interactions but engage gaze as controls when interacting with masked agents or with agents whose faces are partly veiled by toys. Analysis of variance of infants’ social engagement with ABR, neonatal risk, maternal stress and cardiac vagal tone showed a main effect for ABR and an ABR by gestational age interaction. The integrity of brainstem transmission of sensory information during the final weeks of gestation may scaffold the development of social disengagement, thereby attesting to the brainstem's preserved evolutionary role in developing humans as social organisms prior to engaging in social encounters. PMID:22146141
Krishnan, Ananthanarayan; Suresh, Chandan H.; Gandour, Jackson T.
2017-01-01
Language experience shapes encoding of pitch-relevant information at both brainstem and cortical levels of processing. Pitch height is a salient dimension that orders pitch from low to high. Herein we investigate the effects of language experience (Chinese, English) in the brainstem and cortex on i) neural responses to variations in pitch height, ii) presence of asymmetry in cortical pitch representation, and iii) patterns of relative changes in magnitude of pitch height between these two levels of brain structure. Stimuli were three nonspeech homologs of Mandarin Tone 2 varying in pitch height only. The frequency-following response (FFR) and the cortical pitch-specific response (CPR) were recorded concurrently. At the Fz-linked T7/T8 site, peak latency of Na, Pb, and Nb decreased with increasing pitch height for both groups. Peak-to-peak amplitude of Na–Pb and Pb–Nb increased with increasing pitch height across groups. A language-dependent effect was restricted to Na-Pb; the Chinese had larger amplitude than the English group. At temporal sites (T7/T8), the Chinese group had larger amplitude, as compared to English, across stimuli, but also limited to the Na-Pb component and right temporal site. In the brainstem, F0 magnitude decreased with increasing pitch height; Chinese had larger magnitude across stimuli. A comparison of CPR and FFR responses revealed distinct patterns of relative changes in magnitude common to both groups. CPR amplitude increased and FFR amplitude decreased with increasing pitch height. Experience-dependent effects on CPR components vary as a function of neural sensitivity to pitch height within a particular temporal window (Na–Pb). Differences between the auditory brainstem and cortex imply distinct neural mechanisms for pitch extraction at both levels of brain structure. PMID:28108254
Krishnan, Ananthanarayan; Suresh, Chandan H; Gandour, Jackson T
2017-03-27
Language experience shapes encoding of pitch-relevant information at both brainstem and cortical levels of processing. Pitch height is a salient dimension that orders pitch from low to high. Herein we investigate the effects of language experience (Chinese, English) in the brainstem and cortex on (i) neural responses to variations in pitch height, (ii) presence of asymmetry in cortical pitch representation, and (iii) patterns of relative changes in magnitude of pitch height between these two levels of brain structure. Stimuli were three nonspeech homologs of Mandarin Tone 2 varying in pitch height only. The frequency-following response (FFR) and the cortical pitch-specific response (CPR) were recorded concurrently. At the Fz-linked T7/T8 site, peak latency of Na, Pb, and Nb decreased with increasing pitch height for both groups. Peak-to-peak amplitude of Na-Pb and Pb-Nb increased with increasing pitch height across groups. A language-dependent effect was restricted to Na-Pb; the Chinese had larger amplitude than the English group. At temporal sites (T7/T8), the Chinese group had larger amplitude, as compared to English, across stimuli, but also limited to the Na-Pb component and right temporal site. In the brainstem, F0 magnitude decreased with increasing pitch height; Chinese had larger magnitude across stimuli. A comparison of CPR and FFR responses revealed distinct patterns of relative changes in magnitude common to both groups. CPR amplitude increased and FFR amplitude decreased with increasing pitch height. Experience-dependent effects on CPR components vary as a function of neural sensitivity to pitch height within a particular temporal window (Na-Pb). Differences between the auditory brainstem and cortex imply distinct neural mechanisms for pitch extraction at both levels of brain structure. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Study of the protective effect of dexamethasone on cisplatin-induced ototoxicity in rats.
Capelo, Isabelle Oliveira Jatai; Batista, Avner Marcos Alves; Brito, Yuri Neyson Ferreira; Diniz, Krissia Braga; Brito, Gerly Anne de Castro; Freitas, Marcos Rabelo de
2017-10-01
To evaluate the ability of dexamethasone to protect against cisplatin (CDDP)-induced ototoxicity. Male Wistar rats were divided into the following three groups: 1) Control (C): 6 animals received intraperitoneal (IP) saline solution, 8 ml/kg/day for four days; 2) C + CDDP: 11 animals received 8 ml/kg/day of IP saline and, 90 min after saline administration, 8 mg/kg/day of IP CDDP for four days; and 3) DEXA15 + CDDP: 11 animals received IP dexamethasone 15 mg/kg/day and, 90 min after dexamethasone administration, received 8 mg/kg/day of IP CDDP for four days. It was found that dexamethasone did not protect against weight loss in CDDP-exposed animals. The mortality rate was comparable with that previously reported in the literature. The auditory threshold of animals in the DEXA15 + CDDP group was not significantly altered after exposure to CDDP. The stria vascularis of animals in the DEXA15 + CDDP group was partially preserved after CDDP exposure. Dexamethasone at the dose of 15 mg/kg/day partially protected against CDDP-induced ototoxicity, based on functional evaluation by brainstem evoked response audiontry (BERA) and morphological evaluation by optical microscopy. However, dexamethasone did not protect against systemic toxicity.
Killer whale (Orcinus orca) hearing: auditory brainstem response and behavioral audiograms.
Szymanski, M D; Bain, D E; Kiehl, K; Pennington, S; Wong, S; Henry, K R
1999-08-01
Killer whale (Orcinus orca) audiograms were measured using behavioral responses and auditory evoked potentials (AEPs) from two trained adult females. The mean auditory brainstem response (ABR) audiogram to tones between 1 and 100 kHz was 12 dB (re 1 mu Pa) less sensitive than behavioral audiograms from the same individuals (+/- 8 dB). The ABR and behavioral audiogram curves had shapes that were generally consistent and had the best threshold agreement (5 dB) in the most sensitive range 18-42 kHz, and the least (22 dB) at higher frequencies 60-100 kHz. The most sensitive frequency in the mean Orcinus audiogram was 20 kHz (36 dB), a frequency lower than many other odontocetes, but one that matches peak spectral energy reported for wild killer whale echolocation clicks. A previously reported audiogram of a male Orcinus had greatest sensitivity in this range (15 kHz, approximately 35 dB). Both whales reliably responded to 100-kHz tones (95 dB), and one whale to a 120-kHz tone, a variation from an earlier reported high-frequency limit of 32 kHz for a male Orcinus. Despite smaller amplitude ABRs than smaller delphinids, the results demonstrated that ABR audiometry can provide a useful suprathreshold estimate of hearing range in toothed whales.
Visual and brainstem auditory evoked potentials in children with obesity.
Akın, Onur; Arslan, Mutluay; Akgün, Hakan; Yavuz, Süleyman Tolga; Sarı, Erkan; Taşçılar, Mehmet Emre; Ulaş, Ümit Hıdır; Yeşilkaya, Ediz; Ünay, Bülent
2016-03-01
The aim of our study is to investigate alterations in visual evoked potentials (VEP) and brainstem auditory evoked potentials (BAEP) in children with obesity. A total of 96 children, with a mean age of 12.1±2.0 years (range 9-17 years, 63 obese and 33 age and sex-matched control subjects) were included in the study. Laboratory tests were performed to detect insulin resistance (IR) and dyslipidemia. The latencies and amplitudes of VEP and BAEP were measured in healthy and obese subjects. The VEP P100, BAEP interpeak latency (IPL) I-III and IPL I-V averages of obese children were significantly longer than the control subjects. When the obese group was divided into two subgroups, those with IR and without IR, BAEP wave I, wave III and P100 wave latencies were found to be longer in the group with IR. A statistically significant correlation was observed between BAEP wave I latency, IPL I-V, IPL I-III and the homeostatic model assessment insulin resistance (HOMA IR) index and fasting insulin level. Our findings suggest that VEP and BAEP can be used to determine early subclinical on auditory and visual functions of obese children with insulin resistance. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Auditory brainstem responses to stop consonants predict literacy.
Neef, Nicole E; Schaadt, Gesa; Friederici, Angela D
2017-03-01
Precise temporal coding of speech plays a pivotal role in sound processing throughout the central auditory system, which, in turn, influences literacy acquisition. The current study tests whether an electrophysiological measure of this precision predicts literacy skills. Complex auditory brainstem responses were analysed from 62 native German-speaking children aged 11-13years. We employed the cross-phaseogram approach to compute the quality of the electrophysiological stimulus contrast [da] and [ba]. Phase shifts were expected to vary with literacy. Receiver operating curves demonstrated a feasible sensitivity and specificity of the electrophysiological measure. A multiple regression analysis resulted in a significant prediction of literacy by delta cross-phase as well as phonological awareness. A further commonality analysis separated a unique variance that was explained by the physiological measure, from a unique variance that was explained by the behavioral measure, and common effects of both. Despite multicollinearities between literacy, phonological awareness, and subcortical differentiation of stop consonants, a combined assessment of behavior and physiology strongly increases the ability to predict literacy skills. The strong link between the neurophysiological signature of sound encoding and literacy outcome suggests that the delta cross-phase could indicate the risk of dyslexia and thereby complement subjective psychometric measures for early diagnoses. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Shah, Parth V; Kozin, Elliott D; Kaplan, Alyson B; Lee, Daniel J
2016-01-01
The auditory brainstem implant (ABI) is a neuroprosthetic device that provides sound sensations to individuals with profound hearing loss who are not candidates for a cochlear implant (CI) because of anatomic constraints. Herein we describe the ABI for family physicians. PubMed was searched to identify articles relevant to the ABI, as well as articles that contain outcomes data for pediatric patients (age <18 years) who have undergone ABI surgery. The ABI was originally developed for patients with neurofibromatosis type 2 (NF2) who become deaf from bilateral vestibular schwannomas. Over the past decade, indications for an ABI have expanded to adult patients without tumors (without NF2) who cannot receive a CI and children with no cochlea or cochlear nerve. Outcomes among NF2 ABI users are modest compared to cochlear implant patients, but recent studies from Europe suggest that some non-tumor adult and pediatric ABI users achieve speech perception. The ABI is a reasonable surgical option for children with profound hearing loss due to severe cochlear or cochlear nerve deformities. Continued prospective data collection from several clinical trials in the U.S. will provide greater understanding on long term outcomes that focus on speech intelligibility. © Copyright 2016 by the American Board of Family Medicine.
[Detection of auditory impairment in the offsprings caused by drug treatment of the dams].
Kameyama, T; Nabeshima, T; Itoh, J
1982-12-01
To study the auditory impairment induced by prenatal administration of aminoglycosides in the offspring, the shuttle box method to measure the auditory threshold of rats (Kameyama et al., Folia pharmacol. japon. 77, 15, 1981) was employed. Four groups of pregnant rats were administered 200 mg/kg kanamycin sulfate (KM), 200 mg/kg dihydrostreptomycin sulfate (DHSM), 100 mg/kg neomycin sulfate (NM), or 1 ml/kg saline intramuscularly from the 10th to the 19th day of pregnancy. The auditory threshold of the offspring could be measured by the shuttle box method in about 90% of the live born rats at the age of 100 days. The auditory thresholds of the groups were as follows (mean +/- S.E.): saline group, 53.8 +/- 0.6 dB (N = 36); KM group, 63.8 +/- 1.1 dB (N = 34); DHSM group, 60.0 +/- 1.2 dB (N = 29); NM group, 62.4 +/- 1.2 dB (N = 24). Auditory thresholds of drug-treated groups were significantly higher than that of the saline group. However, no increase in the auditory threshold of the mother rat was detected after treatment with aminoglycosides. In addition, the experimental procedure of the shuttle box method is very easy, and the auditory threshold of a large number of rats could be measured in a short period. These findings suggest that this method is a very useful one for screening for auditory impairment induced by prenatal drug treatment in rat offspring.
Tekes, Kornélia; Gyenge, Melinda; Sótonyi, Péter; Csaba, György
2009-04-01
Noradrenaline (NA), dopamine (DA), homovanillic acid (HA), serotonin (5HT) and 5-hydroxyindole acetic acid (5HIAA) content of five brain regions (hypothalamus, hippocampus, brainstem, striatum and frontal cortex) and the cerebrospinal fluid (CSF) was measured in adult (three months old) male and female rats treated neonatally with a single dose of 10 microg nociceptin (NC) or 10 microg nocistatin (NS) for hormonal imprinting. The biogenic amine and metabolite content of cerebrospinal fluid was also determined. In NC treated animals the serotonergic, dopaminergic as well as noradrenergic systems were influenced by the imprinting. The 5HT level increased in hypothalamus, the 5HIAA tissue levels were found increased in hypothalamus. Hippocampus and striatum and the HVA levels increased highly significantly in brainstem. Dopamine level decreased significantly in striatum, however in frontal cortex both noradrenalin and 5HIAA level decreased. Nevertheless, in NS-treated rats decreased NA tissue levels were found in hypothalamus, brainstem and frontal cortex. Decreased DA levels were found in the hypothalamus, brainstem and striatum. NS imprinting resulted in decreased HVA level, but increased one in the brainstem. The 5HT levels decreased in the hypothalamus, brainstem, striatum and frontal cortex, while 5HIAA content of CSF, and frontal cortex decreased, and that of hypothalamus, hippocampus and striatum increased. There was no significant difference between genders except in the 5HT tissue levels of NC treated rats. Data presented show that neonatal imprinting both by NC and NS have long-lasting and brain area specific effects. In earlier experiments endorphin imprinting also influenced the serotonergic system suggesting that during labour release of pain-related substances may durably affect the serotonergic (dopaminergic, adrenergic) system which can impress the animals' later behavior.
Subcortical processing of speech regularities underlies reading and music aptitude in children.
Strait, Dana L; Hornickel, Jane; Kraus, Nina
2011-10-17
Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input. Definition of common biological underpinnings for music and reading supports the usefulness of music for promoting child literacy, with the potential to improve reading remediation.
Threshold changes of ABR results in toddlers and children.
Louza, Julia; Polterauer, Daniel; Wittlinger, Natalie; Muzaini, Hanan Al; Scheckinger, Siiri; Hempel, Martin; Schuster, Maria
2016-06-01
Auditory brainstem response (ABR) is a clinically established method to identify the hearing threshold in young children and is regularly performed after hearing screening has failed. Some studies have shown that, after the first diagnosis of hearing impairment in ABR, further development takes place in a spectrum between progression of hearing loss and, surprisingly, hearing improvement. The aim of this study is to evaluate changes over time of auditory thresholds measured by ABR among young children. For this retrospective study, 459 auditory brainstem measurements were performed and analyzed between 2010 and 2014. Hearing loss was detected and assessed according to national guidelines. 104 right ears and 101 left ears of 116 children aged between 0 and 3 years with multiple ABR measurements were included. The auditory threshold was identified using click and/or NB-chirp-stimuli in natural sleep or in general anesthesia. The frequency of differences of at least more than 10dB between the measurements was identified. In 37 (35%) measurements of right ears and 38 (38%) of left ears there was an improvement of the auditory threshold of more than 10dB; in 27 of those measurements more than 20dB improvement was found. Deterioration was seen in 12% of the right ears and 10% of the left ears. Only half of the children had stable hearing thresholds in repeated measurements. The time between the measurements was on average 5 months (0 to 31 months). Hearing threshold changes are often seen in repeated ABR measurements. Therefore multiple measurements are necessary when ABR yields abnormal. Hearing threshold changes should be taken into account for hearing aid provision. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Pérez, Miguel Ángel; Pérez-Valenzuela, Catherine; Rojas-Thomas, Felipe; Ahumada, Juan; Fuenzalida, Marco; Dagnino-Subiabre, Alexies
2013-08-29
Chronic stress induces dendritic atrophy in the rat primary auditory cortex (A1), a key brain area for auditory attention. The aim of this study was to determine whether repeated restraint stress affects auditory attention and synaptic transmission in A1. Male Sprague-Dawley rats were trained in a two-alternative choice task (2-ACT), a behavioral paradigm to study auditory attention in rats. Trained animals that reached a performance over 80% of correct trials in the 2-ACT were randomly assigned to control and restraint stress experimental groups. To analyze the effects of restraint stress on the auditory attention, trained rats of both groups were subjected to 50 2-ACT trials one day before and one day after of the stress period. A difference score was determined by subtracting the number of correct trials after from those before the stress protocol. Another set of rats was used to study the synaptic transmission in A1. Restraint stress decreased the number of correct trials by 28% compared to the performance of control animals (p < 0.001). Furthermore, stress reduced the frequency of spontaneous inhibitory postsynaptic currents (sIPSC) and miniature IPSC in A1, whereas glutamatergic efficacy was not affected. Our results demonstrate that restraint stress decreased auditory attention and GABAergic synaptic efficacy in A1. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Current understanding of auditory neuropathy.
Boo, Nem-Yun
2008-12-01
Auditory neuropathy is defined by the presence of normal evoked otoacoustic emissions (OAE) and absent or abnormal auditory brainstem responses (ABR). The sites of lesion could be at the cochlear inner hair cells, spiral ganglion cells of the cochlea, synapse between the inner hair cells and auditory nerve, or the auditory nerve itself. Genetic, infectious or neonatal/perinatal insults are the 3 most commonly identified underlying causes. Children usually present with delay in speech and language development while adult patients present with hearing loss and disproportionately poor speech discrimination for the degree of hearing loss. Although cochlear implant is the treatment of choice, current evidence show that it benefits only those patients with endocochlear lesions, but not those with cochlear nerve deficiency or central nervous system disorders. As auditory neuropathy is a disorder with potential long-term impact on a child's development, early hearing screen using both OAE and ABR should be carried out on all newborns and infants to allow early detection and intervention.
Gopal, Kamakshi V; Thomas, Binu P; Mao, Deng; Lu, Hanzhang
2015-03-01
Tinnitus, or ringing in the ears, is an extremely common ear disorder. However, it is a phenomenon that is very poorly understood and has limited treatment options. The goals of this case study were to identify if the antioxidant acetyl-L-carnitine (ALCAR) provides relief from tinnitus, and to identify if subjective satisfaction after carnitine treatment is accompanied by changes in audiological and imaging measures. Case Study. A 41-yr-old female with a history of hearing loss and tinnitus was interested in exploring the benefits of antioxidant therapy in reducing her tinnitus. The patient was evaluated using a standard audiological/tinnitus test battery and magnetic resonance imaging (MRI) recordings before carnitine treatment. After her physician's approval, the patient took 500 mg of ALCAR twice a day for 30 consecutive days. The audiological and MRI measures were repeated after ALCAR treatment. Pure-tone audiometry, tympanometry, distortion-product otoacoustic emissions, tinnitus questionnaires (Tinnitus Handicap Inventory and Tinnitus Reaction Questionnaire), auditory brainstem response, functional MRI (fMRI), functional connectivity MRI, and cerebral blood flow evaluations were conducted before intake of ALCAR and were repeated 30 days after ALCAR treatment. The patient's pretreatment pure-tone audiogram indicated a mild sensorineural hearing loss at 6 kHz in the right ear and 4 kHz in the left ear. Posttreatment evaluation indicated marginal improvement in the patient's pure-tone thresholds, but was sufficient to be classified as being clinically normal in both ears. Distortion-product otoacoustic emissions results showed increased overall emissions after ALCAR treatment. Subjective report from the patient indicated that her tinnitus was less annoying and barely noticeable during the day after treatment, and the posttreatment tinnitus questionnaire scores supported her statement. Auditory brainstem response peak V amplitude growth between stimulus intensity levels of 40-80 dB nHL indicated a reduction in growth for the posttreatment condition compared with the pretreatment condition. This was attributed to a possible active gating mechanism involving the auditory brainstem after ALCAR treatment. Posttreatment fMRI recordings in response to acoustic stimuli indicated a statistically significant reduction in brain activity in several regions of the brain, including the auditory cortex. Cerebral blood flow showed increased flow in the auditory cortex after treatment. The functional connectivity MRI indicated increased connectivity between the right and left auditory cortex, but a decrease in connectivity between the auditory cortex and some regions of the "default mode network," namely the medial prefrontal cortex and posterior cingulate cortex. The changes observed in the objective and subjective test measures after ALCAR treatment, along with the patient's personal observations, indicate that carnitine intake may be a valuable pharmacological option in the treatment of tinnitus. American Academy of Audiology.
Dogan, Remzi; Sjostrand, Alev Pektas; Yenıgun, Alper; Karatas, Ersin; Kocyigit, Abdurrahim; Ozturan, Orhan
2018-08-01
The objective of this study was to investigate the influence of Ginkgo Biloba in early treatment of noise induced hearing loss on expression of IL-6, IL-1 Beta, TNF-alfa, HSP-70, HSF-1 and COX-2 in the rat cochlea. Thirty two female rats were randomly divided into four groups (Acoustic Trauma, Ginkgo Biloba, Acoustic Trauma+Ginkgo Biloba, Non Treatment). Auditory brainstem response (ABR) was applied in all the groups. At the end of the study, IL-1Beta, IL-6, TNF-alpha, HSP-70, HSF-1 and COX-2 were studied in cochlear tissue with ELISA and Western blot analysis. There were significant increases in ABR values measured at days 1 and 7 compared to baseline values in Group 3. IL-1 Beta, IL-6 and TNF-alpha values were significantly higher in Group 1 than in the other groups. Whereas HSP-70 and HSF-1 values were found to be significantly lower in Group 1 compared to those in Group 2 and Group 3. COX-2 of Group 1 was significantly higher than the other groups. Ginkgo Biloba is helpful in the treatment of noise induced hearing loss and exerts its effect by inhibiting expression of IL-1 Beta, IL-6, TNF-alpha and COX-2 and increasing HSP-70 and HSF-1 values in rat cochlea. Copyright © 2017 Elsevier B.V. All rights reserved.
Melcher, J R; Guinan, J J; Knudson, I M; Kiang, N Y
1996-04-01
Brainstem regions involved in generating the brainstem auditory evoked potential (BAEP) were identified by examining the effects of lesions on the click-evoked BAEP in cats. An excitotoxin, kainic acid, was injected into various parts of the cochlear nucleus (CN) or into the superior olivary complex (SOC). The locations of the resulting lesions were correlated with the changes produced in the various extrema of the BAEP waveforms. The results indicate that: (1) the earliest BAEP extrema (P1, N1 (recorded between vertex and the earbar ipsilateral to the stimulus) and P1a, P1b, (vertex to contralateral earbar)) are generated by cells with somata peripheral to the CN; (2) P2 is primarily generated by posterior anteroventral CN (AVCNp) and anterior posteroventral CN (PVCNa) cells; (3) SOC, anterior anteroventral CN (AVCNa), AVCNp, and PVCNa cells are involved in generating P3; (4) AVCNa cells are the main CN cells involved in P4, N4, and P5 generation; (5) both ipsilateral and contralateral SOC cells have a role in generating monaurally evoked P4 and P5; and (6) P5 is generated by cells with characteristic frequencies below 10 kHz. From (2) and (4), it is clear that P2 and P4-P5 are generated by cells in distinct, parallel pathways.
Perception of speech in noise: neural correlates.
Song, Judy H; Skoe, Erika; Banai, Karen; Kraus, Nina
2011-09-01
The presence of irrelevant auditory information (other talkers, environmental noises) presents a major challenge to listening to speech. The fundamental frequency (F(0)) of the target speaker is thought to provide an important cue for the extraction of the speaker's voice from background noise, but little is known about the relationship between speech-in-noise (SIN) perceptual ability and neural encoding of the F(0). Motivated by recent findings that music and language experience enhance brainstem representation of sound, we examined the hypothesis that brainstem encoding of the F(0) is diminished to a greater degree by background noise in people with poorer perceptual abilities in noise. To this end, we measured speech-evoked auditory brainstem responses to /da/ in quiet and two multitalker babble conditions (two-talker and six-talker) in native English-speaking young adults who ranged in their ability to perceive and recall SIN. Listeners who were poorer performers on a standardized SIN measure demonstrated greater susceptibility to the degradative effects of noise on the neural encoding of the F(0). Particularly diminished was their phase-locked activity to the fundamental frequency in the portion of the syllable known to be most vulnerable to perceptual disruption (i.e., the formant transition period). Our findings suggest that the subcortical representation of the F(0) in noise contributes to the perception of speech in noisy conditions.
Shalash, Ali Soliman; Hassan, Dalia Mohamed; Elrassas, Hanan Hani; Salama, Mohamed Mosaad; Méndez-Hernández, Edna; Salas-Pacheco, José M.; Arias-Carrión, Oscar
2017-01-01
Degeneration of several brainstem nuclei has been long related to motor and non-motor symptoms (NMSs) of Parkinson’s disease (PD). Nevertheless, due to technical issues, there are only a few studies that correlate that association. Brainstem auditory-evoked potential (BAEP) and vestibular-evoked myogenic potential (VEMP) responses represent a valuable tool for brainstem assessment. Here, we investigated the abnormalities of BAEPs, ocular VEMPs (oVEMPs), and cervical VEMPs (cVEMPs) in patients with PD and its correlation to the motor and NMSs. Fifteen patients diagnosed as idiopathic PD were evaluated by Unified Parkinson’s Disease Rating Scale and its subscores, Hoehn and Yahr scale, Schwab and England scale, and Non-Motor Symptoms Scale. PD patients underwent pure-tone, speech audiometry, tympanometry, BAEP, oVEMPs, and cVEMPs, and compared to 15 age-matched control subjects. PD subjects showed abnormal BAEP wave morphology, prolonged absolute latencies of wave V and I–V interpeak latencies. Absent responses were the marked abnormality seen in oVEMP. Prolonged latencies with reduced amplitudes were seen in cVEMP responses. Rigidity and bradykinesia were correlated to the BAEP and cVEMP responses contralateral to the clinically more affected side. Contralateral and ipsilateral cVEMPs were significantly correlated to sleep (p = 0.03 and 0.001), perception (p = 0.03), memory/cognition (p = 0.025), and urinary scores (p = 0.03). The oVEMP responses showed significant correlations to cardiovascular (p = 0.01) and sexual dysfunctions (p = 0.013). PD is associated with BAEP and VEMP abnormalities that are correlated to the motor and some non-motor clinical characteristics. These abnormalities could be considered as potential electrophysiological biomarkers for brainstem dysfunction and its associated motor and non-motor features. PMID:28289399
Du, Zhengde; Yang, Yang; Hu, Yujuan; Sun, Yu; Zhang, Sulin; Peng, Wei; Zhong, Yi; Huang, Xiang; Kong, Weijia
2012-05-01
In humans, chronic dyslipidemia associated with elevated triglycerides may reduce auditory function. However, there is little evidence available in the literature concerning the effects of a long-term high-fat diet (HFD) on the inner ears of animals. The purpose of this study was to investigate the effect of 12 month-HFD on the inner ear of Sprague-Dawley rats and on the D-galactose (D-gal)-induced aging process in the inner ear. We found that 12 month-HFD markedly elevated the auditory brainstem response (ABR) threshold in the high-frequency region. The HFD significantly increased the generation of reactive oxygen species (ROS) and the expressions of NADPH oxidase (NOX) and the uncoupling proteins (UCP). Furthermore, an elevated accumulation of the mitochondrial DNA (mtDNA) common deletion (CD) and mitochondrial ultrastructural changes in the inner ear suggested that there was mitochondrial damage in response to the excessive fat intake. The expression level of cleaved caspase-3 and the number of terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end-labelling (TUNEL)-positive cells in the inner ear were increased by the HFD. The effects of D-gal on the inner ears were similar with 12 month-HFD. We found that rats receiving both the HFD and D-gal exhibited a greater shift in the ABR threshold, larger increases in the expression levels of NOX, UCP and cleaved caspase-3 and an increased number of TUNEL-positive cells in the inner ear. The present study demonstrated that HFD may induce oxidative stress, mitochondrial damage and apoptosis in the inner ear, and it provided evidence regarding the link between HFD and an increased risk of age-related hearing loss. Copyright © 2012 Elsevier B.V. All rights reserved.
Screening Procedures Used to Identify Children with Hearing Loss.
ERIC Educational Resources Information Center
Barringer, Donald G.; And Others
1993-01-01
Analysis of data on 1,404 young children with hearing losses indicated that 80% of the children were identified via informal hearing-screening procedures, such as parental suspicion and referral. Auditory brainstem response technology provided the lowest mean identification age. The study concludes that formal screening programs are not locating…
Hathway, G J; Koch, S; Low, L; Fitzgerald, M
2009-01-01
Brainstem–spinal cord connections play an essential role in adult pain processing, and the modulation of spinal pain network excitability by brainstem nuclei is known to contribute to hyperalgesia and chronic pain. Less well understood is the role of descending brainstem pathways in young animals when pain networks are more excitable and exposure to injury and stress can lead to permanent modulation of pain processing. Here we show that up to postnatal day 21 (P21) in the rat, the rostroventral medulla of the brainstem (RVM) exclusively facilitates spinal pain transmission but that after this age (P28 to adult), the influence of the RVM shifts to biphasic facilitation and inhibition. Graded electrical microstimulation of the RVM at different postnatal ages revealed a robust shift in the balance of descending control of both spinal nociceptive flexion reflex EMG activity and individual dorsal horn neuron firing properties, from excitation to inhibition, beginning after P21. The shift in polarity of descending control was also observed following excitotoxic lesions of the RVM in adult and P21 rats. In adults, RVM lesions decreased behavioural mechanical sensory reflex thresholds, whereas the same lesion in P21 rats increased thresholds. These data demonstrate, for the first time, the changing postnatal influence of the RVM in spinal nociception and highlight the central role of descending brainstem control in the maturation of pain processing. PMID:19403624
Electrophysiological measurement of human auditory function
NASA Technical Reports Server (NTRS)
Galambos, R.
1975-01-01
Knowledge of the human auditory evoked response is reviewed, including methods of determining this response, the way particular changes in the stimulus are coupled to specific changes in the response, and how the state of mind of the listener will influence the response. Important practical applications of this basic knowledge are discussed. Measurement of the brainstem evoked response, for instance, can state unequivocally how well the peripheral auditory apparatus functions. It might then be developed into a useful hearing test, especially for infants and preverbal or nonverbal children. Clinical applications of measuring the brain waves evoked 100 msec and later after the auditory stimulus are undetermined. These waves are clearly related to brain events associated with cognitive processing of acoustic signals, since their properties depend upon where the listener directs his attention and whether how long he expects the signal.
Chonchaiya, Weerasak; Tardif, Twila; Mai, Xiaoqin; Xu, Lin; Li, Mingyan; Kaciroti, Niko; Kileny, Paul R; Shao, Jie; Lozoff, Betsy
2013-03-01
Auditory processing capabilities at the subcortical level have been hypothesized to impact an individual's development of both language and reading abilities. The present study examined whether auditory processing capabilities relate to language development in healthy 9-month-old infants. Participants were 71 infants (31 boys and 40 girls) with both Auditory Brainstem Response (ABR) and language assessments. At 6 weeks and/or 9 months of age, the infants underwent ABR testing using both a standard hearing screening protocol with 30 dB clicks and a second protocol using click pairs separated by 8, 16, and 64-ms intervals presented at 80 dB. We evaluated the effects of interval duration on ABR latency and amplitude elicited by the second click. At 9 months, language development was assessed via parent report on the Chinese Communicative Development Inventory - Putonghua version (CCDI-P). Wave V latency z-scores of the 64-ms condition at 6 weeks showed strong direct relationships with Wave V latency in the same condition at 9 months. More importantly, shorter Wave V latencies at 9 months showed strong relationships with the CCDI-P composite consisting of phrases understood, gestures, and words produced. Likewise, infants who had greater decreases in Wave V latencies from 6 weeks to 9 months had higher CCDI-P composite scores. Females had higher language development scores and shorter Wave V latencies at both ages than males. Interestingly, when the ABR Wave V latencies at both ages were taken into account, the direct effects of gender on language disappeared. In conclusion, these results support the importance of low-level auditory processing capabilities for early language acquisition in a population of typically developing young infants. Moreover, the auditory brainstem response in this paradigm shows promise as an electrophysiological marker to predict individual differences in language development in young children. © 2012 Blackwell Publishing Ltd.
Cascella, Vincenza; Giordano, Pietro; Hatzopoulos, Stavros; Petruccelli, Joseph; Prosser, Silvano; Simoni, Edi; Astolfi, Laura; Fetoni, Annarita Rita; Skarżyński, Henryk; Martini, Alessandro
2012-01-01
Summary Background Data from animal studies show that antioxidants can compensate against noise-induced stress and sensory hair cell death. The aim of this study was to evaluate the otoprotection efficacy of various versions of orally administered Acuval 400® against noise damage in a rat animal model. Material/Methods Fifty-five Sprague Dawley rats were divided into 4 groups: A) noise-exposed animals; B) animals exposed to noise and treated with the Acuval; C) animals exposed to noise and treated with a combination of Coenzyme Q10 and Acuval; D) animals treated only with Acuval and Coenzyme Q10 and with no exposure to noise. All solutions were administered orally 5 times: 24 and 2 hrs prior to noise exposure, and then daily for 3 days. The auditory function was assessed by measuring auditory brainstem responses (ABR) in the range from 2 to 32 kHz at times =1, 7, 14 and 21 days after noise exposure. Results At low frequencies (click and 4 kHz) animals from both A and B groups showed significant threshold shifts in the majority of the tested frequencies and tested times. For the same frequencies, animals from group C presented threshold levels similar to those from group D. At frequencies ≥8 kHz the protective performance of the 2 Acuval groups is more clearly distinguished from the noise group A. At 32 kHz the 2 Acuval groups perform equally well in terms of otoprotection. Animals in Group D did not show any significant differences in the hearing threshold during the experiment. Conclusions The data of this study suggest that a solution containing Coenzyme Q10 and Acuval 400®, administered orally, protects from noise-induced hearing loss. PMID:22207104
Cascella, Vincenza; Giordano, Pietro; Hatzopoulos, Stavros; Petruccelli, Joseph; Prosser, Silvano; Simoni, Edi; Astolfi, Laura; Fetoni, Anna Rita; Skarżyński, Henryk; Martini, Alessandro
2012-01-01
Data from animal studies show that antioxidants can compensate against noise-induced stress and sensory hair cell death. The aim of this study was to evaluate the otoprotection efficacy of various versions of orally administered Acuval 400 against noise damage in a rat animal model. Fifty-five Sprague Dawley rats were divided into 4 groups: A) noise-exposed animals; B) animals exposed to noise and treated with the Acuval; C) animals exposed to noise and treated with a combination of Coenzyme Q10 and Acuval; D) animals treated only with Acuval and Coenzyme Q10 and with no exposure to noise. All solutions were administered orally 5 times: 24 and 2 hrs prior to noise exposure, and then daily for 3 days. The auditory function was assessed by measuring auditory brainstem responses (ABR) in the range from 2 to 32 kHz at times =1, 7, 14 and 21 days after noise exposure. At low frequencies (click and 4 kHz) animals from both A and B groups showed significant threshold shifts in the majority of the tested frequencies and tested times. For the same frequencies, animals from group C presented threshold levels similar to those from group D. At frequencies ≥ 8 kHz the protective performance of the 2 Acuval groups is more clearly distinguished from the noise group A. At 32 kHz the 2 Acuval groups perform equally well in terms of otoprotection. Animals in Group D did not show any significant differences in the hearing threshold during the experiment. The data of this study suggest that a solution containing Coenzyme Q10 and Acuval 400, administered orally, protects from noise-induced hearing loss.
Papp, Rege S; Palkovits, Miklós
2014-01-01
The projections from the dorsolateral hypothalamic area (DLH) to the lower brainstem have been investigated by using biotinylated dextran amine (BDA), an anterograde tracer in rats. The DLH can be divided into 3 areas (dorsomedial hypothalamus, perifornical area, lateral hypothalamic area), and further subdivided into 8 subdivisions. After unilateral stereotaxic injections of BDA into individual DLH subdivisions, the correct sites of injections were controlled histologically, and the distribution patterns of BDA-positive fibers were mapped on serial sections between the hypothalamus and spinal cord in 22 rats. BDA-labeled fibers were observable over 100 different brainstem areas, nuclei, or subdivisions. Injections into the 8 DLH subdivisions established distinct topographical patterns. In general, the density of labeled fibers was low in the lower brainstem. High density of fibers was seen only 4 of the 116 areas: in the lateral and ventrolateral parts of the periaqueductal gray, the Barrington's, and the pedunculopontine tegmental nuclei. All of the biogenic amine cell groups in the lower brainstem (9 noradrenaline, 3 adrenaline, and 9 serotonin cell groups) received labeled fibers, some of them from all, or at least 7 DLH subdivisions, mainly from perifornical and ventral lateral hypothalamic neurons. Some of the tegmental nuclei and nuclei of the reticular formation were widely innervated, although the density of the BDA-labeled fibers was generally low. No definitive descending BDA-positive pathway, but long-run solitaire BDA-labeled fibers were seen in the lower brainstem. These descending fibers joined some of the large tracts or fasciculi in the brainstem. The distribution pattern of BDA-positive fibers of DLH origin throughout the lower brainstem was comparable to patterns of previously published orexin- or melanin-concentrating hormone-immunoreactive fibers with somewhat differences.
Papp, Rege S.; Palkovits, Miklós
2014-01-01
The projections from the dorsolateral hypothalamic area (DLH) to the lower brainstem have been investigated by using biotinylated dextran amine (BDA), an anterograde tracer in rats. The DLH can be divided into 3 areas (dorsomedial hypothalamus, perifornical area, lateral hypothalamic area), and further subdivided into 8 subdivisions. After unilateral stereotaxic injections of BDA into individual DLH subdivisions, the correct sites of injections were controlled histologically, and the distribution patterns of BDA-positive fibers were mapped on serial sections between the hypothalamus and spinal cord in 22 rats. BDA-labeled fibers were observable over 100 different brainstem areas, nuclei, or subdivisions. Injections into the 8 DLH subdivisions established distinct topographical patterns. In general, the density of labeled fibers was low in the lower brainstem. High density of fibers was seen only 4 of the 116 areas: in the lateral and ventrolateral parts of the periaqueductal gray, the Barrington's, and the pedunculopontine tegmental nuclei. All of the biogenic amine cell groups in the lower brainstem (9 noradrenaline, 3 adrenaline, and 9 serotonin cell groups) received labeled fibers, some of them from all, or at least 7 DLH subdivisions, mainly from perifornical and ventral lateral hypothalamic neurons. Some of the tegmental nuclei and nuclei of the reticular formation were widely innervated, although the density of the BDA-labeled fibers was generally low. No definitive descending BDA-positive pathway, but long-run solitaire BDA-labeled fibers were seen in the lower brainstem. These descending fibers joined some of the large tracts or fasciculi in the brainstem. The distribution pattern of BDA-positive fibers of DLH origin throughout the lower brainstem was comparable to patterns of previously published orexin- or melanin-concentrating hormone-immunoreactive fibers with somewhat differences. PMID:24904303
Shishkina, G T; Kalinina, T S; Dygalo, N N
2012-07-01
Changes in gene expression of the brain serotonin (5-HT) 1A receptors may be important for the development and ameliorating depression, however identification of specific stimuli that activate or reduce the receptor transcriptional activity is far from complete. In the present study, the forced swim test (FST) exposure, the first stress session of which is already sufficient to induce behavioral despair in rats, significantly increased 5-HT1A receptor mRNA levels in the brainstem, frontal cortex, and hippocampus at 24 h. In the brainstem and frontal cortex, the elevation in the receptor gene expression after the second forced swim session was not affected following chronic administration of fluoxetine, while in the cortex, both control and FST values were significantly reduced in fluoxetine-treated rats. In contrast to untreated rats, no increase in hippocampal 5-HT1A receptor mRNA was observed in response to FST in rats chronically treated with fluoxetine. Metabolism of 5-HT (5-HIAA/5-HT) in the brainstem was significantly decreased by fluoxetine and further reduced by swim stress, showing a certain degree of independence of these changes on 5-HT1A receptor gene expression that was increased in this brain region only after the FST, but not after fluoxetine. FST exposure also decreased the brainstem dopamine metabolism, which was unexpectedly positively correlated with 5-HT1A receptor mRNA levels in the frontal cortex. Together, these data suggest that the effects of the forced swim stress as well as fluoxetine involve brain region-dependent alterations in 5-HT1A receptor gene transcription, some of which may be interrelated with concomitant changes in catecholamine metabolism.
Single electrode micro-stimulation of rat auditory cortex: an evaluation of behavioral performance.
Rousche, Patrick J; Otto, Kevin J; Reilly, Mark P; Kipke, Daryl R
2003-05-01
A combination of electrophysiological mapping, behavioral analysis and cortical micro-stimulation was used to explore the interrelation between the auditory cortex and behavior in the adult rat. Auditory discriminations were evaluated in eight rats trained to discriminate the presence or absence of a 75 dB pure tone stimulus. A probe trial technique was used to obtain intensity generalization gradients that described response probabilities to mid-level tones between 0 and 75 dB. The same rats were then chronically implanted in the auditory cortex with a 16 or 32 channel tungsten microwire electrode array. Implanted animals were then trained to discriminate the presence of single electrode micro-stimulation of magnitude 90 microA (22.5 nC/phase). Intensity generalization gradients were created to obtain the response probabilities to mid-level current magnitudes ranging from 0 to 90 microA on 36 different electrodes in six of the eight rats. The 50% point (the current level resulting in 50% detections) varied from 16.7 to 69.2 microA, with an overall mean of 42.4 (+/-8.1) microA across all single electrodes. Cortical micro-stimulation induced sensory-evoked behavior with similar characteristics as normal auditory stimuli. The results highlight the importance of the auditory cortex in a discrimination task and suggest that micro-stimulation of the auditory cortex might be an effective means for a graded information transfer of auditory information directly to the brain as part of a cortical auditory prosthesis.
Bodie, D; Bennett-Clarke, C A; Davis, K; Postelwaite, J P; Chiaia, N L; Rhoades, R W
1997-01-01
Previous experiments from this laboratory have indicated that transection of the infraorbital nerve (ION, the trigeminal [V] branch that supplies the mystacial vibrissae follicles) at birth and in adulthood has markedly different effects on galanin immunoreactivity in the V brainstem complex. Adult nerve transection increases galanin immunoreactivity in the superficial layers of V subnucleus caudalis (SpC) only, while neonatal nerve transection results in increased galanin expression in vibrissae-related primary afferents throughout the V brainstem complex. The present study describes the distribution of binding sites for this peptide in the mature and developing V ganglion and brainstem complex and determines the effects of neonatal and adult ION damage and the associated changes in galanin levels upon their distribution and density. Galanin binding sites are densely distributed in all V brainstem subnuclei and are particularly dense in V subnucleus interpolaris and the superficial layers of SpC. They are present at birth (P-0) and their distribution is similar to that in adult animals. Transection of the ION in adulthood and examination of brainstem 7 days later indicated marked reductions in the density of galanin binding sites in the V brainstem complex. With the exception of the superficial laminae of SpC, the same reduction in density remained apparent in rats that survived > 45 days after nerve cuts. Transection of the ION on P-0 resulted in no change in the density of galanin binding sites in the brainstem after either 7 or > 60 days survival. These results indicate that densely distributed galanin binding sites are present in the V brainstem complex of both neonatal and adult rats, that they are located in regions not innervated by galanin-positive axons, and that their density is not significantly influenced by large lesion-induced changes in the primary afferent content of their natural ligand.
The Potential Role of the cABR in Assessment and Management of Hearing Impairment
Anderson, Samira; Kraus, Nina
2013-01-01
Hearing aid technology has improved dramatically in the last decade, especially in the ability to adaptively respond to dynamic aspects of background noise. Despite these advancements, however, hearing aid users continue to report difficulty hearing in background noise and having trouble adjusting to amplified sound quality. These difficulties may arise in part from current approaches to hearing aid fittings, which largely focus on increased audibility and management of environmental noise. These approaches do not take into account the fact that sound is processed all along the auditory system from the cochlea to the auditory cortex. Older adults represent the largest group of hearing aid wearers; yet older adults are known to have deficits in temporal resolution in the central auditory system. Here we review evidence that supports the use of the auditory brainstem response to complex sounds (cABR) in the assessment of hearing-in-noise difficulties and auditory training efficacy in older adults. PMID:23431313
Neurobehavioral and Neurophysiological Assessment of Healthy and "At-Risk" Full-Term Infants.
ERIC Educational Resources Information Center
Eldredge, Lynnette; Salamy, Alan
1988-01-01
Study evaluates the functioning of the central nervous system (CNS) of 15 neonates born at-risk for neurological sequelae and 15 healthy controls. CNS information was generated through the use of two measures: (1) the Neurological and Adaptive Capacity Score (NACS) and the auditory brainstem response (ABR). (Author/RWB)
Kubota, Kazuo; Saito, Yoshiaki; Ohba, Chihiro; Saitsu, Hirotomo; Fukuyama, Tetsuhiro; Ishiyama, Akihiko; Saito, Takashi; Komaki, Hirofumi; Nakagawa, Eiji; Sugai, Kenji; Sasaki, Masayuki; Matsumoto, Naomichi
2015-01-01
A boy with spastic paraplegia type 2 (SPG2) due to a novel splice site mutation of PLP1 presented with progressive spasticity of lower limbs, which was first observed during late infancy, when he gained the ability to walk with support. His speech was slow and he had dysarthria. The patient showed mildly delayed intellectual development. Subtotal dysmyelination in the central nervous system was revealed, which was especially prominent in structures known to be myelinated during earlier period, whereas structures that are myelinated later were better myelinated. These findings on the brain magnetic resonance imaging were unusual for subjects with PLP1 mutations. Peaks I and II of the auditory brainstem response (ABR) were normally provoked, but peaks III-V were not clearly demarcated, similarly to the findings in Pelizaeus-Merzbacher disease. These findings of brain MRI and ABR may be characteristic for a subtype of SPG2 patients. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Mishra, Girish; Sharma, Yojana; Mehta, Kanishk; Patel, Gunjan
2013-04-01
Deafness is commonest curable childhood handicap. Most remedies and programmes don't address this issue at childhood level leading to detrimental impact on development of newborns. Aims and objectives are (A) screen all newborns for deafness and detect prevalence of deafness in children less than 2 years of age. and (B) assess efficacy of multi-staged OAE/ABR protocol for hearing screening. Non-randomized, prospective study from August 2008 to August 2011. All infants underwent a series of oto-acoustic emission (OAE) and final confirmatory auditory brainstem evoked response (ABR) audiometry. Finally, out of 1,101 children, 1,069 children passed the test while 12 children had impaired hearing after final testing, confirmed by ABR. Positive predictive value of OAE after multiple test increased to 100 %. OAE-ABR test series is effective in screening neonates and multiple tests reduce economic burden. High risk screening will miss nearly 50 % deaf children, thus universal screening is indispensable in picking early deafness.
Elberling, Claus; Don, Manuel
2010-01-01
A recent study evaluates auditory brainstem responses (ABRs) evoked by chirps of different durations (sweeping rates) [Elberling et al. (2010). J. Acoust. Soc. Am. 128, 215–223]. The study demonstrates that shorter chirps are most efficient at higher levels of stimulation whereas longer chirps are most efficient at lower levels. Mechanisms other than the traveling wave delay, in particular, upward spread of excitation and changes in cochlear-neural delay with level, are suggested to be responsible for these findings. As a consequence, delay models based on estimates of the traveling wave delay are insufficient for the design of chirp stimuli, and another delay model based on a direct approach is therefore proposed. The direct approach uses ABR-latencies from normal-hearing subjects in response to octave-band chirps over a wide range of levels. The octave-band chirps are constructed by decomposing a broad-band chirp, and constitute a subset of the chirp. The delay compensations of the proposed model are similar to those found in the previous experimental study, which thus verifies the results of the proposed model. PMID:21110591
Mitochondria-Targeted Antioxidant Mitoquinone Reduces Cisplatin-Induced Ototoxicity in Guinea Pigs.
Tate, Alan D; Antonelli, Patrick J; Hannabass, Kyle R; Dirain, Carolyn O
2017-03-01
Objective To determine if mitoquinone (MitoQ) attenuates cisplatin-induced hearing loss in guinea pigs. Study Design Prospective and controlled animal study. Setting Academic, tertiary medical center. Subjects and Methods Guinea pigs were injected subcutaneously with either 5 mg/kg MitoQ (n = 9) or normal saline (control, n = 9) for 7 days and 1 hour before receiving a single dose of 10 mg/kg cisplatin. Auditory brainstem response thresholds were measured before MitoQ or saline administration and 3 to 4 days after cisplatin administration. Results Auditory brainstem response threshold shifts after cisplatin treatment were smaller by 28 to 47 dB in guinea pigs injected with MitoQ compared with those in the control group at all tested frequencies (4, 8, 16, and 24 kHz, P = .0002 to .04). Scanning electron microscopy of cochlear hair cells showed less outer hair cell loss and damage in the MitoQ group. Conclusion MitoQ reduced cisplatin-induced hearing loss in guinea pigs. MitoQ appears worthy of further investigation as a means of preventing cisplatin ototoxicity in humans.
Auditory brainstem response in neonates: influence of gender and weight/gestational age ratio
Angrisani, Rosanna M. Giaffredo; Bautzer, Ana Paula D.; Matas, Carla Gentile; de Azevedo, Marisa Frasson
2013-01-01
OBJECTIVE: To investigate the influence of gender and weight/gestational age ratio on the Auditory Brainstem Response (ABR) in preterm (PT) and term (T) newborns. METHODS: 176 newborns were evaluated by ABR; 88 were preterm infants - 44 females (22 small and 22 appropriate for gestational age) and 44 males (22 small and 22 appropriate for gestational age). The preterm infants were compared to 88 term infants - 44 females (22 small and 22 appropriate for gestational age) and 44 males (22 small and 22 appropriate for gestational age). All newborns had bilateral presence of transient otoacoustic emissions and type A tympanometry. RESULTS: No interaural differences were found. ABR response did not differentiate newborns regarding weight/gestational age in males and females. Term newborn females showed statistically shorter absolute latencies (except on wave I) than males. This finding did not occur in preterm infants, who had longer latencies than term newborns, regardless of gender. CONCLUSIONS: Gender and gestational age influence term infants' ABR, with lower responses in females. The weight/gestational age ratio did not influence ABR response in either groups. PMID:24473955
Functional modeling of the human auditory brainstem response to broadband stimulationa)
Verhulst, Sarah; Bharadwaj, Hari M.; Mehraei, Golbarg; Shera, Christopher A.; Shinn-Cunningham, Barbara G.
2015-01-01
Population responses such as the auditory brainstem response (ABR) are commonly used for hearing screening, but the relationship between single-unit physiology and scalp-recorded population responses are not well understood. Computational models that integrate physiologically realistic models of single-unit auditory-nerve (AN), cochlear nucleus (CN) and inferior colliculus (IC) cells with models of broadband peripheral excitation can be used to simulate ABRs and thereby link detailed knowledge of animal physiology to human applications. Existing functional ABR models fail to capture the empirically observed 1.2–2 ms ABR wave-V latency-vs-intensity decrease that is thought to arise from level-dependent changes in cochlear excitation and firing synchrony across different tonotopic sections. This paper proposes an approach where level-dependent cochlear excitation patterns, which reflect human cochlear filter tuning parameters, drive AN fibers to yield realistic level-dependent properties of the ABR wave-V. The number of free model parameters is minimal, producing a model in which various sources of hearing-impairment can easily be simulated on an individualized and frequency-dependent basis. The model fits latency-vs-intensity functions observed in human ABRs and otoacoustic emissions while maintaining rate-level and threshold characteristics of single-unit AN fibers. The simulations help to reveal which tonotopic regions dominate ABR waveform peaks at different stimulus intensities. PMID:26428802
Hearing impairment in the P23H-1 retinal degeneration rat model
Sotoca, Jorge V.; Alvarado, Juan C.; Fuentes-Santamaría, Verónica; Martinez-Galan, Juan R.; Caminos, Elena
2014-01-01
The transgenic P23H line 1 (P23H-1) rat expresses a variant of rhodopsin with a mutation that leads to loss of visual function. This rat strain is an experimental model usually employed to study photoreceptor degeneration. Although the mutated protein should not interfere with other sensory functions, observing severe loss of auditory reflexes in response to natural sounds led us to study auditory brain response (ABR) recording. Animals were separated into different hearing levels following the response to natural stimuli (hand clapping and kissing sounds). Of all the analyzed animals, 25.9% presented auditory loss before 50 days of age (P50) and 45% were totally deaf by P200. ABR recordings showed that all the rats had a higher hearing threshold than the control Sprague-Dawley (SD) rats, which was also higher than any other rat strains. The integrity of the central and peripheral auditory pathway was analyzed by histology and immunocytochemistry. In the cochlear nucleus (CN), statistical differences were found between SD and P23H-1 rats in VGluT1 distribution, but none were found when labeling all the CN synapses with anti-Syntaxin. This finding suggests anatomical and/or molecular abnormalities in the auditory downstream pathway. The inner ear of the hypoacusic P23H-1 rats showed several anatomical defects, including loss and disruption of hair cells and spiral ganglion neurons. All these results can explain, at least in part, how hearing impairment can occur in a high percentage of P23H-1 rats. P23H-1 rats may be considered an experimental model with visual and auditory dysfunctions in future research. PMID:25278831
Pushpalatha, Zeena Venkatacheluvaiah; Konadath, Sreeraj
2016-01-01
Introduction: Encoding of CE-chirp and click stimuli in auditory system was studied using auditory brainstem responses (ABRs) among individuals with and without noise exposure. Materials and Methods: The study consisted of two groups. Group 1 (experimental group) consisted of 20 (40 ears) individuals exposed to occupational noise with hearing thresholds within 25 dB HL. They were further divided into three subgroups based on duration of noise exposure (0–5 years of exposure-T1, 5–10 years of exposure-T2, and >10 years of exposure-T3). Group 2 (control group) consisted of 20 individuals (40 ears). Absolute latency and amplitude of waves I, III, and V were compared between the two groups for both click and CE-chirp stimuli. T1, T2, and T3 groups were compared for the same parameters to see the effect of noise exposure duration on CE-chirp and click ABR. Result: In Click ABR, while both the parameters for wave III were significantly poorer for the experimental group, wave V showed a significant decline in terms of amplitude only. There was no significant difference obtained for any of the parameters for wave I. In CE-Chirp ABR, the latencies for all three waves were significantly prolonged in the experimental group. However, there was a significant decrease in terms of amplitude in only wave V for the same group. Discussion: Compared to click evoked ABR, CE-Chirp ABR was found to be more sensitive in comparison of latency parameters in individuals with occupational noise exposure. Monitoring of early pathological changes at the brainstem level can be studied effectively by using CE-Chirp stimulus in comparison to click stimulus. Conclusion: This study indicates that ABR's obtained with CE-chirp stimuli serves as an effective tool to identify the early pathological changes due to occupational noise exposure when compared to click evoked ABR. PMID:27762255
Binaural interaction in the auditory brainstem response: a normative study.
Van Yper, Lindsey N; Vermeire, Katrien; De Vel, Eddy F J; Battmer, Rolf-Dieter; Dhooge, Ingeborg J M
2015-04-01
Binaural interaction can be investigated using auditory evoked potentials. A binaural interaction component can be derived from the auditory brainstem response (ABR-BIC) and is considered evidence for binaural interaction at the level of the brainstem. Although click ABR-BIC has been investigated thoroughly, data on 500 Hz tone-burst (TB) ABR-BICs are scarce. In this study, characteristics of click and 500 Hz TB ABR-BICs are described. Furthermore, reliability of both click and 500 Hz TB ABR-BIC are investigated. Eighteen normal hearing young adults (eight women, ten men) were included. ABRs were recorded in response to clicks and 500 Hz TBs. ABR-BICs were derived by subtracting the binaural response from the sum of the monaural responses measured in opposite ears. Good inter-rater reliability is obtained for both click and 500 Hz TB ABR-BICs. The most reliable peak in click ABR-BIC occurs at a mean latency of 6.06 ms (SD 0.354 ms). Reliable 500 Hz TB ABR-BIC are obtained with a mean latency of 9.47 ms (SD 0.678 ms). Amplitudes are larger for 500 Hz TB ABR-BIC than for clicks. The most reliable peak in click ABR-BIC occurs at the downslope of wave V. Five hundred Hertz TB ABR-BIC is characterized by a broad positivity occurring at the level of wave V. The ABR-BIC is a useful technique to investigate binaural interaction in certain populations. Examples are bilateral hearing aid users, bilateral cochlear implant users and bimodal listeners. The latter refers to the combination of unilateral cochlear implantation and contralateral residual hearing. The majority of these patients have residual hearing in the low frequencies. The current study suggests that 500 Hz TB ABR-BIC may be a suitable technique to assess binaural interaction in this specific population of cochlear implant users. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Matas, Carla Gentile; Samelli, Alessandra Giannella; Magliaro, Fernanda Cristina Leite; Segurado, Aluisio
2017-08-02
The Human Immunodeficiency Virus (HIV) and infections related to it can affect multiple sites in the hearing system. The use of High-Activity Anti-Retroviral Therapy (HAART) can cause side effects such as ototoxicity. Thus, no consistent patterns of hearing impairment in adults with Human Immunodeficiency Virus / Acquired Immune Deficiency Syndrome have been established, and the problems that affect the hearing system of this population warrant further research. This study aimed to compare the audiological and electrophysiological data of Human Immunodeficiency Virus-positive patients with and without Acquired Immune Deficiency Syndrome, who were receiving High-Activity Anti-Retroviral Therapy, to healthy individuals. It was a cross-sectional study conducted with 71 subjects (30-48 years old), divided into groups: Research Group I: 16 Human Immunodeficiency Virus-positive individuals without Acquired Immunodeficiency Syndrome (not receiving antiretroviral treatment); Research Group II: 25 Human Immunodeficiency Virus-positive individuals with Acquired Immunodeficiency Syndrome (receiving antiretroviral treatment); Control Group: 30 healthy subjects. All individuals were tested by pure-tone air conduction thresholds at 0.25-8kHz, extended high frequencies at 9-20kHz, electrophysiological tests (Auditory Brainstem Response - ABR, Middle Latency Responses - MLR, Cognitive Potential - P300). Research Group I and Research Group II had higher hearing thresholds in both conventional and high frequency audiometry when compared to the control group, prolonged latency of waves I, III, V and interpeak I-V in Auditory Brainstem Response and prolonged latency of P300 Cognitive Potential. Regarding Middle Latency Responses, there was a decrease in the amplitude of the Pa wave of Research Group II compared to the Research Group I. Both groups with Human Immunodeficiency Virus had higher hearing thresholds when compared to healthy individuals (group exposed to antiretroviral treatment showed the worst hearing threshold) and seemed to have lower neuroelectric transmission speed along the auditory pathway in the brainstem, subcortical and cortical regions. Copyright © 2017. Published by Elsevier Editora Ltda.
Krishnan, Ananthanarayan; Bidelman, Gavin M; Smalt, Christopher J; Ananthakrishnan, Saradha; Gandour, Jackson T
2012-10-01
Neural representation of pitch-relevant information at both the brainstem and cortical levels of processing is influenced by language or music experience. However, the functional roles of brainstem and cortical neural mechanisms in the hierarchical network for language processing, and how they drive and maintain experience-dependent reorganization are not known. In an effort to evaluate the possible interplay between these two levels of pitch processing, we introduce a novel electrophysiological approach to evaluate pitch-relevant neural activity at the brainstem and auditory cortex concurrently. Brainstem frequency-following responses and cortical pitch responses were recorded from participants in response to iterated rippled noise stimuli that varied in stimulus periodicity (pitch salience). A control condition using iterated rippled noise devoid of pitch was employed to ensure pitch specificity of the cortical pitch response. Neural data were compared with behavioral pitch discrimination thresholds. Results showed that magnitudes of neural responses increase systematically and that behavioral pitch discrimination improves with increasing stimulus periodicity, indicating more robust encoding for salient pitch. Absence of cortical pitch response in the control condition confirms that the cortical pitch response is specific to pitch. Behavioral pitch discrimination was better predicted by brainstem and cortical responses together as compared to each separately. The close correspondence between neural and behavioral data suggest that neural correlates of pitch salience that emerge in early, preattentive stages of processing in the brainstem may drive and maintain with high fidelity the early cortical representations of pitch. These neural representations together contain adequate information for the development of perceptual pitch salience. Copyright © 2012 Elsevier Ltd. All rights reserved.
Aleman, M; Williams, D C; Guedes, A; Madigan, J E
2015-01-01
An overdose of pentobarbital sodium administered i.v. is the most commonly used method of euthanasia in veterinary medicine. Determining death after the infusion relies on the observation of physical variables. However, it is unknown when cortical electrical activity and brainstem function are lost in a sequence of events before death. To examine changes in the electrical activity of the cerebral cortex and brainstem during an overdose of pentobarbital sodium solution for euthanasia. Our testing hypothesis is that isoelectric pattern of the brain in support of brain death occurs before absence of electrocardiogram (ECG) activity. Fifteen horses requiring euthanasia. Prospective observational study. Horses with neurologic, orthopedic, and cardiac illnesses were selected and instrumented for recording of electroencephalogram, electrooculogram, brainstem auditory evoked response (BAER), and ECG. Physical and neurologic (brainstem reflexes) variables were monitored. Loss of cortical electrical activity occurred during or within 52 seconds after the infusion of euthanasia solution. Cessation of brainstem function as evidenced by a lack of brainstem reflexes and disappearance of the BAER happened subsequently. Despite undetectable heart sounds, palpable arterial pulse, and mean arterial pressure, recordable ECG was the last variable to be lost after the infusion (5.5-16 minutes after end of the infusion). Overdose of pentobarbital sodium solution administered i.v. is an effective, fast, and humane method of euthanasia. Brain death occurs within 73-261 seconds of the infusion. Although absence of ECG activity takes longer to occur, brain death has already occurred. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Auditory function in children with Charcot-Marie-Tooth disease.
Rance, Gary; Ryan, Monique M; Bayliss, Kristen; Gill, Kathryn; O'Sullivan, Caitlin; Whitechurch, Marny
2012-05-01
The peripheral manifestations of the inherited neuropathies are increasingly well characterized, but their effects upon cranial nerve function are not well understood. Hearing loss is recognized in a minority of children with this condition, but has not previously been systemically studied. A clear understanding of the prevalence and degree of auditory difficulties in this population is important as hearing impairment can impact upon speech/language development, social interaction ability and educational progress. The aim of this study was to investigate auditory pathway function, speech perception ability and everyday listening and communication in a group of school-aged children with inherited neuropathies. Twenty-six children with Charcot-Marie-Tooth disease confirmed by genetic testing and physical examination participated. Eighteen had demyelinating neuropathies (Charcot-Marie-Tooth type 1) and eight had the axonal form (Charcot-Marie-Tooth type 2). While each subject had normal or near-normal sound detection, individuals in both disease groups showed electrophysiological evidence of auditory neuropathy with delayed or low amplitude auditory brainstem responses. Auditory perception was also affected, with >60% of subjects with Charcot-Marie-Tooth type 1 and >85% of Charcot-Marie-Tooth type 2 suffering impaired processing of auditory temporal (timing) cues and/or abnormal speech understanding in everyday listening conditions.
Lamas, Verónica; Juiz, José M; Merchán, Miguel A
2017-03-01
The auditory cortex (AC) dynamically regulates responses of the Organ of Corti to sound through descending connections to both the medial (MOC) and lateral (LOC) olivocochlear efferent systems. We have recently provided evidence that AC has a reinforcement role in the responses to sound of the auditory brainstem nuclei. In a molecular level, we have shown that descending inputs from AC are needed to regulate the expression of molecules involved in outer hair cell (OHC) electromotility control, such as prestin and the α10 nicotinic acetylcholine receptor (nAchR). In this report, we show that descending connections from AC to olivocochlear neurons are necessary to regulate the expression of molecules involved in cochlear afferent signaling. RT-qPCR was performed in rats at 1, 7 and 15 days after unilateral ablation of the AC, and analyzed the time course changes in gene transcripts involved in neurotransmission at the first auditory synapse. This included the glutamate metabolism enzyme glutamate decarboxylase 1 (glud1) and AMPA glutamate receptor subunits GluA2-4. In addition, gene transcripts involved in efferent regulation of type I spiral ganglion neuron (SGN) excitability mediated by LOC, such as the α7 nAchR, the D2 dopamine receptor, and the α1, and γ2 GABAA receptor subunits, were also investigated. Unilateral AC ablation induced up-regulation of GluA3 receptor subunit transcripts, whereas both GluA2 and GluA4 mRNA receptors were down-regulated already at 1 day after the ablation. Unilateral removal of the AC also resulted in up-regulation of the transcripts for α7 nAchR subunit, D2 dopamine receptor, and α1 GABAA receptor subunit at 1 day after the ablation. Fifteen days after the injury, AC ablations induced an up-regulation of glud1 transcripts. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Adenosine Amine Congener as a Cochlear Rescue Agent
Vlajkovic, Srdjan M.; Chang, Hao; Paek, Song Yee; Chi, Howard H.-T.; Sreebhavan, Sreevalsan; Telang, Ravindra S.; Tingle, Malcolm; Housley, Gary D.; Thorne, Peter R.
2014-01-01
We have previously shown that adenosine amine congener (ADAC), a selective A1 adenosine receptor agonist, can ameliorate noise- and cisplatin-induced cochlear injury. Here we demonstrate the dose-dependent rescue effects of ADAC on noise-induced cochlear injury in a rat model and establish the time window for treatment. Methods. ADAC (25–300 μg/kg) was administered intraperitoneally to Wistar rats (8–10 weeks old) at intervals (6–72 hours) after exposure to traumatic noise (8–16 kHz, 110 dB sound pressure level, 2 hours). Hearing sensitivity was assessed using auditory brainstem responses (ABR) before and 12 days after noise exposure. Pharmacokinetic studies investigated ADAC concentrations in plasma after systemic (intravenous) administration. Results. ADAC was most effective in the first 24 hours after noise exposure at doses >50 μg/kg, providing up to 21 dB protection (averaged across 8–28 kHz). Pharmacokinetic studies demonstrated a short (5 min) half-life of ADAC in plasma after intravenous administration without detection of degradation products. Conclusion. Our data show that ADAC mitigates noise-induced hearing loss in a dose- and time-dependent manner, but further studies are required to establish its translation as a clinical otological treatment. PMID:25243188
Speech sound discrimination training improves auditory cortex responses in a rat model of autism
Engineer, Crystal T.; Centanni, Tracy M.; Im, Kwok W.; Kilgard, Michael P.
2014-01-01
Children with autism often have language impairments and degraded cortical responses to speech. Extensive behavioral interventions can improve language outcomes and cortical responses. Prenatal exposure to the antiepileptic drug valproic acid (VPA) increases the risk for autism and language impairment. Prenatal exposure to VPA also causes weaker and delayed auditory cortex responses in rats. In this study, we document speech sound discrimination ability in VPA exposed rats and document the effect of extensive speech training on auditory cortex responses. VPA exposed rats were significantly impaired at consonant, but not vowel, discrimination. Extensive speech training resulted in both stronger and faster anterior auditory field (AAF) responses compared to untrained VPA exposed rats, and restored responses to control levels. This neural response improvement generalized to non-trained sounds. The rodent VPA model of autism may be used to improve the understanding of speech processing in autism and contribute to improving language outcomes. PMID:25140133
ERIC Educational Resources Information Center
Azmitia, E. C.; Saccomano, Z. T.; Alzoobaee, M. F.; Boldrini, M.; Whitaker-Azmitia, P. M.
2016-01-01
In the current work, we conducted an immunocytochemical search for markers of ongoing neurogenesis (e.g. nestin) in auditory cortex from postmortem sections of autism spectrum disorder (ASD) and age-matched control donors. We found nestin labeling in cells of the vascular system, indicating blood vessels plasticity. Evidence of angiogenesis was…
Horiuchi, Timothy K.
2011-01-01
Short-term synaptic plasticity acts as a time- and firing rate-dependent filter that mediates the transmission of information across synapses. In the avian auditory brainstem, specific forms of plasticity are expressed at different terminals of the same auditory nerve fibers and contribute to the divergence of acoustic timing and intensity information. To identify key differences in the plasticity properties, we made patch-clamp recordings from neurons in the cochlear nucleus responsible for intensity coding, nucleus angularis, and measured the time course of the recovery of excitatory postsynaptic currents following short-term synaptic depression. These synaptic responses showed a very rapid recovery, following a bi-exponential time course with a fast time constant of ~40 ms and a dependence on the presynaptic activity levels, resulting in a crossing over of the recovery trajectories following high-rate versus low-rate stimulation trains. We also show that the recorded recovery in the intensity pathway differs from similar recordings in the timing pathway, specifically the cochlear nucleus magnocellularis, in two ways: (1) a fast recovery that was not due to recovery from postsynaptic receptor desensitization and (2) a recovery trajectory that was characterized by a non-monotonic bump that may be due in part to facilitation mechanisms more prevalent in the intensity pathway. We tested whether a previously proposed model of synaptic transmission based on vesicle depletion and sequential steps of vesicle replenishment could account for the recovery responses, and found it was insufficient, suggesting an activity-dependent feedback mechanism is present. We propose that the rapid recovery following depression allows improved coding of natural auditory signals that often consist of sound bursts separated by short gaps. PMID:21409439
NASA Astrophysics Data System (ADS)
Mills, David M.
2003-02-01
Characteristics of distortion product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs) were measured in Mongolian gerbil before and after the introduction of two different auditory dysfunctions: (1) acoustic damage with a high-intensity tone, or (2) furosemide intoxication. The goal was to find emission parameters and measures that best differentiated between the two dysfunctions, e.g., at a given ABR threshold elevation. Emission input-output or ``growth'' functions were used (frequencies f1 and f2, f2/f1=1.21) with equal levels, L1=L2, and unequal levels, with L1=L2+20 dB. The best parametric choice was found to be unequal stimulus levels, and the best measure was found to be the change in the emission threshold level, Δx. The emission threshold was defined as the stimulus level required to reach a criterion emission amplitude, in this case -10 dB SPL. (The next best measure was the change in emission amplitude at high stimulus levels, specifically that measured at L1×L2=90×70 dB SPL.) For an ABR threshold shift of 20 dB or more, there was essentially no overlap in the emission threshold measures for the two conditions, sound damage or furosemide. The dividing line between the two distributions increased slowly with the change in ABR threshold, ΔABR, and was given by Δxt=0.6 ΔABR+8 dB. For a given ΔABR, if the shift in emission threshold was more than the calculated dividing line value, Δxt, the auditory dysfunction was due to acoustic damage, if less, it was due to furosemide.
Alvarez, Francisco Jose; Revuelta, Miren; Santaolalla, Francisco; Alvarez, Antonia; Lafuente, Hector; Arteaga, Olatz; Alonso-Alconada, Daniel; Sanchez-del-Rey, Ana; Hilario, Enrique; Martinez-Ibargüen, Agustin
2015-01-01
Hypoxia-ischemia (HI) is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets. Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs) of newborn piglets exposed to acute hypoxia/ischemia (n = 6) and a control group with no such exposure (n = 10). ABRs were recorded for both ears before the start of the experiment (baseline), after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury. Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant. The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.
Subcortical processing of speech regularities underlies reading and music aptitude in children
2011-01-01
Background Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. Methods We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Results Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. Conclusions These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input. Definition of common biological underpinnings for music and reading supports the usefulness of music for promoting child literacy, with the potential to improve reading remediation. PMID:22005291
Ebselen attenuates cisplatin-induced ROS generation through Nrf2 activation in auditory cells.
Kim, Se-Jin; Park, Channy; Han, A Lum; Youn, Myung-Ja; Lee, Jeong-Han; Kim, Yunha; Kim, Eun-Sook; Kim, Hyung-Jin; Kim, Jin-Kyung; Lee, Ho-Kyun; Chung, Sang-Young; So, Hongseob; Park, Raekil
2009-05-01
Ebselen, an organoselenium compound that acts as a glutathione peroxidase mimetic, has been demonstrated to possess antioxidant and anti-inflammatory activities. However, the molecular mechanism underlying this effect is not fully understood in auditory cells. The purpose of the present study is to investigate the protective effect of ebselen against cisplatin-induced toxicity in HEI-OC1 auditory cells, organotypic cultures of cochlear explants from two-day postnatal rats (P(2)) and adult Balb/C mice. Pretreatment with ebselen ameliorated apoptotic death induced by cisplatin in HEI-OC1 cells and organotypic cultures of Corti's organ. Ebselen pretreatment also significantly suppressed cisplatin-induced increases in intracellular reactive oxygen species (ROS), intracellular reactive nitrogen species (RNS) and lipid peroxidation levels. Ebselen dose-dependently increased the expression level of an antioxidant response element (ARE)-luciferase reporter in HEI-OC1 cells through the translocation of Nrf2 into the nucleus. Furthermore, we found that pretreatment with ebselen significantly restored Nrf2 function, whereas it ameliorated the cytotoxicity of cisplatin in cells transfectants with either a pcDNA3.1 (control) or a DN-Nrf2 (dominant-negative) plasmid. We also observed that Nrf2 activation by ebselen increased the expression of phase II antioxidant genes, including heme oxygenase (HO-1), NAD(P)H:quinine oxidoreductase, and gamma-glutamylcysteine synthetase (gamma-GCS). Treatment with ebselen resulted in an increased expression of HO-1 and intranuclear Nrf2 in hair cells of organotypic cultured cochlea. After intraperitoneal injection with cisplatin, auditory brainstem responses (ABRs) threshold was measured on 8th day in Balb/C mice. ABR threshold shift was marked occurred in mice injected with cisplatin (16 mg/kg, n=5; Click and 8-kHz stimuli, p<0.05; 4, 16 and 32 kHz, p<0.01), whereas that of animal group which was treated with cisplatin and ebselen was not significantly changed. These results suggest that ebselen activates the Nrf2-ARE signaling pathway, which ultimately prevents free radical stresses from cisplatin and further contributes to protect auditory sensory hair cells from free radicals produced by cisplatin.
Impaired Vibration of Auditory Ossicles in Osteopetrotic Mice
Kanzaki, Sho; Takada, Yasunari; Niida, Shumpei; Takeda, Yoshihiro; Udagawa, Nobuyuki; Ogawa, Kaoru; Nango, Nobuhito; Momose, Atsushi; Matsuo, Koichi
2011-01-01
In the middle ear, a chain of three tiny bones (ie, malleus, incus, and stapes) vibrates to transmit sound from the tympanic membrane to the inner ear. Little is known about whether and how bone-resorbing osteoclasts play a role in the vibration of auditory ossicles. We analyzed hearing function and morphological features of auditory ossicles in osteopetrotic mice, which lack osteoclasts because of the deficiency of either cytokine RANKL or transcription factor c-Fos. The auditory brainstem response showed that mice of both genotypes experienced hearing loss, and laser Doppler vibrometry revealed that the malleus behind the tympanic membrane failed to vibrate. Histological analysis and X-ray tomographic microscopy using synchrotron radiation showed that auditory ossicles in osteopetrotic mice were thicker and more cartilaginous than those in control mice. Most interestingly, the malleal processus brevis touched the medial wall of the tympanic cavity in osteopetrotic mice, which was also the case for c-Src kinase–deficient mice (with normal numbers of nonresorbing osteoclasts). Osteopetrotic mice showed a smaller volume of the tympanic cavity but had larger auditory ossicles compared with controls. These data suggest that osteoclastic bone resorption is required for thinning of auditory ossicles and enlargement of the tympanic cavity so that auditory ossicles vibrate freely. PMID:21356377
Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.
Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M
1991-06-01
An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.
Effect of phenytoin on cortical epileptic foci in cerveau isolé rats.
Mares, P
1994-01-01
The action of phenytoin was studied in acute experiments in rats with brainstem transection at the midcollicular level. Symmetrical epileptogenic foci were elicited in sensorimotor cortical areas of both hemispheres by local application of penicillin. Seven rats formed a control group, ten animals were pretreated with phenytoin (60 mg/kg i.p., 10 min before penicillin application). Synchronization of interictal discharges in control rats was delayed in comparison to animals with an intact brainstem; phenytoin did not influence this synchronization. Spontaneous transition of interictal into ictal activity was not abolished by phenytoin, i.e. in cerveau isolé preparations phenytoin lost this activity. The loss of anticonvulsant activity was not complete. Ictal episodes were modified; they started as very short ones and their duration progressively increased. Structures localized below the level of transection represent a site of at least one of the mechanisms of phenytoin anticonvulsant action.
Click-evoked auditory brainstem responses and autism spectrum disorder: A meta-analytic review.
Talge, Nicole M; Tudor, Brooke M; Kileny, Paul R
2018-06-01
Behavior does not differentiate ASD risk prior to 12 months of age, but biomarkers may inform risk before symptoms emerge. Click-evoked auditory brainstem responses (ABRs) may be worth consideration due to their measurement properties (noninvasiveness; reliability) and conceptual features (well-characterized neural generators), but participant characteristics and assessment protocols vary considerably across studies. Our goal is to perform a meta-analysis of the association between ABRs and ASD. Following an electronic database search (PubMed, Medline, PsycInfo, PsycArticles), we included papers that were written in English, included ASD and typically-developing (TD) groups, and reported the information needed to calculate standardized mean differences (Hedges's g) for at least one ABR latency component (I, III, V, I-III, III-V, I-V). We weighted and averaged effect sizes across conditions and subsets of participants to yield one estimate per component per study. We then performed random-effects regressions to generate component-specific estimates. ASD was associated with longer ABR latencies for Waves III (g = 0.5, 95% CI 0.1, 0.9), V (g = 0.7, 95% CI 0.3, 1.1), I-III (g = 0.7, 95% CI 0.2, 1.2), and I-V (g = 0.6, 95% CI 0.2, 1.0). All components showed significant heterogeneity. Associations were strongest among participants ≤8 years of age and those without middle ear abnormalities or elevated auditory thresholds. In sum, associations between ABRs and ASD are medium-to-large in size, but exhibit heterogeneity. Identifying sources of heterogeneity is challenging, however, due to power limitations and co-occurrence of sample/design characteristics across studies. Research addressing the above limitations is crucial to determining the etiologic and/or prognostic value of ABRs for ASD. Autism Res 2018, 11: 916-927. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. Auditory brainstem responses (ABR) may be associated with ASD, but participant characteristics and assessment protocols vary considerably across individual studies. Our goal is to combine the results across these studies to facilitate clarity on the topic. Doing so represents a first step in evaluating whether ABRs yield potential for informing the etiology of ASD risk and/or ASD symptom profiles. © 2018 International Society for Autism Research, Wiley Periodicals, Inc.
Tokgöz, S Alicura; Vuralkan, E; Sonbay, N D; Çalişkan, M; Saka, C; Beşalti, Ö; Akin, İ
2012-05-01
This experimental study aimed to investigate the effects of vitamins E, B and C and L-carnitine in preventing cisplatin-induced ototoxicity. Twenty-five adult, male, Wistar albino rats were randomly allocated to receive intraperitoneal cisplatin either alone or preceded by vitamins B, E or C or L-carnitine. Auditory brainstem response (i.e. hearing thresholds and wave I-IV intervals) and distortion product otoacoustic emissions (i.e. signal-to-noise ratios) were recorded before and 72 hours after cisplatin administration. The following statistically significant differences were seen: control group pre- vs post-treatment wave I-IV interval values (p < 0.05); control vs vitamin E and B groups' I-IV interval values (p < 0.05); control vs other groups' hearing thresholds; vitamin E vs vitamin B and C and L-carnitine groups' hearing thresholds (p < 0.05); and vitamin B vs vitamin C and L-carnitine groups' hearing thresholds (p < 0.05). Statistically significant decreases were seen when comparing the initial and final signal-to-noise ratios in the control, vitamin B and L-carnitine groups (2000 and 3000 Hz; p < 0.01), and the initial and final signal-to-noise ratios in the control group (at 4000 Hz; p < 0.01). Vitamins B, E and C and L-carnitine appear to reduce cisplatin-induced ototoxicity in rats. The use of such additional treatments to decrease cisplatin-induced ototoxicity in humans is still under discussion.
Evaluation of ototoxicity of intratympanic administration of Methotrexate in rats.
Eren, Sabri Baki; Dogan, Remzi; Yenigun, Alper; Veyseller, Bayram; Tugrul, Selahattin; Ozturan, Orhan; Aydin, Mehmet Serif
2017-09-01
Methotrexate is a dihydrofolate reductase enzyme inhibitor with very high selectivity, and it is an antiproliferative folic acid antagonist used for the treatment of autoimmune diseases. In this study, our objective was to evaluate the effect of intratympanic Methotrexate application in the inner ear. This study was planned as an animal study. This study performed in a tertiary referral center. 24 healthy female rats were used in our study. They were separated into three groups. 0.2 cc intratympanic saline was applied to both ears of Group 1. Paracentesis was applied to the tympanic membrane in both ears of Group 2. 0.2 cc intratympanic Methotrexate was applied to both ears of Group 3. At the beginning of the study, Distortion-product otoacoustic emissions (DPOAE) and Auditory brainstem response (ABR) of all rats were measured and then again on the 5th, 10th and 15th day. Histologic examinations of all groups were compared. There was not any significant difference between basal DPOAE and ABR measurement values of the groups and the results were measured again on the 5th, 10th and 15th day (p > 0.05). There was no difference between the groups in terms of histology. The intratympanic Methotrexate injection does not have any ototoxic effect on inner ear. We assume that intratympanic Methotrexate could be used safely on inner ear diseases in which steroid treatment is contraindicated or not effective. Copyright © 2017 Elsevier B.V. All rights reserved.
Shaia, Wayne T; Shapiro, Steven M; Heller, Andrew J; Galiani, David L; Sismanis, Aristides; Spencer, Robert F
2002-11-01
Vestibular gaze and postural abnormalities are major sequelae of neonatal hyperbilirubinemia. The sites and cellular effects of bilirubin toxicity in the brainstem vestibular pathway are not easily detected. Since altered intracellular calcium homeostasis may play a role in neuronal cell death, we hypothesized that altered expression of calcium-binding proteins may occur in brainstem vestibular nuclei of the classic animal model of bilirubin neurotoxicity. The expression of the calcium-binding proteins calbindin-D28k and parvalbumin in the brainstem vestibular pathways and cerebellum of homozygous recessive jaundiced (jj) Gunn rats was examined by light microscopy and immunohistochemistry at 18 days postnatally and compared to the findings obtained from age-matched non-jaundiced heterozygous (Nj) littermate controls. Jaundiced animals exhibited decreased parvalbumin immunoreactivity specifically in synaptic inputs to superior, medial, and inferior vestibular nuclei, and to oculomotor and trochlear nuclei, whereas the neurons retained their normal immunoreactivity. Jaundiced animals also demonstrated a decrease in calbindin expression in the lateral vestibular nuclei and a paucity of calbindin-immunoreactive synaptic endings on the somata of Deiters' neurons. The involved regions are related to the control of the vestibulo-ocular and vestibulospinal reflexes. Decreased expression of calcium-binding proteins in brainstem vestibular neurons may relate to the vestibulo-ocular and vestibulospinal dysfunction seen with clinical kernicterus, and may provide a sensitive new way to assess bilirubin toxicity in the vestibular system.
Hyperthyroidism differentially regulates neuropeptide S system in the rat brain.
González, Carmen R; Martínez de Morentin, Pablo B; Martínez-Sánchez, Noelia; Gómez-Díaz, Consuelo; Lage, Ricardo; Varela, Luis; Diéguez, Carlos; Nogueiras, Rubén; Castaño, Justo P; López, Miguel
2012-04-23
Thyroid hormones play an important role in the regulation of energy balance, sleep and emotional behaviors. Neuropeptide S (NPS) is a recently discovered neuropeptide, regulating feeding, sleep and anxiety. Here, we examined the effect of hyperthyroidism on the gene and protein expression of neuropeptide S and its receptor (NPS-R) in the hypothalamus, brainstem and amygdala of rats. Our results showed that the expression of NPS and NPS-R was differentially modulated by hyperthyroidism in the rat brain. NPS and NPS-R mRNA and protein levels were decreased in the hypothalamus of hyperthyroid rats. Conversely NPS-R expression was highly increased in the brainstem and NPS and NPS-R expression were unchanged in the amygdala of these rats. These data suggest that changes in anxiety and food intake patterns observed in hyperthyroidism could be associated with changes in the expression of NPS and NPS-R. Thus, the NPS/NPS-R system may be involved in several hyperthyroidism-associated comorbidities. Copyright © 2012 Elsevier B.V. All rights reserved.
Godfrey, Donald A; Chen, Kejian; O'Toole, Thomas R; Mustapha, Abdurrahman I A A
2017-07-01
Older adults generally experience difficulties with hearing. Age-related changes in the chemistry of central auditory regions, especially the chemistry underlying synaptic transmission between neurons, may be of particular relevance for hearing changes. In this study, we used quantitative microchemical methods to map concentrations of amino acids, including the major neurotransmitters of the brain, in all the major central auditory structures of young (6 months), middle-aged (22 months), and old (33 months old) Fischer 344 x Brown Norway rats. In addition, some amino acid measurements were made for vestibular nuclei, and activities of choline acetyltransferase, the enzyme for acetylcholine synthesis, were mapped in the superior olive and auditory cortex. In old, as compared to young, rats, glutamate concentrations were lower throughout central auditory regions. Aspartate and glycine concentrations were significantly lower in many and GABA and taurine concentrations in some cochlear nucleus and superior olive regions. Glutamine concentrations and choline acetyltransferase activities were higher in most auditory cortex layers of old rats as compared to young. Where there were differences between young and old rats, amino acid concentrations in middle-aged rats often lay between those in young and old rats, suggesting gradual changes during adult life. The results suggest that hearing deficits in older adults may relate to decreases in excitatory (glutamate) as well as inhibitory (glycine and GABA) neurotransmitter amino acid functions. Chemical changes measured in aged rats often differed from changes measured after manipulations that directly damage the cochlea, suggesting that chemical changes during aging may not all be secondary to cochlear damage. Copyright © 2017 Elsevier B.V. All rights reserved.
Pratt, H; Zaaroor, M; Bleich, N; Starr, A
1991-06-01
Auditory brainstem evoked potentials (ABEP) were recorded from 16 awake cats to obtain 3-Channel Lissajous' Trajectories (3CLTs) using three orthogonal differential electrode configurations (nasion-midline nuchal ridge, left-right mastoids, vertex-midline under the mandible). Potentials, evoked by monaural 80 dBnHL (re, human threshold) clicks, were studied before, and up to 7 weeks after inducing neuronal lesions localized to the cochlear nucleus (CN) or the superior olivary complex (SOC), or myelin lesions localized to the fibers of the trapezoid body connecting these two structures. Neuronal lesions were induced by injection of kainic acid (KA), while myelin lesions were induced by injection of L-alpha-lysophosphatidylcholine (LPC). With CN neuronal lesions the major changes in 3CLT were in the time domain of 'b', 'c' and 'd' (components P2, P3 and P4 of single-channel ABEP). With SOC neuronal lesions the major changes were in 'c' and 'd' of 3CLT (P3 and P4 of ABEP). With trapezoid body lesions the major change was in 'c' (P3 of ABEP). The results are compatible with the peripheral generation of the first ABEP components (P1a and P1b). The second component (P2) is generated by ipsilateral CN neurones and their outputs. The third component (P3) is generated primarily by ipsilateral SOC neurones and their outputs, with the ipsilateral CN providing input. The The fourth component (P4) is generated bilaterally by the SOC neurones and their outputs, receiving their inputs from ipsilateral CN. The fifth ABEP component (P5) is generated by structures central to the SOCs and their immediate outputs. Neither focal neuronal nor myelin lesions were sufficient to produce obliteration of any component, consistent with a set of generators for each of the ABEP components, consisting of both cell bodies and their output fibers, that is distributed spatially in the brainstem.
Acquired hearing loss and brain plasticity.
Eggermont, Jos J
2017-01-01
Acquired hearing loss results in an imbalance of the cochlear output across frequency. Central auditory system homeostatic processes responding to this result in frequency specific gain changes consequent to the emerging imbalance between excitation and inhibition. Several consequences thereof are increased spontaneous firing rates, increased neural synchrony, and (in adults) potentially restricted to the auditory thalamus and cortex a reorganization of tonotopic areas. It does not seem to matter much whether the hearing loss is acquired neonatally or in adulthood. In humans, no clear evidence of tonotopic map changes with hearing loss has so far been provided, but frequency specific gain changes are well documented. Unilateral hearing loss in addition makes brain activity across hemispheres more symmetrical and more synchronous. Molecular studies indicate that in the brainstem, after 2-5 days post trauma, the glutamatergic activity is reduced, whereas glycinergic and GABAergic activity is largely unchanged. At 2 months post trauma, excitatory activity remains decreased but the inhibitory one is significantly increased. In contrast protein assays related to inhibitory transmission are all decreased or unchanged in the brainstem, midbrain and auditory cortex. Comparison of neurophysiological data with the molecular findings during a time-line of changes following noise trauma suggests that increases in spontaneous firing rates are related to decreases in inhibition, and not to increases in excitation. Because noise-induced hearing loss in cats resulted in a loss of cortical temporal processing capabilities, this may also underlie speech understanding in humans. Copyright © 2016 Elsevier B.V. All rights reserved.
Hearing status in adult individuals with lifetime, untreated isolated growth hormone deficiency.
Prado-Barreto, Valéria M; Salvatori, Roberto; Santos Júnior, Ronaldo C; Brandão-Martins, Mariane B; Correa, Eric A; Garcez, Flávia B; Valença, Eugênia H O; Souza, Anita H O; Pereira, Rossana M C; Nunes, Marco A P; D'Avila, Jeferson S; Aguiar-Oliveira, Manuel H
2014-03-01
To evaluate the hearing status of growth hormone (GH)-naive adults with isolated GH deficiency (IGHD) belonging to an extended Brazilian kindred with a homozygous mutation in the GH-releasing hormone receptor gene. Cross-sectional. Divisions of Endocrinology and Otorhinolaryngology of the Federal University of Sergipe. Twenty-six individuals with IGHD (age, 47.6 ± 15.1 years; 13 women) and 25 controls (age, 46.3 ± 14.3 years; 15 women) were administered a questionnaire on hearing complaints and hearing health history. We performed pure-tone audiometry, logoaudiometry, electroacoustic immittance, and stapedial reflex. To assess outer hair cell function in the cochlea, we completed transient evoked otoacoustic emissions (TEOAEs). To assess the auditory nerve and auditory brainstem, we obtained auditory brainstem responses (ABRs). Misophonia and dizziness complaints were more frequent in those with IGHD than in controls (P = .011). Patients with IGHD had higher thresholds at 250 Hz (P = .005), 500 Hz (P = .006), 3 KHz (P = .008), 4 KHz (P = .038), 6 KHz (P = .008), and 8 KHz (P = .048) and mild high-tones hearing loss (P = .029). Stapedial reflex (P < .001) and TEOAEs (P = .025) were more frequent in controls. There were no differences in ABR latencies. Hearing loss in patients with IGHD occurred earlier than in controls (P < .001). Compared with controls of the same area, subjects with untreated, congenital lifetime IGHD report more misophonia and dizziness, have predominance of mild high-tones sensorineural hearing loss, and have an absence of stapedial reflex and TEOAEs.
Auditory Brainstem Responses and EMFs Generated by Mobile Phones.
Khullar, Shilpa; Sood, Archana; Sood, Sanjay
2013-12-01
There has been a manifold increase in the number of mobile phone users throughout the world with the current number of users exceeding 2 billion. However this advancement in technology like many others is accompanied by a progressive increase in the frequency and intensity of electromagnetic waves without consideration of the health consequences. The aim of our study was to advance our understanding of the potential adverse effects of GSM mobile phones on auditory brainstem responses (ABRs). 60 subjects were selected for the study and divided into three groups of 20 each based on their usage of mobile phones. Their ABRs were recorded and analysed for latency of waves I-V as well as interpeak latencies I-III, I-V and III-V (in ms). Results revealed no significant difference in the ABR parameters between group A (control group) and group B (subjects using mobile phones for maximum 30 min/day for 5 years). However the latency of waves was significantly prolonged in group C (subjects using mobile phones for 10 years for a maximum of 30 min/day) as compared to the control group. Based on our findings we concluded that long term exposure to mobile phones may affect conduction in the peripheral portion of the auditory pathway. However more research needs to be done to study the long term effects of mobile phones particularly of newer technologies like smart phones and 3G.
Prediction of permanent hearing loss in high-risk preterm infants at term age.
Valkama, A M; Laitakari, K T; Tolonen, E U; Väyrynen, M R; Vainionpää, L K; Koivisto, M E
2000-06-01
The aim of this series was to assess hearing screenings; auditory brainstem responses (ABR), transient evoked otoacoustic emissions (TEOAE) and free field auditory responses (FF) for the prediction of permanent bilateral hearing loss in high-risk preterm infants at term post-conceptional age. A total of 51 preterm infants (gestational age < 34 weeks, birth weight < 1500 g) underwent examinations at term and hearing, speech and neurological development were followed up until a corrected age of 18 months. Significant hearing defects were verified by broader ABR examinations under sedation and by clinical ward observation including responsiveness to sounds and enhancement of hearing using an amplification device. Seven bilateral fails in ABR were found, together with nine bilateral fails in TEOAE and four fails in FF screening at term age. Six preterm infants were later confirmed to have a significant permanent bilateral hearing loss, four of whom had also cerebral palsy. Bilateral failure in ABR screening predicted hearing loss with a sensitivity of 100% and a specificity of 98%, TEOAE with a sensitivity of 50% and a specificity of 84% and in the FF examination at the levels of 50% and 98%, respectively. Transient evoked otoacoustic emissions alone seem not to be so applicable to the neonatal screening of hearing in high-risk preterm infants as shown earlier in full-term infants, possibly because a hearing defect may be due to retrocochlear damage. Consequently, auditory brainstem response screening seems to be more suitable for very low birth weight preterm infants.
Deviance-Related Responses along the Auditory Hierarchy: Combined FFR, MLR and MMN Evidence.
Shiga, Tetsuya; Althen, Heike; Cornella, Miriam; Zarnowiec, Katarzyna; Yabe, Hirooki; Escera, Carles
2015-01-01
The mismatch negativity (MMN) provides a correlate of automatic auditory discrimination in human auditory cortex that is elicited in response to violation of any acoustic regularity. Recently, deviance-related responses were found at much earlier cortical processing stages as reflected by the middle latency response (MLR) of the auditory evoked potential, and even at the level of the auditory brainstem as reflected by the frequency following response (FFR). However, no study has reported deviance-related responses in the FFR, MLR and long latency response (LLR) concurrently in a single recording protocol. Amplitude-modulated (AM) sounds were presented to healthy human participants in a frequency oddball paradigm to investigate deviance-related responses along the auditory hierarchy in the ranges of FFR, MLR and LLR. AM frequency deviants modulated the FFR, the Na and Nb components of the MLR, and the LLR eliciting the MMN. These findings demonstrate that it is possible to elicit deviance-related responses at three different levels (FFR, MLR and LLR) in one single recording protocol, highlight the involvement of the whole auditory hierarchy in deviance detection and have implications for cognitive and clinical auditory neuroscience. Moreover, the present protocol provides a new research tool into clinical neuroscience so that the functional integrity of the auditory novelty system can now be tested as a whole in a range of clinical populations where the MMN was previously shown to be defective.
Deviance-Related Responses along the Auditory Hierarchy: Combined FFR, MLR and MMN Evidence
Shiga, Tetsuya; Althen, Heike; Cornella, Miriam; Zarnowiec, Katarzyna; Yabe, Hirooki; Escera, Carles
2015-01-01
The mismatch negativity (MMN) provides a correlate of automatic auditory discrimination in human auditory cortex that is elicited in response to violation of any acoustic regularity. Recently, deviance-related responses were found at much earlier cortical processing stages as reflected by the middle latency response (MLR) of the auditory evoked potential, and even at the level of the auditory brainstem as reflected by the frequency following response (FFR). However, no study has reported deviance-related responses in the FFR, MLR and long latency response (LLR) concurrently in a single recording protocol. Amplitude-modulated (AM) sounds were presented to healthy human participants in a frequency oddball paradigm to investigate deviance-related responses along the auditory hierarchy in the ranges of FFR, MLR and LLR. AM frequency deviants modulated the FFR, the Na and Nb components of the MLR, and the LLR eliciting the MMN. These findings demonstrate that it is possible to elicit deviance-related responses at three different levels (FFR, MLR and LLR) in one single recording protocol, highlight the involvement of the whole auditory hierarchy in deviance detection and have implications for cognitive and clinical auditory neuroscience. Moreover, the present protocol provides a new research tool into clinical neuroscience so that the functional integrity of the auditory novelty system can now be tested as a whole in a range of clinical populations where the MMN was previously shown to be defective. PMID:26348628
Karim, M R; Atoji, Y
2016-02-01
Glutamate is a principal excitatory neurotransmitter in the auditory system. Our previous studies revealed localization of glutamate receptor mRNAs in the pigeon cochlear nuclei, suggesting the existence of glutamatergic input from the auditory nerve to the brainstem. This study demonstrated localization of mRNAs for vesicular glutamate transporter 2 (vGluT2) and ionotropic glutamate receptors (AMPA, kainate and NMDA) in the auditory ganglion (AG) and cochlear nuclei (magnocellular, angular and laminar nuclei). VGluT2 mRNA was intensely expressed in AG and intensely or moderately in the cochlear nuclei. The AG and cochlear nuclei showed intense-to-moderate mRNA signals for GluA2, GluA3, GluA4, GluK4 and GluN1. These results suggest that the pigeon AG neurons receives glutamatergic input from hair cells and in turn projects to the magnocellular and angular nuclei. Glutamate may play a pivotal role in the excitatory synapse transmission in the peripheral auditory pathway of birds. © 2015 Blackwell Verlag GmbH.
Effects of underwater noise on auditory sensitivity of a cyprinid fish.
Scholik, A R; Yan, H Y
2001-02-01
The ability of a fish to interpret acoustic information in its environment is crucial for its survival. Thus, it is important to understand how underwater noise affects fish hearing. In this study, the fathead minnow (Pimephales promelas) was used to examine: (1) the immediate effects of white noise exposure (0.3-4.0 kHz, 142 dB re: 1 microPa) on auditory thresholds and (2) recovery after exposure. Audiograms were measured using the auditory brainstem response protocol and compared to baseline audiograms of fathead minnows not exposed to noise. Immediately after exposure to 24 h of white noise, five out of the eight frequencies tested showed a significantly higher threshold compared to the baseline fish. Recovery was found to depend on both duration of noise exposure and auditory frequency. These results support the hypothesis that the auditory threshold of the fathead minnow can be altered by white noise, especially in its most sensitive hearing range (0.8-2.0 kHz), and provide evidence that these effects can be long term (>14 days).
A Circuit for Motor Cortical Modulation of Auditory Cortical Activity
Nelson, Anders; Schneider, David M.; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan
2013-01-01
Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287
Hearing loss and the central auditory system: Implications for hearing aids
NASA Astrophysics Data System (ADS)
Frisina, Robert D.
2003-04-01
Hearing loss can result from disorders or damage to the ear (peripheral auditory system) or the brain (central auditory system). Here, the basic structure and function of the central auditory system will be highlighted as relevant to cases of permanent hearing loss where assistive devices (hearing aids) are called for. The parts of the brain used for hearing are altered in two basic ways in instances of hearing loss: (1) Damage to the ear can reduce the number and nature of input channels that the brainstem receives from the ear, causing plasticity of the central auditory system. This plasticity may partially compensate for the peripheral loss, or add new abnormalities such as distorted speech processing or tinnitus. (2) In some situations, damage to the brain can occur independently of the ear, as may occur in cases of head trauma, tumors or aging. Implications of deficits to the central auditory system for speech perception in noise, hearing aid use and future innovative circuit designs will be provided to set the stage for subsequent presentations in this special educational session. [Work supported by NIA-NIH Grant P01 AG09524 and the International Center for Hearing & Speech Research, Rochester, NY.
The Research Laboratory of Electronics Progress Report Number 132: January 1-December 31, 1989
1990-01-01
between Binaural Hearing and Brainstem Auditory Evoked Potentials in Humans...fem- tosecond excitation pulses. This gives rise to the characteristic " beating " pattern which contains sum and difference frequencies. The "spike...vibrational modes whose through a simple optical network consisting simultaneous oscillations yield the " beating " of only two lenses, two gratings
Money, M K; Pippin, G W; Weaver, K E; Kirsch, J P; Webster, D B
1995-07-01
Exogenous administration of GM1 ganglioside to CBA/J mice with a neonatal conductive hearing loss ameliorates the atrophy of spiral ganglion neurons, ventral cochlear nucleus neurons, and ventral cochlear nucleus volume. The present investigation demonstrates the extent of a conductive loss caused by atresia and tests the hypothesis that GM1 ganglioside treatment will ameliorate the conductive hearing loss. Auditory brainstem responses were recorded from four groups of seven mice each: two groups received daily subcutaneous injections of saline (one group had normal hearing; the other had a conductive hearing loss); the other two groups received daily subcutaneous injections of GM1 ganglioside (one group had normal hearing; the other had a conductive hearing loss). In mice with a conductive loss, decreases in hearing sensitivity were greatest at high frequencies. The decreases were determined by comparing mean ABR thresholds of the conductive loss mice with those of normal hearing mice. The conductive hearing loss induced in the mice in this study was similar to that seen in humans with congenital aural atresias. GM1 ganglioside treatment had no significant effect on ABR wave I thresholds or latencies in either group.
Juselius Baghdassarian, Eva; Nilsson Markhed, Maria; Lindström, Eva; Nilsson, Björn M; Lewander, Tommy
2018-06-01
To evaluate the performances of two auditory brainstem response (ABR) profiling tests as potential biomarkers and diagnostic support for schizophrenia and adult attention-deficit hyperactivity disorder (ADHD), respectively, in an investigator-initiated blinded study design. Male and female patients with schizophrenia (n=26) and adult ADHD (n=24) meeting Diagnostic and Statistical Manual of Mental Disorders Fourth Edition (DSM IV) diagnostic criteria and healthy controls (n=58) comprised the analysis set (n=108) of the total number of study participants (n=119). Coded sets of randomized ABR recordings were analysed by an independent party blinded to clinical diagnoses before a joint code-breaking session. The ABR profiling test for schizophrenia identified schizophrenia patients versus controls with a sensitivity of 84.6% and a specificity of 93.1%. The ADHD test identified patients with adult ADHD versus controls with a sensitivity of 87.5% and a specificity of 91.4%. The ABR profiling tests discriminated schizophrenia and ADHD versus healthy controls with high sensitivity and specificity. The methods deserve to be further explored in larger clinical studies including a broad range of psychiatric disorders to determine their utility as potential diagnostic biomarkers.
Ultrastructure of spines and associated terminals on brainstem neurons controlling auditory input
Brown, M. Christian; Lee, Daniel J.; Benson, Thane E.
2013-01-01
Spines are unique cellular appendages that isolate synaptic input to neurons and play a role in synaptic plasticity. Using the electron microscope, we studied spines and their associated synaptic terminals on three groups of brainstem neurons: tensor tympani motoneurons, stapedius motoneurons, and medial olivocochlear neurons, all of which exert reflexive control of processes in the auditory periphery. These spines are generally simple in shape; they are infrequent and found on the somata as well as the dendrites. Spines do not differ in volume among the three groups of neurons. In all cases, the spines are associated with a synaptic terminal that engulfs the spine rather than abuts its head. The positions of the synapses are variable, and some are found at a distance from the spine, suggesting that the isolation of synaptic input is of diminished importance for these spines. Each group of neurons receives three common types of synaptic terminals. The type of terminal associated with spines of the motoneurons contains pleomorphic vesicles, whereas the type associated with spines of olivocochlear neurons contains large round vesicles. Thus, spine-associated terminals in the motoneurons appear to be associated with inhibitory processes but in olivocochlear neurons they are associated with excitatory processes. PMID:23602963
Auditory brainstem response screening for hearing loss in high risk neonates.
Watson, D R; McClelland, R J; Adams, D A
1996-07-01
The present paper reports the findings of a 7 year study evaluating the use of the auditory brainstem response (ABR) as the basis of a hearing screening procedure in a group of newborns at increased risk of hearing impairment. A Special Care Baby Unit (SCBU) population of 417 infants with diverse clinical backgrounds and treatment histories was tested for hearing impairment at birth using ABR audiometry. Some 332 passed the original screen at 30 dBnHL test level in both ears. Of the failure group, 18 did not survive and 32 had some degree of hearing impairment confirmed, nine of which were sensorineural in origin. An increased incidence of persistent middle ear disease was also noted in the failure group. A detailed operational analysis demonstrates that provided appropriate pass/fail criteria are adopted, the ABR technique offers excellent sensitivity and specificity for the detection of significant hearing loss in the test population. Furthermore, the study establishes that implementation of an ABR-based screening programme could reduce the average age at detection of permanent hearing loss by 7 months. A cost assessment shows that the introduction of such a targetted screening procedure could be done at a reasonable outlay.
Test-retest reliability of auditory brainstem responses to chirp stimuli in newborns.
Cobb, Kensi M; Stuart, Andrew
2014-11-01
The purpose of this study was to examine the test-retest reliability of auditory brainstem responses (ABRs) to air- and bone-conducted chirp stimuli in newborns as a function of intensity. A repeated measures quasi-experimental design was employed. Thirty healthy newborns participated. ABRs were evoked using 60, 45, and 30 dB nHL air-conducted CE-Chirps and 45, 30, and 15 dB nHL bone-conducted CE-Chirps at a rate of 57.7/s. Measures were repeated by a second tester. Statistically significant correlations (p <.0001) and predictive linear relations (p <.0001) were found between testers for wave V latencies and amplitudes to air- and bone-conducted CE-Chirps. There were also no statistically significant differences between testers with wave V latencies and amplitudes to air- and bone-conducted CE-Chirps (p >.05). As expected, significant differences in wave V latencies and amplitudes were seen as a function of stimulus intensity for air- and bone-conducted CE-Chirps (p <.0001). These results suggest that ABRs to air- and bone-conducted CE-Chirps can be reliably repeated in newborns with different testers. The CE-Chirp may be valuable for both screening and diagnostic audiologic assessments of newborns.
Audiological findings in Noonan syndrome.
Tokgoz-Yilmaz, Suna; Turkyilmaz, Meral Didem; Cengiz, Filiz Basak; Sjöstrand, Alev Pektas; Kose, Serdal Kenan; Tekin, Mustafa
2016-10-01
The aim of this study was to evaluate audiologic properties of patients with Noonan syndrome and compare these findings with those of unaffected peers. The study included 17 children with Noonan syndrome and 20 typically developing children without Noonan syndrome. Pure tone and speech audiometry, immitancemetric measurement, otoacoustic emissions measurement and auditory brainstem response tests were applied to all (n = 37) children. Hearing thresholds of children with Noonan syndrome were higher (poorer) than those observed unaffected peers, while the hearing sensitivity of the both groups were normal limits (p = 0.013 for right, p = 0.031 for left ear). Transient evoked otoacoustic emissions amplitudes of the children with Noonan syndrome were lower than the children without Noonan syndrome (p = 0.005 for right, p = 0.002 for left ear). Middle ear pressures and auditory brainstem response values were within normal limits and there was no difference between the two groups (p > 0.05). General benefit of the present study is to characterize the audiologic findings of children with Noonan syndrome, which is beneficial in clinics evaluating children with Noonan syndrome. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Minocycline Protection of Neomycin Induced Hearing Loss in Gerbils
Robinson, Alan M.; Vujanovic, Irena; Richter, Claus-Peter
2015-01-01
This animal study was designed to determine if minocycline ameliorates cochlear damage is caused by intratympanic injection of the ototoxic aminoglycoside antibiotic neomycin. Baseline auditory-evoked brainstem responses were measured in gerbils that received 40 mM intratympanic neomycin either with 0, 1.2, or 1.5 mg/kg intraperitoneal minocycline. Four weeks later auditory-evoked brainstem responses were measured and compared to the baseline measurements. Minocycline treatments of 1.2 mg/kg and 1.5 mg/kg resulted in significantly lower threshold increases compared to 0 mg/kg, indicating protection of hearing loss between 6 kHz and 19 kHz. Cochleae were processed for histology and sectioned to allow quantification of the spiral ganglion neurons and histological evaluation of organ of Corti. Significant reduction of spiral ganglion neuron density was demonstrated in animals that did not receive minocycline, indicating that those receiving minocycline demonstrated enhanced survival of spiral ganglion neurons, enhanced survival of sensory hairs cells and spiral ganglion neurons, and reduced hearing threshold elevation correlates with minocycline treatment demonstrating that neomycin induced hearing loss can be reduced by the simultaneous application of minocycline. PMID:25950003
[The characteristics of auditory brainstem response in preterm very low birth weight babies].
Wang, Xiaoya; Luo, Renzhong; Wen, Ruijin; Chen, Qian; Zhou, Jialin; Zou, Yu
2009-08-01
To discuss the characteristics of auditory brainstem response in preterm very low birth weight (VLBW) babies and to investigate the correlations between the ABR and clinical characteristics. Fifty-nine VLBW babies (118 ears) were enrolled in the study and 30 term normal babies as the control group. Tympanometry, acoustic reflex, DPOAE, ABR were obtained in all the babies. The prevalence of hearing loss in VLBW babies was higher than normal term babies and babies with perinatal complications higher than those without perinatal complications. There was no correlations between ABR threshold and gestational age, birth weight, postconceptional age, negative correlations between wave I, III and V latencies I - III, III - V and I - V intervals and postconceptional age. Wave I and V latencies, I - III and III - V intervals differed significantly between the two groups. The perinatal complications were the most important causes of the hearing loss in preterm VLBW babies than the gestational age and birth weight. There was a high prevalence of peripheral hearing loss in the preterm VLBW babies. Combining OAE and automated ABR should be applied for hearing screening. Regular follow-up was very important in all the preterm VLBW neonatal.
Abnormal oxygen homeostasis in the nucleus tractus solitarii of the spontaneously hypertensive rat.
Hosford, Patrick S; Millar, Julian; Ramage, Andrew G; Marina, Nephtali
2017-04-01
What is the central question of this study? Arterial hypertension is associated with impaired neurovascular coupling in the somatosensory cortex. Abnormalities in activity-dependent oxygen consumption in brainstem regions involved in the control of cardiovascular reflexes have not been explored previously. What is the main finding and its importance? Using fast-cyclic voltammetry, we found that changes in local tissue PO2 in the nucleus tractus solitarii induced by electrical stimulation of the vagus nerve are significantly impaired in spontaneously hypertensive rats. This is consistent with previous observations showing that brainstem hypoxia plays an important role in the pathogenesis of arterial hypertension. The effects of arterial hypertension on cerebral blood flow remain poorly understood. Haemodynamic responses within the somatosensory cortex have been shown to be impaired in the spontaneously hypertensive rat (SHR) model. However, it is unknown whether arterial hypertension affects oxygen homeostasis in vital brainstem areas that control cardiovascular reflexes. In this study, we assessed vagus nerve stimulation-induced changes in local tissue PO2 (PtO2) in the caudal nucleus tractus solitarii (cNTS) of SHRs and normotensive Wistar rats. Measurements of PtO2 were performed using a novel application of fast-cyclic voltammetry, which allows higher temporal resolution of O 2 changes than traditional optical fluorescence techniques. Electrical stimulation of the central cut end of the vagus nerve (ESVN) caused profound reductions in arterial blood pressure along with biphasic changes in PtO2 in the cNTS, characterized by a rapid decrease in PtO2 ('initial dip') followed by a post-stimulus overshoot above baseline. The initial dip was found to be significantly smaller in SHRs compared with normotensive Wistar rats even after ganglionic blockade. The post-ESVN overshoot was similar in both groups but was reduced in Wistar rats after ganglionic blockade. In conclusion, neural activity-dependent changes in tissue oxygen in brainstem cardiovascular autonomic centres are significantly impaired in animals with arterial hypertension. © 2017 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Evolutionary trends in directional hearing
Carr, Catherine E.; Christensen-Dalsgaard, Jakob
2016-01-01
Tympanic hearing is a true evolutionary novelty that arose in parallel within early tetrapods. We propose that in these tetrapods, selection for sound localization in air acted upon pre-existing directionally sensitive brainstem circuits, similar to those in fishes. Auditory circuits in birds and lizards resemble this ancestral, directionally sensitive framework. Despite this anatomically similarity, coding of sound source location differs between birds and lizards. In birds, brainstem circuits compute sound location from interaural cues. Lizards, however, have coupled ears, and do not need to compute source location in the brain. Thus their neural processing of sound direction differs, although all show mechanisms for enhancing sound source directionality. Comparisons with mammals reveal similarly complex interactions between coding strategies and evolutionary history. PMID:27448850
Metabotropic glutamate receptors in auditory processing
Lu, Yong
2014-01-01
As the major excitatory neurotransmitter used in the vertebrate brain, glutamate activates ionotropic and metabotropic glutamate receptors (mGluRs), which mediate fast and slow neuronal actions, respectively. Important modulatory roles of mGluRs have been shown in many brain areas, and drugs targeting mGluRs have been developed for treatment of brain disorders. Here, I review the studies on mGluRs in the auditory system. Anatomical expression of mGluRs in the cochlear nucleus has been well characterized, while data for other auditory nuclei await more systematic investigations at both the light and electron microscopy levels. The physiology of mGluRs has been extensively studied using in vitro brain slice preparations, with a focus on the lower auditory brainstem in both mammals and birds. These in vitro physiological studies have revealed that mGluRs participate in neurotransmission, regulate ionic homeostasis, induce synaptic plasticity, and maintain the balance between excitation and inhibition in a variety of auditory structures. However, very few in vivo physiological studies on mGluRs in auditory processing have been undertaken at the systems level. Many questions regarding the essential roles of mGluRs in auditory processing still remain unanswered and more rigorous basic research is warranted. PMID:24909898
Neurotrophic factor intervention restores auditory function in deafened animals
NASA Astrophysics Data System (ADS)
Shinohara, Takayuki; Bredberg, Göran; Ulfendahl, Mats; Pyykkö, Ilmari; Petri Olivius, N.; Kaksonen, Risto; Lindström, Bo; Altschuler, Richard; Miller, Josef M.
2002-02-01
A primary cause of deafness is damage of receptor cells in the inner ear. Clinically, it has been demonstrated that effective functionality can be provided by electrical stimulation of the auditory nerve, thus bypassing damaged receptor cells. However, subsequent to sensory cell loss there is a secondary degeneration of the afferent nerve fibers, resulting in reduced effectiveness of such cochlear prostheses. The effects of neurotrophic factors were tested in a guinea pig cochlear prosthesis model. After chemical deafening to mimic the clinical situation, the neurotrophic factors brain-derived neurotrophic factor and an analogue of ciliary neurotrophic factor were infused directly into the cochlea of the inner ear for 26 days by using an osmotic pump system. An electrode introduced into the cochlea was used to elicit auditory responses just as in patients implanted with cochlear prostheses. Intervention with brain-derived neurotrophic factor and the ciliary neurotrophic factor analogue not only increased the survival of auditory spiral ganglion neurons, but significantly enhanced the functional responsiveness of the auditory system as measured by using electrically evoked auditory brainstem responses. This demonstration that neurotrophin intervention enhances threshold sensitivity within the auditory system will have great clinical importance for the treatment of deaf patients with cochlear prostheses. The findings have direct implications for the enhancement of responsiveness in deafferented peripheral nerves.
Degraded speech sound processing in a rat model of fragile X syndrome
Engineer, Crystal T.; Centanni, Tracy M.; Im, Kwok W.; Rahebi, Kimiya C.; Buell, Elizabeth P.; Kilgard, Michael P.
2014-01-01
Fragile X syndrome is the most common inherited form of intellectual disability and the leading genetic cause of autism. Impaired phonological processing in fragile X syndrome interferes with the development of language skills. Although auditory cortex responses are known to be abnormal in fragile X syndrome, it is not clear how these differences impact speech sound processing. This study provides the first evidence that the cortical representation of speech sounds is impaired in Fmr1 knockout rats, despite normal speech discrimination behavior. Evoked potentials and spiking activity in response to speech sounds, noise burst trains, and tones were significantly degraded in primary auditory cortex, anterior auditory field and the ventral auditory field. Neurometric analysis of speech evoked activity using a pattern classifier confirmed that activity in these fields contains significantly less information about speech sound identity in Fmr1 knockout rats compared to control rats. Responses were normal in the posterior auditory field, which is associated with sound localization. The greatest impairment was observed in the ventral auditory field, which is related to emotional regulation. Dysfunction in the ventral auditory field may contribute to poor emotional regulation in fragile X syndrome and may help explain the observation that later auditory evoked responses are more disturbed in fragile X syndrome compared to earlier responses. Rodent models of fragile X syndrome are likely to prove useful for understanding the biological basis of fragile X syndrome and for testing candidate therapies. PMID:24713347
Distribution of CGRP in the minipig brainstem.
Lisardo Sánchez, Manuel; Vecino, Elena; Coveñas, Rafael
2014-05-01
For the first time, an in-depth study has been made of the distribution of fibers and cell bodies containing calcitonin gene-related peptide (CGRP) in the minipig brainstem using an indirect immunoperoxidase technique. The animals studied were not treated with colchicine. Cell bodies containing CGRP were found in 20 nuclei/regions of the brainstem. These perikarya were located in somatomotor, brachiomotor and raphae nuclei, nucleus ambiguus, substantia nigra, nucleus reticularis tegmenti pontis, nucleus prepositus hypoglossi, nuclei olivaris inferior and superior, nuclei pontis, formatio reticularis, nucleus dorsalis tegmenti of Gudden, and in the nucleus reticularis lateralis. Fourteen of the 20 brainstem nuclei showed a high density of immunoreactive cell bodies. In comparison with other species, the minipig, together with the rat, show the most widespread distribution of cell bodies containing CGRP in the mammalian brainstem. Immunoreactive fibers were also observed in the brainstem. However, in the minipig brainstem the density of these fibers is low, as in many brainstem nuclei only single immunoreactive fibers were observed. A high density of immunoreactive fibers was only observed in the pars caudalis of the nucleus tractus spinalis nervi trigemini and in the nucleus ventralis tegmenti of Gudden. According to the observed anatomical distribution of the immunoreactive structures containing CGRP, the peptide could be involved in motor, somatosensory, gustative, and autonomic mechanisms. Copyright © 2014 Wiley Periodicals, Inc.
Aedo, Cristian; Terreros, Gonzalo; León, Alex; Delano, Paul H.
2016-01-01
Background and Objective The auditory efferent system is a complex network of descending pathways, which mainly originate in the primary auditory cortex and are directed to several auditory subcortical nuclei. These descending pathways are connected to olivocochlear neurons, which in turn make synapses with auditory nerve neurons and outer hair cells (OHC) of the cochlea. The olivocochlear function can be studied using contralateral acoustic stimulation, which suppresses auditory nerve and cochlear responses. In the present work, we tested the proposal that the corticofugal effects that modulate the strength of the olivocochlear reflex on auditory nerve responses are produced through cholinergic synapses between medial olivocochlear (MOC) neurons and OHCs via alpha-9/10 nicotinic receptors. Methods We used wild type (WT) and alpha-9 nicotinic receptor knock-out (KO) mice, which lack cholinergic transmission between MOC neurons and OHC, to record auditory cortex evoked potentials and to evaluate the consequences of auditory cortex electrical microstimulation in the effects produced by contralateral acoustic stimulation on auditory brainstem responses (ABR). Results Auditory cortex evoked potentials at 15 kHz were similar in WT and KO mice. We found that auditory cortex microstimulation produces an enhancement of contralateral noise suppression of ABR waves I and III in WT mice but not in KO mice. On the other hand, corticofugal modulations of wave V amplitudes were significant in both genotypes. Conclusion These findings show that the corticofugal modulation of contralateral acoustic suppressions of auditory nerve (ABR wave I) and superior olivary complex (ABR wave III) responses are mediated through MOC synapses. PMID:27195498
Leupeptin reduces impulse noise induced hearing loss
2011-01-01
Background Exposure to continuous and impulse noise can induce a hearing loss. Leupeptin is an inhibitor of the calpains, a family of calcium-activated proteases which promote cell death. The objective of this study is to assess whether Leupeptin could reduce the hearing loss resulting from rifle impulse noise. Methods A polyethelene tube was implanted into middle ear cavities of eight fat sand rats (16 ears). Following determination of auditory nerve brainstem evoked response (ABR) threshold in each ear, the animals were exposed to the noise of 10 M16 rifle shots. Immediately after the exposure, saline was then applied to one (control) ear and non-toxic concentrations of leupeptin determined in the first phase of the study were applied to the other ear, for four consecutive days. Results Eight days after the exposure, the threshold shift (ABR) in the control ears was significantly greater (44 dB) than in the leupeptin ears (27 dB). Conclusion Leupeptin applied to the middle ear cavity can reduce the hearing loss resulting from exposure to impulse noise. PMID:22206578
ERIC Educational Resources Information Center
Kudoh, Masaharu; Shibuki, Katsuei
2006-01-01
We have previously reported that sound sequence discrimination learning requires cholinergic inputs to the auditory cortex (AC) in rats. In that study, reward was used for motivating discrimination behavior in rats. Therefore, dopaminergic inputs mediating reward signals may have an important role in the learning. We tested the possibility in the…
On wavelet analysis of auditory evoked potentials.
Bradley, A P; Wilson, W J
2004-05-01
To determine a preferred wavelet transform (WT) procedure for multi-resolution analysis (MRA) of auditory evoked potentials (AEP). A number of WT algorithms, mother wavelets, and pre-processing techniques were examined by way of critical theoretical discussion followed by experimental testing of key points using real and simulated auditory brain-stem response (ABR) waveforms. Conclusions from these examinations were then tested on a normative ABR dataset. The results of the various experiments are reported in detail. Optimal AEP WT MRA is most likely to occur when an over-sampled discrete wavelet transformation (DWT) is used, utilising a smooth (regularity >or=3) and symmetrical (linear phase) mother wavelet, and a reflection boundary extension policy. This study demonstrates the practical importance of, and explains how to minimize potential artefacts due to, 4 inter-related issues relevant to AEP WT MRA, namely shift variance, phase distortion, reconstruction smoothness, and boundary artefacts.
Biological impact of preschool music classes on processing speech in noise
Strait, Dana L.; Parbery-Clark, Alexandra; O’Connell, Samantha; Kraus, Nina
2013-01-01
Musicians have increased resilience to the effects of noise on speech perception and its neural underpinnings. We do not know, however, how early in life these enhancements arise. We compared auditory brainstem responses to speech in noise in 32 preschool children, half of whom were engaged in music training. Thirteen children returned for testing one year later, permitting the first longitudinal assessment of subcortical auditory function with music training. Results indicate emerging neural enhancements in musically trained preschoolers for processing speech in noise. Longitudinal outcomes reveal that children enrolled in music classes experience further increased neural resilience to background noise following one year of continued training compared to nonmusician peers. Together, these data reveal enhanced development of neural mechanisms undergirding speech-in-noise perception in preschoolers undergoing music training and may indicate a biological impact of music training on auditory function during early childhood. PMID:23872199
Biological impact of preschool music classes on processing speech in noise.
Strait, Dana L; Parbery-Clark, Alexandra; O'Connell, Samantha; Kraus, Nina
2013-10-01
Musicians have increased resilience to the effects of noise on speech perception and its neural underpinnings. We do not know, however, how early in life these enhancements arise. We compared auditory brainstem responses to speech in noise in 32 preschool children, half of whom were engaged in music training. Thirteen children returned for testing one year later, permitting the first longitudinal assessment of subcortical auditory function with music training. Results indicate emerging neural enhancements in musically trained preschoolers for processing speech in noise. Longitudinal outcomes reveal that children enrolled in music classes experience further increased neural resilience to background noise following one year of continued training compared to nonmusician peers. Together, these data reveal enhanced development of neural mechanisms undergirding speech-in-noise perception in preschoolers undergoing music training and may indicate a biological impact of music training on auditory function during early childhood. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nieto-Diego, Javier; Malmierca, Manuel S.
2016-01-01
Stimulus-specific adaptation (SSA) in single neurons of the auditory cortex was suggested to be a potential neural correlate of the mismatch negativity (MMN), a widely studied component of the auditory event-related potentials (ERP) that is elicited by changes in the auditory environment. However, several aspects on this SSA/MMN relation remain unresolved. SSA occurs in the primary auditory cortex (A1), but detailed studies on SSA beyond A1 are lacking. To study the topographic organization of SSA, we mapped the whole rat auditory cortex with multiunit activity recordings, using an oddball paradigm. We demonstrate that SSA occurs outside A1 and differs between primary and nonprimary cortical fields. In particular, SSA is much stronger and develops faster in the nonprimary than in the primary fields, paralleling the organization of subcortical SSA. Importantly, strong SSA is present in the nonprimary auditory cortex within the latency range of the MMN in the rat and correlates with an MMN-like difference wave in the simultaneously recorded local field potentials (LFP). We present new and strong evidence linking SSA at the cellular level to the MMN, a central tool in cognitive and clinical neuroscience. PMID:26950883
Wang, Yuan; Karten, Harvey J.
2010-01-01
The auditory midbrain is a site of convergence of multiple auditory channels from the brainstem. In birds, two separate ascending channels have been identified, through which time and intensity information is sent to nucleus mesencephalicus lateralis, pars dorsalis (MLd), the homologue of the central nucleus of mammalian inferior colliculus. Using in vivo anterograde and retrograde tracing techniques, the current study provides two lines of anatomical evidence supporting the presence of a third ascending channel to the chick MLd. First, three non-overlapping zones of MLd receive inputs from three distinct cell groups in the caudodorsal brainstem. The projections from nucleus angularis (NA) and nucleus laminaris (NL) are predominately contralateral and may correspond to the time and intensity channels. A rostromedial portion of MLd receives bilateral projections mainly from the Regio Intermedius, an interposed region of cells lying at a caudal level between NL and NA, as well as scattered neurons embedded in 8th nerve tract, and probably a very ventral region of NA. Second, the bilateral zones of MLd on two sides of the brain are reciprocally connected and do not interact with other zones of MLd via commissural connections. In contrast, the NL-recipient zone projects contralaterally upon the NA-recipient zone. The structural separation of the third pathway from the NA and NL projections suggests a third information-processing channel, in parallel with the time and intensity channels. Neurons in the third channel appear to process very low frequency information including infrasound, probably utilizing different mechanisms than that underlying higher frequency processing. PMID:20148439
Riazi, Mariam; Marcario, Joanne K; Samson, Frank K.; Kenjale, Himanshu; Adany, Istvan; Staggs, Vincent; Ledford, Emily; Marquis, Janet; Narayan, Opendra; Cheney, Paul D.
2013-01-01
Our work characterizes the effects of opiate (morphine) dependence on auditory brainstem and visual evoked responses in a rhesus macaque model of neuro-AIDS utilizing a chronic continuous drug delivery paradigm. The goal of this study was to clarify whether morphine is protective, or if it exacerbates simian immunodeficiency virus (SIV) related systemic and neurological disease. Our model employs a macrophage tropic CD4/CCR5 co-receptor virus, SIVmac239 (R71/E17), which crosses the blood brain barrier shortly after inoculation and closely mimics the natural disease course of human immunodeficiency virus (HIV) infection. The cohort was divided into 3 groups: morphine only, SIV only, and SIV + morphine. Evoked potential (EP) abnormalities in sub-clinically infected macaques were evident as early as eight weeks post-inoculation. Prolongations in EP latencies were observed in SIV-infected macaques across all modalities. Animals with the highest CSF viral loads and clinical disease showed more abnormalities than those with sub-clinical disease, confirming our previous work (Raymond et al, 1998, 1999, 2000). Although some differences were observed in auditory and visual evoked potentials in morphine treated compared to untreated SIV-infected animals, the effects were relatively small and not consistent across evoked potential type. However, morphine treated animals with subclinical disease had a clear tendency toward higher virus loads in peripheral and CNS tissues (Marcario et al., 2008) suggesting that if had been possible to follow all animals to end-stage disease, a clearer pattern of evoked potential abnormality might have emerged. PMID:19283490
Aimoni, C; Ciorba, A; Bovo, R; Trevisi, P; Busi, M; Martini, A
2010-10-01
Electrophysiological evaluation is a fundamental procedure for the diagnostic assessment of hearing loss during infancy; in these cases, information concerning threshold level and auditory perception is particularly useful to establish a correct hearing rehabilitation program (hearing aids and cochlear implants). Purpose of this study is to underline the role of auditory brainstem responses (ABR) and electrocochleography (EcochG) in the definition of hearing loss in a selected group of children, referred to the Audiology Department of the University Hospital of Ferrara, for a tertiary level audiological assessment. A retrospective study of the paediatric patient database at the Audiology Department of the University Hospital of Ferrara has been performed. In a period between January 2000 and December 2007, a total of 272 paediatric cases have been identified (544 ears). An EM 12 Mercury apparatus has been used for the electrophysiological threshold identification (ABR and EcochG). Recordings were carried out under general anaesthesia, in a protected enviroment. In 19 of the 272 paediatric cases selected--38 ears (7%), the results of threshold evaluation through ABR were uncertain. The Ecochg recording resulted crucial for the final diagnosis in terms of definition of the hearing threshold level, and it was then possible to ensure the better hearing rehabilitation strategy. ABR has to be considered the first choice in hearing assessment strategy, either for screening or for diagnosis in newborns as well as in non-collaborating children; ECochG still may be considered a reliable diagnostic tool. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
The relationship between neonatal hyperbilirubinemia and sensorineural hearing loss.
Corujo-Santana, Cándido; Falcón-González, Juan Carlos; Borkoski-Barreiro, Silvia Andrea; Pérez-Plasencia, Daniel; Ramos-Macías, Ángel
2015-01-01
Severe jaundice that requires exchange transfusion has become a relatively rare situation today. About 60% of full term neonates and 80% of premature ones will suffer from jaundice within the first week of life. Hyperbilirubinemia at birth is a risk factor associated with hearing loss that is usually further linked to other factors that might have an effect on hearing synergistically. This study aimed to identify the relationship between hyperbilirubinemia at birth as a risk factor for sensorineural hearing loss in children born at Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria, in the 2007-2011 period. This was a retrospective study of 796 newborns that had hyperbilirubinemia at birth, using transient evoked otoacoustic emissions and evoked auditory brainstem response. Hundred eighty-five newborns (23.24%) were referred for evoked auditory brainstem response. Hearing loss was diagnosed for 35 (4.39%): 18 neonates (51.43%) with conductive hearing loss and 17 (48.57%) with sensorineural hearing loss, 3 of which were diagnosed as bilateral profound hearing loss. Half of the children had other risk factors associated, the most frequent being exposure to ototoxic medications. The percentage of children diagnosed with sensorineural hearing loss that suffered hyperbilirubinemia at birth is higher than for the general population. Of those diagnosed, none had levels of indirect bilirubin≥20mg/dl, only 47% had hyperbilirubinemia at birth as a risk factor and 53% had another auditory risk factor associated. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.
Encke, Jörg; Hemmert, Werner
2018-01-01
The mammalian auditory system is able to extract temporal and spectral features from sound signals at the two ears. One important cue for localization of low-frequency sound sources in the horizontal plane are inter-aural time differences (ITDs) which are first analyzed in the medial superior olive (MSO) in the brainstem. Neural recordings of ITD tuning curves at various stages along the auditory pathway suggest that ITDs in the mammalian brainstem are not represented in form of a Jeffress-type place code. An alternative is the hemispheric opponent-channel code, according to which ITDs are encoded as the difference in the responses of the MSO nuclei in the two hemispheres. In this study, we present a physiologically-plausible, spiking neuron network model of the mammalian MSO circuit and apply two different methods of extracting ITDs from arbitrary sound signals. The network model is driven by a functional model of the auditory periphery and physiological models of the cochlear nucleus and the MSO. Using a linear opponent-channel decoder, we show that the network is able to detect changes in ITD with a precision down to 10 μs and that the sensitivity of the decoder depends on the slope of the ITD-rate functions. A second approach uses an artificial neuronal network to predict ITDs directly from the spiking output of the MSO and ANF model. Using this predictor, we show that the MSO-network is able to reliably encode static and time-dependent ITDs over a large frequency range, also for complex signals like speech.
Brainstem Correlates of Speech-in-Noise Perception in Children
Anderson, Samira; Skoe, Erika; Chandrasekaran, Bharath; Zecker, Steven; Kraus, Nina
2010-01-01
Children often have difficulty understanding speech in challenging listening environments. In the absence of peripheral hearing loss, these speech perception difficulties may arise from dysfunction at more central levels in the auditory system, including subcortical structures. We examined brainstem encoding of pitch in a speech syllable in 38 school-age children. In children with poor speech-in-noise perception, we find impaired encoding of the fundamental frequency and the second harmonic, two important cues for pitch perception. Pitch, an important factor in speaker identification, aids the listener in tracking a specific voice from a background of voices. These results suggest that the robustness of subcortical neural encoding of pitch features in time-varying signals is an important factor in determining success with speech perception in noise. PMID:20708671
Sayles, Mark; Stasiak, Arkadiusz; Winter, Ian M.
2015-01-01
The auditory system typically processes information from concurrently active sound sources (e.g., two voices speaking at once), in the presence of multiple delayed, attenuated and distorted sound-wave reflections (reverberation). Brainstem circuits help segregate these complex acoustic mixtures into “auditory objects.” Psychophysical studies demonstrate a strong interaction between reverberation and fundamental-frequency (F0) modulation, leading to impaired segregation of competing vowels when segregation is on the basis of F0 differences. Neurophysiological studies of complex-sound segregation have concentrated on sounds with steady F0s, in anechoic environments. However, F0 modulation and reverberation are quasi-ubiquitous. We examine the ability of 129 single units in the ventral cochlear nucleus (VCN) of the anesthetized guinea pig to segregate the concurrent synthetic vowel sounds /a/ and /i/, based on temporal discharge patterns under closed-field conditions. We address the effects of added real-room reverberation, F0 modulation, and the interaction of these two factors, on brainstem neural segregation of voiced speech sounds. A firing-rate representation of single-vowels' spectral envelopes is robust to the combination of F0 modulation and reverberation: local firing-rate maxima and minima across the tonotopic array code vowel-formant structure. However, single-vowel F0-related periodicity information in shuffled inter-spike interval distributions is significantly degraded in the combined presence of reverberation and F0 modulation. Hence, segregation of double-vowels' spectral energy into two streams (corresponding to the two vowels), on the basis of temporal discharge patterns, is impaired by reverberation; specifically when F0 is modulated. All unit types (primary-like, chopper, onset) are similarly affected. These results offer neurophysiological insights to perceptual organization of complex acoustic scenes under realistically challenging listening conditions. PMID:25628545
Liu, Ke; Ji, Fei; Yang, Guan; Hou, Zhaohui; Sun, Jianhe; Wang, Xiaoyu; Guo, Weiwei; Sun, Wei; Yang, Weiyan; Yang, Xiao; Yang, Shiming
2016-10-01
More than 100 genes have been associated with deafness. However, SMAD4 is rarely considered a contributor to deafness in humans, except for its well-defined role in cell differentiation and regeneration. Here, we report that a SMAD4 defect in mice can cause auditory neuropathy, which was defined as a mysterious hearing and speech perception disorder in human for which the genetic background remains unclear. Our study showed that a SMAD4 defect induces failed formation of cochlear ribbon synapse during the earlier stage of auditory development in mice. Further investigation found that there are nearly normal morphology of outer hair cells (OHCs) and post-synapse spiral ganglion nerves (SGNs) in SMAD4 conditional knockout mice (cKO); however, a preserved distortion product of otoacoustic emission (DPOAE) and cochlear microphonic (CM) still can be evoked in cKO mice. Moreover, a partial restoration of hearing detected by electric auditory brainstem response (eABR) has been obtained in the cKO mice using electrode stimuli toward auditory nerves. Additionally, the ribbon synapses in retina are not affected by this SMAD4 defect. Thus, our findings suggest that this SMAD4 defect causes auditory neuropathy via specialized disruption of cochlear ribbon synapses.
Gardner-Berry, Kirsty; Chang, Hsiuwen; Ching, Teresa Y. C.; Hou, Sanna
2016-01-01
With the introduction of newborn hearing screening, infants are being diagnosed with hearing loss during the first few months of life. For infants with a sensory/neural hearing loss (SNHL), the audiogram can be estimated objectively using auditory brainstem response (ABR) testing and hearing aids prescribed accordingly. However, for infants with auditory neuropathy spectrum disorder (ANSD) due to the abnormal/absent ABR waveforms, alternative measures of auditory function are needed to assess the need for amplification and evaluate whether aided benefit has been achieved. Cortical auditory evoked potentials (CAEPs) are used to assess aided benefit in infants with hearing loss; however, there is insufficient information regarding the relationship between stimulus audibility and CAEP detection rates. It is also not clear whether CAEP detection rates differ between infants with SNHL and infants with ANSD. This study involved retrospective collection of CAEP, hearing threshold, and hearing aid gain data to investigate the relationship between stimulus audibility and CAEP detection rates. The results demonstrate that increases in stimulus audibility result in an increase in detection rate. For the same range of sensation levels, there was no difference in the detection rates between infants with SNHL and ANSD. PMID:27587922
Aleman, M; Davis, E; Williams, D C; Madigan, J E; Smith, F; Guedes, A
2015-01-01
An intravenous (IV) overdose of pentobarbital sodium is the most commonly used method of euthanasia in veterinary medicine. However, this compound is not available in many countries or rural areas resulting in usage of alternative methods such as intrathecal lidocaine administration after IV anesthesia. Its safety and efficacy as a method of euthanasia have not been investigated in the horse. To investigate changes in mean arterial blood pressure and electrical activity of the cerebral cortex, brainstem, and heart during intrathecal administration of lidocaine. Our hypothesis was that intrathecal lidocaine affects the cerebral cortex and brainstem before affecting cardiovascular function. Eleven horses requiring euthanasia for medical reasons. Prospective observational study. Horses were anesthetized with xylazine, midazolam, and ketamine; and instrumented for recording of electroencephalogram (EEG), electrooculogram (EOG), brainstem auditory evoked response (BAER), and electrocardiogram (ECG). Physical and neurological (brainstem reflexes) variables were monitored. Mean arterial blood pressure was recorded throughout the study. Loss of cerebro-cortical electrical activity occurred up to 226 seconds after the end of the infusion of lidocaine solution. Cessation of brainstem function as evidenced by a lack of brainstem reflexes and disappearance of BAER occurred subsequently. Undetectable heart sounds, nonpalpable arterial pulse, and extremely low mean arterial blood pressure supported cardiac death; a recordable ECG was the last variable to disappear after the infusion (300-1,279 seconds). Intrathecal administration of lidocaine is an effective alternative method of euthanasia in anesthetized horses, during which brain death occurs before cardiac death. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Internal Medicine.
Graded and discontinuous EphA-ephrinB expression patterns in the developing auditory brainstem
Wallace, Matthew M.; Harris, J. Aaron; Brubaker, Donald Q.; Klotz, Caitlyn A.; Gabriele, Mark L.
2016-01-01
Eph-ephrin interactions guide topographic mapping and pattern formation in a variety of systems. In contrast to other sensory pathways, their precise role in the assembly of central auditory circuits remains poorly understood. The auditory midbrain, or inferior colliculus (IC) is an intriguing structure for exploring guidance of patterned projections as adjacent subdivisions exhibit distinct organizational features. The central nucleus of the IC (CNIC) and deep aspects of its neighboring lateral cortex (LCIC, Layer 3) are tonotopically-organized and receive layered inputs from primarily downstream auditory sources. While less is known about more superficial aspects of the LCIC, its inputs are multimodal, lack a clear tonotopic order, and appear discontinuous, terminating in modular, patch/matrix-like distributions. Here we utilize X-Gal staining approaches in lacZ mutant mice (ephrin-B2, -B3, and EphA4) to reveal EphA-ephrinB expression patterns in the nascent IC during the period of projection shaping that precedes hearing onset. We also report early postnatal protein expression in the cochlear nuclei, the superior olivary complex, the nuclei of the lateral lemniscus, and relevant midline structures. Continuous ephrin-B2 and EphA4 expression gradients exist along frequency axes of the CNIC and LCIC Layer 3. In contrast, more superficial LCIC localization is not graded, but confined to a series of discrete ephrin-B2 and EphA4-positive Layer 2 modules. While heavily expressed in the midline, much of the auditory brainstem is devoid of ephrin-B3, including the CNIC, LCIC Layer 2 modular fields, the dorsal nucleus of the lateral lemniscus (DNLL), as well as much of the superior olivary complex and cochlear nuclei. Ephrin-B3 LCIC expression appears complementary to that of ephrin-B2 and EphA4, with protein most concentrated in presumptive extramodular zones. Described tonotopic gradients and seemingly complementary modular/extramodular patterns suggest Eph-ephrin guidance in establishing juxtaposed continuous and discrete neural maps in the developing IC prior to experience. PMID:26906676
Graded and discontinuous EphA-ephrinB expression patterns in the developing auditory brainstem.
Wallace, Matthew M; Harris, J Aaron; Brubaker, Donald Q; Klotz, Caitlyn A; Gabriele, Mark L
2016-05-01
Eph-ephrin interactions guide topographic mapping and pattern formation in a variety of systems. In contrast to other sensory pathways, their precise role in the assembly of central auditory circuits remains poorly understood. The auditory midbrain, or inferior colliculus (IC) is an intriguing structure for exploring guidance of patterned projections as adjacent subdivisions exhibit distinct organizational features. The central nucleus of the IC (CNIC) and deep aspects of its neighboring lateral cortex (LCIC, Layer 3) are tonotopically-organized and receive layered inputs from primarily downstream auditory sources. While less is known about more superficial aspects of the LCIC, its inputs are multimodal, lack a clear tonotopic order, and appear discontinuous, terminating in modular, patch/matrix-like distributions. Here we utilize X-Gal staining approaches in lacZ mutant mice (ephrin-B2, -B3, and EphA4) to reveal EphA-ephrinB expression patterns in the nascent IC during the period of projection shaping that precedes hearing onset. We also report early postnatal protein expression in the cochlear nuclei, the superior olivary complex, the nuclei of the lateral lemniscus, and relevant midline structures. Continuous ephrin-B2 and EphA4 expression gradients exist along frequency axes of the CNIC and LCIC Layer 3. In contrast, more superficial LCIC localization is not graded, but confined to a series of discrete ephrin-B2 and EphA4-positive Layer 2 modules. While heavily expressed in the midline, much of the auditory brainstem is devoid of ephrin-B3, including the CNIC, LCIC Layer 2 modular fields, the dorsal nucleus of the lateral lemniscus (DNLL), as well as much of the superior olivary complex and cochlear nuclei. Ephrin-B3 LCIC expression appears complementary to that of ephrin-B2 and EphA4, with protein most concentrated in presumptive extramodular zones. Described tonotopic gradients and seemingly complementary modular/extramodular patterns suggest Eph-ephrin guidance in establishing juxtaposed continuous and discrete neural maps in the developing IC prior to experience. Copyright © 2016 Elsevier B.V. All rights reserved.
Smith, Adam B; Pacini, Aude F; Nachtigall, Paul E
2018-04-01
Odontocete marine mammals explore the environment by rapidly producing echolocation signals and receiving the corresponding echoes, which likewise return at very rapid rates. Thus, it is important that the auditory system has a high temporal resolution to effectively process and extract relevant information from click echoes. This study used auditory evoked potential methods to investigate auditory temporal resolution of individuals from four different odontocete species, including a spinner dolphin (Stenella longirostris), pygmy killer whale (Feresa attenuata), long-finned pilot whale (Globicephala melas), and Blainville's beaked whale (Mesoplodon densirostris). Each individual had previously stranded and was undergoing rehabilitation. Auditory Brainstem Responses (ABRs) were elicited via acoustic stimuli consisting of a train of broadband tone pulses presented at rates between 300 and 2000 Hz. Similar to other studied species, modulation rate transfer functions (MRTFs) of the studied individuals followed the shape of a low-pass filter, with the ability to process acoustic stimuli at presentation rates up to and exceeding 1250 Hz. Auditory integration times estimated from the bandwidths of the MRTFs ranged between 250 and 333 µs. The results support the hypothesis that high temporal resolution is conserved throughout the diverse range of odontocete species.
Auditory Resting-State Network Connectivity in Tinnitus: A Functional MRI Study
Maudoux, Audrey; Lefebvre, Philippe; Cabay, Jean-Evrard; Demertzi, Athena; Vanhaudenhuyse, Audrey; Laureys, Steven; Soddu, Andrea
2012-01-01
The underlying functional neuroanatomy of tinnitus remains poorly understood. Few studies have focused on functional cerebral connectivity changes in tinnitus patients. The aim of this study was to test if functional MRI “resting-state” connectivity patterns in auditory network differ between tinnitus patients and normal controls. Thirteen chronic tinnitus subjects and fifteen age-matched healthy controls were studied on a 3 tesla MRI. Connectivity was investigated using independent component analysis and an automated component selection approach taking into account the spatial and temporal properties of each component. Connectivity in extra-auditory regions such as brainstem, basal ganglia/NAc, cerebellum, parahippocampal, right prefrontal, parietal, and sensorimotor areas was found to be increased in tinnitus subjects. The right primary auditory cortex, left prefrontal, left fusiform gyrus, and bilateral occipital regions showed a decreased connectivity in tinnitus. These results show that there is a modification of cortical and subcortical functional connectivity in tinnitus encompassing attentional, mnemonic, and emotional networks. Our data corroborate the hypothesized implication of non-auditory regions in tinnitus physiopathology and suggest that various regions of the brain seem involved in the persistent awareness of the phenomenon as well as in the development of the associated distress leading to disabling chronic tinnitus. PMID:22574141
Visser, Eelke; Zwiers, Marcel P; Kan, Cornelis C; Hoekstra, Liesbeth; van Opstal, A John; Buitelaar, Jan K
2013-11-01
Autism spectrum disorders (ASDs) are associated with auditory hyper- or hyposensitivity; atypicalities in central auditory processes, such as speech-processing and selective auditory attention; and neural connectivity deficits. We sought to investigate whether the low-level integrative processes underlying sound localization and spatial discrimination are affected in ASDs. We performed 3 behavioural experiments to probe different connecting neural pathways: 1) horizontal and vertical localization of auditory stimuli in a noisy background, 2) vertical localization of repetitive frequency sweeps and 3) discrimination of horizontally separated sound stimuli with a short onset difference (precedence effect). Ten adult participants with ASDs and 10 healthy control listeners participated in experiments 1 and 3; sample sizes for experiment 2 were 18 adults with ASDs and 19 controls. Horizontal localization was unaffected, but vertical localization performance was significantly worse in participants with ASDs. The temporal window for the precedence effect was shorter in participants with ASDs than in controls. The study was performed with adult participants and hence does not provide insight into the developmental aspects of auditory processing in individuals with ASDs. Changes in low-level auditory processing could underlie degraded performance in vertical localization, which would be in agreement with recently reported changes in the neuroanatomy of the auditory brainstem in individuals with ASDs. The results are further discussed in the context of theories about abnormal brain connectivity in individuals with ASDs.
Rattay, Frank; Potrusil, Thomas; Wenger, Cornelia; Wise, Andrew K.; Glueckert, Rudolf; Schrott-Fischer, Anneliese
2013-01-01
Background Our knowledge about the neural code in the auditory nerve is based to a large extent on experiments on cats. Several anatomical differences between auditory neurons in human and cat are expected to lead to functional differences in speed and safety of spike conduction. Methodology/Principal Findings Confocal microscopy was used to systematically evaluate peripheral and central process diameters, commonness of myelination and morphology of spiral ganglion neurons (SGNs) along the cochlea of three human and three cats. Based on these morphometric data, model analysis reveales that spike conduction in SGNs is characterized by four phases: a postsynaptic delay, constant velocity in the peripheral process, a presomatic delay and constant velocity in the central process. The majority of SGNs are type I, connecting the inner hair cells with the brainstem. In contrast to those of humans, type I neurons of the cat are entirely myelinated. Biophysical model evaluation showed delayed and weak spikes in the human soma region as a consequence of a lack of myelin. The simulated spike conduction times are in accordance with normal interwave latencies from auditory brainstem response recordings from man and cat. Simulated 400 pA postsynaptic currents from inner hair cell ribbon synapses were 15 times above threshold. They enforced quick and synchronous spiking. Both of these properties were not present in type II cells as they receive fewer and much weaker (∼26 pA) synaptic stimuli. Conclusions/Significance Wasting synaptic energy boosts spike initiation, which guarantees the rapid transmission of temporal fine structure of auditory signals. However, a lack of myelin in the soma regions of human type I neurons causes a large delay in spike conduction in comparison with cat neurons. The absent myelin, in combination with a longer peripheral process, causes quantitative differences of temporal parameters in the electrically stimulated human cochlea compared to the cat cochlea. PMID:24260179
Henry, Kenneth S.; Kale, Sushrut; Scheidt, Ryan E.; Heinz, Michael G.
2011-01-01
Non-invasive auditory brainstem responses (ABRs) are commonly used to assess cochlear pathology in both clinical and research environments. In the current study, we evaluated the relationship between ABR characteristics and more direct measures of cochlear function. We recorded ABRs and auditory nerve (AN) single-unit responses in seven chinchillas with noise induced hearing loss. ABRs were recorded for 1–8 kHz tone burst stimuli both before and several weeks after four hours of exposure to a 115 dB SPL, 50 Hz band of noise with a center frequency of 2 kHz. Shifts in ABR characteristics (threshold, wave I amplitude, and wave I latency) following hearing loss were compared to AN-fiber tuning curve properties (threshold and frequency selectivity) in the same animals. As expected, noise exposure generally resulted in an increase in ABR threshold and decrease in wave I amplitude at equal SPL. Wave I amplitude at equal sensation level (SL), however, was similar before and after noise exposure. In addition, noise exposure resulted in decreases in ABR wave I latency at equal SL and, to a lesser extent, at equal SPL. The shifts in ABR characteristics were significantly related to AN-fiber tuning curve properties in the same animal at the same frequency. Larger shifts in ABR thresholds and ABR wave I amplitude at equal SPL were associated with greater AN threshold elevation. Larger reductions in ABR wave I latency at equal SL, on the other hand, were associated with greater loss of AN frequency selectivity. This result is consistent with linear systems theory, which predicts shorter time delays for broader peripheral frequency tuning. Taken together with other studies, our results affirm that ABR thresholds and wave I amplitude provide useful estimates of cochlear sensitivity. Furthermore, comparisons of ABR wave I latency to normative data at the same SL may prove useful for detecting and characterizing loss of cochlear frequency selectivity. PMID:21699970
Thong, Jiun Fong; Sung, John K K; Wong, Terence K C; Tong, Michael C F
2016-08-01
To describe our experience and outcomes of auditory brainstem implantation (ABI) in Chinese patients with Neurofibromatosis Type II (NF2). Retrospective case review. Tertiary referral center. Patients with NF2 who received ABIs. Between 1997 and 2014, eight patients with NF2 received 9 ABIs after translabyrinthine removal of their vestibular schwannomas. One patient did not have auditory response using the ABI after activation. Environmental sounds could be differentiated by six (75%) patients after 6 months of ABI use (mean score 46% [range 28-60%]), and by five (63%) patients after 1 year (mean score 57% [range 36-76%]) and 2 years of ABI use (mean score 48% [range 24-76%]). Closed-set word identification was possible in four (50%) patients after 6 months (mean score 39% [range 12-72%]), 1 year (mean score 68% [range 48-92%]), and 2 years of ABI use (mean score 62% [range 28-100%]). No patient demonstrated open-set sentence recognition in quiet in the ABI-only condition. However, the use of ABI together with lip-reading conferred an improvement over lip-reading alone in open-set sentence recognition scores in two (25%) patients after 6 months of ABI use (mean improvement 46%), and five (63%) patients after 1 year (mean improvement 25%) and 2 years of ABI use (mean improvement 28%). At 2 years postoperatively, three (38%) patients remained ABI users. This is the only published study to date examining ABI outcomes in Cantonese-speaking Chinese NF2 patients and the data seems to show poorer outcomes compared with English-speaking and other nontonal language-speaking NF2 patients. Environmental sound awareness and lip-reading enhancement are the main benefits observed in our patients. More work is needed to improve auditory implant speech-processing strategies for tonal languages and these advancements may yield better speech perception outcomes in the future.
Orton, Llwyd D.; Poon, Paul W. F.; Rees, Adrian
2012-01-01
The auditory pathways coursing through the brainstem are organized bilaterally in mirror image about the midline and at several levels the two sides are interconnected. One of the most prominent points of interconnection is the commissure of the inferior colliculus (CoIC). Anatomical studies have revealed that these fibers make reciprocal connections which follow the tonotopic organization of the inferior colliculus (IC), and that the commissure contains both excitatory and, albeit fewer, inhibitory fibers. The role of these connections in sound processing is largely unknown. Here we describe a method to address this question in the anaesthetized guinea pig. We used a cryoloop placed on one IC to produce reversible deactivation while recording electrophysiological responses to sounds in both ICs. We recorded single units, multi-unit clusters and local field potentials (LFPs) before, during and after cooling. The degree and spread of cooling was measured with a thermocouple placed in the IC and other auditory structures. Cooling sufficient to eliminate firing was restricted to the IC contacted by the cryoloop. The temperature of other auditory brainstem structures, including the contralateral IC and the cochlea were minimally affected. Cooling below 20°C reduced or eliminated the firing of action potentials in frequency laminae at depths corresponding to characteristic frequencies up to ~8 kHz. Modulation of neural activity also occurred in the un-cooled IC with changes in single unit firing and LFPs. Components of LFPs signaling lemniscal afferent input to the IC showed little change in amplitude or latency with cooling, whereas the later components, which likely reflect inter- and intra-collicular processing, showed marked changes in form and amplitude. We conclude that the cryoloop is an effective method of selectively deactivating one IC in guinea pig, and demonstrate that auditory processing in the IC is strongly influenced by the other. PMID:23248587
Research Laboratory of Electronics Progress Report Number 133
1991-08-01
Anatomical Basis for the Relationships Between Binaural Hearing and Brainstem Auditory Evoked Potentials in Humans...frequencyjitter by simply beating the outputs of two Brillouin lasers that share the same cavity, we Figure 1. Brillouin laser output. found the width of...the beat to be limited by the 30 Hz instrumental linewidth of our spectrum ana- Figure 1 shows the pump propagating in a fiber lyzer.7 ring resonator
Low Level Chemical Toxicity: Relevance to Chemical Agent Defense
2005-07-01
elevation in stress hormones in the blood serum. Electron microscropy indicated no damage to cochlear tissues of the ear (not shown). At the...neural activity occurring primarily in the cochlear nucleus of the brainstem auditory pathway. Peak II is usually the last major peak to disappear...IV). Peak II is generally the strongest peak and is regarded as a putative indicator of neural activity occurring primarily in the cochlear nucleus
Corona-Strauss, Farah I.; Schick, Bernhard; Delb, Wolfgang; Strauss, Daniel J.
2012-01-01
It has been shown recently that chirp-evoked auditory brainstem responses (ABRs) show better performance than click stimulations, especially at low intensity levels. In this paper we present the development, test, and evaluation of a series of notched-noise embedded frequency specific chirps. ABRs were collected in healthy young control subjects using the developed stimuli. Results of the analysis of the corresponding ABRs using a time-scale phase synchronization stability (PSS) measure are also reported. The resultant wave V amplitude and latency measures showed a similar behavior as for values reported in literature. The PSS of frequency specific chirp-evoked ABRs reflected the presence of the wave V for all stimulation intensities. The scales that resulted in higher PSS are in line with previous findings, where ABRs evoked by broadband chirps were analyzed, and which stated that low frequency channels are better for the recognition and analysis of chirp-evoked ABRs. We conclude that the development and test of the series of notched-noise embedded frequency specific chirps allowed the assessment of frequency specific ABRs, showing an identifiable wave V for different intensity levels. Future work may include the development of a faster automatic recognition scheme for these frequency specific ABRs. PMID:26557336
Ochi, A; Yasuhara, A; Kobayashi, Y
1998-11-01
This study compares the clinical usefulness of distortion product otoacoustic emissions (DPOAEs) with the auditory brain-stem response (ABR) for neonates in the neonatal intensive care unit for the evaluation of hearing impairment. Both DPOAEs and ABR were performed on 36 neonates (67 ears) on the same day. We defined neonates as having normal hearing when the thresholds of wave V of ABR were < or =45 dB hearing level. (1) We could not obtain DPOAEs at f2 = 977 Hz in neonates with normal hearing because of high noise floors. DPOAE recording time was 36 min shorter than that of ABR. (2) We defined as normal DPOAEs, the number of frequencies which showed the DPgram-noise floor > or =4 dB was > or =4 at 6 f2 frequencies, from 1416 Hz to 7959 Hz. (3) Normal thresholds of ABR and normal DPOAEs showed the same percentages, i.e. 68.7%, but the percentage of different results between ABR and DPOAEs was 6.0%. Our study indicates that DPOAEs represent a simple procedure, which can be easily performed in the NICU to obtain reliable results in high-risk neonates. Results obtained by DPOAEs were comparable to those obtained by the more complex procedure of ABR.
A simple method for multiday imaging of slice cultures.
Seidl, Armin H; Rubel, Edwin W
2010-01-01
The organotypic slice culture (Stoppini et al. A simple method for organotypic cultures of nervous tissue. 1991;37:173-182) has become the method of choice to answer a variety of questions in neuroscience. For many experiments, however, it would be beneficial to image or manipulate a slice culture repeatedly, for example, over the course of many days. We prepared organotypic slice cultures of the auditory brainstem of P3 and P4 mice and kept them in vitro for up to 4 weeks. Single cells in the auditory brainstem were transfected with plasmids expressing fluorescent proteins by way of electroporation (Haas et al. Single-cell electroporation for gene transfer in vivo. 2001;29:583-591). The culture was then placed in a chamber perfused with oxygenated ACSF and the labeled cell imaged with an inverted wide-field microscope repeatedly for multiple days, recording several time-points per day, before returning the slice to the incubator. We describe a simple method to image a slice culture preparation during the course of multiple days and over many continuous hours, without noticeable damage to the tissue or photobleaching. Our method uses a simple, inexpensive custom-built insulator constructed around the microscope to maintain controlled temperature and uses a perfusion chamber as used for in vitro slice recordings. (c) 2009 Wiley-Liss, Inc.
Leao, Richardson N; Leao, Fabricio N; Walmsley, Bruce
2005-01-01
A change in the spontaneous release of neurotransmitter is a useful indicator of processes occurring within presynaptic terminals. Linear techniques (e.g. Fourier transform) have been used to analyse spontaneous synaptic events in previous studies, but such methods are inappropriate if the timing pattern is complex. We have investigated spontaneous glycinergic miniature synaptic currents (mIPSCs) in principal cells of the medial nucleus of the trapezoid body. The random versus deterministic (or periodic) nature of mIPSCs was assessed using recurrence quantification analysis. Nonlinear methods were then used to quantify any detected determinism in spontaneous release, and to test for chaotic or fractal patterns. Modelling demonstrated that this procedure is much more sensitive in detecting periodicities than conventional techniques. mIPSCs were found to exhibit periodicities that were abolished by blockade of internal calcium stores with ryanodine, suggesting calcium oscillations in the presynaptic inhibitory terminals. Analysis indicated that mIPSC occurrences were chaotic in nature. Furthermore, periodicities were less evident in congenitally deaf mice than in normal mice, indicating that appropriate neural activity during development is necessary for the expression of deterministic chaos in mIPSC patterns. We suggest that chaotic oscillations of mIPSC occurrences play a physiological role in signal processing in the auditory brainstem. PMID:16271982
Sławińska, Urszula; Miazga, Krzysztof; Cabaj, Anna M; Leszczyńska, Anna N; Majczyński, Henryk; Nagy, James I; Jordan, Larry M
2013-09-01
In rodent models of spinal cord injury, there is increasing evidence that activation of the locomotor central pattern generator (CPG) below the site of injury with 5-hydroxytryptamine (5-HT) agonists improves locomotor recovery and restores coordination. A promising means of replacing 5-HT control of locomotion is to graft brainstem 5-HT neurons into the spinal cord below the level of the spinal cord injury. However, it is not known whether this approach improves limb coordination because recovery of coordinated stepping has not been documented in detail in previous studies employing this transplantation strategy. Here, adult rats with complete spinal cord transections at the T9/10 level were grafted with E14 fetal neurons from the medulla at the T10/11 vertebra level one month after injury. The B1, B2 and B3 fetal anlagen of brainstem 5-HT neurons, a grouping that included the presumed precursors of recently described 5-HT locomotor command neurons, were used in these grafts. EMG and video recordings of treadmill locomotion evoked by tail stimulation showed full recovery of inter- and intralimb coordination in the grafted rats. We showed, using systemically applied antagonists, that 5-HT₂ and 5-HT₇ receptors mediate the improved locomotion after grafting, but through actions on different populations of spinal locomotor neurons. Specifically, 5-HT₂ receptors control CPG activation as well as motoneuron output, while 5-HT₇ receptors contribute primarily to activity of the locomotor CPG. These results are consistent with the roles for these receptors during locomotion in intact rodents and in rodent brainstem-spinal cord in vitro preparations. Copyright © 2013 Elsevier Inc. All rights reserved.
Diarra, A; Lefauconnier, J M; Valens, M; Georges, P; Gripois, D
1989-10-01
The influence of neonatal hypo- and hyperthyroidism on different aspects of tyrosine metabolism in the hypothalamus, striatum, brainstem, adrenal glands, heart and brown adipose tissue (BAT) were studied in 14-day old rats. The synthesis rate of catecholamines (CA) was also determined in vivo after the injection of labelled tyrosine. Hypothyroidism increases tyrosinaemia and endogenous tyrosine concentration in the hypothalamus and BAT. Hyperthyroidism decreases tyrosinaemia and endogenous tyrosine levels in the striatum, adrenals and heart. The accumulation rate of tyrosine determined 30 min after an intravenous injection of the labelled amino acid has been determined in the organs, together with the influx of the amino acid, determined within 20s. Hypothyroidism increases tyrosine accumulation rate in all the organs studied, and tyrosine clearance is decreased in the striatum and brainstem; together with an increased tyrosinaemia, this leads to a normal influx. The influx of tyrosine is increased in the hypothalamus. Hyperthyroidism decreases tyrosine accumulation rate in all the organs except the adrenals. These results indicate that the thyroid status of the young rat can influence tyrosine uptake mechanisms, without modifying an organ's tyrosine content. The fact that hypothyroidism increases tyrosine influx in the hypothalamus without modifying it in the brainstem and striatum reflects an heterogeneous reactivity to the lack of thyroid hormones in different brain structures. Neonatal hypothyroidism decreases the CA synthesis rate in the striatum, the heart and the interscapular brown adipose tissue, while synthesis was enhanced in the brainstem and the adrenals. It is likely that these variations in CA synthesis are due to thyroid hormone modulation of tyrosine hydroxylase activity, the enzyme which catalyses the rate limiting step in CA biosynthesis.
Reversal of age-related neural timing delays with training
Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina
2013-01-01
Neural slowing is commonly noted in older adults, with consequences for sensory, motor, and cognitive domains. One of the deleterious effects of neural slowing is impairment of temporal resolution; older adults, therefore, have reduced ability to process the rapid events that characterize speech, especially in noisy environments. Although hearing aids provide increased audibility, they cannot compensate for deficits in auditory temporal processing. Auditory training may provide a strategy to address these deficits. To that end, we evaluated the effects of auditory-based cognitive training on the temporal precision of subcortical processing of speech in noise. After training, older adults exhibited faster neural timing and experienced gains in memory, speed of processing, and speech-in-noise perception, whereas a matched control group showed no changes. Training was also associated with decreased variability of brainstem response peaks, suggesting a decrease in temporal jitter in response to a speech signal. These results demonstrate that auditory-based cognitive training can partially restore age-related deficits in temporal processing in the brain; this plasticity in turn promotes better cognitive and perceptual skills. PMID:23401541
Katharesan, Viythia; Lewis, Martin David; Vink, Robert; Johnson, Ian Paul
2016-01-01
An overall increase in inflammatory cytokines with age in both the blood and the central nervous system (CNS) has been proposed to explain many aspects of ageing, including decreased motor function and neurodegeneration. This study tests the hypothesis that age-related increases in inflammatory cytokines in the blood and CNS lead to facial motor neuron degeneration. Groups of 3-5 female Sprague-Dawley rats aged 3, 12-18, and 24 months were used. Twelve cytokines interleukin (IL)-1α, IL-β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-13, tumor necrosis factor-α (TNFα), interferon-γ, and granulocyte macrophage-colony stimulating factor were measured in blood plasma and compared with those in the brainstem after first flushing blood from its vessels. The open-field test was used to measure exploratory behavior, and the morphology of the peripheral target muscle of facial motor neurons quantified. Total numbers of facial motor neurons were determined stereologically in separate groups of 3- and 24-month-old rats. Ageing rats showed a significant 30-42% decrease in blood plasma (peripheral) concentrations of IL-12p70 and TNFα and a significant 43-49% increase in brainstem (central) concentrations of IL-1α, IL-2, IL-4, IL-10, and TNFα. They also showed significant reductions in motor neuron number in the right but not left facial nucleus, reduced exploratory behavior, and increase in peripheral target muscle size. Marginal age-related facial motoneuronal loss occurs in the ageing rat and is characterized by complex changes in the inflammatory signature, rather than a general increase in inflammatory cytokines.
Hao, Yongxin; Jing, He; Bi, Qiang; Zhang, Jiaozhen; Qin, Ling; Yang, Pingting
2014-12-15
Though accumulating literature implicates that cytokines are involved in the pathophysiology of mental disorders, the role of interleukin-6 (IL-6) in learning and memory functions remains unresolved. The present study was undertaken to investigate the effect of IL-6 on amygdala-dependent fear learning. Adult Wistar rats were used along with the auditory fear conditioning test and pharmacological techniques. The data showed that infusions of IL-6, aimed at the amygdala, dose-dependently impaired the acquisition and extinction of conditioned fear. In addition, the results in the Western blot analysis confirmed that JAK/STAT was temporally activated-phosphorylated by the IL-6 treatment. Moreover, the rats were treated with JSI-124, a JAK/STAT3 inhibitor, prior to the IL-6 treatment showed a significant decrease in the IL-6 induced impairments of fear conditioning. Taken together, our results demonstrate that the learning behavior of rats in the auditory fear conditioning could be modulated by IL-6 via the amygdala. Furthermore, the JAK/STAT3 activation in the amygdala seemed to play a role in the IL-6 mediated behavioral alterations of rats in auditory fear learning. Copyright © 2014 Elsevier B.V. All rights reserved.
Schrode, Katrina M.; Bee, Mark A.
2015-01-01
ABSTRACT Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male–male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. PMID:25617467
Artificial organs: recent progress in artificial hearing and vision.
Ifukube, Tohru
2009-01-01
Artificial sensory organs are a prosthetic means of sending visual or auditory information to the brain by electrical stimulation of the optic or auditory nerves to assist visually impaired or hearing-impaired people. However, clinical application of artificial sensory organs, except for cochlear implants, is still a trial-and-error process. This is because how and where the information transmitted to the brain is processed is still unknown, and also because changes in brain function (plasticity) remain unknown, even though brain plasticity plays an important role in meaningful interpretation of new sensory stimuli. This article discusses some basic unresolved issues and potential solutions in the development of artificial sensory organs such as cochlear implants, brainstem implants, artificial vision, and artificial retinas.
Threlkeld, Steven W; McClure, Melissa M; Rosen, Glenn D; Fitch, R Holly
2006-09-13
Induction of a focal freeze lesion to the skullcap of a 1-day-old rat pup leads to the formation of microgyria similar to those identified postmortem in human dyslexics. Rats with microgyria exhibit rapid auditory processing deficits similar to those seen in language-impaired (LI) children, and infants at risk for LI and these effects are particularly marked in juvenile as compared to adult subjects. In the current study, a startle response paradigm was used to investigate gap detection in juvenile and adult rats that received bilateral freezing lesions or sham surgery on postnatal day (P) 1, 3 or 5. Microgyria were confirmed in P1 and 3 lesion rats, but not in the P5 lesion group. We found a significant reduction in brain weight and neocortical volume in P1 and 3 lesioned brains relative to shams. Juvenile (P27-39) behavioral data indicated significant rapid auditory processing deficits in all three lesion groups as compared to sham subjects, while adult (P60+) data revealed a persistent disparity only between P1-lesioned rats and shams. Combined results suggest that generalized pathology affecting neocortical development is responsible for the presence of rapid auditory processing deficits, rather than factors specific to the formation of microgyria per se. Finally, results show that the window for the induction of rapid auditory processing deficits through disruption of neurodevelopment appears to extend beyond the endpoint for cortical neuronal migration, although, the persistent deficits exhibited by P1 lesion subjects suggest a secondary neurodevelopmental window at the time of cortical neuromigration representing a peak period of vulnerability.
Pettorossi, Vito Enrico; Dutia, Mayank; Frondaroli, Adele; Dieni, Cristina; Grassi, Silvarosa
2003-01-01
We previously demonstrated in rat brainstem slices that high-frequency stimulation (HFS) of the vestibular afferents induces long-term potentiation (LTP) in the ventral part (Vp) of the medial vestibular nucleus (MVN) and long-term depression (LTD) in the dorsal part (Dp). Both LTP and LTD depend on N-methyl-D-aspartate receptor activation, which increases synaptic efficacy; however, in the Dp, LTP reverses to LTD because of the activation of gamma-aminobutyric acid-ergic neurons. Here we show that the probability of inducing long-term effects in the MVN of rat brainstem slices is altered after unilateral labyrinthectomy (UL). In fact, LTP occurs less frequently in the ventral contra-lesional side compared with sham-operated rats. In the dorsal ipsi-lesional side, LTD is reduced and LTP enhanced, while the opposite occurs in the dorsal contra-lesional side. These changes in synaptic plasticity may be useful for re-balancing the tonic discharge of the MVN of the two sides during vestibular compensation, and for enhancing the dynamic responses of the deafferented MVN neurons in the long term.
Azadpour, Mahan; McKay, Colette M
2014-01-01
Auditory brainstem implants (ABI) use the same processing strategy as was developed for cochlear implants (CI). However, the cochlear nucleus (CN), the stimulation site of ABIs, is anatomically and physiologically more complex than the auditory nerve and consists of neurons with differing roles in auditory processing. The aim of this study was to evaluate the hypotheses that ABI users are less able than CI users to access speech spectro-temporal information delivered by the existing strategies and that the sites stimulated by different locations of CI and ABI electrode arrays differ in encoding of temporal patterns in the stimulation. Six CI users and four ABI users of Nucleus implants with ACE processing strategy participated in this study. Closed-set perception of aCa syllables (16 consonants) and bVd words (11 vowels) was evaluated via experimental processing strategies that activated one, two, or four of the electrodes of the array in a CIS manner as well as subjects' clinical strategies. Three single-channel strategies presented the overall temporal envelope variations of the signal on a single-implant electrode located at the high-, medium-, and low-frequency regions of the array. Implantees' ability to discriminate within electrode temporal patterns of stimulation for phoneme perception and their ability to make use of spectral information presented by increased number of active electrodes were assessed in the single- and multiple-channel strategies, respectively. Overall percentages and information transmission of phonetic features were obtained for each experimental program. Phoneme perception performance of three ABI users was within the range of CI users in most of the experimental strategies and improved as the number of active electrodes increased. One ABI user performed close to chance with all the single and multiple electrode strategies. There was no significant difference between apical, basal, and middle CI electrodes in transmitting speech temporal information, except a trend that the voicing feature was the least transmitted by the basal electrode. A similar electrode-location pattern could be observed in most ABI subjects. Although the number of tested ABI subjects was small, their wide range of phoneme perception performance was consistent with previous reports of overall speech perception in ABI patients. The better-performing ABI user participants had access to speech temporal and spectral information that was comparable to that of average CI user. The poor-performing ABI user did not have access to within-channel speech temporal information and did not benefit from an increased number of spectral channels. The within-subject variability between different ABI electrodes was less than the variability across users in transmission of speech temporal information. The difference in the performance of ABI users could be related to the location of their electrode array on the CN, anatomy, and physiology of their CN or the damage to their auditory brainstem due to tumor or surgery.
Laroche, Marilyn; Dajani, Hilmi R; Prévost, François; Marcoux, André M
2013-01-01
This study investigated speech auditory brainstem responses (speech ABR) with variants of a synthetic vowel in quiet and in background noise. Its objectives were to study the noise robustness of the brainstem response at the fundamental frequency F0 and at the first formant F1, evaluate how the resolved/unresolved harmonics regions in speech contribute to the response at F0, and investigate the origin of the response at F0 to resolved and unresolved harmonics in speech. In total, 18 normal-hearing subjects (11 women, aged 18-33 years) participated in this study. Speech ABRs were recorded using variants of a 300 msec formant-synthesized /a/ vowel in quiet and in white noise. The first experiment employed three variants containing the first three formants F1 to F3, F1 only, and F2 and F3 only with relative formant levels following those reported in the literature. The second experiment employed three variants containing F1 only, F2 only, and F3 only, with the formants equalized to the same level and the signal-to-noise ratio (SNR) maintained at -5 dB. Overall response latency was estimated, and the amplitude and local SNR of the envelope following response at F0 and of the frequency following response at F1 were compared for the different stimulus variants in quiet and in noise. The response at F0 was more robust to noise than that at F1. There were no statistically significant differences in the response at F0 caused by the three stimulus variants in both experiments in quiet. However, the response at F0 with the variant dominated by resolved harmonics was more robust to noise than the response at F0 with the stimulus variants dominated by unresolved harmonics. The latencies of the responses in all cases were very similar in quiet, but the responses at F0 due to resolved and unresolved harmonics combined nonlinearly when both were present in the stimulus. Speech ABR has been suggested as a marker of central auditory processing. The results of this study support earlier work on the differential susceptibility to noise of the F0 and F1 components of the evoked response. In the case of F0, the results support the view that in speech, the pitch of resolved harmonics and that of unresolved harmonics are processed in different but interacting pathways that converge in the upper brainstem. Pitch plays an important role in speech perception, and speech ABR can offer a window into the neural extraction of the pitch of speech and how it may change with hearing impairment.
Auditory neuropathy spectrum disorder in late preterm and term infants with severe jaundice.
Saluja, Satish; Agarwal, Asha; Kler, Neelam; Amin, Sanjiv
2010-11-01
To evaluate if severe jaundice is associated with acute auditory neuropathy spectrum disorder in otherwise healthy late preterm and term neonates. In a prospective observational study, all neonates who were admitted with severe jaundice at which exchange transfusion may be indicated as per American Academy of Pediatrics guidelines had comprehensive auditory evaluation performed before discharge to home. Neonates with infection, perinatal asphyxia, chromosomal disorders, cranio-facial malformations, or family history of childhood hearing loss were excluded. Comprehensive auditory evaluations (tympanometry, oto-acoustic emission tests, and auditory brainstem evoked responses) were performed by an audiologist unaware of the severity of jaundice. Total serum bilirubin and serum albumin were measured at the institutional chemistry laboratory using the Diazo and Bromocresol purple method, respectively. A total of 13 neonates with total serum bilirubin concentration at which exchange transfusion is indicated as per American Academy of Pediatrics were admitted to the Neonatal Intensive Care Unit over 3 month period. Six out of 13 neonates (46%) had audiological findings of acute auditory neuropathy spectrum disorder. There was no significant difference in gestational age, birth weight, hemolysis, serum albumin concentration, peak total serum bilirubin concentrations, and peak bilirubin:albumin molar ratio between six neonates who developed acute auditory neuropathy and seven neonates who had normal audiological findings. Only two out of six infants with auditory neuropathy spectrum disorder had clinical signs and symptoms of acute bilirubin encephalopathy. Our findings strongly suggest that auditory neuropathy spectrum disorder is a common manifestation of acute bilirubin-induced neurotoxicity in late preterm and term infants with severe jaundice. Our findings also suggest that comprehensive auditory evaluations should be routinely performed in neonates with severe jaundice irrespective of the presence of clinical findings of acute bilirubin encephalopathy. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Forward Masking of the Speech-Evoked Auditory Brainstem Response.
Hodge, Sarah E; Menezes, Denise C; Brown, Kevin D; Grose, John H
2018-02-01
The hypothesis tested was that forward masking of the speech-evoked auditory brainstem response (sABR) increases peak latency as an inverse function of masker-signal interval (Δt), and that the overall persistence of forward masking is age dependent. Older listeners exhibit deficits in forward masking. If forward-masked sABRs provide an objective measure of the susceptibility of speech sounds to prior stimulation, then this provides a novel approach to examining the age dependence of temporal processing. A /da/ stimulus forward masked by speech-shaped noise (Δt = 4-64 ms) was used to measure sABRs in 10 younger and nine older participants. Forward masking of subsegments of the /da/ stimulus (Δt = 16 ms) and click trains (Δt = 0-64 ms) was also measured. Forward-masked sABRs from young participants showed an increase in latency with decreasing Δt for the initial peak. Latency shifts for later peaks were smaller and more uniform. None of the peak latencies returned to baseline by Δt = 64 ms. Forward-masked /da/ subsegments showed peak latency shifts that did not depend simply on peak position, while forward-masked click trains showed latency shifts that were dependent on click position. The sABRs from older adults were less robust but confirmed the viability of the approach. Forward masking of the sABR provides an objective measure of the susceptibility of the auditory system to prior stimulation. Failure of recovery functions to return to baseline suggests an interaction between forward masking by the prior masker and temporal effects within the stimulus itself.
Ito, Tetsufumi; Oliver, Douglas L.
2012-01-01
The inferior colliculus (IC) in the midbrain of the auditory system uses a unique basic circuit to organize the inputs from virtually all of the lower auditory brainstem and transmit this information to the medial geniculate body (MGB) in the thalamus. Here, we review the basic circuit of the IC, the neuronal types, the organization of their inputs and outputs. We specifically discuss the large GABAergic (LG) neurons and how they differ from the small GABAergic (SG) and the more numerous glutamatergic neurons. The somata and dendrites of LG neurons are identified by axosomatic glutamatergic synapses that are lacking in the other cell types and exclusively contain the glutamate transporter VGLUT2. Although LG neurons are most numerous in the central nucleus of the IC (ICC), an analysis of their distribution suggests that they are not specifically associated with one set of ascending inputs. The inputs to ICC may be organized into functional zones with different subsets of brainstem inputs, but each zone may contain the same three neuron types. However, the sources of VGLUT2 axosomatic terminals on the LG neuron are not known. Neurons in the dorsal cochlear nucleus, superior olivary complex, intermediate nucleus of the lateral lemniscus, and IC itself that express the gene for VGLUT2 only are the likely origin of the dense VGLUT2 axosomatic terminals on LG tectothalamic neurons. The IC is unique since LG neurons are GABAergic tectothalamic neurons in addition to the numerous glutamatergic tectothalamic neurons. SG neurons evidently target other auditory structures. The basic circuit of the IC and the LG neurons in particular, has implications for the transmission of information about sound through the midbrain to the MGB. PMID:22855671
Individual Differences in Auditory Brainstem Response Wave Characteristics
Jagadeesh, Anoop; Mauermann, Manfred; Ernst, Frauke
2016-01-01
Little is known about how outer hair cell loss interacts with noise-induced and age-related auditory nerve degradation (i.e., cochlear synaptopathy) to affect auditory brainstem response (ABR) wave characteristics. Given that listeners with impaired audiograms likely suffer from mixtures of these hearing deficits and that ABR amplitudes have successfully been used to isolate synaptopathy in listeners with normal audiograms, an improved understanding of how different hearing pathologies affect the ABR source generators will improve their sensitivity in hearing diagnostics. We employed a functional model for human ABRs in which different combinations of hearing deficits were simulated and show that high-frequency cochlear gain loss steepens the slope of the ABR Wave-V latency versus intensity and amplitude versus intensity curves. We propose that grouping listeners according to a ratio of these slope metrics (i.e., the ABR growth ratio) might offer a way to factor out the outer hair cell loss deficit and maximally relate individual differences for constant ratios to other peripheral hearing deficits such as cochlear synaptopathy. We compared the model predictions to recorded click-ABRs from 30 participants with normal or high-frequency sloping audiograms and confirm the predicted relationship between the ABR latency growth curve and audiogram slope. Experimental ABR amplitude growth showed large individual differences and was compared with the Wave-I amplitude, Wave-V/I ratio, or the interwaveI–W latency in the same listeners. The model simulations along with the ABR recordings suggest that a hearing loss profile depicting the ABR growth ratio versus the Wave-I amplitude or Wave-V/I ratio might be able to differentiate outer hair cell deficits from cochlear synaptopathy in listeners with mixed pathologies. PMID:27837052
Zhong, Yi; Hu, Yujuan; Peng, Wei; Sun, Yu; Yang, Yang; Zhao, Xueyan; Huang, Xiang; Zhang, Honglian; Kong, Weijia
2012-12-01
The age-related deterioration in the central auditory system is well known to impair the abilities of sound localization and speech perception. However, the mechanisms involved in the age-related central auditory deficiency remain unclear. Previous studies have demonstrated that mitochondrial DNA (mtDNA) deletions accumulated with age in the auditory system. Also, a cytochrome c oxidase (CcO) deficiency has been proposed to be a causal factor in the age-related decline in mitochondrial respiratory activity. This study was designed to explore the changes of CcO activity and to investigate the possible relationship between the mtDNA common deletion (CD) and CcO activity as well as the mRNA expression of CcO subunits in the auditory cortex of D-galactose (D-gal)-induced mimetic aging rats at different ages. Moreover, we explored whether peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) were involved in the changes of nuclear- and mitochondrial-encoded CcO subunits in the auditory cortex during aging. Our data demonstrated that d-gal-induced mimetic aging rats exhibited an accelerated accumulation of the CD and a gradual decline in the CcO activity in the auditory cortex during the aging process. The reduction in the CcO activity was correlated with the level of CD load in the auditory cortex. The mRNA expression of CcO subunit III was reduced significantly with age in the d-gal-induced mimetic aging rats. In contrast, the decline in the mRNA expression of subunits I and IV was relatively minor. Additionally, significant increases in the mRNA and protein levels of PGC-1α, NRF-1 and TFAM were observed in the auditory cortex of D-gal-induced mimetic aging rats with aging. These findings suggested that the accelerated accumulation of the CD in the auditory cortex may induce a substantial decline in CcO subunit III and lead to a significant decline in the CcO activity progressively with age despite compensatory increases of PGC-1α, NRF-1 and TFAM. Therefore, CcO may be a specific intramitochondrial site of age-related deterioration in the auditory cortex, and CcO subunit III might be a target in the development of presbycusis. Copyright © 2012 Elsevier B.V. All rights reserved.
Fos-defined activity in rat brainstem following centripetal acceleration.
Kaufman, G D; Anderson, J H; Beitz, A J
1992-11-01
To identify rat brainstem nuclei involved in the initial, short-term response to a change in gravito-inertial force, adult Long-Evans rats were rotated in the horizontal plane for 90 min in complete darkness after they were eccentrically positioned off the axis of rotation (off-axis) causing a centripetal acceleration of 2 g. Neural activation was defined by the brainstem distribution of the c-fos primary response gene protein, Fos, using immunohistochemistry. The Fos labeling in off-axis animals was compared with that of control animals who were rotated on the axis of rotation (on-axis) with no centripetal acceleration, or who were restrained but not rotated. In the off-axis animals there was a significant labeling of neurons: in the inferior, medial, and y-group subnuclei of the vestibular complex; in subnuclei of the inferior olive, especially the dorsomedial cell column; in midbrain nuclei, including the interstitial nucleus of Cajal, nucleus of Darkschewitsch, Edinger-Westphal nucleus, and dorsolateral periaqueductal gray; in autonomic centers including the solitary nucleus, area postrema, and locus coeruleus; and in reticular nuclei including the lateral reticular nucleus and the lateral parabrachial nucleus. Also, there was greater Fos expression in the dorsomedial cell column, the principal inferior olive subnuclei, inferior vestibular nucleus, the dorsolateral central gray, and the locus coeruleus in animals who had their heads restrained compared to animals whose heads were not restrained. As one control, the vestibular neuroepithelium was destroyed by injecting sodium arsanilate into the middle ear, bilaterally. This resulted in a complete lack of Fos labeling in the vestibular nuclei and the inferior olive, and a significant reduction in labeling in other nuclei in the off-axis condition, indicating that these nuclei have a significant labyrinth-sensitive component to their Fos labeling. The data indicate that several novel brainstem regions, including the dorsomedial cell column of the inferior olive and the periaqueductal gray, as well as more traditional brainstem nuclei including vestibular and oculomotor related nuclei, respond to otolith activation during a sustained centripetal acceleration.
The Role of Auditory Evoked Potentials in the Context of Cochlear Implant Provision.
Hoth, Sebastian; Dziemba, Oliver Christian
2017-12-01
: Auditory evoked potentials (AEP) are highly demanded during the whole process of equipping patients with cochlear implants (CI). They play an essential role in preoperative diagnostics, intraoperative testing, and postoperative monitoring of auditory performance and success. The versatility of AEP's is essentially enhanced by their property to be evokable by acoustic as well as electric stimuli. Thus, the electric responses of the auditory system following acoustic stimulation and recorded by the conventional surface technique as well as by transtympanic derivation from the promontory (Electrocochleography [ECochG]) are used for the quantitative determination of hearing loss and, additionally, electrically evoked compound actions potentials (ECAP) can be recorded with the intracochlear electrodes of the implant just adjacent to the stimulation electrode to check the functional integrity of the device and its coupling to the auditory system. The profile of ECAP thresholds is used as basis for speech processor fitting, the spread of excitation (SOE) allows the identification of electrode mislocations such as array foldover, and recovery functions may serve to optimize stimulus pulse rate. These techniques as well as those relying on scalp surface activity originating in the brainstem or the auditory cortex accompany the CI recipient during its whole life span and they offer valuable insights into functioning and possible adverse effects of the CI for clinical and scientific purposes.
Preservation of Auditory P300-Like Potentials in Cortical Deafness
Cavinato, Marianna; Rigon, Jessica; Volpato, Chiara; Semenza, Carlo; Piccione, Francesco
2012-01-01
The phenomenon of blindsight has been largely studied and refers to residual abilities of blind patients without an acknowledged visual awareness. Similarly, “deaf hearing” might represent a further example of dissociation between detection and perception of sounds. Here we report the rare case of a patient with a persistent and complete cortical deafness caused by damage to the bilateral temporo-parietal lobes who occasionally showed unexpected reactions to environmental sounds despite she denied hearing. We applied for the first time electrophysiological techniques to better understand auditory processing and perceptual awareness of the patient. While auditory brainstem responses were within normal limits, no middle- and long-latency waveforms could be identified. However, event-related potentials showed conflicting results. While the Mismatch Negativity could not be evoked, robust P3-like waveforms were surprisingly found in the latency range of 600–700 ms. The generation of P3-like potentials, despite extensive destruction of the auditory cortex, might imply the integrity of independent circuits necessary to process auditory stimuli even in the absence of consciousness of sound. Our results support the reverse hierarchy theory that asserts that the higher levels of the hierarchy are immediately available for perception, while low-level information requires more specific conditions. The accurate characterization in terms of anatomy and neurophysiology of the auditory lesions might facilitate understanding of the neural substrates involved in deaf-hearing. PMID:22272260
Prevalence of auditory changes in newborns in a teaching hospital
Guimarães, Valeriana de Castro; Barbosa, Maria Alves
2012-01-01
Summary Introduction: The precocious diagnosis and the intervention in the deafness are of basic importance in the infantile development. The loss auditory and more prevalent than other joined riots to the birth. Objective: Esteem the prevalence of auditory alterations in just-born in a hospital school. Method: Prospective transversal study that evaluated 226 just-been born, been born in a public hospital, between May of 2008 the May of 2009. Results: Of the 226 screened, 46 (20.4%) had presented absence of emissions, having been directed for the second emission. Of the 26 (56.5%) children who had appeared in the retest, 8 (30.8%) had remained with absence and had been directed to the Otolaryngologist. Five (55.5%) had appeared and had been examined by the doctor. Of these, 3 (75.0%) had presented normal otoscopy, being directed for evaluation of the Evoked Potential Auditory of Brainstem (PEATE). Of the total of studied children, 198 (87.6%) had had presence of emissions in one of the tests and, 2 (0.9%) with deafness diagnosis. Conclusion: The prevalence of auditory alterations in the studied population was of 0,9%. The study it offers given excellent epidemiologists and it presents the first report on the subject, supplying resulted preliminary future implantation and development of a program of neonatal auditory selection. PMID:25991933
On the Etiology of Listening Difficulties in Noise Despite Clinically Normal Audiograms
2017-01-01
Many people with difficulties following conversations in noisy settings have “clinically normal” audiograms, that is, tone thresholds better than 20 dB HL from 0.1 to 8 kHz. This review summarizes the possible causes of such difficulties, and examines established as well as promising new psychoacoustic and electrophysiologic approaches to differentiate between them. Deficits at the level of the auditory periphery are possible even if thresholds remain around 0 dB HL, and become probable when they reach 10 to 20 dB HL. Extending the audiogram beyond 8 kHz can identify early signs of noise-induced trauma to the vulnerable basal turn of the cochlea, and might point to “hidden” losses at lower frequencies that could compromise speech reception in noise. Listening difficulties can also be a consequence of impaired central auditory processing, resulting from lesions affecting the auditory brainstem or cortex, or from abnormal patterns of sound input during developmental sensitive periods and even in adulthood. Such auditory processing disorders should be distinguished from (cognitive) linguistic deficits, and from problems with attention or working memory that may not be specific to the auditory modality. Improved diagnosis of the causes of listening difficulties in noise should lead to better treatment outcomes, by optimizing auditory training procedures to the specific deficits of individual patients, for example. PMID:28002080
Kodama, Kunihiko; Javadi, Mani; Seifert, Volker; Szelényi, Andrea
2014-12-01
During the surgical removal of infratentorial lesions, intraoperative neuromonitoring is mostly focused on cranial nerve assessment and brainstem auditory potentials. Despite the known risk of perforating vessel injury during microdissection within the vicinity of the brainstem, there are few reports about intraoperative neuromonitoring with somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) assessing the medial lemniscus and corticospinal tract. This study analyses the occurrence of intraoperative changes in MEPs and SEPs with regard to lesion location and postoperative neurological outcome. The authors analyzed 210 cases in which patients (mean age 49 ± 13 years, 109 female) underwent surgeries involving the skull base (n = 104), cerebellum (n = 63), fourth ventricle (n = 28), brainstem (n = 12), and foramen magnum (n = 3). Of 210 surgeries, 171 (81.4%) were uneventful with respect to long-tract monitoring. Nine (23%) of the 39 SEP and/or MEP alterations were transient and were only followed by a slight permanent deficit in 1 case. Permanent deterioration only was seen in 19 (49%) of 39 cases; the deterioration was related to tumor dissection in 4 of these cases, and permanent deficit (moderate-severe) was seen in only 1 of these 4 cases. Eleven patients (28%) had losses of at least 1 modality, and in 9 of these 11 cases, the loss was related to surgical microdissection within the vicinity of the brainstem. Four of these 9 patients suffered a moderate-to-severe long-term deficit. For permanent changes, the positive predictive value for neuromonitoring of the long tracts was 0.467, the negative predictive value was 0.989, the sensitivity was 0.875, and the specificity 0.918. Twenty-eight (72%) of 39 SEP and MEP alterations occurred in 66 cases involving intrinsic brainstem tumors or tumors adjacent to the brainstem. Lesion location and alterations in intraoperative neuromonitoring significantly correlated with patients' outcome (p < 0.001, chi-square test). In summary, long-tract monitoring with SEPs and MEPs in infratentorial surgeries has a high sensitivity and negative predictive value with respect to postoperative neurological status. It is recommended especially in those surgeries in which microdissection within and in the vicinity of the brainstem might lead to injury of the brainstem parenchyma or perforating vessels and a subsequent perfusion deficit within the brainstem.
Tian, Lan; Wang, Jingxuan; Wei, Ying; Lu, Jianren; Xu, Anting; Xia, Ming
2017-02-01
Research on auditory neural triggering by optical stimulus has been developed as an emerging technique to elicit the auditory neural response, which may provide an alternative method to the cochlear implants. However, most previous studies have been focused on using longer-wavelength near-infrared (>1800 nm) laser. The effect comparison of different laser wavelengths in short-wavelength infrared (SWIR) range on the auditory neural stimulation has not been previously explored. In this study, the pulsed 980- and 810-nm SWIR lasers were applied as optical stimuli to irradiate the auditory neurons in the cochlea of five deafened guinea pigs and the neural response under the two laser wavelengths was compared by recording the evoked optical auditory brainstem responses (OABRs). In addition, the effect of radiant exposure, laser pulse width, and threshold with the two laser wavelengths was further investigated and compared. The one-way analysis of variance (ANOVA) was used to analyze those data. Results showed that the OABR amplitude with the 980-nm laser is higher than the amplitude with the 810-nm laser under the same radiant exposure from 10 to 102 mJ/cm 2 . And the laser stimulation of 980 nm wavelength has lower threshold radiant exposure than the 810 nm wavelength at varied pulse duration in 20-500 μs range. Moreover, the 810-nm laser has a wider optimized pulse duration range than the 980-nm laser for the auditory neural stimulation.
Visser, Eelke; Zwiers, Marcel P.; Kan, Cornelis C.; Hoekstra, Liesbeth; van Opstal, A. John; Buitelaar, Jan K.
2013-01-01
Background Autism spectrum disorders (ASDs) are associated with auditory hyper- or hyposensitivity; atypicalities in central auditory processes, such as speech-processing and selective auditory attention; and neural connectivity deficits. We sought to investigate whether the low-level integrative processes underlying sound localization and spatial discrimination are affected in ASDs. Methods We performed 3 behavioural experiments to probe different connecting neural pathways: 1) horizontal and vertical localization of auditory stimuli in a noisy background, 2) vertical localization of repetitive frequency sweeps and 3) discrimination of horizontally separated sound stimuli with a short onset difference (precedence effect). Results Ten adult participants with ASDs and 10 healthy control listeners participated in experiments 1 and 3; sample sizes for experiment 2 were 18 adults with ASDs and 19 controls. Horizontal localization was unaffected, but vertical localization performance was significantly worse in participants with ASDs. The temporal window for the precedence effect was shorter in participants with ASDs than in controls. Limitations The study was performed with adult participants and hence does not provide insight into the developmental aspects of auditory processing in individuals with ASDs. Conclusion Changes in low-level auditory processing could underlie degraded performance in vertical localization, which would be in agreement with recently reported changes in the neuroanatomy of the auditory brainstem in individuals with ASDs. The results are further discussed in the context of theories about abnormal brain connectivity in individuals with ASDs. PMID:24148845
Liu, Zhi; Sun, Yongzhu; Chang, Haifeng; Cui, Pengcheng
2014-01-01
Objective This study was designed to establish a low dose salicylate-induced tinnitus rat model and to investigate whether central or peripheral auditory system is involved in tinnitus. Methods Lick suppression ratio (R), lick count and lick latency of conditioned rats in salicylate group (120 mg/kg, intraperitoneally) and saline group were first compared. Bilateral auditory nerves were ablated in unconditioned rats and lick count and lick latency were compared before and after ablation. The ablation was then performed in conditioned rats and lick count and lick latency were compared between salicylate group and saline group and between ablated and unablated salicylate groups. Results Both the R value and the lick count in salicylate group were significantly higher than those in saline group and lick latency in salicylate group was significantly shorter than that in saline group. No significant changes were observed in lick count and lick latency before and after ablation. After ablation, lick count and lick latency in salicylate group were significantly higher and shorter respectively than those in saline group, but they were significantly lower and longer respectively than those in unablated salicylate group. Conclusion A low dose of salicylate (120 mg/kg) can induce tinnitus in rats and both central and peripheral auditory systems participate in the generation of salicylate-induced tinnitus. PMID:25269067
Noto, M; Nishikawa, J; Tateno, T
2016-03-24
A sound interrupted by silence is perceived as discontinuous. However, when high-intensity noise is inserted during the silence, the missing sound may be perceptually restored and be heard as uninterrupted. This illusory phenomenon is called auditory induction. Recent electrophysiological studies have revealed that auditory induction is associated with the primary auditory cortex (A1). Although experimental evidence has been accumulating, the neural mechanisms underlying auditory induction in A1 neurons are poorly understood. To elucidate this, we used both experimental and computational approaches. First, using an optical imaging method, we characterized population responses across auditory cortical fields to sound and identified five subfields in rats. Next, we examined neural population activity related to auditory induction with high temporal and spatial resolution in the rat auditory cortex (AC), including the A1 and several other AC subfields. Our imaging results showed that tone-burst stimuli interrupted by a silent gap elicited early phasic responses to the first tone and similar or smaller responses to the second tone following the gap. In contrast, tone stimuli interrupted by broadband noise (BN), considered to cause auditory induction, considerably suppressed or eliminated responses to the tone following the noise. Additionally, tone-burst stimuli that were interrupted by notched noise centered at the tone frequency, which is considered to decrease the strength of auditory induction, partially restored the second responses from the suppression caused by BN. To phenomenologically mimic the neural population activity in the A1 and thus investigate the mechanisms underlying auditory induction, we constructed a computational model from the periphery through the AC, including a nonlinear dynamical system. The computational model successively reproduced some of the above-mentioned experimental results. Therefore, our results suggest that a nonlinear, self-exciting system is a key element for qualitatively reproducing A1 population activity and to understand the underlying mechanisms. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Long-term treatment with haloperidol affects neuropeptide S and NPSR mRNA levels in the rat brain.
Palasz, Artur; Rojczyk, Ewa; Golyszny, Milosz; Filipczyk, Lukasz; Worthington, John J; Wiaderkiewicz, Ryszard
2016-04-01
The brainstem-derived neuropeptide S (NPS) has a multidirectional regulatory activity, especially as a potent anxiolytic factor. Accumulating data suggests that neuroleptics affect peptidergic signalling in various brain structures. However, there is no information regarding the influence of haloperidol on NPS and NPS receptor (NPSR) expression. We assessed NPS and NPSR mRNA levels in brains of rats treated with haloperidol using quantitative real-time polymerase chain reaction. Chronic haloperidol treatment (4 weeks) led to a striking upregulation of NPS and NPSR expression in the rat brainstem. Conversely, the NPSR mRNA expression was decreased in the hippocampus and striatum. This stark increase of NPS in response to haloperidol treatment supports the hypothesis that this neuropeptide is involved in the dopamine-dependent anxiolytic actions of neuroleptics and possibly also in the pathophysiology of mental disorders. Furthermore, our findings underline the complex nature of potential interactions between dopamine receptors and brain peptidergic pathways, which has potential clinical applications.
Centanni, T M; Pantazis, D; Truong, D T; Gruen, J R; Gabrieli, J D E; Hogan, T P
2018-05-26
Individuals with dyslexia exhibit increased brainstem variability in response to sound. It is unknown as to whether increased variability extends to neocortical regions associated with audition and reading, extends to visual stimuli, and whether increased variability characterizes all children with dyslexia or, instead, a specific subset of children. We evaluated the consistency of stimulus-evoked neural responses in children with (N = 20) or without dyslexia (N = 12) as measured by magnetoencephalography (MEG). Approximately half of the children with dyslexia had significantly higher levels of variability in cortical responses to both auditory and visual stimuli in multiple nodes of the reading network. There was a significant and positive relationship between the number of risk alleles at rs6935076 in the dyslexia-susceptibility gene KIAA0319 and the degree of neural variability in primary auditory cortex across all participants. This gene has been linked with neural variability in rodents and in typical readers. These findings indicate that unstable representations of auditory and visual stimuli in auditory and other reading-related neocortical regions are present in a subset of children with dyslexia and support the link between the gene KIAA0319 and the auditory neural variability across children with or without dyslexia. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
A vestibular phenotype for Waardenburg syndrome?
NASA Technical Reports Server (NTRS)
Black, F. O.; Pesznecker, S. C.; Allen, K.; Gianna, C.
2001-01-01
OBJECTIVE: To investigate vestibular abnormalities in subjects with Waardenburg syndrome. STUDY DESIGN: Retrospective record review. SETTING: Tertiary referral neurotology clinic. SUBJECTS: Twenty-two adult white subjects with clinical diagnosis of Waardenburg syndrome (10 type I and 12 type II). INTERVENTIONS: Evaluation for Waardenburg phenotype, history of vestibular and auditory symptoms, tests of vestibular and auditory function. MAIN OUTCOME MEASURES: Results of phenotyping, results of vestibular and auditory symptom review (history), results of vestibular and auditory function testing. RESULTS: Seventeen subjects were women, and 5 were men. Their ages ranged from 21 to 58 years (mean, 38 years). Sixteen of the 22 subjects sought treatment for vertigo, dizziness, or imbalance. For subjects with vestibular symptoms, the results of vestibuloocular tests (calorics, vestibular autorotation, and/or pseudorandom rotation) were abnormal in 77%, and the results of vestibulospinal function tests (computerized dynamic posturography, EquiTest) were abnormal in 57%, but there were no specific patterns of abnormality. Six had objective sensorineural hearing loss. Thirteen had an elevated summating/action potential (>0.40) on electrocochleography. All subjects except those with severe hearing loss (n = 3) had normal auditory brainstem response results. CONCLUSION: Patients with Waardenburg syndrome may experience primarily vestibular symptoms without hearing loss. Electrocochleography and vestibular function tests appear to be the most sensitive measures of otologic abnormalities in such patients.
NASA Astrophysics Data System (ADS)
Belanger, Andrea J.; Higgs, Dennis M.
2005-04-01
The round goby (Neogobius melanostomus), is an invasive species in the Great Lakes watershed. Adult round gobies show behavioral responses to conspecific vocalizations but physiological investigations have not yet been conducted to quantify their hearing abilities. We have been examining the physiological and morphological development of the auditory system in the round goby. Various frequencies (100 Hz to 800 Hz and conspecific sounds), at various intensities (120 dB to 170 dB re 1 Pa) were presented to juveniles and adults and their auditory brain-stem responses (ABR) were recorded. Round gobies only respond physiologically to tones from 100-600 Hz, with threshold varying between 145 to 155 dB re 1 Pa. The response threshold to conspecific sounds was 140 dB re 1 Pa. There was no significant difference in auditory threshold between sizes of fish for either tones or conspecific sounds. Saccular epithelia were stained using phalloidin and there was a trend towards an increase in both hair cell number and density with an increase in fish size. These results represent a first attempt to quantify auditory abilities in this invasive species. This is an important step in understanding their reproductive physiology, which could potentially aid in their population control. [Funded by NSERC.
P50 suppression in children with selective mutism: a preliminary report.
Henkin, Yael; Feinholz, Maya; Arie, Miri; Bar-Haim, Yair
2010-01-01
Evidence suggests that children with selective mutism (SM) display significant aberrations in auditory efferent activity at the brainstem level that may underlie inefficient auditory processing during vocalization, and lead to speech avoidance. The objective of the present study was to explore auditory filtering processes at the cortical level in children with SM. The classic paired-click paradigm was utilized to assess suppression of the P50 event-related potential to the second, of two sequentially-presented clicks, in ten children with SM and 10 control children. A significant suppression of P50 to the second click was evident in the SM group, whereas no suppression effect was observed in controls. Suppression was evident in 90% of the SM group and in 40% of controls, whereas augmentation was found in 10% and 60%, respectively, yielding a significant association between group and suppression of P50. P50 to the first click was comparable in children with SM and controls. The adult-like, mature P50 suppression effect exhibited by children with SM may reflect a cortical mechanism of compensatory inhibition of irrelevant repetitive information that was not properly suppressed at lower levels of their auditory system. The current data extends our previous findings suggesting that differential auditory processing may be involved in speech selectivity in SM.
Peripheral auditory processing changes seasonally in Gambel’s white-crowned sparrow
Caras, Melissa L.; Brenowitz, Eliot; Rubel, Edwin W
2010-01-01
Song in oscine birds is a learned behavior that plays important roles in breeding. Pronounced seasonal differences in song behavior, and in the morphology and physiology of the neural circuit underlying song production are well documented in many songbird species. Androgenic and estrogenic hormones largely mediate these seasonal changes. While much work has focused on the hormonal mechanisms underlying seasonal plasticity in songbird vocal production, relatively less work has investigated seasonal and hormonal effects on songbird auditory processing, particularly at a peripheral level. We addressed this issue in Gambel’s white-crowned sparrow (Zonotrichia leucophrys gambelii), a highly seasonal breeder. Photoperiod and hormone levels were manipulated in the laboratory to simulate natural breeding and non-breeding conditions. Peripheral auditory function was assessed by measuring the auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAEs) of males and females in both conditions. Birds exposed to breeding-like conditions demonstrated elevated thresholds and prolonged peak latencies compared with birds housed under non-breeding-like conditions. There were no changes in DPOAEs, however, which indicates that the seasonal differences in ABRs do not arise from changes in hair cell function. These results suggest that seasons and hormones impact auditory processing as well as vocal production in wild songbirds. PMID:20563817
Korn, Sabine
2014-01-01
Noise-induced hearing loss (NIHL) and resulting comorbidities like subjective tinnitus are common diseases in modern societies. A substance shown to be effective against NIHL in an animal model is the Ginkgo biloba extract EGb 761. Further effects of the extract on the cellular and systemic levels of the nervous system make it a promising candidate not only for protection against NIHL but also for its secondary comorbidities like tinnitus. Following an earlier study we here tested the potential effectiveness of prophylactic EGb 761 treatment against NIHL and tinnitus development in the Mongolian gerbil. We monitored the effects of EGb 761 and noise trauma-induced changes on signal processing within the auditory system by means of behavioral and electrophysiological approaches. We found significantly reduced NIHL and tinnitus development upon EGb 761 application, compared to vehicle treated animals. These protective effects of EGb 761 were correlated with changes in auditory processing, both at peripheral and central levels. We propose a model with two main effects of EGb 761 on auditory processing, first, an increase of auditory brainstem activity leading to an increased thalamic input to the primary auditory cortex (AI) and second, an asymmetric effect on lateral inhibition in AI. PMID:25028612
Mechanisms underlying the temporal precision of sound coding at the inner hair cell ribbon synapse
Moser, Tobias; Neef, Andreas; Khimich, Darina
2006-01-01
Our auditory system is capable of perceiving the azimuthal location of a low frequency sound source with a precision of a few degrees. This requires the auditory system to detect time differences in sound arrival between the two ears down to tens of microseconds. The detection of these interaural time differences relies on network computation by auditory brainstem neurons sharpening the temporal precision of the afferent signals. Nevertheless, the system requires the hair cell synapse to encode sound with the highest possible temporal acuity. In mammals, each auditory nerve fibre receives input from only one inner hair cell (IHC) synapse. Hence, this single synapse determines the temporal precision of the fibre. As if this was not enough of a challenge, the auditory system is also capable of maintaining such high temporal fidelity with acoustic signals that vary greatly in their intensity. Recent research has started to uncover the cellular basis of sound coding. Functional and structural descriptions of synaptic vesicle pools and estimates for the number of Ca2+ channels at the ribbon synapse have been obtained, as have insights into how the receptor potential couples to the release of synaptic vesicles. Here, we review current concepts about the mechanisms that control the timing of transmitter release in inner hair cells of the cochlea. PMID:16901948
Hearing loss in older adults affects neural systems supporting speech comprehension.
Peelle, Jonathan E; Troiani, Vanessa; Grossman, Murray; Wingfield, Arthur
2011-08-31
Hearing loss is one of the most common complaints in adults over the age of 60 and a major contributor to difficulties in speech comprehension. To examine the effects of hearing ability on the neural processes supporting spoken language processing in humans, we used functional magnetic resonance imaging to monitor brain activity while older adults with age-normal hearing listened to sentences that varied in their linguistic demands. Individual differences in hearing ability predicted the degree of language-driven neural recruitment during auditory sentence comprehension in bilateral superior temporal gyri (including primary auditory cortex), thalamus, and brainstem. In a second experiment, we examined the relationship of hearing ability to cortical structural integrity using voxel-based morphometry, demonstrating a significant linear relationship between hearing ability and gray matter volume in primary auditory cortex. Together, these results suggest that even moderate declines in peripheral auditory acuity lead to a systematic downregulation of neural activity during the processing of higher-level aspects of speech, and may also contribute to loss of gray matter volume in primary auditory cortex. More generally, these findings support a resource-allocation framework in which individual differences in sensory ability help define the degree to which brain regions are recruited in service of a particular task.
Hearing loss in older adults affects neural systems supporting speech comprehension
Peelle, Jonathan E.; Troiani, Vanessa; Grossman, Murray; Wingfield, Arthur
2011-01-01
Hearing loss is one of the most common complaints in adults over the age of 60 and a major contributor to difficulties in speech comprehension. To examine the effects of hearing ability on the neural processes supporting spoken language processing in humans, we used functional magnetic resonance imaging (fMRI) to monitor brain activity while older adults with age-normal hearing listened to sentences that varied in their linguistic demands. Individual differences in hearing ability predicted the degree of language-driven neural recruitment during auditory sentence comprehension in bilateral superior temporal gyri (including primary auditory cortex), thalamus, and brainstem. In a second experiment we examined the relationship of hearing ability to cortical structural integrity using voxel-based morphometry (VBM), demonstrating a significant linear relationship between hearing ability and gray matter volume in primary auditory cortex. Together, these results suggest that even moderate declines in peripheral auditory acuity lead to a systematic downregulation of neural activity during the processing of higher-level aspects of speech, and may also contribute to loss of gray matter volume in primary auditory cortex. More generally these findings support a resource-allocation framework in which individual differences in sensory ability help define the degree to which brain regions are recruited in service of a particular task. PMID:21880924
Connecting the ear to the brain: molecular mechanisms of auditory circuit assembly
Appler, Jessica M.; Goodrich, Lisa V.
2011-01-01
Our sense of hearing depends on precisely organized circuits that allow us to sense, perceive, and respond to complex sounds in our environment, from music and language to simple warning signals. Auditory processing begins in the cochlea of the inner ear, where sounds are detected by sensory hair cells and then transmitted to the central nervous system by spiral ganglion neurons, which faithfully preserve the frequency, intensity, and timing of each stimulus. During the assembly of auditory circuits, spiral ganglion neurons establish precise connections that link hair cells in the cochlea to target neurons in the auditory brainstem, develop specific firing properties, and elaborate unusual synapses both in the periphery and in the CNS. Understanding how spiral ganglion neurons acquire these unique properties is a key goal in auditory neuroscience, as these neurons represent the sole input of auditory information to the brain. In addition, the best currently available treatment for many forms of deafness is the cochlear implant, which compensates for lost hair cell function by directly stimulating the auditory nerve. Historically, studies of the auditory system have lagged behind other sensory systems due to the small size and inaccessibility of the inner ear. With the advent of new molecular genetic tools, this gap is narrowing. Here, we summarize recent insights into the cellular and molecular cues that guide the development of spiral ganglion neurons, from their origin in the proneurosensory domain of the otic vesicle to the formation of specialized synapses that ensure rapid and reliable transmission of sound information from the ear to the brain. PMID:21232575
Physiologic correlates to background noise acceptance
NASA Astrophysics Data System (ADS)
Tampas, Joanna; Harkrider, Ashley; Nabelek, Anna
2004-05-01
Acceptance of background noise can be evaluated by having listeners indicate the highest background noise level (BNL) they are willing to accept while following the words of a story presented at their most comfortable listening level (MCL). The difference between the selected MCL and BNL is termed the acceptable noise level (ANL). One of the consistent findings in previous studies of ANL is large intersubject variability in acceptance of background noise. This variability is not related to age, gender, hearing sensitivity, personality, type of background noise, or speech perception in noise performance. The purpose of the current experiment was to determine if individual differences in physiological activity measured from the peripheral and central auditory systems of young female adults with normal hearing can account for the variability observed in ANL. Correlations between ANL and various physiological responses, including spontaneous, click-evoked, and distortion-product otoacoustic emissions, auditory brainstem and middle latency evoked potentials, and electroencephalography will be presented. Results may increase understanding of the regions of the auditory system that contribute to individual noise acceptance.
Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data.
Calhoun, V D; Adali, T; Pearlson, G D; Kiehl, K A
2006-04-01
Event-related potential (ERP) studies of the brain's response to infrequent, target (oddball) stimuli elicit a sequence of physiological events, the most prominent and well studied being a complex, the P300 (or P3) peaking approximately 300 ms post-stimulus for simple stimuli and slightly later for more complex stimuli. Localization of the neural generators of the human oddball response remains challenging due to the lack of a single imaging technique with good spatial and temporal resolution. Here, we use independent component analyses to fuse ERP and fMRI modalities in order to examine the dynamics of the auditory oddball response with high spatiotemporal resolution across the entire brain. Initial activations in auditory and motor planning regions are followed by auditory association cortex and motor execution regions. The P3 response is associated with brainstem, temporal lobe, and medial frontal activity and finally a late temporal lobe "evaluative" response. We show that fusing imaging modalities with different advantages can provide new information about the brain.
Song, Rui-Biao; Lou, Wei-Hua
2015-01-01
This study investigated the effects of monosialotetrahexosylganglioside (GM1) on the expression of N-methyl-D-aspartate receptor subunit 2B (NR2B) and phosphorylated (p)-cyclic AMP response element-binding protein (CREB) in the auditory cortex of rats with tinnitus. Tinnitus-like behavior in rats was tested with the gap prepulse inhibition of acoustic startle paradigm. We then investigated the NR2B mRNA and protein and p-CREB protein levels in the auditory cortex of tinnitus rats compared with normal rats. Rats treated for 4 days with salicylate exhibited tinnitus. NR2B mRNA and protein and p-CREB protein levels were upregulated in these animals, with expression returning to normal levels 14 days after cessation of treatment; baseline levels of NR2B and p-CREB were also restored by GM1 administration. These data suggest that chronic salicylate administration induces tinnitus via upregulation of p-CREB and NR2B expression, and that GM1 can potentially be used to treat tinnitus.
Intermediate stage of sleep and acute cerveau isolé preparation in the rat.
User, P; Gioanni, H; Gottesmann, C
1980-01-01
The acute cerveau isole rat shows spindle bursts of large amplitude alternating with low voltage activity in the frontal cortex and continuous theta rhythm in the dorsal hippocampus. These patterns closely resemble an "intermediate" stage of sleep-waking cycle, when the forebrain structures seem to be functionally disconnected from the brainstem.
Brown, Andrew D; Tollin, Daniel J
2016-09-21
In mammals, localization of sound sources in azimuth depends on sensitivity to interaural differences in sound timing (ITD) and level (ILD). Paradoxically, while typical ILD-sensitive neurons of the auditory brainstem require millisecond synchrony of excitatory and inhibitory inputs for the encoding of ILDs, human and animal behavioral ILD sensitivity is robust to temporal stimulus degradations (e.g., interaural decorrelation due to reverberation), or, in humans, bilateral clinical device processing. Here we demonstrate that behavioral ILD sensitivity is only modestly degraded with even complete decorrelation of left- and right-ear signals, suggesting the existence of a highly integrative ILD-coding mechanism. Correspondingly, we find that a majority of auditory midbrain neurons in the central nucleus of the inferior colliculus (of chinchilla) effectively encode ILDs despite complete decorrelation of left- and right-ear signals. We show that such responses can be accounted for by relatively long windows of bilateral excitatory-inhibitory interaction, which we explicitly measure using trains of narrowband clicks. Neural and behavioral data are compared with the outputs of a simple model of ILD processing with a single free parameter, the duration of excitatory-inhibitory interaction. Behavioral, neural, and modeling data collectively suggest that ILD sensitivity depends on binaural integration of excitation and inhibition within a ≳3 ms temporal window, significantly longer than observed in lower brainstem neurons. This relatively slow integration potentiates a unique role for the ILD system in spatial hearing that may be of particular importance when informative ITD cues are unavailable. In mammalian hearing, interaural differences in the timing (ITD) and level (ILD) of impinging sounds carry critical information about source location. However, natural sounds are often decorrelated between the ears by reverberation and background noise, degrading the fidelity of both ITD and ILD cues. Here we demonstrate that behavioral ILD sensitivity (in humans) and neural ILD sensitivity (in single neurons of the chinchilla auditory midbrain) remain robust under stimulus conditions that render ITD cues undetectable. This result can be explained by "slow" temporal integration arising from several-millisecond-long windows of excitatory-inhibitory interaction evident in midbrain, but not brainstem, neurons. Such integrative coding can account for the preservation of ILD sensitivity despite even extreme temporal degradations in ecological acoustic stimuli. Copyright © 2016 the authors 0270-6474/16/369908-14$15.00/0.
Auditory agnosia as a clinical symptom of childhood adrenoleukodystrophy.
Furushima, Wakana; Kaga, Makiko; Nakamura, Masako; Gunji, Atsuko; Inagaki, Masumi
2015-08-01
To investigate detailed auditory features in patients with auditory impairment as the first clinical symptoms of childhood adrenoleukodystrophy (CSALD). Three patients who had hearing difficulty as the first clinical signs and/or symptoms of ALD. Precise examination of the clinical characteristics of hearing and auditory function was performed, including assessments of pure tone audiometry, verbal sound discrimination, otoacoustic emission (OAE), and auditory brainstem response (ABR), as well as an environmental sound discrimination test, a sound lateralization test, and a dichotic listening test (DLT). The auditory pathway was evaluated by MRI in each patient. Poor response to calling was detected in all patients. Two patients were not aware of their hearing difficulty, and had been diagnosed with normal hearing by otolaryngologists at first. Pure-tone audiometry disclosed normal hearing in all patients. All patients showed a normal wave V ABR threshold. Three patients showed obvious difficulty in discriminating verbal sounds, environmental sounds, and sound lateralization and strong left-ear suppression in a dichotic listening test. However, once they discriminated verbal sounds, they correctly understood the meaning. Two patients showed elongation of the I-V and III-V interwave intervals in ABR, but one showed no abnormality. MRIs of these three patients revealed signal changes in auditory radiation including in other subcortical areas. The hearing features of these subjects were diagnosed as auditory agnosia and not aphasia. It should be emphasized that when patients are suspected to have hearing impairment but have no abnormalities in pure tone audiometry and/or ABR, this should not be diagnosed immediately as psychogenic response or pathomimesis, but auditory agnosia must also be considered. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Schrode, Katrina M; Bee, Mark A
2015-03-01
Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male-male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. © 2015. Published by The Company of Biologists Ltd.
TRIMETHYLTIN EFFECTS ON AUDITORY FUNCTION AND COCHLEAR MORPHOLOGY
TMT is neurotoxicant known to alter auditory function. he present study was designed to compare TNT-induced auditory dysfunction using behavioral, electrophysiological, and anatomical techniques. dult male long Evans hooded rats (n=9-l2/group) were acutely exposed to saline, 3, 5...
Pathophysiology of the inner ear after blast injury caused by laser-induced shock wave
Niwa, Katsuki; Mizutari, Kunio; Matsui, Toshiyasu; Kurioka, Takaomi; Matsunobu, Takeshi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro; Kobayashi, Yasushi
2016-01-01
The ear is the organ that is most sensitive to blast overpressure, and ear damage is most frequently seen after blast exposure. Blast overpressure to the ear results in sensorineural hearing loss, which is untreatable and is often associated with a decline in the quality of life. In this study, we used a rat model to demonstrate the pathophysiological and structural changes in the inner ear that replicate pure sensorineural hearing loss associated with blast injury using laser-induced shock wave (LISW) without any conductive hearing loss. Our results indicate that threshold elevation of the auditory brainstem response (ABR) after blast exposure was primarily caused by outer hair cell dysfunction induced by stereociliary bundle disruption. The bundle disruption pattern was unique; disturbed stereocilia were mostly observed in the outermost row, whereas those in the inner and middle rows stereocilia remained intact. In addition, the ABR examination showed a reduction in wave I amplitude without elevation of the threshold in the lower energy exposure group. This phenomenon was caused by loss of the synaptic ribbon. This type of hearing dysfunction has recently been described as hidden hearing loss caused by cochlear neuropathy, which is associated with tinnitus or hyperacusis. PMID:27531021
Pathophysiology of the inner ear after blast injury caused by laser-induced shock wave.
Niwa, Katsuki; Mizutari, Kunio; Matsui, Toshiyasu; Kurioka, Takaomi; Matsunobu, Takeshi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro; Kobayashi, Yasushi
2016-08-17
The ear is the organ that is most sensitive to blast overpressure, and ear damage is most frequently seen after blast exposure. Blast overpressure to the ear results in sensorineural hearing loss, which is untreatable and is often associated with a decline in the quality of life. In this study, we used a rat model to demonstrate the pathophysiological and structural changes in the inner ear that replicate pure sensorineural hearing loss associated with blast injury using laser-induced shock wave (LISW) without any conductive hearing loss. Our results indicate that threshold elevation of the auditory brainstem response (ABR) after blast exposure was primarily caused by outer hair cell dysfunction induced by stereociliary bundle disruption. The bundle disruption pattern was unique; disturbed stereocilia were mostly observed in the outermost row, whereas those in the inner and middle rows stereocilia remained intact. In addition, the ABR examination showed a reduction in wave I amplitude without elevation of the threshold in the lower energy exposure group. This phenomenon was caused by loss of the synaptic ribbon. This type of hearing dysfunction has recently been described as hidden hearing loss caused by cochlear neuropathy, which is associated with tinnitus or hyperacusis.
Arriaga, Gustavo; Zhou, Eric P.; Jarvis, Erich D.
2012-01-01
Humans and song-learning birds communicate acoustically using learned vocalizations. The characteristic features of this social communication behavior include vocal control by forebrain motor areas, a direct cortical projection to brainstem vocal motor neurons, and dependence on auditory feedback to develop and maintain learned vocalizations. These features have so far not been found in closely related primate and avian species that do not learn vocalizations. Male mice produce courtship ultrasonic vocalizations with acoustic features similar to songs of song-learning birds. However, it is assumed that mice lack a forebrain system for vocal modification and that their ultrasonic vocalizations are innate. Here we investigated the mouse song system and discovered that it includes a motor cortex region active during singing, that projects directly to brainstem vocal motor neurons and is necessary for keeping song more stereotyped and on pitch. We also discovered that male mice depend on auditory feedback to maintain some ultrasonic song features, and that sub-strains with differences in their songs can match each other's pitch when cross-housed under competitive social conditions. We conclude that male mice have some limited vocal modification abilities with at least some neuroanatomical features thought to be unique to humans and song-learning birds. To explain our findings, we propose a continuum hypothesis of vocal learning. PMID:23071596
Evidence for an Auditory Fovea in the New Zealand Kiwi (Apteryx mantelli)
Corfield, Jeremy; Kubke, M. Fabiana; Parsons, Stuart; Wild, J. Martin; Köppl, Christine
2011-01-01
Kiwi are rare and strictly protected birds of iconic status in New Zealand. Yet, perhaps due to their unusual, nocturnal lifestyle, surprisingly little is known about their behaviour or physiology. In the present study, we exploited known correlations between morphology and physiology in the avian inner ear and brainstem to predict the frequency range of best hearing in the North Island brown kiwi. The mechanosensitive hair bundles of the sensory hair cells in the basilar papilla showed the typical change from tall bundles with few stereovilli to short bundles with many stereovilli along the apical-to-basal tonotopic axis. In contrast to most birds, however, the change was considerably less in the basal half of the epithelium. Dendritic lengths in the brainstem nucleus laminaris also showed the typical change along the tonotopic axis. However, as in the basilar papilla, the change was much less pronounced in the presumed high-frequency regions. Together, these morphological data suggest a fovea-like overrepresentation of a narrow high-frequency band in kiwi. Based on known correlations of hair-cell microanatomy and physiological responses in other birds, a specific prediction for the frequency representation along the basilar papilla of the kiwi was derived. The predicted overrepresentation of approximately 4-6 kHz matches potentially salient frequency bands of kiwi vocalisations and may thus be an adaptation to a nocturnal lifestyle in which auditory communication plays a dominant role. PMID:21887317
Oysu, Cagatay; Topak, Murat; Celik, Oner; Yilmaz, H Baki; Sahin, A Asli
2005-10-01
The purpose of this study was to evaluate the short-term effects of the electromagnetic fields (EMF) of mobile phones on human auditory brainstem responses. This prospective study of healthy adults evaluated the influence of EMF. Eighteen healthy adult volunteers participated in this study. Mobile telephones emitting signals in the region of 900 MHz and with the highest SAR value of 0.82 W/kg were positioned in direct contact to the right ear, which was exposed to the phone signal for 15 min before and after ABR testing with click stimuli of 60 and 80 dB nHL intensities. The latencies of the waves and interwave latencies were measured on screen by an experienced audiologist. The differences of the mean latencies of waves I, III and IV were not significant in initial and post-exposure ABR measurements at both 60 and 80 dB nHL stimulus levels ( P >0.05). Similarly, differences of the mean interwave intervals I-III, I-V and III-V remained insignificant at the initial and postexposure ABR measurements at stimulus levels of both 60 and 80 dB nHL ( P >0.05). Acute exposure to the EMF of mobile phones does not cause perturbations in ABR latencies. However, these negative results should not encourage excessive mobile communication, because minor biological and neurophysiological influences may not be detectable by the current technology.
Ramkumar, Vidya; Vanaja, C S; Hall, James W; Selvakumar, K; Nagarajan, Roopa
2018-05-01
This study assessed the validity of DPOAE screening conducted by village health workers (VHWs) in a rural community. Real-time click evoked tele-auditory brainstem response (tele-ABR) was used as the gold standard to establish validity. A cross-sectional design was utilised to compare the results of screening by VHWs to those obtained via tele-ABR. Study samples: One hundred and nineteen subjects (0 to 5 years) were selected randomly from a sample of 2880 infants and young children who received DPOAE screening by VHWs. Real time tele-ABR was conducted by using satellite or broadband internet connectivity at the village. An audiologist located at the tertiary care hospital conducted tele-ABR testing through a remote computing paradigm. Tele-ABR was recorded using standard recording parameters recommended for infants and young children. Wave morphology, repeatability and peak latency data were used for ABR analysis. Tele-ABR and DPOAE findings were compared for 197 ears. The sensitivity of DPOAE screening conducted by the VHW was 75%, and specificity was 91%. The negative and positive predictive values were 98.8% and 27.2%, respectively. The validity of DPOAE screening conducted by trained VHW was acceptable. This study supports the engagement of grass-root workers in community-based hearing health care provision.
Auditory Brainstem Response Thresholds to Air- and Bone-Conducted CE-Chirps in Neonates and Adults.
Cobb, Kensi M; Stuart, Andrew
2016-08-01
The purpose of this study was to compare auditory brainstem response (ABR) thresholds to air- and bone-conducted CE-Chirps in neonates and adults. Thirty-two neonates with no physical or neurologic challenges and 20 adults with normal hearing participated. ABRs were acquired with a starting intensity of 30 dB normal hearing level (nHL). The lowest stimulus intensity level at which a wave V was identifiable and replicable was considered the ABR threshold. ABR thresholds to air-conducted CE-Chirps were 9.8 dB nHL for neonates and adults. ABR thresholds to bone-conducted CE-Chirps were 3.8 and 13.8 dB nHL for neonates and adults, respectively. The difference in ABR thresholds to bone-conducted CE-Chirps was significantly different (p < .0001, ηp2 = .45). Adults had significantly larger wave V amplitudes to air- (p < .0001, ηp2 = .50) and bone-conducted (p = .013, ηp2 = .15) CE-Chirps at a stimulus intensity of 30 dB nHL. At the same intensity, adults evidenced significantly shorter wave V latencies (p < .0001, ηp2 = .49) only with air-conducted CE-chirps. The difference in ABR thresholds and wave V latencies to air- and bone-conducted CE-Chirps between neonates and adults may be attributed to a disparity in effective signal delivery to the cochlea.
Morimoto, Chihiro; Nario, Kazuhiko; Nishimura, Tadashi; Shimokura, Ryota; Hosoi, Hiroshi; Kitahara, Tadashi
2017-01-01
Noise exposure during pregnancy has been reported to cause fetal hearing impairment. However, little is known about the effects of noise exposure during various gestational stages on postnatal hearing. In the present study, we investigated the effects of noise exposure on auditory brainstem response (ABR) at the early, mid-, and late gestational periods in newborn guinea pigs. Pregnant guinea pigs were exposed to 4-kHz pure tone at a 120-dB sound pressure level for 4 h. We divided the animals into four groups as follows: the control, early gestational exposure, mid-gestational exposure, and late gestational exposure groups. ABR thresholds and latencies in newborns were recorded using 1-, 2-, and 4-kHz tone burst on postnatal days 1, 7, 14, and 28. Changes in ABR thresholds and latencies were measured between the 4 × 4 and 4 × 3 factorial groups mentioned above (gestational periods × postnatal days, gestational periods × frequencies). The thresholds were low in the order of control group < early gestational exposure group < mid-gestational exposure group and late gestational exposure group. Noise exposure during pregnancy influenced ABR thresholds in neonatal guinea pigs. This is the first study to show that noise exposure during the early, mid-, and late gestational periods significantly elevated ABR thresholds in neonatal guinea pigs. © 2016 Japan Society of Obstetrics and Gynecology.
Christensen-Dalsgaard, Jakob; Brandt, Christian; Willis, Katie L.; Christensen, Christian Bech; Ketten, Darlene; Edds-Walton, Peggy; Fay, Richard R.; Madsen, Peter T.; Carr, Catherine E.
2012-01-01
Turtles, like other amphibious animals, face a trade-off between terrestrial and aquatic hearing. We used laser vibrometry and auditory brainstem responses to measure their sensitivity to vibration stimuli and to airborne versus underwater sound. Turtles are most sensitive to sound underwater, and their sensitivity depends on the large middle ear, which has a compliant tympanic disc attached to the columella. Behind the disc, the middle ear is a large air-filled cavity with a volume of approximately 0.5 ml and a resonance frequency of approximately 500 Hz underwater. Laser vibrometry measurements underwater showed peak vibrations at 500–600 Hz with a maximum of 300 µm s−1 Pa−1, approximately 100 times more than the surrounding water. In air, the auditory brainstem response audiogram showed a best sensitivity to sound of 300–500 Hz. Audiograms before and after removing the skin covering reveal that the cartilaginous tympanic disc shows unchanged sensitivity, indicating that the tympanic disc, and not the overlying skin, is the key sound receiver. If air and water thresholds are compared in terms of sound intensity, thresholds in water are approximately 20–30 dB lower than in air. Therefore, this tympanic ear is specialized for underwater hearing, most probably because sound-induced pulsations of the air in the middle ear cavity drive the tympanic disc. PMID:22438494
Christensen-Dalsgaard, Jakob; Brandt, Christian; Willis, Katie L; Christensen, Christian Bech; Ketten, Darlene; Edds-Walton, Peggy; Fay, Richard R; Madsen, Peter T; Carr, Catherine E
2012-07-22
Turtles, like other amphibious animals, face a trade-off between terrestrial and aquatic hearing. We used laser vibrometry and auditory brainstem responses to measure their sensitivity to vibration stimuli and to airborne versus underwater sound. Turtles are most sensitive to sound underwater, and their sensitivity depends on the large middle ear, which has a compliant tympanic disc attached to the columella. Behind the disc, the middle ear is a large air-filled cavity with a volume of approximately 0.5 ml and a resonance frequency of approximately 500 Hz underwater. Laser vibrometry measurements underwater showed peak vibrations at 500-600 Hz with a maximum of 300 µm s(-1) Pa(-1), approximately 100 times more than the surrounding water. In air, the auditory brainstem response audiogram showed a best sensitivity to sound of 300-500 Hz. Audiograms before and after removing the skin covering reveal that the cartilaginous tympanic disc shows unchanged sensitivity, indicating that the tympanic disc, and not the overlying skin, is the key sound receiver. If air and water thresholds are compared in terms of sound intensity, thresholds in water are approximately 20-30 dB lower than in air. Therefore, this tympanic ear is specialized for underwater hearing, most probably because sound-induced pulsations of the air in the middle ear cavity drive the tympanic disc.
Laumen, Geneviève; Tollin, Daniel J.; Beutelmann, Rainer; Klump, Georg M.
2016-01-01
The effect of interaural time difference (ITD) and interaural level difference (ILD) on wave 4 of the binaural and summed monaural auditory brainstem responses (ABRs) as well as on the DN1 component of the binaural interaction component (BIC) of the ABR in young and old Mongolian gerbils (Meriones unguiculatus) was investigated. Measurements were made at a fixed sound pressure level (SPL) and a fixed level above visually detected ABR threshold to compensate for individual hearing threshold differences. In both stimulation modes (fixed SPL and fixed level above visually detected ABR threshold) an effect of ITD on the latency and the amplitude of wave 4 as well as of the BIC was observed. With increasing absolute ITD values BIC latencies were increased and amplitudes were decreased. ILD had a much smaller effect on these measures. Old animals showed a reduced amplitude of the DN1 component. This difference was due to a smaller wave 4 in the summed monaural ABRs of old animals compared to young animals whereas wave 4 in the binaural-evoked ABR showed no age-related difference. In old animals the small amplitude of the DN1 component was correlated with small binaural-evoked wave 1 and wave 3 amplitudes. This suggests that the reduced peripheral input affects central binaural processing which is reflected in the BIC. PMID:27173973
NASA Astrophysics Data System (ADS)
Wolski, Lawrence F.; Anderson, Rindy C.; Bowles, Ann E.; Yochem, Pamela K.
2003-01-01
Auditory brainstem response (ABR) and standard behavioral methods were compared by measuring in-air audiograms for an adult female harbor seal (Phoca vitulina). Behavioral audiograms were obtained using two techniques: the method of constant stimuli and the staircase method. Sensitivity was tested from 0.250 to 30 kHz. The seal showed good sensitivity from 6 to 12 kHz [best sensitivity 8.1 dB (re 20 μPa2.s) RMS at 8 kHz]. The staircase method yielded thresholds that were lower by 10 dB on average than the method of constant stimuli. ABRs were recorded at 2, 4, 8, 16, and 22 kHz and showed a similar best range (8-16 kHz). ABR thresholds averaged 5.7 dB higher than behavioral thresholds at 2, 4, and 8 kHz. ABRs were at least 7 dB lower at 16 kHz, and approximately 3 dB higher at 22 kHz. The better sensitivity of ABRs at higher frequencies could have reflected differences in the seal's behavior during ABR testing and/or bandwidth characteristics of test stimuli. These results agree with comparisons of ABR and behavioral methods performed in other recent studies and indicate that ABR methods represent a good alternative for estimating hearing range and sensitivity in pinnipeds, particularly when time is a critical factor and animals are untrained.
Stanić, Davor; Dhingra, Rishi R; Dutschmann, Mathias
2018-04-01
Expression of the transcription factor FOXP2 is linked to brain circuits that control motor function and speech. Investigation of FOXP2 protein expression in respiratory areas of the ponto-medullary brainstem of adult rat revealed distinct rostro-caudal expression gradients. A high density of FOXP2 immunoreactive nuclei was observed within the rostral pontine Kölliker-Fuse nucleus, compared to low densities in caudal pontine and rostral medullary respiratory nuclei, including the: (i) noradrenergic A5 and parafacial respiratory groups; (ii) Bötzinger and pre-Bötzinger complex and; (iii) rostral ventral respiratory group. Moderate densities of FOXP2 immunoreactive nuclei were observed in the caudal ventral respiratory group and the nucleus retroambiguus, with significant density levels found in the caudal half of the dorsal respiratory group and the hypoglossal pre-motor area lateral around calamus scriptorius. FOXP2 immunoreactivity was absent in all cranial nerve motor nuclei. We conclude that FOXP2 expression in respiratory brainstem areas selectively delineates laryngeal and hypoglossal pre-motor neuron populations essential for the generation of sound and voice. Copyright © 2018 Elsevier B.V. All rights reserved.
Silva-Hucha, Silvia; Hernández, Rosendo G; Benítez-Temiño, Beatriz; Pastor, Ángel M; de la Cruz, Rosa R; Morcuende, Sara
2017-01-01
Recent studies show a relationship between the deficit of vascular endothelial growth factor (VEGF) and motoneuronal degeneration, such as that occurring in amyotrophic lateral sclerosis (ALS). VEGF delivery protects motoneurons from cell death and delayed neurodegeneration in animal models of ALS. Strikingly, extraocular motoneurons show lesser vulnerability to neurodegeneration in ALS compared to other cranial or spinal motoneurons. Therefore, the present study investigates possible differences in VEGF and its main receptor VEGFR-2 or Flk-1 between extraocular and non-extraocular brainstem motoneurons. We performed immunohistochemistry and Western blot to determine the presence of VEGF and Flk-1 in rat motoneurons located in the three extraocular motor nuclei (abducens, trochlear and oculomotor) and to compare it to that observed in two other brainstem nuclei (hypoglossal and facial) that are vulnerable to degeneration. Extraocular motoneurons presented higher amounts of VEGF and its receptor Flk-1 than other brainstem motoneurons, and thus these molecules could be participating in their higher resistance to neurodegeneration. In conclusion, we hypothesize that differences in VEGF availability and signaling could be a contributing factor to the different susceptibility of extraocular motoneurons, when compared with other motoneurons, in neurodegenerative diseases.
Murakoshi, T.; Suzue, T.; Tamai, S.
1985-01-01
An in vitro brainstem-spinal cord preparation of the newborn rat was used to examine the effects of neurotransmitters and transmitter candidates on respiratory frequency. Spontaneous periodic depolarization of the spinal ventral roots of the 4th or 5th cervical segment was observed at a frequency of 5-15 min-1 constantly for more than 5 h. The frequency of this depolarization was monitored as an index of the respiratory frequency. An elevation of the concentration of Ca2+ or Mg2+ caused a decrease in the respiratory frequency, whereas an elevation of K+ concentration caused an increase. The frequency was also increased by a reduction of pH. The highest frequency was observed at 27-28 degrees C. Dopamine, 5-hydroxytryptamine, histamine, acetylcholine, glutamic acid, substance P, and thyrotropin releasing hormone accelerated the respiratory frequency when applied by perfusion to the brainstem, whereas noradrenaline, gamma-aminobutyric acid, glycine, and [Met5] enkephalin and [Leu5] enkephalin slowed the frequency. Experiments with antagonists suggested that the stimulant effect of acetylcholine on respiratory frequency was mediated mainly by muscarinic receptors and the depressant effect of noradrenaline was mediated by alpha-adrenoceptors. PMID:2413943
Non-auditory, electrophysiological potentials preceding dolphin biosonar click production.
Finneran, James J; Mulsow, Jason; Jones, Ryan; Houser, Dorian S; Accomando, Alyssa W; Ridgway, Sam H
2018-03-01
The auditory brainstem response to a dolphin's own emitted biosonar click can be measured by averaging epochs of the instantaneous electroencephalogram (EEG) that are time-locked to the emitted click. In this study, averaged EEGs were measured using surface electrodes placed on the head in six different configurations while dolphins performed an echolocation task. Simultaneously, biosonar click emissions were measured using contact hydrophones on the melon and a hydrophone in the farfield. The averaged EEGs revealed an electrophysiological potential (the pre-auditory wave, PAW) that preceded the production of each biosonar click. The largest PAW amplitudes occurred with the non-inverting electrode just right of the midline-the apparent side of biosonar click generation-and posterior of the blowhole. Although the source of the PAW is unknown, the temporal and spatial properties rule out an auditory source. The PAW may be a neural or myogenic potential associated with click production; however, it is not known if muscles within the dolphin nasal system can be actuated at the high rates reported for dolphin click production, or if sufficiently coordinated and fast motor endplates of nasal muscles exist to produce a PAW detectable with surface electrodes.
Chimaeric sounds reveal dichotomies in auditory perception
Smith, Zachary M.; Delgutte, Bertrand; Oxenham, Andrew J.
2008-01-01
By Fourier's theorem1, signals can be decomposed into a sum of sinusoids of different frequencies. This is especially relevant for hearing, because the inner ear performs a form of mechanical Fourier transform by mapping frequencies along the length of the cochlear partition. An alternative signal decomposition, originated by Hilbert2, is to factor a signal into the product of a slowly varying envelope and a rapidly varying fine time structure. Neurons in the auditory brainstem3–6 sensitive to these features have been found in mammalian physiological studies. To investigate the relative perceptual importance of envelope and fine structure, we synthesized stimuli that we call ‘auditory chimaeras’, which have the envelope of one sound and the fine structure of another. Here we show that the envelope is most important for speech reception, and the fine structure is most important for pitch perception and sound localization. When the two features are in conflict, the sound of speech is heard at a location determined by the fine structure, but the words are identified according to the envelope. This finding reveals a possible acoustic basis for the hypothesized ‘what’ and ‘where’ pathways in the auditory cortex7–10. PMID:11882898
Delayed auditory pathway maturation and prematurity.
Koenighofer, Martin; Parzefall, Thomas; Ramsebner, Reinhard; Lucas, Trevor; Frei, Klemens
2015-06-01
Hearing loss is the most common sensory disorder in developed countries and leads to a severe reduction in quality of life. In this uncontrolled case series, we evaluated the auditory development in patients suffering from congenital nonsyndromic hearing impairment related to preterm birth. Six patients delivered preterm (25th-35th gestational weeks) suffering from mild to profound congenital nonsyndromic hearing impairment, descending from healthy, nonconsanguineous parents and were evaluated by otoacoustic emissions, tympanometry, brainstem-evoked response audiometry, and genetic testing. All patients were treated with hearing aids, and one patient required cochlear implantation. One preterm infant (32nd gestational week) initially presented with a 70 dB hearing loss, accompanied by negative otoacoustic emissions and normal tympanometric findings. The patient was treated with hearing aids and displayed a gradual improvement in bilateral hearing that completely normalized by 14 months of age accompanied by the development of otoacoustic emission responses. Conclusions We present here for the first time a fully documented preterm patient with delayed auditory pathway maturation and normalization of hearing within 14 months of birth. Although rare, postpartum development of the auditory system should, therefore, be considered in the initial stages for treating preterm hearing impaired patients.
Neurotoxicity of trimethyltin in rat cochlear organotypic cultures
Yu, Jintao; Ding, Dalian; Sun, Hong; Salvi, Richard; Roth, Jerome A.
2015-01-01
Trimethyltin (TMT), which has a variety of applications in industry and agricultural is a neurotoxin that is known to affect the auditory system as well as central nervous system (CNS) of humans and experimental animals. However, the mechanisms underlying TMT-induced auditory dysfunction are poorly understood. To gain insights into the neurotoxic effect of TMT on the peripheral auditory system, we treated cochlear organotypic cultures with concentrations of TMT ranging from 5 to 100 μM for 24 h. Interestingly, TMT preferentially damaged auditory nerve fibers and spiral ganglion neurons in a dose-dependent manner, but had no noticeable effects on the sensory hair cells at the doses employed. TMT-induced damage to auditory neurons was associated with significant soma shrinkage, nuclear condensation and activation of caspase-3, biomarkers indicative of apoptotic cell death. Our findings show that TMT is exclusively neurotoxicity in rat cochlear organotypic culture and that TMT-induced auditory neuron death occurs through a caspase-mediated apoptotic pathway. PMID:25957118
Kamal, Brishna; Holman, Constance; de Villers-Sidani, Etienne
2013-01-01
Age-related impairments in the primary auditory cortex (A1) include poor tuning selectivity, neural desynchronization, and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function. PMID:24062649
Lamas, Verónica; Estévez, Sheila; Pernía, Marianni; Plaza, Ignacio; Merchán, Miguel A
2017-10-11
The rat auditory cortex (AC) is becoming popular among auditory neuroscience investigators who are interested in experience-dependence plasticity, auditory perceptual processes, and cortical control of sound processing in the subcortical auditory nuclei. To address new challenges, a procedure to accurately locate and surgically expose the auditory cortex would expedite this research effort. Stereotactic neurosurgery is routinely used in pre-clinical research in animal models to engraft a needle or electrode at a pre-defined location within the auditory cortex. In the following protocol, we use stereotactic methods in a novel way. We identify four coordinate points over the surface of the temporal bone of the rat to define a window that, once opened, accurately exposes both the primary (A1) and secondary (Dorsal and Ventral) cortices of the AC. Using this method, we then perform a surgical ablation of the AC. After such a manipulation is performed, it is necessary to assess the localization, size, and extension of the lesions made in the cortex. Thus, we also describe a method to easily locate the AC ablation postmortem using a coordinate map constructed by transferring the cytoarchitectural limits of the AC to the surface of the brain.The combination of the stereotactically-guided location and ablation of the AC with the localization of the injured area in a coordinate map postmortem facilitates the validation of information obtained from the animal, and leads to a better analysis and comprehension of the data.
Chaskiel, Léa; Paul, Flora; Gerstberger, Rüdiger; Hübschle, Thomas; Konsman, Jan Pieter
2016-08-01
During infection-induced inflammation food intake is reduced. Vagal and brainstem pathways are important both in feeding regulation and immune-to-brain communication. Glutamate is released by vagal afferent terminals in the nucleus of the solitary tract and by its neurons projecting to the parabrachial nuclei. We therefore studied the role of brainstem glutamate receptors in spontaneous food intake of healthy animals and during sickness-associated hypophagia after peripheral administration of bacterial lipopolysaccharides or interleukin-1beta. Brainstem group I and II metabotropic, but not ionotropic, glutamate receptor antagonism increased food intake both in saline- and lipopolysaccharide-treated rats. In these animals, expression of the cellular activation marker c-Fos in the lateral parabrachial nuclei and lipopolysaccharide-induced activation of the nucleus of the solitary tract rostral to the area postrema were suppressed. Group I metabotropic glutamate receptors did not colocalize with c-Fos or neurons regulating gastric function in these structures. Group I metabotropic glutamate receptors were, however, found on raphé magnus neurons that were part of the brainstem circuit innervating the stomach and on trigeminal and hypoglossal motor neurons. In conclusion, our findings show that brainstem metabotropic glutamate receptors reduce food intake and activate the lateral parabrachial nuclei as well as the rostral nucleus of the solitary tract after peripheral bacterial lipopolysaccharide administration. They also provide insight into potential group I metabotropic glutamate receptor-dependent brainstem circuits mediating these effects. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enhanced brainstem and cortical evoked response amplitudes: single-trial covariance analysis.
Galbraith, G C
2001-06-01
The purpose of the present study was to develop analytic procedures that improve the definition of sensory evoked response components. Such procedures could benefit all recordings but would especially benefit difficult recordings where many trials are contaminated by muscle and movement artifacts. First, cross-correlation and latency adjustment analyses were applied to the human brainstem frequency-following response and cortical auditory evoked response recorded on the same trials. Lagged cross-correlation functions were computed, for each of 17 subjects, between single-trial data and templates consisting of the sinusoid stimulus waveform for the brainstem response and the subject's own smoothed averaged evoked response P2 component for the cortical response. Trials were considered in the analysis only if the maximum correlation-squared (r2) exceeded .5 (negatively correlated trials were thus included). Identical correlation coefficients may be based on signals with quite different amplitudes, but it is possible to assess amplitude by the nonnormalized covariance function. Next, an algorithm is applied in which each trial with negative covariance is matched to a trial with similar, but positive, covariance and these matched-trial pairs are deleted. When an evoked response signal is present in the data, the majority of trials positively correlate with the template. Thus, a residual of positively correlated trials remains after matched covariance trials are deleted. When these residual trials are averaged, the resulting brainstem and cortical responses show greatly enhanced amplitudes. This result supports the utility of this analysis technique in clarifying and assessing evoked response signals.
Pudar, Goran; Vlaski, Ljiljana; Filipović, Danka; Tanackov, Ilija
2010-01-01
Problems of hearing disturbances in persons suffering from diabetes have been attracting great attention for many decades. In this study we examined the auditory function of 50 patients suffering from diabetes mellitus type 1 of different duration by analyzing results of pure-tone audiometry and brainstem auditory evoked potentials. The obtained results of measuring were compared to 30 healthy subjects from the corresponding age and gender group. The group of diabetic patients was divided according to the disease duration (I group 0-5 years; II group 6-10 years, III group over 10 years). A statistically significant increase of sensorineural hearing loss was found in the diabetics according to the duration of their disease (I group = 14.09%, II group = 21.39%, III group = 104.89%). The results of the brain stem auditory evoked potentials, the significance threshold being p = 0.05 between the controls and the diabetics at all levels of absolute latency of right and left sides, did not show significant differences in the mean values. In the case of interwave latencies, the diabetic patients were found to have a significant qualitative difference of intervals I-III and I-V on both ears in the sense of internal distribution of response. In cases of sensorineural hearing loss we found a significant connection with prolonged latencies of I wave on the right ear and of I and V waves on the left ear. In all probability, the cause of these results could be found in distinctive individuality of the organism reactions to the consequences of this disease (disturbance in the distal part of N. cochlearis). The results of research have shown the existence of a significant sensorineural hearing loss in the patients with diabetes mellitus type 1 in accordance to the disease duration. We also found qualitative changes of brainstem auditory evoked potentials in the diabetic patients in comparison to the controls as well as significant quantitative changes in regard to the presence of sensorineural hearing loss of the patients.
Dehmel, Susanne; Pradhan, Shashwati; Koehler, Seth; Bledsoe, Sanford; Shore, Susan
2012-01-01
The dorsal cochlear nucleus (DCN) is the first neural site of bimodal auditory-somatosensory integration. Previous studies have shown that stimulation of somatosensory pathways results in immediate suppression or enhancement of subsequent acoustically-evoked discharges. In the unimpaired auditory system suppression predominates. However, damage to the auditory input pathway leads to enhancement of excitatory somatosensory inputs to the cochlear nucleus, changing their effects on DCN neurons (Zeng et al., 2009; Shore et al., 2008). Given the well described connection between the somatosensory system and tinnitus in patients we sought to determine if plastic changes in long lasting bimodal somatosensory-auditory processing accompany tinnitus. Here we demonstrate for the first time in vivo long-term effects of somatosensory inputs on acoustically-evoked discharges of DCN neurons in guinea pigs. The effects of trigeminal nucleus stimulation are compared between normal-hearing animals and animals overexposed with narrow band noise and behaviorally tested for tinnitus. The noise exposure resulted in a temporary threshold shift (TTS) in auditory brainstem responses but a persistent increase in spontaneous and sound-evoked DCN unit firing rates and increased steepness of rate-level functions (RLFs). Rate increases were especially prominent in buildup units. The long-term somatosensory enhancement of sound-evoked responses was strengthened while suppressive effects diminished in noise-exposed animals, especially those that developed tinnitus. Damage to the auditory nerve (ANF) is postulated to trigger compensatory long-term synaptic plasticity of somatosensory inputs that might be an important underlying mechanism for tinnitus generation. PMID:22302808