Science.gov

Sample records for rat basilar artery

  1. The role of Na(+), K(+)-ATPase in the hypoxic vasoconstriction in isolated rat basilar artery.

    PubMed

    Shen, Haitao; Liang, Peng; Qiu, Suhua; Zhang, Bo; Wang, Yongli; Lv, Ping

    2016-06-01

    Hypoxia-induced cerebrovascular dysfunction is a key factor in the occurrence and the development of cerebral ischemia. Na(+), K(+)-ATPase affects the regulation of intracellular Ca(2+) concentration and plays an important role in vascular smooth muscle function. However, the potential role of Na(+), K(+)-ATPase in hypoxia-induced cerebrovascular dysfunction is unknown. In this study, we found that the KCl-induced contraction under hypoxia in rat endothelium-intact basilar arteries is similar to that of denuded arteries, suggesting that hypoxia may cause smooth muscle cell (SMC)-dependent vasoconstriction in the basilar artery. The Na(+), K(+)-ATPase activity of the isolated basilar artery with or without endothelium significantly reduced with prolonged hypoxia. Blocking the Na(+)-Ca(2+) exchanger with Ni(2+) (10(-3)M) or the L-type Ca(2+) channel with nimodipine (10(-8)M) dramatically attenuated KCl-induced contraction under hypoxia. Furthermore, prolonged hypoxia significantly reduced Na(+), K(+)-ATPase activity and increased [Ca(2+)]i in cultured rat basilar artery SMCs. Hypoxia reduced the protein and mRNA expression of the α2 isoform of Na(+), K(+)-ATPase in SMCs in vitro. We used a low concentration of the Na(+), K(+)-ATPase inhibitor ouabain, which possesses a high affinity for the α2 isoform. The contractile response in the rat basilar artery under hypoxia was partly inhibited by ouabain pretreatment. The decreased Na(+), K(+)-ATPase activity in isolated basilar artery and the increased [Ca(2+)]i in SMCs induced by hypoxia were partly inhibited by pretreatment with a low concentration of ouabain. These results suggest that hypoxia may educe Na(+), K(+)-ATPase activity in SMCs through the α2 isoform contributing to vasoconstriction in the rat basilar artery.

  2. Contractile responses to rat urotensin II in resting and depolarized basilar arteries.

    PubMed

    Porras-González, Cristina; Ureña, Juan; Egea-Guerrero, Juan José; Gordillo-Escobar, Elena; Murillo-Cabezas, Francisco; González-Montelongo, María del Carmen; Muñoz-Sánchez, María Angeles

    2014-03-01

    The effects of human urotensin II (hUII) on the vascular tone of different animal species has been studied extensively. However, little has been reported on the vasoactive effects of rat urotensin (rUII) in murine models. The aim of the present study was to investigate the effects of rUII on vasoreactivity in rat basilar arteries. Basilar arteries from adult male Wistar rats (300-350 g) were isolated, cut in rings, and mounted on a small vessel myograph to measure isometric tension. rUII concentrations were studied in both resting and depolarized state. To remove endothelial nitric oxide effects from the rUII response, we treated selected arterial rings with Nω-nitro-L-arginine methyl ester (L-NAME). 10 μM rUII produced a potent vasoconstrictor response in rat basilar arteries with intact endothelium, while isometric forces remained unaffected in arterial rings treated with lower rUII concentrations. Although L-NAME did not have a significant effect on 10 μM rUII-evoked contraction, it slightly increased arterial ring contraction elicited by 1 μM rUII. In depolarized arteries, dose-dependent rUII increased depolarization-induced contractions. This effect was suppressed by L-NAME. Our results show that the rat basilar artery has a vasoconstrictor response to rUII. The most potent vasoconstrictor effect was produced by lower doses of rUII (0.1 and 1 μM) in depolarized arteries with intact endothelium. This effect could facilitate arterial vasospasm in vascular pathophysiological processes such as subarachnoid hemorrhage and hypertension, when sustained depolarization and L-type Ca(2+) channel activation are present.

  3. EndothelinA-endothelinB receptor cross-talk in rat basilar artery in situ.

    PubMed

    Yoon, SeongHun; Zuccarello, Mario; Rapoport, Robert M

    2012-04-01

    The rationale for the therapeutic use of dual as opposed to selective endothelin (ET) receptor antagonists stems in part from cross-talk between the ET(A) and ET(B) receptors. However, whether ET(A)-ET(B) receptor cross-talk is present in the cerebral vasculature is difficult to discern since findings of cross-talk contrast even among the few reports available. Thus, this study tested whether ET(A)-ET(B) receptor cross-talk is present in the rat basilar artery. In an in situ cranial window, 0.1 μM sarafotoxin S6c, an ET(B) receptor agonist, relaxed basilar artery basal tone by 54%. ET-1 (3 nM) in the absence and presence of 10 μM BQ123, an ET(A) receptor agonist, induced 13% contraction and 15% relaxation, respectively. In contrast, the 3-nM ET-1 plateau contraction was relaxed by only ∼50% by 3-10 μM BQ123 and 10 μM BQ610, ET(A) receptor antagonists. N(ω)-nitro-L: -arginine, an NO synthase inhibitor, did not enhance contraction to 3 nM ET-1, suggesting that the partial relaxation of the ET-1 plateau contraction did not involve unmasked endothelial ET(B) receptor-mediated relaxation. The ∼50% ET-1 contraction that remained following ET(A) receptor antagonist was relaxed by 3-10 μM BQ788, consistent with an ET(B) receptor-mediated component of contraction. However, 10 μM BQ788 in the absence of prior ET(A) receptor antagonist did not cause relaxation. Subsequent BQ123 addition in the presence of BQ788 completely relaxed the ET-1 contraction. PD145065 (1 μM), an ET(A/B) receptor antagonist, completely relaxed 3-nM ET-1 contracted vessels in both the absence and presence of BQ123. These findings suggest that the inability of ET(A) receptor antagonist to completely relax the ET-1 plateau contraction in rat basilar artery is due to ET(A)-ET(B) receptor cross-talk.

  4. Functional ET(A)-ET(B) Receptor Cross-talk in Basilar Artery In Situ From ET(B) Receptor Deficient Rats.

    PubMed

    Yoon, SeongHun; Gariepy, Cheryl E; Yanagisawa, Masashi; Zuccarello, Mario; Rapoport, Robert M

    2016-03-01

    The role of endothelin (ET)(A)-ET(B) receptor cross-talk in limiting the ET(A) receptor antagonist inhibition of ET-1 constriction is revealed by the partial or complete dependency of the ET(A) receptor antagonist inhibition on functional removal of the ET(B) receptor. Although functional removal of the ET(B) receptor is generally accomplished with ET(B) receptor antagonist, a novel approach using rats containing a naturally occurring deletion mutation in the ET(B) receptor [rescued "spotting lethal" (sl) rats; ET(B)(sl/sl)] demonstrated increased ET(A) receptor antagonist inhibition of ET-1 constriction in vena cava. We investigated whether this deletion mutation was also sufficient to remove the ET(B) receptor dependency of the ET(A) receptor antagonist inhibition of ET-1 constriction in the basilar artery. Consistent with previous reports, ET-1 plasma levels were elevated in ET(B)(sl/sl) as compared with ET(B)(+/+) rats. ET(B) receptor antagonist failed to relax the ET-1 constricted basilar artery from ET(B)(+/+) and ET(B)(sl/sl) rats. Relaxation to combined ET(A) and ET(B) receptor antagonist was greater than relaxation to ET(A) receptor antagonist in the basilar artery from ET(B)(+/+) and, unexpectedly, ET(B)(sl/sl) rats. These findings confirm the presence of ET(A)-ET(B) receptor cross-talk in the basilar artery. We speculate that mutant ET(B) receptor expression produced by alternative splicing may be sufficient to allow cross-talk.

  5. The vasorelaxant effect of pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide in isolated rat basilar arteries is partially mediated by activation of nitrergic neurons.

    PubMed

    Seebeck, Jörg; Löwe, Marcus; Kruse, Marie Luise; Schmidt, Wolfgang E; Mehdorn, H Maximilian; Ziegler, Albrecht; Hempelmann, Ralf G

    2002-07-15

    The structurally related neuropeptides pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are recognised by two G protein-coupled receptors, termed VPAC(1)-R and VPAC(2)-R, with equal affinity. PACAP and VIP have previously been shown to relax cerebral arteries in an endothelium-independent manner. The aim of the present study was to test if intramural neurons are involved in the mediation of PACAP/VIP-induced vasodilatory responses. Therefore, the vascular tone of isolated rat basilar arteries was measured by means of a myograph. The vasorelaxing effect of PACAP was assessed in arteries precontracted by serotonin in the absence or presence of different test compounds known to selectively inhibit certain signaling proteins. The vasorelaxant effect of PACAP could be significantly reduced by the inhibitor of neuronal N-type calcium channels omega-conotoxin GVIA (omega-CgTx), as well as by 3-bromo-7-nitroindazole (3Br-7-Ni), an inhibitor of the neuronal nitric oxide-synthase (nNOS). The localization of N-type calcium channels and VPAC-Rs within the rat basilar artery was investigated by confocal laser scanning microscopy using omega-CgTx- and VIP-analogs labelled with fluorescent dyes. These findings suggest that activation of intramural neurons may represent an important effector mechanism for mediation of the vasorelaxant PACAP-response.

  6. Basilar artery migraine and reversible imaging abnormalities.

    PubMed

    Maytal, J; Libman, R B; Lustrin, E S

    1998-01-01

    We report a case of a basilar artery migraine in a 17-year-old boy with transient CT and MR abnormalities after each of two migraine episodes. A repeat MR study 6 months after the last event showed complete resolution of the lesion. Transient abnormalities on brain images similar to those shown in our case have been reported in patients with migraine and other neurologic conditions and are most likely related to cerebral vasogenic edema.

  7. Vertebral artery dissection related to basilar impression: case report.

    PubMed

    Dickinson, L D; Tuite, G F; Colon, G P; Papadopoulos, S M

    1995-04-01

    A 50-year-old man with myelopathy secondary to basilar impression developed bilateral vertebral artery dissection after undergoing treatment with 8 pounds of cervical traction. The vertebral artery dissection resulted in vertebrobasilar insufficiency and posterior circulation stroke. In this report, the current management philosophies in the treatment of basilar impression are discussed, and the pertinent neurovascular anatomy is illustrated. This report suggests that vertebral artery injury may result from attempted reduction of severe basilar impression. Regardless of the cause of cranial settling, the risk of vertebral artery injury with cervical traction should be considered in patients with severe basilar impression.

  8. Effects of K+ channel agonists cromakalim and pinacidil on rat basilar artery smooth muscle cells are mediated by Ca(++)-activated K+ channels.

    PubMed

    Stockbridge, N; Zhang, H; Weir, B

    1991-11-27

    Whole-cell and cell-free inside-out patch-clamp recording techniques were used to examine the actions of potassium channel openers pinacidil and cromakalim in enzymatically isolated smooth muscle cells of rat basilar artery. Delayed rectifier and calcium-dependent potassium currents were identified from the whole-cell recordings. Only the calcium-dependent potassium current was increased by cromakalim and pinacidil. Recordings from inside-out membrane patches revealed a large conductance voltage- and calcium-dependent potassium channel, which was blocked by charybdotoxin but unaffected by ATP less than 10 mM. Cromakalim and pinacidil increased the open probability of this channel. On the basis of these results, we suggest that such drugs, acting on cerebral arterial smooth muscle cell potassium channels, may be of some benefit in the treatment of cerebral vasospasm following subarachnoid hemorrhage.

  9. Endovascular Treatment of Basilar Artery Aneurysms Associated with Distal Fenestration

    PubMed Central

    Juszkat, R.; Nowak, S.; Moskal, J.; Kociemba, W.; Zarzecka, A.

    2009-01-01

    Summary Segmental non-fusion of the basilar artery results from failed fusion of the neural arteries and from regression of the bridging arteries that connect the longitudinal arteries. This condition is associated with aneurysm formation in 7% of cases. Distally unfused arteries with associated aneurysms are very rare. We report on a case of successful endovascular treatment of an aneurysm of the distally unfused basilar trunk. PMID:20465939

  10. Basilar artery of the capybara (Hydrochaeris hydrochaeris): an ultrastructural study.

    PubMed

    Islam, S; Ribeiro, A A C M; Loesch, A

    2004-04-01

    The present study investigated the ultrastructural features of the basilar artery of the largest rodent species, the capybara. The study suggests that the general ultrastructural morphological organization of the basilar artery of the capybara is similar to that of small rodents. However, there are some exceptions. The basilar artery of the capybara contains a subpopulation of 'granular' vascular smooth muscle cells resembling monocytes and/or macrophages. The possibility cannot be excluded that the presence of these cells reflects the remodelling processes of the artery due to animal maturation and the regression of the internal carotid artery. To clarify this issue, more systemic studies are required involving capybaras of various ages.

  11. Dilated Basilar Arteries in Patients with Congenital Central Hypoventilation Syndrome

    PubMed Central

    Kumar, Rajesh; Nguyen, Haidang D.; Macey, Paul M.; Woo, Mary A.; Harper, Ronald M.

    2009-01-01

    Congenital central hypoventilation syndrome (CCHS) patients show hypoventilation during sleep and severe autonomic impairments, including aberrant cardiovascular regulation. Abnormal sympathetic patterns, together with increased and variable CO2 levels, lead to the potential for sustained cerebral vasculature changes. We performed high-resolution T1-weighted imaging in 13 CCHS and 31 control subjects using a 3.0-Tesla magnetic resonance imaging scanner, and evaluated resting basilar and bilateral middle cerebral artery cross-sections. Two T1-weighted image series were acquired; images were averaged and reoriented to common space, and regions containing basilar and both middle cerebral arteries were oversampled. Cross-sections of the basilar and middle cerebral arteries were manually outlined to calculate cross-sectional areas, and differences between and within groups were evaluated. Basilar arteries in CCHS were significantly dilated over control subjects, but both middle cerebral artery cross-sections were similar between groups. No significant differences appeared between left and right middle cerebral arteries within either group. Basilar artery dilation may result from differential sensitivity to high CO2 over other vascular beds, damage to serotonergic or other chemosensitive cells accompanying the artery, or enhanced microvascular resistance, and that dilation may impair tissue perfusion, leading to further neural injury in CCHS. PMID:19822189

  12. Double Stent Assist Coiling of Ruptured Large Saccular Aneurysm in Proximal Basilar Artery Fenestration

    PubMed Central

    Park, Woong Bae; Huh, Joon; Cho, Chul Bum; Yang, Seung Ho; Kim, Il Sup; Hong, Jae Taek; Lee, Sang Won

    2015-01-01

    Basilar artery fenestration is infrequent and even rarer in association with a large aneurysm. With proximity to brain stem and vital perforators, endovascular coiling can be considered first. If the large ruptured aneurysm with a wide neck originated from fenestra of the proximal basilar artery and the fenestration loop has branches of posterior circulation, therapeutic consideration should be thorough and fractionized. We report endovascular therapeutic details for a case of a ruptured large saccular aneurysm in proximal basilar artery fenestration. PMID:26523257

  13. Microsurgery for the aneurysms of the basilar artery apex.

    PubMed

    Dãnãilã, I

    2012-01-01

    The aneurysms of the Basilar Artery apex (ABA) are not very common. My personal experience derives from having performed surgery on a number of 3340 patients with cerebral aneurysms at the Department of Vascular Neurosurgery II in Bucharest between 1979 and 2010. In 234 (7%) of the aneurysms they were located in the posterior vasculature. In 146 patients, representing 4.37% of the total number of patients with cerebral aneurysms and 62.39% of those with aneurysms of posterior vasculature, the location was in the basilar artery apex. The mean age of the 146 patients with aneurysms of the basilar artery apex (ABA) was 45.2 years, varying between 34 and 71 years old. Most cases (69 -47.26%) were in the 41-50 years age group. Aneurysms were found in 68 males (46.57%) and 78 females (53.42%) suggesting a slight predominance in female patients. The main reason for hospitalization was subarachnoid haemorrhage. There were four reports of patients having three episodes of subarachnoid bleeding in the three months preceding the surgery. The mean time between the last subarachnoid bleeding and the hospital admission was 26 days, ranging between 1 and 62 days. On admission three patients were in a severe general and neurological state (Hunt IV and V, respectively). The diagnostic assessment for those patients started with computer tomography (CT) followed by brain angiogram for the four main vessels. The main challenges for the surgical treatment of such lesions are due to the complex vascular anatomy of the basilar artery apex, to the direct vicinity of these aneurysms with the base of the skull and with vital neural structures in the interpeduncular fossa as well as due to difficulties in gaining proximal control over them. The post-surgical evolution was excellent and good in 131 (89.72%) of patients, unsatisfactory in 8 patients (5.48%), while 8 patients (5.48%) died. Three of the 8 patients marked by an unsatisfactory evolution presented with right-side hemiballismus and

  14. Stent-based mechanical thrombectomy in acute basilar artery occlusion.

    PubMed

    Cohen, José E; Leker, Ronen R; Moscovici, Samuel; Attia, Moshe; Itshayek, Eyal

    2011-12-01

    Stent-based mechanical thrombectomy was recently proposed as an effective alternative to other mechanical techniques to achieve recanalization of large-vessel embolic occlusions in the anterior circulation. To our knowledge, there are no reports of the use of this technique in acute basilar artery occlusion (ABAO). We present a patient with complete endovascular recanalization of ABAO using a stent-based thrombectomy technique. Advantages and limitations of this technique in the management of ABAO are discussed. The stent-thrombectomy technique is promising, and will need further evaluation in posterior circulation stroke.

  15. Inhibition by ketamine and amphetamine analogs of the neurogenic nitrergic vasodilations in porcine basilar arteries.

    PubMed

    Chen, Mei-Fang; Lai, Su-Yu; Kung, Po-Cheng; Lin, Yo-Cheng; Yang, Hui-I; Chen, Po-Yi; Liu, Ingrid Y; Lua, Ahai Chang; Lee, Tony Jer-Fu

    2016-08-15

    The abuse of ketamine and amphetamine analogs is associated with incidence of hypertension and strokes involving activation of sympathetic activities. Large cerebral arteries at the base of the brain from several species receive dense sympathetic innervation which upon activation causes parasympathetic-nitrergic vasodilation with increased regional blood flow via axo-axonal interaction mechanism, serving as a protective mechanism to meet O2 demand in an acutely stressful situation. The present study was designed to examine effects of ketamine and amphetamine analogs on axo-axonal interaction-mediated neurogenic nitrergic vasodilation in porcine basilar arteries using techniques of blood-vessel myography, patch clamp and two-electrode voltage clamp, and calcium imaging. In U46619-contracted basilar arterial rings, nicotine (100μM) and electrical depolarization of nitrergic nerves by transmural nerve stimulation (TNS, 8Hz) elicited neurogenic nitrergic vasodilations. Ketamine and amphetamine analogs concentration-dependently inhibited nicotine-induced parasympathetic-nitrergic vasodilation without affecting that induced by TNS, nitroprusside or isoproterenol. Ketamine and amphetamine analogs also concentration-dependently blocked nicotine-induced inward currents in Xenopus oocytes expressing α3β2-nicotinic acetylcholine receptors (nAChRs), and nicotine-induced inward currents as well as calcium influxes in rat superior cervical ganglion neurons. The potency in inhibiting both inward-currents and calcium influxes is ketamine>methamphetamine>hydroxyamphetamine. These results indicate that ketamine and amphetamine analogs, by blocking nAChRs located on cerebral perivascular sympathetic nerves, reduce nicotine-induced, axo-axonal interaction mechanism-mediated neurogenic dilation of the basilar arteries. Chronic abuse of these drugs, therefore, may interfere with normal sympathetic-parasympathetic interaction mechanism resulting in diminished neurogenic vasodilation

  16. A vertebral artery dissection with basilar artery occlusion in a child.

    PubMed

    Devue, Katleen; Van Ingelgem, Annemie; De Keukeleire, Katrien; De Leeuw, Marc

    2014-01-01

    This paper presents the case report of an 11-year-old boy with an acute dissection with thrombosis of the left vertebral artery and thrombosis of the basilar artery. The patient was treated with acute systemic thrombolysis, followed by intra-arterial thrombolysis, without any clinical improvement, showing left hemiplegia, bilateral clonus, hyperreflexia, and impaired consciousness. MRI indicated persistent thrombosis of the arteria basilaris with edema and ischemia of the right brainstem. Heparinization for 72 hours, followed by a two-week LMWH treatment and subsequent oral warfarin therapy, resulted in a lasting improvement of the symptoms. Vertebral artery dissection after minor trauma is rare in children. While acute basilar artery occlusion as a complication is even more infrequent, it is potentially fatal, which means that prompt diagnosis and treatment are imperative. The lack of class I recommendation guidelines for children regarding treatment of vertebral artery dissection and basilar artery occlusion means that initial and follow-up management both require a multidisciplinary approach to coordinate emergency, critical care, interventional radiology, and child neurology services.

  17. A Vertebral Artery Dissection with Basilar Artery Occlusion in a Child

    PubMed Central

    Devue, Katleen; Van Ingelgem, Annemie; De Keukeleire, Katrien; De Leeuw, Marc

    2014-01-01

    This paper presents the case report of an 11-year-old boy with an acute dissection with thrombosis of the left vertebral artery and thrombosis of the basilar artery. The patient was treated with acute systemic thrombolysis, followed by intra-arterial thrombolysis, without any clinical improvement, showing left hemiplegia, bilateral clonus, hyperreflexia, and impaired consciousness. MRI indicated persistent thrombosis of the arteria basilaris with edema and ischemia of the right brainstem. Heparinization for 72 hours, followed by a two-week LMWH treatment and subsequent oral warfarin therapy, resulted in a lasting improvement of the symptoms. Vertebral artery dissection after minor trauma is rare in children. While acute basilar artery occlusion as a complication is even more infrequent, it is potentially fatal, which means that prompt diagnosis and treatment are imperative. The lack of class I recommendation guidelines for children regarding treatment of vertebral artery dissection and basilar artery occlusion means that initial and follow-up management both require a multidisciplinary approach to coordinate emergency, critical care, interventional radiology, and child neurology services. PMID:25587466

  18. Endovascular Treatment of Huge Dissecting Aneurysms Involving the Basilar Artery

    PubMed Central

    Yang, X.; Mu, S.; Lv, M.; Li, L.; Wu, Z.

    2007-01-01

    Summary Dissecting aneurysms involving the basilar artery (BA) are lesions with significant morbidity and mortality. Their management is controversial and often difficult. There is no generally approved strategy. Two cases of huge dissections involving the BA presented with subarachnoid hemorrhage in one case and mass effect in both cases. The dissection of case 1 involved the upper two thirds of the BA distal to the anterior inferior cerebellar arteries (AICA). Another dissection of case 2 involved the bilateral vertebral arteries (VA) distal to bilateral PICA and extended to upper third of the BA. After making a basket with coils inside the pseudoaneursym, proximal dissection was totally occluded in case 1. Dissection on the bilateral VA distal to the bilateral PICA and proximal BA was occluded in case 2 with a small residual dissection on the left VA. Case 1 had an excellent recovery with a durable image and clinical result. But recanalization and regrowth occurred in case 2, which might have originated from the residual dissection on the left VA, induced acute mass effect and sudden coma six weeks after the initial treatment. The residual and regrown dissection had to be occluded in a second intervention. The patient died two days later. BA occlusion is safe and efficient for dissections involving the BA as in our case and the literature. Proximal occlusion might be enough for huge and long lesions like ours. It seems that completely dense packing of proximal dissection is the key point to prevent recanalization. PMID:20566106

  19. Model studies of blood flow in basilar artery with 3D laser Doppler anemometer

    NASA Astrophysics Data System (ADS)

    Frolov, S. V.; Sindeev, S. V.; Liepsch, D.; Balasso, A.; Proskurin, S. G.; Potlov, A. Y.

    2015-03-01

    It is proposed an integrated approach to the study of basilar artery blood flow using 3D laser Doppler anemometer for identifying the causes of the formation and development of cerebral aneurysms. Feature of the work is the combined usage of both mathematical modeling and experimental methods. Described the experimental setup and the method of measurement of basilar artery blood flow, carried out in an interdisciplinary laboratory of Hospital Rechts der Isar of Technical University of Munich. The experimental setup used to simulate the blood flow in the basilar artery and to measure blood flow characteristics using 3D laser Doppler anemometer (3D LDA). Described a method of numerical studies carried out in Tambov State Technical University and the Bakoulev Center for Cardiovascular Surgery. Proposed an approach for sharing experimental and numerical methods of research to identify the causes of the basilar artery aneurysms.

  20. Results of Endovascular Management for Mid-Basilar Artery Aneurysms

    PubMed Central

    Zhang, J.; Zhang, R.; Wu, Z.; Lv, X.; Liu, B.

    2010-01-01

    We evaluated the results of endovascular management of patients with mid-basilar artery aneurysm (mBAA). During a seven year period, 14 patients (mean age 39.6 years, male/female ratio 1:1) with mBAA were treated with endovascular techniques at our institute. Pretreatment clinical grades were determined using the Hunt-Hess scale. Outcome was evaluated using the Glasgow Outcome Scale scores (GOS) during a mean follow-up period of 15.6 months (range, three to 70 months). Fourteen patients with 15 mBAAs were treated endovascularly. Four (28.6%) patients died of rebleeding within one day after embolization. In ten mBAAs, immediate postprocedural angiograms showed that complete occlusion was achieved, subtotal occlusion in one, and incomplete occlusion in four. Follow-up angiographic results in ten patients confirmed complete occlusion of 11 aneurysms. Long-term outcome was good (GOS Score 4 or 5) in ten patients (71.4%) and fatal (GOS Score 1) in four (28.6%). Favorable overall long-term outcome can be achieved in 78.6% patients with mBAAs. Endovascular management of mBAAs is an effective treatment in the long-term. In our experience, the natural history of mBAAs is dismal. PMID:20977855

  1. Protein kinase mediated upregulation of endothelin A, endothelin B and 5-hydroxytryptamine 1B/1D receptors during organ culture in rat basilar artery

    PubMed Central

    Hansen-Schwartz, Jacob; Svensson, Carl-Lennart; Xu, Cang-Bao; Edvinsson, Lars

    2002-01-01

    Organ culture has been shown to upregulate both endothelin (ET) and 5-hydroxytryptamine 1B/1D (5-HT1B/1D) receptors in rat cerebral arteries. The purpose of the present study was to investigate the involvement of protein kinases, especially protein kinases C (PKC) and A (PKA) in this process. The effect of inhibiting protein kinases during organ culture with staurosporine (unspecific protein kinase inhitor), RO 31-7549 (specific inhibitor of classical PKC's) and H 89 (specific inhibitor of PKA) was examined using in vitro pharmacological examination of cultured vessel segments with ET-1 (unspecific ETA and ETB agonist), S6c (specific ETB agonist) and 5-CT (5-HT1 agonist). Levels of mRNA coding for the ETA, ETB, 5-HT1B and 5-HT1D receptors were analysed using real-time RT–PCR. Classical PKC's are critically involved in the appearance of the ETB receptor; co-culture with RO 31-7549 abolished the contractile response (6.9±1.8%) and reduced the ETB receptor mRNA by 44±4% as compared to the cultured control. Correlation between decreased ETB receptor mRNA and abolished contractile function indicates upstream involvement of PKC. Inhibition of PKA generally had an enhancing effect on the induced changes giving rise to a 7–25% increase in Emax in response to ET-1, S6c and 5-CT as compared to the cultured control. Staurosporine inhibited the culture induced upregulation of the response of both the ETA and the 5-HT1B/1D receptors, but had no significant effect on the mRNA levels of these receptors. This lack of correlation indicates an additional downstream involvement of protein kinases. PMID:12183337

  2. Memantine inhibits α3β2-nAChRs-mediated nitrergic neurogenic vasodilation in porcine basilar arteries.

    PubMed

    Lee, Reggie Hui-Chao; Tseng, Ting-Yi; Wu, Celeste Yin-Chieh; Chen, Po-Yi; Chen, Mei-Fang; Kuo, Jon-Son; Lee, Tony Jer-Fu

    2012-01-01

    Memantine, an NMDA receptor antagonist used for treatment of Alzheimer's disease (AD), is known to block the nicotinic acetylcholine receptors (nAChRs) in the central nervous system (CNS). In the present study, we examined by wire myography if memantine inhibited α3β2-nAChRs located on cerebral perivascular sympathetic nerve terminals originating in the superior cervical ganglion (SCG), thus, leading to inhibition of nicotine-induced nitrergic neurogenic dilation of isolated porcine basilar arteries. Memantine concentration-dependently blocked nicotine-induced neurogenic dilation of endothelium-denuded basilar arteries without affecting that induced by transmural nerve stimulation, sodium nitroprusside, or isoproterenol. Furthermore, memantine significantly inhibited nicotine-elicited inward currents in Xenopous oocytes expressing α3β2-, α7- or α4β2-nAChR, and nicotine-induced calcium influx in cultured rat SCG neurons. These results suggest that memantine is a non-specific antagonist for nAChR. By directly inhibiting α3β2-nAChRs located on the sympathetic nerve terminals, memantine blocks nicotine-induced neurogenic vasodilation of the porcine basilar arteries. This effect of memantine is expected to reduce the blood supply to the brain stem and possibly other brain regions, thus, decreasing its clinical efficacy in the treatment of Alzheimer's disease.

  3. Unusual origin of the left ophthalmic artery from the basilar trunk.

    PubMed

    Rivera, Rodrigo; Choi, In Sup; Sordo, Juan Gabriel; Giacaman, Pablo; Badilla, Lautaro; Bravo, Eduardo; Echeverria, Daniel

    2015-05-01

    The formation of the ophthalmic artery (OA) is a complex process with two different proposed embryological steps for its development. Several anatomical variants have been described. We present a very unusual origin of the ophthalmic artery from the basilar trunk, in a 45-year-old male with a history of pontine hemorrhagic stroke. MRI and CTA showed evidence of previous hemorrhage in the pons and several intracranial arterial dysplastic dilatations. DSA confirmed several fusiform dilatations of the basilar trunk. In the left ICA, no ophthalmic artery was seen arising from the carotid siphon. The left ophthalmic artery arises from the basilar trunk and runs lateral to the cavernous sinus through the middle cranial fossa, entering the left orbit at the superior orbital fissure. The patient was treated conservatively. Two main theories for this anomaly are known, one from Lasjaunias and the other from Paget. To our knowledge, this basilar origin of the OA has only been described three times in the literature. For its origin, we propose a partial persistence of the trigeminal artery together with a dominance of the dorsal ophthalmic artery.

  4. Embolization of Ruptured Aneurysm Arising From Basilar Artery Fenestration Using Hydrocoils

    PubMed Central

    Chuan Zhi, Duan

    2015-01-01

    Aneurysms arising from the basilar artery fenestration are considered among the rare cerebrovascular diseases. Here, we report on a 44-year-old gentleman who presented with the sudden onset of severe headache complicated by several episodes of vomiting and an altered level of consciousness. A subarachnoid hemorrhage in the interpeduncle and ambient cisterns was detected by computed tomography of the head. During left vertebral arteriography, a basilar fenestration with a ruptured aneurysm just above the proximal end of vertebrobasilar junction was identified. The aneurysm was successfully occluded by means of endovascular treatment using Hydrosoft coils. In the 15-month follow-up angiography, 100% occlusion without recurrence and recanalization was observed. Bilateral anterior inferior cerebellar arteries and both channels of the basilar artery fenestration were entirely filled in follow-up angiograms. PMID:26488001

  5. Accessing the Basilar Artery Apex: Is the Temporopolar Transcavernous Route an Anatomically Advantageous Alternative?

    PubMed Central

    Sabuncuoğlu, Hakan; Jittapiromsak, Pakrit; Cavalcanti, Daniel D.; Spetzler, Robert F.; Preul, Mark C.

    2010-01-01

    The restricted operative field, difficulty of obtaining proximal vascular control, and close relationship to important anatomic structures limit approaches to basilar apex aneurysms. We used a cadaveric model to compare three surgical transcavernous routes to the basilar apex in the neutral configuration. Five cadaveric heads were dissected and analyzed. Working areas and length of exposure provided by the transcavernous (TC) approach via pterional, orbitozygomatic, and temporopolar (TP) routes were measured along with assessment of anatomic variation for the basilar apex region. In the pterional TC and orbitozygomatic TC approaches, the mean length of exposure of the basilar artery measured 6.9 and 7.2 mm, respectively (p = NS). The mean length of exposure in a TP TC approach increased to 9.3 mm (p < 0.05). Compared with the pterional and orbitozygomatic approaches, the TP TC approach provided a larger peribasilar area of exposure ipsilaterally and contralaterally (p < 0.05). The multiplanar working area related to the TP TC approach was 77.7 and 69.5% wider than for the pterional TC and orbitozygomatic TC, respectively. For a basilar apex in the neutral position, the TP TC approach may be advantageous, providing a wider working area for the basilar apex region, improving maneuverability for clip application, fine visualization of perforators, and better proximal control. PMID:22451796

  6. Rapid ventricular pacing for a basilar artery pseudoaneurysm in a pediatric patient: case report.

    PubMed

    Nimjee, Shahid M; Smith, Tony P; Kanter, Ronald J; Ames, Warwick; Machovec, Kelly A; Grant, Gerald A; Zomorodi, Ali R

    2015-06-01

    Large cerebral aneurysms of the basilar apex are difficult to treat. Recently, endovascular treatment has mitigated much of the morbidity associated with treating these lesions. However, the morphology of aneurysms of the vertebrobasilar system can preclude endovascular treatment. Rapid ventricular pacing (RVP) facilitates open surgical treatment of cerebral aneurysms. It can assist in reducing the pressure of the neck of the aneurysm, allowing safe application of a clip. The authors present a case of a pediatric patient who developed a basilar artery pseudoaneurysm that required surgery. Given the large size of the aneurysm, RVP was performed, allowing the surgeons to dissect the dome of the aneurysm from the surrounding tissue and pontine perforating branches away from the lesion to safely clip the lesion. The patient had an uneventful recovery. To the authors' knowledge, this represents the first known case of RVP to aid in basilar artery clip occlusion in a pediatric patient.

  7. Role of L-type Ca(2+) channels, sarcoplasmic reticulum and Rho kinase in rat basilar artery contractile properties in a new model of subarachnoid hemorrhage.

    PubMed

    Egea-Guerrero, Juan José; Murillo-Cabezas, Francisco; Muñoz-Sánchez, María Ángeles; Vilches-Arenas, Angel; Porras-González, Cristina; Castellano, Antonio; Ureña, Juan; González-Montelongo, María del Carmen

    2015-09-01

    We have previously described that L-type Ca(2+) channels' (LTCCs) activation and metabotropic Ca(2+) release from the sarcoplasmic reticulum (SR) regulate RhoA/Rho kinase (ROCK) activity and sustained arterial contraction. We have investigated whether this signaling pathway can be altered in a new experimental model of subarachnoid hemorrhage (SAH). For this purpose, arterial reactivity was evaluated on days 1 to 5 after surgery. A significant increase of basal tone, measured 4 and 60min after normalization, was observed on day 5 after SAH and at 60min on days 2 and 3 after SAH. This phenomenon was suppressed with LTCCs and ROCK inhibitors. We have also studied arterial rings vasoreactivity in response to high K(+) solutions. Interestingly, there were no significant differences in the phasic component of the high K(+)-induced contraction between sham and SAH groups, whereas a significant increase in the sustained contraction was observed on day 5 after SAH. This latter component was sensitive to fasudil, and selectively reduced by low nifedipine concentration, and phospholipase C and SR-ATPase inhibitors. Therefore, our data suggest that the metabotropic function of LTCCs is potentiated in SAH. Our results could provide a new strategy to optimize the pharmacological treatment of this pathological process.

  8. Numerical simulations of post-surgical flow and thrombosis in basilar artery aneurysms

    NASA Astrophysics Data System (ADS)

    Seshadhri, Santhosh; Lawton, Michael; Boussel, Loic; Saloner, David; Rayz, Vitaliy

    2015-11-01

    Surgical treatment of basilar artery aneurysms presents a major challenge since it is crucial to preserve the flow to the vital brainstem perforators branching of the basilar artery. In some cases, basilar aneurysms can be treated by clipping vessels in order to induce flow reduction and aneurysm thrombosis. Patient-specific CFD models can provide guidance to clinicians by simulating postoperative flows resulting from alternative surgeries. Several surgical options were evaluated for four basilar aneurysm patients. Patient-specific models were generated from preoperative MR angiography and MR velocimetry data and modified to simulate different procedures. The Navier-Stokes equations were solved with a finite-volume solver Fluent. Virtual contrast injections were simulated by solving the advection-diffusion equation in order to estimate the flow residence time and determine thrombus-prone regions. The results indicated on procedures that reduce intra-aneurysmal velocities and flow regions which are likely to become thrombosed. Thus CFD modeling can help improve the outcome of surgeries altering the flow in basilar aneurysms.

  9. Thrombectomy using a stent retriever with artificially induced vertebral artery vasospasm in a patient with acute basilar artery occlusion: a case report

    PubMed Central

    Kim, Sanghyeon; Choi, Jae-Hyung

    2015-01-01

    An acute basilar artery occlusion is not an uncommon cause of stroke. It represents 6–10% of large vessel strokes and has been associated with poor clinical outcomes. Multimodal treatments have been introduced to recanalise a basilar artery occlusion successfully. However, all mechanical thrombectomy devices are not always usable in an emergent situation. We present a case of basilar artery occlusion treated with a stent retriever assisted by a vertebral artery vasospasm. We attempted thrombectomy with a stent retriever several times. However, the captured thrombus was not pulled out and migrated to the distal basilar artery and posterior cerebral artery due to anterograde flow of the vertebral artery. We carefully advanced the catheter into the distal vertebral artery and generated a vasospasm. The vertebral artery vasospasm reduced the forward flow significantly like a balloon-guided catheter. The thrombus was pulled out with the stent. PMID:26678752

  10. Transluminal angioplasty for arteriosclerotic disease of the distal vertebral and basilar arteries.

    PubMed Central

    Terada, T; Higashida, R T; Halbach, V V; Dowd, C F; Nakai, E; Yokote, H; Itakura, T; Hieshima, G B

    1996-01-01

    OBJECTIVE: Percutaneous transluminal angioplasty (PTA) for the distal vertebral and basilar artery is now being performed in selected patients with haemodynamically significant lesions of the posterior cerebral circulation. Its effect and overall results were examined. PATIENTS AND METHODS: A balloon dilatation catheter specifically developed for these procedures, with a 2.0-3.5 mm balloon diameter, at 6 atmospheres of pressure, was used. Angioplasty was performed in 12 patients (including six whose initial results have been reported) with angiographically documented stenotic lesions involving either the intracranial vertebral artery (C1-C2 portion) or the basilar artery, and satisfying the following criteria: (1) clinical symptoms suggestive or consistent with a transient ischaemic attack refractory to medical treatment, or small infarction of the posterior circulation; and (2) angiographically documented stenosis greater than 70%. Two of 12 patients had complete thrombosis of the distal vertebral and basilar artery and PTA was performed after successful intra-arterial thrombolysis. RESULTS: Successful results, without complications, were obtained in eight patients, with complete resolution of vertebrobasilar ischaemic symptoms. Immediate complications occurred in four patients including two with vessel dissection, and two with thromboembolism. The two patients with acute arterial dissection were reoperated but developed small infarctions with permanent neurological deficits. The two patients with thromboembolic complication showed transient neurological deficit. The overall stenosis ratio decreased from a mean of 84% pretreatment to 44% after the angioplasty procedure. Restenosis occurred in two patients. Long term clinical follow up in 11 patients who survived more than six months showed resolution of ischaemic symptoms after PTA in all except for one with a restenosis who had recurrent transient ischaemic attacks. CONCLUSION: Transluminal angioplasty may be an

  11. Study on the correlation of vertebral artery dominance, basilar artery curvature and posterior circulation infarction.

    PubMed

    Zhu, Wei; Wang, Ya-Fang; Dong, Xiao-Feng; Feng, Hong-Xuan; Zhao, He-Qing; Liu, Chun-Feng

    2016-09-01

    Vertebral artery dominance (VAD), which is a common congenital variation of vertebral artery, may be associated with an increased risk of cerebral posterior circulation infarction (PCI). The aims of this study were to investigate the correlation of VAD with incidence and laterality of PCI, and oblige the correlation of VAD and basilar artery (BA) curvature. Incidence of separate territory infarction in posterior circulation and incidence of BA curvature were compared between 78 VAD patients and 68 controls. VA dominance, laterality of BA curvature and separate territory infarction, and their directional relationships were observed in VAD group. The incidence of BA curvature in VAD group was significantly higher than that in controls (P = 0.000). 89.7 % (35/39) of patients had an opposite directional relationship between dominant VA and BA curvature. The total incidence of PCI in VAD group was significantly higher than that in controls (P = 0.001). The incidences of posterior inferior cerebellar artery (PICA) and BA territory infarction were both significantly higher than those in controls [11.5 % (9/78) vs. 1.5 % (1/68), P = 0.016; 20.5 % (16/78) vs. 7.4 % (5/68), P = 0.024]. No differences were found in superior cerebellar artery and posterior cerebral artery territory infarction between two groups. 77.8 % (7/9) of PICA infarction were on the opposite side of dominant VA. 75.0 % (12/16) of BA infarction were on the side of dominant VA. The incidence of PCI in BA curvature patients was significantly higher than that in BA straight patients. The incidence of BA curvature is higher in VAD patients, and BA usually bends to the opposite side of dominant VA. The incidence of PCI is higher in VAD patients, especially in PICA infarction and BA infarction patients.

  12. Acute Pontine Infarction due to Basilar Artery Dissection from Strenuous Physical Effort: One from Sexual Intercourse and Another from Defecation

    PubMed Central

    Kim, Su-Ho; Suh, Sang-Jun; Lee, Jeong-Ho; Ryu, Kee-Young; Kang, Dong-Gee

    2016-01-01

    A basilar artery dissection (BAD) is an extremely rare disease. It can lead to hemorrhage or infarction involving the brain stem, and is often associated with grave outcome. However, little is known about the pathophysiology of BAD, and its proper managements are yet in controversy. Herein, we report on two rare cases of basilar artery dissection from strenuous physical effort; one from sexual intercourse and another from defecation. The treatment modalities and the outcomes are also discussed. PMID:27790399

  13. Transient total mesencephalic locked-in syndrome after bilateral ptosis due to basilar artery thrombosis.

    PubMed

    Fujimoto, Yasunori; Ohnishi, Yu-ichiro; Wakayama, Akatsuki; Yoshimine, Toshiki

    2012-11-01

    Locked-in syndrome (LIS) usually occurs as a result of pontine lesions and has been classified into various categories on the basis of neurologic conditions, of which transient total mesencephalic LIS is extremely rare. A 53-year-old man presented with bilateral ptosis followed by a total locked-in state. In the clinical course, the patient successfully recovered with only left slight hemiparesis and skew deviation remaining. Magnetic resonance imaging revealed multiple ischemic lesions caused by thrombosis at the top of basilar artery, including the bilateral cerebral peduncles, tegmentum of the midbrain, and the right cerebellar hemisphere. Antecedent bilateral ptosis before the locked-in state may be related to ischemia in the central caudal nucleus of the oculomotor nuclei. We should pay attention to this easily missed condition during the treatment of ischemic stroke involving the basilar artery.

  14. Recombinant tissue plasminogen activator in two patients with basilar artery occlusion.

    PubMed Central

    Herderscheê, D; Limburg, M; Hijdra, A; Koster, P A

    1991-01-01

    Two patients with angiographically proved basilar artery occlusion were treated with systemic recombinant tissue plasminogen activator (rtPA) according to protocol. The first patient was in a locked-in state and gradually deteriorated. On repeat angiography the basilar artery remained occluded. He died and necropsy revealed a pontine haemorrhagic infarction. The second patient, who was comatose and with decerebrate posturing, made a remarkable recovery. Angiography showed reperfusion. Therapy was initiated in the first patient after six hours and in the second after two hours. Treatment with rtPA is promising but probably not feasible for every patient. Success may depend on duration of occlusion and composition of occluding thrombus. Images PMID:1901349

  15. The use of mechanical thrombectomy in the treatment of basilar artery occlusion--case report.

    PubMed

    Knap, Daniel; Honkowicz, Maciej; Kirmes, Tomasz; Koroński, Marcin; Kysiak, Marzena; Bukański, Mateusz; Sieroń, Dominik; Dymon, Izabela; Baron, Jan

    2015-01-01

    Occlusion of the basilar artery (BAO) is a rare cause of stroke, making up approximately 1% of all cases. Ischemic stroke within the basilar artery is associated with serious complications and high mortality (75-91%). BAO may occur initially in the form of mild prodromal symptoms with neurological disorders, the consequences of which can lead to death. For these reasons, BAO requires rapid diagnosis and treatment. We report the case of a 26-year-old man who suffered basilar artery occlusion and was treated with endovascular therapy. The patient was disqualified from intra-venous thrombolysis and endovascular treatment due to exceeding the therapeutic time window. Despite this, due to the location of ischemia and age of the patient, it was decided to proceed with a mechanical thrombectomy (TM). Vessel patency was restored using the Solitaire FR stent. Treatment continued with antiplatelet therapy. Despite a significant overshoot of the time window the procedure was successful and complete recanalization was achieved. During hospitalization, significant neurological symptom reductions were observed. There is no accurate data on which method of treatment of ischemic stroke is best for BAO. Expectations about the effectiveness of endovascular techniques are high.

  16. The efficiency analysis of thrombolytic rt-PA combined with intravascular interventional therapy in patients with acute basilar artery occlusion

    PubMed Central

    Xianxian, Zhao; Chengsong, Yue; Qiang, Mei; Fei, Wei; Lin, Shen; Huiyan, Ding; Zili, Gong

    2017-01-01

    In order to further optimize the treatment strategy for the patients with acute basilar artery occlusion, we were dedicated to study the therapeutic effects and influential factors in the process of treated basilar artery occlusion with thrombolytic combined vascular interventional therapy. 75 patients with acute basilar artery occlusion treated with arterial thrombolytic therapy were analyzed retrospectively. In accordance with the discharge records of patients, their short-term curative effect with 24-hour treatment and 14-days treatment were evaluated. Our data showed that the survival condition of the patients with acute acute basilar artery occlusion were visibly improved by combination thrombolytic and interventional therapy. Moreover, their BI scores were remarkably improved, while NIHSS and mRS scores were evidently reduced. These data proved that our treatment strategy was able to improve the survival condition of patients with acute basilar artery occlusion. Furthermore, our data showed that coagulation related factors remarkably improved in the patients, when they treated by combination thrombolytic therapy with interventional therapy. In addition, our results suggested that the patients' bilateral Babinski(+), revascularization and coma symptom were closely related to their prognosis after treated the patients with combination thrombolytic and vascular interventional therapy, and the difference was statistically significant (p<0.05, p<0.05, p<0.05). Besides, our data also displayed that the with stent assisted angioplasty was significantly superior to the patients with balloon angioplasty, and the difference was statistically significant (p<0.05). Anyhow, combination thrombolytic with interventional therapy can effectively promote the prognosis of the patients with acute basilar artery occlusion. The coma symptom, bilateral Babinski(+), and revascularization in the patients with acute basilar artery occlusion have an appreciable impact on the patients

  17. Vasoconstrictive effects of levobupivacaine on the basilar artery in the rabbit

    PubMed Central

    Ergil, Julide; Kertmen, Hayri; Sayın, Murat; Yılmaz, Erdal Reşit; Özkan, Derya; Arıkök, Ata Türker; Kanat, Mehmet Ali; Şekerci, Zeki

    2015-01-01

    Introduction Spinal anesthesia is a widely used technique of the modern practice of anesthesia. Spinal cord ischemia is a rare but catastrophic complication of spinal anesthesia which may be caused by a direct vasoconstrictive effect of the local anesthetic. Although the vasoconstrictive effects of levobupivacaine have been widely studied, the vasoconstrictive effects of this drug on the intradural arteries have never been studied. The aim of this study is to evaluate whether levobupivacaine has vasoconstrictive effects on the basilar artery in rabbits. Material and methods Thirty male New Zealand white rabbits were divided randomly into three groups of ten rabbits each: group 1 (control); group 2 (0.125% levobupivacaine); group 3 (0.25% levobupivacaine). The cisterna magna was punctured as described below, then 1 ml of saline or 0.125% or 0.25% levobupivacaine was injected into the cisterna magna in 10 min by an infusion pump in groups 1, 2 and 3 respectively. All animals were euthanized by perfusion-fixation 30 min after the procedure. The luminal area and the size of the cross-sectional area for each basilar artery were measured. Results Both 0.125% and 0.25% levobupivacaine infusion caused significant vasoconstriction. Vasoconstriction was more significant for the 0.125% concentration. Conclusions The results of this study indicated that both 0.125% and 0.25% concentrations of levobupivacaine caused significant vasoconstriction of the basilar artery when administered into the subarachnoid space. This may constitute proof that subarachnoid administration of levobupivacaine may diminish the spinal cord blood flow, causing ischemia. PMID:26170861

  18. Basilar artery to bilateral posterior cerebral artery 'Y stenting' for endovascular reconstruction of wide-necked basilar apex aneurysms: report of three cases.

    PubMed

    Perez-Arjona, Eimir; Fessler, Richard D

    2004-04-01

    Endovascular reconstruction of basilar artery (BA) apex aneurysms has been augmented by adjunctive techniques such as balloon and stent assistance. We present three cases of a wide-necked BA apex aneurysm involving the bilateral P1 segments of both posterior cerebral arteries (PCAs) treated by placement of BA to PCA stents bilaterally in a 'Y' configuration to reconstruct the BA apex for effective coil embolization. Three patients (aged 70, 65 and 37 years) with wide-necked basilar artery aneurysms presented for endovascular treatment. All aneurysms had necks that involved the bilateral P1 segments. Each patient was deemed an appropriate candidate for endovascular reconstruction. Patients were pretreated with clopidogrel (75 mg) and aspirin (325 mg) each day for 3 days prior to the procedure. Following induction of general anesthesia, access to the right femoral artery was obtained by placement of a 6F sheath. Intravenous heparin was administered to achieve an activated coagulation time (ACT) of approximately 300 seconds. A 6F guide catheter was placed within the left vertebral artery (VA) in two patients, the right VA in a third. Utilizing over-the-wire (OTW) technique, a microcatheter was advanced into the left P2-P3 junction of the PCA. A 300-cm 0.014-inch microwire was passed through the microcatheter into the distal PCA and the microcatheter was removed. In each case, two neuroform stents were prepared (SMART Therapeutics Inc., San Leandro, CA) and advanced OTW into the PCA with the most acute angle relative to the BA. The initial stent placed was 20 mm in length and was deployed from the P1 segment into the BA. The microwire was pulled retrograde into the BA apex, then advanced though the stent struts and into the right PCA. A second stent, 15 mm in length, was advanced OTW through the struts of the previously placed stent. It was then deployed from the P1 into the BA where it overlapped the first stent, resulting in a stent-in-stent 'Y' configuration at the

  19. Endothelin-1 and endothelin receptors in the basilar artery of the capybara.

    PubMed

    Loesch, Andrzej; Gajkowska, Barbara; Dashwood, Michael R; Fioretto, Emerson T; Gagliardo, Karina M; Lima, Ana R De; Ribeiro, Antonio A C M

    2005-02-01

    Little is known about cerebral vasculature of capybara, which seems may serve as a natural model of studying changes in cerebral circulation due to internal carotid artery atrophy at animal sexual maturation. This is the first study of the light- and electron-immunocytochemical localisation of endothelin-1 (ET-1) and ETA and ETB endothelin receptors in the basilar artery of capybaras (6 to 12-month-old females and males) using an ExtrAvidin detection method. All animals examined showed similar patterns of immunoreactivity. Immunoreactivity for ET-1 was detected in the endothelium and adventitial fibroblasts, whilst immunoreactivity for ETA and ETB receptors was present in the endothelium, vascular smooth muscle, perivascular nerves and fibroblasts. In endothelial cells immunoreactivity to ET-1 was pronounced in the cytoplasm or on the granular endoplasmic reticulum. Similar patterns of immunolabelling were observed for ETA and ETB receptors, though cytoplasmic location of clusters of immunoprecipitate seems dominant. These results suggest that the endothelin system is present throughout the wall of the basilar artery of capybara.

  20. A case of intracranial arterial dolichoectasia with 4 repeated cerebral infarctions in 6 months and enlargement of basilar artery.

    PubMed

    Moriyoshi, Hideyuki; Furukawa, Soma; Iwata, Mai; Suzuki, Junichiro; Nakai, Noriyoshi; Nishida, Suguru; Ito, Yasuhiro

    2017-03-28

    A 78-year-old man was admitted to our hospital because of sudden right hemiparesis and dysarthria. His cranial MRI showed an area of hyperintensity in left pons on DWI and MRA revealed dilated, elongated and tortuous intracranial artery. We diagnosed as acute phase ischemic stroke and intracranial arterial dolichoectasia (IADE). Intravenous infusion of rt-PA was performed 157 minutes after the onset of symptoms, and his hemiparesis improved. However, he subsequently suffered from cerebral infarction 4 times in 6 months, and we treated him twice with thrombolytic therapy. Although thrombolytic therapy was effective in the short term and antithrombotic therapy was continued, he had bilateral hemiplegia and severe dysphagia because of repeated cerebral infarctions. Hence basilar artery was dilated with intramural hemorrhage over 6 months, and we discontinued antithrombolytic therapy. It is possible that antithrombolytic therapy affects enlargement of IADE. Antithrombolytic therapy for IADE should be done carefully.

  1. Successful coil embolization of a ruptured basilar artery aneurysm in a child with leukemia: a case report.

    PubMed

    Hayashi, Shihori; Maehara, Taketoshi; Mukawa, Maki; Aoyagi, Masaru; Yoshino, Yoshikazu; Nemoto, Shigeru; Ono, Toshiaki; Ohno, Kikuo

    2014-01-01

    Ruptured intracranial aneurysms are rare in the pediatric population compared to adults. This has incited considerable discussion on how to treat children with this condition. Here, we report a child with a ruptured saccular basilar artery aneurysm that was successfully treated with coil embolization. A 12-year-old boy with acute lymphoblastic leukemia and accompanying abdominal candidiasis after chemotherapy suddenly complained of a severe headache and suffered consciousness disturbance moments later. Computed tomography scans and cerebral angiography demonstrated acute hydrocephalus and subarachnoid hemorrhage caused by saccular basilar artery aneurysm rupture. External ventricular drainage was performed immediately. Because the patient was in severe condition and did not show remarkable signs of central nervous system infection in cerebrospinal fluid studies, we applied endovascular treatment for the ruptured saccular basilar artery aneurysm, which was successfully occluded with coils. The patient recovered without new neurological deficits after ventriculoperitoneal shunting. Recent reports indicate that both endovascular and microsurgical techniques can be used to effectively treat ruptured cerebral aneurysms in pediatric patients. A minimally invasive endovascular treatment was effective in the present case, but long-term follow-up will be necessary to confirm the efficiency of endovascular treatment for children with ruptured saccular basilar artery aneurysms.

  2. Simulation of unsteady laminar flow in models of terminal aneurysm of the basilar artery

    NASA Astrophysics Data System (ADS)

    Valencia, Alvaro

    2005-05-01

    Blood flow dynamics play an important role in the pathogenesis and treatment of intracranial aneurysms. The evaluation of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils, in addition the temporal and spatial variations of wall shear stress in the aneurysm are correlated with its growth and rupture. The present numerical investigation describes the hemodynamics in two models of terminal aneurysm of the basilar artery. Aneurysm models with an aspect ratio of 1.0 and 1.67 were studied. Each model was subject to a steady, sinusoidal and physiologically representative waveform of inflow for a mean Reynolds number of 560. Symmetric and asymmetric outflow conditions in the branches were also studied.

  3. Successful interventional thrombectomy of a basilar artery thrombus in a long-term LVAD patient.

    PubMed

    Zerdzitzki, Matthaeus; Schmid, Christof; Hirt, Stephan; Wendl, Christina; Schlachetzki, Felix; Camboni, Daniele

    2015-01-01

    Cerebral thromboembolism builds the Achilles heel for patients on left ventricular support (LVAD). Thrombolytic therapy is usually contraindicated considering the increased risk of intracranial hemorrhage in patients with LVAD under therapeutic oral anticoagulation with concomitant platelet inhibition. We report on an alternative approach to this dilemma. On day 1,091 of LVAD support (INCOR Berlin Heart), a 69 year-old male patient was admitted to a rural hospital unconscious with a left-sided hemiplegia. Cerebral computed tomography (CT) with CT angiography revealed a thromboembolic distal basilar artery occlusion. The patient was immediately transported to our medical center, where an interventional thrombectomy restored full patency of the vessel. The patient recovered without neurologic sequelae within days. This case highlights the fact that patients on LVAD support with a neurologic event should be immediately transferred to a neurovascular center for appropriate treatment including a neurointervention.

  4. Clinical and radiological predictors of recanalisation and outcome of 40 patients with acute basilar artery occlusion treated with intra-arterial thrombolysis

    PubMed Central

    Arnold, M; Nedeltchev, K; Schroth, G; Baumgartner, R; Remonda, L; Loher, T; Stepper, F; Sturzenegger, M; Schuknecht, B; Mattle, H

    2004-01-01

    Objective: To define predictors of recanalisation and clinical outcome of patients with acute basilar artery occlusions treated with local intra-arterial thrombolysis (IAT). Methods: Vascular risk factors, severity of the neurological deficit graded by the National Institutes of Health stroke scale (NIHSS), and radiological findings were recorded at presentation. Outcome was measured using the modified Rankin scale (mRS) three months later and categorised as favourable (mRS 0–2), poor (mRS 3–5), or death (mRS 6). Results: 40 patients were studied. Median NIHSS on admission was 18. Mean time from symptom onset to treatment was 5.5 hours (range 2.3 to 11). Outcome was favourable in 14 patients (35%) and poor in nine (23%); 17 (42%) died. There were two symptomatic cerebral haemorrhages (5%). Recanalisation of the basilar artery was achieved in 32 patients (80%); it was complete (TIMI grade 3) in 20% and partial (TIMI grade 2) in 60%. In multivariate logistic regression analysis, low NIHSS score on admission (p = 0.002) and vessel recanalisation (p = 0.005) were independent predictors of favourable outcome. Recanalisation occurred more often with treatment within six hours of symptom onset (p = 0.003) and when admission computed tomography showed a hyperdense basilar artery sign (p = 0.007). In a univariate model, quadriplegia (p = 0.002) and coma (p = 0.004) were associated with a poor outcome or death. Conclusions: Low baseline NIHSS on admission and recanalisation of basilar artery occlusions predict a favourable outcome after intra-arterial thrombolysis. Early initiation of IAT and the presence of a hyperdense basilar artery sign on CT were associated with a higher likelihood of recanalisation. PMID:15146000

  5. Chronic basilar artery dissection with an associated symptomatic aneurysm presenting with massive subarachnoid hemorrhage.

    PubMed

    Cohen, José E; Moscovici, Samuel; Rajz, Gustavo; Vargas, Andres; Itshayek, Eyal

    2016-08-01

    Basilar artery dissection (BAD) is a rare condition with a worse prognosis than a dissection limited to the vertebral artery. We report a rare case of chronic BAD with an associated symptomatic aneurysm presenting with massive subarachnoid hemorrhage (SAH) in a 54-year-old woman. The diagnosis of acute BAD could only be made retrospectively, based on clinical and neuroradiological studies from a hospital admission 10months earlier. Angiography performed after her SAH showed unequivocal signs of imperfect healing; she was either post-recanalization of a complete occlusion or post-dissection. Residual multi-channel intraluminal defects led to the development of a small aneurysm, which was responsible for the massive hemorrhage. The occurrence of an associated aneurysm, and wall disease, but not an intraluminal process, reinforces the diagnosis of dissection. The patient was fully recovered at 90day follow-up. This case reinforces the need for long-term neuroradiological surveillance after non-hemorrhagic intracranial dissections to detect the development of de novo aneurysms.

  6. Ruptured aneurysm at the cortical segment of the distal posterior inferior cerebellar artery associated with hemodynamic stress after basilar artery occlusion

    PubMed Central

    Marutani, Akiko; Nakagawa, Ichiro; Park, Hun Soo; Tamura, Kentaro; Motoyama, Yasushi; Nakase, Hiroyuki

    2016-01-01

    Background: A distal posterior inferior cerebellar artery (PICA) de novo aneurysm at the cortical segment after atherosclerotic basilar artery occlusion is extremely rare. Here, we report the case of a ruptured distal PICA de novo aneurysm 8 years after basilar artery occlusion. Case Description: A 75-year-old man experienced sudden disturbance of consciousness; computed tomography demonstrated cerebellar and subarachnoid hemorrhage due to a ruptured distal PICA aneurysm. Neck clipping of the aneurysm prevented re-rupture initially, and superficial temporal artery-superior cerebellar artery (STA-SCA) bypass was performed 3 months after admission. Postoperative angiography confirmed patency of the bypass, and the patient was discharged without any new neurological deficits. Conclusion: This report describes a case of de novo development of a saccular distal PICA aneurysm after atherosclerotic basilar artery occlusion. We believe that increased hemodynamic stress at the PICA might have contributed to the occurrence and rupture of the aneurysm. STA-SCA bypass, introduced in the territory of the cerebellar hemisphere, reduces hemodynamic stress, which would prevent the occurrence of de novo aneurysm and recurrent bleeding. PMID:28144485

  7. Characterization of histamine receptors in isolated pig basilar artery by functional and radioligand binding studies

    SciTech Connect

    Miyamoto, Atsushi; Nishio, Akira )

    1993-01-01

    Histamine receptors in pig basilar arteries were investigated in vitro by radioligand binding assays and by measuring the contractile and relaxant responses to histamine. Histamine and 2-pyridyethylamine (H[sub 1]-agonist) induced concentration-dependent contractions, whereas impromidine (H[sub 2]-agonist) induced concentration-dependent relaxations. These responses were independent of the presence of endothelial cells. Diphenhydramine (H[sub 1]-antagonist) partially reversed the histamine-induced contractions to relaxations. Cimetidine (H[alpha][sub 2]-antagonist) potentiated the contraction in a concentration-dependent manner. In the presence of cimetidine, the pEC[sub 50] value of histamine for the contraction was 6.30, and diphenhydramine competitively antagonized the histamine-induced contractions (pA[sub 2], 7.77). In the presence of diphenhydramine, the pEC[sub 50] value of histamine for the relaxation was 5.93, and cimetidine competitively antagonized the histamine-induced relaxations (pA[sub 2], 6.62). In the binding studies, the K[sub d] value of [[sup 3]H]mepyramine was 2.1 nM and the B[sub max] value was 95.6 fmol/mg protein. A competition experiment with diphenhydramine showed that the pK[sub i] value (7.51) was similar to the pA[sub 2] value. The K[sub d] value for [[sup 3]H]cimetidine was 126.0 nM and the B[sub max] value was 459.8 fmol/mg protein. The pK[sub d] (6.90) for [[sup 3]H]cimetidine was similar to the pA[sub 2] for cimetidine. The Hill coefficients for these experiments were not significantly different from unity. The present findings indicate that the number of H[sub 1]-receptors, in terms of the B[sub max] value for [[sup 3]H]mepyramine, is smaller than that of H[sub 2]-receptors, in terms of the B[sub max] value for [[sup 3]H]cimetidine. However, the contractile response to histamine is predominantly mediated through stimulation of H[sub 1]-receptors on vascular smooth muscle cells in pig basilar artery.

  8. Complete Obliteration of a Basilar Artery Aneurysm after Insertion of a Self-Expandable Leo Stent into the Basilar Artery without Coil Embolization

    PubMed Central

    Nowak, Stanisław; Wieloch, Michał; Zarzecka, Anna

    2008-01-01

    We report a case of a 45-year-old man who underwent endovascular treatment in the acute setting of a subarachnoid hemorrhage due to rupture of a wide-necked basilar trunk aneurysm. The patient was treated with stent implantation without coiling. A control angiographic scan obtained immediately after the procedure revealed significantly decreased intraaneurysmal flow. Follow-up angiography performed after one month demonstrated total aneurysm occlusion. PMID:18682676

  9. Complete obliteration of a basilar artery aneurysm after insertion of a self-expandable Leo stent into the basilar artery without coil embolization.

    PubMed

    Juszkat, Robert; Nowak, Stanisław; Wieloch, Michał; Zarzecka, Anna

    2008-01-01

    We report a case of a 45-year-old man who underwent endovascular treatment in the acute setting of a subarachnoid hemorrhage due to rupture of a wide-necked basilar trunk aneurysm. The patient was treated with stent implantation without coiling. A control angiographic scan obtained immediately after the procedure revealed significantly decreased intraaneurysmal flow. Follow-up angiography performed after one month demonstrated total aneurysm occlusion.

  10. A Comparison between Mechanical Thrombectomy and Intra-arterial Fibrinolysis in Acute Basilar Artery Occlusion: Single Center Experiences

    PubMed Central

    Jung, Seunguk; Jung, Cheolkyu; Bae, Yun Jung; Choi, Byung Se; Kim, Jae Hyoung; Lee, Sang-Hwa; Chang, Jun Young; Kim, Beom Joon; Han, Moon-Ku; Bae, Hee-Joon; Kwon, Bae Ju; Cha, Sang-Hoon

    2016-01-01

    Background and Purpose Recent advances in intra-arterial techniques and thrombectomy devices lead to high rate of recanalization. However, little is known regarding the effect of the evolvement of endovascular revascularization therapy (ERT) in acute basilar artery occlusion (BAO). We compared the outcome of endovascular mechanical thrombectomy (EMT) versus intra-arterial fibrinolysis (IAF)-based ERT in patients with acute BAO. Methods After retrospectively reviewed a registry of consecutive patients with acute ischemic stroke who underwent ERT from September 2003 to February 2015, 57 patients with acute BAO within 12 hours from stroke onset were enrolled. They were categorized as an IAF group (n=24) and EMT group (n=33) according to the primary technical option. We compared the procedural and clinical outcomes between the groups. Results The time from groin puncture to recanalization was significantly shorter in the EMT group than in the IAF group (48.5 [25.3 to 87.8] vs. 92 [44 to 179] minutes; P=0.02) The rate of complete recanalization was significantly higher in the EMT group than in the IAF group (87.9% vs 41.7%; P<0.01). The good outcome of the modified Rankin Scale score≤2 at 3 months was more frequent in the EMT group than in the IAF group, but it was not statistically significant (39.4% vs 16.7%; P=0.06). Conclusions EMT-based ERT in patients with acute BAO is superior to IAF-based ERT in terms of the reduction of time from groin puncture to recanalization and the improvement of the rate of complete recanalization. PMID:27283281

  11. Intra-Arterial tPA Treatment for Basilar Artery Thrombosis in the Combat Zone: An Example of Modern Nontrauma Medical Care in War

    DTIC Science & Technology

    2012-01-01

    computed tomography ( CT ) was not avail- able. Because of a concern for a brain te rn syndrome, he was evacuated to Craig Joint Theater Hospital for CT ...a "one-and-one-half yndrome" on eye movement exam, locali zing the lesion to the left caudal pon- tine tegmentum. CT angiogram followed by...conventional angiogram confirmed the BAO. Using angiography , the neu- ro urgeon (JJS) infused 10 mg of IA-tPA directly into the proximal basilar artery

  12. Stent-assisted coiling strategies for the treatment of wide-necked basilar artery bifurcation aneurysms.

    PubMed

    Zhang, Jian-Zhong; Yang, Peng-Fei; Huang, Qing-Hai; Xu, Yi; Hong, Bo; Zhao, Wen-Yuan; Liu, Jian-Min

    2014-06-01

    Stent-assisted coiling is now the preferred treatment option for wide-necked basilar artery bifurcation aneurysms (BABA). However, the optimal choice of specific treatment strategies is still not well documented. In this paper, based on the "two-neck" theory of BABA, we classified the stent-assisted coiling treatment of BABA into three types: unilateral stent-assisted coiling, unilateral stent plus contralateral microcatheter or microwire-assisted coiling, and bilateral stent-assisted coiling. We assessed the feasibility and effectiveness of different stent-assisted coiling strategies for the treatment of BABA. Twenty-three BABA patients treated with stent-assisted coiling between May 2003 and September 2012 were included. Of the 23 aneurysms, 16 were treated with unilateral stent-assisted coiling, two were treated with unilateral stent and microcatheter or microwire-assisted coiling, and five were treated with bilateral stent-assisted coiling. All 23 BABA were successfully embolized, with a technical success rate of 100%. According to the Raymond classification, the immediate procedural outcome was grade I in nine patients, grade II (neck residue) in four patients and grade III (body filling) in 10 patients. The rate of procedure-related complications was 4.3% (1/23), where intra-operative hemorrhage occurred during coiling due to rupture of the aneurysm. Of the 23 patients, 16 (69.6%) had angiographic follow-up. The mean follow-up duration was 13.5 months (range 1-46 months). Angiographic follow-up showed complete occlusion in 10 patients (62.5%), improvement in two patients (12.5%), stability in three patients (18.7%), and recanalization in one patient (6.25%). The various stent-assisted coiling strategies available at present are feasible and effective for the treatment of wide-necked BABA.

  13. Effects of hindlimb unloading on rat cerebral, splenic, and mesenteric resistance artery morphology.

    PubMed

    Wilkerson, M K; Muller-Delp, J; Colleran, P N; Delp, M D

    1999-12-01

    Hindlimb unloading (HU) of rats induces a cephalic shift in body fluids. We hypothesized that the putative increase in cranial fluid pressure and decrease in peripheral fluid pressure would alter the morphology of resistance arteries from 2-wk HU male Sprague-Dawley rats. To test this hypothesis, the cerebral basilar, mesenteric, and splenic arteries were removed from control (C) and HU animals. The vessels were cannulated, and luminal pressure was set to 60 cmH(2)O. The resistance arteries were then relaxed with 10(-4) M nitroprusside, fixed, and cut into transverse cross sections (5 microm thick). Media cross-sectional area (CSA), intraluminal CSA, media layer thickness, vessel outer perimeter, and media nuclei number were determined. In the basilar artery, both media CSA (HU 17, 893 +/- 2,539 microm(2); C 12,904 +/- 1,433 microm(2)) and thickness (HU 33.9 +/- 4.1 microm; C 22.3 +/- 3.2 microm) were increased with hindlimb unloading (P < 0.05), intraluminal CSA decreased (HU 7,816 +/- 3,045 microm(2); C 13,469 +/- 5,500 microm(2)) (P < 0.05), and vessel outer perimeter and media nuclei number were unaltered. There were no differences in mesenteric or splenic resistance artery morphology between HU and C rats. These findings suggest that hindlimb unloading-induced increases in cephalic arterial pressure and, correspondingly, increases in circumferential wall stress result in the hypertrophy of basilar artery smooth muscle cells.

  14. Endovascular Treatment of the Huge Dissecting Aneurysms Involving the Basilar Artery by the Internal Trapping Technique: Technical Note

    PubMed Central

    Mu, Shi-Qing; Yang, Xin-Jian; Li, You-Xiang; Jiang, Chu-Han; Wu, Zhong-Xue

    2015-01-01

    Background: The endovascular strategy of the huge dissecting aneurysms involving the basilar artery (BA) is controversial and challenging. This study was to investigate the clinical and angiographic outcomes of the treatment of the huge dissecting aneurysms involving the BA by the internal trapping (IT) technique. Methods: We retrospectively studied 15 patients with the huge dissecting aneurysms involving the BA treated by the IT technique between September 2005 and September 2014 in Department of Interventional Neuroradiology of Beijing Tiantan Hospital. Clinical and angiographic data were reviewed and evaluated. Results: All patients were treated by the IT technique. That meant the dissecting artery and aneurysm segments were completed occlusion. After the procedure, the angiography demonstrated that all the dissecting artery and aneurysm segments were completed occlusion. Follow-up angiography was performed at 3–6 months or 12–18 months after the endovascular treatment (median 8 months), 14 patients had a good recovery. Re-canalization occurred in one patient whose aneurysm involved in bilateral vertebral arteries and the two third of the middle-lower BA. After the second treatment, the patient died by the ventricular tachycardia. Conclusions: The IT technique is a technically feasible and safe alternative for the treatment of BA dissecting aneurysms, but it is not necessarily the safest or most definitive treatment modality. The ideal treatment of the huge dissecting aneurysms involving the BA remains debatable and must be investigated on a case-by-case basis. PMID:26168833

  15. Relaxant Effects of the Selective Estrogen Receptor Modulator, Bazedoxifene, and Estrogen Receptor Agonists in Isolated Rabbit Basilar Artery.

    PubMed

    Castelló-Ruiz, María; Salom, Juan B; Fernández-Musoles, Ricardo; Burguete, María C; López-Morales, Mikahela A; Arduini, Alessandro; Jover-Mengual, Teresa; Hervás, David; Torregrosa, Germán; Alborch, Enrique

    2016-10-01

    We have previously shown that the selective estrogen receptor modulator, bazedoxifene, improves the consequences of ischemic stroke. Now we aimed to characterize the effects and mechanisms of action of bazedoxifene in cerebral arteries. Male rabbit isolated basilar arteries were used for isometric tension recording and quantitative polymerase chain reaction. Bazedoxifene relaxed cerebral arteries, as 17-β-estradiol, 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol [estrogen receptor (ER) α agonist], and G1 [G protein-coupled ER (GPER) agonist] did it (4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol > bazedoxifene = G1 > 17-β-estradiol). 2,3-Bis(4-hydroxyphenyl)-propionitrile (ERβ agonist) had no effect. Expression profile of genes encoding for ERα (ESR1), ERβ (ESR2), and GPER was GPER > ESR1 > ESR2. As to the endothelial mechanisms, endothelium removal, N-nitro-L-arginine methyl ester, and indomethacin, did not modify the relaxant responses to bazedoxifene. As to the K channels, both a high-K medium and the Kv blocker, 4-aminopyridine, inhibited the bazedoxifene-induced relaxations, whereas tetraethylammonium (nonselective K channel blocker), glibenclamide (selective KATP blocker) or iberiotoxin (selective KCa blocker) were without effect. Bazedoxifene also inhibited both Ca- and Bay K8644-elicited contractions. Therefore, bazedoxifene induces endothelium-independent relaxations of cerebral arteries through (1) activation of GPER and ERα receptors; (2) increase of K conductance through Kv channels; and (3) inhibition of Ca entry through L-type Ca channels. Such a profile is compatible with the beneficial effects of estrogenic compounds (eg, SERMs) on vascular function and, specifically, that concerning the brain. Therefore, bazedoxifene could be useful in the treatment of cerebral disorders in which the cerebrovascular function is compromised (eg, stroke).

  16. A conversion disorder or a stroke? A proximal basilar artery thrombosis induced 'locked-in' syndrome in a young Caucasian woman.

    PubMed

    Li, Wang; Brandon, Ohman; Smith, Debbie Villarreal; Petersen, Eric

    2013-03-14

    The incidence of the basilar artery occlusion is relatively low among all strokes. Clinical presentation varies depending on the location of the occlusion. The symptoms include mild dysarthria to coma or sudden death. The initial subtle clinical presentation could lead to misdiagnosis. Psychogenic diagnosis in the differential could make the timely diagnosis more difficult. This case involves a 34-year-old woman presenting with a gradual onset of slurred speech. The initial CT scan of head did not indicate any intracranial pathology, and she was initially treated for an anxiety/conversion disorder. With progression of the pathology, the patient quickly developed a 'locked-in' syndrome, with preserved high cognitive function and vertical eye movement, but otherwise total loss of motor function. The diagnosis was confirmed with MRI/MR angiography studies, which indicated thrombosis of the proximal basilar artery. Serological studies did not disclose any relevant risk factors.

  17. Locked-in syndrome in a patient with acute obstructive hydrocephalus, caused by large unruptured aneurysm of the basilar artery (BA).

    PubMed

    Kolić, Zlatko; Kukuljan, Melita; Vukas, Duje; Bonifačić, David; Vrbanec, Kristina; Franić, Ivana Karla

    2016-09-15

    We describe a case of acute obstructive hydrocephalus as a consequence of compression of the brainstem by a large aneurysm of the basilar artery (BA) in a 62-year-old male. After the insertion of the ventriculoperitoneal shunt (VPS), we encountered the "locked-in syndrome" clinical condition. "Locked-in syndrome" is a clinical state characterized by quadriplegia and anarthria with preserved consciousness, most commonly caused by ischemia in the ventral part of pons.

  18. Activation of sensory nerves in guinea-pig isolated basilar artery by nicotine: evidence for inhibition of trigeminal sensory neurotransmission by sumatriptan.

    PubMed

    O'Shaughnessy, C T; Connor, H E

    1994-06-23

    Nicotine (100 microM), but not electrical field stimulation or potassium chloride (0.1-3 microM), caused capsaicin (1 microM)- and tetrodotoxin (1 microM)-sensitive relaxations of guinea-pig isolated basilar artery precontracted with prostaglandin F2 alpha. Nicotine-induced responses were blocked by the neurokinin NK1 receptor antagonist, GR82334 (10 microM), but were unaffected by the calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP-(8-37) (1 microM). This suggests that nicotine activates capsaicin-sensitive sensory nerves in guinea-pig basilar artery to cause relaxation predominantly via substance P release. The vascular 5-HT1 receptor agonist, sumatriptan (0.3 and 3 microM), inhibited nicotine-induced relaxation (by 50 and 80% respectively); the inhibitory effect of sumatriptan (0.3 microM) was attenuated in the presence of the non-selective 5-HT1 receptor antagonist, methiothepin (0.1 microM). These data suggest that sumatriptan can inhibit sensory neurotransmission in guinea-pig basilar artery via activation of inhibitory prejunctional 5-HT1 receptors on sensory nerve terminals.

  19. gamma-Aminobutyric acid-A receptor-mediated suppression of 5-hydroxytryptamine-induced guinea-pig basilar artery smooth muscle contractility.

    PubMed

    Shirakawa, J; Hosoda, K; Taniyama, K; Matsumoto, S; Tanaka, C

    1989-01-01

    The mechanism of gamma-aminobutyric acid (GABA)-induced suppression of 5-hydroxytryptamine (5HT)-induced contractility of cerebral blood vessels was studied in single smooth muscle cells isolated from the guinea-pig basilar artery. GABA reduced 5HT-induced contraction of single smooth muscle cells, and the effect of GABA was mimicked by muscimol, but not baclofen. The response of muscimol was antagonized by bicuculline, thereby indicating that GABAA receptors exist on the smooth muscle of the basilar artery. Since GABA did not change the contraction induced by the addition of Ca2+ to the Ca2+-free medium in the presence of high K+, it is unlikely that GABA inhibits the influx of extracellular Ca2+. The caffeine-induced contraction in the Ca2+-free medium was reduced by GABA, and the effect of GABA was not obtained by treatment with furosemide and in the Cl- -free medium. These results indicate that GABA acts on the GABAA receptor located on smooth muscle cells and reduces the contractility of the basilar artery by suppression of the mobilization of intracellular Ca2+.

  20. Effect of ST36 Acupuncture on Hyperventilation-Induced CO2 Reactivity of the Basilar and Middle Cerebral Arteries and Heart Rate Variability in Normal Subjects

    PubMed Central

    Jung, Woo-Sang; Cho, Ki-Ho; Kim, Young-Suk; Ko, Chang-Nam; Park, Jung-Mi; Moon, Sang-Kwan

    2014-01-01

    This study was conducted to verify the effect of acupuncture on cerebral haemodynamics to provide evidence for the use of acupuncture treatment as a complementary therapy for the high-risk stroke population. The effect of ST36 acupuncture treatment on the hyperventilation-induced CO2 reactivity of the basilar and middle cerebral arteries was studied in 10 healthy male volunteers (mean age, 25.2 ± 1.5 years) using a transcranial Doppler sonography with an interval of 1 week between measurements, and a portable ECG monitoring system was used to obtain ECG data simultaneously. The CO2 reactivity of the basilar and middle cerebral arteries increased significantly after ST36 acupuncture treatment, whereas the mean arterial blood pressure and pulse rate did not change significantly. The high-frequency power significantly increased after ST36 acupuncture treatment, and the percentage increase of high-frequency power correlated significantly with the percentage increase in the CO2 reactivity of the contralateral middle cerebral artery. These data suggest that ST36 acupuncture treatment increases CO2 reactivity, indicating improvement of vasodilatory potential of the cerebral vasculature to compensate for fluctuations caused by changes in external conditions. The increase in parasympathetic tone by ST36 acupuncture treatment is responsible for this therapeutic effect. PMID:25132861

  1. Expression of NF-E2-related factor 2 (Nrf2) in the basilar artery after experimental subarachnoid hemorrhage in rabbits: a preliminary study.

    PubMed

    Zhao, Xu-Dong; Zhou, Yi-Ting; Zhang, Xing; Wang, Xiao-Liang; Qi, Wu; Zhuang, Zong; Su, Xing-Fen; Shi, Ji-Xin

    2010-10-28

    It has been suggested that the pathogenesis of vasospasm is complex including endothelial damage, oxidative stress, inflammatory damage, and the accumulation of toxic metabolites. Recently, a growing body of evidence indicates that nuclear factor erythroid 2-related factor 2 (Nrf2) plays a unique role in many physiological stress processes. In this study, a total of 48 rabbits were assigned randomly to four groups: control group, SAH day 3, day 5, and day 7 groups. The animals in SAH day 3, day 5, and day 7 groups were subjected to injection of autologous blood into cisterna magna twice on day 0 and day 2 and were killed on days 3, 5, and 7, respectively. Cross-sectional area of basilar artery was measured and the Nrf2 expression was assessed by immunohistochemistry and Western blot analysis. The mRNA levels of Nrf2 were also determined by RT-PCR. The basilar arteries exhibited vasospasm after SAH and became more severe on days 3 and 5. The elevated expression of Nrf2 was detected after SAH and peaked on days 3 and 5. Nrf2 is increasingly expressed in a parallel time course to the development of cerebral vasospasm in a rabbit experimental model of SAH.

  2. The resistance of some rat cerebral arteries to the vasorelaxant effect of cromakalim and other K+ channel openers.

    PubMed Central

    McPherson, G. A.; Stork, A. P.

    1992-01-01

    1. Cromakalim (0.01-30 microM) and sodium nitroprusside (SNP, 0.01-100 microM) were tested for their ability to relax a number of pre-contracted small arteries (approximate diameter 200-700 microM at 100 mmHg) from the rat, rabbit and guinea-pig. 2. In the rat, SNP (0.01-100 microM) caused near maximal relaxation in all vessels studied including the middle cerebral, anterior cerebellar, basilar, mesenteric and renal arteries. Cromakalim (0.01-30 microM) relaxed pre-contracted mesenteric and renal arteries but was only a weak relaxant of all the rat cerebral arteries with the exception of the basilar artery. Similar experiments using mesenteric and cerebral vessels from the rabbit and guinea-pig showed cromakalim could relax pre-contracted vessels in a concentration-dependent manner. 3. Two other K+ channel openers, nicorandil and pinacidil, were also tested for their ability to relax rat cerebral arteries. Nicorandil (0.01-100 microM) was ineffective in the rat anterior cerebellar artery at concentrations up to 100 microM. Pinacidil (0.01-100 microM) caused significant vasorelaxation, although high concentrations were required (greater than 10 microM) and the response was insensitive to the effects of glibenclamide (3 microM). 4. Electrophysiological experiments with the rat anterior cerebellar artery showed that cromakalim (up to 30 microM) failed to influence the resting membrane potential of impaled single smooth muscle cells. 5. The results showed that some rat small cerebral arteries were resistant to the effects of K+ channel openers including cromakalim, pinacidil and nicorandil. This is peculiar to this vascular tree since the same vessels from other species do not exhibit the same behaviour.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1534504

  3. Differing calcium sensitivities of human cerebral and digital arteries, human metatarsal veins, and rat aorta.

    PubMed Central

    Iwanov, V; Moulds, R F

    1991-01-01

    1. The effects of the voltage dependent calcium channel blocking agent nifedipine, and of a calcium free bathing medium, on the responses of human blood vessels obtained postmortem to various agonists have been compared with those of the rat aorta. The human vessels studied were digital arteries, basilar arteries and metatarsal veins. 2. Responses to potassium chloride (5-80 mM), noradrenaline (10(-9)-10(-4) M), 5-hydroxytryptamine (10(-8)-10(-4) M) and U46619 (10(-11)-10(-6) M), in the presence and absence of nifedipine (1, 10, and 100 nM) or in a calcium-free bathing medium, were assessed using an area-under-curve analysis. 3. In general, the order of sensitivity of the vessels to inhibition of agonist induced contractures by nifedipine was basilar arteries greater than metatarsal veins = digital arteries = rat aorta. 4. For all the vessels, the order of sensitivity for antagonism of responses to the agonists by nifedipine was potassium chloride greater than 5-hydroxytryptamine = noradrenaline greater than U46619. 5. A calcium free bath inhibited responses of digital arteries to potassium chloride more than noradrenaline, 5-hydroxytryptamine or U46619, and responses of rat aorta to a greater extent than responses of the digital arteries. 6. In the rat aorta, a calcium-free bath inhibited responses to all agonists (except KCl) to a greater degree than did nifedipine. 7. We conclude that inhibition of extracellular calcium entry through voltage dependent calcium channels affects contractile responses of different blood vessels to different extents, and, within the same blood vessel, responses to different contractile agonists to different extents. PMID:2015170

  4. Mechanical Thrombectomy Using the Solitaire FR system for Occlusion of the Top of the Basilar Artery: Intentional Detachment of the Device after Partial Retrieval

    PubMed Central

    Siu, Kwong Lok; Lee, Dong-Geun; Shim, Jae Ho; Suh, Dae Chul

    2014-01-01

    Acute, distal, basilar artery occlusion is a challenging neurovascular emergency. There have been several reports regarding the successful application of the Solitaire FR device for treating this lesion. However, due to the lack of a suitable, balloon-tipped, guiding catheter for the vertebral artery, during this procedure we frequently experience the occurrence of clot fragmentation and distal migration. There may be some technical solutions to solve this problem. The purpose of this report is to present a technical variation of using the Solitaire FR, and which is referred to as the 'intentional device detachment technique.' As a clot tends to re-embolize during its passage through the tortuous cranio-cervical junction level of the vertebral artery or its passage through the tip of the guiding catheter, due to the lack of proximal flow arrest, we thought that not removing the stent segment of the device which is capturing the clot could avoid this problem. We were able to successfully apply this technique in two cases. We believe that this technique can be a possible technical option for using the Solitaire FR device when a patient has little concern regarding the subsequent use of antiplatelets. PMID:24642915

  5. Burst generation in rat pyramidal neurones by regenerative potentials elicited in a restricted part of the basilar dendritic tree

    PubMed Central

    Milojkovic, Bogdan A; Radojicic, Mihailo S; Goldman-Rakic, Patricia S; Antic, Srdjan D

    2004-01-01

    The common preconception about central nervous system neurones is that thousands of small postsynaptic potentials sum across the entire dendritic tree to generate substantial firing rates, previously observed in in vivo experiments. We present evidence that local inputs confined to a single basal dendrite can profoundly influence the neuronal output of layer V pyramidal neurones in the rat prefrontal cortical slices. In our experiments, brief glutamatergic stimulation delivered in a restricted part of the basilar dendritic tree invariably produced sustained plateau depolarizations of the cell body, accompanied by bursts of action potentials. Because of their small diameters, basolateral dendrites are not routinely accessible for glass electrode measurements, and very little is known about their electrical properties and their role in information processing. Voltage-sensitive dye recordings were used to follow membrane potential transients in distal segments of basal branches during sub- and suprathreshold glutamate and synaptic stimulations. Recordings were obtained simultaneously from multiple dendrites and multiple points along individual dendrites, thus showing in a direct way how regenerative potentials initiate at the postsynaptic site and propagate decrementally toward the cell body. The glutamate-evoked dendritic plateau depolarizations described here are likely to occur in conjunction with strong excitatory drive during so-called ‘UP states’, previously observed in in vivo recordings from mammalian cortices. PMID:15155788

  6. Basilar Occlusion Syndromes

    PubMed Central

    Broderick, Joseph P.

    2015-01-01

    Basilar artery occlusions (BAOs) are a subset of posterior circulation strokes. Particular issues relevant to BAOs include variable and stuttering symptoms at onset resulting in delays in diagnosis, high morbidity and mortality, and uncertain best management. Despite better imaging techniques, diagnosis, and therefore treatment, is often delayed. We will present the most common signs and symptoms of posterior circulation strokes. Data on optimal treatment strategies are gathered from multiple case series, registries, and one randomized trial, which was stopped early. Possible etiologies of BAOs, acute, and subacute treatment strategies and special topics in neuroimaging of the posterior fossa are discussed. This review may be helpful to neurohospitalists who are managing patients with acute stroke as well as emergency room physicians and neurologists. PMID:26288672

  7. A case of basilar artery aneurysm rupture from 1836: lessons in clinical observation and the natural history of the disease.

    PubMed

    Demetriades, Andreas K; Horiguchi, Takashi; Goodrich, James T; Kawase, Takeshi

    2014-11-01

    Although credit is given to Sir William Gull for highlighting the clinical picture of subarachnoid hemorrhage in 1859, we discuss a case presented by Mr. Egerton A. Jennings, Fellow of the Linnaean Society, published 23 years earlier in the 1836 edition of the Transactions of the Provincial Medical and Surgical Association. This case, probably the first reported in the English language of a basilar aneurysm rupture, is of medico-historical interest. Jennings provided a remarkably accurate and detailed description of the patient, who experienced coma as a result of the severity of subarachnoid hemorrhage. The detailed clinical observations on initial assessment and the description of the patient's deterioration to the time of death are a succinct representation of the natural history of this disease. The author's discussion provides evidence of a philosophy committed to medical education and progress at the time based on principles of rational observation, meticulous clinical acumen, insight into experimental physiology, and the awareness of ethical boundaries. In provincial 1836 England, similar to most of Europe, cerebral localization was elementary. Nonetheless, this case report highlights the attempt at linking structure to function by means of observation on the effects of lesioning. It provides evidence of an established thought process already in progress in England in the 19th century. It is characteristic that this thought process came from a surgical practitioner. The cultivation of practical observation in British surgical culture would allow the late 19th century surgeon scientists to match the contributions of British neurologists with landmark steps in the development and establishment of neurosurgery.

  8. Functional Independence following Endovascular Treatment for Basilar Artery Occlusion despite Extensive Bilateral Pontine Infarcts on Diffusion-Weighted Imaging: Refuting a Self-Fulfilling Prophecy

    PubMed Central

    Haussen, Diogo C.; Oliveira, Renato A.C.; Patel, Vikas; Nogueira, Raul G.

    2016-01-01

    Background and Purpose Extensive brainstem diffusion-weighted imaging (DWI) hyperintensity has been associated with poor outcomes. We aim at documenting a series of patients with extensive DWI pontine lesions who achieved independence following endovascular therapy and aggressive medical therapy in the setting of posterior circulation basilar artery occlusion (BAO). Methods This is a retrospective endovascular database review of a single-operator experience over a 9-year period for patients with (1) complete BAO, (2) extensive bilateral pontine DWI changes and (3) 90-day modified Rankin scale 0–2. Results Three out of a total of 40 patients met the inclusion criteria. Case 1 was an 18-year-old male with National Institutes of Health Stroke Scale (NIHSS) 32 on admission, treated 25 h after symptom onset. Case 2 was a 56-year-old male with NIHSS 19, treated 10 h after onset. Case 3 was a 73-year-old male with NIHSS 29, treated 6 h after onset. Full endovascular reperfusion was achieved in all 3 patients. A literature review identified 9 additional cases of extensive pontine DWI changes and good outcome. These patients were young (32 ± 22 years), mostly males (69%), presented with a relatively low posterior circulation Acute Stroke Prognosis Early CT Score (6 ± 1), were treated relatively late from last known normal (13 ± 10 h) and were mostly (84%) treated with endovascular intervention. Conclusion Extensive bilateral pontine DWI lesions among patients with BAO are not an unequivocal indicator of poor prognosis. We advise strong caution when considering these findings in the treatment decision algorithm. PMID:27781047

  9. Quantitative and qualitative analysis of the working area obtained by endoscope and microscope in pterional and orbitozigomatic approach to the basilar artery bifurcation using computed tomography based frameless stereotaxy: A cadaver study

    PubMed Central

    Filipce, Venko; Ammirati, Mario

    2015-01-01

    Objective: Basilar aneurisms are one of the most complex and challenging pathologies for neurosurgeons to treat. Endoscopy is a recently rediscovered neurosurgical technique that could lend itself well to overcome some of the vascular visualization challenges associated with this pathology. The purpose of this study was to quantify and compare the basilar artery (BA) bifurcation (tip of the basilar) working area afforded by the microscope and the endoscope using different approaches and image guidance. Materials and Methods: We performed a total of 9 dissections, including pterional (PT) and orbitozygomatic (OZ) approaches bilaterally in five whole, fresh cadaver heads. We used computed tomography based image guidance for intraoperative navigation as well as for quantitative measurements. We estimated the working area of the tip of the basilar, using both a rigid endoscope and an operating microscope. Operability was qualitatively assessed by the senior authors. Results: In microscopic exposure, the OZ approach provided greater working area (160 ± 34.3 mm2) compared to the PT approach (129.8 ± 37.6 mm2) (P > 0.05). The working area in both PT and OZ approaches using 0° and 30° endoscopes was larger than the one available using the microscope alone (P < 0.05). In the PT approach, both 0° and 30° endoscopes provided a working area greater than a microscopic OZ approach (P < 0.05) and an area comparable to the OZ endoscopic approach (P > 0.05). Conclusion: Integration of endoscope and microscope in both PT and OZ approaches can provide significantly greater surgical exposure of the BA bifurcation compared to that afforded by the conventional approaches alone. PMID:25972933

  10. Basilar impression in children.

    PubMed

    Teodori, J B; Painter, M J

    1984-12-01

    Ataxia is a common neurologic sign in childhood. Basilar impression due to bony abnormalities of the craniovertebral junction is an uncommon but readily treatable cause of ataxia in children. Two children who had neck stiffness, ataxia, nystagmus, and corticospinal tract signs are described. Basilar impression was recognized only after specific radiologic studies were performed. Both children were treated surgically with good results.

  11. Vasorelaxing effects of estetrol in rat arteries.

    PubMed

    Hilgers, Rob H P; Oparil, Suzanne; Wouters, Wout; Coelingh Bennink, Herjan J T

    2012-10-01

    This study compared ex vivo relaxing responses to the naturally occurring human hormone estetrol (E(4)) vs 17β-estradiol (E(2)) in eight different vascular beds. Arteries were mounted in a myograph, contracted with either phenylephrine or serotonin, and cumulative concentration-response curves (CRCs) to E(4) and E(2) (0·1-100  μmol/l) were constructed. In all arteries tested, E(4) had lower potency than E(2), although the differential effect was less in larger than smaller arteries. In uterine arteries, the nonselective estrogen receptor (ER) blocker ICI 182 780 (1  μmol/l) caused a significant rightward shift in the CRC to both E(4) and E(2), indicating that the relaxation responses were ER dependent. Pharmacological blockade of nitric oxide (NO) synthases by N(ω)-nitro-L-arginine methyl ester (L-NAME) blunted E(2)-mediated but not E(4)-mediated relaxing responses, while inhibition of prostaglandins and endothelium-dependent hyperpolarization did not alter relaxation to either E(4) or E(2) in uterine arteries. Combined blockade of NO release and action with L-NAME and the soluble guanylate cyclase (sGC) inhibitor ODQ resulted in greater inhibition of the relaxation response to E(4) compared with E(2) in uterine arteries. Endothelium denudation inhibited responses to both E(4) and E(2), while E(4) and E(2) concentration-dependently blocked smooth muscle cell Ca(2)(+) entry in K(+)-depolarized and Ca(2)(+)-depleted uterine arteries. In conclusion, E(4) relaxes precontracted rat arteries in an artery-specific fashion. In uterine arteries, E(4)-induced relaxations are partially mediated via an endothelium-dependent mechanism involving ERs, sGC, and inhibition of smooth muscle cell Ca(2)(+) entry, but not NO synthases or endothelium-dependent hyperpolarization.

  12. Arterial vasa vasorum: a quantitative study in the rat.

    PubMed Central

    McGeachie, J; Campbell, P; Simpson, S; Prendergast, F

    1982-01-01

    This study was designed to quantitate the vasa vasorum of common iliac arteries in 20 rats. The number of vasa vasorum per mm2 of arterial wall was extremely variable - from 0 to 124, the mean being 33 . 95 +/- 29 . 86 (S.D.). There was no significant difference in the vasa vasorum vascularity between the right and left common iliac arteries. The mean wall thickness of these arteries was 0 . 085 +/- 0 . 015 (S.D.) mm and 60 +/- 8% (S.D.) of this was made up by the tunica media. Arterial tissue in this study was shown to have approximately 10% of the vascularity of muscle tissue. By relating these data to the 'critical depth' hypothesis, on the nutritional supply of large arteries, it was concluded that the vasa vasorum in the common iliac arteries in rat (major arteries in small animals) probably play an insignificant role in the nutrition of the arterial wall. Images Fig. 1 PMID:7076548

  13. Vertebral-Basilar Insufficiency

    PubMed Central

    Cape, Ronald D. T.; Hogan, David B.

    1983-01-01

    Vertebral-basilar ischemia can result in giddiness, transient ischemic attacks, and drop attacks. Management involves controlling blood pressure, getting the patient to stop smoking, controlling diabetes and/or hyperlipidemia, and instituting antiplatelet therapy. Several facets of this problem remain unexplained. PMID:21283322

  14. Geometrical characteristics after Y-stenting of the basilar bifurcation

    PubMed Central

    Sağlam, Muzaffer; Kızılkılıç, Osman; Anagnostakou, Vania; Yıldız, Bülent; Koçer, Naci; Işlak, Civan

    2015-01-01

    PURPOSE We aimed to investigate the angular changes after Y-stenting of the basilar bifurcation aneurysms. METHODS A total of 19 patients (age range, 27–80 years; mean age, 52.5 years) underwent Y-stent coiling for basilar bifurcation aneurysm. Three vascular angles (α, β1, β2) were measured in the anteroposterior plane. β1 and β2 represented the angles between the basilar artery and the proximal P1 segments of the right and left posterior cerebral arteries, respectively. α represented the complementary angle between the β1 and β2 angles. Angles were measured before and after stent deployment. Diameters of the basilar artery and P2 segment of the posterior cerebral artery were measured at both sides. Correlation between vascular diameter and angular change of the basilar bifurcation was investigated. RESULTS Statistically significant α, β1, and β2 angle changes were found after stent deployment (P < 0.001). There was no statistically significant relationship between the diameter of the basilar artery and the α, β1, β2 angle changes (P > 0.05). There was no statistically significant relationship between the diameter of the posterior cerebral artery and the β angle change (P > 0.05). We found a statistically significant inverse correlation between pre-stent β angle and post-stent angle change (right side, P = 0.008; left side, P < 0.001). CONCLUSION Y-stenting narrows the effective neck and straightens the vascular bifurcation angle. Most of the angular remodeling occurs on the side that had a more acute angle before stent deployment. PMID:26359879

  15. [Evaluation of cerebro-vascular diseases with persistent carotid-basilar anastomosis].

    PubMed

    Harada, K; Uozumi, T; Kurisu, K; Sumida, M; Nakahara, A; Migita, K

    1994-12-01

    Five cases of cerebro-vascular diseases with carotid-basilar anastomosis were evaluated. Case 1: a 73-year-old female was diagnosed as having subarachnoid hemorrhage due to a ruptured aneurysm of the right internal carotid artery-posterior communicating artery bifurcation and demonstrated that a left proatlantal intersegmental artery. Case 2: a 38-year-old female showed intraventricle hemorrhage due to arteriovenous malformation and showed left primitive hypoglossal artery. Case 3: 73-year-old female was diagnosed as having subarachnoid hemorrhage due to a ruptured basilar top aneurysm and demonstrated that a right primitive hypoglossal artery. Case 4: a 29-year-old male with unruptured aneurysm of the left internal carotid artery-posterior communicating artery bifurcation, and right trigeminal artery was detected incidentally by magnetic resonance angiography (MRA). Furthermore, right proatlantal intersegmental artery was detected by conventional angiography. Case 5: a 76-year-old male was diagnosed as having subarachnoid hemorrhage due to a ruptured aneurysm of the anterior communicating artery. MRA showed the aneurysm and a primitive trigeminal artery. No clinical symptom related with carotid-basilar anastomosis was detected. Magnetic resonance angiography (MRA) was useful for diagnosis of asymptomatic carotid-basilar anastomosis. Especially, axial view of MRA by time of flight method detected two cases of a primitive trigeminal artery. And coronal view of MRA by phase contrast method is useful for diagnosis of primitive proatlantal intersegmental artery. More asymptomatic persistent carotid-basilar anastomosis may be detected by MRA.

  16. Neurofibromatosis, stroke and basilar impression. Case report.

    PubMed

    Piovesan, E J; Scola, R H; Werneck, L C; Zétola, V H; Nóvak, E M; Iwamoto, F M; Piovesan, L M

    1999-06-01

    Neurofibromatosis type 1 (NF1) can virtually affect any organ, presenting most frequently with "cafe au lait" spots and neurofibromas. Vasculopathy is a known complication of NF1, but cerebrovascular disease is rare. We report the case of a 51-year-old man admitted to the hospital with a history of stroke four months before admission. On physical examination, he presented various "cafe au lait" spots and cutaneous neurofibromas. Neurologic examination demonstrated right-sided facial paralysis, right-sided hemiplegia, and aphasia. Computed tomography scan of head showed hypodense areas in the basal ganglia and centrum semiovale. Radiographs of cranium and cervical spine showed basilar impression. Angiography revealed complete occlusion of both vertebral and left internal carotid arteries, and partial stenosis of the right internal carotid artery. A large network of collateral vessels was present (moyamoya syndrome). It is an uncommon case of occlusive cerebrovascular disease associated with NF1, since most cases described in the literature are in young people, and tend to spare the posterior cerebral circulation. Basilar impression associated with this case may be considered a pure coincidence, but rare cases of basilar impression and NF1 have been described.

  17. Platybasia and basilar invagination.

    PubMed

    Pearce, J M S

    2007-01-01

    Descriptions of the flattening (platybasia) of the skull base and the upward displacement(impression) of the basilar and condylar portions of the occipitalbone by the upper cervical spine date to the late 18th and early 19th centuries. Anatomical measurements to display these abnormalities were begun in 1865, but the full clinical significance was not appreciated until Homen's work in 1901. Subsequent refinement of radiology facilitated diagnosis and the later advent of surgical treatment.

  18. Megadolichobasilar anomaly, basilar impression and occipito-vertebral anastomosis.

    PubMed

    Dehaene, I; Pattyn, G; Calliauw, L

    1975-01-01

    The authors describe a case of a megadolichobasilar anomaly associated with basilar impression, bilateral megadolichocarotid arteries and an occipito-vertebral anastomosis. The concurrence of these anomalies lends support to the hypothesis that congenital factors play a part in the origin of the megadolichobasilar anomaly.

  19. [Basilar ectasia and stroke: clinical aspects of 21 cases].

    PubMed

    de Oliveira, R de M; Cardeal, J O; Lima, J G

    1997-09-01

    Ectasia of the basilar artery (EB) occurs when its diameter is greater than normal along all or part of its course, and/or when it is abnormally tortuous. EB may cause cranial nerve dysfunction, ischemic stroke or subarachnoid hemorrhage, pseudotumor or hydrocephalus. We tried to describe cases of stroke associated with EB, analyze its frequency, clinical aspects, and the mechanisms involved in different forms of its presentation. We found 21 patients with stroke and EB. The association between EB and stroke was more prevalent in males over the age of fifty. Main symptoms were hemiparesia, cranial nerves dysfunction, and cerebellar ataxia. Cerebral infarcts associated with EB were due to different mechanisms: arterial thrombosis, artery-to-artery embolism, mass effect with angulation and obstruction of the vertebral and basilar branches.

  20. Endovascular Treatment of Aberrant Systemic Arterial Supply to Normal Basilar Segments of the Right Lower Lobe: Case Report and Review of the Literature

    SciTech Connect

    Chabbert, Valerie; Doussau-Thuron, Sandrine; Otal, Philippe; Bouchard, Louis; Didier, Alain; Joffre, Francis; Rousseau, Herve

    2002-06-15

    We report the case of a 17-year-old man with acute chest pain due to a partial thrombosis of a pseudo sequestration. Unlike a true sequestration, there was a normal bronchial distribution and the involved lung parenchyma was normal on CT scan. A therapeutic transarterial embolization of the aberrant systemic artery from the proximal abdominal aorta was performed successfully. The patient did not suffer from further chest pain during the follow-up of 12 months. A contrast-enhanced CT scan 4 months later demonstrated complete occlusion of the embolized aberrant artery. Our case represents an alternative treatment to surgery for this rare abnormality.

  1. Parameters of Blood Flow in Great Arteries in Hypertensive ISIAH Rats with Stress-Dependent Arterial Hypertension.

    PubMed

    Seryapina, A A; Shevelev, O B; Moshkin, M P; Markel', A L

    2016-08-01

    Magnetic resonance angiography was used to examine blood flow in great arteries of hypertensive ISIAH and normotensive Wistar rats. In hypertensive ISIAH rats, increased vascular resistance in the basin of the abdominal aorta and renal arteries as well as reduced fraction of total renal blood flow were found. In contrast, blood flow through both carotid arteries in ISIAH rats was enhanced, which in suggests more intensive blood supply to brain regulatory centers providing enhanced stress reactivity of these rats characterized by stress-dependent arterial hypertension.

  2. Long-term effects of benidipine on cerebral vasoreactivity in hypertensive rats.

    PubMed

    Kitayama, Jiro; Kitazono, Takanari; Ooboshi, Hiroaki; Takada, Junichi; Fujishima, Masatoshi; Ibayashi, Setsuro

    2002-03-08

    We tested the hypothesis that long-term application of a Ca2+ channel blocker would ameliorate the functional and morphological deterioration of the cerebral arteries during hypertension. Male spontaneously hypertensive rats (SHR) were fed a standard rat chow, containing a low (3 mg/kg/day) or high dose (6 mg/kg/day) of benidipine, a Ca2+ channel blocker, for 2 months. Using a cranial window, we examined responses of the basilar artery to acetylcholine, sodium nitroprusside, (-)-(3S,4R)-4-(N-acetyl-N-hydroxyamino)-6-cyano-3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-3-ol (Y-26763; an opener of ATP-sensitive K+ channels), and (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide (Y-27632; an inhibitor of Rho-associated kinase). Mean arterial pressure of the control group was 193+/-5 mm Hg (mean+/-S.E.M.), while that of the low-dose benidipine group was 183+/-5 mm Hg and that of the high-dose group was 159+/-4 mm Hg. Dilator responses of the basilar artery to acetylcholine and Y-26763 were impaired in SHR compared with those of normotensive Wistar-Kyoto (WKY) rats and treatment with benidipine enhanced the vasodilator responses to acetylcholine and Y-26763 in SHR. Y-27632-induced dilatation of the basilar artery was enhanced in SHR compared to that in WKY rats and the vasodilatation was reduced by benidipine in SHR. Sodium nitroprusside caused similar dilatation of the basilar artery, in both WKY rats and the SHR control group, and benidipine did not affect nitroprusside-induced dilatation of the artery in SHR. The wall of the basilar artery was significantly thicker in SHR than in WKY rats and benidipine treatment reduced the wall thickness of the artery in SHR. These findings suggest that chronic treatment with a Ca2+ channel blocker may enhance the dilator capacity and reduce contractility of the basilar artery during hypertension. Benidipine may also ameliorate the morphological changes of the basilar artery in hypertension.

  3. Morphological Characteristics of Renal Artery and Kidney in Rats

    PubMed Central

    Yoldas, Atilla; Dayan, Mustafa Orhun

    2014-01-01

    The gross anatomy and morphometry of the kidney and renal arteries were studied in the strains of laboratory rat: Sprague-Dawley (Sp) and Wistar (W) rats. Total of 106 three-dimensional endocasts of the intrarenal arteries of kidney that were prepared using standard injection-corrosion techniques were examined. A single renal artery was observed in 100% of the cases. The renal arteries were divided into a dorsal and a ventral branch. The dorsal and ventral branches were divided into two branches, the cranial and caudal branch. Renal arteries were classified into types I and II, depending on the cranial and caudal branches and their made of branching. The present study also showed that the right kidney was slightly heavier than the left one and that the kidney of the male was generally larger than that of the female. The mean live weights of the Sprague-Dawley and Wistar rats were found to be 258.26 ± 5.9 and 182.4 ± 19.05 g, respectively. The kidney weights were significantly correlated (P < 0.01) with body weights. The kidney weights were not found significantly correlated (P > 0.01) with the length of renal arteries. PMID:24737971

  4. Use of cryopreserved rat arteries for microsurgical training.

    PubMed

    Lausada, Natalia R; Escudero, E; Lamonega, R; Dreizzen, E; Raimondi, J C

    2005-01-01

    Silastic tubes are used as training material for performing microvascular anastomoses. However, silastic texture differs from that of actual blood vessels. In the present work, we evaluate the use of preserved rat arterial segments for training in microvascular anastomoses. One-centimeter-long rat arterial segments were obtained from femoral, carotid, and abdominal arteries, preserved in cold saline solution, and frozen. Trainees performed microvascular anastomoses using the aforementioned material and answered questions about texture, consistency, and wall resistance to the needle, comparing preserved arterial wall and silastic tubes. They were also asked whether the arterial pedicles had a consistency and texture similar to normal vessels, and if they were a more reliable method for practicing microsurgery techniques than synthetic materials. They preferred frozen arterial pedicles over silastic tubes. We conclude that arterial cadaveric segments are a suitable biologic material for microsurgical training. Since they can be obtained from other experiments, this is an effective way to reduce the number of animals bred and sacrificed for teaching purposes.

  5. Cyclooxygenase-2-derived prostanoids reduce inward arterial remodeling induced by blood flow reduction in old obese Zucker rat mesenteric arteries.

    PubMed

    Vessières, Emilie; Belin de Chantemèle, Eric J; Guihot, Anne-Laure; Jardel, Alain; Toutain, Bertrand; Loufrani, Laurent; Henrion, Daniel

    2013-01-01

    Obesity is associated with altered arterial structure and function leading to arterial narrowing in most vascular beds, especially when associated with aging. Nevertheless, mesenteric blood flow remains elevated in obese rats, although the effect of aging remains unknown. We investigated mesenteric artery narrowing following blood flow reduction in vivo in 3- and 12-month-old obese Zucker rats. After 21 days, inward remodeling occurred in low flow (LF) arteries in young and old lean rats and in young obese rats (30% diameter reduction). Diameter did not significantly decrease in old obese rats. Phenylephrine-mediated contraction was reduced by approximately 20% in LF arteries in all groups but in old obese rat arteries in which the decrease reached 80%. LF arteries expressed cyclooxygenase-2 and blood 6-keto-PGF1alpha (prostacyclin metabolite) was elevated in old obese rats. In old obese rats, acute cyclooxygenase-2 blockade restored phenylephrine-mediated contraction in LF arteries and chronic cyclooxygenase-2 blockade restored inward remodeling and contractility to control level. Thus, in old obese rats, cyclooxygenase-2-derived prostacyclin prevented the diameter reduction induced by a chronic decrease in blood flow. This adaptation is in favor of a preserved perfusion of the mesentery by contrast with other vascular territories, possibly amplifying the vascular disorders occurring in obesity.

  6. Stroke following appendectomy under general anesthesia in a patient with basilar impression.

    PubMed

    Zotter, H; Zenz, W; Gallistl, S; Zohrer, B; Lindbichler, F

    2000-11-01

    We report a boy who developed a vertebral stroke immediately after an appendectomy. Basilar impression was diagnosed eight years after this event when skull roentgenograms revealed basilar impression with high standing tip of the odontoid. We speculate that muscle relaxation and cervical hyperextension during intubation in the presence of basilar impression resulted in vertebral artery dissection and stroke. We suggest that patients with vertebral stroke and no obvious risk factors should be evaluated for the presence of malformations of the craniovertebral junction to be able to take precautions against excessive neck movement during intubation.

  7. Mycophenolate mofetil attenuates pulmonary arterial hypertension in rats

    SciTech Connect

    Suzuki, Chihiro; Takahashi, Masafumi . E-mail: masafumi@sch.md.shinshu-u.ac.jp; Morimoto, Hajime; Izawa, Atsushi; Ise, Hirohiko; Hongo, Minoru; Hoshikawa, Yasushi; Ito, Takayuki; Miyashita, Hiroshi; Kobayashi, Eiji; Shimada, Kazuyuki; Ikeda, Uichi

    2006-10-20

    Pulmonary arterial hypertension (PAH) is characterized by abnormal proliferation of smooth muscle cells (SMCs), leading to occlusion of pulmonary arterioles, right ventricular (RV) hypertrophy, and death. We investigated whether mycophenolate mofetil (MMF), a potent immunosuppresssant, prevents the development of monocrotaline (MCT)-induced PAH in rats. MMF effectively decreased RV systolic pressure and RV hypertrophy, and reduced the medial thickness of pulmonary arteries. MMF significantly inhibited the number of proliferating cell nuclear antigen (PCNA)-positive cells, infiltration of macrophages, and expression of P-selectin and interleukin-6 on the endothelium of pulmonary arteries. The infiltration of T cells and mast cells was not affected by MMF. In vitro experiments revealed that mycophenolic acid (MPA), an active metabolite of MMF, dose-dependently inhibited proliferation of human pulmonary arterial SMCs. MMF attenuated the development of PAH through its anti-inflammatory and anti-proliferative properties. These findings provide new insight into the potential role of immunosuppressants in the treatment of PAH.

  8. Decreased femoral arterial flow during simulated microgravity in the rat

    NASA Technical Reports Server (NTRS)

    Roer, Robert D.; Dillaman, Richard M.

    1994-01-01

    To determine whether the blood supply to the hindlimbs of rats is altered by the tail-suspension model of weightlessness, rats were chronically instrumented for the measurement of femoral artery flow. Ultrasonic transit-time flow probes were implanted into 8-wk-old Wistar-Furth rats under ketamine-xylazine anesthesia, and, after 24 h of recovery, flow was measured in the normal ambulatory posture. Next, rats were suspended and flow was measured immediately and then daily over the next 4-7 days. Rats were subsequently returned to normal posture, and flow was monitored daily for 1-3 days. Mean arterial flow decreased immediately on the rats being suspensed and continued to decrease until a new steady state of approximately 60% of control values was attained at 5 days. On the rats returning to normal posture, flow increased to levels observed before suspension. Quantile-quantile plots of blood flow data revealed a decrease in flow during both systole and diastole. The observed decrease in hindlimb blood flow during suspension suggests a possible role in the etiology of muscular atrophy and bone loss in microgravity.

  9. Vascular Balloon Injury and Intraluminal Administration in Rat Carotid Artery

    PubMed Central

    Zhang, Wei; Trebak, Mohamed

    2014-01-01

    The carotid artery balloon injury model in rats has been well established for over two decades. It remains an important method to study the molecular and cellular mechanisms involved in vascular smooth muscle dedifferentiation, neointima formation and vascular remodeling. Male Sprague-Dawley rats are the most frequently employed animals for this model. Female rats are not preferred as female hormones are protective against vascular diseases and thus introduce a variation into this procedure. The left carotid is typically injured with the right carotid serving as a negative control. Left carotid injury is caused by the inflated balloon that denudes the endothelium and distends the vessel wall. Following injury, potential therapeutic strategies such as the use of pharmacological compounds and either gene or shRNA transfer can be evaluated. Typically for gene or shRNA transfer, the injured section of the vessel lumen is locally transduced for 30 min with viral particles encoding either a protein or shRNA for delivery and expression in the injured vessel wall. Neointimal thickening representing proliferative vascular smooth muscle cells usually peaks at 2 weeks after injury. Vessels are mostly harvested at this time point for cellular and molecular analysis of cell signaling pathways as well as gene and protein expression. Vessels can also be harvested at earlier time points to determine the onset of expression and/or activation of a specific protein or pathway, depending on the experimental aims intended. Vessels can be characterized and evaluated using histological staining, immunohistochemistry, protein/mRNA assays, and activity assays. The intact right carotid artery from the same animal is an ideal internal control. Injury-induced changes in molecular and cellular parameters can be evaluated by comparing the injured artery to the internal right control artery. Likewise, therapeutic modalities can be evaluated by comparing the injured and treated artery to the

  10. Basilar Invagination, Basilar Impression, and Platybasia: Clinical and Imaging Aspects.

    PubMed

    Pinter, Nandor K; McVige, Jennifer; Mechtler, Laszlo

    2016-08-01

    The congenital and acquired deformities of the craniovertebral junction (CVJ), such as basilar invagination, basilar impression, or platybasia, can present in the form of slowly progressive or acute neurologic deterioration. In many cases, an insidious headache is the only symptom and can be a diagnostic challenge for the neurologist. Proper imaging studies as well as recognizing often associated neurologic or systemic conditions are required for early diagnosis and effective therapy. In the current report, the primary focus will be on clinical aspects of these CVJ abnormalities; the pathologic and radiologic aspects, such as developmental and pathophysiologic background or radiographic analysis, will be discussed briefly, confined to clinically relevant data.

  11. Computational modeling of flow-altering surgeries in basilar aneurysms.

    PubMed

    Rayz, V L; Abla, A; Boussel, L; Leach, J R; Acevedo-Bolton, G; Saloner, D; Lawton, M T

    2015-05-01

    In cases where surgeons consider different interventional options for flow alterations in the setting of pathological basilar artery hemodynamics, a virtual model demonstrating the flow fields resulting from each of these options can assist in making clinical decisions. In this study, image-based computational fluid dynamics (CFD) models were used to simulate the flow in four basilar artery aneurysms in order to evaluate postoperative hemodynamics that would result from flow-altering interventions. Patient-specific geometries were constructed using MR angiography and velocimetry data. CFD simulations carried out for the preoperative flow conditions were compared to in vivo phase-contrast MRI measurements (4D Flow MRI) acquired prior to the interventions. The models were then modified according to the procedures considered for each patient. Numerical simulations of the flow and virtual contrast transport were carried out in each case in order to assess postoperative flow fields and estimate the likelihood of intra-aneurysmal thrombus deposition following the procedures. Postoperative imaging data, when available, were used to validate computational predictions. In two cases, where the aneurysms involved vital pontine perforator arteries branching from the basilar artery, idealized geometries of these vessels were incorporated into the CFD models. The effect of interventions on the flow through the perforators was evaluated by simulating the transport of contrast in these vessels. The computational results were in close agreement with the MR imaging data. In some cases, CFD simulations could help determine which of the surgical options was likely to reduce the flow into the aneurysm while preserving the flow through the basilar trunk. The study demonstrated that image-based computational modeling can provide guidance to clinicians by indicating possible outcome complications and indicating expected success potential for ameliorating pathological aneurysmal flow

  12. Treatment of Vertebro-Basilar Dissecting Aneurysms Using Intravascular Stents

    PubMed Central

    Yamasaki, S.; Hashimoto, K.; Kawano, Y.; Yoshimura, M.; Yamamoto, T.; Hara, M.

    2006-01-01

    Summary Endovascular surgery is an established primary therapeutic modality for dissecting aneurysms at vertebro-basilar arteries. Intravascular stents can be used to treat the dissecting aneurysms for which simple obliteration procedures cannot be used. In such cases, stent implantation alone or a combination of stents and coils need to be selected properly by taking into consideration the site and shape of dissections. In this report, three patterns of stent application are described and their method of selection is discussed. PMID:20569619

  13. Norepinephrine release in arteries of spontaneously hypertensive rats

    SciTech Connect

    Zsoter, T.T.; Wolchinsky, C.; Lawrin, M.; Sirko, S.

    1982-01-01

    The role of the sympathetic nervous system in arterial hypertension cannot be properly evaluated until it is known about the activity in the vessels themselves. In this study researchers investigated the effect of transmural stimulation on the tail artery - labelled in vitro with /sup 3/H-norepinephrine - of 7-9 week old spontaneously hypertensive rats (SHR) and Wistar Kyoto controls (WKR). Electrical stimulation using two frequencies (2 and 10 Hz) resulted in significantly more /sup 3/H overflow in vessels from SHR than from WKR. With 10 Hz stimulation the fractional release was also greater. Column chromatographic analysis of /sup 3/H overflow revealed that transmural stimulation in arteries of SHR enhanced mainly the release of norepinephrine and not of its metabolites. Significantly, an increased release of /sup 3/H-norepinephrine on stimulation was observed in SHR before the full development of hypertension suggesting that it might be a cause rather than a consequence of high blood pressure.

  14. Basilar impression as a possible cause of cerebellar stroke: case report.

    PubMed

    Roje-Bedeković, Marina; Vargek-Solter, Vesna; Bedek, Darko; Demarin, Vida

    2011-12-01

    A case is reported of a 72-year-old woman who presented with severe vertigo, vomit, and mild neck and occipital pain. She had a medical history of hypertension, angina pectoris, cholelithiasis, gastric ulcer, pyelonephritis and periodical mild dizziness. Neuroimaging revealed right vertebral artery occlusion, right cerebellar stroke and basilar impression. The therapeutic approach chosen in our patient was conservative, with non-steroid anti-inflammatory drugs and neck collar. Although our patient's prior risk factors for stroke supported a diagnosis of vertebrobasilar stroke, it is possible that the vertebral artery occlusion was the result of changes in the atlantoaxial anatomy and that cerebellar infarction was secondary to craniocervical anomaly. Although the presence of vertebral artery occlusion, cerebellar stroke and basilar impression in our patient may have been coincidental, we suggest that patients with basilar impression and craniocervical anomalies in general may be at an increased risk of vertebrobasilar vascular disease and vertebrobasilar stroke.

  15. Extensive brainstem ischemia on neuroimaging does not preclude meaningful recovery from locked-in syndrome: two cases of endovascularly managed basilar thrombosis.

    PubMed

    Tomycz, Nestor D; Holm, Margo B; Horowitz, Michael B; Wechsler, Lawrence R; Raina, Ketki; Gupta, Rishi; Jovin, Tudor G

    2008-01-01

    We report 2 patients with angiographically demonstrated basilar artery thrombosis who received emergent intra-arterial thrombolysis with successful recanalization of the basilar artery. In the ensuing weeks after the procedure, both patients were in a locked-in state and had sustained large bilateral regions of pontine ischemia on brain imaging. Following aggressive supportive care and rehabilitation, outcomes obtained prospectively revealed that both patients made a remarkable recovery, becoming fully independent with Barthel scores of 20 and modified Rankin scores of 2.

  16. Anatomical variations of the arterial supply to the adrenal gland in the rat

    PubMed Central

    KIGATA, Tetsuhito; SHIBATA, Hideshi

    2016-01-01

    The adrenal gland is an essential endocrine organ for the stress response. The functions of this organ may be studied by ligation of the adrenal artery or adrenalectomy. However, in prior studies, descriptions of the anatomical variations of the adrenal artery were insufficient and inconsistent. Therefore, anatomical variations of the arterial supply to the adrenal gland were studied in 18 male and 18 female Wistar rats by colored latex injection into the arteries. The vascularization pattern was categorized into 4 types based on the origin of each adrenal artery. The cranial and middle adrenal arteries arose from the caudal phrenic artery in Types 1–3, but the caudal adrenal artery emerged from the caudal phrenic artery in Type 1, from the renal artery in Type 2 and from the abdominal aorta in Type 3. In Type 4, the cranial and middle adrenal arteries stemmed from the cranial phrenic artery, and the caudal adrenal artery arose from the caudal phrenic artery. The number of adrenal arteries varied from 3 to 11 on the left side and from 4 to 12 on the right side, and the total varied from 9 to 20 (predominantly 14) in each individual. There was no sex difference in the vascularization pattern. The results show that more individual variations occur in the adrenal arteries of rats than was previously reported. Such variations should always be considered when experimental treatments of the rat adrenal gland are performed. PMID:27867163

  17. [A case of brainstem and cerebellar infarctions related to basilar impression].

    PubMed

    Kasai, Takashi; Yoshikawa, Kenji; Tachibana, Shunji; Taniguchi, Takuya; Nakagawa, Masanori

    2004-03-01

    We report a 30-year-old man presenting with medial longitudinal fasciculus (MLF) syndrome after an afternoon nap. Magnetic resonance imaging revealed a right medial pontine tegmental infarction and right cerebellar infarctions. This patient was complicated with basilar impression detected on cervical X-ray and MRI. Three-dimensional CT angiography disclosed that the odontoid process migrated into the posterior fossa, thrusting the bilateral vertebral arteries postero-laterally. The mechanical stress on the bilateral vertebral arteries may have caused infarctions in the territories of the posterior circulation of this patient with basilar impression.

  18. Traumatic basilar impression: case report.

    PubMed

    Kuroiwa, T; Tanabe, H; Hasegawa, T; Ohta, T

    1995-07-01

    A very rare case of traumatic basilar impression is reported. The patient, a 57-year-old man, was hit on the head vertically in the parietal region. X ray of the cervical spine and computed tomography (CT) scans showed intracranial indentation of the atlas and the odontoid process with a depressed fracture around the foramen magnum. There are no previous reports about this type of fracture.

  19. [Familial occurrence of basilar impression].

    PubMed

    Da Silva, J A; Da Silva, E B; de Souza, M B

    1978-09-01

    The authors studied nine members of the same family; two among them received surgical treatment for basilar impression and Arnold-Chiari malformation. In the other members of the family, several signs and symptoms of central nervous disease were observed. All patients had the apex of the odontoid apophysis above McGregor's line, 4 mm in the case 9, and 10 mm or more in the others.

  20. Experimental study of physiological flow in a cerebral saccular basilar tip aneurysm

    NASA Astrophysics Data System (ADS)

    Tsai, William; Savas, Omer; Ortega, Jason; Maitland, Duncan; Saloner, David

    2008-11-01

    The subject matter of the research is the flow within cerebral saccular basilar tip aneurysms and exploring correlations with their growth and rupture. The flow phantom consists of an inlet pipe branching out 90^o into two outlets, simulating the basilar artery bifurcation and a nearly spherical dome at the flow divider simulating the aneurysm. Input flow is a physiological waveform for the basilar artery. Flow outlet branching ratios are controlled at will. Experiments are done at Reynolds numbers 221-376 and Sexl-Wormersley number 4.46. Flow visualization and particle image velocimetry are used to study velocity, vorticity, and wall shear stress. All flows can be characterized by an off-center inlet jet and a circulation region, whose transient strength and behavior depends on the outflow ratios.

  1. Flow-induced remodeling in resistance arteries from obese Zucker rats is associated with endothelial dysfunction.

    PubMed

    Bouvet, Céline; Belin de Chantemèle, Eric; Guihot, Anne-Laure; Vessières, Emilie; Bocquet, Arnaud; Dumont, Odile; Jardel, Alain; Loufrani, Laurent; Moreau, Pierre; Henrion, Daniel

    2007-07-01

    Chronic increases in blood flow increase arterial diameter and NO-dependent dilation in resistance arteries. Because endothelial dysfunction accompanies metabolic syndrome, we hypothesized that flow-mediated remodeling might be impaired in obese rat resistance arteries. Obese and lean Zucker rat mesenteric resistance arteries were exposed to chronic flow increases through arterial ligation in vivo: arteries exposed to high flow were compared with normal flow arteries. Diameter was measured in vitro in cannulated arteries using pressure arteriography. After 7 days, outward remodeling (diameter increased from 346+/-9 to 412+/-11 mum at 100 mm Hg) occurred in lean high-flow arteries. Endothelium-dependent tone was reduced in high-flow arteries from obese rats by contrast with lean animals. On the other hand, diameter enlargement occurred similarly in the 2 strains. The involvement of NO in endothelium-dependent dilation (evidenced by NO blockade) and endothelial NO synthase phosphorylation was smaller in obese than in lean rats. Superoxide anion and reduced nicotinamide-adenine dinucleotide phosphate oxidase subunit expression (p67phox and gp91phox) increased in obese rats and were higher in high-flow than in control arteries. Acute Tempol (a catalase mimetic), catalase plus superoxide dismutase, and l-arginine plus tetrahydrobiopterin restored endothelium-dependent dilation in obese rat normal and high-flow arteries to the level found in lean control arteries. Thus, flow-induced remodeling in obese resistance arteries was associated with a reduced endothelium-mediated dilation because of a decreased NO bioavailability and an excessive superoxide production. This dysfunction might have negative consequences in ischemic diseases in patients with obesity or metabolic syndrome.

  2. Effect of chlorpromazine on rat arterial lipid synthesis, in vitro

    SciTech Connect

    Bell, F.P.; Hubert, E.V.

    1982-10-01

    The effect of chlorpromazine, a major tranquilizer, on arterial lipid metabolism was studied in vitro in rat aortas incubated with (/sup 14/C)acetate and (/sup 14/C)mevalonate as lipid precursors. Chlorpromazine at a level of 0.25 mM in the incubation medium significantly reduced the incorporation of (/sup 14/C)acetate into free fatty acids (p less than 0.01) and total phospholipids (p less than 0.001) but not triglycerides. Chlorpromazine also altered the pattern of arterial phospholipids synthesized from (/sup 14/C)acetate by significantly increasing the relative proportion of phosphatidylinositol plus phosphatidylserine (p less than 0.02) and reducing the relative proportion of sphingomyelin (p less than 0.001). (/sup 14/C) Acetate incorporation into the combined fractions of steryl esters plus hydrocarbons and sterols plus diglycerides was also significantly reduced (p less than 0.001) by 0.25 mM chlorpromazine. Studies with (/sup 14/C)mevalonate showed that chlorpromazine is also an inhibitor of sterol biosynthesis in arterial tissues as evidenced by 35-40% reductions (p less than 0.05) in the formation of /sup 14/C-labeled squalene and C27 sterols.

  3. Middle cerebral artery alterations in a rat chronic hypoperfusion model

    PubMed Central

    Márquez-Martín, Ana; Jiménez-Altayó, Francesc; Dantas, Ana P.; Caracuel, Laura; Planas, Anna M.

    2012-01-01

    Chronic cerebral hypoperfusion (CHP) induces microvascular changes that could contribute to the progression of vascular cognitive impairment and dementia in the aging brain. This study aimed to analyze the effects of CHP on structural, mechanical, and myogenic properties of the middle cerebral artery (MCA) after bilateral common carotid artery occlusion (BCCAO) in adult male Wistar rats. Sham animals underwent a similar surgical procedure without carotid artery (CA) ligation. After 15 days of occlusion, MCA and CA were dissected and MCA structural, mechanical, and myogenic properties were assessed by pressure myography. Collagen I/III expression was determined by immunofluorescence in MCA and CA and by Western blot in CA. mRNA levels for 1A1, 1A2, and 3A1 collagen subunits were quantified by quantitative real-time PCR in CA. Matrix metalloproteinase (MMP-1, MMP-2, MMP-9, and MMP-13) and hypoxia-inducible factor-1α (HIF-1α) protein expression were determined in CA by Western blot. BCCAO diminished cross-sectional area, wall thickness, and wall-to-lumen ratio. Nevertheless, whereas wall stress was increased, stiffness was not modified and myogenic response was diminished. Hypoperfusion triggered HIF-1α expression. Collagen I/III protein expression diminished in MCA and CA after BCCAO, despite increased mRNA levels for 1A1 and 3A1 collagen subunits. Therefore, the reduced collagen expression might be due to proteolytic degradation, since the expression of MMP-1 and MMP-9 increased in the CA. These data suggest that BCCAO induces hypotrophic remodeling by a mechanism that involves a reduction of collagen I/III in association with increased MMP-1 and MMP-9 and that decreases myogenic tone in major arteries supplying the brain. PMID:22096118

  4. [Mechanism of losartan suppressing vascular calcification in rat aortic artery].

    PubMed

    Shao, Juan; Wu, Panfeng; Wu, Jiliang; Li, Mincai

    2016-08-01

    Objective To investigate the effect of the angiotensin II receptor 1 (AT1R) blocker losartan on vascular calcification in rat aortic artery and explore the underlying mechanisms. Methods SD rats were divided randomly into control group, vascular calcification model group and treatment group. Vascular calcification models were made by subcutaneous injection of warfarin plus vitamin K1 for two weeks. Rats in the treatment group were subcutaneously injected with losartan (10 mg/kg) at the end of the first week and consecutively for one week. We observed the morphological changes by HE staining and the calcium deposition by Alizarin red staining in the artery vascular wall. The mRNA expressions of bone morphogenetic protein 2 (BMP2) and Runt-related transcription factor 2 (RUNX2) were analyzed by reverse transcription PCR. The BMP2 and RUNX2 protein expressions were determined by Western blotting. The apoptosis of smooth muscle cells (SMCs) were detected by TUNEL. The AT1R expression was tested by fluorescent immunohistochemistry. Results The aortic vascular calcification was induced by warfarin and vitamin K1. Compared with the vascular calcification model group, the mRNA and protein expressions of BMP2 and RUNX2 were significantly downregulated in the aorta in the losartan treatment group. Furthermore, the apoptosis of SMCs and the AT1R expression obviously decreased. Conclusion AT1R blocker losartan inhibits the apoptosis of SMCs and reduces AT1R expression; it downregulates the BMP2 and RUNX2 expressions in the vascular calcification process.

  5. Transoral surgery for basilar impression.

    PubMed

    Pásztor, E; Vajda, J; Piffkó, P; Horváth, M

    1980-12-01

    A patient with basilar impression presented with a progressive myelopathy due to odontoid invagination. It was thought that a posterior decompression would be hazardous; therefore, the inferior clivus, odontoid process, and anterior arch of the atlas were removed transorally. We have found that, even with symptoms of long duration, marked improvement can be expected when the operation is targeted to the actual abnormality. In such cases, analysis of craniocervical tomograms will show the direction of medullary compression and thus indicate the correct surgical approach.

  6. Impact of intracranial blood-flow redistribution on stroke size during ischemia-reperfusion in 7-day-old rats.

    PubMed

    Bonnin, Philippe; Leger, Pierre-Louis; Deroide, Nicolas; Fau, Sébastien; Baud, Olivier; Pocard, Marc; Charriaut-Marlangue, Christiane; Renolleau, Sylvain

    2011-05-15

    We evaluated color-coded pulsed Doppler ultrasound imaging for the assessment of intracranial blood flow in two models of cerebral ischemia in 7-day-old (P7) rats. Blood-flow velocities (BFVs) were measured in the internal carotid arteries and basilar trunk upstream from the circle of Willis, and in the posterior cerebral arteries downstream (1) before, (2) during left middle cerebral artery electrocoagulation and 50 min-transient either one (I/R-1) or both (I/R-2) common carotid (CCA) arteries occlusion, and (3) after release of CCA(s) occlusion. At 48 h after ischemia 41-48% (I/R-1 model) and 24% (I/R-2 model) of rats did not present a lesion. Those rats displayed increased mean BFV in both right internal carotid artery and basilar trunk in I/R-1 model, and increased mean BFV in the basilar trunk (BT) in I/R-2 model. In contrast, no significant changes in mean BFV were observed in lesioned rats. Furthermore, mean BFV in the BT was inversely correlated to the size of the lesion (r² = 0.75, p<0.0001) in the I/R-2 model. Thus, we demonstrated the protective role of collateral support in P7 rodents. Ultrasound imaging can evidence the establishment or not of the cerebral collateral recruitment, leading to the presence or absence of a lesion. This novel approach should greatly help preclinical studies to reduce animal variability.

  7. Post-Treatment Hemodynamics of a Basilar Aneurysm and Bifurcation

    PubMed Central

    Ortega, J.; Hartman, J.; Rodriguez, J.; Maitland, D.

    2009-01-01

    To investigate whether or not a successful aneurysm treatment procedure can subject a parent artery to harmful hemodynamic stresses, computational fluid dynamics simulations are performed on a patient-specific basilar aneurysm and bifurcation before and after a virtual endovascular treatment. Prior to treatment, the aneurysm at systole is filled with a periodic train of vortex tubes, which form at the aneurysm neck and advect upwards into the dome. Following the treatment procedure however, the motion of the vortex train is inhibited by the aneurysm filling material, which confines the vortex tubes to the region beneath the aneurysm neck. Analysis of the post-treatment flow field indicates that the impingement of the basilar artery flow upon the treated aneurysm neck and the close proximity of a vortex tube to the parent artery wall increase the maximum wall shear stresses to values approximately equal to 50 Pa at systole. Calculation of the time-averaged wall shear stresses indicates that there is a 1.4 × 9 10−7 m2 area on the parent artery exposed to wall shear stresses greater than 37.9 Pa, a value shown by Fry [Circ. Res. 22(2):165–197, 1968] to cause severe damage to the endothelial cells that line the artery wall. The results of this study demonstrate that it is possible for a treatment procedure, which successfully isolates the aneurysm from the circulation and leaves no aneurysm neck remnant, to elevate the hemodynamic stresses to levels that are injurious to the artery wall. PMID:18629647

  8. Modification of sympathetic neuronal function in the rat tail artery by dietary lipid treatment

    SciTech Connect

    Panek, R.L.; Dixon, W.R.; Rutledge, C.O.

    1985-06-01

    The effect of dietary lipid treatment on sympathetic neuronal function was examined in isolated perfused tail arteries of adult rats. The hypothesis that dietary manipulations alter the lipid environment of receptor proteins which may result in the perturbation of specific membrane-associated processes that regulate peripheral adrenergic neurotransmission in the vasculature was the basis for this investigation. In the present study, rats were fed semisynthetic diets enriched in either 16% coconut oil (saturated fat) or 16% sunflower oil (unsaturated fat). The field stimulation-evoked release of endogenous norepinephrine and total /sup 3/H was decreased significantly in rats receiving the coconut oil diet when compared to either sunflower oil- or standard lab chow-fed rats. Norepinephrine content in artery segments from coconut oil-treated rats was significantly higher compared to either sunflower oil- or standard lab chow-fed rats. Tail arteries from rats receiving the coconut oil diet displayed significantly lower perfusion pressure responses to nerve stimulation at all frequencies tested when compared to the sunflower oil- or standard lab chow-fed rats. Vasoconstrictor responses of perfused tail arteries exposed to exogenous norepinephrine resulted in an EC50 for norepinephrine that was not changed by the dietary treatment, but adult rats receiving the sunflower oil diet displayed a significantly greater maximum response to exogenous norepinephrine (10(-5) M) compared to arteries from either coconut oil- or standard lab chow-fed rats.

  9. Changes in Sympathetic Innervation of Rat Caudal Artery in Experimental Myocardial Infarction. Effect of Semax Peptide.

    PubMed

    Gorbacheva, A M; Berdalin, A B; Stulova, A N; Nikogosova, A D; Lin, M D; Buravkov, S V; Gavrilova, S A; Koshelev, V B

    2016-08-01

    Activation of the sympathetic nervous system aggravates the course of myocardial infarction. Semax peptide moderated the degree of this activation and prevented the increase in the density of sympathetic endings in rat caudal artery in 28 days after ischemia or ischemia/reperfusion. The peptide reduced the density of α-adrenoreceptors in the caudal artery of rats with myocardial infarction. Semax produced no effect on β-adrenoreceptors in both experimental models. The experiments on isolated segments of the caudal artery revealed reduced vascular responsiveness to electrical stimulation and norepinephrine infusion in rats treated with Semax after ischemia/reperfusion injury.

  10. Technical nuances of subtemporal approach for the treatment of basilar tip aneurysm

    PubMed Central

    Nakov, Vladimir S.; Spiriev, Toma Y.; Todorov, Ivan T.; Simeonov, Plamen

    2017-01-01

    Background: Basilar tip aneurysms are one of the most complex vascular lesions to treat surgically because of their location, depth of the approach, and close proximity of vital neurovascular structures such as the mesencephalon, cranial nerves, perforating arteries to the thalamus. There are different surgical approaches utilized to reach basilar tip aneurysms, namely, pterional, pretemporal, orbitozygomatic, subtemporal, and anterior petrosectomy. Each of them has its advantages and limitations. Methods: In this paper, we present our personal experience with the use of subtemporal approach. The technique is described in detail including its nuances and potential pitfalls. Results: The subtemporal approach is indicated for basilar tip aneurysms located at the level of the floor of the sella turcica to 1 cm above the dorsum sellae. Conclusion: Subtemporal approach offers good surgical corridor for the management of these complex vascular lesions. PMID:28217394

  11. Inhomogeneous vasodilatory responses of rat tail arteries to heat stress: evaluation by synchrotron radiation microangiography.

    PubMed

    Kuwabara, Eriko; Furuyama, Fujiya; Ito, Kunihisa; Tanaka, Etsuro; Hattan, Naoichiro; Fujikura, Hisanori; Kimura, Koji; Goto, Takako; Hayashi, Takashi; Taira, Hiroyuki; Shinozaki, Yoshiro; Umetani, Keiji; Hyodo, Kazuyuki; Tanioka, Kenkichi; Mochizuki, Ryo; Kawai, Toshiaki; Koide, Shirosaku; Mori, Hidezo

    2002-10-01

    Tail blood flow is crucial for dissipating body heat in rats. Angiographies are convenient tools to evaluate tail circulation. However, conventional angiographies do not have sufficient sensitivity or spatial resolution for small vessels. Recently, we developed a novel microangiographic system using monochromatic synchrotron radiation and a high-definition video camera system. Here, we report an evaluation of rat tail circulation under heat stress using the synchrotron radiation microangiographic system. We performed an experiment using the microangiography of the caudal artery before and after heating up WKAH/HkmSlc rats to rectal temperature of 39 degrees C. The images were digitized and temporal subtraction was performed, and the diameters of caudal arteries were evaluated. After heating, the medial caudal artery was markedly dilated (320 +/- 53 to 853 +/- 243 micro m in diameter, p<0.001), while no significant change was observed in the lateral caudal arteries (139 +/- 42 to 167 +/- 73 micro m) and segmental anastomosing vessels. The heat stress allowed for visualization of the superficial caudal arteries with a diameter of approximately 60 micro m, not visible prior to heating. Thus, synchrotron radiation microangiography demonstrated that the rat tail possessed dual sets of arteries; one set was highly sensitive to heat-induced vasodilation (medial caudal artery and superficial caudal arteries) and the other set was less sensitive (lateral caudal arteries and segmental anastomosing vessels).

  12. Basilar invagination, Chiari malformation, syringomyelia: a review.

    PubMed

    Goel, Atul

    2009-01-01

    Institute and personal experience (over 25 years) of basilar invagination was reviewed. The database of the department included 3300 patients with craniovertebral junction pathology from the year 1951 till date. Patients with basilar invagination were categorized into two groups based on the presence (Group A) or absence (Group B) of clinical and radiological evidence of instability of the craniovertebral junction. Standard radiological parameters described by Chamberlain were used to assess the instability of the craniovertebral junction. The pathogenesis and clinical features in patients with Group A basilar invagination appeared to be related to mechanical instability, whereas it appeared to be secondary to embryonic dysgenesis in patients with Group B basilar invagination. Treatment by facetal distraction and direct lateral mass fixation can result in restoration of craniovertebral and cervical alignment in patients with Group A basilar invagination. Such a treatment can circumvent the need for transoral or posterior fossa decompression surgery. Foramen magnum bone decompression appears to be a rational surgical treatment for patients having Group B basilar invagination. The division of patients with basilar invagination on the basis of presence or absence of instability provides insight into the pathogenesis of the anomaly and a basis for rational surgical treatment.

  13. Altered potassium ATP channel signaling in mesenteric arteries of old high salt-fed rats

    PubMed Central

    Whidden, Melissa A.; Basgut, Bilgen; Kirichenko, Nataliya; Erdos, Benedek; Tümer, Nihal

    2016-01-01

    [Purpose] Both aging and the consumption of a high salt diet are associated with clear changes in the vascular system that can lead to the development of cardiovascular disease; however the mechanisms are not clearly understood. Therefore, we examined whether aging and the consumption of excess salt alters the function of potassium ATP-dependent channel signaling in mesenteric arteries [Methods] Young (7 months) and old (29 months) Fischer 344 x Brown Norway rats were fed a control or a high salt diet (8% NaCl) for 12 days and mesenteric arteries were utilized for vascular reactivity measurements. [Results] Acetylcholine-induced endothelium relaxation was significantly reduced in old arteries (81 ± 4%) when compared with young arteries (92 ± 2%). Pretreatment with the potassium-ATP channel blocker glibenclamide reduced relaxation to acetylcholine in young arteries but did not alter dilation in old arteries. On a high salt diet, endothelium dilation to acetylcholine was significantly reduced in old salt arteries (60 ± 3%) when compared with old control arteries (81 ± 4%). Glibenclamide reduced acetylcholine-induced dilation in young salt arteries but had no effect on old salt arteries. Dilation to cromakalim, a potassium-ATP channel opener, was reduced in old salt arteries when compared with old control arteries. [Conclusion] These findings demonstrate that aging impairs endothelium-dependent relaxation in mesenteric arteries. Furthermore, a high salt diet alters the function of potassium-ATP-dependent channel signaling in old isolated mesenteric arteries and affects the mediation of relaxation stimuli. PMID:27508155

  14. Diminished contractile responses of isolated conduit arteries in two rat models of hypertension.

    PubMed

    Zemancíková, Anna; Török, Jozef

    2013-08-31

    Hypertension is accompanied by thickening of arteries, resulting in marked changes in their passive and active mechanical properties. The aim of this study was to demonstrate that the large conduit arteries from hypertensive individuals may not exhibit enhanced contractions in vitro, as is often claimed. Mechanical responses to vasoconstrictor stimuli were measured under isometric conditions using ring arterial segments isolated from spontaneously hypertensive rats, N(omega)-nitro-L-arginine methyl ester (L-NAME)-treated Wistar rats, and untreated Wistar rats serving as normotensive control. We found that thoracic aortas from both types of hypertensive rats had a greater sensitivity but diminished maximal developed tension in response to noradrenaline, when compared with that from normotensive rats. In superior mesenteric arteries, the sensitivity to noradrenaline was similar in all examined rat groups but in L-NAME-treated rats, these arteries exhibited decreased active force when stimulated with high noradrenaline concentrations, or with 100 mM KCl. These results indicate that hypertension leads to specific biomechanical alterations in diverse arterial types which are reflected in different modifications in their contractile properties.

  15. Pancreaticoduodenal arterial rupture and hemoabdomen in ACI/SegHsd rats with polyarteritis nodosa.

    PubMed

    Cohen, Joyce K; Cai, Li-Qun; Zhu, Yuan-Shan; La Perle, Krista M D

    2007-08-01

    Many lesions associated with aging have been well-characterized in various strains of rats. Although documented in Sprague-Dawley and spontaneously hypertensive rats, polyarteritis nodosa has not previously been reported in ACI/SegHsd rats. ACII SegHsd rats were maintained on high-fat (40.5%), low-fat (11.6%), and high-fat to low-fat dietary protocols to examine the correlation between dietary fat and the regulation of prostate 5alpha-reductase gene expression and prostate cancer. Seven rats died unexpectedly with hemoabdomen and rupture of the pancreaticoduodenal artery secondary to polyarteritis nodosa (PAN). The purpose of this study was to analyze the pathologic findings in these and the remaining ACI/SegHsd rats and to correlate the level of dietary fat with the presence of PAN, arterial rupture, and hemoabdomen. Approximately 65% of the rats had evidence of PAN by histopathology, with a 24% incidence of arterial rupture. Additional lesions noted included an 88% incidence of chronic progressive nephropathy (CPN) and a 32% incidence of cartilaginous foci in the aortic valve. We found no association between the percentage of dietary fat and incidence of PAN, CPN, or cardiac cartilage. Although arterial rupture is a known complication of polyarteritis nodosa in humans, this case series is the first to document arterial rupture and hemoabdomen in rats with PAN.

  16. An in vivo rat model of artery buckling for studying wall remodeling.

    PubMed

    Zhang, Jinzhou; Liu, Qin; Han, Hai-Chao

    2014-08-01

    Theoretical modeling and in vitro experiments have demonstrated that arterial buckling is a possible mechanism for the development of artery tortuosity. However, there has been no report of whether artery buckling develops into tortuosity, partially due to the lack of in vivo models for long-term studies. The objective of this study was to establish an in vivo buckling model in rat carotid arteries for studying arterial wall remodeling after buckling. Rat left carotid arteries were transplanted to the right carotid arteries to generate buckling under in vivo pressure and were maintained for 1 week to examine wall remodeling and adaptation. Our results showed that a significant buckling was achieved in the carotid arterial grafts with altered wall stress. Cell proliferation and matrix metalloprotinease-2 (MMP-2) expression in the buckled arteries increased significantly compared with the controls. The tortuosity level of the grafts also slightly increased 1 week post-surgery, while there was no change in vessel dimensions, blood pressure, and blood flow velocity. The artery buckling model provides a useful tool for further study of the adaptation of arteries into tortuous shapes.

  17. An in vivo Rat Model of Artery Buckling for Studying Wall Remodeling

    PubMed Central

    Zhang, Jinzhou; Liu, Qin; Han, Hai-Chao

    2014-01-01

    Theoretical modeling and in vitro experiments have demonstrated that arterial buckling is a possible mechanism for the development of artery tortuosity. However, there has been no report of whether artery buckling develops into tortuosity, partially due to the lack of in vivo models for long-term studies. The objective of this study was to establish an in vivo buckling model in rat carotid arteries for studying arterial wall remodeling after buckling. Rat left carotid arteries were transplanted to the right carotid arteries to generate buckling under in vivo pressure and were maintained for 1 week to examine wall remodeling and adaptation. Our results showed that a significant buckling was achieved in the carotid arterial grafts with altered wall stress. Cell proliferation and matrix metalloprotinease-2 (MMP-2) expression in the buckled arteries increased significantly compared with the controls. The tortuosity level of the grafts also slightly increased 1 week post-surgery, while there was no change in vessel dimensions, blood pressure, and blood flow velocity. The artery buckling model provides a useful tool for further study of the adaptation of arteries into tortuous shapes. PMID:24793586

  18. Caloric restriction increases internal iliac artery and penil nitric oxide synthase expression in rat: comparison of aged and adult rats.

    PubMed

    Ozbek, Emin; Simsek, Abdulmuttalip; Ozbek, Mustafa; Somay, Adnan

    2013-09-26

    Because of the positive corelation between healthy cardiovascular system and sexual life we aimed to evaluate the effect of caloric restriction (CR) on endothelial and neuronal nitric oxide synthase (eNOS, nNOS) expression in cavernousal tissues and eNOS expression in the internal iliac artery in young and aged rats. Young (3 mo, n = 7) and aged (24 mo, n = 7) male Sprague-Dawley rats were subjected to 40% CR and were allowed free access to water for 3 months. Control rats (n = 14) fed ad libitum had free access to food and water at all times. On day 90, rats were sacrificed and internal iliac arteries and penis were removed and parafinized, eNOS and nNOS expression evaluated with immunohistochemistry. Results were evaluated semiquantitatively. eNOS and nNOS expression in cavernousal tis- sue in CR rats were more strong than in control group in both young and old rats. eNOS expression was also higher in the internal iliac arteries of CR rats than in control in young and old rats. As a result of our study we can say that there is a positive link between CR and neurotransmitter of erection in cavernousal tissues and internal iliac arteries. CR has beneficial effect to prevent sexual dysfunction in young and old animals and possible humans.

  19. Management of basilar invagination: A historical perspective

    PubMed Central

    Shah, Abhidha; Serchi, Elena

    2016-01-01

    For a long time the terms basilar invagination and platybasia were used interchangeably. Basilar invagination has been defined as a prolapse of the vertebral column into the spinal cord. Platybasia is defined as an abnormal obtuse angle between the anterior skull base and the clivus. The authors review the existing literature and summarize the historical and modern perspectives in the management of basilar invagination. From radiological curiosities, the subject of basilar invagination is now viewed as eminently treatable. The more pronounced understanding of the subject has taken place in the last three decades when on the basis of understanding of the biomechanical subtleties the treatment paradigm has remarkably altered. From surgery that involved decompression of the region, stabilization and realignment now form the basis of treatment.

  20. Post-Treatment Hemodynamics of a Basilar Aneurysm and Bifurcation

    SciTech Connect

    Ortega, J; Hartman, J; Rodriguez, J; Maitland, D

    2008-01-16

    Aneurysm re-growth and rupture can sometimes unexpectedly occur following treatment procedures that were initially considered to be successful at the time of treatment and post-operative angiography. In some cases, this can be attributed to surgical clip slippage or endovascular coil compaction. However, there are other cases in which the treatment devices function properly. In these instances, the subsequent complications are due to other factors, perhaps one of which is the post-treatment hemodynamic stress. To investigate whether or not a treatment procedure can subject the parent artery to harmful hemodynamic stresses, computational fluid dynamics simulations are performed on a patient-specific basilar aneurysm and bifurcation before and after a virtual endovascular treatment. The simulations demonstrate that the treatment procedure produces a substantial increase in the wall shear stress. Analysis of the post-treatment flow field indicates that the increase in wall shear stress is due to the impingement of the basilar artery flow upon the aneurysm filling material and to the close proximity of a vortex tube to the artery wall. Calculation of the time-averaged wall shear stress shows that there is a region of the artery exposed to a level of wall shear stress that can cause severe damage to endothelial cells. The results of this study demonstrate that it is possible for a treatment procedure, which successfully excludes the aneurysm from the vascular system and leaves no aneurysm neck remnant, to elevate the hemodynamic stresses to levels that are injurious to the immediately adjacent vessel wall.

  1. Drinking and arterial blood pressure responses to ANG II in young and old rats.

    PubMed

    Thunhorst, Robert L; Beltz, Terry G; Johnson, Alan Kim

    2010-11-01

    We investigated water drinking and arterial blood pressure responses to intravenous infusions of ANG II in young (4 mo), middle-aged adult (12 mo), and old (29 mo) male Brown Norway rats. Infusions of ANG II began with arterial blood pressure either at control levels or at reduced levels following injection of the vasodilator minoxidil. Under control conditions, mean arterial pressure (MAP) in response to ANG II rose to the same level for all groups, and middle-aged and old rats drank as much or more water in response to ANG II compared with young rats, depending on whether intakes were analyzed using absolute or body weight-adjusted values. When arterial blood pressure first was reduced with minoxidil, MAP in response to ANG II stabilized at significantly lower levels compared with control conditions for all groups. Young rats drank significantly more water under reduced pressure conditions compared with control conditions, while middle-aged and old rats did not. Urine volume in response to ANG II was lower, while water balance was higher, under conditions of reduced pressure compared with control conditions. Baroreflex control of heart rate was substantially reduced in old rats compared with young and middle-aged animals. In summary, young rats appear to be more sensitive to the inhibitory effects of increased arterial blood pressure on water drinking than are older animals.

  2. Ouabain–digoxin antagonism in rat arteries and neurones

    PubMed Central

    Song, Hong; Karashima, Eiji

    2014-01-01

    Key points ‘Classic’ cardiotonic steroids (CTSs) all inhibit Na+,K+‐ATPase (Na+ pumps) and exert cardiotonic and vasotonic effects. Nevertheless, prolonged ouabain, but not digoxin, administration induces hypertension; moreover, digoxin antagonizes the hypertensinogenic effect of ouabain.To examine acute ouabain–digoxin interactions, we tested these and related CTSs on myogenic tone (MT) in pressurized rat mesenteric small arteries and glutamate‐evoked Ca2+ transients in primary cultured rat hippocampal neurones.The CTSs (0.3–10 nm) all augmented MT at 70 mmHg and Ca2+ signals, but separated into two functional groups according to whether they were ouabain‐ or digoxin‐like. CTSs within each group were synergistic, but between groups, were antagonistic to one another in both assays.Na+ pump αβ protomers may function as tetraprotomers ((αβ)4) with quarter‐site reactivity; simultaneous ouabain‐ and digoxin‐like molecule binding promotes tetraprotomer disaggregation, enabling partial protomer reactivation.These results may reveal why some patients respond poorly to digoxin therapy, and why Na+ pumps may be a novel target for therapeutic development. Abstract ‘Classic’ cardiotonic steroids (CTSs) such as digoxin and ouabain selectively inhibit Na+,K+‐ATPase (the Na+ pump) and, via Na+/Ca2+ exchange (NCX), exert cardiotonic and vasotonic effects. CTS action is more complex than previously thought: prolonged subcutaneous administration of ouabain, but not digoxin, induces hypertension, and digoxin antagonizes ouabain's hypertensinogenic effect. We studied the acute interactions between CTSs in two indirect assays of Na+ pump function: myogenic tone (MT) in isolated, pressurized rat mesenteric small arteries, and Ca2+ signalling in primary cultured rat hippocampal neurones. The ‘classic’ CTSs (0.3–10 nm) behaved as ‘agonists’: all increased MT70 (MT at 70 mmHg) and augmented glutamate‐evoked Ca2+ (Fura‐2) signals. We then

  3. Quantitative Indexes of Leukocytes in Spontaneously Hypertensive Rats During Various Periods of Arterial Hypertension Development.

    PubMed

    Aliev, O I; Anishchenko, A M; Sidekhmenova, A V; Shamanaev, A Yu; Fedorova, E P; Plotnikov, M B

    2015-10-01

    SHR rats were examined in the period before arterial hypertension development (5th week), during the increase in BP (6th-10th weeks), and under conditions of constantly elevated BP (11th-12th weeks). The total number of leukocytes did not differ in SHR and normotensive WKY rats. However, the relative number of lymphocytes and monocytes was shown to differ in various periods of arterial hypertension development. Our results suggest that white blood cells (primarily lymphocytes) are involved in the development of arterial hypertension.

  4. Stress-sensitive arterial hypertension, hemodynamic changes and brain metabolites in hypertensive ISIAH rats: MRI investigation.

    PubMed

    Seryapina, A A; Shevelev, O B; Moshkin, M P; Markel, A L; Akulov, A E

    2017-03-08

    The study of early development of the arterial hypertension in association with emotional stress is of great importance for better understanding of etiolody and pathogenesis of the hypertensive disease. MRI technique was applied to evaluate the hemodynamic and brain metabolites changes in 1- and 3-Mo-old ISIAH rats (10 male rats) with stress-sensitive arterial hypertension and in control normotensive WAG rats (8 male rats). In the 3-Mo-old ISIAH rats, age-dependent increase in the blood pressure was associated with increased blood flow through the renal arteries and decreased blood flow in the lower part of abdominal aorta. The renal vascular resistance in the ISIAH rats decreased while aging, though, at both ages it remained higher than the renal vascular resistance in WAG rats. Integral metabolome portrait demonstrated that hypertension development in the ISIAH rats was associated with attenuation of excitatory and energetic activity in the prefrontal cortex, whereas in the WAG rats, the opposite age-dependent changes were observed. In contrast, in hypothalamus of 3-Mo-old ISIAH rats, an increase in energetic activity and prevalence of excitatory neurotransmitters over inhibitory was noticed. The blood flow through the main arteries showed positive correlation with glutamate and glutamine levels in hypothalamus, and negative one - with hypothalamic GABA level. The blood pressure values positively correlated with hypothalamic choline levels. Thus, the early development of the stress-sensitive hypertension in the ISIAH rats is accompanied by considerable changes both in brain metabolite ratios and in the parameters of blood flow through the main arteries. This article is protected by copyright. All rights reserved.

  5. Characteristics of plasmalemma alkaline phosphatase of rat mesenteric artery.

    PubMed

    Kwan, C Y

    1983-01-01

    General characteristics of alkaline phosphatase activity of the plasma membrane-enriched fraction isolated from rat mesenteric arteries were investigated. The vascular smooth muscle plasmalemma alkaline phosphatase is a metalloenzyme which is strongly inhibited by chelating agents and this inhibition can be completely overcome by addition of Mg2+ or Ca2+. Zn2+ only partially reactivates the enzyme in the presence of low concentrations of EDTA. The enzymatic hydrolysis of p-nitrophenyl phosphate, beta-glycerophosphate, alpha-glycerophosphate, or 3'-adenosine monophosphate showed an optimal activity in the alkaline region between pH 9 and 11. The alkaline phosphatase activity is distinctly different from the plasmalemma ATPase and 5'-nucleotidase activities with respect to their pH dependence, influence by added divalent metal ions and stability against heat inactivation. Vanadate ion, being structurally similar to the transition state analog of the phosphoryl group, potently inhibits alkaline phosphatase with an apparent Ki of 1.5 microM. The altered alkaline phosphatase activity of vascular smooth muscle in relation to its possible physiological function and pathophysiological manifestation associated with hypertensive disease are discussed.

  6. Pulmonary arterial hypertension in rats due to age-related arginase activation in intermittent hypoxia.

    PubMed

    Nara, Akina; Nagai, Hisashi; Shintani-Ishida, Kaori; Ogura, Sayoko; Shimosawa, Tatsuo; Kuwahira, Ichiro; Shirai, Mikiyasu; Yoshida, Ken-ichi

    2015-08-01

    Pulmonary arterial hypertension (PAH) is prevalent in patients with obstructive sleep apnea syndrome (OSAS). Aging induces arginase activation and reduces nitric oxide (NO) production in the arteries. Intermittent hypoxia (IH), conferred by cycles of brief hypoxia and normoxia, contributes to OSAS pathogenesis. Here, we studied the role of arginase and aging in the pathogenesis of PAH in adult (9-mo-old) and young (2-mo-old) male Sprague-Dawley rats subjected to IH or normoxia for 4 weeks and analyzed them with a pressure-volume catheter inserted into the right ventricle (RV) and by pulsed Doppler echocardiography. Western blot analysis was conducted on arginase, NO synthase isoforms, and nitrotyrosine. IH induced PAH, as shown by increased RV systolic pressure and RV hypertrophy, in adult rats but not in young rats. IH increased expression levels of arginase I and II proteins in the adult rats. IH also increased arginase I expression in the pulmonary artery endothelium and arginase II in the pulmonary artery adventitia. Furthermore, IH reduced pulmonary levels of nitrate and nitrite but increased nitrotyrosine levels in adult rats. An arginase inhibitor (N(ω)-hydroxy-nor-1-arginine) prevented IH-induced PAH and normalized nitrite and nitrate levels in adult rats. IH induced arginase up-regulation and PAH in adult rats, but not in young rats, through reduced NO production. Our findings suggest that arginase inhibition prevents or reverses PAH.

  7. Equol increases cerebral blood flow in rats via activation of large-conductance Ca(2+)-activated K(+) channels in vascular smooth muscle cells.

    PubMed

    Yu, Wei; Wang, Yan; Song, Zheng; Zhao, Li-Mei; Li, Gui-Rong; Deng, Xiu-Ling

    2016-05-01

    The present study was designed to investigate the effect of equol on cerebral blood flow and the underlying molecular mechanisms. The regional cerebral blood flow in parietal lobe of rats was measured by using a laser Doppler flowmetry. Isolated cerebral basilar artery and mesenteric artery rings from rats were used for vascular reactivity measurement with a multi wire myography system. Outward K(+) current in smooth muscle cells of cerebral basilar artery, large-conductance Ca(2+)-activated K(+) (BK) channel current in BK-HEK 293 cells stably expressing both human α (hSlo)- and β1-subunits, and hSlo channel current in hSlo-HEK 293 cells expressing only the α-subunit of BK channels were recorded with whole cell patch-clamp technique. The results showed that equol significantly increased regional cerebral blood flow in rats, and produced a concentration-dependent but endothelium-independent relaxation in rat cerebral basilar arteries. Both paxilline and iberiotoxin, two selective BK channel blockers, significantly inhibited equol-induced vasodilation in cerebral arteries. Outward K(+) currents in smooth muscle cells of cerebral basilar artery were increased by equol and fully reversed by washout or blockade of BK channels with iberiotoxin. Equol remarkably enhanced human BK current in BK-HEK 293 cells, but not hSlo current in hSlo-HEK 293 cells, and the increase was completely abolished by co-application of paxilline. Our findings provide the first information that equol selectively stimulates BK channel current by acting on its β1 subunit, which may in turn contribute to the equol-mediated vasodilation and cerebral blood flow increase.

  8. Brief communications: visualization of coronary arteries in rats by 3-dimensional real-time contrast echocardiography.

    PubMed

    Ishikura, Fuminobu; Hirayama, Hideo; Iwata, Akiko; Toshida, Tsutomu; Masuda, Kasumi; Otani, Kentaro; Asanuma, Toshihiko; Beppu, Shintaro

    2008-05-01

    Angiogenesis is under intense investigation to advance the treatment of various ischemic diseases. Small animals, such as mice and rats, are often used for this purpose. However, evaluating the structure of coronary arteries in small animals in situ is not easy. We succeeded in visualizing the coronary artery in rats on 3-dimensional real-time contrast echocardiography using a high-frequency transducer. These methods will be applied for more convenient assessment in a new study, examining issues such as angiogenesis using rats in situ.

  9. Noradrenaline-induced changes in intracellular Ca(2+) and tension in mesenteric arteries from diabetic rats.

    PubMed

    Chow, W L; Zhang, L; MacLeod, K M

    2001-09-01

    1. The purpose of this investigation was to determine whether enhanced contractile responses to noradrenaline (NA) of mesenteric arteries from rats with chronic streptozotocin-induced diabetes are associated with increases in mean cytosolic [Ca(2+)]i. 2. [Ca(2+)]i was measured with fura 2-AM, and was monitored simultaneously with tension in perfused endothelium-denuded mesenteric arterial rings from 12 - 14 week diabetic rats and age- and gender-matched control rats. 3. Basal [Ca(2+)]i (expressed as R(n), the normalized fura 2 ratio) was not significantly different in arteries from control and diabetic rats. Similarly, no differences between control and diabetic arteries in the tension or [Ca(2+)]i responses to 80 mM KCl in the presence of phentolamine were detected. 4. The rate of tension development, peak tension and integrated tension in response to 30 microM NA were all significantly greater in diabetic than control arteries. However, this was not associated with enhancement of the corresponding [Ca(2+)]i responses in the diabetic arteries. 5. Peak contractile responses to perfusion with both 0.3 and 3 microM NA, but peak [Ca(2+)]i only in response to 0.3 microM NA, were significantly greater in diabetic than control arteries. 6. NA (30 microM) produced a greater increase in both peak tension and [Ca(2+)]i in diabetic than control arteries perfused with Ca(2+)-free solution containing 1 mM EGTA. Neither the rate nor the magnitude of NA-induced Ca(2+) influx appeared to be altered in the diabetic arteries. 7. The enhanced sustained contractile response of diabetic arteries to NA appears to be dissociated from increases in [Ca(2+)]i, and may be due to other factors, such as an increase in the Ca(2+) sensitivity of the contractile proteins.

  10. Daily short-period gravitation can prevent functional and structural changes in arteries of simulated microgravity rats.

    PubMed

    Sun, Biao; Zhang, Li-Fan; Gao, Fang; Ma, Xiao-Wu; Zhang, Miao-Li; Liu, Jian; Zhang, Le-Ning; Ma, Jin

    2004-09-01

    This study was designed to clarify whether simulated microgravity-induced differential adaptational changes in cerebral and hindlimb arteries could be prevented by daily short-period restoration of the normal distribution of transmural pressure across arterial vasculature by either dorsoventral or footward gravitational loading. Tail suspension (Sus) for 28 days was used to simulate cardiovascular deconditioning due to microgravity. Daily standing (STD) for 1, 2, or 4 h, or +45 degrees head-up tilt (HUT) for 2 or 4 h was used to provide short-period dorsoventral or footward gravitational loading as countermeasure. Functional studies showed that Sus alone induced an enhancement and depression in vasoconstrictor responsiveness of basilar and femoral arterial rings, respectively, as previously reported. These differential functional alterations can be prevented by either of the two kinds of daily gravitational loading treatments. Surprisingly, daily STD for as short as 1 h was sufficient to prevent the differential functional changes that might occur due to Sus alone. In morphological studies, the effectiveness of daily 4-h HUT or 1-h STD in preventing the differential remodeling changes in the structure of basilar and anterior tibial arteries induced by Sus alone was examined by histomorphometry. The results showed that both the hypertrophic and atrophic changes that might occur, respectively, in cerebral and hindlimb arteries due to Sus alone were prevented not only by daily HUT for 4 h but also by daily STD even for 1 h. These data indicate that daily gravitational loading by STD for as short as 1 h is sufficient to prevent differential adaptational changes in function and structure of vessels in different anatomic regions induced by a medium-term simulated microgravity.

  11. Dynamics of change in rat arterial pressure under conditions of immobilization

    NASA Technical Reports Server (NTRS)

    Yumatov, Y. A.; Skotselyas, Y. G.; Ivanona, L. I.

    1980-01-01

    Emotional stress developed in immobilized rats was shown to be accompanied by changes in the regulation of arterial pressure and the frequency of cardiac contractions. A group of adapting rats displayed definite resistance to emotional stress, while a group of rats incapable of adapting to acute emotional stress died with characteristics of cardiovascular insufficiency. The mechanisms providing resistance to emotional stress in numerous conflict situations were analyzed.

  12. Paradoxical role of angiotensin II type 2 receptors in resistance arteries of old rats

    PubMed Central

    Pinaud, Frédéric; Bocquet, Arnaud; Dumont, Odile; Retailleau, Kevin; Baufreton, Christophe; Andriantsitohaina, Ramaroson; Loufrani, Laurent; Henrion, Daniel

    2007-01-01

    The role of angiotensin II type 2 receptors (AT2R) remains a matter of controversy. Its vasodilatory and antitrophic properties are well accepted. Nevertheless, in hypertensive rats AT2R stimulation induces a vasoconstriction counteracting flow-mediated dilation (FMD). This contraction is reversed by hydralazine. As FMD is also decreased in aging, another risk factor for cardiovascular diseases, we hypothesized that AT2R function might be altered in old rats resistance arteries. Mesenteric resistance arteries (250 μm diameter) were isolated from old (24 months) and control (4 months) rats receiving hydralazine (16 mg/kg/day, 2 weeks) or water. FMD, NO-mediated dilation and eNOS expression were lower in old than in control rats. AT2R blockade improved FMD in old rats, suggesting that AT2R stimulation produced vasoconstriction. AT2R expression was higher in old rats and mainly located in the smooth muscle layer. In old rats AT2R stimulation induced endothelium-independent contraction, which was suppressed by the antioxydant Tempol. Reactive oxygen species (ROS) level was higher in old rats arteries than in controls. Hydralazine improved FMD and NO-dependent dilation in old rats without change in AT2R expression and location. In old rats treated with hydralazine ROS level was reduced in endothelial and smooth muscle cells and AT2R-dependent contraction was abolished. Thus, AT2R stimulation induced vasoconstriction through activation of ROS production, contributing to decrease FMD in old rats resistance arteries. Hydralazine suppressed AT2R-dependent ROS production and AT2R-dependent contraction, improving FMD. Importantly, endothelial alterations in aging were reversible. These findings are important to consider in the choice of vasoactive drugs in aging. PMID:17485601

  13. Interaction of perivascular adipose tissue and sympathetic nerves in arteries from normotensive and hypertensive rats.

    PubMed

    Török, J; Zemančíková, A; Kocianová, Z

    2016-10-24

    The inhibitory action of perivascular adipose tissue (PVAT) in modulation of arterial contraction has been recently recognized and contrasted with the prohypertensive effect of obesity in humans. In this study we demonstrated that PVAT might have opposing effect on sympatho-adrenergic contractions in different rat conduit arteries. In superior mesenteric artery isolated from normotensive Wistar-Kyoto rats (WKY), PVAT exhibited inhibitory influence on the contractions to exogenous noradrenaline as well as to endogenous noradrenaline released from arterial sympathetic nerves during transmural electrical stimulation or after application of tyramine. In contrast, the abdominal aorta with intact PVAT responded with larger contractions to transmural electrical stimulation and tyramine when compared to the aorta after removing PVAT; the responses to noradrenaline were similar in both. This indicates that PVAT may contain additional sources of endogenous noradrenaline which could be responsible for the main difference in the modulatory effect of PVAT on adrenergic contractions between abdominal aortas and superior mesenteric arteries. In spontaneously hypertensive rats (SHR), the anticontractile effect of PVAT in mesenteric arteries was reduced, and the removal of PVAT completely eliminated the difference in the dose-response curves to exogenous noradrenaline between SHR and WKY. These results suggest that in mesenteric artery isolated from SHR, the impaired anticontractile influence of PVAT might significantly contribute to its increased sensitivity to adrenergic stimuli.

  14. The GPR55 agonist lysophosphatidylinositol relaxes rat mesenteric resistance artery and induces Ca2+ release in rat mesenteric artery endothelial cells

    PubMed Central

    AlSuleimani, Y M; Hiley, C R

    2015-01-01

    Background and Purpose Lysophosphatidylinositol (LPI), a lipid signalling molecule, activates GPR55 and elevates intracellular Ca2+. Here, we examine the actions of LPI in the rat resistance mesenteric artery and Ca2+ responses in endothelial cells isolated from the artery. Experimental Approach Vascular responses were studied using wire myographs. Single-cell fluorescence imaging was performed using a MetaFluor system. Hypotensive effects of LPI were assessed using a Biopac system. Key Results In isolated arteries, LPI-induced vasorelaxation was concentration- and endothelium-dependent and inhibited by CID 16020046, a GPR55 antagonist. The CB1 receptor antagonist AM 251 had no effect, whereas rimonabant and O-1918 significantly potentiated LPI responses. Vasorelaxation was reduced by charybdotoxin and iberiotoxin, alone or combined. LPI decreased systemic arterial pressure. GPR55 is expressed in rat mesenteric artery. LPI caused biphasic elevations of endothelial cell intracellular Ca2+. Pretreatment with thapsigargin or 2-aminoethoxydiphenyl borate abolished both phases. The PLC inhibitor U73122 attenuated the initial phase and enhanced the second phase, whereas the Rho-associated kinase inhibitor Y-27632 abolished the late phase but not the early phase. Conclusions and Implications LPI is an endothelium-dependent vasodilator in the rat small mesenteric artery and a hypotensive agent. The vascular response involves activation of Ca2+-sensitive K+ channels and is not mediated by CB1 receptors, but unexpectedly enhanced by antagonists of the ‘endothelial anandamide’ receptor. In endothelial cells, LPI utilizes PLC-IP3 and perhaps ROCK-RhoA pathways to elevate intracellular Ca2+. Overall, these findings support an endothelial site of action for LPI and suggest a possible role for GPR55 in vasculature. PMID:25652040

  15. Congenital basilar impression: correlated neurological syndromes.

    PubMed

    Bassi, P; Corona, C; Contri, P; Paiocchi, A; Loiero, M; Mangoni, A

    1992-01-01

    A series of 8 cases operated on for symptomatic basilar impression associated with occipitalization of the atlas is reported (with or without atlantoaxial dislocation). Symptoms of onset (such as the frequent association between nuchal pain and vertigo) are emphasized and analyzed in relation to the pathogenetic mechanism that underlies the multiform symptomatology of the basilar impression. The diagnostic workup for basilar impression foresees X-rays, magnetic resonance imaging and computed tomography. The most important diagnostic problem is that of considering the possible existence of such a pathology in the presence of very common symptoms such as nuchal pain and vertigo. The surgical treatment has certainly been useful both to improve and to stabilize the symptomatology mainly when there is atlantoaxial dislocation. In fact in these cases the symptomatology is more severe and progressive for the alteration of the transverse ligament of the atlas secondary to abnormal mechanical stimuli.

  16. Development of sympathetic innervation to proximal and distal arteries of the rat mesentery.

    PubMed Central

    Hill, C E; Hirst, G D; van Helden, D F

    1983-01-01

    The changes which occur during the post-natal development of sympathetic innervation to proximal and distal arteries of the rat mesentery have been examined using intracellular recording and histochemical techniques. In the youngest animals examined, single perivascular stimuli initiated slow depolarizing potentials which were not calcium-dependent. After day 4, single stimuli failed to initiate membrane potential changes in a proportion of preparations. This stage coincided with the period of extensive ramification of sympathetic nerve fibres over the surface of the arterioles. From day 9 onwards, membrane potential changes were again initiated by single stimuli in the distal arteries. These responses were distinct from those recorded from the younger animals and in many ways resembled excitatory junction potentials recorded from the arteries of mature animals. There was a gradient in the development of the innervation to the arteries of the rat mesentery, with that to the distal vessels maturing earlier than that to the more proximal vessels. PMID:6875954

  17. Removal of anterior clinoid process for basilar tip aneurysm: clinical and cadaveric analysis.

    PubMed

    Sato, S; Sato, M; Oizumi, T; Nishizawa, M; Ishikawa, M; Inamasu, G; Kawase, T

    2001-06-01

    The difficulty in the operation for basilar tip aneurysm is the restriction in surgical working space. To resolve this problem, aggressive skull base surgery has been reported, but these techniques are not prevalent. Pterional and subtemporal approaches are commonly used for basilar tip aneurysms. In an attempt to increase the surgical working space during the pterional approach, the anterior clinoid process and the roof of the optic nerve were removed extradurally to increase the mobilization of the intracranial internal carotid artery and optic nerve. The effects of removing the anterior clinoid process and microanatomy in the perioptic area were analyzed by cadaveric procedures in 10 cases (20 sides). With this procedure, the internal carotid artery can be retracted medially with a spatula 6.1 +/- 0.8 mm (mean +/- SD). The length and the area of dural fold in the bone defect region in the optic canal roof are 2.1 mm and 13.6 mm. In 10 clinical cases, this procedure allowed enough space to approach the basilar tip aneurysm without disturbing the internal carotid artery blood flow. The clinical outcome was satisfactory.

  18. MR imaging of familial basilar impression.

    PubMed

    Bewermeyer, H; Dreesbach, H A; Hünermann, B; Heiss, W D

    1984-10-01

    Basilar impression was found in three members of one family. The mother showed an asymptomatic deformity, her eldest son complained of headache, drop-attacks, nystagmus, unilateral ophthalmoplegia, and ataxia; the middle son presented with headache, nystagmus, and hemiparesis. Magnetic resonance (MR) imaging demonstrated convexobasia of various degrees with elevation of the upper spine and malformation of the occipital bone. The medulla oblongata and the pons were flattened and dislocated backward in two cases. Chiari malformation was present in one case and mild hydrocephalus in another. A comparison of MR with CT imaging demonstrates some advantages of the former method in the assessment of the neural structures directly involved in basilar impression.

  19. Pitfalls of invasive blood pressure monitoring using the caudal ventral artery in rats

    PubMed Central

    Ohta, Hiroki; Ohki, Takao; Kanaoka, Yuji; Koizumi, Makoto; Okano, Hirotaka J.

    2017-01-01

    During rodent experiments, the caudal ventral artery (CVA) is useful for blood pressure (BP) measurement. However, CVA measurements may not reflect the true BP. This study was performed to verify the site-specific accuracy of invasive arterial BP monitoring during surgery in rats. Invasive arterial BP was simultaneously measured in rats via the CVA and the common carotid artery (CCA). The BP values were analysed while the rats were subjected to cooling of the head or tail. Additionally, the rats underwent digital subtraction angiography and histological examination of these arteries. The pressure difference was more significant in the tail cooling group than in the head cooling group. Digital subtraction angiography revealed that angiospasms occurred more frequently in the CVA than in the CCA upon cooling. This phenomenon was supported by histological analysis, which showed that the tunica media area was significantly larger in the CVA than in the CCA. CVA pressure is susceptible to environmental changes and may not accurately reflect the true BP without a strictly controlled laboratory environment. Therefore, understanding the pitfalls of this method is necessary to avoid cooling of the tail during BP measurement. PMID:28198822

  20. Implication of PDGF signaling in cigarette smoke-induced pulmonary arterial hypertension in rat.

    PubMed

    Xing, Ai-ping; Hu, Xiao-yun; Shi, Yi-wei; Du, Yong-cheng

    2012-07-01

    Pulmonary artery hypertension (PAH) is a severe disease characterized with progressive increase of pulmonary vascular resistance that finally causes right ventricular failure and premature death. Cigarette smoke (CS) is a major factor of Chronic Obstructive Pulmonary Disease (COPD) that can lead to PAH. However, the mechanism of CS-induced PAH is poorly understood. Mounting evidence supports that pulmonary vascular remodeling play an important role in the development of PAH. PDGF signaling has been demonstrated to be a major mediator of vascular remodeling implicated in PAH. However, the association of PDGF signaling with CS-induced PAH has not been documented. In this study, we investigated CS-induced PAH in rats and the expression of platelet derived growth factor (PDGF) and PDGF receptor (PDGFR) in pulmonary artery. Forty male rats were randomly divided into control group and three experimental groups that were exposed to CS for 1, 2, and 3 months, respectively. CS significantly increased right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI). Histology staining demonstrated that CS significantly increased the thickness of pulmonary artery wall and collagen deposition. The expression of PDGF isoform B (PDGF-B) and PDGF receptor beta (PDGFRβ) were significantly increased at both protein and mRNA levels in pulmonary artery of rats with CS exposure. Furthermore, Cigarette smoke extract (CSE) significantly increased rat pulmonary artery smooth muscle cell (PASMC) proliferation, which was inhibited by PDGFR inhibitor Imatinib. Thus, our data suggest PDGF signaling is implicated in CS-induced PAH.

  1. Evaluation of plasma von Willebrand factor as a biomarker for acute arterial damage in rats.

    PubMed

    Newsholme, S J; Thudium, D T; Gossett, K A; Watson, E S; Schwartz, L W

    2000-01-01

    Plasma von Willebrand factor (vWF) was evaluated as a potential biomarker of acute arterial damage in rats after a vasotoxic dose of the dopaminergic vasodilator, fenoldopam (FP). Male Sprague-Dawley rats were given FP or isotonic saline by subcutaneous injection, and plasma vWF was measured at 2, 6, and 24 hours after challenge. Mean plasma vWF values increased in FP-treated rats compared to controls at 2 hours (167 vs 122%; p < 0.05) and 6 hours postdose (172 vs 130%; p < 0.01) but were comparable to control values after 24 hours. Mesenteric arterial lesions were observed microscopically in all FP-treated rats 24 hours postdose but were not present in rats at 1, 2, 4, 6, or 8 hours after FP challenge. Further, plasma vWF concentrations increased in saline-treated rats after only the minimal perturbation of repeated venipuncture. These results indicate an early, minimal, and transient release of vWF that precedes the onset of morphologically evident vascular damage. The minimal increases in plasma vWF concentrations were of limited predictive value, may be more reflective of an acute-phase reactant response, and were not considered a reliable biomarker of acute FP-induced arterial damage in the rat.

  2. Hypoxic pulmonary vasoconstriction and vascular contractility in monocrotaline-induced pulmonary arterial hypertensive rats

    PubMed Central

    Kim, Hae Jin

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a progressive disease characterized by vascular remodeling of pulmonary arteries (PAs) and increased vascular resistance in the lung. Monocrotaline (MCT), a toxic alkaloid, is widely used for developing rat models of PAH caused by injury to pulmonary endothelial cells; however, characteristics of vascular functions in MCT-induced PAH vary and are not fully understood. Here, we investigated hypoxic pulmonary vasoconstriction (HPV) responses and effects of various vasoconstrictors with isolated/perfused lungs of MCT-induced PAH (PAH-MCT) rats. Using hematoxylin and eosin staining, we confirmed vascular remodeling (i.e., medial thickening of PA) and right ventricle hypertrophy in PAH-MCT rats. The basal pulmonary arterial pressure (PAP) and PAP increase by a raised flow rate (40 mL/min) were higher in the PAH-MCT than in the control rats. In addition, both high K+ (40 mM KCl)- and angiotensin II-induced PAP increases were higher in the PAH-MCT than in the control rats. Surprisingly, application of a nitric oxide synthase inhibitor, L-NG-Nitroarginine methyl ester (L-NAME), induced a marked PAP increase in the PAH-MCT rats, suggesting that endothelial functions were recovered in the three-week PAH-MCT rats. In addition, the medial thickening of the PA was similar to that in chronic hypoxia-induced PAH (PAH-CH) rats. However, the HPV response (i.e., PAP increased by acute hypoxia) was not affected in the MCT rats, whereas HPV disappeared in the PAH-CH rats. These results showed that vascular contractility and HPV remain robust in the MCT-induced PAH rat model with vascular remodeling. PMID:27847441

  3. Basilar impression in a child with hypochondroplasia.

    PubMed

    Wong, V C; Fung, C F

    1991-01-01

    A 4-year-old boy with hypochondroplasia presented with delay in gross motor development. Magnetic resonance imaging demonstrated basilar impression with compression at the craniovertebral junction and mild degree of hydrocephalus. Posterior fossa decompression resulted in improvement in neurologic function and relief of hydrocephalus.

  4. Effects of CD11b/18 monoclonal antibody on rats with permanent middle cerebral artery occlusion.

    PubMed Central

    Garcia, J. H.; Liu, K. F.; Bree, M. P.

    1996-01-01

    The progression of a lesion from ischemic injury to infarct, after the permanent occlusion of a middle cerebral artery, may be influenced by the influx of leukocytes into the ischemic territory. We aimed to evaluate the effectiveness of treating rats that had permanent middle cerebral artery occlusion with a single dose of an anti-CD11b/18 monoclonal antibody injected 1 hour after the arterial occlusion. To mimic the clinical situation of patients with ischemic strokes who may be treated within 1 hour of the ischemic event, the artery remained occluded. Forty-one adult Wistar rats had permanent middle cerebral artery occlusion, and one was subjected to a sham operation. One hour later, 22 rats received CD11b/18 monoclonal antibody and an additional 20 were injected either with a nonspecific antibody (n = 10) or a buffer solution (n = 10). Experiments were terminated at intervals ranging 12 to 96 hours after the arterial occlusion. Endpoints included neurological testing, daily evaluation of body weight, counts of white blood cells in the peripheral blood, measurement of the area of pallor in the ischemic hemisphere, counts of necrotic neurons, and counts of leukocytes sequestered in the ischemic hemisphere. In experiments terminated 12 hours after the arterial occlusion (n = 4), there were fewer necrotic neurons in the group treated with the CD11b/18 monoclonal antibody compared with the two controls (P < .05), but this difference was not reflected in the neurological scores. Numbers of necrotic neurons in experiments terminated > 12 hours later were not different among the three subgroups. White blood cell counts in peripheral blood were lower in animals with arterial occlusion injected with the monoclonal antibody CD11b/18 (P < .05); numbers of leukocytes sequestered in the ischemic hemisphere were not different in the three groups. Neither changes in body weight nor in the volume of the area of pallor were significantly different among the three groups. Images

  5. Resveratrol Improved Flow-Mediated Outward Arterial Remodeling in Ovariectomized Rats with Hypertrophic Effect at High Dose

    PubMed Central

    Petit, Marie; Guihot, Anne-Laure; Grimaud, Linda; Vessieres, Emilie; Toutain, Bertrand; Menet, Marie-Claude; Nivet-Antoine, Valérie; Arnal, Jean-François; Loufrani, Laurent; Procaccio, Vincent; Henrion, Daniel

    2016-01-01

    Objectives Chronic increases in blood flow in resistance arteries induce outward remodeling associated with increased wall thickness and endothelium-mediated dilatation. This remodeling is essential for collateral arteries growth following occlusion of a large artery. As estrogens have a major role in this remodeling, we hypothesized that resveratrol, described as possessing phytoestrogen properties, could improve remodeling in ovariectomized rats. Methods Blood flow was increased in vivo in mesenteric arteries after ligation of adjacent arteries in 3-month old ovariectomized rats treated with resveratrol (5 or 37.5 mg/kg per day: RESV5 or RESV37.5) or vehicle. After 2 weeks arterial structure and function were measured in vitro in high flow (HF) and normal flow (NF) arteries isolated from each rat. Results Arterial diameter was greater in HF than in NF arteries in ovariectomized rats treated with RESV5 or RESV37.5, not in vehicle-treated rats. In mice lacking estrogen receptor alpha diameter was equivalent in HF and NF arteries whereas in mice treated with RESV5 diameter was greater in HF than in NF vessels. A compensatory increase in wall thickness and a greater phenylephrine-mediated contraction were observed in HF arteries. This was more pronounced in HF arteries from RESV37.5-treated rats. ERK1/2 phosphorylation, involved in hypertrophy and contraction, were higher in RESV37.5-treated rats than in RESV5- and vehicle-treated rats. Endothelium-dependent relaxation was greater in HF than in NF arteries in RESV5-treated rats only. In HF arteries from RESV37.5-treated rats relaxation was increased by superoxide reduction and markers of oxidative stress (p67phox, GP91phox) were higher than in the 2 other groups. Conclusion Resveratrol improved flow-mediated outward remodeling in ovariectomized rats thus providing a potential therapeutic tool in menopause-associated ischemic disorders. This effect seems independent of the estrogen receptor alpha. Nevertheless

  6. Permanent catheterization of the carotid artery induces kidney infection and inflammation in the rat.

    PubMed

    Fonseca, Uno N K; Nielsen, Sanne Gram; Hau, Jann; Hansen, Axel Kornerup

    2010-01-01

    Catheterization of the carotid artery and the jugular vein is one of the most commonly applied techniques used to gain intravascular access in pharmacology studies on rodents. We catheterized 10 rats by conventional clean techniques, 10 rats by aseptic techniques and 10 rats by conventional clean techniques using a heparin-coated catheter rather than an ordinary non-coated polyvinyl chloride catheter. In all groups, approximately 80% of the rats developed kidney infection and 10-30% of the rats were septicaemic. Clinical chemistry did not indicate severe kidney damage, but serum haptoglobin and body temperature rises indicated an inflammatory response in rats independent of the surgical method. Heparin coating did not seem to improve the usability of the catheter. It is concluded that this commonly used method for catheterization has an impact on animals that may very well render them unsuitable for the purpose, e.g. pharmacological research, and therefore an alternative method would be preferable.

  7. Contribution of the vertebral artery to cerebral circulation in the rat snake Elaphe obsoleta

    NASA Technical Reports Server (NTRS)

    Zippel, K. C.; Lillywhite, H. B.; Mladinich, C. R.; Hargens, A. (Principal Investigator)

    1998-01-01

    Blood supplying the brain in vertebrates is carried primarily by the carotid vasculature. In most mammals, cerebral blood flow is supplemented by the vertebral arteries, which anastomose with the carotids at the base of the brain. In other tetrapods, cerebral blood is generally believed to be supplied exclusively by the carotid vasculature, and the vertebral arteries are usually described as disappearing into the dorsal musculature between the heart and head. There have been several reports of a vertebral artery connection with the cephalic vasculature in snakes. We measured regional blood flows using fluorescently labeled microspheres and demonstrated that the vertebral artery contributes a small but significant fraction of cerebral blood flow (approximately 13% of total) in the rat snake Elaphe obsoleta. Vascular casts of the anterior vessels revealed that the vertebral artery connection is indirect, through multiple anastomoses with the inferior spinal artery, which connects with the carotid vasculature near the base of the skull. Using digital subtraction angiography, fluoroscopy, and direct observations of flow in isolated vessels, we confirmed that blood in the inferior spinal artery flows craniad from a point anterior to the vertebral artery connections. Such collateral blood supply could potentially contribute to the maintenance of cerebral circulation during circumstances when craniad blood flow is compromised, e.g., during the gravitational stress of climbing.

  8. Dynamics of enhanced mitochondrial respiration in female compared with male rat cerebral arteries.

    PubMed

    Rutkai, Ibolya; Dutta, Somhrita; Katakam, Prasad V; Busija, David W

    2015-11-01

    Mitochondrial respiration has never been directly examined in intact cerebral arteries. We tested the hypothesis that mitochondrial energetics of large cerebral arteries ex vivo are sex dependent. The Seahorse XFe24 analyzer was used to examine mitochondrial respiration in isolated cerebral arteries from adult male and female Sprague-Dawley rats. We examined the role of nitric oxide (NO) on mitochondrial respiration under basal conditions, using N(ω)-nitro-l-arginine methyl ester, and following pharmacological challenge using diazoxide (DZ), and also determined levels of mitochondrial and nonmitochondrial proteins using Western blot, and vascular diameter responses to DZ. The components of mitochondrial respiration including basal respiration, ATP production, proton leak, maximal respiration, and spare respiratory capacity were elevated in females compared with males, but increased in both male and female arteries in the presence of the NOS inhibitor. Although acute DZ treatment had little effect on mitochondrial respiration of male arteries, it decreased the respiration in female arteries. Levels of mitochondrial proteins in Complexes I-V and the voltage-dependent anion channel protein were elevated in female compared with male cerebral arteries. The DZ-induced vasodilation was greater in females than in males. Our findings show that substantial sex differences in mitochondrial respiratory dynamics exist in large cerebral arteries and may provide the mechanistic basis for observations that the female cerebral vasculature is more adaptable after injury.

  9. Effect of age on noradrenaline responses in rat tail artery and aorta: role of endothelium.

    PubMed

    Tabernero, A; Vila, E

    1995-10-01

    1. We have analysed the impact of ageing on the contractile responses induced by noradrenaline on endothelium intact and denuded aorta and tail artery rings from Sprague-Dawley rats. In addition, the influence of age on noradrenaline stimulation of phosphoinositide hydrolysis was investigated. 2. The sensitivity and the phosphatidylinositol hydrolysis to noradrenaline in aorta and tail artery were not modified by age. Intact tail artery rings showed a greater maximal contraction (Emax) to noradrenaline in old as compared to young animals. However, no Emax modification by age was observed in aorta (intact or denuded) and in denuded tail artery rings. 3. Removal of endothelial cells resulted in an increase of noradrenaline sensitivity but not the Emax in aorta from each age group. 4. In contrast, the absence of endothelium did not modify (young rats) or diminish (aged rats) the alpha 1-adrenoceptor-mediated responses in tail artery. 5. These results seem to indicate that: (1) there is no influence of age on noradrenaline responses in presence of endothelium; and (2) responses in denuded preparations seem to indicate a differential role of endothelium on noradrenaline responses obtained in different vascular beds.

  10. Light and scanning electron microscopic and immunohistochemical studies on permeability of hypertensive rat mesenteric arteries.

    PubMed

    Suzuki, K; Kawaharada, U; Takatama, M; Ooneda, G

    1985-09-01

    Experimental hypertensive rats were intravenously injected with carbon and iron as tracers, and their mesenteric arteries exhibiting hypertensive arterial lesions were observed by light and scanning electron microscopy and immunohistochemistry. Early arterial lesions showing intense medial damages, deposition of fibrinoid substance consisting of fibrin in the intima and/or media, and granulation tissue in the adventitia were characterized by marked insudation of intravenously injected tracers. Scanning electron microscopy demonstrated numerous leukocytes and platelets adhering to endothelial surface, opened endothelial cell junctions, and desquamation of these cells. Immunohistochemistry revealed laminin and low stainability of fibronectin in the subendothelium. Advanced lesions showed deposition of a large amount of fibrinoid substance and no insudation of tracers in the intima, but scanning electron microscopy manifested opening of endothelial cell junctions, desquamation of endothelial cells, and adherence of leukocytes and platelets. Immunohistochemistry revealed fibronectin in the intima and laminin just beneath the endothelium. In the healed lesions disclosing fibrocellular intimal thickening, there was no insudation of tracers. Scanning electron microscopy showed opened endothelial cell junctions, endothelial cell defects, and adherence of leukocytes and platelets. There were fibronectin in the intima and laminin beneath the endothelium. It was suggested that the opening of endothelial cells junctions and desquamation of endothelial cells would be necessary for the arterial increased permeability in hypertensive rats, and that fibrin-fibronectin complex, fibronectin-acid mucopolysaccharide complex, and basement membrane would together inhibit the increased permeability in the mesenteric arteries of hypertensive rats in spite of endothelial cell injuries and their defects.

  11. Comparative morphological and histochemical aspects of selected arteries in the chicken and rat.

    PubMed

    Fischer, V W; Kloetzer, W S; Baker, K E

    1977-01-01

    Morphologic and histochemical characteristics of selected portions of normal arteries from two species known to differ in susceptibility to vascular disease were examined. Arteries were classified as predominantly elastic, muscular or complex. Species differences in the structural organization of the abdominal aortic segment were observed. Arterial mucopoly-saccharides were stained more intensely in the tunica intima and media of chicken vessels than within those of the rat, and tended to be most concentrated in proximity of the internal elastic membrane. Histochemical procedures for the demonstration of enzymatic activity revealed inter-and intraspecies variations in vascular metabolism. Pronounced differences in reaction intensity for hydroxybutyrate dehydrogenase and malic enzyme, affecting chicken and rat coronary arteries, were noted. In contrast, theses vessels displayed only minimal activity for acid phosphatase. Marked endothelial deposition of alkaline phosphatase reaction products in the arteries of the chicken was demonstrated, while this enzyme's activity in the vessels of the rat was restricted to the tunica adventitia. The implications of these structural and histochemical factors with regard to vascular susceptibility to disease were discussed.

  12. Mechanisms of noradrenaline-induced vasorelaxation in isolated femoral arteries of the neonatal rat.

    PubMed

    Nishina, H; Ozaki, T; Hanson, M A; Poston, L

    1999-06-01

    Isolated arteries from the femoral circulation of Wistar rats mounted on a small vessel myograph demonstrated age related tension development to noradrenaline (NA, 1 x 10(-8) - 5 x 10(-5) M) day 20 greater than day 10 (P<0.005); day 100 greater than day 20 (P<0.001) and depolarizing potassium (125 mM) buffer day 20 greater than day 10 (P<0.001). NA evoked dilatation in femoral arteries from neonatal rats (10 days) when added to unstimulated vessels or to those preconstricted with the thromboxane mimetic, U46619. Relaxation to NA was inhibited by L-NAME (0.1 mM) (P<0.001), endothelial removal (P<0.001) and the alpha2-adrenoceptor antagonist, yohimbine (0.1 microM) (P<0.001). Alpha1- or beta-adrenoceptor antagonism was without effect. Relaxation was evoked in femoral arteries of the 10-day-old rats by the alpha2-adrenoceptor agonist UK14304 (1 x 10(-8) - 5 x 10(-5) M). This relaxation was also abolished by L-NAME (0.1 mM) (P<0.001) or endothelial removal (P<0.001). Alpha2-adrenoceptor-mediated vasorelaxation was the predominant response to NA stimulation in femoral arteries of the neonatal rat. These responses were endothelium-dependent and were NO-mediated.

  13. Effects of glucagon-like peptide-1 in diabetic rat small resistance arteries.

    PubMed

    Bayram, Zeliha; Nacitarhan, Cahit; Ozdem, Sadi S

    2014-09-01

    We investigated the functional effects of glucagon-like peptide-1 [GLP-1(7-36)] and GLP-1(9-36) and the mechanism(s) playing a role in the effects of these agents in isolated small resistance arteries from control and diabetic rats. Cumulative concentrations of GLP-1(7-36) and GLP-1(9-36) produced concentration-dependent relaxations in endothelium-intact but not endothelium-denuded arteries that were significantly decreased in diabetic rats. GLP-1 receptor antagonist exendin(9-39) significantly inhibited responses to GLP-1 analogs. Nitric oxide/cyclic guanosine monophosphate pathway blockers, but not indomethacin, significantly decreased responses to GLP-1(7-36) or GLP-1(9-36) in control and diabetic rats. 4-Aminopyridine or glibenclamide incubation did not alter relaxations to GLP-1 analogs. GLP-1(7-36)- and GLP-1(9-36)-induced relaxations were blunted significantly and to similar extends by charybdotoxin and apamin combination in control and diabetic rats. Catalase did not affect, whereas superoxide dismutase (SOD) caused a significant increase in relaxations to GLP-1 analogs only in diabetic rats. We provided evidence about the relaxant effects of GLP-1(7-36) and GLP-1(9-36) in resistance arteries that were reduced in diabetic rats. Both calcium-activated potassium channels and endothelium played a major role in relaxations. Increment in certain reactive oxygen species and/or reduction in superoxide dismutase function might play a role in reduced relaxant responses of resistance arteries to GLP-1(7-36) and GLP-1(9-36) in diabetic rats.

  14. The stress of maternal separation causes misprogramming in the postnatal maturation of rat resistance arteries.

    PubMed

    Reho, John J; Fisher, Steven A

    2015-11-01

    We examined the effect of stress in the first 2 wk of life induced by brief periods of daily maternal separation on developmental programming of rat small resistance mesenteric arteries (MAs). In MAs of littermate controls, mRNAs encoding mediators of vasoconstriction, including the α1a-adrenergic receptor, smooth muscle myosin heavy chain, and CPI-17, the inhibitory subunit of myosin phosphatase, increased from after birth through sexual [postnatal day (PND) 35] and full maturity, up to ∼80-fold, as measured by quantitative PCR. This was commensurate with two- to fivefold increases in maximum force production to KCl depolarization, calcium, and the α-adrenergic agonist phenylephrine, and increasing systolic blood pressure. Rats exposed to maternal separation stress as neonates had markedly accelerated trajectories of maturation of arterial contractile gene expression and function measured at PND14 or PND21 (weaning), 1 wk after the end of the stress protocol. This was suppressed by the α-adrenergic receptor blocker terazosin (0.5 mg·kg ip(-1)·day(-1)), indicating dependence on stress activation of sympathetic signaling. Due to the continued maturation of MAs in control rats, by sexual maturity (PND35) and into adulthood, no differences were observed in arterial function or response to a second stressor in rats stressed as neonates. Thus early life stress misprograms resistance artery smooth muscle, increasing vasoconstrictor function and blood pressure. This effect wanes in later stages, suggesting plasticity during arterial maturation. Further studies are indicated to determine whether stress in different periods of arterial maturation may cause misprogramming persisting through maturity and the potential salutary effect of α-adrenergic blockade in suppression of this response.

  15. Elevated Testosterone Reduces Uterine Blood Flow, Spiral Artery Elongation, and Placental Oxygenation in Pregnant Rats.

    PubMed

    Gopalakrishnan, Kathirvel; Mishra, Jay S; Chinnathambi, Vijayakumar; Vincent, Kathleen L; Patrikeev, Igor; Motamedi, Massoud; Saade, George R; Hankins, Gary D; Sathishkumar, Kunju

    2016-03-01

    Elevated maternal testosterone levels are shown to cause fetal growth restriction, eventually culminating in sex-specific adult-onset hypertension that is more pronounced in males than in females. In this study, we tested whether uteroplacental and fetoplacental disturbances underlie fetal growth restriction and if these changes vary in male and female placentas. Pregnant Sprague-Dawley rats were injected with vehicle (n=16) or testosterone propionate (0.5 mg/kg per day from gestation day 15-19; n=16). On gestation day 20, we quantified uterine artery blood flow using microultrasound, visualized placental arterial network using x-ray microcomputed tomography, determined fetoplacental hypoxia using pimonidazole and hypoxia-inducible factor-1α, and used Affymetrix array to determine changes in placental expression of genes involved in vascular development. Plasma testosterone levels increased 2-fold in testosterone-injected rats. Placental and fetal weights were lower in rats with elevated testosterone. Uterine artery blood flow was lower, and resistance index was higher in the testosterone group. Radial and spiral artery diameter and length, the number of fetoplacental arterial branches, and umbilical artery diameter were reduced in the testosterone group. In addition, markers of hypoxia in the placentas and fetuses were elevated in the testosterone group. The magnitude of changes in placental vasculature and hypoxia was greater in males than in females and was associated with sex-specific alteration of unique sets of genes involved in angiogenesis and blood vessel morphogenesis. The results demonstrate that elevated testosterone during gestation induces a decrease in uterine arterial blood flow and fetal sex-related uteroplacental vascular changes, which may set the stage for subsequent sex differences in adult-onset diseases.

  16. ELEVATED TESTOSTERONE REDUCES UTERINE BLOOD FLOW, SPIRAL ARTERY ELONGATION AND PLACENTAL OXYGENATION IN PREGNANT RATS

    PubMed Central

    Gopalakrishnan, Kathirvel; Mishra, Jay S.; Chinnathambi, Vijayakumar; Vincent, Kathleen L.; Patrikeev, Igor; Motamedi, Massoud; Saade, George R.; Hankins, Gary D.; Sathishkumar, Kunju

    2016-01-01

    Elevated maternal testosterone levels are shown to cause fetal growth restriction, eventually culminating in sex-specific adult-onset hypertension that is more pronounced in males than females. In this study, we tested whether utero- and feto-placental disturbances underlie fetal growth restriction and if these changes vary in male and female placentas. Pregnant Sprague-Dawley rats were injected with vehicle (n=16) or testosterone propionate (0.5 mg/Kg/day from gestation day 15–19; n=16). On gestation day 20, we quantified uterine artery blood flow using microultrasound, visualized placental arterial network using x-ray microcomputed tomography, determined fetoplacental hypoxia using pimonidazole and hypoxia-inducible factor-1α, and used Affymetrix array to determine changes in placental expression of genes involved in vascular development. Plasma testosterone levels increased 2-fold in testosterone-injected rats. Placental and fetal weights were lower in rats with elevated testosterone. Uterine artery blood flow was lower and resistance index was higher in testosterone group. Radial and spiral artery diameter and length, number of fetoplacental arterial branches, and umbilical artery diameter were reduced in the testosterone group. In addition, markers of hypoxia in the placentas and fetuses were elevated in the testosterone group. The magnitude of changes in placental vasculature and hypoxia were greater in males than females and were associated with sex-specific alteration of unique sets of genes involved in angiogenesis and blood vessel morphogenesis. The results demonstrate that elevated testosterone during gestation induces a decrease in uterine arterial blood flow and fetal sex-related uteroplacental vascular changes, which may set the stage for subsequent sex differences in adult-onset diseases. PMID:26781277

  17. Endothelium-dependent and-independent relaxation induced by resveratrol in rat superior mesenteric arteries

    PubMed Central

    Chen, Yulong; Xu, Cangbao; Wei, Yahui; Zhang, Yaping; Cao, Ailan

    2016-01-01

    Resveratrol (Res) is a specific agonist of sirtuin 1, and has many cardioprotective effects. Although Res is able to relax various vascular beds, its pharmacological properties in rat superior mesenteric arteries and the underlying mechanism are not well clarified. The aim of present study was to investigate the vasorelaxant effects of Res on rat superior mesenteric arteries and the mechanisms involved. The isometric tension of rat superior mesenteric arterial rings was recorded in vitro using myography. It was found that Res concentration-dependently relaxed endothelium-intact superior mesenteric artery rings pre-contracted by phenylephrine hydrochloride (Emax, 97.66±0.79%; pD2, 4.30±0.14) or KCl (Emax, 101.3±0.6%; pD2, 4.12±0.03). The vasorelaxant effect of Res on the superior mesenteric artery rings was partially endothelium-dependent. NG-nitro-L-arginine methyl ester (100 µM) significantly inhibited the Res-induced vasorelaxant effect. However, 1H-[1,2,4]oxadiazolo[4,3-a] quinoxalin-1-one (10 µM) and indomethacin (5 µM) each had no effect on the Res-induced vasorelaxation. In artery rings without endothelium, the vasorelaxation induced by Res was attenuated by 4-aminopyridine (100 µM) and glibenclamide (10 µM). However, barium chloride dehydrate (10 µM) and tetraethylammonium chloride (1 mM) did not affect the vasorelaxation induced by Res. Moreover, Res also inhibited the contraction induced by an increase in external calcium concentration in Ca2+-free medium plus KCl (60 mM). These results suggest that Res induces relaxation in superior mesenteric arterial rings through an endothelium-dependent pathway, involving nitric oxide release, and also through an endothelium-independent pathway, with opening of voltage-dependent K+ channels and ATP-sensitive K+ channels and blockade of extracellular Ca2+ influx. PMID:27698719

  18. Decreased interleukin-2 production by rat uterine artery, aorta and uterine tissues during pregnancy.

    PubMed

    Huleihel, M; Leiberman, J R; Yohay, D; Glezerman, M

    1996-06-01

    Changes in size and function during pregnancy are unique to the uterine artery. The aim of this study was to determine the interleukin (IL)-6 activity of the uterine artery wall tissue in pregnant rats. A total of 18 Charles River white rats (nine virgin and nine in midpregnancy) were used for the study. Bilateral uterine arteries were obtained, together with reference tissues from aorta and uterus. IL-6 production was measured as optical density (OD)/mg protein, in control culture media, and in the presence of stimulants including IL-1, tumour necrosis factor alpha and lipopolysaccharide. Polyclonal rabbit anti-human IL-6 antibodies were used to assess IL-6 activity. In control culture medium, uterine artery tissue samples from virgin rats produced significantly higher concentrations of IL-6 than samples obtained from pregnancy animals (1.8 +/- 0.3 versus 0.9 +/- 0.25 OD/mg protein respectively (mean +/- SE, P = 0.001). Stimulation by lipopolysaccharide increased IL-6 activity of the uterine artery wall. In comparison with the uterine artery, the aorta produced higher activities of IL-6, and its production in virgin animal samples was higher than during pregnancy. Stimulants increased IL-6 production by both aorta and uterus tissues. Neutralization of IL-6 activity was obtained in a range of 77-93% in all samples. The lower level of IL-6 activity during pregnancy in the uterine artery and in reference tissues including aorta and uterus, may be related to acceptance of pregnancy by maternal tissues.

  19. A novel embolic middle cerebral artery occlusion model induced by thrombus formed in common carotid artery in rat.

    PubMed

    Ma, Yin-Zhong; Li, Li; Song, Jun-Ke; Niu, Zi-Ran; Liu, Hai-Feng; Zhou, Xiang-Shan; Xie, Fu-Sheng; Du, Guan-Hua

    2015-12-15

    Stroke is a major cause of death and disability worldwide. However, treatment options to date are very limited. To meet the need for validating the novel therapeutic approaches and understanding the physiopathology of the ischemic brain injury, experimental stroke models were critical for preclinical research. However, commonly used embolic stroke models are reluctant to mimic the clinical situation and not suitable for thrombolytic timing studies. In this paper, we established a standard method for producing a rat embolic stroke model with autologous thrombus formed within the common carotid artery (CCA) by constant galvanic stimulation. Then the thrombus was shattered and channeled into the origin of the MCA and small (lacunar) artery. To identify the success of MCA occlusion, regional cerebral blood flow was monitored, neurological deficits and infarct volumes were measured at 2, 4 and 6h postischemia. This model developed a predictable infarct volume (38.37 ± 2.88%) and gradually reduced blood flow (20% of preischemic baselines) within the middle cerebral artery (MCA) territory. The thrombus occluded in the MCA was able to be lysed by a tissue-type plasminogen activator (t-PA) within 4h postischemia. The techniques presented in this paper would help investigators to overcome technical problems for stroke research.

  20. Exercise training enhances insulin-stimulated nerve arterial vasodilation in rats with insulin-treated experimental diabetes.

    PubMed

    Olver, T Dylan; McDonald, Matthew W; Grisé, Kenneth N; Dey, Adwitia; Allen, Matti D; Medeiros, Philip J; Lacefield, James C; Jackson, Dwayne N; Rice, Charles L; Melling, C W James; Noble, Earl G; Shoemaker, J Kevin

    2014-06-15

    Insulin stimulates nerve arterial vasodilation through a nitric oxide (NO) synthase (NOS) mechanism. Experimental diabetes reduces vasa nervorum NO reactivity. Studies investigating hyperglycemia and nerve arterial vasodilation typically omit insulin treatment and use sedentary rats resulting in severe hyperglycemia. We tested the hypotheses that 1) insulin-treated experimental diabetes and inactivity (DS rats) will attenuate insulin-mediated nerve arterial vasodilation, and 2) deficits in vasodilation in DS rats will be overcome by concurrent exercise training (DX rats; 75-85% VO2 max, 1 h/day, 5 days/wk, for 10 wk). The baseline index of vascular conductance values (VCi = nerve blood flow velocity/mean arterial blood pressure) were similar (P ≥ 0.68), but peak VCi and the area under the curve (AUCi) for the VCi during a euglycemic hyperinsulinemic clamp (EHC; 10 mU·kg(-1)·min(-1)) were lower in DS rats versus control sedentary (CS) rats and DX rats (P ≤ 0.01). Motor nerve conduction velocity (MNCV) was lower in DS rats versus CS rats and DX rats (P ≤ 0.01). When compared with DS rats, DX rats expressed greater nerve endothelial NOS (eNOS) protein content (P = 0.04). In a separate analysis, we examined the impact of diabetes in exercise-trained rats alone. When compared with exercise-trained control rats (CX), DX rats had a lower AUCi during the EHC, lower MNCV values, and lower sciatic nerve eNOS protein content (P ≤ 0.03). Therefore, vasa nervorum and motor nerve function are impaired in DS rats. Such deficits in rats with diabetes can be overcome by concurrent exercise training. However, in exercise-trained rats (CX and DX groups), moderate hyperglycemia lowers vasa nervorum and nerve function.

  1. Bradykinin B2 receptor contributes to the exaggerated muscle mechanoreflex in rats with femoral artery occlusion

    PubMed Central

    Lu, Jian; Xing, Jihong

    2013-01-01

    Static muscle contraction activates the exercise pressor reflex, which in turn increases sympathetic nerve activity (SNA) and blood pressure (BP). Bradykinin (BK) is considered as a muscle metabolite responsible for modulation of the sympathetic and cardiovascular responses to muscle contraction. Prior studies have suggested that kinin B2 receptor mediates the effects of BK on the reflex SNA and BP responses during stimulation of skeletal muscle afferents. In patients with peripheral artery disease and a rat model with femoral artery ligation, amplified SNA and BP responses to static exercise were observed. This dysfunction of the exercise pressor reflex has previously been shown to be mediated, in part, by muscle mechanoreflex overactivity. Thus, in this report, we determined whether kinin B2 receptor contributes to the augmented mechanoreflex activity in rats with 24 h of femoral artery occlusion. First, Western blot analysis was used to examine protein expression of B2 receptors in dorsal root ganglion tissues of control limbs and ligated limbs. Our data show that B2 receptor displays significant overexpression in ligated limbs as compared with control limbs (optical density: 0.94 ± 0.02 in control and 1.87 ± 0.08 after ligation, P < 0.05 vs. control; n = 6 in each group). Second, mechanoreflex was evoked by muscle stretch and the reflex renal SNA (RSNA) and mean arterial pressure (MAP) responses to muscle stretch were examined after HOE-140, a B2 receptors blocker, was injected into the arterial blood supply of the hindlimb muscles. The results demonstrate that the stretch-evoked reflex responses were attenuated by administration of HOE-140 in control rats and ligated rats; however, the attenuating effects of HOE-140 were significantly greater in ligated rats, i.e., after 5 μg/kg of HOE-140 RSNA and MAP responses evoked by 0.5 kg of muscle tension were attenuated by 43% and 25% in control vs. 54% and 34% in ligation (P < 0.05 vs. control group; n = 11 in

  2. Cyclooxygenase-2 Inhibition Restored Endothelium-Mediated Relaxation in Old Obese Zucker Rat Mesenteric Arteries

    PubMed Central

    Vessières, Emilie; Belin de Chantemèle, Eric J.; Toutain, Bertrand; Guihot, Anne-Laure; Jardel, Alain; Loufrani, Laurent; Henrion, Daniel

    2010-01-01

    Metabolic syndrome is associated with reduced endothelial vasodilator function. It is also associated with the induction of cyclooxygenase-2 (COX2), which produces vasoactive prostanoids. The frequency of metabolic syndrome increases with age and aging per se is a risk factor associated with reduced endothelium-mediated relaxation. Nevertheless, the combined effect of aging and metabolic syndrome on the endothelium is less known. We hypothesized that COX2 derived prostanoids may affect endothelium function in metabolic syndrome associated with aging. We used obese Zucker rats, a model of metabolic syndrome. First order mesenteric arteries were isolated from 4- and 12-month-old rats and acetylcholine (endothelium)-dependent relaxation determined using wire-myography. Endothelium-mediated relaxation, impaired in young Zucker rats (89 versus 77% maximal relaxation; lean versus Zucker), was further reduced in old Zucker rats (72 versus 51%, lean versus Zucker). The effect of the nitric oxide-synthesis inhibitor L-NAME on the relaxation was reduced in both young and old Zucker rats without change in eNOS expression level. COX inhibition (indomethacin) improved acetylcholine-mediated relaxation in old obese rats only, suggesting involvement of vasoconstrictor prostanoids. In addition, COX2 inhibition (NS398) and TxA2/PGH2 receptor blockade (SQ29548) both improved relaxation in old Zucker rat arteries. Old Zucker rats had the highest TxB2 (TxA2 metabolite) blood level associated with increased COX2 immunostaining. Chronic COX2 blockade (Celecoxib, 3 weeks) restored endothelium-dependent relaxation in old Zucker rats to the level observed in old lean rats. Thus the combination of aging and metabolic syndrome further impairs endothelium-dependent relaxation by inducing an excessive production of COX2-derived vasoconstrictor(s); possibly TxA2. PMID:21423385

  3. Cyclooxygenase-2 inhibition restored endothelium-mediated relaxation in old obese zucker rat mesenteric arteries.

    PubMed

    Vessières, Emilie; Belin de Chantemèle, Eric J; Toutain, Bertrand; Guihot, Anne-Laure; Jardel, Alain; Loufrani, Laurent; Henrion, Daniel

    2010-01-01

    Metabolic syndrome is associated with reduced endothelial vasodilator function. It is also associated with the induction of cyclooxygenase-2 (COX2), which produces vasoactive prostanoids. The frequency of metabolic syndrome increases with age and aging per se is a risk factor associated with reduced endothelium-mediated relaxation. Nevertheless, the combined effect of aging and metabolic syndrome on the endothelium is less known. We hypothesized that COX2 derived prostanoids may affect endothelium function in metabolic syndrome associated with aging. We used obese Zucker rats, a model of metabolic syndrome. First order mesenteric arteries were isolated from 4- and 12-month-old rats and acetylcholine (endothelium)-dependent relaxation determined using wire-myography. Endothelium-mediated relaxation, impaired in young Zucker rats (89 versus 77% maximal relaxation; lean versus Zucker), was further reduced in old Zucker rats (72 versus 51%, lean versus Zucker). The effect of the nitric oxide-synthesis inhibitor L-NAME on the relaxation was reduced in both young and old Zucker rats without change in eNOS expression level. COX inhibition (indomethacin) improved acetylcholine-mediated relaxation in old obese rats only, suggesting involvement of vasoconstrictor prostanoids. In addition, COX2 inhibition (NS398) and TxA2/PGH2 receptor blockade (SQ29548) both improved relaxation in old Zucker rat arteries. Old Zucker rats had the highest TxB2 (TxA2 metabolite) blood level associated with increased COX2 immunostaining. Chronic COX2 blockade (Celecoxib, 3 weeks) restored endothelium-dependent relaxation in old Zucker rats to the level observed in old lean rats. Thus the combination of aging and metabolic syndrome further impairs endothelium-dependent relaxation by inducing an excessive production of COX2-derived vasoconstrictor(s); possibly TxA2.

  4. Inflammatory events in a vascular remodeling model induced by surgical injury to the rat carotid artery

    PubMed Central

    Rinaldi, Barbara; Romagnoli, Paolo; Bacci, Stefano; Carnuccio, Rosa; Maiuri, Maria Chiara; Donniacuo, Maria; Capuano, Annalisa; Rossi, Francesco; Filippelli, Amelia

    2005-01-01

    The aim of our study was to gain insight into the molecular and cellular mechanisms of the inflammatory response to arterial injury in a rat experimental model. Rats (five for each experimental time) were subjected to brief clamping and longitudinal incision of a carotid artery and monitored for 30 days. Subsequently, Nuclear Factor-kappaB (NF-κB) expression was measured by electrophoretic mobility shift assay. Heat shock protein (HSP) 27, HSP47 and HSP70 were evaluated by Western blot. Morphological changes of the vessel wall were investigated by light and electron microscopy. In injured rat carotid artery NF-κB activity started immediately upon injury, and peaked between 2 and 3 weeks later. Western blot showed a significant increase of HSP47 and HSP70 7 days after injury. At 2 weeks postinjury, HSP27 expression peaked. Ligth microscopy showed a neointima formation, discontinuity of the media layer and a rich infiltrate. Among infiltrating cells electron microscopy identified dendritic-like cells in contact with lymphocytes. Our model of surgical injury induces a significant inflammatory process characterized by enhanced NF-κB activity and HSPs hyperexpression. Dendritic-like cells were for the first time identified as a novel component of tissue repair consequent to acute arterial injury. PMID:16299548

  5. An evaluation of vardenafil as a calcium channel blocker in pulmonary artery in rats

    PubMed Central

    Minareci, Edibe; Sadan, Gulay

    2014-01-01

    Objective: Vardenafil was reported to relax rat pulmonary artery through endothelium-dependent mechanisms. The aim of this in vitro study was to investigate other related mechanisms for this effect. Materials and Methods: Endothelium-intact and denuded artery rings were suspended in order to record isometric tension. In the rings with or without endothelium, the concentration-response curves for vardenafil were generated. In the rings without endothelium the contractile response induced by phenylephrine (Phe) or KCl was assessed in the presence or absence of vardenafil. In the last set of experiments, pulmonary artery rings were exposed to calcium-free isotonic depolarizing solution and the contractile response induced by the addition of calcium was evaluated in the presence or absence of vardenafil, nifedipine, verapamil or 1H-[1,2,4] oxadiazolo[4,3-a] quinoxalin-1-one (ODQ). Results: Vardenafil attenuated pulmonary artery contraction induced by phenylephrine in the presence and absence of endothelium. In addition, vardenafil attenuated both Phe or KCl-induced contraction but, it's effect on the KCl dose-response curve was more significant. Vardenafil also inhibited the contractile response induced by calcium in a dose-dependent manner. Addition of nifedipine or verapamil did not significantly alter this effect while ODQ incubation significantly inhibited vardenafil-induced relaxation. Conclusion: From these findings, it was proposed that vardenafil relaxed rat pulmonary artery through inhibiting calcium influx. PMID:24741191

  6. Endovascular trophoblast invasion and associated structural changes in uterine spiral arteries of the pregnant rat.

    PubMed

    Caluwaerts, S; Vercruysse, L; Luyten, C; Pijnenborg, R

    2005-08-01

    The involvement of endovascular trophoblast in fibrinoid deposition, replacement of the endothelium and vascular smooth muscle breakdown is studied in spiral arteries of the mesometrial triangle from day 15 to day 21 of rat pregnancy, by examining arterial cross sections after staining for cytokeratin, PAS, CD31 and alpha-actin. From day 15 to day 18 of pregnancy, fibrinoid deposition underneath the endovascular trophoblast increases gradually, whereas the amount of endovascular trophoblast in invaded arteries remains constant. CD31 staining is significantly reduced in sub-ET (= underlying the endovascular trophoblast) as compared to extra-ET (= outside the endovascular trophoblast) and no-ET (= non-invaded arterial sections) at each time-point of pregnancy examined (P < 0.005 and P < 0.0005 at each day of pregnancy), whereas alpha-actin staining is reduced both in sub-ET and in extra-ET as compared to no-ET. During pregnancy, CD31 staining in sub-ET initially declines, but increases significantly on day 21 (P < 0.001 versus d20) suggesting re-endothelialization of the vascular wall. In conclusion, changes in spiral arteries of pregnant rats reveal striking similarities with physiological changes seen in human pregnancy, thus emphasizing the usefulness of this species as an experimental model for studying normal and complicated pregnancies in humans.

  7. Role of secretory phospholipase A(2) in rhythmic contraction of pulmonary arteries of rats with monocrotaline-induced pulmonary arterial hypertension.

    PubMed

    Tanabe, Yoshiyuki; Saito-Tanji, Maki; Morikawa, Yuki; Kamataki, Akihisa; Sawai, Takashi; Nakayama, Koichi

    2012-01-01

    Excessive stretching of the vascular wall in accordance with pulmonary arterial hypertension (PAH) induces a variety of pathogenic cellular events in the pulmonary arteries. We previously reported that indoxam, a selective inhibitor for secretory phospholipase A(2) (sPLA(2)), blocked the stretch-induced contraction of rabbit pulmonary arteries by inhibition of untransformed prostaglandin H(2) (PGH(2)) production. The present study was undertaken to investigate involvement of sPLA(2) and untransformed PGH(2) in the enhanced contractility of pulmonary arteries of experimental PAH in rats. Among all the known isoforms of sPLA(2), sPLA(2)-X transcript was most significantly augmented in the pulmonary arteries of rats with monocrotaline-induced pulmonary hypertension (MCT-PHR). The pulmonary arteries of MCT-PHR frequently showed two types of spontaneous contraction in response to stretch; 27% showed rhythmic contraction, which was sensitive to indoxam and SC-560 (selective COX-1 inhibitor), but less sensitive to NS-398 (selective COX-2 inhibitor); and 47% showed sustained incremental tension (tonic contraction), which was insensitive to indoxam and SC-560, but sensitive to NS-398 and was attenuated to 45% of the control. Only the rhythmically contracting pulmonary arteries of MCT-PHR produced a substantial amount of untransformed PGH(2), which was abolished by indoxam. These results suggest that sPLA(2)-mediated PGH(2) synthesis plays an important role in the rhythmic contraction of pulmonary arteries of MCT-PHR.

  8. Effects of Hyperhomocysteinemia on Arterial Pressure and Nitric Oxide Production in Pregnant Rats

    PubMed Central

    Chandler, DL; Llinas, MT; Reckelhoff, JF; LaMarca, B; Speed, J; Granger, JP

    2010-01-01

    Background An elevated plasma level of homocysteine (hyperhomocysteinemia) is thought to be an important risk factor for a variety of cardiovascular diseases including preeclampsia. Although clinical studies have reported a 2-3 fold elevation in plasma levels of homocysteine in women who developed preeclampsia, the importance of hyperhomocysteinemia in causing endothelial dysfunction and increases in arterial pressure during pregnancy is unknown. Method Therefore, the purpose of this study was to determine the effects of a 2-3 fold elevation in plasma homocysteine levels on arterial pressure, chronic pressure natriuresis relationship, and endothelial factors during pregnancy in the rat. Homocysteine treatment for 4 weeks increased plasma homocysteine levels in pregnant rats from 7.1 ± 1.9 to 16.7 ± 2.3 μmol/L. Results Homocysteine treatment decreased urinary nitrate/nitrite levels from 53 +/- 7 vs. 39 +/- 5 (umol/24 h/kg BW) in pregnant rats while having no effect on urinary excretion of endothelin. Homocysteine treatment had no effect on MAP in pregnant rats (104 +/- 2 vs. 107 +/- 3 mmHg) nor on the chronic pressure natriuresis relationship. Conclusion These results suggest that while hyperhomocysteinemia decreases nitric oxide production in pregnant rats, hyperhomocysteinemia does not affect MAP, the chronic pressure-natriuresis relationship, or urinary excretion of endothelin in pregnant rats. Moreover, the reported 2-3 fold elevation in plasma level of homocysteine in women with preeclampsia is unlikely to contribute to the hypertension of preeclampsia. PMID:19629051

  9. Transcriptome-wide RNA sequencing analysis of rat skeletal muscle feed arteries. I. Impact of obesity.

    PubMed

    Jenkins, Nathan T; Padilla, Jaume; Thorne, Pamela K; Martin, Jeffrey S; Rector, R Scott; Davis, J Wade; Laughlin, M Harold

    2014-04-15

    We employed next-generation RNA sequencing (RNA-Seq) technology to determine the influence of obesity on global gene expression in skeletal muscle feed arteries. Transcriptional profiles of the gastrocnemius and soleus muscle feed arteries (GFA and SFA, respectively) and aortic endothelial cell-enriched samples from obese Otsuka Long-Evans Tokushima Fatty (OLETF) and lean Long-Evans Tokushima Otsuka (LETO) rats were examined. Obesity produced 282 upregulated and 133 downregulated genes in SFA and 163 upregulated and 77 downregulated genes in GFA [false discovery rate (FDR) < 10%] with an overlap of 93 genes between the arteries. In LETO rats, there were 89 upregulated and 114 downregulated genes in the GFA compared with the SFA. There were 244 upregulated and 275 downregulated genes in OLETF rats (FDR < 10%) in the GFA compared with the SFA, with an overlap of 76 differentially expressed genes common to both LETO and OLETF rats in both the GFA and SFA. A total of 396 transcripts were found to be differentially expressed between LETO and OLETF in aortic endothelial cell-enriched samples. Overall, we found 1) the existence of heterogeneity in the transcriptional profile of the SFA and GFA within healthy LETO rats, 2) that this between-vessel heterogeneity was markedly exacerbated in the hyperphagic, obese OLETF rat, and 3) a greater number of genes whose expression was altered by obesity in the SFA compared with the GFA. Also, results indicate that in OLETF rats the GFA takes on a relatively more proatherogenic phenotype compared with the SFA.

  10. Mechanisms Involved in Thromboxane A2 -induced Vasoconstriction of Rat Intracavernous Small Penile Arteries.

    PubMed

    Grann, Martin; Comerma-Steffensen, Simon; Arcanjo, Daniel D R; Simonsen, Ulf

    2016-10-01

    Diabetes is associated with erectile dysfunction and with hypercontractility in erectile tissue and this is in part ascribed to increased formation of thromboxane. Rho kinase (ROCK) is a key regulator of calcium sensitization and contraction in vascular smooth muscle. This study investigated the role of calcium and ROCK in contraction evoked by activation of the thromboxane receptors. Rat intracavernous penile arteries were mounted for isometric tension and intracellular calcium ([Ca(2+) ]i ) recording and corpus cavernosum for measurements of MYPT1 phosphorylation. In penile arteries, U46619 by activation of thromboxane receptors concentration dependently increased calcium and contraction. U46619-induced calcium influx was blocked by nifedipine, a blocker of L-type calcium channels, and by 2-aminoethoxydiphenyl borate, a blocker of transient receptor potential (TRP) channels. Inhibitors of ROCK, Y27632 and glycyl-H1152P, concentration dependently reduced U46619-induced contraction, but only Y27632 reduced [Ca(2+) ]i levels in the penile arteries activated with either high extracellular potassium or U46619. MYPT-Thr(850) phosphorylation in corpus cavernous strips was increased in response to U46619 through activation of TP receptors and was found to be a direct result of phosphorylation by ROCK. Y27632 induced less relaxation in mesenteric arteries, H1152P induced equipotent relaxations, and a protein kinase C inhibitor, Ro-318220, failed to relax intracavernous penile arteries, but induced full relaxation in rat mesenteric arteries. Our findings suggest that U46619 contraction depends on Ca(2+) influx through L-type and TRP channels, and ROCK-dependent mechanisms in penile arteries. Inhibition of the ROCK pathway is a potential approach for the treatment of erectile dysfunction associated with hypertension and diabetes.

  11. Cardioprotective effect of polydatin on ventricular remodeling after myocardial infarction in coronary artery ligation rats.

    PubMed

    Gao, Yan; Gao, Jianping; Chen, Changxun; Wang, Huilin; Guo, Juan; Wu, Rong

    2015-05-01

    The purpose of this study was to explore the effect of polydatin on ventricular remodeling after myocardial infarction in coronary artery ligation rats and to elucidate the underlying mechanisms. A rat model of ventricular remodeling after myocardial infarction was established by left coronary artery ligation. Rats with coronary artery ligation were randomly divided into five groups: control, plus 40 mg/kg captopril, plus 25 mg/kg polydatin, plus 50 mg/kg polydatin, and plus 100 mg/kg polydatin. The sham-operated group was used as a negative control. Rats were administered intragastrically with the corresponding drugs or drinking water for seven weeks. At the end of the treatment, the left ventricular weight index and heart weight index were assessed. The cross-sectional size of cardiomyocytes was measured by staining myocardium tissue with hematoxylin and eosin. Collagen content was counted by Sirius red in aqueous saturated picric acid. The concentrations of angiotensin I, angiotensin II, aldosterone, and endothelin 1 in myocardium or serum were determined by radioimmunoassay. Hydroxyproline and nitric oxide concentrations and glutathione peroxidase and catalase activities in serum were measured by ultraviolet spectrophotometry. Our results showed that seven weeks of polydatin treatment resulted in a significantly reduced left ventricular weight index, heart weight index, serum concentrations of hydroxyproline and aldosterone, an increased concentration of nitric oxide as well as enhanced activities of glutathione peroxidase and catalase. Myocardial angiotensin I, angiotensin II, and endothelin 1 levels were also reduced. The cardiomyocyte cross-sectional area and collagen deposition diminished. This study suggests that polydatin may attenuate ventricular remodeling after myocardial infarction in coronary artery ligation rats through restricting the excessive activation of the renin-angiotensin-aldosterone system and inhibiting peroxidation.

  12. Computational fluid dynamics evaluation of flow reversal treatment of giant basilar tip aneurysm.

    PubMed

    Alnæs, Martin Sandve; Mardal, Kent-Andre; Bakke, Søren; Sorteberg, Angelika

    2015-10-01

    Therapeutic parent artery flow reversal is a treatment option for giant, partially thrombosed basilar tip aneurysms. The effectiveness of this treatment has been variable and not yet studied by applying computational fluid dynamics. Computed tomography images and blood flow velocities acquired with transcranial Doppler ultrasonography were obtained prior to and after bilateral endovascular vertebral artery occlusion for a giant basilar tip aneurysm. Patient-specific geometries and velocity waveforms were used in computational fluid dynamics simulations in order to determine the velocity and wall shear stress changes induced by treatment. Therapeutic parent artery flow reversal lead to a dramatic increase in aneurysm inflow and wall shear stress (30 to 170 Pa) resulting in an increase in intra-aneurysmal circulation. The enlargement of the circulated area within the aneurysm led to a re-normalization of the wall shear stress and the aneurysm remained stable for more than 8 years thereafter. Therapeutic parent artery flow reversal can lead to unintended, potentially harmful changes in aneurysm inflow which can be quantified and possibly predicted by applying computational fluid dynamics.

  13. One hundred percent patency of one-millimeter polytetrafluoroethylene (Gore-tex) grafts in the carotid arteries of rats.

    PubMed

    Cuadros, C L

    1984-01-01

    Expanded polytetrafluoroethylene arterial interposition grafts with an internal diameter of 1.0 mm were placed in the carotid arteries of rats. At 2 weeks, 100% patency rate was achieved by the use of strict sterile technique in 23 rats. In contrast, only 1 out of 21 grafts remained open in rats operated using standard clean but nonsterile technique, 5% patency. All thrombosed grafts showed evidence of infection. Orally administered aspirin at therapeutic doses prolonged bleeding times in the rats but did not affect patency results in either group.

  14. Studies on CDP-choline:1,2-diacylglycerol cholinephosphotransferase activity in rat arterial wall.

    PubMed

    Sasaki, N; Matsuoka, N; Shirai, K; Saito, Y; Kumagai, A

    1982-06-01

    The properties of CDP-choline:1,2-diacylglycerol cholinephosphotransferase (CPT) (EC 2.7.8.2.), which catalyzes de novo synthesis of phosphatidylcholine, were studied in rat arterial wall. The optimal pH of CPT of the arterial wall was about 8.5. On subcellular fractionation of the arterial wall, the highest activity was found in the microsome-rich fraction; the cytosolic fraction showed only a trace of activity. The Michaelis constant (KM) for CDP-choline was 0.019 mM. The CPT activity of a homogenate of arterial wall increased linearly with increase in concentration of diolein up to 3.2 mM. 20 mM magnesium and 0.2 mM manganese ions caused marked activation respectively and essential for the activity. Calcium, barium, cobalt, copper, and ferrous ions were inhibitory. 0.5 mM ethylenediaminetetraacetic acid (EDTA) and 0.5 mM glycoletherdiamine-N,N,N'N'-tetraacetic acid (GEDTA) increased the activity in the presence of 10 mM magnesium ion. Sonication of the enzyme solution and addition of high concentration of detergent, such as Triton X-100 and Tween 20, markedly decreased the activity. Porcine liver phosphatidylcholine, phosphatidylethanolamine, and especially polyenephosphatidylcholine increased CPT activity of the arterial wall, while lysophosphatidylcholine was strongly inhibitory. The properties of arterial CPT activity under various conditions are discussed.

  15. Stiffening of the Extrapulmonary Arteries From Rats in Chronic Hypoxic Pulmonary Hypertension

    PubMed Central

    Drexler, E. S; Bischoff, J. E; Slifka, A. J; McCowan, C. N; Quinn, T. P; Shandas, R; Ivy, D. D; Stenmark, K. R

    2008-01-01

    Changes in the compliance properties of large blood vessels are critical determinants of ventricular afterload and ultimately dysfunction. Little is known of the mechanical properties of large vessels exhibiting pulmonary hypertension, particularly the trunk and right main artery. We initiated a study to investigate the influence of chronic hypoxic pulmonary hypertension on the mechanical properties of the extrapulmonary arteries of rats. One group of animals was housed at the equivalent of 5000 m elevation for three weeks and the other held at ambient conditions of ~1600 m. The two groups were matched in age and gender. The animals exposed to hypobaric hypoxia exhibited signs of pulmonary hypertension, as evidenced by an increase in the RV/(LV+S) heart weight ratio. The extrapulmonary arteries of the hypoxic animals were also thicker than those of the control population. Histological examination revealed increased thickness of the media and additional deposits of collagen in the adventitia. The mechanical properties of the trunk, and the right and left main pulmonary arteries were assessed; at a representative pressure (7 kPa), the two populations exhibited different quantities of stretch for each section. At higher pressures we noted less deformation among the arteries from hypoxic animals as compared with controls. A four-parameter constitutive model was employed to fit and analyze the data. We conclude that chronic hypoxic pulmonary hypertension is associated with a stiffening of all the extrapulmonary arteries. PMID:27096124

  16. Copper dependence of angioproliferation in pulmonary arterial hypertension in rats and humans.

    PubMed

    Bogaard, Harm J; Mizuno, Shiro; Guignabert, Christophe; Al Hussaini, Aysar A; Farkas, Daniela; Ruiter, Gerrina; Kraskauskas, Donatas; Fadel, Elie; Allegood, Jeremy C; Humbert, Marc; Vonk Noordegraaf, Anton; Spiegel, Sarah; Farkas, Laszlo; Voelkel, Norbert F

    2012-05-01

    Obliteration of the vascular lumen by endothelial cell growth is a hallmark of many forms of severe pulmonary arterial hypertension. Copper plays a significant role in the control of endothelial cell proliferation in cancer and wound-healing. We sought to determine whether angioproliferation in rats with experimental pulmonary arterial hypertension and pulmonary microvascular endothelial cell proliferation in humans depend on the proangiogenic action of copper. A copper-depleted diet prevented, and copper chelation with tetrathiomolybdate reversed, the development of severe experimental pulmonary arterial hypertension. The copper chelation-induced reopening of obliterated vessels was caused by caspase-independent apoptosis, reduced vessel wall cell proliferation, and a normalization of vessel wall structure. No evidence was found for a role of super oxide-1 inhibition or lysyl-oxidase-1 inhibition in the reversal of angioproliferation. Tetrathiomolybdate inhibited the proliferation of human pulmonary microvascular endothelial cells, isolated from explanted lungs from control subjects and patients with pulmonary arterial hypertension. These data suggest that the inhibition of endothelial cell proliferation by a copper-restricting strategy could be explored as a new therapeutic approach in pulmonary arterial hypertension. It remains to be determined, however, whether potential toxicity to the right ventricle is offset by the beneficial pulmonary vascular effects of antiangiogenic treatment in patients with pulmonary arterial hypertension.

  17. Chronic high blood flow potentiates shear stress-induced release of NO in arteries of aged rats

    PubMed Central

    Yan, Changdong; Huang, An; Kaley, Gabor; Sun, Dong

    2011-01-01

    Aging impairs shear-stress-dependent dilation of arteries via increased superoxide production, decreased SOD activity, and decreased activation of endothelial nitric oxide (NO) synthase (eNOS). In the present study, we investigated whether chronic increases in shear stress, elicited by increases in blood flow, would improve vascular endothelial function of aged rats. To this end, second-order mesenteric arteries of young (6 mo) and aged (24 mo) male Fischer-344 rats were selectively ligated for 3 wk to elevate blood flow in a first-order artery [high blood flow (HF)]. An in vitro study was then conducted on first-order arteries with HF and normal blood flow (NF) to assess shear stress (1, 10, and 20 dyn/cm2)-induced release of NO into the perfusate. In HF arteries of both age groups, shear stress-induced NO production increased significantly. In 24-mo-old rats, the reduced shear stress-induced NO production in NF arteries was normalized by HF to a level similar to that in NF arteries of 6-mo-old rats. The increased NO production in HF arteries of 24-mo-old rats was associated with increased shear stress-induced dilation, expression of eNOS protein, and shear stress-induced eNOS phosphorylation. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, reduced shear stress-induced eNOS phosphorylation and vasodilation. Superoxide production decreased significantly in HF compared with NF arteries in 24-mo-old rats. The decreased superoxide production was associated with significant increases in CuZn-SOD and extracellular SOD protein expressions and total SOD activity. These results suggest that stimulation with chronic HF restores shear-stress-induced activation of eNOS and antioxidant ability in aged arteries. PMID:17873019

  18. Effects of cyclic intermittent hypoxia on ET-1 responsiveness and endothelial dysfunction of pulmonary arteries in rats.

    PubMed

    Wang, Zhuo; Li, Ai-Ying; Guo, Qiu-Hong; Zhang, Jian-Ping; An, Qi; Guo, Ya-jing; Chu, Li; Weiss, J Woodrow; Ji, En-Sheng

    2013-01-01

    Obstructive sleep apnoea (OSA) is a risk factor for cardiovascular disorders and in some cases is complication of pulmonary hypertension. We simulated OSA by exposing rats to cyclic intermittent hypoxia (CIH) to investigate its effect on pulmonary vascular endothelial dysfunction. Sprague-Dawley Rats were exposed to CIH (FiO2 9% for 1 min, repeated every 2 min for 8 h/day, 7 days/wk for 3 wk), and the pulmonary arteries of normoxia and CIH treated rats were analyzed for expression of endothelin-1 (ET-1) and ET receptors by histological, immunohistochemical, RT-PCR and Western Blot analyses, as well as for contractility in response to ET-1. In the pulmonary arteries, ET-1 expression was increased, and ET-1 more potently elicited constriction of the pulmonary artery in CIH rats than in normoxic rats. Exposure to CIH induced marked endothelial cell damage associated with a functional decrease of endothelium-dependent vasodilatation in the pulmonary artery. Compared with normoxic rats, ETA receptor expression was increased in smooth muscle cells of the CIH rats, while the expression of ETB receptors was decreased in endothelial cells. These results demonstrated endothelium-dependent vasodilation was impaired and the vasoconstrictor responsiveness increased by CIH. The increased responsiveness to ET-1 induced by intermittent hypoxia in pulmonary arteries of rats was due to increased expression of ETA receptors predominantly, meanwhile, decreased expression of ETB receptors in the endothelium may also participate in it.

  19. Harmonic Variations of Arterial Pulse During Dying Process of Rats

    DTIC Science & Technology

    2007-11-02

    Cancer.1999 May;7(3):128 – 33 [8] Hunter-A; Kennedy-L; Henry -J; Ferguson-I: Application of neural networks and sensitivity analysis to...unit. Critical-Care-Med 1997 Feb;25(2):258-66 [12] Baroreflex modulation of blood pressure and heart rate variabilities in rats :assessment by

  20. Radiation-induced pulmonary arterial perfusion defects: modification by D-penicillamine. [Rats; /sup 60/Co

    SciTech Connect

    Ward, W.F.

    1981-04-01

    D-penicillamine, previously shown to have a beneficial effect on radiation-induced pulmonary histopathology, was tested to determine its effect on function in the irradiated lung. Male rats were irradiated with /sup 60/Co gamma rays; half then received 10 mg D-penicillamine per day, and half received no further treatment. One to nine months after irradiation, animals were subjected to lung perfusion scans. Untreated irradiated rats exhibited hyperemia, hypoperfusion, and perfusion defects of the irradiated lung. In penicillamine-treated rats, the appearance of perfusion defects was delayed, the peak incidence and severity of the defects was reduced, and recovery from pulmonary hypoperfusion was accelerated. Thus, using functional criteria, penicillamine appears to improve arterial perfusion and to ameliorate radiation injury in the rat lung.

  1. Effects of age and caloric restriction in the vascular response of renal arteries to endothelin-1 in rats.

    PubMed

    Amor, Sara; García-Villalón, Angel Luis; Rubio, Carmen; Carrascosa, Jose Ma; Monge, Luis; Fernández, Nuria; Martín-Carro, Beatriz; Granado, Miriam

    2017-02-01

    Cardiovascular alterations are the most prevalent cause of impaired physiological function in aged individuals with kidney being one the most affected organs. Aging-induced alterations in renal circulation are associated with a decrease in endothelium-derived relaxing factors such as nitric oxide (NO) and with an increase in contracting factors such as endothelin-1(ET-1). As caloric restriction (CR) exerts beneficial effects preventing some of the aging-induced alterations in cardiovascular system, the aim of this study was to analyze the effects of age and caloric restriction in the vascular response of renal arteries to ET-1 in aged rats. Vascular function was studied in renal arteries from 3-month-old Wistar rats fed ad libitum (3m) and in renal arteries from 8-and 24-month-old Wistar rats fed ad libitum (8m and 24m), or subjected to 20% caloric restriction during their three last months of life (8m-CR and 24m-CR). The contractile response to ET-1 was increased in renal arteries from 8m and 24m compared to 3m rats. ET-1-induced contraction was mediated by ET-A receptors in all experimental groups and also by ET-B receptors in 24m rats. Caloric restriction attenuated the increased contraction to ET-1 in renal arteries from 8m but not from 24m rats possibly through NO release proceeding from ET-B endothelial receptors. In 24m rats, CR did not attenuate the aging-increased response of renal arteries to ET-1, but it prevented the aging-induced increase in iNOS mRNA levels and the aging-induced decrease in eNOS mRNA levels in arterial tissue. In conclusion, aging is associated with an increased response to ET-1 in renal arteries that is prevented by CR in 8m but not in 24m rats.

  2. Effects of melatonin and Pycnogenol on small artery structure and function in spontaneously hypertensive rats.

    PubMed

    Rezzani, Rita; Porteri, Enzo; De Ciuceis, Carolina; Bonomini, Francesca; Rodella, Luigi F; Paiardi, Silvia; Boari, Gianluca E M; Platto, Caterina; Pilu, Annamaria; Avanzi, Daniele; Rizzoni, Damiano; Agabiti Rosei, Enrico

    2010-06-01

    It was suggested that oxidative stress has a key role in the development of endothelial dysfunction, as well as microvascular structural alterations. Therefore, we have investigated 2 substances with antioxidant properties: melatonin and Pycnogenol. We treated 7 spontaneously hypertensive rats (SHRs) with melatonin and 7 with Pycnogenol for 6 weeks. We compared results obtained with those observed in 7 SHRs and 7 Wistar-Kyoto normotensive control rats kept untreated. Mesenteric small resistance arteries were dissected and mounted on a wire myograph, and a concentration-response curve to acetylcholine was performed. Aortic contents of metalloproteinase 2, Bax, inducible NO synthase, and cyclooxygenase 2 were evaluated, together with the aortic content of total collagen and collagen subtypes and apoptosis rate. A small reduction in systolic blood pressure was observed. A significant improvement in mesenteric small resistance artery structure and endothelial function was observed in rats treated with Pycnogenol and melatonin. Total aortic collagen content was significantly greater in untreated SHRs compared with Wistar-Kyoto control rats, whereas a full normalization was observed in treated rats. Apoptosis rate was increased in the aortas of untreated SHRs compared with Wistar-Kyoto control rats; an even more pronounced increase was observed in treated rats. Bax and metalloproteinase 2 expressions changed accordingly. Cyclooxygenase 2 and inducible NO synthase were more expressed in the aortas of untreated SHRs compared with Wistar-Kyoto control rats; this pattern was normalized by both treatments. In conclusion, our data suggest that treatment with Pycnogenol and melatonin may protect the vasculature, partly independent of blood pressure reduction, probably through their antioxidant effects.

  3. Nylon filament coated with paraffin for intraluminal permanent middle cerebral artery occlusion in rats.

    PubMed

    Zuo, Xia-Lin; Wu, Ping; Ji, Ai-Min

    2012-06-21

    A variety of intraluminal nylon filament has been used in rat middle cerebral artery occlusion (MCAO) models. However the lesion extent and its reproducibility vary among laboratories. The properties of nylon filament play a part of reasons for these variations. In the present study, we used paraffin-coated nylon filament for rat MCAO model, tested the effects and advanced improvement for making the rat MCAO. Forty male Sprague-Dawley (SD) rats were randomized into two groups, MCAO with traditional uncoated nylon filament (uMCAO) and MCAO with paraffin-coated nylon filament (cMCAO), three rats as normal group and sham group respectively. Assessment included mortality rates, model success rates, neurological deficit evaluation, and infarct volume. The study showed two rats died in uMCAO group, no rat died in cMCAO group within the 12h. The model success rate of uMCAO was 100%, while the uMCAO group was 55% (n=20, two died within 12h, seven rats were excluded as the brain slices showed no TTC staining due to subarachanoid hemorrhage). Neurological evaluation demonstrated group cMCAO had more worse neurological outcomes than group uMCAO, and the difference was statistically signification (p<0.05). TTC staining cMCAO group had significantly larger infarct volumes than uMCAO group, and also showed statistically significant difference (p<0.05). The result demonstrated that the paraffin-coated nylon filament intraluminal occlusion provide better occlusion of middle cerebral artery than the uncoated nylon filament, improve the consistent of model, and raise the success rate to reduce the number of experimental animals. These positive results are much encouraging and interesting.

  4. Surgical technique of orthotopic liver transplantation in rats: the Kamada technique and a new splint technique for hepatic artery reconstruction.

    PubMed

    Ishii, Eiichi; Shimizu, Akira; Takahashi, Mikiko; Terasaki, Mika; Kunugi, Shinobu; Nagasaka, Shinya; Terasaki, Yasuhiro; Ohashi, Ryuji; Masuda, Yukinari; Fukuda, Yuh

    2013-01-01

    Orthotopic liver transplantation (OLT) in rats is technically feasible and useful for the assessment of clinical liver transplantation and analysis of inflammatory liver diseases. OLT in rats was pioneered by Lee et al. in 1973 using hand-suture techniques of all vessels. This model has not been widely used due to the long operative time and technical demand. The cuff method was introduced by Kamada in 1979, and today, the Kamada technique is the one most commonly used worldwide. However, this technique does not include hepatic artery reconstruction, although this procedure is routinely performed in clinical transplantation. Nevertheless, several techniques for hepatic artery reconstruction in rat OLT have been reported recently, and our group also developed a simple splint technique from recipient right renal artery to donor celiac axis bearing the hepatic artery. In the present article, we describe the Kamada technique, as a standard surgical method for rat OLT. In addition, we also describe our splint technique for hepatic artery reconstruction. Then, we compare the features of Kamada technique and our splint technique for hepatic artery reconstruction and all other surgical techniques currently in use for rat OLT. The widespread use of the rat OLT model should help to provide full assessment of transplant immunology and the mechanism and treatment of inflammatory liver diseases.

  5. Spreading dilatation to luminal perfusion of ATP and UTP in rat isolated small mesenteric arteries

    PubMed Central

    Winter, Polly; Dora, Kim A

    2007-01-01

    Levels of ATP achieved within the lumen of vessels suggest a key autacoid role. P2Y receptors on the endothelium may represent the target for ATP, leading to hyperpolarization and associated relaxation of vascular smooth muscle through the endothelium-dependent hyperpolarizing factor (EDHF) pathway. EDHF signals radially from the endothelium to cause dilatation, and appears mechanistically distinct from the axial spread of dilatation, which we showed occurs independently of a change in endothelial cell Ca2+ in rat mesenteric arteries. Here we have investigated the potential of P2Y receptor stimulation to evoke spreading dilatation in rat resistance small arteries under physiological pressure and flow. Triple cannulation of isolated arteries enables focal application of purine and pyrimidine nucleotides to the endothelium, avoiding potential complicating actions of these agents on the smooth muscle. Nucleotides were locally infused through one branch of a bifurcation, causing near maximal local dilatation attributable to EDHF. Dilatation then spread rapidly into the adjacent feed artery and upstream against the direction of luminal flow, sufficient to increase flow into the feed artery. The rate of decay of this spreading dilatation was identical between nucleotides, and matched that to ACh, which acts only on the endothelium. In contrast, focal abluminal application of either ATP or UTP at the downstream end of cannulated arteries evoked constriction, which only in the case of ATP was also associated with modest spread of dilatation. The non-hydrolysable ADP analogue, ADPβS, acting at P2Y1 receptors, caused robust local and spreading dilatation responses whether applied to the luminal or abluminal surface of pressurized arteries. Dilatation to nucleotides was sensitive to inhibition with apamin and TRAM-34, selective blockers of small- and intermediate-conductance Ca2+-activated K+ channels, respectively. These data demonstrate that direct luminal stimulation of P

  6. Differential changes in vascular mRNA levels between rat iliac and renal arteries produced by cessation of voluntary running.

    PubMed

    Padilla, Jaume; Jenkins, Nathan T; Roberts, Michael D; Arce-Esquivel, Arturo A; Martin, Jeffrey S; Laughlin, M Harold; Booth, Frank W

    2013-01-01

    Early vascular changes at the molecular level caused by adoption of a sedentary lifestyle are incompletely characterized. Herein, we employed the rodent wheel-lock model to identify mRNAs in the arterial wall that are responsive to the acute transition from higher to lower levels of daily physical activity. Specifically, we evaluated whether short-term cessation of voluntary wheel running alters vascular mRNA levels in rat conduit arteries previously reported to have marked increases (i.e. iliac artery) versus marked decreases (i.e. renal artery) in blood flow during running. We used young female Wistar rats with free access to voluntary running wheels. Following 23 days of voluntary running (average distance of ∼15 km per night; ∼4.4 h per night), rats in one group were rapidly transitioned to a sedentary state by locking the wheels for 7 days (n = 9; wheel-lock 7 day rats) or remained active in a second group for an additional 7 days (n = 9; wheel-lock 0 day rats). Real-time PCR was conducted on total RNA isolated from iliac and renal arteries to evaluate expression of 25 pro-atherogenic and anti-atherogenic genes. Compared with the iliac arteries of wheel-lock 0 day rats, iliac arteries of wheel-lock 7 day rats exhibited increased expression of TNFR1 (+19%), ET1 (+59%) and LOX-1 (+31%; all P < 0.05). Moreover, compared with renal arteries of wheel-lock 0 day rats, renal arteries of wheel-lock 7 day rats exhibited decreased expression of ETb (-23%), p47phox (-32%) and p67phox (-19%; all P < 0.05). These data demonstrate that cessation of voluntary wheel running for 7 days produces modest, but differential changes in mRNA levels between the iliac and renal arteries of healthy rats. This heterogeneous influence of short-term physical inactivity could be attributed to the distinct alteration in haemodynamic forces between arteries.

  7. Salvianolic acid A attenuates vascular remodeling in a pulmonary arterial hypertension rat model

    PubMed Central

    Chen, Yu-cai; Yuan, Tian-yi; Zhang, Hui-fang; Wang, Dan-shu; Yan, Yu; Niu, Zi-ran; Lin, Yi-huang; Fang, Lian-hua; Du, Guan-hua

    2016-01-01

    Aim: The current therapeutic approaches have a limited effect on the dysregulated pulmonary vascular remodeling, which is characteristic of pulmonary arterial hypertension (PAH). In this study we examined whether salvianolic acid A (SAA) extracted from the traditional Chinese medicine 'Dan Shen' attenuated vascular remodeling in a PAH rat model, and elucidated the underlying mechanisms. Methods: PAH was induced in rats by injecting a single dose of monocrotaline (MCT 60 mg/kg, sc). The rats were orally treated with either SAA (0.3, 1, 3 mg·kg−1·d−1) or a positive control bosentan (30 mg·kg−1·d−1) for 4 weeks. Echocardiography and hemodynamic measurements were performed on d 28. Then the hearts and lungs were harvested, the organ indices and pulmonary artery wall thickness were calculated, and biochemical and histochemical analysis were conducted. The levels of apoptotic and signaling proteins in the lungs were measured using immunoblotting. Results: Treatment with SAA or bosentan effectively ameliorated MCT-induced pulmonary artery remodeling, pulmonary hemodynamic abnormalities and the subsequent increases of right ventricular systolic pressure (RVSP). Furthermore, the treatments significantly attenuated MCT-induced hypertrophic damage of myocardium, parenchymal injury and collagen deposition in the lungs. Moreover, the treatments attenuated MCT-induced apoptosis and fibrosis in the lungs. The treatments partially restored MCT-induced reductions of bone morphogenetic protein type II receptor (BMPRII) and phosphorylated Smad1/5 in the lungs. Conclusion: SAA ameliorates the pulmonary arterial remodeling in MCT-induced PAH rats most likely via activating the BMPRII-Smad pathway and inhibiting apoptosis. Thus, SAA may have therapeutic potential for the patients at high risk of PAH. PMID:27180980

  8. Severity of middle cerebral artery occlusion determines retinal deficits in rats

    PubMed Central

    Allen, Rachael S.; Sayeed, Iqbal; Cale, Heather A.; Morrison, Katherine C.; Boatright, Jeffrey H.; Pardue, Machelle T.; Stein, Donald G.

    2014-01-01

    Middle cerebral artery occlusion (MCAO) using the intraluminal suture technique is a common model used to study cerebral ischemia in rodents. Due to the proximity of the ophthalmic artery to the middle cerebral artery, MCAO blocks both arteries, causing both cerebral and retinal ischemia. While previous studies have shown retinal dysfunction at 48 hours post-MCAO, we investigated whether these retinal function deficits persist until 9 days and whether they correlate with central neurological deficits. Rats received 90 minutes of transient MCAO followed by electroretinography at 2 and 9 days to assess retinal function. Retinal damage was assessed with cresyl violet staining, immunohistochemistry for glial fibrillary acidic protein (GFAP) and glutamine synthetase, and TUNEL staining. Rats showed behavioral deficits as assessed with neuroscore that correlated with cerebral infarct size and retinal function at 2 days. Two days after surgery, rats with moderate MCAO (neuroscore < 5) exhibited delays in electroretinogram implicit time, while rats with severe MCAO (neuroscore ≥ 5) exhibited reductions in amplitude. Glutamine synthetase was upregulated in Müller cells 3 days after MCAO in both severe and moderate animals, however, retinal ganglion cell death was only observed in MCAO retinas from severe animals. By 9 days after MCAO, both glutamine synthetase labeling and electroretinograms had returned to normal levels in moderate animals. Early retinal function deficits correlated with behavioral deficits. However, retinal function decreases were transient and selective retinal cell loss was observed only with severe ischemia, suggesting that the retina is less susceptible to MCAO than the brain. Temporary retinal deficits caused by MCAO are likely due to ischemia-induced increases in extracellular glutamate that impair signal conduction, but resolve by 9 days after MCAO. PMID:24518488

  9. Impaired function of alpha-2 adrenoceptors in smooth muscle of mesenteric arteries from spontaneously hypertensive rats.

    PubMed

    Feres, T; Borges, A C; Silva, E G; Paiva, A C; Paiva, T B

    1998-11-01

    The alpha2-adrenoceptor function in mesenteric arteries of spontaneously hypertensive rats (SHR) was investigated by comparing membrane potential changes in response to adrenergic agonists in preparations from female SHR, Wistar-Kyoto (WKY) and normotensive Wistar rats (NWR). Resting membrane potential was found to be less negative in mesenteric arteries from SHR than in those from NWR and WKY. Apamin induced a decrease in the membrane potential of mesenteric artery rings without endothelium from NWR and WKY, but had no effects in those from SHR. Both UK 14,304 and adrenaline, in the presence of prazosin, induced a hyperpolarization that was significantly lower in de-endothelialized mesenteric rings from SHR than in those from NWR and WKY. In mesenteric rings with endothelium, however, similar hyperpolarization was observed in the three strains. In NWR mesenteric rings with endothelium the hyperpolarization induced by activation of alpha2-adrenoceptors was abolished by apamin, whereas in intact SHR mesenteric rings this hyperpolarization was slightly reduced by apamin and more efficiently reduced by Nomega-nitro-L-arginine. It is concluded that the activity of potassium channels coupled to alpha2-adrenoceptors is altered in the smooth muscle cells of SHR mesenteric arteries, contributing to their less negative membrane potential. On the other hand, the endothelial alpha2-receptors are functioning in mesenteric vessels from SHR and their stimulation induces a hyperpolarization mainly through the release of nitric oxide.

  10. Minimally Modified LDL Upregulates Endothelin Type A Receptors in Rat Coronary Arterial Smooth Muscle Cells

    PubMed Central

    Li, Jie; Cao, Lei; Xu, Cang-Bao; Wang, Jun-Jie

    2013-01-01

    Minimally modified low-density lipoprotein (mmLDL) is a risk factor for cardiovascular disease. The present study investigated the effects of mmLDL on the expression of endothelin type A (ETA) receptors in coronary arteries. Rat coronary arteries were organ-cultured for 24 h. The contractile responses were recorded using a myographic system. ETA receptor mRNA and protein expressions were determined using real-time PCR and western blotting, respectively. The results showed that organ-culturing in the presence of mmLDL enhanced the arterial contractility mediated by the ETA receptor in a concentration-dependent and time-dependent manner. Culturing with mmLDL (10 μg/mL) for 24 h shifted the concentration-contractile curves toward the left significantly with increased Emax of 228% ± 20% from control of 100% ± 10% and significantly increased ETA receptor mRNA and protein levels. Inhibition of the protein kinase C, extracellular signal-related kinases 1 and 2 (ERK1/2), or NF-κB activities significantly attenuated the effects of mmLDL. The c-Jun N-terminal kinase inhibitor or the p38 pathway inhibitor, however, had no such effects. The results indicate that mmLDL upregulates the ETA receptors in rat coronary arterial smooth muscle cells mainly via activating protein kinase C, ERK1/2, and the downstream transcriptional factor, NF-κB. PMID:23861561

  11. Arterial medial necrosis and hemorrhage induced in rats by intravenous infusion of fenoldopam mesylate, a dopaminergic vasodilator.

    PubMed Central

    Yuhas, E. M.; Morgan, D. G.; Arena, E.; Kupp, R. P.; Saunders, L. Z.; Lewis, H. B.

    1985-01-01

    Fenoldopam mesylate, a selective, postsynaptic, dopaminergic vasodilator, was administered to rats for assessment of its clinical, toxicologic, and pathologic effects. Groups of 8 male and 8 female rats received 5, 25, 50, or 100 micrograms/kg/min by intravenous infusion for 24 hours. Groups of 12 male and 12 female rats received 2, 8, 16, or 20 mg/kg/day by intravenous injection once daily for 12 days. Tissues were examined by light microscopy. Rats infused for 24-hours with 5-100 micrograms/kg/min of fenoldopam had lesions of renal and splanchnic arteries characterized by medial necrosis and hemorrhage. None were seen in control rats or those administered the compound by intravenous injection. Arteries with four to five layers of medial smooth-muscle cells were most severely and frequently affected. Lesions were particularly severe in interlobular pancreatic arteries and subserosal gastric arteries. They occurred first at 4 hours, were present at low incidence at 8 hours, were induced in unrestrained rats, and were not caused by the experimental procedures employed. The nature and disposition of this novel arterial lesion in the rat suggests that its pathogenesis may be related to the pharmacologic activity of fenoldopam mesylate at the dopamine receptor. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:2858975

  12. Protective effect of a fish egg homogenate marine compound on arterial ultrastructure in spontaneous hypertensive rats.

    PubMed

    Zerbinati, Nicola; Marotta, Francesco; Nagpal, Ravinder; Singh, Birbal; Mohania, Dheeraj; Milazzo, Michele; Italia, Angelo; Tomella, Claudio; Catanzaro, Roberto

    2014-04-01

    We assessed the effect of a sturgeon eggs-based nutraceutical (LD-1227) versus eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) on the ultrastructure of spontaneously hypertensive rat (SHR) aortas. Sixty SHR were randomly divided into three groups that were fed (1) rat chow, (2) rat chow plus 10 mg of EPA/DHA, or (3) rat chow plus 10 mg of LD-1227, for 18 weeks. Afterward, aortas of these rats were used for blind measurements of the thickened intima area and examination by electron microscopy. Control SHR showed an expanded subendothelial space and leukocyte infiltration of the intima that were reduced in LD-1227-fed rats (p<0.05) and less in EPA/DHA group. Transmission electron microscopy showed endothelial alteration with severe subcellular injury and, unlike the EPA/DHA-group, LD-1227-treated rats displayed a significant reduction in endothelial alteration with severe subcellular injury (p<0.05). These data suggest that LD-1227 has stronger arterial protective properties and deserves further investigation in view of a preventive medicine strategy.

  13. Smooth muscle cell proliferation in the occluded rat carotid artery: lack of requirement for luminal platelets.

    PubMed Central

    Guyton, J. R.; Karnovsky, M. J.

    1979-01-01

    The relationship of intimal smooth muscle cell proliferation in the permanently occluded rat carotid artery to the presence or absence of luminal platelets was examined. Blood was rinsed from the arterial lumen immediately after occlusion and was replaced by autologous, citrated platelet-rich plasma (PRP, 6 to 20 X 10(5) platelets/microliter) or filtered platelet-poor plasma (PPP, less than 100 platelets/microliter). Occluded arteries were studied after 1 to 28 days by light and electron microscopy. Events occurring within the first 2 days included fibrin clot formation, endothelial degeneration and denudation, transmural migration of polymorphonucelar leukocytes and monocytes, and, in PRP-filled arteries, degranulation and disappearance of platelets. By 7 days a neointima was formed by macrophages and undifferentiated cells. The latter cells had some features of vascular smooth muscle cells and were apparently derived from medial cells which traversed the internal elastic lamina. After 14 days, identifiable smooth muscle cells emerged as the predominant cell type in a rapidly growing intimal plaque. No differences could be discerned between arteries originally filled with PRP or PPP. This experimental model is similar to atherosclerosis in dimensions of avascular area and in coexistence of degenerative, inflammatory, and proliferative processes. Cell proliferation deep within an atherosclerotic plaque could be initiated by factors other than platelets, perhaps by products of inflammatory cells. Images Figure 4 Figure 7 Figure 6 Figure 1 Figure 2 Figure 3 Figure 8 Figure 5 PMID:426040

  14. Characterisation of P2X receptors expressed in rat pulmonary arteries.

    PubMed

    Syed, Nawazish-i-Husain; Tengah, Asrin; Paul, Andrew; Kennedy, Charles

    2010-12-15

    Previous studies indicated that a P2X receptor other than the P2X1 subtype might be present in rat large, but not small pulmonary arteries. The aim here was to characterise further these P2X receptors. Isometric tension was recorded from rat isolated small (i.d. 250-500 μm) and large pulmonary artery (i.d. 1-1.5 mm) rings mounted on a wire myograph. In both tissues the P2X receptor agonist α,β-meATP evoked rapidly-developing contractions that were inhibited by the P2X antagonists NF449, PPADS and suramin in a concentration-dependent manner and eventually abolished by each. The rank order of the potency in both tissues was NF449>PPADS=suramin. For each antagonist there was no significant difference between its potency in the small and large pulmonary arteries. Prolonged administration of a high concentration of α,β-meATP induced complete desensitisation in both tissues. RT-PCR followed by PCR with specific oligonucleotide primers, identified mRNA for all seven P2X subunits. Subtype-specific antibodies showed strong, punctate P2X1 receptor-like immunoreactivity in the majority of cells and faint, punctate staining with the anti-P2X2 and anti-P2X4 antibodies, whilst P2X5-like immunoreactivity was barely detectable and no P2X3, P2X6, and P2X7 receptor-like immunoreactivity was seen. No differences in P2X mRNA and protein expression were seen between small and large pulmonary arteries. In conclusion, the pharmacological properties and mRNA and protein expression profiles of P2X receptors in rat small and large pulmonary arteries are very similar. Thus P2X1 appears to be the predominant P2X subunit functionally expressed in smooth muscle cells of rat small and large pulmonary arteries.

  15. Facilitation of serotonin-induced contraction of rat mesenteric artery by ketamine

    PubMed Central

    Park, Sang Woong; Noh, Hyun Ju; Kim, Jung Min; Kim, Bokyung; Cho, Sung-Il; Kim, Yoon Soo; Woo, Nam Sik

    2016-01-01

    Ketamine is an anesthetic with hypertensive effects, which make it useful for patients at risk of shock. However, previous ex vivo studies reported vasodilatory actions of ketamine in isolated arteries. In this study, we reexamined the effects of ketamine on arterial tones in the presence and absence of physiological concentrations of 5-hydroxytryptamine (5-HT) and norepinephrine (NE) by measuring the isometric tension of endothelium-denuded rat mesenteric arterial rings. Ketamine little affected the resting tone of control mesenteric arterial rings, but, in the presence of 5-HT (100~200 nM), ketamine (10~100 µM) markedly contracted the arterial rings. Ketamine did not contract arterial rings in the presence of NE (10 nM), indicating that the vasoconstrictive action of ketamine is 5-HT-dependent. The concentration-response curves (CRCs) of 5-HT were clearly shifted to the left in the presence of ketamine (30 µM), whereas the CRCs of NE were little affected by ketamine. The left shift of the 5-HT CRCs caused by ketamine was reversed with ketanserin, a competitive 5-HT2A receptor inhibitor, indicating that ketamine facilitated the activation of 5-HT2A receptors. Anpirtoline and BW723C86, selective agonists of 5-HT1B and 5-HT2B receptors, respectively, did not contract arterial rings in the absence or presence of ketamine. These results indicate that ketamine specifically enhances 5-HT2A receptor-mediated vasoconstriction and that it is vasoconstrictive in a clinical setting. The facilitative action of ketamine on 5-HT2A receptors should be considered in ketamine-induced hypertension as well as in the pathogenesis of diseases such as schizophrenia, wherein experimental animal models are frequently generated using ketamine. PMID:27847437

  16. Mechanics of the basilar membrane in Caiman crocodilus.

    PubMed

    Wilson, J P; Smolders, J W; Klinke, R

    1985-04-01

    Vibration measurements were made at a number of positions near the proximal (basal) end of the basilar membrane, and on the columella footplate, of Caiman crocodilus using a capacitive probe. The measurements established the existence of a mechanical travelling wave in this species. They showed no significant change of mechanical tuning with temperature, and were highly significantly different from previous reports of neural temperature sensitivity (Smolders, J. and Klinke, R. (1984): J. Comp. Physiol. 155, 19-30). Thus the neural sensitivity to temperature change appears not to depend upon basilar membrane mechanics. One interpretation of this is that the basilar membrane passively precedes an active temperature-sensitive filter. It was also found that the limbus supporting the basilar membrane had a measurable, but unturned, vibration and that the effect of draining scala tympani for the measurements was to increase the basilar membrane tuning frequency by a factor of about 1.5.

  17. Hypoxia Does neither Stimulate Pulmonary Artery Endothelial Cell Proliferation in Mice and Rats with Pulmonary Hypertension and Vascular Remodeling nor in Human Pulmonary Artery Endothelial Cells

    PubMed Central

    Yu, Lunyin; Hales, Charles A.

    2011-01-01

    Background Hypoxia results in pulmonary hypertension and vascular remodeling due to induction of pulmonary artery cell proliferation. Besides pulmonary artery smooth muscle cells, pulmonary artery endothelial cells (PAECs) are also involved in the development of pulmonary hypertension, but the effect of hypoxia on PAEC proliferation has not been completely understood. Methods We investigated PAEC proliferation in mice and rats with hypoxia-induced pulmonary hypertension and vascular remodeling as well as in human PAECs under hypoxia. Results and Conclusion We did not find significant PAEC proliferation in chronically hypoxic rats or mice. There was a slight decrease in proliferation in mice and rats with pulmonary hypertension and vascular remodeling. We also did not find significant human PAEC proliferation and cell cycle progression under different levels of oxygen (1, 2, 3, 5 and 10%) for one day, although the same conditions of hypoxia induced significant proliferation and cell cycle progression in pulmonary artery smooth muscle cells and pulmonary artery fibroblasts. Exposure to hypoxia for 7 days also did not increase PAEC proliferation. These results demonstrated that hypoxia alone is not a stimulus to PAEC proliferation in vivo and in vitro. The present study provides a novel role for PAECs in hypoxia-induced pulmonary hypertension and vascular remodeling. PMID:21691120

  18. Entrapment of a micro-guidewire during stenting of basilar stenosis.

    PubMed

    Ma, Ning; Liu, Lian; Wang, Tie-Jun; Xu, Xiao-Tong; Miao, Zhong-Rong

    2014-06-01

    Entrapment of a microwire related to intracranial endovascular therapy is an uncommon complication. A 64-year-old man with symptomatic basilar artery stenosis was treated with stenting. A 300 cm Synchro microwire became trapped in the P1 segment of the left posterior cerebral artery during the procedure. The decision was made to leave the microwire in place, considering that aggressive retrieval procedures could cause injury to the cerebral vasculature. The entrapped microwire was later inadvertently dislocated and removed while pulling the microwire back into the femoral artery with a looped catheter from the left femoral access. This demonstrates that, although entrapment of a microwire during endovascular therapy is a rare event, an optimal salvage technique needs to be explored further.

  19. Entrapment of a micro-guidewire during stenting of basilar stenosis.

    PubMed

    Ma, Ning; Liu, Lian; Wang, Tie-Jun; Xu, Xiao-Tong; Miao, Zhong-Rong

    2013-08-01

    Entrapment of a microwire related to intracranial endovascular therapy is an uncommon complication. A 64-year-old man with symptomatic basilar artery stenosis was treated with stenting. A 300 cm Synchro microwire became trapped in the P1 segment of the left posterior cerebral artery during the procedure. The decision was made to leave the microwire in place, considering that aggressive retrieval procedures could cause injury to the cerebral vasculature. The entrapped microwire was later inadvertently dislocated and removed while pulling the microwire back into the femoral artery with a looped catheter from the left femoral access. This demonstrates that, although entrapment of a microwire during endovascular therapy is a rare event, an optimal salvage technique needs to be explored further.

  20. Long-term outcome of basilar stenosis in Erdheim–Chester disease

    PubMed Central

    Mathis, Stéphane; Godenèche, Gaëlle; Haroche, Julien; Milin, Serge; Julian, Adrien; Berthomet, Aline; Baron, Clément; Palazzo, Paola; Neau, Jean-Philippe

    2016-01-01

    Abstract Background: Erdheim–Chester disease (ECD) is a rare form of non-Langerhans cell histiocytosis. This inflammatory myeloid neoplasm is frequently complicated by neurological symptoms, but stroke is an exceptional manifestation of this disease. Methods: We report the case of a 59-year-old woman who presented a vertebrobasilar stroke secondary to infiltration and severe stenosis of the basilar artery, improved after interferon-alpha therapy. We performed a review of the relevant literature and reported the few other cases described. Results: With our patient, we have found only 7 observations of cerebrovascular disorder in ECD. Most of them had supravascular arteries involvement. Conclusion: Stroke is a rare treatable and potentially reversible complication of ECD. The pathophysiological processes explaining stroke in this disease are uncertain, but periarterial stenosis of cerebral arteries may be a mechanism. PMID:27603396

  1. Dang Gui Bu Xue Tang ameliorates coronary artery ligation-induced myocardial ischemia in rats.

    PubMed

    Chunhua, Ma; Hongyan, Long; Weina, Zhu; Xiaoli, He; Yajie, Zhang; Jie, Ruan

    2017-01-28

    Dang The present study was designed to investigate cardioprotective effects of Dang Gui Bu Xue Tang (DGBUT) on coronary artery ligation-induced myocardial ischemia. Myocardial ischemia (MI) model was induced in SD rats by surgical ligation of the left anterior descending coronary artery. ST segment elevation of Electrocardiograph (ECG) infarct size, levels of lactate dehydrogenase (LDH), creatine kinase (CK), glutathione (GSH) and catalase (CAT), catalase (SOD), malondialdehyde (MDA), and inflammatory cytokines and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38, c-Jun NH2 terminal kinases (JNK), nuclear factor (NF)-κBp65, inhibitory kappa B (IκB) α, IκB kinase (IKK) α and IKKβ were evaluated in rats treated with or without DGBUT. DGBUT treatment significantly reduced the elevation of the ST segment of ECG, the myocardial infarct size of MI. The level of LDH, CK and MDA were suppressed, the contents of SOD, GSH and CAT were enhanced with DGBUT. The elevated concentration of inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and IL-6 in MI rats were effectively reversed by the DGBUT administration. Also, highly expressed p-JNK, p-ERK, p-p38, p-NF-κBp65, p-IκBα, p-IKKα and p-IKKβ in MI rats were restored respectively by DGBUT treatment. The protective effect of DGBUT against MI injury might be associated with MAPK/NF-кB pathway.

  2. Dual effect of initial [K] on vascular tone in rat mesenteric arteries.

    PubMed

    Brochet, Didier X P; Langton, Philip D

    2006-10-01

    A slight increase in extracellular concentration of potassium ([K(+)](o)) can act as a vasodilator in rat mesenteric vascular bed. However, in recent years, several groups have failed to consistently observe relaxation of rat mesenteric arteries in these conditions. The aim of the present study was to provide a mechanistic understanding of this discrepancy. In rat small mesenteric arteries, 37 of 40 arteries mounted for measurement of isometric force and pre-contracted with phenylephrine (PE) did not relax when ([K(+)](o) was raised from 5.9 mM (control ([K(+)](o) to 11.2 or 21.2 mM. However, when ([K(+)](o) was briefly lowered to 1.2 mM, increasing ([K(+)](o) to between 5.9 and 41.2 mM evoked relaxation. This relaxation was not reduced by barium or by removal of the endothelium, but was abolished by 0.1 mM ouabain. Raising ([K(+)](o) from concentrations between 0 and 5.9 mM to 13.8 mM elicited a relaxation of PE-induced tone that was inversely proportional to initial ([K(+)](o). Relaxation was associated with a ouabain-sensitive hyperpolarization of smooth muscle cells. In arteries exposed to dihydroouabain (DHO), raising ([K(+)](o) from 5.9 to 13.8 mM and simultaneously washing out DHO resulted in relaxation of PE-induced force. These results suggest that only when the initial ([K(+)](o) is less than approximately 5 mM do small elevations in ([K(+)](o) evoke smooth muscle hyperpolarization and relaxation via activation of Na,K-ATPase, and not inwardly rectifying K(+) channels. Therefore, small differences in the initial ([K(+)](o) (4.6 vs 5.9 mM) can strongly influence the variations of vascular tone to increases in ([K(+)](o).

  3. Uteroplacental insufficiency and lactational environment separately influence arterial stiffness and vascular function in adult male rats.

    PubMed

    Tare, Marianne; Parkington, Helena C; Bubb, Kristen J; Wlodek, Mary E

    2012-08-01

    Early life environmental influences can have lifelong consequences for health, including the risk of cardiovascular disease. Uteroplacental insufficiency causes fetal undernutrition and impairs fetal growth. Previously we have shown that uteroplacental insufficiency is associated with impaired maternal mammary development, compromising postnatal growth leading to hypertension in male rat offspring. In this study we investigated the roles of prenatal and postnatal nutritional environments on endothelial and smooth muscle reactivity and passive wall stiffness of resistance arteries of male rat offspring. Fetal growth restriction was induced by maternal bilateral uterine vessel ligation (restricted) on day 18 of pregnancy. Control offspring were from mothers that had sham surgery (control) and another group from mothers with their litter size reduced (reduced; litter size reduced to 5 at birth, equivalent to the restricted group). On postnatal day 1, offspring (control, restricted, and reduced) were cross-fostered onto control or restricted mothers. At 6 months, mesenteric and femoral arteries were studied using wire and pressure myography. In restricted-on-restricted rats, wall stiffness was increased, and sensitivity to phenylephrine and relaxation evoked by endothelium-derived hyperpolarizing factor and sodium nitroprusside were impaired in mesenteric arteries. In femoral arteries, relaxation to sodium nitroprusside was reduced, whereas wall stiffness was unaltered. Cross-fostering restricted offspring onto control mothers alleviated deficits in vascular stiffness and reactivity. Control or reduced offspring who suckled a restricted mother had marked vascular stiffening. In conclusion, prenatal and early postnatal environments separately influence vascular function and stiffness. Furthermore, the early postnatal lactational environment is a determinant of later cardiovascular function.

  4. Insulin resistance in penile arteries from a rat model of metabolic syndrome

    PubMed Central

    Contreras, Cristina; Sánchez, Ana; Martínez, Pilar; Raposo, Rafaela; Climent, Belén; García-Sacristán, Albino; Benedito, Sara; Prieto, Dolores

    2010-01-01

    BACKGROUND AND PURPOSE Metabolic and cardiovascular abnormalities accompanying metabolic syndrome, such as obesity, insulin resistance and hypertension, are all associated with endothelial dysfunction and are independent risk factors for erectile dysfunction. The purpose of the present study was to investigate the vascular effects of insulin in penile arteries and whether these effects are impaired in a rat model of insulin resistance and metabolic syndrome. EXPERIMENTAL APPROACH Penile arteries from obese Zucker rats (OZR) and their counterpart, lean Zucker rats (LZR), were mounted on microvascular myographs and the effects of insulin were assessed in the absence and presence of endothelium and of specific inhibitors of nitric oxide (NO) synthesis, phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK). Insulin-induced changes in intracellular Ca2+ concentration [Ca2+]i were also examined. KEY RESULTS OZR exhibited mild hyperglycaemia, hypercholesterolemia, hypertryglyceridemia and hyperinsulinemia. Insulin induced endothelium- and NO-dependent relaxations in LZR that were impaired in OZR. Inhibition of PI3K reduced relaxation induced by insulin and by the β-adrenoceptor agonist isoprenaline, mainly in arteries from LZR. Antagonism of endothelin 1 (ET-1) receptors did not alter insulin-induced relaxation in either LZR or OZR, but MAPK blockade increased the responses in OZR. Insulin decreased [Ca2+]i, a response impaired in OZR. CONCLUSIONS AND IMPLICATIONS Insulin-induced relaxation was impaired in penile arteries of OZR due to altered NO release through the PI3K pathway and unmasking of a MAPK-mediated vasoconstriction. This vascular insulin resistance is likely to contribute to the endothelial dysfunction and erectile dysfunction associated with insulin resistant states. PMID:20735420

  5. Reduced Endothelium-Dependent Relaxation to Anandamide in Mesenteric Arteries from Young Obese Zucker Rats

    PubMed Central

    Lobato, Nubia S.; Filgueira, Fernando P.; Prakash, Roshini; Giachini, Fernanda R.; Ergul, Adviye; Carvalho, Maria Helena C.; Webb, R. Clinton; Tostes, Rita C.; Fortes, Zuleica B.

    2013-01-01

    Impaired vascular function, manifested by an altered ability of the endothelium to release endothelium-derived relaxing factors and endothelium-derived contracting factors, is consistently reported in obesity. Considering that the endothelium plays a major role in the relaxant response to the cannabinoid agonist anandamide, the present study tested the hypothesis that vascular relaxation to anandamide is decreased in obese rats. Mechanisms contributing to decreased anandamide-induced vasodilation were determined. Resistance mesenteric arteries from young obese Zucker rats (OZRs) and their lean counterparts (LZRs) were used. Vascular reactivity was evaluated in a myograph for isometric tension recording. Protein expression and localization were analyzed by Western blotting and immunofluorescence, respectively. Vasorelaxation to anandamide, acetylcholine, and sodium nitroprusside, as well as to CB1, CB2, and TRPV1 agonists was decreased in endothelium-intact mesenteric arteries from OZRs. Incubation with an AMP-dependent protein kinase (AMPK) activator or a fatty acid amide hydrolase inhibitor restored anandamide-induced vascular relaxation in OZRs. CB1 and CB2 receptors protein expression was decreased in arteries from OZRs. Incubation of mesenteric arteries with anandamide evoked endothelial nitric oxide synthase (eNOS), AMPK and acetyl CoA carboxylase phosphorylation in LZRs, whereas it decreased phosphorylation of these proteins in OZRs. In conclusion, obesity decreases anandamide-induced relaxation in resistance arteries. Decreased cannabinoid receptors expression, increased anandamide degradation, decreased AMPK/eNOS activity as well as impairment of the response mediated by TRPV1 activation seem to contribute to reduce responses to cannabinoid agonists in obesity. PMID:23667622

  6. Effect of sex hormones on plasma phospholipid fatty acid composition in intact rats and rats with bilaterally occluded carotid arteries.

    PubMed

    Petrović, S; Takić, M; Arsić, A; Vučić, V; Drakulić, D; Milošević, M; Glibetić, M

    2014-01-01

    The effects of 8-days treatment with 17alpha-estradiol (33.3 microg/kg) and progesterone (1.7 mg/kg) on plasma lipids and fatty acid composition of plasma phospholipids were examined in intact (INT) and bilaterally common carotid arteries occluded (BCO) male Wistar rats. Significant decrease of triglyceride level was found in BCO rats after the estradiol treatment. Both hormones elevated proportion of 18:1n-7 fatty acid in INT, but they failed to have such an effect in BCO. Estradiol increased 22:5n-3 and total n-3 polyunsaturated fatty acids (PUFA) in intact, and decreased 18:2n-6 in BCO rats. Significantly lower level of total n-3 was found in progesterone-treated than in estradiol-treated BCO rats. Given that n-3 PUFA have many beneficial effects on cell and tissue function, while n-6 PUFA have mostly the opposite effects, estradiol, rather than progesterone, was seen to improve plasma lipids and phospholipids FA profiles in INT and BCO animals. Estradiol significantly elevated the estimated activity of delta9-desaturases and progesterone of delta5-desaturase in BCO group, with no effects in INT rats.

  7. Alterations in Perivascular Sympathetic and Nitrergic Innervation Function Induced by Late Pregnancy in Rat Mesenteric Arteries

    PubMed Central

    Caracuel, Laura; Callejo, María; Balfagón, Gloria

    2015-01-01

    Background and Purpose We investigated whether pregnancy was associated with changed function in components of perivascular mesenteric innervation and the mechanism/s involved. Experimental Approach We used superior mesenteric arteries from female Sprague-Dawley rats divided into two groups: control rats (in oestrous phase) and pregnant rats (20 days of pregnancy). Modifications in the vasoconstrictor response to electrical field stimulation (EFS) were analysed in the presence/absence of phentolamine (alpha-adrenoceptor antagonist) or L-NAME (nitric oxide synthase-NOS- non-specific inhibitor). Vasomotor responses to noradrenaline (NA), and to NO donor DEA-NO were studied, NA and NO release measured and neuronal NOS (nNOS) expression/activation analysed. Key Results EFS induced a lower frequency-dependent contraction in pregnant than in control rats. Phentolamine decreased EFS-induced vasoconstriction in segments from both experimental groups, but to a greater extent in control rats. EFS-induced vasoconstriction was increased by L-NAME in arteries from both experimental groups. This increase was greater in segments from pregnant rats. Pregnancy decreased NA release while increasing NO release. nNOS expression was not modified but nNOS activation was increased by pregnancy. Pregnancy decreased NA-induced vasoconstriction response and did not modify DEA-NO-induced vasodilation response. Conclusions and Implications Neural control of mesenteric vasomotor tone was altered by pregnancy. Diminished sympathetic and enhanced nitrergic components both contributed to the decreased vasoconstriction response to EFS during pregnancy. All these changes indicate the selective participation of sympathetic and nitrergic innervations in vascular adaptations produced during pregnancy. PMID:25951331

  8. The Effect of Photoluminescence of Bioceramic Irradiation on Middle Cerebral Arterial Occlusion in Rats

    PubMed Central

    Zhang, Lei; Chan, Paul; Liu, Zhong-Min; Hwang, Ling-Ling; Lin, Kuo-Chi; Chan, Wing P.; Leung, Ting-Kai; Choy, Cheuk Sing

    2016-01-01

    The purpose of this study is to determine the possible effect of photoluminescence of bioceramic (PLB) on ischemic cerebral infarction (stroke), by using an animal model of transient middle cerebral artery occlusion (MCAO). Sprague-Dawley rats were used to induce MCAO to block the origin of the left MCAO; three months later, the positive chronic stroke rats were selected by running tunnel maze; the MCAO rats with significant chronic stroke and neurological defects were used for treadmill experiments with varying speed settings to test their capability for restoration after muscular fatigue under conditions of with and without PLB irradiation. As a result, PLB irradiation could improve exercise completion rate and average running speed during slow and fast treadmill settings. After PLB irradiation, the selected MCAO rats successfully completed all the second-round treadmill exercises at the maximum speed setting, and they had better restoration from muscular fatigue. An in vitro cell study on astrocytes of rats by bioceramic irradiation further demonstrated increased intracellular nitric oxide. To explain these results, we suggest that cortical brain stimulation of microcirculation and enhancement of peripheral muscular activity are the main causes of the improved exercise performance in MCAO rats by PLB. PMID:27375765

  9. The Effect of Photoluminescence of Bioceramic Irradiation on Middle Cerebral Arterial Occlusion in Rats.

    PubMed

    Zhang, Lei; Chan, Paul; Liu, Zhong-Min; Hwang, Ling-Ling; Lin, Kuo-Chi; Chan, Wing P; Leung, Ting-Kai; Choy, Cheuk Sing

    2016-01-01

    The purpose of this study is to determine the possible effect of photoluminescence of bioceramic (PLB) on ischemic cerebral infarction (stroke), by using an animal model of transient middle cerebral artery occlusion (MCAO). Sprague-Dawley rats were used to induce MCAO to block the origin of the left MCAO; three months later, the positive chronic stroke rats were selected by running tunnel maze; the MCAO rats with significant chronic stroke and neurological defects were used for treadmill experiments with varying speed settings to test their capability for restoration after muscular fatigue under conditions of with and without PLB irradiation. As a result, PLB irradiation could improve exercise completion rate and average running speed during slow and fast treadmill settings. After PLB irradiation, the selected MCAO rats successfully completed all the second-round treadmill exercises at the maximum speed setting, and they had better restoration from muscular fatigue. An in vitro cell study on astrocytes of rats by bioceramic irradiation further demonstrated increased intracellular nitric oxide. To explain these results, we suggest that cortical brain stimulation of microcirculation and enhancement of peripheral muscular activity are the main causes of the improved exercise performance in MCAO rats by PLB.

  10. Alterations in Vasoreactivity of Femoral Artery Induced by Hindlimb Unweighting are Related to the Changes of Contractile Protein in Rats

    NASA Technical Reports Server (NTRS)

    Ma, Jin; Ren, Xinling; Meng, Qinjun; Zhang, Lifan; Purdy, Ralph E.

    2005-01-01

    Responses of endothelium removed femoral arterial rings to vasoactive compounds were examined in vitro, and the expression of Myosin and Actin of femoral artery were observed by Western Blotting and Immunohistochemistry in hndlimb unweighting rats and control rats. The results showed that contractile responses of femoral arterial rings evoked by Phenylephrine, Endothelin-1, Vasopressin, KCl, Ca(2+) and Ca(2+) ionophore A23187 were decreased in hindlimb unweighting rats as compared with that of controls. But vasoddatory responses induced by SNPand cGMP were not different between groups. No significant differences have been found in expressions of Calponin, Myosin, Actin, and the ratio of MHC SM1/SM2 between the two groups, but expression of alpha-SM-Actin decreased in hindlimb unweighting rats. The data indicated that the diminished contractile responsiveness probably result from altered contractile apparatus, especially the contractile proteins.

  11. Hypertension and impairment of endothelium-dependent relaxation of arteries from spontaneously hypertensive and L-NAME-treated Wistar rats.

    PubMed

    Sekiguchi, F; Miyake, Y; Hirakawa, A; Nakahira, T; Yamaoka, M; Shimamura, K; Yamamoto, K; Sunano, S

    2001-04-01

    Effects of chronic treatment of normotensive Wistar rats with N(omega)-nitro-L-arginine methyl ester (L-NAME) on blood pressure and on endothelium-dependent relaxation of the aorta, carotid and iliac arteries were studied. The endothelium-dependent relaxation was compared in arteries from normotensive Wistar Kyoto rats (WKY) and genetically hypertensive rats (stroke-prone spontaneously hypertensive rats, SHRSP). Chronic treatment of normotensive Wistar rats with L-NAME caused an elevation of blood pressure. The elevated blood pressure at 15 weeks of age was significantly higher in these animals than that of untreated Wistar rats, but lower than that of SHRSP. Endothelium-dependent relaxation of the arteries induced by acetylcholine (ACh) was almost abolished by chronic treatment with L-NAME. The remaining small relaxation in arteries from L-NAME-treated rats was completely inhibited by application of L-NAME (10(-4) M). In such preparations, higher concentrations of ACh induced a contraction, which was abolished by removal of the endothelium or by an application of indomethacin (10(-5) M). Endothelium-independent relaxation induced by sodium nitroprusside was similar between preparations from untreated and L-NAME-treated Wistar rats. Endothelium-dependent relaxation was significantly impaired in preparations from SHRSP, when compared with that in those from WKY. However, the impairment was less prominent in preparations from SHRSP than in those from L-NAME-treated rats. These results suggest that the impairment of endothelium-dependent relaxation in the arteries from L-NAME-treated rats is not due to the elevated blood pressure resulting from the chronic treatment, and that impairment of NO synthesis by the endothelium does not play a major role in the initiation of hypertension in SHRSP.

  12. Endothelium-dependent relaxation in pulmonary arteries of L-NAME-treated Wistar and stroke-prone spontaneously hypertensive rats.

    PubMed

    Sekiguchi, Fumiko; Yamamoto, Kazuo; Matsuda, Kyoko; Kawata, Kyoko; Negishi, Maki; Shinomiya, Kazuaki; Shimamur, Keiichi; Sunano, Satoru

    2002-10-01

    To evaluate whether the elevated blood pressure induced by chronic treatment with N(omega)-nitro-L-arginine methyl ester (L-NAME) contributes to an impairment of endothelium-dependent relaxation (EDR), the effects of chronic treatment of Wistar rats with L-NAME on systolic blood pressure, pulmonary arterial blood pressure and EDR of the pulmonary arteries were studied and compared with those of stroke-prone spontaneously hypertensive rats (SHRSP). While the systolic blood pressure (SBP) of Wistar rats was increased above that of controls by chronic treatment with L-NAME, it was still significantly lower than that of SHRSP. Chronic treatment with L-NAME did not affect pulmonary arterial blood pressure. On the other hand, the pulmonary arterial blood pressure of SHRSP was slightly but significantly higher than that of the control normotensive Wistar Kyoto rats (WKY). EDR in response to acetylcholine in the pulmonary artery of L-NAME-treated rats was significantly smaller than that in control Wistar rats. The EDR markedly increased in the presence of L-arginine and completely disappeared in the presence of N(omega)-nitro-L-arginine. Indomethacin hardly affected EDR. In preparations from SHRSP, the EDR was not different from that in those from WKY. Relaxation induced by sodium nitroprusside was identical in all preparations. Elevation of SBP and the impairment of EDR observed in L-NAME-treated rats recovered two weeks following cessation of treatment. These results suggest that the impaired EDR in the pulmonary artery of L-NAME-treated rats is not due to an L-NAME-induced increase in blood pressure but due to the inhibition of nitric oxide synthase by the drug remaining in the endothelium.

  13. Effect of age on kinetics of nitric oxide release in rat aorta and pulmonary artery.

    PubMed Central

    Tschudi, M R; Barton, M; Bersinger, N A; Moreau, P; Cosentino, F; Noll, G; Malinski, T; Lüscher, T F

    1996-01-01

    Aging is an important determinant of vascular disease. Endothelium-derived nitric oxide (NO) is protective as a vasodilator and inhibitor of platelet function. This study was designed to directly measure effects of prolonged aging on endotheliai NO release in isolated blood vessels and to delineate differences between the systemic and pulmonary circulation. Aortas and pulmonary arteries from 5-6-mo-old (young), 18-19-mo-old (middle-aged), and 32-33-mo-old (old) normotensive female rats were used. Blood pressure and plasma estradiol-17beta (E2) remained unchanged. In isolated blood vessels, NO release was induced by the receptor-independent agonist calcium ionophore A23187 (10 micromol/liter) and measured in situ on the endothelial surface of vessels using a porphyrinic microsensor. In vessels suspended in organ chambers isometric tension was recorded. In the aorta, the initial rate of NO release and peak NO concentration were reduced in middle-aged and old rats (P < 0.0006 vs. young rats, n = 6). Furthermore, endothelium-dependent relaxations to calcium ionophore and acetylcholine (both 10(-10) - 10(-5) mol/liter) were also reduced in aortas from old as compared with young rats (n = 6, P < 0.05). The initial rate of NO release and peak NO concentration significantly correlated with maximal relaxation to calcium ionophore A23187 (correlation coefficients r - 0.916, P < 0.0018 and r = 0.961, P < 0.0001, respectively, n = 7). In pulmonary arteries, however, the initial rate of NO release as well as peak NO concentration did not decrease with age (n = 6 for each age group, NS). In both blood vessels, the NO release was unaffected by superoxide dismutase in all age groups (n = 6, NS). Thus, aging specifically reduces initial rate and peak concentrations of endothelial NO release from aorta but not pulmonary artery indicating reduced NO production. As arterial pressure did not change with aging, the chronic exposure of the aorta to higher pressure and/or pulsatility than

  14. Effect of quercetin-rich onion peel extracts on arterial thrombosis in rats.

    PubMed

    Lee, Seung-Min; Moon, Jiyoung; Chung, Ji Hyung; Cha, Yong-Jun; Shin, Min-Jeong

    2013-07-01

    The aim of this study was to examine whether oral supplementation of quercetin-rich onion peel extract (OPE) influences blood coagulation and arterial thrombosis in Sprague-Dawley (SD) rats. 24 male rats, 5 weeks old, were divided into three groups with different diets (C: control, 2mg OPE: chow diet with 2mg OPE supplementation, 10mg OPE: chow diet with 10mg OPE supplementation) for 6 weeks. Blood coagulation parameters including prothrombin time (PT), activated partial thromboplastin time (aPTT) and platelet aggregation were examined. The OPE did not affect blood cholesterol levels but significantly decreased blood triglyceride and glucose levels. PT, aPTT and platelet aggregation were not significantly different among all tested groups. However, in vivo arterial thrombosis was significantly delayed in groups that were fed 2mg and 10mg OPE diets compared to the control group. In addition, the OPE greatly diminished thrombin-induced expression of tissue factor in human umbilical vein endothelial cells (HUVECs), a coagulation initiator. In addition, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways activated by thrombin treatment were prevented by the OPE pre-treatment. These results indicate that OPE may have anti-thrombotic effects through restricting the induced expression of tissue factor via down-regulating mitogen-activated protein kinase (MAPK) activation upon coagulation stimulus, leading to the prolongation of time for arterial thrombosis.

  15. Photodynamic therapy of normal rat arteries after photosensitisation using disulphonated aluminium phthalocyanine and 5-aminolaevulinic acid.

    PubMed Central

    Grant, W. E.; Speight, P. M.; MacRobert, A. J.; Hopper, C.; Bown, S. G.

    1994-01-01

    Photodynamic therapy of cancer exposes adjacent arteries to the risk of injury and the possibility of haemorrhage and thrombosis. The nature of photodynamic injury to normal arteries has not been satisfactorily defined, and the ability of arteries to recover with time is unclear. To clarify these issues, we have investigated the effects of PDT on rat femoral arteries, using a second-generation photosensitiser, disulphonated aluminium phthalocyanine, and a new method of photosensitisation, using endogenous synthesis of protoporphyrin IX following systemic administration of 5-aminolaevulinic acid (ALA). Pharmacokinetic studies of sensitiser fluorescence were carried out to determine peak levels of sensitiser. Subsequently photodynamic therapy at times corresponding to maximal fluorescence was performed using two light doses, 100 and 250 J cm-2. The nature of injury sustained and recovery over a 6 month period was investigated. Three days following PDT, all vessels treated showed complete loss of endothelium, with death of all medial smooth muscle cells, leaving an acellular flaccid artery wall. No vascular occlusion, haemorrhage or thrombosis was found. A striking feature was the lack of inflammatory response in the vessel wall at any time studied. Re-endothelialisation occurred in all vessels by 2 weeks. The phthalocyanine group showed repopulation of the media with smooth muscle cells to be almost complete by 3 months. However, the ALA group failed to redevelop a muscular wall and remained dilated at 6 months. Luminal cross-sectional area of the ALA-treated group was significantly greater than both control and phthalocyanine groups at 6 months. All vessels remained patent. This study indicates that arteries exposed to PDT are not at risk of catastrophic haemorrhage or occlusion, a finding that is of significance for both the local treatment of tumours and the use of PDT as an intraoperative adjunct to surgery for the ablation of microscopic residual malignant

  16. Length-tension relationships of small arteries, veins, and lymphatics from the rat mesenteric microcirculation.

    PubMed

    Zhang, Rong-Zhen; Gashev, Anatoliy A; Zawieja, David C; Davis, Michael J

    2007-04-01

    The passive and active length-tension relationships of isolated rat mesenteric lymphatics ( approximately 150 microm ID), and adjacent small arteries ( approximately 240 microm) and veins ( approximately 275 microm) were compared under isometric conditions using a wire myograph. About 60% of the lymphatic vessels developed spontaneous contractions in physiological saline solution at nominal preload. To maximally activate smooth muscle, 145 mM K(+) + 5 x 10(-5) M norepinephrine was used for arteries, and 145 mM K(+) + 1 x 10(-6) M substance P was used for lymphatics and veins. In response, arteries exhibited monotonic force development to a plateau level, whereas lymphatics and veins showed biphasic force development, consisting of a transient force peak followed by partial relaxation to a plateau over approximately 5 min. The passive and the active length-tension curves were similar in shape among all three vessels. However, the maximal active tension of arteries (3.4 +/- 0.42 mN/mm) was significantly greater than peak active tension (0.59 +/- 0.04 mN/mm) or plateau tension (0.20 +/- 0.04 mN/mm) in small veins and greater than peak active tension (0.34 +/- 0.02 mN/mm) or plateau tension (0.21 +/- 0.02 mN/mm) in lymphatics. Maximal active medial wall stress was similar between lymphatics and veins but was approximately fivefold higher in small arteries. For lymphatics, the pressure calculated from the optimal preload was significantly higher than that found previously in isobaric studies of isolated lymphatics, suggesting the capacity to operate at higher than normal pressures for increased responsiveness. Our results represent the first mechanical comparisons of arterial, venous, and lymphatic vessels in the same vasculature.

  17. Role played by interleukin-6 in evoking the exercise pressor reflex in decerebrate rats: effect of femoral artery ligation

    PubMed Central

    Stone, Audrey J.; Li, Jianhua; Kaufman, Marc P.

    2015-01-01

    IL-6 signaling via the soluble IL-6 receptor (sIL-6r) has been shown to increase primary afferent responsiveness to noxious stimuli. This finding prompted us to test the hypothesis that IL-6 and sIL-6r would increase the exercise pressor reflex in decerebrate rats with freely perfused femoral arteries. We also tested the hypothesis that soluble glycoprotein (sgp)130, an inhibitor of IL-6/sIL-6r signaling, would decrease the exaggerated exercise pressor reflex that is found in decerebrate rats with ligated femoral arteries. In rats with freely perfused femoral arteries, coinjection of 50 ng of IL-6 and sIL-6r into the arterial supply of the hindlimb significantly increased the peak pressor response to static (control: 14 ± 3 mmHg and IL-6/sIL-6r: 17 ± 2 mmHg, P = 0.03) and intermittent isometric (control: 10 ± 2 mmHg and IL-6/sIL-6r: 15 ± 4 mmHg, P = 0.03) hindlimb muscle contraction. In rats with ligated femoral arteries, injection of 50 ng of sgp130 into the arterial supply of the hindlimb reduced the peak pressor response to static (control: 24 ± 2 mmHg and sgp130: 16 ± 3 mmHg, P = 0.01) and intermittent isometric (control: 16 ± 2 mmHg and sgp130: 13 ± 2 mmHg, P = 0.04) hindlimb muscle contraction, whereas there was no effect of sgp130 on the exercise pressor reflex in rats with freely perfused femoral arteries. We conclude that coinjection of exogenous IL-6 and sIL-6r increased the exercise pressor reflex in rats with freely perfused femoral arteries. More importantly, we also conclude that IL-6 and sIL-6r play an endogenous role in evoking the exercise pressor reflex in rats with ligated femoral arteries but not in rats with freely perfused femoral arteries. PMID:25910806

  18. Role played by interleukin-6 in evoking the exercise pressor reflex in decerebrate rats: effect of femoral artery ligation.

    PubMed

    Copp, Steven W; Stone, Audrey J; Li, Jianhua; Kaufman, Marc P

    2015-07-01

    IL-6 signaling via the soluble IL-6 receptor (sIL-6r) has been shown to increase primary afferent responsiveness to noxious stimuli. This finding prompted us to test the hypothesis that IL-6 and sIL-6r would increase the exercise pressor reflex in decerebrate rats with freely perfused femoral arteries. We also tested the hypothesis that soluble glycoprotein (sgp)130, an inhibitor of IL-6/sIL-6r signaling, would decrease the exaggerated exercise pressor reflex that is found in decerebrate rats with ligated femoral arteries. In rats with freely perfused femoral arteries, coinjection of 50 ng of IL-6 and sIL-6r into the arterial supply of the hindlimb significantly increased the peak pressor response to static (control: 14 ± 3 mmHg and IL-6/sIL-6r: 17 ± 2 mmHg, P = 0.03) and intermittent isometric (control: 10 ± 2 mmHg and IL-6/sIL-6r: 15 ± 4 mmHg, P = 0.03) hindlimb muscle contraction. In rats with ligated femoral arteries, injection of 50 ng of sgp130 into the arterial supply of the hindlimb reduced the peak pressor response to static (control: 24 ± 2 mmHg and sgp130: 16 ± 3 mmHg, P = 0.01) and intermittent isometric (control: 16 ± 2 mmHg and sgp130: 13 ± 2 mmHg, P = 0.04) hindlimb muscle contraction, whereas there was no effect of sgp130 on the exercise pressor reflex in rats with freely perfused femoral arteries. We conclude that coinjection of exogenous IL-6 and sIL-6r increased the exercise pressor reflex in rats with freely perfused femoral arteries. More importantly, we also conclude that IL-6 and sIL-6r play an endogenous role in evoking the exercise pressor reflex in rats with ligated femoral arteries but not in rats with freely perfused femoral arteries.

  19. Reticular lamina and basilar membrane vibrations in living mouse cochleae

    PubMed Central

    Ren, Tianying; He, Wenxuan; Kemp, David

    2016-01-01

    It is commonly believed that the exceptional sensitivity of mammalian hearing depends on outer hair cells which generate forces for amplifying sound-induced basilar membrane vibrations, yet how cellular forces amplify vibrations is poorly understood. In this study, by measuring subnanometer vibrations directly from the reticular lamina at the apical ends of outer hair cells and from the basilar membrane using a custom-built heterodyne low-coherence interferometer, we demonstrate in living mouse cochleae that the sound-induced reticular lamina vibration is substantially larger than the basilar membrane vibration not only at the best frequency but surprisingly also at low frequencies. The phase relation of reticular lamina to basilar membrane vibration changes with frequency by up to 180 degrees from ∼135 degrees at low frequencies to ∼-45 degrees at the best frequency. The magnitude and phase differences between reticular lamina and basilar membrane vibrations are absent in postmortem cochleae. These results indicate that outer hair cells do not amplify the basilar membrane vibration directly through a local feedback as commonly expected; instead, they actively vibrate the reticular lamina over a broad frequency range. The outer hair cell-driven reticular lamina vibration collaboratively interacts with the basilar membrane traveling wave primarily through the cochlear fluid, which boosts peak responses at the best-frequency location and consequently enhances hearing sensitivity and frequency selectivity. PMID:27516544

  20. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques.

    PubMed Central

    Giachelli, C M; Bae, N; Almeida, M; Denhardt, D T; Alpers, C E; Schwartz, S M

    1993-01-01

    In an earlier report, we used differential cloning to identify genes that might be critical in controlling arterial neointima formation (Giachelli, C., N. Bae, D. Lombardi, M. Majesky, and S. Schwartz. 1991. Biochem. Biophys. Res. Commun. 177:867-873). In this study, we sequenced the complete cDNA and conclusively identified one of these genes, 2B7, as rat osteopontin. Using immunochemistry and in situ hybridization, we found that medial smooth muscle cells (SMC) in uninjured arteries contained very low levels of osteopontin protein and mRNA. Injury to either the adult rat aorta or carotid artery using a balloon catheter initiated a qualitatively similar time-dependent increase in both osteopontin protein and mRNA in arterial SMC. Expression was transient and highly localized to neointimal SMC during the proliferative and migratory phases of arterial injury, suggesting a possible role for osteopontin in these processes. In vitro, basic fibroblast growth factor (bFGF), transforming growth factor-beta (TGF-beta), and angiotensin II (AII), all proteins implicated in the rat arterial injury response, elevated osteopontin expression in confluent vascular SMC. Finally, we found that osteopontin was a novel component of the human atherosclerotic plaque found most strikingly associated with calcified deposits. These data implicate osteopontin as a potentially important mediator of arterial neointima formation as well as dystrophic calcification that often accompanies this process. Images PMID:8408622

  1. The determination of optimal initial tension in rat coronary artery using wire myography.

    PubMed

    Ping, N-N; Cao, L; Xiao, X; Li, S; Cao, Y-X

    2014-01-01

    The aim of the present study was to determine the optimal initial tension, i.e. initial stretch for rat coronary artery when using the multi-wire myograph system. We used the normalization procedure to mimic physiological conditions and to stretch the coronary arterial segments to normalized internal circumference (IC(1)). It is determined the internal circumference when the vessel relaxed under a transmural pressure of 100 mm Hg (IC(100)), and the IC(1) is calculated by multiplying the IC(100) by a factor k. The impact of different factor k on the initial stretch and agonist-induced tension of coronary arteries were investigated. The results showed that the maximal agonist-induced tension was achieved at the factor k value of 0.90 and the initial stretch tension was given 1.16+/-0.04 mN/mm. The most appropriate factor k value was 0.90-0.95 and the most appropriate initial tension was 1.16-1.52 mN/mm. The equilibration time of the coronary artery segments should be at least 1.0 h. In the same optimal initial tension, the agonist-induced tension increased as equilibration time lengthened.

  2. Dependence of cerebral arterial contractions on intracellularly stored Ca++.

    PubMed

    Sasaki, T; Kassell, N F; Zuccarello, M

    1986-01-01

    The purpose of the present study was to evaluate the dependence of the arterial contractions induced by different vasoactive agents upon intracellularly stored calcium in canine versus monkey cerebral arteries. The potency for inducing contractions in Ca++-free media was in the order of 9,11-epithio-11,12-metano-thromboxane A2 (STXA2) greater than prostaglandin F2 alpha (PGF2 alpha) much greater than serotonin greater than K+ in canine basilar arteries, and STXA2 greater than PGF2 alpha much greater than serotonin = K+ in monkey basilar arteries.

  3. Transneuronal Degeneration of Thalamic Nuclei following Middle Cerebral Artery Occlusion in Rats

    PubMed Central

    2016-01-01

    Objective. Postinfarction transneuronal degeneration refers to secondary neuronal death that occurs within a few days to weeks following the disruption of input or output to synapsed neurons sustaining ischemic insults. The thalamus receives its blood supply from the posterior circulation; however, infarctions of the middle cerebral arterial may cause secondary transneuronal degeneration in the thalamus. In this study, we presented the areas of ischemia and associated transneuronal degeneration following MCAo in a rat model. Materials and Methods. Eighteen 12-week-old male Sprague-Dawley rats were randomly assigned to receive middle cerebral artery occlusion surgery for 1, 7, and 14 days. Cerebral atrophy was assessed by 2,3,5-triphenyltetrazolium hydrochloride staining. Postural reflex and open field tests were performed prior to animal sacrifice to assess the effects of occlusion on behavior. Results. Myelin loss was observed at the lesion site following ischemia. Gliosis was also observed in thalamic regions 14 days following occlusion. Differential degrees of increased vascular endothelial growth factor expression were observed at each stage of infarction. Increases in myelin basic protein levels were also observed in the 14-day group. Conclusion. The present rat model of ischemia provides evidence of transneuronal degeneration within the first 14 days of occlusion. The observed changes in protein expression may be associated with self-repair mechanisms in the damaged brain. PMID:27597962

  4. Low-dose combination of Rho kinase and L-type Ca(2+) channel antagonists for selective inhibition of depolarization-induced sustained arterial contraction.

    PubMed

    Porras-González, Cristina; González-Rodríguez, Patricia; Calderón-Sánchez, Eva; López-Barneo, José; Ureña, Juan

    2014-06-05

    L-type Ca(2+) channels (LTCCs) are involved in the maintenance of tonic arterial contractions and regulate the RhoA/Rho-associated kinase (ROCK) sensitization cascade. We have tested effects of individual and combined low concentrations of LTCCs and ROCK inhibitors to produce arterial relaxation without the adverse side effects of LTCCs antagonists. We have also studied whether this pharmacological strategy alters Ca(2+)-dependent electrical properties of isolated arterial and cardiac myocytes as well as cardiac contractility. Rat basilar, human carotid and coronary arterial rings were mounted on a small-vessel myograph to measure isometric tension and cardiac contractility was measured in Langendorff-perfused rat heart. Simultaneous cytosolic Ca(2+) concentration and arterial diameter were measured in intact pressurized arteries loaded with Fura-2. Patch-clamp techniques were used to measure electrical properties in isolated cardiac and arterial myocytes. Low concentrations of LTCCs and ROCK inhibitors reduced the tonic component of moderate depolarization-evoked contraction, leaving the phasic component practically unaltered. This selective vasorelaxant effect was more marked when the LTCCs and ROCK inhibitors were applied together. In the concentration range used (nM), Ca(2+) currents in arterial myocytes, cardiac action potentials and heart contractility were unaffected by this pharmacological approach. In conclusion, low doses of LTCCs and ROCK inhibitors could be used to selectively relax precontracted arteries in pathologic conditions such as hypertension, and cerebral or coronary spasms with minor side effects on physiological contractile properties of vascular and cardiac myocytes.

  5. Carboxypeptidase B and other kininases of the rat coronary and mesenteric arterial bed perfusates.

    PubMed

    Oliveira, Eduardo B; Souza, Laura L; Sivieri, Disney O; Bispo-da-Silva, Luiz B; Pereira, Hugo J V; Costa-Neto, Claudio M; Sousa, Marcelo V; Salgado, Maria Cristina O

    2007-12-01

    We describe the enzymes that constitute the major bradykinin (BK)-processing pathways in the perfusates of mesenteric arterial bed (MAB) and coronary vessels isolated from Wistar normotensive rats (WNR) and spontaneously hypertensive rats. The contribution of particular proteases to BK degradation was revealed by the combined analysis of fragments generated during incubation of BK with representative perfusate samples and the effect of selective inhibitors on the respective reactions. Marked differences were seen among the perfusates studied; MAB secretes, per minute of perfusion, kininase activity capable of hydrolyzing approximately 300 pmol of BK/min, which is approximately 250-fold larger amount on a per unit time basis than that of its coronary counterpart. BK degradation in the coronary perfusate seems to be mediated by ANG I-converting enzyme, neutral endopeptidase 24.11-like enzyme, and a dl-2-mercaptomethyl-3-guanidinoethylthiopropanoic acid-sensitive basic carboxypeptidase; coronary perfusate of WNR contains an additional BK-degrading enzyme whose specificity resembles that of neurolysin or thimet oligopeptidase. Diversely, a des-Arg(9)-BK-forming enzyme, responsible for nearly all of the kininase activity of MAB perfusates of WNR and spontaneously hypertensive rats, could be purified by a procedure that involved affinity chromatography over potato carboxypeptidase inhibitor-Sepharose column and shown to be structurally identical to rat pancreatic carboxypeptidase B (CPB). Comparable levels of CPB mRNA expression were observed in pancreas, liver, mesentery, and kidney, but very low levels were detected in lung, heart, aorta, and carotid artery. In conclusion, distinct BK-processing pathways operate in the perfusates of rat MAB and coronary bed, with a substantial participation of a des-Arg(9)-BK-forming enzyme identical to pancreatic CPB.

  6. Double-barrel Y-configuration Stenting for Flow Diversion of a Giant Recurrent Basilar Apex Aneurysm with the Pipeline Flex Embolization Device

    PubMed Central

    Ding, Dale; Starke, Robert M.; McGuinness, Ben; Brew, Stefan

    2016-01-01

    Giant basilar apex aneurysms are extremely challenging to successfully manage. The Pipeline Flex embolization device (PFED) is a new generation flow-diverting stent with a modified delivery system which allows resheathing of the stent after partial deployment. We describe a case of double-barrel Y-configuration stenting of a giant, recurrent basilar apex aneurysm using the PFED. A 73-year-old male was previously treated for an unruptured 11-mm basilar apex aneurysm with stent-assisted coiling using a Neuroform stent. The aneurysm was retreated twice with repeat coiling. After the third recurrence and persistent aneurysm growth into a giant, symptomatic lesion, we decided to proceed with flow diversion. We performed Y-stenting of the basilar bifurcation using three PFEDs, and was recoiled the aneurysm sac. Due to the low porosity of the flow diverters, a side-by-side double-barrel configuration was necessary in the basilar artery. Without the PFED's resheathable capability, it would not have been possible to perform Y-stenting with flow diverters. PMID:28163518

  7. Double-barrel Y-configuration Stenting for Flow Diversion of a Giant Recurrent Basilar Apex Aneurysm with the Pipeline Flex Embolization Device.

    PubMed

    Ding, Dale; Starke, Robert M; McGuinness, Ben; Brew, Stefan

    2016-12-01

    Giant basilar apex aneurysms are extremely challenging to successfully manage. The Pipeline Flex embolization device (PFED) is a new generation flow-diverting stent with a modified delivery system which allows resheathing of the stent after partial deployment. We describe a case of double-barrel Y-configuration stenting of a giant, recurrent basilar apex aneurysm using the PFED. A 73-year-old male was previously treated for an unruptured 11-mm basilar apex aneurysm with stent-assisted coiling using a Neuroform stent. The aneurysm was retreated twice with repeat coiling. After the third recurrence and persistent aneurysm growth into a giant, symptomatic lesion, we decided to proceed with flow diversion. We performed Y-stenting of the basilar bifurcation using three PFEDs, and was recoiled the aneurysm sac. Due to the low porosity of the flow diverters, a side-by-side double-barrel configuration was necessary in the basilar artery. Without the PFED's resheathable capability, it would not have been possible to perform Y-stenting with flow diverters.

  8. Trigeminal neuralgia secondary to basilar impression: A case report

    PubMed Central

    de Almeida Holanda, Maurus Marques; Pereira Neto, Normando Guedes; de Moura Peixoto, Gustavo; Pinheiro Santos, Rayan Haquim

    2015-01-01

    We report a rare case of trigeminal neuralgia. A 23-year-old woman with a history of 1 year of typical trigeminal neuralgia manifested the characteristics of basilar impression. Magnetic resonance imaging (MRI) demonstrated basilar impression, deformity of the posterior fossa with asymmetry of petrous bone, and compression of medulla oblongata in the topography of the odontoid apophysis. The operation was performed through a suboccipital craniectomy. The neuralgia disappeared after surgery and remains completely resolved until today. This is the second reported case of trigeminal neuralgia in a patient with basilar impression in Brazil. PMID:25972713

  9. Basilar impression. A differential diagnosis of Menier'es disease.

    PubMed

    Elies, W; Plester, D

    1980-04-01

    We examined the craniocervical region in 180 patients with nonspecific dizziness and unilateral sensorineural hearing loss in most of them. In 32 cases, we found malformations of the craniocervical region. The symptoms of the basilar impression are probably caused by compression of the vessels of the lower cerebellar region and the brainstem as well as by disturbances of the CSF circulation. The diagnosis of basilar impression is based on lateral x-ray films of the skull base, tomography of this region, and in some cases on computerized axial tomography. We emphasize the importance of basilar impression in the differential diagnosis of Meniere's disease.

  10. Trigeminal neuralgia secondary to basilar impression: A case report.

    PubMed

    de Almeida Holanda, Maurus Marques; Pereira Neto, Normando Guedes; de Moura Peixoto, Gustavo; Pinheiro Santos, Rayan Haquim

    2015-01-01

    We report a rare case of trigeminal neuralgia. A 23-year-old woman with a history of 1 year of typical trigeminal neuralgia manifested the characteristics of basilar impression. Magnetic resonance imaging (MRI) demonstrated basilar impression, deformity of the posterior fossa with asymmetry of petrous bone, and compression of medulla oblongata in the topography of the odontoid apophysis. The operation was performed through a suboccipital craniectomy. The neuralgia disappeared after surgery and remains completely resolved until today. This is the second reported case of trigeminal neuralgia in a patient with basilar impression in Brazil.

  11. Hydrogen sulfide attenuates ferric chloride-induced arterial thrombosis in rats.

    PubMed

    Qin, Yi-Ren; You, Shou-Jiang; Zhang, Yan; Li, Qian; Wang, Xian-Hui; Wang, Fen; Hu, Li-Fang; Liu, Chun-Feng

    2016-06-01

    Hydrogen sulfide (H2S) is a novel gaseous transmitter, regulating a multitude of biological processes in the cardiovascular and other systems. However, it remains unclear whether it exerts any effect on arterial thrombosis. In this study, we examined the effect of H2S on ferric chloride (FeCl3)-induced thrombosis in the rat common carotid artery (CCA). The results revealed a decrease of the H2S-producing enzyme cystathionine γ-lyase (CSE) expression and H2S production that persisted until 48 h after FeCl3 application. Intriguingly, administration with NaHS at appropriate regimen reduced the thrombus formation and enhanced the blood flow, accompanied with the alleviation of CSE and CD31 downregulation, and endothelial cell apoptosis in the rat CCA following FeCl3 application. Moreover, the antithrombotic effect of H2S was also observed in Rose Bengal photochemical model in which the development of thrombosis is contributed by oxidative injury to the endothelium. The in vitro study demonstrated that the mRNA and protein expression of CSE, as well as H2S production, was decreased in hydrogen peroxide (H2O2)-treated endothelial cells. Exogenous supplement of NaHS and CSE overexpression consistently alleviated the increase of cleaved caspase-3 and endothelial cell damage caused by H2O2. Taken together, our findings suggest that endogenous H2S generation in the endothelium may be impaired during arterial thrombosis and that modulation of H2S, either exogenous supplement or boost of endogenous production, may become a potential venue for arterial thrombosis therapy.

  12. The Arteries of the Brain in Hare (Lepus europaeus Pallas, 1778).

    PubMed

    Brudnicki, Witold; Kirkiłło-Stacewicz, Krzysztof; Skoczylas, Benedykt; Nowicki, Włodzimierz; Jabłoński, Ryszard; Brudnicki, Adam; Wach, Jan

    2015-10-01

    Research into course and variability of brain arteries in hare were performed on 38 adult hares of both sexes (males 23 and females 15). The arteries were filled with a synthetic latex at a constant pressure introduced with a medical syringe to the left ventricle. The source of blood supply to the brain was internal carotid arteries, whose branches formed an arterial circle of the brain, vertebral arteries, and basilar artery as the result of its anastomosis. Variability focused on a method of departure of middle cerebral arteries, which were multiple vessels in 39.5% of cases and rostral cerebellar arteries. Caudal communicating arteries in hare comprised bilateral anastomosis of internal carotid arteries and final branches of the basilar artery. It stabilized the steady flow of blood to all parts of the brain. Caudal cerebral arteries comprised final branches of the basilar artery. The largest capacity of all the arteries of the brain was observed in the main trunk of the basilar artery. The capacity of these vessels was 4.53 mm(3) on average. The factor of capacity of cerebral arteries in relation to weight of the brain reaches a high value in hare.

  13. Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat.

    PubMed Central

    Garcia, J. H.; Yoshida, Y.; Chen, H.; Li, Y.; Zhang, Z. G.; Lian, J.; Chen, S.; Chopp, M.

    1993-01-01

    Focal brain ischemia induced in rats by occlusion of an intracranial artery is a widely used paradigm of human brain infarct. Details of the structural changes that develop in either the human or the rat brain at various times after occlusion of an intracranial artery are incompletely characterized. We studied, in 48 adult Wistar rats, structural alterations involving the cerebral hemisphere ipsilateral to an arterial occlusion, at intervals ranging from 30 min to 7 days. Microscopic changes developed over time in separate areas of the corresponding cerebral hemisphere in a predictable pattern, appearing as small lesions in the preoptic area (30 minutes), enlarging to involve the striatum, and finally involving the cerebral cortex. Two types of neuronal responses were noted according to the time elapsed; acute changes (up to 6 hours) included scalloping, shrinkage, and swelling, whereas delayed changes (eosinophilia and karyolysis) appeared later (> or = 12 hours). Three types of astrocytic responses were noted. 1) Cytoplasmic disintegration occurred in the preoptic area at a time and in a place where neurons appeared minimally injured. 2) Nuclear and cytoplasmic swelling were prominent responses in the caudoputamen and cerebral cortex at a time when neurons showed minimal alterations. 3) Increased astrocytic glial fibrillary acidic protein reactivity was noted at the interface between the lesion and the surrounding brain tissue after 4 to 6 hours. The gross pattern of the brain lesion and the maturation of neuronal changes typical of a brain infarct have a predictable progression. Focal brain ischemia of up to 6-hour duration does not induce coagulation necrosis. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8434652

  14. Effects of human relaxin on isolated rat and human myometrium and uteroplacental arteries.

    PubMed

    Petersen, L K; Svane, D; Uldbjerg, N; Forman, A

    1991-11-01

    We investigated the effects of synthetic human relaxin (hRLX-2) on isolated rat and human myometrium and on uteroplacental arteries from term pregnant women. The preparations were mounted in organ baths and isometric tension was recorded. In isolated myometrium from nonpregnant rats, hRLX-2 (10(-10)-10(-7) mol/L) produced concentration-dependent inhibition of contractile activity induced by vasopressin (10(-8) mol/L). In isolated human myometrium from the fundus or isthmus, hRLX-2 (10(-10)-10(-7) mol/L) did not influence spontaneous activity or contractions induced by oxytocin (10(-9) mol/L) and prostaglandin (PG) F2 alpha (10(-5) mol/L). Nor did it influence the tension induced in small intramyometrial arteries by U46619 (10(-7) mol/L), noradrenaline (10(-5) mol/L), and endothelin (10(-9) mol/L); or the tension induced in fetal stem villus arteries by U46619 (10(-7) mol/L), endothelin (10(-9) mol/L), and PGF2 alpha (10(-5) mol/L). The inhibitory effects of hRLX-2 in preparations of rat myometrium were not influenced by the presence of human myometrium in the organ bath or by pre-incubation of hRLX-2 with human myometrium. These results suggest that direct inhibitory effects of relaxin may be of minor importance for the regulation of myometrial activity and uteroplacental circulation in term human pregnancy.

  15. Uterine artery function in pregnant rats fed a diet supplemented with animal lard.

    PubMed

    Taylor, P D; Khan, I Y; Lakasing, L; Dekou, V; O'Brien-Coker, I; Mallet, A I; Hanson, M A; Poston, L

    2003-05-01

    We hypothesised that maternal uterine artery vascular dysfunction could contribute to cardiovascular dysfunction in offspring of rats fed a diet rich in fat. Sprague-Dawley rats were fed for 10 days prior to pregnancy and throughout gestation either: (a) a control breeding diet, or (b) the same diet supplemented with 20 % w/w lard, vitamins, essential micronutrients and protein to control values. At 20 days gestation vascular function was assessed in uterine arteries and third-order mesenteric arteries. Vascular reactivity in response to application of potassium, noradrenaline, the thromboxane analogue U46619, acetylcholine and nitric oxide was assessed. Maternal plasma concentrations of factors likely to contribute to endothelial dysfunction were measured. Maximum acetylcholine-induced relaxation was impaired in the mesenteric arteries of the lard-fed dams (max % relaxation: lard-fed, 69.7 +/- 6.48; control, 85.37 +/- 2.69, P = 0.03). Uterine artery vascular function was similar in the two groups (max % acetylcholine-induced relaxation: lard-fed, 73.7 +/- 4.01; control, 77.5 +/- 4.72, P = 0.98). Concentrations of plasma lipids, 8-epi-PGF(2alpha) and leptin were normal, whereas insulin and corticosterone concentrations were raised in the lard-fed group (insulin (ng ml(-1)): lard-fed, 8.04 +/- 0.47; control, 1.35 +/- 0.37, P < 0.0001; corticosterone (ng ml(-1)): lard-fed, 1164.0 +/- 170.9; control, 541.9 +/- 96.3, P = 0.005). Fetal and placental weights were reduced in lard-fed dams (fetus (g): lard-fed, 4.27 +/- 0.38; control, 2.96 +/- 0.40, P = 0.025; placenta (g): lard-fed, 0.72 +/- 0.06; control, 0.57 +/- 0.04, P = 0.05). Cardiovascular dysfunction in offspring is not associated with reduced uterine artery endothelial function but is associated with activation of the hypothalamic-pituitary-adrenal axis, hyperinsulinaemia and fetoplacental growth retardation.

  16. A rare case of basilar impression.

    PubMed

    Verma, Rajesh; Junewar, Vivek; Garg, Ravindra Kumar; Malhotra, Hardeep Singh

    2012-06-01

    A teenage girl presented with progressively worsening neck and occipital pain since 8 months ago that was associated with restriction of neck movements, low to moderate grade fever, anorexia and weight loss followed by gradually progressive quadriparesis since 3 months ago. Neurological examination revealed spastic quadriparesis without cranial nerve palsy. MRI of the cervical spine revealed prevertebral and paravertebral abscess from clivus to C2/C3 level, which extended into the anterior epidural space at C1-C3 level, causing atlantoaxial dislocation. There was evidence of basilar invagination. The dislocated dens caused compression over the cervicomedullary junction. On this basis, a diagnosis of craniovertebral junction Pott's disease was made. The patient was given neck immobilisation with cervical collar, and antitubercular treatment was started. She showed significant improvement in her neurological deficit during follow-up.

  17. A rare case of basilar impression

    PubMed Central

    Verma, Rajesh; Junewar, Vivek; Garg, Ravindra Kumar; Malhotra, Hardeep Singh

    2012-01-01

    A teenage girl presented with progressively worsening neck and occipital pain since 8 months ago that was associated with restriction of neck movements, low to moderate grade fever, anorexia and weight loss followed by gradually progressive quadriparesis since 3 months ago. Neurological examination revealed spastic quadriparesis without cranial nerve palsy. MRI of the cervical spine revealed prevertebral and paravertebral abscess from clivus to C2/C3 level, which extended into the anterior epidural space at C1–C3 level, causing atlantoaxial dislocation. There was evidence of basilar invagination. The dislocated dens caused compression over the cervicomedullary junction. On this basis, a diagnosis of craniovertebral junction Pott's disease was made. The patient was given neck immobilisation with cervical collar, and antitubercular treatment was started. She showed significant improvement in her neurological deficit during follow-up. PMID:22669923

  18. Effects of tyrosine kinase inhibitors on the contractility of rat mesenteric resistance arteries.

    PubMed Central

    Toma, C; Jensen, P E; Prieto, D; Hughes, A; Mulvany, M J; Aalkjaer, C

    1995-01-01

    1. A pharmacological characterization of tyrosine kinase inhibitors (TKI) belonging to two distinct groups (competitors at the ATP-binding site and the substrate-binding site, respectively) was performed, based on their effects on the contractility of rat mesenteric arteries. 2. Both the ATP-site competitors (genistein and its inactive analogue, daidzein) and the substrate-site competitors (tyrphostins A-23, A-47 and the inactive analogue, A-1) reversibly inhibited noradrenaline (NA, (10 microM)) and KCl (125 mM) induced contractions, concentration-dependently. Genistein was slightly but significantly more potent than daidzein; the tyrphostins were all less potent than genistein, and there were no significant differences between the individual potencies. The tyrosine kinase substrate-site inhibitor bis-tyrphostin had no inhibitory effect. 3. Genistein, daidzein, A-23 and A-47 each suppressed the contraction induced by Ca2+ (1 microM) in alpha-toxin permeabilized arteries. A-1 and bis-tyrphostin had little or no effect on contraction of the permeabilized arteries. 4. Genistein was significantly more potent than daidzein with respect to inhibition of the contraction induced by 200 nM Ca2+ in the presence of NA (100 microM) and GTP (3 microM). The effect of A-23, A-47, A-1 and bis-tyrphostin was similar in permeabilized arteries activated with Ca2+ (200 nM) + NA (100 microM) + GTP (3 microM) and permeabilized arteries activated with 1 microM Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7620718

  19. The Effects of Simulated Microgravity and of Endurance Training on Sympathetic Neurotransmission in Rat Cutaneous Small Arteries

    NASA Astrophysics Data System (ADS)

    Vinogradova, O. L.; Kalentchuk, V. U.; Andreev-Andrievskii, A. A.; Borzykh, A. A.; Mochalov, S. V.; Buravkov, S. V.; Borovik, A. S.; Sharova, A. P.; Tarasova, O. S.

    2008-06-01

    We investigated neuroeffector mechanisms in cutaneous small arteries of rats after 2-wk tail suspension (TS) or 8-wk endurance training (ET). Contractile responses of saphenous artery were studied in vitro and the periarterial nerve plexus was stained with glyoxylic acid. In TS rats pronounced decrease of neurogenic contraction was observed that correlated with smaller density of periarterial nerve plexus. However, TS increased smooth muscle sensitivity to noradrenaline and serotonin. In ET rats neurogenic response was also diminished, but the sensitivity to the agonists was not changed. ET had no effect on nerve density, but reduced intensity of their fluorescence. Therefore, both TS and ET depress sympathetic neurotransmission in cutaneous small arteries, but through different mechanisms.

  20. Endothelium-dependent relaxation and noradrenaline sensitivity in mesenteric resistance arteries of streptozotocin-induced diabetic rats.

    PubMed Central

    Taylor, P. D.; McCarthy, A. L.; Thomas, C. R.; Poston, L.

    1992-01-01

    1. Noradrenaline sensitivity and acetylcholine-induced relaxation were investigated in mesenteric resistance arteries of control and streptozotocin-induced diabetic rats. 2. The diabetic rats demonstrated enhanced vascular sensitivity to noradrenaline compared with age-matched controls (pEC50 5.99 +/- 0.06 for diabetic rats, n = 25, versus 5.82 +/- 0.03 for controls, n = 45, P < 0.05). 3. Significant impairment of acetylcholine-induced relaxation was observed in arteries from the diabetic animals compared with controls (pEC50 6.81 +/- 0.17 for diabetic rats, n = 21, versus 7.54 +/- 0.17 for controls, n = 45, P < 0.001). 4. The difference between acetylcholine-induced relaxation in diabetic and control arteries remained in the presence of 10 microM indomethacin (pEC50 6.41 +/- 0.11 for diabetic rats, n = 16, versus 7.59 +/- 0.08 for controls, n = 20, P < 0.001). 5. The nitric oxide synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA, 1 mM) produced profound inhibition of acetylcholine-induced relaxation in diabetic arteries but partial inhibition in controls. The incomplete inhibition of acetylcholine-induced relaxation by L-NMMA in the control arteries was the result of ineffective inhibition of nitric oxide synthase since an alternative inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 0.1 mM), led to similar inhibition to that seen in the diabetic arteries with L-NMMA. The endothelium-derived relaxing factor (EDRF)-mediated component of acetylcholine-induced relaxation determined by use of the nitric oxide synthase inhibitors was, therefore, apparently reduced in diabetic rats compared with control animals.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1422588

  1. Lentil-based diets attenuate hypertension and large-artery remodelling in spontaneously hypertensive rats.

    PubMed

    Hanson, Matthew G; Zahradka, Peter; Taylor, Carla G

    2014-02-01

    Hypertension is a major risk factor for CVD, the leading cause of mortality worldwide. The prevalence of hypertension is expected to continue increasing, and current pharmacological treatments cannot alleviate all the associated problems. Pulse crops have been touted as a general health food and are now being studied for their possible effects on several disease states including hypertension, obesity and diabetes. In the present study, 15-week-old spontaneously hypertensive rats (SHR) were fed diets containing 30% w/w beans, peas, lentils, chickpeas, or mixed pulses or a pulse-free control diet for 4 weeks. Normotensive Wistar-Kyoto (WKY) rats were placed on a control diet. Pulse wave velocity (PWV) was measured weekly, while blood pressure (BP) was measured at baseline and week 4. Fasting serum obtained in week 4 of the study was analysed for circulating lipids. A histological analysis was carried out on aortic sections to determine vascular geometry. Of all the pulse varieties studied, lentils were found to be able to attenuate the rise in BP in the SHR model (P< 0·05). Lentils were able to decrease the media:lumen ratio and media width of the aorta. The total cholesterol (TC), LDL-cholesterol (LDL-C) and HDL-cholesterol levels of rats fed the pulse-based diets were found to be lower when compared with those of the WKY rat and SHR controls (P< 0·05). Although all pulses reduced circulating TC and LDL-C levels in the SHR, only lentils significantly reduced the rise in BP and large-artery remodelling in the SHR, but had no effect on PWV. These results indicate that the effects of lentils on arterial remodelling and BP in the SHR are independent of circulating LDL-C levels.

  2. L-Cysteine ethyl ester reverses the deleterious effects of morphine on, arterial blood-gas chemistry in tracheotomized rats.

    PubMed

    Mendoza, James; Passafaro, Rachael; Baby, Santhosh; Young, Alex P; Bates, James N; Gaston, Benjamin; Lewis, Stephen J

    2013-10-01

    This study determined whether the membrane-permeable ventilatory stimulant, L-cysteine ethylester (L-CYSee), reversed the deleterious actions of morphine on arterial blood-gas chemistry in isoflurane-anesthetized rats. Morphine (2 mg/kg, i.v.) elicited sustained decreases in arterial blood pH, pO₂ and sO₂, and increases in pCO₂ (all responses indicative of hypoventilation) and alveolar-arterial gradient (indicative of ventilation-perfusion mismatch). Injections of L-CYSee (100 μmol/kg, i.v.) reversed the effects of morphine in tracheotomized rats but were minimally active in non-tracheotomized rats. L-cysteine or L-serine ethylester (100 μmol/kg, i.v.) were without effect. It is evident that L-CYSee can reverse the negative effects of morphine on arterial blood-gas chemistry and alveolar-arterial gradient but that this positive activity is negated by increases in upper-airway resistance. Since L-cysteine and L-serine ethylester were ineffective, it is evident that cell penetrability and the sulfur moiety of L-CYSee are essential for activity. Due to its ready penetrability into the lungs, chest wall muscle and brain, the effects of L-CYSee on morphine-induced changes in arterial blood-gas chemistry are likely to involve both central and peripheral sites of action.

  3. Partial Portal Vein Arterialization Attenuates Acute Bile Duct Injury Induced by Hepatic Dearterialization in a Rat Model

    PubMed Central

    Wei, Jishu; Wu, Junli; Gao, Wentao; Li, Qiang; Jiang, Kuirong

    2016-01-01

    Hepatic infarcts or abscesses occur after hepatic artery interruption. We explored the mechanisms of hepatic deprivation-induced acute liver injury and determine whether partial portal vein arterialization attenuated this injury in rats. Male Sprague-Dawley rats underwent either complete hepatic arterial deprivation or partial portal vein arterialization, or both. Hepatic ischemia was evaluated using biochemical analysis, light microscopy, and transmission electron microscopy. Hepatic ATP levels, the expression of hypoxia- and inflammation-associated genes and proteins, and the expression of bile transporter genes were assessed. Complete dearterialization of the liver induced acute liver injury, as evidenced by the histological changes, significantly increased serum biochemical markers, decreased ATP content, increased expression of hypoxia- and inflammation-associated genes and proteins, and decreased expression of bile transporter genes. These detrimental changes were extenuated but not fully reversed by partial portal vein arterialization, which also attenuated ductular reaction and fibrosis in completely dearterialized rat livers. Collectively, complete hepatic deprivation causes severe liver injury, including bile infarcts and biloma formation. Partial portal vein arterialization seems to protect against acute ischemia-hypoxia-induced liver injury. PMID:27872855

  4. Basilar impression in osteogenesis imperfecta tarda. Case report.

    PubMed

    Kurimoto, M; Ohara, S; Takaku, A

    1991-01-01

    A case is presented of basilar impression secondary to osteogenesis imperfecta tarda, associated with hemifacial spasm and brain-stem compression syndrome. The symptoms improved with posterior fossa decompression and posterior fusion.

  5. Prevention of arterial graft spasm in rats using a vasodilator-eluting biodegradable nano-scaled fibre†

    PubMed Central

    Yagami, Kei; Yamawaki-Ogata, Aika; Satake, Makoto; Kaneko, Hiroaki; Oshima, Hideki; Usui, Akihiko; Ueda, Yuichi; Narita, Yuji

    2013-01-01

    OBJECTIVES Arterial graft spasm occasionally causes circulatory collapse immediately following coronary artery bypass graft. The aim of this study is to evaluate the efficacy of our developed materials, which were composed of milrinone (phosphodiesterase III inhibitor) or diltiazem (calcium-channel blocker), with nano-scaled fibre made of biodegradable polymer to prevent arterial spasm. METHODS Milrinone- or diltiazem-releasing biodegradable nano-scaled fibres were fabricated by an electrospinning procedure. In vivo milrinone- or diltiazem-releasing tests were performed to confirm the sustained release of the drugs. An in vivo arterial spasm model was established by subcutaneous injection of noradrenalin around the rat femoral artery. Rats were randomly divided into four groups as follows: those that received 5 mg of milrinone-releasing biodegradable nano-scaled fibre (group M, n = 14); 5 mg of diltiazem-releasing biodegradable nano-scaled fibre (group D, n = 12); or those that received fibre without drugs (as a control; group C, n = 14) implanted into the rat femoral artery. In the fourth group, sham operation was performed (group S, n = 10). One day after the implantation, noradrenalin was injected in all groups. The femoral arterial blood flow was measured continuously before and after noradrenalin injection. The maximum blood flow before noradrenalin injection and minimum blood flow after noradrenalin injection were measured. RESULTS In vivo drug-releasing test revealed that milrinone-releasing biodegradable nano-scaled fibre released 78% of milrinone and diltiazem-releasing biodegradable nano-scaled fibre released 50% diltiazem on the first day. The ratios of rat femoral artery blood flow after/before noradrenalin injection in groups M (0.74 ± 0.16) and D (0.72 ± 0.05) were significantly higher than those of groups C (0.54 ± 0.09) and S (0.55 ± 0.16) (P < 0.05). CONCLUSION Noradrenalin-induced rat femoral artery spasm was inhibited by the implantation of

  6. Effects of age and hypertension on α1-adrenoceptors in the major source arteries of the rat bladder and penis.

    PubMed

    Yono, Makoto; Tanaka, Takanori; Tsuji, Shigeki; Irie, Shin; Sakata, Yukikuni; Otani, Masayuki; Yoshida, Masaki; Latifpour, Jamshid

    2011-11-16

    α(1)-Adrenoceptors regulate blood pressure, regional vascular resistance and tissue blood flow. As aging and hypertension may impact pelvic arterial blood flow resulting in bladder and penile dysfunction, we investigated effects of age and hypertension on α(1)-adrenoceptors in the major source arteries of the rat bladder and penis. Using radioligand receptor binding, real-time reverse transcription-polymerase chain reaction (RT-PCR) and fluorescent microsphere infusion techniques, we compared 3 and 22-month-old male Fischer rats, and male normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). Twenty-two-month-old rats and SHRs had significantly higher total α(1)-adrenoceptor density in the internal iliac artery and lower blood flow to the bladder and penis than 3-month-old and WKY rats, respectively. RT-PCR data showed an age and hypertension related increase in the expression of α(1B)-adrenoceptor mRNA in the internal iliac, vesical and internal pudendal arteries and a switch from α(1A) predominance in 3-month-old and WKY rats to α(1B)>α(1A) in 22-month-old rats and SHRs. Our data indicate the presence of age and hypertension related alterations in vascular α(1)-adrenoceptor subtype distribution and in blood flow to the rat bladder and penis. These findings suggest that pharmacological blockade of the vascular α(1B)-adrenoceptor, which could increase pelvic blood flow, may contribute to the improvement of bladder and penile dysfunctions in animal models for aging and hypertension.

  7. Morphometry and Variability of the Brain Arterial Circle in Chinchilla (Chinchilla laniger, Molina).

    PubMed

    Kuchinka, Jacek

    2017-02-09

    Arterial circles of brains from 70 adult chinchillas were filled with synthetic latex. The arterial circle of the brain is formed as the result of vertebral arteries being merged into the basilar artery. Caudally, both vertebral arteries gave rise to the ventral spinal artery. The ventral spinal artery splits into tiny cerebellar vessels, the pontine and cochlear branches. Distally, the basilar artery ramified into two terminal branches that formed the arterial circle of brain, rostrally open in most cases (75%). The observed variability of the arterial circle of brain of chinchillas pertained to all elements of that circle. The greatest variability within the vessels of the circle of Willis in chinchillas was observed in 22 cases (31.4%) of internal ophthalmic arteries. In chinchillas, a trend toward slight variability within the arteries comprising the arterial circle of the brain was observed in 44 animals. This accounted for 62.8% of all cases. Only in three cases was the arterial circle of brain clearly symmetrical. At the same time, 23 animals (32.8%) revealed features of significant vascular variability within the brain base region. These consisted of disturbed geometry of the entire arterial circle, different levels of ramifications into individual arteries, as well as the number and diameter of arteries. No internal carotid arteries were observed in chinchillas apart from one atypical case in which the carotid artery extended unilaterally into the basilar artery. These investigations indicate on the significant variability of arterial circle in rodents. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc.

  8. Impaired pulmonary artery contractile responses in a rat model of microgravity: role of nitric oxide

    NASA Technical Reports Server (NTRS)

    Nyhan, Daniel; Kim, Soonyul; Dunbar, Stacey; Li, Dechun; Shoukas, Artin; Berkowitz, Dan E.

    2002-01-01

    Vascular contractile hyporesponsiveness is an important mechanism underlying orthostatic intolerance after microgravity. Baroreceptor reflexes can modulate both pulmonary resistance and capacitance function and thus cardiac output. We hypothesized, therefore, that pulmonary vasoreactivity is impaired in the hindlimb-unweighted (HLU) rat model of microgravity. Pulmonary artery (PA) contractile responses to phenylephrine (PE) and U-46619 (U4) were significantly decreased in the PAs from HLU vs. control (C) animals. N(G)-nitro-L-arginine methyl ester (10(-5) M) enhanced the contractile responses in the PA rings from both C and HLU animals and completely abolished the differential responses to PE and U4 in HLU vs. C animals. Vasorelaxant responses to ACh were significantly enhanced in PA rings from HLU rats compared with C. Moreover, vasorelaxant responses to sodium nitroprusside were also significantly enhanced. Endothelial nitric oxide synthase (eNOS) and soluble guanlyl cyclase expression were significantly enhanced in PA and lung tissue from HLU rats. In marked contrast, the expression of inducible nitric oxide synthase was unchanged in lung tissue. These data support the hypothesis that vascular contractile responsiveness is attenuated in PAs from HLU rats and that this hyporesponsiveness is due at least in part to increased nitric oxide synthase activity resulting from enhanced eNOS expression. These findings may have important implications for blood volume distribution and attenuated stroke volume responses to orthostatic stress after microgravity exposure.

  9. Effects of intrathecal kynurenate on arterial pressure during chronic osmotic stress in conscious rats.

    PubMed

    Veitenheimer, Britta; Osborn, John W

    2013-01-15

    Increased plasma osmolality elevates mean arterial pressure (MAP) through activation of the sympathetic nervous system, but the neurotransmitters released in the spinal cord to regulate MAP during osmotic stress remain unresolved. Glutamatergic neurons of the rostral ventrolateral medulla project to sympathetic preganglionic neurons in the spinal cord and are likely activated during conditions of osmotic stress; however, this has not been examined in conscious rats. This study investigated whether increased MAP during chronic osmotic stress depends on activation of spinal glutamate receptors. Rats were chronically instrumented with an indwelling intrathecal (i.t.) catheter for antagonist delivery to the spinal cord and a radiotelemetry transmitter for continuous monitoring of MAP and heart rate. Osmotic stress induced by 48 h of water deprivation (WD) increased MAP by ~15 mmHg. Intrathecal kynurenic acid, a nonspecific antagonist of ionotropic glutamate receptors, decreased MAP significantly more after 48 h of WD compared with the water-replete state. Water-deprived rats also showed a greater fall in MAP in response to i.t. 2-amino-5-phosphonovalerate. Finally, i.t. kynurenic acid also decreased MAP more in an osmotically driven model of neurogenic hypertension, the DOCA-salt rat, compared with normotensive controls. Our results suggest that spinally released glutamate mediates increased MAP during 48-h WD and DOCA-salt hypertension.

  10. Arterial flow regulator enables transplantation and growth of human fetal kidneys in rats.

    PubMed

    Chang, N K; Gu, J; Gu, S; Osorio, R W; Concepcion, W; Gu, E

    2015-06-01

    Here we introduce a novel method of transplanting human fetal kidneys into adult rats. To overcome the technical challenges of fetal-to-adult organ transplantation, we devised an arterial flow regulator (AFR), consisting of a volume adjustable saline-filled cuff, which enables low-pressure human fetal kidneys to be transplanted into high-pressure adult rat hosts. By incrementally withdrawing saline from the AFR over time, blood flow entering the human fetal kidney was gradually increased until full blood flow was restored 30 days after transplantation. Human fetal kidneys were shown to dramatically increase in size and function. Moreover, rats which had all native renal mass removed 30 days after successful transplantation of the human fetal kidney were shown to have a mean survival time of 122 days compared to 3 days for control rats that underwent bilateral nephrectomy without a prior human fetal kidney transplant. These in vivo human fetal kidney models may serve as powerful platforms for drug testing and discovery.

  11. Voluntary exercise delays heart failure onset in rats with pulmonary artery hypertension.

    PubMed

    Natali, Antonio J; Fowler, Ewan D; Calaghan, Sarah C; White, Ed

    2015-08-01

    Increased physical activity is recommended for the general population and for patients with many diseases because of its health benefits but can be contraindicated if it is thought to be a risk for serious cardiovascular events. One such condition is pulmonary artery hypertension (PAH). PAH and right ventricular failure was induced in rats by a single injection of monocrotaline (MCT). MCT rats with voluntary access to a running wheel ran on average 2 km/day. The time for half the animals to develop heart failure signs (median survival time) was 28 days (exercise failure group), significantly longer than sedentary animals (sedentary failure group, 23 days). The contractility of single failing myocytes in response to increasing demand (stimulation frequency) was significantly impaired compared with that in both sedentary control and exercising control myocytes. However, myocytes from exercising MCT rats, tested at 23 days (exercise + MCT group), showed responses intermediate to the control (sedentary control and exercising control) and failing (sedentary failure and exercise failure) groups. We conclude that voluntary exercise is beneficial to rats with heart failure induced by PAH, and this is evidence to support the consideration of appropriate exercise regimes for potentially vulnerable groups.

  12. Basilar impression in an achondroplastic dwarf: causative role in tetraparesis.

    PubMed

    Luyendijk, W; Matricali, B; Thomeer, R T

    1978-01-01

    The neurological and radiological findings in a case of chondrodystrophic dwarfism are described. The progressive tetraparesis proved to be based on a high-level medullary compression resulting from basilar impression and upper cervical stenosis. Surgical decompression led to the disappearance of the tetraparetic phenomena. Various aspects of chondrodystrophic dwarfism and basilar impression are discussed in relation to the neurological symptomatology, and the question of whether, in general, more attention should be given to the cranio-cervical region, is raised.

  13. Oral intake of hydrogen-rich water inhibits intimal hyperplasia in arterialized vein grafts in rats

    PubMed Central

    Sun, Qiang; Kawamura, Tomohiro; Masutani, Kosuke; Peng, Ximei; Sun, Qing; Stolz, Donna B.; Pribis, John P.; Billiar, Timothy R.; Sun, Xuejun; Bermudez, Christian A.; Toyoda, Yoshiya; Nakao, Atsunori

    2012-01-01

    Aims Arterialized vein grafts often fail due to intimal hyperplasia. Hydrogen potently protects organs and cells from many insults via its anti-inflammatory and antioxidant properties. We investigated the efficacy of oral administration of hydrogen-rich water (HW) for prevention of intimal hyperplasia. Methods and results The inferior vena cava was excised, stored in cold Ringer solution for 2 h, and placed as an interposition graft in the abdominal aorta of syngeneic Lewis rats. HW was generated by immersing a magnesium stick in tap water (Mg + 2H2O → Mg (OH)2 + H2). Beginning on the day of graft implantation, recipients were given tap water [regular water (RW)], HW or HW that had been subsequently degassed water (DW). Six weeks after grafting, the grafts in the rats given RW or DW had developed intimal hyperplasia, accompanied by increased oxidative injury. HW significantly suppressed intimal hyperplasia. One week after grafting, the grafts in HW-treated rats exhibited improved endothelial integrity with less platelet and white blood cell aggregation. Up-regulation of the mRNAs for intracellular adhesion molecules was attenuated in the vein grafts of the rats receiving HW. Activation of p38 mitogen-activated protein kinase, matrix metalloproteinase (MMP)-2, and MMP-9 was also significantly inhibited in grafts receiving HW. In rat smooth muscle cell (A7r5) cultures, hydrogen treatment for 24 h reduced smooth muscle cell migration. Conclusion Drinking HW significantly reduced neointima formation after vein grafting in rats. Drinking HW may have therapeutic value as a novel therapy for intimal hyperplasia and could easily be incorporated into daily life. PMID:22287575

  14. Metabolic syndrome impairs reactivity and wall mechanics of cerebral resistance arteries in obese Zucker rats

    PubMed Central

    Brooks, Steven D.; DeVallance, Evan; d'Audiffret, Alexandre C.; Tabone, Lawrence E.; Shrader, Carl D.; Frisbee, Jefferson C.; Chantler, Paul D.

    2015-01-01

    The metabolic syndrome (MetS) is highly prevalent in the North American population and is associated with increased risk for development of cerebrovascular disease. This study determined the structural and functional changes in the middle cerebral arteries (MCA) during the progression of MetS and the effects of chronic pharmacological interventions on mitigating vascular alterations in obese Zucker rats (OZR), a translationally relevant model of MetS. The reactivity and wall mechanics of ex vivo pressurized MCA from lean Zucker rats (LZR) and OZR were determined at 7–8, 12–13, and 16–17 wk of age under control conditions and following chronic treatment with pharmacological agents targeting specific systemic pathologies. With increasing age, control OZR demonstrated reduced nitric oxide bioavailability, impaired dilator (acetylcholine) reactivity, elevated myogenic properties, structural narrowing, and wall stiffening compared with LZR. Antihypertensive therapy (e.g., captopril or hydralazine) starting at 7–8 wk of age blunted the progression of arterial stiffening compared with OZR controls, while treatments that reduced inflammation and oxidative stress (e.g., atorvastatin, rosiglitazone, and captopril) improved NO bioavailability and vascular reactivity compared with OZR controls and had mixed effects on structural remodeling. These data identify specific functional and structural cerebral adaptations that limit cerebrovascular blood flow in MetS patients, contributing to increased risk of cognitive decline, cerebral hypoperfusion, and ischemic stroke; however, these pathological adaptations could potentially be blunted if treated early in the progression of MetS. PMID:26475592

  15. Clinical and pathological assessment of different suture techniques for microvascular anastomosis in rat femoral artery

    PubMed Central

    El-Shazly, Mohamed

    2007-01-01

    This study examined the clinical and pathological features after a microvascular anastomosis of a rat femoral artery using four different suture techniques. Sixty Sprage-Dawely rats were divided randomly into 4 groups. Fifteen bisected arteries (one from each animal) in Group I, II, III and IV were sutured with the simple interrupted suture, continuous suture, sleeve suture and cuff suture, respectively. The anastomosis times in Group I, II, III and IV were 28.67, 14.67, 15.47 and 15.93 min, respectively. Immediate bleeding that stopped without intervention (grade I) was observed in 67%, 73% and 60% of the anastomosed vessels in Groups II, III and IV, respectively, while 60% of the vessels in Group I showed light bleeding that was inhibited by gentile pressure (grade II). All vessels examined appeared to be patent at 5 and 15 min after the anastomosis. On the 7th day postoperatively, the vessels of Group I showed the highest patency rate (93%) compared with Groups II (67%), III (73%) and IV (87%). Moreover, there were more pronounced pathological changes in Group I than in the other groups. These changes included endothelial loss, endothelial proliferation, degeneration and necrosis of the tunica media. Suture materials surrounded by an inflammatory reaction were also observed. In conclusion, the simple interrupted suture is preferable for microvascular anastomosis due to its highest patency rate. The other techniques investigated can be good alternatives because of their short anastomotic time and moderate pathological changes. PMID:17679774

  16. Metabolic syndrome impairs reactivity and wall mechanics of cerebral resistance arteries in obese Zucker rats.

    PubMed

    Brooks, Steven D; DeVallance, Evan; d'Audiffret, Alexandre C; Frisbee, Stephanie J; Tabone, Lawrence E; Shrader, Carl D; Frisbee, Jefferson C; Chantler, Paul D

    2015-12-01

    The metabolic syndrome (MetS) is highly prevalent in the North American population and is associated with increased risk for development of cerebrovascular disease. This study determined the structural and functional changes in the middle cerebral arteries (MCA) during the progression of MetS and the effects of chronic pharmacological interventions on mitigating vascular alterations in obese Zucker rats (OZR), a translationally relevant model of MetS. The reactivity and wall mechanics of ex vivo pressurized MCA from lean Zucker rats (LZR) and OZR were determined at 7-8, 12-13, and 16-17 wk of age under control conditions and following chronic treatment with pharmacological agents targeting specific systemic pathologies. With increasing age, control OZR demonstrated reduced nitric oxide bioavailability, impaired dilator (acetylcholine) reactivity, elevated myogenic properties, structural narrowing, and wall stiffening compared with LZR. Antihypertensive therapy (e.g., captopril or hydralazine) starting at 7-8 wk of age blunted the progression of arterial stiffening compared with OZR controls, while treatments that reduced inflammation and oxidative stress (e.g., atorvastatin, rosiglitazone, and captopril) improved NO bioavailability and vascular reactivity compared with OZR controls and had mixed effects on structural remodeling. These data identify specific functional and structural cerebral adaptations that limit cerebrovascular blood flow in MetS patients, contributing to increased risk of cognitive decline, cerebral hypoperfusion, and ischemic stroke; however, these pathological adaptations could potentially be blunted if treated early in the progression of MetS.

  17. Fast and local electrochemical monitoring of noradrenaline release from sympathetic terminals in isolated rat tail artery.

    PubMed

    Gonon, F; Bao, J X; Msghina, M; Suaud-Chagny, M F; Stjärne, L

    1993-04-01

    Noradrenaline release from sympathetic nerve terminals was evoked by electrical nerve stimulation of an isolated segment of rat tail artery. This release was recorded by a carbon fiber electrode combined with differential pulse amperometry. The active part of the electrode (one carbon fiber 8 microns in diameter and 50 microns in length) was placed in close contact with the arterial surface. The oxidation current appearing at +120 mV and corresponding to the local noradrenaline concentration at the electrode surface was recorded every 0.5 s. No oxidation current was detected under resting conditions, but electrical stimulation evoked an immediate increase in this current. This response was suppressed when tetrodotoxin was added to the perfusion medium and was enhanced when noradrenaline reuptake was inhibited by cocaine. The amplitude of the response was increased with increasing stimulation frequencies (2-25 Hz) and train lengths (1-16 pulses). Finally, the time resolution of the method (0.5 s) was good enough to show that noradrenaline release precedes the postsynaptic response, i.e., the electrically evoked contraction of the artery.

  18. Chronic nonocclusive coronary artery constriction in rats. Beta-adrenoceptor signal transduction and ventricular failure.

    PubMed Central

    Meggs, L G; Huang, H; Li, P; Capasso, J M; Anversa, P

    1991-01-01

    To determine the effects of chronic coronary artery constriction on the relationship between cardiac function and regulation of beta-adrenoceptor signal transduction, the left main coronary artery was narrowed in rats and the animals were killed 5 mo later. An average reduction in coronary luminal diameter of 44% was obtained and this change resulted in an increase in left ventricular end-diastolic pressure and a decrease in positive and negative dP/dt. Significant increases in left and right ventricular weights indicative of global cardiac hypertrophy were observed. Radioligand binding studies of beta-adrenoreceptors, agonist-stimulated adenylate cyclase activity, and ADP ribosylation of 45-kD substrate by cholera toxin were all depressed in the failing left ventricle. In contrast, in the hypertrophic non-failing right ventricle, beta-adrenoreceptor density was preserved and receptor antagonist affinity was increased. In spite of these findings at the receptor level, agonist stimulated cyclic AMP generation was reduced in the right ventricular myocardium. The quantity of the 45-kD substrate was also decreased. In conclusion, longterm nonocclusive coronary artery stenosis of moderate degree has profound detrimental effects on the contractile performance of the heart in association with marked attenuation of adrenergic support mechanisms. Images PMID:1661293

  19. Microvascular anastomosis using fibrin glue and venous cuff in rat carotid artery.

    PubMed

    Sacak, Bulent; Tosun, Ugur; Egemen, Onur; Sakiz, Damlanur; Ugurlu, Kemal

    2015-04-01

    Conventional anastomosis with interrupted sutures can be time-consuming, can cause vessel narrowing, and can lead to thrombosis at the site of repair. The amount of suture material inside the lumen can impair the endothelium of the vessel, triggering thrombosis. In microsurgery, fibrin sealants have the potential beneficial effects of reducing anastomosis time and promoting accurate haemostasis at the anastomotic site. However, there has been a general reluctance to use fibrin glue for microvascular anastomoses because the fibrin polymer is highly thrombogenic and may not provide adequate strength. To overcome these problems, a novel technique was defined for microvascular anastomosis with fibrin glue and a venous cuff. Sixty-four rats in two groups are included in the study. In the experimental group (n = 32), end-to-end arterial anastomosis was performed with two stay sutures, fibrin glue, and a venous cuff. In the control group (n = 32), conventional end-to-end arterial anastomosis was performed. Fibrin glue assisted anastomosis with a venous cuff took less time, caused less bleeding at the anastomotic site, and achieved a patency rate comparable to that provided by the conventional technique. Fibrin sealant assisted microvascular anastomosis with venous cuff is a rapid, easy, and reliable technique compared to the end-to-end arterial anastomosis.

  20. [Learning and chronobiological regulation following experimental damage to the coronary-artery wall of albino rats].

    PubMed

    Hecht, K; Choinowski, S; Kunde, D; Meyer, R; Moritz, V; Schlegel, T; Wenzelides, K; Götze, J

    1976-01-01

    Forty male albino rats were used to study the relationship between experimentally (concentrated hydrochloric acid) produced local structural changes of the coronary artery wall and central nervous information processing and chronobiological events, respectively. The alterations of the coronary arteries caused by this treatment did not produce infarction but initiated on the whole length of the arterial branch proliferative processes that are complete within 12 weeks following the intervention. Central nervous information processing and chronoregulatory processes showed, immediately after exposure to hydrochloric acid, pronounced malfunctions followed by a stage of hyperreactivity (4 weeks following the damage). At 8 weeks from the intervention, the parameters of information processing and chronobiological events of the CNS again equalled the control values. Since the central nervous functions were back to normal earlier than the structural alterations, the results are interpreted as reflecting CNS-controlled interactions between the complex of visceral afference and efference, the regulation of which is determined by the CNS after coronary damage in such a way as to restore the adaptational capacity of the organism by a predominance of sanogenetic processes.

  1. Histological and Morphometric Analyses for Rat Carotid Artery Balloon Injury Studies

    PubMed Central

    Tulis, David Anthony

    2010-01-01

    i. Summary Experiments aimed at analyzing the response of blood vessels to mechanical injury and ensuing remodeling responses often employ the highly characterized carotid artery balloon injury model in laboratory rats. This approach utilizes luminal insertion of a balloon embolectomy catheter into the common carotid artery with inflation and withdrawal resulting in an injury characterized by vascular endothelial cell (EC) denudation and medial wall distension. The adaptive response to this injury is typified by robust vascular smooth muscle cell (SMC) replication and migration, SMC apoptosis and necrosis, enhanced synthesis and deposition of extracellular matrix (ECM) components, partial vascular EC regeneration from the border zones, luminal narrowing and establishment of a neointima in time-dependent fashion. Evaluation of these adaptive responses to blood vessel injury can include acute and longer-term qualitative and quantitative measures including expression analyses, activity assays, immunostaining for a plethora of factors and signals, and morphometry of neointima formation and gross mural remodeling. This chapter presents a logical continuation of Chapter    in this series that offers details for performing the rat carotid artery balloon injury model in a standard laboratory setting by providing commonly used protocols for performing histological and morphometric analyses in such studies. Moreover, procedures, caveats, and considerations included in this chapter are highly relevant for alternative animal vascular physiology/pathophysiology studies and in particular those related to mechanisms of vascular injury and repair. Included in this chapter are specifics for in situ perfusion-fixation, tissue harvesting and processing for both snap-frozen and paraffin-embedded protocols, specimen embedding and sectioning, slide preparation, several standard histological staining steps, and routine morphological assessment. Included in Notes are important caveats

  2. Automated detection of arterial input function in DSC perfusion MRI in a stroke rat model

    NASA Astrophysics Data System (ADS)

    Yeh, M.-Y.; Lee, T.-H.; Yang, S.-T.; Kuo, H.-H.; Chyi, T.-K.; Liu, H.-L.

    2009-05-01

    Quantitative cerebral blood flow (CBF) estimation requires deconvolution of the tissue concentration time curves with an arterial input function (AIF). However, image-based determination of AIF in rodent is challenged due to limited spatial resolution. We evaluated the feasibility of quantitative analysis using automated AIF detection and compared the results with commonly applied semi-quantitative analysis. Permanent occlusion of bilateral or unilateral common carotid artery was used to induce cerebral ischemia in rats. The image using dynamic susceptibility contrast method was performed on a 3-T magnetic resonance scanner with a spin-echo echo-planar-image sequence (TR/TE = 700/80 ms, FOV = 41 mm, matrix = 64, 3 slices, SW = 2 mm), starting from 7 s prior to contrast injection (1.2 ml/kg) at four different time points. For quantitative analysis, CBF was calculated by the AIF which was obtained from 10 voxels with greatest contrast enhancement after deconvolution. For semi-quantitative analysis, relative CBF was estimated by the integral divided by the first moment of the relaxivity time curves. We observed if the AIFs obtained in the three different ROIs (whole brain, hemisphere without lesion and hemisphere with lesion) were similar, the CBF ratios (lesion/normal) between quantitative and semi-quantitative analyses might have a similar trend at different operative time points. If the AIFs were different, the CBF ratios might be different. We concluded that using local maximum one can define proper AIF without knowing the anatomical location of arteries in a stroke rat model.

  3. Pleiotropic effects of hydrogen peroxide in arteries and veins from normotensive and hypertensive rats.

    PubMed

    Thakali, Keshari; Davenport, Lauren; Fink, Gregory D; Watts, Stephanie W

    2006-03-01

    Hydrogen peroxide causes vascular contraction and relaxation and contributes to the pathogenesis of hypertension. We hypothesized that the contractile state of blood vessels governs whether H2O2 causes contraction or relaxation. Hydrogen peroxide (1 micromol/L to 1 mmol/L) concentration-dependently contracted thoracic aorta and vena cava from sham normotensive and deoxycorticosterone acetate (DOCA)-salt hypertensive rats. The maximal contraction to H2O2 was 3 times greater in DOCA aorta compared with sham aorta but unchanged in DOCA vena cava compared with sham vena cava. In prostaglandin F2alpha (20 micromol/L)-contracted aorta and vena cava from sham and DOCA rats, H2O2 (1 micromol/L to 1 mmol/L) induced a concentration-dependent relaxation that was impaired in DOCA aorta but not DOCA vena cava. In contrast, in KCl (30 mmol/L)-contracted vessels, maximal H2O2-induced contraction was enhanced 15-fold in sham aorta and 5-fold in DOCA aorta but only 2-fold in sham vena cava. Tetraethylammonium (10 mmol/L), BAY K 8644 (100 nmol/L), and ouabain (1 mmol/L) all enhanced maximal aortic H2O2-induced contraction, whereas only ouabain enhanced venous H2O2-induced contraction. The removal of extracellular Ca2+ reduced H2O2-induced contraction in KCl-contracted aorta, whereas maximal venous H2O2-induced contraction (under basal conditions) was unchanged. Our data suggest that differences in arterial and venous K+ channel activity and extracellular Ca2+ influx are responsible for differences in arterial and venous contraction to H2O2. In DOCA-salt hypertension, arterial but not venous contraction to H2O2 is enhanced, and relaxation to H2O2 is reduced.

  4. Effects of Venous Superdrainage and Arterial Supercharging on Dorsal Perforator Flap in a Rat Model

    PubMed Central

    Zheng, Jun; Xi, Shanshan; Ding, Maochao; Li, Hong; Xu, Wei; Tang, Maolin; Chen, Shixin

    2016-01-01

    Objective To comparatively assess the effects of venous superdrainage and arterial supercharging on dorsal perforator flap survival. Materials and Methods Sixty male Sprague-Dawley rats (450–550g) were randomly divided into three groups (n = 20), including control group (Control) and experimental groups A (venous superdrainage, Exp. A) and B (arterial supercharging, Exp. B). At postoperative day 7, survival areas of the flaps were evaluated and all animals underwent angiography. Laser Doppler was used to evaluate flap perfusion from 0h to 7days after surgery. Histology with hematoxylin and eosin staining was used to count microvessels. Tissue of “Choke vessels”was excised for quantification of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) by western blot assay at 6h and 7days after surgery. Results In the Exp. A group, almost all flaps survived (98.2±1.6%); in the Exp. B and control group, survival areas accounted for 78.8±8.5% and 60.3±7.8%, respectively (P <0.001). In addition, Exp. A animals showed improved anastomosis of choke vessels 2 compared with the Exp. B and Control groups. Furthermore, flap blood flow and partial pressure of oxygen in the Exp. A group were significantly higher compared with values obtained for the Exp. B and Control groups, from 6 hours to 7 days after surgery. More microvessels were found in the Exp. A group (11.65±1.33) than in Exp. B (9.25±0.34) and control (7.25±0.91) animals on POD 7. The relative expression level of HIF-1α and VEGF were significant at 6h and 7days after surgery. Conclusions Venous superdrainage in rat dorsal perforator flap is more effective than arterial supercharging in promoting flap survival, and could effectively alter hemodynamics in the microcirculation and stimulate blood vessel formation. PMID:27513520

  5. Effect of engineered nanoparticles on vasomotor responses in rat intrapulmonary artery

    SciTech Connect

    Courtois, Arnaud; Andujar, Pascal; Ladeiro, Yannick; Ducret, Thomas; Rogerieux, Francoise; Lacroix, Ghislaine; Baudrimont, Isabelle; Guibert, Christelle; Roux, Etienne; Canal-Raffin, Mireille; Brochard, Patrick; Marano, Francelyne; Marthan, Roger; Muller, Bernard

    2010-06-01

    Pulmonary circulation could be one of the primary vascular targets of finest particles that can deeply penetrate into the lungs after inhalation. We investigated the effects of engineered nanoparticles on vasomotor responses of small intrapulmonary arteries using isometric tension measurements. Acute in vitro exposure to carbon nanoparticles (CNP) decreased, and in some case abolished, the vasomotor responses induced by several vasoactive agents, whereas acute exposure to titanium dioxide nanoparticles (TiO{sub 2}NP) did not. This could be attributed to a decrease in the activity of those vasoactive agents (including PGF{sub 2{alpha}}, serotonin, endothelin-1 and acetylcholine), as suggested when they were exposed to CNP before being applied to arteries. Also, CNP decreased the contraction induced by 30 mM KCl, without decreasing its activity. After endoplasmic reticulum calcium stores depletion (by caffeine and thapsigargin), CaCl{sub 2} addition induced a contraction, dependent on Store-Operated Calcium Channels that was not modified by acute CNP exposure. Further addition of 30 mM KCl elicited a contraction, originating from activation of Voltage-Operated Calcium Channels that was diminished by CNP. Contractile responses to PGF{sub 2{alpha}} or KCl, and relaxation to acetylcholine were modified neither in pulmonary arteries exposed in vitro for prolonged time to CNP or TiO{sub 2}NP, nor in those removed from rats intratracheally instilled with CNP or TiO{sub 2}NP. In conclusion, prolonged in vitro or in vivo exposure to CNP or TiO{sub 2}NP does not affect vasomotor responses of pulmonary arteries. However, acute exposure to CNP decreases contraction mediated by activation of Voltage-Operated, but not Store-Operated, Calcium Channels. Moreover, interaction of some vasoactive agents with CNP decreases their biological activity that might lead to misinterpretation of experimental data.

  6. Retention assessment of magnetic nanoparticles in rat arteries with micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Tu, Shu-Ju; Wu, Siao-Yun; Wang, Fu-Sheng; Ma, Yunn-Hwa

    2014-03-01

    Magnetic nanoparticles (MNPs) may serve as carriers for pharmacological agents to the target in a magnetic-force guiding system. It is essential to achieve effective retention of MNPs through the external magnet placement. However, it is difficult to estimate the retention efficiency of MNPs and validate the experimental strategies. Micro-CT was used to identify the spatial distribution of MNP retention and image analysis is then extended to evaluate the MNP delivery efficiency. Male Sprague Dawley rats were anesthetized to expose abdominal arteries with an NdFeB magnet of 4.9 kG placed by the left iliac artery. After a 20 min equilibrium period, arteries were ligated, removed and fixed in a paraformaldehyde solution. Experiments were performed with intravenous injection in our platform with two independent groups. MNPs were used in the first group, while chemical compounds of recombinant tissue plaminogen activator were attached to MNPs as rtPA (recombinant tissue plaminogen activator)-MNPs in the second group. Image analysis of micro-CT shows the average retention volume of MNPs and rtPA-MNPs in the left iliac arteries is 9.3 and 6.3 fold of that in the right. Large local aggregation of MNPs and rtPA-MNPs in the left iliac arteries is the consequence of external magnet placement, suggesting feasibility of magnetic targeting through the intravenous administration. We also determined that on average 0.57% and 0.064% of MNPs and rtPA-MNPs respectively were retained in the left iliac artery. It was estimated that the average rtPA concentration of 60.16 µg mL-1 may be achieved with rtPA-MNPs. With the micro-CT imaging approach, we accomplished visualization of the aggregation of retained particles; reconstructed 3D distribution of relative retention; estimated the average particle number of local retention; determined efficiency of targeted delivery. In particular, our quantitative image assessment suggests that intravenous administration of rtPA-MNPs may retain

  7. Docosahexaenoic Acid Supplemented Diet Influences the Orchidectomy-Induced Vascular Dysfunction in Rat Mesenteric Arteries.

    PubMed

    Villalpando, Diva M; Navarro, Rocío; Del Campo, Lara; Largo, Carlota; Muñoz, David; Tabernero, María; Baeza, Ramiro; Otero, Cristina; García, Hugo S; Ferrer, Mercedes

    2017-01-01

    Over the past few decades, the cardiovascular benefits of a high dietary intake of long-chain polyunsaturated fatty acids (PUFAs), like docosahexaenoic acid (DHA), have been extensively studied. However, many of the molecular mechanisms and effects exerted by PUFAs have yet to be well explained. The lack of sex hormones alters vascular tone, and we have described that a DHA-supplemented diet to orchidectomized rats improve vascular function of the aorta. Based on these data and since the mesenteric artery importantly controls the systemic vascular resistance, the objective of this study was to analyze the effect of a DHA-supplemented diet on the mesenteric vascular function from orchidectomized rats. For this purpose mesenteric artery segments obtained from control, orchidectomized or orchidectomized plus DHA-supplemented diet were utilized to analyze: (1) the release of prostanoids, (2) formation of NO and ROS, (3) the vasodilator response to acetylcholine (ACh), as well as the involvement of prostanoids and NO in this response, and (4) the vasoconstrictor response to electrical field stimulation (EFS), analyzing also the effect of exogenous noradrenaline (NA), and the NO donor, sodium nitroprusside (SNP). The results demonstrate beneficial effects of DHA on the vascular function in orchidectomized rats, which include a decrease in the prostanoids release and superoxide formation that were previously augmented by orchidectomy. Additionally, there was an increase in endothelial NO formation and the response to ACh, in which NO involvement and the participation of vasodilator prostanoids were increased. DHA also reversed the decrease in EFS-induced response caused by orchidectomy. All of these findings suggest beneficial effects of DHA on vascular function by reversing the neurogenic response and the endothelial dysfunction caused by orchidectomy.

  8. Docosahexaenoic Acid Supplemented Diet Influences the Orchidectomy-Induced Vascular Dysfunction in Rat Mesenteric Arteries

    PubMed Central

    Villalpando, Diva M.; Navarro, Rocío; del Campo, Lara; Largo, Carlota; Muñoz, David; Tabernero, María; Baeza, Ramiro; Otero, Cristina; García, Hugo S.; Ferrer, Mercedes

    2017-01-01

    Over the past few decades, the cardiovascular benefits of a high dietary intake of long-chain polyunsaturated fatty acids (PUFAs), like docosahexaenoic acid (DHA), have been extensively studied. However, many of the molecular mechanisms and effects exerted by PUFAs have yet to be well explained. The lack of sex hormones alters vascular tone, and we have described that a DHA-supplemented diet to orchidectomized rats improve vascular function of the aorta. Based on these data and since the mesenteric artery importantly controls the systemic vascular resistance, the objective of this study was to analyze the effect of a DHA-supplemented diet on the mesenteric vascular function from orchidectomized rats. For this purpose mesenteric artery segments obtained from control, orchidectomized or orchidectomized plus DHA-supplemented diet were utilized to analyze: (1) the release of prostanoids, (2) formation of NO and ROS, (3) the vasodilator response to acetylcholine (ACh), as well as the involvement of prostanoids and NO in this response, and (4) the vasoconstrictor response to electrical field stimulation (EFS), analyzing also the effect of exogenous noradrenaline (NA), and the NO donor, sodium nitroprusside (SNP). The results demonstrate beneficial effects of DHA on the vascular function in orchidectomized rats, which include a decrease in the prostanoids release and superoxide formation that were previously augmented by orchidectomy. Additionally, there was an increase in endothelial NO formation and the response to ACh, in which NO involvement and the participation of vasodilator prostanoids were increased. DHA also reversed the decrease in EFS-induced response caused by orchidectomy. All of these findings suggest beneficial effects of DHA on vascular function by reversing the neurogenic response and the endothelial dysfunction caused by orchidectomy. PMID:28068359

  9. Ca2+ entry blocking and contractility promoting actions of norbormide in single rat caudal artery myocytes

    PubMed Central

    Fusi, Fabio; Saponara, Simona; Sgaragli, Giampietro; Cargnelli, Gabriella; Bova, Sergio

    2002-01-01

    Aim of the present study was to investigate the effects of norbormide, a selective vasoconstrictor agent of the rat peripheral vessels, on the whole-cell voltage-dependent L-type Ca2+ current (ICa(L)) of freshly isolated smooth muscle cells from the rat caudal artery, using either the conventional or the amphotericin B-perforated whole-cell patch-clamp method. Norbormide decreased L-type Ca2+ current in a concentration- and voltage-dependent manner, without modifying the threshold and the maximum of the current-voltage relationship. Norbormide-induced ICa(L) inhibition was reversible upon wash-out. Norbormide both shifted the voltage dependence of the steady-state inactivation curve to more negative potentials by about 16 mV, without affecting the activation curve, and decreased the slope of inactivation. Norbormide, however, did not modify both the activation and the inactivation kinetics of the ICa(L). Norbormide decreased ICa(L) progressively during repetitive step depolarizations, with inhibition depending on the stimulation frequency (use-dependent block) as well as on the holding potential. Addition of 50 μM norbormide caused the contraction of all freshly isolated cells and also of those impaled with the perforated method, but not of those impaled with the conventional method (i.e. dialysed). In conclusion, these results prove norbormide to be a vascular L-type Ca2+ channel inhibitor, which preferentially acts on the inactivated and/or open state of the channel. In rat caudal artery smooth muscle, however, this mechanism does not result in a vasodilating effect since it is overwhelmed by the mechanism underlying norbormide-induced vasoconstriction. PMID:12237251

  10. Tributyltin chloride increases phenylephrine-induced contraction and vascular stiffness in mesenteric resistance arteries from female rats.

    PubMed

    Ribeiro Júnior, Rogério Faustino; Marques, Vinicius Bermond; Nunes, Dieli Oliveira; Ronconi, Karoline de Sousa; de Araújo, Julia F P; Rodrigues, Paula Lopes; Padilha, Alessandra Simão; Vassallo, Dalton Valentim; Graceli, Jones B; Stefanon, Ivanita

    2016-03-15

    Tributyltin chloride (TBT) is an organotin compound that reduces estrogen levels in female rats. We aimed to investigate the effects of TBT exposure on vascular tonus and vascular remodelling in the resistance arteries of female rats. Rats were treated daily with TBT (500 ng/kg) for 15 days. TBT did not change arterial blood pressure but did modify some morpho-physiological parameters of third-order mesenteric resistance arteries in the following ways: (1) decreased lumen and external diameters; (2) increased wall/lm ratio and wall thickness; (3) decreased distensibility and increased stiffness; (4) increased collagen deposition; and (5) increased pulse wave velocity. TBT exposure increased the phenylephrine-induced contractile response in mesenteric resistance arteries. However, vasodilatation responses induced by acetylcholine and sodium nitroprusside were not modified by TBT. It is suggested that TBT exposure reduces vascular nitric oxide (NO) production, because:(1) L-NAME incubation did not cause a leftward shift in the concentration-response curve for phenylephrine; (2) both eNOS protein expression; (3) in situ NO production were reduced. Incubation with L-NAME; and (4) SOD shifted the phenylephrine response curve to the left in TBT rats. Tiron, catalase, ML-171 and VAS2870 decreased vascular reactivity to phenylephrine only in TBT rats. Moreover, increased superoxide anion production was observed in the mesenteric resistance arteries of TBT rats accompanied by an increase in gp91phox, catalase, AT1 receptor and total ERK1/2 protein expression. In conclusion, these findings show that TBT induced alterations are most likely due to a reduction of NO production combined with increased O2(-) production derived from NADPH oxidase and ERK1/2 activation. These findings offer further evidence that TBT is an environmental risk factor for cardiovascular disease.

  11. Arteries of the brain in wild European rabbit Oryctolagus cuniculus (Linnaeus, 1758).

    PubMed

    Brudnicki, Witold; Nowicki, Włodzimierz; Skoczylas, Benedykt; Brudnicki, Adam; Kirkiłło-Stacewicz, Krzysztof; Wach, Jan

    2012-01-01

    Research into the pattern and variation of brain arteries in wild rabbit involved 43 brains. The main source of blood supply to the brain in rabbit are vertebral arteries and the basilar artery, formed as a result of their anastomosis, as well as internal carotid arteries the branches of which form the arterial circle of the brain. Variation in descent concerns mostly the pattern of descent of middle cerebral arteries, in 36.5% they were multiple vessels. The caudal communicating arteries in wild rabbit constituted a symmetrical anastomosis of internal carotid arteries and caudal cerebral arteries. They stabilized an even blood supply to all parts of the brain. The caudal cerebral arteries constituted the terminal branches of the basilar artery. A comparison of the blood supply to the brain in wild rabbit and domestic rabbit described by WILAND (1968) revealed lower variation in the arteries in the wild form than in the domestic rabbit.

  12. Mildronate treatment improves functional recovery following middle cerebral artery occlusion in rats.

    PubMed

    Svalbe, Baiba; Zvejniece, Liga; Vavers, Edijs; Pugovics, Osvalds; Muceniece, Ruta; Liepinsh, Edgars; Dambrova, Maija

    2011-09-12

    Mildronate (3-(2,2,2-trimethylhydrazinium) propionate) is an inhibitor of l-carnitine biosynthesis and an anti-ischemic drug. In the present study, we investigated the effects of mildronate in rats following focal cerebral ischemia. Male Wistar rats were subjected to transient occlusion of the middle cerebral artery (MCAO) for 90min, followed by the intraperitoneal administration of mildronate at doses of 100 and 200mg/kg 2h after reperfusion and then daily for an additional 14days. The beam-walking, rota-rod and cylinder tests were used to assess sensorimotor function, and vibrissae-evoked forelimb-placing and limb-placing tests examined responses to tactile and proprioceptive stimulation. Following behavioural testing, the infarct volume was measured. The cerebellar concentrations of l-carnitine, γ-butyrobetaine (GBB) and mildronate were also measured. The results showed that saline-treated MCAO rats had minor or no spontaneous recovery in sensorimotor and proprioceptive function up to 14days post-stroke. Treatment with mildronate at a dose of 200mg/kg was found to accelerate recovery of motor and proprioceptive deficits in limb-placing, cylinder and beam-walking tests. Analysis of rat cerebellar tissue extracts revealed that l-carnitine and GBB concentrations changed with mildronate treatment; the concentration of l-carnitine was significantly decreased by mildronate treatment, whereas the concentration of GBB was significantly increased. Cerebellar concentrations of mildronate also increased in a dose-dependent manner following systemic administration. Infarct size did not differ among the experimental groups on post-stroke day 14. The present study suggests that mildronate treatment improves the functional outcome in MCAO rats without influencing infarct size.

  13. Tonic regulation of vascular tone by nitric oxide and chloride ions in rat isolated small coronary arteries.

    PubMed

    Graves, J E; Greenwood, I A; Large, W A

    2000-12-01

    We have investigated the involvement of Cl(-) in regulating vascular tone in rat isolated coronary arteries mounted on a small vessel myograph. Mechanical removal of the endothelium or inhibition of nitric oxide (NO) synthase with N(omega)-nitro-L-arginine methyl ester (L-NAME, 10(-4) M) led to contraction of rat coronary arteries, and these contractions were sensitive to nicardipine (10(-6) M). This suggests that release of NO tonically inhibits a contractile mechanism that involves voltage-dependent Ca(2+) channels. In arteries contracted with L-NAME, switching the bathing solution to physiological saline solution with a reduced Cl(-) concentration potentiated the contraction. DIDS (5 x 10(-6)-3 x 10(-4) M) caused relaxation of L-NAME-induced tension (IC(50) = 55 +/- 10 microM), providing evidence for a role of Cl(-). SITS (10(-5)-5 x 10(-4) M) did not affect L-NAME-induced tension, suggesting that DIDS is not acting by inhibition of anion exchange. Mechanical removal of the endothelium led to contraction of arteries, which was sensitive to DIDS (IC(50) = 50 +/- 8 microM) and was not affected by SITS. This study suggests that, in rat coronary arteries, NO tonically suppresses a contractile mechanism that involves a Cl(-) conductance.

  14. Fully Implantable Arterial Blood Glucose Device for Metabolic Research Applications in Rats for Two Months

    PubMed Central

    Brockway, Robert; Tiesma, Scott; Bogie, Heather; White, Kimberly; Fine, Megan; O’Farrell, Libbey; Michael, Mervyn; Cox, Amy; Coskun, Tamer

    2015-01-01

    Background: Chronic continuous glucose monitoring options for animal research have been very limited due to various technical and biological challenges. We provide an evaluation of a novel telemetry device for continuous monitoring of temperature, activity, and plasma glucose levels in the arterial blood of rats for up to 2 months. Methods: In vivo testing in rats including oral glucose tolerance tests (OGTTs) and intraperitoneal glucose tolerance tests (IPGTTs) and ex vivo waterbath testing were performed to evaluate acute and chronic sensor performance. Animal studies were in accordance with the guidelines for the care and use of laboratory animals and approved by the corresponding animal care and use committees (Data Sciences International, Eli Lilly). Results: Results demonstrated the ability to record continuous measurements for 75 days or longer. Bench testing demonstrated a high degree of linearity over a range of 20-850 mg/dL with R2 = .998 for linear fit and .999 for second order fit (n = 8 sensors). Evaluation of 6 rats over 28 days with 52 daily and OGTT test strip measurements each resulted in mean error of 3.8% and mean absolute relative difference of 16.6%. Conclusions: This device provides significant advantages in the quality and quantity of data that can be obtained relative to existing alternatives such as intermittent blood sampling. These devices provide the opportunity to expand the understanding of both glucose metabolism and homeostasis and to work toward improved therapies and cures for diabetes. PMID:26021562

  15. Effects of aging and hypertension on the participation of endothelium-derived constricting factor (EDCF) in norepinephrine-induced contraction of rat femoral artery.

    PubMed

    Líšková, Silvia; Silvia, Líšková; Petrová, Miriam; Miriam, Petrová; Karen, Petr; Petr, Karen; Kuneš, Jaroslav; Jaroslav, Kuneš; Zicha, Josef; Josef, Zicha

    2011-09-30

    Endothelium-dependent contraction elicited by high concentrations of acetylcholine was described in hypertensive as well as in aged normotensive rats. The contribution of endothelium-derived constricting factor (EDCF) to norepinephrine-induced contraction is still unknown. We aimed to compare EDCF participation to norepinephrine-induced arterial contraction in spontaneously hypertensive rats (SHR) and aged normotensive Wistar-Kyoto (WKY) rats. Femoral arteries from either adult (7-months-old) or aged (14-months-old) animals were placed in myograph and norepinephrine-induced concentration-response curves were recorded under control conditions and in the presence of indomethacin (cyclooxygenase inhibitor, 10(-5) mol/l) or L-NNA (NO synthase inhibitor, 10(-4) mol/l) or both. Norepinephrine-induced concentration-response curve was enhanced in SHR compared to WKY rats, but concentration-response curve of aged WKY rats was similar to those of adult SHR. Cyclooxygenase inhibition largely attenuated concentration-response curves in all groups. However, this effect was greater in aged WKY rats and adult SHR compared to adult WKY rats. NO synthase inhibition augmented norepinephrine-induced contraction in arteries of adult WKY rats, but not in arteries from aged WKY rats or adult SHR. The combined administration of L-NNA and indomethacin had no additive effects on concentration-response curves. EDCF contribution to norepinephrine-induced contractions of arteries was considerably greater in adult SHR (80±3%) and aged WKY rats (86±2%) compared to adult WKY rats (35±10%). The inhibition of NO synthase augmented EDCF contribution to norepinephrine-induced contraction only in arteries from adult WKY rats (76±9%). We conclude that EDCF contribution to norepinephrine-induced contraction of conduit arteries is similarly enhanced in adult hypertensive and aged normotensive rats.

  16. Role of platelets in smooth muscle cell proliferation and migration after vascular injury in rat carotid artery.

    PubMed Central

    Fingerle, J; Johnson, R; Clowes, A W; Majesky, M W; Reidy, M A

    1989-01-01

    Intimal lesion formation was investigated in rats made thrombocytopenic by a single i.p. injection of a polyclonal antibody made against rat platelets that reduced circulating platelet counts to less than 1% of normal. The carotid artery was then denuded of endothelium with a 2 French balloon catheter, after which no platelets were found adhering to the exposed subendothelium. In control animals, platelets adhered instantly to the denuded artery. Six hours after denudation mRNA for ornithine decarboxylase, a marker for early G1 events, was found to be elevated in both thrombocytopenic and control arteries. Two days after injury the smooth muscle cell replication rate in thrombocytopenic rats was found to be significantly elevated as compared with that in uninjured carotids (13.7% +/- 8.4% vs. 0.65% +/- 0.23%) but was similar to the replication rate observed in denuded carotid arteries from animals treated with nonimmune IgG. One important difference between these animals was that no intimal thickening was observed in thrombocytopenic animals at day 4, and by day 7 the intimas were still significantly smaller than those from control rats. In a separate group of animals which were thrombocytopenic for the entire experiment, no intimal lesions were observed 7 days after injury by balloon catheter. From these results, we conclude that platelets do not play a role in the initiation of smooth muscle cell proliferation after injury by balloon catheter but may regulate their movement into the intima. Images PMID:2813399

  17. Immunohistochemical localization of angiotensin II receptor types 1 and 2 in the mesenteric artery from spontaneously hypertensive rats.

    PubMed

    Diniz, Carmen; Leal, Sandra; Logan, Karen; Rocha-Pereira, Carolina; Soares, Ana Sofia; Rocha, Eduardo; Gonçalves, Jorge; Fresco, Paula

    2007-08-01

    Angiotensin II plays a crucial role in the control of blood pressure, acting at AT1 or AT2 receptors, and can act as a potent vasoconstrictor of the peripheral vasculature inducing hypertrophy, hyperplasia, or both, in resistance arteries. The aim of the present study was to investigate whether the pattern of distribution of angiotensin AT1 and AT2 receptors on mesenteric artery sections differs in spontaneously hypertensive rats (SHR) versus their respective controls (Wistar-Kyoto [WKY] rats). Immunohistochemistry using anti-AT1 or anti-AT2 antibodies was performed on perfused-fixed/paraffin-embedded mesenteric arteries from SHR and WKY rats. 3,3'-Diaminobenzidine tetrahydrochloride (DAB; activated by hydrogen peroxide) staining revealed distinct AT1 and AT2 labeling of all artery layers (adventitia, media and intima) from WKY rats, whereas in SHR an abundant AT1 labeling was found in both intima and adventitia and a sparser labeling in the media. There was a vast reduction of AT2 labeling throughout all layers. These results suggest a crucial role for AT2 receptors in the pathogenesis of hypertension.

  18. Asymmetric radial expansion and contraction of rat carotid artery observed using a high-resolution ultrasound imaging system.

    PubMed

    Nam, Kweon-Ho; Bok, Tae-Hoon; Jin, Changzhu; Paeng, Dong-Guk

    2014-01-01

    The geometry of carotid artery bifurcation is of high clinical interest because it determines the characteristics of blood flow that is closely related to the formation and development of atherosclerotic plaque. However, information on the dynamic changes in the vessel wall of carotid artery bifurcation during a pulsatile cycle is limited. This pilot study investigated the cyclic changes in carotid artery geometry caused by blood flow pulsation in rats. A high-resolution ultrasound imaging system with a broadband scanhead centered at 40 MHz was used to obtain longitudinal images of the rat carotid artery. A high frame rate retrospective B-scan imaging technique based on the use of electrocardiogram to trigger signal acquisition was used to examine precisely the fast arterial wall motion. Two-dimensional geometry data obtained from nine rats showed that the rat carotid artery asymmetrically contracts and dilates during each cardiac cycle. Systolic/diastolic vessel diameters near the upstream and downstream regions from the bifurcation were 0.976 ± 0.011/0.825 ± 0.015 mm and 0.766 ± 0.015/0.650 ± 0.016 mm, respectively. Their posterior/anterior wall displacement ratios in the radial direction were 41.0 ± 14.9% and 2.9 ± 1.6%, respectively. These results indicate that in the vicinity of bifurcation, the carotid artery favorably expands to the anterior side during the systolic phase. This phenomenon was observed to be more prominent in the downstream region near the bifurcation. The cyclic variation pattern in wall movement varies depending on the measurement site, which shows different patterns at far upstream and downstream of the bifurcation. The asymmetric radial expansion and contraction of the rat carotid artery observed in this study may be useful in studying the hemodynamic etiology of cardiovascular diseases because the pulsatile changes in vessel geometry may affect the local hemodynamics that determines the spatial distribution of wall shear stress

  19. Performing Permanent Distal Middle Cerebral with Common Carotid Artery Occlusion in Aged Rats to Study Cortical Ischemia with Sustained Disability.

    PubMed

    Wayman, Christina; Duricki, Denise A; Roy, Lisa A; Haenzi, Barbara; Tsai, Shi-Yen; Kartje, Gwendolyn; Beech, John S; Cash, Diana; Moon, Lawrence

    2016-02-23

    Stroke typically occurs in elderly people with a range of comorbidities including carotid (or other arterial) atherosclerosis, high blood pressure, obesity and diabetes. Accordingly, when evaluating therapies for stroke in animals, it is important to select a model with excellent face validity. Ischemic stroke accounts for 80% of all strokes, and the majority of these occur in the territory of the middle cerebral artery (MCA), often inducing infarcts that affect the sensorimotor cortex, causing persistent plegia or paresis on the contralateral side of the body. We demonstrate in this video a method for producing ischemic stroke in elderly rats, which causes sustained sensorimotor disability and substantial cortical infarcts. Specifically, we induce permanent distal middle cerebral artery occlusion (MCAO) in elderly female rats by using diathermy forceps to occlude a short segment of this artery. The carotid artery on the ipsilateral side to the lesion was then permanently occluded and the contralateral carotid artery was transiently occluded for 60 min. We measure the infarct size using structural T2-weighted magnetic resonance imaging (MRI) at 24 hr and 8 weeks after stroke. In this study, the mean infarct volume was 4.5% ± 2.0% (standard deviation) of the ipsilateral hemisphere at 24 hr (corrected for brain swelling using Gerriet's equation, n = 5). This model is feasible and clinically relevant as it permits the induction of sustained sensorimotor deficits, which is important for the elucidation of pathophysiological mechanisms and novel treatments.

  20. Performing Permanent Distal Middle Cerebral with Common Carotid Artery Occlusion in Aged Rats to Study Cortical Ischemia with Sustained Disability

    PubMed Central

    Roy, Lisa A.; Haenzi, Barbara; Tsai, Shi-Yen; Kartje, Gwendolyn; Beech, John S.; Cash, Diana; Moon, Lawrence

    2016-01-01

    Stroke typically occurs in elderly people with a range of comorbidities including carotid (or other arterial) atherosclerosis, high blood pressure, obesity and diabetes. Accordingly, when evaluating therapies for stroke in animals, it is important to select a model with excellent face validity. Ischemic stroke accounts for 80% of all strokes, and the majority of these occur in the territory of the middle cerebral artery (MCA), often inducing infarcts that affect the sensorimotor cortex, causing persistent plegia or paresis on the contralateral side of the body. We demonstrate in this video a method for producing ischemic stroke in elderly rats, which causes sustained sensorimotor disability and substantial cortical infarcts. Specifically, we induce permanent distal middle cerebral artery occlusion (MCAO) in elderly female rats by using diathermy forceps to occlude a short segment of this artery. The carotid artery on the ipsilateral side to the lesion was then permanently occluded and the contralateral carotid artery was transiently occluded for 60 min. We measure the infarct size using structural T2-weighted magnetic resonance imaging (MRI) at 24 hr and 8 weeks after stroke. In this study, the mean infarct volume was 4.5% ± 2.0% (standard deviation) of the ipsilateral hemisphere at 24 hr (corrected for brain swelling using Gerriet’s equation, n = 5). This model is feasible and clinically relevant as it permits the induction of sustained sensorimotor deficits, which is important for the elucidation of pathophysiological mechanisms and novel treatments. PMID:26967269

  1. Effects of perinatal undernutrition on the basilar dendritic arbor of the anterior cingulate pyramidal neurons in lactating dams.

    PubMed

    Salas, Manuel; Torrero, Carmen; Regalado, Mirelta; Rubio, Lorena

    2015-01-01

    In altricial species, early pre- and neonatal undernutrition interferes with the neuronal organization of several brain structures that have critical time windows for synaptic organization, including the prefrontal cortex. In Golgi-Cox stained tissue the basilar dendritic arbor of pyramidal neurons in the anterior cingulate cortex of early underfed adult lactating dams was evaluated. The anterior cingulate of the rat plays a major role in the execution of sexual, maternal and visual attentional control and other cognitive responses. The effects of neonatal undernutrition on the basilar dendritic tree and perikaryon measurements in layer II/III pyramidal neurons of the anterior cingulate were examined in lactating dams at postpartum days 8 and 12. In the underfed dams the distal portions of the basilar dendrites had fewer branches and a lower dendritic density of dendrites, and neurons had perikarya with reduced perimeter and cross-sectional area. Thus, the neuronal alterations may interfere the plastic synaptic activity and with maternal cognitive performance of rats subjected to early underfeeding. These anatomical alterations of the anterior cingulate may help to understand the disruption of long-term cognitive processes associated with perinatal food restriction.

  2. Panax notoginseng saponins ameliorate impaired arterial vasodilation in SHRSP.Z-Lepr(fa) /lzmDmcr rats with metabolic syndrome.

    PubMed

    Wu, Ting; Sun, Jianning; Kagota, Satomi; Maruyama, Kana; Wakuda, Hirokazu; Shinozuka, Kazumasa

    2016-04-01

    Panax notoginseng saponins (PNS) are major components of Panax notoginseng, a herb with established clinical efficacy against vascular diseases. SHRSP.Z-Lepr(fa) /IzmDmcr (SHRSP.ZF) rats, a new animal model for metabolic syndrome, display an impaired vasorelaxation response in aortas and mesenteric arteries that is mediated by nitric oxide (NO). This study investigated whether PNS and its components can ameliorate this vascular dysfunction in SHRSP.ZF rats. In an in vitro study, in the presence or absence of PNS and its components, vasodilation in response to nitroprusside was determined from myographs under isometric tension conditions in aortas and mesenteric arteries from male SHRSP.ZF rats at 18-20 weeks of age. In an in vivo study, PNS (30 mg/kg per day) was orally administered to SHRSP.ZF rats from 8 to 20 weeks of age. In vitro treatment with PNS and Ginsenoside Rb1 increased nitroprusside-induced relaxation of aortas and mesenteric arteries in SHRSP.ZF rats. The PNS-induced increase was not affected by a nitric oxide (NO) synthase inhibitor or endothelium denudation. Relaxation in response to a cell-permeable cGMP analogue was increased by PNS, but cGMP accumulation by nitroprusside was not altered. In vivo treatment with PNS in SHRSP.ZF rats lowered blood pressure and increased relaxation and the expression of soluble guanylyl cyclase protein in arteries, without affecting metabolic abnormalities. These results indicate that PNS causes an increase in vasodilation in response to NO and a decrease in blood pressure, resulting in protection against vascular dysfunction in SHRSP.ZF rats. PNS might be beneficial in alleviating impaired vasodilation in metabolic syndrome.

  3. [Effects of capsaicin on oxidative modification of blood plasma proteins and arterial blood pressure in fructose-fed rats].

    PubMed

    Tolochko, Z S; Spiridonov, V K

    2012-01-01

    The influence of the activation of capsaicin-sensitive nerves with capsaicin on the oxidative modification of blood plasma proteins and arterial blood pressure was studied in Wistar rats fed with 12.5% fructose in drinking water for 10 weeks. The obtained results indicate that fructose feeding induces an increase in the arterial blood pressure and the content of plasma blood protein carbonyl derivates. At the same time, in hypertensive rats, the stimulation of sensory nerves by capsaicin (1 mg/kg, i.p.) decreases the content of oxidized proteins in the plasma and normalizes the arterial blood pressure. It is suggested that capsaicin-sensitive nerves are involved in the regulation of oxidative destruction of proteins as well as in blood pressure control under metabolic disturbances produced by prolonged fructose feeding.

  4. Nitric oxide is a mediator of tachykinin NK3 receptor-induced relaxation in rat mesenteric artery.

    PubMed Central

    Mizuta, A.; Takano, Y.; Honda, K.; Saito, R.; Matsumoto, T.; Kamiya, H.

    1995-01-01

    1. The mechanism of vasodilatation induced by tachykinin peptides was studied in isolated mesenteric arteries of rats. 2. Senktide, a selective NK3 agonist, elicited potent endothelium-dependent relaxation of arteries precontracted with phenylephrine (10(-5) M), but an NK1 agonist did not. 3. A non-peptide NK3 antagonist, SR 142801, inhibited senktide-induced relaxation. However, a non-peptide NK1 antagonist, CP-96,345, and a peptide-based NK2 antagonist, L-659,877, had no effect on senktide-induced relaxation. 4. N omega-nitro-L-arginine (L-NOARG), a nitric oxide synthesis inhibitor, markedly attenuated the relaxant response to senktide. 5. These results suggest that the endothelium of rat mesenteric arteries possesses tachykinin NK3 receptors, and that NK3 agonist-induced vasodilatation is mediated by release of nitric oxide (NO) from the endothelium. PMID:8680725

  5. Flow Studies in Basilar Tip Aneurysm Models

    NASA Astrophysics Data System (ADS)

    Cole, Russell; Selby, Kathy; Saloner, David; Savas, Omer

    2001-11-01

    Particle image velocimetry and flow visualization are performed on two models of basilar tip bifurcation aneurysms. The models are intended to correspond to an aneurysm at two stages during its growth. The models are subject to steady flow conditions covering the physiological range of Reynold’s numbers while being subject to both symmetric and asymmetric outflow conditions. A brief investigation is also made using pulsatile input flow with a physiologically representative waveform. Experiment showed a general pattern of increasing unsteadiness in the aneurysm head with increasing Reynold’s number. Only for a case of a small-headed model and asymmetric outflow could a quasi-stable flow pattern be established. For the same model with symmetric outflow conditions, instability in the aneurysm head occurs at the low end of physiological Reynold’s numbers. A larger-headed aneurysm model displayed a similar onset of instability for both symmetric and asymmetric outflow conditions, with flow within the aneurysm head being less pronounced than the small-headed model.

  6. Treatment of Basilar Aneurysms with SMP Foams

    NASA Astrophysics Data System (ADS)

    Ortega, J. M.; Rodriguez, J. N.; Maitland, D. J.; Wilson, T. S.; Hartman, J.

    2006-11-01

    Researchers in the Medical Division at LLNL are currently developing a shape memory polymer (SMP) foam aneurysm treatment technique. This technique involves the catheter delivery of a compressed piece of SMP foam to an aneurysm. When the foam is heated by laser radiation from a diffusing fiber-optic element embedded within the catheter, the foam expands, filling the aneurysm volume. If proven successful, such a treatment alternative will provide clinicians the ability to not only isolate an aneurysm from the vascular system with one device, but also to customize the shape of the lumen beneath the aneurysm neck. Consequently, the flow patterns beneath the aneurysm neck could potentially be optimized to minimize the hemodynamic stresses on the lumen. In this computational study, multiple lumen shapes are simulated beneath the necks of several patient-specific basilar aneurysms. A comparison is made between the pre-treatment and post-treatment configurations, as well as with a conventional surgical clipping configuration. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. UCRL-ABS-222933.

  7. Mechanisms of vasoconstrictor responses to KCl in rat isolated perfused tail arteries: interaction with the alpha 2-adrenoceptor agonist UK14304.

    PubMed

    Xiao, X H; Rand, M J

    1991-04-17

    The vasoconstriction in rat tail arteries during exposure to 56 mM KCl for 2-5 min consisted of an initial sharp peak followed by a secondary plateau. Both components were reduced by the alpha 1-adrenoceptor antagonists prazosin and WB4010. In arteries from reserpine-pretreated rats, the plateau was markedly reduced and only slightly further attenuated by prazosin, however the initial peak was not reduced but was now not affected by prazosin. Thus, the response to KCl in arteries from normal rats is partly due to release of noradrenaline, and this occurs to a greater extent in the plateau than in the peak component. Addition of UK14304 during the plateau reduced the vasoconstriction in arteries from normal rats; however, in arteries from reserpine-pretreated rats there was increased vasoconstriction. These effects of UK14304 were abolished by idazoxan and were not affected by prazosin, and can be attributed to prejunctional inhibition of noradrenaline release in arteries from normal rats and postjunctional enhancement of vasoconstriction in arteries from reserpine-pretreated rats.

  8. H2S inhibits pulmonary arterial endothelial cell inflammation in rats with monocrotaline-induced pulmonary hypertension.

    PubMed

    Feng, Shasha; Chen, Siyao; Yu, Wen; Zhang, Da; Zhang, Chunyu; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2017-03-01

    This study aimed to determine whether hydrogen sulfide (H2S) inhibits pulmonary arterial endothelial inflammation in rats with monocrotaline (MCT)-induced pulmonary hypertension and its possible mechanisms. Twenty-four male Wistar rats were divided randomly into control, MCT, and MCT+H2S treatment groups. Human pulmonary arterial endothelial cells (HPAEC) were cultured and divided into four groups: control, MCT, MCT+H2S, and H2S. Pulmonary artery pressure was determined using a right cardiac catheterization procedure 3 weeks after MCT administration. Pulmonary vascular morphological changes and inflammatory infiltration were measured. Endogenous H2S levels, cystathionine-γ-lyase (CSE) expression, and inflammatory cytokines were determined both in vivo and in vitro. In addition, phosphorylation of NF-κB p65 and IκBα was detected by western blotting, and NF-κB p65 nuclear translocation, as well as its DNA-binding activity, was determined. Pulmonary hypertension and vascular remolding developed 3 wks after MCT administration, with elevated lung tissue inflammatory infiltration and cytokine level associated with activation of the NF-κB pathway, both in vivo and in vitro. However, the endogenous H2S/CSE pathway was downregulated in MCT rats. By contrast, an H2S donor markedly reduced pulmonary artery pressure, pulmonary vascular structural remolding, and increased lung inflammatory infiltration and cytokine levels of MCT-treated rats. Meanwhile, H2S reversed the activation of the NF-κB pathway successfully. The downregulated pulmonary arterial endothelial H2S/CSE pathway is involved in the pulmonary inflammatory response in MCT-treated pulmonary hypertensive rats. H2S attenuated endothelial inflammation by inhibiting the NF-κB pathway.

  9. Interlobular arteries from two-kidney, one-clip Goldblatt hypertensive rats exhibit impaired vasodilator response to epoxyeicosatrienoic acids

    PubMed Central

    Sporková, Alexandra; Reddy, N. Rami; Falck, John R.; Imig, John D.; Kopkan, Libor; Sadowski, Janusz; Červenka, Luděk

    2016-01-01

    Background Small renal arteries have a significant role in regulation of renal hemodynamics and blood pressure (BP). To study potential changes in regulation of vascular function in hypertension, we examined renal vasodilatory responses of small arteries from nonclipped kidneys of the two-kidney, one-clip (2K1C) Goldblatt hypertensive rats to native epoxyeicosatrienoic acids (EETs) which are believed to be involved in regulation of renal vascular function and BP. Two newly synthesized EET analogs were also examined. Methods Renal interlobular arteries isolated from the nonclipped kidneys on day 28 after clipping were preconstricted with phenylephrine (PE), pressurized, and the effects of a 14,15-EET analog, native 14,15-EET, and 11,12-ether-EET-8ZE, an analog of 11,12-EET, on the vascular diameter were determined and compared to the responses of arteries from the kidneys of sham-operated rats. Results In the arteries from non-clipped kidneys isolated in the maintenance phase of Goldblatt hypertension the maximal vasodilatory response to 14,15-EET analog was 30.1 ± 2.8% versus 49.8 ± 7.2% in sham-operated rats; the respective values for 11,12-ther-EET-8ZE were 31.4± 6.4% versus 80.4±6%, and for native EETs they were 41.7 ± 6.6 % versus 62.8 ± 4.4 % (P ≤ 0.05 for each difference). Conclusions We propose that reduced vasodilatory action and decreased intrarenal bioavailability of EETs combined with intrarenal ANG II levels that are inappropriately high for hypertensive rats underlie functional derangements of the nonclipped kidneys of 2K1C Goldblatt hypertensive rats. These derangements could play an important role in pathophysiology of sustained BP elevation observed in this animal model of human renovascular hypertension. PMID:27140711

  10. Mechanism of lactate-induced relaxation of isolated rat mesenteric resistance arteries.

    PubMed Central

    McKinnon, W; Aaronson, P I; Knock, G; Graves, J; Poston, L

    1996-01-01

    1. The effects of the sodium salt of the weak acid lactate on tension and intracellular pH (pH1) were studied in rat mesenteric small arteries mounted on a wire myograph. Sodium lactate was substituted iso-osmotically for sodium chloride. 2. At a concentration of 50 mM, both L- and D-stereoisomers of lactate markedly relaxed arteries preconstricted with noradrenaline (NA) within 10 min. The concentration-response relationship for L-lactate showed that the NA contracture was relaxed by 50% at approximately 26 mM. L-Lactate did not, however, relax arteries preconstricted with high-K+(45 mM) solution. 3. L-Lactate did not alter extracellular pH (pHo) but caused a small but significant decrease in pH1, measured using the pH-sensitive fluorochrome, 2',7'-bis(carboxyethyl)-5-(6)-carboxyfluorescein (BCECF). Relaxation to L-lactate was unaffected when this change in pHi was offset by the simultaneous addition of NH4Cl to the solution. 4. Sodium pyruvate (50 mM) caused a significant intracellular acidosis but did not relax arteries preconstricted with NA. 5. L-Lactate-induced relaxations were unaffected by removal of the endothelium or when the synthesis of nitric oxide (NO) was inhibited by 10(-4) M N omega-nitro-L-arginine methyl ester (L-NAME). 6. The potassium channel blockers glibenclamide (10 microM), 4-aminopyridine (3 mM) and tetraethylammonium chloride (10 mM) did not affect L-lactate-induced relaxation in arteries preconstricted with NA. Inhibition of guanylate cyclase with Methylene Blue, or cyclooxgenase with indomethacin, also did not affect relaxation to L-lactate. 7. The Rp stereoisomer of adenosine-3',5'-cyclic monophosphothioate (Rp-cAMPS), an analogue of cAMP which inhibits competitively stimulation of protein kinase A, reduced significantly L-lactate-induced relaxation at a concentration of 25 microM. Rp-cAMPS also significantly reduced forskolin-induced relaxation of the NA contracture. 8. It is concluded that L-lactate-induced relaxation in this

  11. Mechanism of butyrate-induced vasorelaxation of rat mesenteric resistance artery.

    PubMed Central

    Aaronson, P. I.; McKinnon, W.; Poston, L.

    1996-01-01

    1. The vasorelaxant effect of the sodium salt of the short chain fatty acid, butyrate, on preconstricted rat small mesenteric arteries (mean inner diameter approximately 300 microns) was characterized. Isometric force development was measured with a myograph, and intracellular pH (pHi) was simultaneously monitored, in arteries loaded with the fluorescent dye BCECF in its acetomethoxy form. Sodium butyrate (substituted isosmotically for NaCl) was applied to arteries after noradrenaline (NA) or high K+ contractures were established. 2. Arteries preconstricted with a concentration of NA inducing an approximately half maximal contraction were relaxed by 91.5 +/- 6.3% by 50 mmol l-1 butyrate. This concentration of butyrate did not, however, cause a significant relaxation of contractures to a maximal (5 mumol l-1) NA concentration, and also failed to relax significantly contractures stimulated by high (45 and 90 mmol l-1) K+ solutions. Contractures elicited with a combination of NA (at a submaximal concentration) and 45 mmol l-1 K+ were, however, markedly relaxed by butyrate. 3. Investigation of the concentration-dependency of the butyrate-induced relaxation of the half maximal NA response revealed an EC50 for butyrate of approximately 22 mmol l-1. 4. Sodium butyrate (50 mmol l-1) caused pHi to decrease from 7.25 +/- 0.02 to 6.89 +/- 0.08 (n = 4, P < 0.001). However, the vasorelaxant effect of butyrate on the submaximal NA contracture was not significantly modified when this fall in intracellular pH was prevented by the simultaneous application of NH4Cl. 5. Butyrate-induced relaxation was also unaffected by endothelial denudation and inhibition of NO synthase with N omega-nitro-L-arginine methyl ester (100 mumol l-1). 6. The relaxation of the NA contracture by 50 mmol l-1 sodium butyrate was abolished in arteries pretreated with the cyclic AMP antagonist Rp-cAMPS (25 mumol l-1). 7. We conclude that the butyrate-induced relaxation of the NA contracture is independent of

  12. Spreading dilatation in rat mesenteric arteries associated with calcium-independent endothelial cell hyperpolarization.

    PubMed

    Takano, Hiromichi; Dora, Kim A; Spitaler, Michaela M; Garland, Chris J

    2004-05-01

    Both ACh and levcromakalim evoke smooth muscle cell hyperpolarization and associated relaxation in rat mesenteric resistance arteries. We investigated if they could evoke conducted vasodilatation along isolated arteries, whether this reflected spreading hyperpolarization and the possible mechanism involved. Focal micropipette application of either ACh, to stimulate endothelial cell muscarinic receptors, or levcromakalim, to activate smooth muscle K(ATP) channels, each evoked a local dilatation (88 +/- 14%, n= 6 and 92 +/- 6% reversal of phenylephrine-induced tone, n= 11, respectively) that rapidly spread upstream (at 1.5 mm 46 +/- 19%, n= 6 and 57 +/- 13%, n= 9) to dilate the entire isolated artery. The local dilatation to ACh was associated with a rise in endothelial cell [Ca(2+)](i) (F/F(t = 0)= 1.22 +/- 0.33, n= 14) which did not spread beyond 0.5 mm (F/F(t = 0)= 1.01 +/- 0.01, n= 14), while the local dilatation to levcromakalim was not associated with any change in endothelial cell [Ca(2+)](i). In contrast, ACh and levcromakalim both stimulated local (12.7 +/- 1.2 mV, n= 10 and 13.5 +/- 4.7 mV, n= 10) and spreading (at 2 mm: 3.0 +/- 1.1 mV, n= 5 and 4.1 +/- 0.7 mV, n= 5) smooth muscle hyperpolarization. The spread of hyperpolarization could be prevented by cutting the artery, so was not due to a diffusible agent. Both the spreading dilatation and hyperpolarization were endothelium dependent. The injection of propidium iodide into either endothelial or smooth muscle cells revealed extensive dye coupling between the endothelial cells, but limited coupling between the smooth muscle cells. Some evidence for heterocellular spread of dye was also evident. Together, these data show that vasodilatation can spread over significant distances in mesenteric resistance arteries, and suggest this reflects an effective coupling between the endothelial cells to facilitate [Ca(2+)](i)-independent spread of hyperpolarization.

  13. Aspirin attenuates monocrotaline-induced pulmonary arterial hypertension in rats by suppressing the ERK/MAPK pathway.

    PubMed

    Gao, Hua; Cheng, Yuqing; Zong, Liguo; Huang, Linian; Qiao, Chenchen; Li, Wei; Gong, Beilei; Hu, Junfeng; Liu, Haitao; Wang, Xiaojing; Zhao, Chengling

    2017-01-01

    This study aimed to investigate the therapeutic effects of aspirin (ASA) and its potential mechanisms of action in monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) in rats. PAH was induced in a rat model by a single intraperitoneal (IP) injection of MCT. Saline was injected in a control group. Two weeks following MCT injection, right ventricular systolic pressure (RVSP) and systolic blood pressure (SBP) were measured in six rats from each group to confirm establishment of a PAH model. The remaining MCT-treated rats were randomly allocated to receive IP injection of saline, ASA, or ERK1/2 inhibitor PD98059. Four weeks following treatment, RVSP was measured and all rats were sacrificed for histological study. There was no significant difference in SBP in any group two weeks following MCT administration. Nonetheless RVSP was significantly increased in the MCT group compared with the control group. At 6 weeks, ASA treatment remarkably attenuated MCT-induced increased RVSP, RV hypertrophy, and pulmonary artery remodeling compared with the MCT group. The density of pulmonary capillaries in ASA-treated rats was also dramatically increased. Treatment with ASA significantly inhibited the increased p-ERK1/2 and restored the impaired endothelial nitric oxide synthase (eNOS) in MCT-treated rats. This study demonstrated that ASA distinctively attenuates MCT-induced PAH by inhibition of the ERK1/2 signaling pathway.

  14. Intralipid prevents and rescues fatal pulmonary arterial hypertension and right ventricular failure in rats.

    PubMed

    Umar, Soban; Nadadur, Rangarajan D; Li, Jingyuan; Maltese, Federica; Partownavid, Parisa; van der Laarse, Arnoud; Eghbali, Mansoureh

    2011-09-01

    Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling leading to right ventricular (RV) hypertrophy and failure. Intralipid (ILP), a source of parenteral nutrition for patients, contains γ-linolenic acid and soy-derived phytoestrogens that are protective for lungs and heart. We, therefore, investigated the therapeutic potential of ILP in preventing and rescuing monocrotaline-induced PAH and RV dysfunction. PAH was induced in male rats with monocrotaline (60 mg/kg). Rats then received daily ILP (1 mL of 20% ILP per day IP) from day 1 to day 30 for prevention protocol or from day 21 to day 30 for rescue protocol. Other monocrotaline-injected rats were left untreated to develop severe PAH by day 21 or RV failure by approximately day 30. Saline or ILP-treated rats served as controls. Significant increase in RV pressure and decrease in RV ejection fraction in the RV failure group resulted in high mortality. Therapy with ILP resulted in 100% survival and prevented PAH-induced RV failure by preserving RV pressure and RV ejection fraction and preventing RV hypertrophy and lung remodeling. In preexisting severe PAH, ILP attenuated most lung and RV abnormalities. The beneficial effects of ILP in PAH seem to result from the interplay of various factors, among which preservation and/or stimulation of angiogenesis, suppression and/or reversal of inflammation, fibrosis and hypertrophy, in both lung and RV, appear to be major contributors. In conclusion, ILP not only prevents the development of PAH and RV failure but also rescues preexisting severe PAH.

  15. Effect of global and regional sympathetic blockade on arterial pressure during water deprivation in conscious rats.

    PubMed

    Veitenheimer, Britta J; Engeland, William C; Guzman, Pilar A; Fink, Gregory D; Osborn, John W

    2012-10-15

    Forty-eight hours of water deprivation (WD) in conscious rats results in a paradoxical increase in mean arterial pressure (MAP). Previous studies suggest this may be due to increased sympathetic nerve activity (SNA). However, this remains to be investigated in conscious, freely behaving animals. The purpose of this study was to determine, in conscious rats, the role of the sympathetic nervous system (SNS) in mediating WD-induced increases in MAP and to identify which vascular beds are targeted by increased SNA. Each rat was chronically instrumented with a radiotelemetry transmitter to measure MAP and heart rate (HR) and an indwelling venous catheter for plasma sampling and/or drug delivery. MAP and HR were continuously measured during a 2-day baseline period followed by 48 h of WD and then a recovery period. By the end of the WD period, MAP increased by ∼15 mmHg in control groups, whereas HR did not change significantly. Chronic blockade of α(1)/β(1)-adrenergic receptors significantly attenuated the WD-induced increase in MAP, suggesting a role for global activation of the SNS. However, the MAP response to WD was unaffected by selective denervations of the hindlimb, renal, or splanchnic vascular beds, or by adrenal demedullation. In contrast, complete adrenalectomy (with corticosterone and aldosterone replaced) significantly attenuated the MAP response to WD in the same time frame as α(1)/β(1)-adrenergic receptor blockade. These results suggest that, in conscious water-deprived rats, the SNS contributes to the MAP response and may be linked to release of adrenocortical hormones. Finally, this sympathetically mediated response is not dependent on increased SNA to one specific vascular bed.

  16. Differential Clearance of Rat and Human Bone Marrow-Derived Mesenchymal Stem Cells From the Brain After Intra-arterial Infusion in Rats.

    PubMed

    Khabbal, Joonas; Kerkelä, Erja; Mitkari, Bhimashankar; Raki, Mari; Nystedt, Johanna; Mikkonen, Ville; Bergström, Kim; Laitinen, Saara; Korhonen, Matti; Jolkkonen, Jukka

    2015-01-01

    Intra-arterial (IA) delivery of bone marrow-derived mesenchymal stem cells (BM-MSCs) has shown potential as a minimally invasive therapeutic approach for stroke. The aim of the present study was to determine the whole-body biodistribution and clearance of technetium-99m ((99m)Tc)-labeled rat and human BM-MSCs after IA delivery in a rat model of transient middle cerebral artery occlusion (MCAO) using single-photon emission computed tomography (SPECT). Our hypothesis was that xenotransplantation has a major impact on the behavior of cells. Male RccHan:Wistar rats were subjected to sham operation or MCAO. Twenty-four hours after surgery, BM-MSCs (2 × 10(6) cells/animal) labeled with (99m)Tc were infused into the external carotid artery. Whole-body SPECT images were acquired 20 min, 3 h, and 6 h postinjection, after which rats were sacrificed, and organs were collected and weighed for measurement of radioactivity. The results showed that the majority of the cells were located in the brain and especially in the ipsilateral hemisphere immediately after cell infusion both in sham-operated and MCAO rats. This was followed by fast disappearance, particularly in the case of human cells. At the same time, the radioactivity signal increased in the spleen, kidney, and liver, the organs responsible for destroying cells. Further studies are needed to demonstrate whether differential cell behavior has any functional impact.

  17. Influence of acute pancreatitis on the in vitro responsiveness of rat mesenteric and pulmonary arteries

    PubMed Central

    Camargo, Enilton A; Delbin, Maria Andréia; Ferreira, Tatiane; Landucci, Elen CT; Antunes, Edson; Zanesco, Angelina

    2008-01-01

    Background Acute pancreatitis is an inflammatory disease characterized by local tissue injury and systemic inflammatory response leading to massive nitric oxide (NO) production and haemodynamic disturbances. Therefore, the aim of this work was to evaluate the vascular reactivity of pulmonary and mesenteric artery rings from rats submitted to experimental pancreatitis. Male Wistar rats were divided into three groups: saline (SAL); tauracholate (TAU) and phospholipase A2 (PLA2). Pancreatitis was induced by administration of TAU or PLA2 from Naja mocambique mocambique into the common bile duct of rats, and after 4 h of duct injection the animals were sacrificed. Concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP) and phenylephrine (PHE) in isolated mesenteric and pulmonary arteries were obtained. Potency (pEC50) and maximal responses (EMAX) were determined. Blood samples were collected for biochemical analysis. Results In mesenteric rings, the potency for ACh was significantly decreased from animals treated with TAU (about 4.2-fold) or PLA2 (about 6.9-fold) compared to saline group without changes in the maximal responses. Neither pEC50 nor EMAX values for Ach were altered in pulmonary rings in any group. Similarly, the pEC50 and the EMAX values for SNP were not changed in both preparations in any group. The potency for PHE was significantly decreased in rat mesenteric and pulmonary rings from TAU group compared to SAL group (about 2.2- and 2.69-fold, for mesenteric and pulmonary rings, respectively). No changes were seen in the EMAX for PHE. The nitrite/nitrate (NOx-) levels were markedly increased in animals submitted to acute pancreatitis as compared to SAL group, approximately 76 and 68% in TAU and PLA2 protocol, respectively. Conclusion Acute pancreatitis provoked deleterious effects in endothelium-dependent relaxing response for ACh in mesenteric rings that were strongly associated with high plasma NOx- levels as consequence of

  18. Neuroprotective effects of progesterone after transient middle cerebral artery occlusion in rat.

    PubMed

    Chen, J; Chopp, M; Li, Y

    1999-12-01

    Treatment of focal cerebral ischemia in the rat with intraperitoneal administration of progesterone dissolved in dimethyl sulfoxide (DMSO) has demonstrated therapeutic efficacy. In the present study we test whether iv administration of water soluble progesterone 2 h after the onset of middle cerebral artery occlusion provides therapeutic benefit for the treatment of stroke. In addition, we perform a battery of functional tests: rotarod, adhesive-backed somatosensory, and neurological score, as well as a dose-response study. The data indicate that iv administration of progesterone at a dose of 8 mg/kg significantly reduces the volume of cerebral infarction and significantly improves outcome on the array of functional measures employed. Treatment with 4 mg/kg or 32 mg/kg of progesterone failed to provide any therapeutic benefit. Progesterone, a non toxic, clinically employed, pluripotent therapeutic agent which targets both neuroprotective as well as neuroregenerative strategies, may have important therapeutic benefits for the treatment of stroke.

  19. Involvement of nitric oxide in the modulation of dural arterial blood flow in the rat

    PubMed Central

    Messlinger, K; Suzuki, A; Pawlak, M; Zehnter, A; Schmidt, R F

    2000-01-01

    Nitric oxide (NO) has been proposed to be a key molecule in the pathogenesis of migraine pain and other headaches that are linked to vascular disorders. Several lines of evidence indicate that the meningeal vascularization is crucially involved in the generation of these headaches. In an experimental model in the rat a dominating role of calcitonin gene-related peptide (CGRP) in causing neurogenic vasodilatation and increased blood flow has been shown. The aim of the present study was to clarify the role of NO in this model with regard to the meningeal blood flow.The blood flow in and around the medial meningeal artery (dural arterial flow) was recorded in the exposed parietal dura mater encephali of barbiturate anaesthetized rats using laser Doppler flowmetry. Local electrical stimulation of the dura mater (pulses of 0.5 ms delivered at 7.5–17.5 V and 5 or 10 Hz for 30 s) caused temporary increases in dural arterial flow for about 1 min that reached peaks of 1.6–2.6 times the basal flow. The effects of NO synthase (NOS) inhibitors on the basal flow and the electrically evoked increases in flow were examined.Systemic (i.v.) administration of Nω-nitro-L-arginine methyl ester (L-NAME) at cumulative doses of 10 and 50 mg kg−1 lowered the basal flow to 87 and 72%, respectively, of the control and reduced the evoked increases in blood flow to 82 and 44% on an average. Both these effects could partly be reversed by 300 mg kg−1 L-arginine. The systemic arterial pressure was increased by L-NAME at both doses. Injection of the stereoisomer D-NAME at same doses did not change basal flow and evoked increases in flow.Topical application of L-NAME (10−4–10−2 M) was effective only at the highest concentration, which caused lowering of the basal blood flow to 78% of the control; the evoked increases in flow were not changed. Topical application of 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (AMT), a specific inhibitor of the inducible NOS, at

  20. Effects of ionotropic glutamate receptor antagonists on rat dural artery diameter in an intravital microscopy model

    PubMed Central

    Chan, KY; Gupta, S; de Vries, R; Danser, AHJ; Villalón, CM; Muñoz-Islas, E; Maassen Van Den Brink, A

    2010-01-01

    Background and purpose: During migraine, trigeminal nerves may release calcitonin gene-related peptide (CGRP), inducing cranial vasodilatation and central nociception; hence, trigeminal inhibition or blockade of craniovascular CGRP receptors may prevent this vasodilatation and abort migraine headache. Several preclinical studies have shown that glutamate receptor antagonists affect the pathophysiology of migraine. This study investigated whether antagonists of NMDA (ketamine and MK801), AMPA (GYKI52466) and kainate (LY466195) glutamate receptors affected dural vasodilatation induced by α-CGRP, capsaicin and periarterial electrical stimulation in rats, using intravital microscopy. Experimental approach: Male Sprague-Dawley rats were anaesthetized and the overlying bone was thinned to visualize the dural artery. Then, vasodilator responses to exogenous (i.v. α-CGRP) and endogenous (released by i.v. capsaicin and periarterial electrical stimulation) CGRP were elicited in the absence or presence of the above antagonists. Key results: α-CGRP, capsaicin and periarterial electrical stimulation increased dural artery diameter. Ketamine and MK801 inhibited the vasodilator responses to capsaicin and electrical stimulation, while only ketamine attenuated those to α-CGRP. In contrast, GYKI52466 only attenuated the vasodilatation to exogenous α-CGRP, while LY466195 did not affect the vasodilator responses to endogenous or exogenous CGRP. Conclusions and implications: Although GYKI52466 has not been tested clinically, our data suggest that it would not inhibit migraine via vascular mechanisms. Similarly, the antimigraine efficacy of LY466195 seems unrelated to vascular CGRP-mediated pathways and/or receptors. In contrast, the cranial vascular effects of ketamine and MK801 may represent a therapeutic mechanism, although the same mechanism might contribute, peripherally, to cardiovascular side effects. PMID:20590623

  1. The actions of some cannabinoid receptor ligands in the rat isolated mesenteric artery

    PubMed Central

    White, Richard; Robin Hiley, C

    1998-01-01

    The actions of a number of cannabinoid receptor ligands were investigated using the myograph-mounted rat isolated mesenteric artery. Anandamide, CP 55,940, HU-210, palmitoylethanolamide and WIN 55,212-2 all caused concentration-dependent relaxations of methoxamine-precontracted vessels which were not affected by removal of the endothelium.Precontracting vessels with 60 mM KCl instead of methoxamine greatly reduced the vasorelaxant effects of anandamide and palmitoylethanolamide. High K+ solution caused a modest decrease in the relaxant potency of CP 55,940 and HU-210, and had no effect on relaxations induced by WIN 55,212-2.Relaxations of methoxamine-induced tone by anandamide, CP 55,940 and HU-210, but not palmitoylethanolamide and WIN 55,212-2, were attenuated by the cannabinoid receptor antagonist, SR 141716A. Relaxation of vessels contracted with 60 mM KCl by CP 55,940 was also sensitive to SR 141716A.Anandamide and CP 55,940 caused small but concentration-dependent contractions in resting vessels in the absence of extracellular calcium. These were not sensitive to SR 141716A. Palmitoylethanolamide and WIN 55,212-2 produced smaller contractions only at higher concentrations.Anandamide and CP 55,940, but not palmitoylethanolamide and WIN 55,212-2, caused concentration-dependent inhibition of the phasic contractions induced by methoxamine in calcium-free conditions, but only anandamide caused inhibition of contractions to caffeine under such conditions. These inhibitory effects were not antagonised by SR 141716A.The present study provides the first detailed investigation of the actions of cannabinoid agonists on vascular smooth muscle. Our results show that these compounds exert both receptor-dependent and -independent effects on agonist-induced calcium mobilization in the rat isolated mesenteric artery. PMID:9806337

  2. Inducible nitric oxide synthase-derived superoxide contributes to hypereactivity in small mesenteric arteries from a rat model of chronic heart failure

    PubMed Central

    Miller, Alyson A; Megson, Ian L; Gray, Gillian A

    2000-01-01

    The aims of this study were to (a) determine whether inducible nitric oxide synthase (iNOS) is expressed in small mesenteric arteries from rats with chronic heart failure (CHF), (b) investigate the functional significance of this potential source of nitric oxide (NO) on vascular responsiveness and (c) investigate the role that superoxide plays in modulating vascular function in these arteries. CHF was induced in male Wistar rats by coronary artery ligation (CAL). In sham-operated rats the ligature was not tied but pulled under the artery. Six weeks after surgery CAL rats had left ventricular (LV) infarctions and elevated LV end-diastolic pressures. Immunoreactive iNOS was found in endothelial cells, vascular smooth muscle cells and in the adventitia of small mesenteric arteries from CAL rats but not those from sham-operated rats. Third order mesenteric arteries (300–350 μm) were mounted in a small vessel pressure myograph. Endothelium-intact arteries from CAL rats were more responsive to phenylephrine (PE) than arteries from sham-operated rats (pD2 value, CAL, 6.2±0.1; sham-operated, 5.9±0.1, P<0.05). Both the selective iNOS inhibitor, N-(3-(Aminomethyl) benzyl) acetamidine dihydrochloride (1400W; 10−6 M) and the superoxide dismutase mimetic, Mn [III] tetrakis [1-methyl-4-pyridyl] porphyrin, (MnTMPyP; 10−4 M) reversed the hyperesponsiveness (pD2 values, 1400W, 5.9±0.1; MnTMPyP, 5.81±0.1, P<0.05). The NOS substrate, L-arginine (10−3 M), reduced responsiveness of endothelium-denuded small mesenteric arteries from CAL rats (P<0.01). None of these drugs altered responses to PE in arteries from sham-operated rats. In summary, this study demonstrates that iNOS is expressed in mesenteric arteries from rats with CHF. However, instead of generating large quantities of NO, iNOS appears to be generating superoxide, perhaps because of a deficiency in its substrate, L-arginine. Increased superoxide generation from iNOS contributes to the hyperesponsive

  3. Membrane properties of smooth muscle cells in pulmonary arteries of the rat.

    PubMed

    Suzuki, H; Twarog, B M

    1982-05-01

    Electrical properties of the membrane of smooth muscle cells in the rat main pulmonary artery (MPA) and a small pulmonary artery (SPA) were compared. MPA and SPA differed in several important respects, suggesting characteristic quantitative and qualitative differences in membrane properties. 1) Resting membrane potentials were similar in both (MPA 52.2 +/- 1.3 mV; SPA 51.5 +/- 1.7 mV). The cells displayed no spontaneous electrical activity. The muscle layers in both MPA and SPA showed cablelike properties; a graded local response to outward current pulses was observed, but no action potentials were evoked. 2) Tetraethylammonium chloride (TEA, 1-5 mM) depolarized, increased membrane resistance, and suppressed rectification in MPA. TEA strongly depolarized SPA and contraction ensued. 3) The maximum membrane depolarization produced by a 10-fold increase in extracellular [K+] was 48 mV in MPA and 47 mV in SPA. In K+-free solution gradual depolarization was observed in SPA, but the membrane potential in MPA was not modified. Restoration of K+-containing solution produced equivalent hyperpolarization in both tissues, indicating a similar degree of stimulation of electrogenic Na+-K+ pumping. 4) A Na+-deficient solution did not affect the membrane potential in MPA but depolarized SPA.

  4. Sequential neuronal and astrocytic changes after transient middle cerebral artery occlusion in the rat.

    PubMed

    Chen, H; Chopp, M; Schultz, L; Bodzin, G; Garcia, J H

    1993-09-01

    The temporal evolution and spatial distribution of ischemic cell injury was investigated after transient middle cerebral artery (MCA) occlusion. Male Wistar rats (n = 61) were subjected to 2 h of MCA occlusion induced by advancing a nylon monofilament into the right internal carotid artery. Animals were killed after different durations of reperfusion, ranging from 4 to 166 h (n = 6-11 for each group). Neuronal injury and astrocytic reaction were evaluated using hematoxylin and eosin (H & E) and glial fibrillary acidic protein (GFAP) immunohistochemistry, respectively. Eosinophilic neurons were detected at 4 h of reperfusion in the basal ganglia, and at 10 h of reperfusion in the cortex. Focal brain infarct developed by 46 h of reperfusion, both in the cortex and the basal ganglia, and the volume remained constant between 46 and 166 h of reperfusion. Significant differences in astrocytic reaction were detected between the lesion and the periphery of the lesion at reperfusion times from 46 to 166 h; GFAP staining decreased in the core of the lesion and increased in the peripheral areas. Our data suggest that, after 2 h of MCA occlusion, brain tissue progresses from isolated neuronal injury to infarct with a time course dependent on anatomical site; and astrocytic reactivity, expressed by GFAP staining, reflects the outcome of the ischemic injury.

  5. Radiation injury in rat lung: I. Prostacyclin (PGI/sub 2/) production, arterial perfusion, and ultrastructure

    SciTech Connect

    Ts'ao, C.; Ward, W.F.; Port, C.D.

    1983-11-01

    Pulmonary prostacyclin (PGI/sub 2/) production, arterial perfusion, and ultrastructure were correlated in rats sacrificed from 1 day to 6 months after a single exposure of 25 Gy of gamma rays to the right hemithorax. PGI/sub 2/ production by the irradiated lung decreased to approximately half the normal value 1 day after irradiation (P < 0.05), then increased steadily throughout the study. By 6 months postirradiation, the right lung produced two to three times as much PGI/sub 2/ as did either shielded left lung or sham-irradiated lungs (P < 0.05). Perfusion scans revealed hyperemia of the right lung from 1 to 14 days after irradiation. From its peak at 14 days postirradiation, however, perfusion of the irradiated lung decreased steadily, then reached a plateau from 3 to 6 months at less than half that in the shielded left lung. Electron micrographs of the right lung revealed perivascular edema from 1 to 30 days after irradiation. The right lung then exhibited changes typical of radiation pneumonitis followed by progressive interstitial fibrosis. Platelet aggregates were not observed at any time. Thus, decreased PGI/sub 2/ production is an immediate but transient response of the lung to radiation injury. Then from 2 to 6 months after irradiation, the fibrotic, hypoperfused lung produces increasing amounts of the potent vasodilator and antithrombotic agent, PGI/sub 2/. Pulmonary PGI/sub 2/ production and arterial perfusion are inversely correlated for at least 6 months after hemithoracic irradiation.

  6. Minimal basilar membrane motion in low-frequency hearing

    PubMed Central

    Warren, Rebecca L.; Ramamoorthy, Sripriya; Ciganović, Nikola; Zhang, Yuan; Wilson, Teresa M.; Petrie, Tracy; Wang, Ruikang K.; Jacques, Steven L.; Reichenbach, Tobias; Nuttall, Alfred L.; Fridberger, Anders

    2016-01-01

    Low-frequency hearing is critically important for speech and music perception, but no mechanical measurements have previously been available from inner ears with intact low-frequency parts. These regions of the cochlea may function in ways different from the extensively studied high-frequency regions, where the sensory outer hair cells produce force that greatly increases the sound-evoked vibrations of the basilar membrane. We used laser interferometry in vitro and optical coherence tomography in vivo to study the low-frequency part of the guinea pig cochlea, and found that sound stimulation caused motion of a minimal portion of the basilar membrane. Outside the region of peak movement, an exponential decline in motion amplitude occurred across the basilar membrane. The moving region had different dependence on stimulus frequency than the vibrations measured near the mechanosensitive stereocilia. This behavior differs substantially from the behavior found in the extensively studied high-frequency regions of the cochlea. PMID:27407145

  7. Minimal basilar membrane motion in low-frequency hearing.

    PubMed

    Warren, Rebecca L; Ramamoorthy, Sripriya; Ciganović, Nikola; Zhang, Yuan; Wilson, Teresa M; Petrie, Tracy; Wang, Ruikang K; Jacques, Steven L; Reichenbach, Tobias; Nuttall, Alfred L; Fridberger, Anders

    2016-07-26

    Low-frequency hearing is critically important for speech and music perception, but no mechanical measurements have previously been available from inner ears with intact low-frequency parts. These regions of the cochlea may function in ways different from the extensively studied high-frequency regions, where the sensory outer hair cells produce force that greatly increases the sound-evoked vibrations of the basilar membrane. We used laser interferometry in vitro and optical coherence tomography in vivo to study the low-frequency part of the guinea pig cochlea, and found that sound stimulation caused motion of a minimal portion of the basilar membrane. Outside the region of peak movement, an exponential decline in motion amplitude occurred across the basilar membrane. The moving region had different dependence on stimulus frequency than the vibrations measured near the mechanosensitive stereocilia. This behavior differs substantially from the behavior found in the extensively studied high-frequency regions of the cochlea.

  8. Fatty acids impair endothelium-dependent vasorelaxation: a link between obesity and arterial stiffness in very old Zucker rats.

    PubMed

    Sloboda, Natacha; Fève, Bruno; Thornton, Simon N; Nzietchueng, Rosine; Regnault, Véronique; Simon, Ginny; Labat, Carlos; Louis, Huguette; Max, Jean-Pierre; Muscat, Adeline; Osborne-Pellegrin, Mary; Lacolley, Patrick; Benetos, Athanase

    2012-09-01

    To analyze age-related interactions between obesity, its associated metabolic disorders, and macrocirculation, we studied large artery stiffness and fatty acid responsiveness in lean and obese Zucker rats, aged 25 (adult) and 80 weeks (very old). Systolic arterial pressure was higher in old obese than in old lean rats (178 ± 10 vs 134 ± 8 mmHg, respectively). Carotid elastic modulus-wall stress curves showed increased age-dependent arterial stiffening, which was greater in obese animals. Old obese exhibited endothelial dysfunction with increased systemic oxidative stress. Adult obese had elevated plasma free fatty acid levels (1,866 ± 177 vs 310 ± 34 μg/μL in lean animals). In old obese, linoleate and palmitate increased contractility to phenylephrine and reduced relaxation to acetylcholine. Thus, obesity at 25 weeks appears to trigger accelerated arterial aging observed at 80 weeks. The early increase in free fatty acids may be a key effector in the severe arterial stiffness of the aged obese Zucker model.

  9. Some electrical properties of the endothelium-dependent hyperpolarization recorded from rat arterial smooth muscle cells.

    PubMed Central

    Chen, G; Suzuki, H

    1989-01-01

    1. Electrical responses produced by acetylcholine (ACh) and histamine were recorded from smooth muscle cells of the intralobular small pulmonary artery (SPA), main pulmonary artery (MPA) and thoracic aorta of rats. 2. In MPA and SPA, ACh and histamine produced a transient hyperpolarization of the membrane, and the potential decayed exponentially with a time constant of 2-3 min. In aorta, ACh produced a sustained and histamine produced a transient hyperpolarization. 3. The ACh- and histamine-induced hyperpolarizations were blocked by atropine and mepyramine, respectively, or by removing the endothelial cells. 4. The amplitude of the hyperpolarization was increased in low [K+]o solutions and decreased in high [K+]o solutions. The ionic conductance of the membrane was increased during the hyperpolarization, suggesting an involvement of the increased potassium conductance. 5. A reproducible amplitude of hyperpolarization was generated when ACh or histamine was applied at intervals of over 10 or 30 min, respectively. 6. In aorta, after the transient hyperpolarization had ceased during continued application of histamine, ACh again produced a hyperpolarization, i.e. the transient nature of the hyperpolarization was not due to desensitization of the receptor upon which the hyperpolarizing substance acted, assuming histamine and ACh release the same hyperpolarizing substance. 7. ACh and histamine relaxed the tissues from SPA, MPA and aorta during the noradrenaline (NA)- or high [K+]o solution-induced contraction, in a concentration-dependent manner, only when the endothelial cells were intact. Both ACh and histamine were potent relaxants in MPA and aorta, but showed weak relaxing actions in SPA. 8. In aorta, ACh and histamine produced a sustained relaxation for up to 10 min, and Methylene Blue diminished and altered it to a transient relaxation (for histamine) or an initial large, followed by a small sustained (for ACh), relaxation. 9. In the presence of NA and NA plus

  10. The role of ERK in phasic and tonic contractile responses in rat femoral arteries after hindlimb unloading.

    PubMed

    Yuan, Ming; Li, Zhili; Wang, Desheng; Jiang, Shizhong

    2005-01-01

    The present study tested the hypothesis that the role of ERK in phasic and tonic contractile responses is declined by hindlimb unloading (HU) in rat femoral arteries. Male Wistar rats were randomised into HU and Control group (n=7). After 14d, the femoral arteries were isolated and cut into 3-mm ring segments. In the absence or presence of PD98059(MEK inhibitor), contractile response to NE(10μM) was measured in Krebs solution in a tissue bath at 37°C, isometric tension were recorded with Powerlab system. The area under curve (AUC), phasic and tonic contractile responses between two groups were compared. After 14d-HU, the AUC, phasic and tonic NE-induced contractile responses were declined compared with controls. PD98059 did not affect the AUC in arteries from HU, but significantly decreased the AUC in arteries from control (100±7.1% vs. 61.18±11.3%, P<0.05). In contrast to control, the inhibitory ratio of PD98059 was significantly lower in phasic (7.42±3.24% vs. 33.59± 9.19%, P=0.0198) and tonic (26.93±3.78% vs. 46.75±5.67%, P=0.0131) contractile responses of HU group. Moreover, the inhibitory ratio of PD98059 wasn't significantly different between the phasic and tonic contractile responses in control group (P=0.2464). But for HU group, the difference was statistically significant (P=0.002). We demonstrated that the role of ERK was declined in both phasic and tonic contractile responses in rat femoral arteries after hindlimb unloading. Simulated microgravity induced by HU may attenuate the contractile responses of femoral arteries by inhibiting the role of ERK in thick and thin filament regulatory pathways.

  11. F 15845, a new blocker of the persistent sodium current prevents consequences of hypoxia in rat femoral artery

    PubMed Central

    Bocquet, A; Sablayrolles, S; Vacher, B; Le Grand, B

    2010-01-01

    BACKGROUND AND PURPOSE The persistent sodium current is involved in myocardial ischaemia and is selectively inhibited by the newly described 3-(R)-[3-(2-methoxyphenylthio-2-(S)-methylpropyl]amino-3,4-dihydro-2H-1,5-benzoxathiepine bromhydrate (F 15845). Here, we describe the pharmacological profile of F 15845 against the effects of hypoxia in femoral arteries in vitro. EXPERIMENTAL APPROACH Isometric tension measurement of rat isolated femoral arteries was used to characterize the protective effect of F 15845 against contraction of the vessels induced by veratrine (100 µg·mL−1) or hypoxia. KEY RESULTS Rat femoral artery expressed the Nav1.5 channel isoform. When exposed to veratrine (100 µg·mL−1), vessels developed a rapid and strong contraction that was abolished by both absence of sodium and blockade of the Na+/Ca++ exchanger by KB-R7943 (10 and 32 µmol·L−1) or treatment with F 15845. When used before veratrine exposure, the potency of F 15845 depended on the extracellular K+ concentration (IC50 = 11 and 0.77 µmol·L−1 for 5 and 20 mmol·L−1 KCl, respectively), whereas its potency was unaffected by extracellular K+ concentration when given after veratrine. F 15845 did not affect either KCl (80 mmol·L−1) or phenylephrine-induced femoral artery contraction. Moreover, endothelium disruption did not affect the protective effect of F 15845 against veratrine-induced femoral artery contraction, suggesting a mechanism of action dependent on smooth muscle cells. Finally, F 15845 prevented in a concentration-dependent manner rat femoral artery contraction induced by hypoxia. CONCLUSION AND IMPLICATIONS F 15845, a selective blocker of the persistent sodium current prevented vascular contraction induced by hypoxic conditions. PMID:20735424

  12. Arterial morphology responds differently to Captopril then N-acetylcysteine in a monocrotaline rat model of pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Molthen, Robert; Wu, Qingping; Baumgardt, Shelley; Kohlhepp, Laura; Shingrani, Rahul; Krenz, Gary

    2010-03-01

    Pulmonary hypertension (PH) is an incurable condition inevitably resulting in death because of increased right heart workload and eventual failure. PH causes pulmonary vascular remodeling, including muscularization of the arteries, and a reduction in the typically large vascular compliance of the pulmonary circulation. We used a rat model of monocrotaline (MCT) induced PH to evaluated and compared Captopril (an angiotensin converting enzyme inhibitor with antioxidant capacity) and N-acetylcysteine (NAC, a mucolytic with a large antioxidant capacity) as possible treatments. Twenty-eight days after MCT injection, the rats were sacrificed and heart, blood, and lungs were studied to measure indices such as right ventricular hypertrophy (RVH), hematocrit, pulmonary vascular resistance (PVR), vessel morphology and biomechanics. We implemented microfocal X-ray computed tomography to image the pulmonary arterial tree at intravascular pressures of 30, 21, 12, and 6 mmHg and then used automated vessel detection and measurement algorithms to perform morphological analysis and estimate the distensibility of the arterial tree. The vessel detection and measurement algorithms quickly and effectively mapped and measured the vascular trees at each intravascular pressure. Monocrotaline treatment, and the ensuing PH, resulted in a significantly decreased arterial distensibility, increased PVR, and tended to decrease the length of the main pulmonary trunk. In rats with PH induced by monocrotaline, Captopril treatment significantly increased arterial distensibility and decrease PVR. NAC treatment did not result in an improvement, it did not significantly increase distensibility and resulted in further increase in PVR. Interestingly, NAC tended to increase peripheral vascular density. The results suggest that arterial distensibility may be more important than distal collateral pathways in maintaining PVR at normally low values.

  13. Electrophysiological Characterization of The Cerebellum in the Arterially Perfused Hindbrain and Upper Body of The Rat

    PubMed Central

    Rawson, John A.; Apps, Richard

    2009-01-01

    In the present study, a non-pulsatile arterially perfused hindbrain and upper body rat preparation is described which is an extension of the brainstem preparation reported by Potts et al., (Brain Res Bull 53(1):59–67), 1. The modified in situ preparation allows study of cerebellar function whilst preserving the integrity of many of its interconnections with the brainstem, upper spinal cord and the peripheral nervous system of the head and forelimbs. Evoked mossy fibre, climbing fibre and parallel fibre field potentials and EMG activity elicited in forelimb biceps muscle by interpositus stimulation provided evidence that both cerebellar inputs and outputs remain operational in this preparation. Similarly, the spontaneous and evoked single unit activity of Purkinje cells, putative Golgi cells, molecular interneurones and cerebellar nuclear neurones was similar to activity patterns reported in vivo. The advantages of the preparation include the ability to record, without the complications of anaesthesia, stabile single unit activity for extended periods (3 h or more), from regions of the rat cerebellum that are difficult to access in vivo. The preparation should therefore be a useful adjunct to in vitro and in vivo studies of neural circuits underlying cerebellar contributions to movement control and motor learning. PMID:20033360

  14. Carvacrol Exerts Neuroprotective Effects Via Suppression of the Inflammatory Response in Middle Cerebral Artery Occlusion Rats.

    PubMed

    Li, Zhenlan; Hua, Cong; Pan, Xiaoqiang; Fu, Xijia; Wu, Wei

    2016-08-01

    Increasing evidence demonstrates that inflammation plays an important role in cerebral ischemia. Carvacrol, a monoterpenic phenol, is naturally occurring in various plants belonging to the family Lamiaceae and exerts protective effects in a mice model of focal cerebral ischemia/reperfusion injury by reducing infarct volume and decreasing the expression of cleaved caspase-3. However, the anti-inflammatory mechanisms by which carvacrol protect the brain have yet to be fully elucidated. We investigated the effects of carvacrol on inflammatory reaction and inflammatory mediators in middle cerebral artery occlusion rats. The results of the present study showed that carvacrol inhibited the levels of inflammatory cytokines and myeloperoxidase (MPO) activity, as well as the expression of iNOS and COX-2. It also increased SOD activity and decreased MDA level in ischemic cortical tissues. In addition, carvacrol treatment suppressed the ischemia/reperfusion-induced increase in the protein expression of nuclear NF-kB p65. In conclusion, we have shown that carvacrol inhibits the inflammatory response via inhibition of the NF-kB signaling pathway in a rat model of focal cerebral ischemia. Therefore, carvacrol may be a potential therapeutic agent for the treatment of cerebral ischemia injury.

  15. Taurocholic Acid Prevents Biliary Damage Induced by Hepatic Artery Ligation in Cholestatic Rats

    PubMed Central

    Glaser, Shannon; Onori, Paolo; Gaudio, Eugenio; Ueno, Yoshiyuki; Pannarale, Luigi; Franchitto, Antonio; Francis, Heather; Mancinelli, Romina; Carpino, Guido; Venter, Julie; White, Mellanie; Kopriva, Shelley; Vetuschi, Antonella; Sferra, Roberta; Alpini, Gianfranco

    2010-01-01

    Background Ischemic injury by hepatic artery ligation (HAL) during obstructive cholestasis induced by bile duct ligation (BDL) results in bile duct damage, which can be prevented by administration of VEGF-A. The potential regulation of VEGF and VEGF receptor expression and secretion by bile acids in BDL with HAL is unknown. Aims We evaluated whether taurocholic acid (TC) can prevent HAL-induced cholangiocyte damage via the alteration of VEGFR-2 and/or VEGF-A expression. Methods Utilizing BDL, BDL+TC, BDL+HAL, BDL+HAL+TC, and BDL+HAL+wortmannin+TC treated rats, we evaluated cholangiocyte apoptosis, proliferation, and secretion as well VEGF-A and VEGFR-2 expression by immunohistochemistry. In vitro, we evaluated the effects of TC on cholangiocyte secretion of VEGF-A and the dependence of TC-induced proliferation on the activity of VEGFR-2. Results In BDL rats with HAL, chronic feeding of TC prevented HAL-induced loss of bile ducts and HAL-induced decreased cholangiocyte secretion. TC also prevented HAL-inhibited VEGF-A and VEGFR-2 expression in liver sections and HAL-induced circulating VEGF-A levels, which were blocked by wortmannin administration. In vitro, TC stimulated increased VEGF-A secretion by cholangiocytes, which was blocked by wortmannin and stimulated cholangiocyte proliferation that was blocked by VEGFR-2 kinase inhibitor. Conclusion TC prevented HAL-induced biliary damage by upregulation of VEGF-A expression. PMID:20303838

  16. The behavioral effects of bilateral middle cerebral artery hemorrhagic ischemia in rat.

    PubMed

    McDaniel, W F; Fjordbak, T; Schmidt, M S; Tucker, J C; Davis, B K

    1991-11-01

    After learning position discrimination in a T-maze water escape task, rats had either a 2 mm section of the middle cerebral artery removed bilaterally (bMCA) or they received a sham operation. Beginning on the day of surgery either total brain gangliosides (50 mg kg-1) or saline were administered daily for five days. Of the several measures of neurological function that were tested, only a temporary deficit in grasping with the front paws was observed in bMCA damaged rats. Ganglioside treatment normalized this practical function. Memory of the preoperative habit was not influenced by bMCA damage, but acquisition of a reversal of this habit was compromised. Ganglioside treatment did not influence this deficit. Acquisition of a spatial alternation strategy was influenced by neither the bMCA lesion nor the ganglioside treatment. The preservation that accompanies bMCA interruption might serve as a useful model of the functional declines that accompany stroke and frontal lobe damage.

  17. MRI-derived arterial input functions for PET kinetic modelling in rats

    NASA Astrophysics Data System (ADS)

    Evans, Eleanor; Sawiak, Stephen J.; Adrian Carpenter, T.

    2013-02-01

    Simultaneous PET-MR acquisition provides the high temporal and spatial resolution of MRI with the specificity of PET. In PET, accurate modelling of physiological function in vivo requires the time-activity curve of tracer in blood plasma, known as the arterial input function (AIF). As the gold standard method of blood sampling is inherently prohibitive in the small animal case, here we discuss how we prepare to rapidly sample MRI signals from gadolinium-doped tracer to obtain the tracer input functions from a simultaneous PET-MR measurement. ΔR2* measurements taken from EPI images were used to obtain first pass bolus AIFs in the rat brain from DSC-MRI datasets of 5 rats. AIFs obtained using our automatic algorithm were found to be consistent between animals and compared well with manual methods without need for a priori voxel selection. A variable flip angle FLASH sequence used for T1 mapping was successfully tested in a phantom study, providing accurate measurements of Gd concentration.

  18. L-Carnitine supplementation impairs endothelium-dependent relaxation in mesenteric arteries from rats.

    PubMed

    Valgas da Silva, Carmem P; Rojas-Moscoso, Julio A; Antunes, Edson; Zanesco, Angelina; Priviero, Fernanda B M

    2014-07-01

    L-Carnitine (L-Car) is taken as fat burner. The risks of L-Car supplementation for the cardiovascular system are unclear. We evaluated the relaxing responses of the mesenteric and aorta rings from rats after four weeks of L-Car supplementation and/or physical training. Concentration response curves to acetylcholine (ACh) and sodium nitroprusside (SNP), as well as cyclic GMP levels, superoxide dismutase (SOD) activity and malondialdehyde (MDA) were evaluated. Physical training decreased body weight gain that was potentiated by L-Car. In mesenteric rings, L-Car impaired endothelium-dependent relaxation whereas endothelium independent relaxation was increased. In aorta, exercise improved endothelium-dependent relaxation; however, it was partially inhibited by L-Car. SNP-induced relaxation was similar in aorta of all groups. Basal cGMP were increased in aorta of exercised rats. SOD activity and MDA levels were unaltered. In conclusion, L-Car and physical exercise promotes body weight loss; however, it impairs endothelium-dependent vaso-relaxation possibly involving alterations in muscarinic receptors/eNOS/NO signalling pathway in mesenteric artery.

  19. Effects of a new advanced glycation inhibitor, LR-90, on mitigating arterial stiffening and improving arterial elasticity and compliance in a diabetic rat model: aortic impedance analysis

    PubMed Central

    Satheesan, S; Figarola, J L; Dabbs, T; Rahbar, S; Ermel, R

    2014-01-01

    BACKGROUND AND PURPOSE We determined the effects of treatment with LR-90, an inhibitor of advanced glycation end products, on the mechanical properties of the arterial system in streptozotocin (STZ)-induced diabetic Sprague Dawley rats, using aortic impedance analysis, and further investigated the effects of LR-90 on the progression of aortic pathology. EXPERIMENTAL APPROACH STZ-induced diabetic rats were treated with or without LR-90 (50 mg L-1 in drinking water) for 8 weeks and compared with control groups. Arterial BP measurements, various metabolic parameters, aortic histopathology, collagen cross-linking, AGE accumulation, and RAGE protein expression in aortic tissue were determined. Pulsatile parameters were evaluated using a standard Fourier series expansion technique and impulse response function of the filtered aortic input impedance spectra. KEY RESULTS LR-90 reduced glycated haemoglobin and triglycerides levels, although it had no effect on the glycaemic status. LR-90 did not affect arterial BP, but prevented the diabetes-induced increase in peripheral resistance and variations in aortic distensibility, as it reduced aortic characteristic impedance by 21%. LR-90 also prevented the elevation in wave reflection factor, as indicated by a 22.5% reduction and an associated increase of 23.5% in wave transit time, suggesting it prevents the augmentation of the systolic load of the left ventricle. Moreover, LR-90 inhibited collagen cross-linking and the accumulation of AGE and RAGE in the vasculature of diabetic rats. CONCLUSIONS AND IMPLICATIONS Treatment with LR-90 may impart significant protection against diabetes-induced aortic stiffening and cardiac hypertrophy and provides an additional therapeutic option for treatment of AGE associated diabetic complications. PMID:24611770

  20. Electrophysiological responses in the rat tail artery during reinnervation following lesions of the sympathetic supply.

    PubMed Central

    Jobling, P; McLachlan, E M; Jänig, W; Anderson, C R

    1992-01-01

    1. Responses to perivascular stimuli have been recorded with intracellular microelectrodes from the smooth muscle of isolated segments of the main caudal artery of rats at various times between 7 and 128 days after all four collector nerve trunks had been lesioned near the base of the tail at 21 days of age. 2. In proximal segments (< 40 mm distal to the lesions), excitatory junction potentials (EJPs) and neurogenic alpha-depolarizations (NADs) evoked by stimuli presented via a proximally located suction electrode were similar to those in the same segments of unoperated control animals of the same age. Supramaximal EJPs in these segments decreased in amplitude with age. 3. Stimuli just supramaximal for EJPs in innervated preparations failed to evoke responses in segments farther than 30-40 mm distal to the lesions at any time after the nerves had been cut and 1 cm excised. Higher voltages evoked slow depolarizing potentials (SDPs) which were of longer time course than EJPs. Similar responses occurred in segments over 60 mm distal to the lesions at 20-50 days after the nerves had been frozen, and in all segments sampled over 100 mm distal to nerve lesions. 4. Spontaneous transient depolarizations (STDs) were recorded at all depths of the media in denervated segments. These occurred at frequencies similar to those of spontaneous events (including attenuated spontaneous EJPs) in innervated segments. 5. The earliest signs of reinnervation (24-42 days after freeze lesions) consisted of very small amplitude EJPs of normal time course which facilitated markedly during a short train of stimuli (5-10 Hz); these were followed by NADs which were large relative to the amplitudes of the EJPs. Less commonly, small focal EJPs of brief time course (resembling spontaneous EJPs in superficial cells of innervated arteries) were evoked in very restricted regions of the vessel wall. 6. At later times (57-128 days postoperative), six of eight segments located 40-70 mm distal to freeze

  1. Heterotopic Auxiliary Rat Liver Transplantation With Flow-regulated Portal Vein Arterialization in Acute Hepatic Failure

    PubMed Central

    Schleimer, Karina; Kalder, Johannes; Grommes, Jochen; Jalaie, Houman; Tawadros, Samir; Greiner, Andreas; Jacobs, Michael; Kokozidou, Maria

    2014-01-01

    In acute hepatic failure auxiliary liver transplantation is an interesting alternative approach. The aim is to provide a temporary support until the failing native liver has regenerated.1-3 The APOLT-method, the orthotopic implantation of auxiliary segments- averts most of the technical problems. However this method necessitates extensive resections of both the native liver and the graft.4 In 1998, Erhard developed the heterotopic auxiliary liver transplantation (HALT) utilizing portal vein arterialization (PVA) (Figure 1). This technique showed promising initial clinical results.5-6 We developed a HALT-technique with flow-regulated PVA in the rat to examine the influence of flow-regulated PVA on graft morphology and function (Figure 2). A liver graft reduced to 30 % of its original size, was heterotopically implanted in the right renal region of the recipient after explantation of the right kidney.  The infra-hepatic caval vein of the graft was anastomosed with the infrahepatic caval vein of the recipient. The arterialization of the donor’s portal vein was carried out via the recipient’s right renal artery with the stent technique. The blood-flow regulation of the arterialized portal vein was achieved with the use of a stent with an internal diameter of 0.3 mm. The celiac trunk of the graft was end-to-side anastomosed with the recipient’s aorta and the bile duct was implanted into the duodenum. A subtotal resection of the native liver was performed to induce acute hepatic failure. 7 In this manner 112 transplantations were performed. The perioperative survival rate was 90% and the 6-week survival rate was 80%. Six weeks after operation, the native liver regenerated, showing an increase in weight from 2.3±0.8 g to 9.8±1 g. At this time, the graft’s weight decreased from 3.3±0.8 g to 2.3±0.8 g. We were able to obtain promising long-term results in terms of graft morphology and function. HALT with flow-regulated PVA reliably bridges acute hepatic failure

  2. Effect of ageing on the passive and active tension and pharmacodynamic characteristics of rat coronary arteries: age-dependent increase in sensitivity to 5-HT and K+.

    PubMed

    Sheykhzade, Majid; Simonsen, Anja Hviid; Boonen, Harrie C M; Outzen, Emilie M; Nyborg, Niels C Berg

    2012-01-01

    The influence of ageing on the passive and active tension and pharmacodynamic characteristics of intramural coronary arteries from 3-month-old and 2-year-old male Wistar rats was investigated using an isometric myograph. The passive vessel wall tension measured in Ca(2+)-free physiological salt solution at L(0) was significantly greater in arteries from old rats (1.46 ± 0.10 Nm(-1), n = 7) than in young rats (1.13 ± 0.13 Nm(-1), n = 6). However, the maximal active tension at L(0) was similar. The spontaneous myogenic tone was increased by age and the vasorelaxation induced by extracellular K(+) was significantly higher in coronary arteries of old rats. The sensitivity (pD(2)) to 5-HT was significantly higher in arteries from old (6.43 ± 0.11, n = 22) than from young rats (6.16 ± 0.08, n = 29). Ketanserin induced a concentration-dependent rightward shift of the 5-HT concentration-response curve in arteries from both young and old rats. The slopes of the regression lines of the Schild plots were not significantly different from unity and the estimated pK(B) values for ketanserin were similar. In conclusion, ageing is associated with changes in passive mechanical characteristics as well as changes in pharmacological properties in rat coronary small arteries.

  3. Soybean oil increases SERCA2a expression and left ventricular contractility in rats without change in arterial blood pressure

    PubMed Central

    2010-01-01

    Background Our aim was to evaluate the effects of soybean oil treatment for 15 days on arterial and ventricular pressure, myocardial mechanics and proteins involved in calcium handling. Methods Wistar rats were divided in two groups receiving 100 μL of soybean oil (SB) or saline (CT) i.m. for 15 days. Ventricular performance was analyzed in male 12-weeks old Wistar rats by measuring left ventricle diastolic and systolic pressure in isolated perfused hearts according to the Langendorff technique. Protein expression was measured by Western blot analysis. Results Systolic and diastolic arterial pressures did not differ between CT and SB rats. However, heart rate was reduced in the SB group. In the perfused hearts, left ventricular isovolumetric systolic pressure was higher in the SB hearts. The inotropic response to extracellular Ca2+ and isoproterenol was higher in the soybean-treated animals than in the control group. Myosin ATPase and Na+-K+ATPase activities, the expression of sarcoplasmic reticulum calcium pump (SERCA2a) and sodium calcium exchanger (NCX) were increased in the SB group. Although the phosfolamban (PLB) expression did not change, its phosphorylation at Ser16 was reduced while the SERCA2a/PLB ratio was increased. Conclusions In summary, soybean treatment for 15 days in rats increases the left ventricular performance without affecting arterial blood pressure. These changes might be associated with an increase in the myosin ATPase activity and SERCA2a expression. PMID:20504316

  4. The operative management of basilar impression in osteogenesis imperfecta.

    PubMed

    Harkey, H L; Crockard, H A; Stevens, J M; Smith, R; Ransford, A O

    1990-11-01

    Four patients with osteogenesis imperfecta and neurologically significant basilar impression have been treated over the past 8 years. The experience has resulted in changes in our therapeutic strategy for this particularly difficult problem. These cases are discussed with respect to the disease process, neurological involvement, radiological findings, and modes of surgical therapy. The errors in management as well as the success resulting from our learning experience are described. Currently, we recommend the extensive removal of the anterior bony compression by a transoral approach. This should be followed by a posterior rigid fixation that transfers the weight of the head to the thoracic spine, in an effort to prevent further basilar invagination.

  5. Alterations in perivascular innervation function in mesenteric arteries from offspring of diabetic rats

    PubMed Central

    de Queiroz, D B; Sastre, E; Caracuel, L; Callejo, M; Xavier, F E; Blanco-Rivero, J; Balfagón, G

    2015-01-01

    Background and Purpose We have reported that exposure to a diabetic intrauterine environment during pregnancy increases blood pressure in adult offspring, but the mechanisms involved are not completely understood. This study was designed to analyse a possible role of perivascular sympathetic and nitrergic innervation in the superior mesenteric artery (SMA) in this effect. Experimental Approach Diabetes was induced in pregnant Wistar rats by a single injection of streptozotocin. Endothelium-denuded vascular rings from the offspring of control (O-CR) and diabetic rats (O-DR) were used. Vasomotor responses to electrical field stimulation (EFS), NA and the NO donor DEA-NO were studied. The expressions of neuronal NOS (nNOS) and phospho-nNOS (P-nNOS) and release of NA, ATP and NO were determined. Sympathetic and nitrergic nerve densities were analysed by immunofluorescence. Key Results Blood pressure was higher in O-DR animals. EFS-induced vasoconstriction was greater in O-DR animals. This response was decreased by phentolamine more in O-DR animals than their controls. L-NAME increased EFS-induced vasoconstriction more strongly in O-DR than in O-CR segments. Vasomotor responses to NA or DEA-NO were not modified. NA, ATP and NO release was increased in segments from O-DR. nNOS expression was not modified, whereas P-nNOS expression was increased in O-DR. Sympathetic and nitrergic nerve densities were similar in both experimental groups. Conclusions and Implications The activity of sympathetic and nitrergic innervation is increased in SMA from O-DR animals. The net effect is an increase in EFS-induced contractions in these animals. These effects may contribute to the increased blood pressure observed in the offspring of diabetic rats. PMID:26177571

  6. Alterations in endothelium-dependent hyperpolarization and relaxation in mesenteric arteries from streptozotocin-induced diabetic rats

    PubMed Central

    Fukao, Mitsuhiro; Hattori, Yuichi; Kanno, Morio; Sakuma, Ichiro; Kitabatake, Akira

    1997-01-01

    The aim of this study was to determine whether endothelium-dependent hyperpolarization and relaxation are altered during experimental diabetes mellitus. Membrane potentials were recorded in mesenteric arteries from rats with streptozotocin-induced diabetes and age-matched controls. The resting membrane potentials were not significantly different between control and diabetic mesenteric arteries (−55.3±0.5 vs −55.6±0.4 mV). However, endothelium-dependent hyperpolarization produced by acetylcholine (ACh; 10−8–10−5 M) was significantly diminished in amplitude in diabetic arteries compared with that in controls (maximum −10.4±1.1 vs −17.2±0.8 mV). Furthermore, the hyperpolarizing responses of diabetic arteries were more transient. ACh-induced hyperpolarization observed in control and diabetic arteries remained unaltered even after treatment with 3×10−4 M NG-nitro-L-arginine (L-NOARG), 10−5 M indomethacin or 60 u ml−1 superoxide dismutase. Endothelium-dependent hyperpolarization with 10−6 M A23187, a calcium ionophore, was also decreased in diabetic arteries compared to controls (−8.3±1.4 vs −18.0±1.9 mV). However, endothelium-independent hyperpolarizing responses to 10−6 M pinacidil, a potassium channel opener, were similar in control and diabetic arteries (−20.0±1.4 vs −19.2±1.1 mV). The altered endothelium-dependent hyperpolarizations in diabetic arteries were almost completely prevented by insulin therapy. Endothelium-dependent relaxations by ACh in the presence of 10−4 M L-NOARG and 10−5 M indomethacin in diabetic arteries were also reduced and more transient compared to controls. These data indicate that endothelium-dependent hyperpolarization is reduced by diabetes, and this would, in part, account for the impaired endothelium-dependent relaxations in mesenteric arteries from diabetic rats. PMID:9257918

  7. Increased osmolality of conscious water-deprived rats supports arterial pressure and sympathetic activity via a brain action.

    PubMed

    Brooks, Virginia L; Qi, Yue; O'Donaughy, Theresa L

    2005-05-01

    To test the hypothesis that high osmolality acts in the brain to chronically support mean arterial pressure (MAP) and lumbar sympathetic nerve activity (LSNA), the osmolality of blood perfusing the brain was reduced in conscious water-deprived and water-replete rats by infusion of hypotonic fluid via bilateral nonoccluding intracarotid catheters. In water-deprived rats, the intracarotid hypotonic infusion, estimated to lower osmolality by approximately 2%, decreased MAP by 9+/-1 mmHg and LSNA to 86+/-7% of control; heart increased by 25+/-8 beats per minute (bpm) (all P<0.05). MAP, LSNA, and heart rate did not change when the hypotonic fluid was infused intravenously. The intracarotid hypotonic fluid infusion was also ineffective in water-replete rats. Prior treatment with a V1 vasopressin antagonist did not alter the subsequent hypotensive and tachycardic effects of intracarotid hypotonic fluid infusion in water-deprived rats. In summary, acute decreases in osmolality of the carotid blood of water-deprived, but not water-replete, rats decreases MAP and LSNA and increases heart rate. These data support the hypothesis that the elevated osmolality induced by water deprivation acts via a region perfused by the carotid arteries, presumably the brain, to tonically increase MAP and LSNA and suppress heart rate.

  8. Mesenchymal stem cell administration at coronary artery reperfusion in the rat by two delivery routes: a quantitative assessment

    PubMed Central

    Hale, Sharon L; Dai, Wangde; Dow, Joan S; Kloner, Robert A

    2008-01-01

    Aims Ideally, mesenchymal stem cells (MSC) home to and/or remain at the site of damaged myocardium when administered after myocardial infarction. However, MSC may not remain in the heart, but instead relocate to other areas. We investigated quantitatively the distribution of labeled rat MSC, given by two routes after coronary artery occlusion/reperfusion in rats. Main Methods Rats were subjected to 45 minutes of coronary artery occlusion and 7 days of reperfusion. Before reperfusion rats received 2×106 MSC, labeled with europium, injected directly into the ischemic region of the heart (n=9) or intravenously (n = 8). After one week tissues were analyzed for label content together with a standard curve of known quantities of labeled MSC. Key Findings In rats receiving cells injected directly into the myocardium, 15% of labeled cells were retained in the heart. When the cells were administered intravenously, no MSC were detected in the heart. The route of administration did not affect distribution to other organs, as the number of MSC in liver, spleen and lung was similar with both routes of delivery. Significance Even with direct intramyocardial injection, only a small proportion of the cells are retained in the heart, instead traveling to other organs. With intravenous injection there was no evidence that cells "homed" to the damaged heart. Although cell delivery to the heart was significantly affected by the route of administration, the distribution of cells to other organs was similar with both routes of administration. PMID:18755200

  9. COX-2 is involved in vascular oxidative stress and endothelial dysfunction of renal interlobar arteries from obese Zucker rats.

    PubMed

    Muñoz, Mercedes; Sánchez, Ana; Pilar Martínez, María; Benedito, Sara; López-Oliva, Maria-Elvira; García-Sacristán, Albino; Hernández, Medardo; Prieto, Dolores

    2015-07-01

    Obesity is related to vascular dysfunction through inflammation and oxidative stress and it has been identified as a risk factor for chronic renal disease. In the present study, we assessed the specific relationships among reactive oxygen species (ROS), cyclooxygenase 2 (COX-2), and endothelial dysfunction in renal interlobar arteries from a genetic model of obesity/insulin resistance, the obese Zucker rats (OZR). Relaxations to acetylcholine (ACh) were significantly reduced in renal arteries from OZR compared to their counterpart, the lean Zucker rat (LZR), suggesting endothelial dysfunction. Blockade of COX with indomethacin and with the selective blocker of COX-2 restored the relaxations to ACh in obese rats. Selective blockade of the TXA2/PGH2 (TP) receptor enhanced ACh relaxations only in OZR, while inhibition of the prostacyclin (PGI2) receptor (IP) enhanced basal tone and inhibited ACh vasodilator responses only in LZR. Basal production of superoxide was increased in arteries of OZR and involved NADPH and xanthine oxidase activation and NOS uncoupling. Under conditions of NOS blockade, ACh induced vasoconstriction and increased ROS generation that were augmented in arteries from OZR and blunted by COX-2 inhibition and by the ROS scavenger tempol. Hydrogen peroxide (H2O2) evoked both endothelium- and vascular smooth muscle (VSM)-dependent contractions, as well as ROS generation that was reduced by COX-2 inhibition. In addition, COX-2 expression was enhanced in both VSM and endothelium of renal arteries from OZR. These results suggest that increased COX-2-dependent vasoconstriction contributes to renal endothelial dysfunction through enhanced (ROS) generation in obesity. COX-2 activity is in turn upregulated by ROS.

  10. Protective effect of melatonin on cigarette smoke-induced restenosis in rat carotid arteries after balloon injury.

    PubMed

    Yang, Gen-Huan; Li, Yan-Chuan; Wang, Zhan-Qi; Liu, Bao; Ye, Wei; Ni, Leng; Zeng, Rong; Miao, Shi-Ying; Wang, Lin-Fang; Liu, Chang-Wei

    2014-11-01

    Vascular restenosis after the interventional angioplasty remains the main obstacle to a favorable long-term patency. Many researches suggest cigarette smoking is one of the most important causes of restenosis. This study was designed to investigate whether melatonin could protect against the cigarette smoke-induced restenosis in rat carotid arteries after balloon injury. Three groups of male rats (normal condition, cigarette smoke exposed, cigarette smoke exposed, and melatonin injected) were used in this study. An established balloon-induced carotid artery injury was performed, and the carotid arteries were harvested from these three groups 14 days later. The ratio of intima to media, the infiltration of inflammatory cells, the expression of inflammatory cytokines (NF-κB, IL-1β, IL-6, TNF-α, MCP-1), adhesion molecules (ICAM-1, VCAM-1), and eNOS were measured. The results showed that cigarette smoke exposure aggravated the stenosis of the lumen, promoted the infiltration of inflammatory cells and induced the expression of the inflammatory cytokines and adhesion molecules after the balloon-induced carotid artery injury. Moreover, cigarette smoke exposure can inhibit the expression of eNOS. Particularly, we surprised that melatonin could minimize this effect caused by cigarette smoke. These results suggested that melatonin could prevent the cigarette smoke-induced restenosis in rat carotid arteries after balloon injury and the mechanism of its protective effect may be the inhibition of the inflammatory reaction. This also implies melatonin has the potential therapeutic applicability in prevention of restenosis after the vascular angioplasty in smokers.

  11. Electrochemical and electrophysiological characterization of neurotransmitter release from sympathetic nerves supplying rat mesenteric arteries

    PubMed Central

    Dunn, William R; Brock, James A; Hardy, Todd A

    1999-01-01

    Characteristic features of noradrenaline (NA) and adenosine 5′-triphosphate (ATP) release from postganglionic sympathetic nerves in rat small mesenteric arteries in vitro have been investigated on an impulse-by-impulse basis. NA release was measured using continuous amperometry and ATP release was monitored by intracellular recording of excitatory junction potentials (e.j.ps). Electrical stimuli evoked transient increases in oxidation current. During trains of ten stimuli at 0.5–4 Hz there was a depression in the amplitude of oxidation currents evoked following the first stimulus in the train. The neuronal NA uptake inhibitor, desmethylimipramine (1 μM), increased the amplitude of the summed oxidation current evoked by ten stimuli at 1 Hz and slowed the decay of oxidation currents evoked by trains of ten stimuli at 1 and 10 Hz. The α2-adrenoceptor antagonist, idazoxan (1 μM), increased the amplitudes of the oxidation currents evoked during trains of ten stimuli at 0.5–10 Hz but had no effect on the oxidation currents evoked by the first stimulus in the train. Idazoxan (1 μM) increased the amplitude of all e.j.ps evoked during trains of stimuli at 0.5 and 1 Hz. In addition, the facilitatory effect of idazoxan on e.j.ps was significantly greater than that on oxidation currents. The findings indicate that NA release from sympathetic nerves supplying small mesenteric arteries is regulated by activation of presynaptic α2-adrenoceptors and that clearance of released NA in this tissue depends, in part, upon neuronal uptake. The different effects of idazoxan on the oxidation currents and e.j.ps may indicate that the release of NA and ATP is differentially modulated. PMID:10498849

  12. Halofuginone Stimulates Adaptive Remodeling and Preserves Re-Endothelialization in Balloon-Injured Rat Carotid Arteries

    PubMed Central

    Guo, Lian-Wang; Wang, Bowen; Goel, Shakti A.; Little, Christopher; Takayama, Toshio; Shi, Xu Dong; Roenneburg, Drew; DiRenzo, Daniel; Kent, K. Craig

    2014-01-01

    Background Three major processes, constrictive vessel remodeling, intimal hyperplasia and retarded re-endothelialization, contribute to restenosis after vascular reconstructions. Clinically used drugs inhibit intimal hyperplasia but delay re-endothelialization and also cause constrictive remodeling. Here we have examined halofuginone (HF), a herbal derivative, for its beneficial effects on vessel remodeling and differential inhibition of intimal hyperplasia versus re-endothelialization. Methods and Results Two weeks after perivascular application to balloon-injured rat common carotid arteries, HF versus vehicle (n=6 animals) enlarged luminal area 2.14 fold by increasing vessel size (adaptive remodeling, 123%), reducing intimal hyperplasia (74.3%) without inhibiting re-endothelialization. Consistent with its positive effect on vessel expansion, HF reduced collagen type-1 (but not type-3) production in injured arteries as well as that from adventitial fibroblasts in vitro. In support of its differential effects on intimal hyperplasia versus re-endothelialization, HF produced greater inhibition of vascular smooth muscle cell versus endothelial cell proliferation at concentrations around 50 nM. Furthermore, HF at 50 nM effectively blocked Smad3 phosphorylation in smooth muscle cells which is known to promote smooth muscle cell proliferation, migration, and intimal hyperplasia, but HF had no effect on phospho-Smad3 in endothelial cells. Conclusions Periadventitial delivery of HF dramatically increased lumen patency via adaptive remodeling and selective inhibition of intimal hyperplasia without affecting endothelium recovery. HF is the first reported small molecule that has favorable effects on all three major processes involved in restenosis. PMID:25074254

  13. Elevated K+ channel activity opposes vasoconstrictor response to serotonin in cerebral arteries of the Fawn Hooded Hypertensive rat

    PubMed Central

    Roman, Richard J.

    2016-01-01

    Previous studies suggest that middle cerebral arteries (MCAs) of Fawn Hooded Hypertensive (FHH) rats exhibit impaired myogenic response and introgression of a small region of Brown Norway chromosome 1 containing 15 genes restored the response in FHH.1BN congenic rat. The impaired myogenic response in FHH rats is associated with an increase in the activity of the large conductance potassium (BK) channel in vascular smooth muscle cells (VSMCs). The present study examined whether the increased BK channel function in FHH rat alters vasoconstrictor response to serotonin (5-HT). Basal myogenic tone and spontaneous myogenic response of the MCA was attenuated by about twofold and about fivefold, respectively in FHH compared with FHH.1BN rats. 5-HT (0.1 μM)-mediated vasoconstriction was about twofold lower, and inhibition of the BK channel increased the vasoconstrictor response by about threefold in FHH compared with FHH.1BN rats. 5-HT (3 μM) decreased BK channel and spontaneous transient outward currents in VSMCs isolated from FHH.1BN but had no effect in FHH rats. 5-HT significantly depolarized the membrane potential in MCAs of FHH.1BN than FHH rats. Blockade of the BK channel normalized 5-HT-induced depolarization in MCAs of FHH rats. The 5-HT-mediated increase in cytosolic calcium concentration was significantly reduced in plateau phase in the VSMCs of FHH relative to FHH.1BN rats. These findings suggest that sequence variants in the genes located in the small region of FHH rat chromosome 1 impairs 5-HT-mediated vasoconstriction by decreasing its ability to inhibit BK channel activity, depolarize the membrane and blunt the rise in cytosolic calcium concentration. PMID:27789734

  14. Effects of age and sex on cerebrovascular function in the rat middle cerebral artery

    PubMed Central

    2014-01-01

    Background Although the mechanisms underlying the beneficial effects of estrogen on cerebrovascular function are well known, the age-dependent deleterious effects of estrogen are largely unstudied. It was hypothesized that age and sex interact in modulating cerebrovascular reactivity to vasopressin (VP) by altering the role of prostanoids in vascular function. Methods Female (F) Sprague–Dawley rats approximating key stages of “hormonal aging” in humans were studied: premenopausal (mature multigravid, MA, cyclic, 5–6 months) and postmenopausal (reproductively senescent, RS, acyclic, 10–12 months). Age-matched male (M) rats were also studied. Reactivity to VP (10−12–10−7 M) was measured in pressurized middle cerebral artery segments in the absence or presence of selective inhibitors of COX-1 (SC560, SC, 1 μM) or COX-2 (NS398, NS, 10 μM). VP-stimulated release of PGI2 and TXA2 were measured using radioimmunoassay of 6-keto-PGF1α and TXB2 (stable metabolites, pg/mg dry wt/45 min). Results In M, there were no changes in VP-induced vasoconstriction with age. Further, there were no significant differences in basal or in low- or high-VP-stimulated PGI2 or TXA2 production in younger or older M. In contrast, there were marked differences in cerebrovascular reactivity and prostanoid release with advancing age in F. Older RS F exhibited reduced maximal constrictor responses to VP, which can be attributed to enhanced COX-1 derived dilator prostanoids. VP-induced vasoconstriction in younger MA F utilized both COX-1 and COX-2 derived constrictor prostanoids. Further, VP-stimulated PGI2 and TXA2 production was enhanced by endogenous estrogen and decreased with advancing age in F, but not in M rats. Conclusions This is the first study to examine the effects of age and sex on the mechanisms underlying cerebrovascular reactivity to VP. Interestingly, VP-mediated constriction was reduced by age in F, but was unchanged in M rats. Additionally, it was observed

  15. Transmaxillary anterior decompressions in patients with severe basilar impression.

    PubMed

    Bhangoo, R S; Crockard, H A

    1999-02-01

    Severe basilar impression leads to an upward translocation of the upper cervical spine and clivus into the foramen magnum and is a diagnosis best made with computed tomography or magnetic resonance imaging scans. Basilar impression may be a primary condition or secondary to bone softening disorders. Symptoms relating to direct neuraxial compression, obstruction to cerebral spinal fluid outflow, and vascular compromise all have been described. Management depends on the exact nature of the abnormality seen, but it is now firmly accepted that those with anterior neuraxial compression should have an anterior decompression. The severe basilar impression and craniofacial abnormalities seen in osteogenesis imperfecta together with the progressive nature of the condition have led to the development of a specific surgical response, the open door maxillotomy combined with a contoured loop fixation of the cervical spine. Little is known of the long term outcome of severe basilar impression, and long term studies undertaken by centers familiar with the condition and its management are required if definitive care is to be delivered to these patients.

  16. Neurogenic hypertension related to basilar impression. Case report.

    PubMed

    Dickinson, L D; Papadopoulos, S M; Hoff, J T

    1993-12-01

    The authors report the resolution of essential hypertension following transoral odontoidectomy and medullary decompression in a 39-year-old woman with basilar invagination. Current understanding of central regulation of the cardiovascular system is discussed and the pertinent neuroanatomy illustrated. Experimental and clinical evidence supporting the role of neurogenic mechanisms in the pathogenesis of hypertension is reviewed.

  17. Basilar impression and the so-called 'associated anomalies'.

    PubMed

    Bares, L

    1975-01-01

    Analysing the casuistry of 210 patients with basilar impression, the author has enumerated the type and frequency of the associated anomalies and looked for correlations between them and the various clinical syndromes. An attempt is made to divide the anomalies into pathogenetic groups on the basis of these findings.

  18. In vivo observation of the hypo-echoic "black hole" phenomenon in rat arterial bloodstream: a preliminary Study.

    PubMed

    Nam, Kweon-Ho; Paeng, Dong-Guk

    2014-07-01

    The "black hole," a hypo-echoic hole at the center of the bloodstream surrounded by a hyper-echoic zone in cross-sectional views, has been observed in ultrasound backscattering measurements of blood with red blood cell aggregation in in vitro studies. We investigated whether the phenomenon occurs in the in vivo arterial bloodstream of rats using a high-frequency ultrasound imaging system. Longitudinal and cross-sectional ultrasound images of the rat common carotid artery (CCA) and abdominal aorta were obtained using a 40-MHz ultrasound system. A high-frame-rate retrospective imaging mode was employed to precisely examine the dynamic changes in blood echogenicity in the arteries. When the imaging was performed with non-invasive scanning, blood echogenicity was very low in the CCA as compared with the surrounding tissues, exhibiting no hypo-echoic zone at the center of the vessel. Invasive imaging of the CCA by incising the skin and subcutaneous tissues at the imaging area provided clearer and brighter blood echo images, showing the "black hole" phenomenon near the center of the vessel in longitudinal view. The "black hole" was also observed in the abdominal aorta under direct imaging after laparotomy. The aortic "black hole" was clearly observed in both longitudinal and cross-sectional views. Although the "black hole" was always observed near the center of the arteries during the diastolic phase, it dissipated or was off-center along with the asymmetric arterial wall dilation at systole. In conclusion, we report the first in vivo observation of the hypo-echoic "black hole" caused by the radial variation of red blood cell aggregation in arterial bloodstream.

  19. High dose of green tea infusion normalized spiral artery density in rats treated with the depot-medroxyprogesterone acetate

    PubMed Central

    Emilda, A S; Veri, Nora; Alchalidi, Alchalidi

    2017-01-01

    Aim: The purpose of this study was to investigate the effects of green tea (GT) on the spiral artery density and endometrial thickness in female rats treated with the depot-medroxyprogesterone acetate (DMPA). Material and Methods: A total of 24 female rats were randomly divided into four groups (n = 6 each): The control group (no treatment), the DMPA-treated group, treated with DMPA and GT doses of 165 mg/kg of body weight/day, and treated with DMPA and GT doses of 330 mg/kg of body weight/day. Spiral artery density and endometrial thickness were subjected to histopathological analysis. Results: Spiral artery density decreased in the DMPA-treated group, despite the insignificant difference (P > 0.05). With regard to the administration of GT at doses of 165 and 330 mg/g of body weight/day, only GT at the high dose was capable of significantly preventing a decrease in spiral artery density (P < 0.05). At this dose, the spiral arteries achieved a density comparable to that of the control group (P > 0.05). Meanwhile, the administration of DMPA and/or DMPA with GT did not cause significant changes in endometrial thickness relative to the control group (P > 0.05). Conclusions: DMPA induced a decrease in spiral artery density, despite the insignificant differences, and these changes could be normalized by the administration of high doses of GT. Therefore, GT could be a candidate herb to prevent the adverse effects of the contraceptive DMPA. PMID:28163962

  20. Micro-CT image-derived metrics quantify arterial wall distensibility reduction in a rat model of pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Johnson, Roger H.; Karau, Kelly L.; Molthen, Robert C.; Haworth, Steven T.; Dawson, Christopher A.

    2000-04-01

    We developed methods to quantify arterial structural and mechanical properties in excised rat lungs and applied them to investigate the distensibility decrease accompanying chronic hypoxia-induced pulmonary hypertension. Lungs of control and hypertensive (three weeks 11% O2) animals were excised and a contrast agent introduced before micro-CT imaging with a special purpose scanner. For each lung, four 3D image data sets were obtained, each at a different intra-arterial contrast agent pressure. Vessel segment diameters and lengths were measured at all levels in the arterial tree hierarchy, and these data used to generate features sensitive to distensibility changes. Results indicate that measurements obtained from 3D micro-CT images can be used to quantify vessel biomechanical properties in this rat model of pulmonary hypertension and that distensibility is reduced by exposure to chronic hypoxia. Mechanical properties can be assessed in a localized fashion and quantified in a spatially-resolved way or as a single parameter describing the tree as a whole. Micro-CT is a nondestructive way to rapidly assess structural and mechanical properties of arteries in small animal organs maintained in a physiological state. Quantitative features measured by this method may provide valuable insights into the mechanisms causing the elevated pressures in pulmonary hypertension of differing etiologies and should become increasingly valuable tools in the study of complex phenotypes in small-animal models of important diseases such as hypertension.

  1. Acetylcholine-induced K+ currents in smooth muscle cells of intact rat small arteries.

    PubMed Central

    Weidelt, T; Boldt, W; Markwardt, F

    1997-01-01

    1. The mechanism of the sustained acetylcholine-induced endothelium-dependent hyperpolarization (EDH) in intact rat small mesenteric arteries prestimulated with noradrenaline (10(-6) M) was investigated by means of the single microelectrode voltage-clamp method. 2. The vascular smooth muscle cells (VSMCs) in this preparation are poorly or even not coupled for the reasons that: (1) the mean input resistance Rlnp of the clamped vascular smooth muscle increases from 120 M omega under control conditions to 440 M omega after application of K+ channel blocking drugs, (2) the voltage relaxation after injection of hyperpolarizing currents has a monoexponential time course and is linearly dependent on Rlnp, and (3) voltage steps induced by current-clamp steps are not transferred to locations in the vascular musculature 120 microns apart from the current injecting microelectrode. 3. Sustained (> 5 min) application of ACh (10(-5) M) hyperpolarized the VSMCs by induction of a hyperpolarizing current. This effect was completely blocked by the inhibitor of the nitric oxide (NO) synthase L-NAME (10(-3) M) but not by the inhibitor of the soluble guanylate cyclase (sGCl) Methylene Blue (MB, 10(-4) M). 4. Application of the NO donor sodium nitroprusside (SNP, 10(-6) M) for more than 5 min mimicked the induction of the endothelium-dependent hyperpolarizing current in vessels with destroyed endothelium. The reversal potential of this current is dependent on the extracellular K+ concentration. The effect of SNP could also not be blocked by MB. 5. The blockers of ATP-dependent and Ca(2+)-dependent K+ channels, glibenclamide (Glb, 10(-5) M) and charybdotoxin (CTX, 5 x 10(-8) M), respectively, blocked a hyperpolarizing current in the VSMCs similar to the ACh- or SNP-induced current. 6. The isolated application of either Glb or CTX did not block the activation of the hyperpolarizing current by SNP. Only the combined administration of Glb and CTX blocked the SNP-induced current completely

  2. The effect of urapidil, an alpha-1 adrenoceptor antagonist and a 5-HT1A agonist, on the vascular tone of the porcine coronary and pulmonary arteries, the rat aorta and the human pulmonary artery.

    PubMed

    Bopp, Claire; Auger, Cyril; Diemunsch, Pierre; Schini-Kerth, Valérie

    2016-05-15

    Urapidil (Eupressyl(®)) an antihypertensive drug acting as an α1 antagonist and a 5-HT1A agonist, may be of special interest in the treatment of hypertension associated with preeclamptic toxaemia and hypoxia-induced pulmonary arterial vasoconstriction. However, the effect of urapidil on vascular tone has been poorly investigated. Vascular reactivity was evaluated using pulmonary and coronary arteries from 36 pigs, aortae from 22 rats and 9 human pulmonary artery samples suspended in organ chambers. Concentration-relaxation curves either to urapidil, 5-HT, or the 5-HT1A receptor agonist 8-OH-DPAT were constructed after pre-contraction of rings. Pig pulmonary and coronary artery rings were contracted with U46619, a thromboxane mimetic, rat aortic rings with either endothelin-1 or phenylephrine, and human pulmonary artery rings with U46619 or phenylephrine. Urapidil markedly inhibited phenylephrine-induced contractions in rat aortic rings with and without endothelium with a more pronounced effect observed in rings without endothelium. Both 5-HT and 8-OH-DPAT failed to induce relaxation in rat aortic rings with an intact endothelium. 5-HT, but not urapidil and 8-OH-DPAT, induced a concentration-dependent relaxation in the porcine coronary and pulmonary artery rings with an intact endothelium (P<0.05). 5-HT and phenylephrine but not urapidil caused concentration-dependent contractions in human pulmonary artery rings. The present findings, while confirming that urapidil is a potent inhibitor of α1-adrenoceptor-induced contraction, do not support the role of 5-HT1A receptor activation in the control of the vascular tone of the different types of arteries tested in response to urapidil. In addition, they indicate that urapidil seems to preferentially target arteries with endothelial dysfunction.

  3. TRPA1 mediates amplified sympathetic responsiveness to activation of metabolically sensitive muscle afferents in rats with femoral artery occlusion.

    PubMed

    Xing, Jihong; Lu, Jian; Li, Jianhua

    2015-01-01

    Autonomic responses to activation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1) has been reported to contribute to sympathetic nerve activity (SNA) and arterial blood pressure (BP) responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves' TRPA1 plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24-72 h of femoral artery occlusion (1) upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG) tissues; (2) selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV); and (3) enhances renal SNA and BP responses to AITC (a TRPA1 agonist) injected into the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves' TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia.

  4. TRPA1 mediates amplified sympathetic responsiveness to activation of metabolically sensitive muscle afferents in rats with femoral artery occlusion

    PubMed Central

    Xing, Jihong; Lu, Jian; Li, Jianhua

    2015-01-01

    Autonomic responses to activation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1) has been reported to contribute to sympathetic nerve activity (SNA) and arterial blood pressure (BP) responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves' TRPA1 plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24–72 h of femoral artery occlusion (1) upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG) tissues; (2) selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV); and (3) enhances renal SNA and BP responses to AITC (a TRPA1 agonist) injected into the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves' TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia. PMID:26441669

  5. Repeated edaravone treatment reduces oxidative cell damage in rat brain induced by middle cerebral artery occlusion.

    PubMed

    Yamamoto, Yorihiro; Yanagisawa, Makoto; Tak, Nyou Wei; Watanabe, Kazutoshi; Takahashi, Chizuko; Fujisawa, Akio; Kashiba, Misato; Tanaka, Masahiko

    2009-01-01

    The free radical scavenger 3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone) has been used to treat acute brain infarction in Japan since 2001. To obtain direct evidence that edaravone serves as an antioxidant in vivo, four groups of rats were prepared: (i) an ischemia/reperfusion (I/R) group receiving 2 h occlusion-reperfusion of the middle cerebral artery; (ii) a single administration group treated by intravenous infusion of edaravone (3 mg/kg) immediately after I/R; (iii) a repeated treatment group receiving twice daily edaravone administration for 14 days; and (iv) a sham operation group without occlusion. Repeated treatment with edaravone significantly improved the neurological symptoms and impairment of motor function as compared to the I/R group, while single administration demonstrated limited efficacy. No significant differences in plasma antioxidants such as ascorbate, urate, and vitamin E, or in redox status of coenzyme Q(9) were observed among the four groups. In contrast, the plasma content of oleic acid in the total free fatty acids (percentage 18:1) was significantly increased in the I/R group for 7 days as compared to the sham operation group. Oleic acid was produced from stearic acid by the action of stearoyl-CoA desaturase to compensate for the oxidative loss of polyunsaturated fatty acids. The above results suggest that cellular oxidative damage in the rat brain is evident for at least 7 days after I/R. Repeated treatment suppressed the percentage 18:1 increment, while the single administration did not, which is consistent with the limited efficacy of single administration.

  6. Influence of constriction, wall tension, smooth muscle activation and cellular deformation on rat resistance artery vasodilator reactivity.

    PubMed

    Colton, Ilsley; Mandalà, Maurizio; Morton, Jude; Davidge, Sandra T; Osol, George

    2012-01-01

    This study investigated how vasoconstriction (tone), wall tension, smooth muscle activation, and vascular wall deformation influence resistance artery vasodilator reactivity. Resistance arteries, from two different regional circulations (splanchnic, uterine) and from pregnant and non-pregnant rats, were cannulated and pressurized, or mounted on a wire myograph under isometric conditions prior to being exposed to both endothelium-dependent (acetylcholine, ACh) and -independent (sodium nitroprusside, SNP) vasodilator agonists. A consistent pattern of reduced vasodilator sensitivity was noted as a function of extent of preconstriction for both agonists noted in pressurized arteries. A similar pattern regarding activation was noted in wire-mounted arteries in response to SNP but not ACh. Wall tension proved to be a major determinant of vascular smooth muscle vasodilator reactivity and its normalization reversed this pattern, as more constricted vessels were more sensitive to ACh relaxation without any change in SNP sensitivity, suggesting that endothelial deformation secondary to vasoconstriction augments its vasodilator output. To our knowledge, this is the first study to dissect out the complex interplay between biophysical forces impinging on VSM (pressure, wall tension), the ambient level of tone (vasoconstriction, smooth muscle cell activation), and consequences of cellular (particularly endothelial) deformation secondary to constriction in determining resistance artery vasodilatory reactivity.

  7. Arterial mechanics in spontaneously hypertensive rats. Mechanical properties, hydraulic conductivity, and two-phase (solid/fluid) finite element models.

    PubMed

    Gaballa, M A; Raya, T E; Simon, B R; Goldman, S

    1992-07-01

    To characterize the interaction between mechanical and fluid transport properties in hypertension, we measured in vivo elastic material constants and hydraulic conductivity in intact segments of carotid arteries in normal and spontaneously hypertensive rats (SHR). With the use of a finite element model, the arterial wall was modeled as a large-deformation, two-phase (solid/fluid) medium, which accounts for the existence and motion of the tissue fluid. Measurements of internal diameter and transmural pressures were obtained during continuous increases in pressure from 0 to 200 mm Hg. Strain and stress components were calculated based on a pseudostrain exponential energy density function. To measure the hydraulic conductivity, segments of the carotid artery were isolated, filled with a 4% oxygenated albumin-Tyrode's solution, and connected to a capillary tube. The movement of the meniscus of the capillary tube represented the fluid filtration across the artery. To study the influence of transmural pressure on hydraulic conductivity, measurement of fluid filtration across the arterial wall was obtained at transmural pressures of 50 and 100 mm Hg. The material constants in the SHR (n = 9) were higher (p less than 0.05 for all variables) than in normal rats (n = 10): c = 1,343 +/- 96 versus 1,158 +/- 65 mm Hg, b1 = 1.84 +/- 0.24 versus 1.22 +/- 0.22, b2 = 0.769 +/- 0.114 versus 0.616 +/- 0.11, b3 = 0.017 +/- 0.005 versus 0.0065 +/- 0.002, b4 = 0.206 +/- 0.04 versus 0.083 +/- 0.03, b5 = 0.0594 +/- 0.007 versus 0.0217 +/- 0.006, and b6 = 0.22 +/- 0.09 versus 0.123 +/- 0.02, respectively. The hydraulic conductivity of the total wall, calculated from the filtration data, was lower (p less than 0.05) at both 50 and 100 mm Hg in the SHR (n = 6) compared with normal rats (n = 7): 1.12 +/- 0.31 x 10(-8) and 0.72 +/- 0.23 x 10(-8) versus 1.95 +/- 0.53 x 10(-8) and 1.35 +/- 0.47 x 10(-8) cm/(sec.mm Hg), respectively. The intergroup comparisons between 50 and 100 mm Hg in both SHR

  8. Nerve growth factor facilitates redistribution of adrenergic and non-adrenergic non-cholinergic perivascular nerves injured by phenol in rat mesenteric resistance arteries.

    PubMed

    Yokomizo, Ayako; Takatori, Shingo; Hashikawa-Hobara, Narumi; Goda, Mitsuhiro; Kawasaki, Hiromu

    2016-01-05

    We previously reported that nerve growth factor (NGF) facilitated perivascular sympathetic neuropeptide Y (NPY)- and calcitonin gene-related peptide (CGRP)-containing nerves injured by the topical application of phenol in the rat mesenteric artery. We also demonstrated that mesenteric arterial nerves were distributed into tyrosine hydroxylase (TH)-, substance P (SP)-, and neuronal nitric oxide synthase (nNOS)-containing nerves, which had axo-axonal interactions. In the present study, we examined the effects of NGF on phenol-injured perivascular nerves, including TH-, NPY-, nNOS-, CGRP-, and SP-containing nerves, in rat mesenteric arteries in more detail. Wistar rats underwent the in vivo topical application of 10% phenol to the superior mesenteric artery, proximal to the abdominal aorta, under pentobarbital-Na anesthesia. The distribution of perivascular nerves in the mesenteric arteries of the 2nd to 3rd-order branches isolated from 8-week-old Wistar rats was investigated immunohistochemically using antibodies against TH-, NPY-, nNOS-, CGRP-, and SP-containing nerves. The topical phenol treatment markedly reduced the density of all nerves in these arteries. The administration of NGF at a dose of 20µg/kg/day with an osmotic pump for 7 days significantly increased the density of all perivascular nerves over that of sham control levels. These results suggest that NGF facilitates the reinnervation of all perivascular nerves injured by phenol in small resistance arteries.

  9. Exercise Training Attenuates Right Ventricular Remodeling in Rats with Pulmonary Arterial Stenosis

    PubMed Central

    de Melo, Brunno Lemes; Vieira, Stella S.; Antônio, Ednei L.; dos Santos, Luís F. N.; Portes, Leslie A.; Feliciano, Regiane S.; de Oliveira, Helenita A.; Silva, José A.; de Carvalho, Paulo de Tarso C.; Tucci, Paulo J. F.; Serra, Andrey J.

    2016-01-01

    Introduction: Pulmonary arterial stenosis (PAS) is a congenital defect that causes outflow tract obstruction of the right ventricle (RV). Currently, negative issues are reported in the PAS management: not all patients may be eligible to surgeries; there is often the need for another surgery during passage to adulthood; patients with mild stenosis may have later cardiac adverse repercussions. Thus, the search for approaches to counteract the long-term PAS effects showed to be a current target. At the study herein, we evaluated the cardioprotective role of exercise training in rats submitted to PAS for 9 weeks. Methods and Results: Exercise resulted in improved physical fitness and systolic RV function. Exercise also blunted concentric cavity changes, diastolic dysfunction, and fibrosis induced by PAS. Exercise additional benefits were also reported in a pro-survival signal, in which there were increased Akt1 activity and normalized myocardial apoptosis. These findings were accompanied by microRNA-1 downregulation and microRNA-21 upregulation. Moreover, exercise was associated with a higher myocardial abundance of the sarcomeric protein α-MHC and proteins that modulate calcium handling—ryanodine receptor and Serca 2, supporting the potential role of exercise in improving myocardial performance. Conclusion: Our results represent the first demonstration that exercise can attenuate the RV remodeling in an experimental PAS. The cardioprotective effects were associated with positive modulation of RV function, survival signaling pathway, apoptosis, and proteins involved in the regulation of myocardial contractility. PMID:27994552

  10. Accumulation of exogenous 45Ca after middle cerebral artery occlusion in rats.

    PubMed

    Tomabechi, M; Sako, K; Yonemasu, Y

    1994-02-01

    The distribution of exogenous 45Ca in the focal ischemia rat model (middle cerebral artery occlusion) was studied using 45Ca autoradiography. High 45Ca accumulations were observed in the frontal cortex and caudate-putamen corresponding with morphological damage shown by HE staining. Regional 45Ca concentrations were calculated from the optical density on the 45Ca autoradiograms. Rapid uptake of 45Ca in the ischemic brain occurred during the first 5 hours, and continued more slowly between 5 and 24 hours after ischemia. The area of 45Ca accumulation was also expanded between 5 and 24 hours. An area of low 45Ca concentration around the area of high accumulation developed 5 hours after ischemia, which presumably accumulated 45Ca between 5 and 24 hours after ischemia. The lower concentration of 45Ca in the periphery of ischemia may result from: 1) a decrease in the total amount of calcium due to narrowing of extracellular space accompanied by cytotoxic edema, and 2) delayed accumulation of exogenous 45Ca due to reduced clearance of extracellular fluid.

  11. Alterations to the middle cerebral artery of the hypertensive-arthritic rat model potentiates intracerebral hemorrhage

    PubMed Central

    Chokshi, Killol; Kane, Brittany; Chang, Hilary; Naiel, Safaa; Dickhout, Jeffrey G.

    2016-01-01

    Aims We have recently created an age-dependent hypertensive-mono-arthritic animal model from the stroke-resistant spontaneously hypertensive rat to model populations with autoimmune disease who are hypertensive and are prone to stroke. The model exhibits signs of hemorrhagic stroke (HS) subsequent to chronic inflammation and hypertension. HS is also associated with the inability of middle cerebral arteries to undergo pressure dependent constriction (PDC). We investigated alterations in the cerebrovasculature of our hypertensive mono-arthritic animals that develop stroke. Main Methods Animals were fed either a high salt diet (HSD) (4% NaCl) or Purina chow (0.58% NaCl) from weaning. Complete Freund’s Adjuvant (CFA) was injected into the left hind paw at 21–28 weeks; controls received saline and histological and functional studies were performed. Results Brain damage was more prominent with the high salt, with inflammation exacerbating the damage. High salt alone significantly decreased middle cerebral artery’s (MCA’s) ability to undergo PDC. Inflammation significantly decreased the ability of cerebrovasculature to respond to pressure step in the regular salt diet. The responses to vasoactive peptides were also significantly attenuated in both inflamed groups regardless of diet. Conclusion Induction of chronic systemic inflammation increases brain damage, and affect the MCA’s vasogenic function, decreasing its ability to respond to intraluminal pressure. HSD further exacerbates organ damage associated with chronic inflammation, further compromising cerebrovascular function, and likely increasing the incidence of intracerebral hemorrhage and injury. PMID:27833798

  12. Allopurinol and dimethylthiourea reduce brain infarction following middle cerebral artery occlusion in rats.

    PubMed

    Martz, D; Rayos, G; Schielke, G P; Betz, A L

    1989-04-01

    Free radicals have been shown to play an important role in ischemia-reperfusion injury in several organ systems; however, the role of free radicals in central nervous system ischemia has been less well studied. Many potential free radical-generating systems exist. The primary products of these reactions, superoxide and hydrogen peroxide, may combine to produce hydroxyl radicals. Of the many potential sources of free radical generation, the enzyme xanthine oxidase has been shown to be important in ischemia in noncerebral tissue. We investigated the effect of the hydroxyl radical scavenger dimethylthiourea and the xanthine oxidase inhibitor allopurinol on infarct volume in a model of continuous partial ischemia. Male Sprague-Dawley rats were treated with dimethylthiourea or allopurinol before middle cerebral artery occlusion. Infarct volume was measured by triphenyltetrazolium chloride staining of brains removed 3 or 24 hours after occlusion. Stroke volume was reduced by 30% after dimethylthiourea treatment and by 32-35% after allopurinol treatment. At 24 hours after stroke, cortical tissue was more effectively protected than caudate tissue with both agents. Pretreatment with dimethylthiourea and allopurinol also significantly reduced cerebral edema formation and improved blood-brain barrier function as measured by fluorescein uptake. Our results imply that hydroxyl radicals are important in tissue injury secondary to partial cerebral ischemia and that xanthine oxidase may be the primary source of these radicals.

  13. Transdifferentiation-Induced Neural Stem Cells Promote Recovery of Middle Cerebral Artery Stroke Rats

    PubMed Central

    Ma, Jianhua; Zhang, Maoying; Li, Shaowu; Wu, Bingshan; Nie, Xiaohu; Jiao, Jiao; Zhao, Hao; Wang, Shanshan; Yang, Yuanyuan; Zhang, Yesen; Sun, Yilin; Wicha, Max S.; Chang, Alfred E.; Gao, Shaorong; Li, Qiao; Xu, Ruxiang

    2015-01-01

    Induced neural stem cells (iNSCs) can be directly transdifferentiated from somatic cells. One potential clinical application of the iNSCs is for nerve regeneration. However, it is unknown whether iNSCs function in disease models. We produced transdifferentiated iNSCs by conditional overexpressing Oct4, Sox2, Klf4, c-Mycin mouse embryonic fibroblasts. They expanded readily in vitro and expressed NSC mRNA profile and protein markers. These iNSCs differentiated into mature astrocytes, neurons and oligodendrocytes in vitro. Importantly, they reduced lesion size, promoted the recovery of motor and sensory function as well as metabolism status in middle cerebral artery stroke rats. These iNSCs secreted nerve growth factors, which was associated with observed protection of neurons from apoptosis. Furthermore, iNSCs migrated to and passed through the lesion in the cerebral cortex, where Tuj1+ neurons were detected. These findings have revealed the function of transdifferentiated iNSCs in vivo, and thus provide experimental evidence to support the development of personalized regenerative therapy for CNS diseases by using genetically engineered autologous somatic cells. PMID:26352672

  14. Neurological sequelae and long-term behavioural assessment of rats with transient middle cerebral artery occlusion.

    PubMed

    Modo, M; Stroemer, R P; Tang, E; Veizovic, T; Sowniski, P; Hodges, H

    2000-12-15

    Animal models of stroke, notably transient middle cerebral artery occlusion (MCAo), are used to assess the efficacy of pharmacological and transplant treatments. Long-term studies (>1 month) of the functional effects of treatments in animal models are required to predict treatments likely to improve dysfunctions associated with stroke damage. These pre-clinical studies require (1) optimum post-operative care to ensure long-term survival, (2) methods for assignment of rats to groups with equivalent impairments to reduce variability and enhance detection of treatment effects, and (3) behavioural tests that detect long-term stable deficits. For long-term functional assessment, a battery of behavioural tests sensitive to a range of deficits observed after MCAo was developed. The bilateral asymmetry test evaluated the time course of sensory neglect. Deficits of motor integration were examined in the footfault test, and motor bias was assessed by pharmacological stimulation of rotation. The water maze was used to detect long-term deficits in spatial information processing. Long-term differences between control and MCAo animals in this battery of tests indicate that the protocol provides an efficient assessment suitable for evaluating treatment outcomes in pre-clinical studies of stroke, and that the post-operative care procedure and method of assignment to groups were effective.

  15. Biphasic Effect of Diabetes on Neuronal Nitric Oxide Release in Rat Mesenteric Arteries

    PubMed Central

    Sastre, Esther; Caracuel, Laura; Blanco-Rivero, Javier; Callejo, María; Xavier, Fabiano E.; Balfagón, Gloria

    2016-01-01

    Introduction We analysed possible time-dependent changes in nitrergic perivascular innervation function from diabetic rats and mechanisms implicated. Materials and Methods In endothelium-denuded mesenteric arteries from control and four- (4W) and eight-week (8W) streptozotocin-induced diabetic rats the vasoconstriction to EFS (electrical field stimulation) was analysed before and after preincubation with L-NAME. Neuronal NO release was analysed in the absence and presence of L-arginine, tetrahydrobiopterine (BH4) and L-arginine plus BH4. Superoxide anion (O2-), peroxynitrite (ONOO-) and superoxide dismutase (SOD) activity were measured. Expressions of Cu-Zn SOD, nNOS, p-nNOS Ser1417, p-nNOS Ser847, and Arginase (Arg) I and II were analysed. Results EFS response was enhanced at 4W, and to a lesser extent at 8W. L-NAME increased EFS response in control rats and at 8W, but not at 4W. NO release was decreased at 4W and restored at 8W. L-arginine or BH4 increased NO release at 4W, but not 8W. SOD activity and O2- generation were increased at both 4W and 8W. ONOO- decreased at 4W while increased at 8W. Cu-Zn SOD, nNOS and p-NOS Ser1417 expressions remained unmodified at 4W and 8W, whereas p-nNOS Ser847 was increased at 4W. ArgI was overexpressed at 4W, remaining unmodified at 8W. ArgII expression was similar in all groups. Conclusions Our results show a time-dependent effect of diabetes on neuronal NO release. At 4W, diabetes induced increased O2- generation, nNOS uncoupling and overexpression of ArgI and p-nNOS Ser847, resulting in decreased NO release. At 8W, NO release was restored, involving normalisation of ArgI and p-nNOS Ser847 expressions. PMID:27272874

  16. Determining arterial wave transit time from a single aortic pressure pulse in rats: vascular impulse response analysis

    PubMed Central

    Chang, Ru-Wen; Chang, Chun-Yi; Lai, Liang-Chuan; Wu, Ming-Shiou; Young, Tai-Horng; Chen, Yih-Sharng; Wang, Chih-Hsien; Chang, Kuo-Chu

    2017-01-01

    Arterial wave transit time (τw) in the lower body circulation is an effective biomarker of cardiovascular risk that substantially affects systolic workload imposed on the heart. This study evaluated a method for determining τw from the vascular impulse response on the basis of the measured aortic pressure and an assumed triangular flow (Qtri). The base of the unknown Qtri was constructed with a duration set equal to ejection time. The timing of the peak triangle was derived using a fourth-order derivative of the pressure waveform. Values of τws obtained using Qtri were compared with those obtained from the measure aortic flow wave (Qm). Healthy rats (n = 27), rats with chronic kidney disease (CKD; n = 22), and rats with type 1 (n = 22) or type 2 (n = 11) diabetes were analyzed. The cardiovascular conditions in the CKD rats and both diabetic groups were characterized by a decrease in τws. The following significant relation was observed (P < 0.0001): τwtriQ = −1.5709 + 1.0604 × τwmQ (r2 = 0.9641). Our finding indicates that aortic impulse response can be an effective method for the estimation of arterial τw by using a single pressure recording together with the assumed Qtri. PMID:28102355

  17. Determining arterial wave transit time from a single aortic pressure pulse in rats: vascular impulse response analysis.

    PubMed

    Chang, Ru-Wen; Chang, Chun-Yi; Lai, Liang-Chuan; Wu, Ming-Shiou; Young, Tai-Horng; Chen, Yih-Sharng; Wang, Chih-Hsien; Chang, Kuo-Chu

    2017-01-19

    Arterial wave transit time (τw) in the lower body circulation is an effective biomarker of cardiovascular risk that substantially affects systolic workload imposed on the heart. This study evaluated a method for determining τw from the vascular impulse response on the basis of the measured aortic pressure and an assumed triangular flow (Q(tri)). The base of the unknown Q(tri) was constructed with a duration set equal to ejection time. The timing of the peak triangle was derived using a fourth-order derivative of the pressure waveform. Values of τws obtained using Q(tri) were compared with those obtained from the measure aortic flow wave (Q(m)). Healthy rats (n = 27), rats with chronic kidney disease (CKD; n = 22), and rats with type 1 (n = 22) or type 2 (n = 11) diabetes were analyzed. The cardiovascular conditions in the CKD rats and both diabetic groups were characterized by a decrease in τws. The following significant relation was observed (P < 0.0001): τw(triQ) = -1.5709 + 1.0604 × τw(mQ) (r(2) = 0.9641). Our finding indicates that aortic impulse response can be an effective method for the estimation of arterial τw by using a single pressure recording together with the assumed Q(tri).

  18. Noradrenaline-induced increases in calcium and tension in skeletal muscle conductance and resistance arteries from rats with post-infarction heart failure.

    PubMed

    Trautner, Simon; Amtorp, Ole; Boesgaard, Soren; Andersen, Claus B; Galbo, Henrik; Haunsoe, Stig; Sheykhzade, Majid

    2006-05-10

    We tested the hypothesis that arterial reactivity to noradrenaline is augmented in congestive heart failure (CHF), which could contribute to the deleterious changes in peripheral vascular resistance and compliance in this condition. From male Wistar rats with post-infarction CHF and sham-operated rats, skeletal muscle conductance and resistance arteries (mean lumen diameters: 514 and 186 microm) were isolated and mounted on wire myographs, and wall tension was recorded in response to cumulative application of acetylcholine and noradrenaline to the vessel segments. In a subset of experiments, wall tension and cytosolic free calcium ion concentration [Ca(2+)](i) were recorded simultaneously during noradrenaline application, using wire myography and the FURA-2 technique. No significant differences were found in the arterial baseline levels of [Ca(2+)](i) or tension between CHF and sham rats. In the resistance arteries of CHF rats, the noradrenaline-induced increases in [Ca(2+)](i) were significantly enhanced (P=0.003). Despite the augmented [Ca(2+)](i) levels, the tension responses to noradrenaline were unaltered in these arteries. In the conductance arteries, there were no significant differences in noradrenaline-induced [Ca(2+)](i) or tension responses between CHF and control rats. CHF did not alter vascular morphology or change vascular relaxations to acetylcholine in either type of artery. In conclusion, these results do not support the contention that arterial reactivity to noradrenaline is augmented in the skeletal muscle vascular bed in CHF. On the contrary, the unchanged contractile responsiveness in the resistance arteries despite the enhanced levels of [Ca(2+)](i) during noradrenaline application suggests that the contractile function of these vessels is compromised in CHF. Neither vascular remodeling, endothelial dysfunction nor changes in baseline vascular tone could be demonstrated in the skeletal muscle vascular bed of this animal model of heart failure.

  19. Persistent Primitive Trigeminal Artery That Mimics Persistent Primitive Otic Artery on Cerebral Angiography

    PubMed Central

    Lee, Kwangho; Park, Insung; Han, Jongwoo

    2016-01-01

    Persistent primitive trigeminal artery (PPTA) is the most common carotid-basilar anastomosis; on the other hand, persistent primitive otic artery (PPOA) is extremely rare. PPTA is often misdiagnosed as PPOA on cerebral angiography. We present a case of PPTA that mimicked PPOA on cerebral angiography. We further describe the utility of brain computed tomography angiography for differential diagnosis of PPTA from PPOA, together with a review of previous literature. PMID:27790403

  20. Involvement of Potassium Channels and Calcium-Independent Mechanisms in Hydrogen Sulfide-Induced Relaxation of Rat Mesenteric Small Arteries.

    PubMed

    Hedegaard, Elise R; Gouliaev, Anja; Winther, Anna K; Arcanjo, Daniel D R; Aalling, Mathilde; Renaltan, Nirthika S; Wood, Mark E; Whiteman, Matthew; Skovgaard, Nini; Simonsen, Ulf

    2016-01-01

    Endogenous hydrogen sulfide (H2S) is involved in the regulation of vascular tone. We hypothesized that the lowering of calcium and opening of potassium (K) channels as well as calcium-independent mechanisms are involved in H2S-induced relaxation in rat mesenteric small arteries. Amperometric recordings revealed that free [H2S] after addition to closed tubes of sodium hydrosulfide (NaHS), Na2S, and GYY4137 [P-(4-methoxyphenyl)-P-4-morpholinyl-phosphinodithioic acid] were, respectively, 14%, 17%, and 1% of added amount. The compounds caused equipotent relaxations in isometric myographs, but based on the measured free [H2S], GYY4137 caused more relaxation in relation to released free H2S than NaHS and Na2S in rat mesenteric small arteries. Simultaneous measurements of [H2S] and tension showed that 15 µM of free H2S caused 61% relaxation in superior mesenteric arteries. Simultaneous measurements of smooth muscle calcium and tension revealed that NaHS lowered calcium and caused relaxation of NE-contracted arteries, while high extracellular potassium reduced NaHS relaxation without corresponding calcium changes. In NE-contracted arteries, NaHS (1 mM) lowered the phosphorylation of myosin light chain, while phosphorylation of myosin phosphatase target subunit 1 remained unchanged. Protein kinase A and G, inhibitors of guanylate cyclase, failed to reduce NaHS relaxation, whereas blockers of voltage-gated KV7 channels inhibited NaHS relaxation, and blockers of mitochondrial complex I and III abolished NaHS relaxation. Our findings suggest that low micromolar concentrations of free H2S open K channels followed by lowering of smooth muscle calcium, and by another mechanism involving mitochondrial complex I and III leads to uncoupling of force, and hence vasodilation.

  1. Alpha horizontal stent delivery for coil embolization of a broad-necked large basilar apex aneurysm: a case report

    PubMed Central

    Ohshima, Tomotaka; Nagakura, Masamune; Nishizawa, Toshihisa; Kato, Kyozo

    2015-01-01

    ABSTRACT Here we describe a novel technique for single stent horizontal reconstruction and coil embolization for a broad-necked large basilar artery (BA) apex aneurysm. A previously healthy 77-year-old woman presented with a broad-necked large BA apex aneurysm. Due to difficulty accessing the right posterior cerebral artery (PCA), we abandoned the Y-stent technique. Instead, we decided to navigate the stent through the BA to the left PCA making a loop of the stent delivery catheter inside the aneurysm in an "alpha" fashion. The procedure outcome was excellent without any complications. Alpha horizontal stent delivery via an antegrade approach for coil embolization of broad-necked large BA apex aneurysms may provide an effective therapeutic alternative, if other techniques are not feasible. PMID:26663945

  2. Role of eicosanoids in alteration of membrane electrical properties in isolated mesenteric arteries of salt-loaded, Dahl salt-sensitive rats

    PubMed Central

    Fujii, Koji; Onaka, Uran; Ohya, Yusuke; Ohmori, Susumu; Tominaga, Mitsuhiro; Abe, Isao; Takata, Yutaka; Fujishima, Masatoshi

    1997-01-01

    The role of eicosanoids in altered membrane electrical properties of Dahl salt-sensitive (DS) rats was investigated, by use of conventional microelectrodes technique, in isolated superior mesenteric arteries of DS rats and Dahl salt-resistant (DR) rats fed either a high or low salt diet.The membrane was significantly depolarized in salt-loaded DS rats compared with the other three groups. In addition, the arteries of salt-loaded DS rats exhibited spontaneous electrical activity.Spontaneous electrical activity in salt-loaded DS rats was inhibited by the following: indomethacin, a cyclo-oxygenase inhibitor; ONO-3708, a prostaglandin H2/thromboxane A2 receptor antagonist; OKY-046, a thromboxane A2 synthase inhibitor; nicardipine, a Ca2+-channel antagonist and by Ca2+-free solution. In addition, spontaneous electrical activity was enhanced by a thromboxane A2 analogue and by prostaglandin H2. Spontaneous electrical activity was unaffected by phentolamine, atropine and tetrodotoxin.Membrane potential in arteries of salt-loaded DS rats was not affected by either indomethacin or ONO-3708.Spontaneous contraction, sensitive to indomethacin, was present, and contractile sensitivity to high potassium solution was enhanced in arteries of salt-loaded DS rats.These findings suggest that eicosanoid action, together with membrane depolarization, may lead to the activation of voltage-dependent Ca2+-channels, thereby causing spontaneous electrical activity in mesenteric arteries of salt-loaded DS rats. In addition, tension data suggest that these changes in membrane properties are related to enhanced contractile activities in salt-loaded DS rats. Mechanisms of depolarization remain to be determined. PMID:9105694

  3. Computational Fluid Dynamics modeling of contrast transport in basilar aneurysms following flow-altering surgeries.

    PubMed

    Vali, Alireza; Abla, Adib A; Lawton, Michael T; Saloner, David; Rayz, Vitaliy L

    2017-01-04

    In vivo measurement of blood velocity fields and flow descriptors remains challenging due to image artifacts and limited resolution of current imaging methods; however, in vivo imaging data can be used to inform and validate patient-specific computational fluid dynamics (CFD) models. Image-based CFD can be particularly useful for planning surgical interventions in complicated cases such as fusiform aneurysms of the basilar artery, where it is crucial to alter pathological hemodynamics while preserving flow to the distal vasculature. In this study, patient-specific CFD modeling was conducted for two basilar aneurysm patients considered for surgical treatment. In addition to velocity fields, transport of contrast agent was simulated for the preoperative and postoperative conditions using two approaches. The transport of a virtual contrast passively following the flow streamlines was simulated to predict post-surgical flow regions prone to thrombus deposition. In addition, the transport of a mixture of blood with an iodine-based contrast agent was modeled to compare and verify the CFD results with X-ray angiograms. The CFD-predicted patterns of contrast flow were qualitatively compared to in vivo X-ray angiograms acquired before and after the intervention. The results suggest that the mixture modeling approach, accounting for the flow rates and properties of the contrast injection, is in better agreement with the X-ray angiography data. The virtual contrast modeling assessed the residence time based on flow patterns unaffected by the injection procedure, which makes the virtual contrast modeling approach better suited for prediction of thrombus deposition, which is not limited to the peri-procedural state.

  4. Rho kinase inhibitors reduce neurally evoked contraction of the rat tail artery in vitro

    PubMed Central

    Yeoh, Melanie; Brock, James A

    2005-01-01

    The effects of Rho kinase inhibitors (Y27632, HA-1077) on contractions to electrical stimulation and to application of phenylephrine, clonidine or α,β-methylene adenosine 5′-triphosphate (α,β-mATP) were investigated in rat tail artery in vitro. In addition, continuous amperometry and intracellular recording were used to monitor the effects of Y27632 on noradrenaline (NA) release and postjunctional electrical activity, respectively. Y27632 (0.5 and 1 μM) and HA-1077 (5 μM) reduced neurally evoked contractions. In contrast, the protein kinase C inhibitor, Ro31-8220 (1 μM), had little effect on neurally evoked contraction. In the absence and the presence of Y27632 (0.5 μM), the reduction of neurally evoked contraction produced by the α-adrenoceptor antagonists prazosin (10 nM) and idazoxan (0.1 μM) was similar. The P2-purinoceptor antagonist, suramin (0.1 mM), had no inhibitory effect on neurally evoked contraction in the absence or the presence of Y27632 (1 μM). In the presence of Y27632, desensitization of P2X-purinoceptors with α,β-mATP (10 μM) increased neurally evoked contractions. Y27632 (1 μM) and H-1077 (5 μM) reduced sensitivity to phenylephrine and clonidine. In addition, Y27632 reduced contractions to α,β-mATP (10 μM). Y27632 (1 μM) had no effect on the NA-induced oxidation currents or the purinergic excitatory junction potentials and NA-induced slow depolarizations evoked by electrical stimulation. Rho kinase inhibitors reduce sympathetic nerve-mediated contractions of the tail artery. This effect is mediated at a postjunctional site, most likely by inhibition of Rho kinase-mediated ‘Ca2+ sensitization' of the contractile apparatus. PMID:16113686

  5. Ischemia as a potential etiologic factor in idiopathic unilateral sudden sensorineural hearing loss: Analysis of posterior circulation arteries.

    PubMed

    Kim, Chulho; Sohn, Jong-Hee; Jang, Min Uk; Hong, Sung-Kwang; Lee, Joong-Seob; Kim, Hyung-Jong; Choi, Hui-Chul; Lee, Jun Ho

    2016-01-01

    The association between idiopathic sudden sensorineural hearing loss (ISSNHL) and the radiologic characteristics of the vertebrobasilar artery is unclear. We hypothesized that the degree and direction of vertebrobasilar artery curvature in the posterior circulation contribute to the occurrence of ISSNHL. We consecutively enrolled patients diagnosed with unilateral ISSNHL in two tertiary hospitals. Magnetic resonance images were performed in all patients to exclude specific causes of ISSNHL, such as vestibular schwannoma, chronic mastoiditis, and anterior inferior cerebellar artery infarct. We measured the following parameters of posterior circulation: vertebral and basilar artery diameter, the degree of basilar artery curvature (modified smoker criteria), and vertebral artery dominance. Pure tone audiometries were performed at admission and again 1 week and 3 months later. A total of 121 ISSNHL patients (mean age, 46.0 ± 17.3 years; 48.8% male) were included in these analyses. The proportion of patients with the left side hearing loss was larger than the proportion with the right side hearing loss (left, 57.9%; right, 42.1%). The majority of patients were characterized by a left dominant vertebral artery and right-sided basilar artery curvature. The direction of the basilar artery curvature was significantly associated with hearing loss lateralization (p = 0.036). Age and sex matched multivariable analyses revealed the absence of diabetes and right-sided basilar artery curvature as significant predictors for left sided hearing loss. There was no statistical difference between atherosclerotic cardiovascular risk score (high versus low) and hearing outcomes at 3 months. In ISSNHL, the laterality of hearing loss was inversely associated with the direction of basilar artery curvature. Our results, therefore, indicate the importance of vascular assessment when evaluating ISSNHL.

  6. Diminished Neurogenic Femoral Artery Vasoconstrictor Response in a Zucker Obese Rat Model: Differential Regulation of NOS and COX Derivatives

    PubMed Central

    Martínez, Ana Cristina; Hernández, Medardo; Novella, Susana; Martínez, María Pilar; Pagán, Rosa María; Hermenegildo, Carlos; García-Sacristán, Albino; Prieto, Dolores; Benedito, Sara

    2014-01-01

    Objective Peripheral arterial disease is one of the macrovascular complications of type 2 diabetes mellitus. This study addresses femoral artery regulation in a prediabetic model of obese Zucker rats (OZR) by examining cross-talk between endothelial and neural factors. Methods and Results Arterial preparations from lean (LZR) and OZR were subjected to electrical field stimulation (EFS) on basal tone. Nitric oxide synthase (NOS) and cyclooxygenase (COX) isoform expression patterns were determined by immunohistochemical labelling and Western blotting. Results indicate significantly reduced noradrenergic contractions in preparations from OZR compared with those of LZR. Functional inhibition of endothelial NOS (eNOS) indicated a predominant role of this isoform in LZR and its modified activity in OZR. Neural (nNOS) and inducible NOS (iNOS) were activated and their expression was higher in femoral arteries from OZR. Neurotransmission modulated by large-conductance Ca2+-activated (BKCa) or voltage-dependent (KV) K+ channels did not seem compromised in the obese animals. Endothelial COX-1 and COX-2 were expressed in LZR and an additional adventitial location of COX-2 was also observed in OZR, explaining the higher COX-2 protein levels detected in this group. Prostanoids derived from both isoforms helped maintain vasoconstriction in LZR while in OZR only COX-2 was active. Superoxide anion inhibition reduced contractions in endothelium-intact arteries from OZR. Conclusions Endothelial dysfunction led to reduced neurogenic vasoconstriction in femoral arteries from OZR. In a setting of obesity, NO-dependent nNOS and iNOS dilation activity could be an alternative mechanism to offset COX-2- and reactive oxygen species-mediated vasoconstriction, along with impaired endothelial NO relaxation. PMID:25216050

  7. Cervicovertebral anomalies and basilar impression in Goldenhar syndrome.

    PubMed

    Gosain, A K; McCarthy, J G; Pinto, R S

    1994-03-01

    Although previously unreported, neurologic compromise may occur secondary to anomalies of the cervical spine in the oculoauriculovertebral spectrum. Medical records and cephalograms were reviewed from 18 patients with classic Goldenhar syndrome and from 18 normal adults. One patient, a 22-year-old man, had experienced a 5-year history of progressive neurologic compromise from basilar impression; the remaining 17 patients were asymptomatic. Radiographic evidence of cervicovertebral fusion was documented in 11 of 18 patients (61 percent). Fusion occurred at every cervical level other than the atlantoaxial joint. Radiographic indices that characterize the cranial base were not significantly different between asymptomatic Goldenhar patients and normal adults. Posterior inclination of the odontoid with respect to the foramen magnum appears to be the best indicator that a patient is at risk for basilar impression. Careful radiographic evaluation may indicate which patients require more careful surveillance with periodic neurologic examination and CT and/or MRI scans.

  8. Basilar impression and platybasia in osteogenesis imperfecta tarda.

    PubMed

    Frank, E; Berger, T; Tew, J M

    1982-02-01

    Osteogenesis imperfecta, a rare, genetically transmitted disorder of bone, is known to be associated with the development of basilar impression and platybasia. These deformities of the base of the skull may cause neurosurgical abnormalities secondary to compression of the brainstem and hydrocephalus. The case is presented of a young boy with a family history of osteogenesis imperfecta tarda who suffered respiratory arrest during hospitalization. Cranial nerves and pyramidal tract signs were demonstrated. Roentgenograms showed severe basilar impression and hydrocephalus. Decompression of the brainstem and shunting were performed with improvement in the patient's neurological status. This case represents a rare by significant central nervous system complication of osteogenesis imperfecta. Early recognition and implementation of aggressive treatment are important if irreversible neurological deficits are to be avoided.

  9. Functional Expression Profile of Voltage-Gated K(+) Channel Subunits in Rat Small Mesenteric Arteries.

    PubMed

    Cox, Robert H; Fromme, Samantha

    2016-06-01

    Multiple K v channel complexes contribute to total K v current in numerous cell types and usually subserve different physiological functions. Identifying the complete compliment of functional K v channel subunits in cells is a prerequisite to understanding regulatory function. It was the goal of this work to determine the complete K v subunit compliment that contribute to functional K v currents in rat small mesenteric artery (SMA) myocytes as a prelude to studying channel regulation. Using RNA prepared from freshly dispersed myocytes, high levels of K v 1.2, 1.5, and 2.1 and lower levels of K v 7.4 α-subunit expressions were demonstrated by quantitative PCR and confirmed by Western blotting. Selective inhibitors correolide (K v 1; COR), stromatoxin (K v 2.1; ScTx), and linopirdine (K v 7.4; LINO) decreased K v current at +40 mV in SMA by 46 ± 4, 48 ± 4, and 6.5 ± 2 %, respectively, and K v current in SMA was insensitive to α-dendrotoxin. Contractions of SMA segments pretreated with 100 nmol/L phenylephrine were enhanced by 27 ± 3, 30 ± 8, and 7 ± 3 % of the response to 120 mmol/L KCl by COR, ScTX, and LINO, respectively. The presence of K v 6.1, 9.3, β1.1, and β1.2 was demonstrated by RT-PCR using myocyte RNA with expressions of K vβ1.2 and K v 9.3 about tenfold higher than K vβ1.1 and K v 6.1, respectively. Selective inhibitors of K v 1.3, 3.4, 4.1, and 4.3 channels also found at the RNA and/or protein level had no significant effect on K v current or contraction. These results suggest that K v current in rat SMA myocytes are dominated equally by two major components consisting of K v 1.2-1.5-β1.2 and K v 2.1-9.3 channels along with a smaller contribution from K v 7.4 channels but differences in voltage dependence of activation allows all three to provide significant contributions to SMA function at physiological voltages.

  10. [Giant vertebro-basilar aneurysm. Frontal syndrome].

    PubMed

    Rosa, A; Mizon, J P; Sevestre, H

    1991-01-01

    A 72-year-old man presented with an apparent frontal syndrome. He also had bilateral trigeminal neuralgia, a pyramidal syndrome of all 4 limbs, balance disturbances, a horizontal nystagmus when looking to the left and a right velopalatine paralysis. CT scan with contrast showed a hyperdense rounded lesion in the left cerebello-pontine angle. Cerebral angiography showed this to be a large aneurysm of the end of the vertebral arteries. The patient died suddenly. Autopsy confirmed the site and presence of the aneurysm. Balance disturbances, the pyramidal syndrome and velopalatine paralysis could all be explained by brain stem compression and the bilateral nature of the trigeminal neuralgia by compression of the trigemino-thalamic tract. The apparent frontal syndrome, the authors suggest could have resulted from subacute raised intracranial pressure.

  11. Recruitment of Dynamic Endothelial Ca2+ Signals by the TRPA1 Channel Activator AITC in Rat Cerebral Arteries

    PubMed Central

    Qian, Xun; Francis, Michael; Solodushko, Viktoriya; Earley, Scott; Taylor, Mark S.

    2012-01-01

    Objective Stimulation of endothelial TRP channels, specifically TRPA1, promotes vasodilation of cerebral arteries through activation of Ca2+-dependent effectors along the myoendothelial interface. However, presumed TRPA1-triggered endothelial Ca2+ signals have not been described. We investigated whether TRPA1 activation induces specific spatial and temporal changes in Ca2+ signals along the intima that correlate with incremental vasodilation. Methods Confocal imaging, immunofluorescence staining and custom image analysis were employed. Results We found that endothelial cells of rat cerebral arteries exhibit widespread basal Ca2+ dynamics (44 ± 6 events/minute from 26 ± 3 distinct sites in a 3.6x104 μm2 field). The TRPA1 activator AITC increased Ca2+ signals in a concentration-dependent manner, soliciting new events at distinct sites. Origination of these new events corresponded spatially with TRPA1 densities in IEL holes, and the events were prevented by the TRPA1 inhibitor HC-030031. Concentration-dependent expansion of Ca2+ events in response to AITC correlated precisely with dilation of pressurized cerebral arteries (p = 0.93 by F-test). Correspondingly, AITC caused rapid endothelium-dependent suppression of asynchronous Ca2+ waves in subintimal smooth muscle. Conclusions Our findings indicate that factors that stimulate TRPA1 channels expand Ca2+ signal-effector coupling at discrete sites along the endothelium to evoke graded cerebral artery vasodilation. PMID:22928941

  12. [The clinical picture and course in basilar impression].

    PubMed

    Scharf, J; Hohagen, F; Rittmann, M; Reuther, R

    1989-09-01

    We have reviewed 29 cases of patients who suffered from basilar impression and had undergone hospital treatment since 1969. 12 of these patients were reexamined. The predominant symptoms were lesions of the long tracts while the ,,classical signs" such as headache and nystagmus occurred less frequently than expected. Only a quarter of our patients showed a marked deterioration during follow-up. The outcome for four patients who underwent operation is reported.

  13. The role of endovascular treatment in unruptured basilar tip aneurysms.

    PubMed

    Ge, Huijian; Lv, Xianli; Jin, Hengwei; Tian, Zhihua; Li, Youxiang; He, Hongwei

    2017-02-01

    Objective This study was to evaluate the safety and efficiency of endovascular treatment of unruptured basilar tip aneurysms. Methods We retrospectively reviewed consecutive 79 cases of unruptured basilar tip aneurysms in our center between 2009 and 2014. The patients' clinical and imaging information were recorded. Complications, initial occlusion rate, clinical outcomes and the predictors were retrospectively analyzed. Results Thirty-five cases received conservative treatment and 44 cases were treated by endovascular embolization. In the conservative treatment group, six (19.4%) of 31 basilar tip aneurysms ruptured and resulted in five deaths (16.1%) during the mean 18.1-month follow-up (range from 1 to 60 months). Among the endovascularly treated cases, 24 (54.5%) achieved initial complete occlusion and no delayed hemorrhagic events occurred during the mean 33.6-month follow-up (range from 10 to 68 months). For 20 (45.5%) incompletely occluded cases, five postoperative or delayed hemorrhagic events and two mass effect events resulted in six deaths. There were no statistical significant differences in hemorrhagic events ( p = 0.732) and mortality ( p = 0.502) between the incomplete occlusion group and untreated group. Large aneurysm size (≥10 mm) was an independent predictor for incomplete occlusion ( p = 0.002), which had a potential risk of postoperative or delayed hemorrhage. On univariate analysis, initial occlusion rate and aneurysm size were found to be associated with clinical outcomes ( p = 0.042 and 0.015). Conclusion Complete occlusion for unruptured basilar tip aneurysm proved to be a safe and effective therapeutic method that could eliminate the potential risk of postoperative or delayed hemorrhage.

  14. Involvement of Potassium Channels in Vasorelaxant Effect Induced by Valeriana prionophylla Standl. in Rat Mesenteric Artery

    PubMed Central

    de Oliveira Filho, Abrahão Alves; Rodrigues, Lilia Simone Urzedo; Araújo, Jaíse Paiva; Maciel, Priscilla Maria Pereira; de Albuquerque, Jamile Morais; Cehinel Filho, Valdir; Cáceres, Armando; Fregoneze, Josmara Bartolomei; de Medeiros, Isac Almeida; Silva, Darizy Flávia

    2013-01-01

    Assays in vitro and in vivo were performed on extract from roots and leaves from the Valeriana prionophylla Standl. (VPR and VPF, resp.). In phenylephrine (1 μM) precontracted rings, VPR (0.01–300 μg/mL) induced a concentration-dependent relaxation (maximum response (MR) = 75.4 ± 4.0%, EC50 = 5.97 (3.8–9.3) μg/mL, n = 6]); this effect was significantly modified after removal of the endothelium (EC50 = 39.6 (27.2–57.6) μg/mL, P < 0.05). However, VPF-induced vasorelaxation was less effective compared to VPR. When rings were preincubated with L-NAME (100 μM) or indomethacin (10 μM), the endothelium-dependent relaxation induced by VPR was significantly attenuated (MR = 20.9 ± 2.3%, 34.2 ± 2.9%, resp., P < 0.001). In rings denuded endothelium, precontracted with KCl (80 mM), or in preparations pretreated with KCl (20 mM) or tetraethylammonium (1 or 3 mM), the vasorelaxant activity of VPR was significantly attenuated (MR = 40.0 ± 8.2, n = 5; 50.5 ± 6.0%; 49.3 ± 6.4%; 46.8 ± 6.2%; resp., P < 0.01). In contrast, neither glibenclamide (10 μM), barium chloride (30 μM), nor 4-aminopyridine (1 mM) affected VPR-induced relaxation. Taken together, these results demonstrate that hypotension induced by VPR seems to involve, at least in part, a vascular component. Furthermore, endothelium-independent relaxation induced by VPR involves K+ channels activation, most likely due to BKCa channels, in the rat superior mesenteric artery. PMID:24023569

  15. Involvement of Potassium Channels in Vasorelaxant Effect Induced by Valeriana prionophylla Standl. in Rat Mesenteric Artery.

    PubMed

    Reis, Milena Ramos; de Oliveira Filho, Abrahão Alves; Rodrigues, Lilia Simone Urzedo; Araújo, Jaíse Paiva; Maciel, Priscilla Maria Pereira; de Albuquerque, Jamile Morais; Cehinel Filho, Valdir; Cáceres, Armando; Fregoneze, Josmara Bartolomei; de Medeiros, Isac Almeida; Silva, Darizy Flávia

    2013-01-01

    Assays in vitro and in vivo were performed on extract from roots and leaves from the Valeriana prionophylla Standl. (VPR and VPF, resp.). In phenylephrine (1  μ M) precontracted rings, VPR (0.01-300  μ g/mL) induced a concentration-dependent relaxation (maximum response (MR) = 75.4 ± 4.0%, EC50 = 5.97 (3.8-9.3) μ g/mL, n = 6]); this effect was significantly modified after removal of the endothelium (EC50 = 39.6 (27.2-57.6) μ g/mL, P < 0.05). However, VPF-induced vasorelaxation was less effective compared to VPR. When rings were preincubated with L-NAME (100  μ M) or indomethacin (10  μ M), the endothelium-dependent relaxation induced by VPR was significantly attenuated (MR = 20.9 ± 2.3%, 34.2 ± 2.9%, resp., P < 0.001). In rings denuded endothelium, precontracted with KCl (80 mM), or in preparations pretreated with KCl (20 mM) or tetraethylammonium (1 or 3 mM), the vasorelaxant activity of VPR was significantly attenuated (MR = 40.0 ± 8.2, n = 5; 50.5 ± 6.0%; 49.3 ± 6.4%; 46.8 ± 6.2%; resp., P < 0.01). In contrast, neither glibenclamide (10  μ M), barium chloride (30  μ M), nor 4-aminopyridine (1 mM) affected VPR-induced relaxation. Taken together, these results demonstrate that hypotension induced by VPR seems to involve, at least in part, a vascular component. Furthermore, endothelium-independent relaxation induced by VPR involves K(+) channels activation, most likely due to BKCa channels, in the rat superior mesenteric artery.

  16. Propofol allows precise quantitative arterial spin labelling functional magnetic resonance imaging in the rat.

    PubMed

    Griffin, Karen M; Blau, Christoph W; Kelly, Michael E; O'Herlihy, Colm; O'Connell, P R; Jones, James F X; Kerskens, Christian M

    2010-07-15

    Functional magnetic resonance imaging (fMRI) techniques highlight cerebral vascular responses which are coupled to changes in neural activation. However, two major difficulties arise when employing these techniques in animal studies. First is the disturbance of cerebral blood flow due to anaesthesia and second is the difficulty of precise reproducible quantitative measurements. These difficulties were surmounted in the current study by using propofol and quantitative arterial spin labelling (QASL) to measure relative cerebral blood volume of labelled water (rCBV(lw),) mean transit time (MTT) and capillary transit time (CTT). The ASL method was applied to measure the haemodynamic response in the primary somatosensory cortex following forepaw stimulation in the rat. Following stimulation an increase in signal intensity and rCBV(lw) was recorded, this was accompanied by a significant decrease in MTT (1.97+/-0.06s to 1.44+/-0.04s) and CTT (1.76+/-0.06s to 1.39+/-0.07s). Two animals were scanned repeatedly on two different experimental days. Stimulation in the first animal was applied to the same forepaw during the initial and repeat scan. In the second animal stimulation was applied to different forepaws on the first and second days. The control and activated ASL signal intensities, rCBVlw on both days were almost identical in both animals. The basal MTT and CTT during the second scan were also very similar to the values obtained during the first scan. The MTT recorded from the animal that underwent stimulation to the same paw during both scanning sessions was very similar on the first and second days. In conclusion, propofol induces little physiological disturbance and holds potential for longitudinal QASL fMRI studies.

  17. 1H NMR-Based Analysis of Serum Metabolites in Monocrotaline-Induced Pulmonary Arterial Hypertensive Rats

    PubMed Central

    Lin, Taijie; Gu, Jinping; Huang, Caihua; Zheng, Suli; Lin, Xu; Xie, Liangdi; Lin, Donghai

    2016-01-01

    Aims. To study the changes of the metabolic profile during the pathogenesis in monocrotaline (MCT) induced pulmonary arterial hypertension (PAH). Methods. Forty male Sprague-Dawley (SD) rats were randomly divided into 5 groups (n = 8, each). PAH rats were induced by a single dose intraperitoneal injection of 60 mg/kg MCT, while 8 rats given intraperitoneal injection of 1 ml normal saline and scarified in the same day (W0) served as control. Mean pulmonary arterial pressure (mPAP) was measured through catherization. The degree of right ventricular hypertrophy and pulmonary hyperplasia were determined at the end of first to fourth weeks; nuclear magnetic resonance (NMR) spectra of sera were then acquired for the analysis of metabolites. Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to discriminate different metabolic profiles. Results. The prominent changes of metabolic profiles were seen during these four weeks. Twenty specific metabolites were identified, which were mainly involved in lipid metabolism, glycolysis, energy metabolism, ketogenesis, and methionine metabolism. Profiles of correlation between these metabolites in each stage changed markedly, especially in the fourth week. Highly activated methionine and betaine metabolism pathways were selected by the pathway enrichment analysis. Conclusions. Metabolic dysfunction is involved in the development and progression of PAH. PMID:27057080

  18. Inactivation of neuronal function in the amygdaloid region reduces tail artery blood flow alerting responses in conscious rats.

    PubMed

    Mohammed, M; Kulasekara, K; De Menezes, R C; Ootsuka, Y; Blessing, W W

    2013-01-03

    Few studies have investigated whether neuronal function in the amygdaloid complex is necessary for the occurrence of the cardiovascular response to natural (unconditioned) environmental threats. In the present investigation in conscious unrestrained Sprague-Dawley rats we inactivated neuronal function in the amygdaloid complex acutely (bilateral muscimol injections) or chronically (unilateral or bilateral ibotenic acid injections) and measured the effect on sudden falls in tail artery blood flow elicited by non-noxious salient stimuli (sympathetic cutaneous vasomotor alerting responses, SCVARs). After acute bilateral injection of vehicle (200nl Ringer's solution) the SCVAR index was 81 ± 2%, indicating that tail blood flow was reduced by 81% in response to the salient stimuli. After acute bilateral injection of muscimol (1 nmol in 200 nl of Ringer's solution) into the amygdaloid complex the SCVAR index was 49 ± 5%, indicating that tail blood flow was reduced by 49% in response to the salient stimuli (p<0.01 versus vehicle, n=7 rats for vehicle and 6 for muscimol). One week after unilateral ibotenic acid lesions, the SCVAR index was 68 ± 3%, significantly less than 90 ± 1%, the corresponding value after unilateral injection of vehicle (p<0.01, n=6 rats in each group). After bilateral ibotenic acid lesions the SCVAR index was 52 ± 4%, significantly less than 93 ± 1%, the corresponding value after bilateral injection of vehicle (p<0.001, n=6 rats in each group). Ibotenic acid caused extensive neuronal destruction of the whole amygdaloid complex, as well as lateral temporal lobe structures including the piriform cortex. Our results demonstrate that the amygdaloid complex plays an important role in mediating the tail artery vasoconstriction that occurs in rats in response to the animal's perception of a salient stimulus, redirecting blood to areas of the body with more immediate metabolic requirements.

  19. Stress response of bovine artery and rat brain tissue due to combined translational shear and fixed unconfined compression

    NASA Astrophysics Data System (ADS)

    Leahy, Lauren

    During trauma resulting from impacts and blast waves, sinusoidal waves permeate the brain and cranial arterial tissue, both non-homogeneous biological tissues with high fluid contents. The experimental shear stress response to sinusoidal translational shear deformation at 1 Hz and 25% strain amplitude and either 0% or 33% compression is compared for rat brain tissue and bovine aortic tissue. Both tissues exhibit Mullins effect in shear. Harmonic wavelet decomposition, a novel application to the mechanical response of these tissues, shows significant 1 Hz and 3 Hz components. The 3 Hz component magnitude in brain tissue, which is much larger than in aortic tissue, may correlate to interstitial fluid induced drag forces that decrease on subsequent cycles perhaps because of damage resulting in easier fluid movement. The fluid may cause the quasiperiodic, viscoelastic behavior of brain tissue. The mechanical response differences under impact may cause shear damage between arterial and brain connections.

  20. Mesenteric artery responsiveness to acetylcholine and phenylephrine in cirrhotic rats challenged with endotoxin: the role of TLR4.

    PubMed

    Ostadhadi, Sattar; Rezayat, Seyed-Mahdi; Ejtemaei-Mehr, Shahram; Tavangar, Seyed-Mohammad; Nikoui, Vahid; Jazaeri, Farahnaz; Eftekhari, Golnar; Abdollahi, Alireza; Dehpour, Ahmad-Reza

    2015-06-01

    Cirrhosis is associated with vascular dysfunction and endotoxemia. These experiments were designed to investigate the hypothesis that the administration of a low-dose of lipopolysaccharide (LPS) worsens vascular dysfunction in rats subjected to bile-duct ligation (BDL), and to determine whether LPS initiates changes in vascular Toll-like receptor 4 (TLR4) expression. Four weeks after BDL, the animals were given an intraperitoneal injection of either saline or LPS (1.0 mg/kg body mass). Three hours later, the superior mesenteric artery was isolated, perfused, and then subjected to the vasoconstriction and vasodilatation effects of phenylephrine and acetylcholine, respectively. Our results show that phenylephrine-induced vasoconstriction decreased in the cirrhotic vascular bed (BDL rats) compared with the vascular bed of the sham-operated animals, and that the LPS injections in the cirrhotic (BDL) rats worsened this response. LPS injection administered to the sham-operated animals had no such effect. On the other hand, both the BDL procedure and the LPS injection increased acetylcholine-induced vasorelaxation, but LPS administration to the BDL rats had no effect on this response. The mRNA levels of TLR4 did not change, but immunohistochemical studies showed that TLR4 localization switched from the endothelium to vascular smooth muscle cells following chronic BDL. In conclusion, acute endotoxemia in cirrhotic rats is associated with hyporesponsiveness to phenylephrine and tolerance to the effects of acetylcholine. Altered localization of TLR4 may be responsible for these effects.

  1. Aldosterone alters the participation of endothelial factors in noradrenaline vasoconstriction differently in resistance arteries from normotensive and hypertensive rats.

    PubMed

    Xavier, Fabiano E; Blanco-Rivero, Javier; Avendaño, María Soledad; Sastre, Esther; Yela, Rubén; Velázquez, Kyra; Salaíces, Mercedes; Balfagón, Gloria

    2011-03-11

    This study analyzed the effect of aldosterone (0.05mg/kg per day, 3 weeks) on vasoconstriction induced by noradrenaline in mesenteric resistance arteries from WKY rats and SHR. Contraction to noradrenaline was measured in mesenteric resistance arteries from untreated and aldosterone-treatedrats from both strains. Participation of nitric oxide (NO), superoxide anions, thromboxane A(2) (TxA(2)) and prostacyclin in this response was determined. 6-keto-prostaglandin (PG)F1alpha and thromboxane B(2) (TxB(2)) releases were determined by enzyme immunoassay. NO and superoxide anion release were also determined by fluorescence and chemiluminiscence, respectively. Aldosterone did not modify noradrenaline-induced contraction in either strain. In mesenteric resistance arteries from both aldosterone-treated groups, endothelium removal or preincubation with NO synthesis inhibitor L-NAME increased the noradrenaline-induced contraction, while incubation with the superoxide anion scavenger tempol decreased it. Preincubation with either the COX-1/2 or COX-2 inhibitor (indomethacin and NS-398, respectively) decreased the noradrenaline contraction in aldosterone-treated animals, while this response was not modified by COX-1 inhibitor SC-560. TxA(2) synthesis inhibitor (furegrelate), or TxA2 receptor antagonist (SQ 29 548) also decreased the noradrenaline contraction in aldosterone-treated animals. In untreated SHR, but not WKY rats, this response was increased by L-NAME, and reduced by tempol, indomethacin, NS-398 or SQ 29 548. Aldosterone treatment did not modify NO or TxB(2) release, but it did increase superoxide anion and 6-keto-PGF(1alpha) release in mesenteric resistance arteries from both strains. In conclusion, chronic aldosterone treatment reduces smooth muscle contraction to alpha-adrenergic stimuli, producing a new balance in the release of endothelium-derived prostanoids and NO.

  2. Transcriptome-wide RNA sequencing analysis of rat skeletal muscle feed arteries. II. Impact of exercise training in obesity.

    PubMed

    Padilla, Jaume; Jenkins, Nathan T; Thorne, Pamela K; Martin, Jeffrey S; Rector, R Scott; Davis, J Wade; Laughlin, M Harold

    2014-04-15

    We employed next-generation RNA sequencing (RNA-Seq) technology to determine the extent to which exercise training alters global gene expression in skeletal muscle feed arteries and aortic endothelial cells of obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Transcriptional profiles of the soleus and gastrocnemius muscle feed arteries (SFA and GFA, respectively) and aortic endothelial cell-enriched samples from rats that underwent an endurance exercise training program (EndEx; n = 12) or a interval sprint training program (IST; n = 12) or remained sedentary (Sed; n = 12) were examined. In response to EndEx, there were 39 upregulated (e.g., MANF) and 20 downregulated (e.g., ALOX15) genes in SFA and 1 upregulated (i.e., Wisp2) and 1 downregulated (i.e., Crem) gene in GFA [false discovery rate (FDR) < 10%]. In response to IST, there were 305 upregulated (e.g., MANF, HSPA12B) and 324 downregulated genes in SFA and 101 upregulated and 66 downregulated genes in GFA, with an overlap of 32 genes between arteries. Furthermore, in aortic endothelial cells, there were 183 upregulated (e.g., eNOS, SOD-3) and 141 downregulated (e.g., ATF3, Clec1b, npy, leptin) genes with EndEx and 71 upregulated and 69 downregulated genes with IST, with an overlap of 35 between exercise programs. Expression of only two genes (Tubb2b and Slc9a3r2) was altered (i.e., increased) by exercise in all three arteries. The finding that both EndEx and IST produced greater transcriptional changes in the SFA compared with the GFA is intriguing when considering the fact that treadmill bouts of exercise are associated with greater relative increases in blood flow to the gastrocnemius muscle compared with the soleus muscle.

  3. ZP120 causes relaxation by pre-junctional inhibition of noradrenergic neurotransmission in rat mesenteric resistance arteries

    PubMed Central

    Simonsen, U; Laursen, B E; Petersen, J S

    2008-01-01

    Background and purpose: ZP120 (Ac-RYYRWKKKKKKK-NH2), is a new partial nociceptin/orphanin FQ (NOP) receptor agonist with sodium-potassium sparing aquaretic effects. The mechanisms of vasodilatation of ZP120 were examined in rat mesenteric resistance arteries. Experimental approach: Arterial segments (internal diameters 206±4 μm, n=224) were mounted in microvascular myographs for isometric tension recordings and electrical field stimulation (EFS). Key results: ZP120 and the endogenous NOP receptor ligand, N/OFQ, did not relax arteries contracted with noradrenaline or adenosine-triphosphate. EFS-evoked contractions were inhibited by a purinoceptor antagonist, suramin, and the α1-adrenoceptor antagonist prazosin. N/OFQ inhibited, concentration-dependently, EFS-evoked contractions with a maximal effect of 52±3% (n=8) at 1 μM. The maximal effect of 1 μM ZP120 was lower (27±5%, P<0.05, n=9) than for N/OFQ. Endothelial removal or pretreatment with capsaicin did not influence the vasodilator effects of ZP120 and N/OFQ. ZP120 and N/OFQ responses were preserved in the presence of suramin. The α2-adrenoceptor antagonist, rauwolscine, antagonized the effect of clonidine and brimonidine, but ZP120 and N/OFQ inhibition of EFS-evoked contraction was unaltered. The competitive NOP receptor antagonist, UFP-101 (10 μM), prevented the inhibitory effect of N/OFQ, but not ZP120 suggesting that N/OFQ and ZP120 have distinct modes of interaction with the NOP receptor. Conclusions and implications: Our findings suggest that the vasodilator effect of ZP120 and N/OFQ in rat mesenteric resistance arteries is mediated by prejunctional inhibition of adrenergic neurotransmission. These properties, that promote diuresis and attenuate the cardiovascular consequences of increased sympathetic nerve activity, make ZP120 a promising drug candidate. PMID:18193068

  4. Interleukin-1 receptor antagonist decreases the number of necrotic neurons in rats with middle cerebral artery occlusion.

    PubMed Central

    Garcia, J. H.; Liu, K. F.; Relton, J. K.

    1995-01-01

    Marked increases in the brain expression of interleukin (IL)-1 have been reported in rats after permanent occlusion of a large cerebral artery. Interactions between endothelial cells and leukocytes have been implicated in the pathogenesis of several types of ischemic injury to the myocardium and other organs. In this study we asked whether inhibiting the effects of IL-1 would affect the outcome of an experimental brain infarct. Adult male Wistar rats (n = 13) with permanent occlusion of the middle cerebral artery were given IL-1 receptor antagonist. A second group (n = 13) with the same type of brain injury was given a placebo. A third group, subjected to a sham operation, was given either IL-1 receptor antagonist (n = 2) or a placebo (n = 2). Experiments were terminated after either 24 hours or 7 days. Compared with the control group, animals treated with IL-1 receptor antagonist improved their neurological score (P < 0.05), experienced less pronounced changes in body weight (P < 0.05), and had fewer necrotic neurons (P < 0.001) and fewer leukocytes in the ischemic hemisphere (P < 0.001) as well as a smaller area of pallor (P < 0.05) in the ischemis hemisphere. The results suggest that inhibiting the proinflammatory effects of IL-1 with a receptor antagonist is an effective way of influencing the leukocyte responses elicited by an arterial occlusion. Such leukocyte inhibition seemingly attenuates the number of necrotic neurons resulting from the occlusion of a large brain artery. Images Figure 4 Figure 6 Figure 8 PMID:7485410

  5. Transcriptome-wide RNA sequencing analysis of rat skeletal muscle feed arteries. II. Impact of exercise training in obesity

    PubMed Central

    Jenkins, Nathan T.; Thorne, Pamela K.; Martin, Jeffrey S.; Rector, R. Scott; Davis, J. Wade; Laughlin, M. Harold

    2014-01-01

    We employed next-generation RNA sequencing (RNA-Seq) technology to determine the extent to which exercise training alters global gene expression in skeletal muscle feed arteries and aortic endothelial cells of obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Transcriptional profiles of the soleus and gastrocnemius muscle feed arteries (SFA and GFA, respectively) and aortic endothelial cell-enriched samples from rats that underwent an endurance exercise training program (EndEx; n = 12) or a interval sprint training program (IST; n = 12) or remained sedentary (Sed; n = 12) were examined. In response to EndEx, there were 39 upregulated (e.g., MANF) and 20 downregulated (e.g., ALOX15) genes in SFA and 1 upregulated (i.e., Wisp2) and 1 downregulated (i.e., Crem) gene in GFA [false discovery rate (FDR) < 10%]. In response to IST, there were 305 upregulated (e.g., MANF, HSPA12B) and 324 downregulated genes in SFA and 101 upregulated and 66 downregulated genes in GFA, with an overlap of 32 genes between arteries. Furthermore, in aortic endothelial cells, there were 183 upregulated (e.g., eNOS, SOD-3) and 141 downregulated (e.g., ATF3, Clec1b, npy, leptin) genes with EndEx and 71 upregulated and 69 downregulated genes with IST, with an overlap of 35 between exercise programs. Expression of only two genes (Tubb2b and Slc9a3r2) was altered (i.e., increased) by exercise in all three arteries. The finding that both EndEx and IST produced greater transcriptional changes in the SFA compared with the GFA is intriguing when considering the fact that treadmill bouts of exercise are associated with greater relative increases in blood flow to the gastrocnemius muscle compared with the soleus muscle. PMID:24408995

  6. Tumor necrosis factor-α inhibition attenuates middle cerebral artery remodeling but increases cerebral ischemic damage in hypertensive rats.

    PubMed

    Pires, Paulo W; Girgla, Saavia S; Moreno, Guillermo; McClain, Jonathon L; Dorrance, Anne M

    2014-09-01

    Hypertension causes vascular inflammation evidenced by an increase in perivascular macrophages and proinflammatory cytokines in the arterial wall. Perivascular macrophage depletion reduced tumor necrosis factor (TNF)-α expression in cerebral arteries of hypertensive rats and attenuated inward remodeling, suggesting that TNF-α might play a role in the remodeling process. We hypothesized that TNF-α inhibition would improve middle cerebral artery (MCA) structure and reduce damage after cerebral ischemia in hypertensive rats. Six-week-old male stroke-prone spontaneously hypertensive rats (SHRSP) were treated with the TNF-α inhibitor etanercept (ETN; 1.25 mg·kg(-1)·day(-1) ip daily) or PBS (equivolume) for 6 wk. The myogenic tone generation, postischemic dilation, and passive structure of MCAs were assessed by pressure myography. Cerebral ischemia was induced by MCA occlusion (MCAO). Myogenic tone was unchanged, but MCAs from SHRSP + ETN had larger passive lumen diameter and reduced wall thickness and wall-to-lumen ratio. Cerebral infarct size was increased in SHRSP + ETN after transient MCAO, despite an improvement in dilation of nonischemic MCA. The increase in infarct size was linked to a reduction in the number of microglia in the infarct core and upregulation of markers of classical macrophage/microglia polarization. There was no difference in infarct size after permanent MCAO or when untreated SHRSP subjected to transient MCAO were given ETN at reperfusion. Our data suggests that TNF-α inhibition attenuates hypertensive MCA remodeling but exacerbates cerebral damage following ischemia/reperfusion injury likely due to inhibition of the innate immune response of the brain.

  7. A Novel Method to Establish a Rat ED Model Using Internal Iliac Artery Ligation Combined with Hyperlipidemia

    PubMed Central

    Hu, Chao; Wang, Feixiang; Dong, Yehao; Dai, Jican

    2014-01-01

    Objective To investigate a novel method, namely using bilateral internal iliac artery ligation combined with a high-fat diet (BCH), for establishing a rat model of erectile dysfunction (ED) that, compared to classical approaches, more closely mimics the chronic pathophysiology of human ED after acute ischemic insult. Materials and Methods Forty 4-month-old male Sprague Dawley rats were randomly placed into five groups (n = 8 per group): normal control (NC), bilateral internal iliac artery ligation (BIIAL), high-fat diet (HFD), BCH, and mock surgery (MS). All rats were induced for 12 weeks. Copulatory behavior, intracavernosal pressure (ICP), ICP/mean arterial pressure, hematoxylin-eosin staining, Masson's trichrome staining, serum lipid levels, and endothelial and neuronal nitric oxide synthase immunohistochemical staining of the cavernous smooth muscle and endothelium were assessed. Data were analyzed by SAS 8.0 for Windows. Results Serum total cholesterol and triglyceride levels were significantly higher in the HFD and BCH groups than the NC and MS groups. High density lipoprotein levels were significantly lower in the HFD and BCH groups than the NC and MS groups. The ICP values and mount and intromission numbers were significantly lower in the BIIAL, HFD, and BCH groups than in the NC and MS groups. ICP was significantly lower in the BCH group than in the BIIAL and HFD groups. Cavernous smooth muscle and endothelial damage increased in the HFD and BCH groups. Cavernous smooth muscle to collagen ratio, nNOS and eNOS staining decreased significantly in the BIIAL, HFD, and BCH groups compared to the NC and MS groups. Conclusions The novel BCH model mimics the chronic pathophysiology of ED in humans and avoids the drawbacks of traditional ED models. PMID:25047124

  8. Morphometric and ultrastructural analysis of the effect of bromocriptine and cyclosporine on the vasospastic femoral artery of rats

    PubMed Central

    Tokmak, Mehmet; Başocak, Kahan; Canaz, Hüseyin; Canaz, Gökhan; İplikçioğlu, Celal

    2015-01-01

    Vasospasm is the main causes of mortality and morbidity in patiens with subarachnoid hemorrhage (SAH). The arterial narrowing mechanism that develops after SAH is not yet fully understood but many studies showed that hypotension, neurogenic reflexes, clots in the subarachnoidal space, spasmogenic agents, humoral and celluler immunity play a role in the etiology. In this study we investigate the effects of Bromocriptine and Cyclosporine A in vasospasm secondary to SAH on rat femoral artery from ultrastructural and morphometric perspectives. 120 male Sprague-Dawley rats divided into 12 groups: Vasospasm (V), control (K), surgical control (CK) groups, vasospasm+Bromocriptine and/or Cyclosporine-A groups (VCyA, VBr, VBr+CyA), Bromocriptine and/or Cyclosporine-A control groups (CK, BK, Br+CyAK), Bromocriptine and/or Cyclosporine-A surgical control groups (BCK, CyCK, Br+CyACK). In order to create SAH model, 0, 1 cm3 blood injected into silastic sheath wrapped rat femoral artery. Bromocriptine (2 mg/kg/d) and Cyclosporine A (10 mg/kg/d) combinations applied to control, surgical control and vasospastic models. Light microscopy, transmission electron microscopy and scanning electron microscopy used during this study. Statistical evaluation of the morphometric measurement data concerning vascular wall thickness and luminal cross-sectional areas of all groups were performed using Mann-Whitney U, Wilcoxon-signed rank, and Student-t tests. Cyclosporine A, whose effects in the prevention of vasospasm have been demonstrated in previous studies. In this study we discovered that Bromocriptine demonstrated strong effects similar to Cyclosporine-A. Bromocriptine and Cyclosporine A markedly prevent the development of chronic morphologic vasospasm following SAH. The combined use of both drugs does not change this preventive effect. PMID:26770311

  9. Differential Effect of Amylin on Endothelial-Dependent Vasodilation in Mesenteric Arteries from Control and Insulin Resistant Rats

    PubMed Central

    El Assar, Mariam; Angulo, Javier; Santos-Ruiz, Marta; Moreno, Paola; Novials, Anna; Villanueva-Peñacarrillo, María Luisa; Rodríguez-Mañas, Leocadio

    2015-01-01

    Insulin resistance (IR) is frequently associated with endothelial dysfunction and has been proposed to play a major role in cardiovascular disease (CVD). On the other hand, amylin has long been related to IR. However the role of amylin in the vascular dysfunction associated to IR is not well addressed. Therefore, the aim of the study was to assess the effect of acute treatment with amylin on endothelium-dependent vasodilation of isolated mesenteric arteries from control (CR) and insulin resistant (IRR) rats and to evaluate the possible mechanisms involved. Five week-old male Wistar rats received 20% D-fructose dissolved in drinking water for 8 weeks and were compared with age-matched CR. Plasmatic levels of glucose, insulin and amylin were measured. Mesenteric microvessels were dissected and mounted in wire myographs to evaluate endothelium-dependent vasodilation to acetylcholine. IRR displayed a significant increase in plasmatic levels of glucose, insulin and amylin and reduced endothelium-dependent relaxation when compared to CR. Acute treatment of mesenteric arteries with r-amylin (40 pM) deteriorated endothelium-dependent responses in CR. Amylin-induced reduction of endothelial responses was unaffected by the H2O2 scavenger, catalase, but was prevented by the extracellular superoxide scavenger, superoxide dismutase (SOD) or the NADPH oxidase inhibitor (VAS2870). By opposite, amylin failed to further inhibit the impaired relaxation in mesenteric arteries of IRR. SOD, or VAS2870, but not catalase, ameliorated the impairment of endothelium-dependent relaxation in IRR. At concentrations present in insulin resistance conditions, amylin impairs endothelium-dependent vasodilation in mircrovessels from rats with preserved vascular function and low levels of endogenous amylin. In IRR with established endothelial dysfunction and elevated levels of amylin, additional exposure to this peptide has no effect on endothelial vasodilation. Increased superoxide generation

  10. Neuroprotective effect of lercanidipine in middle cerebral artery occlusion model of stroke in rats.

    PubMed

    Gupta, Sangeetha; Sharma, Uma; Jagannathan, Naranamangalam R; Gupta, Yogendra Kumar

    2017-02-01

    Oxidative stress, inflammation and apoptotic neuronal cell death are cardinal mechanisms involved in the cascade of acute ischemic stroke. Lercanidipine apart from calcium channel blocking activity possesses anti-oxidant, anti-inflammatory and anti-apoptotic properties. In the present study, we investigated neuroprotective efficacy and therapeutic time window of lercanidipine in a 2h middle cerebral artery occlusion (MCAo) model in male Wistar rats. The study design included: acute (pre-treatment and post-treatment) and sub-acute studies. In acute studies (pre-treatment) lercanidipine (0.25, 0.5 and 1mg/kg, i.p.) was administered 60min prior MCAo. The rats were assessed 24h post-MCAo for neurological deficit score (NDS), motor deficit paradigms (grip test and rota rod) and cerebral infarction via 2,3,5-triphenyltetrazolium chloride (TTC) staining. The most effective dose was found to be at 0.5mg/kg, i.p., which was considered for further studies. Regional cerebral blood flow (rCBF) was monitored till 120min post-reperfusion to assess vasodilatory property of lercanidipine (0.5mg/kg, i.p.) administered at two different time points: 60min post-MCAo and 15min post-reperfusion. In acute studies (post-treatment) lercanidipine (0.5mg/kg, i.p.) was administered 15min, 120min and 240min post-reperfusion. Based on NDS and cerebral infarction via TTC staining assessed 24h post-MCAo, effectiveness was evident upto 120min. For sub-acute studies same dose/vehicle was repeated for next 3days and magnetic resonance imaging (MRI) was performed 96h after the last dose. Biochemical markers estimated in rat brain cortex 24h post-MCAo were oxidative stress (malondialdehyde, reduced glutathione, nitric oxide, superoxide dismutase), blood brain barrier damage (matrix metalloproteinases-2 and -9) and apoptotic (caspase-3 and -9). Lercanidipine significantly reduced NDS, motor deficits and cerebral infarction volume as compared to the control group. Lercanidipine (60min post

  11. Identification of L- and T-type Ca2+ channels in rat cerebral arteries: role in myogenic tone development

    PubMed Central

    El-Rahman, Rasha R. Abd; Harraz, Osama F.; Brett, Suzanne E.; Anfinogenova, Yana; Mufti, Rania E.; Goldman, Daniel

    2013-01-01

    L-type Ca2+ channels are broadly expressed in arterial smooth muscle cells, and their voltage-dependent properties are important in tone development. Recent studies have noted that these Ca2+ channels are not singularly expressed in vascular tissue and that other subtypes are likely present. In this study, we ascertained which voltage-gated Ca2+ channels are expressed in rat cerebral arterial smooth muscle and determined their contribution to the myogenic response. mRNA analysis revealed that the α1-subunit of L-type (Cav1.2) and T-type (Cav3.1 and Cav3.2) Ca2+ channels are present in isolated smooth muscle cells. Western blot analysis subsequently confirmed protein expression in whole arteries. With the use of patch clamp electrophysiology, nifedipine-sensitive and -insensitive Ba2+ currents were isolated and each were shown to retain electrical characteristics consistent with L- and T-type Ca2+ channels. The nifedipine-insensitive Ba2+ current was blocked by mibefradil, kurtoxin, and efonidpine, T-type Ca2+ channel inhibitors. Pressure myography revealed that L-type Ca2+ channel inhibition reduced tone at 20 and 80 mmHg, with the greatest effect at high pressure when the vessel is depolarized. In comparison, the effect of T-type Ca2+ channel blockade on myogenic tone was more limited, with their greatest effect at low pressure where vessels are hyperpolarized. Blood flow modeling revealed that the vasomotor responses induced by T-type Ca2+ blockade could alter arterial flow by ∼20–50%. Overall, our findings indicate that L- and T-type Ca2+ channels are expressed in cerebral arterial smooth muscle and can be electrically isolated from one another. Both conductances contribute to myogenic tone, although their overall contribution is unequal. PMID:23103495

  12. Blood pressure-independent hypotrophy of the heart, kidneys and conduit arteries after 7-nitroindazole administration to Wistar rats from the prenatal period to adulthood.

    PubMed

    Kristek, F; Malekova, M; Ondrias, K; Cacanyiova, S

    2013-02-01

    The aim of this study was to investigate the long-term effects of 7-nitroindazole on the heart, kidneys, thoracic aorta, and carotid arteries from the progeny of mothers that had been treated with 7-nitroindazole (7NI) (10 mg/kg/day in drinking water) during gestation and nursing. The offspring were also treated with 7NI (10 mg/kg/day in drinking water) until 10 weeks of age. Mean arterial pressure (BP) was measured by tail-cuff plethysmography starting at 4 weeks of age. After perfusion fixation with glutaraldehyde at 120 mmHg, the heart and kidneys were weighed and the thoracic aorta and carotid arteries were processed for morphological investigation. The BP and body weight of treated rats did not differ from age-matched control rats during the course of the experiment. In the experimental group, at the end of the experiment, the heart weight/body weight and kidney weight/body weight ratios were decreased. In addition, the wall thickness (intima + media), cross sectional area (intima + media), and wall thickness/inner diameter ratio were significantly decreased in both the thoracic aorta and carotid arteries without a change in the inner vessel diameter. Circumferential wall tension was increased in both arteries. The data clearly indicate that long-term inhibition of neuronal nitric oxide (NO) synthase with the specific inhibitor 7NI evokes BP-independent hypotrophy of the heart, kidneys, and conduit arterial walls in normotensive Wistar rats.

  13. Potentiation by vasopressin of adrenergic vasoconstriction in the rat isolated mesenteric artery

    PubMed Central

    Noguera, I; Medina, P; Segarra, G; Martínez, M C; Aldasoro, M; Vila, J M; Lluch, S

    1997-01-01

    The aim of the present study was to investigate in rat mesenteric artery rings whether low concentrations of vasopressin could modify the contractile responses to noradrenaline and electrical stimulation of perivascular nerves. Vasopressin (10−10–10−7 M) caused concentration-dependent contractions (pD2=8.36±0.09). The V1-receptor antagonist d(CH2)5Tyr(Me)AVP (10−9–10−8 M) produced parallel rightward shifts of the control curve for vasopressin. Schild analysis yielded a pA2 value of 9.83 with a slope of 1.10±0.14. Vasopressin (3×10 −10 and 10−9 M) caused concentration-dependent potentiation of the contractions elicited by electrical stimulation (2–8 Hz; 0.2 ms duration for 30 s) and produced leftward shifts of the concentration-response curve for noradrenaline. The V1-receptor antagonist induced concentration-dependent inhibitions of potentiation induced by vasopressin. The selective V1-receptor agonist [Phe*, Orn8]-vasotocin (3×10 −10 and 10−9 M) induced potentiation of electrical stimulation-evoked responses which was also inhibited in the presence of the V1 antagonist (10−8 M). In contrast, the V2-receptor agonist deamino-8-D-arginine vasopressin (desmopressin 10−8–10−7 M) did not modify the electrical stimulation-induced responses and the V2-receptor antagonist [d(CH2)5, D-Ile*, Ile4, Arg8]-vasopressin (10−8–10−7 M) did not affect the potentiation evoked by vasopressin. In artery rings contracted by 10−6 M noradrenaline in the presence of 10−6 M guanethidine and 10−6 M atropine, electrical stimulation (2, 4 and 8 Hz) produced frequency-dependent relaxations which were unaffected by 10−9 M vasopressin but abolished by 10−6 M tetrodotoxin. Vasopressin also potentiated contractions elicited by KCl and contractions induced by addition of CaCl2 to KCl depolarized vessels. The augmenting effects were inhibited by the V1 antagonist. In the presence of the calcium antagonist nifedipine (10

  14. Upregulation of ERK1/2-eNOS via AT2 Receptors Decreases the Contractile Response to Angiotensin II in Resistance Mesenteric Arteries from Obese Rats

    PubMed Central

    Hagihara, Graziela N.; Lobato, Nubia S.; Filgueira, Fernando P.; Akamine, Eliana H.; Aragão, Danielle S.; Casarini, Dulce E.; Carvalho, Maria Helena C.; Fortes, Zuleica B.

    2014-01-01

    It has been clearly established that mitogen-activated protein kinases (MAPKS) are important mediators of angiotensin II (Ang II) signaling via AT1 receptors in the vasculature. However, evidence for a role of these kinases in changes of Ang II-induced vasoconstriction in obesity is still lacking. Here we sought to determine whether vascular MAPKs are differentially activated by Ang II in obese animals. The role of AT2 receptors was also evaluated. Male monosodium glutamate-induced obese (obese) and non-obese Wistar rats (control) were used. The circulating concentrations of Ang I and Ang II, determined by HPLC, were increased in obese rats. Ang II-induced isometric contraction was decreased in endothelium-intact resistance mesenteric arteries from obese compared with control rats and exhibited a retarded AT1 receptor antagonist response. Blocking of AT2 receptors and inhibition of either endothelial nitric oxide synthase (eNOS) or extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) restored Ang II-induced contraction in obese rats. Western blot analysis revealed increased protein expression of AT2 receptors in arteries from obese rats. Basal and Ang II-induced ERK1/2 phosphorylation was also increased in obese rats. Blockade of either AT1 or AT2 receptors corrected the increased ERK1/2 phosphorylation in arteries from obese rats to levels observed in control preparations. Phosphorylation of eNOS was increased in obese rats. Incubation with the ERK1/2 inhibitor before Ang II stimulation did not affect eNOS phosphorylation in control rats; however, it corrected the increased phosphorylation of eNOS in obese rats. These results clearly demonstrate that enhanced AT2 receptor and ERK1/2-induced, NO-mediated vasodilation reduces Ang II-induced contraction in an endothelium-dependent manner in obese rats. PMID:25170617

  15. Ca2+ currents in cerebral artery smooth muscle cells of rat at physiological Ca2+ concentrations

    PubMed Central

    1996-01-01

    Single Ca2+ channel and whole cell currents were measured in smooth muscle cells dissociated from resistance-sized (100-microns diameter) rat cerebral arteries. We sought to quantify the magnitude of Ca2+ channel currents and activity under the putative physiological conditions of these cells: 2 mM [Ca2+]o, steady depolarizations to potentials between -50 and -20 mV, and (where possible) without extrinsic channel agonists. Single Ca2+ channel conductance was measured over a broad range of Ca2+ concentrations (0.5-80 mM). The saturating conductance ranged from 1.5 pS at 0.5 mM to 7.8 pS at 80 mM, with a value of 3.5 pS at 2 mM Ca (unitary currents of 0.18 pA at -40 mV). Both single channel and whole cell Ca2+ currents were measured during pulses and at steady holding potentials. Ca2+ channel open probability and the lower limit for the total number of channels per cell were estimated by dividing the whole-cell Ca2+ currents by the single channel current. We estimate that an average cell has at least 5,000 functional channels with open probabilities of 3.4 x 10(-4) and 2 x 10(-3) at -40 and -20 mV, respectively. An average of 1-10 (-40 mV and -20 mV, respectively) Ca2+ channels are thus open at physiological potentials, carrying approximately 0.5 pA steady Ca2+ current at -30 mV. We also observed a very slow reduction in open probability during steady test potentials when compared with peak pulse responses. This 4- 10-fold reduction in activity could not be accounted for by the channel's normal inactivation at our recording potentials between -50 and -20 mV, implying that an additional slow inactivation process may be important in regulating Ca2+ channel activity during steady depolarization. PMID:8722560

  16. Sesamin attenuates behavioral, biochemical and histological alterations induced by reversible middle cerebral artery occlusion in the rats.

    PubMed

    Khan, Mohd Moshahid; Ishrat, Tauheed; Ahmad, Ajmal; Hoda, Md Nasrul; Khan, M Badruzzaman; Khuwaja, Gulrana; Srivastava, Pallavi; Raza, Syed Shadab; Islam, Fakhrul; Ahmad, Saif

    2010-01-05

    Restoration of blood flow to an ischemic brain region is associated with generation of reactive oxygen species (ROS) with consequent reperfusion injury. ROS cause lipid peroxidation, protein oxidation, and DNA damage, all of which are deleterious to cells. So diminishing the production of free radicals and scavenging them may be a successful therapeutic strategy for the protection of brain tissue in cerebral stroke. The present study investigated the neuroprotective effect of sesamin (Sn) to reduce brain injury after middle cerebral artery occlusion (MCAO). The middle cerebral artery (MCA) of adult male Wistar rat was occluded for 2h and reperfused for 22h. Sesamin is the most abundant lignan in sesame seed oil is a potent antioxidant. Sesamin (30 mg/kg) was given orally twice, 30 min before the onset of ischemia and 12h after reperfusion. The initial investigations revealed that sesamin reduced the neurological deficits in terms of behavior and reduced the level of thiobarbituric acid reactive species (TBARS), and protein carbonyl (PC) in the different areas of the brain when compared with the MCAO group. A significantly depleted level of glutathione and its dependent enzymes (glutathione peroxidase [GPx] and glutathione reductase [GR]) in MCAO group were protected significantly in MCAO group treated with sesamin. The present study suggests that sesamin may be able to attenuate the ischemic cell death and plays a crucial role as a neuroprotectant in regulating levels of reactive oxygen species in the rat brain. Thus, sesamin may be a potential compound in stroke therapy.

  17. Mapping the dynamics of brain perfusion using functional ultrasound in a rat model of transient middle cerebral artery occlusion.

    PubMed

    Brunner, Clément; Isabel, Clothilde; Martin, Abraham; Dussaux, Clara; Savoye, Anne; Emmrich, Julius; Montaldo, Gabriel; Mas, Jean-Louis; Baron, Jean-Claude; Urban, Alan

    2017-01-01

    Following middle cerebral artery occlusion, tissue outcome ranges from normal to infarcted depending on depth and duration of hypoperfusion as well as occurrence and efficiency of reperfusion. However, the precise time course of these changes in relation to tissue and behavioral outcome remains unsettled. To address these issues, a three-dimensional wide field-of-view and real-time quantitative functional imaging technique able to map perfusion in the rodent brain would be desirable. Here, we applied functional ultrasound imaging, a novel approach to map relative cerebral blood volume without contrast agent, in a rat model of brief proximal transient middle cerebral artery occlusion to assess perfusion in penetrating arterioles and venules acutely and over six days thanks to a thinned-skull preparation. Functional ultrasound imaging efficiently mapped the acute changes in relative cerebral blood volume during occlusion and following reperfusion with high spatial resolution (100 µm), notably documenting marked focal decreases during occlusion, and was able to chart the fine dynamics of tissue reperfusion (rate: one frame/5 s) in the individual rat. No behavioral and only mild post-mortem immunofluorescence changes were observed. Our study suggests functional ultrasound is a particularly well-adapted imaging technique to study cerebral perfusion in acute experimental stroke longitudinally from the hyper-acute up to the chronic stage in the same subject.

  18. Neuroprotective Effects of Bone Marrow Mesenchymal Stem Cells on Bilateral Common Carotid Arteries Occlusion Model of Cerebral Ischemia in Rat

    PubMed Central

    Pourheydar, Bagher; Azimzadeh, Mostafa; Rezaei Moghadam, Adel; Marzban, Asghar

    2016-01-01

    Cell therapy is the most advanced treatment of the cerebral ischemia, nowadays. Herein, we discuss the neuroprotective effects of bone marrow mesenchymal stem cells (BMSCs) on rat hippocampal cells following intravenous injection of these cells in an ischemia-reperfusion model. Adult male Wistar rats were divided into 5 groups: control, sham (surgery without blockage of common carotid arteries), ischemia (common carotid arteries were blocked for 30 min prior to reperfusion), vehicle (7 days after ischemia PBS was injected via the tail vein), and treatment (injections of BMSC into the tail veins 7 days after ischemia). We performed neuromuscular and vestibulomotor function tests to assess behavioral function and, finally, brains were subjected to hematoxylin and eosin (H&E), anti-Brdu immunohistochemistry, and TUNEL staining. The ischemia group had severe apoptosis. The group treated with BMSCs had a lower mortality rate and also had significant improvement in functional recovery (P < 0.001). Ischemia-reperfusion for 30 min causes damage and extensive neuronal death in the hippocampus, especially in CA1 and CA3 regions, leading to several functional and neurological deficits. In conclusion, intravenous injection of BMSCs can significantly decrease the number of apoptotic neurons and significantly improve functional recovery, which may be a beneficial treatment method for ischemic injuries. PMID:27847404

  19. A Rat Model of Thrombosis in Common Carotid Artery Induced by Implantable Wireless Light-Emitting Diode Device

    PubMed Central

    Huang, Kuo-Lun; Hsiao, Yung-Chin; Lin, Yun-Han; Lou, Shyh-Liang; Lee, Tsong-Hai

    2014-01-01

    This work has developed a novel approach to form common carotid artery (CCA) thrombus in rats with a wireless implantable light-emitting diode (LED) device. The device mainly consists of an external controller and an internal LED assembly. The controller was responsible for wirelessly transmitting electrical power. The internal LED assembly served as an implant to receive the power and irradiate light on CCA. The thrombus formation was identified with animal sonography, 7T magnetic resonance imaging, and histopathologic examination. The present study showed that a LED assembly implanted on the outer surface of CCA could induce acute occlusion with single irradiation with 6 mW/cm2 LED for 4 h. If intermittent irradiation with 4.3–4.5 mW/cm2 LED for 2 h was shut off for 30 min, then irradiation for another 2 h was applied; the thrombus was observed to grow gradually and was totally occluded at 7 days. Compared with the contralateral CCA without LED irradiation, the arterial endothelium in the LED-irradiated artery was discontinued. Our study has shown that, by adjusting the duration of irradiation and the power intensity of LED, it is possible to produce acute occlusion and progressive thrombosis, which can be used as an animal model for antithrombotic drug development. PMID:25045695

  20. Arterial relationships to the nerves and some rigid structures in the posterior cranial fossa.

    PubMed

    Surchev, N

    2008-09-01

    The close relationships between the cranial nerves and the arterial vessels in the posterior cranial fossa are one of the predisposing factors for artery-nerve compression. The aim of this study was to examine the relationships of the vertebral and basilar arteries to some skull and dural structures and the nerves in the posterior cranial fossa. For this purpose, the skull bases and brains of 70 cadavers were studied. The topographic relationships of the vertebral and basilar arteries to the cranial nerves in the posterior cranial fossa were studied and the distances between the arteries and some osseous formations were measured. The most significant variations in arterial position were registered in the lower half of the basilar artery. Direct contact with an artery was established for the hypoglossal canal, jugular tubercle, and jugular foramen. The results reveal additional information about the relationships of the nerves and arteries to the skull and dural formations in the posterior cranial fossa. New quantitative information is given to illustrate them. The conditions for possible artery-nerve compression due to arterial dislocation are discussed and two groups (lines) of compression points are suggested. The medial line comprises of the brain stem points, usually the nerve root entry/exit zone. The lateral line includes the skull eminences, on which the nerves lie, or skull and dural foramina through which they exit the cranial cavity.

  1. Characterization of voltage-gated calcium currents in freshly isolated smooth muscle cells from rat tail main artery.

    PubMed

    Petkov, G V; Fusi, F; Saponara, S; Gagov, H S; Sgaragli, G P; Boev, K K

    2001-11-01

    The aim of the present study was to characterize voltage-gated Ca2+ currents in smooth muscle cells freshly isolated from rat tail main artery in the presence of 5 mmol L(-1) external Ca2+. Calcium currents were identified on the basis of their voltage dependencies and sensitivity to nifedipine, Ni2+ and cinnarizine. In the majority of the cells studied, T- and L-type currents were observed, while the remaining cells showed predominantly L-type currents. In the latter group of cells, holding potential change from -50 to either -70 or -90 mV increased the corresponding inward current amplitude while its voltage activation threshold remained unchanged. The steady state inactivation of L-type Ca2+ channels showed half-maximal inactivation at -38 mV. A Ca2+-dependent inactivation was also evident. Nifedipine (3 micromol L(-1)) blocked L-type but not T-type Ca2+ currents. Ni2+ (50 micromol L(-1)) as well as cinnarizine (1 micromol L(-1)) suppressed the nifedipine-resistant, T-type component of the currents. At higher concentrations, both Ni2+ (0.3-1 mmol L(-1)) and cinnarizine (10 micromol L(-1)) blocked the net inward current. Replacement of Ca2+ with 10 mmol L(-)1 Ba2+ significantly increased the amplitude of L-type Ca2+ currents. These results demonstrate that smooth muscle cells freshly isolated from rat tail main artery may be divided into two populations, one expressing both L- and T-type and the other only L-type Ca2+ channels. Furthermore, this report shows that in arterial smooth muscle cells cinnarizine potently inhibited T-type currents at low concentrations (1 micromol L(-1)) but also blocked L-type Ca2+ currents at higher concentrations (10 micromol L(-1)).

  2. Chronic fluoxetine treatment increases NO bioavailability and calcium-sensitive potassium channels activation in rat mesenteric resistance arteries.

    PubMed

    Pereira, Camila A; Ferreira, Nathanne S; Mestriner, Fabiola L; Antunes-Rodrigues, José; Evora, Paulo R B; Resstel, Leonardo B M; Carneiro, Fernando S; Tostes, Rita C

    2015-10-15

    Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), has effects beyond its antidepressant properties, altering, e.g., mechanisms involved in blood pressure and vasomotor tone control. Although many studies have addressed the acute impact of fluoxetine on the cardiovascular system, there is a paucity of information on the chronic vascular effects of this SSRI. We tested the hypothesis that chronic fluoxetine treatment enhances the vascular reactivity to vasodilator stimuli by increasing nitric oxide (NO) signaling and activation of potassium (K+) channels. Wistar rats were divided into two groups: (I) vehicle (water for 21 days) or (II) chronic fluoxetine (10 mg/kg/day in the drinking water for 21 days). Fluoxetine treatment increased endothelium-dependent and independent vasorelaxation (analyzed by mesenteric resistance arteries reactivity) as well as constitutive NO synthase (NOS) activity, phosphorylation of eNOS at Serine1177 and NO production, determined by western blot and fluorescence. On the other hand, fluoxetine treatment did not alter vascular expression of neuronal and inducible NOS or guanylyl cyclase (GC). Arteries from fluoxetine-treated rats exhibited increased relaxation to pinacidil. Increased acetylcholine vasorelaxation was abolished by a calcium-activated K+ channel (KCa) blocker, but not by an inhibitor of KATP channels. On the other hand, vascular responses to Bay 41-2272 and 8-bromo-cGMP were similar between the groups. In conclusion, chronic fluoxetine treatment increases endothelium-dependent and independent relaxation of mesenteric resistance arteries by mechanisms that involve increased eNOS activity, NO generation, and KCa channels activation. These effects may contribute to the cardiovascular effects associated with chronic fluoxetine treatment.

  3. Voluntary Running-Wheel Activity, Arterial Blood Gases, and Thermal Antinociception in Rats after 3 Buprenorphine Formulations

    PubMed Central

    Johnson, Rebecca A

    2016-01-01

    Buprenorphine HCl (BUP) is a μ-opioid agonist used in laboratory rodents. New formulations of buprenorphine (for example, sustained-released buprenorphine [BUP SR], extended-release buprenorphine [BUP ER]) have been developed to extend the analgesic duration. In a crossover design, 8 adult rats were injected subcutaneously with either BUP, BUP SR, BUP ER, or saline, after which voluntary running-wheel activity, arterial blood gases, and thermal withdrawal latency were assessed. Wheel running was decreased at 24 h compared with baseline in all treatment groups but returned to baseline by 48 h. Arterial pH, HCO3–, and CO2 were not changed between groups or over time. However, arterial oxygen was lower than baseline in the BUP (–8 ± 2 mm Hg), BUP SR (–7 ± 1 mm Hg), and BUP ER (–17 ± 2 mm Hg) groups compared with saline controls (3 ± 2 mm Hg); the BUP ER group showed the greatest decrease when all time points were combined. BUP increased the withdrawal latency at 1 h (15% ± 3%), whereas BUP ER increased latencies at 4, 8, 12, and 48 h (35% ± 11%, 21% ± 7%, 26% ± 7%, and 22% ± 9%, respectively) and BUP SR prolonged latencies at 24, 48, and 72 h (15% ± 6%, 18% ± 5%, and 20% ± 8%, respectively). The duration of thermal analgesia varied between buprenorphine formulations, but all 3 formulations reduced voluntary-running activity at 24 h after injection and might cause hypoxemia in normal adult rats. PMID:27177564

  4. Prevention of neointimal hyperplasia in balloon-injured rat carotid artery via small interference RNA mediated downregulation of osteopontin gene.

    PubMed

    Xu, Jian; Sun, Yingxian; Wang, Tairan; Liu, Guinan

    2013-05-01

    The aim of the present study was to take osteopontin (OPN) as molecular target to study its effects on injured intima model of carotid artery in rat using perivascular transfer of OPN-small interference RNA (siRNA). OPN mRNA in cultured VSMCs was quantified by real-time RT-PCR, and OPN-siRNA-002 was determined as the most sensitive sequence and used as transfected siRNA in the subsequent animal experiments. We established rat carotid arterial intima-injured model with balloon-injured method, and then perivascularly transfected OPN-siRNA-002 to study the role of OPN-siRNA in regulating several related genes including proliferating cell nuclear antigen (PCNA), transforming growth factor β1(TGF-β1), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-14 (MMP-14), as well as its role in neointimal formation. OPN mRNA and protein decreased about 50 % with corresponding decrease in intima thickness after transfecting with specific OPN-siRNA-002 compared with Pluronic control group and OPN-SCR-siRNA group on each time point (n = 6, p < 0.001), and this inhibiting effects persisted up to 14 days after balloon injury. PCNA, TGF-β1, MMP-2, and MMP-14 mRNA and protein correlated directly with the respective levels of OPN, suggesting its functions via regulating these downstream factors (n = 6, p < 0.001). OPN may be a potential target gene in reducing the risk for arterial restenosis after vascular intervention.

  5. Direct Measurement of Basilar Membrane Motion Using Pulsed-Wave Doppler High-Frequency Ultrasound

    NASA Astrophysics Data System (ADS)

    Torbatian, Z.; Garland, P.; Adamson, R. B. A.; Bance, M.; Brown, J. A.

    2011-11-01

    We present a preliminary report on the use of a new technique for measuring the motion of the basilar membrane, high-frequency ultrasound Doppler vibrometry. Using a custom-built, 1 mm diameter probe, we collected ultrasonic reflections from intracochlear structures and applied pulsed-wave Doppler vibrometry to measure the basilar membrane response to pressure applied in the ear canal.

  6. Effects of baicalin on collagen Ι and collagen ΙΙΙ expression in pulmonary arteries of rats with hypoxic pulmonary hypertension

    PubMed Central

    LIU, PANPAN; YAN, SHUANGQUAN; CHEN, MAYUN; CHEN, ALI; YAO, DAN; XU, XIAOMEI; CAI, XUEDING; WANG, LIANGXING; HUANG, XIAOYING

    2015-01-01

    The synthesis and accumulation of collagen play an important role in the formation and progression of hypoxic pulmonary hypertension. Baicalin has been reported to prevent bleomycin-induced pulmonary fibrosis. However, the role of baicalin in the treatment of pulmonary hypertension remains unknown. A disintegrin and metalloprotease with thrombospondin type-1 motif (ADAMTS-1) is a secreted enzyme that acts on a wide variety of extracellular matrix (ECM) substrates associated with vascular diseases. In this study, we aimed to investigate the effects of baicalin on the synthesis of collagen I in rats with pulmonary hypertension induced by hypoxia and the changes in ADAMTS-1 expression. A total of 24 Sprague Dawley rats were randomly assigned to 3 groups as follows: the control group (C), the hypoxia group (H) and the hypoxia + baicalin group (B). The rats in groups H and B were kept in a normobaric hypoxic chamber for 4 weeks, and the rats in group C were exposed to room air. We measured the hemodynamic indexes, including mean pulmonary artery pressure (mPAP), mean systemic (carotid) artery pressure (mSAP), and then calculated the mass ratio of right ventricle to left ventricle plus septum [RV/(LV + S)] to reflect the extent of right ventricular hypertrophy. We measured the mRNA and protein expression levels of type I collagen, type III collagen and ADAMTS-1 by hybridization in situ, and immunohistochemistry and western blot analysis, respectively. The results revealed that treatment with baicalin significantly reduced pulmonary artery pressure and attenuated the remodeling of the pulmonary artery under hypoxic conditions by increasing the expression of ADAMTS-1, so that the synthesis of type I collagen and its mRNA expression were inhibited. In conclusion, baicalin effectively inhibits the synthesis of collagen I in pulmonary arteries and this is associated with an increase in the expression of ADAMTS-1. Thus, treatment with baicalin may be an effective method for

  7. Effects of baicalin on collagen Ι and collagen ΙΙΙ expression in pulmonary arteries of rats with hypoxic pulmonary hypertension.

    PubMed

    Liu, Panpan; Yan, Shuangquan; Chen, Mayun; Chen, Ali; Yao, Dan; Xu, Xiaomei; Cai, Xueding; Wang, Liangxing; Huang, Xiaoying

    2015-04-01

    The synthesis and accumulation of collagen play an important role in the formation and progression of hypoxic pulmonary hypertension. Baicalin has been reported to prevent bleomycin-induced pulmonary fibrosis. However, the role of baicalin in the treatment of pulmonary hypertension remains unknown. A disintegrin and metalloprotease with thrombospondin type-1 motif (ADAMTS-1) is a secreted enzyme that acts on a wide variety of extracellular matrix (ECM) substrates associated with vascular diseases. In this study, we aimed to investigate the effects of baicalin on the synthesis of collagen I in rats with pulmonary hypertension induced by hypoxia and the changes in ADAMTS-1 expression. A total of 24 Sprague Dawley rats were randomly assigned to 3 groups as follows: the control group (C), the hypoxia group (H) and the hypoxia + baicalin group (B). The rats in groups H and B were kept in a normobaric hypoxic chamber for 4 weeks, and the rats in group C were exposed to room air. We measured the hemodynamic indexes, including mean pulmonary artery pressure (mPAP), mean systemic (carotid) artery pressure (mSAP), and then calculated the mass ratio of right ventricle to left ventricle plus septum [RV/(LV + S)] to reflect the extent of right ventricular hypertrophy. We measured the mRNA and protein expression levels of type I collagen, type III collagen and ADAMTS-1 by hybridization in situ, and immunohistochemistry and western blot analysis, respectively. The results revealed that treatment with baicalin significantly reduced pulmonary artery pressure and attenuated the remodeling of the pulmonary artery under hypoxic conditions by increasing the expression of ADAMTS-1, so that the synthesis of type I collagen and its mRNA expression were inhibited. In conclusion, baicalin effectively inhibits the synthesis of collagen I in pulmonary arteries and this is associated with an increase in the expression of ADAMTS-1. Thus, treatment with baicalin may be an effective method for

  8. Interaction between Advanced Glycation End Products Formation and Vascular Responses in Femoral and Coronary Arteries from Exercised Diabetic Rats

    PubMed Central

    Delbin, Maria A.; Davel, Ana Paula C.; Couto, Gisele Kruger; de Araújo, Gustavo G.; Rossoni, Luciana Venturini; Antunes, Edson; Zanesco, Angelina

    2012-01-01

    Background The majority of studies have investigated the effect of exercise training (TR) on vascular responses in diabetic animals (DB), but none evaluated nitric oxide (NO) and advanced glycation end products (AGEs) formation associated with oxidant and antioxidant activities in femoral and coronary arteries from trained diabetic rats. Our hypothesis was that 8-week TR would alter AGEs levels in type 1 diabetic rats ameliorating vascular responsiveness. Methodology/Principal Findings Male Wistar rats were divided into control sedentary (C/SD), sedentary diabetic (SD/DB), and trained diabetic (TR/DB). DB was induced by streptozotocin (i.p.: 60 mg/kg). TR was performed for 60 min per day, 5 days/week, during 8 weeks. Concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), phenylephrine (PHE) and tromboxane analog (U46619) were obtained. The protein expressions of eNOS, receptor for AGEs (RAGE), Cu/Zn-SOD and Mn-SOD were analyzed. Tissues NO production and reactive oxygen species (ROS) generation were evaluated. Plasma nitrate/nitrite (NOx−), superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive substances (TBARS) and Nε-(carboxymethyl) lysine (CML, AGE biomarker). A rightward shift in the concentration-response curves to ACh was observed in femoral and coronary arteries from SD/DB that was accompanied by an increase in TBARS and CML levels. Decreased in the eNOS expression, tissues NO production and NOx− levels were associated with increased ROS generation. A positive interaction between the beneficial effect of TR on the relaxing responses to ACh and the reduction in TBARS and CML levels were observed without changing in antioxidant activities. The eNOS protein expression, tissues NO production and ROS generation were fully re-established in TR/DB, but plasma NOx− levels were partially restored. Conclusion Shear stress induced by TR fully restores the eNOS/NO pathway in both preparations from non-treated diabetic

  9. Epigenetic regulation of L-type voltage-gated Ca(2+) channels in mesenteric arteries of aging hypertensive rats.

    PubMed

    Liao, Jingwen; Zhang, Yanyan; Ye, Fang; Zhang, Lin; Chen, Yu; Zeng, Fanxing; Shi, Lijun

    2016-11-24

    Accumulating evidence has shown that epigenetic regulation is involved in hypertension and aging. L-type voltage-gated Ca(2+) channels (LTCCs), the dominant channels in vascular myocytes, greatly contribute to arteriole contraction and blood pressure (BP) control. We investigated the dynamic changes and epigenetic regulation of LTCC in the mesenteric arteries of aging hypertensive rats. LTCC function was evaluated by using microvascular rings and whole-cell patch-clamp in the mesenteric arteries of male Wistar-Kyoto rats and spontaneously hypertensive rats at established hypertension (3 month old) and an aging stage (16 month old), respectively. The expression of the LTCC α1C subunit was determined in the rat mesenteric microcirculation. The expression of miR-328, which targets α1C mRNA, and the DNA methylation status at the promoter region of the α1C gene (CACNA1C) were also determined. In vitro experiments were performed to assess α1C expression after transfection of the miR-328 mimic into cultured vascular smooth muscle cells (VSMCs). The results showed that hypertension superimposed with aging aggravated BP and vascular remodeling. Both LTCC function and expression were significantly increased in hypertensive arteries and downregulated with aging. miR-328 expression was inhibited in hypertension, but increased with aging. There was no significant difference in the mean DNA methylation of CACNA1C among groups, whereas methylation was enhanced in the hypertensive group at specific sites on a CpG island located upstream of the gene promoter. Overexpression of miR-328 inhibited the α1C level of cultured VSMCs within 48 h. The results of the present study indicate that the dysfunction of LTCCs may exert an epigenetic influence at both pre- and post-transcriptional levels during hypertension pathogenesis and aging progression. miR-328 negatively regulated LTCC expression in both aging and hypertension.Hypertension Research advance online publication, 24

  10. Comparison of the effects of semicarbazide and {beta}-aminopropionitrile on the arterial extracellular matrix in the Brown Norway rat

    SciTech Connect

    Mercier, Nathalie; Kakou, Augustine; Challande, Pascal; Lacolley, Patrick; Osborne-Pellegrin, Mary

    2009-09-15

    To investigate a putative role for semicarbazide-sensitive amine oxidase (SSAO) in arterial extracellular matrix (ECM) organization, we compared arteries of growing Brown Norway (BN) rats after chronic administration of semicarbazide (SCZ) and {beta}-aminopropionitrile (BAPN), two inhibitors with different properties and relative specificities for SSAO and lysyl oxidase (LOX). The BN model is particularly well adapted to evaluating effects of toxic compounds on the arterial elastic network. We measured aortic LOX and SSAO activities and quantified several ECM parameters. After a pilot study comparing doses previously studied and testing for additivity, we studied low and high equimolar doses of SCZ and BAPN. Both compounds similarly inhibited LOX, whereas SCZ inhibited SSAO far more effectively than BAPN. Both decreased carotid wall rupture pressure, increased tail tendon collagen solubility, decreased aortic insoluble elastin (% dry weight) and dose-dependently increased defects in the internal elastic lamina of abdominal aorta, iliac and renal arteries. Our results suggest that either these effects are mediated by LOX inhibition, SCZ being slightly more effective than BAPN in our conditions, or SSAO acts similarly to and in synergy with LOX on ECM, the greater SCZ effect reflecting the simultaneous inhibition of both enzymes. However, the high SCZ dose increased aortic collagen and ECM proteins other than insoluble elastin markedly more than did equimolar BAPN, possibly revealing a specific effect of SSAO inhibition. To discriminate between the two above possibilities, and to demonstrate unequivocally a specific effect of SSAO inhibition on ECM formation or organization, we must await availability of more specific inhibitors.

  11. [Clinical radiographic features of basilar impression (author's transl)].

    PubMed

    Scotti, G; Redaelli, M R

    1978-09-01

    After a review of the literature and an analysis of the clinical and radiographic features of basilar impression (b.i.) the authors describe 27 personal cases. In 6 b.i. was present in its pure form and in 21 it was associated with other anomalies at the cranio-vertebral junction. Because of the frequent misdiagnosis with multiple sclerosis or other chronic neurologic diseases and because of the possible improvement of symptoms following decompressive occipital craniectomy and cervical laminectomy, the importance of a correct and complete radiographic study of the cranio-vertebral junction in these cases is stressed.

  12. Biphasic Functional Regulation in Hippocampus of Rat with Chronic Cerebral Hypoperfusion Induced by Permanent Occlusion of Bilateral Common Carotid Artery

    PubMed Central

    Lee, In Sun; Han, Jung-Soo; Kim, Bu-Yeo

    2013-01-01

    Background Chronic cerebral hypoperfusion induced by permanent occlusion of the bilateral common carotid artery (BCCAO) in rats has been commonly used for the study of Alzheimer’s disease and vascular dementia. Despite the apparent cognitive dysfunction in rats with BCCAO, the molecular markers or pathways involved in the pathological alternation have not been clearly identified. Methods Temporal changes (sham, 21, 35, 45, 55 and 70 days) in gene expression in the hippocampus of rats after BCCAO were measured using time-course microarray analysis. Gene Ontology (GO) and pathway analyses were performed to identify the functional involvement of temporally regulated genes in BCCAO. Results Two major gene expression patterns were observed in the hippocampus of rats after BCCAO. One pattern, which was composed of 341 early up-regulated genes after the surgical procedure, was dominantly involved in immune-related biological functions (false discovery rate [FDR]<0.01). Another pattern composed of 182 temporally delayed down-regulated genes was involved in sensory perception such as olfactory and cognition functions (FDR<0.01). In addition to the two gene expression patterns, the temporal change of GO and the pathway activities using all differentially expressed genes also confirmed that an immune response was the main early change, whereas sensory functions were delayed responses. Moreover, we identified FADD and SOCS3 as possible core genes in the sensory function loss process using text-based mining and interaction network analysis. Conclusions The biphasic regulatory mechanism first reported here could provide molecular evidence of BCCAO-induced impaired memory in rats as well as mechanism of the development of vascular dementia. PMID:23936146

  13. Arterial blood gases, electrolytes, and metabolic indices associated with hemorrhagic shock: inter- and intrainbred rat strain variation.

    PubMed

    Rose, Rajiv; Kheirabadi, Bijan S; Klemcke, Harold G

    2013-05-01

    We have previously shown interstrain variation (indicating a genetic basis), and intrastrain variation in survival time after hemorrhage (STaH) among inbred rat strains. To assist in understanding physiological mechanisms associated with STaH, we analyzed various arterial blood measures (ABM; pH, Paco2, oxygen content, sodium, potassium, glucose, bicarbonate, base excess, total CO2, and ionized calcium) in inbred rats. Rats from five inbred strains (n = 8-10/strain) were catheterized and, ≈ 24 h later, subjected to a conscious, controlled, 47% hemorrhage. ABM were measured at the start (initial) and end (final) of hemorrhage. Inter- and intrainbred strain variations of ABM were quantified and compared, and correlations of ABM with STaH were determined. All final ABM values and some initial ABM values were different among strains. Most ABM changed (Δ) during hemorrhage, and these changes differed among strains (P <0.03). Some strain-dependent correlations (r ≥ 0.7; P ≤ 0.05) existed between ΔABM and STaH (e.g., BN/Mcwi, ΔK(+), r = -0.84). Dark Agouti rats (longest STaH) had the smallest ΔPaco2, ΔHCO3(-), and Δbase excess, and the highest final glucose. High coefficients of variation (CVs, >10%), strain-specific CVs, and low intraclass correlation coefficients (rI < 0.5) defined the large intrastrain ABM variation that exceeded interstrain variation for most ABM. These results suggest that some ABM (K(+), Paco2, glucose, oxygen content) could predict subsequent STaH in an inbred rat strain-dependent manner. We speculate that whereas genetic differences may be responsible for interstrain variation, individual-specific epigenetic processes (e.g., DNA methylation) may be partly responsible for both inter- and intrastrain ABM variation.

  14. [Complex conservative treatment of patients with chronic vertebral-basilar insufficiency against a background of cervical osteochondrosis].

    PubMed

    Gol'dblat, Iu V

    1978-01-01

    The paper contains a description, concerning medicative treatment of 55 patients with chronic vertebro-basilar deficiency in cervical osteochondrosis. The purpose of this study was to remove irritation of the spinal plexus, insufficiency of the cerebral blood flow and secondary astheno-depressive conditions. The following measures were applied: physiotherapy (influences of sinusoidal modulated currents on the cervical part of the spine, massage), special medical gymnastics, drugs (vitamins of the B group, biogenic stimuli, spasmolytical and antihistamine drugs, tranquilizers) and psychotherapy. A comprehensive treatment leads to a steady improvment in 91% of the treated patients, and according to the REG data, to an activization of the blood supply in the zone of vascularization by spinal arteries, especially in the hemispheres with the largest initial blood repletion deficit.

  15. Reduced activity of SKCa and Na-K ATPase underlies the accelerated impairment of EDH-type relaxations in mesenteric arteries of aging spontaneously hypertensive rats

    PubMed Central

    Kong, Billy W C; Man, Ricky Y K; Gao, Yuansheng; Vanhoutte, Paul M; Leung, Susan W S

    2015-01-01

    Aging is accompanied by endothelial dysfunction due to reduced bioavailability of nitric oxide (NO) and/or reduced endothelium-dependent hyperpolarizations (EDH). This study examines the hypothesis that hypertension aggravates the impairment of EDH-type relaxation due to aging. EDH-type relaxations were studied in superior mesenteric arteries isolated from Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats of 12, 36, 60, and 72 weeks of age. EDH-type relaxations in WKY were reduced with aging, and this was associated with an impairment of the function of small-conductance calcium-activated potassium channels (SKCa) and sodium-potassium ATPase (Na-K ATPase). EDH-type relaxation in SHR was smaller than that in WKY arteries, and further reduction occurred with aging. Pharmacological experiments suggested a reduced involvement of SKCa and Na-K ATPase and activation of adenosine monophosphate-activated protein kinase and silent information regulator T1 (sirtuin-1; SIRT1) in mesenteric arteries of 12-week-old SHR. These pharmacological findings suggest that in superior mesenteric arteries of the rat, the reduction in EDH-type relaxation occurs with aging and that such a reduction is exacerbated in hypertension. The latter exacerbation appears to involve proteins associated with the process of cellular senescence and is related to impaired function of SKCa and Na-K ATPase, a phenomenon that is also observed in mesenteric arteries of older normotensive rats. PMID:26171229

  16. Differential Effects of Long Term FTY720 Treatment on Endothelial versus Smooth Muscle Cell Signaling to S1P in Rat Mesenteric Arteries.

    PubMed

    Hamidi Shishavan, Mahdi; Bidadkosh, Arash; Yazdani, Saleh; Lambooy, Sebastiaan; van den Born, Jacob; Buikema, Hendrik; Henning, Robert H; Deelman, Leo E

    2016-01-01

    The sphingosine-1-phosphate (S1P) analog FTY720 exerts pleiotropic effects on the cardiovascular system and causes down-regulation of S1P receptors. Myogenic constriction is an important mechanism regulating resistance vessel function and is known to be modulated by S1P. Here we investigated myogenic constriction and vascular function of mesenteric arteries of rats chronically treated with FTY720. Wistar rats received FTY720 1mg/kg/daily for six weeks. At termination, blood pressure was recorded and small mesenteric arteries collected for vascular studies in a perfusion set up. Myogenic constriction to increased intraluminal pressure was low, but a sub-threshold dose of S1P profoundly augmented myogenic constriction in arteries of both controls and animals chronically treated with FTY720. Interestingly, endothelial denudation blocked the response to S1P in arteries of FTY720-treated animals, but not in control rats. In acute experiments, presence of FTY720 significantly augmented the contractile response to S1P, an effect that was partially abolished after the inhibition of cyclooxygenase (COX-)-derived prostaglandins. FTY720 down regulated S1P1 but not S1P2 in renal resistance arteries and in cultured human endothelial cells. This study therefore demonstrates the endothelium is able to compensate for the complete loss of responsiveness of the smooth muscle layer to S1P after long term FTY720 treatment through a mechanism that most likely involves enhanced production of contractile prostaglandins by the endothelium.

  17. The modification of the new type of end-to-side anastomosis between carotid arteries in rats: a technical and scanning electron microscopic study.

    PubMed

    Imer, M; Okar, T; Cobanoğlu, S; Kayapinar, R; Memiş, M; Hepgül, K; Kutlu, K

    1996-01-01

    Modification of a type of end-to-side anastomosis that has been described before is studied. The recipient artery is occluded for only 3-4 minutes to complete the anastomosis by using only the running suture. The anastomotic site was studied by inspection and Scanning Electron Microscope (SEM) at different times after the operation on 30 rats.

  18. Eugenol dilates rat cerebral arteries by inhibiting smooth muscle cell voltage-dependent calcium channels.

    PubMed

    Peixoto-Neves, Dieniffer; Leal-Cardoso, Jose Henrique; Jaggar, Jonathan H

    2014-11-01

    Plants high in eugenol, a phenylpropanoid compound, are used as folk medicines to alleviate diseases including hypertension. Eugenol has been demonstrated to relax conduit and ear arteries and reduce systemic blood pressure, but mechanisms involved are unclear. Here, we studied eugenol regulation of resistance-size cerebral arteries that control regional brain blood pressure and flow and investigated mechanisms involved. We demonstrate that eugenol dilates arteries constricted by either pressure or membrane depolarization (60 mM K) in a concentration-dependent manner. Experiments performed using patch-clamp electrophysiology demonstrated that eugenol inhibited voltage-dependent calcium (Ca) currents, when using Ba as a charge carrier, in isolated cerebral artery smooth muscle cells. Eugenol inhibition of voltage-dependent Ca currents involved pore block, a hyperpolarizing shift (∼-10 mV) in voltage-dependent inactivation, an increase in the proportion of steady-state inactivating current, and acceleration of inactivation rate. In summary, our data indicate that eugenol dilates cerebral arteries by means of multimodal inhibition of voltage-dependent Ca channels.

  19. Long-term beneficial effects of BW619C89 on neurological deficit, cognitive deficit and brain damage after middle cerebral artery occlusion in the rat.

    PubMed

    Smith, S E; Hodges, H; Sowinski, P; Man, C M; Leach, M J; Sinden, J D; Gray, J A; Meldrum, B S

    1997-04-01

    4-Amino-2-(4-methyl-1-piperazinyl)-5-(2,3,5-trichlorophenyl)pyrimidine (BW619C89) is a sodium channel antagonist which when administered parenterally reduces neurological deficit and infarct volume after middle cerebral artery occlusion in rats. We have investigated whether BW619C89 administered orally before middle cerebral artery occlusion is cerebroprotective when rats are assessed at one day after stroke, and whether cerebroprotection is long lasting and related to functional recovery. A cerebroprotective oral dose of BW619C89 (20 mg/kg) was used to determine whether reduction in infarct volume is long lasting and can be enhanced with continued therapy, and whether behavioural deficits occurring after middle cerebral artery occlusion such as disturbances in cognition and motor coordination are ameliorated by treatment with BW619C89. Rats received sham surgery or middle cerebral artery occlusion with a single treatment of BW619C89 (20 mg/kg) 1 h before middle cerebral artery occlusion, a double treatment group receiving 20 mg/kg BW619C89 1 h before and 10 mg/kg 5 h after middle cerebral artery occlusion, or continued treatment with BW619C89 for up to five days. Neurological deficit, assessed from days 1 to 21, and at 70 days after middle cerebral artery occlusion, was reduced to a similar extent in all three groups of rats treated with BW619C89, compared with vehicle-treated controls. At 70 days after middle cerebral artery occlusion, all groups performed at control level. Vehicle-treated rats were impaired in the Morris water maze and step-through passive avoidance paradigm five to eight weeks after middle cerebral artery occlusion, when neurological deficit was minimal. These deficits were partially alleviated, to a similar extent, by all of the three treatments with BW619C89. Total volumes of brain damage, assessed at 70 days after middle cerebral artery occlusion in Luxol Fast Blue- and Cresyl Violet-stained coronal sections, were reduced in all three groups

  20. The effect of ACE inhibition on the pulmonary vasculature in combined model of chronic hypoxia and pulmonary arterial banding in Sprague Dawley rats

    NASA Astrophysics Data System (ADS)

    Clarke, Shanelle; Baumgardt, Shelley; Molthen, Robert

    2010-03-01

    Microfocal CT was used to image the pulmonary arterial (PA) tree in rodent models of pulmonary hypertension (PH). CT images were used to measure the arterial tree diameter along the main arterial trunk at several hydrostatic intravascular pressures and calculate distensibility. High-resolution planar angiographic imaging was also used to examine distal PA microstructure. Data on pulmonary artery tree morphology improves our understanding of vascular remodeling and response to treatments. Angiotensin II (ATII) has been identified as a mediator of vasoconstriction and proliferative mitotic function. ATII has been shown to promote vascular smooth muscle cell hypertrophy and hyperplasia as well as stimulate synthesis of extracellular matrix proteins. Available ATII is targeted through angiotensin converting enzyme inhibitors (ACEIs), a method that has been used in animal models of PH to attenuate vascular remodeling and decrease pulmonary vascular resistance. In this study, we used rat models of chronic hypoxia to induce PH combined with partial left pulmonary artery occlusion (arterial banding, PLPAO) to evaluate effects of the ACEI, captopril, on pulmonary vascular hemodynamic and morphology. Male Sprague Dawley rats were placed in hypoxia (FiO2 0.1), with one group having underwent PLPAO three days prior to the chronic hypoxia. After the twenty-first day of hypoxia exposure, treatment was started with captopril (20 mg/kg/day) for an additional twenty-one days. At the endpoint, lungs were excised and isolated to examine: pulmonary vascular resistance, ACE activity, pulmonary vessel morphology and biomechanics. Hematocrit and RV/LV+septum ratio was also measured. CT planar images showed less vessel dropout in rats treated with captopril versus the non-treatment lungs. Distensibility data shows no change in rats treated with captopril in both chronic hypoxia (CH) and CH with PLPAO (CH+PLPAO) models. Hemodynamic measurements also show no change in the pulmonary vascular

  1. Long-term effect of prazosin and losartan administration on blood pressure, heart, carotid artery, and acetylcholine induced dilation of cardiovascular system of young Wistar rats and SHR.

    PubMed

    Kristek, Frantisek; Malekova, Magdalena; Cacanyiova, Sona

    2013-06-01

    The long-term effects of prazosin and losartan administration on blood pressure, trophicity of the heart and carotid arteries, and responses of the cardiovascular system to acetylcholine, were studied in Wistar rats and spontaneously hypertensive rats (SHRs). Four-week-old rats were treated with prazosin (10 mg/kg b.w./day in tap water) or losartan (20 mg/kg b.w./day in tap water) for 5-6 weeks. BP was measured by plethysmographic method. Ten animals of each group were subjected to in vivo studies and subsequent to morphological investigations. The right jugular vein was cannulated for administration of acetylcholine (0.1, 1, and 10 µg). After perfusion with a glutaraldehyde fixative (120 mmHg), the carotid arteries were embedded in Durcupan ACM, and the inner diameter (ID), wall thickness (WT) (tunica intima and media), cross sectional area (CSA) (tunica intima and media), and WT/ID ratio were calculated. In Wistar rats and SHRs, prazosin and losartan administration produced a decrease in the blood pressure and trophicity of the heart. In Wistar rats, both drugs decreased the WT, CSA, and the WT/ID ratio. In addition, these drugs increased the circumferential stress of the artery without affecting the ID. In contrast, in the SHRs, only losartan administration produced these effects. Importantly, both the drugs improved the responses to acetylcholine in SHRs.

  2. Roles of the subfornical organ and area postrema in arterial pressure increases induced by 48‐h water deprivation in normal rats

    PubMed Central

    Collister, John P.; Nahey, David B.; Hendel, Michael D.; Brooks, Virginia L.

    2014-01-01

    Abstract In rats, water deprivation (WD) increases arterial blood pressure (BP) in part due to actions of elevated osmolality in the brain to increase vasopressin levels and sympathetic activity. However, the osmoreceptors that mediate this response have not been identified. To test the hypothesis that osmoregulatory circumventricular organs are involved, BP and heart rate (HR) were continuously recorded telemetrically during 48 h of WD in normal rats with lesions (x) or sham lesions (sham) of the subfornical organ (SFO) or area postrema (AP). Although WD increased BP in SFOx and SFOsham rats, no significant difference in the hypertensive response was observed between groups. HR decreased transiently but similarly in SFOx and SFOsham rats during the first 24 h of WD. When water was reintroduced, BP and HR decreased rapidly and similarly in both groups. BP (during lights off) and HR were both lower in APx rats before WD compared to APsham. WD increased BP less in APx rats, and the transient bradycardia was eliminated. Upon reintroduction of drinking water, smaller falls in both BP and HR were observed in APx rats compared to APsham rats. WD increased plasma osmolality and vasopressin levels similarly in APx and APsham rats, and acute blockade of systemic V1 vasopressin receptors elicited similar depressor responses, suggesting that the attenuated BP response is not due to smaller increases in vasopressin or osmolality. In conclusion, the AP, but not the SFO, is required for the maximal hypertensive effect induced by WD in rats. PMID:24744870

  3. Vertebro-basilar junction aneurysms: a single centre experience and meta-analysis of endovascular treatments.

    PubMed

    Graziano, Francesca; Ganau, Mario; Iacopino, Domenico Gerardo; Boccardi, Edoardo

    2014-12-01

    Vascular lesions of the vertebrobasilar junction (VBJ) are challenging in neurosurgical practice, and their gold-standard therapy is still under debate. We describe the operative strategies currently in use for the management of these complex vascular lesions and discuss their rationale in a literature meta-analysis and single centre blinded retrospective study. The single centre study included a review of initial presentation, angiographic features and clinical outcome (with modified Rankin Scale [mRS] scores) over a long-term follow-up. In our series, small aneurysms were effectively treated by endosaccular coil embolization, whereas a strategy including flow-diverter devices combined with endosaccular coil embolization was the option of choice in large and giant aneurysms, leading to satisfactory outcomes in most cases. Our Medline review showed that endovascular treatment was chosen in most VBJ cases, whereas the microsurgical option was assigned to only a few cases. Among the endovascular treatments, the most common techniques used for the treatment of VBJ aneurysms were: coiling, stent-assisted coiling and flow diversion. Our study highlights that aneurysm morphology, location and patient-specific angio-architecture are key factors to be considered in the management of VBJ aneurysms. Most case series, including our own, show that parent artery reconstruction using a flow-diverter device is a feasible and successful technique in some cases of giant and complex aneurysms (especially those involving the lower third of the basilar artery) while a "sit back, wait and see" approach may represent the safest and most reasonable option.

  4. Vertebro-Basilar Junction Aneurysms: A Single Centre Experience and Meta-Analysis of Endovascular Treatments

    PubMed Central

    Graziano, Francesca; Ganau, Mario; Iacopino, Domenico Gerardo; Boccardi, Edoardo

    2014-01-01

    Summary Vascular lesions of the vertebrobasilar junction (VBJ) are challenging in neurosurgical practice, and their gold-standard therapy is still under debate. We describe the operative strategies currently in use for the management of these complex vascular lesions and discuss their rationale in a literature meta-analysis and single centre blinded retrospective study. The single centre study included a review of initial presentation, angiographic features and clinical outcome (with modified Rankin Scale [mRS] scores) over a long-term follow-up. In our series, small aneurysms were effectively treated by endosaccular coil embolization, whereas a strategy including flow-diverter devices combined with endosaccular coil embolization was the option of choice in large and giant aneurysms, leading to satisfactory outcomes in most cases. Our Medline review showed that endovascular treatment was chosen in most VBJ cases, whereas the microsurgical option was assigned to only a few cases. Among the endovascular treatments, the most common techniques used for the treatment of VBJ aneurysms were: coiling, stent-assisted coiling and flow diversion. Our study highlights that aneurysm morphology, location and patient-specific angio-architecture are key factors to be considered in the management of VBJ aneurysms. Most case series, including our own, show that parent artery reconstruction using a flow-diverter device is a feasible and successful technique in some cases of giant and complex aneurysms (especially those involving the lower third of the basilar artery) while a "sit back, wait and see" approach may represent the safest and most reasonable option. PMID:25489898

  5. Endothelin-1 and ET receptors impair left ventricular function by mediated coronary arteries dysfunction in chronic intermittent hypoxia rats.

    PubMed

    Wang, Jin-Wei; Li, Ai-Ying; Guo, Qiu-Hong; Guo, Ya-Jing; Weiss, James W; Ji, En-Sheng

    2017-01-01

    Obstructive sleep apnea (OSA) results in cardiac dysfunction and vascular endothelium injury. Chronic intermittent hypoxia (CIH), the main characteristic of OSAS, is considered to be mainly responsible for cardiovascular system impairment. This study is aimed to evaluate the role of endothelin-1(ET-1) system in coronary injury and cardiac dysfunction in CIH rats. In our study, Sprague-Dawley rats were exposed to CIH (FiO2 9% for 1.5 min, repeated every 3 min for 8 h/d, 7 days/week for 3 weeks). After 3 weeks, the left ventricular developed pressure (LVDP) and coronary resistance (CR) were measured with the langendorff mode in isolated hearts. Meanwhile, expressions of ET-1 and ET receptors were detected by immunohistochemical and western blot, histological changes were also observed to determine effects of CIH on coronary endothelial cells. Results suggested that decreased LVDP level combined with augmented coronary resistance was exist in CIH rats. CIH could induce endothelial injury and endothelium-dependent vasodilatation dysfunction in the coronary arteries. Furthermore, ET-1 and ETA receptor expressions in coronary vessels were increased after CIH exposure, whereas ETB receptors expression was decreased. Coronary contractile response to ET-1 in both normoxia and CIH rats was inhibited by ETA receptor antagonist BQ123. However, ETB receptor antagonist BQ788 enhanced ET-1-induced contractile in normoxia group, but had no significant effects on CIH group. These results indicate that CIH-induced cardiac dysfunction may be associated with coronary injury. ET-1 plays an important role in coronary pathogenesis of CIH through ETA receptor by mediating a potent vasoconstrictor response. Moreover, decreased ETB receptor expression that leads to endothelium-dependent vasodilatation decline, might be also participated in coronary and cardiac dysfunction.

  6. Regulation of sympathetic tone and arterial pressure by rostral ventrolateral medulla after depletion of C1 cells in rat.

    PubMed

    Schreihofer, A M; Stornetta, R L; Guyenet, P G

    2000-11-15

    1. In this study we examined whether the rostral ventrolateral medulla (RVLM) maintains resting sympathetic vasomotor tone and activates sympathetic nerve activity (SNA) after the depletion of bulbospinal C1 adrenergic neurones. 2. Bulbospinal C1 cells were destroyed ( approximately 84% loss) by bilateral microinjections (spinal segments T2-T3) of an anti-dopamine-beta-hydroxylase antibody conjugated to the ribosomal toxin saporin (anti-DH-SAP). 3. Extracellular recording and juxtacellular labelling of bulbospinal barosensitive neurones in the RVLM revealed that treatment with anti-DH-SAP spared the lightly myelinated neurones with no tyrosine hydroxylase immunoreactivity. 4. In rats treated with anti-DH-SAP, inhibition of RVLM neurones by bilateral microinjection of muscimol eliminated splanchnic SNA and produced the same degree of hypotension as in control rats. 5. Following treatment with anti-DH-SAP the sympathoexcitatory (splanchnic nerve) and pressor responses to electrical stimulation of the RVLM were reduced. 6. Treatment with anti-DH-SAP also eliminated the majority of A5 noradrenergic neurones. However, rats with selective lesion of A5 cells by microinjection of 6-hydroxydopamine into the pons showed no deficits to stimulation of the RVLM. 7. In summary, the loss of 84% of bulbospinal adrenergic neurones does not alter the ability of RVLM to maintain SNA and arterial pressure at rest in anaesthetized rats, but this loss reduces the sympathoexcitatory and pressor responses evoked by RVLM stimulation. The data suggest sympathoexcitatory roles for both the C1 cells and non-C1 cells of the RVLM and further suggest the C1 cells are critical for the full expression of sympathoexcitatory responses generated by the RVLM.

  7. Heart function in magnetic resonance imaging and the mesenteric artery reactivity in rats receiving lead-contaminated drinking water.

    PubMed

    Skoczynska, A; Skórka, T; Wojakowska, A; Nowacki, D; Turczyn, B; Poręba, R; Tyrankiewicz, U; Byk, K; Szuba, A

    2014-05-01

    The aim of this study was to evaluate the effect of lead (Pb)-contaminated drinking water on magnetic resonance imaging (MRI)-estimated cardiac function, vascular reactivity, and serum lipids in