Science.gov

Sample records for rat brain attenuation

  1. Propofol Attenuates Early Brain Injury After Subarachnoid Hemorrhage in Rats.

    PubMed

    Shi, Song-sheng; Zhang, Hua-bin; Wang, Chun-hua; Yang, Wei-zhong; Liang, Ri-sheng; Chen, Ye; Tu, Xian-kun

    2015-12-01

    Our previous studies demonstrated that propofol protects rat brain against focal cerebral ischemia. However, whether propofol attenuates early brain injury after subarachnoid hemorrhage in rats remains unknown until now. The present study was performed to evaluate the effect of propofol on early brain injury after subarachnoid hemorrhage in rats and further explore the potential mechanisms. Sprague-Dawley rats underwent subarachnoid hemorrhage (SAH) by endovascular perforation then received treatment with propofol (10 or 50 mg/kg) or vehicle after 2 and 12 h of SAH. SAH grading, neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and malondialdehyde (MDA) content were measured 24 h after SAH. Expression of nuclear factor erythroid-related factor 2 (Nrf2), nuclear factor-kappa B (NF-κB) p65, and aquaporin 4 (AQP4) expression in rat brain were detected by Western blot. Expression of cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9) were determined by reverse transcription-polymerase chain reaction (RT-PCR). Expressions of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were assessed by ELISA. Neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and MDA content were significantly reduced by propofol. Furthermore, expression of Nrf2 in rat brain was upregulated by propofol, and expression of NF-κB p65, AQP4, COX-2, MMP-9, TNF-α, and IL-1β in rat brain were attenuated by propofol. Our results demonstrated that propofol improves neurological scores, reduces brain edema, blood-brain barrier (BBB) permeability, inflammatory reaction, and lipid peroxidation in rats of SAH. Propofol exerts neuroprotection against SAH-induced early brain injury, which might be associated with the inhibition of inflammation and lipid peroxidation. PMID:26342279

  2. Propofol Attenuates Early Brain Injury After Subarachnoid Hemorrhage in Rats.

    PubMed

    Shi, Song-sheng; Zhang, Hua-bin; Wang, Chun-hua; Yang, Wei-zhong; Liang, Ri-sheng; Chen, Ye; Tu, Xian-kun

    2015-12-01

    Our previous studies demonstrated that propofol protects rat brain against focal cerebral ischemia. However, whether propofol attenuates early brain injury after subarachnoid hemorrhage in rats remains unknown until now. The present study was performed to evaluate the effect of propofol on early brain injury after subarachnoid hemorrhage in rats and further explore the potential mechanisms. Sprague-Dawley rats underwent subarachnoid hemorrhage (SAH) by endovascular perforation then received treatment with propofol (10 or 50 mg/kg) or vehicle after 2 and 12 h of SAH. SAH grading, neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and malondialdehyde (MDA) content were measured 24 h after SAH. Expression of nuclear factor erythroid-related factor 2 (Nrf2), nuclear factor-kappa B (NF-κB) p65, and aquaporin 4 (AQP4) expression in rat brain were detected by Western blot. Expression of cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9) were determined by reverse transcription-polymerase chain reaction (RT-PCR). Expressions of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were assessed by ELISA. Neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and MDA content were significantly reduced by propofol. Furthermore, expression of Nrf2 in rat brain was upregulated by propofol, and expression of NF-κB p65, AQP4, COX-2, MMP-9, TNF-α, and IL-1β in rat brain were attenuated by propofol. Our results demonstrated that propofol improves neurological scores, reduces brain edema, blood-brain barrier (BBB) permeability, inflammatory reaction, and lipid peroxidation in rats of SAH. Propofol exerts neuroprotection against SAH-induced early brain injury, which might be associated with the inhibition of inflammation and lipid peroxidation.

  3. Ulinastatin attenuates brain edema after traumatic brain injury in rats.

    PubMed

    Cui, Tao; Zhu, Gangyi

    2015-03-01

    Traumatic brain injury (TBI) remains the leading cause of injury-related death and disability. Brain edema, one of the most major complications of TBI, contributes to elevated intracranial pressure, and poor prognosis following TBI. The objective of this study was to evaluate whether Ulinastatin (UTI), a serine protease inhibitor, attenuates brain edema following TBI. Our results showed that treatment with UTI at a dose of 50,000 U/kg attenuated the brain edema, as assayed by water content 24 h after TBI induction. This attenuation was associated with a significant decrease of the expression level of aquaporin-4. In addition, we showed that UTI treatment also markedly inhibited the expression of pro-inflammatory cytokines including IL-1β and TNF-α as well as activity of NF-κB. Collectively, our findings suggested that UTI may be a promising strategy to treat brain edema following TBI.

  4. Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats.

    PubMed

    Gu, Xiaohuan; Wei, Zheng Zachory; Espinera, Alyssa; Lee, Jin Hwan; Ji, Xiaoya; Wei, Ling; Dix, Thomas A; Yu, Shan Ping

    2015-05-01

    Neonatal brain trauma is linked to higher risks of mortality and neurological disability. The use of mild to moderate hypothermia has shown promising potential against brain injuries induced by stroke and traumatic brain injury (TBI) in various experimental models and in clinical trials. Conventional methods of physical cooling, however, are difficult to use in acute treatments and in induction of regulated hypothermia. In addition, general anesthesia is usually required to mitigate the negative effects of shivering during physical cooling. Our recent investigations demonstrate the potential therapeutic benefits of pharmacologically induced hypothermia (PIH) using the neurotensin receptor (NTR) agonist HPI201 (formerly known as ABS201) in stroke and TBI models of adult rodents. The present investigation explored the brain protective effects of HPI201 in a P14 rat pediatric model of TBI induced by controlled cortical impact. When administered via intraperitoneal (i.p.) injection, HPI201 induced dose-dependent reduction of body and brain temperature. A 6-h hypothermic treatment, providing an overall 2-3°C reduction of brain and body temperature, showed significant effect of attenuating the contusion volume versus TBI controls. Attenuation occurs whether hypothermia is initiated 15min or 2h after TBI. No shivering response was seen in HPI201-treated animals. HPI201 treatment also reduced TUNEL-positive and TUNEL/NeuN-colabeled cells in the contusion area and peri-injury regions. TBI-induced blood-brain barrier damage was attenuated by HPI201 treatment, evaluated using the Evans Blue assay. HPI201 significantly decreased MMP-9 levels and caspase-3 activation, both of which are pro-apototic, while it increased anti-apoptotic Bcl-2 gene expression in the peri-contusion region. In addition, HPI201 prevented the up-regulation of pro-inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. In sensorimotor activity assessments, rats in the HPI201

  5. Pharmacologically Induced Hypothermia Attenuates Traumatic Brain Injury in Neonatal Rats

    PubMed Central

    Espinera, Alyssa; Lee, Jin Hwan; Ji, Xiaoya; Wei, Ling; Dix, Thomas A.; Yu, Shan Ping

    2015-01-01

    Neonatal brain trauma is linked to higher risks of mortality and neurological disability. The use of mild to moderate hypothermia has shown promising potential against brain injuries induced by stroke and traumatic brain injury (TBI) in various experimental models and in clinical trials. Conventional methods of physical cooling, however, are difficult to use in acute treatments and in induction of regulated hypothermia. In addition, general anesthesia is usually required to mitigate the negative effects of shivering during physical cooling. Our recent investigations demonstrate the potential therapeutic benefits of pharmacologically induced hypothermia (PIH) using the neurotensin receptor (NTR) agonist HPI201 (formerly known as ABS201) in stroke and TBI models of adult rodents. The present investigation explored the brain protective effects of HPI201 in a P14 rat pediatric model of TBI induced by controlled cortical impact. When administered via intraperitoneal (i.p.) injection, HPI201 induced dose-dependent reduction of body and brain temperature. A six-hour hypothermic treatment, providing an overall 2-3°C reduction of brain and body temperature, showed significant effect of attenuating the contusion volume versus TBI controls. Attenuation occurs whether hypothermia is initiated 15 min or 2 hr after TBI. No shivering response was seen in HPI201-treated animals. HPI201 treatment also reduced TUNEL-positive and TUNEL/NeuN-colabeled cells in the contusion area and peri-injury regions. TBI-induced blood brain barrier damage was attenuated by HPI201 treatment, evaluated using the Evans Blue assay. HPI201 significantly decreased MMP-9 levels and Caspase-3 activation, both of which are pro-apototic, while it increased anti-apoptotic Bcl-2 gene expression in the peri-contusion region. In addition, HPI201 prevented the up-regulation of pro-inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. In sensorimotor activity assessments, rats in the

  6. Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats.

    PubMed

    Zhao, Jinbing; Chen, Zhi; Xi, Guohua; Keep, Richard F; Hua, Ya

    2014-10-01

    Acute post-traumatic ventricular dilation and hydrocephalus are relatively frequent consequences of traumatic brain injury (TBI). Several recent studies have indicated that high iron levels in brain may relate to hydrocephalus development after intracranial hemorrhage. However, the role of iron in the development of post-traumatic hydrocephalus is still unclear. This study was to determine whether or not iron has a role in hydrocephalus development after TBI. TBI was induced by lateral fluid-percussion in male Sprague-Dawley rats. Some rats had intraventricular injection of iron. Acute hydrocephalus was measured by magnetic resonance T2-weighted imaging and brain hemorrhage was determined by T2* gradient-echo sequence imaging and brain hemoglobin levels. The effect of deferoxamine on TBI-induced hydrocephalus was examined. TBI resulted in acute hydrocephalus at 24 h (lateral ventricle volume: 24.1 ± 3.0 vs. 9.9 ± 0.2 mm(3) in sham group). Intraventricular injection of iron also caused hydrocephalus (25.7 ± 3.4 vs. 9.0 ± 0.6 mm(3) in saline group). Deferoxamine treatment attenuated TBI-induced hydrocephalus and heme oxygenase-1 upregulation. In conclusion, iron may contribute to acute hydrocephalus after TBI.

  7. Hydrogen-rich water attenuates brain damage and inflammation after traumatic brain injury in rats.

    PubMed

    Tian, Runfa; Hou, Zonggang; Hao, Shuyu; Wu, Weichuan; Mao, Xiang; Tao, Xiaogang; Lu, Te; Liu, Baiyun

    2016-04-15

    Inflammation and oxidative stress are the two major causes of apoptosis after traumatic brain injury (TBI). Most previous studies of the neuroprotective effects of hydrogen-rich water on TBI primarily focused on antioxidant effects. The present study investigated whether hydrogen-rich water (HRW) could attenuate brain damage and inflammation after traumatic brain injury in rats. A TBI model was induced using a controlled cortical impact injury. HRW or distilled water was injected intraperitoneally daily following surgery. We measured survival rate, brain edema, blood-brain barrier (BBB) breakdown and neurological dysfunction in all animals. Changes in inflammatory cytokines, inflammatory cells and Cho/Cr metabolites in brain tissues were also detected. Our results demonstrated that TBI-challenged rats exhibited significant brain injuries that were characterized by decreased survival rate and increased BBB permeability, brain edema, and neurological dysfunction, while HRW treatment ameliorated the consequences of TBI. HRW treatment also decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β and HMGB1), inflammatory cell number (Iba1) and inflammatory metabolites (Cho) and increased the levels of an anti-inflammatory cytokine (IL-10) in the brain tissues of TBI-challenged rats. In conclusion, HRW could exert a neuroprotective effect against TBI and attenuate inflammation, which suggests HRW as an effective therapeutic strategy for TBI patients. PMID:26826009

  8. Cerebrolysin attenuates blood-brain barrier and brain pathology following whole body hyperthermia in the rat.

    PubMed

    Sharma, Hari Shanker; Zimmermann-Meinzingen, Sibilla; Sharma, Aruna; Johanson, Conrad E

    2010-01-01

    The possibility that Cerebrolysin, a mixture of several neurotrophic factors, has some neuroprotective effects on whole body hyperthermia (WBH) induced breakdown of the blood-brain barrier (BBB), blood-CSF barrier (BCSFB), brain edema formation and neuropathology were examined in a rat model. Rats subjected to a 4 h heat stress at 38 degrees C in a biological oxygen demand (BOD) incubator exhibited profound increases in BBB and BCSFB permeability to Evans blue and radioiodine tracers compared to controls. Hippocampus, caudate nucleus, thalamus and hypothalamus exhibited pronounced increase in water content and brain pathology following 4 h heat stress. Pretreatment with Cerebrolysin (1, 2 or 5 mL/kg i.v.) 24 h before WBH significantly attenuated breakdown of the BBB or BCSFB and brain edema formation. This effect was dose dependent. Interestingly, the cell and tissue injury following WBH in cerebrolysin-treated groups were also considerably reduced. These novel observations suggest that cerebrolysin can attenuate WBH induced BBB and BCSFB damage resulting in neuroprotection.

  9. Celecoxib attenuates systemic lipopolysaccharide-induced brain inflammation and white matter injury in the neonatal rats.

    PubMed

    Fan, L-W; Kaizaki, A; Tien, L-T; Pang, Y; Tanaka, S; Numazawa, S; Bhatt, A J; Cai, Z

    2013-06-14

    Lipopolysaccharide (LPS)-induced white matter injury in the neonatal rat brain is associated with inflammatory processes. Cyclooxygenase-2 (COX-2) can be induced by inflammatory stimuli, such as cytokines and pro-inflammatory molecules, suggesting that COX-2 may be considered as the target for anti-inflammation. The objective of the present study was to examine whether celecoxib, a selective COX-2 inhibitor, can reduce systemic LPS-induced brain inflammation and brain damage. Intraperitoneal (i.p.) injection of LPS (2mg/kg) was performed in postnatal day 5 (P5) of Sprague-Dawley rat pups and celecoxib (20mg/kg) or vehicle was administered i.p. 5 min after LPS injection. The body weight and wire-hanging maneuver test was performed 24h after the LPS exposure, and brain injury was examined after these tests. Systemic LPS exposure resulted in an impairment of behavioral performance and acute brain injury, as indicated by apoptotic death of oligodendrocytes (OLs) and loss of OL immunoreactivity in the neonatal rat brain. Treatments with celecoxib significantly reduced systemic LPS-induced neurobehavioral disturbance and brain damage. Celecoxib administration significantly attenuated systemic LPS-induced increments in the number of activated microglia and astrocytes, concentrations of IL-1β and TNFα, and protein levels of phosphorylated-p38 MAPK in the neonatal rat brain. The protection of celecoxib was also associated with a reduction of systemic LPS-induced COX-2+ cells which were double labeled with GFAP+ (astrocyte) cells. The overall results suggest that celecoxib was capable of attenuating the brain injury and neurobehavioral disturbance induced by systemic LPS exposure, and the protective effects are associated with its anti-inflammatory properties.

  10. Curcumin Mediated Attenuation of Carbofuran Induced Oxidative Stress in Rat Brain

    PubMed Central

    Jaiswal, Sunil Kumar; Sharma, Ashish; Gupta, Vivek Kumar; Singh, Rakesh Kumar; Sharma, Bechan

    2016-01-01

    The indiscriminate use of carbofuran to improve crop productivity causes adverse effects in nontargets including mammalian systems. The objective of this study was to evaluate carbofuran induced oxidative stress in rat brain stem and its attenuation by curcumin, a herbal product. Out of 6 groups of rats, 2 groups received two different doses of carbofuran, that is, 15 and 30% of LD50, respectively, for 30 days. Out of these, 2 groups receiving same doses of carbofuran were pretreated with curcumin (100 mg/kg body weight). The levels of antioxidants, TBARS, GSH, SOD, catalase, and GST were determined in rat brain stem. The 2 remaining groups served as placebo and curcumin treated, respectively. The data suggested that carbofuran at different doses caused significant alterations in the levels of TBARS and GSH in dose dependent manner. The TBARS and GSH contents were elevated. The activities of SOD, catalase, and GST were significantly inhibited at both doses of carbofuran. The ratio of P/A was also found to be sharply increased. The pretreatment of curcumin exhibited significant protection from carbofuran induced toxicity. The results suggested that carbofuran at sublethal doses was able to induce oxidative stress in rat brain which could be attenuated by curcumin. PMID:27213055

  11. Diosgenin attenuates the brain injury induced by transient focal cerebral ischemia-reperfusion in rats.

    PubMed

    Zhang, Xinxin; Xue, Xuanji; Zhao, Jing; Qian, Chunxiang; Guo, Zengjun; Ito, Yoichiro; Sun, Wenji

    2016-09-01

    The aim of the present study is to explore the potential cerebroprotection of diosgenin against the transient focal cerebral ischemia-reperfusion (I/R) injury and its possible underlying mechanisms. The diosgenin at two dose levels, namely 100 and 200mgkg(-1), was intragastrically administrated once daily for 7-day period prior to the surgery. Then, the rats were subjected to middle cerebral artery occlusion (MCAO) using the intraluminal thread for 90min. After 24h reperfusion, several diagnostic indicators were evaluated and all animals were sacrificed to harvest their brains and blood for subsequent biochemical analyses. The results indicated that diosgenin treatment significantly inhibited the death rate and improved the impaired neurological functions along with neurological deficit scores and cerebral infarct size as compared with the rats exposed to I/R insult without agents administration. The increase in the number of apoptotic cells determined by TUNEL in the hippocampus CA1 and cortex was also apparently attenuated in the diosgenin treatment group, which was closely correlated with suppression of Caspase-3 activity and Bax/Bcl-2 ratio. In addition the elevated concentrations of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in blood serum of the I/R treated rats were reduced almost to their normal level. Further results obtained from the Western blotting analysis revealed that the protein expression of IκBα in the injured brain was up-regulated, while the p65 subunit of NF-κB was down-regulated in nucleus after the treatment. Collectively, this neuroprotection of diosgenin against I/R injury may be attained through its anti-apoptosis, anti-inflammation and intervening the NF-κB signal pathway properties. Due to the satisfactory findings, diosgenin might be a powerful therapeutic agent to combat the similar disease in future clinic. PMID:27425638

  12. Rosiglitazone attenuates inflammation and CA3 neuronal loss following traumatic brain injury in rats.

    PubMed

    Liu, Hao; Rose, Marie E; Culver, Sherman; Ma, Xiecheng; Dixon, C Edward; Graham, Steven H

    2016-04-15

    Rosiglitazone, a potent peroxisome proliferator-activated receptor (PPAR)-γ agonist, has been shown to confer neuroprotective effects in stroke and spinal cord injury, but its role in the traumatic brain injury (TBI) is still controversial. Using a controlled cortical impact model in rats, the current study was designed to determine the effects of rosiglitazone treatment (6 mg/kg at 5 min, 6 h and 24 h post injury) upon inflammation and histological outcome at 21 d after TBI. In addition, the effects of rosiglitazone upon inflammatory cytokine transcription, vestibulomotor behavior and spatial memory function were determined at earlier time points (24 h, 1-5 d, 14-20 d post injury, respectively). Compared with the vehicle-treated group, rosiglitazone treatment suppressed production of TNFα at 24 h after TBI, attenuated activation of microglia/macrophages and increased survival of CA3 neurons but had no effect on lesion volume at 21 d after TBI. Rosiglitazone-treated animals had improved performance on beam balance testing, but there was no difference in spatial memory function as determined by Morris water maze. In summary, this study indicates that rosiglitazone treatment in the first 24 h after TBI has limited anti-inflammatory and neuroprotective effects in rat traumatic injury. Further study using an alternative dosage paradigm and more sensitive behavioral testing may be warranted. PMID:26947332

  13. Garlic extract attenuates brain mitochondrial dysfunction and cognitive deficit in obese-insulin resistant rats.

    PubMed

    Pintana, Hiranya; Sripetchwandee, Jirapas; Supakul, Luerat; Apaijai, Nattayaporn; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-12-01

    Oxidative stress in the obese-insulin resistant condition has been shown to affect cognitive as well as brain mitochondrial functions. Garlic extract has exerted a potent antioxidant effect. However, the effects of garlic extract on the brain of obese-insulin resistant rats have never been investigated. We hypothesized that garlic extract improves cognitive function and brain mitochondrial function in obese-insulin resistant rats induced by long-term high-fat diet (HFD) consumption. Male Wistar rats were fed either normal diet or HFD for 16 weeks (n = 24/group). At week 12, rats in each dietary group received either vehicle or garlic extract (250 and 500 mg·kg(-1)·day(-1)) for 28 days. Learning and memory behaviors, metabolic parameters, and brain mitochondrial function were determined at the end of treatment. HFD led to increased body weight, visceral fat, plasma insulin, cholesterol, and malondialdehyde (MDA) levels, indicating the development of insulin resistance. Furthermore, HFD rats had cognitive deficit and brain mitochondrial dysfunction. HFD rats treated with both doses of garlic extract had decreased body weight, visceral fat, plasma cholesterol, and MDA levels. Garlic extract also improved cognitive function and brain mitochondrial function, which were impaired in obese-insulin resistant rats caused by HFD consumption.

  14. Attenuation of rat ischemic brain damage by aged garlic extracts: a possible protecting mechanism as antioxidants.

    PubMed

    Numagami, Y; Sato, S; Ohnishi, S T

    1996-08-01

    Effects of an aged garlic extract and its thioallyl components on rat brain ischemia were examined using a middle cerebral artery occlusion model and a transient global ischemia model. In focal ischemia, an aged garlic extract, S-allyl cysteine (SAC), Allyl sulfide (AS) or Allyl disulfide (ADS) was administered 30 min prior to ischemic insult. Three days after ischemic insult, water contents of both ischemic and contralateral hemispheres were measured to assess the degree of ischemic damage. The water content of the ischemic control (no drug treatment) group was 81.50 +/- 0.07% (mean +/- SEM). It was significantly reduced with the administration of 300 mg/kg of SAC; the water content was 80.66 +/- 0.11% (P < 0.001). The histological observation using 2,3,5-triphenyltetrazolium chloride staining demonstrated that the administration of SAC reduced infarct volume. Neither AS nor ADS was effective. In global ischemia, the production of reactive oxygen species (ROS) was measured ex vivo using a spin-trapping agent, alpha-phenyl-N-tert-butylnitrone, and electron paramagnetic resonance spectroscopy. The production of ROS had two peaks; first at 5 min and second at 20 min after reperfusion. Both SAC and 7-nitro indazole, a nitric oxide synthase inhibitor, did not attenuate the amount of ROS produced at the first peak, but did the amount of the second peak. A possible involvement of peroxinitrite, which may be formed from superoxide and nitric oxide and is known to be highly toxic in ischemia/reperfusion injury of the brain, was suggested.

  15. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain

    PubMed Central

    Nonato, L.F.; Rocha-Vieira, E.; Tossige-Gomes, R.; Soares, A.A.; Soares, B.A.; Freitas, D.A.; Oliveira, M.X.; Mendonça, V.A.; Lacerda, A.C.; Massensini, A.R.; Leite, H.R.

    2016-01-01

    Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain. PMID:27706439

  16. Minocycline attenuates brain tissue levels of TNF-α produced by neurons after prolonged hypothermic cardiac arrest in rats

    PubMed Central

    Drabek, Tomas; Janata, Andreas; Wilson, Caleb D.; Stezoski, Jason; Janesko-Feldman, Keri; Tisherman, Samuel A.; Foley, Lesley M.; Verrier, Jonathan; Kochanek, Patrick M.

    2014-01-01

    Neuro-cognitive disabilities are a well-recognized complication of hypothermic circulatory arrest. We and others have reported that prolonged cardiac arrest (CA) produces neuronal death and microglial proliferation and activation that are only partially mitigated by hypothermia. Microglia, and possibly other cells, are suggested to elaborate tumor necrosis factor alpha (TNF-α) which can trigger neuronal death cascades and exacerbate edema after CNS insults. Minocycline is neuroprotective in some brain ischemia models in part by blunting the microglial response. We tested the hypothesis that minocycline would attenuate neuroinflammation as reflected by brain tissue levels of TNF-α after hypothermic CA in rats. Rats were subjected to rapid exsanguination, followed by a 6 min normothermic CA. Hypothermia (30 °C) was then induced by an aortic saline flush. After a total of 20 min CA, resuscitation was achieved via cardiopulmonary bypass (CPB). After 5 min reperfusion, minocycline (90 mg/kg; n=6) or vehicle (PBS; n=6) were given. Hypothermia (34 °C) was maintained for 6 h. Rats were sacrificed at 6 or 24 h. TNF-α was quantified (ELISA) in four brain regions (cerebellum, CEREB; cortex, CTX; hippocampus, HIP; striatum, STRI). Naïve rats (n=6) and rats subjected to the same anesthesia and CPB but no CA served as controls (n=6). Immunocytochemistry was used to localize TNF-α. Naïve rats and CPB controls had no detectable TNF-α in any brain region. CA markedly increased brain TNF-α. Regional differences were seen, with the highest TNF-α levels in striatum in CA groups (10-fold higher, P<0.05 vs. all other brain regions). TNF-α was undetectable at 24 h. Minocycline attenuated TNF-α levels in CTX, HIP and STRI (P<0.05). TNF-α showed unique co-localization with neurons. In conclusion, we report region-dependent early increases in brain TNF-α levels after prolonged hypothermic CA, with maximal increases in striatum. Surprisingly, TNF-α co-localized in neurons and

  17. Ketamine coadministration attenuates morphine tolerance and leads to increased brain concentrations of both drugs in the rat

    PubMed Central

    Lilius, T O; Jokinen, V; Neuvonen, M S; Niemi, M; Kalso, E A; Rauhala, P V

    2015-01-01

    Background and Purpose The effects of ketamine in attenuating morphine tolerance have been suggested to result from a pharmacodynamic interaction. We studied whether ketamine might increase brain morphine concentrations in acute coadministration, in morphine tolerance and morphine withdrawal. Experimental Approach Morphine minipumps (6 mg·day–1) induced tolerance during 5 days in Sprague–Dawley rats, after which s.c. ketamine (10 mg·kg–1) was administered. Tail flick, hot plate and rotarod tests were used for behavioural testing. Serum levels and whole tissue brain and liver concentrations of morphine, morphine-3-glucuronide, ketamine and norketamine were measured using HPLC-tandem mass spectrometry. Key Results In morphine-naïve rats, ketamine caused no antinociception whereas in morphine-tolerant rats there was significant antinociception (57% maximum possible effect in the tail flick test 90 min after administration) lasting up to 150 min. In the brain of morphine-tolerant ketamine-treated rats, the morphine, ketamine and norketamine concentrations were 2.1-, 1.4- and 3.4-fold, respectively, compared with the rats treated with morphine or ketamine only. In the liver of morphine-tolerant ketamine-treated rats, ketamine concentration was sixfold compared with morphine-naïve rats. After a 2 day morphine withdrawal period, smaller but parallel concentration changes were observed. In acute coadministration, ketamine increased the brain morphine concentration by 20%, but no increase in ketamine concentrations or increased antinociception was observed. Conclusions and Implications The ability of ketamine to induce antinociception in rats made tolerant to morphine may also be due to increased brain concentrations of morphine, ketamine and norketamine. The relevance of these findings needs to be assessed in humans. PMID:25297798

  18. Rhubarb attenuates blood-brain barrier disruption via increased zonula occludens-1 expression in a rat model of intracerebral hemorrhage

    PubMed Central

    WANG, YANG; PENG, FAN; XIE, GUI; CHEN, ZE-QI; LI, HAI-GANG; TANG, TAO; LUO, JIE-KUN

    2016-01-01

    Blood-brain barrier (BBB) disruption is a key pathophysiological factor of intracerebral hemorrhage (ICH). The level of zonula occludens-1 (ZO-1) has been closely associated with the degree of BBB damage, and is an indicator of BBB destruction. The aim of the present study was to evaluate the effects of rhubarb on BBB function in a rat model of ICH. ICH was induced in rats by treatment with type VII collagenase. Sham-operated rats were administered with an equal volume of saline. Following the administration of rhubarb decoction (20 g/kg), neurobehavioral function evaluation and Evans blue extravasation assays were performed at days 1, 3 and 5 after ICH. ZO-1 expression in the brain of ICH-induced rats were analyzed via reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemical analyses. The results suggested that rhubarb significantly ameliorated neurological symptoms and attenuated BBB permeability. The results of immunohistochemistry and RT-PCR studies indicated that the expression of ZO-1 expression was robust in the sham-operated group and was weak in the vehicle-treated group at day 3. The present data indicated that rhubarb effectively attenuated ICH-induced BBB damage in rats, raising the possibility that rhubarb or its active components may be considered useful as neuroprotective drugs for ICH. The protective mechanisms appeared to involve the preservation of BBB integrity and elevation of ZO-1 protein expression levels. PMID:27347045

  19. Intranasal administration of IGF-1 attenuates hypoxic-ischemic brain injury in neonatal rats

    PubMed Central

    Lin, Shuying; Fan, Lir-Wan; Rhodes, Philip G.; Cai, Zhengwei

    2009-01-01

    To determine whether intranasal administration (iN) of recombinant human insulin-like growth factor-1 (rhIGF-1) provides neuroprotection to the neonatal rat brain following cerebral hypoxia-ischemia (HI), two doses of rhIGF-1 (50 μg at a 1 h interval) were infused into the right naris of postnatal day 7 (P7) rat pups with or without a prior HI insult (right common carotid artery ligation, followed by an exposure to 8% oxygen for 2 h). Our result showed that rhIGF-1 administered via iN was successfully delivered into the brain 30 min after the second dose. In the following studies rhIGF-1 was administered to P7 rat pups at 0, 1 or 2 h after HI at the dose described above. Pups in the control group received cerebral HI and vehicle treatment. Pups that underwent sham operation and vehicle treatment served as the sham group. Brain pathological changes were evaluated 2 and 15 d after HI. Our results showed that rhIGF-1 treatment up to 1 hr after cerebral HI effectively reduced brain injury as compared to that in the vehicle-treated rats. Moreover, rhIGF-1 treatment improved neurobehavioral performance (tested on P5-P21) in juvenile rats subjected to HI. Our results further showed that rhIGF-1 inhibited apoptotic cell death, possibly through activating the Akt signal transduction pathway. rhIGF-1 enhanced proliferation of neuronal and oligodendroglial progenitors after cerebral HI as well. These data suggest that iN administration of IGF-1 has the potential to be used for clinical treatment. PMID:19332057

  20. Polyhydroxylated fullerene nanoparticles attenuate brain infarction and oxidative stress in rat model of ischemic stroke

    PubMed Central

    Vani, Javad Rasouli; Mohammadi, Mohammad Taghi; Foroshani, Mahsa Sarami; Jafari, Mahvash

    2016-01-01

    Oxidative stress is the common underlying mechanism of damage in ischemic stroke. Therefore, we aimed to evaluate the possible protective effects of polyhydroxylated fullerene derivatives on brain infarction and oxidative/nitrosative stress in a rat model of ischemic stroke. The experiment was performed by four groups of rats (each; n=12); Sham, Control ischemia, and ischemic treatment groups (Pretreatment and Posttreatment). Brain ischemia was induced by 90 min middle cerebral artery occlusion (MCAO) followed by 24 hours reperfusion. Rats received fullerene nanoparticles at dose of 1 mg/kg 30 min before MCAO and immediately after beginning of reperfusion. Infarct volume, contents of malondialdehyde (MDA), glutathione (GSH) and nitrate as well as superoxide dismutase (SOD) activity were assessed 24 hours after termination of MCAO. Brain infarct volume was 310 ± 21 mm3 in control group. Administration of fullerene nanoparticles before and after MCAO significantly decreased the infarct volume by 53 % (145 ± 45 mm3) and 81 % (59 ± 13 mm3), respectively. Ischemia also enhanced MDA and nitrate contents of ischemic hemispheres by 45 % and 25 % , respectively. Fullerene nanoparticles considerably reduced the MDA and nitrate contents of ischemic hemispheres before MCAO by 58 % and 17 % , respectively, and after MCAO by 38 % and 21 % , respectively. Induction of MCAO significantly decreased GSH content (19 % ) and SOD activity (52 % ) of ischemic hemispheres, whereas fullerene nanoparticles increased the GSH content and SOD activity of ischemic hemispheres by 19 % and 52 % before MCAO, respectively, and 21 % and 55 % after MCAO, respectively. Our findings indicate that fullerene nanoparticles, as a potent scavenger of free radicals, protect the brain cells against ischemia/reperfusion injury and inhibit brain oxidative/nitrosative damage. PMID:27540350

  1. Short hypoxia could attenuate the adverse effects of hyperhomocysteinemia on the developing rat brain by inducing neurogenesis.

    PubMed

    Blaise, Sébastien A; Nédélec, Emmanuelle; Alberto, Jean-Marc; Schroeder, Henri; Audonnet, Sandra; Bossenmeyer-Pourié, Carine; Guéant, Jean-Louis; Daval, Jean-Luc

    2009-03-01

    Gestational deficiency in methyl donors such as folate and vitamin B12 impairs homocysteine metabolism and can alter brain development in the progeny. Since short hypoxia has been shown to be neuroprotective in preconditioning studies, we aimed to investigate the effects of brief, non-lesioning neonatal hypoxia (100% N2 for 5 min) on the developing brain of rats born to dams fed either a standard diet or a diet lacking vitamins B12, B2, folate and choline until offspring's weaning. While having no influence on brain accumulation of homocysteine and concomitant apoptosis in 21-day-old deficient pups, exposure to hypoxia reduced morphological injury of the hippocampal CA1 layer. It also markedly stimulated the incorporation of bromodeoxyuridine (BrdU) in permissive areas such as the subventricular zone and the hippocampus followed by the migration of new neurons. Scores in a locomotor coordination test (days 19-21) and learning and memory behavior in the eight-arm maze (days 80-84) were found to be significantly improved in rats exposed to hypoxia in addition to the deficient diet. Therefore, by stimulating neurogenesis in rat pups, brief neonatal hypoxia appeared to attenuate the long-term effects of early exposure to a deficiency in nutritional determinants of hyperhomocysteinemia.

  2. Attenuation of Oxidative Damage by Boerhaavia diffusa L. Against Different Neurotoxic Agents in Rat Brain Homogenate.

    PubMed

    Ayyappan, Prathapan; Palayyan, Salin Raj; Kozhiparambil Gopalan, Raghu

    2016-01-01

    Due to a high rate of oxidative metabolic activity in the brain, intense production of reactive oxygen metabolite occurs, and the subsequent generation of free radicals is implicated in the pathogenesis of traumatic brain injury, epilepsy, and ischemia as well as chronic neurodegenerative diseases. In the present study, protective effects of polyphenol rich ethanolic extract of Boerhaavia diffusa (BDE), a neuroprotective edible medicinal plant against oxidative stress induced by different neurotoxic agents, were evaluated. BDE was tested against quinolinic acid (QA), 3-nitropropionic acid (NPA), sodium nitroprusside (SNP), and Fe (II)/EDTA complex induced oxidative stress in rat brain homogenates. QA, NPA, SNP, and Fe (II)/EDTA treatment caused an increased level of thiobarbituric acid reactive substances (TBARS) in brain homogenates along with a decline in the activities of antioxidant enzymes. BDE treatment significantly decreased the production of TBARS (p < .05) and increased the activities of antioxidant enzymes like catalase and superoxide dismutase along with increased concentration of non-enzymatic antioxidant, reduced glutathione (GSH). Similarly, BDE caused a significant decrease in the lipid peroxidation (LPO) in the cerebral cortex. Inhibitory potential of BDE against deoxyribose degradation (IC50 value 38.91 ± 0.12 μg/ml) shows that BDE can protect hydroxyl radical induced DNA damage in the tissues. Therefore, B. diffusa had high antioxidant potential that could inhibit the oxidative stress induced by different neurotoxic agents in brain. Since many of the neurological disorders are associated with free radical injury, these data may imply that B. diffusa, functioning as an antioxidant agent, may be beneficial for reducing various neurodegenerative complications.

  3. Lignans from Schisandra chinensis ameliorate cognition deficits and attenuate brain oxidative damage induced by D-galactose in rats.

    PubMed

    Yan, Tingxu; Shang, Lei; Wang, Mengshi; Zhang, Chenning; Zhao, Xu; Bi, Kaishun; Jia, Ying

    2016-06-01

    The aim of this study was to explore the neuroprotective effects of active compounds from Schisandra chinensis (Trucz.) Baill. (Magnoliaceae) against the D-galactose (D-gal)-induced neurotoxicity in rat. The Wistar rats were subcutaneously injected with D-gal (150 mg/(kg day)) for six weeks and orally administered with water extract or 95 % ethanol extract (partitioned with petroleum ether (PE), chloroform (CF), ethyl acetate (EA) and n-Butanol (NB), respectively) of the fruits of Schisandra chinensis simultaneously. The alteration of cognitive functions was assessed by using Morris water maze and Step-down type passive avoidance test. The results demonstrated that PE fraction was the most effective fraction to ameliorate cognitive deficits. Further biochemical examination indicated that PE could attenuate the activities decreasing of superoxide dismutase (SOD), catalase (CAT), the total antioxidant (T-AOC) induced by D-gal, and maintain the normal levels of glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) in the serum, prefrontal cortex, striatum and hippocampus of the brain of related rat, selectively. Meanwhile, the compounds of PE fraction were also identified as mainly lignans, thus, these results suggest that lignans from the PE fraction of Schisandra chinensis represented a potential source of medicine for the treatment of the aging-associated neurodegenerative diseases.

  4. Lignans from Schisandra chinensis ameliorate cognition deficits and attenuate brain oxidative damage induced by D-galactose in rats.

    PubMed

    Yan, Tingxu; Shang, Lei; Wang, Mengshi; Zhang, Chenning; Zhao, Xu; Bi, Kaishun; Jia, Ying

    2016-06-01

    The aim of this study was to explore the neuroprotective effects of active compounds from Schisandra chinensis (Trucz.) Baill. (Magnoliaceae) against the D-galactose (D-gal)-induced neurotoxicity in rat. The Wistar rats were subcutaneously injected with D-gal (150 mg/(kg day)) for six weeks and orally administered with water extract or 95 % ethanol extract (partitioned with petroleum ether (PE), chloroform (CF), ethyl acetate (EA) and n-Butanol (NB), respectively) of the fruits of Schisandra chinensis simultaneously. The alteration of cognitive functions was assessed by using Morris water maze and Step-down type passive avoidance test. The results demonstrated that PE fraction was the most effective fraction to ameliorate cognitive deficits. Further biochemical examination indicated that PE could attenuate the activities decreasing of superoxide dismutase (SOD), catalase (CAT), the total antioxidant (T-AOC) induced by D-gal, and maintain the normal levels of glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) in the serum, prefrontal cortex, striatum and hippocampus of the brain of related rat, selectively. Meanwhile, the compounds of PE fraction were also identified as mainly lignans, thus, these results suggest that lignans from the PE fraction of Schisandra chinensis represented a potential source of medicine for the treatment of the aging-associated neurodegenerative diseases. PMID:26847610

  5. Increased expression of vascular endothelial growth factor attenuates contusion necrosis without influencing contusion edema after traumatic brain injury in rats.

    PubMed

    Tado, Masahiro; Mori, Tatsuro; Fukushima, Masamichi; Oshima, Hideki; Maeda, Takeshi; Yoshino, Atsuo; Aizawa, Shin; Katayama, Yoichi

    2014-04-01

    To clarify the role of vascular endothelial growth factor (VEGF) in the formation of contusion edema and necrosis after traumatic brain injury, we examined the time course of changes in the VEGF expression (enzyme-linked immunosorbent assay), cerebrovascular permeability (extravasation of Evans blue), and water content (dry-wet weight method) of the contused brain tissue in a cortical impact injury model using rats. In addition, we tested the effects of administration of bevacizumab (VEGF monoclonal antibody) on changes in the cerebrovascular permeability and water content of the contused brain tissue, as well as the neurological deficits (rota rod test) and volume of contusion necrosis. Increased VEGF expression was maximal at 72 h after injury (p<0.003). Increases in cerebrovascular permeability and water content, however, became maximal within 24 h (p<0.001) after injury (p<0.01), respectively. Administration of bevacizumab did not influence these changes in cerebrovascular permeability and water content, but led to a significant rise in the neurological deficits at 72 h-14 days (p<0.05 or 0.01) and the volume of contusion necrosis at 21 days (p<0.001) after injury. These findings suggest that increased expression of VEGF after injury does not contribute to the formation of contusion edema, but attenuates the formation of contusion necrosis. This is probably because of an increased angiogenesis and improved microcirculation in the areas surrounding the core of contusion. PMID:24294928

  6. Cerebrolysin treatment attenuates heat shock protein overexpression in the brain following heat stress: an experimental study using immunohistochemistry at light and electron microscopy in the rat.

    PubMed

    Sharma, Hari Shanker; Muresanu, Dafin; Sharma, Aruna; Zimmermann-Meinzingen, Sibilla

    2010-06-01

    The possibility that overexpression of heat shock proteins (HSPs) in the CNS represents a neurodestructive signal following hyperthermia was examined in a rat model using a potent neuroprotective drug, Cerebrolysin (Ebewe Pharma, Austria). Rats subjected to four hours of heat stress in a biological oxygen demand incubator at 38 degrees C developed profound hyperthermia (41.23 +/- 0.14 degrees C) and overexpressed HSP 72 kD in several brain regions: cerebral cortex, hippocampus, cerebellum, thalamus, hypothalamus, brain stem, and spinal cord compared to controls. This HSP overexpression closely correlated with the leakage of blood-brain barrier permeability and vasogenic edema formation in these brain areas. HSP positive cells are largely confined in the edematous brain regions showing Evans blue leakage. Pretreatment with Cerebrolysin (5 mL/kg, i.v.) 30 minutes before heat stress markedly attenuated hyperthermia (39.48 +/- 0.23 degrees C, P < 0.01) and the induction of HSP to all the brain regions examined. Leakage of Evans blue albumin and increase in brain water content in these brain areas are also markedly reduced with Cerebrolysin pretreatment. These results are the first to show that Cerebrolysin, if administered before heat stress, attenuates hyperthermia induced stress reaction and HSP 72 kD induction. Taken together, these novel observations suggest that upregulation of HSP 72 kD in brain represents neurodestructive signals and a reduction in cellular stress mechanisms leading to decline in HSP expression is neuroprotective in nature.

  7. Repetitive Hyperbaric Oxygenation Attenuates Reactive Astrogliosis and Suppresses Expression of Inflammatory Mediators in the Rat Model of Brain Injury

    PubMed Central

    Lavrnja, Irena; Parabucki, Ana; Dacic, Sanja; Savic, Danijela; Pantic, Igor; Stojiljkovic, Mirjana; Pekovic, Sanja

    2015-01-01

    The exact mechanisms by which treatment with hyperbaric oxygen (HBOT) exerts its beneficial effects on recovery after brain injury are still unrevealed. Therefore, in this study we investigated the influence of repetitive HBOT on the reactive astrogliosis and expression of mediators of inflammation after cortical stab injury (CSI). CSI was performed on male Wistar rats, divided into control, sham, and lesioned groups with appropriate HBO. The HBOT protocol was as follows: 10 minutes of slow compression, 2.5 atmospheres absolute (ATA) for 60 minutes, and 10 minutes of slow decompression, once a day for 10 consecutive days. Data obtained using real-time polymerase chain reaction, Western blot, and immunohistochemical and immunofluorescence analyses revealed that repetitive HBOT applied after the CSI attenuates reactive astrogliosis and glial scarring, and reduces expression of GFAP (glial fibrillary acidic protein), vimentin, and ICAM-1 (intercellular adhesion molecule-1) both at gene and tissue levels. In addition, HBOT prevents expression of CD40 and its ligand CD40L on microglia, neutrophils, cortical neurons, and reactive astrocytes. Accordingly, repetitive HBOT, by prevention of glial scarring and limiting of expression of inflammatory mediators, supports formation of more permissive environment for repair and regeneration. PMID:25972624

  8. Angiotensin-(1-7) attenuates the anxiety and depression-like behaviors in transgenic rats with low brain angiotensinogen.

    PubMed

    Kangussu, Lucas M; Almeida-Santos, Ana F; Bader, Michael; Alenina, Natalia; Fontes, Marco Antônio P; Santos, Robson A S; Aguiar, Daniele C; Campagnole-Santos, Maria José

    2013-11-15

    Transgenic rats with low brain angiotensinogen, TGR(ASrAOGEN)680, expressing an antisense RNA against angiotensinogen in glial cells, provide an interesting tool to evaluate the role of brain angiotensins in different behavior responses. The present study was conducted to test the hypothesis that angiotensin-(1-7) [Ang-(1-7)] and serotonin can modulate anxiety and depression-related behaviors in the TGR(ASrAOGEN)680 rats. Therefore, the effect of acute intracerebroventricular administration of Ang-(1-7) and intraperitoneal administration of the selective serotonin reuptake inhibitor fluoxetine was evaluated in TGR(ASrAOGEN) rats subjected to the elevated plus maze (EPM) and forced swimming (FST) tests. Transgenic rats spent a lower percentage of time in the open arms of EPM and showed a significant increase in the immobility time in FST, indicating that a low angiotensinogen level in the brain leads to anxiety-like behavior accompanied by a depression-like state. Administration of both, Ang-(1-7) and fluoxetine reversed the anxiety- and depressive-like behavior of transgenic rats with low brain angiotensinogen, suggesting that this may be, at least in part, related to a decreased level of Ang-(1-7) and serotonin in the brain of these animals.

  9. Cobalt chloride attenuates hypobaric hypoxia induced vascular leakage in rat brain: Molecular mechanisms of action of cobalt chloride

    SciTech Connect

    Kalpana, S.; Dhananjay, S.; Anju, B. Lilly, G.; Sai Ram, M.

    2008-09-15

    This study reports the efficacy of cobalt preconditioning in preventing hypobaric hypoxia induced vascular leakage (an indicator of cerebral edema) using male Sprague-Dawley rats as model system. Exposure of animals to hypobaric hypoxia led to a significant increase in vascular leakage, reactive oxygen species (ROS), nitric oxide (NO), and vascular endothelial growth factor (VEGF) levels. There was a marked increase in Nuclear Factor {kappa}B (NF{kappa}B) DNA binding activity and levels of pro-inflammatory cytokines such as Monocyte chemoattractant protein (MCP-1), Interferon-{gamma} (IFN-{gamma}), Interleukin-1 (IL-1), and Tumor Necrosis Factor-{alpha} (TNF-{alpha}) and cell adhesion molecules such as Vascular Cell Adhesion Molecule-1 (VCAM-1), and P-selectin. Chemical preconditioning by cobalt for 7 days (12.5 mg Co/kg b.w., oral) significantly attenuated cerebral vascular leakage and the expression of inflammatory mediators induced by hypoxia. Administration of NF{kappa}B inhibitor, curcumin (50 mg/kg b.w.; i.p.) appreciably inhibited hypoxia induced vascular leakage indicating the involvement of NF{kappa}B in causing vascular leakage. Interestingly, cobalt when administered at 12.5 mg Co/kg b.w. (i.p.), 1 h before hypoxia could not prevent the vascular leakage indicating that cobalt per se did not have an effect on NF{kappa}B. The lower levels of NF{kappa}B observed in the brains of cobalt administered animals might be due to higher levels of antioxidant and anti-inflammatory proteins (hemeoxygenase-1 and metallothionein). To conclude cobalt preconditioning inhibited hypobaric hypoxia induced cerebral vascular leakage by lowering NF{kappa}B DNA binding activity and its regulated pro-inflammatory mediators. This is contemplated to be mediated by cobalt induced reduction in ROS/NO and increase in HO-1 and MT.

  10. Deep Brain Stimulation of the Nucleus Accumbens Shell Attenuates Cocaine Priming-Induced Reinstatement of Drug Seeking in Rats

    PubMed Central

    Vassoler, F.M.; Schmidt, H.D.; Gerard, M.E.; Famous, K.R.; Ciraulo, D.A.; Kornetsky, C.; Knapp, C.M.; Pierce, R.C.

    2008-01-01

    Increasing evidence suggests that deep brain stimulation (DBS), which is currently being used as a therapy for neurological diseases, may be effective in the treatment of psychiatric disorders as well. Here, we examined the influence of DBS of the nucleus accumbens shell on cocaine priming-induced reinstatement of drug seeking, an animal model of relapse. Rats were allowed to self-administer cocaine (0.25 mg, i.v.) 2 hours daily for 21 days and then cocaine seeking behavior was extinguished by replacing cocaine with saline. During the reinstatement phase, DBS was administered bilaterally to the nucleus accumbens shell through bipolar stainless steel electrodes. Biphasic symmetrical pulses were delivered at a frequency of 160 Hz and a current intensity of 150 μAmps. DBS began immediately after a priming injection of cocaine (0, 5, 10 or 20 mg/kg, i.p.) and continued throughout each 2-hour reinstatement session. Results indicated that only the higher doses of cocaine (10 and 20 mg/kg) produced robust and reliable reinstatement of cocaine seeking. DBS of the nucleus accumbens shell significantly attenuated the reinstatement of drug seeking precipitated by these higher cocaine doses. Additional experiments indicated that this DBS effect was both anatomically and reinforcer-specific. Thus, DBS of the dorsal striatum had no influence on cocaine reinstatement and DBS of the accumbens shell did not affect the reinstatement of food seeking. Taken together, these results suggest that DBS of the nucleus accumbens shell may be a potential therapeutic option in the treatment of severe cocaine addiction. PMID:18753374

  11. Diazoxide Attenuates Postresuscitation Brain Injury in a Rat Model of Asphyxial Cardiac Arrest by Opening Mitochondrial ATP-Sensitive Potassium Channels

    PubMed Central

    Wang, Peng; Li, Yi; Wu, Manhui; Lin, Jiali

    2016-01-01

    Objective. We investigated whether and how diazoxide can attenuate brain injury after cardiopulmonary resuscitation (CPR) by selective opening of mitochondrial ATP-sensitive potassium (mitoKATP) channels. Methods. Adult male Sprague-Dawley rats with induced cerebral ischemia (n = 10 per group) received an intraperitoneal injection of 0.1% dimethyl sulfoxide (1 mL; vehicle group), diazoxide (10 mg/kg; DZ group), or diazoxide (10 mg/kg) plus 5-hydroxydecanoate (5 mg/kg; DZ + 5-HD group) 30 min after CPR. The control group (sham group, n = 5) underwent sham operation, without cardiac arrest. Mitochondrial respiratory control rate (RCR) was determined. Brain cell apoptosis was assessed using TUNEL staining. Expression of Bcl-2, Bax, and protein kinase C epsilon (PKCε) in the cerebral cortex was determined by Western blotting and immunohistochemistry. Results. The neurological deficit scores (NDS) in the vehicle group decreased significantly at 24 h and 48 h after CPR. Diazoxide significantly improved NDS and mitochondrial RCR after CPR at both time points; 5-HD cotreatment abolished these effects. Diazoxide decreased TUNEL-positive cells following CPR, upregulated Bcl-2 and PKCε, downregulated Bax, and increased the Bcl-2/Bax ratio; 5-HD cotreatment reversed these effects. Conclusions. Diazoxide attenuates postresuscitation brain injury, protects mitochondrial function, inhibits brain cell apoptosis, and activates the PKC pathway by opening mitoKATP channels.

  12. Diazoxide Attenuates Postresuscitation Brain Injury in a Rat Model of Asphyxial Cardiac Arrest by Opening Mitochondrial ATP-Sensitive Potassium Channels.

    PubMed

    Wu, Haidong; Wang, Peng; Li, Yi; Wu, Manhui; Lin, Jiali; Huang, Zitong

    2016-01-01

    Objective. We investigated whether and how diazoxide can attenuate brain injury after cardiopulmonary resuscitation (CPR) by selective opening of mitochondrial ATP-sensitive potassium (mitoKATP) channels. Methods. Adult male Sprague-Dawley rats with induced cerebral ischemia (n = 10 per group) received an intraperitoneal injection of 0.1% dimethyl sulfoxide (1 mL; vehicle group), diazoxide (10 mg/kg; DZ group), or diazoxide (10 mg/kg) plus 5-hydroxydecanoate (5 mg/kg; DZ + 5-HD group) 30 min after CPR. The control group (sham group, n = 5) underwent sham operation, without cardiac arrest. Mitochondrial respiratory control rate (RCR) was determined. Brain cell apoptosis was assessed using TUNEL staining. Expression of Bcl-2, Bax, and protein kinase C epsilon (PKCε) in the cerebral cortex was determined by Western blotting and immunohistochemistry. Results. The neurological deficit scores (NDS) in the vehicle group decreased significantly at 24 h and 48 h after CPR. Diazoxide significantly improved NDS and mitochondrial RCR after CPR at both time points; 5-HD cotreatment abolished these effects. Diazoxide decreased TUNEL-positive cells following CPR, upregulated Bcl-2 and PKCε, downregulated Bax, and increased the Bcl-2/Bax ratio; 5-HD cotreatment reversed these effects. Conclusions. Diazoxide attenuates postresuscitation brain injury, protects mitochondrial function, inhibits brain cell apoptosis, and activates the PKC pathway by opening mitoKATP channels. PMID:27648441

  13. Diazoxide Attenuates Postresuscitation Brain Injury in a Rat Model of Asphyxial Cardiac Arrest by Opening Mitochondrial ATP-Sensitive Potassium Channels

    PubMed Central

    Wang, Peng; Li, Yi; Wu, Manhui; Lin, Jiali

    2016-01-01

    Objective. We investigated whether and how diazoxide can attenuate brain injury after cardiopulmonary resuscitation (CPR) by selective opening of mitochondrial ATP-sensitive potassium (mitoKATP) channels. Methods. Adult male Sprague-Dawley rats with induced cerebral ischemia (n = 10 per group) received an intraperitoneal injection of 0.1% dimethyl sulfoxide (1 mL; vehicle group), diazoxide (10 mg/kg; DZ group), or diazoxide (10 mg/kg) plus 5-hydroxydecanoate (5 mg/kg; DZ + 5-HD group) 30 min after CPR. The control group (sham group, n = 5) underwent sham operation, without cardiac arrest. Mitochondrial respiratory control rate (RCR) was determined. Brain cell apoptosis was assessed using TUNEL staining. Expression of Bcl-2, Bax, and protein kinase C epsilon (PKCε) in the cerebral cortex was determined by Western blotting and immunohistochemistry. Results. The neurological deficit scores (NDS) in the vehicle group decreased significantly at 24 h and 48 h after CPR. Diazoxide significantly improved NDS and mitochondrial RCR after CPR at both time points; 5-HD cotreatment abolished these effects. Diazoxide decreased TUNEL-positive cells following CPR, upregulated Bcl-2 and PKCε, downregulated Bax, and increased the Bcl-2/Bax ratio; 5-HD cotreatment reversed these effects. Conclusions. Diazoxide attenuates postresuscitation brain injury, protects mitochondrial function, inhibits brain cell apoptosis, and activates the PKC pathway by opening mitoKATP channels. PMID:27648441

  14. Repeated administration of almonds increases brain acetylcholine levels and enhances memory function in healthy rats while attenuates memory deficits in animal model of amnesia.

    PubMed

    Batool, Zehra; Sadir, Sadia; Liaquat, Laraib; Tabassum, Saiqa; Madiha, Syeda; Rafiq, Sahar; Tariq, Sumayya; Batool, Tuba Sharf; Saleem, Sadia; Naqvi, Fizza; Perveen, Tahira; Haider, Saida

    2016-01-01

    Dietary nutrients may play a vital role in protecting the brain from age-related memory dysfunction and neurodegenerative diseases. Tree nuts including almonds have shown potential to combat age-associated brain dysfunction. These nuts are an important source of essential nutrients, such as tocopherol, folate, mono- and poly-unsaturated fatty acids, and polyphenols. These components have shown promise as possible dietary supplements to prevent or delay the onset of age-associated cognitive dysfunction. This study investigated possible protective potential of almond against scopolamine induced amnesia in rats. The present study also investigated a role of acetylcholine in almond induced memory enhancement. Rats in test group were orally administrated with almond suspension (400 mg/kg/day) for four weeks. Both control and almond-treated rats were then divided into saline and scopolamine injected groups. Rats in the scopolamine group were injected with scopolamine (0.5 mg/kg) five minutes before the start of each memory test. Memory was assessed by elevated plus maze (EPM), Morris water maze (MWM) and novel object recognition (NOR) task. Cholinergic function was determined in terms of hippocampal and frontal cortical acetylcholine content and acetylcholinesterase activity. Results of the present study suggest that almond administration for 28 days significantly improved memory retention. This memory enhancing effect of almond was also observed in scopolamine induced amnesia model. Present study also suggests a role of acetylcholine in the attenuation of scopolamine induced amnesia by almond.

  15. Standardized extract of Bacopa monniera (BESEB CDRI-08) attenuates contextual associative learning deficits in the aging rat's brain induced by D-galactose.

    PubMed

    Prisila Dulcy, Charles; Singh, Hemant K; Preethi, Jayakumar; Rajan, Koilmani Emmanuvel

    2012-10-01

    In this study, we examined the neuroprotective effect of standardized Bacopa monniera extract (BME: BESEB CDRI-08) against the D-galactose (D-gal)-induced brain aging in rats. Experimental groups were subjected to contextual-associative learning task. We found that the administration of BME in the D-gal-treated group attenuated contextual-associative learning deficits; the individuals showed more correct responses and retrieved the reward with less latency. Subsequent analysis showed that the BME administration significantly decreased advance glycation end product (AGE) in serum and increased the activity of antioxidant response element (ARE) and the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and nuclear transcription factor NF-E2-related factor 2 (Nrf2), accompanied by a reduction in the level of serotonin (5-HT) in the hippocampus. The BME treatment also reversed D-gal-induced brain aging by upregulating the levels of the presynaptic proteins synaptotagmin I (SYT1) and synaptophysin (SYP) and the postsynaptic proteins Ca(2+) /calmodulin dependent protein kinase II (αCaMKII) and postsynaptic density protein-95 (PSD-95) in the hippocampus during synaptic plasticity. A significant finding is that the D-gal- + BME-treated rats exhibited more correct responses in contextual-associative learning than D-gal alone-treated rats. Our findings suggest that BME treatment attenuates D-gal-induced brain aging and regulates the level of antioxidant enzymes, Nrf2 expression, and the level of 5-HT, which was accompanied by concomitantly increased levels of synaptic proteins SYT1, SYP, αCaMKII, p-αCaMKII, and PSD-95.

  16. Standardized extract of Bacopa monniera (BESEB CDRI-08) attenuates contextual associative learning deficits in the aging rat's brain induced by D-galactose.

    PubMed

    Prisila Dulcy, Charles; Singh, Hemant K; Preethi, Jayakumar; Rajan, Koilmani Emmanuvel

    2012-10-01

    In this study, we examined the neuroprotective effect of standardized Bacopa monniera extract (BME: BESEB CDRI-08) against the D-galactose (D-gal)-induced brain aging in rats. Experimental groups were subjected to contextual-associative learning task. We found that the administration of BME in the D-gal-treated group attenuated contextual-associative learning deficits; the individuals showed more correct responses and retrieved the reward with less latency. Subsequent analysis showed that the BME administration significantly decreased advance glycation end product (AGE) in serum and increased the activity of antioxidant response element (ARE) and the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and nuclear transcription factor NF-E2-related factor 2 (Nrf2), accompanied by a reduction in the level of serotonin (5-HT) in the hippocampus. The BME treatment also reversed D-gal-induced brain aging by upregulating the levels of the presynaptic proteins synaptotagmin I (SYT1) and synaptophysin (SYP) and the postsynaptic proteins Ca(2+) /calmodulin dependent protein kinase II (αCaMKII) and postsynaptic density protein-95 (PSD-95) in the hippocampus during synaptic plasticity. A significant finding is that the D-gal- + BME-treated rats exhibited more correct responses in contextual-associative learning than D-gal alone-treated rats. Our findings suggest that BME treatment attenuates D-gal-induced brain aging and regulates the level of antioxidant enzymes, Nrf2 expression, and the level of 5-HT, which was accompanied by concomitantly increased levels of synaptic proteins SYT1, SYP, αCaMKII, p-αCaMKII, and PSD-95. PMID:22715050

  17. Melatonin attenuates neuronal apoptosis through up-regulation of K(+) -Cl(-) cotransporter KCC2 expression following traumatic brain injury in rats.

    PubMed

    Wu, Haijian; Shao, Anwen; Zhao, Mingfei; Chen, Sheng; Yu, Jun; Zhou, Jingyi; Liang, Feng; Shi, Ligen; Dixon, Brandon J; Wang, Zhen; Ling, Chenhan; Hong, Yuan; Zhang, Jianmin

    2016-09-01

    Traumatic brain injury (TBI) initiates a complex cascade of neurochemical and signaling changes that leads to neuronal apoptosis, which contributes to poor outcomes for patients with TBI. The neuron-specific K(+) -Cl(-) cotransporter-2 (KCC2), the principal Cl(-) extruder in adult neurons, plays an important role in Cl(-) homeostasis and neuronal function. This present study was designed to investigate the expression pattern of KCC2 following TBI and to evaluate whether or not melatonin is able to prevent neuronal apoptosis by modulating KCC2 expression in a Sprague Dawley rat controlled cortical impact model of TBI. The time course study showed decreased mRNA and protein expression of KCC2 in the ipsilateral peri-core parietal cortex after TBI. Double immunofluorescence staining demonstrated that KCC2 is located in the plasma membrane of neurons. In addition, melatonin (10 mg/kg) was injected intraperitoneally at 5 minutes and repeated at 1, 2, 3, and 4 hours after brain trauma, and brain samples were extracted 24 hours after TBI. Compared to the vehicle group, melatonin treatment altered the down-regulation of KCC2 expression in both mRNA and protein levels after TBI. Also, melatonin treatment increased the protein levels of brain-derived neurotrophic factor (BDNF) and phosphorylated extracellular signal-regulated kinase (p-ERK). Simultaneously, melatonin administration ameliorated cortical neuronal apoptosis, reduced brain edema, and attenuated neurological deficits after TBI. In conclusion, our findings suggested that melatonin restores KCC2 expression, inhibits neuronal apoptosis and attenuates secondary brain injury after TBI, partially through activation of BDNF/ERK pathway. PMID:27159133

  18. Therapeutic hypothermia attenuates tissue damage and cytokine expression after traumatic brain injury by inhibiting necroptosis in the rat

    PubMed Central

    Liu, Tao; Zhao, Dong-xu; Cui, Hua; Chen, Lei; Bao, Ying-hui; Wang, Yong; Jiang, Ji-yao

    2016-01-01

    Necroptosis has been shown as an alternative form of cell death in many diseases, but the detailed mechanisms of the neuron loss after traumatic brain injury (TBI) in rodents remain unclear. To investigate whether necroptosis is induced after TBI and gets involved in the neuroprotecton of therapeutic hypothermia on the TBI, we observed the pathological and biochemical change of the necroptosis in the fluid percussion brain injury (FPI) model of the rats. We found that receptor-interacting protein (RIP) 1 and 3, and mixed lineage kinase domain-like protein (MLKL), the critical downstream mediators of necroptosis recently identified in vivo, as well as HMGB1 and the pro-inflammation cytokines TNF-α, IL-6 and IL-18, were increased at an early phase (6 h) in cortex after TBI. Posttraumatic hypothermia (33 °C) led to the decreases in the necroptosis regulators, inflammatory factors and brain tissue damage in rats compared with normothermia-treated TBI animals. Immunohistochemistry studies showed that posttraumatic hypothermia also decreased the necroptosis-associated proteins staining in injured cortex and hippocampal CA1. Therefore, we conclude that the RIP1/RIP3-MLKL-mediated necroptosis occurs after experimental TBI and therapeutic hypothermia may protect the injured central nervous system from tissue damage and the inflammatory responses by targeting the necroptosis signaling after TBI. PMID:27080932

  19. Attenuation of Acute Phase Injury in Rat Intracranial Hemorrhage by Cerebrolysin that Inhibits Brain Edema and Inflammatory Response.

    PubMed

    Yang, Yang; Zhang, Yan; Wang, Zhaotao; Wang, Shanshan; Gao, Mou; Xu, Ruxiang; Liang, Chunyang; Zhang, Hongtian

    2016-04-01

    The outcome of intracerebral hemorrhage (ICH) is mainly determined by the volume of the hemorrhage core and the secondary brain damage to penumbral tissues due to brain swelling, microcirculation disturbance and inflammation. The present study aims to investigate the protective effects of cerebrolysin on brain edema and inhibition of the inflammation response surrounding the hematoma core in the acute stage after ICH. The ICH model was induced by administration of type VII bacterial collagenase into the stratum of adult rats, which were then randomly divided into three groups: ICH + saline; ICH + Cerebrolysin (5 ml/kg) and sham. Cerebrolysin or saline was administered intraperitoneally 1 h post surgery. Neurological scores, extent of brain edema content and Evans blue dye extravasation were recorded. The levels of pro-inflammatory factors (IL-1β, TNF-α and IL-6) were assayed by Real-time PCR and Elisa kits. Aquaporin-4 (AQP4) and tight junction proteins (TJPs; claudin-5, occludin and zonula occluden-1) expression were measured at multiple time points. The morphological and intercellular changes were characterized by Electron microscopy. It is found that cerebrolysin (5 ml/kg) improved the neurological behavior and reduced the ipsilateral brain water content and Evans blue dye extravasation. After cerebrolysin treated, the levels of pro-inflammatory factors and AQP4 in the peri-hematomal areas were markedly reduced and were accompanied with higher expression of TJPs. Electron microscopy showed the astrocytic swelling and concentrated chromatin in the ICH group and confirmed the cell junction changes. Thus, early cerebrolysin treatment ameliorates secondary injury after ICH and promotes behavioral performance during the acute phase by reducing brain edema, inflammatory response, and blood-brain barrier permeability.

  20. Attenuation of Acute Phase Injury in Rat Intracranial Hemorrhage by Cerebrolysin that Inhibits Brain Edema and Inflammatory Response.

    PubMed

    Yang, Yang; Zhang, Yan; Wang, Zhaotao; Wang, Shanshan; Gao, Mou; Xu, Ruxiang; Liang, Chunyang; Zhang, Hongtian

    2016-04-01

    The outcome of intracerebral hemorrhage (ICH) is mainly determined by the volume of the hemorrhage core and the secondary brain damage to penumbral tissues due to brain swelling, microcirculation disturbance and inflammation. The present study aims to investigate the protective effects of cerebrolysin on brain edema and inhibition of the inflammation response surrounding the hematoma core in the acute stage after ICH. The ICH model was induced by administration of type VII bacterial collagenase into the stratum of adult rats, which were then randomly divided into three groups: ICH + saline; ICH + Cerebrolysin (5 ml/kg) and sham. Cerebrolysin or saline was administered intraperitoneally 1 h post surgery. Neurological scores, extent of brain edema content and Evans blue dye extravasation were recorded. The levels of pro-inflammatory factors (IL-1β, TNF-α and IL-6) were assayed by Real-time PCR and Elisa kits. Aquaporin-4 (AQP4) and tight junction proteins (TJPs; claudin-5, occludin and zonula occluden-1) expression were measured at multiple time points. The morphological and intercellular changes were characterized by Electron microscopy. It is found that cerebrolysin (5 ml/kg) improved the neurological behavior and reduced the ipsilateral brain water content and Evans blue dye extravasation. After cerebrolysin treated, the levels of pro-inflammatory factors and AQP4 in the peri-hematomal areas were markedly reduced and were accompanied with higher expression of TJPs. Electron microscopy showed the astrocytic swelling and concentrated chromatin in the ICH group and confirmed the cell junction changes. Thus, early cerebrolysin treatment ameliorates secondary injury after ICH and promotes behavioral performance during the acute phase by reducing brain edema, inflammatory response, and blood-brain barrier permeability. PMID:26498936

  1. MMP-9 Inhibitor SB-3CT Attenuates Behavioral Impairments and Hippocampal Loss after Traumatic Brain Injury in Rat

    PubMed Central

    Jia, Feng; Yin, Yu Hua; Gao, Guo Yi; Wang, Yu

    2014-01-01

    Abstract The aim of this study was to evaluate the potential efficacy of SB-3CT, a matrix metallopeptidase 9 inhibitor, on behavioral and histological outcomes after traumatic brain injury (TBI) in rats. Adult male Sprague-Dawley rats were randomly divided into three groups (n=15/group): TBI with SB-3CT treatment, TBI with saline, and sham injury. The TBI model was induced by a fluid percussion TBI device. SB-3CT (50 mg/kg in 10% dimethyl sulfoxide) was administered intraperitoneally at 30 min, 6 h, and 12 h after the TBI. Motor function (beam-balance/beam-walk tests) and spatial learning/memory (Morris water maze) were assessed on post-operative Days 1−5 and 11–15, respectively. Fluoro-Jade staining, immunofluorescence, and cresyl violet-staining were carried out for histopathological evaluation at 24 h, 72 h, and 15 days after TBI, respectively. It was shown that TBI can result in significant behavioral deficit induced by acute neurodegeneration, increased expression of cleaved caspase-3, and long-term neuronal loss. SB-3CT intervention via the current regime provides robust behavioral protection and hippocampal neurons preservation from the deleterious effects of TBI. Hence, the efficacy of SB-3CT on TBI prognosis could be ascertained. It is believed that the current study adds to the growing literature in identifying SB-3CT as a potential therapy for human brain injury. PMID:24661104

  2. MMP-9 inhibitor SB-3CT attenuates behavioral impairments and hippocampal loss after traumatic brain injury in rat.

    PubMed

    Jia, Feng; Yin, Yu Hua; Gao, Guo Yi; Wang, Yu; Cen, Lian; Jiang, Ji-Yao

    2014-07-01

    The aim of this study was to evaluate the potential efficacy of SB-3CT, a matrix metallopeptidase 9 inhibitor, on behavioral and histological outcomes after traumatic brain injury (TBI) in rats. Adult male Sprague-Dawley rats were randomly divided into three groups (n=15/group): TBI with SB-3CT treatment, TBI with saline, and sham injury. The TBI model was induced by a fluid percussion TBI device. SB-3CT (50 mg/kg in 10% dimethyl sulfoxide) was administered intraperitoneally at 30 min, 6 h, and 12 h after the TBI. Motor function (beam-balance/beam-walk tests) and spatial learning/memory (Morris water maze) were assessed on post-operative Days 1-5 and 11-15, respectively. Fluoro-Jade staining, immunofluorescence, and cresyl violet-staining were carried out for histopathological evaluation at 24 h, 72 h, and 15 days after TBI, respectively. It was shown that TBI can result in significant behavioral deficit induced by acute neurodegeneration, increased expression of cleaved caspase-3, and long-term neuronal loss. SB-3CT intervention via the current regime provides robust behavioral protection and hippocampal neurons preservation from the deleterious effects of TBI. Hence, the efficacy of SB-3CT on TBI prognosis could be ascertained. It is believed that the current study adds to the growing literature in identifying SB-3CT as a potential therapy for human brain injury. PMID:24661104

  3. Synthetic gelatinases inhibitor attenuates electromagnetic pulse-induced blood-brain barrier disruption by inhibiting gelatinases-mediated ZO-1 degradation in rats.

    PubMed

    Qiu, Lian-Bo; Zhou, Yan; Wang, Qi; Yang, Long-Long; Liu, Hai-Qiang; Xu, Sheng-Long; Qi, Yu-Hong; Ding, Gui-Rong; Guo, Guo-Zhen

    2011-07-11

    Previously we found that exposure to electromagnetic pulse (EMP) induced an increase in blood-brain-barrier (BBB) permeability and the degradation of tight junction protein ZO-1 in rats. Matrix metalloproteinases (MMPs), in particular gelatinases (MMP-2 and MMP-9), play a key role in degradation of tight junction proteins, are known mediators of BBB compromise. We hypothesized that the degradation of ZO-1 by gelatinases contributed to EMP-induced BBB opening. To test this hypothesis, the mRNA level of ZO-1, protein levels of MMP-2, MMP-9 and tissue inhibitor of metalloproteinases (TIMP-1 and TIMP-2) were detected in rat cerebral cortex after exposing rats to EMP at 200 kV/m for 200 pulses. It was found that the mRNA level of ZO-1 was unaltered at different time points after EMP exposure. The protein levels of MMP-2 and MMP-9 significantly increased at 3 h and 0.5 h, respectively. However, TIMP-1 (inhibitor of MMP-9) and TIMP-2 (inhibitor of MMP-2) only moderately increased after EMP exposure. In addition, in situ zymography results showed that the gelatinase activity increased in cerebral microvessels at 3 h after EMP exposure. When rats were treated with gelatinases inhibitor (SB-3CT) before EMP exposure, the EMP-induced BBB opening was attenuated and the ZO-1 degradation was reversed. Our results suggested that EMP-induced BBB opening was related to gelatinase mediated ZO-1 degradation.

  4. The anti-inflammatory properties of Satureja khuzistanica Jamzad essential oil attenuate the effects of traumatic brain injuries in rats.

    PubMed

    Abbasloo, Elham; Dehghan, Fatemeh; Khaksari, Mohammad; Najafipour, Hamid; Vahidi, Reza; Dabiri, Shahriar; Sepehri, Gholamreza; Asadikaram, Golamreza

    2016-01-01

    Traumatic brain injury (TBI) is a major health concern affecting the general public as well as military personnel. However, there is no FDA-approved therapy for the treatment of TBIs. In this work, we investigated the neurotherapeutic effects of the well-known natural Iranian medicine Satureja Khuzistanica Jamzad (SKJ) essential oil (SKEO) on the outcomes of diffused experimental TBI, with particular attention paid to its anti-inflammatory and anti-apoptotic effects. Male Wistar rats were treated with doses of 50, 100 and 200 (mg/kg, i.p) SKEO after induction of diffused TBIs. The results showed that injecting SKEO (200 mg/kg) 30 minutes after TBI significantly reduced brain oedema and damage to the blood-brain barrier (BBB) and limited the post-TBI increase in intracranial pressure. The veterinary coma scale (VCS) scores significantly improved in the treatment group. Also, inflammatory marker assays showed reduced levels of TNF-α, IL-1β, and IL-6 and increased IL-10 in the treated groups. Moreover, the immunohistochemical results indicated that SKEO not only reduced neuronal death and BBB permeability but also affected astrocytic activation. Overall, our data indicate potential clinical neurological applications for SKEO. PMID:27535591

  5. The anti-inflammatory properties of Satureja khuzistanica Jamzad essential oil attenuate the effects of traumatic brain injuries in rats

    PubMed Central

    Abbasloo, Elham; Dehghan, Fatemeh; Khaksari, Mohammad; Najafipour, Hamid; Vahidi, Reza; Dabiri, Shahriar; Sepehri, Gholamreza; Asadikaram, Golamreza

    2016-01-01

    Traumatic brain injury (TBI) is a major health concern affecting the general public as well as military personnel. However, there is no FDA-approved therapy for the treatment of TBIs. In this work, we investigated the neurotherapeutic effects of the well-known natural Iranian medicine Satureja Khuzistanica Jamzad (SKJ) essential oil (SKEO) on the outcomes of diffused experimental TBI, with particular attention paid to its anti-inflammatory and anti-apoptotic effects. Male Wistar rats were treated with doses of 50, 100 and 200 (mg/kg, i.p) SKEO after induction of diffused TBIs. The results showed that injecting SKEO (200 mg/kg) 30 minutes after TBI significantly reduced brain oedema and damage to the blood-brain barrier (BBB) and limited the post-TBI increase in intracranial pressure. The veterinary coma scale (VCS) scores significantly improved in the treatment group. Also, inflammatory marker assays showed reduced levels of TNF-α, IL-1β, and IL-6 and increased IL-10 in the treated groups. Moreover, the immunohistochemical results indicated that SKEO not only reduced neuronal death and BBB permeability but also affected astrocytic activation. Overall, our data indicate potential clinical neurological applications for SKEO. PMID:27535591

  6. Administration of a PTEN inhibitor BPV(pic) attenuates early brain injury via modulating AMPA receptor subunits after subarachnoid hemorrhage in rats.

    PubMed

    Chen, Yujie; Luo, Chunxia; Zhao, Mingyue; Li, Qiang; Hu, Rong; Zhang, John H; Liu, Zhi; Feng, Hua

    2015-02-19

    The aim of this study was to investigate whether the phosphatase and tensin homolog deleted on chromosome ten (PTEN) inhibitor dipotassium bisperoxo(pyridine-2-carboxyl) oxovanadate (BPV(pic)) attenuates early brain injury by modulating α-amino-3-hydroxy-5-methyl-4-isoxa-zolep-propionate (AMPA) receptor subunits after subarachnoid hemorrhage (SAH). A standard intravascular perforation model was used to produce the experimental SAH in Sprague-Dawley rats. BPV(pic) treatment (0.2mg/kg) was evaluated for effects on neurological score, brain water content, Evans blue extravasation, hippocampal neuronal death and AMPA receptor subunits alterations after SAH. We found that BPV(pic) is effective in attenuating BBB disruption, lowering edema, reducing hippocampal neural death and improving neurological outcomes. In addition, the AMPA receptor subunit GluR1 protein expression at cytomembrane was downregulated, whereas the expression of GluR2 and GluR3 was upregulated after BPV(pic) treatment. Our results suggest that PTEN inhibited by BPV(pic) plays a neuroprotective role in SAH pathophysiology, possibly by alterations in glutamate AMPA receptor subunits.

  7. Topiramate attenuates early brain injury following subarachnoid haemorrhage in rats via duplex protection against inflammation and neuronal cell death.

    PubMed

    Tian, Yong; Guo, Song-Xue; Li, Jian-Ru; Du, Hang-Gen; Wang, Chao-Hui; Zhang, Jian-Min; Wu, Qun

    2015-10-01

    Early brain injury (EBI) following aneurysmal subarachnoid haemorrhage (SAH) insults contributes to the poor prognosis and high mortality observed in SAH patients. Topiramate (TPM) is a novel, broad-spectrum, antiepileptic drug with a reported protective effect against several brain injuries. The current study aimed to investigate the potential of TPM for neuroprotection against EBI after SAH and the possible dose-dependency of this effect. An endovascular perforation SAH model was established in rats, and TPM was administered by intraperitoneal injection after surgery at three different doses (20mg/kg, 40mg/kg, and 80mg/kg). The animals' neurological scores and brain water content were evaluated, and ELISA, Western blotting and immunostaining assays were conducted to assess the effect of TPM. The results revealed that TPM lowers the elevated levels of myeloperoxidase and proinflammatory mediators observed after SAH in a dose-related fashion, and the nuclear factor-kappa B (NF-κB) signalling pathway is the target of neuroinflammation regulation. In addition, TPM ameliorated SAH-induced cortical neuronal apoptosis by influencing Bax, Bcl-2 and cleaved caspase-3 protein expression, and the effect of TPM was enhanced in a dose-dependent manner. Various dosages of TPM also upregulated the protein expression of the γ-aminobutyric acid (GABA)-ergic signalling molecules, GABAA receptor (GABAAR) α1, GABAAR γ2, and K(+)-Cl(-) co-transporter 2 (KCC2) together and downregulated Na(+)-K(+)-Cl(-) co-transporter 1 (NKCC1) expression. Thus, TPM may be an effective neuroprotectant in EBI after SAH by regulating neuroinflammation and neuronal cell death.

  8. Topiramate attenuates early brain injury following subarachnoid haemorrhage in rats via duplex protection against inflammation and neuronal cell death.

    PubMed

    Tian, Yong; Guo, Song-Xue; Li, Jian-Ru; Du, Hang-Gen; Wang, Chao-Hui; Zhang, Jian-Min; Wu, Qun

    2015-10-01

    Early brain injury (EBI) following aneurysmal subarachnoid haemorrhage (SAH) insults contributes to the poor prognosis and high mortality observed in SAH patients. Topiramate (TPM) is a novel, broad-spectrum, antiepileptic drug with a reported protective effect against several brain injuries. The current study aimed to investigate the potential of TPM for neuroprotection against EBI after SAH and the possible dose-dependency of this effect. An endovascular perforation SAH model was established in rats, and TPM was administered by intraperitoneal injection after surgery at three different doses (20mg/kg, 40mg/kg, and 80mg/kg). The animals' neurological scores and brain water content were evaluated, and ELISA, Western blotting and immunostaining assays were conducted to assess the effect of TPM. The results revealed that TPM lowers the elevated levels of myeloperoxidase and proinflammatory mediators observed after SAH in a dose-related fashion, and the nuclear factor-kappa B (NF-κB) signalling pathway is the target of neuroinflammation regulation. In addition, TPM ameliorated SAH-induced cortical neuronal apoptosis by influencing Bax, Bcl-2 and cleaved caspase-3 protein expression, and the effect of TPM was enhanced in a dose-dependent manner. Various dosages of TPM also upregulated the protein expression of the γ-aminobutyric acid (GABA)-ergic signalling molecules, GABAA receptor (GABAAR) α1, GABAAR γ2, and K(+)-Cl(-) co-transporter 2 (KCC2) together and downregulated Na(+)-K(+)-Cl(-) co-transporter 1 (NKCC1) expression. Thus, TPM may be an effective neuroprotectant in EBI after SAH by regulating neuroinflammation and neuronal cell death. PMID:26086367

  9. Post-traumatic stress avoidance is attenuated by corticosterone and associated with brain levels of steroid receptor co-activator-1 in rats.

    PubMed

    Whitaker, Annie M; Farooq, Muhammad A; Edwards, Scott; Gilpin, Nicholas W

    2016-01-01

    Individuals with post-traumatic stress disorder (PTSD) avoid trauma-related stimuli and exhibit blunted hypothalamic-pituitary-adrenal (HPA) axis activation at the time of stress. Our rodent model of stress mimics the avoidance symptom cluster of PTSD. Rats are classified as "Avoiders" or "Non-Avoiders" post-stress based on the avoidance of a predator-odor paired context. Previously, we found Avoiders exhibit an attenuated HPA stress response to predator odor. We hypothesized that corticosterone administration before stress would reduce the magnitude and incidence of stress-paired context avoidance. Furthermore, we also predicted that Avoiders would exhibit altered expression of glucocorticoid receptor (GR) signaling machinery elements, including steroid receptor co-activator (SRC)-1. Male Wistar rats (n = 16) were pretreated with corticosterone (25 mg/kg) or saline and exposed to predator-odor stress paired with a context and tested for avoidance 24 h later. A second group of corticosterone-naïve rats (n = 24) were stressed (or not), indexed for avoidance 24 h later, and killed 48 h post-odor exposure to measure phosphorylated GR, FKBP51 and SRC-1 levels in the paraventricular nucleus (PVN), central amygdala (CeA) and ventral hippocampus (VH), all brain sites that highly express GRs and regulate HPA function. Corticosterone pretreatment reduced the magnitude and incidence of avoidance. In Avoiders, predator-odor exposure led to lower SRC-1 expression in the PVN and CeA, and higher SRC-1 expression in the VH. SRC-1 expression in PVN, CeA and VH was predicted by prior avoidance behavior. Hence, a blunted HPA stress response may contribute to stress-induced neuroadaptations in central SRC-1 levels and behavioral dysfunction in Avoider rats.

  10. PK 11195 attenuates kainic acid-induced seizures and alterations in peripheral-type benzodiazepine receptor (PBR) protein components in the rat brain.

    PubMed

    Veenman, L; Leschiner, S; Spanier, I; Weisinger, G; Weizman, A; Gavish, M

    2002-03-01

    Peripheral-type benzodiazepine receptors (PBR) are located in glial cells in the brain and in peripheral tissues. Mitochondria form the primary location for PBR. Functional PBR appear to require at least three components: an isoquinoline binding protein, a voltage-dependent anion channel, and an adenine nucleotide carrier. In the present study, rats received intraperitoneal kainic acid injections, which are known to cause seizures, neurodegeneration, hyperactivity, gliosis, and a fivefold increase in PBR ligand binding density in the hippocampus. In the forebrain of control rats, hippocampal voltage-dependent anion channel and adenine nucleotide carrier abundance was relatively low, while isoquinoline binding protein abundance did not differ between hippocampus and the rest of the forebrain. One week after kainic acid injection, isoquinoline binding protein abundance was increased more than 20-fold in the hippocampal mitochondrial fraction. No significant changes were detected regarding hippocampal voltage-dependent anion channel and adenine nucleotide carrier abundance. Pre-treatment with the isoquinoline PK11195, a specific PBR ligand, attenuated the occurrence of seizures, hyperactivity, and increases in isoquinoline binding protein levels in the hippocampus, which usually follow kainic acid application. These data suggest that isoquinoline binding protein may be involved in these effects of kainic acid injections.

  11. Spatial Working Memory Deficits in Male Rats Following Neonatal Hypoxic Ischemic Brain Injury Can Be Attenuated by Task Modifications

    PubMed Central

    Smith, Amanda L.; Hill, Courtney A.; Alexander, Michelle; Szalkowski, Caitlin E.; Chrobak, James J.; Rosenkrantz, Ted S.; Fitch, R. Holly

    2014-01-01

    Hypoxia-ischemia (HI; reduction in blood/oxygen supply) is common in infants with serious birth complications, such as prolonged labor and cord prolapse, as well as in infants born prematurely (<37 weeks gestational age; GA). Most often, HI can lead to brain injury in the form of cortical and subcortical damage, as well as later cognitive/behavioral deficits. A common domain of impairment is working memory, which can be associated with heightened incidence of developmental disorders. To further characterize these clinical issues, the current investigation describes data from a rodent model of HI induced on postnatal (P)7, an age comparable to a term (GA 36–38) human. Specifically, we sought to assess working memory using an eight-arm radial water maze paradigm. Study 1 used a modified version of the paradigm, which requires a step-wise change in spatial memory via progressively more difficult tasks, as well as multiple daily trials for extra learning opportunity. Results were surprising and revealed a small HI deficit only for the final and most difficult condition, when a delay before test trial was introduced. Study 2 again used the modified radial arm maze, but presented the most difficult condition from the start, and only one daily test trial. Here, results were expected and revealed a robust and consistent HI deficit across all weeks. Combined results indicate that male HI rats can learn a difficult spatial working memory task if it is presented in a graded multi-trial format, but performance is poor and does not appear to remediate if the task is presented with high initial memory demand. Male HI rats in both studies displayed impulsive characteristics throughout testing evidenced as reduced choice latencies despite more errors. This aspect of behavioral results is consistent with impulsiveness as a core symptom of ADHD—a diagnosis common in children with HI insult. Overall findings suggest that task specific behavioral modifications are crucial to

  12. Attenuation of lead-induced oxidative stress in rat brain, liver, kidney and blood of male Wistar rats by Moringa oleifera seed powder.

    PubMed

    Velaga, Manoj Kumar; Daughtry, Lucius K; Jones, Angelica C; Yallapragada, Prabhakara Rao; Rajanna, Sharada; Rajanna, Bettaiya

    2014-01-01

    Moringa oleifera is a tree belonging to Moringaceae family and its leaves and seeds are reported to have ameliorative effects against metal toxicity. In the present investigation, M. oleifera seed powder was tested against lead-induced oxidative stress and compared against meso-2, 3-dimercaptosuccinic acid (DMSA) treatment. Male Wistar rats (100-120 g) were divided into four groups: control (2000 ppm of sodium acetate for 2 weeks), exposed (2000 ppm of lead acetate for 2 weeks), Moringa treated (500 mg/kg for 7 days after lead exposure), and DMSA treated (90 mg/kg for 7 days after lead exposure). After exposure and treatment periods, rats were sacrificed and the brain was separated into cerebellum, hippocampus, frontal cortex, and brain stem; liver, kidney, and blood were also collected. The data indicated a significant (p<0.05) increase in reactive oxygen species (ROS), lipid perioxidation products (LPP), total protein carbonyl content (TPCC), and metal content of brain regions, liver, and kidney in the exposed group compared with their respective controls. In the blood, delta-amino levulinic acid dehydratase (ALAD) activity, RBC, WBC, hemoglobin, and hematocrit showed significant (p<0.05) decrease on lead exposure. However, administration of M. oleifera restored all the parameters back to control, tissue-specifically, and also showed improvement in restoration better than DMSA treatment, indicating reduction of the negative effects of lead-induced oxidative stress.

  13. Deep brain stimulation of the nucleus accumbens shell attenuates cue-induced reinstatement of both cocaine and sucrose seeking in rats.

    PubMed

    Guercio, Leonardo A; Schmidt, Heath D; Pierce, R Christopher

    2015-03-15

    Stimuli previously associated with drug taking can become triggers that can elicit craving and lead to relapse of drug-seeking behavior. Here, we examined the influence of deep brain stimulation (DBS) in the nucleus accumbens shell on cue-induced reinstatement of cocaine seeking, an animal model of relapse. Rats were allowed to self-administer cocaine (0.254 mg, i.v.) for 2 h daily for 21 days, with each infusion of cocaine being paired with a cue light. After 21 days of self-administration, cocaine-taking behavior was extinguished by replacing cocaine with saline in the absence of the cue light. Next, during the reinstatement phase, DBS was administered bilaterally into the nucleus accumbens shell through bipolar stainless steel electrodes immediately prior to re-exposure to cues previously associated with cocaine reinforcement. DBS continued throughout the 2 h reinstatement session. Parallel studies examined the influence of accumbens shell DBS on reinstatement induced by cues previously associated with sucrose reinforcement. Results indicated that DBS of the nucleus accumbens shell significantly attenuated cue-induced reinstatement of cocaine and sucrose seeking. Together, these results indicate that DBS of the accumbens shell disrupts cue-induced reinstatement associated with both a drug and a natural reinforcer. PMID:25529183

  14. Deep Brain Stimulation of the Nucleus Accumbens Shell Attenuates Cue-Induced Reinstatement of Both Cocaine and Sucrose Seeking in Rats

    PubMed Central

    Guercio, Leonardo A.; Schmidt, Heath D.; Pierce, R. Christopher

    2015-01-01

    Stimuli previously associated with drug taking can become triggers that can elicit craving and lead to relapse of drug-seeking behavior. Here, we examined the influence of deep brain stimulation (DBS) in the nucleus accumbens shell on cue-induced reinstatement of cocaine seeking, an animal model of relapse. Rats were allowed to self-administer cocaine (0.254 mg, i.v.) for 2 h daily for 21 d, with each infusion of cocaine being paired with a cue light. After 21 d of self-administration, cocaine-taking behavior was extinguished by replacing cocaine with saline in the absence of the cue light. Next, during the reinstatement phase, DBS was administered bilaterally into the nucleus accumbens shell through bipolar stainless steel electrodes immediately prior to re-exposure to cues previously associated with cocaine reinforcement. DBS continued throughout the 2 h reinstatement session. Parallel studies examined the influence of accumbens shell DBS on reinstatement induced by cues previously associated with sucrose reinforcement. Results indicated that DBS of the nucleus accumbens shell significantly attenuated cue-induced reinstatement of cocaine and sucrose seeking. Together, these results indicate that DBS of the accumbens shell disrupts cue-induced reinstatement associated with both a drug and a natural reinforcer. PMID:25529183

  15. Serum metabolites from walnut-fed aged rats attenuate stress-induced neurotoxicity in brain cells in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The shift in equilibrium towards excess reactive oxygen or nitrogen species production from innate antioxidant defense in brain is a critical factor in the declining neural functions and cognitive deficits accompanying age. In aging, there are noticeable alterations in the membrane microenvironment,...

  16. Rose oil (from Rosa × damascena Mill.) vapor attenuates depression-induced oxidative toxicity in rat brain.

    PubMed

    Nazıroğlu, Mustafa; Kozlu, Süleyman; Yorgancıgil, Emre; Uğuz, Abdülhadi Cihangir; Karakuş, Kadir

    2013-01-01

    Oxidative stress is a critical route of damage in various physiological stress-induced disorders, including depression. Rose oil may be a useful treatment for depression because it contains flavonoids which include free radical antioxidant compounds such as rutin and quercetin. We investigated the effects of absolute rose oil (from Rosa × damascena Mill.) and experimental depression on lipid peroxidation and antioxidant levels in the cerebral cortex of rats. Thirty-two male rats were randomly divided into four groups. The first group was used as control, while depression was induced in the second group using chronic mild stress (CMS). Oral (1.5 ml/kg) and vapor (0.15 ml/kg) rose oil were given for 28 days to CMS depression-induced rats, constituting the third and fourth groups, respectively. The sucrose preference test was used weekly to identify depression-like phenotypes during the experiment. At the end of the experiment, cerebral cortex samples were taken from all groups. The lipid peroxidation levels in the cerebral cortex in the CMS group were higher than in control whereas their levels were decreased by rose oil vapor exposure. The vitamin A, vitamin E, vitamin C and β-carotene concentrations in the cerebral cortex were lower in the CMS group than in the control group whereas their concentrations were higher in the rose oil vapor plus CMS group. The CMS-induced antioxidant vitamin changes were not modulated by oral treatment. Glutathione peroxidase activity and reduced glutathione did not change statistically in the four groups following CMS or either treatment. In conclusion, experimental depression is associated with elevated oxidative stress while treatment with rose oil vapor induced protective effects on oxidative stress in depression.

  17. Magnesium and ketamine attenuate cognitive dysfunction following experimental brain injury.

    PubMed

    Smith, D H; Okiyama, K; Gennarelli, T A; McIntosh, T K

    1993-07-23

    We evaluated the therapeutic effects of two noncompetitive antagonists of the N-methyl-D-aspartate (NMDA) receptor, MgCl2 and ketamine, both individually and together, on cognitive dysfunction observed following parasagittal fluid-percussion (FP) brain injury in the rat. Using a modified Morris water maze technique, we found significant attenuation of post-traumatic memory dysfunction in animals treated with either MgCl2 (125 mumol) or ketamine (4 mg/kg) (P < 0.005). Combined MgCl2 and ketamine treatment also preserved memory function (P < 0.005), with no apparent additive effect.

  18. C1q/Tumor Necrosis Factor-Related Protein-3 Attenuates Brain Injury after Intracerebral Hemorrhage via AMPK-Dependent Pathway in Rat

    PubMed Central

    Wang, Shaohua; Zhou, Yang; Yang, Bo; Li, Lingyu; Yu, Shanshan; Chen, Yanlin; Zhu, Jin; Zhao, Yong

    2016-01-01

    C1q/tumor necrosis factor (TNF)-related protein-3 (CTRP3) is a recently discovered adiponectin paralog with established metabolic regulatory properties. However, the role of CTRP3 in intracerebral hemorrhage (ICH) is still mostly unresolved. The aim of the present report was to explore the possible neuroprotective effect of CTRP3 in an ICH rat model and to elucidate the fundamental mechanisms. ICH was induced in rats by intracerebral infusion of autologous arterial blood. The effects of exogenous CTRP3 (recombinant or lentivirus CTRP3) on brain injury were explored on day 7. Treatment with CTRP3 reduced brain edema, protected against disruption of the blood-brain barrier (BBB), improved neurological functions and promoted angiogenesis. Furthermore, CTRP3 greatly intensified phosphorylation of AMP-activated protein kinase (AMPK) in addition to expression of hypoxia inducing factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Finally, the protective effects of CTRP3 could be blocked by either AMPK or VEGF inhibitors. Our findings give the first evidence that CTRP3 is a new proangiogenic and neuroprotective adipokine, which may exert its protective effects at least partly through an AMPK/HIF-1α/ VEGF-dependent pathway, and suggest that CTRP3 may provide a new therapeutic strategy for ICH. PMID:27807406

  19. N-acetylcysteine attenuates lipopolysaccharide-induced impairment in lamination of Ctip2-and Tbr1- expressing cortical neurons in the developing rat fetal brain

    PubMed Central

    Chao, Ming-Wei; Chen, Chie-Pein; Yang, Yu-Hsiu; Chuang, Yu-Chen; Chu, Tzu-Yun; Tseng, Chia-Yi

    2016-01-01

    Oxidative stress and inflammatory insults are the major instigating events of bacterial intrauterine infection that lead to fetal brain injury. The purpose of this study is to investigate the remedial effects of N-acetyl-cysteine (NAC) for inflammation-caused deficits in brain development. We found that lipopolysaccharide (LPS) induced reactive oxygen species (ROS) production by RAW264.7 cells. Macrophage-conditioned medium caused noticeable cortical cell damage, specifically in cortical neurons. LPS at 25 μg/kg caused more than 75% fetal loss in rats. An increase in fetal cortical thickness was noted in the LPS-treated group. In the enlarged fetal cortex, laminar positioning of the early born cortical cells expressing Tbr1 and Ctip2 was disrupted, with a scattered distribution. The effect was similar, but minor, in later born Satb2-expressing cortical cells. NAC protected against LPS-induced neuron toxicity in vitro and counteracted pregnancy loss and alterations in thickness and lamination of the neocortex in vivo. Fetal loss and abnormal fetal brain development were due to LPS-induced ROS production. NAC is an effective protective agent against LPS-induced damage. This finding highlights the key therapeutic impact of NAC in LPS-caused abnormal neuronal laminar distribution during brain development. PMID:27577752

  20. N-acetylcysteine attenuates lipopolysaccharide-induced impairment in lamination of Ctip2-and Tbr1- expressing cortical neurons in the developing rat fetal brain.

    PubMed

    Chao, Ming-Wei; Chen, Chie-Pein; Yang, Yu-Hsiu; Chuang, Yu-Chen; Chu, Tzu-Yun; Tseng, Chia-Yi

    2016-01-01

    Oxidative stress and inflammatory insults are the major instigating events of bacterial intrauterine infection that lead to fetal brain injury. The purpose of this study is to investigate the remedial effects of N-acetyl-cysteine (NAC) for inflammation-caused deficits in brain development. We found that lipopolysaccharide (LPS) induced reactive oxygen species (ROS) production by RAW264.7 cells. Macrophage-conditioned medium caused noticeable cortical cell damage, specifically in cortical neurons. LPS at 25 μg/kg caused more than 75% fetal loss in rats. An increase in fetal cortical thickness was noted in the LPS-treated group. In the enlarged fetal cortex, laminar positioning of the early born cortical cells expressing Tbr1 and Ctip2 was disrupted, with a scattered distribution. The effect was similar, but minor, in later born Satb2-expressing cortical cells. NAC protected against LPS-induced neuron toxicity in vitro and counteracted pregnancy loss and alterations in thickness and lamination of the neocortex in vivo. Fetal loss and abnormal fetal brain development were due to LPS-induced ROS production. NAC is an effective protective agent against LPS-induced damage. This finding highlights the key therapeutic impact of NAC in LPS-caused abnormal neuronal laminar distribution during brain development. PMID:27577752

  1. Compensation for non-uniform attenuation in SPECT brain imaging

    SciTech Connect

    Glick, S.J.; King, M.A.; Pan, T.S.

    1994-05-01

    Photon attenuation is a major limitation in performing quantitative SPECT brain imaging. A number of methods have been proposed for compensation of attenuation in regions of the body that can be modelled as a uniform attenuator. The magnitude of the errors introduced into reconstructed brain images by assuming the head to be a uniform attenuator are uncertain (the skull, sinus cavities and head holder all have different attenuation properties than brain tissue). Brain imaging is unique in that the radioisotope, for the most part, is taken up within a uniform attenuation medium (i.e., brain tissue) which is surrounded by bone (i.e., the skull) of a different density. Using this observation, Bellini`s method for attenuation compensation (which is an exact solution to the exponential Radon transform) has been modified to account for the different attenuation properties of the skull. To test this modified Bellini method, a simple mathematical phantom was designed to model the brain and a skull of varying thickness less than 7.5 mm. To model brain imaging with Tc-99m HMPAO, the attenuation coefficient of the brain tissue and skull were set to 0.15 cm{sup -1} and 0.22 cm{sup -1} respectively. A ray-driven projector which accounted for non-uniform attenuation was used to simulate projection data from 128 views. The detector response and scatter were not simulated. It was observed that reconstructions processed with uniform attenuation compensation (i.e., where it was assumed that the brain tissue and the skull had the same attenuation coefficient) provided errors of 6-20%, whereas those processed with the non-uniform Bellini algorithm were biased by only 0-5%.

  2. Estetrol attenuates neonatal hypoxic-ischemic brain injury.

    PubMed

    Tskitishvili, Ekaterine; Nisolle, Michelle; Munaut, Carine; Pequeux, Christel; Gerard, Celine; Noel, Agnes; Foidart, Jean-Michel

    2014-11-01

    Estetrol (E4) is a recently described natural estrogen with four hydroxyl-groups that is synthesized exclusively during pregnancy by the human fetal liver. It has important antioxidative activity. The aim of the present study was to define the importance of E4 in the attenuation of neonatal hypoxic-ischemic encephalopathy. Antioxidative effect of 650μM, 3.25mM and 6.5mM E4 on primary hippocampal cell cultures was studied before/after H202-induced oxidative stress. To examine oxidative stress and cell viability, lactate dehydrogenase activity and cell proliferation colorimetric assays were performed. To study the neuroprotective and therapeutic effects of E4 in vivo neonatal hypoxic-ischemic encephalopathy model of 7-day-old newborn rat pups was used. The neuroprotective and therapeutic effects of estetrol before/after hypoxic-ischemic insult was studied in 1mg/kg/day, 5mg/kg/day, 10mg/kg/day, 50mg/kg/day E4 pretreated/treated groups and compared with the sham and the vehicle treated groups. The body temperature of the rat pups was examined along with their body and brain weights. Brains were studied at the level of the hippocampus and cortex. Intact cell counting and expressions of microtubule-associated protein-2, doublecortin and vascular-endothelial growth factor were evaluated by histo- and immunohistochemistry. ELISAs were performed on blood samples to detect concentrations of S100B and glial fibrillary acidic protein as brain damage markers. This work reveals for the first time that E4 significantly decreases LDH activity and enhances cell proliferation in primary hippocampal neuronal cell cultures in vitro, and decreases the early gray matter loss and promotes neuro- and angiogenesis in vivo. PMID:25079370

  3. Cortical edema in moderate fluid percussion brain injury is attenuated by vagus nerve stimulation.

    PubMed

    Clough, R W; Neese, S L; Sherill, L K; Tan, A A; Duke, A; Roosevelt, R W; Browning, R A; Smith, D C

    2007-06-29

    Development of cerebral edema (intracellular and/or extracellular water accumulation) following traumatic brain injury contributes to mortality and morbidity that accompanies brain injury. Chronic intermittent vagus nerve stimulation (VNS) initiated at either 2 h or 24 h (VNS: 30 s train of 0.5 mA, 20 Hz, biphasic pulses every 30 min) following traumatic brain injury enhances recovery of motor and cognitive function in rats in the weeks following brain injury; however, the mechanisms of facilitated recovery are unknown. The present study examines the effects of VNS on development of acute cerebral edema following unilateral fluid percussion brain injury (FPI) in rats, concomitant with assessment of their behavioral recovery. Two hours following FPI, VNS was initiated. Behavioral testing, using both beam walk and locomotor placing tasks, was conducted at 1 and 2 days following FPI. Edema was measured 48 h post-FPI by the customary method of region-specific brain weights before and after complete dehydration. Results of this study replicated that VNS initiated at 2 h after FPI: 1) effectively facilitated the recovery of vestibulomotor function at 2 days after FPI assessed by beam walk performance (P<0.01); and 2) tended to improve locomotor placing performance at the same time point (P=0.18). Most interestingly, results of this study showed that development of edema within the cerebral cortex ipsilateral to FPI was significantly attenuated at 48 h in FPI rats receiving VNS compared with non-VNS FPI rats (P<0.04). Finally, a correlation analysis between beam walk performance and cerebral edema following FPI revealed a significant inverse correlation between behavior performance and cerebral edema. Together, these results suggest that VNS facilitation of motor recovery following experimental brain injury in rats is associated with VNS-mediated attenuation of cerebral edema. PMID:17543463

  4. MLKL inhibition attenuates hypoxia-ischemia induced neuronal damage in developing brain.

    PubMed

    Qu, Yi; Shi, Jing; Tang, Ying; Zhao, Fengyan; Li, Shiping; Meng, Junjie; Tang, Jun; Lin, Xuemei; Peng, Xiaodong; Mu, Dezhi

    2016-05-01

    Mixed lineage kinase domain-like protein (MLKL) is a critical molecule mediating cell necroptosis. However, its role in brain injury remains obscure. We first investigated the functions and mechanisms of MLKL in mediating neuronal damage in developing brain after hypoxia-ischemia. Neuronal necroptosis was induced by oxygen-glucose deprivation (OGD) plus caspase inhibitor zVAD treatment (OGD/zVAD). We found that two important necroptosis related proteins, receptor-interacting protein 1 and 3 (RIP1, RIP3) were upregulated. Furthermore, the interaction of RIP1-RIP3 with MLKL increased. Inhibition of MLKL through siRNA diminished RIP1-RIP3-MLKL interaction and attenuated neuronal death induced by OGD/zVAD. The translocation of oligomerized MLKL to the neuronal membrane leading to the injury of cellular membrane is the possible new mechanism of neuronal necroptosis. Animal experiment with neonatal rats further proved that MLKL inhibition attenuated brain damage induced by hypoxia-ischemia. These findings suggest that MLKL is a target to attenuate brain damage in developing brain.

  5. Tetramethylpyrazine, a natural alkaloid, attenuates pro-inflammatory mediators induced by amyloid β and interferon-γ in rat brain microglia.

    PubMed

    Kim, Mia; Kim, Sung-Ok; Lee, Moonsung; Lee, Joon H; Jung, Woo-Sang; Moon, Sang-Kwan; Kim, Young-Suk; Cho, Ki-Ho; Ko, Chang-Nam; Lee, Eunjoo H

    2014-10-01

    Neuroinflammation has been consistently reported as a pathological hallmark of Alzheimer׳s disease and other neurodegenerative diseases. Microglial cells are activated by diverse pathological stimuli and play key roles in development of neuroinflammation. Amyloid β peptide (Aβ), the major constituent of amyloid plaques in Alzheimer׳s brain, is known to activate cultured microglial cells to produce increased amounts of proinflammatory and neurotoxic factors. Tetramethylpyrazine (TMP) is the main bioactive alkaloid isolated from Ligusticum chuanxiong. TMP has multiple pharmacological activities, including anti-oxidant, anti-inflammatory, and anti-cancer effects. Neuroprotective potential of TMP has been demonstrated in animal models of neuropathologies. However, the efficacy of this compound for controlling Aβ-related neuropathology has not been explored yet. We examined the efficacy of TMP in the repression of inflammatory response in cultured microglial cells stimulated with Aβ25-35 in the presence of interferon (IFN)-γ. TMP significantly inhibited the Aβ25-35 and IFN-γ-stimulated productions of nitric oxide, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, monocyte chemoattractant protein-1, and intracellular reactive oxygen species from primary microglial cells. TMP also effectively reduced Aβ25-35 and IFN-γ-elicited NF-κB activation. In organotypic hippocampal slice cultures (OHSCs), TMP significantly blocked Aβ25-35-induced reactive oxygen species generation and phosphorylation of Akt. Furthermore, TMP also inhibited Aβ1-42-induced TNF-α and IL-1β production in primary microglial cells and neuronal death in OHSCs. These results suggest that TMP provide a possible therapeutic approach for alleviating the inflammatory progression of Alzheimer׳s disease. PMID:24975095

  6. Ischemia-induced Angiogenesis is Attenuated in Aged Rats.

    PubMed

    Tang, Yaohui; Wang, Liuqing; Wang, Jixian; Lin, Xiaojie; Wang, Yongting; Jin, Kunlin; Yang, Guo-Yuan

    2016-08-01

    To study whether focal angiogenesis is induced in aged rodents after permanent distal middle cerebral artery occlusion (MCAO), young adult (3-month-old) and aged (24-month-old) Fisher 344 rats underwent MCAO and sacrificed up to two months after MCAO. Immunohistochemistry and synchrotron radiation microangiography were performed to examine the number of newly formed blood vessels in both young adult and aged rats post-ischemia. We found that the number of capillaries and small arteries in aged brain was the same as young adult brain. In addition, we found that after MCAO, the number of blood vessels in the peri-infarct region of ipsilateral hemisphere in aged ischemic rats was significantly increased compared to the aged sham rats (p<0.05). We also confirmed that ischemia-induced focal angiogenesis occurred in young adult rat brain while the blood vessel density in young adult ischemic brain was significantly higher than that in the aged ischemic brain (p<0.05). Our data suggests that focal angiogenesis in aged rat brain can be induced in response to ischemic brain injury, and that aging impedes brain repairing and remodeling after ischemic stroke, possible due to the limited response of angiogenesis. PMID:27493831

  7. Calcium channel blockade attenuates angiotensin II-induced drinking in rats.

    PubMed

    Calcagnetti, D J; Schechter, M D

    1993-01-01

    Lateral ventricular administration of angiotensin II (ANG II) produces potent dipsogenic effects in water-sated rats. ANG II seems to require functional voltage-gated calcium channels on neurons throughout circumventricular brain sites to exert its effects. Although there are at least three types of calcium channels, only L-type calcium channel-blocking drugs have been reported to decrease drinking. (4-(4-Benzofurazanyl)-1-4-dihydro-2,6-dimethyl-3,5-pyridine-dic arb oxylic acid methyl 1-methyl-ethyl ester) [PN 200-110; isradipine (ISR)], a selective L-type calcium channel blocker, has been shown to attenuate significantly the intake of sweetened water in water-sated rats following either peripheral or ICV administration, but ISR does not affect plain-water intake in water-deprived rats. The present experiment was designed to determine whether ISR would attenuate ANG II-induced drinking that is not either motivated by palatability or dependent on deprivation. Rats, each fitted with chronic indwelling ventricular cannulae, were pretreated with ISR (0.3, 3.0, and 30 micrograms/rat; ICV). ANG II (40 ng/rat; ICV) was administered 10 min later and rats were allowed free access to water for 15 min. Injections of ANG II plus saline and ANG II plus the ISR vehicle (dimethyl sulfoxide) did not attenuate ANG II-induced polydipsia, whereas ANG II+ISR (0.3 and 3.0 micrograms) attenuated ANG II-induced drinking to 62 and 22% of control, respectively. Results with the 30-micrograms dose were not different from the 3.0 dose.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Cerebrolysin attenuates cerebral and hepatic injury due to lipopolysaccharide in rats.

    PubMed

    Abdel-Salam, O M E; Omara, E A; Mohammed, N A; Youness, E R; Khadrawy, Y A; Sleem, A A

    2013-12-01

    This study aimed to investigate the effect of cerebrolysin on oxidative stress in the brain and liver during systemic inflammation. Rats were intraperitoneally challenged with a single subseptic dose of lipopolysaccharide (LPS; 300 μg/kg) without or with cerebrolysin at doses of 21.5, 43 or 86 mg/kg. After 4 h, rats were euthanized and the brain and liver tissues were subjected to biochemical and histopathological analyses. Cerebrolysin revealed inhibitory effects on the elevation of lipid peroxidation and nitric oxide induced by LPS. In contrast, the decrease in reduced glutathione level and paraoxonase activity induced by LPS was attenuated by an injection of cerebrolysin in a dose-dependent manner. Moreover, cerebrolysin reduced LPS-induced activation of brain NF-κB and reversed LPS-induced decline of brain butyrylcholinesterase and acetylcholinesterase activities in a dose-dependent manner. Histopathological analyses revealed that neuronal damage and liver necrosis induced by LPS were ameliorated by cerebrolysin dose-dependently. Cerebrolysin treatment dose-dependently attenuated LPS-induced expressions in cyclooxygenase 2, inducible nitric oxide synthase, and caspase-3 in the cortex or striatum as well as the liver. These results suggest that cerebrolysin treatment might have beneficial therapeutic effects in cerebral inflammation. Cerebrolysin might also prove of value in liver disease and this possibility requires further exploration.

  9. Pre-existing interleukin 10 in cerebral arteries attenuates subsequent brain injury caused by ischemia/reperfusion.

    PubMed

    Liang, Qiu-Juan; Jiang, Mei; Wang, Xin-Hong; Le, Li-Li; Xiang, Meng; Sun, Ning; Meng, Dan; Chen, Si-Feng

    2015-09-01

    Recurrent stroke is difficult to treat and life threatening. Transfer of anti-inflammatory gene is a potential gene therapy strategy for ischemic stroke. Using recombinant adeno-associated viral vector 1 (rAAV1)-mediated interleukin 10 (IL-10), we investigated whether transfer of beneficial gene into the rat cerebral vessels during interventional treatment for initial stroke could attenuate brain injury caused by recurrent stroke. Male Wistar rats were administered rAAV1-IL-10, rAAV1-YFP, or saline into the left cerebral artery. Three weeks after gene transfer, rats were subjected to occlusion of the left middle cerebral artery (MCAO) for 45 min followed by reperfusion for 24 h. IL-10 levels in serum were significantly elevated 3 weeks after rAAV1-IL-10 injection, and virus in the cerebral vessels was confirmed by in situ hybridization. Pre-existing IL-10 but not YFP decreased the neurological dysfunction scores, brain infarction volume, and the number of injured neuronal cells. AAV1-IL-10 transduction increased heme oxygenase (HO-1) mRNA and protein levels in the infarct boundary zone of the brain. Thus, transduction of the IL-10 gene in the cerebral artery prior to ischemia attenuates brain injury caused by ischemia/reperfusion in rats. This preventive approach for recurrent stroke can be achieved during interventional treatment for initial stroke.

  10. LXW7 ameliorates focal cerebral ischemia injury and attenuates inflammatory responses in activated microglia in rats

    PubMed Central

    Fang, T.; Zhou, D.; Lu, L.; Tong, X.; Wu, J.; Yi, L.

    2016-01-01

    Inflammation plays a pivotal role in ischemic stroke, when activated microglia release excessive pro-inflammatory mediators. The inhibition of integrin αvβ3 improves outcomes in rat focal cerebral ischemia models. However, the mechanisms by which microglia are neuroprotective remain unclear. This study evaluated whether post-ischemic treatment with another integrin αvβ3 inhibitor, the cyclic arginine-glycine-aspartic acid (RGD) peptide-cGRGDdvc (LXW7), alleviates cerebral ischemic injury. The anti-inflammatory effect of LXW7 in activated microglia within rat focal cerebral ischemia models was examined. A total of 108 Sprague-Dawley rats (250–280 g) were subjected to middle cerebral artery occlusion (MCAO). After 2 h, the rats were given an intravenous injection of LXW7 (100 μg/kg) or phosphate-buffered saline (PBS). Neurological scores, infarct volumes, brain water content (BWC) and histology alterations were determined. The expressions of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)], and Iba1-positive activated microglia, within peri-ischemic brain tissue, were assessed with ELISA, western blot and immunofluorescence staining. Infarct volumes and BWC were significantly lower in LXW7-treated rats compared to those in the MCAO + PBS (control) group. The LXW7 treatment lowered the expression of pro-inflammatory cytokines. There was a reduction of Iba1-positive activated microglia, and the TNF-α and IL-1β expressions were attenuated. However, there was no difference in the Zea Longa scores between the ischemia and LXW7 groups. The results suggest that LXW7 protected against focal cerebral ischemia and attenuated inflammation in activated microglia. LXW7 may be neuroprotective during acute MCAO-induced brain damage and microglia-related neurodegenerative diseases. PMID:27533766

  11. Total Parenteral Nutrition Attenuates Cerulein-Induced Pancreatitis in Rats

    PubMed Central

    Koopmann, Matthew C.; Baumler, Megan D.; Boehler, Christopher J.; Chang, Faye L.; Ney, Denise M.; Groblewski, Guy E.

    2012-01-01

    Objectives Our aim was to determine if total parenteral nutrition (TPN)–induced pancreatic atrophy and Hsp70 expression attenuates cerulein-induced pancreatitis in rats. Methods Rats were randomized to a 7-day course of saline infusion plus a semipurified diet or TPN, with or without an intravenous cerulein injection or vehicle on day 7, and killed 1 or 6 hours after the injection. Based on a pilot study, 1 hour was the primary time point. Pancreatic atrophy was determined by mass, protein, and DNA contents. Pancreatic heat shock protein 70 (Hsp70) expression was measured by Western analysis. Histological examination of the pancreas assessed for edema, inflammation, vacuolization, and apoptosis. Serum amylase activity was measured using the Phadebas assay. Pancreatic trypsinogen activation was measured using a fluorometric substrate assay. Results The saline-infused rats fed orally gained significantly more weight than TPN rats. The TPN decreased the pancreatic mass and protein content and the protein-DNA ratio and increased the pancreatic DNA content compared with the saline. The TPN increased the pancreatic Hsp70 expression by 91% compared with the saline. The TPN reduced the cerulein-induced pancreatic histological edema, the vacuolization, and the inflammation compared with the saline. The increase in the serum amylase level after cerulein injection was significantly attenuated, and trypsinogen activation was reduced in TPN animals compared with the saline group. Conclusions Lack of luminal nutrients with a 7-day course of TPN provides moderate protection against cerulein-induced pancreatitis in rats. PMID:19904225

  12. Improved attenuation correction for freely moving animal brain PET studies using a virtual scanner geometry

    NASA Astrophysics Data System (ADS)

    Angelis, Georgios I.; Ryder, William J.; Kyme, Andre Z.; Fulton, Roger R.; Meikle, Steven R.

    2014-03-01

    Attenuation correction in positron emission tomography brain imaging of freely moving animals can be very challenging since the body of the animal is often within the field of view and introduces a non negligible atten- uating factor that can degrade the quantitative accuracy of the reconstructed images. An attractive approach that avoids the need for a transmission scan involves the generation of the convex hull of the animal's head based on the reconstructed emission images. However, this approach ignores the potential attenuation introduced by the animal's body. In this work, we propose a virtual scanner geometry, which moves in synchrony with the animal's head and discriminates between those events that traverse only the animal's head (and therefore can be accurately compensated for attenuation) and those that might have also traversed the animal's body. For each pose a new virtual scanner geometry was defined and therefore a new system matrix was calculated leading to a time-varying system matrix. This new approach was evaluated on phantom data acquired on the microPET Focus 220 scanner using a custom-made rat phantom. Results showed that when the animal's body is within the FOV and not accounted for during attenuation correction it can lead to bias of up to 10%. On the contrary, at- tenuation correction was more accurate when the virtual scanner was employed leading to improved quantitative estimates (bias <2%), without the need to account for the animal's body.

  13. Aromatized testosterone attenuates contextual generalization of fear in male rats.

    PubMed

    Lynch, Joseph F; Vanderhoof, Tyler; Winiecki, Patrick; Latsko, Maeson S; Riccio, David C; Jasnow, Aaron M

    2016-08-01

    Generalization is a common symptom of many anxiety disorders, and females are 60% more likely to suffer from an anxiety disorder than males. We have previously demonstrated that female rats display significantly accelerated rates of contextual fear generalization compared to male rats; a process driven, in part, by activation of ERβ. The current study was designed to determine the impact of estrogens on contextual fear generalization in male rats. For experiment 1, adult male rats were gonadectomized (GDX) and implanted with a capsule containing testosterone proprionate, estradiol, dihydrotestosterone proprionate (DHT), or an empty capsule. Treatment with testosterone or estradiol maintained memory precision when rats were tested in a different (neutral) context 1day after training. However, male rats treated with DHT or empty capsules displayed significant levels of fear generalization, exhibiting high levels of fear in the neutral context. In Experiment 2, we used acute injections of gonadal hormones at a time known to elicit fear generalization in female rats (e.g. 24h before testing). Injection treatment followed the same pattern of results seen in Experiment 1. Finally, animals given daily injections of the aromatase inhibitor, Fadrozole, displayed significant fear generalization. These data suggest that testosterone attenuates fear generalization likely through the aromatization testosterone into estradiol as animals treated with the non-aromatizable androgen, DHT, or animals treated with Fadrozole, displayed significant generalized fear. Overall, these results demonstrate a sex-dependent effect of estradiol on the generalization of contextual fear. PMID:27368147

  14. Blocking leukotriene synthesis attenuates the pathophysiology of traumatic brain injury and associated cognitive deficits

    PubMed Central

    Corser-Jensen, Chelsea E.; Goodell, Dayton J.; Freund, Ronald K.; Serbedzija, Predrag; Murphy, Robert C.; Farias, Santiago E.; Dell'Acqua, Mark L.; Frey, Lauren C.; Serkova, Natalie; Heidenreich, Kim A.

    2014-01-01

    Neuroinflammation is a component of secondary injury following traumatic brain injury (TBI) that can persist beyond the acute phase. Leukotrienes are potent, pro-inflammatory lipid mediators generated from membrane phospholipids. In the absence of injury, leukotrienes are undetectable in brain, but after trauma they are rapidly synthesized by a transcellular event involving infiltrating neutrophils and endogenous brain cells. Here, we investigate the efficacy of MK-886, an inhibitor of 5-lipoxygenase activating protein (FLAP), in blocking leukotriene synthesis, secondary brain damage, synaptic dysfunction, and cognitive impairments after TBI. Male Sprague Dawley rats (9-11 weeks) received either MK-886 or vehicle after they were subjected to unilateral moderate fluid percussion injury (FPI) to assess the potential clinical use of FLAP inhibitors for TBI. MK-886 was also administered before FPI to determine the preventative potential of FLAP inhibitors. MK-886 given before or after injury significantly blocked the production of leukotrienes, measured by reverse-phase liquid chromatography coupled to tandem mass spectrometry (RP LC-MS/MS), and brain edema, measured by T2-weighted magnetic resonance imaging (MRI). MK-886 significantly attenuated blood-brain barrier disruption in the CA1 hippocampal region and deficits in long-term potentiation (LTP) at CA1 hippocampal synapses. The prevention of FPI-induced synaptic dysfunction by MK-886 was accompanied by fewer deficits in post-injury spatial learning and memory performance in the radial arms water maze (RAWM). These results indicate that leukotrienes contribute significantly to secondary brain injury and subsequent cognitive deficits. FLAP inhibitors represent a novel anti-inflammatory approach for treating human TBI that is feasible for both intervention and prevention of brain injury and neurologic deficits. PMID:24681156

  15. Aerobic exercise attenuates inhibitory avoidance memory deficit induced by paradoxical sleep deprivation in rats.

    PubMed

    Fernandes, Jansen; Baliego, Luiz Guilherme Zaccaro; Peixinho-Pena, Luiz Fernando; de Almeida, Alexandre Aparecido; Venancio, Daniel Paulino; Scorza, Fulvio Alexandre; de Mello, Marco Tulio; Arida, Ricardo Mario

    2013-09-01

    The deleterious effects of paradoxical sleep deprivation (SD) on memory processes are well documented. Physical exercise improves many aspects of brain functions and induces neuroprotection. In the present study, we investigated the influence of 4 weeks of treadmill aerobic exercise on both long-term memory and the expression of synaptic proteins (GAP-43, synapsin I, synaptophysin, and PSD-95) in normal and sleep-deprived rats. Adult Wistar rats were subjected to 4 weeks of treadmill exercise training for 35 min, five times per week. Twenty-four hours after the last exercise session, the rats were sleep-deprived for 96 h using the modified multiple platform method. To assess memory after SD, all animals underwent training for the inhibitory avoidance task and were tested 24h later. The aerobic exercise attenuated the long-term memory deficit induced by 96 h of paradoxical SD. Western blot analysis of the hippocampus revealed increased levels of GAP-43 in exercised rats. However, the expression of synapsin I, synaptophysin, and PSD-95 was not modified by either exercise or SD. Our results suggest that an aerobic exercise program can attenuate the deleterious effects of SD on long-term memory and that this effect is not directly related to changes in the expression of the pre- and post-synaptic proteins analyzed in the study.

  16. Over-dose insulin and stable gastric pentadecapeptide BPC 157. Attenuated gastric ulcers, seizures, brain lesions, hepatomegaly, fatty liver, breakdown of liver glycogen, profound hypoglycemia and calcification in rats.

    PubMed

    Ilic, S; Brcic, I; Mester, M; Filipovic, M; Sever, M; Klicek, R; Barisic, I; Radic, B; Zoricic, Z; Bilic, V; Berkopic, L; Brcic, L; Kolenc, D; Romic, Z; Pazanin, L; Seiwerth, S; Sikiric, P

    2009-12-01

    We focused on over-dose insulin (250 IU/kg i.p.) induced gastric ulcers and then on other disturbances that were concomitantly induced in rats, seizures (eventually fatal), severely damaged neurons in cerebral cortex and hippocampus, hepatomegaly, fatty liver, increased AST, ALT and amylase serum values, breakdown of liver glycogen with profound hypoglycemia and calcification development. Calcium deposits were present in the blood vessel walls, hepatocytes surrounding blood vessels and sometimes even in parenchyma of the liver mainly as linear and only occasionally as granular accumulation. As an antidote after insulin, we applied the stable gastric pentadecapeptide BPC 157 (10 microg/kg) given (i) intraperitoneally or (ii) intragastrically immediately after insulin. Controls received simultaneously an equivolume of saline (5 ml/kg). Those rats that survived till the 180 minutes after over-dose application were further assessed. Interestingly, pentadecapeptide BPC 157, as an antiulcer peptide, may besides stomach ulcer consistently counteract all insulin disturbances and fatal outcome. BPC 157 rats showed no fatal outcome, they were mostly without hypoglycemic seizures with apparently higher blood glucose levels (glycogen was still present in hepatocytes), less liver pathology (i.e., normal liver weight, less fatty liver), decreased ALT, AST and amylase serum values, markedly less damaged neurons in brain and they only occasionally had small gastric lesions. BPC 157 rats exhibited mostly only dot-like calcium presentation. In conclusion, the success of BPC 157 therapy may indicate a likely role of BPC 157 in insulin controlling and BPC 157 may influence one or more causative process(es) after excessive insulin application. PMID:20388953

  17. Development of attenuated baroreflexes in obese Zucker rats coincides with impaired activation of nucleus tractus solitarius

    PubMed Central

    Guimaraes, Priscila S.; Huber, Domitila A.; Campagnole-Santos, Maria J.

    2014-01-01

    Adult obese Zucker rats (OZR; >12 wk) develop elevated sympathetic nerve activity (SNA) and mean arterial pressure (MAP) with impaired baroreflexes compared with adult lean Zucker rats (LZR) and juvenile OZR (6–7 wk). In adult OZR, baroreceptor afferent nerves respond normally to changes in MAP, whereas electrical stimulation of baroreceptor afferent fibers produces smaller reductions in SNA and MAP compared with LZR. We hypothesized that impaired baroreflexes in OZR are linked to reduced activation of brain stem sites that mediate baroreflexes. In conscious adult rats, a hydralazine (HDZ)-induced reduction in MAP evoked tachycardia that was initially blunted in OZR, but equivalent to LZR within 5 min. In agreement, HDZ-induced expression of c-Fos in the rostral ventrolateral medulla (RVLM) was comparable between groups. In contrast, phenylephrine (PE)-induced rise in MAP evoked markedly attenuated bradycardia with dramatically reduced c-Fos expression in the nucleus tractus solitarius (NTS) of adult OZR compared with LZR. However, in juvenile rats, PE-induced hypertension evoked comparable bradycardia in OZR and LZR with similar or augmented c-Fos expression in NTS of the OZR. In urethane-anesthetized rats, microinjections of glutamate into NTS evoked equivalent decreases in SNA, heart rate (HR), and MAP in juvenile OZR and LZR, but attenuated decreases in SNA and MAP in adult OZR. In contrast, microinjections of glutamate into the caudal ventrolateral medulla, a target of barosensitive NTS neurons, evoked comparable decreases in SNA, HR, and MAP in adult OZR and LZR. These data suggest that OZR develop impaired glutamatergic activation of the NTS, which likely contributes to attenuated baroreflexes in adult OZR. PMID:24573182

  18. Development of attenuated baroreflexes in obese Zucker rats coincides with impaired activation of nucleus tractus solitarius.

    PubMed

    Guimaraes, Priscila S; Huber, Domitila A; Campagnole-Santos, Maria J; Schreihofer, Ann M

    2014-05-01

    Adult obese Zucker rats (OZR; >12 wk) develop elevated sympathetic nerve activity (SNA) and mean arterial pressure (MAP) with impaired baroreflexes compared with adult lean Zucker rats (LZR) and juvenile OZR (6-7 wk). In adult OZR, baroreceptor afferent nerves respond normally to changes in MAP, whereas electrical stimulation of baroreceptor afferent fibers produces smaller reductions in SNA and MAP compared with LZR. We hypothesized that impaired baroreflexes in OZR are linked to reduced activation of brain stem sites that mediate baroreflexes. In conscious adult rats, a hydralazine (HDZ)-induced reduction in MAP evoked tachycardia that was initially blunted in OZR, but equivalent to LZR within 5 min. In agreement, HDZ-induced expression of c-Fos in the rostral ventrolateral medulla (RVLM) was comparable between groups. In contrast, phenylephrine (PE)-induced rise in MAP evoked markedly attenuated bradycardia with dramatically reduced c-Fos expression in the nucleus tractus solitarius (NTS) of adult OZR compared with LZR. However, in juvenile rats, PE-induced hypertension evoked comparable bradycardia in OZR and LZR with similar or augmented c-Fos expression in NTS of the OZR. In urethane-anesthetized rats, microinjections of glutamate into NTS evoked equivalent decreases in SNA, heart rate (HR), and MAP in juvenile OZR and LZR, but attenuated decreases in SNA and MAP in adult OZR. In contrast, microinjections of glutamate into the caudal ventrolateral medulla, a target of barosensitive NTS neurons, evoked comparable decreases in SNA, HR, and MAP in adult OZR and LZR. These data suggest that OZR develop impaired glutamatergic activation of the NTS, which likely contributes to attenuated baroreflexes in adult OZR.

  19. Attenuation of arsenic neurotoxicity by curcumin in rats

    SciTech Connect

    Yadav, Rajesh S.; Sankhwar, Madhu Lata; Shukla, Rajendra K.; Chandra, Ramesh; Pant, Aditya B.; Islam, Fakhrul; Khanna, Vinay K.

    2009-11-01

    In view of continued exposure to arsenic and associated human health risk including neurotoxicity, neuroprotective efficacy of curcumin, a polyphenolic antioxidant, has been investigated in rats. A significant decrease in locomotor activity, grip strength (26%) and rota-rod performance (82%) was observed in rats treated with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) as compared to controls. The arsenic treated rats also exhibited a decrease in the binding of striatal dopamine receptors (32%) and tyrosine hydroxylase (TH) immunoreactivity (19%) in striatum. Increased arsenic levels in corpus striatum (6.5 fold), frontal cortex (6.3 fold) and hippocampus (7.0 fold) associated with enhanced oxidative stress in these brain regions, as evident by an increase in lipid perioxidation, protein carbonyl and a decrease in the levels of glutathione and activity of superoxide dismutase, catalase and glutathione peroxidase with differential effects were observed in arsenic treated rats compared to controls. Simultaneous treatment with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) and curcumin (100 mg/kg body weight, p.o., 28 days) caused an increase in locomotor activity and grip strength and improved the rota-rod performance in comparison to arsenic treated rats. Binding of striatal dopamine receptors and TH expression increased while arsenic levels and oxidative stress decreased in these brain regions in co-treated rats as compared to those treated with arsenic alone. No significant effect on any of these parameters was observed in rats treated with curcumin (100 mg/kg body weight, p.o., 28 days) alone compared to controls. A significant protection in behavioral, neurochemical and immunohistochemical parameters in rats simultaneously treated with arsenic and curcumin suggest the neuroprotective efficacy of curcumin.

  20. Methylphenidate alters NCS-1 expression in rat brain.

    PubMed

    Souza, Renan P; Soares, Eliane C; Rosa, Daniela V F; Souza, Bruno R; Réus, Gislaine Z; Barichello, Tatiana; Gomes, Karin M; Gomez, Marcus V; Quevedo, João; Romano-Silva, Marco A

    2008-07-01

    Methylphenidate has been used as an effective treatment for attention deficit hyperactivity disorder (ADHD). Methylphenidate (MPH) blocks dopamine and norepinephrine transporters causing an increase in extracellular levels. The use of psychomotor stimulants continues to rise due to both the treatment of ADHD and illicit abuse. Methylphenidate sensitization mechanism has still poor knowledge. Neuronal calcium sensor 1 was identified as a dopaminergic receptor interacting protein. When expressed in mammalian cells, neuronal calcium sensor 1 attenuates dopamine-induced D2 receptor internalization by a mechanism that involves a reduction in D2 receptor phosphorylation. Neuronal calcium sensor 1 appears to play a pivotal role in regulating D2 receptor function, it will be important to determine if there are alterations in neuronal calcium sensor 1 in neuropathologies associated with deregulation in dopaminergic signaling. Then, we investigated if methylphenidate could alter neuronal calcium sensor 1 expression in five brain regions (striatum, hippocampus, prefrontal cortex, cortex and cerebellum) in young and adult rats. These regions were chosen because some are located in brain circuits related with attention deficit hyperactivity disorder. Our results showed changes in neuronal calcium sensor 1 expression in hippocampus, prefrontal cortex and cerebellum mainly in adult rats. The demonstration that methylphenidate induces changes in neuronal calcium sensor 1 levels in rat brain may help to understand sensitization mechanisms as well as methylphenidate therapeutic effects to improve attention deficit hyperactivity disorder symptoms.

  1. Neuroprotection of Selective Brain Cooling After Penetrating Ballistic-like Brain Injury in Rats.

    PubMed

    Wei, Guo; Lu, Xi-Chun M; Shear, Deborah A; Yang, Xiaofang; Tortella, Frank C

    2011-01-01

    Induced hypothermia has been reported to provide neuroprotection against traumatic brain injury. We recently developed a novel method of selective brain cooling (SBC) and demonstrated its safety and neuroprotection efficacy in a rat model of ischemic brain injury. The primary focus of the current study was to evaluate the potential neuroprotective efficacy of SBC in a rat model of penetrating ballistic-like brain injury (PBBI) with a particular focus on the acute cerebral pathophysiology, neurofunction, and cognition. SBC (34°C) was induced immediately after PBBI, and maintained for 2 hours, followed by a spontaneous re-warming. Intracranial pressure (ICP) and regional cerebral blood flow were monitored continuously for 3 hours, and the ICP was measured again at 24 hours postinjury. Brain swelling, blood-brain barrier permeability, intracerebral hemorrhage, lesion size, and neurological status were assessed at 24 hours postinjury. Cognitive abilities were evaluated in a Morris water maze task at 12-16 days postinjury. Results showed that SBC significantly attenuated PBBI-induced elevation of ICP (PBBI = 33.2 ± 10.4; PBBI + SBC = 18.8 ± 6.7 mmHg) and reduced brain swelling, blood-brain barrier leakage, intracerebral hemorrhage, and lesion volume by 40%-45% for each matrix, and significantly improved neurologic function. However, these acute neuroprotective benefits of SBC did not translate into improved cognitive performance in the Morris water maze task. These results indicate that 34°C SBC is effective in protecting against acute brain damage and related neurological dysfunction. Further studies are required to establish the optimal treatment conditions (i.e., duration of cooling and/or combined therapeutic approaches) needed to achieve significant neurocognitive benefits.

  2. Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats.

    PubMed

    Lv, Hongdi; Wang, Ling; Shen, Jinchang; Hao, Shaojun; Ming, Aimin; Wang, Xidong; Su, Feng; Zhang, Zhengchen

    2015-06-01

    Silent information regulator 1 (SIRT1), a histone deacetylase, has been suggested to be effective in ischemic brain diseases. Salvianolic acid B (SalB) is a polyphenolic and one of the active components of Salvia miltiorrhiza Bunge. Previous studies suggested that SalB is protective against ischemic stroke. However, the role of SIRT1 in the protective effect of SalB against cerebral ischemia has not been explored. In this study, the rat brain was subjected to middle cerebral artery occlusion (MCAO). Before this surgery, rats were intraperitoneally administrated SalB with or without EX527, a specific SIRT1 inhibitor. The infarct volume, neurological score and brain water content were assessed. In addition, levels of TNF-α and IL-1β in the brain tissues were detected by commercial ELISA kits. And the expression levels of SIRT, Ac-FOXO1, Bcl-2 and Bax were detected by Western blot. The results suggested that SalB exerted a cerebral-protective effect, as shown by reduced infarct volume, lowered brain edema and increased neurological scores. SalB also exerted anti-inflammatory effects as indicated by the decreased TNF-α and IL-1β levels in the brain tissue. Moreover, SalB upregulated the expression of SIRT1 and Bcl-2 and downregulated the expression of Ac-FOXO1 and Bax. These effects of SalB were abolished by EX527 treatment. In summary, our results demonstrate that SalB treatment attenuates brain injury induced by ischemic stoke via reducing apoptosis and inflammation through the activation of SIRT1 signaling. PMID:25981395

  3. Signs of attenuated depression-like behavior in vasopressin deficient Brattleboro rats.

    PubMed

    Mlynarik, M; Zelena, D; Bagdy, G; Makara, G B; Jezova, D

    2007-03-01

    Vasopressin, a peptide hormone functioning also as a neurotransmitter, neuromodulator and regulator of the stress response is considered to be one of the factors related to the development and course of depression. In the present study, we have tested the hypothesis that congenital deficit of vasopressin in Brattleboro rats leads to attenuated depression-like behavior in tests modeling different symptoms of depression. In addition, hypothalamic-pituitary-adrenocortical axis activity was investigated. Vasopressin deficient rats showed signs of attenuated depression-like behavior in forced swimming and sucrose preference tests, while their behavior on elevated plus maze was unchanged. Vasopressin deficiency had no influence on basal levels of ACTH and corticosterone and had only mild impact on hormonal activation in response to forced swimming and plus-maze exposure. However, vasopressin deficient animals showed higher level of dexamethasone induced suppression of corticosterone response to restraint stress and higher basal levels of corticotropin-releasing hormone mRNA in the hypothalamic paraventricular nucleus. In conclusion, present data obtained in vasopressin deficient rats show that vasopressin is involved in the development of depression-like behavior, in particular of the coping style and anhedonia. Moreover, behavioral and endocrine responses were found to be dissociated. We suggest that brain vasopressinergic circuits distinct from those regulating the HPA axis are involved in generating depression-like behavior.

  4. Chronic nicotine treatment attenuates alpha 7 nicotinic receptor deficits following traumatic brain injury.

    PubMed

    Verbois, S L; Scheff, S W; Pauly, J R

    2003-02-01

    Traumatic brain injury (TBI) often causes a persistent and debilitating impairment of cognitive function. Although the neurochemical basis for TBI-induced cognitive dysfunction is not well characterized, some studies suggest prominent involvement of the CNS cholinergic system. Previous studies from our laboratories have shown that alpha 7* nicotinic cholinergic receptors (nAChrs) are especially vulnerable to the pathophysiological effects of TBI. Hippocampal and cortical alpha-[(125)I]-bungarotoxin (BTX) expression of alpha 7* nAChrs is significantly decreased in many brain regions following TBI and this reduction persists for at least 3 weeks following injury. In the present study we evaluated whether chronic nicotine infusion could attenuate TBI-induced deficits in alpha 7* nAChr expression. Male Sprague-Dawley rats were sham-operated, or subjected to mild or moderate unilateral cortical contusion injury. Immediately following brain injury, osmotic mini-pumps that delivered chronic saline or nicotine (0.125 or 0.25 mg/kg/h) were implanted. The animals were euthanatized and the brains prepared for nAChr quantitative autoradiography, 7 days following surgery. Brain injury caused significant decreases in BTX binding in several regions of the hippocampus. TBI-induced deficits in alpha 7* nAChr density were reversed in four of the six hippocampal brain regions evaluated following chronic nicotine administration. If TBI-induced deficits in alpha 7* nAChr expression play a role in post-injury cognitive impairment, pharmacological treatments which restore nAChr binding to control levels may be therapeutically useful.

  5. Aspartame and the rat brain monoaminergic system.

    PubMed

    Perego, C; De Simoni, M G; Fodritto, F; Raimondi, L; Diomede, L; Salmona, M; Algeri, S; Garattini, S

    1988-12-01

    A high dose of aspartame (APM) was administered to rats to study possible effects on brain monoaminergic systems. APM and its metabolite phenylalanine (Phe) were given orally at doses of 1000 and 500 mg/kg, respectively. Significant increases were seen in brain Phe and tyrosine (Tyr) levels. Two different approaches were used to study monoaminergic systems: whole tissue measurements by HPLC-ED and in vivo voltammetry in freely moving rats. Dopamine, serotonin and their metabolites were taken as indexes of neuronal activity. In spite of the high dose used, no modification was found in monoamines or their metabolites in striatum, hippocampus and nucleus accumbens.

  6. Carnosine Reduces Oxidative Stress and Reverses Attenuation of Righting and Postural Reflexes in Rats with Thioacetamide-Induced Liver Failure.

    PubMed

    Milewski, Krzysztof; Hilgier, Wojciech; Fręśko, Inez; Polowy, Rafał; Podsiadłowska, Anna; Zołocińska, Ewa; Grymanowska, Aneta W; Filipkowski, Robert K; Albrecht, Jan; Zielińska, Magdalena

    2016-02-01

    Cerebral oxidative stress (OS) contributes to the pathogenesis of hepatic encephalopathy (HE). Existing evidence suggests that systemic administration of L-histidine (His) attenuates OS in brain of HE animal models, but the underlying mechanism is complex and not sufficiently understood. Here we tested the hypothesis that dipeptide carnosine (β-alanyl-L-histidine, Car) may be neuroprotective in thioacetamide (TAA)-induced liver failure in rats and that, being His metabolite, may mediate the well documented anti-OS activity of His. Amino acids [His or Car (100 mg/kg)] were administrated 2 h before TAA (i.p., 300 mg/kg 3× in 24 h intervals) injection into Sprague-Dawley rats. The animals were thus tested for: (i) brain prefrontal cortex and blood contents of Car and His, (ii) amount of reactive oxygen species (ROS), total antioxidant capacity (TAC), GSSG/GSH ratio and thioredoxin reductase (TRx) activity, and (iii) behavioral changes (several models were used, i.e. tests for reflexes, open field, grip test, Rotarod). Brain level of Car was reduced in TAA rats, and His administration significantly elevated Car levels in control and TAA rats. Car partly attenuated TAA-induced ROS production and reduced GSH/GSSG ratio, whereas the increase of TRx activity in TAA brain was not significantly modulated by Car. Further, Car improved TAA-affected behavioral functions in rats, as was shown by the tests of righting and postural reflexes. Collectively, the results support the hypothesis that (i) Car may be added to the list of neuroprotective compounds of therapeutic potential on HE and that (ii) Car mediates at least a portion of the OS-attenuating activity of His in the setting of TAA-induced liver failure. PMID:26801175

  7. Agmatine attenuates methamphetamine-induced conditioned place preference in rats.

    PubMed

    Thorn, David A; Winter, Jerrold C; Li, Jun-Xu

    2012-04-01

    The polyamine agmatine modulates a variety of behavioral effects including the abuse-related effects of opioids and has been proposed as a potential medication candidate for the treatment of opioid abuse. However, little is known of the effects of agmatine on the abuse-related effects of other drugs of abuse. This study examined the effects of agmatine on the rewarding effects of methamphetamine in rats using a conditioned place preference paradigm. Methamphetamine (0.1-1.0mg/kg) dose-dependently increased the time spent in methamphetamine-paired side (place preference). Agmatine, at doses that did not produce place preference or aversion (10-32mg/kg), significantly decreased the development of methamphetamine-induced place preference when agmatine was administered in combination with methamphetamine during place conditioning. Agmatine also significantly decreased the expression of methamphetamine-induced place preference when an acute injection of agmatine was given immediately before test session. These doses of agmatine do not alter the motor activity in rats, suggesting that the observed attenuation of methamphetamine-induced place preference was not due to general behavioral disruption. Together, these data suggests that agmatine attenuates the rewarding effects of methamphetamine and may be able to modulate the abuse liability of methamphetamine.

  8. Levetiracetam attenuates rotenone-induced toxicity: A rat model of Parkinson's disease.

    PubMed

    Erbaş, Oytun; Yılmaz, Mustafa; Taşkıran, Dilek

    2016-03-01

    Levetiracetam (LEV), a second-generation anti-epileptic drug, is used for treatment of both focal and generalized epilepsy. Growing body of evidence suggests that LEV may have neuroprotective effects. The present study was undertaken to investigate the neuroprotective effects of LEV on rotenone-induced Parkinson's disease (PD) in rats. Twenty-four adult Sprague-Dawley rats were infused with rotenone (3 μg/μl in DMSO) or vehicle (1 μl DMSO) into the left substantia nigra pars compacta (SNc) under stereotaxic surgery. PD model was assessed by rotational test ten days after drug infusion. The valid PD rats were randomly distributed into two groups; Group 1 (n=8) and Group 2 (n=8) were administered saline (1 ml/kg/day, i.p.) and LEV (600 mg/kg/day, i.p.) through 21 days, respectively. The effects of LEV treatment were evaluated by behavioral (rotation score), biochemical (brain homovalinic acid level and oxidant/antioxidant status) and immunohistochemical (tyrosine hydroxylase) parameters. Apomorphine-induced rotations in PD rats were significantly suppressed by LEV treatment. While unilateral rotenone lesion induced a dramatic loss of dopaminergic neurons both in the striatum and SNc, LEV treatment significantly attenuated the degenerative changes in dopaminergic neurons. Furthermore, LEV significantly decreased lipid peroxide levels, a marker of lipid peroxidation, and induced glutathione levels, catalase and superoxide dismutase activity in PD rats compared with saline group. We conclude that LEV may have beneficial effects on dopaminergic neurons against rotenone-induced injury. The underlying mechanism may be associated with the attenuation of oxidative stress. PMID:26896611

  9. Low-dose memantine attenuated morphine addictive behavior through its anti-inflammation and neurotrophic effects in rats.

    PubMed

    Chen, Shiou-Lan; Tao, Pao-Luh; Chu, Chun-Hsien; Chen, Shih-Heng; Wu, Hsiang-En; Tseng, Leon F; Hong, Jau-Shyong; Lu, Ru-Band

    2012-06-01

    Opioid abuse and dependency are international problems. Studies have shown that neuronal inflammation and degeneration might be related to the development of opioid addiction. Thus, using neuroprotective agents might be beneficial for treating opioid addiction. Memantine, an Alzheimer's disease medication, has neuroprotective effects in vitro and in vivo. In this study, we evaluated whether a low dose of memantine prevents opioid-induced drug-seeking behavior in rats and analyzed its mechanism. A conditioned-place-preference test was used to investigate the morphine-induced drug-seeking behaviors in rats. We found that a low-dose (0.2-1 mg/kg) of subcutaneous memantine significantly attenuated the chronic morphine-induced place-preference in rats. To clarify the effects of chronic morphine and low-dose memantine, serum and brain levels of cytokines and brain-derived neurotrophic factor (BDNF) were measured. After 6 days of morphine treatment, cytokine (IL-1β, IL-6) levels had significantly increased in serum; IL-1β and IL-6 mRNA levels had significantly increased in the nucleus accumbens and medial prefrontal cortex, both addiction-related brain areas; and BDNF levels had significantly decreased, both in serum and in addiction-related brain areas. Pretreatment with low-dose memantine significantly attenuated chronic morphine-induced increases in serum and brain cytokines. Low-dose memantine also significantly potentiated serum and brain BDNF levels. We hypothesize that neuronal inflammation and BDNF downregulation are related to the progression of opioid addiction. We hypothesize that the mechanism low-dose memantine uses to attenuate morphine-induced addiction behavior is its anti-inflammatory and neurotrophic effects.

  10. Genetic influence on brain catecholamines: high brain norepinephrine in salt-sensitive rats

    SciTech Connect

    Iwai, J; Friedman, R; Tassinari, L

    1980-01-01

    Rats genetically sensitive to salt-induced hypertension evinced higher levels of plasma norepinephrine and epinephrine than rats genetically resistant to hypertension. The hypertension-sensitive rats showed higher hypothalamic norepinephrine and lower epinephrine than resistant rats. In response to a high salt diet, brain stem norepinephrine increased in sensitive rats while resistant rats exhibited a decrease on the same diet.

  11. Laser scattering by transcranial rat brain illumination

    NASA Astrophysics Data System (ADS)

    Sousa, Marcelo V. P.; Prates, Renato; Kato, Ilka T.; Sabino, Caetano P.; Suzuki, Luis C.; Ribeiro, Martha S.; Yoshimura, Elisabeth M.

    2012-06-01

    Due to the great number of applications of Low-Level-Laser-Therapy (LLLT) in Central Nervous System (CNS), the study of light penetration through skull and distribution in the brain becomes extremely important. The aim is to analyze the possibility of precise illumination of deep regions of the rat brain, measure the penetration and distribution of red (λ = 660 nm) and Near Infra-Red (NIR) (λ = 808 nm) diode laser light and compare optical properties of brain structures. The head of the animal (Rattus Novergicus) was epilated and divided by a sagittal cut, 2.3 mm away from mid plane. This section of rat's head was illuminated with red and NIR lasers in points above three anatomical structures: hippocampus, cerebellum and frontal cortex. A high resolution camera, perpendicularly positioned, was used to obtain images of the brain structures. Profiles of scattered intensities in the laser direction were obtained from the images. There is a peak in the scattered light profile corresponding to the skin layer. The bone layer gives rise to a valley in the profile indicating low scattering coefficient, or frontal scattering. Another peak in the region related to the brain is an indication of high scattering coefficient (μs) for this tissue. This work corroborates the use of transcranial LLLT in studies with rats which are subjected to models of CNS diseases. The outcomes of this study point to the possibility of transcranial LLLT in humans for a large number of diseases.

  12. Gastrin attenuates ischemia-reperfusion-induced intestinal injury in rats

    PubMed Central

    Liu, Zhihao; Luo, Yongli; Cheng, Yunjiu; Zou, Dezhi; Zeng, Aihong; Yang, Chunhua

    2016-01-01

    Intestinal ischemia-reperfusion (I/R) injury is a devastating complication when the blood supply is reflowed in ischemic organs. Gastrin has critical function in regulating acid secretion, proliferation, and differentiation in the gastric mucosa. We aimed to determine whether gastrin has an effect on intestinal I/R damage. Intestinal I/R injury was induced by 60-min occlusion of the superior mesenteric artery followed by 60-min reperfusion, and the rats were induced to be hypergastrinemic by pretreated with omeprazole or directly injected with gastrin. Some hypergastrinemic rats were injected with cholecystokinin-2 (CCK-2) receptor antagonist prior to I/R operation. After the animal surgery, the intestine was collected for histological analysis. Isolated intestinal epithelial cells or crypts were harvested for RNA and protein analysis. CCK-2 receptor expression, intestinal mucosal damage, cell apoptosis, and apoptotic protein caspase-3 activity were measured. We found that high gastrin in serum significantly reduced intestinal hemorrhage, alleviated extensive epithelial disruption, decreased disintegration of lamina propria, downregulated myeloperoxidase activity, tumor necrosis factor-α, and caspase-3 activity, and lead to low mortality in response to I/R injury. On the contrary, CCK-2 receptor antagonist L365260 could markedly impair intestinal protection by gastrin on intestinal I/R. Severe edema of mucosal villi with severe intestinal crypt injury and numerous intestinal villi disintegrated were observed again in the hypergastrinemic rats with L365260. The survival in the hypergastrinemic rats after intestinal I/R injury was shortened by L365260. Finally, gastrin could remarkably upregulated intestinal CCK-2 receptor expression. Our data suggest that gastrin by omeprazole remarkably attenuated I/R induced intestinal injury by enhancing CCK-2 receptor expression and gastrin could be a potential mitigator for intestinal I/R damage in the clinical setting. PMID

  13. Estrogen therapy attenuates adiposity markers in spontaneously hypertensive rats.

    PubMed

    Abeles, Eva das Graças; Cordeiro, Letícia Maria de Souza; Martins, Almir de Sousa; Pesquero, Jorge Luiz; Reis, Adelina Martha dos; Andrade, Silvia Passos; Botion, Leida Maria

    2012-08-01

    Ovarian hormones modulate the metabolism of adipose cells and present a protective effect against hypertension. The aim of this study was to compare the effect of estradiol on adiposity markers in spontaneously hypertensive rats. Ovariectomized spontaneously hypertensive rats treated with estradiol (5 μg/100 g/day), three weeks after ovariectomy, presented decreased blood pressure and insulin levels and increased hepatic glycogen content. Periuterine or mesenteric adipocytes from treated animals were smaller as compared to vehicle treated group, whereas no differences were observed in relation to the number of cells. Basal rates of glycerol release were higher only in periuterine adipocytes of treated rats. The increment of glycerol release over basal values in response to isoproterenol was 400% and 440%, 283% and 330% for vehicle and estradiol treated periuterine and mesenteric adipocytes, respectively. The estradiol treated group was more sensitive to insulin inhibition of isoproterenol-stimulated lipolysis than the control animals. The lipoprotein lipase activity decreased after treatment, only in periuterine adipose tissue. Estradiol administration increased basal and insulin-stimulated rates of glucose transport in adipocytes of both sites, although the values obtained by periuterine were higher than those observed for mesenteric adipocytes. Both adipose tissues from treated animals exhibited a decreased expression of the peroxisome proliferator-activated receptor-γ, but an increased expression of peroxisome proliferator-activated receptor-α in liver. These findings suggest that estrogen administration attenuates adiposity markers of spontaneously hypertensive rats as a result of the decreased expression levels of peroxisome proliferator-activated receptor-γ in adipose tissue and increased expression of peroxisome proliferator-activated receptor-α in liver.

  14. Brain and Serum Androsterone Is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury.

    PubMed

    Servatius, Richard J; Marx, Christine E; Sinha, Swamini; Avcu, Pelin; Kilts, Jason D; Naylor, Jennifer C; Pang, Kevin C H

    2016-01-01

    Exposure to lateral fluid percussion (LFP) injury consistent with mild traumatic brain injury (mTBI) persistently attenuates acoustic startle responses (ASRs) in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM). ASRs were measured post injury days (PIDs) 1, 3, 7, 14, 21, and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34), PID 35 (S35), on both days (2S), or the experimental context (CON). Levels of the neurosteroids pregnenolone (PREG), allopregnanolone (ALLO), and androsterone (ANDRO) were determined for the prefrontal cortex, hippocampus, and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30, and 60 min post-stressor for determination of corticosterone (CORT) levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA) receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration. PMID:27616978

  15. Brain and Serum Androsterone Is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury

    PubMed Central

    Servatius, Richard J.; Marx, Christine E.; Sinha, Swamini; Avcu, Pelin; Kilts, Jason D.; Naylor, Jennifer C.; Pang, Kevin C. H.

    2016-01-01

    Exposure to lateral fluid percussion (LFP) injury consistent with mild traumatic brain injury (mTBI) persistently attenuates acoustic startle responses (ASRs) in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM). ASRs were measured post injury days (PIDs) 1, 3, 7, 14, 21, and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34), PID 35 (S35), on both days (2S), or the experimental context (CON). Levels of the neurosteroids pregnenolone (PREG), allopregnanolone (ALLO), and androsterone (ANDRO) were determined for the prefrontal cortex, hippocampus, and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30, and 60 min post-stressor for determination of corticosterone (CORT) levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA) receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration. PMID:27616978

  16. Brain and Serum Androsterone Is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury

    PubMed Central

    Servatius, Richard J.; Marx, Christine E.; Sinha, Swamini; Avcu, Pelin; Kilts, Jason D.; Naylor, Jennifer C.; Pang, Kevin C. H.

    2016-01-01

    Exposure to lateral fluid percussion (LFP) injury consistent with mild traumatic brain injury (mTBI) persistently attenuates acoustic startle responses (ASRs) in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM). ASRs were measured post injury days (PIDs) 1, 3, 7, 14, 21, and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34), PID 35 (S35), on both days (2S), or the experimental context (CON). Levels of the neurosteroids pregnenolone (PREG), allopregnanolone (ALLO), and androsterone (ANDRO) were determined for the prefrontal cortex, hippocampus, and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30, and 60 min post-stressor for determination of corticosterone (CORT) levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA) receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration.

  17. Mycophenolate mofetil attenuates pulmonary arterial hypertension in rats

    SciTech Connect

    Suzuki, Chihiro; Takahashi, Masafumi . E-mail: masafumi@sch.md.shinshu-u.ac.jp; Morimoto, Hajime; Izawa, Atsushi; Ise, Hirohiko; Hongo, Minoru; Hoshikawa, Yasushi; Ito, Takayuki; Miyashita, Hiroshi; Kobayashi, Eiji; Shimada, Kazuyuki; Ikeda, Uichi

    2006-10-20

    Pulmonary arterial hypertension (PAH) is characterized by abnormal proliferation of smooth muscle cells (SMCs), leading to occlusion of pulmonary arterioles, right ventricular (RV) hypertrophy, and death. We investigated whether mycophenolate mofetil (MMF), a potent immunosuppresssant, prevents the development of monocrotaline (MCT)-induced PAH in rats. MMF effectively decreased RV systolic pressure and RV hypertrophy, and reduced the medial thickness of pulmonary arteries. MMF significantly inhibited the number of proliferating cell nuclear antigen (PCNA)-positive cells, infiltration of macrophages, and expression of P-selectin and interleukin-6 on the endothelium of pulmonary arteries. The infiltration of T cells and mast cells was not affected by MMF. In vitro experiments revealed that mycophenolic acid (MPA), an active metabolite of MMF, dose-dependently inhibited proliferation of human pulmonary arterial SMCs. MMF attenuated the development of PAH through its anti-inflammatory and anti-proliferative properties. These findings provide new insight into the potential role of immunosuppressants in the treatment of PAH.

  18. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Shi, Xianbao; Sun, Hongzhi; Zhou, Dun; Xi, Huanjiu; Shan, Lina

    2015-04-01

    Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. We found that ATG pretreatment attenuated the LPS-induced ALI, as evidenced by the reduced histological scores, myeloperoxidase activity, and wet-to-dry weight ratio in the lung tissues. This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway.

  19. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Shi, Xianbao; Sun, Hongzhi; Zhou, Dun; Xi, Huanjiu; Shan, Lina

    2015-04-01

    Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. We found that ATG pretreatment attenuated the LPS-induced ALI, as evidenced by the reduced histological scores, myeloperoxidase activity, and wet-to-dry weight ratio in the lung tissues. This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway. PMID:25008149

  20. Deep Brain Stimulation of the Nucleus Accumbens Shell Attenuates Cocaine Reinstatement through Local and Antidromic Activation

    PubMed Central

    White, Samantha L.; Hopkins, Thomas J.; Guercio, Leonardo A.; Espallergues, Julie; Berton, Olivier; Schmidt, Heath D.; Pierce, R. Christopher

    2013-01-01

    Accumbal deep brain stimulation (DBS) is a promising therapeutic modality for the treatment of addiction. Here, we demonstrate that DBS in the nucleus accumbens shell, but not the core, attenuates cocaine priming-induced reinstatement of drug seeking, an animal model of relapse, in male Sprague Dawley rats. Next, we compared DBS of the shell with pharmacological inactivation. Results indicated that inactivation using reagents that influenced (lidocaine) or spared (GABA receptor agonists) fibers of passage blocked cocaine reinstatement when administered into the core but not the shell. It seems unlikely, therefore, that intrashell DBS influences cocaine reinstatement by inactivating this nucleus or the fibers coursing through it. To examine potential circuit-wide changes, c-Fos immunohistochemistry was used to examine neuronal activation following DBS of the nucleus accumbens shell. Intrashell DBS increased c-Fos induction at the site of stimulation as well as in the infralimbic cortex, but had no effect on the dorsal striatum, prelimbic cortex, or ventral pallidum. Recent evidence indicates that accumbens DBS antidromically stimulates axon terminals, which ultimately activates GABAergic interneurons in cortical areas that send afferents to the shell. To test this hypothesis, GABA receptor agonists (baclofen/muscimol) were microinjected into the anterior cingulate, and prelimbic or infralimbic cortices before cocaine reinstatement. Pharmacological inactivation of all three medial prefrontal cortical subregions attenuated the reinstatement of cocaine seeking. These results are consistent with DBS of the accumbens shell attenuating cocaine reinstatement via local activation and/or activation of GABAergic interneurons in the medial prefrontal cortex via antidromic stimulation of cortico-accumbal afferents. PMID:24005296

  1. Deep brain stimulation of the nucleus accumbens shell attenuates cocaine reinstatement through local and antidromic activation.

    PubMed

    Vassoler, Fair M; White, Samantha L; Hopkins, Thomas J; Guercio, Leonardo A; Espallergues, Julie; Berton, Olivier; Schmidt, Heath D; Pierce, R Christopher

    2013-09-01

    Accumbal deep brain stimulation (DBS) is a promising therapeutic modality for the treatment of addiction. Here, we demonstrate that DBS in the nucleus accumbens shell, but not the core, attenuates cocaine priming-induced reinstatement of drug seeking, an animal model of relapse, in male Sprague Dawley rats. Next, we compared DBS of the shell with pharmacological inactivation. Results indicated that inactivation using reagents that influenced (lidocaine) or spared (GABA receptor agonists) fibers of passage blocked cocaine reinstatement when administered into the core but not the shell. It seems unlikely, therefore, that intrashell DBS influences cocaine reinstatement by inactivating this nucleus or the fibers coursing through it. To examine potential circuit-wide changes, c-Fos immunohistochemistry was used to examine neuronal activation following DBS of the nucleus accumbens shell. Intrashell DBS increased c-Fos induction at the site of stimulation as well as in the infralimbic cortex, but had no effect on the dorsal striatum, prelimbic cortex, or ventral pallidum. Recent evidence indicates that accumbens DBS antidromically stimulates axon terminals, which ultimately activates GABAergic interneurons in cortical areas that send afferents to the shell. To test this hypothesis, GABA receptor agonists (baclofen/muscimol) were microinjected into the anterior cingulate, and prelimbic or infralimbic cortices before cocaine reinstatement. Pharmacological inactivation of all three medial prefrontal cortical subregions attenuated the reinstatement of cocaine seeking. These results are consistent with DBS of the accumbens shell attenuating cocaine reinstatement via local activation and/or activation of GABAergic interneurons in the medial prefrontal cortex via antidromic stimulation of cortico-accumbal afferents. PMID:24005296

  2. Tanshinone IIA attenuates experimental autoimmune encephalomyelitis in rats

    PubMed Central

    Yan, Jun; Yang, Xue; Han, Dong; Feng, Juan

    2016-01-01

    Multiple sclerosis (MS) is an inflammatory autoimmune neurodegenerative disease, which features focal demyelination and inflammatory cell infiltration of the brain and the spinal cord. Tanshinone IIA (TSIIA), one of the major fat-soluble components of Salvia miltiorrhiza (Danshen), has anti-inflammatory, immunoregulatory and neuroprotective activity; however, its efficacy in MS remains unknown. The current study was designed to investigate the potential therapeutic function of TSIIA on MS in the experimental autoimmune encephalomyelitis (EAE) rat model. In comparison to the vehicle control group, the TSIIA-treated groups showed notably improved clinical symptoms and pathological changes, including central nervous system inflammatory cell infiltration and demyelination. Following administration of TSIIA, the quantity of CD4+ T cells, CD8+ T cells and macrophages/microglia in the spinal cord were reduced to different extents. Furthermore, TSIIA was also shown to downregulate interleukin (IL)-17 and IL-23 levels in the brain and serum of EAE rats. The results collectively provide evidence that TSIIA alleviates EAE and support its utility as a novel therapy for MS. PMID:27357729

  3. Salicylic acid attenuates gentamicin-induced nephrotoxicity in rats.

    PubMed

    Randjelovic, Pavle; Veljkovic, Slavimir; Stojiljkovic, Nenad; Jankovic-Velickovic, Ljubinka; Sokolovic, Dusan; Stoiljkovic, Milan; Ilic, Ivan

    2012-01-01

    Gentamicin (GM) is a widely used antibiotic against serious and life-threatening infections, but its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine the protective effect of salicylic acid (SA) in gentamicin-induced nephrotoxicity in rats. Quantitative evaluation of gentamicin-induced structural alterations and degree of functional alterations in the kidneys were performed by histopathological and biochemical analyses in order to determine potential beneficial effects of SA coadministration with gentamicin. Gentamicin was observed to cause a severe nephrotoxicity which was evidenced by an elevation of serum urea and creatinine levels. The significant increases in malondialdehyde (MDA) levels and protein carbonyl groups indicated that GM-induced tissue injury was mediated through oxidative reactions. On the other hand, simultaneous SA administration protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by GM treatment. Exposure to GM caused necrosis of tubular epithelial cells. Necrosis of tubules was found to be prevented by SA pretreatment. The results from our study indicate that SA supplement attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation in gentamicin-treated rats.

  4. Pharmacological attenuation of chronic alcoholic pancreatitis induced hypersensitivity in rats

    PubMed Central

    McIlwrath, Sabrina L; Westlund, Karin N

    2015-01-01

    AIM: To characterize an alcohol and high fat diet induced chronic pancreatitis rat model that mimics poor human dietary choices. METHODS: Experimental rats were fed a modified Lieber-DeCarli alcohol (6%) and high-fat (65%) diet (AHF) for 10 wk while control animals received a regular rodent chow diet. Weekly behavioral tests determined mechanical and heat sensitivity. In week 10 a fasting glucose tolerance test was performed, measuring blood glucose levels before and after a 2 g/kg bodyweight intraperitoneal (i.p.) injection of glucose. Post mortem histological analysis was performed by staining pancreas and liver tissue sections with hematoxylin and eosin. Pancreas sections were also stained with Sirius red and fast green to quantify collagen content. Insulin-expressing cells were identified immunohistochemically in separate sections. Tissue staining density was quantified using Image J software. After mechanical and heat sensitivity became stable (weeks 6-10) in the AHF-fed animals, three different drugs were tested for their efficacy in attenuating pancreatitis associated hypersensitivity: a Group II metabotropic glutamate receptor specific agonist (2R,4R)-4-Aminopyrrolidine-2,4-dicarboxylate (APDC, 3 mg/kg, ip; Tocris, Bristol, United Kingdom), nociceptin (20, 60, 200 nmol/kg, ip; Tocris), and morphine sulfate (3 mg/kg, μ-opioid receptor agonist; Baxter Healthcare, Deerfield, IL, United States). RESULTS: Histological analysis of pancreas and liver determined that unlike control rats, AHF fed animals had pancreatic fibrosis, acinar and beta cell atrophy, with steatosis in both organs. Fat vacuolization was significantly increased in AHF fed rats (6.4% ± 1.1% in controls vs 23.8% ± 4.2%, P < 0.05). Rats fed the AHF diet had reduced fasting glucose tolerance in week 10 when peak blood glucose levels reached significantly higher concentrations than controls (127.4 ± 9.2 mg/dL in controls vs 161.0 ± 8.6 mg/dL, P < 0.05). This concurred with a 3.5 fold higher

  5. Biotransformation of norcocaine to norcocaine nitroxide by rat brain microsomes.

    PubMed

    Kloss, M W; Rosen, G M; Rauckman, E J

    1984-01-01

    In the mid 1970's, norcocaine was identified as a metabolite of cocaine in rat brain tissue. We extend these studies by demonstrating that rat brain FAD-containing monooxygenase metabolizes norcocaine to N-hydroxynorcocaine. This hydroxylamine is then further oxidized to the nitroxyl free radical norcocaine nitroxide by rat brain cytochrome P-450. Brain microsomal reduction of norcocaine nitroxide leads to the generation of superoxide. Finally, incubation of rat brain microsomes with either N-hydroxynorcocaine or norcocaine nitroxide leads to significant lipid peroxidation as monitored by spin-trapping techniques.

  6. EVALUATION OF PERFLUOROOCTANE SULFONATE (PFOS) IN THE RAT BRAIN

    EPA Science Inventory

    This study examined whether there is a differential distribution of PFOS within the brain, and compares adult rats with neonatal rats at an age when formation of the blood-brain barrier is not yet complete (postnatal day 7). Male and female Sprague-Dawley rats (60-70 day old, 4/...

  7. Curcumin Attenuates Hepatotoxicity Induced by Zinc Oxide Nanoparticles in Rats

    PubMed Central

    Khorsandi, Layasadat; Mansouri, Esrafil; Orazizadeh, Mahmoud; Jozi, Zahra

    2016-01-01

    Background: Zinc oxide nanoparticles (NZnO) are increasingly used in modern life. Most metal nanoparticles have adverse effects on the liver. Aims: To explore the protective action of curcumin (Cur) against hepatotoxicity induced by NZnO in rats. Study Design: Animal experimentation. Methods: Control group animals received normal saline, while the Cur group animals were treated with 200 mg/kg of Cur orally for 21 days. NZnO-intoxicated rats received 50 mg/kg of NZnO for 14 days by gavage method. In the NZnO+Cur group, rats were pretreated with Cur for 7 days before NZnO administration. Plasma activities of Alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) were measured as biomarkers of hepatotoxicity. Hepatic levels of malondialdehyde (MDA) and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were measured for detection of oxidative stress in liver tissue. Histological changes and apoptosis in liver tissue were studied by using Hematoxylin-eosin staining and the transferase dUTP nick end labeling (TUNEL) method. Results: NZnO induced a significant increase in plasma AST (2.8-fold), ALT (2.7-fold) and ALP (1.97-fold) activity in comparison to the control group (p<0.01). NZnO increased MDA content and reduced SOD and GPx activities. NZnO caused liver damage including centrilobular necrosis and microvesicular steatosis. The percentage of apoptosis in hepatocytes was increased in NZnO-treated rats (p<0.01). Pre-treatment of Cur significantly reduced lipid peroxidation (39%), increased SOD (156%) and GPx (26%) activities, and attenuated ALT (47%), AST (41%) and ALP (30%) activities. Pre-treatment with Cur also decreased the histology changes and apoptotic index of hepatocytes (p<0.05). Conclusion: These findings indicate that Cur effectively protects against NZnO-induced hepatotoxicity in rats. However, future studies are required to propose Cur as a potential protective agent against hepatotoxicity

  8. Diazoxide enhances excitotoxicity-induced neurogenesis and attenuates neurodegeneration in the rat non-neurogenic hippocampus.

    PubMed

    Martínez-Moreno, M; Batlle, M; Ortega, F J; Gimeno-Bayón, J; Andrade, C; Mahy, N; Rodríguez, M J

    2016-10-01

    Diazoxide, a well-known mitochondrial KATP channel opener with neuroprotective effects, has been proposed for the effective and safe treatment of neuroinflammation. To test whether diazoxide affects the neurogenesis associated with excitotoxicity in brain injury, we induced lesions by injecting excitotoxic N-methyl-d-aspartate (NMDA) into the rat hippocampus and analyzed the effects of a daily oral administration of diazoxide on the induced lesion. Specific glial and neuronal staining showed that NMDA elicited a strong glial reaction associated with progressive neuronal loss in the whole hippocampal formation. Doublecortin immunohistochemistry and bromo-deoxyuridine (BrdU)-NeuN double immunohistochemistry revealed that NMDA also induced cell proliferation and neurogenesis in the lesioned non-neurogenic hippocampus. Furthermore, glial fibrillary acidic protein (GFAP)-positive cells in the injured hippocampus expressed transcription factor Sp8 indicating that the excitotoxic lesion elicited the migration of progenitors from the subventricular zone and/or the reprograming of reactive astrocytes. Diazoxide treatment attenuated the NMDA-induced hippocampal injury in rats, as demonstrated by decreases in the size of the lesion, neuronal loss and microglial reaction. Diazoxide also increased the number of BrdU/NeuN double-stained cells and elevated the number of Sp8-positive cells in the lesioned hippocampus. These results indicate a role for KATP channel activation in regulating excitotoxicity-induced neurogenesis in brain injury.

  9. Glycyrrhizin Attenuates Toll Like Receptor-2, -4 and Experimental Vasospasm in a Rat Model

    PubMed Central

    Chang, Chih-Zen; Wu, Shu-Chuan; Kwan, Aij-Lie

    2014-01-01

    Upregulated TLRs are observed in the serum of animals following experimental subarachnoid hemorrhage. This study was to examine glycyrrhizin's effect on proinflammatory cytokines and TLRs in SAH rats. Administration with glycyrrhizin was initiated 24 hr before and 1 hr later using osmotic minipump. Basilar arteries were harvested to examine TLRs mRNA and protein (rt-PCR and western blot) and CSF cytokines (rt-PCR). Morphologically, deformed endothelium, tortuous elastic lamina, and smooth muscle necrosis were observed in the SAH rats, but were absent in the glycyrrhizin pretreatment group. The TLR-3 protein level was not increased in SAH animals, compared with the controls, while that of TLR-2 and -4 in the SAH only and SAH plus vehicle groups was significantly elevated (P < 0.01). Pretreatment and treatment with glycyrrhizin reduced TLR-2 and -4 by 28 ± 8% and 33.4 ± 9.2%, respectively. Likewise, glycyrrhizin was able to reduce the IL-1β and MCP-1 mRNA levels. This study shows glycyrrhizin exerts anti-inflammatory effects on SAH induced vasospasm and attenuates the ultrashort time expression of TLRs, like TLR-2 and -4. It corresponds to SAH induced early brain injury. These findings offer credit to the antivasospastic effect of glycyrrhizin and its effect on SAH induced early brain injury. PMID:25152897

  10. Flavocoxid attenuates gentamicin-induced nephrotoxicity in rats.

    PubMed

    El-Kashef, Dalia H; El-Kenawi, Asmaa E; Suddek, Ghada M; Salem, Hatem A

    2015-12-01

    Gentamicin is a widely used antibiotic against serious and life-threatening infections; however, its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine whether flavocoxid has a protective effect against gentamicin-induced nephrotoxicity in rats. For this purpose, we quantitatively evaluated gentamicin-induced renal structural and functional alterations using histopathological and biochemical approaches. Furthermore, the effect of flavocoxid on gentamicin induced hypersensitivity of urinary bladder rings to acetylcholine (ACh) was determined. Twenty-four male Wistar albino rats were randomly divided into three groups, namely control, gentamicin (100 mg/kg, i.p.) and gentamicin plus flavocoxid (20 mg/kg, orally). At the end of the study, all rats were sacrificed and then blood, urine samples and kidneys were collected for further analysis. Gentamicin administration caused a severe nephrotoxicity which was evidenced by an elevated renal somatic index (RSI), serum creatinine, blood urea nitrogen, serum lactate dehydrogenase, and protein in urine with a concomitant reduction in serum albumin and normalized creatinine clearance value as compared with the controls. Moreover, a significant increase in renal contents of malondialdehyde, myeloperoxidase, and tumor necrosis factor-alpha with a significant decrease in renal reduced glutathione and superoxide dismutase activities was detected upon gentamicin administration together with increasing the sensitivity of isolated urinary bladder rings to ACh. Exposure to gentamicin induced necrosis of renal tubular epithelial cells. Flavocoxid protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by gentamicin treatment. In addition, flavocoxid significantly reduced the responses of isolated bladder rings to ACh. The results from our study indicate that flavocoxid supplement attenuates gentamicin-induced renal injury via the amelioration of

  11. Secretin: specific binding to rat brain membranes

    SciTech Connect

    Fremeau, R.T. Jr.; Jensen, R.T.; Charlton, C.G.; Miller, R.L.; O'Donohue, T.L.; Moody, T.W.

    1983-08-01

    The binding of (/sup 125/I)secretin to rat brain membranes was investigated. Radiolabeled secretin bound with high affinity (KD . 0.2 nM) to a single class of noninteracting sites. Binding was specific, saturable, and reversible. Regional distribution studies indicated that the specific binding was greatest in the cerebellum, intermediate in the cortex, thalamus, striatum, hippocampus, and hypothalamus, and lowest in the midbrain and medulla/pons. Pharmacological studies indicated that only secretin, but not other peptides, inhibits binding of (/sup 125/I)secretin with high affinity. Also, certain guanine nucleotides inhibited high affinity binding. These data indicate that rat brain membranes possess high affinity binding sites specific for secretin and that with the use of (/sup 125/I) secretin the kinetics, stoichiometry, specificity, and distribution of secretin receptors can be directly investigated.

  12. Curcumin alleviates brain edema by lowering AQP4 expression levels in a rat model of hypoxia-hypercapnia-induced brain damage

    PubMed Central

    YU, LIN-SHENG; FAN, YAN-YAN; YE, GUANGHUA; LI, JUNLI; FENG, XIANG-PING; LIN, KEZHI; DONG, MIUWU; WANG, ZHENYUAN

    2016-01-01

    The present study aimed to investigate the therapeutic effects of curcumin (CU) against brain edema in a rat model of hypoxia-hypercapnia (HH)-induced brain damage (HHBD). Male Sprague-Dawley rats were divided into five groups, including a control group and four treatment groups. The rats in the control group were raised under normal laboratory conditions and were injected with water, whereas the rats in the treatment groups were exposed to a low O2/high CO2 environment simulating HH conditions, and were injected with water, CU, dimethyl sulfoxide (solvent control) or monosialoganglioside GM1. After 2 weeks, the morphological characteristics of the brain tissues were analyzed using optical and electron microscopy. In addition, aquaporin (AQP)-4 protein expression levels in brain tissue samples were analyzed using streptavidin-biotin complex immunohistochemistry and western blotting, and mRNA expression levels were detected using reverse transcription-quantitative polymerase chain reaction. Severe brain edema, tissue structure disruption and increased AQP4 expression levels were detected in the brain tissues of the HH rats. Conversely, the rats treated with CU or GM1 exhibited attenuated HHBD-induced brain edema and tissue structure disruption, and decreased mRNA and protein expression levels of AQP4. The results of the present study suggested that CU treatment was able to attenuate HHBD-induced brain edema by downregulating the expression levels of AQP4 in a rat model. Therefore, CU may be considered a potential therapeutic drug for the treatment of patients with brain edema. PMID:26997983

  13. Ligand activation of cannabinoid receptors attenuates hypertrophy of neonatal rat cardiomyocytes.

    PubMed

    Lu, Yan; Akinwumi, Bolanle C; Shao, Zongjun; Anderson, Hope D

    2014-11-01

    : Endocannabinoids are bioactive amides, esters, and ethers of long-chain polyunsaturated fatty acids. Evidence suggests that activation of the endocannabinoid pathway offers cardioprotection against myocardial ischemia, arrhythmias, and endothelial dysfunction of coronary arteries. As cardiac hypertrophy is a convergence point of risk factors for heart failure, we determined a role for endocannabinoids in attenuating endothelin-1-induced hypertrophy and probed the signaling pathways involved. The cannabinoid receptor ligand anandamide and its metabolically stable analog, R-methanandamide, suppressed hypertrophic indicators including cardiomyocyte enlargement and fetal gene activation (ie, the brain natriuretic peptide gene) elicited by endothelin-1 in isolated neonatal rat ventricular myocytes. The ability of R-methanandamide to suppress myocyte enlargement and fetal gene activation was mediated by CB2 and CB1 receptors, respectively. Accordingly, a CB2-selective agonist, JWH-133, prevented only myocyte enlargement but not brain natriuretic peptide gene activation. A CB1/CB2 dual agonist with limited brain penetration, CB-13, inhibited both hypertrophic indicators. CB-13 activated AMP-activated protein kinase (AMPK) and, in an AMPK-dependent manner, endothelial nitric oxide synthase (eNOS). Disruption of AMPK signaling, using compound C or short hairpinRNA knockdown, and eNOS inhibition using L-NIO abolished the antihypertrophic actions of CB-13. In conclusion, CB-13 inhibits cardiomyocyte hypertrophy through AMPK-eNOS signaling and may represent a novel therapeutic approach to cardioprotection. PMID:24979612

  14. Pyruvate treatment attenuates cerebral metabolic depression and neuronal loss after experimental traumatic brain injury.

    PubMed

    Moro, Nobuhiro; Ghavim, Sima S; Harris, Neil G; Hovda, David A; Sutton, Richard L

    2016-07-01

    Experimental traumatic brain injury (TBI) is known to produce an acute increase in cerebral glucose utilization, followed rapidly by a generalized cerebral metabolic depression. The current studies determined effects of single or multiple treatments with sodium pyruvate (SP; 1000mg/kg, i.p.) or ethyl pyruvate (EP; 40mg/kg, i.p.) on cerebral glucose metabolism and neuronal injury in rats with unilateral controlled cortical impact (CCI) injury. In Experiment 1 a single treatment was given immediately after CCI. SP significantly improved glucose metabolism in 3 of 13 brain regions while EP improved metabolism in 7 regions compared to saline-treated controls at 24h post-injury. Both SP and EP produced equivalent and significant reductions in dead/dying neurons in cortex and hippocampus at 24h post-CCI. In Experiment 2 SP or EP were administered immediately (time 0) and at 1, 3 and 6h post-CCI. Multiple SP treatments also significantly attenuated TBI-induced reductions in cerebral glucose metabolism (in 4 brain regions) 24h post-CCI, as did multiple injections of EP (in 4 regions). The four pyruvate treatments produced significant neuroprotection in cortex and hippocampus 1day after CCI, similar to that found with a single SP or EP treatment. Thus, early administration of pyruvate compounds enhanced cerebral glucose metabolism and neuronal survival, with 40mg/kg of EP being as effective as 1000mg/kg of SP, and multiple treatments within 6h of injury did not improve upon outcomes seen following a single treatment. PMID:27059390

  15. Luteolin attenuates endotoxin-induced uveitis in Lewis rats

    PubMed Central

    KANAI, Kazutaka; HATTA, Takuya; NAGATA, Sho; SUGIURA, Yuichi; SATO, Kazuaki; YAMASHITA, Yohei; KIMURA, Yuya; ITOH, Naoyuki

    2016-01-01

    The aim of the present study was to investigate the efficacy of luteolin on endotoxin-induced uveitis (EIU) in rats. EIU was induced in Lewis rats by subcutaneous injections of lipopolysaccharide (LPS). One hr before the LPS injection, 0.1, 1 or 10 mg/kg luteolin or 1 mg/kg prednisolone was intraperitoneally injected. We investigated its effect upon clinical scores, cellular infiltration and protein leakage, as well as on the level of tumor necrosis factor (TNF)-α, nitric oxide (NO) and prostaglandin (PG) E2 in the aqueous humor (AqH). Histologic examination and immunohistochemical analysis in the iris-ciliary body (ICB) were performed to determine the expressions of cyclooxygenase (COX)-2 and inducible NO synthase (iNOS), and then the activated nuclear factor (NF)-κB p65, I kappa B (IκB)-α degradation, phosphorylated (p)-IκB kinase (IKK) α/β and activator protein (AP)-1 c-Jun. Luteolin suppressed, in a dose-dependent manner, the clinical scores, number of inflammatory cells, the protein concentration, and the TNF-α, NO and PGE2 levels in the AqH and improved the histiologic status of the ocular tissue. Luteolin suppressed the expression of iNOS and COX-2 and the activated NF-κB p65, IκB-α degradation, p-IKKα/β and AP-1 p-c-Jun in the ICB. The anti-inflammatory potency of 10 mg/kg luteolin was as strong as that observed with 1 mg/kg prednisolone. These results demonstrate that luteolin attenuates ocular inflammation by inhibiting expression and release of inflammatory markers, along with the inhibition of the activated NF-κB pathway and at least partly AP-1 activity in the ICB. PMID:27098110

  16. Montelukast attenuates lipopolysaccharide-induced cardiac injury in rats.

    PubMed

    Khodir, A E; Ghoneim, H A; Rahim, M A; Suddek, G M

    2016-04-01

    This study investigates the possible protective effects of montelukast (MNT) against lipopolysaccharide (LPS)-induced cardiac injury, in comparison to dexamethasone (DEX), a standard anti-inflammatory. Male Sprague Dawley rats (160-180 g) were assigned to five groups (n = 8/group): (1) control; (2) LPS (10 mg/kg, intraperitoneal (i.p.)); (3) LPS + MNT (10 mg/kg, per os (p.o.)); (4) LPS + MNT (20 mg/kg, p.o.); and (5) LPS + DEX (1 mg/kg, i.p.). Twenty-four hours after LPS injection, heart/body weight (BW) ratio and percent survival of rats were determined. Serum total protein, creatine kinase muscle/brain (CK-MB), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) activities were measured. Heart samples were taken for histological assessment and for determination of malondialdehyde (MDA) and glutathione (GSH) contents. Cardiac tumor necrosis factor α (TNF-α) expression was evaluated immunohistochemically. LPS significantly increased heart/BW ratio, serum CK-MB, ALP, and LDH activities and decreased percent survival and serum total protein levels. MDA content increased in heart tissues with a concomitant reduction in GSH content. Immunohistochemical staining of heart specimens from LPS-treated rats revealed high expression of TNF-α. MNT significantly reduced percent mortality and suppressed the release of inflammatory and oxidative stress markers when compared with LPS group. Additionally, MNT effectively preserved tissue morphology as evidenced by histological evaluation. MNT (20 mg/kg) was more effective in alleviating LPS-induced heart injury when compared with both MNT (10 mg/kg) and DEX (1 mg/kg), as evidenced by decrease in positive staining by TNF-α immunohistochemically, decrease MDA, and increase GSH content in heart tissue. This study demonstrates that MNT might have cardioprotective effects against the inflammatory process during endotoxemia. This effect can be attributed to its antioxidant and/or anti-inflammatory properties. PMID:26089034

  17. Royal jelly attenuates azathioprine induced toxicity in rats.

    PubMed

    Ahmed, Walaa M S; Khalaf, A A; Moselhy, Walaa A; Safwat, Ghada M

    2014-01-01

    In the present study, we investigated the potential protective effects of royal jelly against azathioprine-induced toxicity in rat. Intraperitoneal administration of azathioprine (50 mg/kgB.W.) induced a significant decrease in RBCs count, Hb concentration, PCV%, WBCs count, differential count and platelet count, hepatic antioxidant enzymes (reduced glutathione and glutathione s-transferase) and increase of serum transaminases (alanine aminotransferase and aspartate aminotransferase enzymes) activities, alkaline phosphatase and malondialdehyde formation. Azathioprine induced hepatotoxicity was reflected by marked pathological changes in the liver. Oral administration of royal jelly (200 mg/kgB.W.) was efficient in counteracting azathioprine toxicity whereas it altered the anemic condition, leucopenia and thrombocytopenia induced by azathioprine. Furthermore, royal jelly exerted significant protection against liver damage induced by azathioprine through reduction of the elevated activities of serum hepatic enzymes. Moreover, royal jelly blocked azathioprine-induced lipid peroxidation through decreasing the malondialdehyde formation. In conclusion, royal jelly possesses a capability to attenuate azathioprine-induced toxicity.

  18. Ethanol effects on rat brain phosphoinositide metabolism

    SciTech Connect

    Huang, H.M.

    1987-01-01

    An increase in acidic phospholipids in brain plasma and synaptic plasma membranes upon chronic ethanol administration was observed. Chronic ethanol administration resulted in an increase in {sup 32}P{sub i} incorporation into the acidic phospholipids in synaptosomes. Postdecapitative ischemic treatment resulted rapid degradation of poly-PI in rat brain. However, there was a rapid appearance of IP{sub 2} in ethanol group which indicated a more rapid turnover of IP{sub 3} in the ethanol-treated rats. Carbachol stimulated accumulation of labeled inositol phosphates in brain slices and synaptosomes. Carbachol-stimulated release of IP and IP{sub 2} was calcium dependent and was inhibited by EGTA and atropine. Adenosine triphosphates and 1 mM further enhanced carbachol-induced formation of IP and IP{sub 2}, but showed an increase and a decrease in IP{sub 3} at 1 mM and 0.01 mM, respectively. Guanosine triphosphate at 0.1 mM did not change in labeled IP, but there was a significant increase in labeled IP{sub 2} and decrease in IP{sub 3}. Mn and CMP greatly enhanced incorporation of ({sup 3}H)-inositol into PI, but not into poly-PI labeling in brain synaptosomes. Incubation of brain synaptosomes resulted in a Ca{sup 2+}, time-dependent release of labeled IP. However, the pool of PI labeled through this pathway is not susceptible to carbachol stimulation. When saponin permeabilized synaptosomal preparations were incubated with ({sup 3}H)-inositol-PI or ({sup 14}C)-arachidonoyl-PI, ATP enhanced the formation of labeled IP and DG.

  19. Attenuation correction for the large non-human primate brain imaging using microPET.

    PubMed

    Naidoo-Variawa, S; Lehnert, W; Kassiou, M; Banati, R; Meikle, S R

    2010-04-21

    Assessment of the biodistribution and pharmacokinetics of radiopharmaceuticals in vivo is often performed on animal models of human disease prior to their use in humans. The baboon brain is physiologically and neuro-anatomically similar to the human brain and is therefore a suitable model for evaluating novel CNS radioligands. We previously demonstrated the feasibility of performing baboon brain imaging on a dedicated small animal PET scanner provided that the data are accurately corrected for degrading physical effects such as photon attenuation in the body. In this study, we investigated factors affecting the accuracy and reliability of alternative attenuation correction strategies when imaging the brain of a large non-human primate (papio hamadryas) using the microPET Focus 220 animal scanner. For measured attenuation correction, the best bias versus noise performance was achieved using a (57)Co transmission point source with a 4% energy window. The optimal energy window for a (68)Ge transmission source operating in singles acquisition mode was 20%, independent of the source strength, providing bias-noise performance almost as good as for (57)Co. For both transmission sources, doubling the acquisition time had minimal impact on the bias-noise trade-off for corrected emission images, despite observable improvements in reconstructed attenuation values. In a [(18)F]FDG brain scan of a female baboon, both measured attenuation correction strategies achieved good results and similar SNR, while segmented attenuation correction (based on uncorrected emission images) resulted in appreciable regional bias in deep grey matter structures and the skull. We conclude that measured attenuation correction using a single pass (57)Co (4% energy window) or (68)Ge (20% window) transmission scan achieves an excellent trade-off between bias and propagation of noise when imaging the large non-human primate brain with a microPET scanner.

  20. Attenuation correction for the large non-human primate brain imaging using microPET

    NASA Astrophysics Data System (ADS)

    Naidoo-Variawa, S.; Lehnert, W.; Kassiou, M.; Banati, R.; Meikle, S. R.

    2010-04-01

    Assessment of the biodistribution and pharmacokinetics of radiopharmaceuticals in vivo is often performed on animal models of human disease prior to their use in humans. The baboon brain is physiologically and neuro-anatomically similar to the human brain and is therefore a suitable model for evaluating novel CNS radioligands. We previously demonstrated the feasibility of performing baboon brain imaging on a dedicated small animal PET scanner provided that the data are accurately corrected for degrading physical effects such as photon attenuation in the body. In this study, we investigated factors affecting the accuracy and reliability of alternative attenuation correction strategies when imaging the brain of a large non-human primate (papio hamadryas) using the microPET Focus 220 animal scanner. For measured attenuation correction, the best bias versus noise performance was achieved using a 57Co transmission point source with a 4% energy window. The optimal energy window for a 68Ge transmission source operating in singles acquisition mode was 20%, independent of the source strength, providing bias-noise performance almost as good as for 57Co. For both transmission sources, doubling the acquisition time had minimal impact on the bias-noise trade-off for corrected emission images, despite observable improvements in reconstructed attenuation values. In a [18F]FDG brain scan of a female baboon, both measured attenuation correction strategies achieved good results and similar SNR, while segmented attenuation correction (based on uncorrected emission images) resulted in appreciable regional bias in deep grey matter structures and the skull. We conclude that measured attenuation correction using a single pass 57Co (4% energy window) or 68Ge (20% window) transmission scan achieves an excellent trade-off between bias and propagation of noise when imaging the large non-human primate brain with a microPET scanner.

  1. An analytical approach to quantitative reconstruction of non-uniform attenuated brain SPECT.

    PubMed

    Liang, Z; Ye, J; Harrington, D P

    1994-11-01

    An analytical approach to quantitative brain SPECT (single-photon-emission computed tomography) with non-uniform attenuation is developed. The approach formulates accurately the projection-transform equation as a summation of primary- and scatter-photon contributions. The scatter contribution can be estimated using the multiple-energy-window samples and removed from the primary-energy-window data by subtraction. The approach models the primary contribution as a convolution of the attenuated source and the detector-response kernel at a constant depth from the detector with the central-ray approximation. The attenuated Radon transform of the source can be efficiently deconvolved using the depth-frequency relation. The approach inverts exactly the attenuated Radon transform by Fourier transforms and series expansions. The performance of the analytical approach was studied for both uniform- and non-uniform-attenuation cases, and compared to the conventional FBP (filtered-backprojection) method by computer simulations. A patient brain X-ray image was acquired by a CT (computed-tomography) scanner and converted to the object-specific attenuation map for 140 keV energy. The mathematical Hoffman brain phantom was used to simulate the emission source and was resized such that it was completely surrounded by the skull of the CT attenuation map. The detector-response kernel was obtained from measurements of a point source at several depths in air from a parallel-hole collimator of a SPECT camera. The projection data were simulated from the object-specific attenuating source including the depth-dependent detector response. Quantitative improvement (>5%) in reconstructing the data was demonstrated with the nonuniform attenuation compensation, as compared to the uniform attenuation correction and the conventional FBP reconstruction. The commuting time was less than 5 min on an HP/730 desktop computer for an image array of 1282*32 from 128 projections of 128*32 size. PMID

  2. microRNA-22 attenuates neuronal cell apoptosis in a cell model of traumatic brain injury

    PubMed Central

    Ma, Ji; Shui, Shaofeng; Han, Xinwei; Guo, Dong; Li, Tengfei; Yan, Lei

    2016-01-01

    Traumatic brain injury (TBI) is a major cause of injury-related deaths, and the mechanism of TBI has become a research focus, but little is known about the mechanism of microRNAs in TBI. The aim of this study is the role of microRNA-22 (miR-22) in TBI-induced neuronal cell apoptosis. Rat cortical neurons were cultured and the TBI model was induced by scratch injury in vitro, before which miR-22 level was altered by transfection of agomir or antagomir. Lactate dehydrogenase (LDH) release and TUNEL assays were performed to examine neuronal cell injury and apoptosis. The activity of caspase 3 (CASP3) and level changes of several apoptosis factors including B-cell lymphoma 2 (BCL2), BCL2-associated X protein (BAX), phosphatase and tensin homolog (PTEN) and v-AKT murine thymoma viral oncogene homolog 1 (AKT1) were detected. Results showed that TBI model cells possessed a downregulated miR-22 level (P < 0.001) and more LDH release and apoptotic cells indicating the aggravated neuronal cell injury and apoptosis induced by TBI. miR-22 agomir attenuated neuronal cell injury and apoptosis of the TBI model. It also caused the corresponding changes in CASP3 activity and other apoptosis factors, with cleaved CASP3, BAX and PTEN inhibited and BCL2 and phosphorylated AKT1 promoted, while miR-22 antagomir had the opposite effects. So miR-22 has neuroprotective roles of attenuating neuronal cell injury and apoptosis induced by TBI, which may be associated with its regulation on apoptosis factors. This study reveals miR-22 as a potential approach to TBI treatment and detailed mechanism remains to be uncovered. PMID:27186313

  3. Studies of aluminum in rat brain

    SciTech Connect

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  4. Attenuation of acute morphine withdrawal in the neonatal rat by the competitive NMDA receptor antagonist LY235959.

    PubMed

    Jones, Kathy L; Zhu, Hongbo; Jenab, Shirzad; Du, Ted; Inturrisi, Charles E; Barr, Gordon A

    2002-03-01

    The present study examined the ability of LY235959, a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, to attenuate behaviors and c-fos mRNA expression associated with acute morphine withdrawal in the infant rat. Rat pups were given a single dose of morphine (10.0 mg/kg, s.c.) or saline. Two hours later, pups were removed from the dam and injected with either LY235959 (10.0 mg/kg, s.c.) or saline. Fifteen minutes later acute morphine withdrawal was precipitated with naltrexone (10.0 mg/kg, s.c.) and behaviors were recorded every 15 s for the next 60 min. Immediately after behavioral testing, brain and spinal cord were assayed for c-fos mRNA analysis by solution hybridization. The intensity of the morphine withdrawal syndrome was reduced in pups pre-treated with LY235959. Withdrawal behaviors such as head moves, moving paws, rolling, and walking were decreased, and vocalizations were completely eliminated in pups pre-treated with LY2359559. Acute morphine withdrawal increased c-fos mRNA expression in the brain and the spinal cord, which was attenuated by pre-treatment of LY235959. Thus, in the 7-day-old rat, as in the adult, NMDA receptors play a role in the behavioral and molecular manifestations of acute morphine withdrawal. PMID:11850145

  5. Protein purification and cloning of diacylglycerol lipase from rat brain.

    PubMed

    Aso, Chizu; Araki, Mari; Ohshima, Noriyasu; Tatei, Kazuaki; Hirano, Tohko; Obinata, Hideru; Kishi, Mikiko; Kishimoto, Koji; Konishi, Akimitsu; Goto, Fumio; Sugimoto, Hiroyuki; Izumi, Takashi

    2016-06-01

    Diacylglycerol (DG) lipase, which hydrolyses 1-stearoyl-2-arachidonyl-sn-glycerol to produce an endocannabinoid, 2-arachidonoylglycerol, was purified from the soluble fraction of rat brain lysates. DG lipase was purified about 1,200-fold by a sequential column chromatographic procedure. Among proteins identified by mass spectrometry analysis in the partially purified DG lipase sample, only DDHD domain containing two (DDHD2), which was formerly regarded as a phospholipase A1, exhibited significant DG lipase activity. Rat DDHD2 expressed in Chinese hamster ovary cells showed similar enzymatic properties to partially purified DG lipase from rat brain. The source of DG lipase activity in rat brain was immunoprecipitated using anti-DDHD2 antibody. Thus, we concluded that the DG lipase activity in the soluble fraction of rat brain is derived from DDHD2. DDHD2 is distributed widely in the rat brain. Immunohistochemical analysis revealed that DDHD2 is expressed in hippocampal neurons, but not in glia.

  6. CT-based attenuation and scatter correction compared with uniform attenuation correction in brain perfusion SPECT imaging for dementia

    NASA Astrophysics Data System (ADS)

    Gillen, Rebecca; Firbank, Michael J.; Lloyd, Jim; O'Brien, John T.

    2015-09-01

    This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer’s Disease (n=38 ), Dementia with Lewy Bodies (n=29 ) or healthy normal controls (n=30 ), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject’s CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used. We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.

  7. CT-based attenuation and scatter correction compared with uniform attenuation correction in brain perfusion SPECT imaging for dementia.

    PubMed

    Gillen, Rebecca; Firbank, Michael J; Lloyd, Jim; O'Brien, John T

    2015-09-01

    This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer's Disease (n = 38), Dementia with Lewy Bodies (n = 29) or healthy normal controls (n = 30), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject's CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used.We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.

  8. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism.

  9. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism. PMID:26551768

  10. A Blueberry-Enriched Diet Attenuates Nephropathy in a Rat Model of Hypertension via Reduction in Oxidative Stress

    PubMed Central

    Elks, Carrie M.; Reed, Scott D.; Mariappan, Nithya; Shukitt-Hale, Barbara; Joseph, James A.; Ingram, Donald K.; Francis, Joseph

    2011-01-01

    Objective and Background To assess renoprotective effects of a blueberry-enriched diet in a rat model of hypertension. Oxidative stress (OS) appears to be involved in the development of hypertension and related renal injury. Pharmacological antioxidants can attenuate hypertension and hypertension-induced renal injury; however, attention has shifted recently to the therapeutic potential of natural products as antioxidants. Blueberries (BB) have among the highest antioxidant capacities of fruits and vegetables. Methods and Results Male spontaneously hypertensive rats received a BB-enriched diet (2% w/w) or an isocaloric control diet for 6 or 12 weeks or 2 days. Compared to controls, rats fed BB-enriched diet for 6 or 12 weeks exhibited lower blood pressure, improved glomerular filtration rate, and decreased renovascular resistance. As measured by electron paramagnetic resonance spectroscopy, significant decreases in total reactive oxygen species (ROS), peroxynitrite, and superoxide production rates were observed in kidney tissues in rats on long-term dietary treatment, consistent with reduced pathology and improved function. Additionally, measures of antioxidant status improved; specifically, renal glutathione and catalase activities increased markedly. Contrasted to these observations indicating reduced OS in the BB group after long-term feeding, similar measurements made in rats fed the same diet for only 2 days yielded evidence of increased OS; specifically, significant increases in total ROS, peroxynitrite, and superoxide production rates in all tissues (kidney, brain, and liver) assayed in BB-fed rats. These results were evidence of “hormesis” during brief exposure, which dissipated with time as indicated by enhanced levels of catalase in heart and liver of BB group. Conclusion Long-term feeding of BB-enriched diet lowered blood pressure, preserved renal hemodynamics, and improved redox status in kidneys of hypertensive rats and concomitantly demonstrated

  11. Pharmacokinetics and distribution of fluvoxamine to the brain in rats under oxidative stress.

    PubMed

    Kobuchi, Shinji; Fukushima, Keizo; Ito, Yukako; Sugioka, Nobuyuki; Takada, Kanji

    2012-07-01

    The effects of oxidative stress (OS) on the pharmacokinetics of fluvoxamine (FLV), particularly on FLV distribution in the plasma, were studied in ferric-nitrilotriacetate-induced OS rat models (OS rats). The study protocol involved a continuous FLV infusion (25.0 μg/kg/min). The resulting mean plasma FLV concentration measured in steady state OS rats was 0.13 ± 0.01 μg/mL, which was significantly lower than plasma concentrations measured in control rats (0.19 ± 0.01 μg/mL). Moreover, the mean FLV concentration in the OS rat brain (0.51 ± 0.08 μg/g) was determined to be approximately half the concentration in control rat brains (0.95 ± 0.11 μg/g). The FLV concentrations in both the unbound fraction of plasma and erythrocytes of OS rats were significantly greater than that of control rats. These results suggest the potential attenuation of FLV's pharmacological effects in patients under OS.

  12. Ethylene glycol ethers induce oxidative stress in the rat brain.

    PubMed

    Pomierny, Bartosz; Krzyżanowska, Weronika; Smaga, Irena; Pomierny-Chamioło, Lucyna; Stankowicz, Piotr; Budziszewska, Bogusława

    2014-11-01

    Ethylene glycol ethers (EGEs) are components of many industrial and household products. Their hemolytic and gonadotoxic effects are relatively well known while their potential adverse effects on the central nervous system have not yet been clearly demonstrated. The aim of the present study was to examine the effects of 4-week administration of 2-buthoxyethanol (BE), 2-phenoxyethanol (PHE) and 2-ethoxyethanol (EE) on the total antioxidant capacity, activity of some antioxidant enzymes, such as the superoxide dismutase (SOD), catalase, glutathione peroxidase (GPX) and glutathione reductase and lipid peroxidation in the frontal cortex and hippocampus in the rat. These studies showed that BE and PHE decreased the total antioxidant activity, SOD and GPX activity, while increased lipid peroxidation in the frontal cortex. Like in the frontal cortex, also in the hippocampus BE and PHE attenuated the total antioxidant activity, however, lipid peroxidation was increased only in animals which received BE while reduction in GPX activity was present in rats administered PHE. The obtained data indicated that 4-week administration of BE and PHE, but not EE, reduced the total antioxidant activity and enhanced lipid peroxidation in the brain. In the frontal cortex, adverse effects of PHE and BE on lipid peroxidation probably depended on reduction in SOD and GPX activity, however, in the hippocampus the changes in the total antioxidant activity and lipid peroxidation were not connected with reduction of the investigated antioxidant enzyme activity.

  13. Ovariectomy augments hypertension through rho-kinase activation in the brain stem in female spontaneously hypertensive rats.

    PubMed

    Ito, Koji; Hirooka, Yoshitaka; Kimura, Yoshikuni; Sagara, Yoji; Sunagawa, Kenji

    2006-10-01

    Estrogen protects against increases in arterial pressure (AP) by acting on blood vessels and on cardiovascular centers in the brain. The mechanisms underlying the effects of estrogen in the brain stem, however, are not clear. The aim of the present study was to determine whether ovariectomy affects AP via the Rho/Rho-kinase pathway in the brain stem. We performed bilateral ovariectomy in 12-week-old female spontaneously hypertensive rats. AP and heart rate (HR), measured using radiotelemetry in awake rats, were increased in ovariectomized rats compared with control rats (mean AP: 163+/-3 versus 144+/-4 mm Hg; HR: 455+/-4 versus 380+/-6 bpm). Continuous intracisternal infusion of Y-27632 significantly attenuated the ovariectomy-induced increase in AP and HR (mean AP: 137+/-6 versus 163+/-3 mm Hg; HR: 379+/-10 versus 455+/-4 bpm). In addition, we confirmed the increase of Rho-kinase activity in the brain stem in ovariectomized rats, and the increase was attenuated by intracisternal infusion of Y-27632 via the phosphorylated ezrin, radixin, and moesin (ERM) family, which are Rho-kinase target proteins. Furthermore, angiotensin II type 1 receptor expression in the brain stem was significantly greater in ovariectomized rats than in control rats, and the increase was partially reduced by intracisternal infusion of Y-27632. In a separate group of animals, we confirmed that the serum and cerebrospinal fluid 17beta-estradiol concentrations decreased in ovariectomized rats. These results suggest that depletion of endogenous estrogen by ovariectomy, at least in part, induces hypertension in female spontaneously hypertensive rats via activation of the renin-angiotensin system and the Rho/Rho-kinase pathway in the brain stem.

  14. Fos expression in brain stem nuclei of pregnant rats after hydralazine-induced hypotension.

    PubMed

    Curtis, K S; Cunningham, J T; Heesch, C M

    1999-08-01

    Fos and dopamine beta-hydroxylase immunoreactivity were evaluated in the brain stems of 21-day pregnant and virgin female rats injected with either hydralazine (HDZ; 10 mg/kg iv) or vehicle. HDZ produced significant hypotension in both groups, although baseline blood pressure was lower in pregnant rats (96 +/- 2.5 mmHg) than in virgin female rats (121 +/- 2.8 mmHg). There were no differences in Fos immunoreactivity in the brain stems of pregnant and virgin female rats after vehicle treatment. HDZ-induced hypotension significantly increased Fos expression in both groups; however, the magnitude of the increases differed in the caudal ventrolateral medulla (CVL), the area postrema (AP), and the rostral ventrolateral medulla (RVL). Fos expression after HDZ in pregnant rats was augmented in noncatecholaminergic neurons of the CVL but was attenuated in the AP and in noncatecholaminergic neurons in the RVL. These results are consistent with differences in the sympathetic response to hypotension between pregnant and virgin female rats and indicate that the central response to hypotension may be different in pregnant rats.

  15. Grape seed extract attenuates arsenic-induced nephrotoxicity in rats

    PubMed Central

    ZHANG, JIANGONG; PAN, XINJUAN; LI, NING; LI, XING; WANG, YONGCHAO; LIU, XIAOZHUAN; YIN, XINJUAN; YU, ZENGLI

    2014-01-01

    Oxidative stress is a recognized factor in nephrotoxicity induced by chronic exposure to inorganic arsenic (As). Grape seed extract (GSE) possesses antioxidant properties. The present study was designed to evaluate the beneficial effects of GSE against arsenic-induced renal injury. Healthy, male Sprague-Dawley rats were exposed to As in drinking water (30 ppm) with or without GSE (100 mg/kg) for 12 months. The serum proinflammatory cytokine levels and mRNA expression levels of fibrogenic markers in the renal tissues were evaluated using enzyme-linked immunosorbent assay and quantitative polymerase chain reaction, respectively. The protein expression levels of nicotinamide adenine dinucleotide phosphate (NADPH) subunits, transforming growth factor-β1 (TGF-β1) and phosphorylated Smad2/3 (pSmad2/3) were assessed using western blot analysis. The results demonstrated that cotreatment with GSE significantly improved renal function, as demonstrated by the reductions in relative kidney weight (% of body weight) and blood urea nitrogen, and the increase in the creatinine clearance capacity. GSE attenuated the As-induced changes in the serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β and the mRNA levels of TGF-β1, α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF) and fibronectin (FN) in renal tissue. Furthermore, administration of GSE markedly reduced As-stimulated reactive oxygen species (ROS) production and Nox activity, as well as the protein expression levels of the NADPH subunits (Nox2, p47phox and Nox4). In addition, GSE cotreatment was correlated with a significant reduction in TGF-β/Smad signaling, as demonstrated by the decreased protein levels of TGF-β1 and pSmad2/3 in renal tissue. This study indicated that GSE may be a useful agent for the prevention of nephrotoxicity induced by chronic exposure to As. GSE may exert its effects through the suppression of Nox and inhibition of TGF-β/Smad signaling

  16. Standardized Extract of Bacopa monniera Attenuates Okadaic Acid Induced Memory Dysfunction in Rats: Effect on Nrf2 Pathway

    PubMed Central

    Nagarajan, Rajasekar; Hanif, Kashif; Siddiqui, Hefazat Husain; Nath, Chandishwar

    2013-01-01

    The aim of the present study is to investigate the effect of standardized extract of Bacopa monnieri (memory enhancer) and Melatonin (an antioxidant) on nuclear factor erythroid 2 related factor 2 (Nrf2) pathway in Okadaic acid induced memory impaired rats. OKA (200 ng) was administered intracerebroventricularly (ICV) to induce memory impairment in rats. Bacopa monnieri (BM-40 and 80 mg/kg) and Melatonin (20 mg/kg) were administered 1 hr before OKA injection and continued daily up to day 13. Memory functions were assessed by Morris water maze test on days 13–15. Rats were sacrificed for biochemical estimations of oxidative stress, neuroinflammation, apoptosis, and molecular studies of Nrf2, HO1, and GCLC expressions in cerebral cortex and hippocampus brain regions. OKA caused a significant memory deficit with oxidative stress, neuroinflammation, and neuronal loss which was concomitant with attenuated expression of Nrf2, HO1, and GCLC. Treatment with BM and Melatonin significantly improved memory dysfunction in OKA rats as shown by decreased latency time and path length. The treatments also restored Nrf2, HO1, and GCLC expressions and decreased oxidative stress, neuroinflammation, and neuronal loss. Thus strengthening the endogenous defense through Nrf2 modulation plays a key role in the protective effect of BM and Melatonin in OKA induced memory impairment in rats. PMID:24078822

  17. Incidence of brain tumors in rats fed aspartame.

    PubMed

    Ishii, H

    1981-03-01

    The brain tumorigenicity of aspartame (APM) and of its diketopiperazine (DKP) was studied in 860 SCL Wistar rats. APM at dietary levels of 1 g/kg, 2 gK/, 4 g/kg or APM + DKP (3:1) 4 g/kg was fed for 104 weeks. One atypical astrocytoma was found in a control rat and 2 astrocytomas, 2 oligodendrogliomas and 1 ependymoma were scattered among the 4 test groups. There was no significant difference in the incidence of brain tumors between control and test groups. It is concluded that neither AMP nor DKP caused brain tumors in rats in this study.

  18. Creatine kinase reaction rates in rat brain during chronic ischemia.

    PubMed

    Mlynárik, V; Kasparová, S; Liptaj, T; Dobrota, D; Horecký, J; Belan, V

    1998-12-01

    Creatine kinase reaction rates were measured by magnetisation transfer technique in the brain of healthy adult and aged rats and in the rats with mild or severe chronic cerebral ischemia. These measurements indicated that the rate constant of the creatine kinase reaction is significantly reduced in the case of chronic brain ischemia in aged rats. In contrast, occlusion of both carotid arteries in adult rats produced a slight increase in the reaction rate 4 weeks after occlusion. At the same time, corresponding conventional phosphorus magnetic resonance spectra showed negligible changes in signal intensities. PMID:10050942

  19. Aging attenuates acquired heat tolerance and hypothalamic neurogenesis in rats.

    PubMed

    Matsuzaki, Kentaro; Katakura, Masanori; Inoue, Takayuki; Hara, Toshiko; Hashimoto, Michio; Shido, Osamu

    2015-06-01

    This study investigated age-dependent changes in heat exposure-induced hypothalamic neurogenesis and acquired heat tolerance in rats. We previously reported that neuronal progenitor cell proliferation and neural differentiation are enhanced in the hypothalamus of long-term heat-acclimated (HA) rats. Male Wistar rats, 5 weeks (Young), 10-11 months (Adult), or 22-25 months (Old) old, were subjected to an ambient temperature of 32°C for 40-50 days (HA rats). Rats underwent a heat tolerance test. In HA rats, increases in abdominal temperature (Tab ) in the the Young, Adult, and Old groups were significantly smaller than those in their respective controls. However, the increase in Tab of HA rats became greater with advancing age. The number of hypothalamic bromodeoxyuridine (BrdU)-immunopositive cells double stained with a mature neuron marker, neuronal nuclei (NeuN), of HA rats was significantly higher in the Young group than that in the control group. In Young HA, BrdU/NeuN-immunopositive cells of the preoptic area/anterior hypothalamus appeared to be the highest among regions examined. Large numbers of newborn neurons were also located in the ventromedial and dorsomedial nuclei, as well as the posterior hypothalamic area, whereas heat exposure did not increase such numbers in the Adult and Old groups. Aging may interfere with heat exposure-induced hypothalamic neurogenesis and acquired heat tolerance in rats.

  20. Intravenous multipotent adult progenitor cell therapy attenuates activated microglial/macrophage response and improves spatial learning after traumatic brain injury.

    PubMed

    Bedi, Supinder S; Hetz, Robert; Thomas, Chelsea; Smith, Philippa; Olsen, Alex B; Williams, Stephen; Xue, Hasen; Aroom, Kevin; Uray, Karen; Hamilton, Jason; Mays, Robert W; Cox, Charles S

    2013-12-01

    We previously demonstrated that the intravenous delivery of multipotent adult progenitor cells (MAPCs) after traumatic brain injury (TBI) in rodents provides neuroprotection by preserving the blood-brain barrier and systemically attenuating inflammation in the acute time frame following cell treatment; however, the long-term behavioral and anti-inflammatory effects of MAPC administration after TBI have yet to be explored. We hypothesized that the intravenous injection of MAPCs after TBI attenuates the inflammatory response (as measured by microglial morphology) and improves performance at motor tasks and spatial learning (Morris water maze [MWM]). MAPCs were administered intravenously 2 and 24 hours after a cortical contusion injury (CCI). We tested four groups at 120 days after TBI: sham (uninjured), injured but not treated (CCI), and injured and treated with one of two concentrations of MAPCs, either 2 million cells per kilogram (CCI-2) or 10 million cells per kilogram (CCI-10). CCI-10 rats showed significant improvement in left hind limb deficit on the balance beam. On the fifth day of MWM trials, CCI-10 animals showed a significant decrease in both latency to platform and distance traveled compared with CCI. Probe trials revealed a significant decrease in proximity measure in CCI-10 compared with CCI, suggesting improved memory retrieval. Neuroinflammation was quantified by enumerating activated microglia in the ipsilateral hippocampus. We observed a significant decrease in the number of activated microglia in the dentate gyrus in CCI-10 compared with CCI. Our results demonstrate that intravenous MAPC treatment after TBI in a rodent model offers long-term improvements in spatial learning as well as attenuation of neuroinflammation.

  1. Attenuation correction for freely moving small animal brain PET studies based on a virtual scanner geometry

    NASA Astrophysics Data System (ADS)

    Angelis, G. I.; Kyme, A. Z.; Ryder, W. J.; Fulton, R. R.; Meikle, S. R.

    2014-10-01

    Attenuation correction in positron emission tomography brain imaging of freely moving animals is a very challenging problem since the torso of the animal is often within the field of view and introduces a non negligible attenuating factor that can degrade the quantitative accuracy of the reconstructed images. In the context of unrestrained small animal imaging, estimation of the attenuation correction factors without the need for a transmission scan is highly desirable. An attractive approach that avoids the need for a transmission scan involves the generation of the hull of the animal’s head based on the reconstructed motion corrected emission images. However, this approach ignores the attenuation introduced by the animal’s torso. In this work, we propose a virtual scanner geometry which moves in synchrony with the animal’s head and discriminates between those events that traversed only the animal’s head (and therefore can be accurately compensated for attenuation) and those that might have also traversed the animal’s torso. For each recorded pose of the animal’s head a new virtual scanner geometry is defined and therefore a new system matrix must be calculated leading to a time-varying system matrix. This new approach was evaluated on phantom data acquired on the microPET Focus 220 scanner using a custom-made phantom and step-wise motion. Results showed that when the animal’s torso is within the FOV and not appropriately accounted for during attenuation correction it can lead to bias of up to 10% . Attenuation correction was more accurate when the virtual scanner was employed leading to improved quantitative estimates (bias < 2%), without the need to account for the attenuation introduced by the extraneous compartment. Although the proposed method requires increased computational resources, it can provide a reliable approach towards quantitatively accurate attenuation correction for freely moving animal studies.

  2. Oxaloacetate decreases the infarct size and attenuates the reduction in evoked responses after photothrombotic focal ischemia in the rat cortex.

    PubMed

    Nagy, David; Marosi, Mate; Kis, Zsolt; Farkas, Tamas; Rakos, Gabriella; Vecsei, Laszlo; Teichberg, Vivian I; Toldi, Jozsef

    2009-09-01

    A traumatic brain injury or a focal brain lesion is followed by acute excitotoxicity caused by the presence of abnormally high glutamate (Glu) levels in the cerebrospinal and interstitial fluids. It has recently been demonstrated that this excess Glu in the brain can be eliminated into the blood following the intravenous administration of oxaloacetate (OxAc), which, by scavenging the blood Glu, induces an enhanced and neuroprotective brain-to-blood Glu efflux. In this study, we subjected rats to a photothrombotic lesion and treated them after the illumination with a single 30-min-long administration of OxAc (1.2 mg/100 g, i.v.). Following induction of the lesion, we measured the infarct size and the amplitudes of the somatosensory evoked potentials (SEPs) as recorded from the skull surface. The photothrombotic lesion resulted in appreciably decreased amplitudes of the evoked potentials, but OxAc administration significantly attenuated this reduction, and also the infarct size assessed histologically. We suggest that the neuroprotective effects of OxAc are due to its blood Glu-scavenging activity, which, by increasing the brain-to-blood Glu efflux, reduces the excess Glu responsible for the anatomical and functional correlates of the ischemia, as evaluated by electrophysiological evoked potential (EP) measurements.

  3. Hypothalamic neuropeptide Y (NPY) and the attenuation of hyperphagia in streptozotocin diabetic rats treated with dopamine D1/D2 agonists.

    PubMed

    Kuo, Dong-Yih

    2006-07-01

    1. Dopamine is an appetite suppressant, while neuropeptide Y (NPY), an appetite stimulant in the brain, is reported to be involved in anorectic action induced by a combined administration of D1/D2 agonists in normal rats. In diabetic rats, however, these factors have not been studied. 2. Rats (including normal, diabetic and insulin-treated diabetic rats) were given daily injections of saline or D1/D2 agonists for 6 days. Changes in food intake and hypothalamic NPY content of these rats were assessed and compared. 3. The D1/D2 agonist-induced anorectic responses were altered in diabetic rats compared to normal rats treated similarly. Both the anorectic response on the first day of dosing and the tolerant response on the subsequent days were attenuated. 4. This alteration was independent of the neuroendocrine disturbance on feeding behavior since the basic pattern of food intake during the time course of a 24-h day/night cycle was similar in normal and diabetic rats; the decrease of food intake following drug treatment was only shown at the initial interval of 0-6 h in both groups of rats. 5. However, this alteration coincided with changes in NPY content following D1/D2 coadministration. The replacement of insulin in diabetic rats could normalize both NPY content and D1/D2 agonist-induced anorexia. 6. It is demonstrated that the response of D1/D2 agonist-induced appetite suppression is attenuated in diabetic rats compared to normal rats and that elevated hypothalamic NPY content may contribute to this alteration.

  4. Hypothalamic neuropeptide Y (NPY) and the attenuation of hyperphagia in streptozotocin diabetic rats treated with dopamine D1/D2 agonists

    PubMed Central

    Kuo, Dong-Yih

    2006-01-01

    Dopamine is an appetite suppressant, while neuropeptide Y (NPY), an appetite stimulant in the brain, is reported to be involved in anorectic action induced by a combined administration of D1/D2 agonists in normal rats. In diabetic rats, however, these factors have not been studied. Rats (including normal, diabetic and insulin-treated diabetic rats) were given daily injections of saline or D1/D2 agonists for 6 days. Changes in food intake and hypothalamic NPY content of these rats were assessed and compared. The D1/D2 agonist-induced anorectic responses were altered in diabetic rats compared to normal rats treated similarly. Both the anorectic response on the first day of dosing and the tolerant response on the subsequent days were attenuated. This alteration was independent of the neuroendocrine disturbance on feeding behavior since the basic pattern of food intake during the time course of a 24-h day/night cycle was similar in normal and diabetic rats; the decrease of food intake following drug treatment was only shown at the initial interval of 0–6 h in both groups of rats. However, this alteration coincided with changes in NPY content following D1/D2 coadministration. The replacement of insulin in diabetic rats could normalize both NPY content and D1/D2 agonist-induced anorexia. It is demonstrated that the response of D1/D2 agonist-induced appetite suppression is attenuated in diabetic rats compared to normal rats and that elevated hypothalamic NPY content may contribute to this alteration. PMID:16702993

  5. 26Al uptake and accumulation in the rat brain

    NASA Astrophysics Data System (ADS)

    Yumoto, S.; Nagai, H.; Imamura, M.; Matsuzaki, H.; Hayashi, K.; Masuda, A.; Kumazawa, H.; Ohashi, H.; Kobayashi, K.

    1997-03-01

    To investigate the cause of Alzheimer's disease (senile dementia), 26Al incorporation in the rat brain was studied by accelerator mass spectrometry (AMS). When 26Al was injected into healthy rats, a considerable amount of 26Al entered the brain (cerebrum) through the blood-brain barrier 5 days after a single injection, and the brain 26Al level remained almost constant from 5 to 270 days. On the other hand, the level of 26Al in the blood decreased remarkably 75 days after injection. Approximately 89% of the 26Al taken in by the brain cell nuclei bound to chromatin. This study supports the theory that Alzheimer's disease is caused by irreversible accumulation of aluminium (Al) in the brain, and brain cell nuclei.

  6. High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Chung

    2010-10-01

    There has recently been a great deal of interest in noninvasive high-frequency ultrasound imaging of small animals such as rats due to their being the preferred animal model for gene therapy and cancer research. Improving the interpretation of the obtained images and furthering the development of the imaging devices require a detailed knowledge of the ultrasound attenuation and backscattering of biological tissue (e.g. blood) at high frequencies. In the present study, the attenuation and backscattering coefficients of the rat red blood cell (RBC) suspensions and whole blood with hematocrits ranging from 6% to 40% were measured between 30 and 60 MHz using a modified substitution approach. The acoustic parameters of porcine blood under the same conditions were also measured in order to compare differences in the blood properties between these two animals. For porcine blood, both whole blood and RBC suspension were stirred at a rotation speed of 200 rpm. Three different rotation speeds of 100, 200 and 300 rpm were carried out for rat blood experiments. The attenuation coefficients of both rat and porcine blood were found to increase linearly with frequency and hematocrit (the values of coefficients of determination (r2) are around 0.82-0.97 for all cases). The average attenuation coefficient of rat whole blood with a hematocrit of 40% increased from 0.26 Nepers mm-1 at 30 MHz to 0.47 Nepers mm-1 at 60 MHz. The maximum backscattering coefficients of both rat and porcine RBC suspensions were between 10% and 15% hematocrits at all frequencies. The fourth-power dependence of backscatter on frequency was approximately valid for rat RBC suspensions with hematocrits between 6% and 40%. However, the frequency dependence of the backscatter estimate deviates from a fourth-power law for porcine RBC suspension with hematocrit higher than 20%. The backscattering coefficient plateaued for hematocrits higher than 15% in porcine blood, but for rat blood it was maximal around a

  7. Neuronal NOS inhibitor and conventional antidepressant drugs attenuate stress-induced fos expression in overlapping brain regions.

    PubMed

    Silva, Michelle; Aguiar, Daniele C; Diniz, Cassiano R A; Guimarães, Francisco Silveira; Joca, Sâmia R L

    2012-04-01

    Recent evidence indicates that the administration of inhibitors of neuronal nitric oxide synthase (nNOS) induces antidepressant-like effects in animal models such as the forced swimming test (FST). However, the neural circuits involved in these effects are not yet known. Therefore, this study investigated the expression of Fos protein, a marker of neuronal activity, in the brain of rats submitted to FST and treated with the preferential nNOS inhibitor, 7-nitroindazole (7-NI), or with classical antidepressant drugs (Venlafaxine and Fluoxetine). Male Wistar rats were submitted to a forced swimming pretest (PT) and, immediately after, started receiving a sequence of three ip injections (0, 5, and 23 h after PT) of Fluoxetine (10 mg/kg), Venlafaxine (10 mg/kg), 7-NI (30 mg/kg) or respective vehicles. One hour after the last drug injection the animals were submitted to the test session, when immobility time was recorded. After the FST they were sacrificed and had their brains removed and processed for Fos immunohistochemistry. Independent group of non-stressed animals received the same drug treatments, or no treatment (naïve). 7-NI, Venlafaxine or Fluoxetine reduced immobility time in the FST, an antidepressant-like effect. None of the treatments induce significant changes in Fos expression per se. However, swimming stress induced significant increases in Fos expression in the following brain regions: medial prefrontal cortex, nucleus accumbens, locus coeruleus, raphe nuclei, striatum, hypothalamic nucleus, periaqueductal grey, amygdala, habenula, paraventricular nucleus of hypothalamus, and bed nucleus of stria terminalis. This effect was attenuated by 7-NI, Venlafaxine or Fluoxetine. These results show that 7-NI produces similar behavioral and neuronal activation effects to those of typical antidepressants, suggesting that these drugs share common neurobiological substrates.

  8. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood-brain barrier integrity.

    PubMed

    Kunze, Reiner; Urrutia, Andrés; Hoffmann, Angelika; Liu, Hui; Helluy, Xavier; Pham, Mirko; Reischl, Stefan; Korff, Thomas; Marti, Hugo H

    2015-04-01

    Brain edema is a hallmark of various neuropathologies, but the underlying mechanisms are poorly understood. We aim to characterize how tissue hypoxia, together with oxidative stress and inflammation, leads to capillary dysfunction and breakdown of the blood-brain barrier (BBB). In a mouse stroke model we show that systemic treatment with dimethyl fumarate (DMF), an antioxidant drug clinically used for psoriasis and multiple sclerosis, significantly prevented edema formation in vivo. Indeed, DMF stabilized the BBB by preventing disruption of interendothelial tight junctions and gap formation, and decreased matrix metalloproteinase activity in brain tissue. In vitro, DMF directly sustained endothelial tight junctions, inhibited inflammatory cytokine expression, and attenuated leukocyte transmigration. We also demonstrate that these effects are mediated via activation of the redox sensitive transcription factor NF-E2 related factor 2 (Nrf2). DMF activated the Nrf2 pathway as shown by up-regulation of several Nrf2 target genes in the brain in vivo, as well as in cerebral endothelial cells and astrocytes in vitro, where DMF also increased protein abundance of nuclear Nrf2. Finally, Nrf2 knockdown in endothelial cells aggravated subcellular delocalization of tight junction proteins during ischemic conditions, and attenuated the protective effect exerted by DMF. Overall, our data suggest that DMF protects from cerebral edema formation during ischemic stroke by targeting interendothelial junctions in an Nrf2-dependent manner, and provide the basis for a completely new approach to treat brain edema. PMID:25725349

  9. ANTIANDROGENIC EFFECTS OF VINCLOZOLIN ON MALE RATS ARE PARTIALLY ATTENUATED BY TESTOSTERONE PROPIONATE

    EPA Science Inventory

    ANTIANDROGENIC EFFECTS OF VINCLOZOLIN ON MALE RATS ARE PARTIALLY ATTENUATED BY TESTOSTERONE PROPIONATE

    Cynthia Wolf1,2 , Joe Ostby1, Jonathan Furr 1, Gerald A. LeBlanc2, and L. Earl Gray, Jr.1
    1 US Environmental Protection Agency, NHEERL, RTD, RTP, NC 27711, 2 Departmen...

  10. MASCULINIZATION OF FEMALE RATS BY PRENATAL TESTOSTERONE PROPIONATE IS PARTIALLY ATTENUATED BY VINCLOZOLIN

    EPA Science Inventory

    MASCULINIZATION OF FEMALE RATS BY PRENATAL TESTOSTERONE PROPIONATE IS PARTIALLY ATTENUATED BY VINCLOZOLIN
    Cynthia Wolf1,2, Gerald LeBlanc2, Andrew Hotchkiss3, Jonathan Furr1, L Earl Gray, Jr.1
    1USEPA, Reproductive Toxicology Division, RTP, NC 27711, 2Dept. Molecular and En...

  11. PDE5 inhibitors enhance tumor permeability and efficacy of chemotherapy in a rat brain tumor model.

    PubMed

    Black, Keith L; Yin, Dali; Ong, John M; Hu, Jinwei; Konda, Bindu M; Wang, Xiao; Ko, MinHee K; Bayan, Jennifer-Ann; Sacapano, Manuel R; Espinoza, Andreas; Irvin, Dwain K; Shu, Yan

    2008-09-16

    The blood-brain tumor barrier (BTB) significantly limits delivery of therapeutic concentrations of chemotherapy to brain tumors. A novel approach to selectively increase drug delivery is pharmacologic modulation of signaling molecules that regulate BTB permeability, such as those in cGMP signaling. Here we show that oral administration of sildenafil (Viagra) and vardenafil (Levitra), inhibitors of cGMP-specific PDE5, selectively increased tumor capillary permeability in 9L gliosarcoma-bearing rats with no significant increase in normal brain capillaries. Tumor-bearing rats treated with the chemotherapy agent, adriamycin, in combination with vardenafil survived significantly longer than rats treated with adriamycin alone. The selective increase in tumor capillary permeability appears to be mediated by a selective increase in tumor cGMP levels and increased vesicular transport through tumor capillaries, and could be attenuated by iberiotoxin, a selective inhibitor for calcium-dependent potassium (K(Ca)) channels, that are effectors in cGMP signaling. The effect by sildenafil could be further increased by simultaneously using another BTB "opener", bradykinin. Collectively, this data demonstrates that oral administration of PDE5 inhibitors selectively increases BTB permeability and enhances anti-tumor efficacy for a chemotherapeutic agent. These findings have significant implications for improving delivery of anti-tumor agents to brain tumors. PMID:18674521

  12. Sleep deprivation attenuates experimental stroke severity in rats.

    PubMed

    Moldovan, Mihai; Constantinescu, Alexandra Oana; Balseanu, Adrian; Oprescu, Nicoleta; Zagrean, Leon; Popa-Wagner, Aurel

    2010-03-01

    Indirect epidemiological and experimental evidence suggest that the severity of injury during stroke is influenced by prior sleep history. The aim of our study was to test the effect of acute sleep deprivation on early outcome following experimental stroke. Young male Sprague-Dawley rats (n=20) were subjected to focal cerebral ischemia by reversible right middle cerebral artery occlusion (MCAO) for 90 min. In 10 rats, MCAO was performed just after 6-h of total sleep deprivation (TSD) by "gentle handling", whereas the other rats served as controls. Neurological function during the first week after stroke was monitored using a battery of behavioral tests investigating the asymmetry of sensorimotor deficit (tape removal test and cylinder test), bilateral sensorimotor coordination (rotor-rod and Inclined plane) and memory (T-maze and radial maze). Following MCAO, control rats had impaired behavioral performance in all tests. The largest impairment was noted in the tape test where the tape removal time from the left forelimb (contralateral to MCAO) was increased by approximately 10 fold (p<0.01). In contrast, rats subjected to TSD had complete recovery of sensorimotor performance consistent with a 2.5 fold smaller infarct volume and reduced morphological signs of neuronal injury at day 7 after MCAO. Our data suggest that brief TSD induces a neuroprotective response that limits the severity of a subsequent stroke, similar to rapid ischemic preconditioning. PMID:20045410

  13. Minocycline attenuates pain by inhibiting spinal microglia activation in diabetic rats.

    PubMed

    Sun, Jin-Shan; Yang, Yu-Jie; Zhang, Yong-Zhen; Huang, Wen; Li, Zhao-Shen; Zhang, Yong

    2015-08-01

    The mechanisms associated with diabetes-induced neuropathic pain are complex and poorly understood. In order to understand the involvement of spinal microglia activity in diabetic pain, the present study investigated whether minocycline treatment is able to attenuate diabetic pain using a rat model. Diabetes was induced using a single intraperitoneal injection of streptozotocin (STZ). Minocycline was then intrathecally administered to the rats. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were tested weekly. The expression of OX-42, Iba-1, phospho-p38 mitogen-activated protein kinase (MAPK), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS), were examined in the spinal cord in order to evaluate the activation of microglia. The present study demonstrated that rats with STZ-induced diabetes exhibited increased mean plasma glucose concentration, decreased mean body weight and significant pain hypersensitivity compared with control rats. PWT and PWL values of rats with STZ-induced diabetes increased following treatment with minocycline. No differences were observed in expression levels of the microglial activity markers (OX-42, Iba-1 and phospho-p38 MAPK) between rats with STZ-induced diabetes and control rats. However, TNF-α, IL-1β and iNOS expression levels were higher in rats with STZ-induced diabetes compared with control rats. Following treatment with minocycline markers of microglial activation, including cytokines and iNOS, were downregulated in rats with STZ-induced diabetes. The results of the present study indicated that minocycline treatment may inhibit spinal microglial activation and attenuate diabetic pain in rats with STZ-induced diabetes.

  14. Blast traumatic brain injury in the rat using a blast overpressure model.

    PubMed

    Yarnell, Angela M; Shaughness, Michael C; Barry, Erin S; Ahlers, Stephen T; McCarron, Richard M; Grunberg, Neil E

    2013-01-01

    Traumatic brain injury (TBI) is a serious health concern for civilians and military populations, and blast-induced TBI (bTBI) has become an increasing problem for military personnel over the past 10 years. To understand the biological and psychological effects of blast-induced injuries and to examine potential interventions that may help to prevent, attenuate, and treat effects of bTBI, it is valuable to conduct controlled animal experiments. This unit discusses available paradigms to model traumatic brain injury in animals, with an emphasis on the relevance of these various models to study blast-induced traumatic brain injury (bTBI). This paper describes the detailed methods of a blast overpressure (BOP) paradigm that has been used to conduct experiments with rats to model blast exposure. This particular paradigm models the pressure wave created by explosions, including improvised explosive devices (IEDs).

  15. Restoring Spinal Noradrenergic Inhibitory Tone Attenuates Pain Hypersensitivity in a Rat Model of Parkinson's Disease

    PubMed Central

    Wang, Bing; Chen, Li-Hua

    2016-01-01

    In the present study, we investigated whether restoring descending noradrenergic inhibitory tone can attenuate pain in a PD rat model, which was established by stereotaxic infusion of 6-hydroxydopamine (6-OHDA) into the bilateral striatum (CPu). PD rats developed thermal and mechanical hypersensitivity at the 4th week after surgery. HPLC analysis showed that NE content, but not dopamine or 5-HT, significantly decreased in lumbar spinal cord in PD rats. Additional noradrenergic depletion by injection of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) aggravated pain hypersensitivity in PD rats. At the 5th week after injection of 6-OHDA, systemic treatment with pharmacological norepinephrine (NE) precursor droxidopa (L-DOPS) or α2 adrenoceptor agonist clonidine significantly attenuated thermal and mechanical pain hypersensitivity in PD rats. Furthermore, application of norepinephrine (NE) and 5-hydroxytryptamine (5-HT) reuptake inhibitors duloxetine, but not 5-HT selective reuptake inhibitors sertraline, significantly inhibited thermal and mechanical pain hypersensitivity in PD rats. Systemic administration of Madopar (L-DOPA) or the D2/D3 agonist pramipexole slightly inhibited the thermal, but not mechanical, hypersensitivity in PD rats. Thus, our study revealed that impairment of descending noradrenergic system may play a key role in PD-associated pain and restoring spinal noradrenergic inhibitory tone may serve as a novel strategy to manage PD-associated pain. PMID:27747105

  16. Acute and chronic tianeptine treatments attenuate ethanol withdrawal syndrome in rats.

    PubMed

    Uzbay, Tayfun; Kayir, Hakan; Celik, Turgay; Yüksel, Nevzat

    2006-05-01

    Effects of acute and chronic tianeptine treatments on ethanol withdrawal syndrome were investigated in rats. Ethanol (7.2% v/v) was given to adult male Wistar rats by a liquid diet for 30 days. Acute or chronic (twice daily) tianeptine (5, 10 and 20 mg/kg) and saline were administered to rats intraperitoneally. Acute and last chronic tianeptine injections and saline were done 30 min before ethanol withdrawal testing. After 2nd, 4th and 6th hours of ethanol withdrawal, rats were observed for 5 min, and withdrawal signs which included locomotor hyperactivity, agitation, tremor, wet dog shakes, stereotyped behavior and audiogenic seizures were recorded or rated. Locomotor activity in naive (no ethanol-dependent rats) was also tested after acute tianeptine treatments. Acute but not chronic tianeptine treatment attenuated locomotor hyperactivity and agitation in ethanol-dependent rats. Both acute and chronic tianeptine treatment produced some significant inhibitory effects on tremor, wet dog shakes, stereotyped behaviors and audiogenic seizures during the ethanol withdrawal. Our results suggest that acute or chronic tianeptine treatment attenuates ethanol withdrawal syndrome in ethanol-dependent rats and this drug may be useful for treatment of ethanol-type dependence.

  17. Inhomogeneity in optical properties of rat brain: a study for LLLT dosimetry

    NASA Astrophysics Data System (ADS)

    Sousa, Marcelo V. P.; Prates, Renato; Kato, Ilka T.; Sabino, Caetano P.; Yoshimura, Tania M.; Suzuki, Luis C.; Magalhães, Ana C.; Yoshimura, Elisabeth M.; Ribeiro, Martha S.

    2013-03-01

    Over the last few years, low-level light therapy (LLLT) has shown an incredible suitability for a wide range of applications for central nervous system (CNS) related diseases. In this therapeutic modality light dosimetry is extremely critical so the study of light propagation through the CNS organs is of great importance. To better understand how light intensity is delivered to the most relevant neural sites we evaluated optical transmission through slices of rat brain point by point. We experimented red (λ = 660 nm) and near infrared (λ = 808 nm) diode laser light analyzing the light penetration and distribution in the whole brain. A fresh Wistar rat (Rattus novergicus) brain was cut in sagittal slices and illuminated with a broad light beam. A high-resolution digital camera was employed to acquire data of transmitted light. Spatial profiles of the light transmitted through the sample were obtained from the images. Peaks and valleys in the profiles show sites where light was less or more attenuated. The peak intensities provide information about total attenuation and the peak widths are correlated to the scattering coefficient at that individual portion of the sample. The outcomes of this study provide remarkable information for LLLT dose-dependent studies involving CNS and highlight the importance of LLLT dosimetry in CNS organs for large range of applications in animal and human diseases.

  18. Actin purification from a gel of rat brain extracts.

    PubMed

    Levilliers, N; Peron-Renner, M; Coffe, G; Pudles, J

    1984-01-01

    Actin, 99% pure, has been recovered from rat brain with a high yield (greater than 15 mg/100 g brain). We have shown that: 1. a low ionic strength extract from rat brain tissue is capable of giving rise to a gel; 2. actin is the main gel component and its proportion is one order of magnitude higher than in the original extract; 3. actin can be isolated from this extract by a three-step procedure involving gelation, dissociation of the gel in 0.6 M KCl, followed by one or two depolymerization-polymerization cycles. PMID:6529588

  19. Rapid hybrid encoding for high-resolution whole-brain fluid-attenuated imaging.

    PubMed

    Lee, Hoonjae; Sohn, Chul-Ho; Park, Jaeseok

    2013-12-01

    Single-slab three-dimensional (3D) turbo spin-echo (TSE) imaging combined with inversion recovery (IR), which employs short, spatially non-selective refocusing pulses and signal prescription based variable refocusing flip angles (VFA) to increase imaging efficiency, was recently introduced to produce fluid-attenuated brain images for lesion detection. Despite the advantages, the imaging efficiency in this approach still remains limited because a substantially long time of inversion is needed to selectively suppress the signal intensity of cerebrospinal fluid (CSF) while fully recovering that of brain tissues. The purpose of this work is to develop a novel, rapid hybrid encoding method for highly efficient whole-brain fluid-attenuated imaging. In each time of repetition, volumetric data are continuously encoded using the hybrid modular acquisition in a sequential fashion even during IR signal transition, wherein reversed fast imaging with steady-state free precession (PSIF) is employed to encode intermediate-to-high spatial frequency signals prior to CSF nulling, while VFA-TSE is used to collect low-to-intermediate spatial frequency signals afterwards. Gradient-induced spin de-phasing between a pair of neighboring radio-frequency (RF) pulses in both PSIF and TSE modules is kept identical to avoid the occurrence of multiple echoes in a single acquisition window. Additionally, a two-step, alternate RF phase-cycling scheme is employed in the low spatial frequency region to eliminate free induction decay induced edge artifacts. Numerical simulations of the Bloch equations were performed to evaluate signal evolution of brain tissues along the echo train while optimizing imaging parameters. In vivo studies demonstrate that the proposed technique produces high-resolution isotropic fluid-attenuated whole-brain images in a clinically acceptable imaging time with substantially high signal-to-noise ratio for white matter while retaining lesion conspicuity.

  20. Testosterone attenuates and the selective estrogen receptor modulator, raloxifene, potentiates amphetamine-induced locomotion in male rats.

    PubMed

    Purves-Tyson, Tertia D; Boerrigter, Danny; Allen, Katherine; Zavitsanou, Katerina; Karl, Tim; Djunaidi, Vanezha; Double, Kay L; Desai, Reena; Handelsman, David J; Weickert, Cynthia Shannon

    2015-04-01

    Although sex steroids are known to modulate brain dopamine, it is still unclear how testosterone modifies locomotor behaviour controlled, at least in part, by striatal dopamine in adolescent males. Our previous work suggests that increasing testosterone during adolescence may bias midbrain neurons to synthesise more dopamine. We hypothesised that baseline and amphetamine-induced locomotion would differ in adult males depending on testosterone exposure during adolescence. We hypothesised that concomitant stimulation of estrogen receptor signaling, through a selective estrogen receptor modulator (SERM), raloxifene, can counter testosterone effects on locomotion. Male Sprague-Dawley rats at postnatal day 45 were gonadectomised (G) or sham-operated (S) prior to the typical adolescent testosterone increase. Gonadectomised rats were either given testosterone replacement (T) or blank implants (B) for six weeks and sham-operated (i.e. intact or endogenous testosterone group) were given blank implants. Subgroups of sham-operated, gonadectomised and gonadectomised/testosterone-replaced rats were treated with raloxifene (R, 5mg/kg) or vehicle (V), daily for the final four weeks. There were six groups (SBV, GBV, GTV, SBR, GBR, GTR). Saline and amphetamine-induced (1.25mg/kg) locomotion in the open field was measured at PND85. Gonadectomy increased amphetamine-induced locomotion compared to rats with endogenous or with exogenous testosterone. Raloxifene increased amphetamine-induced locomotion in rats with either endogenous or exogenous testosterone. Amphetamine-induced locomotion was negatively correlated with testosterone and this relationship was abolished by raloxifene. Lack of testosterone during adolescence potentiates and testosterone exposure during adolescence attenuates amphetamine-induced locomotion. Treatment with raloxifene appears to potentiate amphetamine-induced locomotion and to have an opposite effect to that of testosterone in male rats.

  1. Effects of photoradiation therapy on normal rat brain

    SciTech Connect

    Cheng, M.K.; McKean, J.; Boisvert, D.; Tulip, J.; Mielke, B.W.

    1984-12-01

    Laser photoradiation of the brain via an optical fiber positioned 5 mm above a burr hole was performed after the injection of hematoporphyrin derivative (HpD) in 33 normal rats and 6 rats with an intracerebral glioma. Normal rats received HpD, 5 or 10 mg/kg of body weight, followed by laser exposure at various doses or were exposed to a fixed laser dose after the administration of HpD, 2.5 to 20 mg/kg. One control group received neither HpD nor laser energy, and another was exposed to laser energy only. The 6 rats bearing an intracranial 9L glioma were treated with HpD, 5 mg/kg, followed by laser exposure at various high doses. The temperature in the cortex or tumor was measured with a probe during laser exposure. The rats were killed 72 hours after photoradiation, and the extent of necrosis of cerebral tissue was measured microscopically. In the normal rats, the extent of brain damage correlated with increases in the dose of both the laser and the HpD. In all 6 glioma-bearing rats, the high laser doses produced some focal necrosis in the tumors but also damaged adjacent normal brain tissue. The authors conclude that damage to normal brain tissue may be a significant complication of high dose photoradiation therapy for intracranial tumors.

  2. Memantine ameliorates autistic behavior, biochemistry & blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-06-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder, commonly characterized by altered social behavior, communication, biochemistry and pathological conditions. One percent of the worldwide population suffers from autism and males suffer more than females. NMDA receptors have the important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. This study has been designed to investigate the role of memantine, a NMDA receptor modulator, in prenatal valproic acid-induced autism in rats. Animals with prenatal valproic acid have shown the reduction in social interaction (three-chamber social behavior apparatus), spontaneous alternation (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complex I, II, IV). Furthermore, prenatal valproic acid-treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood-brain barrier permeability. Treatment with memantine has significantly attenuated prenatal valproic acid-induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, memantine has also attenuated the prenatal valproic acid-induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood-brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behavior, biochemistry and blood-brain barrier impairment in animals, which were significantly attenuated by memantine. NMDA receptor modulators like memantine should be explored further for the therapeutic

  3. Memantine ameliorates autistic behavior, biochemistry & blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-06-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder, commonly characterized by altered social behavior, communication, biochemistry and pathological conditions. One percent of the worldwide population suffers from autism and males suffer more than females. NMDA receptors have the important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. This study has been designed to investigate the role of memantine, a NMDA receptor modulator, in prenatal valproic acid-induced autism in rats. Animals with prenatal valproic acid have shown the reduction in social interaction (three-chamber social behavior apparatus), spontaneous alternation (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complex I, II, IV). Furthermore, prenatal valproic acid-treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood-brain barrier permeability. Treatment with memantine has significantly attenuated prenatal valproic acid-induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, memantine has also attenuated the prenatal valproic acid-induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood-brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behavior, biochemistry and blood-brain barrier impairment in animals, which were significantly attenuated by memantine. NMDA receptor modulators like memantine should be explored further for the therapeutic

  4. Brain uptake of ketoprofen-lysine prodrug in rats.

    PubMed

    Gynther, Mikko; Jalkanen, Aaro; Lehtonen, Marko; Forsberg, Markus; Laine, Krista; Ropponen, Jarmo; Leppänen, Jukka; Knuuti, Johanna; Rautio, Jarkko

    2010-10-31

    The blood-brain barrier (BBB) controls the entry of xenobiotics into the brain. Often the development of central nervous system drugs needs to be terminated because of their poor brain uptake. We describe a way to achieve large neutral amino acid transporter (LAT1)-mediated drug transport into the rat brain. We conjugated ketoprofen to an amino acid l-lysine so that the prodrug could access LAT1. The LAT1-mediated brain uptake of the prodrug was demonstrated with in situ rat brain perfusion technique. The ability of the prodrug to deliver ketoprofen into the site of action, the brain intracellular fluid, was determined combining in vivo and in vitro experiments. A rapid brain uptake from blood and cell uptake was seen both in in situ and in vivo experiments. Therefore, our results show that a prodrug approach can achieve uptake of drugs via LAT1 into the brain intracellular fluid. The distribution of the prodrug in the brain parenchyma and the site of parent drug release in the brain were shown with in vivo and in vitro studies. In addition, our results show that although lysine or ketoprofen are not LAT1-substrates themselves, by combining these molecules, the formed prodrug has affinity for LAT1. PMID:20727958

  5. Celecoxib reduces brain dopaminergic neuronaldysfunction, and improves sensorimotor behavioral performance in neonatal rats exposed to systemic lipopolysaccharide

    PubMed Central

    2013-01-01

    Background Cyclooxygenase-2 (COX-2) is induced in inflammatory cells in response to cytokines and pro-inflammatory molecules, suggesting that COX-2 has a role in the inflammatory process. The objective of the current study was to examine whether celecoxib, a selective COX-2 inhibitor, could ameliorate lipopolysaccharide (LPS)-induced brain inflammation, dopaminergic neuronal dysfunction and sensorimotor behavioral impairments. Methods Intraperitoneal (i.p.) injection of LPS (2 mg/kg) was performed in rat pups on postnatal Day 5 (P5), and celecoxib (20 mg/kg) or vehicle was administered (i.p.) five minutes after LPS injection. Sensorimotor behavioral tests were carried out 24 h after LPS exposure, and brain injury was examined on P6. Results Our results showed that LPS exposure resulted in impairment in sensorimotor behavioral performance and injury to brain dopaminergic neurons, as indicated by loss of tyrosine hydroxylase (TH) immunoreactivity, as well as decreases in mitochondria activity in the rat brain. LPS exposure also led to increases in the expression of α-synuclein and dopamine transporter proteins and enhanced [3H]dopamine uptake. Treatment with celecoxib significantly reduced LPS-induced sensorimotor behavioral disturbances and dopaminergic neuronal dysfunction. Celecoxib administration significantly attenuated LPS-induced increases in the numbers of activated microglia and astrocytes and in the concentration of IL-1β in the neonatal rat brain. The protective effect of celecoxib was also associated with an attenuation of LPS-induced COX-2+ cells, which were double labeled with TH + (dopaminergic neuron) or glial fibrillary acidic protein (GFAP) + (astrocyte) cells. Conclusion Systemic LPS administration induced brain inflammatory responses in neonatal rats; these inflammatory responses included induction of COX-2 expression in TH neurons and astrocytes. Application of the COX-2 inhibitor celecoxib after LPS treatment attenuated the inflammatory

  6. Cerebrolysin reduces blood-cerebrospinal fluid barrier permeability change, brain pathology, and functional deficits following traumatic brain injury in the rat.

    PubMed

    Sharma, Hari Shanker; Zimmermann-Meinzingen, Sibilla; Johanson, Conrad E

    2010-06-01

    Traumatic brain injuries (TBIs) induce profound breakdown of the blood-brain and blood-cerebrospinal fluid barriers (BCSFB), brain pathology/edema, and sensory-motor disturbances. Because neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and glial cell-derived neurotrophic factor (GDNF), are neuroprotective in models of brain and spinal cord injuries, we hypothesized that a combination of neurotrophic factors would enhance neuroprotective efficacy. In the present investigation, we examined the effects of Cerebrolysin, a mixture of different neurotrophic factors (Ebewe Neuro Pharma, Austria) on the brain pathology and functional outcome in a rat model of TBI. TBI was produced under Equithesin (3 mL/kg, i.p.) anesthesia by making a longitudinal incision into the right parietal cerebral cortex. Untreated injured rats developed profound disruption of the blood-brain barrier (BBB) to proteins, edema/cell injury, and marked sensory-motor dysfunctions on rota-rod and grid-walking tests at 5 h TBI. Intracerebroventricular administration of Cerebrolysin (10 or 30 microL) either 5 min or 1 h after TBI significantly reduced leakage of Evans blue and radioiodine tracers across the BBB and BCSFB, and attenuated brain edema formation/neuronal damage in the cortex as well as underlying subcortical regions. Cerebrolysin-treated animals also had improved sensory-motor functions. However, administration of Cerebrolysin 2 h after TBI did not affect these parameters significantly. These observations in TBI demonstrate that early intervention with Cerebrolysin reduces BBB and BCSFB permeability changes, attenuates brain pathology and brain edema, and mitigates functional deficits. Taken together, our observations suggest that Cerebrolysin has potential therapeutic value in TBI.

  7. Effect of zinc supplements in the attenuated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat heart.

    PubMed

    Kansal, Sunil Kumar; Jyoti, Uma; Sharma, Samridhi; Kaura, Arun; Deshmukh, Rahul; Goyal, Sandeep

    2015-06-01

    Hyperlipidemia is regarded as independent risk factor in the development of ischemic heart disease, and it can increase the myocardial susceptibility to ischemia-/reperfusion (I/R)-induced injury. Hyperlipidemia attenuates the cardioprotective response of ischemic preconditioning (IPC). The present study investigated the effect of zinc supplements in the attenuated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat hearts. Hyperlipidemia was induced in rat by feeding high-fat diet (HFD) for 6 weeks then the serum lipid profile was observed. In experiment, the isolated Langendorff rat heart preparation was subjected to 4 cycles of ischemic preconditioning (IPC), then 30 min of ischemia followed by 120 min of reperfusion. Myocardial infarct size was elaborated morphologically by triphenyltetrazolium chloride (TTC) staining and biochemically by lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) release from coronary effluent and left ventricular collagen content. However, the effect of zinc supplement, i.e., zinc pyrithione (10 μM) perfused during reperfusion for 120 min, significantly abrogated the attenuated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat heart whereas administration of chelator of this zinc ionophore, i.e., N,N,N',N'-tetrakis(2-pyridylmethyl)ethylene diamine (TPEN; 10 μM), perfused during reperfusion 2 min before the perfusion of zinc pyrithione abrogated the cardioprotective effect of zinc supplement during experiment in hyperlipidemic rat heart. Thus, the administration of zinc supplements limits the infarct size, LDH, and CK-MB and enhanced the collagen level which suggests that the attenuated cardioprotective effect of IPC in hyperlipidemic rat is due to zinc loss during reperfusion caused by ischemia/reperfusion. PMID:25743572

  8. In vitro comparison of rat and chicken brain neurotoxic esterase

    SciTech Connect

    Novak, R.; Padilla, S.

    1986-04-01

    A systematic comparison was undertaken to characterize neurotoxic esterase (NTE) from rat and chicken brain in terms of inhibitor sensitivities, pH optima, and molecular weights. Paraoxon titration of phenyl valerate (PV)-hydrolyzing carboxylesterases showed that rat esterases were more sensitive than chicken to paraoxon inhibition at concentrations less than or equal to microM and superimposable with chicken esterases at concentrations of 2.5-1000 microM. Mipafox titration of the paraoxon-resistant esterases at a fixed paraoxon concentration of 100 microM (mipafox concentration: 0-1000 microM) resulted in a mipafox I50 of 7.3 microM for chicken brain NTE and 11.6 microM for rat brain NTE. NTE (i.e., paraoxon-resistant, mipafox-sensitive esterase activity) comprised 80% of chicken and 60% of rat brain paraoxon-resistant activity with the specific activity of chicken brain NTE approximately twice that of rat brain NTE. The pH maxima for NTE from both species was similar showing broad, slightly alkaline optima from pH 7.9 to 8.6. (/sup 3/H)Diisopropyl phosphorofluoridate (DFP)-labeled NTE from the brains of both species had an apparent mol wt of 160,000 measured by sodium dodecyl sulfate polyacrylamide gel electrophoresis. In conclusion, NTE from both species was very similar, with the mipafox I50 for rat NTE within the range of reported values for chicken and human NTE, and the inhibitor parameters of the chicken NTE assay were applicable for the rat NTE assay.

  9. Dai-Kenchu-To, a Herbal Medicine, Attenuates Colorectal Distention-induced Visceromotor Responses in Rats

    PubMed Central

    Nakaya, Kumi; Nagura, Yohko; Hasegawa, Ryoko; Ito, Hitomi; Fukudo, Shin

    2016-01-01

    Background/Aims Dai-kenchu-to (DKT), a traditional Japanese herbal medicine, is known to increase gastrointestinal motility and improve ileal function. We tested our hypotheses that (1) pretreatment with DKT would block the colorectal distention-induced visceromotor response in rats, and (2) pretreatment with DKT would attenuate colorectal distention-induced adrenocorticotropic hormone (ACTH) release and anxiety-related behavior. Methods Rats were pretreated with vehicle or DKT (300 mg/kg/5 mL, per os). Visceromotor responses were analyzed using electromyography in response to colorectal distention (10, 20, 40, 60, and 80 mmHg for 20 seconds at 3-minutes intervals). Anxiety-related behavior was measured during exposure to an elevated-plus maze after colorectal distention. Plasma ACTH and serum corticosterone levels were measured after exposure to the elevated-plus maze. Results Colorectal distention produced robust contractions of the abdominal musculature, graded according to stimulus intensity, in vehicle-treated rats. At 40, 60, and 80 mmHg of colorectal distention, the visceromotor responses of DKT-treated rats was significantly lower than that of vehicle-treated rats. At 80 mmHg, the amplitude was suppressed to approximately one-third in DKT-treated rats, compared with that in vehicle-treated rats. Smooth muscle compliance and the velocity of accommodation to 60 mmHg of stretching did not significantly differ between the vehicle-treated and DKT-treated rats. Similarly, the DKT did not influence colorectal distention-induced ACTH release, corticosterone levels, or anxiety-related behavior in rats. Conclusions Our results suggest that DKT attenuates the colorectal distention-induced visceromotor responses, without increasing smooth muscle compliance, ACTH release or anxiety-related behavior in rats. PMID:27095743

  10. Chronic Sleep Restriction Elevates Brain Interleukin-1 beta and Tumor Necrosis Factor-alpha and Attenuates Brain-derived Neurotrophic Factor Expression

    PubMed Central

    Zielinski, Mark R.; Kim, Youngsoo; Karpova, Svetlana A.; McCarley, Robert W.; Strecker, Robert E.; Gerashchenko, Dmitry

    2014-01-01

    Acute sleep loss increases pro-inflammatory and synaptic plasticity-related molecules in the brain, including interleukin-1beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and brain-derived neurotrophic factor (BDNF). These molecules enhance non-rapid eye movement sleep slow wave activity (SWA), also known as electroencephalogram delta power, and modulate neurocognitive performance. Evidence suggests that chronic sleep restriction (CSR), a condition prevalent in today's society, does not elicit the enhanced SWA that is seen after acute sleep loss, although it cumulatively impairs neurocognitive functioning. Rats were continuously sleep deprived for 18 h per day and allowed 6 h of ad libitum sleep opportunity for 1 (SR1), 3 (SR3), or 5 (SR5) successive days (i.e., CSR). IL-1β, TNF-α, and BDNF mRNA levels were determined in the somatosensory cortex, frontal cortex, hippocampus, and basal forebrain. Largely, brain IL-1β and TNF-α expression were significantly enhanced throughout CSR. In contrast, BDNF mRNA levels were similar to baseline values in the cortex after 1 day of SR and significantly lower than baseline values in the hippocampus after 5 days of SR. In the basal forebrain, BDNF expression remained elevated throughout the 5 days of CSR, although IL-1β expression was significantly reduced. The chronic elevations of IL-1β and TNF-α and inhibition of BDNF might contribute to the reported lack of SWA responses reported after CSR. Further, the CSR-induced enhancements in brain inflammatory molecules and attenuations in hippocampal BDNF might contribute to neurocognitive and vigilance detriments that occur from CSR. PMID:25093703

  11. Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression.

    PubMed

    Zielinski, Mark R; Kim, Youngsoo; Karpova, Svetlana A; McCarley, Robert W; Strecker, Robert E; Gerashchenko, Dmitry

    2014-09-19

    Acute sleep loss increases pro-inflammatory and synaptic plasticity-related molecules in the brain, including interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and brain-derived neurotrophic factor (BDNF). These molecules enhance non-rapid eye movement sleep slow wave activity (SWA), also known as electroencephalogram delta power, and modulate neurocognitive performance. Evidence suggests that chronic sleep restriction (CSR), a condition prevalent in today's society, does not elicit the enhanced SWA that is seen after acute sleep loss, although it cumulatively impairs neurocognitive functioning. Rats were continuously sleep deprived for 18h per day and allowed 6h of ad libitum sleep opportunity for 1 (SR1), 3 (SR3), or 5 (SR5) successive days (i.e., CSR). IL-1β, TNF-α, and BDNF mRNA levels were determined in the somatosensory cortex, frontal cortex, hippocampus, and basal forebrain. Largely, brain IL-1β and TNF-α expression were significantly enhanced throughout CSR. In contrast, BDNF mRNA levels were similar to baseline values in the cortex after 1 day of SR and significantly lower than baseline values in the hippocampus after 5 days of SR. In the basal forebrain, BDNF expression remained elevated throughout the 5 days of CSR, although IL-1β expression was significantly reduced. The chronic elevations of IL-1β and TNF-α and inhibition of BDNF might contribute to the reported lack of SWA responses reported after CSR. Further, the CSR-induced enhancements in brain inflammatory molecules and attenuations in hippocampal BDNF might contribute to neurocognitive and vigilance detriments that occur from CSR.

  12. Transmission, attenuation and reflection of shear waves in the human brain

    PubMed Central

    Clayton, Erik H.; Genin, Guy M.; Bayly, Philip V.

    2012-01-01

    Traumatic brain injuries (TBIs) are caused by acceleration of the skull or exposure to explosive blast, but the processes by which mechanical loads lead to neurological injury remain poorly understood. We adapted motion-sensitive magnetic resonance imaging methods to measure the motion of the human brain in vivo as the skull was exposed to harmonic pressure excitation (45, 60 and 80 Hz). We analysed displacement fields to quantify the transmission, attenuation and reflection of distortional (shear) waves as well as viscoelastic material properties. Results suggest that internal membranes, such as the falx cerebri and the tentorium cerebelli, play a key role in reflecting and focusing shear waves within the brain. The skull acts as a low-pass filter over the range of frequencies studied. Transmissibility of pressure waves through the skull decreases and shear wave attenuation increases with increasing frequency. The skull and brain function mechanically as an integral structure that insulates internal anatomic features; these results are valuable for building and validating mathematical models of this complex and important structural system. PMID:22675163

  13. Fuel not fun: Reinterpreting attenuated brain responses to reward in obesity.

    PubMed

    Kroemer, Nils B; Small, Dana M

    2016-08-01

    There is a well-established literature linking obesity to altered dopamine signaling and brain response to food-related stimuli. Neuroimaging studies frequently report enhanced responses in dopaminergic regions during food anticipation and decreased responses during reward receipt. This has been interpreted as reflecting anticipatory "reward surfeit", and consummatory "reward deficiency". In particular, attenuated response in the dorsal striatum to primary food rewards is proposed to reflect anhedonia, which leads to overeating in an attempt to compensate for the reward deficit. In this paper, we propose an alternative view. We consider brain response to food-related stimuli in a reinforcement-learning framework, which can be employed to separate the contributions of reward sensitivity and reward-related learning that are typically entangled in the brain response to reward. Consequently, we posit that decreased striatal responses to milkshake receipt reflect reduced reward-related learning rather than reward deficiency or anhedonia because reduced reward sensitivity would translate uniformly into reduced anticipatory and consummatory responses to reward. By re-conceptualizing reward deficiency as a shift in learning about subjective value of rewards, we attempt to reconcile neuroimaging findings with the putative role of dopamine in effort, energy expenditure and exploration and suggest that attenuated brain responses to energy dense foods reflect the "fuel", not the fun entailed by the reward. PMID:27085908

  14. Transmission, attenuation and reflection of shear waves in the human brain.

    PubMed

    Clayton, Erik H; Genin, Guy M; Bayly, Philip V

    2012-11-01

    Traumatic brain injuries (TBIs) are caused by acceleration of the skull or exposure to explosive blast, but the processes by which mechanical loads lead to neurological injury remain poorly understood. We adapted motion-sensitive magnetic resonance imaging methods to measure the motion of the human brain in vivo as the skull was exposed to harmonic pressure excitation (45, 60 and 80 Hz). We analysed displacement fields to quantify the transmission, attenuation and reflection of distortional (shear) waves as well as viscoelastic material properties. Results suggest that internal membranes, such as the falx cerebri and the tentorium cerebelli, play a key role in reflecting and focusing shear waves within the brain. The skull acts as a low-pass filter over the range of frequencies studied. Transmissibility of pressure waves through the skull decreases and shear wave attenuation increases with increasing frequency. The skull and brain function mechanically as an integral structure that insulates internal anatomic features; these results are valuable for building and validating mathematical models of this complex and important structural system. PMID:22675163

  15. Transmission, attenuation and reflection of shear waves in the human brain.

    PubMed

    Clayton, Erik H; Genin, Guy M; Bayly, Philip V

    2012-11-01

    Traumatic brain injuries (TBIs) are caused by acceleration of the skull or exposure to explosive blast, but the processes by which mechanical loads lead to neurological injury remain poorly understood. We adapted motion-sensitive magnetic resonance imaging methods to measure the motion of the human brain in vivo as the skull was exposed to harmonic pressure excitation (45, 60 and 80 Hz). We analysed displacement fields to quantify the transmission, attenuation and reflection of distortional (shear) waves as well as viscoelastic material properties. Results suggest that internal membranes, such as the falx cerebri and the tentorium cerebelli, play a key role in reflecting and focusing shear waves within the brain. The skull acts as a low-pass filter over the range of frequencies studied. Transmissibility of pressure waves through the skull decreases and shear wave attenuation increases with increasing frequency. The skull and brain function mechanically as an integral structure that insulates internal anatomic features; these results are valuable for building and validating mathematical models of this complex and important structural system.

  16. Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease.

    PubMed

    Dhanalakshmi, Chinnasamy; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed; Kalandar, Ameer; Khan, Mohammed Abdul Sattar; Guillemin, Gilles J

    2016-08-01

    Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. We previously reported the neuroprotective effect of vanillin against rotenone induced in in vitro model of PD. The present experiment was aimed to analyze the neuroprotective effect of vanillin on the motor and non-motor deficits, neurochemical variables, oxidative, anti-oxidative indices and the expression of apoptotic markers against rotenone induced rat model of Parkinson's disease (PD). Rotenone treatment exhibited motor and non-motor impairments, neurochemical deficits, oxidative stress and apoptosis, whereas oral administration of vanillin attenuated the above-said indices. However further studies are needed to explore the mitochondrial protective and anti-inflammatory properties of vanillin, as these processes play a vital role in the cause and progression of PD. PMID:27038927

  17. Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease.

    PubMed

    Dhanalakshmi, Chinnasamy; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed; Kalandar, Ameer; Khan, Mohammed Abdul Sattar; Guillemin, Gilles J

    2016-08-01

    Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. We previously reported the neuroprotective effect of vanillin against rotenone induced in in vitro model of PD. The present experiment was aimed to analyze the neuroprotective effect of vanillin on the motor and non-motor deficits, neurochemical variables, oxidative, anti-oxidative indices and the expression of apoptotic markers against rotenone induced rat model of Parkinson's disease (PD). Rotenone treatment exhibited motor and non-motor impairments, neurochemical deficits, oxidative stress and apoptosis, whereas oral administration of vanillin attenuated the above-said indices. However further studies are needed to explore the mitochondrial protective and anti-inflammatory properties of vanillin, as these processes play a vital role in the cause and progression of PD.

  18. Can Urtica dioica supplementation attenuate mercury intoxication in Wistar rats?

    PubMed Central

    Siouda, Wafa; Abdennour, Cherif

    2015-01-01

    Aim: The objective of this study was to investigate the possible protective role of nettle Urtica dioica (UD) against Hg-induced toxicity. Materials and Methods: A total of 28 rats were equally divided into four groups: the control, the Hg (0.8 g HgCl2/kg in the diet), the UD (1.5 ml UD/rat by gavage), and the Hg+UD group. HgCl2 was daily dissolved in distilled water and immediately mixed with the standard diet. A solution of daily infused fresh nettle leaves in boiling water (16 g in 25 ml) was obtained and then it was administrated by gavage. Biochemical and reproductive markers, in addition to glutathione (GSH) level (liver, kidney and testis) and the histological profiles (testis and epididymis) were evaluated after 1 month exposure. Results: Compared to the control, the levels of glucose, triglycerides, urea, creatinine, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were significantly raised in the Hg group. In the latter group, the concentrations of Mg, Fe, and Ca were significantly decreased. Besides, Hg+UD group has only showed raised AST activity and reduced Mg level. Concerning the fertility markers, Hg has provoked a significant decrease in the spermatozoa’s concentration and motility and in plasma testosterone level as well. Furthermore, hepatic, renal and testicular GSH concentrations have declined significantly in the Hg treated rat compared to the control. A remarkable enhancement of the GSH level was observed in all organs of the UD group. The histological examinations of the Hg group have revealed marked testicular degeneration of the most seminiferous tubules, and showed few sperms in the lumen of epididymis ducts. However, the Hg+UD rats have demonstrated an improved histological structure with the presence of important numbers of sperms in the lumen. In addition, a clear stabilization of organized seminiferous tubules and an increased sperms’ numbers were noted in the UD supplemented rats

  19. Exercise training attenuates the pressor response evoked by peripheral chemoreflex in rats with heart failure.

    PubMed

    Calegari, Leonardo; Mozzaquattro, Bruna B; Rossato, Douglas D; Quagliotto, Edson; Ferreira, Janaina B; Rasia-Filho, Alberto; Dal Lago, Pedro

    2016-09-01

    The effects of exercise training (ExT) on the pressor response elicited by potassium cyanide (KCN) in the rat model of ischemia-induced heart failure (HF) are unknown. We evaluated the effects of ExT on chemoreflex sensitivity and its interaction with baroreflex in rats with HF. Wistar rats were divided into four groups: trained HF (Tr-HF), sedentary HF (Sed-HF), trained sham (Tr-Sham), and sedentary sham (Sed-Sham). Trained animals underwent to a treadmill running protocol for 8 weeks (60 m/day, 5 days/week, 16 m/min). After ExT, arterial pressure (AP), baroreflex sensitivity (BRS), peripheral chemoreflex (KCN: 100 μg/kg body mass), and cardiac function were evaluated. The results demonstrate that ExT induces an improvement in BRS and attenuates the pressor response to KCN relative to the Sed-HF group (P < 0.05). The improvement in BRS was associated with a reduction in the pressor response following ExT in HF rats (P < 0.05). Moreover, ExT induced a reduction in left ventricular end-diastolic pressure and pulmonary congestion compared with the Sed-HF group (P < 0.05). The pressor response to KCN in the hypotensive state is decreased in sedentary HF rats. These results suggest that ExT improves cardiac function and BRS and attenuates the pressor response evoked by KCN in HF rats. PMID:27295522

  20. Brain glucose content in fetuses of ethanol-fed rats

    SciTech Connect

    Pullen, G.; Singh, S.P.; Snyder, A.K.; Hoffen, B.

    1986-03-01

    The authors have previously demonstrated impaired placental glucose transfer and fetal hypoglycemia in association with ethanol ingestion by pregnant rats. The present study examines the relationship between glucose availability and fetal brain growth under the same conditions. Rats (EF) were fed ethanol (30% of caloric intake) in liquid diet throughout gestation. Controls received isocaloric diet without ethanol by pair-feeding (PF) or ad libitum (AF). On the 22nd day of gestation fetuses were obtained by cesarean section. Fetal brains were removed and freeze-clamped. Brain weight was significantly reduced (p < 0.001) by maternal ethanol ingestion (206 +/- 2, 212 +/- 4 and 194 +/- 2 mg in AF, FP and EF fetuses respectively). Similarly, fetal brain glucose content was lower (p < 0.05) in the EF group (14.3 +/- 0.9 mmoles/g dry weight) than in the PF (18.6 +/- 1.0) or the AF (16.2 +/- 0.9) groups. The protein: DNA ratio, an indicator of cell size, correlated positively (r = 0.371, p < 0.005) with brain glucose content. In conclusion, maternal ethanol ingestion resulted in lower brain weight and reduced brain glucose content. Glucose availability may be a significant factor in the determination of cell size in the fetal rat brain.

  1. Thioredoxin-mimetic peptide CB3 lowers MAPKinase activity in the Zucker rat brain.

    PubMed

    Cohen-Kutner, Moshe; Khomsky, Lena; Trus, Michael; Ben-Yehuda, Hila; Lenhard, James M; Liang, Yin; Martin, Tonya; Atlas, Daphne

    2014-01-01

    Diabetes is a high risk factor for dementia. High glucose may be a risk factor for dementia even among persons without diabetes, and in transgenic animals it has been shown to cause a potentiation of indices that are pre-symptomatic of Alzheimer's disease. To further elucidate the underlying mechanisms linking inflammatory events elicited in the brain during oxidative stress and diabetes, we monitored the activation of mitogen-activated kinsase (MAPKs), c-jun NH2-terminal kinase (JNK), p38 MAP kinases (p38(MAPK)), and extracellular activating kinsae1/2 (ERK1/2) and the anti-inflammatory effects of the thioredoxin mimetic (TxM) peptides, Ac-Cys-Pro-Cys-amide (CB3) and Ac-Cys-Gly-Pro-Cys-amide (CB4) in the brain of male leptin-receptor-deficient Zucker diabetic fatty (ZDF) rats and human neuroblastoma SH-SY5Y cells. Daily i.p. injection of CB3 to ZDF rats inhibited the phosphorylation of JNK and p38(MAPK), and prevented the expression of thioredoxin-interacting-protein (TXNIP/TBP-2) in ZDF rat brain. Although plasma glucose/insulin remained high, CB3 also increased the phosphorylation of AMP-ribose activating kinase (AMPK) and inhibited p70(S6K) kinase in the brain. Both CB3 and CB4 reversed apoptosis induced by inhibiting thioredoxin reductase as monitored by decreasing caspase 3 cleavage and PARP dissociation in SH-SY5Y cells. The decrease in JNK and p38(MAPK) activity in the absence of a change in plasma glucose implies a decrease in oxidative or neuroinflammatory stress in the ZDF rat brain. CB3 not only attenuated MAPK phosphorylation and activated AMPK in the brain, but it also diminished apoptotic markers, most likely acting via the MAPK-AMPK-mTOR pathway. These results were correlated with CB3 and CB4 inhibiting inflammation progression and protection from oxidative stress induced apoptosis in human neuronal cells. We suggest that by attenuating neuro-inflammatory processes in the brain Trx1 mimetic peptides could become beneficial for preventing neurological

  2. Losartan attenuates paraquat-induced pulmonary fibrosis in rats.

    PubMed

    Guo, F; Sun, Y B; Su, L; Li, S; Liu, Z F; Li, J; Hu, X T; Li, J

    2015-05-01

    Paraquat (PQ) is one of the most widely used herbicides in the world and can cause pulmonary fibrosis in the cases with intoxication. Losartan, an angiotensin II type 1 receptor antagonist, has beneficial effects on the treatment of fibrosis. The aim of this study was to examine the effect of losartan on pulmonary fibrosis in PQ-intoxicated rats. Adult male Sprague Dawley rats (n = 32, 180-220 g) were randomly assigned to four groups: (i) control group; (ii) PQ group; (iii) PQ + losartan 7d group; and (iv) PQ + losartan 14d group. Losartan treatment (intragastrically (i.g.), 10 mg/kg) was performed for 7 and 14 days after a single i.g. dose of 40 mg/kg PQ. All rats were killed on the 16th day, and hematoxylin-eosin and Masson's trichrome staining were used to examine lung injury and fibrosis. The levels of hydroxyproline and transforming growth factor β1 (TGF-β1), matrix metallopeptidase 9 (Mmp9), and tissue inhibitor of metalloproteinase 1 (TIMP-1) messenger RNA (mRNA) expression and relative expression levels of collagen type I and III were also detected. PQ caused a significant increase in hydroxyproline content, mRNA expression of TGF-β1, Mmp9, and TIMP-1, and relative expression levels of collagen type I and III ( p < 0.05), while losartan significantly decreased the amount of hydroxyproline and downregulated TGF-β1, Mmp9, and TIMP-1 mRNA and collagen type I and III expressions ( p < 0.05). Histological examination of PQ-treated rats showed lung injury and widespread inflammatory cell infiltration in the alveolar space and pulmonary fibrosis, while losartan could markedly reduce such damage and prevent pulmonary fibrosis. The results of this study indicated that losartan could reduce lung damage and prevent pulmonary fibrosis induced by PQ.

  3. Delayed rehabilitation lessens brain injury and improves recovery after intracerebral hemorrhage in rats.

    PubMed

    Auriat, Angela M; Colbourne, Frederick

    2009-01-28

    Rehabilitation improves recovery after intracerebral hemorrhage (ICH) in rats. In some cases, brain damage is attenuated. In this study, we tested whether environmental enrichment (EE) combined with skilled reach training improves recovery and lessens brain injury after ICH in rats. Collagenase was injected stereotaxically to produce a moderate-sized striatal ICH. One week after ICH rats were either placed into a rehabilitation (REHAB) or control (CONT) condition. The REHAB rats received 15 h of EE and four 15-minute reach-training sessions daily over 5 days a week for 2 weeks. The CONT rats stayed in standard group cages. Skilled reaching (staircase test), walking (horizontal ladder) and forelimb use bias (cylinder test) were assessed at 4 and 6 weeks after ICH. Lesion volume, corpus callosum volume and cortical thickness were calculated 46 days after ICH. The REHAB treatment reduced lesion volume by 28% (p=0.019) without affecting the corpus callosum volume (p=0.405) or cortical thickness (p=0.300), thus indicating that protection was due to lessening striatal injury. As well, REHAB significantly improved skilled reaching ability in the staircase apparatus at 4 (p=0.002) and 6 weeks (p<0.001) post-ICH. Transient benefit was obtained in the ladder test at 4 weeks (p=0.021). Unexpectedly, REHAB treatment lessened spontaneous use of the contralateral-to-ICH limb at 4 (p=0.045) and 6 weeks (p=0.041). In summary, the combination of EE and reach training significantly attenuates lesion volume (striatal injury) while improving skilled reaching and walking ability. These findings encourage the use of early rehabilitation therapies in patients suffering from basal ganglia hemorrhaging. PMID:19059222

  4. Brain tumor specifies intermediate progenitor cell identity by attenuating β-catenin/Armadillo activity

    PubMed Central

    Komori, Hideyuki; Xiao, Qi; McCartney, Brooke M.; Lee, Cheng-Yu

    2014-01-01

    During asymmetric stem cell division, both the daughter stem cell and the presumptive intermediate progenitor cell inherit cytoplasm from their parental stem cell. Thus, proper specification of intermediate progenitor cell identity requires an efficient mechanism to rapidly extinguish the activity of self-renewal factors, but the mechanisms remain unknown in most stem cell lineages. During asymmetric division of a type II neural stem cell (neuroblast) in the Drosophila larval brain, the Brain tumor (Brat) protein segregates unequally into the immature intermediate neural progenitor (INP), where it specifies INP identity by attenuating the function of the self-renewal factor Klumpfuss (Klu), but the mechanisms are not understood. Here, we report that Brat specifies INP identity through its N-terminal B-boxes via a novel mechanism that is independent of asymmetric protein segregation. Brat-mediated specification of INP identity is critically dependent on the function of the Wnt destruction complex, which attenuates the activity of β-catenin/Armadillo (Arm) in immature INPs. Aberrantly increasing Arm activity in immature INPs further exacerbates the defects in the specification of INP identity and enhances the supernumerary neuroblast mutant phenotype in brat mutant brains. By contrast, reducing Arm activity in immature INPs suppresses supernumerary neuroblast formation in brat mutant brains. Finally, reducing Arm activity also strongly suppresses supernumerary neuroblasts induced by overexpression of klu. Thus, the Brat-dependent mechanism extinguishes the function of the self-renewal factor Klu in the presumptive intermediate progenitor cell by attenuating Arm activity, balancing stem cell maintenance and progenitor cell specification. PMID:24257623

  5. Curcumin attenuates hyperglycaemia-mediated AMPK activation and oxidative stress in cerebrum of streptozotocin-induced diabetic rat.

    PubMed

    Lakshmanan, Arun Prasath; Watanabe, Kenichi; Thandavarayan, Rajarajan A; Sari, Flori R; Meilei, Harima; Soetikno, Vivian; Arumugam, Somasundaram; Giridharan, Vijayasree V; Suzuki, Kenji; Kodama, Makoto

    2011-07-01

    Oxidative stress has been strongly implicated in the pathogenesis of diabetic encephalopathy (DE). Numerous studies have demonstrated a close relationship between oxidative stress and AMPK activation in various disorders, including diabetes-related brain disorders. Since curcumin has powerful antioxidant properties, this study investigated its effects on hyperglycaemia-mediated oxidative stress and AMPK activation in rats with DE. Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ-55 mg/kg BW). The diabetic rats were then orally administered curcumin (100 mg/kg BW) or vehicle for 8 weeks. The cerebra of the diabetic rats displayed upregulated protein expression of AdipoR1, p-AMPKα1, Tak1, GLUT4, NADPH oxidase sub-units, caspase-12 and 3-NT and increased lipid peroxidation in comparison with the controls and all of these effects were significantly attenuated with curcumin treatment, except for the increase in AdipoR1 expressions. These results provide a new insight into the beneficial effects of curcumin on hyperglycaemia-mediated DE, which are produced through the down-regulation of AMPK-mediated gluconeogenesis associated with its anti-oxidant property.

  6. FGF21 improves cognition by restored synaptic plasticity, dendritic spine density, brain mitochondrial function and cell apoptosis in obese-insulin resistant male rats.

    PubMed

    Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Satjaritanun, Pattarapong; Wang, Xiaojie; Liang, Guang; Li, Xiaokun; Jiang, Chao; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2016-09-01

    Fibroblast growth factor 21 (FGF21) is an endocrine hormone which exerts beneficial effects on metabolic regulation in obese and diabetic models. However, the effect of FGF21 on cognition in obese-insulin resistant rats has not been investigated. We hypothesized that FGF21 prevented cognitive decline in obese-insulin resistant rats by improving hippocampal synaptic plasticity, dendritic spine density, brain mitochondrial function and brain FGF21 signaling as well as decreasing brain cell apoptosis. Eighteen male Wistar rats were divided into two groups, and received either a normal diet (ND) (n=6) or a high fat diet (HFD) (n=12) for 12weeks. At week 13, the HFD-fed rats were subdivided into two subgroups (n=6/subgroup) to receive either vehicle or recombinant human FGF21 (0.1mg/kg/day) for four weeks. ND-fed rats were given vehicle for four weeks. At the end of the treatment, cognitive function, metabolic parameters, pro-inflammatory markers, brain mitochondrial function, cell apoptosis, hippocampal synaptic plasticity, dendritic spine density and brain FGF21 signaling were determined. The results showed that vehicle-treated HFD-fed rats developed obese-insulin resistance and cognitive decline with impaired hippocampal synaptic plasticity, decreased dendritic spine density, brain mitochondrial dysfunction and increased brain cell apoptosis. Impaired brain FGF 21 signaling was found in these obese-insulin resistant rats. FGF21-treated obese-insulin resistant rats had improved peripheral insulin sensitivity, increased hippocampal synaptic plasticity, increased dendritic spine density, restored brain mitochondrial function, attenuated brain cells apoptosis and increased brain FGF21 signaling, leading to a prevention of cognitive decline. These findings suggest that FGF21 treatment exerts neuroprotection in obese-insulin resistant rats. PMID:27566237

  7. Heat stress attenuates skeletal muscle atrophy of extensor digitorum longus in streptozotocin-induced diabetic rats.

    PubMed

    Nonaka, K; Une, S; Akiyama, J

    2015-09-01

    To investigate whether heat stress attenuates skeletal muscle atrophy of the extensor digitorum longus (EDL) muscle in streptozotocin-induced diabetic rats, 12-week-old male Wistar rats were randomly assigned to four groups (n = 6 per group): control (Con), heat stress (HS), diabetes mellitus (DM), and diabetes mellitus/heat stress (DM + HS). Diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg). Heat stress was induced in the HS and DM + HS groups by immersion of the lower half of the body in hot water at 42 °C for 30 min; it was initiated 7 days after injection of streptozotocin, and was performed once a day, five times a week for 3 weeks. The muscle fiber cross-sectional area of EDL muscles from diabetic and non-diabetic rats was determined; heat stress protein (HSP) 72 and HSP25 expression levels were also analyzed by western blotting. Diabetes-induced muscle fiber atrophy was attenuated upon heat stress treatment in diabetic rats. HSP72 and HSP25 expression was upregulated in the DM + HS group compared with the DM group. Our findings suggest that heat stress attenuates atrophy of the EDL muscle by upregulating HSP72 and HSP25 expression. PMID:26551745

  8. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats

    PubMed Central

    Lee, Eunjo; Song, Min-ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung

    2016-01-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

  9. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats

    PubMed Central

    Lee, Eunjo; Song, Min-ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung

    2016-01-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats. PMID:27610034

  10. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

    PubMed

    Lee, Eunjo; Song, Min-Ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Kim, Inkyeom

    2016-09-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats. PMID:27610034

  11. L-Tryptophan's effects on brain chemistry and sleep in cats and rats: a review.

    PubMed

    Radulovacki, M

    1982-01-01

    In this review I shall discuss published and unpublished work from my laboratory dealing with L-tryptophan's effects on brain monoamines and sleep in cats and rats. From our work it appears that normal animals may not be suitable subjects for testing sleep-inducing effect of tryptophan since their slow-wave sleep (SWS) latency is relatively short. In polyphasic sleepers like cats, we did not observe tryptophan's hypnotic effect with any dosage used (10, 30 or 135 mg/kg). However, we found small, but statistically significant, sleep-inducing effect of tryptophan (30 mg/kg, IP) in normal rats. We have tried, therefore, to create insomniac cats with long sleep latencies by using methysergide, a serotonin receptor blocker. The results show that in insomniac cats hypnotic effect of tryptophan, a precursor to brain serotonin, was observed. It involved not only reduction of sleep latencies but also an increase in SWS. It seems likely that tryptophan's partial reversal of methysergide's effect in cats occurred via a dual mechanism of serotonergic activation and catecholaminergic deactivation, while its sleep-inducing effect in normal rats may have been due to the attenuation of the activity of brain catecholamines. PMID:6184659

  12. Protective function of nicotinamide against ketamine-induced apoptotic neurodegeneration in the infant rat brain.

    PubMed

    Ullah, Najeeb; Ullah, Ikram; Lee, Hae Young; Naseer, Muhammad Imran; Seok, Park Moon; Ahmed, Jawad; Kim, Myeong Ok

    2012-05-01

    During development, anesthetics activate neuroapoptosis and produce damage in the central nervous system that leads to several types of neurological disorders. A single dose of ketamine (40 mg/kg) during synaptogenesis in a 7-day-old rat brain activated the apoptotic cascade and caused extensive neuronal cell death in the forebrain. In this study, we investigated the protective effect of nicotinamide against ketamine-induced apoptotic neurodegeneration. After 4 h, neuronal cell death induced by ketamine was associated with the induction of Bax, release of cytochrome c into the cytosol, and activation of caspase-3. One single dose of 1 mg/g nicotinamide was administered to a developing rat and was found to inhibit ketamine-induced neuroapoptosis by downregulating Bax, inhibiting cytochrome c release from mitochondria into cytosol, and inhibiting the expression of activated caspase-3. TUNEL and immunohistochemical analyses showed that ketamine-induced cell death occurred through apoptosis and that it was inhibited by nicotinamide. Fluoro-Jade-B staining demonstrated an increased number of dead cells in the cortex and thalamus after ketamine treatment; treatment with nicotinamide reduced the number of dead cells in these brain regions. Our findings suggest that nicotinamide attenuated ketamine-induced neuronal cell loss in the developing rat brain and is a promising therapeutic and neuroprotective agent for the treatment of neurodevelopmental disorders.

  13. Autophagy activation attenuates renal ischemia-reperfusion injury in rats

    PubMed Central

    Zhang, Ya-Li; Cui, Li-Yan; Yang, Shuo

    2015-01-01

    Ischemia-reperfusion (I/R) injury is a leading cause of acute kidney injury (AKI), which is a common clinical complication but lacks effective therapies. This study investigated the role of autophagy in renal I/R injury and explored potential mechanisms in an established rat renal I/R injury model. Forty male Wistar rats were randomly divided into four groups: Sham, I/R, I/R pretreated with 3-methyladenine (3-MA, autophagy inhibitor), or I/R pretreated with rapamycin (autophagy activator). All rats were subjected to clamping of the left renal pedicle for 45 min after right nephrectomy, followed by 24 h of reperfusion. The Sham group underwent the surgical procedure without ischemia. 3-MA and rapamycin were injected 15 min before ischemia. Renal function was indicated by blood urea nitrogen and serum creatinine. Tissue samples from the kidneys were scored histopathologically. Autophagy was indicated by light chain 3 (LC3), Beclin-1, and p62 levels and the number of autophagic vacuoles. Apoptosis was evaluated by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method and expression of caspase-3. Autophagy was activated after renal I/R injury. Inhibition of autophagy by 3-MA before I/R aggravated renal injury, with worsened renal function, higher renal tissue injury scores, and more tubular apoptosis. In contrast, rapamycin pretreatment ameliorated renal injury, with improved renal function, lower renal tissue injury scores, and inhibited apoptosis based on fewer TUNEL-positive cells and lower caspase-3 expression. Our results demonstrate that autophagy could be activated during I/R injury and play a protective role in renal I/R injury. The mechanisms were involved in the regulation of several autophagy and apoptosis-related genes. Furthermore, autophagy activator may be a promising therapy for I/R injury and AKI in the future. PMID:25898836

  14. Post-transcriptional inactivation of matrix metalloproteinase-12 after focal cerebral ischemia attenuates brain damage.

    PubMed

    Chelluboina, Bharath; Warhekar, Aditi; Dillard, Matt; Klopfenstein, Jeffrey D; Pinson, David M; Wang, David Z; Veeravalli, Krishna Kumar

    2015-05-08

    This study highlights the possible pathological role of MMP-12 in the context of ischemic stroke. Male rats were subjected to a two-hour middle cerebral artery occlusion (MCAO) procedure. MMP-12 shRNA expressing plasmid formulation was administered to these rats twenty-four hours after reperfusion. The results showed a predominant upregulation of MMP-12 (approximately 47, 58, 143, and 265 folds on days 1, 3, 5, 7 post-ischemia, respectively) in MCAO subjected rats. MMP-12 expression was localized to neurons, oligodendrocytes and microglia, but not astrocytes. Transcriptional inactivation of MMP-12 significantly reduced the infarct size. The percent infarct size was reduced from 62.87±4.13 to 34.67±5.39 after MMP-12 knockdown compared to untreated MCAO subjected rats. Expression of myelin basic protein was increased, and activity of MMP-9 was reduced in ischemic rat brains after MMP-12 knockdown. Furthermore, a significant reduction in the extent of apoptosis was noticed after MMP-12 knockdown. TNFα expression in the ipsilateral regions of MCAO-subjected rats was reduced after MMP-12 knockdown in addition to the reduced protein expression of apoptotic molecules that are downstream to TNFα signaling. Specific knockdown of MMP-12 after focal cerebral ischemia offers neuroprotection that could be mediated via reduced MMP-9 activation and myelin degradation as well as inhibition of apoptosis.

  15. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice.

    PubMed

    Jeong, Sae Im; Shin, Jin A; Cho, Sunghee; Kim, Hye Won; Lee, Ji Yoon; Kang, Jihee Lee; Park, Eun-Mi

    2016-08-01

    Resveratrol is known to improve metabolic dysfunction associated with obesity. Visceral obesity is a sign of aging and is considered a risk factor for ischemic stroke. In this study, we investigated the effects of resveratrol on inflammation in visceral adipose tissue and the brain and its effects on ischemic brain injury in aged female mice. Mice treated with resveratrol (0.1 mg/kg, p.o.) for 10 days showed reduced levels of interleukin-1β and tumor necrosis factor-α, as well as a reduction in the size of adipocytes in visceral adipose tissue. Resveratrol also reduced interleukin-1β and tumor necrosis factor-α protein levels and immunoglobulin G extravasation in the brain. Mice treated with resveratrol demonstrated smaller infarct size, improved neurological function, and blunted peripheral inflammation at 3 days postischemic stroke. These results showed that resveratrol counteracted inflammation in visceral adipose tissue and in the brain and reduced stroke-induced brain injury and peripheral inflammation in aged female mice. Therefore, resveratrol administration can be a valuable strategy for the prevention of age-associated and disease-provoked inflammation in postmenopausal women.

  16. Brain perfusion in acute and chronic hyperglycemia in rats

    SciTech Connect

    Kikano, G.E.; LaManna, J.C.; Harik, S.I. )

    1989-08-01

    Recent studies show that acute and chronic hyperglycemia cause a diffuse decrease in regional cerebral blood flow and that chronic hyperglycemia decreases the brain L-glucose space. Since these changes can be caused by a decreased density of perfused brain capillaries, we used 30 adult male Wistar rats to study the effect of acute and chronic hyperglycemia on (1) the brain intravascular space using radioiodinated albumin, (2) the anatomic density of brain capillaries using alkaline phosphatase histochemistry, and (3) the fraction of brain capillaries that are perfused using the fluorescein isothiocyanate-dextran method. Our results indicate that acute and chronic hyperglycemia do not affect the brain intravascular space nor the anatomic density of brain capillaries. Also, there were no differences in capillary recruitment among normoglycemic, acutely hyperglycemic, and chronically hyperglycemic rats. These results suggest that the shrinkage of the brain L-glucose space in chronic hyperglycemia is more likely due to changes in the blood-brain barrier permeability to L-glucose.

  17. Attenuation and cross-attenuation in taste aversion learning in the rat: Studies with ionizing radiation, lithium chloride and ethanol

    SciTech Connect

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1988-12-01

    The preexposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired preexposures to lithium chloride (3.0 mEq/kg, IP) blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium chloride (3.0 or 1.5 mEq/kg). Preexposure to ethanol (4 g/kg, PO) disrupted the acquisition of an ethanol-induced taste aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiation or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.

  18. Propolis attenuates doxorubicin-induced testicular toxicity in rats.

    PubMed

    Rizk, Sherine M; Zaki, Hala F; Mina, Mary A M

    2014-05-01

    Doxorubicin (Dox), an effective anticancer agent, can impair testicular function leading to infertility. The present study aimed to explore the protective effect of propolis extract on Dox-induced testicular injury. Rats were divided into four groups (n=10). Group I (normal control), group II received propolis extract (200 mg kg(-1); p.o.), for 3 weeks. Group III received 18 mg kg(-1) total cumulative dose of Dox i.p. Group IV received Dox and propolis extract. Serum and testicular samples were collected 48 h after the last treatment. In addition, the effects of propolis extract and Dox on the growth of solid Ehrlich carcinoma in mice were investigated. Dox reduced sperm count, markers of testicular function, steroidogenesis and gene expression of testicular 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD) and steroidogenic acute regulatory protein (StAR). In addition, it increased testicular oxidative stress, inflammatory and apoptotic markers. Morphometric and histopathologic studies supported the biochemical findings. Treatment with propolis extract prevented Dox-induced changes without reducing its antitumor activity. Besides, administration of propolis extract to normal rats increased serum testosterone level coupled by increased activities and gene expression of 3ß-HSD and 17ß-HSD. Propolis extract may protect the testis from Dox-induced toxicity without reducing its anticancer potential.

  19. Rutin Attenuates Hepatotoxicity in High-Cholesterol-Diet-Fed Rats

    PubMed Central

    AlSharari, Shakir D.; Al-Rejaie, Salim S.; Abuohashish, Hatem M.; Ahmed, Mohamed M.; Hafez, Mohamed M.

    2016-01-01

    Background and Objective. High-cholesterol diet (HCD) intends to increase the oxidative stress in liver tissues inducing hepatotoxicity. Rutin is a natural flavonoid (vitamin p) which is known to have antioxidative properties. The aim of the present study was to investigate the potential effects of Rutin on hypercholesterolemia-induced hepatotoxicity in rats. Materials and Methods. Male Wistar rats were divided into four groups: G-I control, G-II Rutin, G-III HCD, and G-IV Rutin + HCD. The liver functions and lipid profile were used to evaluate the HCD-induced hepatotoxicity. Quantitative real time-PCR was carried out to evaluate the expression levels of genes in TGF-β/Smad signaling pathway. Results. Rutin in combination with HCD showed a significant protective effect against hepatotoxicity. HCD caused significant increase in the mRNA expression of transforming growth factor beta (TGF-β), Mothers Against Decapentaplegic Homolog 2 (Smad-2), Mothers Against Decapentaplegic Homolog 4 (Smad-4), Bcl-2-binding component 3 (Bbc3), caspase-3, P53 and Interleukin-6 (IL-6) and decrease in the expression levels of Cyclin depended kinase inhibitor (P21) and Interleukin-3 (IL-3) in hepatic cells. Conclusion. TGF-β/Smad signaling pathway is involved in HCD-induced hepatotoxicity and Rutin inhibits the hepatotoxicity via suppressing this pathway. Therefore, Rutin might be considered as a protective agent for hepatotoxicity. PMID:27239252

  20. Nicorandil attenuates endothelial VCAM-1 expression via thioredoxin production in diabetic rats induced by streptozotocin.

    PubMed

    Liu, Lihua; Liu, Yun; Qi, Benling; Wu, Qinqin; Li, Yuanyuan; Wang, Zhaohui

    2014-06-01

    The anti-angina agent nicorandil has been reported to be beneficial even in patients who have angina with diabetes. However, the mechanism underlying the effect of nicorandil in patients with diabetes remains to be elucidated. In this study, the protective effect of nicorandil on thioredoxin (TRX) protein was investigated, as TRX is a multifunctional endogenous redox regulator that protects cells against various types of cellular and tissue stress. This study was conducted to examine whether nicorandil induces the expression of TRX for the protection against diabetic damage in the vascular tissue of rats. Diabetes was induced in rats by intraperitoneal injection of streptozotocin (STZ) (fasting glucose levels in STZ-induced rats were >14 mmol/l). Diabetic rats were divided into a diabetic control and a nicorandil-treated group. Nicorandil was administered at a dosage of 15 mg/kg/day by gavage feeding. After five weeks of nicorandil administration, blood samples were obtained from the angular vein to measure levels of stress markers, serum superoxide dismutase and malondialdehyde, using the ELISA. The expression of TRX in STZ-induced rat vascular tissue was analyzed by immunohistochemistry, quantitative polymerase chain reaction (qPCR) and western blot analysis. The oral administration of nicorandil induced TRX protein and mRNA expression in the vascular tissue of STZ-induced diabetic rats. In the diabetic control group, the levels of stress were markedly higher than those in the nicorandil-treated group, indicating that nicorandil reduces oxidative stress in serum. In addition to inducing TRX expression, nicorandil attenuated the expression of the vascular cell adhesion molecule-1 (VCAM-1) in diabetic rat vascular endothelial cells. In conclusion, nicorandil attenuates the formation of reactive oxygen species and induces TRX protein expression, consequently resulting in the suppression of VCAM-1 secretion in the vascular endothelial cells of STZ-induced diabetic

  1. Sulforaphane Attenuates Contrast-Induced Nephropathy in Rats via Nrf2/HO-1 Pathway.

    PubMed

    Zhao, Zhihong; Liao, Guixiang; Zhou, Qin; Lv, Daoyuan; Holthfer, Harry; Zou, Hequn

    2016-01-01

    Background. Oxidative stress plays an important role in the pathogenesis of contrast-induced nephropathy (CIN). The aim of this study was to investigate the antioxidant effects of sulforaphane (SFN) in a rat model of CIN and a cell model of oxidative stress in HK2 cells. Methods. Rats were randomized into four groups (n = 6 per group): control group, Ioversol group (Ioversol-induced CIN), Ioversol + SFN group (CIN rats pretreated with SFN), and SFN group (rats treated with SFN). Renal function tests, malondialdehyde (MDA), and reactive oxygen species (ROS) were measured. Western blot, real-time polymerase chain reaction analysis, and immunohistochemical analysis were performed for nuclear factor erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO-1) detection. Results. Serum blood urea nitrogen (BUN), creatinine, and renal tissue MDA were increased after contrast exposure. Serum BUN, creatinine, and renal tissue MDA were decreased in the Ioversol + SFN group as compared with those in the Ioversol group. SFN increased the expression of Nrf2 and HO-1 in CIN rats and in Ioversol-induced injury HK2 cells. SFN increased cell viability and attenuated ROS level in vitro. Conclusions. SFN attenuates experimental CIN in vitro and in vivo. This effect is suggested to activate the Nrf2 antioxidant defenses pathway. PMID:27006750

  2. Hydrophilic solute transport across the rat blood-brain barrier

    SciTech Connect

    Lucchesi, K.J.

    1987-01-01

    Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB) was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of {sup 3}H-inulin and {sup 14}C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients.

  3. Ovariectomy does not attenuate aggression by primiparous lactating female rats.

    PubMed

    Albert, D J; Jonik, R H; Walsh, M L

    1992-12-01

    Nulliparous female hooded rats were allowed to cohabit with a sexually active male in a large living cage. Aggression toward an unfamiliar female was assessed during the second and third week of pregnancy. Within 12 to 24 h following parturition females were ovariectomized (n = 7) or sham-ovariectomized (n = 6) in a manner that balanced previous aggression scores. Aggression was assessed at 48 h following ovariectomy and at three weekly intervals thereafter. Ovariectomized and sham-ovariectomized females did not differ in the number of attacks, number of bites, duration of on-top, or frequency of piloerection on any test day following parturition. These results indicate that circulating levels of ovarian steroids do not influence the level of aggression by a primiparous lactating female toward an unfamiliar female conspecific.

  4. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    SciTech Connect

    Yeh, Lee-Chuan C.; Ford, Jeffery J.; Lee, John C.; Adamo, Martin L.

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  5. Alagebrium attenuates acute methylglyoxal-induced glucose intolerance in Sprague-Dawley rats

    PubMed Central

    Dhar, Arti; Desai, Kaushik M; Wu, Lingyun

    2010-01-01

    Background and purpose: Alagebrium is a breaker of cross-links in advanced glycation endproducts. However, the acute effects of alagebrium on methylglyoxal (MG), a major precursor of advanced glycation endproducts have not been reported. MG is a highly reactive endogenous metabolite, and its levels are elevated in diabetic patients. We investigated whether alagebrium attenuated the acute effects of exogenous MG on plasma MG levels, glucose tolerance and distribution of administered MG in different organs in Sprague-Dawley rats. Experimental approach: We measured MG levels (by HPLC), glucose tolerance, adipose tissue glucose uptake, GLUT4, insulin receptor and insulin receptor substrate 1 (IRS-1) protein expression, and phosporylated IRS-1 in rats treated with MG at doses of either 17.25 mg·kg−1 i.p. (MG-17 i.p.) or 50 mg·kg−1 i.v. (MG-50 i.v.) with or without alagebrium, 100 mg·kg−1 i.p. Key results: Alagebrium attenuated the increased MG levels in the plasma, aorta, heart, kidney, liver, lung and urine after MG administration. In MG-treated rats, glucose tolerance was impaired, plasma insulin levels were higher and insulin-stimulated glucose uptake by adipose tissue was reduced, relative to the corresponding control groups. In rats treated with MG-50 i.v., GLUT4 protein expression and IRS-1 tyrosine phosphorylation were decreased. Alagebrium pretreatment attenuated these effects of MG. In an in vitro assay, alagebrium reduced the amount of detectable MG. Conclusions and implications: Alagebrium acutely attenuated MG-induced glucose intolerance, suggesting a possible preventive role for alagebrium against the harmful effects of MG. PMID:20002105

  6. Endoplasmic Reticulum Stress Instigates the Rotenone Induced Oxidative Apoptotic Neuronal Death: a Study in Rat Brain.

    PubMed

    Goswami, Poonam; Gupta, Sonam; Biswas, Joyshree; Sharma, Sharad; Singh, Sarika

    2016-10-01

    The present study was conducted to evaluate the involvement of endoplasmic reticulum stress in rotenone-induced oxidative neuronal death in rat brain. Rotenone (6 μg/3 μl) was administered intranigrally, unilaterally (right side) in SD rat brain. Neuronal morphology, expression level of tyrosine hydroxylase (TH) and endoplasmic reticulum (ER) stress markers like glucose-regulated protein 78 (GRP78), growth arrest and DNA damage-inducible gene 153 (GADD153), eukaryotic translation initiation factor 2α (p-eIF2α/eIF2α) and cleaved caspase-12 were estimated in the rat brain. Levels of reactive oxygen species (ROS), reduced glutathione (GSH) and enzymatic activities of glutathione peroxidase (GPx) and glutathione reductase (GRd) were estimated to assess the rotenone induced oxidative stress. Apoptotic death of neurons was assessed by estimating the mRNA level of caspase-3. Rotenone administration caused altered neuronal morphology, decreased expression of TH, augmented ROS level, decreased level of GSH and decreased activities of GPx and GRd enzymes which were significantly attenuated with the pretreatment of ER stress inhibitor, salubrinal (1 mg/kg, intraperitoneal). Significantly increased levels of GRP78, GADD, dephosphorylated eIF2α and cleaved caspase-12 was also observed after rotenone administration, which was inhibited with the pretreatment of salubrinal. Rotenone-induced increased mRNA level of caspase-3 was also attenuated by pretreatment of salubrinal. Findings suggested that salubrinal treatment significantly inhibited the rotenone-induced neurotoxicity implicating that ER stress initiates the rotenone-induced oxidative stress and neuronal death. PMID:26446018

  7. Quetiapine attenuates cognitive impairment and decreases seizure susceptibility possibly through promoting myelin development in a rat model of malformations of cortical development.

    PubMed

    Ma, Lei; Yang, Feng; Zhao, Rui; Li, Li; Kang, Xiaogang; Xiao, Lan; Jiang, Wen

    2015-10-01

    Developmental delay, cognitive impairment, and refractory epilepsy are the most frequent consequences found in patients suffering from malformations of cortical development (MCD). However, therapeutic options for these psychiatric and neurological comorbidities are currently limited. The development of white matter undergoes dramatic changes during postnatal brain maturation, thus myelination deficits resulting from MCD contribute to its comorbid diseases. Consequently, drugs specifically targeting white matter are a promising therapeutic option for the treatment of MCD. We have used an in utero irradiation rat model of MCD to investigate the effects of postnatal quetiapine treatment on brain myelination as well as neuropsychological and cognitive performances and seizure susceptibility. Fatally irradiated rats were treated with quetiapine (10mg/kg, i.p.) or saline once daily from postnatal day 0 (P0) to P30. We found that postnatal administration of quetiapine attenuated object recognition memory impairment and improved long-term spatial memory in the irradiated rats. Quetiapine treatment also reduced the susceptibility and severity of pentylenetetrazol-induced seizures. Importantly, quetiapine treatment resulted in an inhibition of irradiation-induced myelin breakdown in the cerebral cortex and corpus callosum. These findings suggest that quetiapine may have beneficial, postnatal effects in the irradiated rats, strongly suggesting that improving MCD-derived white matter pathology is a possible underlying mechanism. Collectively, these results indicate that brain myelination represents an encouraging pharmacological target to improve the prognosis of patients with MCD. PMID:26188240

  8. Quetiapine attenuates cognitive impairment and decreases seizure susceptibility possibly through promoting myelin development in a rat model of malformations of cortical development.

    PubMed

    Ma, Lei; Yang, Feng; Zhao, Rui; Li, Li; Kang, Xiaogang; Xiao, Lan; Jiang, Wen

    2015-10-01

    Developmental delay, cognitive impairment, and refractory epilepsy are the most frequent consequences found in patients suffering from malformations of cortical development (MCD). However, therapeutic options for these psychiatric and neurological comorbidities are currently limited. The development of white matter undergoes dramatic changes during postnatal brain maturation, thus myelination deficits resulting from MCD contribute to its comorbid diseases. Consequently, drugs specifically targeting white matter are a promising therapeutic option for the treatment of MCD. We have used an in utero irradiation rat model of MCD to investigate the effects of postnatal quetiapine treatment on brain myelination as well as neuropsychological and cognitive performances and seizure susceptibility. Fatally irradiated rats were treated with quetiapine (10mg/kg, i.p.) or saline once daily from postnatal day 0 (P0) to P30. We found that postnatal administration of quetiapine attenuated object recognition memory impairment and improved long-term spatial memory in the irradiated rats. Quetiapine treatment also reduced the susceptibility and severity of pentylenetetrazol-induced seizures. Importantly, quetiapine treatment resulted in an inhibition of irradiation-induced myelin breakdown in the cerebral cortex and corpus callosum. These findings suggest that quetiapine may have beneficial, postnatal effects in the irradiated rats, strongly suggesting that improving MCD-derived white matter pathology is a possible underlying mechanism. Collectively, these results indicate that brain myelination represents an encouraging pharmacological target to improve the prognosis of patients with MCD.

  9. Calorie Restriction Attenuates Monocrotaline-induced Pulmonary Arterial Hypertension in Rats.

    PubMed

    Ding, Mingge; Lei, Jingyi; Qu, Yinxian; Zhang, Huan; Xin, Weichuan; Ma, Feng; Liu, Shuwen; Li, Zhichao; Jin, Faguang; Fu, Enqing

    2015-06-01

    Calorie restriction (CR) is one of the most effective nonpharmacological interventions protecting against cardiovascular disease, such as hypertension in the systemic circulation. However, whether CR could attenuate pulmonary arterial hypertension (PAH) is largely unknown. The PAH model was developed by subjecting the rats to a single subcutaneous injection of monocrotaline. CR lowered mean pulmonary arterial pressure (mPAP) and reduced vascular remodeling and right ventricular hypertrophy in PAH rats. Meanwhile, CR attenuated endothelial dysfunction as evidenced by increased relaxation in response to acetylcholine. The beneficial effects of CR were associated with restored sirtuin-1 (SIRT1) expression and endothelial nitric oxide synthase (eNOS) phosphorylation and reduced eNOS acetylation in pulmonary arteries of PAH rats. To further clarify the role of SIRT1 in the protective effects of CR, adenoviral vectors for overexpression of SIRT1 were administered intratracheally at 1 day before monocrotaline injection. Overexpression of SIRT1 exhibited similar beneficial effects on mPAP and endothelial function, and increased eNOS phosphorylation and reduced eNOS acetylation in the absence of CR. Moreover, SIRT1 overexpression attenuated the increase in mPAP in hypoxia-induced PAH animals. Overall, the present data demonstrate that CR may serve as an effective treatment of PAH, and targeting the SIRT1/eNOS pathway may improve treatment of PAH. PMID:25636073

  10. Losartan attenuates renal interstitial fibrosis and tubular cell apoptosis in a rat model of obstructive nephropathy.

    PubMed

    He, Ping; Li, Detian; Zhang, Beiru

    2014-08-01

    Ureteral obstruction leads to renal injury and progresses to irreversible renal fibrosis, with tubular cell atrophy and apoptosis. There is conflicting evidence concerning whether losartan (an angiotensin II type I receptor antagonist) mitigates renal interstitial fibrosis and renal tubular epithelial cell apoptosis following unilateral ureteral obstruction (UUO) in animal models. The aim of this study was to investigate the effect and mechanism of losartan on renal tubular cell apoptosis and renal fibrosis in a rat model of UUO. The rats were subjected to UUO by ureteral ligation and were treated with dimethyl sulfoxide (control) or losartan. The controls underwent sham surgery. The renal tissues were collected 3, 5, 7 and 14 days after surgery for measurement of various indicators of renal fibrosis. UUO increased the expression levels of α‑smooth muscle actin and collagen I, and the extent of renal tubular fibrosis and apoptosis in a time‑dependent manner. Losartan treatment partially attenuated these responses. Progression of renal interstitial fibrosis was accompanied by phosphorylation of signal transducer and activator of transcription 3 (STAT3) and altered the expression levels of two apoptosis‑related proteins (Bax and Bcl2). Losartan treatment also partially attenuated these responses. The results indicated that losartan attenuated renal fibrosis and renal tubular cell apoptosis in a rat model of UUO. This effect appeared to be mediated by partial blockage of STAT3 phosphorylation.

  11. Petroselinum crispum extract attenuates hepatic steatosis in rats fed with fructose enriched diet.

    PubMed

    Nair, V Yuneesha; Balakrishanan, N; Antony Santiago, J Victor

    2015-01-01

    Non alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and ongoing research efforts are focused on understanding the underlying pathophysiology of hepatic steatosis with the anticipation that these efforts will identify novel therapeutic targets. This study investigated the Petroselinum crispum extract in hepatic steatosis in rats fed with fructose enriched diet. Rats were divided into the 4 groups: Group 1 rats received standard pellet diet with corn starch for the entire experimental period of 8 weeks. Group 2 rats received standard pellet diet and 2 gm/kg body weight crude Parsley leaf ethanol extract for the entire experimental period of 8 weeks. Group 3 rats received modified fructose diet. Group 4 rats received modified fructose diet and 2gm/kg crude Parsley leaf ethanol extract. Hepatic function and structure was evaluated in these rats. Modified fructose diet produced dyslipidemia, hepatic steatosis and infiltration of inflammatory cells in the liver and higher plasma hepatic markers. Petroselinum crispum extract reversed metabolic changes such as abnormal crispum extract attenuated chronic changes in modified fructose diet induced NAFLD (Tab. 2, Fig. 3, Ref. 43). PMID:26435020

  12. Petroselinum crispum extract attenuates hepatic steatosis in rats fed with fructose enriched diet.

    PubMed

    Nair, V Yuneesha; Balakrishanan, N; Antony Santiago, J Victor

    2015-01-01

    Non alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and ongoing research efforts are focused on understanding the underlying pathophysiology of hepatic steatosis with the anticipation that these efforts will identify novel therapeutic targets. This study investigated the Petroselinum crispum extract in hepatic steatosis in rats fed with fructose enriched diet. Rats were divided into the 4 groups: Group 1 rats received standard pellet diet with corn starch for the entire experimental period of 8 weeks. Group 2 rats received standard pellet diet and 2 gm/kg body weight crude Parsley leaf ethanol extract for the entire experimental period of 8 weeks. Group 3 rats received modified fructose diet. Group 4 rats received modified fructose diet and 2gm/kg crude Parsley leaf ethanol extract. Hepatic function and structure was evaluated in these rats. Modified fructose diet produced dyslipidemia, hepatic steatosis and infiltration of inflammatory cells in the liver and higher plasma hepatic markers. Petroselinum crispum extract reversed metabolic changes such as abnormal crispum extract attenuated chronic changes in modified fructose diet induced NAFLD (Tab. 2, Fig. 3, Ref. 43).

  13. Arachidonic acid diet attenuates brain Aβ deposition in Tg2576 mice.

    PubMed

    Hosono, Takashi; Nishitsuji, Kazuchika; Nakamura, Toshiyuki; Jung, Cha-Gyun; Kontani, Masanori; Tokuda, Hisanori; Kawashima, Hiroshi; Kiso, Yoshinobu; Suzuki, Toshiharu; Michikawa, Makoto

    2015-07-10

    The amyloid β-protein (Aβ) is believed to play a causative role in the development of Alzheimer's disease (AD). Because the amyloid precursor protein (APP), a substrate of Aβ, and β-secretase and γ-secretase complex proteins, which process APP to generate Aβ, are all membrane proteins, it is possible to assume that alterations in brain lipid metabolism modulate APP and/or Aβ metabolism. However, the role of polyunsaturated fatty acids in Aβ metabolism remains unknown. We report here that 9 months-treatment of Tg2576 mice with arachidonic acid (ARA)-containing (ARA+) diet prevented brain Aβ deposition in 17-month-old Tg2576 mice. APP processing to generate soluble APPα, CTF-β, and Aβ synthesis was attenuated in Tg2576 mice fed with the ARA+ diet. These findings suggest that ARA+ diet could prevent Aβ deposition through the alteration of APP processing in Tg2576 mice.

  14. An Aminopyridazine Inhibitor of Death Associated Protein Kinase Attenuates Hypoxia-Ischemia Induced Brain Damage

    SciTech Connect

    Velentza, A.V.; Wainwright, M.S.; Zasadzki, M.; Mirzoeva, S.; Haiech, J.; Focia, P.J.; Egli, M.; Watterson, D.M.

    2010-03-08

    Death associated protein kinase (DAPK) is a calcium and calmodulin regulated enzyme that functions early in eukaryotic programmed cell death, or apoptosis. To validate DAPK as a potential drug discovery target for acute brain injury, the first small molecule DAPK inhibitor was synthesized and tested in vivo. A single injection of the aminopyridazine-based inhibitor administered 6 h after injury attenuated brain tissue or neuronal biomarker loss measured, respectively, 1 week and 3 days later. Because aminopyridazine is a privileged structure in neuropharmacology, we determined the high-resolution crystal structure of a binary complex between the kinase domain and a molecular fragment of the DAPK inhibitor. The co-crystal structure describes a structural basis for interaction and provides a firm foundation for structure-assisted design of lead compounds with appropriate molecular properties for future drug development.

  15. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    SciTech Connect

    Weaver, John; Yang, Yirong; Purvis, Rebecca; Weatherwax, Theodore; Rosen, Gerald M.; Liu, Ke Jian

    2014-03-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O{sub 2} may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O{sub 2} is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO{sub 2}in vivo remains largely uncharacterized. This study investigated striatal tissue pO{sub 2} changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO{sub 2}in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO{sub 2} was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO{sub 2} to 64%. More importantly, pO{sub 2} did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO{sub 2} indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO{sub 2}, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO{sub 2}in vivo after METH administration by EPR oximetry. • pO{sub 2} was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO{sub 2} did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO{sub 2} may be associated with a decrease in

  16. Attenuation of gentamicin-induced nephrotoxicity in rats by fleroxacin.

    PubMed Central

    Beauchamp, D; Laurent, G; Grenier, L; Gourde, P; Zanen, J; Heuson-Stiennon, J A; Bergeron, M G

    1997-01-01

    The effect of fleroxacin on gentamicin-induced nephrotoxicity was evaluated with female Sprague-Dawley rats. Animals were injected during 4 or 10 days with saline (NaCl; 0.9%), gentamicin alone at doses of 10 and 40 mg/kg of body weight/12 h (subcutaneously), fleroxacin alone at a dose of 25 mg/kg/12 h (intraperitoneally), or the combination gentamicin-fleroxacin in the same regimen. Gentamicin induced a dose- and time-dependent renal toxicity as evaluated by gentamicin cortical levels, sphingomyelinase activity in the renal cortex, histopathologic and morphometric analysis, blood urea nitrogen and serum creatinine levels, and cellular regeneration ([3H]thymidine incorporation into DNA of cortical cells). The extent of these changes was significantly reduced when gentamicin was given in combination with fleroxacin. Although the mechanisms by which fleroxacin reduces the nephrotoxic potential of gentamicin are unknown, we propose that the fleroxacin-gentamicin combination enhances exocytosis activity in proximal tubular cells, as suggested by the higher excretion of urinary enzymes and lower cortical levels of gentamicin observed in animals treated with the combination fleroxacin-gentamicin compared with those treated with gentamicin alone. The protective effect of fleroxacin on gentamicin nephrotoxicity should be investigated further. PMID:9174177

  17. Chrysin, a flavonoid attenuates histological changes of hyperammonemic rats: A dose dependent study.

    PubMed

    Renuka, Mani; Vijayakumar, Natesan; Ramakrishnan, Arumugam

    2016-08-01

    Chrysin (5,7-dihydroxyflavone) is a major component of some traditional medicinal herbs present in honey, propolis and many plant extracts. The study was aimed to illuminate the effect of chrysin in the pathogenesis of ammonium chloride (NH4Cl) induced hyperammonemic rat model in a dose dependent manner. Rats were injected with NH4Cl (100mg/kg b.w.) by intraperitonially (i.p) thrice a week for 8 consecutive weeks for the induction of experimental hyperammonemia. Hyperammonemic rats were treated with chrysin by orally at a dose of 25, 50 & 100mg/kg b.w. respectively. Protective effect of chrysin against hyperammonemia was evaluated by performing biochemical estimations and morphopathological investigations of hematoxylin and eosin stained sections of liver, brain and kidney tissues. Supplementation of chrysin reinstated the levels of blood ammonia, plasma urea, uric acid, total bilirubin, creatinine, brain glutamate, glutamine, nitric oxide (NO) and the activities of Na(+)/K(+)-ATPase, and liver marker enzymes. On the other hand increased level of plasma urea was observed in chrysin treated rats as compared with hyperammonemic rats. Chrysin administration caused distortion of hepatic, brain and kidney architecture as shown by histological examination. Chrysin at a dose (100mg/kg b.w.) showed an utmost decline in the level of all biochemical estimations. Both biochemical and morphological studies clearly revealed that chrysin protects against cell injury induced by ammonia intoxication in a dose-response manner with respect to endogenous antioxidants and hypoammonemic effects. PMID:27470372

  18. A morphine conjugate vaccine attenuates the behavioral effects of morphine in rats

    PubMed Central

    Kosten, Therese A.; Shen, Xiaoyun Y.; O'Malley, Patrick W.; Kinsey, Berma M.; Lykissa, Ernest D.; Orson, Frank M.; Kosten, Thomas R.

    2013-01-01

    Vaccines for opioid dependence may provide a treatment that would reduce or slow the distribution of the drug to brain, thus reducing the drug's reinforcing effects. We tested whether a conjugate vaccine against morphine (keyhole limpet hemocyanin-6-succinylmorphine; KLH-6-SM) administered to rats would produce antibodies and show specificity for morphine or other heroin metabolites. The functional effects of the vaccine were tested with antinociceptive and conditioned place preference (CPP) tests. Rats were either vaccinated with KLH-6-SM and received two boosts 3 and 16 weeks later or served as controls and received KLH alone. Anti-morphine antibodies were produced in vaccinated rats; levels increased and were sustained at moderate levels through 24 weeks. Antibody binding was inhibited by free morphine and other heroin metabolites as demonstrated by competitive inhibition ELISA. Vaccinated rats showed reduced morphine CPP, tested during weeks 4 to 6, and decreased antinociceptive responses to morphine, tested at week 7. Brain morphine levels, assessed using gas-chromatography coupled to mass spectrometry (GC–MS) on samples obtained at 26 weeks, were significantly lower in vaccinated rats. This suggests that morphine entry into the brain was reduced or slowed. These results provide support for KLH-6-SM as a candidate vaccine for opioid dependence. PMID:23739535

  19. Hyperbaric oxygen treatment promotes neural stem cell proliferation in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage.

    PubMed

    Feng, Zhichun; Liu, Jing; Ju, Rong

    2013-05-01

    Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.

  20. Pulmonary Macrophages Attenuate Hypoxic Pulmonary Vasoconstriction via β3AR/iNOS Pathway in Rats Exposed to Chronic Intermittent Hypoxia

    PubMed Central

    Nagai, Hisashi; Kuwahira, Ichiro; Schwenke, Daryl O.; Tsuchimochi, Hirotsugu; Nara, Akina; Ogura, Sayoko; Sonobe, Takashi; Inagaki, Tadakatsu; Fujii, Yutaka; Yamaguchi, Rutsuko; Wingenfeld, Lisa; Umetani, Keiji; Shimosawa, Tatsuo; Yoshida, Ken-ichi; Uemura, Koichi; Pearson, James T.; Shirai, Mikiyasu

    2015-01-01

    Chronic intermittent hypoxia (IH) induces activation of the sympathoadrenal system, which plays a pivotal role in attenuating hypoxic pulmonary vasoconstriction (HPV) via central β1-adrenergic receptors (AR) (brain) and peripheral β2AR (pulmonary arteries). Prolonged hypercatecholemia has been shown to upregulate β3AR. However, the relationship between IH and β3AR in the modification of HPV is unknown. It has been observed that chronic stimulation of β3AR upregulates inducible nitric oxide synthase (iNOS) in cardiomyocytes and that IH exposure causes expression of iNOS in RAW264.7 macrophages. iNOS has been shown to have the ability to dilate pulmonary vessels. Hence, we hypothesized that chronic IH activates β3AR/iNOS signaling in pulmonary macrophages, leading to the promotion of NO secretion and attenuated HPV. Sprague-Dawley rats were exposed to IH (3-min periods of 4–21% O2) for 8 h/d for 6 weeks. The urinary catecholamine concentrations of IH rats were high compared with those of controls, indicating activation of the sympathoadrenal system following chronic IH. Interestingly, chronic IH induced the migration of circulating monocytes into the lungs and the predominant increase in the number of pro-inflammatory pulmonary macrophages. In these macrophages, both β3AR and iNOS were upregulated and stimulation of the β3AR/iNOS pathway in vitro caused them to promote NO secretion. Furthermore, in vivo synchrotron radiation microangiography showed that HPV was significantly attenuated in IH rats and the attenuated HPV was fully restored by blockade of β3AR/iNOS pathway or depletion of pulmonary macrophages. These results suggest that circulating monocyte-derived pulmonary macrophages attenuate HPV via activation of β3AR/iNOS signaling in chronic IH. PMID:26132492

  1. Regulation of atrial natriuretic peptide receptors in the rat brain

    SciTech Connect

    Saavedra, J.M.

    1987-06-01

    We have studied the localization, kinetics, and regulation of receptors for the circulating form of the atrial natriuretic peptide (ANP; 99-126) in the rat brain. Quantitative autoradiographic techniques and a /sup 125/I-labeled ligand, /sup 125/I-ANP (99-126), were employed. After in vitro autoradiography, quantification was achieved by computerized microdensitometry followed by comparison with /sup 125/I-standards. ANP receptors were discretely localized in the rat brain, with the highest concentrations in circumventricular organs, the choroid plexus, and selected hypothalamic nuclei involved in the production of the antidiuretic hormone vasopressin and in blood-pressure control. Spontaneously (genetic) hypertensive rats showed much lower numbers of ANP receptors than normotensive controls in the subfornical organ, the area postrema, the nucleus of the solitary tract, and the choroid plexus. These changes are in contrast to those observed for receptors of angiotensin II, another circulating peptide with actions opposite to those of ANP. Under conditions of acute dehydration after water deprivation, as well as under conditions of chronic dehydration such as those present in homozygous Brattleboro rats, there was an up-regulation of ANP receptors in the subfornical organ. Our results indicate that in the brain, circumventricular organs contain ANP receptors which could respond to variations in the concentration of circulating ANP. In addition, brain areas inside the blood-brain barrier contain ANP receptors probably related to the endogenous, central ANP system. The localization of ANP receptors and the alterations in their regulation present in genetically hypertensive rats and after dehydration indicate that brain ANP receptors are probably related to fluid regulation, including the secretion of vasopressin, and to cardiovascular function.

  2. Environmental enrichment attenuates the blood brain barrier dysfunction induced by the neonatal hypoxia-ischemia.

    PubMed

    Diaz, Ramiro; Miguel, Patrícia Maidana; Deniz, Bruna Ferrary; Confortim, Heloísa Deola; Barbosa, Sílvia; Mendonça, Monique Culturato Padilha; da Cruz-Höfling, Maria Alice; Pereira, Lenir Orlandi

    2016-10-01

    Environmental enrichment (EE) is considered an efficient neuroprotector against neonatal hypoxia-ischemia (HI). Nevertheless, the mechanisms involved are not yet clear. In this context, the aim of this study was to investigate the effects of neonatal HI and environmental stimulation in the hippocampus of rats at 3 different time points (PND 8, 22 and 60), evaluating some aspects of BBB structure and function. Seven-day-old Wistar rats were divided into four groups: a control group maintained in a standard environment (CTSE), a control group maintained in an enrichment environment (CTEE), an HI group maintained in a standard environment (HISE) and an HI group maintained in an enrichment environment (HIEE). At the 7th postnatal day (PND), rats were submitted to the Levine-Rice model of neonatal HI. This method consists of permanent occlusion of the right common carotid artery with subsequent exposure to hypoxia. Rats from CTEE and HIEE were stimulated with environmental enrichment. The EE protocol started 24h after HI, in which pup rats with their dams were stimulated in a maintained EE (PND 8-22). Subsequently, animals were submitted to daily EE (1h/day, PND 23-60). The expression of some proteins involved in BBB structure (β-catenin, occludin, connexin-43, aquaporin-4, glut-1 and GFAP) were quantified by western blotting in the hippocampi of rats in three periods, at PND 8, 22 and 60. The BBB permeability and integrity was assessed by Evans blue staining and the immunohistochemistry for GFAP in the CA1 region of the hippocampus were also performed. The results showed an HI-induced decreased occludin expression at PND 22 and low levels of occludin, β-catenin and GFAP at PND 60 in the hippocampus of the hypoxic-ischemic rats. Interestingly, in young and adult rats, EE reversed these effects. Evans blue extravasation into the brain parenchyma confirmed the BBB dysfunction brought on by HI. No differences were observed at PND 8, probably due to the immaturity of the

  3. Environmental enrichment attenuates the blood brain barrier dysfunction induced by the neonatal hypoxia-ischemia.

    PubMed

    Diaz, Ramiro; Miguel, Patrícia Maidana; Deniz, Bruna Ferrary; Confortim, Heloísa Deola; Barbosa, Sílvia; Mendonça, Monique Culturato Padilha; da Cruz-Höfling, Maria Alice; Pereira, Lenir Orlandi

    2016-10-01

    Environmental enrichment (EE) is considered an efficient neuroprotector against neonatal hypoxia-ischemia (HI). Nevertheless, the mechanisms involved are not yet clear. In this context, the aim of this study was to investigate the effects of neonatal HI and environmental stimulation in the hippocampus of rats at 3 different time points (PND 8, 22 and 60), evaluating some aspects of BBB structure and function. Seven-day-old Wistar rats were divided into four groups: a control group maintained in a standard environment (CTSE), a control group maintained in an enrichment environment (CTEE), an HI group maintained in a standard environment (HISE) and an HI group maintained in an enrichment environment (HIEE). At the 7th postnatal day (PND), rats were submitted to the Levine-Rice model of neonatal HI. This method consists of permanent occlusion of the right common carotid artery with subsequent exposure to hypoxia. Rats from CTEE and HIEE were stimulated with environmental enrichment. The EE protocol started 24h after HI, in which pup rats with their dams were stimulated in a maintained EE (PND 8-22). Subsequently, animals were submitted to daily EE (1h/day, PND 23-60). The expression of some proteins involved in BBB structure (β-catenin, occludin, connexin-43, aquaporin-4, glut-1 and GFAP) were quantified by western blotting in the hippocampi of rats in three periods, at PND 8, 22 and 60. The BBB permeability and integrity was assessed by Evans blue staining and the immunohistochemistry for GFAP in the CA1 region of the hippocampus were also performed. The results showed an HI-induced decreased occludin expression at PND 22 and low levels of occludin, β-catenin and GFAP at PND 60 in the hippocampus of the hypoxic-ischemic rats. Interestingly, in young and adult rats, EE reversed these effects. Evans blue extravasation into the brain parenchyma confirmed the BBB dysfunction brought on by HI. No differences were observed at PND 8, probably due to the immaturity of the

  4. The Brain Metabolome of Male Rats across the Lifespan

    PubMed Central

    Zheng, Xiaojiao; Chen, Tianlu; Zhao, Aihua; Wang, Xiaoyan; Xie, Guoxiang; Huang, Fengjie; Liu, Jiajian; Zhao, Qing; Wang, Shouli; Wang, Chongchong; Zhou, Mingmei; Panee, Jun; He, Zhigang; Jia, Wei

    2016-01-01

    Comprehensive and accurate characterization of brain metabolome is fundamental to brain science, but has been hindered by technical limitations. We profiled the brain metabolome in male Wistar rats at different ages (day 1 to week 111) using high-sensitivity and high-resolution mass spectrometry. Totally 380 metabolites were identified and 232 of them were quantitated. Compared with anatomical regions, age had a greater effect on variations in the brain metabolome. Lipids, fatty acids and amino acids accounted for the largest proportions of the brain metabolome, and their concentrations varied across the lifespan. The levels of polyunsaturated fatty acids were higher in infancy (week 1 to week 3) compared with later ages, and the ratio of omega-6 to omega-3 fatty acids increased in the aged brain (week 56 to week 111). Importantly, a panel of 20 bile acids were quantitatively measured, most of which have not previously been documented in the brain metabolome. This study extends the breadth of the mammalian brain metabolome as well as our knowledge of functional brain development, both of which are critically important to move the brain science forward. PMID:27063670

  5. Demonstration of endogenous imipramine like material in rat brain

    SciTech Connect

    Rehavi, M.; Ventura, I.; Sarne, Y.

    1985-02-18

    The extraction and partial purification of an endogenous imipramine-like material from rat brain is described. The endogenous factor obtained after gel filtration and silica chromatography inhibits (/sup 3/H) imipramine specific binding and mimics the inhibitory effect of imipramine on (/sup 3/H) serotonin uptake in both brain and platelet preparations. The effects of the endogenous material are dose-dependent and it inhibits (/sup 3/H) imipramine binding in a competitive fashion. The factor is unevenly distributed in the brain with high concentration in the hypothalamus and low concentration in the cerebellum.

  6. Attenuation of microglial and neuronal activation in the brain by ICV minocycline following myocardial infarction.

    PubMed

    Dworak, Melissa; Stebbing, Martin; Kompa, Andrew R; Rana, Indrajeetsinh; Krum, Henry; Badoer, Emilio

    2014-10-01

    Following myocardial infarction, microglia, the immune cells in the central nervous system, become activated in the hypothalamic paraventricular nucleus (PVN) suggesting inflammation in this nucleus. Little is known about other brain nuclei. In the present study, we investigated whether the rostral ventrolateral medulla (RVLM), the nucleus tractus solitarius (NTS) and the periaqueductal grey (PAG), regions known to have important cardiovascular regulatory functions, also show increased microglial activation and whether this coincides with increased neuronal activity. We also investigated whether minocycline inhibited microglial activation and whether this also affected neuronal activity and cardiac function. Compared to controls there was a significant increase in the proportion of activated microglia and neuronal activation in the PVN, RVLM, NTS and PAG, 12weeks following myocardial infarction (P<0.001). Intracebroventricular infusion of minocycline (beginning one week prior to infarction) significantly attenuated the increase in microglial activation by at least 50% in the PVN, RVLM, PAG and NTS, and neuronal activation was significantly reduced by 50% in the PVN and virtually abolished in the PAG, RVLM and NTS. Cardiac function (percent fractional shortening) was significantly reduced by 55% following myocardial infarction but this was not ameliorated by minocycline treatment. The results suggest that following myocardial infarction, inflammation occurs in brain nuclei that play key roles in cardiovascular regulation and that attenuation of this inflammation may not be sufficient to ameliorate cardiac function.

  7. Responses to cold, heat, and pain increase locomotion in rats and are attenuated by pinealectomy.

    PubMed

    Chuang, J I; Lin, M T

    1994-03-01

    The effects of pinealectomy on locomotor behavior responses to cold, heat or pain were assessed in freely moving rats. External cold (4 degrees C) or heat (36 degrees C) stress produced increases of locomotion (including horizontal and vertical movement, and total distance traveled), increases of number of turnings (including both clockwise and counterclockwise), and decreases of postural freezing in rats. In addition, pain (produced by intradermal injection of normal saline) was also shown to produce increases of locomotion (including horizontal and vertical movement, and total distance traveled) and decreases of postural freezing in rats. The increases of locomotion (including horizontal and vertical movement, and total distance traveled), as well as the decreases of postural freezing induced by either cold or pain, were attenuated by pretreatment of animals with pinealectomy. The heat-induced increases of vertical movement as well as the decreases of postural freezing were also attenuated by pinealectomy. The results indicate that these nonphotic, stress-provoking stimuli act through the pineal gland to induce escape behaviors to try to get out of the stressed conditions in rats. PMID:8190780

  8. Safranal, a saffron constituent, attenuates retinal degeneration in P23H rats.

    PubMed

    Fernández-Sánchez, Laura; Lax, Pedro; Esquiva, Gema; Martín-Nieto, José; Pinilla, Isabel; Cuenca, Nicolás

    2012-01-01

    Saffron, an extract from Crocus sativus, has been largely used in traditional medicine for its antiapoptotic and anticarcinogenic properties. In this work, we investigate the effects of safranal, a component of saffron stigmas, in attenuating retinal degeneration in the P23H rat model of autosomal dominant retinitis pigmentosa. We demonstrate that administration of safranal to homozygous P23H line-3 rats preserves both photoreceptor morphology and number. Electroretinographic recordings showed higher a- and b-wave amplitudes under both photopic and scotopic conditions in safranal-treated versus non-treated animals. Furthermore, the capillary network in safranal-treated animals was preserved, unlike that found in untreated animals. Our findings indicate that dietary supplementation with safranal slows photoreceptor cell degeneration and ameliorates the loss of retinal function and vascular network disruption in P23H rats. This work also suggests that safranal could be potentially useful to retard retinal degeneration in patients with retinitis pigmentosa.

  9. Thyroid insufficiency in developing rat brain: A genomic analysis.

    EPA Science Inventory

    Thyroid Insufficiency in the Developing Rat Brain: A Genomic Analysis. JE Royland and ME Gilbert, Neurotox. Div., U.S. EPA, RTP, NC, USA. Endocrine disruption (ED) is an area of major concern in environmental neurotoxicity. Severe deficits in thyroid hormone (TH) levels have bee...

  10. EVALUATION OF PERFLUOROOCTANE SULFONATE IN THE RAT BRAIN

    EPA Science Inventory

    Perfluorooctane Sulfonate (PFOS) is an environmentally persistent chemical that has been detected in humans and wildlife. PFOS is primarily distributed in liver and blood. The current study evaluated the level of PFOS in the adult and neonatal rat brain and determined whether t...

  11. Autoradiographic localization of relaxin binding sites in rat brain

    SciTech Connect

    Osheroff, P.L.; Phillips, H.S. )

    1991-08-01

    Relaxin is a member of the insulin family of polypeptide hormones and exerts its best understood actions in the mammalian reproductive system. Using a biologically active 32P-labeled human relaxin, the authors have previously shown by in vitro autoradiography specific relaxin binding sites in rat uterus, cervix, and brain tissues. Using the same approach, they describe here a detailed localization of human relaxin binding sites in the rat brain. Displaceable relaxin binding sites are distributed in discrete regions of the olfactory system, neocortex, hypothalamus, hippocampus, thalamus, amygdala, midbrain, and medulla of the male and female rat brain. Characterization of the relaxin binding sites in the subfornical organ and neocortex reveals a single class of high-affinity sites (Kd = 1.4 nM) in both regions. The binding of relaxin to two of the circumventricular organs (subfornical organ and organum vasculosum of the lamina terminalis) and the neurosecretory magnocellular hypothalamic nuclei (i.e., paraventricular and supraoptic nuclei) provides the anatomical and biochemical basis for emerging physiological evidence suggesting a central role for relaxin in the control of blood pressure and hormone release. They conclude that specific, high-affinity relaxin binding sites are present in discrete regions of the rat brain and that the distribution of some of these sites may be consistent with a role for relaxin in control of vascular volume and blood pressure.

  12. Cilostazol attenuates cholestatic liver injury and its complications in common bile duct ligated rats.

    PubMed

    Abdel Kawy, Hala S

    2015-04-01

    Cilostazol is a phosphodiesterase III inhibitor increases adenosine 3', 5'-cyclic monophosphate (cyclic AMP) level which inhibits hepatic stellate cell activation. Its pharmacological effects include vasodilation, inhibition of vascular smooth muscle cell growth, inhibition of platelet activation and aggregation. The aim of the current study was to determine the effects of early administration of low dose cilostazol on cholestatic liver injury induced by common bile duct ligation (CBDL) in rat. Male Wistar rats (180-200g) were divided into three groups: Group A; simple laparotomy group (sham). Group B; CBDL, Group C; CBDL rats treated with cilostazol (9mg/kg daily for 21 days). Six rats from each group were killed by the end of weeks one and three after surgery, livers and serum were collected for biochemical and histopathological studies. Aspartate aminotransferase, alanine aminotransferase, gama glutamyl transferase, alkaline phosphatase and total bilirubin serum levels decreased in the cilostazol treated rats, when compared with CBDL rats. The hepatic levels of tumor necrosis factor-alpha, transforming growth factor-beta, and platelet derived growth factor-B were significantly lower in cilostazol treated rats than that in CBDL rats. Cilostazol decreased vascular endothelial growth factor level and hemoglobin content in the livers. Cilostazol significantly lowered portal pressure, inhibited ductular proliferation, portal inflammation, hepatic fibrosis and decreased hepatic hydroxyproline contents. Administration of cilostazol in CBDL rats improved hepatic functions, decreased ductular proliferation, ameliorated portal inflammation, lowered portal hypertension and reduced fibrosis. These effects of cilostazol may be useful in the attenuation of liver injury in cholestasis.

  13. Sodium hydrosulfide attenuates hyperhomocysteinemia rat myocardial injury through cardiac mitochondrial protection.

    PubMed

    Wang, Yuwen; Shi, Sa; Dong, Shiyun; Wu, Jichao; Song, Mowei; Zhong, Xin; Liu, Yanhong

    2015-01-01

    Hydrogen sulfide (H2S) plays an important role during rat myocardial injury. However, little is known about the role of H2S in hyperhomocysteinemia (HHcy)-induced cardiac dysfunction as well as the underlying mechanisms. In this study, we investigated whether sodium hydrosulfide (NaHS, a H2S donor) influences methionine-induced HHcy rat myocardial injury in intact rat hearts and primary neonatal rat cardiomyocytes. HHcy rats were induced by methionine (2.0 g/kg) and the daily administration of 80 μmol/L NaHS in the HHcy + NaHS treatment group. At the end of 4, 8, and 12 weeks, the ultrastructural alterations and functions of the hearts were observed using transmission electron microscopy and echocardiography system. The percentage of apoptotic cardiomyocytes, the mitochondrial membrane potential, and the production of reactive oxygen species (ROS) were measured. The expressions of cystathionine-γ-lyase (CSE), Bax and Bcl-2, caspase-3, phospho-endothelial nitric oxide synthase and the mitochondrial NOX4 and cytochrome c were analyzed by Western blotting. The results showed the cardiac dysfunction, the ultrastructural changes, and the apoptotic rate increase in the HHcy rat hearts. In the primary neonatal rat cardiomyocytes of HHcy group, ROS production was increased markedly, whereas the expression of CSE was decreased. However, treatment with NaHS significantly improved the HHcy rat hearts function, the ultrastructural changes, and decreased the levels of ROS in the primary neonatal rat cardiomyocytes administrated with HHcy group. Furthermore, NaHS down-regulated the expression of mitochondrial NOX4 and caspase-3 and Bax and inhibited the release of cytochrome c from mitochondria. In conclusion, H2S is involved in the attenuation of HHcy myocardial injury through the protection of cardiac mitochondria.

  14. Endotoxin or cytokines attenuate ozone-induced DNA synthesis in rat nasal transitional epithelium

    SciTech Connect

    Hotchkiss, J.A.; Harkema, J.R. )

    1992-06-01

    Pretreatment of rats with endotoxin (E), a potent inducer of tumor necrosis factor alpha (TNF), and interleukin 1 beta (IL 1), or a combination of TNF and IL1, has been shown to increase levels of lung antioxidant enzymes and protect against pulmonary toxicity associated with hyperoxia. Inhalation of ozone (O3) induces cell injury, followed by increased DNA synthesis, cell proliferation, and secretory cell metaplasia in rat nasal transitional epithelium (NTE). This study was designed to test the effects of E, TNF, and IL1 pretreatment on acute O3-induced NTE cell injury as measured by changes in NTE cell DNA synthesis. Rats were exposed to either 0.8 ppm O3 or air for 6 hr in whole-body inhalation chambers. Immediately before exposure, rats in each group were injected intraperitoneally (ip) with either saline alone or saline containing E, TNF, IL1, or both TNF and IL1. Eighteen hours postexposure, rats were injected ip with bromodeoxyuridine to label cells undergoing DNA synthesis and were euthanized 2 hr later. NTE was processed for light microscopy and immunochemically stained to identify cells that had incorporated BrdU into nuclear DNA. The number of BrdU-labeled NTE nuclei per millimeter of basal lamina was quantitated. There were no significant differences in the number of BrdU-labeled NTE nuclei in air-exposed rats that were injected with E, TNF, IL1, or TNF/IL1 compared with those in saline-injected, air-exposed controls. Rats that were injected with saline and exposed to O3 had approximately 10 times the number of BrdU-labeled NTE nuclei than saline-injected, air-exposed control rats. O3 exposure also induced a significant increase in labeled nuclei in rats that were pretreated with TNF alone. In contrast, pretreatment with E, IL1, or TNF/IL1 attenuated the O3-induced increase in NTE DNA synthesis.

  15. Curcumin attenuates diabetic neuropathic pain by downregulating TNF-α in a rat model.

    PubMed

    Li, Yue; Zhang, Yong; Liu, De-bao; Liu, Hai-ying; Hou, Wu-gang; Dong, Yu-shu

    2013-01-01

    The mechanisms involved in diabetic neuropathic pain are complex and involve peripheral and central pathophysiological phenomena. Proinflammatory tumour necrosis factor α (TNF-α) and TNF-α receptor 1, which are markers of inflammation, contribute to neuropathic pain. The purpose of this experimental study was to evaluate the effect of curcumin on diabetic pain in rats. We tested 24 rats with diabetes induced by a single intraperitoneal injection of streptozotocin and 24 healthy control rats. Twelve rats in each group received 60 mg/kg oral curcumin daily for 28 days, and the other 12 received vehicle. On days 7, 14, 21, and 28, we tested mechanical allodynia with von Frey hairs and thermal hyperalgesia with radiant heat. Markers of inflammation in the spinal cord dorsal horn on day 28 were estimated with a commercial assay and Western blot analysis. Compared to control rats, diabetic rats exhibited increased mean plasma glucose concentration, decreased mean body weight, and significant pain hypersensitivity, as evidenced by decreased paw withdrawal threshold to von Frey hairs and decreased paw withdrawal latency to heat. Curcumin significantly attenuated the diabetes-induced allodynia and hyperalgesia and reduced the expression of both TNF-α and TNF-α receptor 1. Curcumin seems to relieve diabetic hyperalgesia, possibly through an inhibitory action on TNF-α and TNF-α receptor 1. PMID:23471081

  16. High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson's disease.

    PubMed

    Whitmer, Diane; de Solages, Camille; Hill, Bruce; Yu, Hong; Henderson, Jaimie M; Bronte-Stewart, Helen

    2012-01-01

    Parkinson's disease (PD) is marked by excessive synchronous activity in the beta (8-35 Hz) band throughout the cortico-basal ganglia network. The optimal location of high frequency deep brain stimulation (HF DBS) within the subthalamic nucleus (STN) region and the location of maximal beta hypersynchrony are currently matters of debate. Additionally, the effect of STN HF DBS on neural synchrony in functionally connected regions of motor cortex is unknown and is of great interest. Scalp EEG studies demonstrated that stimulation of the STN can activate motor cortex antidromically, but the spatial specificity of this effect has not been examined. The present study examined the effect of STN HF DBS on neural synchrony within the cortico-basal ganglia network in patients with PD. We measured local field potentials dorsal to and within the STN of PD patients, and additionally in the motor cortex in a subset of these patients. We used diffusion tensor imaging (DTI) to guide the placement of subdural cortical surface electrodes over the DTI-identified origin of the hyperdirect pathway (HDP) between motor cortex and the STN. The results demonstrated that local beta power was attenuated during HF DBS both dorsal to and within the STN. The degree of attenuation was monotonic with increased DBS voltages in both locations, but this voltage-dependent effect was greater in the central STN than dorsal to the STN (p < 0.05). Cortical signals over the estimated origin of the HDP also demonstrated attenuation of beta hypersynchrony during DBS dorsal to or within STN, whereas signals from non-specific regions of motor cortex were not attenuated. The spatially-specific suppression of beta synchrony in the motor cortex support the hypothesis that DBS may treat Parkinsonism by reducing excessive synchrony in the functionally connected sensorimotor network. PMID:22675296

  17. Remote ischemic perconditioning attenuates ischemia/reperfusion-induced downregulation of AQP2 in rat kidney.

    PubMed

    Kristensen, Marie Louise V; Kierulf-Lassen, Casper; Nielsen, Per Mose; Krag, Søren; Birn, Henrik; Nejsum, Lene N; Nørregaard, Rikke

    2016-07-01

    Renal ischemia/reperfusion (I/R) can lead to impaired urine concentration ability and increased fractional excretion of sodium (FeNa). Local ischemic preconditioning improves renal water and sodium handling after I/R injury. Here, we investigate whether remote ischemic perconditioning (rIPeC) prevents dysregulation of renal water and salt handling in response to I/R injury and mechanisms that may be involved. Rats were subjected to right nephrectomy and randomized into a sham group or an I/R group. In the I/R group, rats were subjected to 37 min of renal ischemia and 3 days of reperfusion. rIPeC was applied to the abdominal aorta. Blood and urine were collected on day 3 postoperatively for clearance studies. The expression of aquaporins (AQPs) and the sodium transporter Na-K-ATPase were analyzed using immunoblotting and immunohistochemistry. I/R injury resulted in polyuria, increased FeNa, and decreased urine osmolality compared to sham rats. rIPeC attenuated the increase in FeNa and the decrease in urine osmolality. Expression of AQP1, AQP2, phosphorylated AQP2 (pAQP2), and Na-K-ATPase was downregulated in I/R rats. rIPeC attenuated the reductions in AQP2 and pAQP2 expression. Immunohistochemistry revealed decreased labeling of Na-K-ATPase in the outer medulla in I/R kidneys compared to kidneys from sham and I/R + rIPeC rats. After renal ischemia, the expression of Na-K-ATPase was substantially reduced in the outer medullary thick ascending limb. In conclusion, our data suggest that rIPeC might prevent dysregulation of renal water and salt handling via regulation of AQP2 expression and phosphorylation as well as via regulation of Na-K-ATPase expression in I/R rat kidneys. PMID:27405971

  18. Intrathecal rapamycin attenuates morphine-induced analgesic tolerance and hyperalgesia in rats with neuropathic pain

    PubMed Central

    Xu, Ji-Tian; Sun, Linlin; Lutz, Brianna Marie; Bekker, Alex; Tao, Yuan-Xiang

    2015-01-01

    Repeated and long-term administration of opioids is often accompanied by the initiation of opioid-induced analgesic tolerance and hyperalgesia in chronic pain patients. Our previous studies showed that repeated intrathecal morphine injection activated the mammalian target of rapamycin complex 1 (mTORC1) in spinal dorsal horn neurons and that blocking this activation prevented the initiation of morphine-induced tolerance and hyperalgesia in healthy rats. However, whether spinal mTORC1 is required for morphine-induced tolerance and hyperalgesia under neuropathic pain conditions remains elusive. We here observed the effect of intrathecal infusion of rapamycin, a specific mTORC1 inhibitor, on morphine-induced tolerance and hyperalgesia in a neuropathic pain model in rats induced by the fifth lumbar spinal nerve ligation (SNL). Continuous intrathecal infusion of morphine for one week starting on day 8 post-SNL led to morphine tolerance demonstrated by morphine-induced reduction in maximal possible analgesic effect (MPAE) to tail heat stimuli and ipsilateral paw withdrawal threshold (PWT) to mechanical stimuli in SNL rats. Such reduction was attenuated by co-infusion of rapamycin. Co-infusion of rapamycin also blocked morphine tolerance demonstrated by attenuation of morphine-induced reduction in MPAE in sham rats and morphine-induced hyperalgesia demonstrated by the reverse of morphine-induced reduction in PWT on both sides of sham rats and on the contralateral side of SNL rats. The results suggest that mTORC1 inhibitors could serve as promising medications for use as adjuvants with opioids in clinical neuropathic pain management. PMID:26339682

  19. Protein malnutrition attenuates bone anabolic response to PTH in female rats.

    PubMed

    Ammann, P; Zacchetti, G; Gasser, J A; Lavet, C; Rizzoli, R

    2015-02-01

    PTH is indicated for the treatment of severe osteoporosis. Elderly osteoporotic patients frequently suffer from protein malnutrition, which may contribute to bone loss. It is unknown whether this malnutrition may affect the response to PTH. Therefore, the aim of the present study was to assess whether an isocaloric low-protein (LP) diet may influence the bone anabolic response to intermittent PTH in 6-month-old female rats. Six-month-old female rats were either pair fed an isocaloric LP diet (2.5% casein) or a normal-protein (NP) diet (15% casein) for 2 weeks. The rats continued on their respective diet while being treated with 5- or 40-μg/kg recombinant human PTH amino-terminal fragment 1-34 (PTH-[1-34]) daily, or with vehicle for 4 weeks. At the end of this period, areal bone mineral density, bone mineral content, microstructure, and bone strength in axial compression of proximal tibia or 3-point bending for midshaft tibia tests were measured. Blood was collected for the determination of IGF-I and osteocalcin. After 4 weeks of PTH-(1-34), the dose-dependent increase of proximal tibia bone mineral density, trabecular microstructure variables, and bone strength was attenuated in rats fed a LP diet as compared with rats on a NP intake. At the level of midshaft tibia cortical bone, PTH-(1-34) exerted an anabolic effect only in the NP but not in the LP diet group. Protein malnutrition was associated with lower IGF-I levels. Protein malnutrition attenuates the bone anabolic effects of PTH-(1-34) in rats. These results suggest that a sufficient protein intake should be recommended for osteoporotic patients undergoing PTH therapy.

  20. TNF-α receptor antagonist attenuates isoflurane-induced cognitive impairment in aged rats

    PubMed Central

    YANG, NENGLI; LIANG, YAFENG; YANG, PEI; WANG, WEIJIAN; ZHANG, XUEZHENG; WANG, JUNLU

    2016-01-01

    Postoperative cognitive dysfunction (POCD), a common clinical in aged patients, is characterized by deficits in cognitive functions in patients following anesthesia and surgery. It has been demonstrated that isoflurane may lead to cognitive impairment in aged rats; however, effective clinical interventions for preventing this disorder are limited. Tumor necrosis factor (TNF)-α has been suggested to be involved in neuroinflammation as well as the development of POCD. Accordingly, the present study aimed to investigate whether TNF-α signaling is involved in the isoflurane-induced cognitive impairment in aged rats, and whether TNF-α receptor antagonist are able to attenuate isoflurane-induced cognitive impairment in aged rats. A population of 20-month-old rats were administered TNF-α receptor antagonist R-7050 or an equal volume of saline by intraperitoneal injection 12 h prior to exposure to isoflurane to model cognitive impairment following anesthesia in old patients. Then the rats were exposed to 1.3% isoflurane for 4 h. In the control group, rats showed impaired cognitive functions evaluated by Morris water maze assay after isoflurane exposure. Furthermore, isoflurane exposure induced marked upregulation of proinflammatory cytokines, including interleukin (IL)-1β, TNF-α, IL-6 and IL-8 in the hippocampus tissue. In the experimental group, intracisternal administration of TNF-α receptor antagonist R-7050 significantly attenuated isoflurane-induced cognitive impairment and upregulation of proinflammatory cytokines. Further investigation revealed that intracisternal administration of TNF-α receptor antagonist R-7050 notably suppressed isoflurane-induced activation of NF-κB and MAPK signaling. Collectively, the present results suggest that TNF-α receptor antagonist may serve as a potential agent for the prevention of anesthesia-induced cognitive decline in aged patients. PMID:27347079

  1. Green tea extract attenuates cyclosporine A-induced oxidative stress in rats.

    PubMed

    Mohamadin, A M; El-Beshbishy, H A; El-Mahdy, M A

    2005-01-01

    Cyclosporine A (CsA) nephrotoxicity underweighs the therapeutic benefits of such a powerful immunosuppressant. Whether oxidative stress plays a role in such toxicity is not well delineated. We investigated the potential of green tea extract (GTE) to attenuate CsA-induced renal dysfunction in rats. Three main groups of Sprague-Dawley rats were used: CsA, GTE, and GTE plus CsA-receiving animals. Corresponding control groups were also used. CsA was administered in a dose of 20mg kg(-1) day(-1), i.p., for 21 days. In the GTE/CsA groups, the rats received different concentrations of GTE (0.5, 1.0 and 1.5%), as their sole source of drinking water, 4 days before and 21 days concurrently with CsA. The GTE group was treated with 1.5% concentration of GTE only for 25 days. A concomitant administration of GTE, to CsA receiving rats, markedly prevented the generation of thiobarbituric acid-reacting substances (TBARS) and significantly attenuated CsA-induced renal dysfunction as assessed by estimating serum creatinine, blood urea nitrogen, uric acid and urinary excretion of glucose. A considerable improvement in terms of reduced glutathione content and activity of antioxidant enzymes in the kidney homogenate of the GTE/CsA-receiving rats was observed. The activity of lysosomal enzymes, N-acetyl-beta-glucosaminidase, beta-glucuronidase and acid phosphatase was significantly inhibited following GTE co-administration. Our data prove the role of oxidative stress in the pathogenesis of CsA-induced kidney dysfunction. Supplementation of GTE could be useful in reducing CsA nephrotoxicity in rats. However, clinical studies are warranted to investigate such an effect in human subjects.

  2. Prenatal Ethanol Exposure Increases Brain Cholesterol Content in Adult Rats

    PubMed Central

    Barceló-Coblijn, Gwendolyn; Wold, Loren E.; Ren, Jun; Murphy, Eric J.

    2013-01-01

    Fetal alcohol syndrome is the most severe expression of the fetal alcohol spectrum disorders (FASD). Although alterations in fetal and neonate brain fatty acid composition and cholesterol content is known to change in animal models of FASD, the persistence of these alterations into adulthood is unknown. To address this question, we determined the effect of prenatal ethanol exposure on individual phospholipid class fatty acid composition, individual phospholipid class mass, and cholesterol mass in brains from 25-week-old rats that were exposed to ethanol during gestation beginning at gestational day 2. While total phospholipid mass was unaffected, phosphatidylinositol and cardiolipin mass was decreased 14 and 43%, respectively. Exposure to prenatal ethanol modestly altered brain phospholipid fatty acid composition, and the most consistent change was a significant 1.1-fold increase in total PUFA, in the n-3/n-6 ratio, and in the 22:6 n-3 content in ethanolamine glycerophospholipids and in phosphatidylserine. In contrast, prenatal ethanol consumption significantly increased brain cholesterol mass 1.4-fold and the phospholipid to cholesterol ratio was significantly increased 1.3-fold. These results indicate that brain cholesterol mass was significantly increased in adult rats exposed prenatally to ethanol, but changes in phospholipid mass and phospholipid fatty acid composition were extremely limited. Importantly, suppression of post-natal ethanol consumption was not sufficient to reverse the large increase in cholesterol observed in the adult rats. PMID:23996454

  3. Inducible Gene Manipulations in Brain Serotonergic Neurons of Transgenic Rats

    PubMed Central

    Tews, Björn; Bartsch, Dusan

    2011-01-01

    The serotonergic (5-HT) system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP), in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system. PMID:22140568

  4. 17β-Estradiol administration attenuates seawater aspiration-induced acute lung injury in rats.

    PubMed

    Fan, Qixin; Zhao, Pengtao; Li, Jiahuan; Xie, Xiaoyan; Xu, Min; Zhang, Yong; Mu, Deguang; Li, Wangping; Sun, Ruilin; Liu, Wei; Nan, Yandong; Zhang, Bo; Jin, Faguang; Li, Zhichao

    2011-12-01

    There is very little evidence on the value of administering estrogen in cases of seawater drowning which can induce acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Therefore, this study aimed to investigate whether 17β-estradiol (E2) treatment can attenuate seawater aspiration-induced ALI in rats. In the experiment, ALI was induced by endotracheal instillation of seawater (4mL/kg) and the rats were then given intraperitoneal injection of E2 (5mg/kg) 20min after seawater instillation. Finally, the changes of arterial blood gases which contained hydrogen ion concentration (pH), arterial oxygen tension (PaO(2)) and arterial carbon dioxide tension (PaCO(2)) were measured and the measurement of extravascular lung water (EVLW) was observed. The pulmonary histological changes were evaluated by hematoxylin-eosin stain. The expression of aquaporins (AQPs) 1, AQP5, and estrogen receptor-β (ERβ) was measured by western blotting and immunohistochemical methods. The results showed that compared with normal saline water, seawater aspiration induced more serious ALI in rats which was markedly alleviated by E2 treatment. Meanwhile, the ERβ in lung tissues was activated after E2 administration. The seawater aspiration group also presented with severe pulmonary edema which was paralleled with over expressed AQP1 and AQP5. However, the up-regulation of AQP1 and AQP5 was suppressed by the administration of E2, resulting in an attenuation of lung edema. In conclusion, E2 treatment could effectively attenuate seawater aspiration-induced acute lung injury in rats by the down-regulation of AQP1 and AQP5.

  5. Salvianolic acid A attenuates vascular remodeling in a pulmonary arterial hypertension rat model

    PubMed Central

    Chen, Yu-cai; Yuan, Tian-yi; Zhang, Hui-fang; Wang, Dan-shu; Yan, Yu; Niu, Zi-ran; Lin, Yi-huang; Fang, Lian-hua; Du, Guan-hua

    2016-01-01

    Aim: The current therapeutic approaches have a limited effect on the dysregulated pulmonary vascular remodeling, which is characteristic of pulmonary arterial hypertension (PAH). In this study we examined whether salvianolic acid A (SAA) extracted from the traditional Chinese medicine 'Dan Shen' attenuated vascular remodeling in a PAH rat model, and elucidated the underlying mechanisms. Methods: PAH was induced in rats by injecting a single dose of monocrotaline (MCT 60 mg/kg, sc). The rats were orally treated with either SAA (0.3, 1, 3 mg·kg−1·d−1) or a positive control bosentan (30 mg·kg−1·d−1) for 4 weeks. Echocardiography and hemodynamic measurements were performed on d 28. Then the hearts and lungs were harvested, the organ indices and pulmonary artery wall thickness were calculated, and biochemical and histochemical analysis were conducted. The levels of apoptotic and signaling proteins in the lungs were measured using immunoblotting. Results: Treatment with SAA or bosentan effectively ameliorated MCT-induced pulmonary artery remodeling, pulmonary hemodynamic abnormalities and the subsequent increases of right ventricular systolic pressure (RVSP). Furthermore, the treatments significantly attenuated MCT-induced hypertrophic damage of myocardium, parenchymal injury and collagen deposition in the lungs. Moreover, the treatments attenuated MCT-induced apoptosis and fibrosis in the lungs. The treatments partially restored MCT-induced reductions of bone morphogenetic protein type II receptor (BMPRII) and phosphorylated Smad1/5 in the lungs. Conclusion: SAA ameliorates the pulmonary arterial remodeling in MCT-induced PAH rats most likely via activating the BMPRII-Smad pathway and inhibiting apoptosis. Thus, SAA may have therapeutic potential for the patients at high risk of PAH. PMID:27180980

  6. Autoradiographic localization of (3H) gepirone in the rat brain

    SciTech Connect

    Bennett, J.E.; Matheson, G.K. )

    1990-02-26

    Gepirone is an anxiolytic compound active at the 5-HT{sub 1A} receptor site. The purpose of this study was to locate the ({sup 3}H)gepirone in the rat brain and to determine the quantity of gepirone in these locations. Male Sprague-Dawley rats were injected with (3H)gepirone (200 {mu}Ci/kg, i.v.) and decapitated 10 minutes later. To determine specific binding some animals were pretreated with cold gepirone (1 mg/kg) 15 minutes before the (3H)gepirone treatment. The brains were removed, frozen, sectioned, and fixed in formaldehyde vapors. Tritium sensitive film was exposed to the sections for 106 days. Using computerized imaging technology data were obtained from 104 brain sites. Overall, the quantity of (3H)gepirone in each site correlated proportionally with known 5-HT{sub 1A} (in vitro) receptor binding.

  7. Enzyme markers of maternal malnutrition in fetal rat brain.

    PubMed

    Shambaugh, G E; Mankad, B; Derecho, M L; Koehler, R R

    1987-01-01

    The impact of maternal starvation in late gestation on development of some enzymatic mechanisms concerned with neurotransmission and polyamine synthesis was studied in fetal rat brain. Between 17 and 20 d, acetylcholinesterase and choline acetyltransferase activity increased in fetal brains of fed dams, whereas maternal starvation from day 17 to day 20 resulted in heightened acetylcholinesterase but not choline acetyltransferase activity. Ornithine decarboxylase activity on a per-gram wet-weight basis fell between 17 and 20 d in fetal brain from fed dams. Increasing the duration of maternal starvation resulted in a progressive increase in fetal brain ornithine decarboxylase. Arginine and putrescine levels in the brain were lower in fetuses of starved mothers while spermidine and spermine concentrations were unchanged. Since the Km of ornithine decarboxylase for ornithine was found to vary directly with levels of putrescine in fetal brain, lower concentrations of putrescine and greater ornithine decarboxylase activity in fetal brains from starved mothers suggested that levels of this enzyme may be controlled in part by putrescine. Changes in the maternal nutritional state had no effect on the activity of glutamate decarboxylase in fetal brain, and tissue levels of the product, gamma-aminobutyric acid, were unchanged. Thus changes in ornithine decarboxylase and acetylcholinesterase activity in fetal brain may uniquely reflect biochemical alterations consequent to maternal starvation.

  8. Ethyl Pyruvate Protects against Blood-Brain Barrier Damage and Improves Long-Term Neurological Outcomes in a Rat Model of Traumatic Brain Injury

    PubMed Central

    Shi, Hong; Wang, Hailian; Pu, Hongjian; Shi, Yejie; Zhang, Jia; Zhang, Wenting; Wang, Guohua; Hu, Xiaoming; Leak, Rehana K.; Chen, Jun; Gao, Yanqin

    2015-01-01

    Aims Many traumatic brain injury (TBI) survivors sustain neurological disability and cognitive impairments due to the lack of defined therapies to reduce TBI-induced long-term brain damage. Ethyl pyruvate (EP) has shown neuroprotection in several models of acute brain injury. The present study therefore investigated the potential beneficial effect of EP on long-term outcomes after TBI and the underlying mechanisms. Methods Male adult rats were subjected to unilateral controlled cortical impact injury. EP was injected intraperitoneally 15 min after TBI and again at 12, 24, 36, 48, and 60 h after TBI. Neurological deficits, blood-brain barrier (BBB) integrity and neuroinflammation were assessed. Results EP improved sensorimotor and cognitive functions and ameliorated brain tissue damage up to 28 d post-TBI. BBB breach and brain edema were attenuated by EP at 48 h after TBI. EP suppressed matrix metalloproteinase (MMP)-9 production from peripheral neutrophils and reduced the number of MMP-9-overproducing neutrophils in the spleen, and therefore mitigated MMP-9-mediated BBB breakdown. Moreover, EP exerted potent anti-inflammatory effects in cultured microglia and inhibited the elevation of inflammatory mediators in the brain after TBI. Conclusion EP confers long-term neuroprotection against TBI, possibly through breaking the vicious cycle among MMP-9-mediated BBB disruption, neuroinflammation and long-lasting brain damage. PMID:25533312

  9. Progesterone and allopregnanolone attenuate blood-brain barrier dysfunction following permanent focal ischemia by regulating the expression of matrix metalloproteinases.

    PubMed

    Ishrat, Tauheed; Sayeed, Iqbal; Atif, Fahim; Hua, Fang; Stein, Donald G

    2010-11-01

    Blood-brain barrier (BBB) breakdown after stroke is linked to the up-regulation of metalloproteinases (MMPs) and inflammation. This study examines the effects of progesterone (PROG) and its neuroactive metabolite allopregnanolone (ALLO) on BBB integrity following permanent middle cerebral artery occlusion (pMCAO). Rats underwent pMCAO by electro-coagulation and received intraperitoneal injections of PROG (8 mg/kg), ALLO (8 mg/kg) or vehicle at 1 h post-occlusion and then subcutaneous injections (8 mg/kg) at 6, 24, and 48 h. MMP activation and expression were analyzed by Western blot, immunohistochemistry and gelatin zymography 72 h post-pMCAO. Occludin1, claudin5, tumor necrosis factor-alpha (TNF-α) and Interleukin-6 (IL-6) were analyzed at 72 h post-pMCAO with Western blots. BBB permeability was measured by Evans blue extravasation and infarct size was evaluated by cresyl violet at 72 h after pMCAO. Ischemic injury significantly (p<0.05) increased the expression of MMP-9, MMP-2, TNF-α and IL-6, and reduced the levels of occludin1 and claudin5. These changes were followed by increased infarct size (% contralateral hemisphere) and Evans blue extravasation into the brain indicating compromise of the BBB. PROG and ALLO attenuated BBB disruption and infarct size following pMCAO by reducing MMPs and the inflammatory response and by preventing the degradation of occludin1 and claudin5. We conclude that PROG and ALLO can help to protect BBB disruption following pMCAO. PMID:20816826

  10. Progesterone and allopregnanolone attenuate blood-brain barrier dysfunction following permanent focal ischemia by regulating the expression of matrix metalloproteinases

    PubMed Central

    Ishrat, Tauheed; Sayeed, Iqbal; Atif, Fahim; Hua, Fang; Stein, Donald G.

    2010-01-01

    Blood-brain barrier (BBB) breakdown after stroke is linked to the up-regulation of metalloproteinases (MMPs) and inflammation. This study examines the effects of progesterone (PROG) and its neuroactive metabolite allopregnanolone (ALLO) on BBB integrity following permanent middle cerebral artery occlusion (pMCAO). Rats underwent pMCAO by electro-coagulation and received intraperitoneal injections of PROG (8 mg/kg), ALLO (8 mg/kg) or vehicle at 1 h post-occlusion and then subcutaneous injections (8 mg/kg) at 6, 24, and 48 h. MMP activation and expression were analyzed by Western blot, immunohistochemistry and gelatin zymography 72 h post-pMCAO. Occludin1, claudin5, tumor necrosis factor-alpha (TNF-α) and Interleukin-6 (IL-6) were analyzed at 72 h post-pMCAO with Western blots. BBB permeability was measured by Evans blue extravasation and infarct size was evaluated by cresyl violet at 72 h after pMCAO. Ischemic injury significantly (p<0.05) increased the expression of MMP-9, MMP-2, TNF-α and IL-6, and reduced the level of occludin1 and claudin5. These changes were followed by increased infarct size (% contralateral hemisphere) and Evans blue extravasation into the brain indicating compromise of the BBB. PROG and ALLO attenuated BBB disruption and infarct size following pMCAO by reducing MMPs and the inflammatory response and by preventing the degradation of occludin1 and claudin5. We conclude that PROG and ALLO can help to protect BBB disruption following pMCAO. PMID:20816826

  11. Progesterone and allopregnanolone attenuate blood-brain barrier dysfunction following permanent focal ischemia by regulating the expression of matrix metalloproteinases.

    PubMed

    Ishrat, Tauheed; Sayeed, Iqbal; Atif, Fahim; Hua, Fang; Stein, Donald G

    2010-11-01

    Blood-brain barrier (BBB) breakdown after stroke is linked to the up-regulation of metalloproteinases (MMPs) and inflammation. This study examines the effects of progesterone (PROG) and its neuroactive metabolite allopregnanolone (ALLO) on BBB integrity following permanent middle cerebral artery occlusion (pMCAO). Rats underwent pMCAO by electro-coagulation and received intraperitoneal injections of PROG (8 mg/kg), ALLO (8 mg/kg) or vehicle at 1 h post-occlusion and then subcutaneous injections (8 mg/kg) at 6, 24, and 48 h. MMP activation and expression were analyzed by Western blot, immunohistochemistry and gelatin zymography 72 h post-pMCAO. Occludin1, claudin5, tumor necrosis factor-alpha (TNF-α) and Interleukin-6 (IL-6) were analyzed at 72 h post-pMCAO with Western blots. BBB permeability was measured by Evans blue extravasation and infarct size was evaluated by cresyl violet at 72 h after pMCAO. Ischemic injury significantly (p<0.05) increased the expression of MMP-9, MMP-2, TNF-α and IL-6, and reduced the levels of occludin1 and claudin5. These changes were followed by increased infarct size (% contralateral hemisphere) and Evans blue extravasation into the brain indicating compromise of the BBB. PROG and ALLO attenuated BBB disruption and infarct size following pMCAO by reducing MMPs and the inflammatory response and by preventing the degradation of occludin1 and claudin5. We conclude that PROG and ALLO can help to protect BBB disruption following pMCAO.

  12. Pharmacological modulation of blood-brain barrier increases permeability of doxorubicin into the rat brain

    PubMed Central

    Sardi, Iacopo; la Marca, Giancarlo; Cardellicchio, Stefania; Giunti, Laura; Malvagia, Sabrina; Genitori, Lorenzo; Massimino, Maura; de Martino, Maurizio; Giovannini, Maria G

    2013-01-01

    Our group recently demonstrated in a rat model that pretreatment with morphine facilitates doxorubicin delivery to the brain in the absence of signs of increased acute systemic toxicity. Morphine and other drugs such as dexamethasone or ondansetron seem to inhibit MDR proteins localized on blood-brain barrier, neurons and glial cells increasing the access of doxorubicin to the brain by efflux transporters competition. We explored the feasibility of active modification of the blood-brain barrier protection, by using morphine dexamethasone or ondansetron pretreatment, to allow doxorubicin accumulation into the brain in a rodent model. Rats were pretreated with morphine (10 mg/kg, i.p.), dexamethasone (2 mg/kg, i.p.) or ondansetron (2 mg/kg, i.p.) before injection of doxorubicin (12 mg/kg, i.p.). Quantitative analysis of doxorubicin was performed by mass spectrometry. Acute hearth and kidney damage was analyzed by measuring doxorubicin accumulation, LDH activity and malondialdehyde plasma levels. The concentration of doxorubicin was significantly higher in all brain areas of rats pretreated with morphine (P < 0.001) or ondansetron (P < 0.05) than in control tissues. The concentration of doxorubicin was significantly higher in cerebral hemispheres and brainstem (P < 0.05) but not in cerebellum of rats pretreated with dexamethasone than in control tissues. Pretreatment with any of these drugs did not increase LDH activity or lipid peroxidation compared to controls. Our data suggest that morphine, dexamethasone or ondansetron pretreatment is able to allow doxorubicin penetration inside the brain by modulating the BBB. This effect is not associated with acute cardiac or renal toxicity. This finding might provide the rationale for clinical applications in the treatment of refractory brain tumors and pave the way to novel applications of active but currently inapplicable chemotherapeutic drugs. PMID:23977451

  13. Citrus peel extract attenuates acute cyanide poisoning-induced seizures and oxidative stress in rats.

    PubMed

    Abdel Moneim, Ahmed E

    2014-01-01

    The primary aimed of this study was to investigate the potential protective effects of methanolic extract of citrus peel (MECP) on acute cyanide (KCN) poisoning-induced seizures and oxidative stress in rats. The intraperitoneal LD50 value of KCN (6.3 mg/Kg bwt), based on 24 hrs mortality, was significantly increased by 9, 52 or 113% by oral administration of MECP (500 mg/Kg bwt) pre-administered for 1, 2 and 3 days, respectively, in rats in a time-dependent manner. Intraperitoneal injection of the sublethal dose of KCN (3 mg/Kg bwt) into rats increased, 24 hrs later, lipid peroxidation (LPO), nitric oxide (NO), glutamate levels and acetylcholinesterase (AChE) activity in hippocampus, striatum and cerebral cortex. KCN also decreased brain glutathione (GSH) level and superoxide dismutase (SOD) and catalase (CAT) activities in these animals. Pre-treatment of rats with MECP inhibited KCN-induced increases in LPO, NO, and glutamate levels and AChE activity as well as decreases in brain GSH level and SOD and CAT activities. In addition, KCN significantly decreased norepinephrine, dopamine and serotonin levels in different brain regions which were resolved by MECP. From the present results, it can be concluded that the neuroprotective effects of MECP against KCN-induced seizures and oxidative stress may be due to the inhibition of oxidative stress overproduction and maintenance of antioxidant defense mechanisms.

  14. Toxic Chemical from Plastics Attenuates Phenylbiguanide-induced Cardio-respiratory Reflexes in Anaesthetized Rats.

    PubMed

    Pant, Jayanti; Pant, Mahendra K; Chouhan, Shikha; Singh, Surya P; Deshpande, Shripad B

    2015-01-01

    Bisphenol A (BPA) attenuated phenylbiguanide (PBG)-induced cardio-respiratory reflexes involving decreased vagal afferent activity. BPA leaches out from plastics thus it is expected that chronic exposure to plastic boiled (PBW) water will also produce similar changes. Therefore, the present study was undertaken to evaluate the effects of chronic ingestion of PBW on PBG evoked reflexes and were compared with BPA. Adult female rats were ingested BPA containing pellets (2 µg/kg body weight)/PBW/tap water (ad libitum) for 30 days. On day 30, the animals were anaesthetized and BP, ECG and respiratory excursions were recorded. Further, PBG was injected intravenously to evoke cardio-respiratory reflexes and at the end lungs were excised for histopathological examination. BPA concentration in PBW was 6.6 µg/ml estimated by HPLC. In rats receiving tap water, PBG produced bradycardia, hypotension and tachypnoea. In PBW/BPA treated groups, PBG-induced reflexes were attenuated significantly along with emphysematous and consolidative changes in lungs. The present results indicate that PBW attenuates the protective cardio-respiratory reflexes and also produces histopathological changes in lungs. PMID:26685510

  15. Neutrophil Depletion Attenuates Placental Ischemia-Induced Hypertension in the Rat

    PubMed Central

    Regal, Jean F.; Lillegard, Kathryn E.; Bauer, Ashley J.; Elmquist, Barbara J.; Loeks-Johnson, Alex C.; Gilbert, Jeffrey S.

    2015-01-01

    Preeclampsia is characterized by reduced placental perfusion with placental ischemia and hypertension during pregnancy. Preeclamptic women also exhibit a heightened inflammatory state and greater number of neutrophils in the vasculature compared to normal pregnancy. Since neutrophils are associated with tissue injury and inflammation, we hypothesized that neutrophils are critical to placental ischemia-induced hypertension and fetal demise. Using the reduced uteroplacental perfusion pressure (RUPP) model of placental ischemia-induced hypertension in the rat, we determined the effect of neutrophil depletion on blood pressure and fetal resorptions. Neutrophils were depleted with repeated injections of polyclonal rabbit anti-rat polymorphonuclear leukocyte (PMN) antibody (antiPMN). Rats received either antiPMN or normal rabbit serum (Control) on 13.5, 15.5, 17.5, and 18.5 days post conception (dpc). On 14.5 dpc, rats underwent either Sham surgery or clip placement on ovarian arteries and abdominal aorta to reduce uterine perfusion pressure (RUPP). On 18.5 dpc, carotid arterial catheters were placed and mean arterial pressure (MAP) was measured on 19.5 dpc. Neutrophil-depleted rats had reduced circulating neutrophils from 14.5 to 19.5 dpc compared to Control, as well as decreased neutrophils in lung and placenta on 19.5 dpc. MAP increased in RUPP Control vs Sham Control rats, and neutrophil depletion attenuated this increase in MAP in RUPP rats without any effect on Sham rats. The RUPP-induced increase in fetal resorptions and complement activation product C3a were not affected by neutrophil depletion. Thus, these data are the first to indicate that neutrophils play an important role in RUPP hypertension and that cells of the innate immune system may significantly contribute to pregnancy-induced hypertension. PMID:26135305

  16. Chronic Methamphetamine Effects on Brain Structure and Function in Rats.

    PubMed

    Thanos, Panayotis K; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J; Masad, Ihssan; Muniz, Jose A; Grant, Samuel C; Gold, Mark S; Cadet, Jean Lud; Volkow, Nora D

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA

  17. Chronic Methamphetamine Effects on Brain Structure and Function in Rats

    PubMed Central

    Thanos, Panayotis K.; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J.; Masad, Ihssan; Muniz, Jose A.; Grant, Samuel C.; Gold, Mark S.; Cadet, Jean Lud; Volkow, Nora D.

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA

  18. Developmental Vitamin D3 deficiency alters the adult rat brain.

    PubMed

    Féron, F; Burne, T H J; Brown, J; Smith, E; McGrath, J J; Mackay-Sim, A; Eyles, D W

    2005-03-15

    There is growing evidence that Vitamin D(3) (1,25-dihydroxyvitamin D(3)) is involved in brain development. We have recently shown that the brains of newborn rats from Vitamin D(3) deficient dams were larger than controls, had increased cell proliferation, larger lateral ventricles, and reduced cortical thickness. Brains from these animals also had reduced expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor. The aim of the current study was to examine if there were any permanent outcomes into adulthood when the offspring of Vitamin D(3) deficient dams were restored to a normal diet. The brains of adult rats were examined at 10 weeks of age after Vitamin D(3) deficiency until birth or weaning. Compared to controls animals that were exposed to transient early Vitamin D(3) deficiency had larger lateral ventricles, reduced NGF protein content, and reduced expression of a number genes involved in neuronal structure, i.e. neurofilament or MAP-2 or neurotransmission, i.e. GABA-A(alpha4). We conclude that transient early life hypovitaminosis D(3) not only disrupts brain development but leads to persistent changes in the adult brain. In light of the high incidence of hypovitaminosis D(3) in women of child-bearing age, the public health implications of these findings warrant attention. PMID:15763180

  19. Tualang Honey Attenuates Noise Stress-Induced Memory Deficits in Aged Rats

    PubMed Central

    Azman, Khairunnuur Fairuz; Abdul Aziz, Che Badariah; Othman, Zahiruddin

    2016-01-01

    Ageing and stress exposure may lead to memory impairment while oxidative stress is thought to be one of the underlying mechanisms involved. This study aimed to investigate the potential protective effects of Tualang honey supplementation on memory performance in aged rats exposed to noise stress. Tualang honey supplementation was given orally, 200 mg/kg body weight for 28 days. Rats in the stress group were subjected to loud noise, 100 dB(A), 4 hours daily for 14 days. All rats were subjected to novel object recognition test for evaluation of memory performance. It was observed that the rats subjected to noise stress exhibited significantly lower memory performance and higher oxidative stress as evident by elevated malondialdehyde and protein carbonyl levels and reduction of antioxidant enzymes activities compared to the nonstressed rats. Tualang honey supplementation was able to improve memory performance, decrease oxidative stress levels, increase brain-derived neurotrophic factor (BDNF) concentration, decrease acetylcholinesterase activity, and enhance neuronal proliferation in the medial prefrontal cortex (mPFC) and hippocampus. In conclusion, Tualang honey protects against memory decline due to stress exposure and/or ageing via enhancement of mPFC and hippocampal morphology possibly secondary to reduction in brain oxidative stress and/or upregulation of BDNF concentration and cholinergic system. PMID:27119005

  20. Electroacupuncture Attenuates Cerebral Ischemia and Reperfusion Injury in Middle Cerebral Artery Occlusion of Rat via Modulation of Apoptosis, Inflammation, Oxidative Stress, and Excitotoxicity

    PubMed Central

    Shen, Mei-hong; Zhang, Chun-bing; Zhang, Jia-hui; Li, Peng-fei

    2016-01-01

    Electroacupuncture (EA) has several properties such as antioxidant, antiapoptosis, and anti-inflammatory properties. The current study was to investigate the effects of EA on the prevention and treatment of cerebral ischemia-reperfusion (I/R) injury and to elucidate possible molecular mechanisms. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 24 h. EA stimulation was applied to both Baihui and Dazhui acupoints for 30 min in each rat per day for 5 successive days before MCAO (pretreatment) or when the reperfusion was initiated (treatment). Neurologic deficit scores, infarction volumes, brain water content, and neuronal apoptosis were evaluated. The expressions of related inflammatory cytokines, apoptotic molecules, antioxidant systems, and excitotoxic receptors in the brain were also investigated. Results showed that both EA pretreatment and treatment significantly reduced infarct volumes, decreased brain water content, and alleviated neuronal injury in MCAO rats. Notably, EA exerts neuroprotection against I/R injury through improving neurological function, attenuating the inflammation cytokines, upregulating antioxidant systems, and reducing the excitotoxicity. This study provides a better understanding of the molecular mechanism underlying the traditional use of EA. PMID:27123035

  1. The accumulation of brain water-free sodium is associated with ischemic damage independent of the blood pressure in female rats.

    PubMed

    Sumiyoshi, Manabu; Kitazato, Keiko T; Yagi, Kenji; Miyamoto, Takeshi; Kurashiki, Yoshitaka; Matsushita, Nobuhisa; Kinouchi, Tomoya; Kuwayama, Kazuyuki; Satomi, Junichiro; Nagahiro, Shinji

    2015-08-01

    Estrogen deficiency worsens ischemic stroke outcomes. In ovariectomized (OVX(+)) rats fed a high-salt diet (HSD), an increase in the body Na(+)/water ratio, which characterizes water-free Na(+) accumulation, was associated with detrimental vascular effects independent of the blood pressure (BP). We hypothesized that an increase in brain water-free Na(+) accumulation is associated with ischemic brain damage in OVX(+)/HSD rats. To test our hypothesis we divided female Wistar rats into 4 groups, OVX(+) and OVX(-) rats fed HSD or a normal diet (ND), and subjected them to transient cerebral ischemia. The brain Na(+)/water ratio was increased even in OVX(+)/ND rats and augmented in OVX(+)/HSD rats. The increase in the brain Na(+)/water ratio was positively correlated with expansion of the cortical infarct volume without affecting the BP. Interestingly, OVX(+) was associated with the decreased expression of ATP1α3, a subtype of the Na(+) efflux pump. HSD increased the expression of brain Na(+) influx-related molecules and the mineralocorticoid receptor (MR). The pretreatment of OVX(+)/HSD rats with the MR antagonist eplerenone reduced brain water-free Na(+) accumulation, up-regulated ATP1α3, down-regulated MR, and reduced the cortical infarct volume. Our findings show that the increase in the brain Na(+)/water ratio elicited by estrogen deficiency or HSD is associated with ischemic brain damage BP-independently, suggesting the importance of regulating the accumulation of brain water-free Na(+). The up-regulation of ATP1α3 and the down-regulation of MR may provide a promising therapeutic strategy to attenuate ischemic brain damage in postmenopausal women.

  2. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats.

    PubMed

    McBride, Devin W; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H

    2015-09-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 h after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in significantly elevated frontal lobe brain water content 24 and 72 h after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study's results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 h post-SBI. PMID:25975171

  3. Musa sapientum with exercises attenuates hyperglycemia and pancreatic islet cells degeneration in alloxan-diabetic rats

    PubMed Central

    Akinlolu, Adelaja Abdulazeez; Salau, Bamidele A.; Ekor, Martins; Otulana, Jubril

    2015-01-01

    Aim: We tested the hypothesis that administrations of methanolic extracts of Musa sapientum sucker (MEMS) with exercises attenuated hyperglycemia in alloxan-diabetic rats. Materials and Methods: A total of 40 adult male rats were divided into equal eight groups. Normoglycemic Group A was Control. Alloxan (180 mg/kg, i.p.) was administered to rats in Groups B - H to induce diabetes. Group B (diabetic control) received physiological saline. Groups C - H received MEMS (5 mg/kg), MEMS (10 mg/kg), Glibenclamide (5 mg/kg), MEMS (5 mg/kg) + exercises, MEMS (10 mg/kg) + exercises and Exercises only, respectively. Changes in body weight, blood glucose levels (BGL) and pancreatic histology were evaluated during or at the end of experiment. Body weights and BGL of rats were expressed as mean ± standard deviation and analyzed using the statistical software program SPSS 15. Statistical comparisons were done using the Student’s t-test for unpaired samples. Differences between groups were determined as significant at P ≤ 0.05. Results: Significantly (P < 0.05) decreased bodyweight was observed in B and H compared to A and C - G. Treatment with MEMS significantly (P < 0.05) decreased elevated BGL in C and D. Hypoglycemic effect of MEMS appeared enhanced with exercises in F and G. Exercises regimen alone (H) resulted in percentage reduction in BGL lower than those of C - G. Histopathological examinations revealed normal pancreas (A), atrophied islet cells (B), hyperplasia with adequate population of islet cells (C - G), and reduced hyperplasia of islet cells (H). Conclusion: MEMS with exercises attenuated hyperglycemia in alloxan-diabetic rats. PMID:26401408

  4. Danaparoid sodium reduces ischemia/reperfusion-induced liver injury in rats by attenuating inflammatory responses.

    PubMed

    Harada, Naoaki; Okajima, Kenji; Kohmura, Hidefumi; Uchiba, Mitsuhiro; Tomita, Tsutomu

    2007-01-01

    This study was undertaken to examine the mechanism by which danaparoid sodium (DS), a heparinoid that contains mainly heparan sulfate, prevents reperfusion-induced hepatic damage in a rat model of ischemia/reperfusion (I/R)-induced liver injury. Administration of DS significantly reduced liver injury and inhibited the decrease in hepatic tissue blood flow in rats. DS attenuated hepatic I/R-induced increases in hepatic tissue levels of tumor necrosis factor (TNF) and myeloperoxidase (MPO) in vivo. In contrast, neither monocytic TNF production nor neutrophil activation was inhibited by DS in vitro. DS enhanced I/R-induced increases in levels of calcitonin-gene related peptide (CGRP), a neuropeptide released from sensory neurons, and of 6-ketoprostaglandin (PG) F (1a) , a stable metabolite of PGI (2) , in liver tissues. The therapeutic effects of DS were not seen in animals pretreated with capsazepine, an inhibitor of sensory neuron activation. The distribution of heparan sulfate in the perivascular area was significantly increased by DS administration in this rat model. DS significantly increased CGRP release from isolated rat dorsal root ganglion neurons (DRG) in vitro, while DX-9065a, a selective inhibitor of activated factor X, did not. DS enhanced anandamide-induced CGRP release from DRG in vitro. These observations strongly suggested that DS might reduce I/R-induced liver injury in rats by attenuating inflammatory responses. These therapeutic effects of DS might be at least partly explained by its enhancement of sensory neuron activation, leading to the increase the endothelial production of PGI (2) . PMID:17200774

  5. Human mesenchymal stem cells attenuate pulmonary hypertension induced by prenatal lipopolysaccharide treatment in rats.

    PubMed

    Chou, Hsiu-Chu; Lin, Willie; Chen, Chung-Ming

    2016-10-01

    Intra-amniotic injection of lipopolysaccharide (LPS) induces pulmonary hypertension in newborn rats. This study was designed to test whether human mesenchymal stem cells (MSCs) reduce pulmonary hypertension and alleviate cardiac hypertrophy in prenatal LPS-treated rats. Pregnant Sprague-Dawley rats were injected intraperitoneally with LPS (0.5 mg/kg per day) or untreated on gestational days 20 and 21. Human MSCs (3×10(5) cells and 1×10(6) cells) in 0.03 mL of normal saline (NS) were transplanted intratracheally on postnatal day 5. Four study groups were considered: normal, LPS+NS, LPS+MSCs (3×10(5) cells), and LPS+MSCs (1×10(6) cells). On postnatal day 14, lung and heart tissues were collected for measuring the arterial medial wall thickness (MWT) and β-myosin heavy chain (β-MHC) level as markers of pulmonary hypertension and cardiac hypertrophy, respectively. The LPS+NS group exhibited a significantly higher right ventricle (RV)/[left ventricle (LV)+ interventricular septum (IVS)] thickness ratio and MWT, a greater cardiomyocyte width, a greater number of cardiomyocyte nuclei per squared millimeter, and higher β-MHC expression than those observed in the normal group. Human MSC transplantation (3×10(5) cells and 1×10(6) cells) in LPS-treated rats reduced MWT and the RV/(LV+IVS) thickness ratio to normal levels. This improvement in right ventricular hypertrophy was accompanied by a decrease in toll-like receptor 4 (TLR4), nuclear factor-κB, and tumor necrosis factor-α expression in the heart. Intratracheal human MSCs transplantation can attenuate pulmonary hypertension and right ventricular hypertrophy in prenatal LPS-treated rats; this attenuation may be associated with suppression of TLR4 expression via paracrine pathways. PMID:27273502

  6. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    PubMed

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  7. Agmatine attenuates the discriminative stimulus and hyperthermic effects of methamphetamine in male rats.

    PubMed

    Thorn, David A; Li, Jiuzhou; Qiu, Yanyan; Li, Jun-Xu

    2016-09-01

    Methamphetamine abuse remains an alarming public heath challenge, with no approved pharmacotherapies available. Agmatine is a naturally occurring cationic polyamine that has previously been shown to attenuate the rewarding and psychomotor-sensitizing effects of methamphetamine. This study examined the effects of agmatine on the discriminative stimulus and hyperthermic effects of methamphetamine. Adult male rats were trained to discriminate 0.32 mg/kg methamphetamine from saline. Methamphetamine dose dependently increased drug-associated lever responding. The nonselective dopamine receptor antagonist haloperidol (0.1 mg/kg) significantly attenuated the discriminative stimulus effects of methamphetamine (5.9-fold rightward shift). Agmatine (10-100 mg/kg) did not substitute for methamphetamine, but significantly attenuated the stimulus effects of methamphetamine, leading to a maximum of a 3.5-fold rightward shift. Acute 10 mg/kg methamphetamine increased the rectal temperature by a maximum of 1.96±0.17°C. Agmatine (10-32 mg/kg) pretreatment significantly attenuated the hyperthermic effect of methamphetamine. Agmatine (10 mg/kg) also significantly reversed methamphetamine-induced temperature increase. Together, these results support further exploration of the value that agmatine may have for the treatment of methamphetamine abuse and overdose. PMID:27232669

  8. Adjuvant Potential of Selegiline in Attenuating Organ Dysfunction in Septic Rats with Peritonitis

    PubMed Central

    Tsao, Cheng-Ming; Jhang, Jhih-Gang; Chen, Shiu-Jen; Ka, Shuk-Man; Wu, Tao-Cheng; Liaw, Wen-Jinn

    2014-01-01

    Selegiline, an anti-Parkinson drug, has antioxidant and anti-apoptotic effects. To explore the effect of selegiline on sepsis, we used a clinically relevant animal model of polymicrobial sepsis. Cecal ligation and puncture (CLP) or sham operation was performed in male rats under anesthesia. Three hours after surgery, animals were randomized to receive intravenously selegiline (3 mg/kg) or an equivalent volume of saline. The administration of CLP rats with selegiline (i) increased arterial blood pressure and vascular responsiveness to norepinephrine, (ii) reduced plasma liver and kidney dysfunction, (iii) attenuated metabolic acidosis, (iv) decreased neutrophil infiltration in liver and lung, and (v) improved survival rate (from 44% to 65%), compared to those in the CLP alone rats. The CLP-induced increases of plasma interleukin-6, organ superoxide levels, and liver inducible nitric oxide synthase and caspase-3 expressions were ameliorated by selegiline treatment. In addition, the histological changes in liver and lung were significantly attenuated in the selegiline -treated CLP group compared to those in the CLP group. The improvement of organ dysfunction and survival through reducing inflammation, oxidative stress and apoptosis in peritonitis-induced sepsis by selegiline has potential as an adjuvant agent for critical ill. PMID:25268350

  9. NMDA receptor blockade with memantine attenuates white matter injury in a rat model of periventricular leukomalacia.

    PubMed

    Manning, Simon M; Talos, Delia M; Zhou, Chengwen; Selip, Debra B; Park, Hyun-Kyung; Park, Chang-Joo; Volpe, Joseph J; Jensen, Frances E

    2008-06-25

    Hypoxia-ischemia (H/I) in the premature infant leads to white matter injury termed periventricular leukomalacia (PVL), the leading cause of subsequent neurological deficits. Glutamatergic excitotoxicity in white matter oligodendrocytes (OLs) mediated by cell surface glutamate receptors (GluRs) of the AMPA subtype has been demonstrated as one factor in this injury. Recently, it has been shown that rodent OLs also express functional NMDA GluRs (NMDARs), and overactivation of these receptors can mediate excitotoxic OL injury. Here we show that preterm human developing OLs express NMDARs during the PVL period of susceptibility, presenting a potential therapeutic target. The expression pattern mirrors that seen in the immature rat. Furthermore, the uncompetitive NMDAR antagonist memantine attenuates NMDA-evoked currents in developing OLs in situ in cerebral white matter of immature rats. Using an H/I rat model of white matter injury, we show in vivo that post-H/I treatment with memantine attenuates acute loss of the developing OL cell surface marker O1 and the mature OL marker MBP (myelin basic protein), and also prevents the long-term reduction in cerebral mantle thickness seen at postnatal day 21 in this model. These protective doses of memantine do not affect normal myelination or cortical growth. Together, these data suggest that NMDAR blockade with memantine may provide an effective pharmacological prevention of PVL in the premature infant.

  10. Astaxanthin rescues neuron loss and attenuates oxidative stress induced by amygdala kindling in adult rat hippocampus.

    PubMed

    Lu, Yan; Xie, Tao; He, Xue-Xin; Mao, Zhuo-Feng; Jia, Li-Jing; Wang, Wei-Ping; Zhen, Jun-Li; Liu, Liang-Min

    2015-06-15

    Oxidative stress plays an important role in the neuronal damage induced by epilepsy. The present study assessed the possible neuroprotective effects of astaxanthin (ATX) on neuronal damage, in hippocampal CA3 neurons following amygdala kindling. Male Sprague-Dawley rats were chronically kindled in the amygdala and ATX or equal volume of vehicle was given by intraperitoneally. Twenty-four hours after the last stimulation, the rats were sacrificed by decapitation. Histopathological changes and the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and reduced glutathione (GSH) were measured, cytosolic cytochrome c (CytC) and caspase-3 activities in the hippocampus were also recorded. We found extensive neuronal damage in the CA3 region in the kindling group, which was preceded by increases of ROS level and MDA concentration and was followed by caspase-3 activation and an increase in cytosolic CytC. Treatment with ATX markedly attenuated the neuronal damage. In addition, ATX significantly decreased ROS and MDA concentrations and increased GSH levels. Moreover, ATX suppressed the translation of CytC release and caspase-3 activation in hippocampus. Together, these results suggest that ATX protects against neuronal loss due to epilepsy in the rat hippocampus by attenuating oxidative damage, lipid peroxidation and inhibiting the mitochondrion-related apoptotic pathway.

  11. Amygdala and periaqueductal gray lesions only partially attenuate unconditional defensive responses in rats exposed to a cat.

    PubMed

    de Oca, Beatrice M; Fanselow, Michael S

    2004-01-01

    Defensive responses to a cat were observed in rats given excitotoxic lesions of the central nucleus of the amygdala (ACe), dorsolateral periaqueductal gray (dlPAG), ventral periaqueductal gray (vPAG), or sham lesions. Rats were placed adjacent to a compartment containing a cat. Sham-lesioned rats avoided the area nearest the cat and preferred the area furthest away from the cat. They also exhibited numerous defensive responses including, climbing, escape from the apparatus, and freezing. Rats with lesions of the ACe reacted like the sham lesioned rats by preferring the area of the apparatus furthest from the cat, however they climbed and escaped significantly less than sham lesioned rats. Avoidance of the area adjacent to the cat was attenuated in rats with lesions of the vPAG. Climbing along the walls of the apparatus was also attenuated in rats with lesions of the vPAG. Escapes from the apparatus were not significantly reduced by lesions of the vPAG and dlPAG. Thus, ACe lesions attenuated climbing and eliminated escapes, but did not impair locomotion of the rat away from the cat.

  12. Bromophenacyl bromide, a phospholipase A2 inhibitor attenuates chemically induced gastroduodenal ulcers in rats

    PubMed Central

    Tariq, Mohammad; Elfaki, Ibrahim; Khan, Haseeb Ahmad; Arshaduddin, Mohammad; Sobki, Samia; Moutaery, Meshal Al

    2006-01-01

    AIM: To study the effect of bromophenacyl bromide (BPB), a phospholipase A2 inhibitor on gastric secretion and to protect chemically induced gastric and duodenal ulcers in rats. METHODS: Acid secretion studies were undertaken in pylorus-ligated rats with BPB treatment (0, 5, 15 and 45 mg/kg). Gastric and duodenal lesions in the rats were induced by ethanol and cysteamine respectively. The levels of gastric wall mucus, nonprotein sulfhydryls (NP-SH) and myeloperoxidase (MPO) were also measured in the glandular stomach of rats following ethanol induced gastric lesions. RESULTS: BPB produced a dose-dependent inhibition of gastric acid secretion and acidity in rats. Pretreatment with BPB significantly attenuated the formation of ethanol induced gastric lesion. BPB also protected intestinal mucosa against cysteamine-induced duodenal ulcers. The antiulcer activity of BPB was associated with significant inhibition of ethanol-induced depletion of gastric wall mucus, NP-SH and MPO. These findings pointed towards the mediation of sulfhydryls in BPB induced gastrointestinal cytoprotection. CONCLUSION: BPB possesses significant antiulcer and cytoprotective activity against experimentally induced gastroduodenal lesions. PMID:17007045

  13. Alterations of Amino Acid Level in Depressed Rat Brain

    PubMed Central

    Yang, Pei; Li, Xuechun; Tian, Jingchen; Jing, Fu; Qu, Changhai; Lin, Longfei; Zhang, Hui

    2014-01-01

    Amino-acid neurotransmitter system dysfunction plays a major role in the pathophysiology of depression. Several studies have demonstrated the potential of amino acids as a source of neuro-specific biomarkers could be used in future diagnosis of depression. Only partial amino acids such as glycine and asparagine were determined from certain parts of rats' brain included hippocampi and cerebral cortex in previous studies. However, according to systematic biology, amino acids in different area of brain are interacted and interrelated. Hence, the determination of 34 amino acids through entire rats' brain was conducted in this study in order to demonstrate more possibilities for biomarkers of depression by discovering other potential amino acids in more areas of rats' brain. As a result, 4 amino acids (L-aspartic acid, L-glutamine, taurine and γ-amino-n-butyric acid) among 34 were typically identified as potentially primary biomarkers of depression by data statistics. Meanwhile, an antidepressant called Fluoxetine was employed to verify other potential amino acids which were not identified by data statistics. Eventually, we found L-α-amino-adipic acid could also become a new potentially secondary biomarker of depression after drug validation. In conclusion, we suggested that L-aspartic acid, L-glutamine, taurine, γ-amino-n-butyric acid and L-α-amino-adipic acid might become potential biomarkers for future diagnosis of depression and development of antidepressant. PMID:25352755

  14. Rat brain acetylcholinesterase visualized with [11C]physostigmine.

    PubMed

    Planas, A M; Crouzel, C; Hinnen, F; Jobert, A; Né, F; DiGiamberardino, L; Tavitian, B

    1994-06-01

    Physostigmine, a powerful cholinesterase inhibitor, has recently been labelled with 11C in view of its potential application for in vivo imaging of cerebral acetylcholinesterase (AChE) using positron emission tomography. Here we carried out autoradiography of the rat brain using [11C]physostigmine in order to characterize the cerebral targets of this ligand. Autoradiograms were obtained using phosphor storage plates which, compared to autoradiographic films, greatly improved the quality of 11C images. Following autoradiography, brain sections were stained for AChE activity, allowing a direct comparison of autoradiographic and histoenzymatic localizations. The distributions of 11C label and of AChE activity were found to be essentially super-imposable, both after in vivo injection of and after in vitro incubation with [11C]physostigmine. Densitometric analysis showed that radioactivity and enzymatic activity distributions were regionally correlated. The fixation of [11C]physostigmine to cerebral tissue was abolished after incubation of the rat brain sections with BW 284C51, a specific AChE inhibitor, but not after incubation with iso-OMPA, a specific inhibitor of butyrylcholinesterase. Unilateral excitotoxic lesions of the striatum that eliminated local AChE expression concomitantly reduced the binding of the ligand in the lesioned area. These results indicate that autoradiographic images of the rat brain obtained with [11C]physostigmine reflect AChE distribution, thus supporting the use of this radioligand to trace cerebral AChE activity in humans with positron emission tomography.

  15. Alcohol induced changes in phosphoinositide signaling system in rat brain

    SciTech Connect

    Pandey, S.; Piano, M.; Schwertz, D.; Davis, J.; Pandey, G. )

    1991-03-11

    Agonist-induced phosphoinositide break down functions as a signal generating system in a manner similar to the C-AMP system. In order to examine if the changes produced by chronic ethanol treatment on membrane lipid composition and metabolism effect the cellular functions of the neuron, the authors have examined the effect of chronic ethanol exposure on norepinephrine (NE) serotonin (5HT) and calcium ionophore (CI) stimulated phosphoinositide (PI) hydrolysis in rat cortical slices. Rats were maintained on liber-decarli diet alcohol and control liquid diet containing isocaloric sucrose substitute for two months. They were then sacrificed and brain was removed for determination of PI turnover. 5HT stimulated {sup 3}H- inositol monophosphate ({sup 3}H-IPI) formation was significantly lower in the cortex of alcohol treated rats as compared to control rats. However, neither CI nor NE stimulated IP1 formation was significantly different from control rats. The results thus indicate that chronic exposure to ethanol decreases 5HT induced PI breakdown in rat cortex. In order to examine if this decrease is related to a decrease in 5HT2 receptors, or decreased in coupling of receptor to the effector pathway, the authors are currently determining the number and affinity of 5HT2 receptors in alcohol treated rats.

  16. Abdominal surgery activates nesfatin-1 immunoreactive brain nuclei in rats.

    PubMed

    Stengel, Andreas; Goebel, Miriam; Wang, Lixin; Taché, Yvette

    2010-02-01

    Abdominal surgery-induced postoperative gastric ileus is well established to induce Fos expression in specific brain nuclei in rats within 2-h after surgery. However, the phenotype of activated neurons has not been thoroughly characterized. Nesfatin-1 was recently discovered in the rat hypothalamus as a new anorexigenic peptide that also inhibits gastric emptying and is widely distributed in rat brain autonomic nuclei suggesting an involvement in stress responses. Therefore, we investigated whether abdominal surgery activates nesfatin-1-immunoreactive (ir) neurons in the rat brain. Two hours after abdominal surgery with cecal palpation under short isoflurane anesthesia or anesthesia alone, rats were transcardially perfused and brains processed for double immunohistochemical labeling of Fos and nesfatin-1. Abdominal surgery, compared to anesthesia alone, induced Fos expression in neurons of the supraoptic nucleus (SON), paraventricular nucleus (PVN), locus coeruleus (LC), Edinger-Westphal nucleus (EW), rostral raphe pallidus (rRPa), nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM). Double Fos/nesfatin-1 labeling showed that of the activated cells, 99% were nesfatin-1-immunoreactive in the SON, 91% in the LC, 82% in the rRPa, 74% in the EW and VLM, 71% in the anterior parvicellular PVN, 47% in the lateral magnocellular PVN, 41% in the medial magnocellular PVN, 14% in the NTS and 9% in the medial parvicellular PVN. These data established nesfatin-1 immunoreactive neurons in specific nuclei of the hypothalamus and brainstem as part of the neuronal response to abdominal surgery and suggest a possible implication of nesfatin-1 in the alterations of food intake and gastric transit associated with such a stressor. PMID:19944727

  17. Human and rat brain lipofuscin proteome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of an autofluorescent pigment called lipofuscin in neurons is an invariable hallmark of brain aging. So far, this material has been considered to be waste material without particular relevance for cellular pathology. However, two lines of evidence argue that lipofuscin may have yet ...

  18. Pretreatment of rats with increased bioavailable berberine attenuates cerebral ischemia-reperfusion injury via down regulation of adenosine-5'monophosphate kinase activity.

    PubMed

    Chen, Weijia; Wei, Shengnan; Yu, Yang; Xue, Huan; Yao, Fan; Zhang, Ming; Xiao, Jun; Hatch, Grant M; Chen, Li

    2016-05-15

    Berberine (BBR) exhibits multiple beneficial biological effects. However, poor bioavailability of BBR has limited its clinical application. We previously demonstrated that solid dispersion of BBR with sodium caprate (HGSD) remarkably improves its bioavailability. We examined whether this increased bioavailability of BBR could protect the brain from ischemia-reperfusion (IR) induced injury. Rats treated with HGSD, SC and saline for 7 days then subjected to cerebral ischemia reperfusion by middle cerebral artery occlusion for 2h followed 12h reperfusion. Neurological deficit scores, infarct size, SOD, MDA and NO levels were examined. P-AMPK, Bax, cleaved-Caspase-3 in brain was determined. To further probe for the mechanism of beneficial effect of HGSD, PC12 cells were incubated with serum from control or HGSD pretreated animals, incubated with 300μM H2O2 to induce apoptosis. Caspase-3 activity and cell apoptosis was evaluated. HGSD pretreatment significantly attenuated neurological deficit scores, reduced infarct size, increased SOD and decreased MDA and NO after cerebral IR injury compared to controls. Meanwhile, HGSD pretreatment significantly reduced expression of p-AMPK, Bax, cleaved-Caspase-3 after cerebral IR injury. Sodium caprate (100mg/kg/d) pretreatment alone did not exhibit any of these beneficial effects. PC12 cell apoptosis was attenuated when cells were cultured with HGSD serum compared to control. The presence of AMPK activator (AICAR) attenuated whereas AMPK inhibitor (Compound C) augmented the protective effect of HGSD serum on PC12 cell apoptosis.The results indicate that HGSD-pretreatment of rats protects the brain from ischemia-reperfusion injury and the mechanism is due to its anti-apoptotic effect mediated by decreased activation of AMPK. PMID:26957053

  19. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis.

    PubMed

    Peleli, Maria; Al-Mashhadi, Ammar; Yang, Ting; Larsson, Erik; Wåhlin, Nils; Jensen, Boye L; G Persson, A Erik; Carlström, Mattias

    2016-01-01

    Hydronephrosis is associated with the development of salt-sensitive hypertension. Studies have suggested that increased sympathetic nerve activity and oxidative stress play important roles in hypertension and the modulation of salt sensitivity. The present study primarily aimed to examine the role of renal sympathetic nerve activity in the development of hypertension in rats with hydronephrosis. In addition, we aimed to investigate if NADPH oxidase (NOX) function could be affected by renal denervation. Partial unilateral ureteral obstruction (PUUO) was created in 3-wk-old rats to induce hydronephrosis. Sham surgery or renal denervation was performed at the same time. Blood pressure was measured during normal, high-, and low-salt diets. The renal excretion pattern, NOX activity, and expression as well as components of the renin-angiotensin-aldosterone system were characterized after treatment with the normal salt diet. On the normal salt diet, rats in the PUUO group had elevated blood pressure compared with control rats (115 ± 3 vs. 87 ± 1 mmHg, P < 0.05) and displayed increased urine production and lower urine osmolality. The blood pressure change in response to salt loading (salt sensitivity) was more pronounced in the PUUO group compared with the control group (15 ± 2 vs. 5 ± 1 mmHg, P < 0.05). Renal denervation in PUUO rats attenuated both hypertension (97 ± 3 mmHg) and salt sensitivity (5 ± 1 mmHg, P < 0.05) and normalized the renal excretion pattern, whereas the degree of renal fibrosis and inflammation was not changed. NOX activity and expression as well as renin and ANG II type 1A receptor expression were increased in the renal cortex from PUUO rats and normalized by denervation. Plasma Na(+) and K(+) levels were elevated in PUUO rats and normalized after renal denervation. Finally, denervation in PUUO rats was also associated with reduced NOX expression, superoxide production, and fibrosis in the heart. In conclusion, renal denervation attenuates

  20. Nerve growth factor receptor molecules in rat brain

    SciTech Connect

    Taniuchi, M.; Schweitzer, J.B.; Johnson, E.M. Jr.

    1986-03-01

    The authors have developed a method to immunoprecipitate rat nerve growth factor (NGF) receptor proteins and have applied the method to detect NGF receptor molecules in the rat brain. Crosslinking /sup 125/I-labeled NGF to either PC12 cells or cultured rat sympathetic neurons yielded two radiolabeled molecules (90 kDa and 220 kDa) that were immunoprecipitated by monoclonal antibody 192-IgG. Further, 192-IgG precipitated two radiolabeled proteins, with the expected sizes (80 kDa and 210 kDa) of noncrosslinked NGF receptor components, from among numerous surface-iodinated PC12 cell proteins. These results demonstrate the specific immunoprecipitation of NGF receptor molecules by 192-IgG. They applied the /sup 125/I-NGF crosslinking and 192-IgG-mediated immunoprecipitation procedures to plasma membrane preparations of rat brain: NGF receptor molecules of the same molecular masses as the peripheral receptor components were consistently detected in all regions and in preparations from whole brains. Removal of the peripheral sympathetic innervation of the brain did not eliminate these NGF receptor proteins, indicating that the receptor is endogenous to central nervous system tissues. They also observed retrograde transport of /sup 125/I-labeled 192-IgG from the parietal cortex to the nucleus basalis and from the hippocampus to the nucleus of the diagonal band of Broca and the medial septal nucleus. These findings demonstrate the presence in brain of NGF receptor molecules indistinguishable from those of the peripheral nervous system.

  1. Determination of boron distribution in rat's brain, kidney and liver.

    PubMed

    Pazirandeh, Ali; Jameie, Behnam; Zargar, Maysam

    2009-07-01

    To determine relative boron distribution in rat's brain, liver and kidney, a mixture of boric acid and borax, was used. After transcardial injection of the solution, the animals were sacrificed and the brain, kidney and liver were removed. The coronal sections of certain areas of the brain were prepared by freezing microtome. The slices were sandwiched within two pieces of CR-39. The samples were bombarded in a thermal neutron field of the TRR pneumatic facility. The alpha tracks are registered on CR-39 after being etched in NaOH. The boron distribution was determined by counting these alpha tracks CR-39 plastics. The distribution showed non-uniformity in brain, liver and kidney. PMID:19375929

  2. Correlation Between Subacute Sensorimotor Deficits and Brain Edema in Rats after Surgical Brain Injury.

    PubMed

    McBride, Devin W; Wang, Yuechun; Adam, Loic; Oudin, Guillaume; Louis, Jean-Sébastien; Tang, Jiping; Zhang, John H

    2016-01-01

    No matter how carefully a neurosurgical procedure is performed, it is intrinsically linked to postoperative deficits resulting in delayed healing caused by direct trauma, hemorrhage, and brain edema, termed surgical brain injury (SBI). Cerebral edema occurs several hours after SBI and is a major contributor to patient morbidity, resulting in increased postoperative care. Currently, the correlation between functional recovery and brain edema after SBI remains unknown. Here we examine the correlation between neurological function and brain water content in rats 42 h after SBI. SBI was induced in male Sprague-Dawley rats via frontal lobectomy. Twenty-four hours post-ictus animals were subjected to four neurobehavior tests: composite Garcia neuroscore, beam walking test, corner turn test, and beam balance test. Animals were then sacrificed for right-frontal brain water content measurement via the wet-dry method. Right-frontal lobe brain water content was found to significantly correlate with neurobehavioral deficits in the corner turn and beam balance tests: the number of left turns (percentage of total turns) for the corner turn test and distance traveled for the beam balance test were both inversely proportional with brain water content. No correlation was observed for the composite Garcia neuroscore or the beam walking test. PMID:26463968

  3. Brain-targeted angiotensin-converting enzyme 2 overexpression attenuates neurogenic hypertension by inhibiting cyclooxygenase-mediated inflammation.

    PubMed

    Sriramula, Srinivas; Xia, Huijing; Xu, Ping; Lazartigues, Eric

    2015-03-01

    Overactivity of the renin-angiotensin system, oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that angiotensin-converting enzyme 2 (ACE2) overexpression in the brain attenuates the development of deoxycorticosterone acetate-salt hypertension, a neurogenic hypertension model with enhanced brain renin-angiotensin system and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen-activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. Deoxycorticosterone acetate-salt hypertension significantly increased expression of Nox-2 (+61±5%), Nox-4 (+50±13%), and nitrotyrosine (+89±32%) and reduced activity of the antioxidant enzymes, catalase (-29±4%) and superoxide dismutase (-31±7%), indicating increased oxidative stress in the brain of nontransgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. Deoxycorticosterone acetate-salt-induced reduction of neuronal nitric oxide synthase expression (-26±7%) and phosphorylated endothelial nitric oxide synthase/total endothelial nitric oxide synthase (-30±3%), and enhanced phosphorylation of protein kinase B and extracellular signal-regulated kinase 1/2 in the paraventricular nucleus, were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the paraventricular nucleus. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuroinflammation, ultimately attenuating Deoxycorticosterone acetate-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuroinflammation, improves antioxidant and nitric oxide signaling, and

  4. Ranolazine attenuated heightened plasma norepinephrine and B-Type natriuretic peptide-45 in improving cardiac function in rats with chronic ischemic heart failure.

    PubMed

    Feng, Guangqiu; Yang, Yu; Chen, Juan; Wu, Zhiyong; Zheng, Yin; Li, Wei; Dai, Wenxin; Guan, Pin; Zhong, Chunrong

    2016-01-01

    As a new anti-anginal agent, ranolazinehas been shown to play a cardioprotective role in regulating myocardial ischemic injury. Given that plasma norepinephrine (NE) and brain natriuretic peptide (BNP, also termed B-type natriuretic peptide-45 in rats) are considered neuron-hormones to indicate heart failure progression. This study aims to examine effects of ranolazine on plasma NE and BNP-45 of rats with chronic ischemic heart failure (CHF). CHF was induced by myocardial infarction following ligation of a left anterior descending artery in adult Sprague-Dawley rats. We hypothesized that ranolazine attenuates the elevated levels of NE and BNP-45 observed in CHF rats thereby leading to improvement of the left ventricular function. Results showed that levels of plasma NE and BNP-45 were increased in CHF rats 6-8 weeks after ligation of the coronary artery. Our data demonstrate for the first time that ranolazine significantly attenuated the augmented NE and BNP-45 induced by CHF (P<0.05 vs. saline control). In addition, a liner relation was observed between NE/BNP-45levels and left ventricular fractional shortening as indication of left ventricular function (r=0.91 and P<0.01 for NE; and r=0.93 and P<0.01 for BNP-45) after administration of ranolazine. In conclusion, CHF increases the expression of NE and BNP-45 in peripheral circulation and these changes are related to the left ventricular function. Ranolazine improves the left ventricular function likely by decreasing heightened NE and BNP-45 induced by CHF. Therefore, our data indicate the role played by ranolazine in improving cardiac function in rats with CHF. PMID:27158417

  5. Ranolazine attenuated heightened plasma norepinephrine and B-Type natriuretic peptide-45 in improving cardiac function in rats with chronic ischemic heart failure

    PubMed Central

    Feng, Guangqiu; Yang, Yu; Chen, Juan; Wu, Zhiyong; Zheng, Yin; Li, Wei; Dai, Wenxin; Guan, Pin; Zhong, Chunrong

    2016-01-01

    As a new anti-anginal agent, ranolazinehas been shown to play a cardioprotective role in regulating myocardial ischemic injury. Given that plasma norepinephrine (NE) and brain natriuretic peptide (BNP, also termed B-type natriuretic peptide-45 in rats) are considered neuron-hormones to indicate heart failure progression. This study aims to examine effects of ranolazine on plasma NE and BNP-45 of rats with chronic ischemic heart failure (CHF). CHF was induced by myocardial infarction following ligation of a left anterior descending artery in adult Sprague-Dawley rats. We hypothesized that ranolazine attenuates the elevated levels of NE and BNP-45 observed in CHF rats thereby leading to improvement of the left ventricular function. Results showed that levels of plasma NE and BNP-45 were increased in CHF rats 6-8 weeks after ligation of the coronary artery. Our data demonstrate for the first time that ranolazine significantly attenuated the augmented NE and BNP-45 induced by CHF (P<0.05 vs. saline control). In addition, a liner relation was observed between NE/BNP-45levels and left ventricular fractional shortening as indication of left ventricular function (r=0.91 and P<0.01 for NE; and r=0.93 and P<0.01 for BNP-45) after administration of ranolazine. In conclusion, CHF increases the expression of NE and BNP-45 in peripheral circulation and these changes are related to the left ventricular function. Ranolazine improves the left ventricular function likely by decreasing heightened NE and BNP-45 induced by CHF. Therefore, our data indicate the role played by ranolazine in improving cardiac function in rats with CHF. PMID:27158417

  6. Methylphenidate attenuates limbic brain inhibition after cocaine-cues exposure in cocaine abusers.

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Tomasi, D.; Telang, F.; Fowler, J.S.; Pradhan, K.; Jayne, M.; Logan, J.; Goldstein, R.Z.; Alia-Klein, N.; Wong, C.T.

    2010-07-01

    Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and {sup 18}FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2-5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic

  7. PARP-1 Inhibition Attenuates Neuronal Loss, Microglia Activation and Neurological Deficits after Traumatic Brain Injury

    PubMed Central

    Loane, David J.; Zhao, Zaorui; Kabadi, Shruti V.; Hanscom, Marie; Byrnes, Kimberly R.; Faden, Alan I.

    2014-01-01

    Abstract Traumatic brain injury (TBI) causes neuronal cell death as well as microglial activation and related neurotoxicity that contribute to subsequent neurological dysfunction. Poly (ADP-ribose) polymerase (PARP-1) induces neuronal cell death through activation of caspase-independent mechanisms, including release of apoptosis inducing factor (AIF), and microglial activation. Administration of PJ34, a selective PARP-1 inhibitor, reduced cell death of primary cortical neurons exposed to N-Methyl-N'-Nitro-N-Nitrosoguanidine (MNNG), a potent inducer of AIF-dependent cell death. PJ34 also attenuated lipopolysaccharide and interferon-γ-induced activation of BV2 or primary microglia, limiting NF-κB activity and iNOS expression as well as decreasing generation of reactive oxygen species and TNFα. Systemic administration of PJ34 starting as late as 24 h after controlled cortical impact resulted in improved motor function recovery in mice with TBI. Stereological analysis demonstrated that PJ34 treatment reduced the lesion volume, attenuated neuronal cell loss in the cortex and thalamus, and reduced microglial activation in the TBI cortex. PJ34 treatment did not improve cognitive performance in a Morris water maze test or reduce neuronal cell loss in the hippocampus. Overall, our data indicate that PJ34 has a significant, albeit selective, neuroprotective effect after experimental TBI, and its therapeutic effect may be from multipotential actions on neuronal cell death and neuroinflammatory pathways. PMID:24476502

  8. Stimulation of Brain AMP-Activated Protein Kinase Attenuates Inflammation and Acute Lung Injury in Sepsis

    PubMed Central

    Mulchandani, Nikhil; Yang, Weng-Lang; Khan, Mohammad Moshahid; Zhang, Fangming; Marambaud, Philippe; Nicastro, Jeffrey; Coppa, Gene F; Wang, Ping

    2015-01-01

    Sepsis and septic shock are enormous public health problems with astronomical financial repercussions on health systems worldwide. The central nervous system (CNS) is closely intertwined in the septic process but the underlying mechanism is still obscure. AMP-activated protein kinase (AMPK) is a ubiquitous energy sensor enzyme and plays a key role in regulation of energy homeostasis and cell survival. In this study, we hypothesized that activation of AMPK in the brain would attenuate inflammatory responses in sepsis, particularly in the lungs. Adult C57BL/6 male mice were treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR, 20 ng), an AMPK activator, or vehicle (normal saline) by intracerebroventricular (ICV) injection, followed by cecal ligation and puncture (CLP) at 30 min post-ICV. The septic mice treated with AICAR exhibited elevated phosphorylation of AMPKα in the brain along with reduced serum levels of aspartate aminotransferase, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), compared with the vehicle. Similarly, the expressions of TNF-α, IL-1β, keratinocyte-derived chemokine and macrophage inflammatory protein-2 as well as myeloperoxidase activity in the lungs of AICAR-treated mice were significantly reduced. Moreover, histological findings in the lungs showed improvement of morphologic features and reduction of apoptosis with AICAR treatment. We further found that the beneficial effects of AICAR on septic mice were diminished in AMPKα2 deficient mice, showing that AMPK mediates these effects. In conclusion, our findings reveal a new functional role of activating AMPK in the CNS to attenuate inflammatory responses and acute lung injury in sepsis. PMID:26252187

  9. Teriflunomide attenuates immunopathological changes in the dark agouti rat model of experimental autoimmune encephalomyelitis.

    PubMed

    Ringheim, Garth E; Lee, Lan; Laws-Ricker, Lynn; Delohery, Tomas; Liu, Li; Zhang, Donghui; Colletti, Nicholas; Soos, Timothy J; Schroeder, Kendra; Fanelli, Barbara; Tian, Nian; Arendt, Christopher W; Iglesias-Bregna, Deborah; Petty, Margaret; Ji, Zhongqi; Qian, George; Gaur, Rajula; Weinstock, Daniel; Cavallo, Jean; Telsinskas, Juventas; McMonagle-Strucko, Kathleen

    2013-01-01

    Teriflunomide is an oral disease-modifying therapy recently approved in several locations for relapsing-remitting multiple sclerosis. To gain insight into the effects of teriflunomide, immunocyte population changes were measured during progression of experimental autoimmune encephalomyelitis in Dark Agouti rats. Treatment with teriflunomide attenuated levels of spinal cord-infiltrating T cells, natural killer cells, macrophages, and neutrophils. Teriflunomide also mitigated the disease-induced changes in immune cell populations in the blood and spleen suggesting an inhibitory effect on pathogenic immune responses. PMID:24198809

  10. DPP4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption.

    PubMed

    Pipatpiboon, Noppamas; Pintana, Hiranya; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2013-03-01

    High-fat diet (HFD) consumption has been demonstrated to cause peripheral and neuronal insulin resistance, and brain mitochondrial dysfunction in rats. Although the dipeptidyl peptidase-4 inhibitor, vildagliptin, is known to improve peripheral insulin sensitivity, its effects on neuronal insulin resistance and brain mitochondrial dysfunction caused by a HFD are unknown. We tested the hypothesis that vildagliptin prevents neuronal insulin resistance, brain mitochondrial dysfunction, learning and memory deficit caused by HFD. Male rats were divided into two groups to receive either a HFD or normal diet (ND) for 12 weeks, after which rats in each group were fed with either vildagliptin (3 mg/kg/day) or vehicle for 21 days. The cognitive function was tested by the Morris Water Maze prior to brain removal for studying neuronal insulin receptor (IR) and brain mitochondrial function. In HFD rats, neuronal insulin resistance and brain mitochondrial dysfunction were demonstrated, with impaired learning and memory. Vildagliptin prevented neuronal insulin resistance by restoring insulin-induced long-term depression and neuronal IR phosphorylation, IRS-1 phosphorylation and Akt/PKB-ser phosphorylation. It also improved brain mitochondrial dysfunction and cognitive function. Vildagliptin effectively restored neuronal IR function, increased glucagon-like-peptide 1 levels and prevented brain mitochondrial dysfunction, thus attenuating the impaired cognitive function caused by HFD.

  11. Inhibition of monoacylglycerol lipase attenuates vomiting in Suncus murinus and 2-arachidonoyl glycerol attenuates nausea in rats

    PubMed Central

    Sticht, Martin A; Long, Jonathan Z; Rock, Erin M; Limebeer, Cheryl L; Mechoulam, Raphael; Cravatt, Benjamin F; Parker, Linda A

    2012-01-01

    BACKGROUND AND PURPOSE To evaluate the role of 2-arachidonoyl glycerol (2AG) in the regulation of nausea and vomiting using animal models of vomiting and of nausea-like behaviour (conditioned gaping). EXPERIMENTAL APPROACH Vomiting was assessed in shrews (Suncus murinus), pretreated with JZL184, a selective monoacylglycerol lipase (MAGL) inhibitor which elevates endogenous 2AG levels, 1 h before administering the emetogenic compound, LiCl. Regulation of nausea-like behaviour in rats by exogenous 2AG or its metabolite arachidonic acid (AA) was assessed, using the conditioned gaping model. The role of cannabinoid CB1 receptors, CB2 receptors and cyclooxygenase (COX) inhibition in suppression of vomiting or nausea-like behaviour was assessed. KEY RESULTS JZL184 dose-dependently suppressed vomiting in shrews, an effect prevented by pretreatment with the CB1 receptor inverse agonist/antagonist, AM251. In shrew brain tissue, JZL184 inhibited MAGL activity in vivo. In rats, 2AG suppressed LiCl-induced conditioned gaping but this effect was not prevented by AM251 or the CB2 receptor antagonist, AM630. Instead, the COX inhibitor, indomethacin, prevented suppression of conditioned gaping by 2AG or AA. However, when rats were pretreated with a high dose of JZL184 (40 mg·kg−1), suppression of gaping by 2AG was partially reversed by AM251. Suppression of conditioned gaping was not due to interference with learning because the same dose of 2AG did not modify the strength of conditioned freezing to a shock-paired tone. CONCLUSIONS AND IMPLICATIONS Our results suggest that manipulations that elevate 2AG may have anti-emetic or anti-nausea potential. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21470205

  12. Differential expression of sirtuins in the aging rat brain.

    PubMed

    Braidy, Nady; Poljak, Anne; Grant, Ross; Jayasena, Tharusha; Mansour, Hussein; Chan-Ling, Tailoi; Smythe, George; Sachdev, Perminder; Guillemin, Gilles J

    2015-01-01

    Although there are seven mammalian sirtuins (SIRT1-7), little is known about their expression in the aging brain. To characterize the change(s) in mRNA and protein expression of SIRT1-7 and their associated proteins in the brain of "physiologically" aged Wistar rats. We tested mRNA and protein expression levels of rat SIRT1-7, and the levels of associated proteins in the brain using RT-PCR and western blotting. Our data shows that SIRT1 expression increases with age, concurrently with increased acetylated p53 levels in all brain regions investigated. SIRT2 and FOXO3a protein levels increased only in the occipital lobe. SIRT3-5 expression declined significantly in the hippocampus and frontal lobe, associated with increases in superoxide and fatty acid oxidation levels, and acetylated CPS-1 protein expression, and a reduction in MnSOD level. While SIRT6 expression declines significantly with age acetylated H3K9 protein expression is increased throughout the brain. SIRT7 and Pol I protein expression increased in the frontal lobe. This study identifies previously unknown roles for sirtuins in regulating cellular homeostasis and healthy aging. PMID:26005404

  13. 5,7-DHT-induced hippocampal 5-HT depletion attenuates behavioural deficits produced by 192 IgG-saporin lesions of septal cholinergic neurons in the rat.

    PubMed

    Lehmann, Olivia; Bertrand, Fabrice; Jeltsch, Hélène; Morer, Martine; Lazarus, Christine; Will, Bruno; Cassel, Jean-Christophe

    2002-06-01

    Adult Long-Evans male rats sustained injections of 5,7-dihydroxytryptamine into the fimbria-fornix (2.5 microg/side) and the cingular bundle (1.5 microg/side) and/or to intraseptal injections of 192 IgG-saporin (0.4 microg/side) in order to deprive the hippocampus of its serotonergic and cholinergic innervations, respectively. Sham-operated rats were used as controls. The rats were tested for locomotor activity (postoperative days 18, 42 and 65), spontaneous T-maze alternation (days 20-29), beam-walking sensorimotor (days 34-38), water maze (days 53-64) and radial maze (days 80-133) performances. The cholinergic lesions, which decreased the hippocampal concentration of ACh by about 65%, induced nocturnal hyperlocomotion, reduced T-maze alternation, impaired reference-memory in the water maze and working-memory in the radial maze, but had no effect on beam-walking scores and working-memory in the water maze. The serotonergic lesions, which decreased the serotonergic innervation of the hippocampus by about 55%, failed to induce any behavioural deficit. In the group of rats given combined lesions, all deficits produced by the cholinergic lesions were observed, but the nocturnal hyperlocomotion and the working-memory deficits in the radial maze were attenuated significantly. These results suggest that attenuation of the serotonergic tone in the hippocampus may compensate for some dysfunctions subsequent to the loss of cholinergic hippocampal inputs. This observation is in close concordance with data showing that a reduction of the serotonergic tone, by pharmacological activation of somatodendritic 5-HT(1A) receptors on raphe neurons, attenuates the cognitive disturbances produced by the intrahippocampal infusion of the antimuscarinic drug, scopolamine. This work has been presented previously [Serotonin Club/Brain Research Bulletin conference, Serotonin: From Molecule to the Clinic (satellite to the Society for Neuroscience Meeting, New Orleans, USA, November 2-3, 2000

  14. Spectral and lifetime domain measurements of rat brain tumours

    NASA Astrophysics Data System (ADS)

    Abi Haidar, D.; Leh, B.; Allaoua, K.; Genoux, A.; Siebert, R.; Steffenhagen, M.; Peyrot, D.; Sandeau, N.; Vever-Bizet, C.; Bourg-Heckly, G.; Chebbi, I.; Collado-Hilly, M.

    2012-02-01

    During glioblastoma surgery, delineation of the brain tumour margins remains difficult especially since infiltrated and normal tissues have the same visual appearance. This problematic constitutes our research interest. We developed a fibre-optical fluorescence probe for spectroscopic and time domain measurements. First measurements of endogenous tissue fluorescence were performed on fresh and fixed rat tumour brain slices. Spectral characteristics, fluorescence redox ratios and fluorescence lifetime measurements were analysed. Fluorescence information collected from both, lifetime and spectroscopic experiments, appeared promising for tumour tissue discrimination. Two photon measurements were performed on the same fixed tissue. Different wavelengths are used to acquire two-photon excitation-fluorescence of tumorous and healthy sites.

  15. Epigallocatechin-3-Gallate (EGCG) Attenuates Traumatic Brain Injury by Inhibition of Edema Formation and Oxidative Stress.

    PubMed

    Zhang, Bo; Wang, Bing; Cao, Shuhua; Wang, Yongqiang

    2015-11-01

    Traumatic brain injury (TBI) is a major cause of mortality and long-term disability, which can decrease quality of life. In spite of numerous studies suggesting that Epigallocatechin-3-gallate (EGCG) has been used as a therapeutic agent for a broad range of disorders, the effect of EGCG on TBI remains unknown. In this study, a weight drop model was established to evaluate the therapeutic potential of EGCG on TBI. Rats were administered with 100 mg/kg EGCG or PBS intraperitoneally. At different times following trauma, rats were sacrificed for analysis. It was found that EGCG (100 mg/kg, i.p.) treatment significantly reduced brain water content and vascular permeability at 12, 24, 48, 72 hour after TBI. Real-time PCR results revealed that EGCG inhibited TBI-induced IL-1β and TNF-α mRNA expression. Importantly, CD68 mRNA expression decreasing in the brain suggested that EGCG inhibited microglia activation. Western blotting and immunohistochemistry results showed that administering of EGCG significantly inhibited the levels of aquaporin-4 (AQP4) and glial fibrillary acidic protein (GFAP) expression. TBI-induced oxidative stress was remarkably impaired by EGCG treatment, which elevated the activities of SOD and GSH-PX. Conversely, EGCG significantly reduced the contents of MDA after TBI. In addition, EGCG decreased TBI-induced NADPH oxidase activation through inhibition of p47(phox) translocation from cytoplasm to plasma membrane. These data demonstrate that EGCG treatment may be an effective therapeutic strategy for TBI and the underlying mechanism involves inhibition of oxidative stress. PMID:26557015

  16. Pentadecapeptide BPC 157 attenuates gastric lesions induced by alloxan in rats and mice.

    PubMed

    Petek, M; Sikiric, P; Anic, T; Buljat, G; Separovic, J; Stancic-Rokotov, D; Seiwerth, S; Grabarevic, Z; Rucman, R; Mikus, D; Zoricic, I; Prkacin, I; Sebecic, B; Ziger, T; Coric, V; Turkovic, B; Aralica, G; Rotkvic, I; Mise, S; Hahn, V

    1999-12-01

    A diabetogenic alloxan regimen produced lesions in all stomachs of treated animals, either rats (200 mg x kg(-1) s.c.) or mice (400 mg x kg(-1) i.p.). In control animals, the lesions, when developed (i.e. 24 h following application), appear to be quite sustained, and consistently present also after 1 or 2 weeks. The application of the pentadecapeptide BPC 157 (10 microg or 10 ng x kg(-1) i.p. coadministered together with alloxan) would significantly attenuate these lesions' appearance. This beneficial effect seems to be present in either rats or mice and in either of the tested intervals. Importantly, the beneficial effect seems to be shared by both microgram and nanogram regimens. PMID:10672996

  17. Wogonin Attenuates Hippocampal Neuronal Loss and Cognitive Dysfunction in Trimethyltin-Intoxicated Rats

    PubMed Central

    Lee, Bombi; Sur, Bongjun; Cho, Seong-Guk; Yeom, Mijung; Shim, Insop; Lee, Hyejung; Hahm, Dae-Hyun

    2016-01-01

    We examined whether wogonin (WO) improved hippocampal neuronal activity, behavioral alterations and cognitive impairment, in rats induced by administration of trimethyltin (TMT), an organotin compound that is neurotoxic to these animals. The ability of WO to improve cognitive efficacy in the TMT-induced neurodegenerative rats was investigated using a passive avoidance test, and the Morris water maze test, and using immunohistochemistry to detect components of the acetylcholinergic system, brain-derived neurotrophic factor (BDNF), and cAMP-response element-binding protein (CREB) expression. Rats injected with TMT showed impairments in learning and memory and daily administration of WO improved memory function, and reduced aggressive behavior. Administration of WO significantly alleviated the TMT-induced loss of cholinergic immunoreactivity and restored the hippocampal expression levels of BDNF and CREB proteins and their encoding mRNAs to normal levels. These findings suggest that WO might be useful as a new therapy for treatment of various neurodegenerative diseases. PMID:27133262

  18. Progesterone inhibits vascular remodeling and attenuates monocrotaline-induced pulmonary hypertension in estrogen-deficient rats.

    PubMed

    Tofovic, P S; Zhang, X; Petrusevska, G

    2009-07-01

    (Full text is available at http://www.manu.edu.mk/prilozi). Pulmonary arterial hypertension (PH) is predominantly a disease of young females. Yet, little is known regarding the effects of female sex hormones in PH. Female rats develop less severe PH compared to male rats, and ovariectomy (OVX) exacerbates PH. Although OVX rats treated with estradiol develop less severe disease, the role of progesterone in OVX-induced exacerbation of disease has not been examined. Progesterone was shown to dilate pulmonary vessels and to inhibit proliferation of endothelial and vascular smooth muscle cells. Therefore, we hypothesized that progesterone may confer protective effects in experimental PH. A total of 30 female rats were ovariectomized and OVX rats were randomly administered either saline (OVX-Control group, n = 7), monocrotaline (60mg/kg i.p.; OVX-MCT group; n = 12), or MCT plus progesterone (30microg/kg/h via osmotic minipumps; OVX-MCT+P group; n = 11). After 32 days animals were instrumented for in situ (open chest) measurements of right ventricle (RV) peak systolic (RVSP) and end diastolic (RVEDP) pressures, and tissue samples were obtained for morphometric and histological analysis. Administration of MCT elevated RVSP (22.2 +/- 1.1 vs. 46.7 +/- 2.4 mmHg) and RVEDP (1.51 +/- 0.86 vs. 11.9+/-2.2 mmHg), increased RV/left ventricle + septum (RV/LV+S) ratio (0.256 +/- 0.010 vs. 0.582 +/- 0.033, OVX vs. OVX-MCT), and induced media hypertrophy of small size pulmonary arteries. In ovariectomized pulmonary hypertensive rats, treatment with progesterone attenuated the severity of disease (OVX-MCT+P group: RVSP = 36.6 +/- 2.3 mmHg; RV/LV+S = 0.468 +/- 0.025; RVEDP = 7.5 +/-1.5 mmHg), attenuated vascular remodeling (media % index: 28.2 +/- 1.1 vs. 34.2 +/- 1.3), and reduced mortality (9% vs. 25%; OVX-MCT+P vs. OVX-MCT). This study provides the first evidence that in estrogen-deficient rats, progesterone has protective effects in MCT-induced PH. Further evaluation of the role of

  19. Electrical stimulation of dorsal root entry zone attenuates wide-dynamic range neuronal activity in rats

    PubMed Central

    Yang, Fei; Zhang, Chen; Xu, Qian; Tiwari, Vinod; He, Shao-Qiu; Wang, Yun; Dong, Xinzhong; Vera-Portocarrero, Louis P.; Wacnik, Paul W.; Raja, Srinivasa N.; Guan, Yun

    2014-01-01

    Objectives Recent clinical studies suggest that neurostimulation at the dorsal root entry zone (DREZ) may alleviate neuropathic pain. However, the mechanisms of action for this therapeutic effect are unclear. Here, we examined whether DREZ stimulation inhibits spinal wide-dynamic-range (WDR) neuronal activity in nerve-injured rats. Materials and Methods We conducted in vivo extracellular single-unit recordings of WDR neurons in rats after an L5 spinal nerve ligation (SNL) or sham surgery. We set bipolar electrical stimulation (50 Hz, 0.2 ms, 5 min) of the DREZ at the intensity that activated only Aα/β-fibers by measuring the lowest current at which DREZ stimulation evoked a peak antidromic sciatic Aα/β-compound action potential without inducing an Aδ/C-compound action potential (i.e., Ab1). Results The elevated spontaneous activity rate of WDR neurons in SNL rats [n=25; data combined from day 14–16 (n = 15) and day 45–75 post-SNL groups (n=10)] was significantly decreased from the pre-stimulation level (p<0.01) at 0–15 min and 30–45 min post-stimulation. In both sham-operated (n=8) and nerve-injured rats, DREZ stimulation attenuated the C-component, but not A-component, of the WDR neuronal response to graded intracutaneous electrical stimuli (0.1–10 mA, 2 ms) applied to the skin receptive field. Further, DREZ stimulation blocked windup (a short form of neuronal sensitization) to repetitive noxious stimuli (0.5 Hz) at 0–15 min in all groups (p<0.05). Conclusions Attenuation of WDR neuronal activity may contribute to DREZ stimulation-induced analgesia. This finding supports the notion that DREZ may be a useful target for neuromodulatory control of pain. PMID:25308522

  20. Aging reduces the efficacy of estrogen substitution to attenuate cardiac hypertrophy in female spontaneously hypertensive rats.

    PubMed

    Jazbutyte, Virginija; Hu, Kai; Kruchten, Patricia; Bey, Emmanuel; Maier, Sebastian K G; Fritzemeier, Karl-Heinrich; Prelle, Katja; Hegele-Hartung, Christa; Hartmann, Rolf W; Neyses, Ludwig; Ertl, Georg; Pelzer, Theo

    2006-10-01

    Clinical trials failed to show a beneficial effect of postmenopausal hormone replacement therapy, whereas experimental studies in young animals reported a protective function of estrogen replacement in cardiovascular disease. Because these diverging results could in part be explained by aging effects, we compared the efficacy of estrogen substitution to modulate cardiac hypertrophy and cardiac gene expression among young (age 3 months) and senescent (age 24 months) spontaneously hypertensive rats (SHRs), which were sham operated or ovariectomized and injected with placebo or identical doses of 17beta-estradiol (E2; 2 microg/kg body weight per day) for 6 weeks (n=10/group). Blood pressure was comparable among sham-operated senescent and young SHRs and not altered by ovariectomy or E2 treatment among young or among senescent rats. Estrogen substitution inhibited uterus atrophy and gain of body weight in young and senescent ovariectomized SHRs, but cardiac hypertrophy was attenuated only in young rats. Cardiac estrogen receptor-alpha expression was lower in intact and in ovariectomized senescent compared with young SHRs and increased with estradiol substitution in aged rats. Plasma estradiol and estrone levels were lower not only in sham-operated but surprisingly also in E2-substituted senescent SHRs and associated with a reduction of hepatic 17beta-hydroxysteroid dehydrogenase type 1 enzyme activity, which converts weak (ie, estrone) into potent estrogens, such as E2. Aging attenuates the antihypertrophic effect of estradiol in female SHRs and is associated with profound alterations in cardiac estrogen receptor-alpha expression and estradiol metabolism. These observations contribute to explain the lower efficiency of estrogen substitution in senescent SHRs.

  1. Inflammation During Gestation Induced Spatial Memory and Learning Deficits: Attenuated by Physical Exercise in Juvenile Rats

    PubMed Central

    Thangarajan, Rajesh; Rai, Kiranmai. S.; Gopalakrishnan, Sivakumar; Perumal, Vivek

    2015-01-01

    Background Gestational infections induced inflammation (GIII) is a cause of various postnatal neurological deficits in developing countries. Such intra uterine insults could result in persistent learning-memory disabilities. There are no studies elucidating the efficacy of adolescence exercise on spatial learning- memory abilities of young adult rats pre-exposed to inflammatory insult during fetal life. Aims and Objectives The present study addresses the efficacy of physical (running) exercise during adolescent period in attenuating spatial memory deficits induced by exposure to GIII in rats. Materials and Methods Pregnant Wistar dams were randomly divided into control and lipopolysaccharide (LPS) groups, injected intra peritoneally (i.p) with saline (0.5ml) or lipopolysaccharide (LPS) (0.5mg/kg) on alternate days from gestation day 14 (GD 14) till delivery. After parturition, pups were divided into 3 groups (n=6/group) a) Sham control and LPS group divided into 2 subgroups- b) LPS and c) LPS exercise group. Running exercise was given only to LPS exercise group during postnatal days (PNDs) 30 to 60 (15min/day). Spatial learning and memory performance was assessed by Morris water maze test (MWM), on postnatal day 61 to 67 in all groups. Results Young rats pre-exposed to GIII and subjected to running exercise through juvenile period displayed significant decrease in latency to reach escape platform and spent significant duration in target quadrant in MWM test, compared to age matched LPS group. Results of the current study demonstrated that exercise through juvenile/adolescent period effectively mitigates gestational inflammation-induced cognitive deficits in young adult rats. Conclusion Inflammation during gestation impairs offspring’s spatial memory and learning abilities. Whereas, early postnatal physical exercise attenuates, to higher extent, cognitive impairment resulted from exposure to LPS induced inflammation during intrauterine growth period. PMID:26266117

  2. Low Intensity Physical Exercise Attenuates Cardiac Remodeling and Myocardial Oxidative Stress and Dysfunction in Diabetic Rats

    PubMed Central

    Gimenes, C.; Gimenes, R.; Rosa, C. M.; Xavier, N. P.; Campos, D. H. S.; Fernandes, A. A. H.; Cezar, M. D. M.; Guirado, G. N.; Cicogna, A. C.; Takamoto, A. H. R.; Okoshi, M. P.; Okoshi, K.

    2015-01-01

    We evaluated the effects of a low intensity aerobic exercise protocol on cardiac remodeling and myocardial function in diabetic rats. Wistar rats were assigned into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary diabetes (DM-Sed), and exercised diabetes (DM-Ex). Diabetes was induced by intraperitoneal injection of streptozotocin. Rats exercised for 9 weeks in treadmill at 11 m/min, 18 min/day. Myocardial function was evaluated in left ventricular (LV) papillary muscles and oxidative stress in LV tissue. Statistical analysis was given by ANOVA or Kruskal-Wallis. Echocardiogram showed diabetic groups with higher LV diastolic diameter-to-body weight ratio and lower posterior wall shortening velocity than controls. Left atrium diameter was lower in DM-Ex than DM-Sed (C-Sed: 5.73 ± 0.49; C-Ex: 5.67 ± 0.53; DM-Sed: 6.41 ± 0.54; DM-Ex: 5.81 ± 0.50 mm; P < 0.05 DM-Sed vs C-Sed and DM-Ex). Papillary muscle function was depressed in DM-Sed compared to C-Sed. Exercise attenuated this change in DM-Ex. Lipid hydroperoxide concentration was higher in DM-Sed than C-Sed and DM-Ex. Catalase and superoxide dismutase activities were lower in diabetics than controls and higher in DM-Ex than DM-Sed. Glutathione peroxidase activity was lower in DM-Sed than C-Sed and DM-Ex. Conclusion. Low intensity exercise attenuates left atrium dilation and myocardial oxidative stress and dysfunction in type 1 diabetic rats. PMID:26509175

  3. Cloning and expression of a rat brain GABA transporter

    SciTech Connect

    Guastella, J.; Czyzyk, L.; Davidson, N.; Lester, H.A. ); Nelson, N.; Nelson, H.; Miedel, M.C. ); Keynan, S.; Kanner, B.I. )

    1990-09-14

    A complementary DNA clone (designated GAT-1) encoding a transporter for the neurotransmitter {gamma}-aminobutyric acid (GABA) has been isolated from rat brain, and its functional properties have been examined in Xenopus oocytes. Oocytes injected with GAT-1 synthetic messenger RNA accumulated ({sup 3}H)GABA to levels above control values. The transporter encoded by GAT-1 has a high affinity for GABA, is sodium- and chloride-dependent, and is pharmacologically similar to neuronal GABA transporters. The GAT-1 protein shares antigenic determinants with a native rat brain GABA transporter. The nucleotide sequence of GAT-1 predicts a protein of 599 amino acids with a molecular weight of 67 kilodaltons. Hydropathy analysis of the deduced protein suggests multiple transmembrane regions, a feature shared by several cloned transporters; however, database searches indicate that GAT-1 is not homologous to any previously identified proteins. Therefore, GAT-1 appears to be a member of a previously uncharacterized family of transport molecules.

  4. Microwave effects on energy metabolism of rat brain

    SciTech Connect

    Sanders, A.P.; Schaefer, D.J.; Joines, W.T.

    1980-01-01

    Rat brain was exposed to 591-MHz, continuous-wave (CW) microwaves at 13.8 or 5.0 mW/cm2 to determine the effect on nicotinamide adenine dinucleotide, reduced (NADH), adenosine triphosphate (ATP) and creatine phosphate (CP) levels. On initiation of the in vivo microwave exposures, fluorimetrically determined NADH rapidly increased to a maximum of 4.0%-12.5% above pre-exposure control levels at one-half minute, than decreased slowly to 2% above control at three minutes, finally increasing slowly to 5% above control level at five minutes. ATP and CP assays were performed on sham- and microwave-exposed brain at each exposure time. At 13.8 mW/cm2, brain CP level was decreased an average of 39.4%, 41.1%, 18.2%, 13.1%, and 36.4% of control at exposure points one-half, one, two three, and five minutes, respectively, and brain ATP concentration was decreased an average of 25.2%, 15.2%, 17.8%, 7.4%, and 11.2% of control at the corresponding exposure periods. ATP and CP levels of rat brain exposed to 591-MHz cw microwaves at 5mW/cm2 for one-half and one minute were decreased significantly below control levels at these exposure times, but were not significantly different from the 13.8 mW/cm2 exposures. For all exposures, rectal temperature remained constant. Heat loss through the skull aperture caused brain temperature to decrease during the five-minute exposures. This decrease was the same in magnitude for experimental and control subjects. Changes in NADH, ATP, and CP levels during microwave exposure cannot be attributed to general tissue hyperthermia. The data support the hypothesis that microwave exposure inhibits mitochondrial electron transport chain function, which results in decreased ATP and CP levels in brain.

  5. The neutrophil elastase inhibitor, sivelestat, attenuates sepsis-related kidney injury in rats

    PubMed Central

    Li, Guofu; Jia, Jia; Ji, Kaiqiang; Gong, Xiaoying; Wang, Rui; Zhang, Xiaoli; Wang, Haiyuan; Zang, Bin

    2016-01-01

    Sepsis-induced acute kidney injury (AKI) represents a major cause of mortality in intensive care units. Sivelestat, a selective inhibitor of neutrophil elastase (NE), can attenuate sepsis-related acute lung injury. However, whether sivelestat can preserve kidney function during sepsis remains unclear. In this study, we thus examined the effects of sivelestat on sepsis-related AKI. Cecal ligation and puncture (CLP) was performed to induce multiple bacterial infection in male Sprague-Dawley rats, and subsequently, 50 or 100 mg/kg sivelestat were administered by intraperitoneal injection immediately after the surgical procedure. In the untreated rats with sepsis, the mean arterial pressure (MAP) and glomerular filtration rate (GFR) were decreased, whereas serum blood urea nitrogen (BUN) and neutrophil gelatinase-associated lipocalin (NGAL) levels were increased. We found that sivelestat promoted the survival of the rats with sepsis, restored the impairment of MAP and GFR, and inhibited the increased BUN and NGAL levels; specifically, the higher dose was more effective. In addition, sivelestat suppressed the CLP-induced macrophage infiltration, the overproduction of pro-inflammatory mediators (tumor necrosis factor-α, interleukin-1β, high-mobility group box 1 and inducible nitric oxide synthase) and serine/threonine kinase (Akt) pathway activation in the rats. Collectively, our data suggest that the inhibition of NE activity with the inhibitor, sivelestat, is beneficial in ameliorating sepsis-related kidney injury. PMID:27430552

  6. L-arginine in combination with sildenafil potentiates the attenuation of hypoxic pulmonary hypertension in rats.

    PubMed

    Al-Hiti, H; Chovanec, M; Melenovský, V; Vajnerová, O; Baňasová, A; Kautzner, J; Herget, J

    2013-01-01

    Chronic hypoxia induces an increased production of nitric oxide (NO) in pulmonary prealveolar arterioles. Bioavailability of the NO in the pulmonary vessels correlates with concentration of L-arginine as well as activity of phosphodiesterase-5 enzyme (PDE-5). We tested a hypothesis whether a combination of L-arginine and PDE-5 inhibitor sildenafil has an additive effect in reduction of the hypoxic pulmonary hypertension (HPH) in rats. Animals were exposed to chronic normobaric hypoxia for 3 weeks. In the AH group, rats were administered L-arginine during chronic hypoxic exposure. In the SH group, rats were administered sildenafil during chronic hypoxic exposure. In the SAH group, rats were treated by the combination of L-arginine as well as sildenafil during exposure to chronic hypoxia. Mean PAP, structural remodeling of peripheral pulmonary arterioles (%DL) and RV/LV+S ratio was significantly decreased in the SAH group compared to hypoxic controls even decreased compared to the AH and the SH groups in first two measured parameters. Plasmatic concentration of cGMP and NOx were significantly lower in the SAH group compared to hypoxic controls. We demonstrate that NO synthase substrate L-arginine and phosphodiesterase-5 inhibitor sildenafil administered in combination are more potent in attenuation of the HPH compared to a treatment by substances given alone. PMID:23869884

  7. Procaine Attenuates Pain Behaviors of Neuropathic Pain Model Rats Possibly via Inhibiting JAK2/STAT3

    PubMed Central

    Li, Donghua; Yan, Yurong; Yu, Lingzhi; Duan, Yong

    2016-01-01

    Neuropathic pain (NPP) is the main culprit among chronic pains affecting the normal life of patients. Procaine is a frequently-used local anesthesia with multiple efficacies in various diseases. However, its role in modulating NPP has not been reported yet. This study aims at uncovering the role of procaine in NPP. Rats were pretreated with procaine by intrathecal injection. Then NPP rat model was induced by sciatic nerve chronic compression injury (CCI) and behavior tests were performed to analyze the pain behaviors upon mechanical, thermal and cold stimulations. Spinal expression of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) was detected by qRT-PCR and western blot. JAK2 was also overexpressed in procaine treated model rats for behavior tests. Results showed that procaine pretreatment improved the pain behaviors of model rats upon mechanical, thermal and cold stimulations, with the best effect occurring on the 15th day post model construction (p<0.05). Procaine also inhibited JAK2 and STAT3 expression in both mRNA (p<0.05) and protein levels. Overexpression of JAK2 increased STAT3 level and reversed the improvement effects of procaine in pain behaviors (p<0.01). These findings indicate that procaine is capable of attenuating NPP, suggesting procaine is a potential therapeutic strategy for treating NPP. Its role may be associated with the inhibition on JAK2/STAT3 signaling. PMID:27530113

  8. Angelica Sinensis attenuates inflammatory reaction in experimental rat models having spinal cord injury.

    PubMed

    Xu, Jun; E, Xiao-Qiang; Liu, Hui-Yong; Tian, Jun; Yan, Jing-Long

    2015-01-01

    This study was aimed to evaluate the effect of Angelica Sinensis on experimental rat models in which spinal cord injury was induced by studying different factors. Different factors causing inflammation play a key role in pathophysiology of SCI. Here three groups of rats (n=15, each was used). These included a sham control group where only laminectomy was performed, SCI group where SCI was induced and AS/SCI group where although SCI was induced but Angelica Sinensis was also administered to study its effect and draw a comparison with control. The expression of I-kBα and NF-kB p65 was also studied using western blotting and after recording optical density (OD) values of western blots. MPO activity was used to measure the effect of 20 mg/kg Angelica Sinensis. The levels of proinflammatory cytokines TNF-α, IL-1β and IL-6 were also studied. As compared with SCI group and sham control it was observed that Angelica Sinensis significantly reduced the expression of I-kBα and NF-kB p65, (P<0.05), while MPO activity was also significantly reduced. Proinflammatory cytokine level was also reduced in treated group as compared to both other groups. On the basis of this study we concluded that the use of 20 mg/kg Angelica Sinensis in rat models can attenuate the secondary damage caused by SCI and thus help in controlling the pathology of SCI in rats.

  9. Identification of rat brain opioid (enkephalin) receptor by photoaffinity labeling

    SciTech Connect

    Yeung, C.W.

    1986-01-01

    A photoreactive, radioactive enkephalin derivative was prepared and purified by high performance liquid chromatography. Rat brain and spinal cord plasma membranes were incubated with this radioiodinated photoprobe and were subsequently photolysed. Autoradiography of the sodium dodecyl sulfate gel electrophoresis of the solubilized and reduced membranes showed that a protein having an apparent molecular weight of 46,000 daltons was specifically labeled, suggesting that this protein may be the opioid (enkephalin) receptor.

  10. Oxidative changes in brain of aniline-exposed rats

    SciTech Connect

    Kakkar, P.; Awasthi, S.; Viswanathan, P.N. )

    1992-10-01

    Oxidative stress in rat cerebellum, cortex and brain stem after a short-term high-dose exposure to aniline vapors under conditions akin to those after major chemical accidents, was studied. Significant increases in superoxide dismutase isozyme activities and formation of thiobarbituric acid reactive material along with depletion of ascorbic acid and non-protein sulfhydryl content suggest impairment of antioxidant defenses 24 h after single exposure to 15,302 ppm aniline vapors for 10 min.

  11. Multiple opiate receptors in the brain of spontaneously hypertensive rats

    SciTech Connect

    Das, S.; Bhargava, H.N.

    1986-03-01

    The characteristics of ..mu.., delta and kappa -opiate receptors in the brain of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats were determined using the receptor binding assays. The ligands used were /sup 3/H-naltrexone (..mu..), /sup 3/H-ethylketocyclazocine (EKC, kappa) and /sup 3/H-Tyr-D-Ser-Gly-Phe-Leu-Thr (DSTLE, delta). Since EKC binds to ..mu.. and delta receptors in addition to kappa, the binding was done in the presence of 100 nM each of DAGO and DADLE to suppress ..mu.. and delta sites, respectively. All three ligands bound to brain membranes of WKY rats at a single high affinity site with the following B/sub max/ (fmol/mg protein) and K/sub d/ (nM) values: /sup 3/H-naltrexone (130.5; 0.43) /sup 3/H-EKC (19.8, 1.7) and /sup 3/H-DSTLE (139, 2.5). The binding of /sup 3/H-naltrexone and /sup 3/H-DSTLE in the brain of WKY and SH did not differ. A consistent increase (22%) in B/sub max/ of /sup 3/H-EKC was found in SHR compared to WKY rats. However, the K/sub d/ values did not differ. The increase in B/sub max/ was due to increases in hypothalamus and cortex. It is concluded that SH rats have higher density of kappa-opiate receptors, particularly in hypothalamus and cortex, compared to WKY rats, and that kappa-opiate receptors may be involved in the pathophysiology of hypertension.

  12. Environmental enrichment attenuates nicotine behavioral sensitization in male and female rats.

    PubMed

    Hamilton, Kristen R; Elliott, Brenda M; Berger, Sarah Shafer; Grunberg, Neil E

    2014-08-01

    Environmental enrichment decreases nicotine reactivity in male rats, but these effects have not been examined in females. This research was conducted to examine the effects of enrichment on nicotine behavioral sensitization (i.e., nicotine reactivity) in male and female rats. One hundred forty-four Sprague-Dawley rats (72 male, 72 female) were raised in isolation, social enrichment (groups of three rats [SE]), or combined physical enrichment and social enrichment (groups of three rats with novel toys [PESE]) housing conditions. As adults, they received daily subcutaneous injections of saline or nicotine (0.1, 0.5, or 1.0 mg/kg) for 12 days; locomotor activity was measured on drug days 1, 5, 9, and 12. Before drug administration, PESE and SE decreased activity in males; only PESE decreased activity in females, F(2, 120) = 6.51, p < .01. In the drug phase, nicotine behavioral sensitization occurred, F(8.46, 341.04) = 20.71, p < .001, and was greater in females than males, F(8.340, 319.715) = 2.072, p < .05. Enrichment decreased nicotine behavioral sensitization in both sexes, F(16.91, 341.04) = 2.48, p < .01. In conclusion, nicotine behavioral sensitization occurred in male and female rats and was attenuated by environmental enrichment. This research has implications for treatment and prevention strategies in humans. Programs that incorporate aspects of social and environmental stimulation may have enhanced effectiveness in preventing and reducing cigarette smoking and may have implications for relapse prevention. PMID:24956172

  13. Environmental enrichment attenuates nicotine behavioral sensitization in male and female rats.

    PubMed

    Hamilton, Kristen R; Elliott, Brenda M; Berger, Sarah Shafer; Grunberg, Neil E

    2014-08-01

    Environmental enrichment decreases nicotine reactivity in male rats, but these effects have not been examined in females. This research was conducted to examine the effects of enrichment on nicotine behavioral sensitization (i.e., nicotine reactivity) in male and female rats. One hundred forty-four Sprague-Dawley rats (72 male, 72 female) were raised in isolation, social enrichment (groups of three rats [SE]), or combined physical enrichment and social enrichment (groups of three rats with novel toys [PESE]) housing conditions. As adults, they received daily subcutaneous injections of saline or nicotine (0.1, 0.5, or 1.0 mg/kg) for 12 days; locomotor activity was measured on drug days 1, 5, 9, and 12. Before drug administration, PESE and SE decreased activity in males; only PESE decreased activity in females, F(2, 120) = 6.51, p < .01. In the drug phase, nicotine behavioral sensitization occurred, F(8.46, 341.04) = 20.71, p < .001, and was greater in females than males, F(8.340, 319.715) = 2.072, p < .05. Enrichment decreased nicotine behavioral sensitization in both sexes, F(16.91, 341.04) = 2.48, p < .01. In conclusion, nicotine behavioral sensitization occurred in male and female rats and was attenuated by environmental enrichment. This research has implications for treatment and prevention strategies in humans. Programs that incorporate aspects of social and environmental stimulation may have enhanced effectiveness in preventing and reducing cigarette smoking and may have implications for relapse prevention.

  14. Severe Obesity Shifts Metabolic Thresholds but Does Not Attenuate Aerobic Training Adaptations in Zucker Rats

    PubMed Central

    Rosa, Thiago S.; Simões, Herbert G.; Rogero, Marcelo M.; Moraes, Milton R.; Denadai, Benedito S.; Arida, Ricardo M.; Andrade, Marília S.; Silva, Bruno M.

    2016-01-01

    Severe obesity affects metabolism with potential to influence the lactate and glycemic response to different exercise intensities in untrained and trained rats. Here we evaluated metabolic thresholds and maximal aerobic capacity in rats with severe obesity and lean counterparts at pre- and post-training. Zucker rats (obese: n = 10, lean: n = 10) were submitted to constant treadmill bouts, to determine the maximal lactate steady state, and an incremental treadmill test, to determine the lactate threshold, glycemic threshold and maximal velocity at pre and post 8 weeks of treadmill training. Velocities of the lactate threshold and glycemic threshold agreed with the maximal lactate steady state velocity on most comparisons. The maximal lactate steady state velocity occurred at higher percentage of the maximal velocity in Zucker rats at pre-training than the percentage commonly reported and used for training prescription for other rat strains (i.e., 60%) (obese = 78 ± 9% and lean = 68 ± 5%, P < 0.05 vs. 60%). The maximal lactate steady state velocity and maximal velocity were lower in the obese group at pre-training (P < 0.05 vs. lean), increased in both groups at post-training (P < 0.05 vs. pre), but were still lower in the obese group at post-training (P < 0.05 vs. lean). Training-induced increase in maximal lactate steady state, lactate threshold and glycemic threshold velocities was similar between groups (P > 0.05), whereas increase in maximal velocity was greater in the obese group (P < 0.05 vs. lean). In conclusion, lactate threshold, glycemic threshold and maximal lactate steady state occurred at similar exercise intensity in Zucker rats at pre- and post-training. Severe obesity shifted metabolic thresholds to higher exercise intensity at pre-training, but did not attenuate submaximal and maximal aerobic training adaptations. PMID:27148063

  15. Increasing or stabilizing renal epoxyeicosatrienoic acid production attenuates abnormal renal function and hypertension in obese rats.

    PubMed

    Huang, Hui; Morisseau, Christophe; Wang, JingFeng; Yang, Tianxin; Falck, John R; Hammock, Bruce D; Wang, Mong-Heng

    2007-07-01

    Since epoxyeicosatrienoic acids (EETs) affect sodium reabsorption in renal tubules and dilate the renal vasculature, we have examined their effects on renal hemodynamics and sodium balance in male rats fed a high-fat (HF) diet by fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist and an inducer of cytochrome P-450 (CYP) epoxygenases; by N-methanesulfonyl-6-(2-proparyloxyphenyl)hexanamide (MSPPOH), a selective EET biosynthesis inhibitor; and by 12-(3-adamantane-1-yl-ureido)dodecanoic acid (AUDA), a selective inhibitor of soluble epoxide hydrolase. In rats treated with fenofibrate (30 mg.kg(-1).day(-1) ig) or AUDA (50 mg/l in drinking water) for 2 wk, mean arterial pressure, renal vascular resistance, and glomerular filtration rate were lower but renal blood flow was higher than in vehicle-treated control rats. In addition, fenofibrate and AUDA decreased cumulative sodium balance in the HF rats. Treatment with MSPPOH (20 mg.kg(-1).day(-1) iv) + fenofibrate for 2 wk reversed renal hemodynamics and sodium balance to the levels in control HF rats. Moreover, fenofibrate caused a threefold increase in renal cortical CYP epoxygenase activity, whereas the fenofibrate-induced elevation of this activity was attenuated by MSPPOH. Western blot analysis showed that fenofibrate induced the expression of CYP epoxygenases in renal cortex and microvessels and that the induction effect of fenofibrate was blocked by MSPPOH. These results demonstrate that the fenofibrate-induced increase of CYP epoxygenase expression and the AUDA-induced stabilization of EET production in the kidneys cause renal vascular dilation and reduce sodium retention, contributing to the improvement of abnormal renal hemodynamics and hypertension in HF rats.

  16. Cytosolic rat brain synapsin I is a diacylglycerol kinase.

    PubMed Central

    Kahn, D W; Besterman, J M

    1991-01-01

    The phosphorylation of diacylglycerol (DG), a reaction catalyzed by DG kinase, may be critical in the termination of effector-induced signals mediated by protein kinase C. Synapsin I is a principal target of intracellular protein kinases and is thought to be involved in the release of neurotransmitter from axon terminals. We present several lines of evidence which indicate that rat brain synapsin, in addition to this role, may function as a DG kinase. Purified rat brain DG kinase was digested with trypsin, which produced three major fragments whose sequence was identical to three regions in synapsin I. Using a rabbit anti-synapsin polyclonal antiserum, the elution profile of synapsin immunoreactivity coincided exactly with that of DG kinase activity in column fractions from the final step in the DG kinase purification procedure. As is the case with synapsin, the purified enzyme was a strongly basic protein with an isoelectric point greater than 10.0. Finally, incubating the DG kinase with highly purified bacterial collagenase, an enzyme that partially degrades the proline- and glycine-rich synapsin, resulted in the simultaneous loss of DG kinase activity and synapsin immunoreactivity. We conclude that cytosolic rat brain synapsin is capable of functioning as a DG kinase. Images PMID:1648730

  17. Gelation and fodrin purification from rat brain extracts.

    PubMed

    Levilliers, N; Péron-Renner, M; Coffe, G; Pudles, J

    1986-06-01

    Extracts from rat brain tissue have been shown to give rise to a gel which exhibits the following features. It is mainly enriched in actin and in a high-molecular-weight protein with polypeptide chains of 235 and 240 kDa, which we identified as fodrin. Tubulin is also a major component of the gel but it appears to be trapped non-specifically during the gelation process. Gelation is pH-, ionic strength- and Ca2+-concentration-dependent, and is optimal under the conditions which promote the interaction between polymerized actin and fodrin. In a similar way to that described for the purification of rat brain actin (Levilliers, N., Péron-Renner, M., Coffe, G. and Pudles, J. (1984) Biochimie 66, 531-537), we used the gelation system as a selective means of recovering fodrin from the mixture of a low-ionic-strength extract from whole rat brain and a high-ionic-strength extract of the particulate fraction. From this gel, fodrin was purified with a good yield by a simple procedure involving gel dissociation in 0.5 M KCl and depolymerization in 0.7 M KI, Bio-Gel A-15m chromatography, followed by ammonium sulfate precipitation. PMID:3707993

  18. Ketone-body utilization by homogenates of adult rat brain

    SciTech Connect

    Lopes-Cardozo, M.; Klein, W.

    1982-06-01

    The regulation of ketone-body metabolism and the quantitative importance of ketone bodies as lipid precursors in adult rat brain has been studied in vitro. Utilization of ketone bodies and of pyruvate by homogenates of adult rat brain was measured and the distribution of /sup 14/C from (3-/sup 14/C)ketone bodies among the metabolic products was analysed. The rate of ketone-body utilization was maximal in the presence of added Krebs-cycle intermediates and uncouplers of oxidative phosphorylation. The consumption of acetoacetate was faster than that of D-3-hydroxybutyrate, whereas, pyruvate produced twice as much acetyl-CoA as acetoacetate under optimal conditions. Millimolar concentrations of ATP in the presence of uncoupler lowered the consumption of ketone bodies but not of pyruvate. Indirect evidence is presented suggesting that ATP interferes specifically with the mitochondrial uptake of ketone bodies. Interconversion of ketone bodies and the accumulation of acid-soluble intermediates (mainly citrate and glutamate) accounted for the major part of ketone-body utilization, whereas only a small part was oxidized to CO/sub 2/. Ketone bodies were not incorporated into lipids or protein. We conclude that adult rat-brain homogenates use ketone bodies exclusively for oxidative purposes.

  19. Suppression by traumatic brain injury of spontaneous hemodynamic recovery from hemorrhagic shock in rats.

    PubMed

    Yuan, X Q; Wade, C E; Clifford, C B

    1991-09-01

    The effects of brain trauma on cardiovascular and endocrine responses to hemorrhage were investigated. Forty anesthetized rats were randomly assigned to one of four groups of 10 rats each: a control group (Group C): a group with induction of hemorrhage at 16.2 ml/kg/10 min (Group H); a group with fluid-percussion brain injury at a peak pressure of 1.7 atm and an impulse duration of 25 msec (Group T); and a group receiving hemorrhagic shock following brain trauma (Group TH). Group C and T rats showed no significant alterations in cardiovascular function. At the end of hemorrhage there were no significant differences between Groups TH and H in the nadirs of mean arterial blood pressure (MABP) (mean values +/- standard error of the mean: 42 +/- 2 vs. 40 +/- 4 mm Hg) and stroke volume index (SVI) (0.61 +/- 0.11 vs. 0.66 +/- 0.10 ml/bt/kg); however, 1 hour post-hemorrhage recovery was blunted in Group TH compared to Group H (MABP 56 +/- 4 vs. 65 +/- 3 mm Hg; cardiac index 182 +/- 15 vs. 220 +/- 15 ml/min/kg; and SVI 0.71 +/- 0.06 vs. 0.81 +/- 0.06 ml/bt/kg). Since the two groups showed no significant differences in heart rate, preload (central venous pressure), and afterload (systemic vascular resistance), the reduced cardiac index recovery in Group TH is believed due to the attenuation of cardiac contractile performance. The Group TH preparation potentiated hormonal responses to hemorrhage with significantly higher epinephrine and aldosterone levels than in Group H. Brain trauma enhanced the norepinephrine response to hemorrhage, even at an injury level that by itself did not result in an increase in this hormone. Group TH rats also had significantly lower blood pH and HCO3 levels. The data suggest that brain trauma suppresses MABP and cardiac index recovery after hemorrhage mainly by inhibiting cardiac contractile performance, probably due to high catecholamine levels and severe metabolic acidosis.

  20. [Behavior and functional state of the dopaminergic brain system in pups of depressive WAG/Rij rats].

    PubMed

    Malyshev, A V; Razumkina, E V; Rogozinskaia, É Ia; Sarkisova, K Iu; Dybynin, V A

    2014-01-01

    In the present work, it has been studied for the first time behavior and functional state of the dopaminergic brain system in pups of "depressive" WAG/Rij rats. Offspring of "depressive" WAG/Rij rats at age of 6-16 days compared with offspring of "normal" (non-depressed) outbred rats of the same age exhibited reduced rate of pshychomotor development, lower body weight, attenuation in integration of coordinated reflexes and vestibular function (greater latency of righting reflex, abnormal negative geotaxis), hyper-reactivity to tactile stimulation, reduced motivation to contact with mother (reduced infant-mother attachment). Differences in a nest seeking response induced by olfactory stimuli (olfactory discrimination test) and in locomotor activity (tests "gait reflex" and "small open field") have not been revealed. Acute injection of the antagonist of D2-like dopamine receptors clebopride 20 min before testing aggravated mother-oriented behavior in 15-days-old pups of both "depressive" and "non-depressive" rats. However this effect was greater in pups of "depressive" WAG/Rij rats compared with pups of "normal" rats that may indicate reduced functional activity of the dopaminergic brain system in offspring of "depressive" rats. It is proposed that reduced attachment behavior in pups of "depressive" WAG/Rij rats might be a consequence of maternal depression and associated with it reduced maternal care. Moreover, reduced attachment behavior in pups of "depressive" rats might be an early precursor (a marker) of depressive-like pathology which become apparent later in life (approximately at age of 3 months). PMID:25723020

  1. Functional brain networks underlying latent inhibition of conditioned disgust in rats.

    PubMed

    Gasalla, Patricia; Begega, Azucena; Soto, Alberto; Dwyer, Dominic Michael; López, Matías

    2016-12-15

    The present experiment examined the neuronal networks involved in the latent inhibition of conditioned disgust by measuring brain oxidative metabolism. Rats were given nonreinforced intraoral (IO) exposure to saccharin (exposed groups) or water (non-exposed groups) followed by a conditioning trial in which the animals received an infusion of saccharin paired (or unpaired) with LiCl. On testing, taste reactivity responses displayed by the rats during the infusion of the saccharin were examined. Behavioral data showed that preexposure to saccharin attenuated the development of LiCl-induced conditioned disgust reactions, indicating that the effects of taste aversion on hedonic taste reactivity had been reduced. With respect to cumulative oxidative metabolic activity across the whole study period, the parabrachial nucleus was the only single region examined which showed differential activity between groups which received saccharin-LiCl pairings with and without prior non-reinforced saccharin exposure, suggesting a key role in the effects of latent inhibition of taste aversion learning. In addition, many functional connections between brain regions were revealed through correlational analysis of metabolic activity, in particular an accumbens-amygdala interaction that may be involved in both positive and negative hedonic responses.

  2. Effect of potential-dependent potassium uptake on calcium accumulation in rat brain mitochondria.

    PubMed

    Akopova, O V; Kolchinskaya, L I; Nosar, V I; Bouryi, V A; Mankovskaya, I N; Sagach, V F

    2013-01-01

    The effect of potential-dependent potassium uptake at 0-120 mM K+ on matrix Ca2+ accumulation in rat brain mitochondria was studied. An increase in oxygen consumption and proton extrusion rates as well as increase in matrix pH with increase in K+ content in the medium was observed due to K+ uptake into the mitochondria. The accumulation of Ca2+ was shown to depend on K+ concentration in the medium. At K+ concentration ≤30 mM, Ca2+ uptake is decreased due to K+-induced membrane depolarization, whereas at higher K+ concentrations, up to 120 mM K+, Ca2+ uptake is increased in spite of membrane depolarization caused by matrix alkalization due to K+ uptake. Mitochondrial K+(ATP)-channel blockers (glibenclamide and 5-hydroxydecanoic acid) diminish K+ uptake as well as K+-induced depolarization and matrix alkalization, which results in attenuation of the potassium-induced effects on matrix Ca2+ uptake, i.e. increase in Ca2+ uptake at low K+ content in the medium due to the smaller membrane depolarization and decrease in Ca2+ uptake at high potassium concentrations because of restricted rise in matrix pH. The results show the importance of potential-dependent potassium uptake, and especially the K+(ATP) channel, in the regulation of calcium accumulation in rat brain mitochondria.

  3. Functional brain networks underlying latent inhibition of conditioned disgust in rats.

    PubMed

    Gasalla, Patricia; Begega, Azucena; Soto, Alberto; Dwyer, Dominic Michael; López, Matías

    2016-12-15

    The present experiment examined the neuronal networks involved in the latent inhibition of conditioned disgust by measuring brain oxidative metabolism. Rats were given nonreinforced intraoral (IO) exposure to saccharin (exposed groups) or water (non-exposed groups) followed by a conditioning trial in which the animals received an infusion of saccharin paired (or unpaired) with LiCl. On testing, taste reactivity responses displayed by the rats during the infusion of the saccharin were examined. Behavioral data showed that preexposure to saccharin attenuated the development of LiCl-induced conditioned disgust reactions, indicating that the effects of taste aversion on hedonic taste reactivity had been reduced. With respect to cumulative oxidative metabolic activity across the whole study period, the parabrachial nucleus was the only single region examined which showed differential activity between groups which received saccharin-LiCl pairings with and without prior non-reinforced saccharin exposure, suggesting a key role in the effects of latent inhibition of taste aversion learning. In addition, many functional connections between brain regions were revealed through correlational analysis of metabolic activity, in particular an accumbens-amygdala interaction that may be involved in both positive and negative hedonic responses. PMID:27491591

  4. Caffeic acid attenuates rat liver reperfusion injury through sirtuin 3-dependent regulation of mitochondrial respiratory chain.

    PubMed

    Mu, Hong-Na; Li, Quan; Pan, Chun-Shui; Liu, Yu-Ying; Yan, Li; Hu, Bai-He; Sun, Kai; Chang, Xin; Zhao, Xin-Rong; Fan, Jing-Yu; Han, Jing-Yan

    2015-08-01

    Sirtuin 3 (Sirt3) plays critical roles in regulating mitochondrial oxidative metabolism. However, whether Sirt3 is involved in liver ischemia and reperfusion (I/R) injury remains elusive. Caffeic acid (CA) is a natural antioxidant derived from Salvia miltiorrhiza. Whether CA protects against liver I/R injury through regulating Sirt3 and the mitochondrial respiratory chain (MRC) is unclear. This study investigated the effect of CA on liver I/R injury, microcirculatory disturbance, and potential mechanisms, particularly focusing on Sirt3-dependent MRC. Liver I/R of male Sprague-Dawley rats was established by occlusion of portal area vessels for 30 min followed by 120 min of reperfusion. CA (15 mg/kg/h) was continuously infused via the femoral vein starting 30 min before ischemia. After I/R, Sirt3 expression, and MRC activity decreased, acetylation of NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9 and succinate dehydrogenase complex, subunit A, flavoprotein variant provoked, and the liver microcirculatory disturbance and injury were observed. Treatment with CA attenuated liver injury, inhibited Sirt3 down-expression, and up-regulated MRC activity. CA attenuated rat liver microcirculatory disturbance and oxidative injury through regulation of Sirt3 and the mitochondrial respiratory chain. PMID:25960048

  5. Withaferin A attenuates lipopolysaccharide-induced acute lung injury in neonatal rats.

    PubMed

    Gao, S; Li, H; Zhou, X-Q; You, J-B; Tu, D-N; Xia, G; Jiang, J-X; Xin, C

    2015-07-31

    Withaferin A (WFA) is an active compound from Withania somnifera and has been reported to exhibit a variety of pharmacological activities such as anti—inflammatory, immunomodulatory and anti—tumor properties. In the present study, we investigated the potential protective role of WFA on acute lung injury in neonatal rats induced by lipopolysaccharide (LPS). We found that WFA significantly attenuated the pathological changes of lungs induced by LPS injection. Administration with WFA obviously decreased pulmonary neutrophil infiltration accompanied with decreased MPO concentrations. WFA also reduced the expression of pro—inflammatory cytokines including MIP—2, TNF—α, IL—1β and IL—6. Meanwhile, the expression levels of anti—inflammatory mediators such as TGF—β1 and IL—10 were significantly increased following WFA administration. Moreover, WFA protected LPS—treated rats from oxidative damage via up—regulation of TBARS and H2O2 concentrations and down—regulation of ROS contents. Taken together, the present study demonstrated that WFA administration attenuated LPS—induced lung injury through inhibition of inflammatory responses and oxidative stress.

  6. Saturated hydrogen saline attenuates endotoxin-induced acute liver dysfunction in rats.

    PubMed

    Xu, X-F; Zhang, J

    2013-01-01

    To determine the effect of saturated hydrogen saline on lipopolysaccharide (LPS)-induced acute liver dysfunction, rats were divided into control, LPS, and LPS plus saturated hydrogen saline (LPS+H(2)) groups. Treatment with saturated hydrogen saline prolonged the median survival time and reduced liver dysfunction. Moreover, saturated hydrogen saline significantly reduced pathological alterations in liver tissues, the number of ballooned hepatocytes, serum tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 levels, and myeloperoxidase (MPO) and malondialdehyde (MDA) levels in liver tissues (P<0.05). Cell apoptosis was detected in liver tissues after LPS treatment, and attenuated by saturated hydrogen saline treatment. Saturated hydrogen saline also decreased phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated Jun kinase (p-JNK), nuclear factor-kappa B (NF-kappaB), and second mitochondria-derived activator of caspase (Smac) levels, and increased p38 activation (P<0.05). Thus, saturated hydrogen saline may attenuate LPS-induced acute liver dysfunction in rats, possibly by reducing inflammation and cell apoptosis. Mitogen-activated protein kinase (MAPK), NF-kappaB, and Smac may contribute to saturated hydrogen saline-mediated liver protection.

  7. Intrinsic optical signals of brains in rats during loss of tissue viability: effect of brain temperature

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Kikuchi, Makoto

    2007-07-01

    Noninvasive, real-time monitoring of brain tissue viability is crucial for the patients with stroke, traumatic brain injury, etc. For this purpose, measurement of intrinsic optical signal (IOS) is attractive because it can provide direct information about the viability of brain tissue noninvasively. We performed simultaneous measurements of IOSs that are related to morphological characteristics, i.e., light scattering, and energy metabolism for rat brains during saline infusion as a model with temporal loss of brain tissue viability. The results showed that the scattering signal was steady in an initial phase but showed a drastic, triphasic change in a certain range of infusion time, during which the reduction of CuA in cytochrome c oxidase started and proceeded rapidly. The start time of triphasic scattering change was delayed for about 100 s by lowering brain temperature from 29°C to 24°C, demonstrating the optical detection of cerebroprotection effect by brain cooling. Electron microscopic observation showed morphological changes of dendrite and mitochondria in the cortical surface tissue after the triphasic scattering change, which was thought to be associated with the change in light scattering we observed. These findings suggest that the simultaneous measurement of the intrinsic optical signals related to morphological characteristics and energy metabolism is useful for monitoring tissue viability in brain.

  8. Magnetic micelles for DNA delivery to rat brains after mild traumatic brain injury.

    PubMed

    Das, Mahasweta; Wang, Chunyan; Bedi, Raminder; Mohapatra, Shyam S; Mohapatra, Subhra

    2014-10-01

    Traumatic brain injury (TBI) causes significant mortality, long term disability and psychological symptoms. Gene therapy is a promising approach for treatment of different pathological conditions. Here we tested chitosan and polyethyleneimine (PEI)-coated magnetic micelles (CP-mag micelles or CPMMs), a potential MRI contrast agent, to deliver a reporter DNA to the brain after mild TBI (mTBI). CPMM-tomato plasmid (ptd) conjugate expressing a red-fluorescent protein (RFP) was administered intranasally immediately after mTBI or sham surgery in male SD rats. Evans blue extravasation following mTBI suggested CPMM-ptd entry into the brain via the compromised blood-brain barrier. Magnetofection increased the concentration of CPMMs in the brain. RFP expression was observed in the brain (cortex and hippocampus), lung and liver 48 h after mTBI. CPMM did not evoke any inflammatory response by themselves and were excreted from the body. These results indicate the possibility of using intranasally administered CPMM as a theranostic vehicle for mTBI. From the clinical editor: In this study, chitosan and PEI-coated magnetic micelles (CPMM) were demonstrated as potentially useful vehicles in traumatic brain injury in a rodent model. Magnetofection increased the concentration of CPMMs in the brain and, after intranasal delivery, CPMM did not evoke any inflammatory response and were excreted from the body. PMID:24486465

  9. Outer brain barriers in rat and human development.

    PubMed

    Brøchner, Christian B; Holst, Camilla B; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer.

  10. Outer brain barriers in rat and human development

    PubMed Central

    Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456

  11. Hydrogen Sulfide Ameliorates Early Brain Injury Following Subarachnoid Hemorrhage in Rats.

    PubMed

    Cui, Yonghua; Duan, Xiaochun; Li, Haiying; Dang, Baoqi; Yin, Jia; Wang, Yang; Gao, Anju; Yu, Zhengquan; Chen, Gang

    2016-08-01

    Increasing studies have demonstrated the neuroprotective effect of hydrogen sulfide (H2S) in central nervous system (CNS) diseases. However, the potential application value of H2S in the therapy of subarachnoid hemorrhage (SAH) is still not well known. This study was to investigate the potential effect of H2S on early brain injury (EBI) induced by SAH and explore the underlying mechanisms. The role of sodium hydrosulfide (NaHS), a donor of H2S, in SAH-induced EBI, was investigated in both in vivo and in vitro. A prechiasmatic cistern single injection model was used to produce experimental SAH in vivo. In vitro, cultured primary rat cortical neurons and human umbilical vein endothelial cells (HUVECs) were exposed to OxyHb at concentration of 10 μM to mimic SAH. Endogenous production of H2S in the brain was significantly inhibited by SAH. The protein levels of the predominant H2S-generating enzymes in the brain, including cystathionineb-synthase (CBS) and 3-mercaptopyruvate sulfur transferase (3MST), were also correspondingly reduced by SAH, while treatment with NaHS restored H2S production and the expressions of CBS and 3MST. More importantly, NaHS treatment could significantly attenuate EBI (including brain edema, blood-brain barrier disruption, brain cell apoptosis, inflammatory response, and cerebral vasospasm) after SAH. In vitro, H2S protects neurons and endothelial function by functioning as an antioxidant and antiapoptotic mediator. Our results suggest that NaSH as an exogenous H2S donor could significantly reduce EBI induced by SAH.

  12. Relationship between Morphofunctional Changes in Open Traumatic Brain Injury and the Severity of Brain Damage in Rats.

    PubMed

    Shakova, F M; Barskov, I V; Gulyaev, M V; Prokhorenko, S V; Romanova, G A; Grechko, A V

    2016-07-01

    A correlation between the severity of morphofunctional disturbances and the volume of brain tissue injury determined by MRT was demonstrated on the model of open traumatic brain injury in rats. A relationship between the studied parameters (limb placing and beam walking tests and histological changes) and impact force (the height of load fell onto exposed brain surface) was revealed.

  13. Relationship between Morphofunctional Changes in Open Traumatic Brain Injury and the Severity of Brain Damage in Rats.

    PubMed

    Shakova, F M; Barskov, I V; Gulyaev, M V; Prokhorenko, S V; Romanova, G A; Grechko, A V

    2016-07-01

    A correlation between the severity of morphofunctional disturbances and the volume of brain tissue injury determined by MRT was demonstrated on the model of open traumatic brain injury in rats. A relationship between the studied parameters (limb placing and beam walking tests and histological changes) and impact force (the height of load fell onto exposed brain surface) was revealed. PMID:27496035

  14. Astaxanthin reduces ischemic brain injury in adult rats.

    PubMed

    Shen, Hui; Kuo, Chi-Chung; Chou, Jenny; Delvolve, Alice; Jackson, Shelley N; Post, Jeremy; Woods, Amina S; Hoffer, Barry J; Wang, Yun; Harvey, Brandon K

    2009-06-01

    Astaxanthin (ATX) is a dietary carotenoid of crustaceans and fish that contributes to their coloration. Dietary ATX is important for development and survival of salmonids and crustaceans and has been shown to reduce cardiac ischemic injury in rodents. The purpose of this study was to examine whether ATX can protect against ischemic injury in the mammalian brain. Adult rats were injected intracerebroventricularly with ATX or vehicle prior to a 60-min middle cerebral artery occlusion (MCAo). ATX was present in the infarction area at 70-75 min after onset of MCAo. Treatment with ATX, compared to vehicle, increased locomotor activity in stroke rats and reduced cerebral infarction at 2 d after MCAo. To evaluate the protective mechanisms of ATX against stroke, brain tissues were assayed for free radical damage, apoptosis, and excitoxicity. ATX antagonized ischemia-mediated loss of aconitase activity and reduced glutamate release, lipid peroxidation, translocation of cytochrome c, and TUNEL labeling in the ischemic cortex. ATX did not alter physiological parameters, such as body temperature, brain temperature, cerebral blood flow, blood gases, blood pressure, and pH. Collectively, our data suggest that ATX can reduce ischemia-related injury in brain tissue through the inhibition of oxidative stress, reduction of glutamate release, and antiapoptosis. ATX may be clinically useful for patients vulnerable or prone to ischemic events. PMID:19218497

  15. Astaxanthin reduces ischemic brain injury in adult rats.

    PubMed

    Shen, Hui; Kuo, Chi-Chung; Chou, Jenny; Delvolve, Alice; Jackson, Shelley N; Post, Jeremy; Woods, Amina S; Hoffer, Barry J; Wang, Yun; Harvey, Brandon K

    2009-06-01

    Astaxanthin (ATX) is a dietary carotenoid of crustaceans and fish that contributes to their coloration. Dietary ATX is important for development and survival of salmonids and crustaceans and has been shown to reduce cardiac ischemic injury in rodents. The purpose of this study was to examine whether ATX can protect against ischemic injury in the mammalian brain. Adult rats were injected intracerebroventricularly with ATX or vehicle prior to a 60-min middle cerebral artery occlusion (MCAo). ATX was present in the infarction area at 70-75 min after onset of MCAo. Treatment with ATX, compared to vehicle, increased locomotor activity in stroke rats and reduced cerebral infarction at 2 d after MCAo. To evaluate the protective mechanisms of ATX against stroke, brain tissues were assayed for free radical damage, apoptosis, and excitoxicity. ATX antagonized ischemia-mediated loss of aconitase activity and reduced glutamate release, lipid peroxidation, translocation of cytochrome c, and TUNEL labeling in the ischemic cortex. ATX did not alter physiological parameters, such as body temperature, brain temperature, cerebral blood flow, blood gases, blood pressure, and pH. Collectively, our data suggest that ATX can reduce ischemia-related injury in brain tissue through the inhibition of oxidative stress, reduction of glutamate release, and antiapoptosis. ATX may be clinically useful for patients vulnerable or prone to ischemic events.

  16. Photoacoustic imaging for transvascular drug delivery to the rat brain

    NASA Astrophysics Data System (ADS)

    Watanabe, Ryota; Sato, Shunichi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Takemura, Toshiya; Terakawa, Mitsuhiro

    2015-03-01

    Transvascular drug delivery to the brain is difficult due to the blood-brain barrier (BBB). Thus, various methods for safely opening the BBB have been investigated, for which real-time imaging methods are desired both for the blood vessels and distribution of a drug. Photoacoustic (PA) imaging, which enables depth-resolved visualization of chromophores in tissue, would be useful for this purpose. In this study, we performed in vivo PA imaging of the blood vessels and distribution of a drug in the rat brain by using an originally developed compact PA imaging system with fiber-based illumination. As a test drug, Evans blue (EB) was injected to the tail vein, and a photomechanical wave was applied to the targeted brain tissue to increase the permeability of the blood vessel walls. For PA imaging of blood vessels and EB distribution, nanosecond pulses at 532 nm and 670 nm were used, respectively. We clearly visualized blood vessels with diameters larger than 50 μm and the distribution of EB in the brain, showing spatiotemporal characteristics of EB that was transvascularly delivered to the target tissue in the brain.

  17. Metformin attenuates hyperalgesia and allodynia in rats with painful diabetic neuropathy induced by streptozotocin.

    PubMed

    Ma, Junxiong; Yu, Hailong; Liu, Jun; Chen, Yu; Wang, Qi; Xiang, Liangbi

    2015-10-01

    Painful diabetic neuropathy is a common complication of diabetes mellitus, which often makes the patients suffer from severe hyperalgesia and allodynia. Thus far, the treatment of painful diabetic neuropathy remains unsatisfactory. Metformin, which is the first-line drug for type-2 diabetes, has been proved to attenuate hyperexcitability in sensory neurons linked to chemotherapy-induced neuropathic pain, highlighting its potential in alleviating pain related with painful diabetic neuropathy. The present study was designed to investigate the potential beneficial effect of metformin on hyperalgesia and allodynia in diabetic rats. The mechanical sensitivity, heat nociception, and cold allodynia were examined. The levels of malondialdehyde, superoxide dismutase, and advanced glycation end-products in the blood were measured. The expression of adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and AMPK target genes were examined in the sciatic nerves of the animals. It was found that metformin was capable of attenuating diabetes-induced mechanical hyperalgesia, heat hyperalgesia and cold allodynia. In addition, metformin was capable of decreasing malondialdehyde and glycation end-products levels in blood, as well as increasing superoxide dismutas activity, indicating the inhibitory effect of metformin against diabetes-induced oxidative stress. Further studies showed that metformin could activate AMPK and increase the AMPK target genes in sciatic nerves in diabetic rats. In conclusion, metformin is able to attenuate diabetes-induced hyperalgesia and allodynia, which might be associated its anti-oxidative effect through AMPK pathway. Metformin might be used as an effective drug, especially with fewer side effects, for abnormal sensation in painful diabetic neuropathy. PMID:26054810

  18. Metformin attenuates hyperalgesia and allodynia in rats with painful diabetic neuropathy induced by streptozotocin.

    PubMed

    Ma, Junxiong; Yu, Hailong; Liu, Jun; Chen, Yu; Wang, Qi; Xiang, Liangbi

    2015-10-01

    Painful diabetic neuropathy is a common complication of diabetes mellitus, which often makes the patients suffer from severe hyperalgesia and allodynia. Thus far, the treatment of painful diabetic neuropathy remains unsatisfactory. Metformin, which is the first-line drug for type-2 diabetes, has been proved to attenuate hyperexcitability in sensory neurons linked to chemotherapy-induced neuropathic pain, highlighting its potential in alleviating pain related with painful diabetic neuropathy. The present study was designed to investigate the potential beneficial effect of metformin on hyperalgesia and allodynia in diabetic rats. The mechanical sensitivity, heat nociception, and cold allodynia were examined. The levels of malondialdehyde, superoxide dismutase, and advanced glycation end-products in the blood were measured. The expression of adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and AMPK target genes were examined in the sciatic nerves of the animals. It was found that metformin was capable of attenuating diabetes-induced mechanical hyperalgesia, heat hyperalgesia and cold allodynia. In addition, metformin was capable of decreasing malondialdehyde and glycation end-products levels in blood, as well as increasing superoxide dismutas activity, indicating the inhibitory effect of metformin against diabetes-induced oxidative stress. Further studies showed that metformin could activate AMPK and increase the AMPK target genes in sciatic nerves in diabetic rats. In conclusion, metformin is able to attenuate diabetes-induced hyperalgesia and allodynia, which might be associated its anti-oxidative effect through AMPK pathway. Metformin might be used as an effective drug, especially with fewer side effects, for abnormal sensation in painful diabetic neuropathy.

  19. Transcriptome Signature of Virulent and Attenuated Pseudorabies Virus-Infected Rodent Brain

    PubMed Central

    Paulus, Christina; Sollars, Patricia J.; Pickard, Gary E.; Enquist, Lynn W.

    2006-01-01

    Mammalian alphaherpesviruses normally establish latent infections in ganglia of the peripheral nervous system in their natural hosts. Occasionally, however, these viruses spread to the central nervous system (CNS), where they cause damaging, often fatal, infections. Attenuated alphaherpesvirus derivatives have been used extensively as neuronal circuit tracers in a variety of animal models. Their circuit-specific spread provides a unique paradigm to study the local and global CNS response to infection. Thus, we systematically analyzed the host gene expression profile after acute pseudorabies virus (PRV) infection of the CNS using Affymetrix GeneChip technology. Rats were injected intraocularly with one of three selected virulent and attenuated PRV strains. Relative levels of cellular transcripts were quantified from hypothalamic and cerebellar tissues at various times postinfection. The number of cellular genes responding to infection correlated with the extent of virus dissemination and relative virulence of the PRV strains. A total of 245 out of 8,799 probe sets, corresponding to 182 unique cellular genes, displayed increased expression ranging from 2- to more than 100-fold higher than in uninfected tissue. Over 60% thereof were categorized as immune, proinflammatory, and other cellular defense genes. Additionally, a large fraction of infection-induced transcripts represented cellular stress responses, including glucocorticoid- and redox-related pathways. This is the first comprehensive in vivo analysis of the global transcriptional response of the mammalian CNS to acute alphaherpesvirus infection. The differentially regulated genes reported here are likely to include potential diagnostic and therapeutic targets for viral encephalitides and other neurodegenerative or neuroinflammatory diseases. PMID:16439534

  20. Maturation of metabolic connectivity of the adolescent rat brain.

    PubMed

    Choi, Hongyoon; Choi, Yoori; Kim, Kyu Wan; Kang, Hyejin; Hwang, Do Won; Kim, E Edmund; Chung, June-Key; Lee, Dong Soo

    2015-11-27

    Neuroimaging has been used to examine developmental changes of the brain. While PET studies revealed maturation-related changes, maturation of metabolic connectivity of the brain is not yet understood. Here, we show that rat brain metabolism is reconfigured to achieve long-distance connections with higher energy efficiency during maturation. Metabolism increased in anterior cerebrum and decreased in thalamus and cerebellum during maturation. When functional covariance patterns of PET images were examined, metabolic networks including default mode network (DMN) were extracted. Connectivity increased between the anterior and posterior parts of DMN and sensory-motor cortices during maturation. Energy efficiency, a ratio of connectivity strength to metabolism of a region, increased in medial prefrontal and retrosplenial cortices. Our data revealed that metabolic networks mature to increase metabolic connections and establish its efficiency between large-scale spatial components from childhood to early adulthood. Neurodevelopmental diseases might be understood by abnormal reconfiguration of metabolic connectivity and efficiency.

  1. Detecting Behavioral Deficits Post Traumatic Brain Injury in Rats.

    PubMed

    Awwad, Hibah O

    2016-01-01

    Traumatic brain injury (TBI), ranging from mild to severe, almost always elicits an array of behavioral deficits in injured subjects. Some of these TBI-induced behavioral deficits include cognitive and vestibulomotor deficits as well as anxiety and other consequences. Rodent models of TBI have been (and still are) fundamental in establishing many of the pathophysiological mechanisms of TBI. Animal models are also utilized in screening and testing pharmacological effects of potential therapeutic agents for brain injury treatment. This chapter details validated protocols for each of these behavioral deficits post traumatic brain injury in Sprague-Dawley male rats. The elevated plus maze (EPM) protocol is described for assessing anxiety-like behavior; the Morris water maze protocol for assessing cognitive deficits in learning memory and spatial working memory and the rotarod test for assessing vestibulomotor deficits. PMID:27604739

  2. Post-injury administration of allicin attenuates ischemic brain injury through sphingosine kinase 2: In vivo and in vitro studies.

    PubMed

    Lin, Jia-Ji; Chang, Ting; Cai, Wen-Ke; Zhang, Zhuo; Yang, Yong-Xiang; Sun, Chao; Li, Zhu-Yi; Li, Wei-Xin

    2015-10-01

    Allicin, one of the main biologically active compounds derived from garlic, has been shown to exert various pharmacological activities and is considered to have therapeutic potential for many pathologic conditions. In the present study, we investigated the potential post-ischemic neuroprotective effects of allicin and its underlying mechanisms. Using a rat middle cerebral artery occlusion (MCAO) model, we found that intraperitoneal treatment with 50 mg/kg allicin significantly reduced brain infarct volume, attenuated cerebral edema and decreased the neurological deficit score. Allicin treatment also diminished TUNEL positive cells and inhibited the activation of caspase-3 after MCAO. These protective effects could be observed even if the administration was delayed to 6 h after injury. In addition, we evaluated the in vitro protective effects of allicin against oxygen glucose deprivation (OGD) induced neuronal injury in primary cultured cortical neurons. Allicin (50 μM) increased neuronal viability, decreased lactate dehydrogenase (LDH) release and inhibited apoptotic neuronal death after OGD. These protective effects could be observed even if the administration was delayed to 4 h after injury. Furthermore, allicin significantly increased the expression of sphingosine kinases 2 (Sphk2) both in vivo and in vitro. Pretreatment with the Sphk2 inhibitor ABC294640 partially reversed the protective effects of allicin against MCAO and OGD injury, indicating that an Sphk2-mediated mechanism was involved in allicin-induced protection in our models. The combination of findings suggests that post-injury administration of allicin has potential as a neuroprotective strategy for ischemic stroke. PMID:26275594

  3. Performance Enhancement of the RatCAP Awake Rate Brain PET System

    SciTech Connect

    Vaska, P.; Vaska, P.; Woody, C.; Schlyer, D.; Radeka, V.; O'Connor, P.; Park, S.-J.; Pratte, J.-F.; Junnarkar, M.; Purschke, S.; Southekal, S.; Stoll, S.; Schiffer, W.; Neill, J.; Wharton, D.; Myers, N.; Wiley, S.; Kandasamy, A.; Fried, J.; Krishnamoorthy, S. Kriplani, A.; Maramraju, S.; Lecomte, R.; Fontaine, R.

    2011-03-01

    The first full prototype of the RatCAP PET system, designed to image the brain of a rat while conscious, has been completed. Initial results demonstrated excellent spatial resolution, 1.8 mm FWHM with filtered backprojection and <1.5 mm FWHM with a Monte Carlo based MLEM method. However, noise equivalent countrate studies indicated the need for better timing to mitigate the effect of randoms. Thus, the front-end ASIC has been redesigned to minimize time walk, an accurate coincidence time alignment method has been implemented, and a variance reduction technique for the randoms is being developed. To maximize the quantitative capabilities required for neuroscience, corrections are being implemented and validated for positron range and photon noncollinearity, scatter (including outside the field of view), attenuation, randoms, and detector efficiency (deadtime is negligible). In addition, a more robust and compact PCI-based optical data acquisition system has been built to replace the original VME-based system while retaining the linux-based data processing and image reconstruction codes. Finally, a number of new animal imaging experiments have been carried out to demonstrate the performance of the RatCAP in real imaging situations, including an F-18 fluoride bone scan, a C-11 raclopride scan, and a dynamic C-11 methamphetamine scan.

  4. Inhibition of TLR4 Signalling-Induced Inflammation Attenuates Secondary Injury after Diffuse Axonal Injury in Rats

    PubMed Central

    Zhao, Yonglin; Zhang, Ming; Zhao, Junjie; Ma, Xudong; Huang, Tingqin; Pang, Honggang

    2016-01-01

    Increasing evidence suggests that secondary injury after diffuse axonal injury (DAI) damages more axons than the initial insult, but the underlying mechanisms of this phenomenon are not fully understood. Recent studies show that toll-like receptor 4 (TLR4) plays a critical role in promoting adaptive immune responses and have been shown to be associated with brain damage. The purpose of this study was to investigate the role of the TLR4 signalling pathway in secondary axonal injury in the cortices of DAI rats. TLR4 was mainly localized in microglial cells and neurons, and the levels of TLR4 downstream signalling molecules, including TLR4, myeloid differentiation primary response gene 88, toll/IR-1-(TIR-) domain-containing adaptor protein inducing interferon-beta, interferon regulatory factor 3, interferon β, nuclear factor κB (NF-κB) p65, and phospho-NF-κB p65, significantly increased and peaked at 1 d after DAI. Inhibition of TLR4 by TAK-242 attenuated apoptosis, neuronal and axonal injury, and glial responses. The neuroprotective effects of TLR4 inhibition were associated with decreases in the levels of TLR4 downstream signalling molecules and inflammatory factors, including interleukin-1β, interleukin-6, and tumour necrosis factor-α. These results suggest that the TLR4 signalling pathway plays an important role in secondary injury and may be an important therapeutic target following DAI. PMID:27478307

  5. Sitagliptin decreases ventricular arrhythmias by attenuated glucose-dependent insulinotropic polypeptide (GIP)-dependent resistin signalling in infarcted rats

    PubMed Central

    Lee, Tsung-Ming; Chen, Wei-Ting; Chang, Nen-Chung

    2016-01-01

    Myocardial infarction (MI) was associated with insulin resistance, in which resistin acts as a critical mediator. We aimed to determine whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, can attenuate arrhythmias by regulating resistin-dependent nerve growth factor (NGF) expression in postinfarcted rats. Normoglycaemic male Wistar rats after ligating coronary artery were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after operation. Post-infarction was associated with increased myocardial noradrenaline [norepinephrine (NE)] levels and sympathetic hyperinnervation. Compared with vehicle, sympathetic innervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis of tyrosine hydroxylase, growth-associated factor 43 and neurofilament and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Furthermore, sitagliptin was associated with reduced resistin expression and increased Akt activity. Ex vivo studies showed that glucose-dependent insulinotropic polypeptide (GIP) infusion, but not glucagon-like peptide-1 (GLP-1), produced similar reduction in resistin levels to sitagliptin in postinfarcted rats. Furthermore, the attenuated effects of sitagliptin on NGF levels can be reversed by wortmannin (a phosphatidylinositol 3-kinase antagonist) and exogenous resistin infusion. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation in the non-diabetic infarcted rats. Sitagliptin attenuated resistin expression via the GIP-dependent pathway, which inhibited sympathetic innervation through a signalling pathway involving phosphatidylinositol 3-kinase (PI3K) and Akt protein. PMID:26811539

  6. Sitagliptin decreases ventricular arrhythmias by attenuated glucose-dependent insulinotropic polypeptide (GIP)-dependent resistin signalling in infarcted rats.

    PubMed

    Lee, Tsung-Ming; Chen, Wei-Ting; Chang, Nen-Chung

    2016-01-01

    Myocardial infarction (MI) was associated with insulin resistance, in which resistin acts as a critical mediator. We aimed to determine whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, can attenuate arrhythmias by regulating resistin-dependent nerve growth factor (NGF) expression in postinfarcted rats. Normoglycaemic male Wistar rats after ligating coronary artery were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after operation. Post-infarction was associated with increased myocardial noradrenaline [norepinephrine (NE)] levels and sympathetic hyperinnervation. Compared with vehicle, sympathetic innervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis of tyrosine hydroxylase, growth-associated factor 43 and neurofilament and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Furthermore, sitagliptin was associated with reduced resistin expression and increased Akt activity. Ex vivo studies showed that glucose-dependent insulinotropic polypeptide (GIP) infusion, but not glucagon-like peptide-1 (GLP-1), produced similar reduction in resistin levels to sitagliptin in postinfarcted rats. Furthermore, the attenuated effects of sitagliptin on NGF levels can be reversed by wortmannin (a phosphatidylinositol 3-kinase antagonist) and exogenous resistin infusion. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation in the non-diabetic infarcted rats. Sitagliptin attenuated resistin expression via the GIP-dependent pathway, which inhibited sympathetic innervation through a signalling pathway involving phosphatidylinositol 3-kinase (PI3K) and Akt protein. PMID:26811539

  7. Donepezil, an acetylcholinesterase inhibitor, attenuates nicotine self-administration and reinstatement of nicotine seeking in rats.

    PubMed

    Kimmey, Blake A; Rupprecht, Laura E; Hayes, Matthew R; Schmidt, Heath D

    2014-07-01

    Nicotine craving and cognitive impairments represent core symptoms of nicotine withdrawal and predict relapse in abstinent smokers. Current smoking cessation pharmacotherapies have limited efficacy in preventing relapse and maintaining abstinence during withdrawal. Donepezil is an acetylcholinesterase inhibitor that has been shown previously to improve cognition in healthy non-treatment-seeking smokers. However, there are no studies examining the effects of donepezil on nicotine self-administration and/or the reinstatement of nicotine-seeking behavior in rodents. The present experiments were designed to determine the effects of acute donepezil administration on nicotine taking and the reinstatement of nicotine-seeking behavior, an animal model of relapse in abstinent human smokers. Moreover, the effects of acute donepezil administration on sucrose self-administration and sucrose seeking were also investigated in order to determine whether donepezil's effects generalized to other reinforced behaviors. Acute donepezil administration (1.0 or 3.0 mg/kg, i.p.) attenuated nicotine, but not sucrose self-administration maintained on a fixed-ratio 5 schedule of reinforcement. Donepezil administration also dose-dependently attenuated the reinstatement of both nicotine- and sucrose-seeking behaviors. Commonly reported adverse effects of donepezil treatment in humans are nausea and vomiting. However, at doses required to attenuate nicotine self-administration in rodents, no effects of donepezil on nausea/malaise as measured by pica were observed. Collectively, these results indicate that increased extracellular acetylcholine levels are sufficient to attenuate nicotine taking and seeking in rats and that these effects are not due to adverse malaise symptoms such as nausea.

  8. Zingiber officinale attenuates retinal microvascular changes in diabetic rats via anti-inflammatory and antiangiogenic mechanisms

    PubMed Central

    Dongare, Shirish; Mathur, Rajani; Saxena, Rohit; Mathur, Sandeep; Agarwal, Renu; Nag, Tapas C.; Srivastava, Sushma; Kumar, Pankaj

    2016-01-01

    Purpose Diabetic retinopathy is a common microvascular complication of long-standing diabetes. Several complex interconnecting biochemical pathways are activated in response to hyperglycemia. These pathways culminate into proinflammatory and angiogenic effects that bring about structural and functional damage to the retinal vasculature. Since Zingiber officinale (ginger) is known for its anti-inflammatory and antiangiogenic properties, we investigated the effects of its extract standardized to 5% 6-gingerol, the major active constituent of ginger, in attenuating retinal microvascular changes in rats with streptozotocin-induced diabetes. Methods Diabetic rats were treated orally with the vehicle or the ginger extract (75 mg/kg/day) over a period of 24 weeks along with regular monitoring of bodyweight and blood glucose and weekly fundus photography. At the end of the 24-week treatment, the retinas were isolated for histopathological examination under a light microscope, transmission electron microscopy, and determination of the retinal tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and vascular endothelial growth factor (VEGF) levels. Results Oral administration of the ginger extract resulted in significant reduction of hyperglycemia, the diameter of the retinal vessels, and vascular basement membrane thickness. Improvement in the architecture of the retinal vasculature was associated with significantly reduced expression of NF-κB and reduced activity of TNF-α and VEGF in the retinal tissue in the ginger extract–treated group compared to the vehicle-treated group. Conclusions The current study showed that ginger extract containing 5% of 6-gingerol attenuates the retinal microvascular changes in rats with streptozotocin-induced diabetes through anti-inflammatory and antiangiogenic actions. Although precise molecular targets remain to be determined, 6-gingerol seems to be a potential candidate for further investigation. PMID:27293376

  9. Wheel running exercise attenuates vulnerability to self-administer nicotine in rats

    PubMed Central

    Sanchez, Victoria; Lycas, Matthew D; Lynch, Wendy J; Brunzell, Darlene H

    2015-01-01

    Background Preventing or postponing tobacco use initiation could greatly reduce the number of tobacco-related deaths. While evidence suggests that exercise is a promising treatment for tobacco addiction, it is not clear whether exercise could prevent initial vulnerability to tobacco use. Thus, using an animal model, we examined whether exercise attenuates vulnerability to the use and reinforcing effects of nicotine, the primary addictive chemical in tobacco. Methods Initial vulnerability was assessed using an acquisition procedure wherein exercising (unlocked running wheel, n = 10) and sedentary (locked or no wheel, n = 12) male adolescent rats had access to nicotine infusions (0.01-mg/kg) during daily 21.5-hr sessions beginning on postnatal day 30. Exercise/sedentary sessions (2-hr/day) were conducted prior to each of the acquisition sessions. The effects of exercise on nicotine’s reinforcing effects were further assessed in separate groups of exercising (unlocked wheel, n = 7) and sedentary (no wheel, n = 5) rats responding for nicotine under a progressive-ratio schedule with exercise/sedentary sessions (2-hr/day) conducted before the daily progressive-ratio sessions. Results While high rates of acquisition of nicotine self-administration were observed among both groups of sedentary controls, acquisition was robustly attenuated in the exercise group with only 20% of exercising rats meeting the acquisition criterion within the 16-day testing period as compared to 67% of the sedentary controls. Exercise also decreased progressive-ratio responding for nicotine as compared to baseline and to sedentary controls. Conclusions Exercise may effectively prevent the initiation of nicotine use in adolescents by reducing the reinforcing effects of nicotine. PMID:26433561

  10. Evaluation of an attenuated Trypanosoma cruzi strain in rats. Analysis of survival, parasitemia and tissue damage.

    PubMed

    Revelli, S; Basombrío, M A; Valenti, J L; Moreno, H; Poli, H; Morini, J C

    1993-01-01

    Infection and tissue damage induced by parasites of an attenuated Trypanosoma cruzi culture strain (TCC) were studied in "I" line of inbred rats. Suckling rats (S), 3-5 day old were inoculated i.p. with 10(6) TCC (S1), 10(7) TCC (S2) and 10(8) TCC (S3). Weaned rats (W), 21-25 day old were inoculated s.c. with 10(6) TCC (W1), 10(7) TCC (W2) and 10(8) TCC (W3). The cultures yielded up to 2% of trypomastigotes. Controls inoculated either i.p. or s.c. with 10(6) blood form trypomastigotes (SC and WC) as well as normal controls (NC) were included. Survival was 100% in S1, S2 and S3, and 0% in SC on day 13 post-infection (p.i.). The latter animals died with acute Chagas disease signs. Survival was 100% in the W groups. In the first 30 days p.i. parasites were detected in S1, S2 and S3 and W1, W2, W3 groups after exhaustive examination. Parasites were easily found in WC and SC until day 13. Xeno-diagnoses were positive (5/5) at 2 months p.i. and negative at 6 months p.i. (W1, W2, W3, 0/23; WC, 0/5). Only cardiac lesions were slightly increased. The frequency of focal chronic myocarditis seemed to be increased in a dose-independent manner (S1, S2, S3, 26%; W1, W2, W3, 46%) but was not significant in comparison with NC, and even was lower than usually found in WC (61.3%). The reduced virulence and pathogenicity suggest that the TCC strain suffered a remarkable attenuation after long term in vitro culture. PMID:8246729

  11. Anxiolytic effects of environmental enrichment attenuate sex-related anxiogenic effects of scopolamine in rats.

    PubMed

    Hughes, Robert N; Otto, Maria T

    2013-01-10

    In groups of four same-sexed animals, PVG/c hooded rats were housed for 4.5 months in standard or enriched cages containing several objects that could be explored and manipulated. On separate occasions, each rat then experienced two consecutive daily trials in an open field, a light-dark box or a Y maze with arm inserts that enabled an acquisition trial comprising one black and one white arm to be changed for a retention trial consisting of two black arms. Before their trials in the open field and light-dark box, and following each acquisition trial in the Y maze, the rats received an intraperitoneal injection of 2 mg/kg scopolamine or isotonic saline. In the open field, enrichment led to higher levels of ambulation, walking, rearing and occupancy of the center of the apparatus and shorter emergence latencies from the dark into the light compartment of the light-dark box accompanied by more entries of this compartment. Enrichment also increased entries of and time spent in the changed (or novel) Y-maze arm only for male rats treated with scopolamine. The drug decreased rearing and increased grooming in the open field as well as increasing emergence latencies and decreasing entries of and the time spent on the light compartment of the light-dark box. The main results were interpreted as enrichment having attenuated anxiogenic effects of the behavioral testing and the action of scopolamine for male (but not female) rats in their choices of the novel arm in the Y maze.

  12. Chemical sympathectomy attenuates inflammation, glycocalyx shedding and coagulation disorders in rats with acute traumatic coagulopathy.

    PubMed

    Xu, Lin; Yu, Wen-Kui; Lin, Zhi-Liang; Tan, Shan-Jun; Bai, Xiao-Wu; Ding, Kai; Li, Ning

    2015-03-01

    Acute traumatic coagulopathy (ATC) may trigger sympathoadrenal activation associated with endothelial damage and coagulation disturbances. Overexcitation of sympathetic nerve in this state would disrupt sympathetic-vagal balance, leading to autonomic nervous system dysfunction. The aim of this study was to evaluate the autonomic function in ATC and its influence on inflammation, endothelial and coagulation activation. Male Sprague-Dawley rats were randomly assigned to sham, ATC control (ATCC) and ATC with sympathectomy by 6-hydroxydopamine (ATCS) group. Sham animals underwent the same procedure without trauma and bleeding. Following trauma and hemorrhage, rats underwent heart rate variability (HRV) test, which predicts autonomic dysfunction through the analysis of variation in individual R-R intervals. Then, rats were euthanized at baseline, and at 0, 1 and 2 h after shock and blood gas, conventional coagulation test and markers of inflammation, coagulation, fibrinolysis, endothelial damage and catecholamine were measured. HRV showed an attenuation of total power and high frequency, along with a rise of low frequency and low frequency : high frequency ratio in the ATC rats, which both were reversed by sympathectomy in the ATCS group. Additionally, sympathetic denervation significantly suppressed the increase of proinflammatory cytokines, tumor necrosis factor-α and the fibrinolysis markers including tissue-type plasminogen activator and plasmin-antiplasmin complex. Serum catecholamine, soluble thrombomodulin and syndecan-1 were also effectively inhibited by sympathectomy. These data indicated that autonomic dysfunction in ATC involves both sympathetic activation and parasympathetic inhibition. Moreover, sympathectomy yielded anti-inflammatory, antifibrinolysis and endothelial protective effects in rats with ATC. The role of autonomic neuropathy in ATC should be explored further.

  13. Cardiac Sympathetic Afferent Denervation Attenuates Cardiac Remodeling and Improves Cardiovascular Dysfunction in Rats with Heart Failure

    PubMed Central

    Wang, Han-Jun; Wang, Wei; Cornish, Kurtis G.; Rozanski, George J.; Zucker, Irving H.

    2014-01-01

    The enhanced cardiac sympathetic afferent reflex (CSAR) contributes to the exaggerated sympatho-excitation in chronic heart failure (CHF). Increased sympatho-excitation is positively related to mortality in CHF patients. However, the potential beneficial effects of chronic CSAR deletion on cardiac and autonomic function in CHF have not been previously explored. Here we determined the effects of chronic CSAR deletion on cardiac remodeling and autonomic dysfunction in CHF. In order to selectively delete the transient receptor potential vanilloid 1 receptor (TRPV1) -expressing CSAR afferents, epicardial application of resiniferatoxin (RTX, 50 μg/ml), an ultrapotent analogue of capsaicin, was performed during myocardium infarction (MI) surgery in rats. This procedure largely abolished the enhanced CSAR, prevented the exaggerated renal and cardiac sympathetic nerve activity and improved baroreflex sensitivity in CHF rats. Most importantly, we found that epicardial application of RTX largely prevented the elevated LVEDP, lung edema and cardiac hypertrophy, partially reduced left ventricular dimensions in the failing heart and increased cardiac contractile reserve in response to β-adrenergic receptor stimulation with isoproterenol in CHF rats. Molecular evidence showed that RTX attenuated cardiac fibrosis and apoptosis and reduced expression of fibrotic markers and TGF β-receptor I in CHF rats. Pressure - volume loop analysis showed that RTX reduced the end diastolic pressure volume relations in CHF rats indicating improved cardiac compliance. In summary, cardiac sympathetic afferent deletion exhibits protective effects against deleterious cardiac remodeling and autonomic dysfunction in CHF. These data suggest a potential new paradigm and therapeutic potential in the management of CHF. PMID:24980663

  14. Dietary aspartame with protein on plasma and brain amino acids, brain monoamines and behavior in rats.

    PubMed

    Torii, K; Mimura, T; Takasaki, Y; Ichimura, M

    1986-01-01

    Aspartame (APM; L-aspartyl-L-phenylalanine methyl ester), was investigated for its ability to alter levels of the large neutral amino acids and monoamines in overnight fasted rats allowed to consume meals with or without protein for two hours. Additionally, the possible long term behavioral consequences of APM in 25% casein diets with or without 10% sucrose were determined. Acute APM ingestion increased both plasma and brain phenylalanine and tyrosine levels, but brain tryptophan levels were not altered regardless of dietary protein. Brain norepinephrine and dopamine levels were unaltered by any of the diet while serotonin levels were slightly increased when a protein-free diet was consumed. But APM and/or protein ingestion minimized this increase of brain serotonin levels as much as controls. Chronic APM ingestion failed to influence diurnal feeding patterns, meal size distributions, or diurnal patterns of spontaneous motor activity. The chronic ingestion of abuse doses of APM produced no significant chemical changes in brain capable of altering behavioral parameters believed to be controlled by monoamines in rats.

  15. Global profiling of influence of intra-ischemic brain temperature on gene expression in rat brain.

    PubMed

    Kobayashi, Megumi Sugahara; Asai, Satoshi; Ishikawa, Koichi; Nishida, Yayoi; Nagata, Toshihito; Takahashi, Yasuo

    2008-06-01

    Mild to moderate differences in brain temperature are known to greatly affect the outcome of cerebral ischemia. The impact of brain temperature on ischemic disorders has been mainly evaluated through pathological analysis. However, no comprehensive analyses have been conducted at the gene expression level. Using a high-density oligonucleotide microarray, we screened 24000 genes in the hippocampus under hypothermic (32 degrees C), normothermic (37 degrees C), and hyperthermic (39 degrees C) conditions in a rat ischemia-reperfusion model. When the ischemic group at each intra-ischemic brain temperature was compared to a sham-operated control group, genes whose expression levels changed more than three-fold with statistical significance could be detected. In our screening condition, thirty-three genes (some of them novel) were obtained after screening, and extensive functional surveys and literature reviews were subsequently performed. In the hypothermic condition, many neuroprotective factor genes were obtained, whereas cell death- and cell damage-associated genes were detected as the brain temperature increased. At all intra-ischemic brain temperatures, multiple molecular chaperone genes were obtained. The finding that intra-ischemic brain temperature affects the expression level of many genes related to neuroprotection or neurotoxicity coincides with the different pathological outcomes at different brain temperatures, demonstrating the utility of the genetic approach.

  16. Hesperidin ameliorates heavy metal induced toxicity mediated by oxidative stress in brain of Wistar rats.

    PubMed

    Khan, Mohammad Haaris Ajmal; Parvez, Suhel

    2015-01-01

    Cadmium (Cd) induces neurotoxicity owing to its highly deleterious capacity to cross the blood brain barrier (BBB). Recent studies have provided insights on antioxidant properties of bioflavonoids which have emerged as potential therapeutic and nutraceutical agents. The aim of our study was to examine the hypothesis that hesperidin (HP) ameliorates oxidative stress and may have mitigatory effects in the extent of heavy metal-induced neurotoxicity. Cd (3mg/kg body weight) was administered subcutaneously for 21 days while HP (40 mg/kg body weight) was administered orally once every day. The results of the current investigation demonstrate significant elevated levels of oxidative stress markers such as lipid peroxidation (LPO) and protein carbonyl (PC) along with significant depletion in the activity of non-enzymatic antioxidants like glutathione (GSH) and non-protein thiol (NP-SH) and enzymatic antioxidants in the Cd treated rats' brain. Activity of neurotoxicity biomarkers such as acetylcholinesterase (AchE), monoamine oxidase (MAO) and total ATPase were also altered significantly and HP treatment significantly attenuated the altered levels of oxidative stress and neurotoxicity biomarkers while salvaging the antioxidant sentinels of cells to near normal levels thus exhibiting potent antioxidant and neuroprotective effects on the brain tissue against oxidative damage in Cd treated rodent model.

  17. The neuroprotective effects of intramuscular insulin-like growth factor-I treatment in brain ischemic rats.

    PubMed

    Chang, Heng-Chih; Yang, Yea-Ru; Wang, Paulus S; Kuo, Chia-Hua; Wang, Ray-Yau

    2013-01-01

    Brain ischemia leads to muscle inactivity-induced atrophy and may exacerbate motor function deficits. Intramuscular insulin-like growth factor I (IGF-I) injection has been shown to alleviate the brain ischemia-induced muscle atrophy and thus improve the motor function. Motor function is normally gauged by the integrity and coordination of the central nervous system and peripheral muscles. Whether brain ischemic regions are adaptively changed by the intramuscular IGF-I injection is not well understood. In this study, the effect of intramuscular IGF-I injection was examined on the central nervous system of brain ischemic rats. Rats were divided into 4 groups: sham control, brain ischemia control, brain ischemia with IGF-I treatment, and brain ischemia with IGF-I plus IGF-I receptor inhibitor treatment. Brain ischemia was induced by right middle cerebral artery occlusion. IGF-I and an IGF-1 receptor inhibitor were injected into the affected calf and anterior tibialis muscles of the treated rats for 4 times. There was an interval of 2 days between each injection. Motor function was examined and measured at the 24 hours and 7 days following a brain ischemia. The affected hind-limb muscles, sciatic nerve, lumbar spinal cord, and motor cortex were collected for examination after euthanizing the rats. IGF-I expression in the central nervous system and affected muscles were significantly decreased after brain ischemia. Intramuscular IGF-I injection increased the IGF-I expression in the affected muscles, sciatic nerve, lumbar spinal cord, and motor cortex. It also increased the p-Akt expression in the affected motor cortex. Furthermore, intramuscular IGF-I injection decreased the neuronal apoptosis and improved the motor function. However, co-administration of the IGF-I receptor inhibitor eliminated these effects. Intramuscular IGF-I injection after brain ischemia attenuated or reversed the decrease of IGF-I in both central and peripheral tissues, and these effects could

  18. Light-sheet microscopy imaging of a whole cleared rat brain with Thy1-GFP transgene

    PubMed Central

    Stefaniuk, Marzena; Gualda, Emilio J.; Pawlowska, Monika; Legutko, Diana; Matryba, Paweł; Koza, Paulina; Konopka, Witold; Owczarek, Dorota; Wawrzyniak, Marcin; Loza-Alvarez, Pablo; Kaczmarek, Leszek

    2016-01-01

    Whole-brain imaging with light-sheet fluorescence microscopy and optically cleared tissue is a new, rapidly developing research field. Whereas successful attempts to clear and image mouse brain have been reported, a similar result for rats has proven difficult to achieve. Herein, we report on creating novel transgenic rat harboring fluorescent reporter GFP under control of neuronal gene promoter. We then present data on clearing the rat brain, showing that FluoClearBABB was found superior over passive CLARITY and CUBIC methods. Finally, we demonstrate efficient imaging of the rat brain using light-sheet fluorescence microscopy. PMID:27312902

  19. Light-sheet microscopy imaging of a whole cleared rat brain with Thy1-GFP transgene.

    PubMed

    Stefaniuk, Marzena; Gualda, Emilio J; Pawlowska, Monika; Legutko, Diana; Matryba, Paweł; Koza, Paulina; Konopka, Witold; Owczarek, Dorota; Wawrzyniak, Marcin; Loza-Alvarez, Pablo; Kaczmarek, Leszek

    2016-01-01

    Whole-brain imaging with light-sheet fluorescence microscopy and optically cleared tissue is a new, rapidly developing research field. Whereas successful attempts to clear and image mouse brain have been reported, a similar result for rats has proven difficult to achieve. Herein, we report on creating novel transgenic rat harboring fluorescent reporter GFP under control of neuronal gene promoter. We then present data on clearing the rat brain, showing that FluoClearBABB was found superior over passive CLARITY and CUBIC methods. Finally, we demonstrate efficient imaging of the rat brain using light-sheet fluorescence microscopy. PMID:27312902

  20. Ethanolic extract of Trigonella Foenum Graecum attenuates cisplatin-induced nephro- and hepatotoxicities in rats.

    PubMed

    Hegazy, Marwa G A; Emam, Manal A

    2015-01-01

    Nephro-and hepatotoxicities are important complications in cancer patients undergoing cisplatin (CP) therapy. We aimed to study the protective effect of fenugreek (FG) on CP induced renal and hepatic injuries in rats. Cisplatin intoxication resulted in structural and functional renal and hepatic impairments, which were revealed by massive histopathological changes and elevated kidney and liver function tests. However, it was associated with oxidative stress and lipid peroxidation as evident by increased reactive oxygen species (ROS) and malondialdehyde (MDA) with decreased levels of total antioxidant activity. Cisplatin administration triggered inflammatory responses and apoptosis in rat livers and kidneys as evident by increased expression of pro-inflammatory cytokine, tumor necrosis factor- α (TNF-α) and apoptotic marker p38 mitogen-activated protein kinase (p38 MAPK) as results of overproduction of ROS. FG significantly attenuated the cisplatin-induced biochemical and histopathological alterations, inflammation and apoptosis in rat livers and kidneys. Results suggested that fenugreek co-administration has a powerful antioxidant effect and may serves as a novel and promising preventive strategy against cisplatin-induced nephron- and hepatotoxicities. PMID:26612737

  1. A green algae mixture of Scenedesmus and Schroederiella attenuates obesity-linked metabolic syndrome in rats.

    PubMed

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C; Paul, Nicholas A; Brown, Lindsay

    2015-04-14

    This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC) containing protein (46.1% of dry algae), insoluble fibre (19.6% of dry algae), minerals (3.7% of dry algae) and omega-3 fatty acids (2.8% of dry algae) as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68%) and fats (saturated and trans fats from beef tallow, total 24%). High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food) lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome.

  2. Inhibition of classical complement activation attenuates liver ischaemia and reperfusion injury in a rat model.

    PubMed

    Heijnen, B H M; Straatsburg, I H; Padilla, N D; Van Mierlo, G J; Hack, C E; Van Gulik, T M

    2006-01-01

    Activation of the complement system contributes to the pathogenesis of ischaemia/reperfusion (I/R) injury. We evaluated inhibition of the classical pathway of complement using C1-inhibitor (C1-inh) in a model of 70% partial liver I/R injury in male Wistar rats (n = 35). C1-inh was administered at 100, 200 or 400 IU/kg bodyweight, 5 min before 60 min ischaemia (pre-I) or 5 min before 24 h reperfusion (end-I). One hundred IU/kg bodyweight significantly reduced the increase of plasma levels of activated C4 as compared to albumin-treated control rats and attenuated the increase of alanine aminotransferase (ALT). These effects were not better with higher doses of C1-inh. Administration of C1-inh pre-I resulted in lower ALT levels and higher bile secretion after 24 h of reperfusion than administration at end-I. Immunohistochemical assessment indicated that activated C3, the membrane attack complex C5b9 and C-reactive protein (CRP) colocalized in hepatocytes within midzonal areas, suggesting CRP is a mediator of I/R-induced, classical complement activation in rats. Pre-ischaemic administration of C1-inh is an effective pharmacological intervention to protect against liver I/R injury.

  3. Novel TRPM8 antagonist attenuates cold hypersensitivity after peripheral nerve injury in rats.

    PubMed

    Patel, Ryan; Gonçalves, Leonor; Newman, Robert; Jiang, Feng Li; Goldby, Anne; Reeve, Jennifer; Hendrick, Alan; Teall, Martin; Hannah, Duncan; Almond, Sarah; Brice, Nicola; Dickenson, Anthony H

    2014-04-01

    Abnormal cold sensitivity is a common feature of a range of neuropathies. In the murine somatosensory system, multiple aspects of cold sensitivity are dependent on TRPM8, both short term and in response to peripheral nerve injury. The specialized nature of cold-sensitive afferents and the restricted expression of TRPM8 render it an attractive target for the treatment of cold hypersensitivity. This current study examines the effect of a novel TRPM8 antagonist (M8-An) in naive and spinal nerve-ligated rats through behavioral and in vivo electrophysiological approaches. In vitro, M8-An inhibited icilin-evoked Ca(2+) currents in HEK293 cells stably expressing human TRPM8 with an IC(50) of 10.9 nM. In vivo, systemic M8-An transiently decreased core body temperature. Deep dorsal horn recordings were made in vivo from neurons innervating the hind paw. M8-An inhibited neuronal responses to innocuous and noxious cooling of the receptive field in spinal nerve-ligated rats but not in naive rats. No effect on neuronal responses to mechanical and heat stimulation was observed. In addition, M8-An also attenuated behavioral responses to cold but not mechanical stimulation after nerve ligation without affecting the uninjured contralateral response. The data presented here support a contribution of TRPM8 to the pathophysiology of cold hypersensitivity in this model and highlight the potential of the pharmacological block of TRPM8 in alleviating the associated symptoms. PMID:24472724

  4. Environmental enrichment and cafeteria diet attenuate the response to chronic variable stress in rats.

    PubMed

    Zeeni, N; Bassil, M; Fromentin, G; Chaumontet, C; Darcel, N; Tome, D; Daher, C F

    2015-02-01

    Exposure to an enriched environment (EE) or the intake of a highly palatable diet may reduce the response to chronic stress in rodents. To further explore the relationships between EE, dietary intake and stress, male Sprague-Dawley rats were fed one of two diets for 5 weeks: high carbohydrate (HC) or "cafeteria" (CAF) (Standard HC plus a choice of highly palatable cafeteria foods: chocolate, biscuits, and peanut butter). In addition, they were either housed in empty cages or cages with EE. After the first two weeks, half of the animals from each group were stressed daily using a chronic variable stress (CVS) paradigm, while the other half were kept undisturbed. Rats were sacrificed at the end of the 5-week period. The effects of stress, enrichment and dietary intake on animal adiposity, serum lipids, and stress hormones were analyzed. Results showed an increase in intra-abdominal fat associated with the CAF diet and an increase in body weight gain associated with both the CAF diet and EE. Furthermore, the increase in ACTH associated with CVS was attenuated in the presence of EE and the CAF diet independently while the stress-induced increase in corticosterone was reduced by the combination of EE and CAF feeding. The present study provides evidence that the availability of a positive environment combined to a highly palatable diet increases resilience to the effects of CVS in rats. These results highlight the important place of palatable food and supportive environments in reducing central stress responses.

  5. Metformin attenuates hyperoxia-induced lung injury in neonatal rats by reducing the inflammatory response

    PubMed Central

    Chen, Xueyu; Walther, Frans J.; Sengers, Rozemarijn M. A.; Laghmani, El Houari; Salam, Asma; Folkerts, Gert; Pera, Tonio

    2015-01-01

    Because therapeutic options are lacking for bronchopulmonary dysplasia (BPD), there is an urgent medical need to discover novel targets/drugs to treat this neonatal chronic lung disease. Metformin, a drug commonly used to lower blood glucose in type 2 diabetes patients, may be a novel therapeutic option for BPD by reducing pulmonary inflammation and fibrosis and improving vascularization. We investigated the therapeutic potential of daily treatment with 25 and 100 mg/kg metformin, injected subcutaneously in neonatal Wistar rats with severe experimental BPD, induced by continuous exposure to 100% oxygen for 10 days. Parameters investigated included survival, lung and heart histopathology, pulmonary fibrin and collagen deposition, vascular leakage, right ventricular hypertrophy, and differential mRNA expression in the lungs of key genes involved in BPD pathogenesis, including inflammation, coagulation, and alveolar development. After daily metformin treatment rat pups with experimental BPD had reduced mortality, alveolar septum thickness, lung inflammation, and fibrosis, demonstrated by a reduced influx of macrophages and neutrophils and hyperoxia-induced collagen III and fibrin deposition (25 mg/kg), as well as improved vascularization (100 mg/kg) compared with control treatment. However, metformin did not ameliorate alveolar enlargement, small arteriole wall thickening, vascular alveolar leakage, and right ventricular hypertrophy. In conclusion metformin prolongs survival and attenuates pulmonary injury by reducing pulmonary inflammation, coagulation, and fibrosis but does not affect alveolar development or prevent pulmonary arterial hypertension and right ventricular hypertrophy in neonatal rats with severe hyperoxia-induced experimental BPD. PMID:26047641

  6. A Green Algae Mixture of Scenedesmus and Schroederiella Attenuates Obesity-Linked Metabolic Syndrome in Rats

    PubMed Central

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C.; Paul, Nicholas A.; Brown, Lindsay

    2015-01-01

    This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC) containing protein (46.1% of dry algae), insoluble fibre (19.6% of dry algae), minerals (3.7% of dry algae) and omega-3 fatty acids (2.8% of dry algae) as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68%) and fats (saturated and trans fats from beef tallow, total 24%). High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food) lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome. PMID:25875119

  7. Attenuated baroreflex control of sympathetic nerve activity after cardiovascular deconditioning in rats

    NASA Technical Reports Server (NTRS)

    Moffitt, J. A.; Foley, C. M.; Schadt, J. C.; Laughlin, M. H.; Hasser, E. M.

    1998-01-01

    The effect of cardiovascular deconditioning on baroreflex control of the sympathetic nervous system was evaluated after 14 days of hindlimb unloading (HU) or the control condition. Rats were chronically instrumented with catheters and sympathetic nerve recording electrodes for measurement of mean arterial pressure (MAP) and heart rate (HR) and recording of lumbar (LSNA) or renal (RSNA) sympathetic nerve activity. Experiments were conducted 24 h after surgery, with the animals in a normal posture. Baroreflex function was assessed using a logistic function that related HR and LSNA or RSNA to MAP during infusion of phenylephrine and nitroprusside. Baroreflex influence on HR was not affected by HU. Maximum baroreflex-elicited LSNA was significantly reduced in HU rats (204 +/- 11.9 vs. 342 +/- 30.6% baseline LSNA), as was maximum reflex gain (-4.0 +/- 0.6 vs. -7.8 +/- 1.3 %LSNA/mmHg). Maximum baroreflex-elicited RSNA (259 +/- 10.8 vs. 453 +/- 28.0% baseline RSNA), minimum baroreflex-elicited RSNA (-2 +/- 2.8 vs. 13 +/- 4.5% baseline RSNA), and maximum gain (-5.8 +/- 0.5 vs. -13.6 +/- 3.1 %RSNA/mmHg) were significantly decreased in HU rats. Results demonstrate that baroreflex modulation of sympathetic nervous system activity is attenuated after cardiovascular deconditioning in rodents. Data suggest that alterations in the arterial baroreflex may contribute to orthostatic intolerance after a period of bedrest or spaceflight in humans.

  8. Environmental enrichment and cafeteria diet attenuate the response to chronic variable stress in rats.

    PubMed

    Zeeni, N; Bassil, M; Fromentin, G; Chaumontet, C; Darcel, N; Tome, D; Daher, C F

    2015-02-01

    Exposure to an enriched environment (EE) or the intake of a highly palatable diet may reduce the response to chronic stress in rodents. To further explore the relationships between EE, dietary intake and stress, male Sprague-Dawley rats were fed one of two diets for 5 weeks: high carbohydrate (HC) or "cafeteria" (CAF) (Standard HC plus a choice of highly palatable cafeteria foods: chocolate, biscuits, and peanut butter). In addition, they were either housed in empty cages or cages with EE. After the first two weeks, half of the animals from each group were stressed daily using a chronic variable stress (CVS) paradigm, while the other half were kept undisturbed. Rats were sacrificed at the end of the 5-week period. The effects of stress, enrichment and dietary intake on animal adiposity, serum lipids, and stress hormones were analyzed. Results showed an increase in intra-abdominal fat associated with the CAF diet and an increase in body weight gain associated with both the CAF diet and EE. Furthermore, the increase in ACTH associated with CVS was attenuated in the presence of EE and the CAF diet independently while the stress-induced increase in corticosterone was reduced by the combination of EE and CAF feeding. The present study provides evidence that the availability of a positive environment combined to a highly palatable diet increases resilience to the effects of CVS in rats. These results highlight the important place of palatable food and supportive environments in reducing central stress responses. PMID:25446213

  9. Red Palm Oil Attenuates Lead Acetate Induced Testicular Damage in Adult Male Sprague-Dawley Rats.

    PubMed

    Jegede, A I; Offor, U; Azu, O O; Akinloye, O

    2015-01-01

    To study the protective effect of Red Palm Oil (RPO) on testicular damage induced by administration of lead acetate on male Sprague-Dawley rats, 28 rats divided into four groups of 7 animals each were used. They were administered orally with RPO (1 mL and 2 mL) and lead acetate (i.p.) 6 mg/kg body weight/day, respectively. Treatment was conducted for 8 weeks, and 24 hrs after the last treatment the rats were sacrificed using cervical dislocation. Sperms collected from epididymis were used for seminal fluid analyses; while the testes sample was used for ROS and oxidative enzyme activities assessment. Statistical analysis was carried out using GraphPad Prism 5.02 statistical analysis package. Administration of lead acetate increased generation of reactive oxygen species (ROS) significantly (p < 0.05) as evidenced by the elevated value of H2O2 and LPO and decreased GSH level. Also there was reduced epididymal sperm count, poor grade of sperm motility, and lower percentage of normal sperm morphology significantly. Coadministration with RPO, however, has a protective effect against lead toxicity by decreasing H2O2 production, increased GSH level, and increased sperm qualities especially. This shows that RPO has a potential to attenuate the toxic effect of lead on testicular cells preventing possible resultant male infertility. PMID:26516332

  10. Red Palm Oil Attenuates Lead Acetate Induced Testicular Damage in Adult Male Sprague-Dawley Rats

    PubMed Central

    Jegede, A. I.; Offor, U.; Azu, O. O.; Akinloye, O.

    2015-01-01

    To study the protective effect of Red Palm Oil (RPO) on testicular damage induced by administration of lead acetate on male Sprague-Dawley rats, 28 rats divided into four groups of 7 animals each were used. They were administered orally with RPO (1 mL and 2 mL) and lead acetate (i.p.) 6 mg/kg body weight/day, respectively. Treatment was conducted for 8 weeks, and 24 hrs after the last treatment the rats were sacrificed using cervical dislocation. Sperms collected from epididymis were used for seminal fluid analyses; while the testes sample was used for ROS and oxidative enzyme activities assessment. Statistical analysis was carried out using GraphPad Prism 5.02 statistical analysis package. Administration of lead acetate increased generation of reactive oxygen species (ROS) significantly (p < 0.05) as evidenced by the elevated value of H2O2 and LPO and decreased GSH level. Also there was reduced epididymal sperm count, poor grade of sperm motility, and lower percentage of normal sperm morphology significantly. Coadministration with RPO, however, has a protective effect against lead toxicity by decreasing H2O2 production, increased GSH level, and increased sperm qualities especially. This shows that RPO has a potential to attenuate the toxic effect of lead on testicular cells preventing possible resultant male infertility. PMID:26516332

  11. Medial accumbens lesions attenuate testosterone-dependent aggression in male rats.

    PubMed

    Albert, D J; Petrovic, D M; Walsh, M L; Jonik, R H

    1989-10-01

    Male hooded rats were castrated and implanted with testosterone-filled Silastic tubes appropriate for maintaining a normal average serum testosterone concentration. They were then given lesions of the medial accumbens nucleus or sham lesions. Twenty-four hours postoperatively each male was housed with a female. Beginning 7 days following pairing and continuing once each week for 4 weeks, each lesioned or sham-lesioned male was observed for aggression toward an unfamiliar male intruder. On the day following each test of aggression toward an unfamiliar male, each lesioned and sham-lesioned male was assessed for defensiveness toward an experimenter. Rats with medial accumbens lesions displayed significantly less aggression toward an unfamiliar male intruder during each of the weekly tests than did sham-lesioned animals. The attenuation was most pronounced in animals with lesions damaging the posterior part of the medial accumbens nucleus (also designated as anterior portion of the bed nucleus of the stria terminalis) in the region of the crossover of the anterior commissure. Although medial accumbens lesions are known to make individually housed rats hyperdefensive toward an experimenter, lesion-induced hyperdefensiveness was not observed in the pair-housed animals in the present experiment. It is argued that the medial accumbens/bed nucleus of the stria terminalis area is an important region in the anterior forebrain for the modulation of hormone-dependent aggression.

  12. IB4-saporin attenuates acute and eliminates chronic muscle pain in the rat.

    PubMed

    Alvarez, Pedro; Gear, Robert W; Green, Paul G; Levine, Jon D

    2012-02-01

    The function of populations of nociceptors in muscle pain syndromes remain poorly understood. We compared the contribution of two major classes, isolectin B4-positive (IB4(+)) and IB4-negative (IB4(-)) nociceptors, in acute and chronic inflammatory and ergonomic muscle pain. Baseline mechanical nociceptive threshold was assessed in the gastrocnemius muscle of rats treated with IB4-saporin, which selectively destroys IB4(+) nociceptors. Rats were then submitted to models of acute inflammatory (intramuscular carrageenan)- or ergonomic intervention (eccentric exercise or vibration)-induced muscle pain, and each of the three models also evaluated for the transition from acute to chronic pain, manifest as prolongation of prostaglandin E2 (PGE(2))-induced hyperalgesia, after recovery from the hyperalgesia induced by acute inflammation or ergonomic interventions. IB4-saporin treatment did not affect baseline mechanical nociceptive threshold. However, compared to controls, IB4-saporin treated rats exhibited shorter duration mechanical hyperalgesia in all three models and attenuated peak hyperalgesia in the ergonomic pain models. And, IB4-saporin treatment completely prevented prolongation of PGE(2)-induced mechanical hyperalgesia. Thus, IB4(+) and IB4(-) neurons contribute to acute muscle hyperalgesia induced by diverse insults. However, only IB4+ nociceptors participate in the long term consequence of acute hyperalgesia.

  13. Brewers' rice attenuated aberrant crypt foci developing in colon of azoxymethane-treated rats.

    PubMed

    Tan, Bee Ling; Norhaizan, Mohd Esa; Pandurangan, Ashok Kumar; Hazilawati, Hamzah; Roselina, Karim

    2016-01-01

    Brewers' rice is one of abundant agricultural waste products in the rice industry. The present study is designed to investigate the potential of brewers' rice to inhibit the development of aberrant crypt foci (ACF) in colon of azoxymethane (AOM)-treated rats. The effects on the attenuation of hepatic toxicity and kidney function enzymes were also evaluated. Male Sprague-Dawley rats were randomly divided into five groups: (G1) normal; (G2) AOM alone; and (G3), (G4), and (G5), which were AOM fed with 10%, 20%, and 40% (w/w) of brewers' rice, respectively. The rats in group 2-5 were injected intraperitoneally with AOM (15 mg/kg body weight) once weekly for two weeks. After 8 weeks of treatment,the total number of ACF/colon and the number of ACF in the distal and middle colon were significantly reduced in all treatment groups compared to G2 (p<0.05). Brewers' rice decreased the number of ACF with dysplastic morphology in a dose-dependent manner. Alkaline phosphatase (ALP) level in G5 was significantly lower compared to the G2 (p<0.05). In conclusion, this study found the potential value of brewers' rice in reducing the risk of cancer susceptibility in colon. PMID:26826813

  14. Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging

    NASA Astrophysics Data System (ADS)

    Ladefoged, Claes N.; Benoit, Didier; Law, Ian; Holm, Søren; Kjær, Andreas; Højgaard, Liselotte; Hansen, Adam E.; Andersen, Flemming L.

    2015-10-01

    The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR sequence was proposed as a basis for MR-AC as this sequence shows a small signal in bone. The purpose of this study was to develop a new clinically feasible MR-AC method with patient specific continuous-valued linear attenuation coefficients in bone that provides accurate reconstructed PET image data. A total of 164 [18F]FDG PET/MR patients were included in this study, of which 10 were used for training. MR-AC was based on either standard CT (reference), UTE or our method (RESOLUTE). The reconstructed PET images were evaluated in the whole brain, as well as regionally in the brain using a ROI-based analysis. Our method segments air, brain, cerebral spinal fluid, and soft tissue voxels on the unprocessed UTE TE images, and uses a mapping of R2* values to CT Hounsfield Units (HU) to measure the density in bone voxels. The average error of our method in the brain was 0.1% and less than 1.2% in any region of the brain. On average 95% of the brain was within  ±10% of PETCT, compared to 72% when using UTE. The proposed method is clinically feasible, reducing both the global and local errors on the reconstructed PET images, as well as limiting the number and extent of the outliers.

  15. Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging.

    PubMed

    Ladefoged, Claes N; Benoit, Didier; Law, Ian; Holm, Søren; Kjær, Andreas; Højgaard, Liselotte; Hansen, Adam E; Andersen, Flemming L

    2015-10-21

    The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR sequence was proposed as a basis for MR-AC as this sequence shows a small signal in bone. The purpose of this study was to develop a new clinically feasible MR-AC method with patient specific continuous-valued linear attenuation coefficients in bone that provides accurate reconstructed PET image data. A total of 164 [(18)F]FDG PET/MR patients were included in this study, of which 10 were used for training. MR-AC was based on either standard CT (reference), UTE or our method (RESOLUTE). The reconstructed PET images were evaluated in the whole brain, as well as regionally in the brain using a ROI-based analysis. Our method segments air, brain, cerebral spinal fluid, and soft tissue voxels on the unprocessed UTE TE images, and uses a mapping of R(*)2 values to CT Hounsfield Units (HU) to measure the density in bone voxels. The average error of our method in the brain was 0.1% and less than 1.2% in any region of the brain. On average 95% of the brain was within  ±10% of PETCT, compared to 72% when using UTE. The proposed method is clinically feasible, reducing both the global and local errors on the reconstructed PET images, as well as limiting the number and extent of the outliers.

  16. Attenuation of circadian rhythms of food intake and respiration in aging diabetes-prone BHE/Cdb rats.

    PubMed

    Mathews, C E; Wickwire, K; Flatt, W P; Berdanier, C D

    2000-07-01

    The hypothesis that BHE/Cdb rats with mutations in their mitochondrial genome might accommodate this mutation by changing their food intake patterns was tested. Four experiments were conducted. Experiments 1 and 2 examined food intake patterns of BHE/Cdb rats fed a stock diet or BHE/Cdb and Sprague-Dawley rats fed a high-fat diet from weaning. Experiment 3 examined the daily rhythms of respiration and heat production in these rats at 200 days of age. Experiment 4 examined the effects of diet composition on these measurements at 50-day intervals. The Sprague-Dawley rats, regardless of diet, had the typical day-night rhythms of feeding and respiration. In contrast, the BHE/Cdb rats fed the high-fat diet showed normal rhythms initially, but with age, these rhythms were attenuated. The changes in rhythms preceded the development of glucose intolerance.

  17. Dexmedetomidine attenuates isoflurane-induced cognitive impairment through antioxidant, anti-inflammatory and anti-apoptosis in aging rat

    PubMed Central

    Wang, Xiaoning; Zhao, Binjiang; Li, Xue

    2015-01-01

    As a kind of α2 adrenergic receptor agonists, dexmedetomidine generates sedation, anti-anxiety and anesthesia effects by hyperpolarizing noradrenergic nerve cells in locus coeruleus. This study was designed to investigate the neuroprotective of dexmedetomidine attenuates isoflurane-induced cognitive impairment, and the possible underlying mechanism in aging rat. Firstly, we used isoflurane-induced aging rat model to analyze the therapeutical effect of dexmedetomidine on cognitive impairment. Next, commercial ELISA kits were used to analyze tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), methane dicarboxylic aldehyde (MDA) and superoxide dismutase (SOD) and caspase-3 levels. In addition, Western blotting was used to detect the protein expression of P38 MAPK, PTEN and phosphorylation-Akt (p-Akt) expression. Our results showed that the neuroprotective of dexmedetomidine significantly attenuates isoflurane-induced cognitive impairment in aging rat. Moreover, dexmedetomidine significantly inhibited these TNF-α, IL-1β, MDA, SOD and caspase-3 activities in isoflurane-induced aging rat. Meanwhile, the neuroprotective effects of dexmedetomidine on isoflurane-induced cognitive impairment significantly suppressed Bcl-xL/Bad rate, P38 MAPK and PTEN protein expression and activated p-Akt protein expression in aging rat. Collectively, neuroprotective effect of dexmedetomidine attenuates isoflurane-induced cognitive impairment through antioxidant, anti-inflammatory and anti-apoptosis in aging rat. PMID:26770320

  18. Long-term fish oil supplementation attenuates seizure activity in the amygdala induced by 3-mercaptopropionic acid in adult male rats.

    PubMed

    Flores-Mancilla, L E; Hernández-González, M; Guevara, M A; Benavides-Haro, D E; Martínez-Arteaga, P

    2014-04-01

    Several studies have provided evidence of significant effects of omega-3 fatty acids on brain functionality, including seizures and disorders such as epilepsy. Fish oil (FO) is a marine product rich in unsaturated omega-3 fatty acids. Considering that the amygdala is one of the brain structures most sensitive to seizure generation, we aimed to evaluate the effect of long-term chronic FO supplementation (from embryonic conception to adulthood) on the severity of seizures and amygdaloid electroencephalographic activity (EEG) in a 3-mercaptopropionic acid (3-MPA)-induced seizure model using adult rats. Female Wistar rats were fed a commercial diet supplemented daily with FO (300mg/kg) from puberty through mating, gestation, delivery, and weaning of the pups. Only the male pups were then fed daily with a commercial diet supplemented with the same treatment as the dam up to the age of 150days postpartum, when they were bilaterally implanted in the amygdala to record behavior and EEG activity before, during, and after seizures induced by administering 3-MPA. Results were compared with those obtained from rats supplemented with palm oil (PO) and rats treated with a vehicle (CTRL). The male rats treated with FO showed longer latency to seizure onset, fewer convulsive episodes, and attenuated severity compared those in the PO and CTRL groups according to the Racine scale. Moreover, long-term FO supplementation was associated with a reduction of the absolute power (AP) of the fast frequencies (12-25Hz) in the amygdala during the seizure periods. These findings support the idea that chronic supplementation with omega-3 of marine origin may have antiseizure properties as other studies have suggested.

  19. In utero exposure to microwave radiation and rat brain development

    SciTech Connect

    Merritt, J.H.; Hardy, K.A.; Chamness, A.F.

    1984-01-01

    Timed-pregnancy rats were exposed in a circular waveguide system starting on day 2 of gestation. The system operated at 2,450 MHz (pulsed waves; 8 microseconds PW; 830 pps). Specific absorption rate (SAR) was maintained at 0.4 W/kg by increasing the input power as the animals grew in size. On day 18 of gestation the dams were removed from the waveguide cages and euthanized; the fetuses were removed and weighed. Fetal brains were excised and weighed, and brain RNA, DNA and protein were determined. Values for measured parameters of the radiated fetuses did not differ significantly from those of sham-exposed fetuses. A regression of brain weight on body weight showed no micrencephalous fetuses in the radiation group when using as a criterion a regression line based on two standard errors of the estimate of the sham-exposed group. In addition, metrics derived from brain DNA (ie, cell number and cell size) showed no significant differences when radiation was compared to sham exposure. We conclude that 2,450-MHz microwave radiation, at an SAR of 0.4 W/kg, did not produce significant alterations in brain organogenesis.

  20. Effect of dl-3-n-butylphthalide on brain edema in rats subjected to focal cerebral ischemia.

    PubMed

    Deng, W; Feng, Y

    1997-06-01

    The present study evaluated the effect of dl-3-n-butylphthalide(NBP), a novel brain protective agent, on brain edema in rats following focal ischemia. Edema was induced by occluding the right middle cerebral artery (MCAO), producing permanent focal ischemia in the right cerebral hemisphere, which developed ipsilateral brain edema reproducibly. Edema was assessed 24 h after MCA occlusion by determining the brain water content from wet and dry weight measurements, and the sodium, potassium concentrations with ion-selective electrodes. In this model, NBP at the dose of 80, 160 and 240 mg/kg p.o. 15 min after MCAO prevented from brain edema in a dose-dependent manner. A significant reduction of sodium content and an increase in potassium level were observed in all drug-treated groups. It showed that NBP strongly attenuated brain water entry, sodium accumulation and potassium loss. Nimodipine treatment (5 mg/kg s.c.) also reduced brain edema (P < 0.05). The results suggest that a strong anti-edema activity of NBP may play an important role to contribute to the treatment of ischemic damage.

  1. Electrical stimulation of the aortic depressor nerve in conscious rats overcomes the attenuation of the baroreflex in chronic heart failure.

    PubMed

    Pinto, Tomás O C Teixeira; Lataro, Renata M; Castania, Jaci A; Durand, Marina T; Silva, Carlos A A; Patel, Kaushik P; Fazan, Rubens; Salgado, Helio C

    2016-04-01

    Chronic heart failure (CHF) is characterized by autonomic dysfunction combined with baroreflex attenuation. The hypotensive and bradycardic responses produced by electrical stimulation of the aortic depressor nerve (ADN) were examined in conscious CHF and control male Wistar rats (12-13 wk old). Furthermore, the role of parasympathetic and sympathetic nervous system in mediating the cardiovascular responses to baroreflex activation was evaluated by selective β1-adrenergic and muscarinic receptor antagonists. CHF was induced by myocardial infarction. After 6 wk, the subjects were implanted with electrodes for ADN stimulation. Twenty-four hours later, electrical stimulation of the ADN was applied for 20 s using five different frequencies (5, 15, 30, 60, and 90 Hz), while the arterial pressure was recorded by a catheter implanted into the femoral artery. Electrical stimulation of the ADN elicited progressive and similar hypotensive and bradycardic responses in control (n = 12) and CHF (n = 11) rats, while the hypotensive response was not affected by methylatropine. Nevertheless, the reflex bradycardia was attenuated by methylatropine in control, but not in CHF rats. Atenolol did not affect the hypotensive or bradycardic response in either group. The ADN function was examined under anesthesia through electroneurographic recordings. The arterial pressure-ADN activity relationship was attenuated in CHF rats. In conclusion, despite the attenuation of baroreceptor function in CHF rats, the electrical stimulation of the ADN elicited a stimulus-dependent hypotension and bradycardia of similar magnitude as observed in control rats. Therefore, electrical activation of the aortic baroreflex overcomes both the attenuation of parasympathetic function and the sympathetic overdrive.

  2. Loquat leaf extract enhances myogenic differentiation, improves muscle function and attenuates muscle loss in aged rats.

    PubMed

    Sung, Bokyung; Hwang, Seong Yeon; Kim, Min Jo; Kim, Minjung; Jeong, Ji Won; Kim, Cheol Min; Chung, Hae Young; Kim, Nam Deuk

    2015-09-01

    A main characteristic of aging is the debilitating, progressive and generalized impairment of biological functions, resulting in an increased vulnerability to disease and death. Skeletal muscle comprises approximately 40% of the human body; thus, it is the most abundant tissue. At the age of 30 onwards, 0.5‑1% of human muscle mass is lost each year, with a marked acceleration in the rate of decline after the age of 65. Thus, novel strategies that effectively attenuate skeletal muscle loss and enhance muscle function are required to improve the quality of life of older subjects. The aim of the present study was to determine whether loquat (Eriobotrya japonica) leaf extract (LE) can prevent the loss of skeletal muscle function in aged rats. Young (5-month-old) and aged (18‑19-month-old) rats were fed LE (50 mg/kg/day) for 35 days and the changes in muscle mass and strength were evaluated. The age‑associated loss of grip strength was attenuated, and muscle mass and muscle creatine kinase (CK) activity were enhanced following the administration of LE. Histochemical analysis also revealed that LE abrogated the age‑associated decrease in cross‑sectional area (CSA) and decreased the amount of connective tissue in the muscle of aged rats. To investigate the mode of action of LE, C2C12 murine myoblasts were used to evaluate the myogenic potential of LE. The expression levels of myogenic proteins (MyoD and myogenin) and functional myosin heavy chain (MyHC) were measured by western blot analysis. LE enhanced MyoD, myogenin and MyHC expression. The changes in the expression of myogenic genes corresponded with an increase in the activity of CK, a myogenic differentiation marker. Finally, LE activated the Akt/mammalian target of rapamycin (mTOR) signaling pathway, which is involved in muscle protein synthesis during myogenesis. These findings suggest that LE attenuates sarcopenia by promoting myogenic differentiation and subsequently promoting muscle protein synthesis

  3. Loquat leaf extract enhances myogenic differentiation, improves muscle function and attenuates muscle loss in aged rats.

    PubMed

    Sung, Bokyung; Hwang, Seong Yeon; Kim, Min Jo; Kim, Minjung; Jeong, Ji Won; Kim, Cheol Min; Chung, Hae Young; Kim, Nam Deuk

    2015-09-01

    A main characteristic of aging is the debilitating, progressive and generalized impairment of biological functions, resulting in an increased vulnerability to disease and death. Skeletal muscle comprises approximately 40% of the human body; thus, it is the most abundant tissue. At the age of 30 onwards, 0.5‑1% of human muscle mass is lost each year, with a marked acceleration in the rate of decline after the age of 65. Thus, novel strategies that effectively attenuate skeletal muscle loss and enhance muscle function are required to improve the quality of life of older subjects. The aim of the present study was to determine whether loquat (Eriobotrya japonica) leaf extract (LE) can prevent the loss of skeletal muscle function in aged rats. Young (5-month-old) and aged (18‑19-month-old) rats were fed LE (50 mg/kg/day) for 35 days and the changes in muscle mass and strength were evaluated. The age‑associated loss of grip strength was attenuated, and muscle mass and muscle creatine kinase (CK) activity were enhanced following the administration of LE. Histochemical analysis also revealed that LE abrogated the age‑associated decrease in cross‑sectional area (CSA) and decreased the amount of connective tissue in the muscle of aged rats. To investigate the mode of action of LE, C2C12 murine myoblasts were used to evaluate the myogenic potential of LE. The expression levels of myogenic proteins (MyoD and myogenin) and functional myosin heavy chain (MyHC) were measured by western blot analysis. LE enhanced MyoD, myogenin and MyHC expression. The changes in the expression of myogenic genes corresponded with an increase in the activity of CK, a myogenic differentiation marker. Finally, LE activated the Akt/mammalian target of rapamycin (mTOR) signaling pathway, which is involved in muscle protein synthesis during myogenesis. These findings suggest that LE attenuates sarcopenia by promoting myogenic differentiation and subsequently promoting muscle protein synthesis.

  4. Sodium Hydrosulfide Attenuates Beta-Amyloid-Induced Cognitive Deficits and Neuroinflammation via Modulation of MAPK/NF-κB Pathway in Rats.

    PubMed

    Liu, Huiyu; Deng, Yuanyuan; Gao, Jianmei; Liu, Yuangui; Li, Wenxian; Shi, Jingshan; Gong, Qihai

    2015-01-01

    Beta-amyloid (Aβ), a neurotoxic peptide, accumulates in the brain of Alzheimer's disease (AD) subjects to initiate neuroinflammation eventually leading to memory impairment. Here, we demonstrated that Aβ-injected rats exhibited cognitive impairment and neuroinflammation with a remarkable reduction of hydrogen sulfide (H2S) levels in the hippocampus compared with that in shamoperated rats. Interestingly, the expression of cystathionine-β-synthase (CBS) and 3- mercaptopyruvate-sulfurtransferase (3MST), the major enzymes responsible for endogenous H2S generation, were also significantly decreased. However, intraperitoneal (i.p.) injection of sodium hydrosulfide (NaHS, a H2S donor) dramatically attenuated cognitive impairment and neuroinflammation induced by hippocampal injection of 10 μg of Aβ1-42 in rats. Subsequently, NaHS significantly suppressed the expression of tumor necrosis factor (TNF)-α, interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) in rat hippocampus following Aβ administration. Furthermore, NaHS exerted a beneficial effect on inhibition of IκB-α degradation and subsequent activation of transcription factor nuclear factor κB (NF-κB), as well as inhibition of extracellular signal-regulated kinase (ERK1/2) activity and p38 MAPK activity but not c-Jun N-terminal kinase (JNK) activity induced by Aβ. These results demonstrate that NaHS might be a potential agent for treatment of neuroinflammation-related AD.

  5. Acupuncture Stimulation Attenuates Impaired Emotional-Like Behaviors and Activation of the Noradrenergic System during Protracted Abstinence following Chronic Morphine Exposure in Rats

    PubMed Central

    Lee, Bombi; Sur, Bong-Jun; Shim, Insop; Hahm, Dae-Hyun; Lee, Hyejung

    2014-01-01

    The purpose of this study was to evaluate whether acupuncture stimulation attenuates withdrawal-induced behaviors in the rats during protracted abstinence following chronic morphine exposure. To do this, male rats were first exposed to morphine gradually from 20 to 100 mg/kg for 5 days, and subsequently naloxone was injected once to extend despair-related withdrawal behaviors for 4 weeks. Acupuncture stimulation was performed once at the SP6 (Sanyinjiao) acupoint on rat's; hind leg for 5 min during protracted abstinence from morphine. The acupuncture stimulation significantly decreased despair-like behavior deficits in the forced swimming test and low sociability in the open-field test as well as increased open-arm exploration in the elevated plus maze test in the last week of 4-week withdrawal period. Also the acupuncture stimulation significantly suppressed the increase in the hypothalamic corticotropin-releasing factor (CRF) expression, the decrease in the tyrosine hydroxylase expression in the locus coeruleus, and the decrease in the hippocampal brain-derived neurotrophic factor mRNA expression, induced by repeated injection of morphine. Taken together, these findings demonstrate that the acupuncture stimulation of SP6 significantly reduces withdrawal-induced behaviors, induced by repeated administration of morphine in rats, possibly through the modulation of hypothalamic CRF and the central noradrenergic system. PMID:24527041

  6. Rhubarb Enema Attenuates Renal Tubulointerstitial Fibrosis in 5/6 Nephrectomized Rats by Alleviating Indoxyl Sulfate Overload

    PubMed Central

    Lu, Fuhua; Liu, Xusheng; Zou, Chuan

    2015-01-01

    Aim To investigate the effects of rhubarb enema treatment using a 5/6 nephrectomized rat model and study its mechanisms. Methods Twenty-eight Sprague Dawley rats were divided into three groups: sham operation group (n = 8), 5/6 nephrectomized (5/6Nx) (n = 10), and 5/6Nx with rhubarb enema treatment (n = 10). The rhubarb enema was continuous for 1.0 month. Serum creatinine, serum indoxyl sulfate (IS) level, renal pathology, tubulointerstitial fibrosis, and renal oxidative stress were assessed. Results 5/6Nx rats showed increasing levels of serum creatinine and severe pathological lesions. Their serum creatinine levels obviously decreased after rhubarb enema treatment (P < 0.05 vs 5/6Nx group). The administration of rhubarb enema attenuated the histopathological changes in 5/6Nx rats. In addition, 5/6Nx rats showed an enhanced extent of tubulointerstitial fibrosis compared with sham rats, and administration of rhubarb enema to 5/6Nx rats ameliorated tubulointerstitial fibrosis. 5/6Nx rats showed increased serum levels of IS, renal oxidative stress, and NF-κB compared with sham rats, whereas administration of rhubarb enema to 5/6Nx rats decreased serum levels of IS, renal oxidative stress, and NF-κB levels. Conclusion Rhubarb enema treatment ameliorates tubulointerstitial fibrosis in the kidneys of 5/6Nx rats, most likely by alleviating IS overload and reducing kidney oxidative stress and inflammatory injury. PMID:26671452

  7. Autoradiographic localization of angiotensin II receptors in rat brain

    SciTech Connect

    Mendelsohn, F.A.O.; Quirion, R.; Saavedra, J.M.; Aguilera, G.; Catt, K.J.

    1984-03-01

    The /sup 125/I-labeled agonist analog (1-sarcosine)-angiotensin II ((Sar/sup 1/)AII) bound with high specificity and affinity (K/sub a/ = 2 x 10/sup 9/ M/sup -1/) to a single class of receptor sites in rat brain. This ligand was used to analyze the distribution of AII receptors in rat brain by in vitro autoradiography followed by computerized densitometry and color coding. A very high density of AII receptors was found in the subfornical organ, paraventricular and periventricular nuclei of the hypothalamus, nucleus of the tractus solitarius, and area postrema. A high concentration of receptors was found in the suprachiasmatic nucleus of the hypothalamus, lateral olfactory tracts, nuclei of the accessory and lateral olfactory tracts, triangular septal nucleus, subthalamic nucleus, locus coeruleus, and inferior olivary nuclei. Moderate receptor concentrations were found in the organum vasculosum of the lamina terminalis, median preoptic nucleus, medial habenular nucleus, lateral septum, ventroposterior thalamic nucleus, median eminence, medial geniculate nucleus, superior colliculus, subiculum, pre- and parasubiculum, and spinal trigeminal tract. Low concentrations of sites were seen in caudate-putamen, nucleus accumbens, amygdala, and gray matter of the spinal cord. These studies have demonstrated that AII receptors are distributed in a highly characteristic anatomical pattern in the brain. The high concentrations of AII receptors at numerous physiologically relevant sites are consistent with the emerging evidence for multiple roles of AII as a neuropeptide in the central nervous system. 75 references, 2 figures.

  8. Localization of histidine decarboxylase mRNA in rat brain.

    PubMed

    Bayliss, D A; Wang, Y M; Zahnow, C A; Joseph, D R; Millhorn, D E

    1990-08-01

    The recent cloning of a cDNA encoding fetal rat liver histidine decarboxylase (HDC), the synthesizing enzyme for histamine, allows the study of the central histaminergic system at the molecular level. To this end, Northern blot and in situ hybridization analyses were used to determine the regional and cellular distribution of neurons which express HDC mRNA in rat brain. Three hybridizing species which migrate as 1.6-, 2.6-, and 3.5-kb RNA were identified with Northern blots. The major (2.6 kb) and minor (3.5 kb) species, characteristic of HDC mRNA in fetal liver, were expressed at high levels in diencephalon and at just detectable levels in hippocampus, but not in other brain regions. In contrast, the 1.6-kb species was present in all brain regions examined except the olfactory bulb. Cells which contain HDC mRNA were found by in situ hybridization in the hypothalamus; HDC mRNA-containing cells were not detected in other areas, including the hippocampus. Hypothalamic neurons which express HDC mRNA were localized to all aspects of the tuberomammillary nucleus, a result consistent with previous immunohistochemical findings. PMID:19912749

  9. TIMP-1 attenuates blood–brain barrier permeability in mice with acute liver failure

    PubMed Central

    Chen, Feng; Radisky, Evette S; Das, Pritam; Batra, Jyotica; Hata, Toshiyuki; Hori, Tomohide; Baine, Ann-Marie T; Gardner, Lindsay; Yue, Mei Y; Bu, Guojun; del Zoppo, Gregory; Patel, Tushar C; Nguyen, Justin H

    2013-01-01

    Blood–brain barrier (BBB) dysfunction in acute liver failure (ALF) results in increased BBB permeability that often precludes the patients from obtaining a life-saving liver transplantation. It remains controversial whether matrix metalloproteinase-9 (MMP-9) from the injured liver contributes to the deregulation of BBB function in ALF. We selectively upregulated a physiologic inhibitor of MMP-9 (TIMP-1) with a single intracerebroventricular injection of TIMP-1 cDNA plasmids at 48 and 72 hours, or with pegylated-TIMP-1 protein. Acute liver failure was induced with tumor necrosis factor-α and 𝒟-(+)-galactosamine in mice. Permeability of BBB was assessed with sodium fluorescein (NaF) extravasation. We found a significant increase in TIMP-1 within the central nervous system (CNS) after the administration of TIMP-1 cDNA plasmids and that increased TIMP-1 within the CNS resulted in an attenuation of BBB permeability, a reduction in activation of epidermal growth factor receptor and p38 mitogen-activated protein kinase signals, and a restoration of the tight junction protein occludin in mice with experimental ALF. Pegylated TIMP-1 provided similar protection against BBB permeability in mice with ALF. Our results provided a proof of principle that MMP-9 contributes to the BBB dysfunction in ALF and suggests a potential therapeutic role of TIMP-1 in ALF. PMID:23532086

  10. Systemic Hemin Therapy Attenuates Blood-Brain Barrier Disruption after Intracerebral Hemorrhage

    PubMed Central

    Lu, Xiangping; Chen-Roetling, Jing; Regan, Raymond F.

    2014-01-01

    Injury to the blood-brain barrier (BBB) is a key feature of intracerebral hemorrhage (ICH) and may contribute to perihematomal cell injury. Pretreatment with the heme oxygenase (HO)-1 inducer hemin improves barrier function and neurological outcome in experimental models of traumatic and ischemic CNS injury. Since hemin is already in clinical use to treat acute porphyrias, this translational study was designed to test its effect on BBB function when initiated after ICH in two mouse models. At a dose similar to those used in most preconditioning studies (26 mg/kg i.p.), post-hemorrhage treatment with hemin reduced parenchymal extravasation of Evans blue by about three-quarters in both the blood injection and collagenase ICH models. Similar efficacy was observed when treatment was begun at one or three hours. At the lower dose that is currently in clinical use (4 mg/kg beginning at 3 hours), hemin also improved barrier function in both models, as assessed by both Evans blue and FITC-dextran leakage; however, it was somewhat less potent, reducing Evans blue leakage by about half. This dose was nevertheless sufficient to attenuate striatal cell loss and accelerate neurological recovery. Consistent with prior observations, striatal HO-1 expression was increased by hemin, and was localized to perivascular cells. These results suggest that hemin may be an effective therapy for ICH with a clinically relevant time window. Further study of the repurposing of this old drug seems warranted. PMID:24952361

  11. Attenuation of the extract from Moringa oleifera on monocrotaline-induced pulmonary hypertension in rats.

    PubMed

    Chen, Kang-Hu; Chen, Yi-Jui; Yang, Chao-Hsun; Liu, Kuo-Wei; Chang, Junn-Liang; Pan, Shwu-Fen; Lin, Tzer-Bin; Chen, Mei-Jung

    2012-02-29

    The purpose of this study was to determine the effects of an extract from Moringa oleifera (MO) on the development of monocrotaline (MCT)-induced pulmonary hypertension (PH) in Wistar rats. An ethanol extraction was performed on dried MO leaves, and HPLC analysis identified niaziridin and niazirin in the extract. PH was induced with a single subcutaneous injection of MCT (60 mg/kg) which resulted in increases in pulmonary arterial blood pressure (Ppa) and in thickening of the pulmonary arterial medial layer in the rats. Three weeks after induction, acute administration of the MO extract to the rats decreased Ppa in a dose-dependent manner that reached statistical significance at a dose of 4.5 mg of freeze-dried extract per kg body weight. The reduction in Ppa suggested that the extract directly relaxed the pulmonary arteries. To assay the effects of chronic administration of the MO extract on PH, control, MCT and MCT+MO groups were designated. Rats in the control group received a saline injection; the MCT and MCT+MO groups received MCT to induce PH. During the third week after MCT treatment, the MCT+MO group received daily i.p. injections of the MO extract (4.5 mg of freeze-dried extract/kg of body weight). Compared to the control group, the MCT group had higher Ppa and thicker medial layers in the pulmonary arteries. Chronic treatments with the MO extract reversed the MCT-induced changes. Additionally, the MCT group had a significant elevation in superoxide dismutase activity when normalized by the MO extract treatments. In conclusion, the MO extract successfully attenuated the development of PH via direct vasodilatation and a potential increase in antioxidant activity. PMID:22242951

  12. Syzygium aromaticum water extract attenuates ethanol‑induced gastric injury through antioxidant effects in rats.

    PubMed

    Jin, Seong Eun; Lee, Mee-Young; Shin, In-Sik; Jeon, Woo-Young; Ha, Hyekyung

    2016-07-01

    The aim of the present study was to investigate whether Syzygium aromaticum water extract (SAWE) has a protective effect against ethanol‑induced gastric injury in rats. Acute gastric injury was induced via intragastric administration of absolute ethanol at a dose of 5 ml/kg. SAWE (250 or 500 mg/kg/day) or cimetidine (100 mg/kg/day), which was used as a positive control, were administered to the rats 2 h prior to ethanol administration for 3 days. All rats were sacrificed 24 h following the final ethanol administration. To examine whether SAWE has a gastroprotective effect, assays were performed to assess the contents of malondialdehyde (MDA) and glutathione (GSH), the activities of catalase, glutathione‑S‑transferase and superoxide dismutase, and an immune-linked immunosorbent assay was performed for prostaglandin E2 (PGE2) production in gastric tissues by hematoxylin and eosin and periodic acid-Schiff staining. Histological assessment of the gastric wall was performed. Compared with ethanol treatment alone, treatment with SAWE at a dose of 250 mg/kg/day significantly decreased the gastric MDA content and increased the GSH content, catalase activity, and production of gastric PGE2. Histological assessment showed that SAWE attenuated inflammatory cell infiltration and the loss of epithelial cells. These findings suggested that SAWE protected against ethanol‑induced gastric mucosal injury in the rats. These effects appeared to be associated with antioxidant activity, activation of the production of PGE2, suppression of inflammatory cell infiltration and loss of epithelial cells in the gastric mucosa. Collectively, SAWE may be beneficial in the prevention of gastric disease associated to oxidative stress. PMID:27177078

  13. Inhibition of vesicular glutamate transporters contributes to attenuate methamphetamine-induced conditioned place preference in rats.

    PubMed

    He, Zongsheng; Chen, Yuan; Dong, Huajin; Su, Ruibin; Gong, Zehui; Yan, Lingdi

    2014-07-01

    Accumulating evidence suggests that glutamatergic system plays a crucial role in methamphetamine (METH) addiction. In the glutamatergic transmission, vesicular glutamate transporters (VGLUTs) are responsible for transporting glutamate into synaptic vesicles and affect the glutamate concentrations in the synaptic cleft. It is well documented that VGLUTs play an essential role in pathophysiology of several psychiatric and neurological diseases, however, whether VGLUTs also have a role in addiction caused by psychostimulant drugs is still unknown. The present study was underwent to investigate the effect of inhibition of VGLUTs on METH-induced induce conditioned place preference in rats. Rats were induced to conditioned place preference with METH (0.5, 1.0 and 2.0mg/kg) by intraperitoneal injection. Intracerebroventricular administration of 1.0 or 5.0μg Chicago sky blue 6B (CSB6B), a VGLUTs inhibitor, and 2.5h prior to METH was to observe its effect on METH-induced conditioned place preference in rats. The rats receiving METH showed stronger place preference at the dose of 1.0mg/kg than that of other doses. The intracerebroventricular administration of CSB6B (1.0, 5.0μg) 2.5h prior to the exposure to METH attenuated the acquisition of METH-induced conditioned place preference, while CSB6B itself had no effect on place preference. These results indicate that VGLUTs are involved in the effect of METH-induced conditioned place preference and may be a new target against METH addiction.

  14. Lentil-based diets attenuate hypertension and large-artery remodelling in spontaneously hypertensive rats.

    PubMed

    Hanson, Matthew G; Zahradka, Peter; Taylor, Carla G

    2014-02-01

    Hypertension is a major risk factor for CVD, the leading cause of mortality worldwide. The prevalence of hypertension is expected to continue increasing, and current pharmacological treatments cannot alleviate all the associated problems. Pulse crops have been touted as a general health food and are now being studied for their possible effects on several disease states including hypertension, obesity and diabetes. In the present study, 15-week-old spontaneously hypertensive rats (SHR) were fed diets containing 30% w/w beans, peas, lentils, chickpeas, or mixed pulses or a pulse-free control diet for 4 weeks. Normotensive Wistar-Kyoto (WKY) rats were placed on a control diet. Pulse wave velocity (PWV) was measured weekly, while blood pressure (BP) was measured at baseline and week 4. Fasting serum obtained in week 4 of the study was analysed for circulating lipids. A histological analysis was carried out on aortic sections to determine vascular geometry. Of all the pulse varieties studied, lentils were found to be able to attenuate the rise in BP in the SHR model (P< 0·05). Lentils were able to decrease the media:lumen ratio and media width of the aorta. The total cholesterol (TC), LDL-cholesterol (LDL-C) and HDL-cholesterol levels of rats fed the pulse-based diets were found to be lower when compared with those of the WKY rat and SHR controls (P< 0·05). Although all pulses reduced circulating TC and LDL-C levels in the SHR, only lentils significantly reduced the rise in BP and large-artery remodelling in the SHR, but had no effect on PWV. These results indicate that the effects of lentils on arterial remodelling and BP in the SHR are independent of circulating LDL-C levels.

  15. Inhibition of vesicular glutamate transporters contributes to attenuate methamphetamine-induced conditioned place preference in rats.

    PubMed

    He, Zongsheng; Chen, Yuan; Dong, Huajin; Su, Ruibin; Gong, Zehui; Yan, Lingdi

    2014-07-01

    Accumulating evidence suggests that glutamatergic system plays a crucial role in methamphetamine (METH) addiction. In the glutamatergic transmission, vesicular glutamate transporters (VGLUTs) are responsible for transporting glutamate into synaptic vesicles and affect the glutamate concentrations in the synaptic cleft. It is well documented that VGLUTs play an essential role in pathophysiology of several psychiatric and neurological diseases, however, whether VGLUTs also have a role in addiction caused by psychostimulant drugs is still unknown. The present study was underwent to investigate the effect of inhibition of VGLUTs on METH-induced induce conditioned place preference in rats. Rats were induced to conditioned place preference with METH (0.5, 1.0 and 2.0mg/kg) by intraperitoneal injection. Intracerebroventricular administration of 1.0 or 5.0μg Chicago sky blue 6B (CSB6B), a VGLUTs inhibitor, and 2.5h prior to METH was to observe its effect on METH-induced conditioned place preference in rats. The rats receiving METH showed stronger place preference at the dose of 1.0mg/kg than that of other doses. The intracerebroventricular administration of CSB6B (1.0, 5.0μg) 2.5h prior to the exposure to METH attenuated the acquisition of METH-induced conditioned place preference, while CSB6B itself had no effect on place preference. These results indicate that VGLUTs are involved in the effect of METH-induced conditioned place preference and may be a new target against METH addiction. PMID:24613241

  16. The blood-brain barrier penetration and distribution of PEGylated fluorescein-doped magnetic silica nanoparticles in rat brain

    SciTech Connect

    Ku, Shuting; Yan, Feng; Wang, Ying; Sun, Yilin; Yang, Nan; Ye, Ling

    2010-04-16

    PEGylated PAMAM conjugated fluorescein-doped magnetic silica nanoparticles (PEGylated PFMSNs) have been synthesized for evaluating their ability across the blood-brain barrier (BBB) and distribution in rat brain. The obtained nanoparticles were characterized by transmission electron microscopy (TEM), thermal gravimetry analyses (TGA), zeta potential ({zeta}-potential) titration, and X-ray photoelectron spectroscopy (XPS). The BBB penetration and distribution of PEGylated PFMSNs and FMSNs in rat brain were investigated not only at the cellular level with Confocal laser scanning microscopy (CLSM), but also at the subcellular level with transmission electron microscopy (TEM). The results provide direct evidents that PEGylated PFMSNs could penetrate the BBB and spread into the brain parenchyma.

  17. Magnetic Micelles for DNA delivery to rat brains after mild traumatic brain injury

    PubMed Central

    Das, Mahasweta; Wang, Chunyan; Bedi, Raminder; Mohapatra, Shyam S.; Mohapatra, Subhra

    2014-01-01

    Traumatic brain injury (TBI) causes significant mortality, long term disability and psychological symptoms. Gene therapy is a promising approach for treatment of different pathological conditions. Here we tested chitosan and polyethyleneimine (PEI)-coated magnetic micelles (CPmag micelles or CPMMs), a potential MRI contrast agent, to deliver a reporter DNA to the brain after mild TBI (mTBI). CPMM - tomato plasmid (ptd) conjugate expressing a red-fluorescent protein (RFP) was administered intranasally immediately after mTBI or sham surgery in male SD rats. Evans blue extravasation following mTBI suggested CPMM-ptd entry into the brain via the compromised blood-brain barrier. Magnetofection increased the concentration of CPMMs in the brain. RFP expression was observed in the brain (cortex and hippocampus), lung and liver 48 hours after mTBI. CPMM did not evoke any inflammatory response by themselves and were excreted from the body. These results indicate the possibility of using intranasally administered CPMM as a theranostic vehicle for mTBI. PMID:24486465

  18. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway

    SciTech Connect

    Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui; Li, Kun; Zhang, Yuan; Zhang, Li-yuan; Tian, Ye

    2014-01-10

    Highlights: •Forced exercise can ameliorate WBI induced cognitive impairment in our rat model. •Mature BDNF plays an important role in the effects of forced exercise. •Exercise may be a possible treatment of the radiation-induced cognitive impairment. -- Abstract: Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating the effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague–Dawley rats received a single dose of 20 Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2 months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF–pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF–pCREB signaling in non

  19. Detection of cocaine induced rat brain activation by photoacoustic tomography

    PubMed Central

    Jo, Janggun; Yang, Xinmai

    2011-01-01

    Photoacoustic tomography (PAT) was used to detect the progressive changes on the cerebral cortex of Sprague Dawley rats after the administration of cocaine hydrochloride. Different concentrations (0, 2.5, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution were injected into Sprague Dawley rats through tail veins. Cerebral cortex images of the animals were continuously acquired by PAT. For continuous observation, PAT system used multi-transducers to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The obtained photoacoustic images were compared with each other and confirmed that changes in blood volume were induced by cocaine hydrochloride injection. The results demonstrate that PAT may be used to detect the effects of drug abuse-induced brain activation. PMID:21163301

  20. Inulin supplementation during gestation mitigates acrylamide-induced maternal and fetal brain oxidative dysfunctions and neurotoxicity in rats.

    PubMed

    Krishna, Gokul; Muralidhara

    2015-01-01

    Accumulating evidence suggests that the developing brain is more susceptible to a variety of chemicals. Recent studies have shown a link between the enteric microbiota and brain function. While supplementation of non-digestible oligosaccharides during pregnancy has been demonstrated to positively influence human health mediated through stimulation of beneficial microbiota, our understanding on their neuromodulatory propensity is limited. In the present study, our primary focus was to examine whether supplementation of inulin (a well known fructan) during gestation can abrogate acrylamide (ACR)-induced oxidative impairments and neurotoxicity in maternal and fetal brain of rats. Initially, in a dose-determinative study, we recapitulated the impact of ACR exposure during gestation days (GD 6-19) on gestational parameters, extent of oxidative impairments in brain (maternal/fetal), cholinergic function and neurotoxicity. Subsequently, pregnant rats orally (gavage) administered with inulin (IN, 2 g/kg/day in two equal installments) supplements during gestation days (GD 0-19) were exposed to ACR (200 ppm) in drinking water. IN supplements significantly attenuated ACR-induced changes in exploratory activity (reduced open field exploration) measured on GD 14. Further, IN restored the placental weights among ACR exposed dams. Analysis of biochemical markers revealed that IN supplements effectively offset ACR associated oxidative stress not only in the maternal brain, but in the fetal brain as well. Elevated levels of protein carbonyls in maternal brain regions were completely normalized with IN supplements. More importantly, IN supplements significantly augmented the number of Bifidobacteria in the cecum of ACR rats which correlated well with the neurorestorative effect as evidenced by restored dopamine levels in the maternal cortex and fetal brain acetylcholinesterase activity among ACR-exposed dams. Further, IN supplements also conferred significant protection against

  1. Ion channel involvement in anoxic depolarization induced by cardiac arrest in rat brain.

    PubMed

    Xie, Y; Zacharias, E; Hoff, P; Tegtmeier, F

    1995-07-01

    Anoxic depolarization (AD) and failure of ion homeostasis play an important role in ischemia-induced neuronal injury. In the present study, different drugs with known ion-channel-modulating properties were examined for their ability to interfere with cardiac-arrest-elicited AD and with the changes in the extracellular ion activity in rat brain. Our results indicate that only drugs primarily blocking membrane Na+ permeability (NBQX, R56865, and flunarizine) delayed the occurrence of AD, while compounds affecting cellular Ca2+ load (MK-801 and nimodipine) did not influence the latency time. The ischemia-induced [Na+]e reduction was attenuated by R56865. Blockade of the ATP-sensitive K+ channels with glibenclamide reduced the [K+]e increase upon ischemia, indicating an involvement of the KATP channels in ischemia-induced K+ efflux. The KATP channel opener cromakalim did not affect the AD or the [K+]e concentration. The ischemia-induced rapid decline of extracellular calcium was attenuated by receptor-operated Ca2+ channel blockers MK-801 and NBQX, but not by the voltage-operated Ca2+ channel blocker nimodipine, R56865, and flunarizine. PMID:7540620

  2. Pretreatment with low-dose gadolinium chloride attenuates myocardial ischemia/reperfusion injury in rats

    PubMed Central

    Chen, Min; Zheng, Yuan-yuan; Song, Yun-tao; Xue, Jing-yi; Liang, Zheng-yang; Yan, Xin-xin; Luo, Da-li

    2016-01-01

    Aim: We have shown that low-dose gadolinium chloride (GdCl3) abolishes arachidonic acid (AA)-induced increase of cytoplasmic Ca2+, which is known to play a crucial role in myocardial ischemia/reperfusion (I/R) injury. The present study sought to determine whether low-dose GdCl3 pretreatment protected rat myocardium against I/R injury in vitro and in vivo. Methods: Cultured neonatal rat ventricular myocytes (NRVMs) were treated with GdCl3 or nifedipine, followed by exposure to anoxia/reoxygenation (A/R). Cell apoptosis was detected; the levels of related signaling molecules were assessed. SD rats were intravenously injected with GdCl3 or nifedipine. Thirty min after the administration the rats were subjected to LAD coronary artery ligation followed by reperfusion. Infarction size, the release of serum myocardial injury markers and AA were measured; cell apoptosis and related molecules were assessed. Results: In A/R-treated NRVMs, pretreatment with GdCl3 (2.5, 5, 10 μmol/L) dose-dependently inhibited caspase-3 activation, death receptor-related molecules DR5/Fas/FADD/caspase-8 expression, cytochrome c release, AA release and sustained cytoplasmic Ca2+ increases induced by exogenous AA. In I/R-treated rats, pre-administration of GdCl3 (10 mg/kg) significantly reduced the infarct size, and the serum levels of CK-MB, cardiac troponin-I, LDH and AA. Pre-administration of GdCl3 also significantly decreased the number of apoptotic cells, caspase-3 activity, death receptor-related molecules (DR5/Fas/FADD) expression and cytochrome c release in heart tissues. The positive control drug nifedipine produced comparable cardioprotective effects in vitro and in vivo. Conclusion: Pretreatment with low-dose GdCl3 significantly attenuates I/R-induced myocardial apoptosis in rats by suppressing activation of both death receptor and mitochondria-mediated pathways. PMID:26948086

  3. Dietary calcium attenuates platelet aggregation and intracellular Ca2+ mobilization in spontaneously hypertensive rats

    NASA Technical Reports Server (NTRS)

    Otsuka, K.; Watanabe, M.; Yue, Q.; McCarron, D. A.; Hatton, D.

    1997-01-01

    Spontaneously hypertensive rats (SHR) are known to be blood pressure sensitive to dietary calcium. The effects of dietary calcium on platelet aggregation and intracellular Ca2+ mobilization were assessed by turbidimetric methods and fura-2 methods, respectively, in washed platelets of SHR. Ca2+ ATPase activity was examined in aortic membrane fractions. Six weeks of dietary calcium supplementation attenuated the increase of systolic blood pressure (SBP 199 +/- 16 v 170 +/- 9 mm Hg, P < .001) and thrombin-induced platelet aggregation (84.5 +/- 3.7 v 73.7 +/- 7.4%, P < .004) at 9 weeks of age. The ionomycin-induced intracellular calcium ([Ca2+]i) peak in the absence of external Ca2+, which reflects [Ca2+]i storage size, and thrombin-evoked [Ca2+]i release from [Ca2+]i storage were decreased by 2.0% Ca diet (472 +/- 55 v 370 +/- 23 nmol/L, P < .001, 339 +/- 29 v 278 +/- 33 nmol/L, P < .002). In addition, SBP was positively correlated with platelet aggregation (r = 0.703, P = .0088), thrombin-evoked [Ca2+]i (r = 0.739, P = .0044), and ionomycin-induced [Ca2+]i (r = 0.591, P = .0415), respectively. However, there was no significant effect of dietary calcium on Ca2+-ATPase activity in aortic membranes. These results suggest that dietary calcium supplementation had a beneficial effect on platelets of SHR by attenuating [Ca2+]i mobilization from [Ca2+]i storage. The hypotensive effect of dietary calcium might be associated with attenuated [Ca2+]i mobilization in SHR.

  4. Intrathecal curcumin attenuates pain hypersensitivity and decreases spinal neuroinflammation in rat model of monoarthritis

    PubMed Central

    Chen, Jun-Jie; Dai, Lin; Zhao, Lin-Xia; Zhu, Xiang; Cao, Su; Gao, Yong-Jing

    2015-01-01

    Curcumin is a major component of turmeric and reportedly has anti-inflammatory and anti-oxidant effects. Neuroinflammation has been recognized to play an important role in the pathogenesis of various diseases in the central nervous system. Here we investigated the anti-nociceptive and anti-neuroinflammatory effect of curcumin on arthritic pain in rats. We found that repeated oral treatment with curcumin, either before or after complete Freund’s adjuvant (CFA) injection, dose-dependently attenuated CFA-induced mechanical allodynia and thermal hyperalgesia, but had no effect on joint edema. Repeated intrathecal injection of curcumin reversed CFA-induced pain hypersensitivity. Furthermore, such a curcumin treatment reduced CFA-induced activation of glial cells and production of inflammatory mediators [interleukin-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1), and monocyte inflammatory protein-1 (MIP-1α)] in the spinal cord. Curcumin also decreased lipopolysaccharide-induced production of IL-1β, tumor necrosis factor-α, MCP-1, and MIP-1α in cultured astrocytes and microglia. Our results suggest that intrathecal curcumin attenuates arthritic pain by inhibiting glial activation and the production of inflammatory mediators in the spinal cord, suggesting a new application of curcumin for the treatment of arthritic pain. PMID:25988362

  5. Intrathecal curcumin attenuates pain hypersensitivity and decreases spinal neuroinflammation in rat model of monoarthritis.

    PubMed

    Chen, Jun-Jie; Dai, Lin; Zhao, Lin-Xia; Zhu, Xiang; Cao, Su; Gao, Yong-Jing

    2015-01-01

    Curcumin is a major component of turmeric and reportedly has anti-inflammatory and anti-oxidant effects. Neuroinflammation has been recognized to play an important role in the pathogenesis of various diseases in the central nervous system. Here we investigated the anti-nociceptive and anti-neuroinflammatory effect of curcumin on arthritic pain in rats. We found that repeated oral treatment with curcumin, either before or after complete Freund's adjuvant (CFA) injection, dose-dependently attenuated CFA-induced mechanical allodynia and thermal hyperalgesia, but had no effect on joint edema. Repeated intrathecal injection of curcumin reversed CFA-induced pain hypersensitivity. Furthermore, such a curcumin treatment reduced CFA-induced activation of glial cells and production of inflammatory mediators [interleukin-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1), and monocyte inflammatory protein-1 (MIP-1α)] in the spinal cord. Curcumin also decreased lipopolysaccharide-induced production of IL-1β, tumor necrosis factor-α, MCP-1, and MIP-1α in cultured astrocytes and microglia. Our results suggest that intrathecal curcumin attenuates arthritic pain by inhibiting glial activation and the production of inflammatory mediators in the spinal cord, suggesting a new application of curcumin for the treatment of arthritic pain. PMID:25988362

  6. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    PubMed Central

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-01-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue. PMID:27456312

  7. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  8. 2-hydroxyestradiol modifies serotonergic processes in the male rat brain

    SciTech Connect

    Kowalik, S.

    1985-01-01

    The effects of chronic (5 day) 2-hydroxyestradiol or estradiol on catecholaminergic and serotonergic neurons in the male rat brain were studied. The results indicate estrogen to be specific is inducing changes in dopaminergic systems; whereas its hydroxymetabolite appears to have a preference for serotonergic processes. In particular, in vitro 2-hydroxyestradiol appears to be a potent inhibitor of /sup 3/H-imipramine binding in brain; this inhibition is especially potent in the cortex, where it is equal in potency to serotonin. However, unlike serotonin, which is a competitive inhibitor of imipramine, 2-hydroxyestradiol is an uncompetitive inhibitor of /sup 3/H-imipramine binding in cortex and hypothalamus and a noncompetitive inhibitor in the striatum; this suggests that the inhibition of binding takes place at a point other than the site of serotonin uptake. In vitro 2-hydroxyestradiol also appears to increase the uptake of serotonin into these tissues, a change which would be expected if the imipramine binding is blocked.

  9. [Irbesartan reduces inflammatory response of central nervous system in a rat model of fluid percussion brain injury].

    PubMed

    Xing, Guoxiang; Wei, Min; Xiu, Binhua; Ma, Yinghui; Liu, Tao

    2016-07-01

    Objective To investigate the neuroprotective effect of the angiotensin II receptor 1 (AT1) antagonist irbesartan on rat models with lateral fluid percussion brain injury (FPBI). Methods FPBI models were prepared using a modified fluid percussion injury method. Before and after modeling, irbesartan was given to the rats. The regional cerebral blood flow (rCBF) was monitored by laser Doppler flowmetry. Neurologic status was evaluated before and 1, 3, 5, 7 days after FPBI surgery. Brains were removed for immunohistochemical evaluation of active microglias and macrophages. Results Compared to sham group, the rCBF and neurologic score of FPBI rats decreased significantly, while microglia and macrophage activation were confirmed. Treatment with irbesartan before FPBI surgery increased rCBF and improved neurological functions. In the peri-infarct cortex, irbesartan treatment attenuated the invasion of activated microglias and macrophages on day 7 after FPBI surgery. Conclusion Irbesartan can play a neuroprotective role through inhibiting microglia and macrophage activation in FPBI rats. PMID:27363272

  10. Regulation of σ-1 Receptors and Endoplasmic Reticulum Chaperones in the Brain of Methamphetamine Self-Administering Rats

    PubMed Central

    Hayashi, Teruo; Justinova, Zuzana; Hayashi, Eri; Cormaci, Gianfrancesco; Mori, Tomohisa; Tsai, Shang-Yi; Barnes, Chanel; Goldberg, Steven R.

    2010-01-01

    σ-1 Receptors are endoplasmic reticulum (ER) chaperones that are implicated in the neuroplasticity associated with psychostimulant abuse. We immunocytochemically examined the distribution of σ-1 receptors in the brain of drug-naive rats and then examined the dynamics of σ-1 receptors and other ER chaperones in specific brain subregions of rats that self-administered methamphetamine, received methamphetamine passively, or received only saline injections. σ-1 Receptors were found to be expressed in moderate to high levels in the olfactory bulb, striatum, nucleus accumbens shell, olfactory tubercle, amygdala, hippocampus, red nucleus, ventral tegmental area, substantia nigra, and locus ceruleus. Methamphetamine, whether self-administered or passively received, significantly elevated ER chaperones including the σ-1 receptor, BiP, and calreticulin in the ventral tegmental area and substantia nigra. In the olfactory bulb, however, only the σ-1 receptor chaperone was increased, and this increase occurred only in rats that actively self-administered methamphetamine. Consistent with an increase in σ-1 receptors, extracellular signal-regulated kinase was found to be activated and protein kinase A attenuated in the olfactory bulb of methamphetamine self-administering rats. σ-1 Receptors in the olfactory bulb were found to be colocalized with dopamine D1 receptors. These results indicate that methamphetamine induces ER stress in the ventral tegmental area and substantia nigra in rats whether the drug is received actively or passively. However, the changes seen only in rats that actively self-administered methamphetamine suggest that D1 and σ-1 receptors in the olfactory bulb might play an important role in the motivational conditioning/learning aspects of methamphetamine self-administration in the rat. PMID:19940104

  11. A new pharmacological role for donepezil: attenuation of morphine-induced tolerance and apoptosis in rat central nervous system

    PubMed Central

    2014-01-01

    Background Tolerance to the analgesic effect of opioids is a pharmacological phenomenon that occurs after their prolonged administration. It has been shown that morphine-induced tolerance is associated with apoptosis in the central nervous system and neuroprotective agents which prevented apoptosis signaling could attenuate tolerance to the analgesic effects. On the other hand donepezil, an acetylcholinesterase inhibitor, has been reported to have neuroprotective effects. Therefore in this study, the effect of systemic administration of donepezil on morphine-induced tolerance and apoptosis in the rat cerebral cortex and lumbar spinal cord was evaluated. Various groups of rats received morphine (ip) and different doses of donepezil (0, 0.5, 1, 1.5 mg/kg/day). Nociception was assessed using tail flick apparatus. Tail flick latency was recorded when the rat shook its tail. For apoptosis assay other groups of rats received the above treatment and apoptosis was evaluated by in situ terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method. Results The results showed that administration of donepezil (0.5, 1, 1.5 mg/kg, ip) delayed the morphine tolerance for 9, 12 and 17 days, respectively. Furthermore pretreatment injection of donepezil attenuated the number of apoptotic cells in the cerebral cortex and lumbar spinal cord compared to the control group. Conclusion In conclusion, we found that systemic administration of donepezil attenuated morphine-induced tolerance and apoptosis in the rat cerebral cortex and lumbar spinal cord. PMID:24455992

  12. Fish oil improves motor function, limits blood-brain barrier disruption, and reduces Mmp9 gene expression in a rat model of juvenile traumatic brain injury.

    PubMed

    Russell, K L; Berman, N E J; Gregg, P R A; Levant, B

    2014-01-01

    The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15mL/kg fish oil (2.01g/kg EPA, 1.34g/kg DHA) or soybean oil dose via oral gavage 30min prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9 gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9. PMID:24342130

  13. FISH OIL IMPROVES MOTOR FUNCTION, LIMITS BLOOD-BRAIN BARRIER DISRUPTION, AND REDUCES MMP9 GENE EXPRESSION IN A RAT MODEL OF JUVENILE TRAUMATIC BRAIN INJURY

    PubMed Central

    Russell, K. L.; Berman, N. E. J.; Gregg, P. R. A.; Levant, B.

    2014-01-01

    SUMMARY The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15 mL/kg fish oil (2.01 g/kg EPA, 1.34 g/kg DHA) or soybean oil dose via oral gavage 30 minutes prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9h gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9. PMID:24342130

  14. The impact of chronic stress on the rat brain lipidome.

    PubMed

    Oliveira, T G; Chan, R B; Bravo, F V; Miranda, A; Silva, R R; Zhou, B; Marques, F; Pinto, V; Cerqueira, J J; Di Paolo, G; Sousa, N

    2016-01-01

    Chronic stress is a major risk factor for several human disorders that affect modern societies. The brain is a key target of chronic stress. In fact, there is growing evidence indicating that exposure to stress affects learning and memory, decision making and emotional responses, and may even predispose for pathological processes, such as Alzheimer's disease and depression. Lipids are a major constituent of the brain and specifically signaling lipids have been shown to regulate brain function. Here, we used a mass spectrometry-based lipidomic approach to evaluate the impact of a chronic unpredictable stress (CUS) paradigm on the rat brain in a region-specific manner. We found that the prefrontal cortex (PFC) was the area with the highest degree of changes induced by chronic stress. Although the hippocampus presented relevant lipidomic changes, the amygdala and, to a greater extent, the cerebellum presented few lipid changes upon chronic stress exposure. The sphingolipid and phospholipid metabolism were profoundly affected, showing an increase in ceramide (Cer) and a decrease in sphingomyelin (SM) and dihydrosphingomyelin (dhSM) levels, and a decrease in phosphatidylethanolamine (PE) and ether phosphatidylcholine (PCe) and increase in lysophosphatidylethanolamine (LPE) levels, respectively. Furthermore, the fatty-acyl profile of phospholipids and diacylglycerol revealed that chronic stressed rats had higher 38 carbon(38C)-lipid levels in the hippocampus and reduced 36C-lipid levels in the PFC. Finally, lysophosphatidylcholine (LPC) levels in the PFC were found to be correlated with blood corticosterone (CORT) levels. In summary, lipidomic profiling of the effect of chronic stress allowed the identification of dysregulated lipid pathways, revealing putative targets for pharmacological intervention that may potentially be used to modulate stress-induced deficits.

  15. Data for mitochondrial proteomic alterations in the developing rat brain.

    PubMed

    Villeneuve, Lance M; Stauch, Kelly L; Fox, Howard S

    2014-12-01

    Mitochondria are a critical organelle involved in many cellular processes, and due to the nature of the brain, neuronal cells are almost completely reliant on these organelles for energy generation. Due to the fact that biomedical research tends to investigate disease state pathogenesis, one area of mitochondrial research commonly overlooked is homeostatic responses to energy demands. Therefore, to elucidate mitochondrial alterations occurring during the developmentally important phase of E18 to P7 in the brain, we quantified the proteins in the mitochondrial proteome as well as proteins interacting with the mitochondria. We identified a large number of significantly altered proteins involved in a variety of pathways including glycolysis, mitochondrial trafficking, mitophagy, and the unfolded protein response. These results are important because we identified alterations thought to be homeostatic in nature occurring within mitochondria, and these results may be used to identify any abnormal deviations in the mitochondrial proteome occurring during this period of brain development. A more comprehensive analysis of this data may be obtained from the article "Proteomic analysis of mitochondria from embryonic and postnatal rat brains reveals response to developmental changes in energy demands" in the Journal of Proteomics. PMID:26217684

  16. Gene Transfer into Rat Brain Using Adenoviral Vectors

    PubMed Central

    Puntel, Mariana; Kroeger, Kurt M.; Sanderson, Nicholas S.R.; Thomas, Clare E.; Castro, Maria G.; Lowenstein, Pedro R.

    2010-01-01

    Viral vector–mediated gene delivery is an attractive procedure for introducing genes into the brain, both for purposes of basic neuroscience research and to develop gene therapy for neurological diseases. Replication-defective adenoviruses possess many features which make them ideal vectors for this purpose—efficiently transducing terminally differentiated cells such as neurons and glial cells, resulting in high levels of transgene expression in vivo. Also, in the absence of anti-adenovirus immunity, these vectors can sustain very long-term transgene expression within the brain parenchyma. This unit provides protocols for the stereotactic injection of adenoviral vectors into the brain, followed by protocols to detect transgene expression or infiltrates of immune cells by immunocytochemistry or immunofluorescence. ELISPOT and neutralizing antibody assay methodologies are provided to quantitate the levels of cellular and humoral immune responses against adenoviruses. Quantitation of adenoviral vector genomes within the rat brain using qPCR is also described. Curr. Protoc. Neurosci. 50:4.24.1–4.24.49. © 2010 by John Wiley & Sons, Inc. PMID:20066657

  17. Somatostatin receptors: identification and characterization in rat brain membranes.

    PubMed

    Srikant, C B; Patel, Y C

    1981-06-01

    We have identified and characterized specific receptors for tetradecapeptide somatostatin (SRIF; somatotropin release-inhibiting factor) in rat brain using [125I]Tyr11]SRIF as the radioligand. These receptors are present in membranes obtained from a subfraction of synaptosomes. Membranes derived from cerebral cortex bind SRIF with high affinity (Ka = 1.25 X 10(10) M-1) and have a maximum binding capacity (Bmax) of 0.155 X 10(-12) mol/mg. Neither opiates nor other neuropeptides appear to influence the binding of SRIF to brain membranes. Synthetic analogs with greater biological potency than SRIF--[D-Trp8]SRIF, [D-Cys14]SRIF, and [D-Trp8, D-Cys14]SRIF--bind to the receptors with greater avidity than SRIF, whereas inactive analogs [(2H)Ala3]SRIF and [Ala6]SRIF exhibit low binding. The ratio of receptor density to endogenous somatostatin is high in the cortex, thalamus, and striatum, low in the hypothalamus, and extremely low in the brain stem and cerebellum. Thus, SRIF receptors in the brain appear to be a distinct, new class of receptors with a regional distribution different from that of endogenous somatostatin.

  18. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    NASA Astrophysics Data System (ADS)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  19. Psychological stress, cocaine and natural reward each induce endoplasmic reticulum stress genes in rat brain.

    PubMed

    Pavlovsky, A A; Boehning, D; Li, D; Zhang, Y; Fan, X; Green, T A

    2013-08-29

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors activating transcription factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated is unknown. The current study examines transcriptional responses of key ER stress target genes subsequent to psychological stress or cocaine. Rats were subjected to acute or repeated restraint stress or cocaine treatment and mRNA was isolated from dorsal striatum, medial prefrontal cortex and nucleus accumbens brain tissue. ER stress gene mRNA expression was measured using quantitative polymerase chain reaction (PCR) and RNA sequencing. Restraint stress and cocaine-induced transcription of the classic ER stress-induced genes (BIP, CHOP, ATF3 and GADD34) and of two other ER stress components x-box binding protein 1 (XBP1) and ATF6. In addition, rats living in an enriched environment (large group cage with novel toys changed daily) exhibited rapid induction of GADD34 and ATF3 after 30 min of exploring novel toys, suggesting these genes are also involved in normal non-pathological signaling. However, environmental enrichment, a paradigm that produces protective addiction and depression phenotypes in rats, attenuated the rapid induction of ATF3 and GADD34 after restraint stress. These experiments provide a sensitive measure of ER stress and, more importantly, these results offer good evidence of the activation of ER stress mechanisms from psychological stress, cocaine and natural reward. Thus, ER stress genes may be targets for novel therapeutic targets for depression and addiction. PMID:23644055

  20. Psychological Stress, Cocaine and Natural Reward Each Induce Endoplasmic Reticulum Stress Genes in Rat Brain

    PubMed Central

    Pavlovsky, Ashly A.; Boehning, Darren; Li, Dingge; Zhang, Yafang; Fan, Xiuzhen; Green, Thomas A.

    2013-01-01

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors Activating Transcription Factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently it is unknown the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated. The current study examines transcriptional responses of key ER stress target genes subsequent to psychological stress or cocaine. Rats were subjected to acute or repeated restraint stress or cocaine treatment and mRNA was isolated from dorsal striatum, medial prefrontal cortex and nucleus accumbens brain tissue. ER stress gene mRNA expression was measured using quantitative PCR and RNA sequencing. Restraint stress and cocaine induced transcription of the classic ER stress-induced genes (BIP, CHOP, ATF3 and GADD34) and of two other ER stress components XBP1 and ATF6. In addition, rats living in an enriched environment (large group cage with novel toys changed daily) exhibited rapid induction of GADD34 and ATF3 after 30 min of exploring novel toys, suggesting these genes are also involved in normal non-pathological signaling. However, environmental enrichment, a paradigm that produces protective addiction and depression phenotypes in rats, attenuated the rapid induction of ATF3 and GADD34 after restraint stress. These experiments provide a sensitive measure of ER stress and, more importantly, these results offer good evidence of the activation of ER stress mechanisms from psychological stress, cocaine and natural reward. Thus, ER stress genes may be targets for novel therapeutic targets for depression and addiction. PMID:23644055

  1. Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats.

    PubMed

    Coban, Funda Karabag; Ince, Sinan; Kucukkurt, Ismail; Demirel, Hasan Huseyin; Hazman, Omer

    2015-10-01

    Organophosphorus compounds cause oxidative stress and lead to alterations in antioxidant status in organisms. In this study, the effects of subchronic exposure to malathion and the protective effects of boron (B) were evaluated in 48 Wistar rats, which were divided equally into six groups. For 28 d, the control group received a normal diet and tap water, the corn oil group received a normal diet and 0.5 mL of corn oil by gastric gavage and the malathion group received a normal diet and malathion (100 mg/kg/d) by gastric gavage. During the same period, each of the three other groups received a different dosage of B (5, 10 and 20 mg/kg/d, respectively) and malathion (100 mg/kg/d) by gastric gavage. Malathion administration during the period increased malondialdehyde, nitric oxide and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, as well as markers of liver function, yet decreased acetylcholinesterase, reduced glutathione, superoxide dismutase, and catalase activities in blood, liver, kidney and brain tissues. Administration of B in a dose-dependent manner also reversed malathion-induced oxidative stress, lipid peroxidation (LPO) and antioxidant enzyme activity. Moreover, B exhibited protective action against malathion-induced histopathological changes in liver, kidney and brain tissues. These results demonstrate that, if used in a dose-dependent manner, B decreases malathion-induced oxidative stress, enhances the antioxidant defense mechanism and regenerates tissues in rats.

  2. Immediate early gene expression reveals interactions between social and nicotine rewards on brain activity in adolescent male rats.

    PubMed

    Bastle, Ryan M; Peartree, Natalie A; Goenaga, Julianna; Hatch, Kayla N; Henricks, Angela; Scott, Samantha; Hood, Lauren E; Neisewander, Janet L

    2016-10-15

    Smoking initiation predominantly occurs during adolescence, often in the presence of peers. Therefore, understanding the neural mechanisms underlying the rewarding effects of nicotine and social stimuli is vital. Using the conditioned place preference (CPP) procedure, we measured immediate early gene (IEG) expression in animals following exposure either to a reward-conditioned environment or to the unconditioned stimuli (US). Adolescent, male rats were assigned to the following CPP US conditions: (1) Saline+Isolated, (2) Nicotine+Isolated, (3) Saline+Social, or (4) Nicotine+Social. For Experiment 1, brain tissue was collected 90min following the CPP expression test and processed for Fos immunohistochemistry. We found that rats conditioned with nicotine with or without a social partner exhibited CPP; however, we found no group differences in Fos expression in any brain region analyzed, with the exception of the nucleus accumbens core that exhibited a social-induced attenuation in Fos expression. For Experiment 2, brain tissue was collected 90min following US exposure during the last conditioning session. We found social reward-induced increases in IEG expression in striatal and amydalar subregions. In contrast, nicotine reduced IEG expression in prefrontal and striatal subregions. Reward interactions were also found in the dorsolateral striatum, basolateral amygdala, and ventral tegmental area where nicotine alone attenuated IEG expression and social reward reversed this effect. These results suggest that in general social rewards enhance, whereas nicotine attenuates, activation of mesocorticolimbic regions; however, the rewards given together interact to enhance activation in some regions. The findings contribute to knowledge of how a social environment influences nicotine effects.

  3. Behavioral effects and CRF expression in brain structures of high- and low-anxiety rats after chronic restraint stress.

    PubMed

    Wisłowska-Stanek, Aleksandra; Lehner, Małgorzata; Skórzewska, Anna; Krząścik, Paweł; Płaźnik, Adam

    2016-09-01

    The aim of our study was to investigate the influence of chronic restraint stress (5 weeks, 3h/day) on behavior and central corticotropin-releasing factor (CRF) expression in rats selected for high (HR) and low anxiety (LR). The conditioned freezing response was used as a discriminating variable. Moreover, we assessed the influence of acute restraint on CRF expression in the brain in HR and LR rats. We found that chronic restraint induced symptoms of anhedonia (decreased consumption of 1% sucrose solution) in HR rats. In addition, HR restraint rats showed an increased learned helplessness behavior (immobility time in the Porsolt test) as well as neophobia in the open field test vs. LR restraint and HR control rats. These behavioral changes were accompanied by a decreased expression of CRF in the paraventricular nucleus of the hypothalamus (pPVN) and the dentate gyrus of the hippocampus (DG) compared to the HR control and LR restraint rat groups, respectively. The acute restraint condition increased the expression of CRF in the pPVN of HR rats compared to the HR control group, and enhanced the expression of CRF in the CA1 area and DG of LR restraint animals compared to the HR restraint and LR control rats, respectively. The present results indicate that chronic restraint stress in high anxiety rats attenuated CRF expression in the pPVN and DG, which was probably due to detrimental actions on the hippocampus-hypothalamus-pituitary-adrenal gland feedback mechanism, thus modulating the stress response and inducing anhedonia and depressive-like symptoms. PMID:27150225

  4. Resveratrol attenuates inflammation-induced hyperexcitability of trigeminal spinal nucleus caudalis neurons associated with hyperalgesia in rats

    PubMed Central

    Sekiguchi, Kenta; Takehana, Shiori; Shibuya, Eri; Matsuzawa, Nichiwa; Hidaka, Shiori; Kanai, Yurie; Inoue, Maki; Kubota, Yoshiko; Shimazu, Yoshihito

    2016-01-01

    Background Resveratrol, a component of red wine, has been reported to decrease prostaglandin E2 production by inhibiting the cyclooxygenase-2 cascade and to modulate various voltage-dependent ion channels, suggesting that resveratrol could attenuate inflammatory hyperalgesia. However, the effects of resveratrol on inflammation-induced hyperexcitability of nociceptive neurons in vivo remain to be determined. Thus, the aim of the present study was to determine whether daily systemic administration of resveratrol to rats attenuates the inflammation-induced hyperexcitability of spinal trigeminal nucleus caudalis wide-dynamic range neurons associated with hyperalgesia. Results Inflammation was induced by injection of complete Freund’s adjuvant into the whisker pad. The threshold of escape from mechanical stimulation applied to whisker pad in inflamed rats was significantly lower than in control rats. The decreased mechanical threshold in inflamed rats was restored to control levels by daily systemic administration of resveratrol (2 mg/kg, i.p.). The mean discharge frequency of spinal trigeminal nucleus caudalis wide-dynamic range neurons to both nonnoxious and noxious mechanical stimuli in inflamed rats was significantly decreased after resveratrol administration. In addition, the increased mean spontaneous discharge of spinal trigeminal nucleus caudalis wide-dynamic range neurons in inflamed rats was significantly decreased after resveratrol administration. Similarly, resveratrol significantly diminished noxious pinch-evoked mean after discharge frequency and occurrence in inflamed rats. Finally, resveratrol restored the expanded mean size of the receptive field in inflamed rats to control levels. Conclusion These results suggest that chronic administration of resveratrol attenuates inflammation-induced mechanical inflammatory hyperalgesia and that this effect is due primarily to the suppression of spinal trigeminal nucleus caudalis wide dynamic range neuron

  5. Iron porphyrinate Fe(TPPS) reduces brain cell damage in rats intrastriatally lesioned by quinolinate.

    PubMed

    González-Cortés, Carolina; Salinas-Lara, Citlaltepetl; Gómez-López, Marcos Artemio; Tena-Suck, Martha Lilia; Pérez-De La Cruz, Verónica; Rembao-Bojórquez, Daniel; Pedraza-Chaverrí, José; Gómez-Ruiz, Celedonio; Galván-Arzate, Sonia; Ali, Syed F; Santamaría, Abel

    2008-01-01

    It has been recently demonstrated that the reactive nitrogen species (RNS) peroxynitrite (ONOO(-)) is involved in the neurotoxic pattern produced by quinolinic acid in the rat brain [V. Pérez-De La Cruz, C. González-Cortés, S. Galván-Arzate, O.N. Medina-Campos, F. Pérez-Severiano, S.F. Ali, J. Pedraza-Chaverrí, A. Santamaría, Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III), Neuroscience 135 (2005) 463-474.]. The aim of this work was to investigate whether ONOO(-) can also be responsible for morphological alterations and inflammatory events in the same paradigm. For this purpose, we evaluated the effect of a pre-treatment with the iron porphyrinate Fe(TPPS), a well-known ONOO(-) decomposition catalyst (10 mg/kg, i.p., 120 min before lesion), on the quinolinate-induced striatal cell damage and immunoreactivities to glial-fibrilar acidic protein (GFAP), interleukin 6 (IL-6) and inducible nitric oxide synthase (iNOS), one and seven days after the intrastriatal infusion of quinolinate (240 nmol/microl) to rats. The striatal tissue from animals lesioned by quinolinate showed a significant degree of damage and enhanced immunoreactivities to GFAP, IL-6 and iNOS, both at 1 and 7 days post-lesion. Pre-treatment of rats with Fe(TPPS) significantly attenuated or prevented all these markers at both post-lesion times tested, except for GFAP immunoreactivity at 7 days post-lesion and iNOS immunoreactivity at 1 day post-lesion. Altogether, our results suggest that ONOO(-) is actively participating in triggering inflammatory events and morphological alterations in the toxic model produced by quinolinate, since the use of agents affecting its formation, such as Fe(TPPS), are effective experimental tools to reduce the brain lesions associated to excitotoxic and oxidative damage.

  6. Inhibition of NKCC1 attenuated hippocampal LTP formation and inhibitory avoidance in rat.

    PubMed

    Ko, Meng Chang; Lee, Min Chong; Amstislavskaya, Tamara G; Tikhonova, Maria A; Yang, Yi-Ling; Lu, Kwok-Tung

    2014-01-01

    The loop diuretic bumetanide (Bumex) is thought to have antiepileptic properties via modulate GABAA mediated signaling through their antagonism of cation-chloride cotransporters. Given that loop diuretics may act as antiepileptic drugs that modulate GABAergic signaling, we sought to investigate whether they also affect hippocampal function. The current study was performed to evaluate the possible role of NKCC1 on the hippocampal function. Brain slice extracellular recording, inhibitory avoidance, and western blot were applied in this study. Results showed that hippocampal Long-term potentiation was attenuated by suprafusion of NKCC1 inhibitor bumetanide, in a dose dependent manner. Sequent experiment result showed that Intravenous injection of bumetanide (15.2 mg/kg) 30 min prior to the training session blocked inhibitory avoidance learning significantly. Subsequent control experiment's results excluded the possible non-specific effect of bumetanide on avoidance learning. We also found the phosphorylation of hippocampal MAPK was attenuated after bumetanide administration. These results suggested that hippocampal NKCC1 may via MAPK signaling cascade to possess its function. PMID:25369049

  7. Correlation between light scattering signal and tissue reversibility in rat brain exposed to hypoxia

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2010-02-01

    Light scattering signal is a potential indicator of tissue viability in brain because cellular and subcellular structural integrity should be associated with cell viability in brain tissue. We previously performed multiwavelength diffuse reflectance measurement for a rat global ischemic brain model and observed a unique triphasic change in light scattering at a certain time after oxygen and glucose deprivation. This triphasic scattering change (TSC) was shown to precede cerebral ATP exhaustion, suggesting that loss of brain tissue viability can be predicted by detecting scattering signal. In the present study, we examined correlation between light scattering signal and tissue reversibility in rat brain in vivo. We performed transcranial diffuse reflectance measurement for rat brain; under spontaneous respiration, hypoxia was induced for the rat by nitrogen gas inhalation and reoxygenation was started at various time points. We observed a TSC, which started at 140 +/- 15 s after starting nitrogen gas inhalation (mean +/- SD, n=8). When reoxygenation was started before the TSC, all rats survived (n=7), while no rats survived when reoxygenation was started after the TSC (n=8). When reoxygenation was started during the TSC, rats survived probabilistically (n=31). Disability of motor function was not observed for the survived rats. These results indicate that TSC can be used as an indicator of loss of tissue reversibility in brains, providing useful information on the critical time zone for treatment to rescue the brain.

  8. Repeated sauna therapy attenuates ventricular remodeling after myocardial infarction in rats by increasing coronary vascularity of noninfarcted myocardium.

    PubMed

    Sobajima, Mitsuo; Nozawa, Takashi; Shida, Takuya; Ohori, Takashi; Suzuki, Takayuki; Matsuki, Akira; Inoue, Hiroshi

    2011-08-01

    Repeated sauna therapy (ST) increases endothelial nitric oxide synthase (eNOS) activity and improves cardiac function in heart failure as well as peripheral blood flow in ischemic limbs. The present study investigates whether ST can increase coronary vascularity and thus attenuate cardiac remodeling after myocardial infarction (MI). We induced MI by ligating the left coronary artery of Wistar rats. The rats were placed in a far-infrared dry sauna at 41°C for 15 min and then at 34°C for 20 min once daily for 4 wk. Cardiac hemodynamic, histopathological, and gene analyses were performed. Despite the similar sizes of MI between the ST and non-ST groups (51.4 ± 0.3 vs. 51.1 ± 0.2%), ST reduced left ventricular (LV) end-diastolic (9.7 ± 0.4 vs. 10.7 ± 0.5 mm, P < 0.01) and end-systolic (8.6 ± 0.5 vs. 9.6 ± 0.6 mm, P < 0.01) dimensions and attenuated MI-induced increases in LV end-diastolic pressure. Cross-sectional areas of cardiomyocytes were smaller in ST rats and associated with a significant reduction in myocardial atrial natriuretic peptide mRNA levels. Vascular density was reduced in the noninfarcted myocardium of non-ST rats, and the density of cells positive for CD31 and for α-smooth muscle actin was decreased. These decreases were attenuated in ST rats compared with non-ST rats and associated with increases in myocardial eNOS and vascular endothelial growth factor mRNA levels. In conclusion, ST attenuates cardiac remodeling after MI, at least in part, through improving coronary vascularity in the noninfarcted myocardium. Repeated ST might serve as a novel noninvasive therapy for patients with MI.

  9. NADPH Oxidase Inhibitor Apocynin Attenuates PCB153-Induced Thyroid Injury in Rats.

    PubMed

    Abliz, Ablikim; Chen, Chen; Deng, Wenhong; Wang, Weixing; Sun, Rongze

    2016-01-01

    PCBs, widespread endocrine disruptors, cause the disturbance of thyroid hormone (TH) homeostasis in humans and animals. However, the exact mechanism of thyroid dysfunction caused by PCBs is still unknown. In order to clarify the hypotheses that NADPH oxidase (NOX) and subsequent NF-κB pathway may play roles in thyroid dysfunction, sixty Sprague-Dawley rats were randomly divided into four groups: control grou