Sample records for rat brain attenuation

  1. CELECOXIB ATTENUATES SYSTEMIC LIPOPOLYSACCHARIDE-INDUCED BRAIN INFLAMMATION AND WHITE MATTER INJURY IN THE NEONATAL RATS

    PubMed Central

    FAN, L.-W.; KAIZAKI, A.; TIEN, L.-T.; PANG, Y.; TANAKA, S.; NUMAZAWA, S.; BHATT, A. J.; CAI, Z.

    2013-01-01

    Lipopolysaccharide (LPS)-induced white matter injury in the neonatal rat brain is associated with inflammatory processes. Cyclooxygenase-2 (COX-2) can be induced by inflammatory stimuli, such as cytokines and pro-inflammatory molecules, suggesting that COX-2 may be considered as the target for anti-inflammation. The objective of the present study was to examine whether celecoxib, a selective COX-2 inhibitor, can reduce systemic LPS-induced brain inflammation and brain damage. Intraperitoneal (i.p.) injection of LPS (2 mg/kg) was performed in postnatal day 5 (P5) of Sprague-Dawley rat pups and celecoxib (20 mg/kg) or vehicle was administered i.p. 5 min after LPS injection. The body weight and wire hanging maneuver test were performed 24 hr after the LPS exposure, and brain injury was examined after these tests. Systemic LPS exposure resulted in an impairment of behavioral performance and acute brain injury, as indicated by apoptotic death of oligodendrocytes (OLs) and loss of OL immunoreactivity in the neonatal rat brain. Treatments with celecoxib significantly reduced systemic LPS-induced neurobehavioral disturbance and brain damage. Celecoxib administration significantly attenuated systemic LPS-induced increments in the number of activated microglia and astrocytes, concentrations of IL-1β and TNFα, and protein levels of phosphorylated-p38 MAPK in the neonatal rat brain. The protection of celecoxib was also associated with a reduction of systemic LPS-induced COX-2+ cells which were double labeled with GFAP+ (astrocyte) cells. The overall results suggest that celecoxib was capable of attenuating the brain injury and neurobehavioral disturbance induced by systemic LPS exposure, and the protective effects are associated with its anti-inflammatory properties. PMID:23485816

  2. Edaravone attenuates neuronal apoptosis in hypoxic-ischemic brain damage rat model via suppression of TRAIL signaling pathway.

    PubMed

    Li, Chunyi; Mo, Zhihuai; Lei, Junjie; Li, Huiqing; Fu, Ruying; Huang, Yanxia; Luo, Shijian; Zhang, Lei

    2018-06-01

    Edaravone is a new type of oxygen free radical scavenger and able to attenuate various brain damage including hypoxic-ischemic brain damage (HIBD). This study was aimed at investigating the neuroprotective mechanism of edaravone in rat hypoxic-ischemic brain damage model and its correlation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway. 75 seven-day-old Sprague-Dawley neonatal rats were equally divided into three groups: sham-operated group (sham), HIBD group and HIBD rats injected with edaravone (HIBD + EDA) group. Neurological severity and space cognitive ability of rats in each group were evaluated using Longa neurological severity score and Morris water maze testing. TUNEL assay and flow cytometry were used to determine brain cell apoptosis. Western blot was used to estimate the expression level of death receptor-5 (DR5), Fas-associated protein with death domain (FADD), caspase 8, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax). In addition, immunofluorescence was performed to detect caspase 3. Edaravone reduced neurofunctional damage caused by HIBD and improved the cognitive capability of rats. The above experiment results suggested that edaravone could down-regulate the expression of active caspase 3 protein, thereby relieving neuronal apoptosis. Taken together, edaravone could attenuate neuronal apoptosis in rat hypoxic-ischemic brain damage model via suppression of TRAIL signaling pathway, which also suggested that edaravone might be an effective therapeutic strategy for HIBD clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    PubMed

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells

  4. Ketamine coadministration attenuates morphine tolerance and leads to increased brain concentrations of both drugs in the rat

    PubMed Central

    Lilius, T O; Jokinen, V; Neuvonen, M S; Niemi, M; Kalso, E A; Rauhala, P V

    2015-01-01

    Background and Purpose The effects of ketamine in attenuating morphine tolerance have been suggested to result from a pharmacodynamic interaction. We studied whether ketamine might increase brain morphine concentrations in acute coadministration, in morphine tolerance and morphine withdrawal. Experimental Approach Morphine minipumps (6 mg·day–1) induced tolerance during 5 days in Sprague–Dawley rats, after which s.c. ketamine (10 mg·kg–1) was administered. Tail flick, hot plate and rotarod tests were used for behavioural testing. Serum levels and whole tissue brain and liver concentrations of morphine, morphine-3-glucuronide, ketamine and norketamine were measured using HPLC-tandem mass spectrometry. Key Results In morphine-naïve rats, ketamine caused no antinociception whereas in morphine-tolerant rats there was significant antinociception (57% maximum possible effect in the tail flick test 90 min after administration) lasting up to 150 min. In the brain of morphine-tolerant ketamine-treated rats, the morphine, ketamine and norketamine concentrations were 2.1-, 1.4- and 3.4-fold, respectively, compared with the rats treated with morphine or ketamine only. In the liver of morphine-tolerant ketamine-treated rats, ketamine concentration was sixfold compared with morphine-naïve rats. After a 2 day morphine withdrawal period, smaller but parallel concentration changes were observed. In acute coadministration, ketamine increased the brain morphine concentration by 20%, but no increase in ketamine concentrations or increased antinociception was observed. Conclusions and Implications The ability of ketamine to induce antinociception in rats made tolerant to morphine may also be due to increased brain concentrations of morphine, ketamine and norketamine. The relevance of these findings needs to be assessed in humans. PMID:25297798

  5. Intracranial pancreatic islet transplantation increases islet hormone expression in the rat brain and attenuates behavioral dysfunctions induced by MK-801 (dizocilpine).

    PubMed

    Bloch, Konstantin; Gil-Ad, Irit; Tarasenko, Igor; Vanichkin, Alexey; Taler, Michal; Hornfeld, Shay Henry; Vardi, Pnina; Weizman, Abraham

    2015-06-01

    The treatment of rodents with non-competitive antagonist of the N-Methyl-D-aspartate (NMDA) receptor, MK-801 (dizocilpine), induces symptoms of psychosis, deficits in spatial memory and impairment of synaptic plasticity. Recent studies have suggested that insulin administration might attenuate the cognitive dysfunctions through the modulatory effect on the expression of NMDA receptors and on the brain insulin signaling. Intrahepatic pancreatic islet transplantation is known as an efficient tool for correcting impaired insulin signaling. We examined the capacity of syngeneic islets grafted into the cranial subarachnoid cavity to attenuate behavioral dysfunctions in rats exposed to MK-801. Animals were examined in the open field (OF) and the Morris Water Maze (MWM) tests following acute or subchronic administration of MK-801. We found well-vascularized grafted islets expressing insulin, glucagon and somatostatin onto the olfactory bulb and prefrontal cortex. Significantly higher levels of insulin were detected in the hippocampus and prefrontal cortex of transplanted animals compared to the non-transplanted rats. All animals expressed normal peripheral glucose homeostasis for two months after transplantation. OF tests revealed that rats exposed to MK-801 treatment, showed hyper-responsiveness in motility parameters and augmented center field exploration compared to intact controls and these effects were attenuated by the grafted islets. Moreover, in the MWM, the rats treated with MK-801 showed impairment of spatial memory that were partially corrected by the grafted islets. In conclusion, intracranial islet transplantation leads to the expression of islet hormones in the brain and attenuates behavioral and cognitive dysfunctions in rats exposed to MK-801 administration without altering the peripheral glucose homeostasis. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Tert-butylhydroquinone post-treatment attenuates neonatal hypoxic-ischemic brain damage in rats.

    PubMed

    Zhang, Juan; Tucker, Lorelei Donovan; DongYan; Lu, Yujiao; Yang, Luodan; Wu, Chongyun; Li, Yong; Zhang, Quanguang

    2018-06-01

    Hypoxic-ischemic (HI) encephalopathy is a leading cause of dire mortality and morbidity in neonates. Unfortunately, no effective therapies have been developed as of yet. Oxidative stress plays a critical role in pathogenesis and progression of neonatal HI. Previously, as a Nrf2 activator, tert-butylhydroquinone (TBHQ) has been demonstrated to exert neuroprotection on brain trauma and ischemic stroke models, as well as oxidative stress-induced cytotoxicity in neurons. It is, however, still unknown whether TBHQ administration can protect against oxidative stress in neonatal HI brain injury. This study was undertaken to determine the neuroprotective effects and mechanisms of TBHQ post-treatment on neonatal HI brain damage. Using a neonatal HI rat model, we demonstrated that TBHQ markedly abated oxidative stress compared to the HI group, as evidenced by decreased oxidative stress indexes, enhanced Nrf2 nuclear accumulation and DNA binding activity, and up-regulated expression of Nrf2 downstream antioxidative genes. Administration of TBHQ likewise significantly suppressed reactive gliosis and release of inflammatory cytokines, and inhibited apoptosis and neuronal degeneration in the neonatal rat cerebral cortex. In addition, infarct size and neuronal damage were attenuated distinctly. These beneficial effects were accompanied by improved neurological reflex and motor coordination as well as amelioration of spatial learning and memory deficits. Overall, our results provide the first documentation of the beneficial effects of TBHQ in neonatal HI model, in part conferred by activation of Nrf2 mediated antioxidative signaling pathways. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Minocycline Attenuates Iron-Induced Brain Injury.

    PubMed

    Zhao, Fan; Xi, Guohua; Liu, Wenqaun; Keep, Richard F; Hua, Ya

    2016-01-01

    Iron plays an important role in brain injury after intracerebral hemorrhage (ICH). Our previous study found minocycline reduces iron overload after ICH. The present study examined the effects of minocycline on the subacute brain injury induced by iron. Rats had an intracaudate injection of 50 μl of saline, iron, or iron + minocycline. All the animals were euthanized at day 3. Rat brains were used for immunohistochemistry (n = 5-6 per each group) and Western blotting assay (n = 4). Brain swelling, blood-brain barrier (BBB) disruption, and iron-handling proteins were measured. We found that intracerebral injection of iron resulted in brain swelling, BBB disruption, and brain iron-handling protein upregulation (p < 0.05). The co-injection of minocycline with iron significantly reduced iron-induced brain swelling (n = 5, p < 0.01). Albumin, a marker of BBB disruption, was measured by Western blot analysis. Minocycline significantly decreased albumin protein levels in the ipsilateral basal ganglia (p < 0.01). Iron-handling protein levels in the brain, including ceruloplasmin and transferrin, were reduced in the minocycline co-injected animals. In conclusion, the present study suggests that minocycline attenuates brain swelling and BBB disruption via an iron-chelation mechanism.

  8. 5'-adenosine monophosphate-induced hypothermia attenuates brain ischemia/reperfusion injury in a rat model by inhibiting the inflammatory response.

    PubMed

    Miao, Yi-Feng; Wu, Hui; Yang, Shao-Feng; Dai, Jiong; Qiu, Yong-Ming; Tao, Zhen-Yi; Zhang, Xiao-Hua

    2015-01-01

    Hypothermia treatment is a promising therapeutic strategy for brain injury. We previously demonstrated that 5'-adenosine monophosphate (5'-AMP), a ribonucleic acid nucleotide, produces reversible deep hypothermia in rats when the ambient temperature is appropriately controlled. Thus, we hypothesized that 5'-AMP-induced hypothermia (AIH) may attenuate brain ischemia/reperfusion injury. Transient cerebral ischemia was induced by using the middle cerebral artery occlusion (MCAO) model in rats. Rats that underwent AIH treatment exhibited a significant reduction in neutrophil elastase infiltration into neuronal cells and matrix metalloproteinase 9 (MMP-9), interleukin-1 receptor (IL-1R), tumor necrosis factor receptor (TNFR), and Toll-like receptor (TLR) protein expression in the infarcted area compared to euthermic controls. AIH treatment also decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling- (TUNEL-) positive neuronal cells. The overall infarct volume was significantly smaller in AIH-treated rats, and neurological function was improved. By contrast, rats with ischemic brain injury that were administered 5'-AMP without inducing hypothermia had ischemia/reperfusion injuries similar to those in euthermic controls. Thus, the neuroprotective effects of AIH were primarily related to hypothermia.

  9. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain.

    PubMed

    Nonato, L F; Rocha-Vieira, E; Tossige-Gomes, R; Soares, A A; Soares, B A; Freitas, D A; Oliveira, M X; Mendonça, V A; Lacerda, A C; Massensini, A R; Leite, H R

    2016-09-29

    Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain.

  10. Attenuating brain edema, hippocampal oxidative stress, and cognitive dysfunction in rats using hyperbaric oxygen preconditioning during simulated high-altitude exposure.

    PubMed

    Lin, Hung; Chang, Ching-Ping; Lin, Hung-Jung; Lin, Mao-Tsun; Tsai, Cheng-Chia

    2012-05-01

    We assessed whether hyperbaric oxygen preconditioning (HBO2P) in rats induced heat shock protein (HSP)-70 and whether HSP-70 antibody (Ab) preconditioning attenuates high altitude exposure (HAE)-induced brain edema, hippocampal oxidative stress, and cognitive dysfunction. Rats were randomly divided into five groups: the non-HBO2P + non-HAE group, the HBO2P + non-HAE group, the non-HBO2P + HAE group, the HBO2P + HAE group, and the HBO2P + HSP-70 Abs + HAE group. The HBO2P groups were given 100% O2 at 2.0 absolute atmospheres for 1 hour per day for 5 consecutive days. The HAE groups were exposed to simulated HAE (9.7% O2 at 0.47 absolute atmospheres of 6,000 m) in a hypobaric chamber for 3 days. Polyclonal rabbit anti-mouse HSP-70-neutralizing Abs were intravenously injected 24 hours before the HAE experiments. Immediately after returning to normal atmosphere, the rats were given cognitive performance tests, overdosed with a general anesthetic, and then their brains were excised en bloc for water content measurements and biochemical evaluation and analysis. Non-HBO2P group rats displayed cognitive deficits, brain edema, and hippocampal oxidative stress (evidenced by increased toxic oxidizing radicals [e.g., nitric oxide metabolites and hydroxyl radicals], increased pro-oxidant enzymes [e.g., malondialdehyde and oxidized glutathione] but decreased antioxidant enzymes [e.g., reduced glutathione, glutathione peroxide, glutathione reductase, and superoxide dismutase]) in HAE. HBO2P induced HSP-70 overexpression in the hippocampus and significantly attenuated HAE-induced brain edema, cognitive deficits, and hippocampal oxidative stress. The beneficial effects of HBO2P were significantly reduced by HSP-70 Ab preconditioning. Our results suggest that high-altitude cerebral edema, cognitive deficit, and hippocampal oxidative stress can be prevented by HSP-70-mediated HBO2P in rats.

  11. Activation of brain NOP receptors attenuates acute and protracted alcohol withdrawal symptoms in the rat.

    PubMed

    Economidou, Daina; Cippitelli, Andrea; Stopponi, Serena; Braconi, Simone; Clementi, Stefano; Ubaldi, Massimo; Martin-Fardon, Rèmi; Weiss, Friedbert; Massi, Maurizio; Ciccocioppo, Roberto

    2011-04-01

    Alcohol withdrawal refers to a cluster of symptoms that may occur from suddenly ceasing the use of alcohol after chronic or prolonged ingestion. These symptoms make alcohol abstinence difficult and increase the risk of relapse in recovering alcoholics. In previous studies, we demonstrated that treatment with Nociceptin/orphanin FQ (N/OFQ) significantly reduces alcohol consumption and attenuates alcohol-seeking behavior induced by environmental conditioning factors or by stress in rats. In this study, we evaluated whether activation of brain NOP receptors may also attenuate alcohol withdrawal signs in rats. For this purpose, animals were subjected to a 6-day chronic alcohol intoxication (by intragastric administration), and at 8, 10, and 12 hours following cessation of alcohol exposure, they were treated intracerebroventricularly (ICV) with N/OFQ (0.0, 1.0, and 3.0 μg/rat). Somatic withdrawal signs were scored after ICV treatment. In a subsequent experiment, to evaluate N/OFQ effects on alcohol withdrawal-induced anxiety, another group of rats was subjected to ethanol intoxication and after 1 week was tested for anxiety behavior in the elevated plus maze (EPM). In the last experiment, an additional group of rats was tested for anxiety elicited by acute ethanol intoxication (hangover anxiety). For this purpose, animals received an acute dose (3.0 g/kg) of 20% alcohol and 12 hour later were tested in the EPM following ICV N/OFQ (0.0, 1.0, and 2.0 μg/rat). Results showed that N/OFQ significantly reduced the expression of somatic withdrawal signs and reversed anxiety-like behaviors associated with both chronic and acute alcohol intoxication. N/OFQ did not affect anxiety scores in nondependent animals. These findings suggest that the N/OFQ-NOP receptor system may represent a promising target for the development of new treatments to ameliorate alcohol withdrawal symptoms. Copyright © 2011 by the Research Society on Alcoholism.

  12. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs.

    PubMed

    Zhang, Hai-Tao; Zhang, Ping; Gao, Yi; Li, Chen-Long; Wang, Hong-Jun; Chen, Ling-Chao; Feng, Yan; Li, Rui-Yan; Li, Yong-Li; Jiang, Chuan-Lu

    2017-01-01

    Vascular endothelial growth factor (VEGF) inhibition has been demonstrated to be an effective strategy in preserving the integrity of the blood-brain barrier (BBB) in patients with acute ischemic stroke. Loss of the BBB is the key event associated with morbidity and mortality in these patients. However, the underlying mechanisms remain poorly understood. In the present study, the effects of VEGF inhibition and the possible mechanism that underlies acute cerebral ischemia in rats was investigated. Following the induction of transient middle cerebral artery occlusion for a 90‑min period, either an anti‑VEGF neutralizing antibody (RB‑222; 5 or 10 µg), or IgG (control), was administered by intracerebroventricular injection at 1 h following reperfusion. Functional outcomes, BBB leakage, brain edema, microvessel numbers and the relative protein levels of VEGF, matrix metalloproteinase (MMP)-2, MMP-9, occludin and collagen-IV were then determined using neurological assessments, Evans Blue staining, brain water content, CD31 staining and western blotting. Treatment with RB‑222 at a dose of 5 and 10 µg significantly improved neurological functional outcomes and diminished infarct size, BBB leakage and brain edema compared with the MCAO and IgG groups at 24 h following reperfusion; 10 µg RB‑222 was more effective than a 5 µg dose of the antibody. In addition, RB‑222 reduced the number of immature microvessels, which subsequently attenuated BBB permeability. RB‑222 significantly repressed VEGF expression as well as decreased MMP‑2 and MMP‑9 expression. However, it enhanced occludin and collagen‑IV levels in the ischemic rat brain compared with the MCAO and IgG groups. Taken together, the results indicate that early inhibition of VEGF may have significant potential against cerebral ischemia, partly by regulating the expression of MMPs.

  13. Quercetin protects rat cortical neurons against traumatic brain injury.

    PubMed

    Du, Guoliang; Zhao, Zongmao; Chen, Yonghan; Li, Zonghao; Tian, Yaohui; Liu, Zhifeng; Liu, Bin; Song, Jianqiang

    2018-06-01

    Previous studies have demonstrated that traumatic brain injury (TBI) may cause neurological deficits and neuronal cell apoptosis. Quercetin, one of the most widely distributed flavonoids, possesses anti‑inflammatory, anti‑blood coagulation, anti‑ischemic and anti‑cancer activities, and neuroprotective effects in the context of brain injury. The purpose of the present study was to investigate the neuroprotective effects of quercetin in TBI. A total of 75 rats were randomly arranged into 3 groups as follows: Sham group (Sham); TBI group (TBI); and TBI + quercetin group (Que). Brain edema was evaluated by analysis of brain water content. The neurobehavioral status of the rats was evaluated by Neurological Severity Scoring. Immunohistochemical and western blot analyses were used to measure the expression of certain proteins. The results of the present study demonstrated that post‑TBI administration of quercetin may attenuate brain edema, in addition to improving motor function in rats. Additionally, quercetin caused a marked inhibition of extracellular signal‑regulated kinase 1/2 phosphorylation and activated Akt serine/threonine protein kinase phosphorylation, which may result in attenuation of neuronal apoptosis. The present study provided novel insights into the mechanism through which quercetin may exert its neuroprotective activity in a rat model of TBI.

  14. Thymoquinone Attenuates Brain Injury via an Anti-oxidative Pathway in a Status Epilepticus Rat Model.

    PubMed

    Shao, Yi-Ye; Li, Bing; Huang, Yong-Mei; Luo, Qiong; Xie, Yang-Mei; Chen, Ying-Hui

    2017-01-01

    Status epilepticus (SE) results in the generation of reactive oxygen species (ROS), which contribute to seizure-induced brain injury. It is well known that oxidative stress plays a pivotal role in status epilepticus (SE). Thymoquinone (TQ) is a bioactive monomer extracted from black cumin (Nigella sativa) seed oil that has anti-inflammatory, anti-cancer, and antioxidant activity in various diseases. This study evaluated the protective effects of TQ on brain injury in a lithium-pilocarpine rat model of SE and investigated the underlying mechanism related to antioxidative pathway. Electroencephalogram and Racine scale were used to value seizure severity. Passive-avoidance test was used to determine learning and memory function. Moreover, anti-oxidative activity of TQ was observed using Western blot and super oxide dismutase (SOD) activity assay. Latency to SE increased in the TQ-pretreated group compared with rats in the model group, while the total power was significantly lower. Seizure severity measured on the Racine scale was significantly lower in the TQ group compared with the model group. Results of behavioral experiments suggest that TQ may also have a protective effect on learning and memory function. Investigation of the protective mechanism of TQ showed that TQ-pretreatment significantly increased the expression of Nrf2, HO-1 proteins and SOD in the hippocampus. These findings showed that TQ attenuated brain injury induced by SE via an anti-oxidative pathway.

  15. Inhibition of transforming growth factor-β attenuates brain injury and neurological deficits in a rat model of germinal matrix hemorrhage.

    PubMed

    Manaenko, Anatol; Lekic, Tim; Barnhart, Margaret; Hartman, Richard; Zhang, John H

    2014-03-01

    Transforming growth factor-β (TGF-β) overproduction and activation of the TGF-β pathway are associated with the development of brain injury following germinal matrix hemorrhage (GMH) in premature infants. We examined the effects of GMH on the level of TGF-β1 in a novel rat collagenase-induced GMH model and determined the effect of inhibition of the TGF receptor I. In total, 92 seven-day old (P7) rats were used. Time-dependent effects of GMH on the level of TGF-β1 and TGF receptor I were evaluated by Western blot. A TGF receptor I inhibitor (SD208) was administered daily for 3 days, starting either 1 hour or 3 days after GMH induction. The effects of GMH and SD208 on the TGF-β pathway were evaluated by Western blot at day 3. The effects of GMH and SD208 on cognitive and motor function were also assessed. The effects of TGF receptor I inhibition by SD208 on GMH-induced brain injury and underlying molecular pathways were investigated by Western blot, immunofluorescence, and morphology studies 24 days after GMH. GMH induced significant delay in development, caused impairment in both cognitive and motor functions, and resulted in brain atrophy in rat subjects. GMH also caused deposition of both vitronectin (an extracellular matrix protein) and glial fibrillary acidic protein in perilesion areas, associated with development of hydrocephalus. SD208 ameliorated GMH-induced developmental delay, improved cognitive and motor functions, and attenuated body weight loss. SD208 also decreased vitronectin and glial fibrillary acidic protein deposition and decreased GMH-induced brain injury. Increased level of TGF-β1 and activation of the TGF-β pathway associate with the development of brain injury after GMH. SD208 inhibits GMH-induced activation of the TGF-β pathway and leads to an improved developmental profile, partial recovery of cognitive and motor functions, and attenuation of GMH-induced brain atrophy and hydrocephalus.

  16. Identification of active compounds from Aurantii Immatri Pericarpium attenuating brain injury in a rat model of ischemia-reperfusion.

    PubMed

    Yang, Eun-Ju; Lim, Sun Ha; Song, Kyung-Sik; Han, Hyung Soo; Lee, Jongwon

    2013-05-01

    Ischemic stroke is caused by brain injury due to prolonged ischemia by occlusion of cerebral arteries. In this study, we isolated active compounds from an ethanol extract of Aurantii Immatri Pericarpium (HY5356). We first showed by DNA fragmentation assay that HY5356 improved human hepatocellular carcinoma cells (HepG2) under hypoxic conditions by inhibiting apoptosis. When HY5356 was fractionated with dichloromethane (MC), ethyl acetate (EA) and n-butanol (BU), the MC fraction improved cell viability at the lowest concentration (100 μg/ml). Intraperitoneal injection of HY5356 (200 mg/kg) or the MC fraction (200 mg/kg) to rats prior to occlusion attenuated brain injury significantly in a rat model of ischemia-reperfusion. Adopting cell viability under hypoxic conditions as an activity screening system, we isolated nobiletin and tangeretin as active compounds. The results suggest that intake of Aurantii Immatri Pericarpium containing nobiletin and tangeretin as active compounds might be beneficial for preventing ischemic stroke. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Potassium Aspartate Attenuates Brain Injury Induced by Controlled Cortical Impact in Rats Through Increasing Adenosine Triphosphate (ATP) Levels, Na+/K+-ATPase Activity and Reducing Brain Edema.

    PubMed

    Gu, Yi; Zhang, Jie; Zhao, Yumei; Su, Yujin; Zhang, Yazhuo

    2016-12-13

    BACKGROUND Potassium aspartate (PA), as an electrolyte supplement, is widely used in clinical practice. In our previous study, we found PA had neuroprotective effects against apoptosis after cerebral ischemia/reperfusion in rats. In this study, we examine whether PA has protective effects on traumatic brain injury (TBI). MATERIAL AND METHODS TBI was induced by controlled cortical impact (CCI) in rats. Vehicle treatment (control) or PA treatment was administered intraperitoneally at 30 minutes after CCI. The modified neurological severity score (mNSS) and cortical lesion volume were examined. Brain edema and blood-brain barrier (BBB) integrity were measured, as well as brain ATP contents, lactic acid levels, and Na+/K+-ATPase activities. RESULTS We found that CCI induced cortical injury in rats. Acute PA treatment at the dose of 62.5 mg/kg and 125 mg/kg significantly improved neurological deficits (p<0.05 and p<0.001, respectively) and decreased the cortical lesion volume (p<0.05 and p<0.001, respectively) compared with vehicle-only treatment. PA treatment at the dose of 125 mg/kg attenuated brain edema and ameliorated BBB integrity. In addition, PA treatment significantly reduced the loss of ATP (p<0.01), reduced lactic acid levels (p<0.001), and increased the activity of Na+/K+-ATPase (p<0.01). CONCLUSIONS Our results indicate PA has neuroprotective effects on TBI through increasing ATP levels, Na+/K+-ATPase activity, and reducing brain edema. It provides experimental evidence for the clinical application of PA.

  18. Fetal Cortical Transplants in Adult Rats Subjected to Experimental Brain Injury

    PubMed Central

    Soares, Holly; McIntosh, Tracy K.

    1991-01-01

    Fetal cortical tissue was injected into injured adult rat brains following concussive fluid percussion (FP) brain injury. Rats subjected to moderate FP injury received E16 cortex transplant injections into lesioned motor cortex 2 days, 1 week, 2 weeks, and 4 weeks post injury. Histological assessment of transplant survival and integration was based upon Nissl staining, glial fibrillary acidic protein (GFAP) immunocytochemistry, and staining for acetylcholinesterase. In addition to histological analysis, the ability of the transplants to attenuate neurological motor deficits associated with concussive FP brain injury was also tested. Three subgroups of rats receiving transplant 1 week, 2 weeks, and 4 weeks post injury Were chosen for evaluation of neurological motor function. Fetal cortical tissue injected into the injury site 4 weeks post injury failed to incorporate with injured host brain, did not affect glial scar formation, and exhibited extensive GFAP immunoreactivity. No improvement in neurological motor function was observed in animals receiving transplants 4 weeks post injury. Conversely, transplants injected 2 days, 1 week, or 2 weeks post injury survived, incorporated with host brain, exhibited little GFAP immunoreactivity, and successfully attenuated glial scarring. However, no significant improvement in motor function was observed at the one week or two week time points. The inability of the transplants to attenuate motor function may indicate inappropriate host/transplant interaction. Our results demonstrate that there exists a temporal window in which fetal cortical transplants can attenuate glial scarring as well as be successfully incorporated into host brains following FP injury. PMID:1782253

  19. Brain and Serum Androsterone Is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury

    PubMed Central

    Servatius, Richard J.; Marx, Christine E.; Sinha, Swamini; Avcu, Pelin; Kilts, Jason D.; Naylor, Jennifer C.; Pang, Kevin C. H.

    2016-01-01

    Exposure to lateral fluid percussion (LFP) injury consistent with mild traumatic brain injury (mTBI) persistently attenuates acoustic startle responses (ASRs) in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM). ASRs were measured post injury days (PIDs) 1, 3, 7, 14, 21, and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34), PID 35 (S35), on both days (2S), or the experimental context (CON). Levels of the neurosteroids pregnenolone (PREG), allopregnanolone (ALLO), and androsterone (ANDRO) were determined for the prefrontal cortex, hippocampus, and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30, and 60 min post-stressor for determination of corticosterone (CORT) levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA) receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration. PMID:27616978

  20. Low-dose memantine attenuated morphine addictive behavior through its anti-inflammation and neurotrophic effects in rats.

    PubMed

    Chen, Shiou-Lan; Tao, Pao-Luh; Chu, Chun-Hsien; Chen, Shih-Heng; Wu, Hsiang-En; Tseng, Leon F; Hong, Jau-Shyong; Lu, Ru-Band

    2012-06-01

    Opioid abuse and dependency are international problems. Studies have shown that neuronal inflammation and degeneration might be related to the development of opioid addiction. Thus, using neuroprotective agents might be beneficial for treating opioid addiction. Memantine, an Alzheimer's disease medication, has neuroprotective effects in vitro and in vivo. In this study, we evaluated whether a low dose of memantine prevents opioid-induced drug-seeking behavior in rats and analyzed its mechanism. A conditioned-place-preference test was used to investigate the morphine-induced drug-seeking behaviors in rats. We found that a low-dose (0.2-1 mg/kg) of subcutaneous memantine significantly attenuated the chronic morphine-induced place-preference in rats. To clarify the effects of chronic morphine and low-dose memantine, serum and brain levels of cytokines and brain-derived neurotrophic factor (BDNF) were measured. After 6 days of morphine treatment, cytokine (IL-1β, IL-6) levels had significantly increased in serum; IL-1β and IL-6 mRNA levels had significantly increased in the nucleus accumbens and medial prefrontal cortex, both addiction-related brain areas; and BDNF levels had significantly decreased, both in serum and in addiction-related brain areas. Pretreatment with low-dose memantine significantly attenuated chronic morphine-induced increases in serum and brain cytokines. Low-dose memantine also significantly potentiated serum and brain BDNF levels. We hypothesize that neuronal inflammation and BDNF downregulation are related to the progression of opioid addiction. We hypothesize that the mechanism low-dose memantine uses to attenuate morphine-induced addiction behavior is its anti-inflammatory and neurotrophic effects.

  1. Lithium ameliorates lipopolysaccharide-induced neurotoxicity in the cortex and hippocampus of the adult rat brain.

    PubMed

    Khan, Muhammad Sohail; Ali, Tahir; Abid, Muhammad Noman; Jo, Myeung Hoon; Khan, Amjad; Kim, Min Woo; Yoon, Gwang Ho; Cheon, Eun Woo; Rehman, Shafiq Ur; Kim, Myeong Ok

    2017-09-01

    Lithium an effective mood stabilizer, primary used in the treatment of bipolar disorders, has been reported as a protective agent in various neurological disorders. In this study, we examined the neuroprotective role of lithium chloride (LiCl) against lipopolysaccharide (LPS) in the cortex and hippocampus of the adult rat brain. We determined that LiCl -attenuated LPS-induced activated toll-like receptor 4 (TLR4) signalling and significantly reduced the nuclear factor- k B (NF- K B) translation factor and various other inflammatory mediators such as interleukin-1 beta (IL-1β) and tumour necrosis factor alpha (TNF-α). We also analyzed that LiCl significantly abrogated activated gliosis via attenuation of specific markers for activated microglia, ionized calcium-binding adaptor molecule (Iba-1) and astrocytes, glial fibrillary acidic protein (GFAP) in both the cortex and hippocampus of the adult rat brain. Furthermore, we also observed that LiCl treatment significantly ameliorated the increase expression level of apoptotic neurodegeneration protein markers Bax/Bcl2, activated caspase-3 and poly (ADP-ribose) polymerase-1 (PARP-1) in the cortex and hippocampus regions of the LPS-treated adult rat brain. In addition, the morphological results of the fluoro-jade B (FJB) and Nissl staining showed that LiCl attenuated the neuronal degeneration in the cortex and hippocampus regions of the LPS-treated adult rat brain. Taken together, our Western blot and morphological results indicated that LiCl significantly prevents the LPS-induced neurotoxicity via attenuation of neuroinflammation and apoptotic neurodegeneration in the cortex and hippocampus of the adult rat brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Attenuation of brain edema and spatial learning deficits by the inhibition of NADPH oxidase activity using apocynin following diffuse traumatic brain injury in rats.

    PubMed

    Song, Si-Xin; Gao, Jun-Ling; Wang, Kai-Jie; Li, Ran; Tian, Yan-Xia; Wei, Jian-Qiang; Cui, Jian-Zhong

    2013-01-01

    Diffuse brain injury (DBI) is a leading cause of mortality and disability among young individuals and adults worldwide. In specific cases, DBI is associated with permanent spatial learning dysfunction and motor deficits due to primary and secondary brain damage. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is a major complex that produces reactive oxygen species (ROS) during the ischemic period. The complex aggravates brain damage and cell death following ischemia/reperfusion injury; however, its role in DBI remains unclear. The present study aimed to investigate the hypothesis that levels of NOX2 (a catalytic subunit of NOX) protein expression and the activation of NOX are enhanced following DBI induction in rats and are involved in aggravating secondary brain damage. A rat model of DBI was created using a modified weight-drop device. Our results demonstrated that NOX2 protein expression and NOX activity were enhanced in the CA1 subfield of the hippocampus at 48 and 72 h following DBI induction. Treatment with apocynin (50 mg/kg body weight), a specific inhibitor of NOX, injected intraperitoneally 30 min prior to DBI significantly attenuated NOX2 protein expression and NOX activation. Moreover, treatment with apocynin reduced brain edema and improved spatial learning function assessed using the Morris water maze. These results reveal that treatment with apocynin may provide a new neuroprotective therapeutic strategy against DBI by diminishing the upregulation of NOX2 protein and NOX activity.

  3. Chronic icv oxytocin attenuates the pathological high anxiety state of selectively bred Wistar rats.

    PubMed

    Slattery, D A; Neumann, I D

    2010-01-01

    Central oxytocin (OXT) has been shown to promote numerous social behaviours, to attenuate hormonal stress responsiveness of the HPA axis and to decrease anxiety. Wistar rats selectively bred for high (HAB) and low (LAB) anxiety-related behaviour, respectively, have been shown to represent a suitable animal model to study the underlying aetiology of psychopathologies like anxiety- and depression-related disorders. The goal of the present studies was to assess the effects of central OXT on anxiety- and depression-related behaviour in male and female HAB and LAB rats. Acute icv OXT (1 microg) or OXT receptor antagonist (OXT-A; 0.75 microg) administration did not affect anxiety-related behaviour in male or female HAB and LAB rats as assessed in the light-dark box. In contrast, chronic icv OXT infusion (10 ng/h; 6 d) attenuated the high level of anxiety-related behaviour in female, but not male, HAB rats, whereas chronic OXT-A infusion (7.5 ng/h; 6 d) increased anxiety-related behaviour in female, but not male, LAB rats. Neither acute nor chronic manipulation of the OXT system altered depression-related behaviour as assessed by the forced swim test. Combined, these results suggest that pharmacological manipulation of the brain OXT system is effective to attenuate extremes in trait anxiety in an animal model of psychopathological anxiety. Moreover, the data indicate that differences in the activity of the brain OXT systems between HAB and LAB rats may, at least partially, contribute to the opposing anxiety but not depression-related behaviour.

  4. Ethosuximide and Phenytoin Dose-Dependently Attenuate Acute Nonconvulsive Seizures after Traumatic Brain Injury in Rats

    PubMed Central

    Shear, Deborah A.; Potter, Brittney; Marcsisin, Sean R.; Sousa, Jason; Melendez, Victor; Tortella, Frank C.; Lu, Xi-Chun M.

    2013-01-01

    Abstract Acute seizures frequently occur following severe traumatic brain injury (TBI) and have been associated with poor patient prognosis. Silent or nonconvulsive seizures (NCS) manifest in the absence of motor convulsion, can only be detected via continuous electroencephalographic (EEG) recordings, and are often unidentified and untreated. Identification of effective anti-epileptic drugs (AED) against post-traumatic NCS remains crucial to improve neurological outcome. Here, we assessed the anti-seizure profile of ethosuximide (ETX, 12.5–187.5 mg/kg) and phenytoin (PHT, 5–30 mg/kg) in a spontaneously occurring NCS model associated with penetrating ballistic-like brain injury (PBBI). Rats were divided between two drug cohorts, PHT or ETX, and randomly assigned to one of four doses or vehicle within each cohort. Following PBBI, NCS were detected by continuous EEG monitoring for 72 h post-injury. Drug efficacy was evaluated on NCS parameters of incidence, frequency, episode duration, total duration, and onset latency. Both PHT and ETX attenuated NCS in a dose-dependent manner. In vehicle-treated animals, 69–73% experienced NCS (averaging 9–10 episodes/rat) with average onset of NCS occurring at 30 h post-injury. Compared with control treatment, the two highest PHT and ETX doses significantly reduced NCS incidence to 13–40%, reduced NCS frequency (1.8–6.2 episodes/rat), and delayed seizure onset: <20% of treated animals exhibited NCS within the first 48 h. NCS durations were also dose-dependently mitigated. For the first time, we demonstrate that ETX and PHT are effective against spontaneously occurring NCS following PBBI, and suggest that these AEDs may be effective at treating post-traumatic NCS. PMID:23822888

  5. Metformin treatment after the hypoxia-ischemia attenuates brain injury in newborn rats

    PubMed Central

    Fang, Mingchu; Jiang, Huai; Ye, Lixia; Cai, Chenchen; Hu, Yingying; Pan, Shulin; Li, Peijun; Xiao, Jian; Lin, Zhenlang

    2017-01-01

    Neonatal hypoxic-ischemic (HI) brain injury is a devastating disease that often leads to death and detrimental neurological deficits. The present study was designed to evaluate the ability of metformin to provide neuroprotection in a model of neonatal hypoxic-ischemic brain injury and to study the associated molecular mechanisms behind these protective effects. Here, we found that metformin treatment remarkably attenuated brain infarct volumes and brain edema at 24 h after HI injury, and the neuroprotection of metformin was associated with inhibition of neuronal apoptosis, suppression of the neuroinflammation and amelioration of the blood brain barrier breakdown. Additionally, metformin treatment conferred long-term protective against brain damage at 7 d after HI injury. Our study indicates that metformin treatment protects against neonatal hypoxic-ischemic brain injury and thus has potential as a therapy for this disease. PMID:29088867

  6. Attenuation and recovery of brain stem autoregulation in spontaneously hypertensive rats.

    PubMed

    Toyoda, K; Fujii, K; Ibayashi, S; Kitazono, T; Nagao, T; Takaba, H; Fujishima, M

    1998-03-01

    Cerebral large arteries dilate actively around the lower limits of CBF autoregulation, mediated at least partly by nitric oxide, and maintain CBF during severe hypotension. We tested the hypothesis that this autoregulatory response of large arteries, as well as the response of arterioles, is altered in spontaneously hypertensive rats (SHR) and that the altered response reverts to normal during long-term antihypertensive treatment with cilazapril, an angiotensin-converting enzyme inhibitor. In anesthetized 6- to 7-month-old normotensive Wistar-Kyoto rats (WKY), 4- and 6- to 7-month-old SHR without antihypertensive treatment, and 6- to 7-month-old SHR treated with cilazapril for 10 weeks, local CBF to the brain stem was determined with laser-Doppler flowmetry and diameters of the basilar artery and its branches were measured through a cranial window during stepwise hemorrhagic hypotension. The lower limit of CBF autoregulation shifted upward in untreated SHR to 90 to 105 mm Hg from 30 to 45 mm Hg in WKY, and it reverted to 30 to 45 mm Hg in treated SHR. In response to severe hypotension, the basilar artery dilated by 21 +/- 6% (mean +/- SD) of the baseline internal diameter in WKY. The vasodilation was impaired in untreated SHR (10 +/- 8% in 4-mo-old SHR and 4 +/- 5% in 6- to 7-month-old SHR), and was restored to 22 +/- 10% by treatment with cilazapril (P < 0.005). Dilator responses of branch arterioles to hypotension showed similar attenuation and recovery as that of the basilar artery. The data indicate that chronic hypertension impairs the autoregulatory dilation of the basilar artery as well as branch arterioles and that antihypertensive treatment with cilazapril restores the diminished dilation toward normal.

  7. Alamandine attenuates hypertension and cardiac hypertrophy in hypertensive rats.

    PubMed

    Liu, Chi; Yang, Chuan-Xi; Chen, Xi-Ru; Liu, Bo-Xun; Li, Yong; Wang, Xiao-Zhi; Sun, Wei; Li, Peng; Kong, Xiang-Qing

    2018-05-12

    Oral administration of the peptide alamandine has antihypertensive and anti-fibrotic effects in rats. This work aimed to determine whether subcutaneous alamandine injection would attenuate hypertension and cardiac hypertrophy, and improve the function of a major target of hypertension-related damage, the left ventricle (LV), in spontaneously hypertensive rats (SHRs). This was examined in vivo in SHRs and normotensive rats subjected to 6-week subcutaneous infusion of alamandine or saline control, and in vitro in H9C2-derived and primary neonatal rat cardiomyocytes treated with angiotensin (Ang) II to model cardiac hypertrophy. Tail artery blood pressure measurement and transthoracic echocardiography showed that hypertension and impaired LV function in SHRs were ameliorated upon alamandine infusion. Alamandine administration also decreased the mass gains of heart and lung in SHRs, suppressed cardiomyocyte cross-sectional area expansion, and inhibited the mRNA levels of atrial natriuretic peptide and brain natriuretic peptide. The expression of alamandine receptor Mas-related G protein-coupled receptor, member D was increased in SHR hearts and in cardiomyocytes treated with Ang II. Alamandine inhibited the increases of protein kinase A (PKA) levels in the heart in SHRs and in cardiomyocytes treated with Ang II. In conclusion, the present study showed that alamandine administration attenuates hypertension, alleviates cardiac hypertrophy, and improves LV function. PKA signaling may be involved in the mechanisms underlying these effects.

  8. Melatonin attenuates neuronal apoptosis through up-regulation of K(+) -Cl(-) cotransporter KCC2 expression following traumatic brain injury in rats.

    PubMed

    Wu, Haijian; Shao, Anwen; Zhao, Mingfei; Chen, Sheng; Yu, Jun; Zhou, Jingyi; Liang, Feng; Shi, Ligen; Dixon, Brandon J; Wang, Zhen; Ling, Chenhan; Hong, Yuan; Zhang, Jianmin

    2016-09-01

    Traumatic brain injury (TBI) initiates a complex cascade of neurochemical and signaling changes that leads to neuronal apoptosis, which contributes to poor outcomes for patients with TBI. The neuron-specific K(+) -Cl(-) cotransporter-2 (KCC2), the principal Cl(-) extruder in adult neurons, plays an important role in Cl(-) homeostasis and neuronal function. This present study was designed to investigate the expression pattern of KCC2 following TBI and to evaluate whether or not melatonin is able to prevent neuronal apoptosis by modulating KCC2 expression in a Sprague Dawley rat controlled cortical impact model of TBI. The time course study showed decreased mRNA and protein expression of KCC2 in the ipsilateral peri-core parietal cortex after TBI. Double immunofluorescence staining demonstrated that KCC2 is located in the plasma membrane of neurons. In addition, melatonin (10 mg/kg) was injected intraperitoneally at 5 minutes and repeated at 1, 2, 3, and 4 hours after brain trauma, and brain samples were extracted 24 hours after TBI. Compared to the vehicle group, melatonin treatment altered the down-regulation of KCC2 expression in both mRNA and protein levels after TBI. Also, melatonin treatment increased the protein levels of brain-derived neurotrophic factor (BDNF) and phosphorylated extracellular signal-regulated kinase (p-ERK). Simultaneously, melatonin administration ameliorated cortical neuronal apoptosis, reduced brain edema, and attenuated neurological deficits after TBI. In conclusion, our findings suggested that melatonin restores KCC2 expression, inhibits neuronal apoptosis and attenuates secondary brain injury after TBI, partially through activation of BDNF/ERK pathway. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. 24h withdrawal following repeated administration of caffeine attenuates brain serotonin but not tryptophan in rat brain: implications for caffeine-induced depression.

    PubMed

    Haleem, D J; Yasmeen, A; Haleem, M A; Zafar, A

    1995-01-01

    Caffeine injected at doses of 20, 40 and 80 mg/kg increased brain levels of tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat brain. In view of a possible role of 5-HT in caffeine-induced depression the effects of repeated administration of high doses of caffeine on brain 5-HT metabolism are investigated in rats. Caffeine was injected at doses of 80 mg/kg daily for five days. Control animals were injected with saline daily for five days. On the 6th day caffeine (80 mg/kg) injected to 5 day saline injected rats increased brain levels of tryptophan, 5-HT and 5-HIAA. Plasma total tryptophan levels were not affected and free tryptophan increased. Brain levels of 5-HT and 5-HIAA but not tryptophan decreased in 5 day caffeine injected rats injected with saline on the 6th day. Plasma total and free tryptophan were not altered in these rats. Caffeine-induced increases of brain tryptophan but not 5-HT and 5-HIAA were greater in 5 day caffeine than 5 day saline injected rats. The findings are discussed as repeated caffeine administration producing adaptive changes in the serotonergic neurons to decrease the conversion of tryptophan to 5-HT and this may precipitate depression particularly in conditions of caffeine withdrawal.

  10. Simvastatin attenuates the cerebral vascular endothelial inflammatory response in a rat traumatic brain injury.

    PubMed

    Wang, Kuo-Wei; Chen, Han-Jung; Lu, Kang; Liliang, Po-Chou; Liang, Cheng-Loong; Tsai, Yu-Duan; Cho, Chung-Lung

    2014-01-01

    Traumatic brain injury (TBI) leads to important and deleterious inflammation, as evidenced by edema, cytokine production, induction of nitric oxide synthase, and leukocyte infiltration. After TBI, the activation of cerebral vascular endothelial cells plays a crucial role in the pathogenesis of inflammation. In this study, we hypothesized that the activation of cerebral vascular endothelial cells plays a crucial role in the pathogenesis of inflammation and outcome after TBI. It may represent a key cellular target for statin therapy. In our study, cortical contusions were induced, and the effect of continuous treatment of simvastatin on behavior and inflammation in adult rats following experimental TBI was evaluated. The treatment group received 15 mg/kg of simvastatin daily for 3 days. Neurological function was assessed with the grip test. The results showed that the non-treatment control group had a significantly greater increase in ICAM-1 expression from pre-injury to the post-injury 72 h time point as compared to the expression in treatment group. The treatment group had better neurological function as evidenced in a grip test performed from baseline to 72 h. The analysis of a western blot test and pathology also demonstrated reduced ICAM-1 expression and a smaller area of damage and tissue loss. Our findings suggest that simvastatin could attenuate the activation of cerebral vascular endothelial inflammatory response and decrease the loss of neurological function and brain tissue.

  11. Methamphetamine self-administration attenuates hippocampal serotonergic deficits: role of brain-derived neurotrophic factor.

    PubMed

    McFadden, Lisa M; Vieira-Brock, Paula L; Hanson, Glen R; Fleckenstein, Annette E

    2014-08-01

    Preclinical studies suggest that prior treatment with escalating doses of methamphetamine (METH) attenuates the persistent deficits in hippocampal serotonin (5-hydroxytryptamine; 5HT) transporter (SERT) function resulting from a subsequent 'binge' METH exposure. Previous work also demonstrates that brain-derived neurotrophic factor (BDNF) exposure increases SERT function. The current study investigated changes in hippocampal BDNF protein and SERT function in rats exposed to saline or METH self-administration prior to a binge exposure to METH or saline. Results revealed that METH self-administration increased hippocampal mature BDNF (mBDNF) immunoreactivity compared to saline-treated rats as assessed 24 h after the start of the last session. Further, mBDNF immunoreactivity was increased and SERT function was not altered in rats that self-administered METH prior to the binge METH exposure as assessed 24 h after the binge exposure. These results suggest that prior exposure to contingent METH increases hippocampal mBDNF, and this may contribute to attenuated deficits in SERT function.

  12. Low dose naltrexone administration in morphine dependent rats attenuates withdrawal-induced norepinephrine efflux in forebrain.

    PubMed

    Van Bockstaele, Elisabeth J; Qian, Yaping; Sterling, Robert C; Page, Michelle E

    2008-05-15

    The administration of low dose opioid antagonists has been explored as a potential means of detoxification in opiate dependence. Previous results from our laboratory have shown that concurrent administration of low dose naltrexone in the drinking water of rats implanted with subcutaneous morphine pellets attenuates behavioral and biochemical signs of withdrawal in brainstem noradrenergic nuclei. Noradrenergic projections originating from the nucleus tractus solitarius (NTS) and the locus coeruleus (LC) have previously been shown to be important neural substrates involved in the somatic expression of opiate withdrawal. The hypothesis that low dose naltrexone treatment attenuates noradrenergic hyperactivity typically associated with opiate withdrawal was examined in the present study by assessing norepinephrine tissue content and norepinephrine efflux using in vivo microdialysis coupled to high performance liquid chromatography (HPLC) with electrochemical detection (ED). The frontal cortex (FC), amygdala, bed nucleus of the stria terminalis (BNST) and cerebellum were analyzed for tissue content of norepinephrine following withdrawal in morphine dependent rats. Naltrexone-precipitated withdrawal elicited a significant decrease in tissue content of norepinephrine in the BNST and amygdala. This decrease was significantly attenuated in the BNST of rats that received low dose naltrexone pre-treatment compared to controls. No significant difference was observed in the other brain regions examined. In a separate group of rats, norepinephrine efflux was assessed with in vivo microdialysis in the BNST or the FC of morphine dependent rats or placebo treated rats subjected to naltrexone-precipitated withdrawal that received either naltrexone in their drinking water (5 mg/L) or unadulterated water. Following baseline dialysate collection, withdrawal was precipitated by injection of naltrexone and sample collection continued for an additional 4 h. At the end of the experiment

  13. Increased brain lactate is central to the development of brain edema in rats with chronic liver disease.

    PubMed

    Bosoi, Cristina R; Zwingmann, Claudia; Marin, Helen; Parent-Robitaille, Christian; Huynh, Jimmy; Tremblay, Mélanie; Rose, Christopher F

    2014-03-01

    The pathogenesis of brain edema in patients with chronic liver disease (CLD) and minimal hepatic encephalopathy (HE) remains undefined. This study evaluated the role of brain lactate, glutamine and organic osmolytes, including myo-inositol and taurine, in the development of brain edema in a rat model of cirrhosis. Six-week bile-duct ligated (BDL) rats were injected with (13)C-glucose and de novo synthesis of lactate, and glutamine in the brain was quantified using (13)C nuclear magnetic resonance spectroscopy (NMR). Total brain lactate, glutamine, and osmolytes were measured using (1)H NMR or high performance liquid chromatography. To further define the interplay between lactate, glutamine and brain edema, BDL rats were treated with AST-120 (engineered activated carbon microspheres) and dichloroacetate (DCA: lactate synthesis inhibitor). Significant increases in de novo synthesis of lactate (1.6-fold, p<0.001) and glutamine (2.2-fold, p<0.01) were demonstrated in the brains of BDL rats vs. SHAM-operated controls. Moreover, a decrease in cerebral myo-inositol (p<0.001), with no change in taurine, was found in the presence of brain edema in BDL rats vs. controls. BDL rats treated with either AST-120 or DCA showed attenuation in brain edema and brain lactate. These two treatments did not lead to similar reductions in brain glutamine. Increased brain lactate, and not glutamine, is a primary player in the pathogenesis of brain edema in CLD. In addition, alterations in the osmoregulatory response may also be contributing factors. Our results suggest that inhibiting lactate synthesis is a new potential target for the treatment of HE. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  14. Minocycline attenuates brain injury and iron overload after intracerebral hemorrhage in aged female rats.

    PubMed

    Dai, Shuhui; Hua, Ya; Keep, Richard F; Novakovic, Nemanja; Fei, Zhou; Xi, Guohua

    2018-06-05

    Brain iron overload is involved in brain injury after intracerebral hemorrhage (ICH). There is evidence that systemic administration of minocycline reduces brain iron level and improves neurological outcome in experimental models of hemorrhagic and ischemic stroke. However, there is evidence in cerebral ischemia that minocycline is not protective in aged female animals. Since most ICH research has used male models, this study was designed to provide an overall view of ICH-induced iron deposits at different time points (1 to 28 days) in aged (18-month old) female Fischer 344 rat ICH model and to investigate the neuroprotective effects of minocycline in those rats. According to our previous studies, we used the following dosing regimen (20 mg/kg, i.p. at 2 and 12 h after ICH onset followed by 10 mg/kg, i.p., twice a day up to 7 days). T2-, T2 ⁎ -weighted and T2 ⁎ array MRI was performed at 1, 3, 7 and 28 days to measure brain iron content, ventricle volume, lesion volume and brain swelling. Immunohistochemistry was used to examine changes in iron handling proteins, neuronal loss and microglial activation. Behavioral testing was used to assess neurological deficits. In aged female rats, ICH induced long-term perihematomal iron overload with upregulated iron handling proteins, neuroinflammation, brain atrophy, neuronal loss and neurological deficits. Minocycline significantly reduced ICH-induced perihematomal iron overload and iron handling proteins. It further reduced brain swelling, neuroinflammation, neuronal loss, delayed brain atrophy and neurological deficits. These effects may be linked to the role of minocycline as an iron chelator as well as an inhibitor of neuroinflammation. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Rosiglitazone attenuates inflammation and CA3 neuronal loss following traumatic brain injury in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Rose, Marie E.; Department of Neurology, University of Pittsburgh School of Medicine, PA

    Rosiglitazone, a potent peroxisome proliferator-activated receptor (PPAR)-γ agonist, has been shown to confer neuroprotective effects in stroke and spinal cord injury, but its role in the traumatic brain injury (TBI) is still controversial. Using a controlled cortical impact model in rats, the current study was designed to determine the effects of rosiglitazone treatment (6 mg/kg at 5 min, 6 h and 24 h post injury) upon inflammation and histological outcome at 21 d after TBI. In addition, the effects of rosiglitazone upon inflammatory cytokine transcription, vestibulomotor behavior and spatial memory function were determined at earlier time points (24 h, 1–5 d, 14–20 d post injury, respectively). Compared withmore » the vehicle-treated group, rosiglitazone treatment suppressed production of TNFα at 24 h after TBI, attenuated activation of microglia/macrophages and increased survival of CA3 neurons but had no effect on lesion volume at 21 d after TBI. Rosiglitazone-treated animals had improved performance on beam balance testing, but there was no difference in spatial memory function as determined by Morris water maze. In summary, this study indicates that rosiglitazone treatment in the first 24 h after TBI has limited anti-inflammatory and neuroprotective effects in rat traumatic injury. Further study using an alternative dosage paradigm and more sensitive behavioral testing may be warranted. - Highlights: • Effects of rosiglitazone after CCI were evaluated using a rat TBI model. • Rosiglitazone suppressed production of TNFα at 24 h after CCI. • Rosiglitazone inhibited microglial activation at 21 d after CCI. • Rosiglitazone increased survival of CA3 neurons at 21 d after CCI. • Rosiglitazone-treated animals had improved performance in beam balance testing.« less

  16. Pretreatment of parecoxib attenuates hepatic ischemia/reperfusion injury in rats.

    PubMed

    Zhang, Tao; Ma, Yi; Xu, Kang-Qing; Huang, Wen-Qi

    2015-11-17

    Previous studies showed that cyclooxygenase(COX) was involved in ischemia/reperfusion (I/R) injuries. Parecoxib, a selective inhibitor for COX -2, has been shown to have protective properties in reducing I/R injury in the heart, kidney and brain. The aim of this study was to investigate the effects of parecoxib on hepatic I/R and to explore the underlying mechanisms. Fifty-two Sprague-Dawley rats were randomly divided into three groups: the sham-operation (Sham) group, the hepatic ischemia/reperfusion (I/R) group, and the parecoxib pretreated I/R (I/R + Pare) group. Partial warm ischemia was produced in the left and middle hepatic lobes of Sprague-Dawley rats for 60 min, followed by 6 h of reperfusion. Rats in the I/R + Pare group received parecoxib (10 mg/kg) intraperitoneally twice a day for three consecutive days prior to ischemia. Blood and tissue samples from the groups were collected 6 h after reperfusion, and a survival study was performed. Pretreatment with parecoxib prior to I/R insult significantly reduced I/R-induced elevations of aminotransferases, and significantly improved the histological status of the liver. Parecoxib significantly suppressed inflammatory cascades, as demonstrated by attenuations in TNF-α and IL-6. Parecoxib significantly inhibited iNOS and nitrotyrosine expression after I/R and significantly attenuated I/R-induced apoptosis. The 7-day survival rate was increased by pre-administration of parecoxib. Administration of parecoxib prior to hepatic I/R attenuates hepatic injury through inhibition of inflammatory response and nitrosative stress.

  17. Resuscitation with Pooled and Pathogen-Reduced Plasma Attenuates the Increase in Brain Water Content following Traumatic Brain Injury and Hemorrhagic Shock in Rats.

    PubMed

    Genét, Gustav Folmer; Bentzer, Peter; Ostrowski, Sisse Rye; Johansson, Pär Ingemar

    2017-03-01

    Traumatic brain injury and hemorrhagic shock is associated with blood-brain barrier (BBB) breakdown and edema formation. Recent animal studies have shown that fresh frozen plasma (FFP) resuscitation reduces brain swelling and improves endothelial function compared to isotonic NaCl (NS). The aim of this study was to investigate whether pooled and pathogen-reduced plasma (OctaplasLG ® [OCTA]; Octapharma, Stockholm, Sweden) was comparable to FFP with regard to effects on brain water content, BBB permeability, and plasma biomarkers of endothelial glycocalyx shedding and cell damage. After fluid percussion brain injury, hemorrhage (20 mL/kg), and 90-min shock, 48 male Sprague-Dawley rats were randomized to resuscitation with OCTA, FFP, or NS (n = 16/group). Brain water content (wet/dry weight) and BBB permeability (transfer constant for 51 Cr-EDTA) were measured at 24 h. Plasma osmolality, oncotic pressure, and biomarkers of systemic glycocalyx shedding (syndecan-1) and cell damage (histone-complexed DNA) were measured at 0 and 23 h. At 24 h, brain water content was 80.44 ± 0.39%, 80.82 ± 0.82%, and 81.15 ± 0.86% in the OCTA, FFP, and NS groups (lower in OCTA vs. NS; p = 0.026), with no difference in BBB permeability. Plasma osmolality and oncotic pressures were highest in FFP and OCTA resuscitated, and osmolality was further highest in OCTA versus FFP (p = 0.027). In addition, syndecan-1 was highest in FFP and OCTA resuscitated (p = 0.010). These results suggest that pooled solvent-detergent (SD)-treated plasma attenuates the post-traumatic increase in brain water content, and that this effect may, in part, be explained by a high crystalloid and colloid osmotic pressure in SD-treated plasma.

  18. Chlorogenic Acid Prevents Alcohol-induced Brain Damage in Neonatal Rat.

    PubMed

    Guo, Zikang; Li, Jiang

    2017-01-01

    The present investigation evaluates the neuroprotective effect of chlorogenic acid (CA) in alcohol-induced brain damage in neonatal rats. Ethanol (12 % v/v, 5 g/kg) was administered orally in the wistar rat pups on postnatal days (PD) 7-9. Chlorogenic acid (100 and 200 mg/kg, p.o.) was administered continuously from PD 6 to 28. Cognitive function was estimated by Morris water maze (MWM) test. However, activity of acetylcholinesterase, inflammatory mediators, parameters of oxidative stress and activity of caspase-3 enzyme was estimated in the tissue homogenate of cerebral cortex and hippocampus of ethanol-exposed pups. It has been observed that treatment with CA attenuates the altered cognitive function in ethanol-exposed pups. There was a significant decrease in the activity of acetylcholinesterase in the CA treated group compared to the negative control group. However, treatment with CA significantly ameliorates the increased oxidative stress and concentration of inflammatory mediators in the brain tissues of ethanol-exposed pups. Activity of caspase-3 enzyme was also found significantly decreased in the CA treated group compared to the negative control group. The present study concludes that CA attenuates the neuronal damage induced in alcohol exposed neonatal rat by decreasing the apoptosis of neuronal cells.

  19. Chlorogenic Acid Prevents Alcohol-induced Brain Damage in Neonatal Rat

    PubMed Central

    Guo, Zikang; Li, Jiang

    2017-01-01

    Abstract The present investigation evaluates the neuroprotective effect of chlorogenic acid (CA) in alcohol-induced brain damage in neonatal rats. Ethanol (12 % v/v, 5 g/kg) was administered orally in the wistar rat pups on postnatal days (PD) 7-9. Chlorogenic acid (100 and 200 mg/kg, p.o.) was administered continuously from PD 6 to 28. Cognitive function was estimated by Morris water maze (MWM) test. However, activity of acetylcholinesterase, inflammatory mediators, parameters of oxidative stress and activity of caspase-3 enzyme was estimated in the tissue homogenate of cerebral cortex and hippocampus of ethanol-exposed pups. It has been observed that treatment with CA attenuates the altered cognitive function in ethanol-exposed pups. There was a significant decrease in the activity of acetylcholinesterase in the CA treated group compared to the negative control group. However, treatment with CA significantly ameliorates the increased oxidative stress and concentration of inflammatory mediators in the brain tissues of ethanol-exposed pups. Activity of caspase-3 enzyme was also found significantly decreased in the CA treated group compared to the negative control group. The present study concludes that CA attenuates the neuronal damage induced in alcohol exposed neonatal rat by decreasing the apoptosis of neuronal cells. PMID:29318034

  20. Edaravone attenuates brain damage in rats after acute CO poisoning through inhibiting apoptosis and oxidative stress.

    PubMed

    Li, Qin; Bi, Ming Jun; Bi, Wei Kang; Kang, Hai; Yan, Le Jing; Guo, Yun-Liang

    2016-03-01

    Acute carbon monoxide (CO) poisoning is the most common cause of death from poisoning all over the world and may result in neuropathologic and neurophysiologic changes. Acute brain damage and delayed encephalopathy are the most serious complication, yet their pathogenesis is poorly understood. The present study aimed to evaluate the neuroprotective effects of Edaravone against apoptosis and oxidative stress after acute CO poisoning. The rat model of CO poisoning was established in a hyperbaric oxygen chamber by exposed to CO. Ultrastructure changes were observed by transmission electron microscopy (TEM). TUNEL stain was used to assess apoptosis. Immunohistochemistry and immunofluorescence double stain were used to evaluate the expression levels of heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf-2) protein and their relationship. By dynamically monitored the carboxyhemoglobin (HbCO) level in blood, we successfully established rat model of severe CO poisoning. Ultrastructure changes, including chromatin condensation, cytoplasm dissolution, vacuoles formation, nucleus membrane and cell organelles decomposition, could be observed after CO poisoning. Edaravone could improve the ultrastructure damage. CO poisoning could induce apoptosis. Apoptotic cells were widely distributed in cortex, striatum and hippocampus. Edaravone treatment attenuated neuronal apoptosis as compared with the poisoning group (P < 0.01). Basal expressions of HO-1 and Nrf-2 proteins were found in normal brain tissue. CO poisoning could activate HO-1/Nrf-2 pathway, start oxidative stress response. After the administration of Edaravone, the expression of HO-1 and Nrf-2 significantly increased (P < 0.01). These findings suggest that Edaravone may inhibit apoptosis, activate the Keapl-Nrf/ARE pathway, and thus improve the ultrastructure damage and neurophysiologic changes following acute CO poisoning. © 2014 Wiley Periodicals, Inc.

  1. N-Benzoyl-D-phenylalanine attenuates brain acetylcholinesterase in neonatal streptozotocin-diabetic rats.

    PubMed

    Ashokkumar, Natarajan; Pari, Leelavinothan; Ramkumar, Kunga Mohan

    2006-09-01

    The effect of hyperglycaemia due to experimental diabetes in male Wistar rats causes a decrease in the level of acetylcholinesterase (AChE) with significant increase in lipid peroxidative markers: thiobarbituric acid-reactive substances (TBARS) and hydroperoxides in brains of experimental animals. The decreased activity of both salt soluble and detergent soluble acetylcholinesterase observed in diabetes may be attributed to lack of insulin which causes specific alterations in the level of neurotransmitter, thus causing brain dysfunction. Administration of non-sulfonylurea drug N-benzoyl-D-phenylalanine (NBDP) could protect against direct action of lipid peroxidation on brain AChE and in this way it might be useful in the prevention of cholinergic neural dysfunction, which is one of the major complications in diabetes.

  2. Levetiracetam attenuates rotenone-induced toxicity: A rat model of Parkinson's disease.

    PubMed

    Erbaş, Oytun; Yılmaz, Mustafa; Taşkıran, Dilek

    2016-03-01

    Levetiracetam (LEV), a second-generation anti-epileptic drug, is used for treatment of both focal and generalized epilepsy. Growing body of evidence suggests that LEV may have neuroprotective effects. The present study was undertaken to investigate the neuroprotective effects of LEV on rotenone-induced Parkinson's disease (PD) in rats. Twenty-four adult Sprague-Dawley rats were infused with rotenone (3 μg/μl in DMSO) or vehicle (1 μl DMSO) into the left substantia nigra pars compacta (SNc) under stereotaxic surgery. PD model was assessed by rotational test ten days after drug infusion. The valid PD rats were randomly distributed into two groups; Group 1 (n=8) and Group 2 (n=8) were administered saline (1 ml/kg/day, i.p.) and LEV (600 mg/kg/day, i.p.) through 21 days, respectively. The effects of LEV treatment were evaluated by behavioral (rotation score), biochemical (brain homovalinic acid level and oxidant/antioxidant status) and immunohistochemical (tyrosine hydroxylase) parameters. Apomorphine-induced rotations in PD rats were significantly suppressed by LEV treatment. While unilateral rotenone lesion induced a dramatic loss of dopaminergic neurons both in the striatum and SNc, LEV treatment significantly attenuated the degenerative changes in dopaminergic neurons. Furthermore, LEV significantly decreased lipid peroxide levels, a marker of lipid peroxidation, and induced glutathione levels, catalase and superoxide dismutase activity in PD rats compared with saline group. We conclude that LEV may have beneficial effects on dopaminergic neurons against rotenone-induced injury. The underlying mechanism may be associated with the attenuation of oxidative stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Perillaldehyde attenuates cerebral ischemia-reperfusion injury-triggered overexpression of inflammatory cytokines via modulating Akt/JNK pathway in the rat brain cortex.

    PubMed

    Xu, Lixing; Li, Yuebi; Fu, Qiang; Ma, Shiping

    2014-11-07

    Perillaldehyde (PAH), one of the major oil components in Perilla frutescens, has anti-inflammatory effects. Few studies have examined the neuroprotective effect of PAH on stroke. So the aim of our study is to investigate the effect of PAH on ischemia-reperfusion-induced injury in the rat brain cortex. Middle cerebral artery occlusion (MCAO) model was selected to make cerebral ischemia-reperfusion injury. Rats were assigned randomly to groups of sham, MCAO, and two treatment groups by PAH at 36.0, 72.0mg/kg. Disease model was set up after intragastrically (i.g.) administering for 7 consecutive days. The neurological deficit, the cerebral infarct size, biochemical parameters and the relative mRNA and protein levels were examined. The results showed that the NO level, the iNOS activity, the neurological deficit scores, the cerebral infarct size and the expression of inflammatory cytokines including interleukin (IL)-1β, interleukin (IL)-6 and tumor necrosis factor (TNF)-α were significantly decreased by PAH treatment. PAH also increased the Phospho-Akt level and decrease the Phospho-JNK level by Western blot analysis. Meanwhile, the PAH groups exhibited a dramatically decrease of apoptosis-related mRNA expression such as Bax and caspase-3. Our findings shown that PAH attenuates cerebral ischemia/reperfusion injury in the rat brain cortex, and suggest its neuroprotective effect is relate to regulating the inflammatory response through Akt /JNK pathway. The activation of this signalling pathway eventually inhibits apoptotic cell death induced by cerebral ischemia-reperfusion. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Repeated administration of almonds increases brain acetylcholine levels and enhances memory function in healthy rats while attenuates memory deficits in animal model of amnesia.

    PubMed

    Batool, Zehra; Sadir, Sadia; Liaquat, Laraib; Tabassum, Saiqa; Madiha, Syeda; Rafiq, Sahar; Tariq, Sumayya; Batool, Tuba Sharf; Saleem, Sadia; Naqvi, Fizza; Perveen, Tahira; Haider, Saida

    2016-01-01

    Dietary nutrients may play a vital role in protecting the brain from age-related memory dysfunction and neurodegenerative diseases. Tree nuts including almonds have shown potential to combat age-associated brain dysfunction. These nuts are an important source of essential nutrients, such as tocopherol, folate, mono- and poly-unsaturated fatty acids, and polyphenols. These components have shown promise as possible dietary supplements to prevent or delay the onset of age-associated cognitive dysfunction. This study investigated possible protective potential of almond against scopolamine induced amnesia in rats. The present study also investigated a role of acetylcholine in almond induced memory enhancement. Rats in test group were orally administrated with almond suspension (400 mg/kg/day) for four weeks. Both control and almond-treated rats were then divided into saline and scopolamine injected groups. Rats in the scopolamine group were injected with scopolamine (0.5 mg/kg) five minutes before the start of each memory test. Memory was assessed by elevated plus maze (EPM), Morris water maze (MWM) and novel object recognition (NOR) task. Cholinergic function was determined in terms of hippocampal and frontal cortical acetylcholine content and acetylcholinesterase activity. Results of the present study suggest that almond administration for 28 days significantly improved memory retention. This memory enhancing effect of almond was also observed in scopolamine induced amnesia model. Present study also suggests a role of acetylcholine in the attenuation of scopolamine induced amnesia by almond. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Preconditioning of intravenous parecoxib attenuates focal cerebral ischemia/reperfusion injury in rats.

    PubMed

    Wang, Na; Guo, Qu-lian; Ye, Zhi; Xia, Ping-ping; Wang, E; Yuan, Ya-jing

    2011-07-05

    Several studies suggest that cyclooxygenase-2 (COX-2) contributes to the delayed progression of ischemic brain damage. This study was designed to investigate whether COX-2 inhibition with parecoxib reduces focal cerebral ischemia/reperfusion injury in rats. Ninety male Sprague-Dawley rats were randomly assigned to three groups: the sham group, ischemia/reperfusion (I/R) group and parecoxib group. The parecoxib group received 4 mg/kg of parecoxib intravenously via the vena dorsalis penis 15 minutes before ischemia and again at 12 hours after ischemia. The neurological deficit scores (NDSs) were evaluated at 24 and 72 hours after reperfusion. The rats then were euthanized. Brains were removed and processed for hematoxylin and eosin staining, Nissl staining, and measurements of high mobility group Box 1 protein (HMGB1) and tumor necrosis factor-α (TNF-α) levels. Infarct volume was assessed with 2,3,5-triphenyltetrazolium chloride (TTC) staining. The rats in the I/R group had lower NDSs (P < 0.05), larger infarct volume (P < 0.05), lower HMGB1 levels (P < 0.05), and higher TNF-α levels (P < 0.05) compared with those in the sham group. Parecoxib administration significantly improved NDSs, reduced infarct volume, and decreased HMGB1 and TNF-α levels (P < 0.05). Pretreatment with intravenous parecoxib was neuroprotective. Its effects may be associated with the attenuation of inflammatory reaction and the inhibition of inflammatory mediators.

  6. Backscatter and attenuation properties of mammalian brain tissues

    NASA Astrophysics Data System (ADS)

    Wijekularatne, Pushpani Vihara

    Traumatic Brain Injury (TBI) is a common category of brain injuries, which contributes to a substantial number of deaths and permanent disability all over the world. Ultrasound technology plays a major role in tissue characterization due to its low cost and portability that could be used to bridge a wide gap in the TBI diagnostic process. This research addresses the ultrasonic properties of mammalian brain tissues focusing on backscatter and attenuation. Orientation dependence and spatial averaging of data were analyzed using the same method resulting from insertion of tissue sample between a transducer and a reference reflector. Apparent backscatter transfer function (ABTF) at 1 to 10 MHz, attenuation coefficient and backscatter coefficient (BSC) at 1 to 5 MHz frequency ranges were measured on ovine brain tissue samples. The resulting ABTF was a monotonically decreasing function of frequency and the attenuation coefficient and BSC generally were increasing functions of frequency, results consistent with other soft tissues such as liver, blood and heart.

  7. Acidosis mediates recurrent hypoglycemia-induced increase in ischemic brain injury in treated diabetic rats.

    PubMed

    Rehni, Ashish K; Shukla, Vibha; Perez-Pinzon, Miguel A; Dave, Kunjan R

    2018-03-15

    Cerebral ischemia is a serious possible manifestation of diabetic vascular disease. Recurrent hypoglycemia (RH) enhances ischemic brain injury in insulin-treated diabetic (ITD) rats. In the present study, we determined the role of ischemic acidosis in enhanced ischemic brain damage in RH-exposed ITD rats. Diabetic rats were treated with insulin and mild/moderate RH was induced for 5 days. Three sets of experiments were performed. The first set evaluated the effects of RH exposure on global cerebral ischemia-induced acidosis in ITD rats. The second set evaluated the effect of an alkalizing agent (Tris-(hydroxymethyl)-aminomethane: THAM) on ischemic acidosis-induced brain injury in RH-exposed ITD rats. The third experiment evaluated the effect of the glucose transporter (GLUT) inhibitor on ischemic acidosis-induced brain injury in RH-exposed ITD rats. Hippocampal pH and lactate were measured during ischemia and early reperfusion for all three experiments. Neuronal survival in Cornu Ammonis 1 (CA1) hippocampus served as a measure of ischemic brain injury. Prior RH exposure increases lactate concentration and decreases pH during ischemia and early reperfusion when compared to controls. THAM and GLUT inhibitor treatments attenuated RH-induced increase in ischemic acidosis. GLUT inhibitor treatment reduced the RH-induced increase in lactate levels. Both THAM and GLUT inhibitor treatments significantly decreased ischemic damage in RH-exposed ITD rats. Ischemia causes increased acidosis in RH-exposed ITD rats via a GLUT-sensitive mechanism. Exploring downstream pathways may help understand mechanisms by which prior exposure to RH increases cerebral ischemic damage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Functional atlas of the awake rat brain: A neuroimaging study of rat brain specialization and integration.

    PubMed

    Ma, Zhiwei; Perez, Pablo; Ma, Zilu; Liu, Yikang; Hamilton, Christina; Liang, Zhifeng; Zhang, Nanyin

    2018-04-15

    Connectivity-based parcellation approaches present an innovative method to segregate the brain into functionally specialized regions. These approaches have significantly advanced our understanding of the human brain organization. However, parallel progress in animal research is sparse. Using resting-state fMRI data and a novel, data-driven parcellation method, we have obtained robust functional parcellations of the rat brain. These functional parcellations reveal the regional specialization of the rat brain, which exhibited high within-parcel homogeneity and high reproducibility across animals. Graph analysis of the whole-brain network constructed based on these functional parcels indicates that the rat brain has a topological organization similar to humans, characterized by both segregation and integration. Our study also provides compelling evidence that the cingulate cortex is a functional hub region conserved from rodents to humans. Together, this study has characterized the rat brain specialization and integration, and has significantly advanced our understanding of the rat brain organization. In addition, it is valuable for studies of comparative functional neuroanatomy in mammalian brains. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Hydrogen-Rich Saline Attenuates Brain Injury Induced by Cardiopulmonary Bypass and Inhibits Microvascular Endothelial Cell Apoptosis Via the PI3K/Akt/GSK3β Signaling Pathway in Rats.

    PubMed

    Chen, Keyan; Wang, Nan; Diao, Yugang; Dong, Wanwei; Sun, YingJie; Liu, Lidan; Wu, Xiuying

    2017-01-01

    Cardiopulmonary bypass (CPB) is prone to inducing brain injury during open heart surgery. A hydrogen-rich solution (HRS) can prevent oxidation and apoptosis, and inhibit inflammation. This study investigated effects of HRS on brain injury induced by CPB and regulatory mechanisms of the PI3K/Akt/GSK3β signaling pathway. A rat CPB model and an in vitro cell hypoxia model were established. After HRS treatment, Rat behavior was measured using neurological deficit score; Evans blue (EB) was used to assess permeability of the blood-brain barrier (BBB); HE staining was used to observe pathological changes; Inflammatory factors and brain injury markers were detected by ELISA; the PI3K/Akt/GSK3β pathway-related proteins and apoptosis were assessed by western blot, immunohistochemistry and qRT -PCR analyses of brain tissue and neurons. After CPB, brain tissue anatomy was disordered, and cell structure was abnormal. Brain tissue EB content increased. There was an increase in the number of apoptotic cells, an increase in expression of Bax and caspase-3, a decrease in expression of Bcl2, and increases in levels of Akt, GSK3β, P-Akt, and P-GSK3β in brain tissue. HRS treatment attenuated the inflammatory reaction ,brain tissue EB content was significantly reduced and significantly decreased expression levels of Bax, caspase-3, Akt, GSK3β, P-Akt, and P-GSK3β in the brain. After adding the PI3K signaling pathway inhibitor, LY294002, to rat cerebral microvascular endothelial cells (CMECs), HRS could reduce activated Akt expression and downstream regulatory gene phosphorylation of GSK3β expression, and inhibit CMEC apoptosis. The PI3K/Akt/GSK3β signaling pathway plays an important role in the mechanism of CPB-induced brain injury. HRS can reduce CPB-induced brain injury and inhibit CMEC apoptosis through the PI3K/Akt/GSK3β signaling pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.

  10. Fingolimod against endotoxin-induced fetal brain injury in a rat model.

    PubMed

    Yavuz, And; Sezik, Mekin; Ozmen, Ozlem; Asci, Halil

    2017-11-01

    Fingolimod is a sphingosine-1-phosphate receptor modulator used for multiple sclerosis treatment and acts on cellular processes such as apoptosis, endothelial permeability, and inflammation. We hypothesized that fingolimod has a positive effect on alleviating preterm fetal brain injury. Sixteen pregnant rats were divided into four groups of four rats each. On gestational day 17, i.p. endotoxin was injected to induce fetal brain injury, followed by i.p. fingolimod (4 mg/kg maternal weight). Hysterotomy for preterm delivery was performed 6 h after fingolimod. The study groups included (i) vehicle controls (i.p. normal saline only); (ii) positive controls (endotoxin plus saline); (iii) saline plus fingolimod; and (iv) endotoxin plus fingolimod treatment. Brain tissues of the pups were dissected for evaluation of interleukin (IL)-6, caspase-3, and S100β on immunohistochemistry. Maternal fingolimod treatment attenuated endotoxin-related fetal brain injury and led to lower immunoreactions for IL-6, caspase-3, and S100β compared with endotoxin controls (P < 0.0001 for all comparisons). Antenatal maternal fingolimod therapy had fetal neuroprotective effects by alleviating preterm birth-related fetal brain injury with inhibitory effects on inflammation and apoptosis. © 2017 Japan Society of Obstetrics and Gynecology.

  11. Synthetic gelatinases inhibitor attenuates electromagnetic pulse-induced blood-brain barrier disruption by inhibiting gelatinases-mediated ZO-1 degradation in rats.

    PubMed

    Qiu, Lian-Bo; Zhou, Yan; Wang, Qi; Yang, Long-Long; Liu, Hai-Qiang; Xu, Sheng-Long; Qi, Yu-Hong; Ding, Gui-Rong; Guo, Guo-Zhen

    2011-07-11

    Previously we found that exposure to electromagnetic pulse (EMP) induced an increase in blood-brain-barrier (BBB) permeability and the degradation of tight junction protein ZO-1 in rats. Matrix metalloproteinases (MMPs), in particular gelatinases (MMP-2 and MMP-9), play a key role in degradation of tight junction proteins, are known mediators of BBB compromise. We hypothesized that the degradation of ZO-1 by gelatinases contributed to EMP-induced BBB opening. To test this hypothesis, the mRNA level of ZO-1, protein levels of MMP-2, MMP-9 and tissue inhibitor of metalloproteinases (TIMP-1 and TIMP-2) were detected in rat cerebral cortex after exposing rats to EMP at 200 kV/m for 200 pulses. It was found that the mRNA level of ZO-1 was unaltered at different time points after EMP exposure. The protein levels of MMP-2 and MMP-9 significantly increased at 3 h and 0.5 h, respectively. However, TIMP-1 (inhibitor of MMP-9) and TIMP-2 (inhibitor of MMP-2) only moderately increased after EMP exposure. In addition, in situ zymography results showed that the gelatinase activity increased in cerebral microvessels at 3 h after EMP exposure. When rats were treated with gelatinases inhibitor (SB-3CT) before EMP exposure, the EMP-induced BBB opening was attenuated and the ZO-1 degradation was reversed. Our results suggested that EMP-induced BBB opening was related to gelatinase mediated ZO-1 degradation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Memantine ameliorates autistic behavior, biochemistry & blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-06-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder, commonly characterized by altered social behavior, communication, biochemistry and pathological conditions. One percent of the worldwide population suffers from autism and males suffer more than females. NMDA receptors have the important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. This study has been designed to investigate the role of memantine, a NMDA receptor modulator, in prenatal valproic acid-induced autism in rats. Animals with prenatal valproic acid have shown the reduction in social interaction (three-chamber social behavior apparatus), spontaneous alternation (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complex I, II, IV). Furthermore, prenatal valproic acid-treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood-brain barrier permeability. Treatment with memantine has significantly attenuated prenatal valproic acid-induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, memantine has also attenuated the prenatal valproic acid-induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood-brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behavior, biochemistry and blood-brain barrier impairment in animals, which were significantly attenuated by memantine. NMDA receptor modulators like memantine should be explored further for the therapeutic

  13. Inhibition of mammalian target of rapamycin attenuates early brain injury through modulating microglial polarization after experimental subarachnoid hemorrhage in rats.

    PubMed

    You, Wanchun; Wang, Zhong; Li, Haiying; Shen, Haitao; Xu, Xiang; Jia, Genlai; Chen, Gang

    2016-08-15

    Here, we aimed to study the role and underlying mechanism of mTOR in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Experiment 1, the time course of mTOR activation in the cortex following SAH. Experiment 2, the role of mTOR in SAH-induced EBI. Adult SD rats were divided into four groups: sham group (n=18), SAH+vehicle group (n=18), SAH+rapamycin group (n=18), SAH+AZD8055 group (n=18). Experiment 3, we incubated enriched microglia with OxyHb. Rapamycin and AZD8055 were also used to demonstrate the mTOR's role on microglial polarization in vitro. The phosphorylation levels of mTOR and its substrates were significantly increased and peaked at 24h after SAH. Rapamycin or AZD8055 markedly decreased the phosphorylation levels of mTOR and its substrates and the activation of microglia in vivo, and promoted the microglial polarization from M1 phenotype to M2 phenotype. In addition, administration of rapamycin and AZD8055 following SAH significantly ameliorated EBI, including neuronal apoptosis, neuronal necrosis, brain edema and blood-brain barrier permeability. Our findings suggested that the rapamycin and AZD8055 could attenuate the development of EBI in this SAH model, possibly through inhibiting the activation of microglia by mTOR pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Inhomogeneity in optical properties of rat brain: a study for LLLT dosimetry

    NASA Astrophysics Data System (ADS)

    Sousa, Marcelo V. P.; Prates, Renato; Kato, Ilka T.; Sabino, Caetano P.; Yoshimura, Tania M.; Suzuki, Luis C.; Magalhães, Ana C.; Yoshimura, Elisabeth M.; Ribeiro, Martha S.

    2013-03-01

    Over the last few years, low-level light therapy (LLLT) has shown an incredible suitability for a wide range of applications for central nervous system (CNS) related diseases. In this therapeutic modality light dosimetry is extremely critical so the study of light propagation through the CNS organs is of great importance. To better understand how light intensity is delivered to the most relevant neural sites we evaluated optical transmission through slices of rat brain point by point. We experimented red (λ = 660 nm) and near infrared (λ = 808 nm) diode laser light analyzing the light penetration and distribution in the whole brain. A fresh Wistar rat (Rattus novergicus) brain was cut in sagittal slices and illuminated with a broad light beam. A high-resolution digital camera was employed to acquire data of transmitted light. Spatial profiles of the light transmitted through the sample were obtained from the images. Peaks and valleys in the profiles show sites where light was less or more attenuated. The peak intensities provide information about total attenuation and the peak widths are correlated to the scattering coefficient at that individual portion of the sample. The outcomes of this study provide remarkable information for LLLT dose-dependent studies involving CNS and highlight the importance of LLLT dosimetry in CNS organs for large range of applications in animal and human diseases.

  15. Maternal pomegranate juice attenuates maternal inflammation-induced fetal brain injury by inhibition of apoptosis, neural nitric oxide synthase and NF-κB in a rat model.

    PubMed

    Ginsberg, Yuval; Khatib, Nizar; Saadi, Noor; Ross, Michael G; Weinr, Zeev; Beloosesky, Ron

    2018-04-27

    Maternal inflammation is a risk factor for neonatal brain injury and future neurological deficits. Pomegranates have been shown to exhibit anti-inflammatory, anti-apoptotic and anti-oxidant activities. We hypothesized that pomegranate juice (POM) may attenuate fetal brain injury in a rat model of maternal inflammation. Pregnant rats (24 total) were randomized for i.p. LPS (100 ug/kg) or saline at time 0 at 18 days of gestation. From day 11 of gestation, 12 dams were provided ad libitum access to drinking water, and 12 dams were provided ad libitum access to drinking water with pomegranate juice (5cc per day), resulting in 4 groups of 6 dams (SAL/SAL, POM/SAL, SAL/LPS, POM/LPS). All dams were sacrificed 4 hours following the injection and maternal blood and fetal brains were collected from the 4 treatment groups. Maternal IL-6 serum levels and fetal brain caspase 3 active form (af), NF-kB p65, neuronal nitric oxide synthase (phospho-nNOS) and pro-inflammatory cytokine levels were determined by ELISA and western blot. Maternal LPS significantly increased maternal serum IL-6 levels (6039 ± 1039 vs 66 ± 46pg/ml; p < 0.05) and fetal brain caspase 3 af, NF-kB p65, phospho-nNOS and the pro-inflammatory cytokines compared to the control group (caspase 3 af 0.26 ± 0.01 vs. 0.20 ± 0.01 u; NF-κB p65 0.24 ± 0.01 vs. 0.1 ± 0.01 u; phospho-nNOS 0.23 ± 0.01 vs. 0.11 ± 0.01 u; IL-6 0.25 ± 0.01 vs. 0.09 ± 0.01 u; TNFα 0.26 ± 0.01 vs. 0.12 ± 0.01 u; CCL2 0.23 ± 0.01 vs. 0.1 ± 0.01 u). Maternal supplementation of POM to LPS exposed dams (POM/LPS) significantly reduced maternal serum IL-6 levels (3059± 1121pg/ml, fetal brain: caspase 3 af (0.2 ± 0.01 u), NF-κB p65 (0.22 ± 0.01 u), phospho-nNOS (0.19 ± 0.01 u) as well as the brain pro-inflammatory cytokines (IL-6, TNFα and CCL2) compared to LPS group. Maternal POM supplementation may attenuate maternal-inflammation-induced fetal brain injury. POM neuroprotective effects might be secondary to the suppression of

  16. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway.

    PubMed

    Zhai, Weiwei; Chen, Dongdong; Shen, Haitao; Chen, Zhouqing; Li, Haiying; Yu, Zhengquan; Chen, Gang

    2016-06-14

    This study was designed to determine the role of the A1 adenosine receptors in intracerebral hemorrhage (ICH)-induced secondary brain injury and the underlying mechanisms. A collagenase-induced ICH model was established in Sprague-Dawley rats, and cultured primary rat cortical neurons were exposed to oxyhemoglobin at a concentration of 10 μM to mimic ICH in vitro. The A1 adenosine receptor agonist N(6)-cyclohexyladenosine and antagonist 8-phenyl-1,3-dipropylxanthine were used to study the role of A1 adenosine receptor in ICH-induced secondary brain injury, and antagonists of P38 and Hsp27 were used to study the underlying mechanisms of A1 adenosine receptor actions. The protein level of A1 adenosine receptor was significantly increased by ICH, while there was no significant change in protein levels of the other 3 adenosine receptors. In addition, the A1 adenosine receptor expression could be increased by N(6)-cyclohexyladenosine and decreased by 8-phenyl-1,3-dipropylxanthine under ICH conditions. Activation of the A1 adenosine receptor attenuated neuronal apoptosis in the subcortex, which was associated with increased phosphorylation of P38, MAPK, MAPKAP2, and Hsp27. Inhibition of the A1 adenosine receptor resulted in opposite effects. Finally, the neuroprotective effect of the A1 adenosine receptor agonist N(6)-cyclohexyladenosine was inhibited by antagonists of P38 and Hsp27. This study demonstrates that activation of the A1 adenosine receptor by N(6)-cyclohexyladenosine could prevent ICH-induced secondary brain injury via the P38-MAPKAP2-Hsp27 pathway.

  17. Brain changes due to hypoxia during light anaesthesia can be prevented by deepening anaesthesia; a study in rats

    PubMed Central

    Kalmar, Alain F.; Doorduin, Janine; Struys, Michel M. R. F.; Schoemaker, Regien G.; Absalom, Anthony R.

    2018-01-01

    In anaesthetic practice the risk of cerebral ischemic/hypoxic damage is thought to be attenuated by deep anaesthesia. The rationale is that deeper anaesthesia reduces cerebral oxygen demand more than light anaesthesia, thereby increasing the tolerance to ischemia or hypoxia. However, evidence to support this is scarce. We thus investigated the influence of light versus deep anaesthesia on the responses of rat brains to a period of hypoxia. In the first experiment we exposed adult male Wistar rats to deep or light propofol anaesthesia and then performed [18F]- Fludeoxyglucose (FDG) Positron Emission Tomography (PET) scans to verify the extent of cerebral metabolic suppression. In subsequent experiments, rats were subjected to light/deep propofol anaesthesia and then exposed to a period of hypoxia or ongoing normoxia (n = 9–11 per group). A further 5 rats, not exposed to anaesthesia or hypoxia, served as controls. Four days later a Novel Object Recognition (NOR) test was performed to assess mood and cognition. After another 4 days, the animals were sacrificed for later immunohistochemical analyses of neurogenesis/neuroplasticity (Doublecortin; DCX), Brain Derived Neurotrophic Factor (BDNF) expression and neuroinflammation (Ionized calcium-binding adaptor protein-1; Iba-1) in hippocampal and piriform cortex slices. The hippocampi of rats subjected to hypoxia during light anaesthesia showed lower DCX positivity, and therefore lower neurogenesis, but higher BDNF levels and microglia hyper-ramification. Exploration was reduced, but no significant effect on NOR was observed. In the piriform cortex, higher DCX positivity was observed, associated with neuroplasticity. All these effects were attenuated by deep anaesthesia. Deepening anaesthesia attenuated the brain changes associated with hypoxia. Hypoxia during light anaesthesia had a prolonged effect on the brain, but no impairment in cognitive function was observed. Although reduced hippocampal neurogenesis may be

  18. Binge-like intake of HFD attenuates alcohol intake in rats.

    PubMed

    Sirohi, Sunil; Van Cleef, Arriel; Davis, Jon F

    2017-09-01

    Binge eating and binge alcohol intake are behavioral manifestations of pathological feeding and alcohol use disorder (AUD), respectively. Binge-feeding and AUD have high comorbidity with other psychiatric disorders such as depression, which could have important implications for the management of these conditions. Importantly, these behaviors share many common features suggesting a singular etiology. However, the nature by which binge-feeding affects the development or maintenance of AUD is unclear. The present study examined the impact of a binge-feeding from a nutritionally complete high-fat diet (HFD) on initiation and maintenance of alcohol intake, anxiolytic behavior and central genetic changes in brain regions that control alcohol-reinforced behaviors. To do this, male Long-Evans rats received chow (controls) or HFD every three days (HFD-3D) or every day (HFD-ED) for 5weeks. Rodent chow and water were available ad-libitum to all groups throughout the experiment. Following 5weeks of HFD cycling, 20.0% ethanol or 2.0% sucrose intake was evaluated. In addition, anxiety-like behavior was measured using a light-dark box apparatus. Both HFD-3D and -ED groups of rats consumed significantly large amount of food during 2h HFD access sessions and reduced their chow intake in the next 22h. Surprisingly, binge-fed rats displayed attenuated acquisition of alcohol intake whereas sucrose consumption was unaffected. Rats exposed to HFD spent more time in the light side compared to chow controls, indicating that binge-feeding induced anxiolytic effects. In addition, alterations in the brain neurotensin system were observed following HFD exposure. These data indicate that binge-feeding behavior induces behavioral and genetic changes that help explain how alcohol intake is influenced by co-morbid eating disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.

    PubMed

    Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang

    2016-04-01

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes.

  20. Scalp acupuncture attenuates neurological deficits in a rat model of hemorrhagic stroke.

    PubMed

    Liu, Hao; Sun, Xiaowei; Zou, Wei; Leng, Mengtong; Zhang, Beng; Kang, Xiaoyu; He, Tao; Wang, Hui

    2017-06-01

    Hemorrhagic stroke accounts for approximately 15% of all stroke cases, and is associated with high morbidity and mortality. Limited human studies suggested that scalp acupuncture could facilitate functional recovery after cerebral hemorrhage. In the current study, we used an animal model of cerebral hemorrhage to examine the potential effects of scalp acupuncture. Adult male Sprague-Dawley rats received autologous blood (50μL) into the right caudate nucleus on the right side under pentobarbital anesthesia, and then received scalp acupuncture (DU20 through GB7 on the lesion side) or sham acupuncture (1cm to the right side of the acupoints) (n=10 per group). A group of rats receiving autologous blood into the caudate nucleus but no other intervention, as well as a group of rats receiving anesthesia but no blood injection to the brain (n=10 per group) were included as additional controls. Composite neuroscore, corner turn test, forelimb placing test, wire hang task and beam walking were used to evaluate the behavior of rats. Hematoxylin and Eosin (HE) staining was used to observe the histopathological changes. Western blot was used to detect the content of tumor necrosis factor alpha (TNF-α) and nuclear factor-KappaB (NFκB) protein expression. Scalp acupuncture attenuated neurological deficits (p<0.01 or <0.05 vs. sham acupuncture using a variety of behavioral tests) at 1-7days after the treatment. The brain content of TNF-α and NFκB was decreased (p<0.01 for both). Scalp acupuncture could improve neurological deficits in a rat model of hemorrhagic stroke. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Role of phosphatidylinositol 3-kinase in angiotensin II regulation of norepinephrine neuromodulation in brain neurons of the spontaneously hypertensive rat.

    PubMed

    Yang, H; Raizada, M K

    1999-04-01

    Chronic stimulation of norepinephrine (NE) neuromodulation by angiotensin II (Ang II) involves activation of the Ras-Raf-MAP kinase signal transduction pathway in Wistar Kyoto (WKY) rat brain neurons. This pathway is only partially responsible for this heightened action of Ang II in the spontaneously hypertensive rat (SHR) brain neurons. In this study, we demonstrate that the MAP kinase-independent signaling pathway in the SHR neuron involves activation of PI3-kinase and protein kinase B (PKB/Akt). Ang II stimulated PI3-kinase activity in both WKY and SHR brain neurons and was accompanied by its translocation from the cytoplasmic to the nuclear compartment. Although the magnitude of stimulation by Ang II was comparable, the stimulation was more persistent in the SHR neuron compared with the WKY rat neuron. Inhibition of PI3-kinase had no significant effect in the WKY rat neuron. However, it caused a 40-50% attenuation of the Ang II-induced increase in norepinephrine transporter (NET) and tyrosine hydroxylase (TH) mRNAs and [3H]-NE uptake in the SHR neuron. In contrast, inhibition of MAP kinase completely attenuated Ang II stimulation of NET and TH mRNA levels in the WKY rat neuron, whereas it caused only a 45% decrease in the SHR neuron. However, an additive attenuation was observed when both kinases of the SHR neurons were inhibited. Ang II also stimulated PKB/Akt activity in both WKY and SHR neurons. This stimulation was 30% higher and lasted longer in the SHR neuron compared with the WKY rat neuron. In conclusion, these observations demonstrate an exclusive involvement of PI3-kinase-PKB-dependent signaling pathway in a heightened NE neuromodulatory action of Ang II in the SHR neuron. Thus, this study offers an excellent potential for the development of new therapies for the treatment of centrally mediated hypertension.

  2. Attenuation of alpha2A-adrenergic receptor expression in neonatal rat brain by RNA interference or antisense oligonucleotide reduced anxiety in adulthood.

    PubMed

    Shishkina, G T; Kalinina, T S; Dygalo, N N

    2004-01-01

    Brain alpha2-adrenergic receptors (alpha2-ARs) have been implicated in the regulation of anxiety, which is associated with stress. Environmental treatments during neonatal development could modulate the level of brain alpha2-AR expression and alter anxiety in adults, suggesting possible involvement of these receptors in early-life programming of anxiety state. The present study was undertaken to determine whether the reduction of the expression of A subtype of these receptors most abundant in the neonatal brain affects anxiety-related behavior in adulthood. We attenuated the expression of alpha2A-ARs during neonatal life by two different sequence specific approaches, antisense technology and RNA interference. Treatment of rats with the antisense oligodeoxynucleotide or short interfering RNA (siRNA) against alpha2A-ARs on the days 2-4 of their life, produced a marked acute decrease in the levels of both alpha2A-AR mRNA and [3H]RX821002 binding sites in the brainstem into which drugs were injected. The decrease of alpha2A-AR expression in the neonatal brainstem influenced the development of this receptor system in the brain regions as evidenced by the increased number of [3H]RX821002 binding sites in the hypothalamus of adult animals with both neonatal alpha2A-AR knockdown treatments; also in the frontal cortex of antisense-treated, and in the hippocampus of siRNA-treated adult rats. These adult animals also demonstrated a decreased anxiety in the elevated plus-maze as evidenced by an increased number of the open arm entries, greater proportion of time spent in the open arms, and more than a two-fold increase in the number of exploratory head dips. The results provide the first evidence that the reduction in the brain expression of a gene encoding for alpha2A-AR during neonatal life led to the long-term neurochemical and behavioral alterations. The data suggests that alterations in the expression of the receptor-specific gene during critical periods of brain

  3. Apigenin protects blood-brain barrier and ameliorates early brain injury by inhibiting TLR4-mediated inflammatory pathway in subarachnoid hemorrhage rats.

    PubMed

    Zhang, Tingting; Su, Jingyuan; Guo, Bingyu; Wang, Kaiwen; Li, Xiaoming; Liang, Guobiao

    2015-09-01

    Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is associated with high morbidity and mortality. Inflammation has been considered as the major contributor to brain damage after SAH. SAH induces a systemic increase in pro-inflammatory cytokines and chemokines. Disruption of blood-brain barrier (BBB) facilitates the influx of inflammatory cells. It has been reported that the activation of toll-like receptor 4 (TLR4)/NF-κB signaling pathway plays a vital role in the central nervous system diseases. Apigenin, a common plant flavonoid, possesses anti-inflammation effect. In this study, we focused on the effects of apigenin on EBI following SAH and its anti-inflammation mechanism. Our results showed that apigenin (20mg/kg) administration significantly attenuated EBI (including brain edema, BBB disruption, neurological deficient, severity of SAH, and cell apoptosis) after SAH in rats by suppressing the expression of TLR4, NF-κB and their downstream pro-inflammatory cytokines in the cortex and by up-regulating the expression of tight junction proteins of BBB. Double immunofluorescence staining demonstrated that TLR4 was activated following SAH in neurons, microglia cells, and endothelial cells but not in astrocytes. Apigenin could suppress the activation of TLR4 induced by SAH and inhibit apoptosis of cells in the cortex. These results suggested that apigenin could attenuate EBI after SAH in rats by suppressing TLR4-mediated inflammation and protecting against BBB disruption. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Tetramethylpyrazine-2'-O-sodium ferulate attenuates blood-brain barrier disruption and brain oedema after cerebral ischemia/reperfusion.

    PubMed

    Xu, S-H; Yin, M-S; Liu, B; Chen, M-L; He, G-W; Zhou, P-P; Cui, Y-J; Yang, D; Wu, Y-L

    2017-07-01

    Disruption of blood-brain barrier (BBB) and subsequent oedema are major causes of the pathogenesis in ischaemic stroke with which the current clinical therapy remains unsatisfied. In this study, we examined the therapeutic effect of tetramethylpyrazine-2'-O-sodium ferulate (TSF)-a novel analogue of tetramethylpyrazine in alleviating BBB breakdown and brain oedema after cerebral ischaemia/reperfusion (I/R). Then, we explored the potential mechanism of the protection on BBB disruption in cerebral I/R rat models. Male Sprague-Dawley rats (250-300 g) were subjected to 120 min middle cerebral artery occlusion (MCAO), followed by 48 h reperfusion. TSF (10.8, 18 and 30 mg kg -1 ) and ozagrel (18 mg kg -1 ) were administrated by intravenous injection immediately for the first time and then received the same dose every 24 h for 2 days. We found that TSF treatment significantly attenuated the cerebral water content, infarction volume and improved neurological outcomes in MCAO rats compared to I/R models. Moreover, we investigated the effect of TSF on the BBB for that cerebral oedema is closely related to the permeability of the BBB. We found that the permeability of BBB was improved significantly in TSF groups compared to I/R model group by Evans blue leakage testing. Furthermore, the expressions of tight junction (TJ) proteins junction adhesion molecule-1 and occludin significantly decreased, but the protein expression of matrix metalloproteinase-9 (MMP-9) and aquaporin 4 (AQP4) increased after cerebral I/R, all of which were alleviated by TSF treatment. In conclusion, TSF significantly reduced BBB permeability and brain oedema, which were correlated with regulating the expression of TJ proteins, MMP-9 and AQP4. These findings provide a novel approach to the treatment of ischaemic stroke.

  5. Increased expression of vascular endothelial growth factor attenuates contusion necrosis without influencing contusion edema after traumatic brain injury in rats.

    PubMed

    Tado, Masahiro; Mori, Tatsuro; Fukushima, Masamichi; Oshima, Hideki; Maeda, Takeshi; Yoshino, Atsuo; Aizawa, Shin; Katayama, Yoichi

    2014-04-01

    To clarify the role of vascular endothelial growth factor (VEGF) in the formation of contusion edema and necrosis after traumatic brain injury, we examined the time course of changes in the VEGF expression (enzyme-linked immunosorbent assay), cerebrovascular permeability (extravasation of Evans blue), and water content (dry-wet weight method) of the contused brain tissue in a cortical impact injury model using rats. In addition, we tested the effects of administration of bevacizumab (VEGF monoclonal antibody) on changes in the cerebrovascular permeability and water content of the contused brain tissue, as well as the neurological deficits (rota rod test) and volume of contusion necrosis. Increased VEGF expression was maximal at 72 h after injury (p<0.003). Increases in cerebrovascular permeability and water content, however, became maximal within 24 h (p<0.001) after injury (p<0.01), respectively. Administration of bevacizumab did not influence these changes in cerebrovascular permeability and water content, but led to a significant rise in the neurological deficits at 72 h-14 days (p<0.05 or 0.01) and the volume of contusion necrosis at 21 days (p<0.001) after injury. These findings suggest that increased expression of VEGF after injury does not contribute to the formation of contusion edema, but attenuates the formation of contusion necrosis. This is probably because of an increased angiogenesis and improved microcirculation in the areas surrounding the core of contusion.

  6. Post-Traumatic Stress Avoidance is Attenuated by Corticosterone and Associated with Brain Levels of Steroid Receptor Co-Activator-1 in Rats

    PubMed Central

    Whitaker, Annie M.; Farooq, Muhammad A.; Edwards, Scott; Gilpin, Nicholas W.

    2016-01-01

    Individuals with post-traumatic stress disorder (PTSD) avoid trauma-related stimuli and exhibit blunted hypothalamic-pituitary-adrenal (HPA) axis activation at the time of stress. Our laboratory has established a rodent model of stress that mimics the avoidance symptom cluster of PTSD. Rats are classified as ‘Avoiders’ or ‘Non-Avoiders’ post-stress based on avoidance of a predator-odor paired context. Previously, we demonstrated that Avoiders exhibit an attenuated HPA stress response to predator odor. We hypothesized that corticosterone administration prior to stress would reduce magnitude and incidence of avoidance of a stress-paired context. Furthermore, we predicted that Avoiders would exhibit altered expression of GR signaling machinery elements, such as steroid receptor co-activator (SRC)-1. Male Wistar rats (n = 16) were pre-treated with corticosterone (25 mg/kg) or saline and exposed to predator odor stress paired with a context, and tested for avoidance 24 h later, A second group of corticosterone-naïve rats (n = 24) were stressed (or not stressed), indexed for avoidance 24 h later, and killed 48 h post-odor exposure for analysis of phosphorylated GR, FKBP51, and SRC-1 levels in the paraventricular nucleus (PVN), central amygdala (CeA) and ventral hippocampus (VH), all brain sites that express high quantities of GRs and regulate HPA function. Rats pre-treated with corticosterone exhibited lower magnitude and incidence of avoidance. Predator odor exposure also reduced SRC-1 expression in the PVN and CeA of Avoiders, and increased SRC-1 expression in the VH of Avoiders. SRC-1 expression in PVN, CeA, and VH was predicted by prior avoidance behavior. These results suggest that blunted HPA stress response may contribute to stress-induced neuroadaptations in central SRC-1 levels and behavioral dysfunction in Avoider rats. PMID:26482332

  7. Curcumin attenuates collagen-induced inflammatory response through the "gut-brain axis".

    PubMed

    Dou, Yannong; Luo, Jinque; Wu, Xin; Wei, Zhifeng; Tong, Bei; Yu, Juntao; Wang, Ting; Zhang, Xinyu; Yang, Yan; Yuan, Xusheng; Zhao, Peng; Xia, Yufeng; Hu, Huijuan; Dai, Yue

    2018-01-06

    Previous studies have demonstrated that oral administration of curcumin exhibited an anti-arthritic effect despite its poor bioavailability. The present study aimed to explore whether the gut-brain axis is involved in the therapeutic effect of curcumin. The collagen-induced arthritis (CIA) rat model was induced by immunization with an emulsion of collagen II and complete Freund's adjuvant. Sympathetic and parasympathetic tones were measured by electrocardiographic recordings. Unilateral cervical vagotomy (VGX) was performed before the induction of CIA. The ChAT, AChE activities, and serum cytokine levels were determined by ELISA. The expression of the high-affinity choline transporter 1 (CHT1), ChAT, and vesicular acetylcholine transporter (VAChT) were determined by real-time PCR and immunohistochemical staining. The neuronal excitability of the vagus nerve was determined by whole-cell patch clamp recording. Oral administration of curcumin restored the imbalance between the sympathetic and parasympathetic tones in CIA rats and increased ChAT activity and expression of ChAT and VAChT in the gut, brain, and synovium. Additionally, VGX eliminated the effects of curcumin on arthritis and ACh biosynthesis and transport. Electrophysiological data showed that curcumin markedly increased neuronal excitability of the vagus nerve. Furthermore, selective α7 nAChR antagonists abolished the effects of curcumin on CIA. Our results demonstrate that curcumin attenuates CIA through the "gut-brain axis" by modulating the function of the cholinergic system. These findings provide a novel approach for mechanistic studies of anti-arthritic compounds with low oral absorption and bioavailability.

  8. Hydrogen-rich saline attenuates hippocampus endoplasmic reticulum stress after cardiac arrest in rats.

    PubMed

    Gao, Yu; Gui, Qinfang; Jin, Li; Yu, Pan; Wu, Lin; Cao, Liangbin; Wang, Qiang; Duan, Manlin

    2017-02-15

    Hydrogen-rich saline can selectively scavenge reactive oxygen species (ROS) and protect brain against ischemia reperfusion (I/R) injury. Endoplasmic reticulum stress (ERS) has been implicated in the pathological process of cerebral ischemia. However, very little is known about the role of hydrogen-rich saline in mediating pathophysiological reactions to ERS after I/R injury caused by cardiac arrest. The rats were randomly divided into three groups, sham group (n=30), ischemia/reperfusion group (n=40) and hydrogen-rich saline group (n=40). The rats in experimental groups were subjected to 4min of cardiac arrest and followed by resuscitation. Then they were randomized to receive 5ml/kg of either hydrogen-rich saline or normal saline. Hydrogen-rich saline significantly improves survival rate and neurological function. The beneficial effects of hydrogen-rich saline were associated with decreased levels of oxidative products, as well as the increased levels of antioxidant enzymes. Furthermore, the protective effects of hydrogen-rich saline were accompanied by the increased activity of glucose-regulated protein 78 (GRP78), the decreased activity of cysteinyl aspartate specific proteinase-12 (caspase-12) and C/EBP homologous protein (CHOP). Hydrogen-rich saline attenuates brain I/R injury may through inhibiting hippocampus ERS after cardiac arrest in rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Necrostatin-1 attenuates early brain injury after subarachnoid hemorrhage in rats by inhibiting necroptosis.

    PubMed

    Chen, Fuxiang; Su, Xingfen; Lin, Zhangya; Lin, Yuanxiang; Yu, Lianghong; Cai, Jiawei; Kang, Dezhi; Hu, Liwen

    2017-01-01

    Necroptosis is programmed cell death that has been recently proposed and reported to be involved in several neurologic diseases. However, the role of necroptosis in early brain injury after subarachnoid hemorrhage (SAH) is still unknown. The purpose of this study was to investigate whether necroptosis was involved in SAH-induced early brain injury, and to assess the possible neuroprotective effect of necrostatin-1 using an endovascular perforation rat model of SAH. Our results showed that the expression levels of necroptosis-related proteins including RIP1, RIP3 and MLKL in the basal cortex all increased at 3 hours after SAH ( P <0.05) and peaked at 48 hours after SAH ( P <0.05). However, they were greatly reduced after treatment with necrostatin-1 ( P <0.05). Concurrently, neurologic outcomes were significantly improved after necrostatin-1 treatment ( P <0.05). Furthermore, brain edema, blood-brain barrier disruption, necrotic cell death and neuroinflammation were also greatly inhibited after necrostatin-1 treatment. These results indicate that necroptosis is an important mechanism of cell death involved in the early brain injury after experimental SAH. Necrostatin-1 perhaps can serve as a promising neuroprotective agent for SAH treatment.

  10. Oxymatrine attenuated isoproterenol-induced heart failure in rats via regulation of COX-2/PGI2 pathway.

    PubMed

    Zhou, Ru; Xu, Qingbin; Xu, Yehua; Xiong, Aiqin; Wang, Yang; Ma, Ping

    2016-12-01

    Oxymatrine (OMT) is an active constituent of traditional Chinese herb Sophora japonica Ait which has been shown to exert potent anti-inflammatory,anti-oxidant and anti-fibrosis properties. Our previous studies have demonstrated that OMT has protective effects on isoproterenol-induced heart failure in rats through regulation of DDAH/ADMA metabolism pathway.In this study,we further investigated whether OMT could attenuate isoproterenol-induced heart failure through the regulation of COX-2/PGI 2 pathway. Heart failure was induced in Sprague-Dawley rats by 5mg/kg isoproterenol subcutaneous injection for 7days. The rats were maintained on normal diet and randomly divided into five groups: control, isoproterenol, isoproterenol with OMT (50, 100mg/kg), and OMT alone groups (n=12 in each group). Serum brain natruretic peptide (BNP, a heart failure biomarker), histopathological variables, expression of Cytosolic phospholipase A 2 (cPLA 2 ), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and Prostacyclin synthase (PGIS) were analysed. Administration of OMT significantly reduced the increased BNP in plasm of isoproterenol-induced rats, attenuated cardiac fibrosis,suppressed overexpression of myocardial COX-1 expression, up-regulated COX-2 and PGIS expression, but had no effects on isoproterenol-induced elevated protein cPLA 2 . And compared with control group, any indexes in sham rats treated with OMT (100mg/kg) alone were unaltered. These results demonstrated that OMT has cardioprotective effects on isoproterenol-induced heart failure in rats by regulating COX-2/PGI 2 pathway. Copyright © 2016. Published by Elsevier Masson SAS.

  11. Chronic central serotonin depletion attenuates ventilation and body temperature in young but not adult Tph2 knockout rats.

    PubMed

    Kaplan, Kara; Echert, Ashley E; Massat, Ben; Puissant, Madeleine M; Palygin, Oleg; Geurts, Aron M; Hodges, Matthew R

    2016-05-01

    Genetic deletion of brain serotonin (5-HT) neurons in mice leads to ventilatory deficits and increased neonatal mortality during development. However, it is unclear if the loss of the 5-HT neurons or the loss of the neurochemical 5-HT led to the observed physiologic deficits. Herein, we generated a mutant rat model with constitutive central nervous system (CNS) 5-HT depletion by mutation of the tryptophan hydroxylase 2 (Tph2) gene in dark agouti (DA(Tph2-/-)) rats. DA(Tph2-/-) rats lacked TPH immunoreactivity and brain 5-HT but retain dopa decarboxylase-expressing raphe neurons. Mutant rats were also smaller, had relatively high mortality (∼50%), and compared with controls had reduced room air ventilation and body temperatures at specific postnatal ages. In adult rats, breathing at rest and hypoxic and hypercapnic chemoreflexes were unaltered in adult male and female DA(Tph2-/-) rats. Body temperature was also maintained in adult DA(Tph2-/-) rats exposed to 4°C, indicating unaltered ventilatory and/or thermoregulatory control mechanisms. Finally, DA(Tph2-/-) rats treated with the 5-HT precursor 5-hydroxytryptophan (5-HTP) partially restored CNS 5-HT and showed increased ventilation (P < 0.05) at a developmental age when it was otherwise attenuated in the mutants. We conclude that constitutive CNS production of 5-HT is critically important to fundamental homeostatic control systems for breathing and temperature during postnatal development in the rat. Copyright © 2016 the American Physiological Society.

  12. Chronic central serotonin depletion attenuates ventilation and body temperature in young but not adult Tph2 knockout rats

    PubMed Central

    Kaplan, Kara; Echert, Ashley E.; Massat, Ben; Puissant, Madeleine M.; Palygin, Oleg; Geurts, Aron M.

    2016-01-01

    Genetic deletion of brain serotonin (5-HT) neurons in mice leads to ventilatory deficits and increased neonatal mortality during development. However, it is unclear if the loss of the 5-HT neurons or the loss of the neurochemical 5-HT led to the observed physiologic deficits. Herein, we generated a mutant rat model with constitutive central nervous system (CNS) 5-HT depletion by mutation of the tryptophan hydroxylase 2 (Tph2) gene in dark agouti (DATph2−/−) rats. DATph2−/− rats lacked TPH immunoreactivity and brain 5-HT but retain dopa decarboxylase-expressing raphe neurons. Mutant rats were also smaller, had relatively high mortality (∼50%), and compared with controls had reduced room air ventilation and body temperatures at specific postnatal ages. In adult rats, breathing at rest and hypoxic and hypercapnic chemoreflexes were unaltered in adult male and female DATph2−/− rats. Body temperature was also maintained in adult DATph2−/− rats exposed to 4°C, indicating unaltered ventilatory and/or thermoregulatory control mechanisms. Finally, DATph2−/− rats treated with the 5-HT precursor 5-hydroxytryptophan (5-HTP) partially restored CNS 5-HT and showed increased ventilation (P < 0.05) at a developmental age when it was otherwise attenuated in the mutants. We conclude that constitutive CNS production of 5-HT is critically important to fundamental homeostatic control systems for breathing and temperature during postnatal development in the rat. PMID:26869713

  13. Blood-brain barrier leakage after status epilepticus in rapamycin-treated rats II: Potential mechanisms.

    PubMed

    van Vliet, Erwin A; Otte, Willem M; Wadman, Wytse J; Aronica, Eleonora; Kooij, Gijs; de Vries, Helga E; Dijkhuizen, Rick M; Gorter, Jan A

    2016-01-01

    Blood-brain barrier (BBB) leakage may play a pro-epileptogenic role after status epilepticus. In the accompanying contrast-enhanced magnetic resonance imaging (CE-MRI) study we showed that the mammalian target of rapamycin (mTOR) inhibitor rapamycin reduced BBB leakage and seizure activity during the chronic epileptic phase. Given rapamycin's role in growth and immune response, the potential therapeutic effects of rapamycin after status epilepticus with emphasis on brain inflammation and brain vasculature were investigated. Seven weeks after kainic acid-induced status epilepticus, rats were perfusion fixed and (immuno)histochemistry was performed using several glial and vascular markers. In addition, an in vitro model for the human BBB was used to determine the effects of rapamycin on transendothelial electrical resistance as a measure for BBB integrity. (Immuno)histochemistry showed that local blood vessel density, activated microglia, and astrogliosis were reduced in rapamycin-treated rats compared to vehicle-treated rats. In vitro studies showed that rapamycin could attenuate TNFα-induced endothelial barrier breakdown. These data suggest that rapamycin improves BBB function during the chronic epileptic phase by a reduction of local brain inflammation and blood vessel density that can contribute to a milder form of epilepsy. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  14. Effect of piracetam, a nootropic agent, on rat brain monoamines and prostaglandins.

    PubMed

    Bhattacharya, S K; Upadhyay, S N; Jaiswal, A K; Bhattacharya, S

    1989-03-01

    Piracetam is the prototype of a new class of psychotropic drugs, the nootropic agents, which are claimed to selectively improve the higher telencephalic integrative activities. The effect of piracetam on rat brain monoamines and prostaglandins (PGs) was assessed so as to garner information on its mode of action. Two doses of the drug were used, a lower dose (20 mg/kg ip) and a higher dose (100 mg/kg, ip), the latter being known to exert a facilitatory effect on learning and memory. Piracetam produced a dose-related effect on rat brain serotonin (5HT) and noradrenaline (NA), with the lower dose inducing a decrease in 5HT levels and an increase in NA concentrations. The higher dose of piracetam produced the opposite effect. Dopamine (DA) levels were not significantly affected. The lower dose of the drug attenuated 5HT turnover and augmented that of NA, whereas the higher dose of piracetam produced the reverse effects, in clorgyline treated rats. The lower dose of piracetam produced a slight and statistically insignificant increase in rat brain PGE2 and PGF2 alpha. However, the higher dose of the drug produced marked increase in the levels of both the PGs. The observed biochemical effects may provide a basis for the nootropic effect of piracetam. However, they may also be due to the GA-BA-mimetic action of the drug, particularly those observed with the lower dose of piracetam.

  15. Sodium selenate treatment mitigates reduction of bone volume following traumatic brain injury in rats.

    PubMed

    Brady, R D; Grills, B L; Romano, T; Wark, J D; O'Brien, T J; Shultz, S R; McDonald, S J

    2016-12-14

    Administration of sodium selenate to rats given traumatic brain injury (TBI) attenuates brain damage and improves long-term behavioural outcomes. We have previously provided evidence that TBI causes bone loss in rats, however the effect of sodium selenate treatment on bone quantity following TBI is unknown. Rats were randomly assigned into sham injury or fluid percussion injury (FPI) groups and administered saline or sodium selenate for 12 weeks post-injury. Femora were analysed using histomorphometry, peripheral quantitative computed tomography (pQCT) and biomechanical testing. Distal metaphyseal trabecular bone volume fraction of FPI-selenate rats was higher than FPI-vehicle rats (41.8%; p<0.01), however, femora from selenate-treated groups were shorter in length (4.3%; p<0.01) and had increased growth plate width (22.1%; p<0.01), indicating that selenate impaired long bone growth. pQCT analysis demonstrated that distal metaphyseal cortical thickness was decreased in TBI rats compared to shams (11.7%; p<0.05), however selenate treatment to TBI animals offset this reduction (p<0.05). At the midshaft we observed no differences in biomechanical measures. These are the first findings to indicate that mitigating TBI-induced neuropathology may have the added benefit of preventing osteoporosis and associated fracture risk following TBI.

  16. Post-traumatic stress avoidance is attenuated by corticosterone and associated with brain levels of steroid receptor co-activator-1 in rats.

    PubMed

    Whitaker, Annie M; Farooq, Muhammad A; Edwards, Scott; Gilpin, Nicholas W

    2016-01-01

    Individuals with post-traumatic stress disorder (PTSD) avoid trauma-related stimuli and exhibit blunted hypothalamic-pituitary-adrenal (HPA) axis activation at the time of stress. Our rodent model of stress mimics the avoidance symptom cluster of PTSD. Rats are classified as "Avoiders" or "Non-Avoiders" post-stress based on the avoidance of a predator-odor paired context. Previously, we found Avoiders exhibit an attenuated HPA stress response to predator odor. We hypothesized that corticosterone administration before stress would reduce the magnitude and incidence of stress-paired context avoidance. Furthermore, we also predicted that Avoiders would exhibit altered expression of glucocorticoid receptor (GR) signaling machinery elements, including steroid receptor co-activator (SRC)-1. Male Wistar rats (n = 16) were pretreated with corticosterone (25 mg/kg) or saline and exposed to predator-odor stress paired with a context and tested for avoidance 24 h later. A second group of corticosterone-naïve rats (n = 24) were stressed (or not), indexed for avoidance 24 h later, and killed 48 h post-odor exposure to measure phosphorylated GR, FKBP51 and SRC-1 levels in the paraventricular nucleus (PVN), central amygdala (CeA) and ventral hippocampus (VH), all brain sites that highly express GRs and regulate HPA function. Corticosterone pretreatment reduced the magnitude and incidence of avoidance. In Avoiders, predator-odor exposure led to lower SRC-1 expression in the PVN and CeA, and higher SRC-1 expression in the VH. SRC-1 expression in PVN, CeA and VH was predicted by prior avoidance behavior. Hence, a blunted HPA stress response may contribute to stress-induced neuroadaptations in central SRC-1 levels and behavioral dysfunction in Avoider rats.

  17. Effect of histochrome on the severity of delayed effects of prenatal exposure to lead nitrate in the rat brain.

    PubMed

    Ryzhavsky, B Ya; Lebedko, O A; Belolubskaya, D S

    2008-08-01

    The effects of histochrome on the severity of delayed effects of prenatal exposure to lead nitrate were studied in the rat brain. Exposure of pregnant rats to lead nitrate during activation of free radical oxidation reduced activity of NADH- and NADPH-dehydrogenases in cortical neurons of their 40-day-old progeny, reduced the number of neurons in a visual field, increased the number of pathologically modified neurons, and stimulated rat motor activity in an elevated plus-maze. Two intraperitoneal injections of histochrome in a dose of 0.1 mg/kg before and after lead citrate challenge attenuated the manifestations of oxidative stress and prevented the changes in some morphological and histochemical parameters of the brain, developing under the effect of lead exposure.

  18. Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats.

    PubMed

    Lv, Hongdi; Wang, Ling; Shen, Jinchang; Hao, Shaojun; Ming, Aimin; Wang, Xidong; Su, Feng; Zhang, Zhengchen

    2015-06-01

    Silent information regulator 1 (SIRT1), a histone deacetylase, has been suggested to be effective in ischemic brain diseases. Salvianolic acid B (SalB) is a polyphenolic and one of the active components of Salvia miltiorrhiza Bunge. Previous studies suggested that SalB is protective against ischemic stroke. However, the role of SIRT1 in the protective effect of SalB against cerebral ischemia has not been explored. In this study, the rat brain was subjected to middle cerebral artery occlusion (MCAO). Before this surgery, rats were intraperitoneally administrated SalB with or without EX527, a specific SIRT1 inhibitor. The infarct volume, neurological score and brain water content were assessed. In addition, levels of TNF-α and IL-1β in the brain tissues were detected by commercial ELISA kits. And the expression levels of SIRT, Ac-FOXO1, Bcl-2 and Bax were detected by Western blot. The results suggested that SalB exerted a cerebral-protective effect, as shown by reduced infarct volume, lowered brain edema and increased neurological scores. SalB also exerted anti-inflammatory effects as indicated by the decreased TNF-α and IL-1β levels in the brain tissue. Moreover, SalB upregulated the expression of SIRT1 and Bcl-2 and downregulated the expression of Ac-FOXO1 and Bax. These effects of SalB were abolished by EX527 treatment. In summary, our results demonstrate that SalB treatment attenuates brain injury induced by ischemic stoke via reducing apoptosis and inflammation through the activation of SIRT1 signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. MANF prevents traumatic brain injury in rats by inhibiting inflammatory activation and protecting Blood Brain Barrier.

    PubMed

    Li, Qing-Xin; Shen, Yu-Xian; Ahmad, Akhlaq; Shen, Yu-Jun; Zhang, Yi-Quan; Xu, Pei-Kun; Chen, Wei-Wei; Yu, Yong-Qiang

    2018-06-05

    Our previous studies have shown that MANF provides neuroprotective effect against ischemia/reperfusion injury and is also involved in inflammatory disease models. This work investigates the potential role and mechanism of MANF in acute brain damage after traumatic brain injury (TBI). The model of TBI was induced by Feeney free falling methods with male Sprauge-Dawley rats. The expression of MANF, 24 hrs after TBI, was detected by the immunohistochemistry, immunofluorescence, Western blot and Reverse transcription PCR(RT-PCR) techniques. After treatment with recombinant human MANF following TBI, assessment was conducted - 24 hrs later for brain water content(BWC), cerebral edema volume in MRI, neurobehavioral testing and Evans blue extravasation. Moreover, by the techniques of Western blot and RT-PCR, the expression of inflammatory cytokines(IL-1β, TNF-α) and P65 was also analyzed to explore the underlying protective mechanism of MANF. At 24 hrs after TBI, we found that endogenous MANF was widely expressed in the rat's brain tissues and different types of cells. Treatment with high dose of recombinant human MANF(20 μg/20 μL) - significantly increased the modified Garcia score, and reduced BWC as well as cerebral edema volume in MRI. Furthermore, MANF alleviated not only the blood-brain barrier(BBB) permeability, but also the expressions of IL-1β and TNF-α mRNA and protein. Besides, the activation of P65 was also inhibited. These results suggest that MANF provides neuroprotective effect against acute brain injury after TBI, via attenuating BBB disruption and intracranial neuroinflammation, while the inhibition of NF-κB signaling pathway might be a potential mechanism. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Farkhondeh, Tahereh; Samini, Fariborz

    2017-03-01

    Restraint stress has been indicated to induce oxidative damage in tissues. Several investigations have reported that curcumin (CUR) may have a protective effect against oxidative stress. The present study was designed to investigate the protective effects of CUR on restraint stress induced oxidative stress damage in the brain, liver and kidneys. For chronic restraint stress, rats were kept in the restrainers for 1h every day, for 21 consecutive days. The animals received systemic administrations of CUR daily for 21days. In order to evaluate the changes of the oxidative stress parameters following restraint stress, the levels of malondialdehyde (MDA), reduced glutathione (GSH), as well as antioxidant enzyme activities superoxide dismutase (SOD) glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were measured in the brain, liver and kidney of rats after the end of restraint stress. The restraint stress significantly increased MDA level, but decreased the level of GSH and activists of SOD, GPx, GR, and CAT the brain, liver and kidney of rats in comparison to the normal rats (P<0.001). Intraperitoneal administration of CUR significantly attenuated oxidative stress and lipid peroxidation, prevented apoptosis, and increased antioxidant defense mechanism activity in the tissues versus the control group (P<0.05). This study shows that CUR can prevent restraint stress-induced oxidative damage in the brain, liver and kidney of rats and propose that CUR may be useful agents against oxidative stress in the tissues. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Modulation of stress-induced neurobehavioral changes and brain oxidative injury by nitric oxide (NO) mimetics in rats.

    PubMed

    Gulati, Kavita; Chakraborti, Ayanabha; Ray, Arunabha

    2007-11-02

    The present study evaluated the effects of NO mimetics on stress-induced neurobehavioral changes and the possible involvement of ROS-RNS interactions in rats. Restraint stress (RS) suppressed both percent open arm entries and time spent in the open arms in the elevated plus maze (EPM) test. These RS-induced changes in EPM activity were attenuated by the NO mimetics, l-arginine, isosorbide dinitrate and molsidomine, in a differential manner. RS-exposed rats showed (a) increased lipid peroxidation (MDA) and (b) lowered reduced glutathione (GSH) and NO metabolites (NOx), in brain homogenates of these animals. Pretreatment with the NO mimetics also differentially influenced RS-induced changes in brain oxidative stress markers. The results suggest that NO may protect against stress-induced anxiogenic behavior and oxidative injury in the brain and highlight the significance of ROS-RNS interactions.

  2. R-modafinil attenuates nicotine-taking and nicotine-seeking behavior in alcohol-preferring rats.

    PubMed

    Wang, Xiao-Fei; Bi, Guo-Hua; He, Yi; Yang, Hong-Ju; Gao, Jun-Tao; Okunola-Bakare, Oluyomi M; Slack, Rachel D; Gardner, Eliot L; Xi, Zheng-Xiong; Newman, Amy Hauck

    2015-06-01

    (±)-Modafinil (MOD) is used clinically for the treatment of sleep disorders and has been investigated as a potential medication for the treatment of psychostimulant addiction. However, the therapeutic efficacy of (±)-MOD for addiction is inconclusive. Herein we used animal models of self-administration and in vivo microdialysis to study the pharmacological actions of R-modafinil (R-MOD) and S-modafinil (S-MOD) on nicotine-taking and nicotine-seeking behavior, and mechanisms underlying such actions. We found that R-MOD is more potent and effective than S-MOD in attenuating nicotine self-administration in Long-Evans rats. As Long-Evans rats did not show a robust reinstatement response to nicotine, we used alcohol-preferring rats (P-rats) that display much higher reinstatement responses to nicotine than Long-Evans rats. We found that R-MOD significantly inhibited intravenous nicotine self-administration, nicotine-induced reinstatement, and nicotine-associated cue-induced drug-seeking behavior in P-rats. R-MOD alone neither sustained self-administration in P-rats previously self-administering nicotine nor reinstated extinguished nicotine-seeking behavior. The in vivo brain microdialysis assays demonstrated that R-MOD alone produced a slow-onset moderate increase in extracellular DA. Pretreatment with R-MOD dose-dependently blocked nicotine-induced dopamine (DA) release in the nucleus accumbens (NAc) in both naive and nicotine self-administrating rats, suggesting a DA-dependent mechanism underlying mitigation of nicotine's effects. In conclusion, the present findings support further investigation of R-MOD for treatment of nicotine dependence in humans.

  3. R-Modafinil Attenuates Nicotine-Taking and Nicotine-Seeking Behavior in Alcohol-Preferring Rats

    PubMed Central

    Wang, Xiao-Fei; Bi, Guo-Hua; He, Yi; Yang, Hong-Ju; Gao, Jun-Tao; Okunola-Bakare, Oluyomi M; Slack, Rachel D; Gardner, Eliot L; Xi, Zheng-Xiong; Newman, Amy Hauck

    2015-01-01

    (±)-Modafinil (MOD) is used clinically for the treatment of sleep disorders and has been investigated as a potential medication for the treatment of psychostimulant addiction. However, the therapeutic efficacy of (±)-MOD for addiction is inconclusive. Herein we used animal models of self-administration and in vivo microdialysis to study the pharmacological actions of R-modafinil (R-MOD) and S-modafinil (S-MOD) on nicotine-taking and nicotine-seeking behavior, and mechanisms underlying such actions. We found that R-MOD is more potent and effective than S-MOD in attenuating nicotine self-administration in Long–Evans rats. As Long–Evans rats did not show a robust reinstatement response to nicotine, we used alcohol-preferring rats (P-rats) that display much higher reinstatement responses to nicotine than Long–Evans rats. We found that R-MOD significantly inhibited intravenous nicotine self-administration, nicotine-induced reinstatement, and nicotine-associated cue-induced drug-seeking behavior in P-rats. R-MOD alone neither sustained self-administration in P-rats previously self-administering nicotine nor reinstated extinguished nicotine-seeking behavior. The in vivo brain microdialysis assays demonstrated that R-MOD alone produced a slow-onset moderate increase in extracellular DA. Pretreatment with R-MOD dose-dependently blocked nicotine-induced dopamine (DA) release in the nucleus accumbens (NAc) in both naive and nicotine self-administrating rats, suggesting a DA-dependent mechanism underlying mitigation of nicotine's effects. In conclusion, the present findings support further investigation of R-MOD for treatment of nicotine dependence in humans. PMID:25613829

  4. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Errors in MR-based attenuation correction for brain imaging with PET/MR scanners

    NASA Astrophysics Data System (ADS)

    Rota Kops, Elena; Herzog, Hans

    2013-02-01

    AimAttenuation correction of PET data acquired by hybrid MR/PET scanners remains a challenge, even if several methods for brain and whole-body measurements have been developed recently. A template-based attenuation correction for brain imaging proposed by our group is easy to handle and delivers reliable attenuation maps in a short time. However, some potential error sources are analyzed in this study. We investigated the choice of template reference head among all the available data (error A), and possible skull anomalies of the specific patient, such as discontinuities due to surgery (error B). Materials and methodsAn anatomical MR measurement and a 2-bed-position transmission scan covering the whole head and neck region were performed in eight normal subjects (4 females, 4 males). Error A: Taking alternatively one of the eight heads as reference, eight different templates were created by nonlinearly registering the images to the reference and calculating the average. Eight patients (4 females, 4 males; 4 with brain lesions, 4 w/o brain lesions) were measured in the Siemens BrainPET/MR scanner. The eight templates were used to generate the patients' attenuation maps required for reconstruction. ROI and VOI atlas-based comparisons were performed employing all the reconstructed images. Error B: CT-based attenuation maps of two volunteers were manipulated by manually inserting several skull lesions and filling a nasal cavity. The corresponding attenuation coefficients were substituted with the water's coefficient (0.096/cm). ResultsError A: The mean SUVs over the eight templates pairs for all eight patients and all VOIs did not differ significantly one from each other. Standard deviations up to 1.24% were found. Error B: After reconstruction of the volunteers' BrainPET data with the CT-based attenuation maps without and with skull anomalies, a VOI-atlas analysis was performed revealing very little influence of the skull lesions (less than 3%), while the filled nasal

  6. Hypothalamic neuropeptide Y (NPY) and the attenuation of hyperphagia in streptozotocin diabetic rats treated with dopamine D1/D2 agonists

    PubMed Central

    Kuo, Dong-Yih

    2006-01-01

    Dopamine is an appetite suppressant, while neuropeptide Y (NPY), an appetite stimulant in the brain, is reported to be involved in anorectic action induced by a combined administration of D1/D2 agonists in normal rats. In diabetic rats, however, these factors have not been studied. Rats (including normal, diabetic and insulin-treated diabetic rats) were given daily injections of saline or D1/D2 agonists for 6 days. Changes in food intake and hypothalamic NPY content of these rats were assessed and compared. The D1/D2 agonist-induced anorectic responses were altered in diabetic rats compared to normal rats treated similarly. Both the anorectic response on the first day of dosing and the tolerant response on the subsequent days were attenuated. This alteration was independent of the neuroendocrine disturbance on feeding behavior since the basic pattern of food intake during the time course of a 24-h day/night cycle was similar in normal and diabetic rats; the decrease of food intake following drug treatment was only shown at the initial interval of 0–6 h in both groups of rats. However, this alteration coincided with changes in NPY content following D1/D2 coadministration. The replacement of insulin in diabetic rats could normalize both NPY content and D1/D2 agonist-induced anorexia. It is demonstrated that the response of D1/D2 agonist-induced appetite suppression is attenuated in diabetic rats compared to normal rats and that elevated hypothalamic NPY content may contribute to this alteration. PMID:16702993

  7. The beneficial effects of l-cysteine on brain antioxidants of rats affected by sodium valproate.

    PubMed

    Hamza, R Z; El-Shenawy, N S

    2017-11-01

    Oxidative stress caused by sodium valproate (SV) is known to play a key role in the pathogenesis of brain tissue. The present study was designed to evaluate the protective effect of l-cysteine (LC) on the antioxidants of brain tissue of rats. The animals were divided into six groups: control group 1 was treated with saline as vehicle, groups 2 and 3 were treated with low and high doses of SV (100 and 500 mg/kg, respectively), group 4 was treated with LC (100 mg/kg), and groups 5 and 6 were treated with low-dose SV + LC and high-dose SV + LC, respectively. All the groups were treated orally by gastric tube for 30 successive days. Some antioxidant parameters were determined. Brain tissue (cerebral cortex) of SV-treated animals showed an increase in lipid peroxidation (LPO) and reduction in activity of enzymatic antioxidant and total antioxidant levels. Histopathological examination of cerebral cortex of SV rats showed astrocytic swelling, inflammation, and necrosis. After 4 weeks of the combination treatment of SV and LC daily, results showed significant improvement in the activity of cathepsin marker enzymes and restored the structure of the brain. LC was able to ameliorate oxidative stress deficits observed in SV rats. LC decreased LPO level and was also able to restore the activity of antioxidant enzymes as well as structural deficits observed in the brain of SV animals. The protective effect of LC in SV-treated rats is mediated through attenuation of oxidative stress, suggesting a therapeutic role for LC in individuals treated with SV.

  8. Acute SSRI-induced anxiogenic and brain metabolic effects are attenuated 6 months after initial MDMA-induced depletion.

    PubMed

    Andó, Rómeó D; Adori, Csaba; Kirilly, Eszter; Molnár, Eszter; Kovács, Gábor G; Ferrington, Linda; Kelly, Paul A T; Bagdy, György

    2010-03-05

    To assess the functional state of the serotonergic system, the acute behavioural and brain metabolic effect of SSRI antidepressants were studied during the recovery period after MDMA-induced neuronal damage. The effects of the SSRI fluoxetine and the serotonin receptor agonist meta-chloro-phenylpiperazine (m-CPP) were investigated in the social interaction test in Dark Agouti rats, 6 months after treatment with a single dose of MDMA (15 or 30 mg kg(-1), i.p.). At earlier time points these doses of MDMA have been shown to cause 30-60% loss in axonal densities in several brain regions. Densities of the serotonergic axons were assessed using serotonin-transporter and tryptophan-hydroxylase immunohistochemistry. In a parallel group of animals, brain function was examined following an acute challenge with either fluoxetine or citalopram, using 2-deoxyglucose autoradiographic imaging. Six months after MDMA treatment the densities of serotonergic axons were decreased in only a few brain areas including hippocampus and thalamus. Basal anxiety was unaltered in MDMA-treated animals. However, the acute anxiogenic effects of fluoxetine, but not m-CPP, were attenuated in animals pretreated with MDMA. The metabolic response to both citalopram and fluoxetine was normal in most of the brain areas examined with the exception of ventromedial thalamus and hippocampal sub-fields where the response was attenuated. These data provide evidence that 6 months after MDMA-induced damage serotonergic axons show recovery in most brain areas, but serotonergic functions to challenges with SSRIs including anxiety and aggression remain altered. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Attenuation correction for the large non-human primate brain imaging using microPET.

    PubMed

    Naidoo-Variawa, S; Lehnert, W; Kassiou, M; Banati, R; Meikle, S R

    2010-04-21

    Assessment of the biodistribution and pharmacokinetics of radiopharmaceuticals in vivo is often performed on animal models of human disease prior to their use in humans. The baboon brain is physiologically and neuro-anatomically similar to the human brain and is therefore a suitable model for evaluating novel CNS radioligands. We previously demonstrated the feasibility of performing baboon brain imaging on a dedicated small animal PET scanner provided that the data are accurately corrected for degrading physical effects such as photon attenuation in the body. In this study, we investigated factors affecting the accuracy and reliability of alternative attenuation correction strategies when imaging the brain of a large non-human primate (papio hamadryas) using the microPET Focus 220 animal scanner. For measured attenuation correction, the best bias versus noise performance was achieved using a (57)Co transmission point source with a 4% energy window. The optimal energy window for a (68)Ge transmission source operating in singles acquisition mode was 20%, independent of the source strength, providing bias-noise performance almost as good as for (57)Co. For both transmission sources, doubling the acquisition time had minimal impact on the bias-noise trade-off for corrected emission images, despite observable improvements in reconstructed attenuation values. In a [(18)F]FDG brain scan of a female baboon, both measured attenuation correction strategies achieved good results and similar SNR, while segmented attenuation correction (based on uncorrected emission images) resulted in appreciable regional bias in deep grey matter structures and the skull. We conclude that measured attenuation correction using a single pass (57)Co (4% energy window) or (68)Ge (20% window) transmission scan achieves an excellent trade-off between bias and propagation of noise when imaging the large non-human primate brain with a microPET scanner.

  10. Attenuation correction for the large non-human primate brain imaging using microPET

    NASA Astrophysics Data System (ADS)

    Naidoo-Variawa, S.; Lehnert, W.; Kassiou, M.; Banati, R.; Meikle, S. R.

    2010-04-01

    Assessment of the biodistribution and pharmacokinetics of radiopharmaceuticals in vivo is often performed on animal models of human disease prior to their use in humans. The baboon brain is physiologically and neuro-anatomically similar to the human brain and is therefore a suitable model for evaluating novel CNS radioligands. We previously demonstrated the feasibility of performing baboon brain imaging on a dedicated small animal PET scanner provided that the data are accurately corrected for degrading physical effects such as photon attenuation in the body. In this study, we investigated factors affecting the accuracy and reliability of alternative attenuation correction strategies when imaging the brain of a large non-human primate (papio hamadryas) using the microPET Focus 220 animal scanner. For measured attenuation correction, the best bias versus noise performance was achieved using a 57Co transmission point source with a 4% energy window. The optimal energy window for a 68Ge transmission source operating in singles acquisition mode was 20%, independent of the source strength, providing bias-noise performance almost as good as for 57Co. For both transmission sources, doubling the acquisition time had minimal impact on the bias-noise trade-off for corrected emission images, despite observable improvements in reconstructed attenuation values. In a [18F]FDG brain scan of a female baboon, both measured attenuation correction strategies achieved good results and similar SNR, while segmented attenuation correction (based on uncorrected emission images) resulted in appreciable regional bias in deep grey matter structures and the skull. We conclude that measured attenuation correction using a single pass 57Co (4% energy window) or 68Ge (20% window) transmission scan achieves an excellent trade-off between bias and propagation of noise when imaging the large non-human primate brain with a microPET scanner.

  11. Dopamine D3 receptor antagonism inhibits cocaine-seeking and cocaine-enhanced brain reward in rats.

    PubMed

    Vorel, Stanislav R; Ashby, Charles R; Paul, Mousumi; Liu, Xinhe; Hayes, Robert; Hagan, Jim J; Middlemiss, Derek N; Stemp, Geoffrey; Gardner, Eliot L

    2002-11-01

    dopamine D3 receptor is preferentially localized to the mesocorticolimbic dopaminergic system and has been hypothesized to play a role in cocaine addiction. To study the involvement of the D3 receptor in brain mechanisms and behaviors commonly assumed to be involved in the addicting properties of cocaine, the potent and selective D3 receptor antagonist trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl] cyclohexyl]-4-quinolininecarboxamide (SB-277011-A) was administered to laboratory rats, and the following measures were assessed: (1) cocaine-enhanced electrical brain-stimulation reward, (2) cocaine-induced conditioned place preference, and (3) cocaine-triggered reinstatement of cocaine seeking behavior. Systemic injections of SB-277011-A were found to (1) block enhancement of electrical brain stimulation reward by cocaine, (2) dose-dependently attenuate cocaine-induced conditioned place preference, and (3) dose-dependently attenuate cocaine-triggered reinstatement of cocaine seeking behavior. Thus, D3 receptor blockade attenuates both the rewarding effects of cocaine and cocaine-induced drug-seeking behavior. These data suggest an important role for D3 receptors in mediating the addictive properties of cocaine and suggest that blockade of dopamine D3 receptors may constitute a new and useful target for prospective pharmacotherapies for cocaine addiction.

  12. Pivotal Role of Brain-Derived Neurotrophic Factor Secreted by Mesenchymal Stem Cells in Severe Intraventricular Hemorrhage in Newborn Rats.

    PubMed

    Ahn, So Yoon; Chang, Yun Sil; Sung, Dong Kyung; Sung, Se In; Ahn, Jee-Yin; Park, Won Soon

    2017-01-24

    Mesenchymal stem cell (MSC) transplantation protects against neonatal severe intraventricular hemorrhage (IVH)-induced brain injury by a paracrine rather than regenerative mechanism; however, the paracrine factors involved and their roles have not yet been delineated. This study aimed to identify the paracrine mediator(s) and to determine their role in mediating the therapeutic effects of MSCs in severe IVH. We first identified significant upregulation of brain-derived neurotrophic factor (BDNF) in MSCs compared with fibroblasts, in both DNA and antibody microarrays, after thrombin exposure. We then knocked down BDNF in MSCs by transfection with small interfering (si)RNA specific for human BDNF. The therapeutic effects of MSCs with or without BDNF knockdown were evaluated in vitro in rat neuronal cells challenged with thrombin, and in vivo in newborn Sprague-Dawley rats by injecting 200 μl of blood on postnatal day 4 (P4), and transplanting MSCs (1 × 105 cells) intraventricularly on P6. siRNA-induced BDNF knockdown abolished the in vitro benefits of MSCs on thrombin-induced neuronal cell death. BDNF knockdown also abolished the in vivo protective effects against severe IVH-induced brain injuries such as the attenuation of posthemorrhagic hydrocephalus, impaired behavioral test performance, increased astrogliosis, increased number of TUNEL cells, ED-1+ cells, and inflammatory cytokines, and reduced myelin basic protein expression. Our data indicate that BDNF secreted by transplanted MSCs is one of the critical paracrine factors that play a seminal role in attenuating severe IVH-induced brain injuries in newborn rats.

  13. IL-1 receptor antagonist attenuates neonatal lipopolysaccharide-induced long-lasting learning impairment and hippocampal injury in adult rats

    PubMed Central

    Pang, Yi; Bhatt, Abhay J.; Fan, Lir-Wan

    2015-01-01

    We have previously reported that neonatal lipopolysaccharide (LPS) exposure resulted in an increase in interleukin-1β (IL-1β) content, injury to the hippocampus, and cognitive deficits in juvenile male and female rats, as well as female adult rats. The present study aimed to determine whether an antiinflammatory cytokine, interleukin-1 receptor antagonist (IL-1ra), protects against the neonatal LPS exposure-induced inflammatory responses, hippocampal injury, and long-lasting learning deficits in adult rats. LPS (1 mg/kg) or LPS plus IL-1ra (0.1 mg/kg) was injected intracerebrally to Sprague-Dawley male rat pups at postnatal day 5 (P5). Neurobehavioral tests were carried out on P21, P49, and P70, while neuropathological studies were conducted on P71. Our results showed that neonatal LPS exposure resulted in learning deficits in rats at both developmental and adult ages, as demonstrated by a significantly impaired performance in the passive avoidance task (P21, P49, and P70), reduced hippocampal volume, and reduced number of Nissl+ cells in the CA1 region of the middle dorsal hippocampus of P71 rat brain. Those neuropathological and neurobehavioral alterations by LPS exposure were associated with a sustained inflammatory response in the P71 rat hippocampus, indicated by increased number of activated microglia as well as elevated levels of IL-1β. Neonatal administration of IL-1ra significantly attenuated LPS-induced long-lasting learning deficits, hippocampal injury, and sustained inflammatory responses in P71 rats. Our study demonstrates that neonatal LPS exposure leads to a persistent injury to the hippocampus, resulting in long-lasting learning disabilities related to chronic inflammation in rats, and these effects can be attenuated with an IL-1 receptor antagonist. PMID:25665855

  14. Baicalin Attenuates Subarachnoid Hemorrhagic Brain Injury by Modulating Blood-Brain Barrier Disruption, Inflammation, and Oxidative Damage in Mice

    PubMed Central

    Fu, Yongjian; Zhang, SongSong; Ding, Hao; Chen, Jin

    2017-01-01

    In subarachnoid hemorrhagic brain injury, the early crucial events are edema formation due to inflammatory responses and blood-brain barrier disruption. Baicalin, a flavone glycoside, has antineuroinflammatory and antioxidant properties. We examined the effect of baicalin in subarachnoid hemorrhagic brain injury. Subarachnoid hemorrhage was induced through filament perforation and either baicalin or vehicle was administered 30 min prior to surgery. Brain tissues were collected 24 hours after surgery after evaluation of neurological scores. Brain tissues were processed for water content, real-time PCR, and immunoblot analyses. Baicalin improved neurological score and brain water content. Decreased levels of tight junction proteins (occludin, claudin-5, ZO-1, and collagen IV) required for blood-brain barrier function were restored to normal level by baicalin. Real-time PCR data demonstrated that baicalin attenuated increased proinflammatory cytokine (IL-1β, IL-6, and CXCL-3) production in subarachnoid hemorrhage mice. In addition to that, baicalin attenuated microglial cell secretion of IL-1β and IL-6 induced by lipopolysaccharide (100 ng/ml) dose dependently. Finally, baicalin attenuated induction of NOS-2 and NOX-2 in SAH mice at the mRNA and protein level. Thus, we demonstrated that baicalin inhibited microglial cell activation and reduced inflammation, oxidative damage, and brain edema. PMID:28912935

  15. FISH OIL IMPROVES MOTOR FUNCTION, LIMITS BLOOD-BRAIN BARRIER DISRUPTION, AND REDUCES MMP9 GENE EXPRESSION IN A RAT MODEL OF JUVENILE TRAUMATIC BRAIN INJURY

    PubMed Central

    Russell, K. L.; Berman, N. E. J.; Gregg, P. R. A.; Levant, B.

    2014-01-01

    SUMMARY The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15 mL/kg fish oil (2.01 g/kg EPA, 1.34 g/kg DHA) or soybean oil dose via oral gavage 30 minutes prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9h gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9. PMID:24342130

  16. Fish oil improves motor function, limits blood-brain barrier disruption, and reduces Mmp9 gene expression in a rat model of juvenile traumatic brain injury.

    PubMed

    Russell, K L; Berman, N E J; Gregg, P R A; Levant, B

    2014-01-01

    The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15mL/kg fish oil (2.01g/kg EPA, 1.34g/kg DHA) or soybean oil dose via oral gavage 30min prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9 gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9. © 2013 Elsevier Ltd. All rights reserved.

  17. Edaravone, a free radical scavenger, attenuates cerebral infarction and hemorrhagic infarction in rats with hyperglycemia.

    PubMed

    Okamura, Koichi; Tsubokawa, Tamiji; Johshita, Hiroo; Miyazaki, Hiroshi; Shiokawa, Yoshiaki

    2014-01-01

    Thrombolysis due to acute ischemic stroke is associated with the risk of hemorrhagic infarction, especially after reperfusion. Recent experimental studies suggest that the main mechanism contributing to hemorrhagic infarction is oxidative stress caused by disruption of the blood-brain barrier. Edaravone, a free radical scavenger, decreases oxidative stress, thereby preventing hemorrhagic infarction during ischemia and reperfusion. In this study, we investigated the effects of edaravone on hemorrhagic infarction in a rat model of hemorrhagic transformation. We used a previously established hemorrhagic transformation model of rats with hyperglycemia. Hyperglycemia was induced by intraperitoneal injection of glucose to all rats (n  =  20). The rats with hyperglycemia showed a high incidence of hemorrhagic infarction. Middle cerebral artery occlusion (MCAO) for 1.5 hours followed by reperfusion for 24 hours was performed in edaravone-treated rats (n  =  10) and control rats (n  =  10). Upon completion of reperfusion, both groups were evaluated for infarct size and hemorrhage volume and the results obtained were compared. Edaravone significantly decreased infarct volume, with the average infarct volume in the edaravone-treated rats (227.6 mm(3)) being significantly lower than that in the control rats (264.0 mm(3)). Edaravone treatment also decreased the postischemic hemorrhage volumes (53.4 mm(3) in edaravone-treated rats vs 176.4 mm(3) in controls). In addition, the ratio of hemorrhage volume to infarct volume was lower in the edaravone-treated rats (23.5%) than in the untreated rats (63.2%). Edaravone attenuates cerebral infarction and hemorrhagic infarction in rats with hyperglycemia.

  18. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside Attenuates Ischemia/Reperfusion-Induced Brain Injury in Rats by Promoting Angiogenesis.

    PubMed

    Mu, Ying; Xu, Zhaohui; Zhou, Xuanxuan; Zhang, Huinan; Yang, Qian; Zhang, Yunlong; Xie, Yanhua; Kang, Juan; Li, Feng; Wang, Siwang

    2017-05-01

    Cerebral ischemia can cause brain infarcts, which are difficult to recover due to poor angiogenesis. 2,3,5,4'-Tetrahydroxystilbene-2-O- β -D-glucoside is a natural polyphenol, has antioxidant and anti-inflammatory activity, and can protect from ischemic neuronal injury. However, little is known about the effect of 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside on brain microcirculation after stroke. This study aimed at investigating the influence of 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside on brain lesions and angiogenesis after stroke. Sprague-Dawley rats were subjected to right middle cerebral artery occlusion and treated with vehicle, nimodipine, or different doses of 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside daily beginning at 6 h post-middle cerebral artery occlusion for 14 days. The volume of cerebral infarcts, degree of neurological dysfunction, and level of microvessel density were determined longitudinally. The levels of vascular endothelial growth factor, angiopoietin 1, and angiopoietin receptor-2 expression in the brain lesions were characterized by immunohistochemistry and Western blot assays at 14 days post-middle cerebral artery occlusion. We found that 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside significantly promoted postoperative recovery in rats by minimizing the volume of cerebral infarcts and improving neurological dysfunction in a dose- and time-dependent manner. Additionally, 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside significantly increased the microvessel density in the brain and upregulated CD31 expression in ischemic penumbra, relative to that in the control. Finally, treatment with 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside significantly upregulated the relative levels of vascular endothelial growth factor, angiopoietin 1, and angiopoietin receptor-2 expression in the brain lesions of rats. Therefore, these data indicated that 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside treatment

  19. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue.

    PubMed

    Jost, Gregor; Frenzel, Thomas; Lohrke, Jessica; Lenhard, Diana Constanze; Naganawa, Shinji; Pietsch, Hubertus

    2017-07-01

    Signal hyperintensity on unenhanced MRI in certain brain regions has been reported after multiple administrations of some, but not all, gadolinium-based contrast agents (GBCAs). One potential initial pathway of GBCA entry into the brain, infiltration from blood into the cerebrospinal fluid (CSF), was systematically evaluated in this preclinical study. GBCA infiltration and distribution in the CSF were investigated in healthy rats using repeated fluid-attenuated MRI up to 4 h after high-dose (1.8 mmol/kg) administration of six marketed and one experimental GBCA. Additionally, gadolinium measurements in CSF, blood and brain tissue samples (after 24 h) were performed using inductively coupled plasma mass spectrometry. Enhanced MRI signals in the CSF spaces with similar distribution kinetics were observed for all GBCAs. No substantial differences in the gadolinium concentrations among the marketed GBCAs were found in the CSF, blood or brain tissue. After 4.5 h, the concentration in the CSF was clearly higher than in blood but was almost completely cleared and lower than the brain tissue concentration after 24 h. In contrast to the brain signal hyperintensities, no differences in penetration and distribution into the CSF of healthy rats exist among the marketed GBCAs. • Gadolinium-based contrast agents can cross the blood-CSF barrier. • Fluid-attenuated MRI shows GBCA distribution with CSF flow. • GBCA structure and physicochemical properties do not impact CSF penetration and distribution. • GBCA clearance from CSF was almost complete within 24 h in rats. • CSF is a potential pathway of GBCA entry into the brain.

  20. Sestrin2 Induced by Hypoxia Inducible Factor 1 alpha protects the Blood-Brain Barrier via Inhibiting VEGF after Severe Hypoxic-Ischemic Injury in Neonatal Rats

    PubMed Central

    Shi, Xudan; Doycheva, Desislava Met; Xu, Liang; Tang, Jiping; Yan, Min; Zhang, John H

    2016-01-01

    Objective Hypoxic ischemic (HI) encephalopathy remains the leading cause of perinatal brain injury resulting in long term disabilities. Stabilization of blood brain barrier (BBB) after HI is an important target, therefore, in this study we aim to determine the role of sestrin2, a stress inducible protein which is elevated after various insults, on BBB stabilization after moderate and severe HI injury. Methods Rat pups underwent common carotid artery ligation followed by either 150 min (severe model) or 100 min (moderate model) of hypoxia. 1h post HI, rats were intranasally administered with recombinant human sestrin2 (rh-sestrin2) and sacrificed for infarct area, brain water content, righting reflex and geotaxis reflex. Sestrin2 was silenced using siRNA and an activator/inhibitor of hypoxia inducible factor1α (HIF1α) were used to examine their roles on BBB permeability. Results Rats subjected to severe HI exhibited larger infarct area and higher sestrin2 expression compared to rats in the moderate HI group. rh-sestrin2 attenuated brain infarct and edema, while silencing sestrin2 reversed these protective effects after severe HI. HIF1α induced sestrin2 activation in severe HI but not in moderate HI groups. A HIF1a agonist was shown to increase permeability of the BBB via vascular endothelial growth factor (VEGF) after moderate HI. However, after severe HI, HIF1α activated both VEGF and sestrin2. But HIF1α dependent sestrin2 activation was the predominant pathway after severe HI which inhibited VEGF and attenuated BBB permeability. Conclusions rh-sestrin2 attenuated BBB permeability via upregulation of endogenous sestrin2 which was induced by HIF1α after severe HI. However, HIF1α’s effects as a prodeath or prosurvival signal were influenced by the severity of HI injury. PMID:27425892

  1. Inulin supplementation during gestation mitigates acrylamide-induced maternal and fetal brain oxidative dysfunctions and neurotoxicity in rats.

    PubMed

    Krishna, Gokul; Muralidhara

    2015-01-01

    Accumulating evidence suggests that the developing brain is more susceptible to a variety of chemicals. Recent studies have shown a link between the enteric microbiota and brain function. While supplementation of non-digestible oligosaccharides during pregnancy has been demonstrated to positively influence human health mediated through stimulation of beneficial microbiota, our understanding on their neuromodulatory propensity is limited. In the present study, our primary focus was to examine whether supplementation of inulin (a well known fructan) during gestation can abrogate acrylamide (ACR)-induced oxidative impairments and neurotoxicity in maternal and fetal brain of rats. Initially, in a dose-determinative study, we recapitulated the impact of ACR exposure during gestation days (GD 6-19) on gestational parameters, extent of oxidative impairments in brain (maternal/fetal), cholinergic function and neurotoxicity. Subsequently, pregnant rats orally (gavage) administered with inulin (IN, 2 g/kg/day in two equal installments) supplements during gestation days (GD 0-19) were exposed to ACR (200 ppm) in drinking water. IN supplements significantly attenuated ACR-induced changes in exploratory activity (reduced open field exploration) measured on GD 14. Further, IN restored the placental weights among ACR exposed dams. Analysis of biochemical markers revealed that IN supplements effectively offset ACR associated oxidative stress not only in the maternal brain, but in the fetal brain as well. Elevated levels of protein carbonyls in maternal brain regions were completely normalized with IN supplements. More importantly, IN supplements significantly augmented the number of Bifidobacteria in the cecum of ACR rats which correlated well with the neurorestorative effect as evidenced by restored dopamine levels in the maternal cortex and fetal brain acetylcholinesterase activity among ACR-exposed dams. Further, IN supplements also conferred significant protection against

  2. Immediate early gene expression reveals interactions between social and nicotine rewards on brain activity in adolescent male rats

    PubMed Central

    Goenaga, Julianna; Hatch, Kayla N.; Henricks, Angela; Scott, Samantha; Hood, Lauren E.; Neisewander, Janet L.

    2016-01-01

    Smoking initiation predominantly occurs during adolescence, often in the presence of peers. Therefore, understanding the neural mechanisms underlying the rewarding effects of nicotine and social stimuli is vital. Using the conditioned place preference (CPP) procedure, we measured immediate early gene (IEG) expression in animals following exposure either to a reward-conditioned environment or to the unconditioned stimuli (US). Adolescent, male rats were assigned to the following CPP US conditions: (1) Saline + Isolated, (2) Nicotine + Isolated, (3) Saline + Social, or (4) Nicotine + Social. For Experiment 1, brain tissue was collected 90 min following the CPP expression test and processed for Fos immunohistochemistry. We found that rats conditioned with nicotine with or without a social partner exhibited CPP; however, we found no group differences in Fos expression in any brain region analyzed, with the exception of the nucleus accumbens core that exhibited a social-induced attenuation in Fos expression. For Experiment 2, brain tissue was collected 90 min following US exposure during the last conditioning session. We found social reward-induced increases in IEG expression in striatal and amydalar subregions. In contrast, nicotine reduced IEG expression in prefrontal and striatal subregions. Reward interactions were also found in the dorsolateral striatum, basolateral amygdala, and ventral tegmental area where nicotine alone attenuated IEG expression and social reward reversed this effect. These results suggest that in general social rewards enhance, whereas nicotine attenuates, activation of mesocorticolimbic regions; however, the rewards given together interact to enhance activation in some regions. The findings contribute to knowledge of how a social environment influences nicotine effects. PMID:27435419

  3. Selenium attenuates apoptosis, inflammation and oxidative stress in the blood and brain of aged rats with scopolamine-induced dementia.

    PubMed

    Demirci, Kadir; Nazıroğlu, Mustafa; Övey, İshak Suat; Balaban, Hasan

    2017-04-01

    A potent antioxidant, selenium might modulate dementia-induced progression of brain and blood oxidative and apoptotic injuries. The present study explores whether selenium protects against experimental dementia (scopolamine, SCOP)-induced brain, and blood oxidative stress, apoptosis levels, and cytokine production in rats. Thirty-two rats were equally divided into four groups. The first group was used as an untreated control. The second group was treated with SCOP to induce dementia. The third and fourth groups received 1.5 mg/kg selenium (sodium selenite) and SCOP + selenium, respectively. Dementia was induced in the second and forth groups by intraperitoneal SCOP (1 mg/kg) administration. Brain, plasma, and erythrocyte lipid peroxidation levels as well as plasma TNF-α, interleukin (IL)-1β, and IL-4 levels were high in the SCOP group though they were low in selenium treatments. Selenium and selenium + SCOP treatments increased the lowered glutathione peroxidase activity, reduced glutathione, vitamins A and E concentrations in the brain, erythrocytes and plasma of the SCOP group. Apoptotic value expressions as active caspase-3, procaspase-9, and PARP were also increased by SCOP, while they were decreased by selenium and selenium + SCOP treatments. In conclusion, selenium induced protective effects against experimental dementia-induced brain, and blood oxidative injuries and apoptosis through regulation of cytokine production, vitamin E, glutathione concentrations, and glutathione peroxidase activity.

  4. Vagotomy attenuates brain cytokines and sleep induced by peripherally administered tumor necrosis factor-α and lipopolysaccharide in mice.

    PubMed

    Zielinski, Mark R; Dunbrasky, Danielle L; Taishi, Ping; Souza, Gianne; Krueger, James M

    2013-08-01

    Systemic tumor necrosis factor-α (TNF-α) is linked to sleep and sleep altering pathologies in humans. Evidence from animals indicates that systemic and brain TNF-α have a role in regulating sleep. In animals, TNF-α or lipopolysaccharide (LPS) enhance brain pro-inflammatory cytokine expression and sleep after central or peripheral administration. Vagotomy blocks enhanced sleep induced by systemic TNF-α and LPS in rats, suggesting that vagal afferent stimulation by TNF-α enhances pro-inflammatory cytokines in sleep-related brain areas. However, the effects of systemic TNF-α on brain cytokine expression and mouse sleep remain unknown. We investigated the role of vagal afferents on brain cytokines and sleep after systemically applied TNF-α or LPS in mice. Spontaneous sleep was similar in vagotomized and sham-operated controls. Vagotomy attenuated TNF-α- and LPS-enhanced non-rapid eye movement sleep (NREMS); these effects were more evident after lower doses of these substances. Vagotomy did not affect rapid eye movement sleep responses to these substances. NREMS electroencephalogram delta power (0.5-4 Hz range) was suppressed after peripheral TNF-α or LPS injections, although vagotomy did not affect these responses. Compared to sham-operated controls, vagotomy did not affect liver cytokines. However, vagotomy attenuated interleukin-1 beta (IL-1β) and TNF-α mRNA brain levels after TNF-α, but not after LPS, compared to the sham-operated controls. We conclude that vagal afferents mediate peripheral TNF-α-induced brain TNF-α and IL-1β mRNA expressions to affect sleep. We also conclude that vagal afferents alter sleep induced by peripheral pro-inflammatory stimuli in mice similar to those occurring in other species.

  5. Exercise training prevents the attenuation of anesthetic pre-conditioning-mediated cardioprotection in diet-induced obese rats.

    PubMed

    Li, L; Meng, F; Li, N; Zhang, L; Wang, J; Wang, H; Li, D; Zhang, X; Dong, P; Chen, Y

    2015-01-01

    Obesity abolishes anesthetic pre-conditioning-induced cardioprotection due to impaired reactive oxygen species (ROS)-mediated adenosine monophosphate-activated protein kinase (AMPK) pathway, a consequence of increased basal myocardial oxidative stress. Exercise training has been shown to attenuate obesity-related oxidative stress. This study tests whether exercise training could normalize ROS-mediated AMPK pathway and prevent the attenuation of anesthetic pre-conditioning-induced cardioprotection in obesity. Male Sprague-Dawley rats were divided into lean rats fed with control diet and obese rats fed with high-fat diet. After 4 weeks of feeding, lean and obese rats were assigned to sedentary conditions or treadmill exercise for 8 weeks. There was no difference in infarct size between lean sedentary and obese sedentary rats after 25 min of myocardial ischemia followed by 120 min reperfusion. In lean rats, sevoflurane equally reduced infarct size in lean sedentary and lean exercise-trained rats. Molecular studies revealed that AMPK activity, endothelial nitric oxide synthase, and superoxide production measured at the end of ischemia in lean rats were increased in response to sevoflurane. In obese rats, sevoflurane increased the above molecular parameters and reduced infarct size in obese exercise-trained rats but not in obese sedentary rats. Additional study showed that obese exercise-trained rats had decreased basal oxidative stress than obese sedentary rats. The results indicate that exercise training can prevent the attenuation of anesthetic cardioprotection in obesity. Preventing the attenuation of this strategy may be associated with reduced basal oxidative stress and normalized ROS-mediated AMPK pathway, but the causal relationship remains to be determined. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  6. Neonatal handling (resilience) attenuates water-avoidance stress induced enhancement of chronic mechanical hyperalgesia in the rat

    PubMed Central

    Alvarez, Pedro; Levine, Jon D.; Green, Paul G.

    2015-01-01

    Chronic stress is well known to exacerbate pain. We tested the hypothesis that neonatal handling, which induces resilience to the negative impact of stress by increasing the quality and quantity of maternal care, attenuates the mechanical hyperalgesia produced by water-avoidance stress in the adult rat. Neonatal male rats underwent the handling protocol on postnatal days 2–9, weaned at 21 days and tested for muscle mechanical nociceptive threshold at postnatal days 50–75. Decrease in mechanical nociceptive threshold in skeletal muscle in adult rats, produced by exposure to water-avoidance stress, was significantly attenuated by neonatal handling. Neonatal handling also attenuated the mechanical hyperalgesia produced by intramuscular administration of the pronociceptive inflammatory mediator, prostaglandin E2 in rats exposed as adults to water-avoidance stress. Neonatal handling, which induces a smaller corticosterone response in adult rats exposed to a stressor as well as changes in central nervous system neurotransmitter systems, attenuates mechanical hyperalgesia produced by water-avoidance stress and enhanced prostaglandin hyperalgesia in adult animals. PMID:25637700

  7. Erythropoietin attenuates loss of potassium chloride co-transporters following prenatal brain injury.

    PubMed

    Jantzie, L L; Getsy, P M; Firl, D J; Wilson, C G; Miller, R H; Robinson, S

    2014-07-01

    Therapeutic agents that restore the inhibitory actions of γ-amino butyric acid (GABA) by modulating intracellular chloride concentrations will provide novel avenues to treat stroke, chronic pain, epilepsy, autism, and neurodegenerative and cognitive disorders. During development, upregulation of the potassium-chloride co-transporter KCC2, and the resultant switch from excitatory to inhibitory responses to GABA guide the formation of essential inhibitory circuits. Importantly, maturation of inhibitory mechanisms is also central to the development of excitatory circuits and proper balance between excitatory and inhibitory networks in the developing brain. Loss of KCC2 expression occurs in postmortem samples from human preterm infant brains with white matter lesions. Here we show that late gestation brain injury in a rat model of extreme prematurity impairs the developmental upregulation of potassium chloride co-transporters during a critical postnatal period of circuit maturation in CA3 hippocampus by inducing a sustained loss of oligomeric KCC2 via a calpain-dependent mechanism. Further, administration of erythropoietin (EPO) in a clinically relevant postnatal dosing regimen following the prenatal injury protects the developing brain by reducing calpain activity, restoring oligomeric KCC2 expression and attenuating KCC2 fragmentation, thus providing the first report of a safe therapy to address deficits in KCC2 expression. Together, these data indicate it is possible to reverse abnormalities in KCC2 expression during the postnatal period, and potentially reverse deficits in inhibitory circuit formation central to cognitive impairment and epileptogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz.

    PubMed

    Huang, Chih-Chung

    2010-10-07

    There has recently been a great deal of interest in noninvasive high-frequency ultrasound imaging of small animals such as rats due to their being the preferred animal model for gene therapy and cancer research. Improving the interpretation of the obtained images and furthering the development of the imaging devices require a detailed knowledge of the ultrasound attenuation and backscattering of biological tissue (e.g. blood) at high frequencies. In the present study, the attenuation and backscattering coefficients of the rat red blood cell (RBC) suspensions and whole blood with hematocrits ranging from 6% to 40% were measured between 30 and 60 MHz using a modified substitution approach. The acoustic parameters of porcine blood under the same conditions were also measured in order to compare differences in the blood properties between these two animals. For porcine blood, both whole blood and RBC suspension were stirred at a rotation speed of 200 rpm. Three different rotation speeds of 100, 200 and 300 rpm were carried out for rat blood experiments. The attenuation coefficients of both rat and porcine blood were found to increase linearly with frequency and hematocrit (the values of coefficients of determination (r(2)) are around 0.82-0.97 for all cases). The average attenuation coefficient of rat whole blood with a hematocrit of 40% increased from 0.26 Nepers mm(-1) at 30 MHz to 0.47 Nepers mm(-1) at 60 MHz. The maximum backscattering coefficients of both rat and porcine RBC suspensions were between 10% and 15% hematocrits at all frequencies. The fourth-power dependence of backscatter on frequency was approximately valid for rat RBC suspensions with hematocrits between 6% and 40%. However, the frequency dependence of the backscatter estimate deviates from a fourth-power law for porcine RBC suspension with hematocrit higher than 20%. The backscattering coefficient plateaued for hematocrits higher than 15% in porcine blood, but for rat blood it was maximal around a

  9. Postretrieval Extinction Attenuates Alcohol Cue Reactivity in Rats.

    PubMed

    Cofresí, Roberto U; Lewis, Suzanne M; Chaudhri, Nadia; Lee, Hongjoo J; Monfils, Marie-H; Gonzales, Rueben A

    2017-03-01

    Conditioned responses to alcohol-associated cues can hinder recovery from alcohol use disorder (AUD). Cue exposure (extinction) therapy (CET) can reduce reactivity to alcohol cues, but its efficacy is limited by phenomena such as spontaneous recovery and reinstatement that can cause a return of conditioned responding after extinction. Using a preclinical model of alcohol cue reactivity in rats, we evaluated whether the efficacy of alcohol CET could be improved by conducting CET during the memory reconsolidation window after retrieval of cue-alcohol associations. Rats were provided with intermittent access to unsweetened alcohol. Rats were then trained to predict alcohol access based on a visual cue. Next, rats were treated with either standard extinction (n = 14) or postretrieval extinction (n = 13). Rats were then tested for long-term memory of extinction and susceptibility to spontaneous recovery and reinstatement. Despite equivalent extinction, rats treated with postretrieval extinction exhibited reduced spontaneous recovery and reinstatement relative to rats treated with standard extinction. Postretrieval CET shows promise for persistently attenuating the risk to relapse posed by alcohol cues in individuals with AUD. Copyright © 2017 by the Research Society on Alcoholism.

  10. Ameliorative effect of black grape juice on systemic alterations and mandibular osteoradionecrosis induced by whole brain irradiation in rats.

    PubMed

    Freitas, Robson B; González, Paquita; Martins, Nara Maria B; Andrade, Edson R; Cesteros Morante, María Jesús; Conles Picos, Iban; Costilla García, Serafín; Bauermann, Liliane F; Barrio, Juan Pablo

    2017-02-01

    Whole brain irradiation (WBI) causes a variety of secondary side-effects including anorexia and bone necrosis. We evaluated the radiomodifying effect of black grape juice (BGJ) on WBI alterations in rats measuring food and water intake, body weight, hemogram, and morphological and histological mandibular parameters. Forty male rats (200-250 g) were exposed to eight sessions of cranial X-ray irradiation. The total dose absorbed was 32 Gy delivered over 2 weeks. Four groups were defined: (i) NG: non-irradiated, glucose and fructose solution-supplemented (GFS); (ii) NJ: non-irradiated, BGJ-supplemented; (iii) RG: irradiated, GFS-supplemented; and (iv) RJ: irradiated, BGJ-supplemented. Rats received daily BGJ or GFS dosing by gavage starting 4 days before, continuing during, and ending 4 days after WBI. RJ rats ingested more food and water and showed less body weight loss than RG rats during the irradiation period. Forty days after WBI, irradiated animals started losing weight again compared with controls as a consequence of masticatory hypofunction by mandibular osteoradionecrosis (ORN). Osteoclastic activity and inflammation were apparent in RG rat mandibles. BGJ was able to attenuate the severity of ORN as well as to improve white and red blood cell counts. Fractionated whole brain irradiation induces mandibular changes that interfere with normal feeding. BGJ can be used to mitigate systemic side-effects of brain irradiation and ORN.

  11. Brain-targeted ACE2 overexpression attenuates neurogenic hypertension by inhibiting COX mediated inflammation

    PubMed Central

    Sriramula, Srinivas; Xia, Huijing; Xu, Ping; Lazartigues, Eric

    2014-01-01

    Overactivity of the renin angiotensin system (RAS), oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that Angiotensin-Converting Enzyme 2 (ACE2) overexpression in the brain attenuates the development of DOCA-salt hypertension, a neurogenic hypertension model with enhanced brain RAS and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. DOCA-salt hypertension significantly increased expression of Nox-2 (+61 ±5 %), Nox-4 (+50 ±13 %) and nitrotyrosine (+89 ±32 %) and reduced activity of the antioxidant enzymes, catalase (−29 ±4 %) and SOD (−31 ±7 %), indicating increased oxidative stress in the brain of non-transgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. DOCA-salt-induced reduction of nNOS expression (−26 ±7 %) and phosphorylated eNOS/total eNOS (−30 ±3 %), and enhanced phosphorylation of Akt and ERK1/2 in the paraventricular nucleus (PVN), were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the PVN. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuro-inflammation, ultimately attenuating DOCA-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuro-inflammation, improves anti-oxidant and nitric oxide signaling, and thereby attenuates the development of neurogenic hypertension. PMID:25489058

  12. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats.

    PubMed

    Pong, Alice C; Jugé, Lauriane; Bilston, Lynne E; Cheng, Shaokoon

    2017-01-01

    Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P < 0.001 for both) but there were no significant changes in cranial cross-sectional area (Spearman, P = 0.35), cortical gray matter stiffness (Spearman, P = 0.24) and caudate-putamen (Spearman, P = 0.11) stiffness. No significant changes in the size of brain structures were observed in the controls. This study showed that although brain tissue in the adult hydrocephalic rats was severely compressed, their brain tissue stiffness did not change significantly. These results are in contrast with our

  13. Immediate early gene expression reveals interactions between social and nicotine rewards on brain activity in adolescent male rats.

    PubMed

    Bastle, Ryan M; Peartree, Natalie A; Goenaga, Julianna; Hatch, Kayla N; Henricks, Angela; Scott, Samantha; Hood, Lauren E; Neisewander, Janet L

    2016-10-15

    Smoking initiation predominantly occurs during adolescence, often in the presence of peers. Therefore, understanding the neural mechanisms underlying the rewarding effects of nicotine and social stimuli is vital. Using the conditioned place preference (CPP) procedure, we measured immediate early gene (IEG) expression in animals following exposure either to a reward-conditioned environment or to the unconditioned stimuli (US). Adolescent, male rats were assigned to the following CPP US conditions: (1) Saline+Isolated, (2) Nicotine+Isolated, (3) Saline+Social, or (4) Nicotine+Social. For Experiment 1, brain tissue was collected 90min following the CPP expression test and processed for Fos immunohistochemistry. We found that rats conditioned with nicotine with or without a social partner exhibited CPP; however, we found no group differences in Fos expression in any brain region analyzed, with the exception of the nucleus accumbens core that exhibited a social-induced attenuation in Fos expression. For Experiment 2, brain tissue was collected 90min following US exposure during the last conditioning session. We found social reward-induced increases in IEG expression in striatal and amydalar subregions. In contrast, nicotine reduced IEG expression in prefrontal and striatal subregions. Reward interactions were also found in the dorsolateral striatum, basolateral amygdala, and ventral tegmental area where nicotine alone attenuated IEG expression and social reward reversed this effect. These results suggest that in general social rewards enhance, whereas nicotine attenuates, activation of mesocorticolimbic regions; however, the rewards given together interact to enhance activation in some regions. The findings contribute to knowledge of how a social environment influences nicotine effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Deep brain stimulation of the nucleus accumbens shell attenuates cue-induced reinstatement of both cocaine and sucrose seeking in rats.

    PubMed

    Guercio, Leonardo A; Schmidt, Heath D; Pierce, R Christopher

    2015-03-15

    Stimuli previously associated with drug taking can become triggers that can elicit craving and lead to relapse of drug-seeking behavior. Here, we examined the influence of deep brain stimulation (DBS) in the nucleus accumbens shell on cue-induced reinstatement of cocaine seeking, an animal model of relapse. Rats were allowed to self-administer cocaine (0.254 mg, i.v.) for 2 h daily for 21 days, with each infusion of cocaine being paired with a cue light. After 21 days of self-administration, cocaine-taking behavior was extinguished by replacing cocaine with saline in the absence of the cue light. Next, during the reinstatement phase, DBS was administered bilaterally into the nucleus accumbens shell through bipolar stainless steel electrodes immediately prior to re-exposure to cues previously associated with cocaine reinforcement. DBS continued throughout the 2 h reinstatement session. Parallel studies examined the influence of accumbens shell DBS on reinstatement induced by cues previously associated with sucrose reinforcement. Results indicated that DBS of the nucleus accumbens shell significantly attenuated cue-induced reinstatement of cocaine and sucrose seeking. Together, these results indicate that DBS of the accumbens shell disrupts cue-induced reinstatement associated with both a drug and a natural reinforcer. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. [Behavior and functional state of the dopaminergic brain system in pups of depressive WAG/Rij rats].

    PubMed

    Malyshev, A V; Razumkina, E V; Rogozinskaia, É Ia; Sarkisova, K Iu; Dybynin, V A

    2014-01-01

    In the present work, it has been studied for the first time behavior and functional state of the dopaminergic brain system in pups of "depressive" WAG/Rij rats. Offspring of "depressive" WAG/Rij rats at age of 6-16 days compared with offspring of "normal" (non-depressed) outbred rats of the same age exhibited reduced rate of pshychomotor development, lower body weight, attenuation in integration of coordinated reflexes and vestibular function (greater latency of righting reflex, abnormal negative geotaxis), hyper-reactivity to tactile stimulation, reduced motivation to contact with mother (reduced infant-mother attachment). Differences in a nest seeking response induced by olfactory stimuli (olfactory discrimination test) and in locomotor activity (tests "gait reflex" and "small open field") have not been revealed. Acute injection of the antagonist of D2-like dopamine receptors clebopride 20 min before testing aggravated mother-oriented behavior in 15-days-old pups of both "depressive" and "non-depressive" rats. However this effect was greater in pups of "depressive" WAG/Rij rats compared with pups of "normal" rats that may indicate reduced functional activity of the dopaminergic brain system in offspring of "depressive" rats. It is proposed that reduced attachment behavior in pups of "depressive" WAG/Rij rats might be a consequence of maternal depression and associated with it reduced maternal care. Moreover, reduced attachment behavior in pups of "depressive" rats might be an early precursor (a marker) of depressive-like pathology which become apparent later in life (approximately at age of 3 months).

  16. EVALUATION OF PERFLUOROOCTANE SULFONATE (PFOS) IN THE RAT BRAIN

    EPA Science Inventory

    This study examined whether there is a differential distribution of PFOS within the brain, and compares adult rats with neonatal rats at an age when formation of the blood-brain barrier is not yet complete (postnatal day 7). Male and female Sprague-Dawley rats (60-70 day old, 4/...

  17. Flavonoid-rich fraction of the Monodora tenuifolia seed extract attenuates behavioural alterations and oxidative damage in forced-swim stressed rats.

    PubMed

    Ekeanyanwu, Raphael Chukwuma; Njoku, Obioma Uzoma

    2015-03-01

    The antidepressant effects of the flavonoid-rich fraction of Monodora tenuifolia seed extract were examined by assessing the extent of attenuation of behavioural alterations and oxidative damage in the rats that were stressed by forced swim test. Compared with the model control group, the altered behavioural parameters were attenuated significantly (P < 0.05) in the group treated with the flavonoid-rich fraction (100 and 200 mg·kg(-1)), comparable to the group treated with the standard drug, fluoxetine (10 mg·kg(-1)). The flavonoid-rich fraction and fluoxetine improved significantly (P < 0.05) the activities of the antioxidant enzymes such as superoxide dismutase and catalase as well as other biochemical parameters such as reduced glutathione, protein, and nitrite in the brain of the stressed rats. These results suggested that the flavonoid-rich fraction of Monodora tenuifolia seed extract exerted the antidepressant-like effects which could be useful in the management of stress induced disease. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  18. Interhemispheric EEG differences in olfactory bulbectomized rats with different cognitive abilities and brain beta-amyloid levels.

    PubMed

    Bobkova, Natalia; Vorobyov, Vasily; Medvinskaya, Natalia; Aleksandrova, Irina; Nesterova, Inna

    2008-09-26

    Alterations in electroencephalogram (EEG) asymmetry and deficits in interhemispheric integration of information have been shown in patients with Alzheimer's disease (AD). However, no direct evidence of an association between EEG asymmetry, morphological markers in the brain, and cognition was found either in AD patients or in AD models. In this study we used rats with bilateral olfactory bulbectomy (OBX) as one of the AD models and measured their learning/memory abilities, brain beta-amyloid levels and EEG spectra in symmetrical frontal and occipital cortices. One year after OBX or sham-surgery, the rats were tested with the Morris water paradigm and assigned to three groups: sham-operated rats, SO, and OBX rats with virtually normal, OBX(+), or abnormal, OBX(-), learning (memory) abilities. In OBX vs. SO, the theta EEG activity was enhanced to a higher extent in the right frontal cortex and in the left occipital cortex. This produced significant interhemispheric differences in the frontal cortex of the OBX(-) rats and in the occipital cortex of both OBX groups. The beta1 EEG asymmetry in SO was attenuated in OBX(+) and completely eliminated in OBX(-). OBX produced highly significant beta2 EEG decline in the right frontal cortex, with OBX(-)>OBX(+) rank order of strength. The beta-amyloid level, examined by post-mortem immunological DOT-analysis in the cortex-hippocampus samples, was about six-fold higher in OBX(-) than in SO, but significantly less (enhanced by 82% vs. SO) in OBX(+) than in OBX(-). The involvement of the brain mediatory systems in the observed EEG asymmetry differences is discussed.

  19. Naringin Attenuates Cerebral Ischemia-Reperfusion Injury Through Inhibiting Peroxynitrite-Mediated Mitophagy Activation.

    PubMed

    Feng, Jinghan; Chen, Xingmiao; Lu, Shengwen; Li, Wenting; Yang, Dan; Su, Weiwei; Wang, Xijun; Shen, Jiangang

    2018-04-07

    Excessive autophagy/mitophagy plays important roles during cerebral ischemia-reperfusion (I/R) injury. Peroxynitrite (ONOO - ), a representative reactive nitrogen species, mediates excessive mitophagy activation and exacerbates cerebral I/R injury. In the present study, we tested the hypothesis that naringin, a natural antioxidant, could inhibit ONOO - -mediated mitophagy activation and attenuate cerebral I/R injury. Firstly, we demonstrated that naringin possessed strong ONOO - scavenging capability and also inhibited the production of superoxide and nitric oxide in SH-SY5Y cells exposed to 10 h oxygen-glucose-deprivation plus 14 h of reoxygenation or ONOO - donor 3-morpholinosydnonimine conditions. Naringin also inhibited the expression of NADPH oxidase subunits and iNOS in rat brains subjected to 2 h ischemia plus 22 h reperfusion. Next, we found that naringin was able to cross the blood-brain barrier, and naringin decreased neurological deficit score, reduced infarct size, and attenuated apoptotic cell death in the ischemia-reperfused rat brains. Furthermore, naringin reduced 3-nitrotyrosine formation, decreased the ratio of LC3-II to LC3-I in mitochondrial fraction, and inhibited the translocation of Parkin to the mitochondria. Taken together, naringin could be a potential therapeutic agent to prevent the brain from I/R injury via attenuating ONOO - -mediated excessive mitophagy.

  20. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats

    PubMed Central

    Pong, Alice C.; Jugé, Lauriane; Bilston, Lynne E.; Cheng, Shaokoon

    2017-01-01

    Introduction Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Methods Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Results Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P < 0.001 for both) but there were no significant changes in cranial cross-sectional area (Spearman, P = 0.35), cortical gray matter stiffness (Spearman, P = 0.24) and caudate-putamen (Spearman, P = 0.11) stiffness. No significant changes in the size of brain structures were observed in the controls. Conclusions This study showed that although brain tissue in the adult hydrocephalic rats was severely compressed, their brain tissue stiffness did not change significantly

  1. Hypoxia-ischemia brain damage disrupts brain cholesterol homeostasis in neonatal rats.

    PubMed

    Yu, Z; Li, S; Lv, S H; Piao, H; Zhang, Y H; Zhang, Y M; Ma, H; Zhang, J; Sun, C K; Li, A P

    2009-08-01

    The first 3 weeks of life is the peak time of oligodendrocytes development and also the critical period of cholesterol increasing dramatically in central nervous system in rats. Neonatal hypoxia-ischemia (HI) brain damage happening in this period may disturb the brain cholesterol balance as well as white matter development. To test this hypothesis, postnatal day 7 (P7) Sprague-Dawley rats were subjected to HI insult. Cholesterol concentrations from brain and plasma were measured. White matter integrity was evaluated by densitometric analysis of myelin basic protein (MBP) immunostaining and electron microscopy. Brain TNF-alpha and IL-6 levels were also measured. HI-induced brain cholesterol, but not the plasma cholesterol, levels decreased significantly during the first three days after HI compared with naïve and sham operated rats (p<0.05). Obvious hypomyelination was indicated by marked reductions in MBP immunostaining on both P10 and P14 (p<0.01) and less and thinner myelinated axons were detected on P21 by electron microscopy observation. High expressions of brain TNF-alpha and IL-6 12 h after HI (p<0.05) were also observed. The present work provides evidence that HI insult destroyed brain cholesterol homeostasis, which might be important in the molecular pathology of hypoxic-ischemic white matter injury. Proinflammatory cytokines insulting oligodendrocytes, may cause cholesterol unbalance. Furthermore, specific therapeutic interventions to maintain brain cholesterol balance may be effective for the recovery of white matter function. Georg Thieme Verlag KG Stuttgart New York.

  2. Development of antibodies against the rat brain somatostatin receptor.

    PubMed

    Theveniau, M; Rens-Domiano, S; Law, S F; Rougon, G; Reisine, T

    1992-05-15

    Somatostatin (SRIF) is a neurotransmitter in the brain involved in the regulation of motor activity and cognition. It induces its physiological actions by interacting with receptors. We have developed antibodies against the receptor to investigate its structural properties. Rabbit polyclonal antibodies were generated against the rat brain SRIF receptor. These antibodies (F4) were able to immunoprecipitate solubilized SRIF receptors from rat brain and the cell line AtT-20. The specificity of the interaction of these antibodies with SRIF receptors was further demonstrated by immunoblotting. F4 detected SRIF receptors of 60 kDa from rat brain and adrenal cortex and the cell lines AtT-20, GH3, and NG-108, which express high densities of SRIF receptors. They did not detect immunoreactive material from rat liver or COS-1, HEPG, or CRL cells, which do not express functional SRIF receptors. In rat brain, 60-kDa immunoreactivity was detected by F4 in the hippocampus, cerebral cortex, and striatum, which have high densities of SRIF receptors. However, F4 did not interact with proteins from cerebellum and brain stem, which express few SRIF receptors. Immunoreactive material cannot be detected in rat pancreas or pituitary, which have been reported to express a 90-kDa SRIF receptor subtype. The selective detection of 60-kDa SRIF receptors by F4 indicates that the 60- and 90-kDa SRIF receptor subtypes are immunologically distinct. The availability of antibodies that selectively detect native and denatured brain SRIF receptors provides us with a feasible approach to clone the brain SRIF receptor gene(s).

  3. Calorie restriction attenuates cardiac remodeling and diastolic dysfunction in a rat model of metabolic syndrome.

    PubMed

    Takatsu, Miwa; Nakashima, Chieko; Takahashi, Keiji; Murase, Tamayo; Hattori, Takuya; Ito, Hiromi; Murohara, Toyoaki; Nagata, Kohzo

    2013-11-01

    Calorie restriction (CR) can modulate the features of obesity-related metabolic and cardiovascular diseases. We have recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of metabolic syndrome. DS/obese rats develop hypertension and manifest left ventricular remodeling and diastolic dysfunction, as well as increased cardiac oxidative stress and inflammation. We have now investigated the effects of CR on cardiac pathophysiology in DS/obese rats. DS/obese rats were fed either normal laboratory chow ad libitum or a calorie-restricted diet (65% of the average food intake for ad libitum) from 9 to 13 weeks. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+) or DS/lean) littermates served as controls. CR reduced body weight in both DS/obese and DS/lean rats, as well as attenuated the development of hypertension in DS/obese rats without affecting blood pressure in DS/lean rats. CR also reduced body fat content, ameliorated left ventricular hypertrophy, fibrosis, and diastolic dysfunction, and attenuated cardiac oxidative stress and inflammation in DS/obese rats. In addition, it increased serum adiponectin concentration, as well as downregulated the expression of angiotensin-converting enzyme and angiotensin II type 1A receptor genes in the heart of DS/obese rats. Our results thus show that CR attenuated obesity and hypertension, as well as left ventricular remodeling and diastolic dysfunction in DS/obese rats, with these latter effects being associated with reduced cardiac oxidative stress and inflammation.

  4. Thalidomide attenuates learning and memory deficits induced by intracerebroventricular administration of streptozotocin in rats.

    PubMed

    Elçioğlu, Hk; Kabasakal, L; Alan, S; Salva, E; Tufan, F; Karan, Ma

    2013-05-01

    Neuroinflammatory responses caused by amyloid β (Aβ) peptide deposits are involved in the pathogenesis of Alzheimer's disease (AD). Thalidomide has a significant anti-inflammatory effect by inhibiting TNF-α, which plays role in Aβ neurotoxicity. We investigated the effect of thalidomide on AD-like cognitive deficits caused by intracerebroventricular injection of streptozotocin (STZ). Intraperitoneal thalidomide was administered 1 h before the first dose of STZ and continued for 21 days. Learning and memory behavior was evaluated on days 17, 18 and 19, and the rats were sacrificed on day 21 to examine histopathological changes. STZ injection caused a significant decrease in the mean escape latency in passive avoidance and decreased improvement of performance in Morris water maze tests. Histopathological changes were examined using hematoxylin-eosin and Bielschowsky staining. Brain sections of STZ treated rats showed increased neurodegeneration and disturbed linear arrangement of cells in the cortical area compared to controls. Thalidomide treatment attenuated significantly STZ induced cognitive impairment and histopathological changes. Thalidomide appears to provide neuroprotection from the memory deficits and neuronal damage induced by STZ.

  5. Blocking leukotriene synthesis attenuates the pathophysiology of traumatic brain injury and associated cognitive deficits

    PubMed Central

    Corser-Jensen, Chelsea E.; Goodell, Dayton J.; Freund, Ronald K.; Serbedzija, Predrag; Murphy, Robert C.; Farias, Santiago E.; Dell'Acqua, Mark L.; Frey, Lauren C.; Serkova, Natalie; Heidenreich, Kim A.

    2014-01-01

    Neuroinflammation is a component of secondary injury following traumatic brain injury (TBI) that can persist beyond the acute phase. Leukotrienes are potent, pro-inflammatory lipid mediators generated from membrane phospholipids. In the absence of injury, leukotrienes are undetectable in brain, but after trauma they are rapidly synthesized by a transcellular event involving infiltrating neutrophils and endogenous brain cells. Here, we investigate the efficacy of MK-886, an inhibitor of 5-lipoxygenase activating protein (FLAP), in blocking leukotriene synthesis, secondary brain damage, synaptic dysfunction, and cognitive impairments after TBI. Male Sprague Dawley rats (9-11 weeks) received either MK-886 or vehicle after they were subjected to unilateral moderate fluid percussion injury (FPI) to assess the potential clinical use of FLAP inhibitors for TBI. MK-886 was also administered before FPI to determine the preventative potential of FLAP inhibitors. MK-886 given before or after injury significantly blocked the production of leukotrienes, measured by reverse-phase liquid chromatography coupled to tandem mass spectrometry (RP LC-MS/MS), and brain edema, measured by T2-weighted magnetic resonance imaging (MRI). MK-886 significantly attenuated blood-brain barrier disruption in the CA1 hippocampal region and deficits in long-term potentiation (LTP) at CA1 hippocampal synapses. The prevention of FPI-induced synaptic dysfunction by MK-886 was accompanied by fewer deficits in post-injury spatial learning and memory performance in the radial arms water maze (RAWM). These results indicate that leukotrienes contribute significantly to secondary brain injury and subsequent cognitive deficits. FLAP inhibitors represent a novel anti-inflammatory approach for treating human TBI that is feasible for both intervention and prevention of brain injury and neurologic deficits. PMID:24681156

  6. Attenuation of arsenic neurotoxicity by curcumin in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Rajesh S.; Sankhwar, Madhu Lata; Shukla, Rajendra K.

    2009-11-01

    In view of continued exposure to arsenic and associated human health risk including neurotoxicity, neuroprotective efficacy of curcumin, a polyphenolic antioxidant, has been investigated in rats. A significant decrease in locomotor activity, grip strength (26%) and rota-rod performance (82%) was observed in rats treated with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) as compared to controls. The arsenic treated rats also exhibited a decrease in the binding of striatal dopamine receptors (32%) and tyrosine hydroxylase (TH) immunoreactivity (19%) in striatum. Increased arsenic levels in corpus striatum (6.5 fold), frontal cortex (6.3 fold) and hippocampus (7.0 fold) associatedmore » with enhanced oxidative stress in these brain regions, as evident by an increase in lipid perioxidation, protein carbonyl and a decrease in the levels of glutathione and activity of superoxide dismutase, catalase and glutathione peroxidase with differential effects were observed in arsenic treated rats compared to controls. Simultaneous treatment with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) and curcumin (100 mg/kg body weight, p.o., 28 days) caused an increase in locomotor activity and grip strength and improved the rota-rod performance in comparison to arsenic treated rats. Binding of striatal dopamine receptors and TH expression increased while arsenic levels and oxidative stress decreased in these brain regions in co-treated rats as compared to those treated with arsenic alone. No significant effect on any of these parameters was observed in rats treated with curcumin (100 mg/kg body weight, p.o., 28 days) alone compared to controls. A significant protection in behavioral, neurochemical and immunohistochemical parameters in rats simultaneously treated with arsenic and curcumin suggest the neuroprotective efficacy of curcumin.« less

  7. Therapeutic hypothermia attenuates tissue damage and cytokine expression after traumatic brain injury by inhibiting necroptosis in the rat.

    PubMed

    Liu, Tao; Zhao, Dong-xu; Cui, Hua; Chen, Lei; Bao, Ying-hui; Wang, Yong; Jiang, Ji-yao

    2016-04-15

    Necroptosis has been shown as an alternative form of cell death in many diseases, but the detailed mechanisms of the neuron loss after traumatic brain injury (TBI) in rodents remain unclear. To investigate whether necroptosis is induced after TBI and gets involved in the neuroprotecton of therapeutic hypothermia on the TBI, we observed the pathological and biochemical change of the necroptosis in the fluid percussion brain injury (FPI) model of the rats. We found that receptor-interacting protein (RIP) 1 and 3, and mixed lineage kinase domain-like protein (MLKL), the critical downstream mediators of necroptosis recently identified in vivo, as well as HMGB1 and the pro-inflammation cytokines TNF-α, IL-6 and IL-18, were increased at an early phase (6 h) in cortex after TBI. Posttraumatic hypothermia (33 °C) led to the decreases in the necroptosis regulators, inflammatory factors and brain tissue damage in rats compared with normothermia-treated TBI animals. Immunohistochemistry studies showed that posttraumatic hypothermia also decreased the necroptosis-associated proteins staining in injured cortex and hippocampal CA1. Therefore, we conclude that the RIP1/RIP3-MLKL-mediated necroptosis occurs after experimental TBI and therapeutic hypothermia may protect the injured central nervous system from tissue damage and the inflammatory responses by targeting the necroptosis signaling after TBI.

  8. α-Amyrin attenuates high fructose diet-induced metabolic syndrome in rats.

    PubMed

    Prabhakar, Pankaj; Reeta, K H; Maulik, Subir Kumar; Dinda, Amit Kumar; Gupta, Yogendra Kumar

    2017-01-01

    This study investigated the effect of α-amyrin (a pentacyclic triterpene) on high-fructose diet (HFD)-induced metabolic syndrome in rats. Male Wistar rats were randomly distributed into different groups. The control group was fed normal rat chow diet. The HFD group was fed HFD (60%; w/w) for 42 days. Pioglitazone (10 mg/kg, orally, once daily) was used as a standard drug. α-Amyrin was administered in 3 doses (50, 100, and 200 mg/kg, orally, once daily along with HFD). Plasma glucose, total cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL-C) were estimated. Changes in blood pressure, oral glucose tolerance, and insulin tolerance were measured. Hepatic oxidative stress as well as messenger RNA (mRNA) and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) were analyzed. A significant increase in systolic blood pressure, plasma glucose, total cholesterol, and plasma triglycerides and a significant decrease in HDL-C were observed in HFD rats as compared with control rats. Glucose tolerance and insulin tolerance were also significantly impaired with HFD. α-Amyrin prevented these changes in a dose-dependent manner. Hepatic oxidative stress as well as micro- and macrovesicular fatty changes in hepatocytes caused by HFD were also attenuated by α-amyrin. α-Amyrin preserved the hepatic mRNA and protein levels of PPAR-α, which was reduced in HFD group. This study thus demonstrates that α-amyrin attenuates HFD-induced metabolic syndrome in rats.

  9. Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development.

    PubMed

    Ohta, Ken-Ichi; Suzuki, Shingo; Warita, Katsuhiko; Kaji, Tomohiro; Kusaka, Takashi; Miki, Takanori

    2017-04-01

    Maternal separation (MS) is known to affect hippocampal function such as learning and memory, yet the molecular mechanism remains unknown. We hypothesized that these impairments are attributed to abnormities of neural circuit formation by MS, and focused on brain-derived neurotrophic factor (BDNF) as key factor because BDNF signaling has an essential role in synapse formation during early brain development. Using rat offspring exposed to MS for 6 h/day during postnatal days (PD) 2-20, we estimated BDNF signaling in the hippocampus during brain development. Our results show that MS attenuated BDNF expression and activation of extracellular signal-regulated kinase (ERK) around PD 7. Moreover, plasticity-related immediate early genes, which are transcriptionally regulated by BDNF-ERK signaling, were also reduced by MS around PD 7. Interestingly, detailed analysis revealed that MS particularly reduced expression of BDNF gene and immediate early genes in the cornu ammonis 1 (CA1) of hippocampus at PD 7. Considering that BDNF-ERK signaling is involved in spine formation, we next evaluated spine formation in the hippocampus during the weaning period. Our results show that MS particularly reduced mature spine density in proximal apical dendrites of CA1 pyramidal neurons at PD 21. These results suggest that MS could attenuate BDNF-ERK signaling during primary synaptogenesis with a region-specific manner, which is likely to lead to decreased spine formation and maturation observed in the hippocampal CA1 region. It is speculated that this incomplete spine formation during early brain development has an influence on learning capabilities throughout adulthood. © 2017 International Society for Neurochemistry.

  10. An automatic rat brain extraction method based on a deformable surface model.

    PubMed

    Li, Jiehua; Liu, Xiaofeng; Zhuo, Jiachen; Gullapalli, Rao P; Zara, Jason M

    2013-08-15

    The extraction of the brain from the skull in medical images is a necessary first step before image registration or segmentation. While pre-clinical MR imaging studies on small animals, such as rats, are increasing, fully automatic imaging processing techniques specific to small animal studies remain lacking. In this paper, we present an automatic rat brain extraction method, the Rat Brain Deformable model method (RBD), which adapts the popular human brain extraction tool (BET) through the incorporation of information on the brain geometry and MR image characteristics of the rat brain. The robustness of the method was demonstrated on T2-weighted MR images of 64 rats and compared with other brain extraction methods (BET, PCNN, PCNN-3D). The results demonstrate that RBD reliably extracts the rat brain with high accuracy (>92% volume overlap) and is robust against signal inhomogeneity in the images. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. POST-RETRIEVAL EXTINCTION ATTENUATES ALCOHOL CUE REACTIVITY IN RATS

    PubMed Central

    Cofresí, Roberto U.; Lewis, Suzanne M.; Chaudhri, Nadia; Lee, Hongjoo J.; Monfils, Marie-H.; Gonzales, Rueben A.

    2017-01-01

    BACKGROUND Conditioned responses to alcohol-associated cues can hinder recovery from alcohol use disorder (AUD). Cue exposure (extinction) therapy (CET) can reduce reactivity to alcohol cues, but its efficacy is limited by phenomena such as spontaneous recovery and reinstatement that can cause a return of conditioned responding after extinction. Using a preclinical model of alcohol cue reactivity in rats, we evaluated whether the efficacy of alcohol CET could be improved by conducting CET during the memory reconsolidation window after retrieval of a cue-alcohol association. METHODS Rats were provided with intermittent access to unsweetened alcohol. Rats were then trained to predict alcohol access based on a visual cue. Next, rats were treated with either standard extinction (n=14) or post-retrieval extinction (n=13). Rats were then tested for long-term memory of extinction and susceptibility to spontaneous recovery and reinstatement. RESULTS Despite equivalent extinction, rats treated with post-retrieval extinction exhibited reduced spontaneous recovery and reinstatement relative to rats treated with standard extinction. CONCLUSIONS Post-retrieval CET shows promise for persistently attenuating the risk to relapse posed by alcohol cues in individuals with AUD. PMID:28169439

  12. Angiotensin peptides attenuate platelet-activating factor-induced inflammatory activity in rats.

    PubMed

    Sato, Akira; Yokoyama, Izumi; Ebina, Keiichi

    2015-11-01

    Angiotensin (Ang)--a peptide that is part of the renin-angiotensin system-induces vasoconstriction and a subsequent increase in blood pressure; Ang peptides, especially AngII, can also act as potent pro-inflammatory mediators. Platelet-activating factor (PAF) is a potent phospholipid mediator that is implicated in many inflammatory diseases. In this study, we investigated the effects of Ang peptides (AngII, AngIII, and AngIV) on PAF-induced inflammatory activity. In experiments using a rat hind-paw oedema model, AngII markedly and dose-dependently attenuated the paw oedema induced by PAF. The inhibitory effects of AngIII and AngIV on PAF-induced paw oedema were lower than that of AngII. Two Ang receptors, the AT1 and AT2 receptors, did not affect the AngII-mediated attenuation of PAF-induced paw oedema. Moreover, intrinsic tyrosine fluorescence studies demonstrated that AngII, AngIII, and AngIV interact with PAF, and that their affinities were closely correlated with their inhibitory effects on PAF-induced rat paw oedema. Also, AngII interacted with metabolite/precursor of PAF (lyso-PAF), and an oxidized phospholipid, 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), which bears a marked structural resemblance to PAF. Furthermore, POVPC dose-dependently inhibited AngII-mediated attenuation of PAF-induced paw oedema. These results suggest that Ang peptides can attenuate PAF-induced inflammatory activity through binding to PAF and lyso-PAF in rats. Therefore, Ang peptides may be closely involved in the regulation of many inflammatory diseases caused by PAF. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Vinpocetine attenuates MPTP-induced motor deficit and biochemical abnormalities in Wistar rats.

    PubMed

    Sharma, S; Deshmukh, R

    2015-02-12

    Up-regulation in phosphodiesterase 1 (PDE1) expression and decreased levels of cyclic nucleotides (cAMP and cGMP) have been reported in patients and experimental animal models of Parkinson's disease (PD). Phosphodiesterase (PDE) inhibitors have been reported to be beneficial in cognitive and motor deficit states. The present study is designed to investigate the effect of vinpocetine, a PDE1 inhibitor in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental PD-like symptoms in rats. To produce stable motor deficit, MPTP was repeatedly administered intranigrally (bilaterally) at an interval of 1 week (days 1, 7 and 14). Following development of stable motor deficit, which was observed after the third infusion of MPTP (day 14) in rats, the animals were treated with vinpocetine (5-, 10- and 20-mg/kg, i.p.) from days 15 to 28. Movement abnormalities were assessed by a battery of behavioral tests. Moreover, levels of malondialdehyde, nitrite and reduced glutathione were measured in striatal brain homogenate to confirm the role of oxidative and nitrosative stress in PD. Repeated intranigral administration of MPTP produced stable motor deficits, reduced the cyclic nucleotides and dopamine levels and caused elevation in oxidative-nitrosative stress markers. Chronic administration of vinpocetine (for 14 days) significantly and dose dependently attenuated movement disabilities and oxidative-nitrosative stress in MPTP-treated rats. Moreover, vinpocetine treatment enhances cyclic nucleotide levels and restores the dopamine level in MPTP-treated rats. The observed results of the present study are indicative of the therapeutic potential of vinpocetine in PD. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Krill oil attenuates left ventricular dilatation after myocardial infarction in rats.

    PubMed

    Fosshaug, Linn E; Berge, Rolf K; Beitnes, Jan O; Berge, Kjetil; Vik, Hogne; Aukrust, Pål; Gullestad, Lars; Vinge, Leif E; Øie, Erik

    2011-12-29

    In the western world, heart failure (HF) is one of the most important causes of cardiovascular mortality. Supplement with n-3 polyunsaturated fatty acids (PUFA) has been shown to improve cardiac function in HF and to decrease mortality after myocardial infarction (MI). The molecular structure and composition of n-3 PUFA varies between different marine sources and this may be of importance for their biological effects. Krill oil, unlike fish oil supplements, contains the major part of the n-3 PUFA in the form of phospholipids. This study investigated effects of krill oil on cardiac remodeling after experimental MI. Rats were randomised to pre-treatment with krill oil or control feed 14 days before induction of MI. Seven days post-MI, the rats were examined with echocardiography and rats in the control group were further randomised to continued control feed or krill oil feed for 7 weeks before re-examination with echocardiography and euthanization. The echocardiographic evaluation showed significant attenuation of LV dilatation in the group pretreated with krill oil compared to controls. Attenuated heart weight, lung weight, and levels of mRNA encoding classical markers of LV stress, matrix remodeling and inflammation reflected these findings. The total composition of fatty acids were examined in the left ventricular (LV) tissue and all rats treated with krill oil showed a significantly higher proportion of n-3 PUFA in the LV tissue, although no difference was seen between the two krill oil groups. Supplement with krill oil leads to a proportional increase of n-3 PUFA in myocardial tissue and supplement given before induction of MI attenuates LV remodeling.

  15. Sitagliptin attenuates sympathetic innervation via modulating reactive oxygen species and interstitial adenosine in infarcted rat hearts.

    PubMed

    Lee, Tsung-Ming; Chen, Wei-Ting; Yang, Chen-Chia; Lin, Shinn-Zong; Chang, Nen-Chung

    2015-02-01

    We investigated whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post-infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP-4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP-4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post-infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro-9-(2-hydroxy-3-nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8-cyclopentyl-1,3-dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase-dependent pathways, which converge through the attenuated formation of superoxide in the non-diabetic infarcted rats. © 2014 The Authors. Journal of Cellular and

  16. Hypobaric Hypoxia Regulates Brain Iron Homeostasis in Rats.

    PubMed

    Li, Yaru; Yu, Peng; Chang, Shi-Yang; Wu, Qiong; Yu, Panpan; Xie, Congcong; Wu, Wenyue; Zhao, Baolu; Gao, Guofen; Chang, Yan-Zhong

    2017-06-01

    Disruption of iron homeostasis in brain has been found to be closely involved in several neurodegenerative diseases. Recent studies have reported that appropriate intermittent hypobaric hypoxia played a protective role in brain injury caused by acute hypoxia. However, the mechanisms of this protective effect have not been fully understood. In this study, Sprague-Dawley (SD) rat models were developed by hypobaric hypoxia treatment in an altitude chamber, and the iron level and iron related protein levels were determined in rat brain after 4 weeks of treatment. We found that the iron levels significantly decreased in the cortex and hippocampus of rat brain as compared to that of the control rats without hypobaric hypoxia treatment. The expression levels of iron storage protein L-ferritin and iron transport proteins, including transferrin receptor-1 (TfR1), divalent metal transporter 1 (DMT1), and ferroportin1 (FPN1), were also altered. Further studies found that the iron regulatory protein 2 (IRP2) played a dominant regulatory role in the changes of iron hemostasis, whereas iron regulatory protein 1 (IRP1) mainly acted as cis-aconitase. These results, for the first time, showed the alteration of iron metabolism during hypobaric hypoxia in rat models, which link the potential neuroprotective role of hypobaric hypoxia treatment to the decreased iron level in brain. This may provide insight into the treatment of iron-overloaded neurodegenerative diseases. J. Cell. Biochem. 118: 1596-1605, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats.

    PubMed

    Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Jaiwongkam, Thidarat; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-10-15

    Dipeptidyl peptidase-4 inhibitor (vildagliptin) has been shown to exert beneficial effects on insulin sensitivity and neuroprotection in obese-insulin resistance. Recent studies demonstrated the neuroprotection of the sodium-glucose co-transporter 2 inhibitor (dapagliflozin) in diabetes. However, the comparative effects of both drugs and a combination of two drugs on metabolic dysfunction and brain dysfunction impaired by the obese-insulin resistance have never been investigated. Forty male Wistar rats were divided into two groups, and received either a normal-diet (ND, n=8) or a high-fat diet (HFD, n=32) for 16weeks. At week 13, the HFD-fed rats were divided into four subgroups (n=8/subgroup) to receive either a vehicle, vildagliptin (3mg/kg/day) dapagliflozin (1mg/kg/day) or combined drugs for four weeks. ND rats were given a vehicle for four weeks. Metabolic parameters and brain function were investigated. The results demonstrated that HFD rats developed obese-insulin resistance and cognitive decline. Dapagliflozin had greater efficacy on improved peripheral insulin sensitivity and reduced weight gain than vildagliptin. Single therapy resulted in equally improved brain mitochondrial function, insulin signaling, apoptosis and prevented cognitive decline. However, only dapagliflozin improved hippocampal synaptic plasticity. A combination of the drugs had greater efficacy in improving brain insulin sensitivity and reducing brain oxidative stress than the single drug therapy. These findings suggested that dapagliflozin and vildagliptin equally prevented cognitive decline in the obese-insulin resistance, possibly through some similar mechanisms. Dapagliflozin had greater efficacy than vildagliptin for preserving synaptic plasticity, thus combined drugs could be the best therapeutic approach for neuroprotection in the obese-insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. S-nitrosoglutathione reduces tau hyper-phosphorylation and provides neuroprotection in rat model of chronic cerebral hypoperfusion.

    PubMed

    Won, Je-Seong; Annamalai, Balasubramaniam; Choi, Seungho; Singh, Inderjit; Singh, Avtar K

    2015-10-22

    We have previously reported that treatment of rats subjected to permanent bilateral common carotid artery occlusion (pBCCAO), a model of chronic cerebral hypoperfusion (CCH), with S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier, improved cognitive functions and decreased amyloid-β accumulation in the brains. Since CCH has been implicated in tau hyperphosphorylation induced neurodegeneration, we investigated the role of GSNO in regulation of tau hyperphosphorylation in rat pBCCAO model. The rats subjected to pBCCAO had a significant increase in tau hyperphosphorylation with increased neuronal loss in hippocampal/cortical areas. GSNO treatment attenuated not only the tau hyperphosphorylation, but also the neurodegeneration in pBCCAO rat brains. The pBCCAO rat brains also showed increased activities of GSK-3β and Cdk5 (major tau kinases) and GSNO treatment significantly attenuated their activities. GSNO attenuated the increased calpain activities and calpain-mediated cleavage of p35 leading to production of p25 and aberrant Cdk5 activation. In in vitro studies using purified calpain protein, GSNO treatment inhibited calpain activities while 3-morpholinosydnonimine (a donor of peroxynitrite) treatment increased its activities, suggesting the opposing role of GSNO vs. peroxynitrite in regulation of calpain activities. In pBCCAO rat brains, GSNO treatment attenuated the expression of inducible nitric oxide synthase (iNOS) expression and also reduced the brain levels of nitro-tyrosine formation, thereby indicating the protective role of GSNO in iNOS/nitrosative-stress mediated calpain/tau pathologies under CCH conditions. Taken together with our previous report, these data support the therapeutic potential of GSNO, a biological NO carrier, as a neuro- and cognitive-protective agent under conditions of CCH. Published by Elsevier B.V.

  19. Ultra-low dose naltrexone attenuates chronic morphine-induced gliosis in rats.

    PubMed

    Mattioli, Theresa-Alexandra M; Milne, Brian; Cahill, Catherine M

    2010-04-16

    The development of analgesic tolerance following chronic morphine administration can be a significant clinical problem. Preclinical studies demonstrate that chronic morphine administration induces spinal gliosis and that inhibition of gliosis prevents the development of analgesic tolerance to opioids. Many studies have also demonstrated that ultra-low doses of naltrexone inhibit the development of spinal morphine antinociceptive tolerance and clinical studies demonstrate that it has opioid sparing effects. In this study we demonstrate that ultra-low dose naltrexone attenuates glial activation, which may contribute to its effects on attenuating tolerance. Spinal cord sections from rats administered chronic morphine showed significantly increased immuno-labelling of astrocytes and microglia compared to saline controls, consistent with activation. 3-D images of astrocytes from animals administered chronic morphine had significantly larger volumes compared to saline controls. Co-injection of ultra-low dose naltrexone attenuated this increase in volume, but the mean volume differed from saline-treated and naltrexone-treated controls. Astrocyte and microglial immuno-labelling was attenuated in rats co-administered ultra-low dose naltrexone compared to morphine-treated rats and did not differ from controls. Glial activation, as characterized by immunohistochemical labelling and cell size, was positively correlated with the extent of tolerance developed. Morphine-induced glial activation was not due to cell proliferation as there was no difference observed in the total number of glial cells following chronic morphine treatment compared to controls. Furthermore, using 5-bromo-2-deoxyuridine, no increase in spinal cord cell proliferation was observed following chronic morphine administration. Taken together, we demonstrate a positive correlation between the prevention of analgesic tolerance and the inhibition of spinal gliosis by treatment with ultra-low dose naltrexone

  20. Hydrogen-Rich Saline Attenuates Cardiac and Hepatic Injury in Doxorubicin Rat Model by Inhibiting Inflammation and Apoptosis

    PubMed Central

    2016-01-01

    Doxorubicin (DOX) remains the most effective anticancer agent which is widely used in several adult and pediatric cancers, but its application is limited for its cardiotoxicity and hepatotoxicity. Hydrogen, as a selective antioxidant, is a promising potential therapeutic option for many diseases. In this study, we found that intraperitoneal injection of hydrogen-rich saline (H2 saline) ameliorated the mortality, cardiac dysfunction, and histopathological changes caused by DOX in rats. Meanwhile, serum brain natriuretic peptide (BNP), aspartate transaminase (AST), alanine transaminase (ALT), albumin (ALB), tissue reactive oxygen species (ROS), and malondialdehyde (MDA) levels were also attenuated after H2 saline treatment. What is more, we further demonstrated that H2 saline treatment could inhibit cardiac and hepatic inflammation and apoptosis relative proteins expressions by western blotting test. In conclusion, our results revealed a protective effect of H2 saline on DOX-induced cardiotoxicity and hepatotoxicity in rats by inhibiting inflammation and apoptosis. PMID:28104928

  1. Attenuated neuroendocrine responses to emotional and physical stressors in pregnant rats involve adenohypophysial changes

    PubMed Central

    Neumann, I D; Johnstone, H A; Hatzinger, M; Liebsch, G; Shipston, M; Russell, J A; Landgraf, R; Douglas, A J

    1998-01-01

    The responsiveness of the rat hypothalamo-pituitary-adrenal (HPA) axis and hypothalamo-neurohypophysial system (HNS) to emotional (elevated plus-maze) and physical (forced swimming) stressors and to administration of synthetic corticotrophin-releasing hormone (CRH) was investigated during pregnancy and lactation. In addition to pregnancy-related adaptations at the adenohypophysial level, behavioural responses accompanying the neuroendocrine changes were studied. Whereas basal (a.m.) plasma corticosterone, but not corticotrophin (adrenocorticotrophic hormone; ACTH), levels were increased on the last day (i.e. on day 22) of pregnancy, the stress-induced rise in both plasma hormone concentrations was increasingly attenuated with the progression of pregnancy beginning on day 15 and reaching a minimum on day 21 compared with virgin control rats. A similar attenuation of responses to both emotional and physical stressors was found in lactating rats. Although the basal plasma oxytocin concentration was elevated in late pregnancy, the stress-induced rise in oxytocin secretion was slightly lower in day 21 pregnant rats. In contrast to vasopressin, oxytocin secretion was increased by forced swimming in virgin and early pregnant rats indicating a differential stress response of these neurohypophysial hormones. The blunted HPA response to stressful stimuli is partly due to alterations at the level of corticotrophs in the adenohypophysis, as ACTH secretion in response to CRH in vivo (40 ng kg−1, i.v.) was reduced with the progression of pregnancy and during lactation. In vitro measurement of cAMP levels in pituitary segments demonstrated reduced basal levels of cAMP and a lower increase after CRH stimulation (10 nm, 10 min) in day 21 pregnant compared with virgin rats, further indicating reduced corticotroph responsiveness to CRH in pregnancy. The reduced pituitary response to CRH in late pregnancy is likely to be a consequence of a reduction in CRH receptor binding as

  2. Melatonin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress.

    PubMed

    Lin, Yu Wen; Chen, Tsung Ying; Hung, Chia Yang; Tai, Shih Huang; Huang, Sheng Yang; Chang, Che Chao; Hung, Hsin Yi; Lee, E Jian

    2018-07-01

    Endoplasmic reticulum (ER) stress plays a vital role in mediating ischemic reperfusion damage in brain. In this study, we evaluated whether melatonin inhibits ER stress in cultured neurons exposed to oxygen and glucose deprivation (OGD) and in rats subjected to transient focal cerebral ischemia. Sprague-Dawley rats were treated with melatonin (5 mg/kg) or control at reperfusion onset after transient occlusion of the right middle cerebral artery (MCA) for 90 min. Brain infarction and hemorrhage within infarcts were measured. The expression of ER stress proteins of phosphorylation of PRKR‑like endoplasmic reticulum kinase (p-PERK), phosphorylation of eukaryotic translation initiation factor 2α (p-eIF2α), activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) were detected by western blotting and immunohistochemistry analysis. The terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) method, cleaved caspase-3 and cytochrome c were used to investigate cell apoptosis in OGD-induced cultured neurons. Our results demonstrated that animals treated with melatonin had significantly reduced infarction volumes and individual cortical lesion sizes as well as increased numbers of surviving neurons. Melatonin can significantly modulate protein levels by decreasing both p-PERK and p-eIF2α in the ischemic core and penumbra. Moreover, the expressions of ATF4 and CHOP were restrained in the ischemic core and penumbra, respectively. Furthermore, pretreatment with melatonin at 10-100 µM effectively reduced the levels of p-PERK and p-eIF2α in cultured neurons after OGD injury. Melatonin treatment also effectively decreased neuron apoptosis resulting from OGD-induced neuron injury. These results indicate that melatonin effectively attenuated post-ischemic ER stress after ischemic stroke.

  3. Attenuation of Oxidative Damage by Boerhaavia diffusa L. Against Different Neurotoxic Agents in Rat Brain Homogenate.

    PubMed

    Ayyappan, Prathapan; Palayyan, Salin Raj; Kozhiparambil Gopalan, Raghu

    2016-01-01

    Due to a high rate of oxidative metabolic activity in the brain, intense production of reactive oxygen metabolite occurs, and the subsequent generation of free radicals is implicated in the pathogenesis of traumatic brain injury, epilepsy, and ischemia as well as chronic neurodegenerative diseases. In the present study, protective effects of polyphenol rich ethanolic extract of Boerhaavia diffusa (BDE), a neuroprotective edible medicinal plant against oxidative stress induced by different neurotoxic agents, were evaluated. BDE was tested against quinolinic acid (QA), 3-nitropropionic acid (NPA), sodium nitroprusside (SNP), and Fe (II)/EDTA complex induced oxidative stress in rat brain homogenates. QA, NPA, SNP, and Fe (II)/EDTA treatment caused an increased level of thiobarbituric acid reactive substances (TBARS) in brain homogenates along with a decline in the activities of antioxidant enzymes. BDE treatment significantly decreased the production of TBARS (p < .05) and increased the activities of antioxidant enzymes like catalase and superoxide dismutase along with increased concentration of non-enzymatic antioxidant, reduced glutathione (GSH). Similarly, BDE caused a significant decrease in the lipid peroxidation (LPO) in the cerebral cortex. Inhibitory potential of BDE against deoxyribose degradation (IC50 value 38.91 ± 0.12 μg/ml) shows that BDE can protect hydroxyl radical induced DNA damage in the tissues. Therefore, B. diffusa had high antioxidant potential that could inhibit the oxidative stress induced by different neurotoxic agents in brain. Since many of the neurological disorders are associated with free radical injury, these data may imply that B. diffusa, functioning as an antioxidant agent, may be beneficial for reducing various neurodegenerative complications.

  4. Electroacupuncture ameliorates post-stroke learning and memory through minimizing ultrastructural brain damage and inhibiting the expression of MMP-2 and MMP-9 in cerebral ischemia-reperfusion injured rats.

    PubMed

    Lin, Ruhui; Yu, Kunqiang; Li, Xiaojie; Tao, Jing; Lin, Yukun; Zhao, Congkuai; Li, Chunyan; Chen, Li-Dian

    2016-07-01

    The aim of the present study was to investigate the potential neuroprotective effects of electroacupuncture (EA) in the treatment of cerebral ischemia/reperfusion (I/R) injury, and to elucidate the association between this neuroprotective effect and brain ultrastructure and expression of matrix metalloproteinase (MMP)‑2 and 9. Rats underwent focal cerebral I/R injury by arterial ligation and received in vivo therapeutic EA at the Baihui (DU20) and Shenting (DU24) acupoints. The therapeutic efficacy was then evaluated following the surgery. The results of the current study demonstrated that EA treatment significantly ameliorated neurological deficits and reduced cerebral infarct volume compared with I/R injured rats. Furthermore, EA improved the learning and memory ability of rats following I/R injury, inhibited blood brain barrier breakdown and reduced neuronal damage in the ischemic penumbra. Furthermore, EA attenuated ultrastructural changes in the brain tissue following ischemia and inhibited MMP‑2/MMP‑9 expression in cerebral I/R injured rats. The results suggest that EA ameliorates anatomical deterioration, and learning and memory deficits in rats with cerebral I/R injury.

  5. Effects of Chronic Ghrelin Treatment on Hypoxia-Induced Brain Oxidative Stress and Inflammation in a Rat Normobaric Chronic Hypoxia Model.

    PubMed

    Omrani, Hasan; Alipour, Mohammad Reza; Farajdokht, Fereshteh; Ebrahimi, Hadi; Mesgari Abbasi, Mehran; Mohaddes, Gisou

    2017-06-01

    Omrani, Hasan, Mohammad Reza Alipour, Fereshteh Farajdokht, Hadi Ebrahimi, Mehran Mesgari Abbasi, and Gisou Mohaddes. Effects of chronic ghrelin treatment on hypoxia-induced brain oxidative stress and inflammation in a rat normobaric chronic hypoxia model. High Alt Med Biol. 18:145-151, 2017. This study aimed to evaluate the probable antioxidant effects of ghrelin in the brain and serum and its effect on tumor necrosis factor-alpha (TNF-α) levels in the brain in a model of chronic systemic hypoxia in rats. Systemic hypoxia was induced by a normobaric hypoxic chamber (O 2 11%) for ten days. Adult male Wistar rats were divided into control (C), chronic ghrelin (80 μg/kg/10 days) (Ghr), chronic hypoxia (CH), and CH and ghrelin (80 μg/kg/ip/10 days) (CH + Gh) groups. The activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and malondialdehyde (MDA), total antioxidant capacity, and TNF-α levels were assessed in the serum and brain tissue. Our results showed that chronic ghrelin administration attenuated the CH-increased oxidative stress by decreasing MDA levels in the serum and brain tissue. Moreover, ghrelin enhanced the antioxidant defense against hypoxia-induced oxidative stress in the serum and brain tissue. Brain TNF-α levels in CH did not change significantly; however, ghrelin significantly (p < 0.001) decreased it. These results indicated that ghrelin promoted antioxidative and anti-inflammatory defense under chronic exposure to hypoxia. Therefore, ghrelin might be used as a potential therapy in normobaric hypoxia and oxidative stress induced by CH.

  6. A novel antipyretic action of 15-deoxy-Delta12,14-prostaglandin J2 in the rat brain.

    PubMed

    Mouihate, Abdeslam; Boissé, Lysa; Pittman, Quentin J

    2004-02-11

    Fever is an important part of the host defense response, yet fever can be detrimental if it is uncontrolled. We provide the first evidence that 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), an endogenous ligand for peroxisome proliferator-activated receptor gamma (PPARgamma), can attenuate the febrile response to lipopolysaccharide (LPS) in rats via an action on the brain. Furthermore, we show that PPARgamma is expressed in the hypothalamus, an important locus in the brain for fever generation. In addition, 15d-PGJ2 and its synthesizing enzyme (PGD2 synthase) were present in rat cerebrospinal fluid, and their levels were enhanced in response to systemic injection of LPS. The antipyretic effect of 15d-PGJ2 was associated with reduction in LPS-stimulated cyclooxygenase-2 expression in the hypothalamus but not in p44/p42 mitogen-activated protein kinase phosphorylation or in the expression of the PPARgamma. Thus it is likely that there is a parallel induction of an endogenous prostanoid pathway in the brain capable of limiting deleterious actions of the proinflammatory prostaglandin E2-dependent pathway.

  7. Preventive dietary potassium supplementation in young salt-sensitive Dahl rats attenuates development of salt hypertension by decreasing sympathetic vasoconstriction.

    PubMed

    Zicha, J; Dobešová, Z; Behuliak, M; Kuneš, J; Vaněčková, I

    2011-05-01

    Increased potassium intake attenuates the development of salt-dependent hypertension, but the detailed mechanisms of blood pressure (BP) reduction are still unclear. The aims of our study were (i) to elucidate these mechanisms, (ii) to compare preventive potassium effects in immature and adult animals and (iii) to evaluate the therapeutic effects of dietary potassium supplementation in rats with established salt hypertension.   Young (4-week-old) and adult (24-week-old) female salt-sensitive Dahl rats were fed a high-salt diet (5% NaCl) or a high-salt diet supplemented with 3% KCl for 5 weeks. The participation of vasoconstrictor (renin-angiotensin and sympathetic nervous systems) and vasodilator systems [prostanoids, Ca(2+) -activated K(+) channels, nitric oxide (NO)] was evaluated using a sequential blockade of these systems. Preventive potassium supplementation attenuated the development of severe salt hypertension in young rats, whereas it had no effects on BP in adult rats with moderate hypertension. Enhanced sympathetic vasoconstriction was responsible for salt hypertension in young rats and its attenuation for potassium-induced BP reduction. Conversely, neither salt hypertension nor its potassium-induced attenuation were associated with significant changes of the vasodilator systems studied. The relative deficiency of vasodilator action of NO and Ca(2+) -activated K(+) channels in salt hypertensive Dahl rats was not improved by potassium supplementation. The attenuation of enhanced sympathetic vasoconstriction is the principal mechanism of antihypertensive action exerted by preventive potassium supplementation in immature Dahl rats. Dietary potassium supplementation has no preventive effects on BP in adult salt-loaded animals or no therapeutic effects on established salt hypertension in young rats. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  8. Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine.

    PubMed

    Banerjee, S; Poddar, M K

    2016-04-05

    Monoamine neurotransmitter, serotonin (5-HT) has its own specific receptors in both pre- and post-synapse. In the present study the role of carnosine on aging-induced changes of [(3)H]-5-HT receptor binding in different brain regions in a rat model was studied. The results showed that during aging (18 and 24 months) the [(3)H]-5-HT receptor binding was reduced in hippocampus, hypothalamus and pons-medulla with a decrease in their both Bmax and KD but in cerebral cortex the [(3)H]-5-HT binding was increased with the increase of its only Bmax. The aging-induced changes in [(3)H]-5-HT receptor binding with carnosine (2.0 μg/kg/day, intrathecally, for 21 consecutive days) attenuated in (a) 24-month-aged rats irrespective of the brain regions with the attenuation of its Bmax except hypothalamus where both Bmax and KD were significantly attenuated, (b) hippocampus and hypothalamus of 18-month-aged rats with the attenuation of its Bmax, and restored toward the [(3)H]-5-HT receptor binding that observed in 4-month-young rats. The decrease in pons-medullary [(3)H]-5-HT binding including its Bmax of 18-month-aged rats was promoted with carnosine without any significant change in its cerebral cortex. The [(3)H]-5-HT receptor binding with the same dosages of carnosine in 4-month-young rats (a) increased in the cerebral cortex and hippocampus with the increase in their only Bmax whereas (b) decreased in hypothalamus and pons-medulla with a decrease in their both Bmax and KD. These results suggest that carnosine treatment may (a) play a preventive role in aging-induced brain region-specific changes in serotonergic activity (b) not be worthy in 4-month-young rats in relation to the brain regional serotonergic activity. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. BDNF action in the brain attenuates diabetic hyperglycemia via insulin-independent inhibition of hepatic glucose production.

    PubMed

    Meek, Thomas H; Wisse, Brent E; Thaler, Joshua P; Guyenet, Stephan J; Matsen, Miles E; Fischer, Jonathan D; Taborsky, Gerald J; Schwartz, Michael W; Morton, Gregory J

    2013-05-01

    Recent evidence suggests that central leptin administration fully normalizes hyperglycemia in a rodent model of uncontrolled insulin-deficient diabetes by reducing hepatic glucose production (HGP) and by increasing glucose uptake. The current studies were undertaken to determine whether brain-derived neurotrophic factor (BDNF) action in the brain lowers blood glucose in uncontrolled insulin-deficient diabetes and to investigate the mechanisms mediating this effect. Adult male rats implanted with cannulas to either the lateral cerebral ventricle or the ventromedial hypothalamic nucleus (VMN) received either vehicle or streptozotocin to induce uncontrolled insulin-deficient diabetes. Three days later, animals received daily intracerebroventricular or intra-VMN injections of either BDNF or its vehicle. We found that repeated daily intracerebroventricular administration of BDNF attenuated diabetic hyperglycemia independent of changes in food intake. Instead, using tracer dilution techniques during a basal clamp, we found that BDNF lowered blood glucose levels by potently suppressing HGP, without affecting tissue glucose uptake, an effect associated with normalization of both plasma glucagon levels and hepatic expression of gluconeogenic genes. Moreover, BDNF microinjection directly into the VMN also lowered fasting blood glucose levels in uncontrolled insulin-deficient diabetes, but this effect was modest compared with intracerebroventricular administration. We conclude that central nervous system BDNF attenuates diabetic hyperglycemia via an insulin-independent mechanism. This action of BDNF likely involves the VMN and is associated with inhibition of glucagon secretion and a decrease in the rate of HGP.

  10. Performance Enhancement of the RatCAP Awake Rate Brain PET System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaska, P.; Vaska, P.; Woody, C.

    The first full prototype of the RatCAP PET system, designed to image the brain of a rat while conscious, has been completed. Initial results demonstrated excellent spatial resolution, 1.8 mm FWHM with filtered backprojection and <1.5 mm FWHM with a Monte Carlo based MLEM method. However, noise equivalent countrate studies indicated the need for better timing to mitigate the effect of randoms. Thus, the front-end ASIC has been redesigned to minimize time walk, an accurate coincidence time alignment method has been implemented, and a variance reduction technique for the randoms is being developed. To maximize the quantitative capabilities required formore » neuroscience, corrections are being implemented and validated for positron range and photon noncollinearity, scatter (including outside the field of view), attenuation, randoms, and detector efficiency (deadtime is negligible). In addition, a more robust and compact PCI-based optical data acquisition system has been built to replace the original VME-based system while retaining the linux-based data processing and image reconstruction codes. Finally, a number of new animal imaging experiments have been carried out to demonstrate the performance of the RatCAP in real imaging situations, including an F-18 fluoride bone scan, a C-11 raclopride scan, and a dynamic C-11 methamphetamine scan.« less

  11. Swimming attenuates d-galactose-induced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics.

    PubMed

    Kou, Xianjuan; Li, Jie; Liu, Xingran; Chang, Jingru; Zhao, Qingxia; Jia, Shaohui; Fan, Jingjing; Chen, Ning

    2017-06-01

    microRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. To explore the regulatory role of miR-34a in aging-related diseases such as Alzheimer's disease (AD) during exercise intervention, we constructed a rat model with d-galactose (d-gal)-induced oxidative stress and cognitive impairment coupled with dysfunctional autophagy and abnormal mitochondrial dynamics, determined the mitigation of cognitive impairment of d-gal-induced aging rats during swimming intervention, and evaluated miR-34a-mediated functional status of autophagy and abnormal mitochondrial dynamics. Meanwhile, whether the upregulation of miR-34a can lead to dysfunctional autophagy and abnormal mitochondrial dynamics was confirmed in human SH-SY5Y cells with silenced miR-34a by the transfection of a miR-34a inhibitor. Results indicated that swimming intervention could significantly attenuate cognitive impairment, prevent the upregulation of miR-34a, mitigate the dysfunctional autophagy, and inhibit the increase of dynamin-related protein 1 (DRP1) in d-gal-induced aging model rats. In contrast, the miR-34a inhibitor in cell model not only attenuated D-gal-induced the impairment of autophagy but also decreased the expression of DRP1 and mitofusin 2 (MFN2). Therefore, swimming training can delay brain aging of d-gal-induced aging rats through attenuating the impairment of miR-34a-mediated autophagy and abnormal mitochondrial dynamics, and miR-34a could be the novel therapeutic target for aging-related diseases such as AD. NEW & NOTEWORTHY In the present study, we have found that the upregulation of miR-34a is the hallmark of aging or aging-related diseases, which can result in dysfunctional autophagy and abnormal mitochondrial dynamics. In contrast, swimming intervention can delay the aging process by rescuing the impaired functional status of autophagy and abnormal mitochondrial dynamics via the suppression of miR-34a. Copyright © 2017 the American Physiological Society.

  12. [Expression of c-jun protein after experimental rat brain concussion].

    PubMed

    Wang, Feng; Li, Yong-hong

    2010-02-01

    To observe e-jun protein expression after rat brain concussion and explore the forensic pathologic markers following brain concussion. Fifty-five rats were randomly divided into brain concussion group and control group. The expression of c-jun protein was observed by immunohistochemistry. There were weak positive expression of c-jun protein in control group. In brain concussion group, however, some neutrons showed positive expression of c-jun protein at 15 min after brain concussion, and reach to the peak at 3 h after brain concussion. The research results suggest that detection of c-jun protein could be a marker to determine brain concussion and estimate injury time after brain concussion.

  13. Visuospatial asymmetries and interocular transfer in the split-brain rat.

    PubMed

    Adelstein, A; Crowne, D P

    1991-06-01

    Interocular transfer (IOT), hemispheric superiority, and cerebral dominance were examined in split-brain female albino rats. Callosum-sectioned and intact animals were monocularly trained in the Morris water maze and tested in IOT and reversal phases. In the IOT phase, split-brain rats entered more nontarget quadrants and headed less accurately toward the platform than did controls. For both split-brain animals and controls, right-eye training resulted in shorter latencies and fewer nontarget entries than did left-eye training. Analyses of cerebral dominance showed shorter latencies and smaller heading errors over all 3 phases in rats that were trained with the nondominant eye. Right-eye dominant controls were less affected by platform reversal. Split-brain rats were inferior to controls in latency to find the platform and in target quadrant entries. This finding establishes a spatial cognitive deficit from callosum section.

  14. Postconditioning with repeated mild hypoxia protects neonatal hypoxia-ischemic rats against brain damage and promotes rehabilitation of brain function.

    PubMed

    Deng, Qingqing; Chang, Yanqun; Cheng, Xiaomao; Luo, Xingang; Zhang, Jing; Tang, Xiaoyuan

    2018-05-01

    Mild hypoxia conditioning induced by repeated episodes of transient ischemia is a clinically applicable method for protecting the brain against injury after hypoxia-ischemic brain damage. To assess the effect of repeated mild hypoxia postconditioning on brain damage and long-term neural functional recovery after hypoxia-ischemic brain damage. Rats received different protocols of repeated mild hypoxia postconditioning. Seven-day-old rats with hypoxia ischemic brain damage (HIBD) from the left carotid ligation procedure plus 2 h hypoxic stress (8% O 2 at 37 °C) were further receiving repeated mild hypoxia intermittently. The gross anatomy, functional analyses, hypoxia inducible factor 1 alpha (HIF-1a) expression, and neuronal apoptosis of the rat brains were subsequently examined. Compared to the HIBD group, rats postconditioned with mild hypoxia had elevated HIF-1a expression, more Nissl-stain positive cells in their brain tissue and their brains functioned better in behavioral analyses. The recovery of the brain function may be directly linked to the inhibitory effect of HIF-1α on neuronal apoptosis. Furthermore, there were significantly less neuronal apoptosis in the hippocampal CA1 region of the rats postconditioned with mild hypoxia, which might also be related to the higher HIF-1a expression and better brain performance. Overall, these results suggested that postconditioning of neonatal rats after HIBD with mild hypoxia increased HIF-1a expression, exerted a neuroprotective effect and promoted neural functional recovery. Repeated mild hypoxia postconditioning protects neonatal rats with HIBD against brain damage and improves neural functional recovery. Our results may have clinical implications for treating infants with HIBD. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Lipid Emulsion Attenuates Acetylcholine-Induced Relaxation in Isolated Rat Aorta

    PubMed Central

    Ok, Seong-Ho; Lee, Soo Hee; Yu, Jongsun; Park, Jungchul; Shin, Il-Woo; Lee, Youngju; Cho, Hyunhoo; Choi, Mun-Jeoung; Baik, Jiseok; Hong, Jeong-Min; Han, Jeong Yeol; Lee, Heon Keun; Chung, Young-Kyun; Sohn, Ju-Tae

    2015-01-01

    We investigated the effect of Lipofundin MCT/LCT and Intralipid on acetylcholine-induced nitric oxide- (NO-) mediated relaxation in rat aorta to determine which lipid emulsion (LE) is more potent in terms of inhibition of NO-induced relaxation. Dose-response curves of responses induced by acetylcholine, the calcium ionophore A23187, and sodium nitroprusside were generated using isolated rat aorta with or without LE. The effect of Lipofundin MCT/LCT on acetylcholine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells (HUVECs) was investigated using western blotting. Lipofundin MCT/LCT (0.1 and 0.2%) attenuated acetylcholine-induced relaxation in endothelium-intact aorta with or without tiron, whereas 0.2% Intralipid only inhibited relaxation. Lipofundin MCT/LCT inhibited relaxation induced by the calcium ionophore A23187 and sodium nitroprusside in endothelium-intact aorta, but Lipofundin MCT/LCT had no effect on sodium nitroprusside-induced relaxation in the endothelium-denuded aorta. Combined pretreatment with l-arginine plus Lipofundin MCT/LCT increased acetylcholine-induced maximal relaxation in endothelium-intact aorta compared with Lipofundin MCT/LCT alone. l-Arginine attenuated Lipofundin MCT/LCT-mediated inhibition of acetylcholine-induced eNOS phosphorylation in HUVECs. Taken together, Lipofundin MCT/LCT attenuated acetylcholine-induced NO-mediated relaxation via an inhibitory effect on the endothelium including eNOS, which is proximal to activation of guanylyl cyclase. PMID:26273653

  16. Lipid Emulsion Attenuates Acetylcholine-Induced Relaxation in Isolated Rat Aorta.

    PubMed

    Ok, Seong-Ho; Lee, Soo Hee; Yu, Jongsun; Park, Jungchul; Shin, Il-Woo; Lee, Youngju; Cho, Hyunhoo; Choi, Mun-Jeoung; Baik, Jiseok; Hong, Jeong-Min; Han, Jeong Yeol; Lee, Heon Keun; Chung, Young-Kyun; Sohn, Ju-Tae

    2015-01-01

    We investigated the effect of Lipofundin MCT/LCT and Intralipid on acetylcholine-induced nitric oxide- (NO-) mediated relaxation in rat aorta to determine which lipid emulsion (LE) is more potent in terms of inhibition of NO-induced relaxation. Dose-response curves of responses induced by acetylcholine, the calcium ionophore A23187, and sodium nitroprusside were generated using isolated rat aorta with or without LE. The effect of Lipofundin MCT/LCT on acetylcholine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells (HUVECs) was investigated using western blotting. Lipofundin MCT/LCT (0.1 and 0.2%) attenuated acetylcholine-induced relaxation in endothelium-intact aorta with or without tiron, whereas 0.2% Intralipid only inhibited relaxation. Lipofundin MCT/LCT inhibited relaxation induced by the calcium ionophore A23187 and sodium nitroprusside in endothelium-intact aorta, but Lipofundin MCT/LCT had no effect on sodium nitroprusside-induced relaxation in the endothelium-denuded aorta. Combined pretreatment with l-arginine plus Lipofundin MCT/LCT increased acetylcholine-induced maximal relaxation in endothelium-intact aorta compared with Lipofundin MCT/LCT alone. L-Arginine attenuated Lipofundin MCT/LCT-mediated inhibition of acetylcholine-induced eNOS phosphorylation in HUVECs. Taken together, Lipofundin MCT/LCT attenuated acetylcholine-induced NO-mediated relaxation via an inhibitory effect on the endothelium including eNOS, which is proximal to activation of guanylyl cyclase.

  17. Effects of CT-based attenuation correction of rat microSPECT images on relative myocardial perfusion and quantitative tracer uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strydhorst, Jared H., E-mail: jared.strydhorst@gmail.com; Ruddy, Terrence D.; Wells, R. Glenn

    2015-04-15

    Purpose: Our goal in this work was to investigate the impact of CT-based attenuation correction on measurements of rat myocardial perfusion with {sup 99m}Tc and {sup 201}Tl single photon emission computed tomography (SPECT). Methods: Eight male Sprague-Dawley rats were injected with {sup 99m}Tc-tetrofosmin and scanned in a small animal pinhole SPECT/CT scanner. Scans were repeated weekly over a period of 5 weeks. Eight additional rats were injected with {sup 201}Tl and also scanned following a similar protocol. The images were reconstructed with and without attenuation correction, and the relative perfusion was analyzed with the commercial cardiac analysis software. The absolutemore » uptake of {sup 99m}Tc in the heart was also quantified with and without attenuation correction. Results: For {sup 99m}Tc imaging, relative segmental perfusion changed by up to +2.1%/−1.8% as a result of attenuation correction. Relative changes of +3.6%/−1.0% were observed for the {sup 201}Tl images. Interscan and inter-rat reproducibilities of relative segmental perfusion were 2.7% and 3.9%, respectively, for the uncorrected {sup 99m}Tc scans, and 3.6% and 4.3%, respectively, for the {sup 201}Tl scans, and were not significantly affected by attenuation correction for either tracer. Attenuation correction also significantly increased the measured absolute uptake of tetrofosmin and significantly altered the relationship between the rat weight and tracer uptake. Conclusions: Our results show that attenuation correction has a small but statistically significant impact on the relative perfusion measurements in some segments of the heart and does not adversely affect reproducibility. Attenuation correction had a small but statistically significant impact on measured absolute tracer uptake.« less

  18. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats.

    PubMed

    Li, Peng; Huang, Pei-Pei; Yang, Yun; Liu, Chi; Lu, Yan; Wang, Fang; Sun, Wei; Kong, Xiang-Qing

    2017-01-01

    Li P, Huang P, Yang Y, Liu C, Lu Y, Wang F, Sun W, Kong X. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats. J Appl Physiol 122: 121-129, 2017. First published October 14, 2016; doi:10.1152/japplphysiol.01019.2015-Sympathetic activity is enhanced in patients with essential or secondary hypertension, as well as in various hypertensive animal models. Therapeutic targeting of sympathetic activation is considered an effective antihypertensive strategy. We hypothesized that renal sympathetic denervation (RSD) attenuates hypertension and improves vascular remodeling and renal disease in the 2-kidney, 1-clip (2K1C) rat model. Rats underwent 2K1C modeling or sham surgery; then rats underwent RSD or sham surgery 4 wk later, thus resulting in four groups (normotensive-sham, normotensive-RSD, 2K1C-sham, and 2K1C-RSD). Norepinephrine was measured by ELISA. Echocardiography was used to assess heart function. Fibrosis and apoptosis were assessed by Masson and TUNEL staining. Changes in mean arterial blood pressure in response to hexamethonium and plasma norepinephrine levels were used to evaluate basal sympathetic nerve activity. The 2K1C modeling success rate was 86.8%. RSD reversed the elevated systolic blood pressure induced by 2K1C, but had no effect on body weight. Compared with rats in the 2K1C-sham group, rats in the 2K1C-RSD group showed lower left ventricular mass/body weight ratio, interventricular septal thickness in diastole, left ventricular end-systolic diameter, and left ventricular posterior wall thickness in systole, whereas fractional shortening and ejection fraction were higher. Right kidney apoptosis and left kidney hypertrophy were not changed by RSD. Arterial fibrosis was lower in animals in the 2K1C-RSD group compared with those in the 2K1C-sham group. RSD reduced plasma norepinephrine and basal sympathetic activity in rats in the 2K1C-RSD group compared with rats in the 2K1C-sham group. These

  19. The selective kappa-opioid receptor agonist U50,488H attenuates voluntary ethanol intake in the rat.

    PubMed

    Lindholm, S; Werme, M; Brené, S; Franck, J

    2001-05-01

    Non-selective opioid receptor antagonists are increasingly used in the treatment of alcohol dependence. The clinical effects are significant but the effect size is rather small and unpleasant side effects may limit the benefits of the compounds. Ligands acting at mu- and/or delta- receptors can alter the voluntary intake of ethanol in various animal models. Therefore, the attenuating effects of selective opioid receptor ligands on ethanol intake may be of clinical interest in the treatment of alcoholism. The objective of this study was to examine the effects of a selective kappa-receptor agonist, U50,488H on voluntary ethanol intake in the rat. We used a restricted access model with a free choice between an ethanol solution (10% v/v) and water. During the 3-days baseline period, the rats received a daily saline injection (1 ml/kg, i.p.) 15 min before the 2 h access to ethanol. The animals had free access to water at all times. The control group received a daily saline injection during the 4-days treatment-period, whereas the treatment groups received a daily dose of U50,488H (2.5, 5.0 or 10 mg/kg per day). Animals treated with U50,488H dose-dependently decreased their ethanol intake. The effect of the highest dose of U50,488H was reduced by pre-treatment with the selective kappa-antagonist nor-binaltorphimine (nor-BNI). These results demonstrate that activation of kappa-opioid receptors can attenuate voluntary ethanol intake in the rat, and the data suggest that the brain dynorphin/kappa-receptor systems may represent a novel target for pharmacotherapy in the treatment of alcohol dependence.

  20. Effects of Ecballium elaterium on brain in a rat model of sepsis-associated encephalopathy

    PubMed Central

    Arslan, Demet; Ekinci, Aysun; Arici, Akgul; Bozdemir, Eda; Akil, Esref; Ozdemir, Hasan Huseyin

    2017-01-01

    ABSTRACT Despite recent advances in antibiotic therapy, sepsis remains a major clinical challenge in intensive care units. Here we examined the anti-inflammatory and antioxidant effects of Ecballium elaterium (EE) on brain, and explored its therapeutic potential in an animal model of sepsis-associated encephalopathy (SAE) [induced by cecal ligation and puncture (CLP)]. Thirty rats were divided into three groups of 10 each: control, sepsis, and treatment. Rats were subjected to CLP except for the control group, which underwent laparatomy only. The treatment group received 2.5 mg/kg EE while the sepsis group was administered by saline. Twenty-four hours after laparotomy, animals were sacrificied and the brains were removed. Brain homogenates were prepared to assess interleukin 1beta (IL-1β), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), total antioxidant capacity (TAC), and total oxidant status (TOS). Brain tissue sections were stained by hematoxylin and eosin (H&E) to semi-quantitatively examine the histopathologic changes such as neuron degeneration, pericellular/perivascular edema and inflammatory cell infiltration in the cerebral cortex. We found a statistically significant reduction in brain tissue homogenate levels of TNF-α 59.5 ± 8.4/50.2 ± 6.2 (p = 0.007) and TOS 99.3 ± 16.9/82.3 ± 7.8 (p = 0.01) in rats treated with EE; although interleukin 6 levels were increased in the treatment group compared to the sepsis group, this was not statistically significant. Neuronal damage (p = 0.00), pericellular/perivascular edema and inflammatory cell infiltration (p = 0.001) were also significantly lower in the treatment group compared to those in the sepsis group. These data suggest that Ecballium elaterium contains some components that exert protective effects against SAE in part by attenuating accumulation of proinflammatory cytokines, which may be important contributors to its anti-inflammatory effects during sepsis. PMID:28859554

  1. L-glutamate microinjection in the preoptic area increases brain and body temperature in freely moving rats.

    PubMed

    Sengupta, Trina; Jaryal, Ashok K; Kumar, Velayudhan M; Mallick, Hruda N

    2014-01-08

    The role of the preoptic area (POA) in thermoregulation is well documented. Microinjection of various neurotransmitters into the POA in rats has been shown to influence body temperature. Alhough there are reports showing changes in temperature on administration of L-glutamate into the POA, the role of this excitatory amino acid in thermoregulation has not been studied in unanaesthetized rats. In the present study, brain and body temperatures were recorded in freely moving adult male Wistar rats with K-type thermocouple implanted near the hypothalamus and temperature transmitter implanted inside the peritoneum. Recordings were performed 2 h preinjection and 4 h postinjection. L-glutamate (0.14 nM) microinjection into the POA induced long-lasting hyperthermia and reduced locomotor activity. The rats remained curled up and showed piloerection. L-glutamate-induced hyperthermia was attenuated by previous injection of the ionotropic L-glutamate receptor antagonist, kynurenate (0.11 nM). We propose that L-glutamate in the POA participates not only in heat production and conservation but also plays a role in interlinking sleep and thermoregulation.

  2. Ethyl pyruvate protects against blood-brain barrier damage and improves long-term neurological outcomes in a rat model of traumatic brain injury.

    PubMed

    Shi, Hong; Wang, Hai-Lian; Pu, Hong-Jian; Shi, Ye-Jie; Zhang, Jia; Zhang, Wen-Ting; Wang, Guo-Hua; Hu, Xiao-Ming; Leak, Rehana K; Chen, Jun; Gao, Yan-Qin

    2015-04-01

    Many traumatic brain injury (TBI) survivors sustain neurological disability and cognitive impairments due to the lack of defined therapies to reduce TBI-induced long-term brain damage. Ethyl pyruvate (EP) has shown neuroprotection in several models of acute brain injury. The present study therefore investigated the potential beneficial effect of EP on long-term outcomes after TBI and the underlying mechanisms. Male adult rats were subjected to unilateral controlled cortical impact injury. EP was injected intraperitoneally 15 min after TBI and again at 12, 24, 36, 48, and 60 h after TBI. Neurological deficits, blood-brain barrier (BBB) integrity, and neuroinflammation were assessed. Ethyl pyruvate improved sensorimotor and cognitive functions and ameliorated brain tissue damage up to 28 day post-TBI. BBB breach and brain edema were attenuated by EP at 48 h after TBI. EP suppressed matrix metalloproteinase (MMP)-9 production from peripheral neutrophils and reduced the number of MMP-9-overproducing neutrophils in the spleen, and therefore mitigated MMP-9-mediated BBB breakdown. Moreover, EP exerted potent antiinflammatory effects in cultured microglia and inhibited the elevation of inflammatory mediators in the brain after TBI. Ethyl pyruvate confers long-term neuroprotection against TBI, possibly through breaking the vicious cycle among MMP-9-mediated BBB disruption, neuroinflammation, and long-lasting brain damage. © 2014 John Wiley & Sons Ltd.

  3. Brain glucose content in fetuses of ethanol-fed rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pullen, G.; Singh, S.P.; Snyder, A.K.

    1986-03-01

    The authors have previously demonstrated impaired placental glucose transfer and fetal hypoglycemia in association with ethanol ingestion by pregnant rats. The present study examines the relationship between glucose availability and fetal brain growth under the same conditions. Rats (EF) were fed ethanol (30% of caloric intake) in liquid diet throughout gestation. Controls received isocaloric diet without ethanol by pair-feeding (PF) or ad libitum (AF). On the 22nd day of gestation fetuses were obtained by cesarean section. Fetal brains were removed and freeze-clamped. Brain weight was significantly reduced (p < 0.001) by maternal ethanol ingestion (206 +/- 2, 212 +/- 4more » and 194 +/- 2 mg in AF, FP and EF fetuses respectively). Similarly, fetal brain glucose content was lower (p < 0.05) in the EF group (14.3 +/- 0.9 mmoles/g dry weight) than in the PF (18.6 +/- 1.0) or the AF (16.2 +/- 0.9) groups. The protein: DNA ratio, an indicator of cell size, correlated positively (r = 0.371, p < 0.005) with brain glucose content. In conclusion, maternal ethanol ingestion resulted in lower brain weight and reduced brain glucose content. Glucose availability may be a significant factor in the determination of cell size in the fetal rat brain.« less

  4. Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xin-Ai; Jia, Lin-Lin; Cui, Wei

    We hypothesized that chronic inhibition of tumor necrosis factor-alpha (TNF-α) in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), decreasing nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase activities, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusion of a TNF-α blocker (pentoxifylline or etanercept) or vehicle for 4 weeks. SHR rats showed higher mean arterial pressure and cardiac hypertrophy compared with WKY rats, as indicated by increased whole heartmore » weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC) mRNA expressions. Compared with WKY rats, SHR rats had higher PVN levels of tyrosine hydroxylase, PICs, the chemokine monocyte chemoattractant protein-1 (MCP-1), NF-κB p65 activity, mRNA expressions of NOX-2 and NOX-4, and lower PVN levels of IL-10 and 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma norepinephrine. PVN infusion of pentoxifylline or etanercept attenuated all these changes in SHR rats. These findings suggest that SHR rats have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN; and chronic inhibition of TNF-α in the PVN delays the progression of hypertension by restoring the balances of neurotransmitters and cytokines in the PVN, and attenuating PVN NF-κB p65 activity and oxidative stress, thereby attenuating hypertension-induced sympathetic hyperactivity and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN

  5. Hydrophilic solute transport across the rat blood-brain barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucchesi, K.J.

    1987-01-01

    Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB)more » was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of {sup 3}H-inulin and {sup 14}C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients.« less

  6. Differing effects of cyclosporin a on swelling amplitude and time constant of mitochondria from normal and ischemic rat brain.

    PubMed

    Wu, Li-Ping; Shen, Fang; Lu, Yuan; Bruce, Iain; Xia, Qiang

    2005-01-01

    The purpose of this study was to investigate the effect of cyclosporin A on swelling amplitude and time constant of mitochondria isolated from normal and ischemic rat brain and to observe the possible role of the mitochondrial ATP-sensitive potassium channel on mitochondrial permeability transition. Mitochondrial swelling was evaluated by spectrophotometry. Cyclosporin A at 0.5 or 1 microM and diazoxide at 30 microM significantly decreased the swelling amplitude and attenuated the reduction of time constant of mitochondria isolated from normal brain mitochondria induced by 200 microM calcium, an effect abolished by atractyloside at 100 microM. However, cyclosporin A at 5 microM did not affect mitochondrial swelling. In mitochondria from ischemic brain, cyclosporin A at 0.5 microM but not 1 microM significantly decreased mitochondrial swelling amplitude and attenuated the reduction of time constant, which was abolished by atractyloside. Diazoxide had an effect similar to cyclosporin A at 0.5 microM, which was blocked by atractyloside or 5-hydroxydecanoate at 100 microM and 200 microM. Compared with mitochondria isolated from normal brain, those from ischemic brain were more sensitive to cyclosporin A. Activation of the mitochondrial ATP-sensitive potassium channel may be one of the mechanisms by which opening of the mitochondrial permeability transition pore is inhibited.

  7. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, K.L.; Tyce, G.M.

    1983-04-01

    The metabolism of glucose in brains during sustained hypoglycemia was studied. (U-/sup 14/C)Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. Inmore » the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia.« less

  8. Sitagliptin decreases ventricular arrhythmias by attenuated glucose-dependent insulinotropic polypeptide (GIP)-dependent resistin signalling in infarcted rats.

    PubMed

    Lee, Tsung-Ming; Chen, Wei-Ting; Chang, Nen-Chung

    2016-01-25

    Myocardial infarction (MI) was associated with insulin resistance, in which resistin acts as a critical mediator. We aimed to determine whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, can attenuate arrhythmias by regulating resistin-dependent nerve growth factor (NGF) expression in postinfarcted rats. Normoglycaemic male Wistar rats after ligating coronary artery were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after operation. Post-infarction was associated with increased myocardial noradrenaline [norepinephrine (NE)] levels and sympathetic hyperinnervation. Compared with vehicle, sympathetic innervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis of tyrosine hydroxylase, growth-associated factor 43 and neurofilament and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Furthermore, sitagliptin was associated with reduced resistin expression and increased Akt activity. Ex vivo studies showed that glucose-dependent insulinotropic polypeptide (GIP) infusion, but not glucagon-like peptide-1 (GLP-1), produced similar reduction in resistin levels to sitagliptin in postinfarcted rats. Furthermore, the attenuated effects of sitagliptin on NGF levels can be reversed by wortmannin (a phosphatidylinositol 3-kinase antagonist) and exogenous resistin infusion. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation in the non-diabetic infarcted rats. Sitagliptin attenuated resistin expression via the GIP-dependent pathway, which inhibited sympathetic innervation through a signalling pathway involving phosphatidylinositol 3-kinase (PI3K) and Akt protein. © 2016 Authors.

  9. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.

    PubMed

    Banerjee, Soumyabrata; Poddar, Mrinal K

    2015-03-01

    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  10. Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats.

    PubMed

    Radad, Khaled; Hassanein, Khaled; Al-Shraim, Mubarak; Moldzio, Rudolf; Rausch, Wolf-Dieter

    2014-01-01

    The present study aims to investigate the protective effects of thymoquinone, the major active ingredient of Nigella sativa seeds, against lead-induced brain damage in Sprague-Dawley rats. In which, 40 rats were divided into four groups (10 rats each). The first group served as control. The second, third and fourth groups received lead acetate, lead acetate and thymoquinone, and thymoquinone only, respectively, for one month. Lead acetate was given in drinking water at a concentration of 0.5 g/l (500 ppm). Thymoquinone was given daily at a dose of 20mg/kg b.w. in corn oil by gastric tube. Control and thymoquinone-treated rats showed normal brain histology. Treatment of rats with lead acetate was shown to produce degeneration of endothelial lining of brain blood vessels with peri-vascular cuffing of mononuclear cells consistent to lymphocytes, congestion of choroid plexus blood vessels, ischemic brain infarction, chromatolysis and neuronal degeneration, microglial reaction and neuronophagia, degeneration of hippocampal and cerebellar neurons, and axonal demyelination. On the other hand, co-administration of thymoquinone with lead acetate markedly decreased the incidence of lead acetate-induced pathological lesions. Thus the current study shed some light on the beneficial effects of thymoquinone against neurotoxic effects of lead in rats. Copyright © 2013 Elsevier GmbH. All rights reserved.

  11. The effects of vitamin E on brain derived neurotrophic factor, tissues oxidative damage and learning and memory of juvenile hypothyroid rats.

    PubMed

    Baghcheghi, Yousef; Beheshti, Farimah; Shafei, Mohammad Naser; Salmani, Hossein; Sadeghnia, Hamid Reza; Soukhtanloo, Mohammad; Anaeigoudari, Akbar; Hosseini, Mahmoud

    2018-06-01

    The effects of vitamin E (Vit E) on brain derived neurotrophic factor (BDNF) and brain tissues oxidative damage as well as on learning and memory impairments in juvenile hypothyroid rats were examined. The rats were grouped as: (1) Control; (2) Propylthiouracil (PTU); (3) PTU-Vit E and (4) Vit E. PTU was added to their drinking water (0.05%) during 6 weeks. Vit E (20 mg/kg) was daily injected (IP). Morris water maze (MWM) and passive avoidance (PA) were carried out. The animals were deeply anesthetized and the brain tissues were removed for biochemical measurements. PTU increased the escape latency and traveled path in MWM (P < 0.001). It also shortened the latency to enter the dark compartment of PA as well as the time spent in the target quadrant in probe trial of MWM (P < 0.01-P < 0.001). All the effects of PTU were reversed by Vit E (P < 0.01-P < 0.001). PTU administration attenuated thiol and BDNF content as well as the activities of superoxide dismutase (SOD) and catalase (CAT) in the brain tissues while increased molondialdehyde (MDA). Moreover, Vit E improved BDNF, thiol, SOD and CAT while diminished MDA. The results of the present study showed that Vit E improved BDNF and prevented from brain tissues oxidative damage as well as learning and memory impairments in juvenile hypothyroid rats.

  12. Laser scattering by transcranial rat brain illumination

    NASA Astrophysics Data System (ADS)

    Sousa, Marcelo V. P.; Prates, Renato; Kato, Ilka T.; Sabino, Caetano P.; Suzuki, Luis C.; Ribeiro, Martha S.; Yoshimura, Elisabeth M.

    2012-06-01

    Due to the great number of applications of Low-Level-Laser-Therapy (LLLT) in Central Nervous System (CNS), the study of light penetration through skull and distribution in the brain becomes extremely important. The aim is to analyze the possibility of precise illumination of deep regions of the rat brain, measure the penetration and distribution of red (λ = 660 nm) and Near Infra-Red (NIR) (λ = 808 nm) diode laser light and compare optical properties of brain structures. The head of the animal (Rattus Novergicus) was epilated and divided by a sagittal cut, 2.3 mm away from mid plane. This section of rat's head was illuminated with red and NIR lasers in points above three anatomical structures: hippocampus, cerebellum and frontal cortex. A high resolution camera, perpendicularly positioned, was used to obtain images of the brain structures. Profiles of scattered intensities in the laser direction were obtained from the images. There is a peak in the scattered light profile corresponding to the skin layer. The bone layer gives rise to a valley in the profile indicating low scattering coefficient, or frontal scattering. Another peak in the region related to the brain is an indication of high scattering coefficient (μs) for this tissue. This work corroborates the use of transcranial LLLT in studies with rats which are subjected to models of CNS diseases. The outcomes of this study point to the possibility of transcranial LLLT in humans for a large number of diseases.

  13. The role of the cholinergic system in the signal attenuation rat model of obsessive-compulsive disorder.

    PubMed

    Yankelevitch-Yahav, Roni; Roni, Yankelevitch-Yahav; Joel, Dapha; Daphna, Joel

    2013-11-01

    In comparison to studies of the involvement of the serotonergic, dopaminergic, and glutamatergic systems in the pathophysiology of obsessive-compulsive disorder (OCD), research on the involvement of the cholinergic system in this disorder has remained sparse. The aim of this study was to test the role of the cholinergic system in compulsive behavior using the signal attenuation rat model of OCD. In this model, "compulsive" behavior is induced by attenuating a signal indicating that a lever-press response was effective in producing food. The acetylcholinesterase inhibitor physostigmine (0.05, 0.10, and 0.15 mg/kg), the nicotinic agonist nicotine (0.03, 0.06, 0.10, 0.30, 0.60, and 1.00 mg/kg), the nicotinic antagonist mecamylamine (1, 3, 5, and 8 mg/kg), the muscarinic agonist oxotremorine (0.0075, 0.0150, and 0.0300 mg/kg), and the muscarinic antagonist scopolamine (0.15, 0.50, 1.00, and 1.50 mg/kg) were acutely administered to rats just before assessing their lever-press responding following signal attenuation (experiments 1, 3, 5, 7, and 9, respectively). Because the effects of signal attenuation are assessed under extinction conditions, drug doses that were effective in the above experiments were also tested in an extinction session of lever-press responding that was not preceded by signal attenuation (experiments 2, 4, 6, 8, and 10). Acute systemic administration of the cholinergic agents did not exert a selective anti- or pro-compulsive effect in the signal attenuation model. Acetylcholine does not seem to play a role in the signal attenuation rat model of OCD.

  14. Agmatine attenuates methamphetamine-induced conditioned place preference in rats.

    PubMed

    Thorn, David A; Winter, Jerrold C; Li, Jun-Xu

    2012-04-05

    The polyamine agmatine modulates a variety of behavioral effects including the abuse-related effects of opioids and has been proposed as a potential medication candidate for the treatment of opioid abuse. However, little is known of the effects of agmatine on the abuse-related effects of other drugs of abuse. This study examined the effects of agmatine on the rewarding effects of methamphetamine in rats using a conditioned place preference paradigm. Methamphetamine (0.1-1.0mg/kg) dose-dependently increased the time spent in methamphetamine-paired side (place preference). Agmatine, at doses that did not produce place preference or aversion (10-32mg/kg), significantly decreased the development of methamphetamine-induced place preference when agmatine was administered in combination with methamphetamine during place conditioning. Agmatine also significantly decreased the expression of methamphetamine-induced place preference when an acute injection of agmatine was given immediately before test session. These doses of agmatine do not alter the motor activity in rats, suggesting that the observed attenuation of methamphetamine-induced place preference was not due to general behavioral disruption. Together, these data suggests that agmatine attenuates the rewarding effects of methamphetamine and may be able to modulate the abuse liability of methamphetamine. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Attenuation of hypertension and renal damage in renovascular hypertensive rats by iron restriction.

    PubMed

    Oboshi, Makiko; Naito, Yoshiro; Sawada, Hisashi; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Eguchi, Akiyo; Hirotani, Shinichi; Mano, Toshiaki; Tsujino, Takeshi; Masuyama, Tohru

    2016-12-01

    Iron is a catalyst in the formation of reactive oxygen species. Oxidative stress is associated with the pathogenesis of both human and experimental animal models of renovascular hypertension. We hypothesized that iron is involved in the pathogenesis of renovascular hypertension and that iron restriction may affect the pathogenesis of renovascular hypertension via the inhibition of oxidative stress. Herein, we investigated the effect of iron restriction on hypertension and renal damage in a rat model of two-kidney one-clip (2K1C) renovascular hypertension. Renovascular hypertension was induced by 2K1C in male Sprague-Dawley rats. At the day of clipping, 2K1C rats were divided into untreated (2K1C) and dietary iron-restricted groups (2K1C+IR). The 2K1C rats showed hypertension after the day of clipping, whereas dietary iron restriction attenuated the development of hypertension. Vascular hypertrophy and the increased fibrotic area were suppressed in the 2K1C+IR group. The clipped kidney developed renal atrophy in both the 2K1C and 2K1C+IR groups after clipping. However, the unclipped kidney showed renal hypertrophy in the 2K1C and 2K1C+IR groups, and the extent was less in the 2K1C+IR group. The 2K1C rats exhibited glomerulosclerosis and tubulointerstitial fibrosis in the unclipped kidney, whereas these changes were attenuated by an iron-restricted diet. Importantly, proteinuria was decreased in the 2K1C+IR group, along with decreased urinary 8-hydroxy-2'-deoxyguanosine excretion and superoxide production of the unclipped kidney. Moreover, the expression of nuclear mineralocorticoid receptor in the unclipped kidney of the 2K1C rats was attenuated by iron restriction. These data indicate a novel effect of iron restriction on hypertension and renal damage in renovascular hypertension.

  16. Treatment with tamoxifen reduces hypoxic-ischemic brain injury in neonatal rats.

    PubMed

    Feng, Yangzheng; Fratkins, Jonathan D; LeBlanc, Michael H

    2004-01-19

    Tamoxifen, an estrogen receptor modulator, is neuroprotective in adult rats. Does tamoxifen reduce brain injury in the rat pup? Seven-day-old rat pups had the right carotid artery permanently ligated followed by 2.5 h of hypoxia (8% oxygen). Tamoxifen (10 mg/kg) or vehicle was given i.p. 5 min prior to hypoxia, or 5 min after reoxygenation, with a second dose given 6 h after the first. Brain damage was evaluated by weight deficit of the right hemisphere 22 days following hypoxia and gross and microscopic morphology. Tamoxifen pre-treatment reduced brain weight loss from 21.5+/-4.0% in vehicle pups (n=27) to 2.6+/-2.5% in the treated pups (n=22, P<0.05). Treatment 5 min after reoxygenation reduced brain weight loss from 27.5+/-4.0% in vehicle pups (n=42) to 12.0+/-3.9% in the treated pups (n=30, P<0.05). Tamoxifen reduces brain injury in the neonatal rat.

  17. Ventral pallidum deep brain stimulation attenuates acute partial, generalized and tonic-clonic seizures in two rat models.

    PubMed

    Mahoney, Emily C; Zeng, Andrew; Yu, Wilson; Rowe, Mackenzie; Sahai, Siddhartha; Feustel, Paul J; Ramirez-Zamora, Adolfo; Pilitsis, Julie G; Shin, Damian S

    2018-05-01

    Approximately 30% of individuals with epilepsy are refractory to antiepileptic drugs and currently approved neuromodulatory approaches fall short of providing seizure freedom for many individuals with limited utility for generalized seizures. Here, we expand on previous findings and investigate whether ventral pallidum deep brain stimulation (VP-DBS) can be efficacious for various acute seizure phenotypes. For rats administered pilocarpine, we found that VP-DBS (50 Hz) decreased generalized stage 4/5 seizure median frequency from 9 to 6 and total duration from 1667 to 264 s even after generalized seizures emerged. The transition to brainstem seizures was prevented in almost all animals. VP-DBS immediately after rats exhibited their first partial forebrain stage 3 seizure did not affect the frequency of partial seizures but reduced median partial seizure duration from 271 to 54 s. Stimulation after partial seizures also reduced the occurrence and duration of secondarily generalized stage 4/5 seizures. VP-DBS prior to pilocarpine administration prevented the appearance of partial seizures in almost all animals. Lastly, VP-DBS delayed the onset of generalized tonic-clonic seizures (GTCSs) from 111 to 823 s in rats administered another chemoconvulsant, pentylenetetrazol (PTZ, 90 mg/kg). In this particular rat seizure model, stimulating electrodes placed more laterally in both VP hemispheres and more posterior in the left VP hemisphere provided greatest efficacy for GTCSs. In conclusion, our findings posit that VP-DBS can serve as an effective novel neuromodulatory approach for a variety of acute seizure phenotypes. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Neuroanatomy-based matrix-guided trimming protocol for the rat brain.

    PubMed

    Defazio, Rossella; Criado, Ana; Zantedeschi, Valentina; Scanziani, Eugenio

    2015-02-01

    Brain trimming through defined neuroanatomical landmarks is recommended to obtain consistent sections in rat toxicity studies. In this article, we describe a matrix-guided trimming protocol that uses channels to reproduce coronal levels of anatomical landmarks. Both setup phase and validation study were performed on Han Wistar male rats (Crl:WI(Han)), 10-week-old, with bodyweight of 298 ± 29 (SD) g, using a matrix (ASI-Instruments(®), Houston, TX) fitted for brains of rats with 200 to 400 g bodyweight. In the setup phase, we identified eight channels, that is, 6, 8, 10, 12, 14, 16, 19, and 21, matching the recommended landmarks midway to the optic chiasm, frontal pole, optic chiasm, infundibulum, mamillary bodies, midbrain, middle cerebellum, and posterior cerebellum, respectively. In the validation study, we trimmed the immersion-fixed brains of 60 rats using the selected channels to determine how consistently the channels reproduced anatomical landmarks. Percentage of success (i.e., presence of expected targets for each level) ranged from 89 to 100%. Where 100% success was not achieved, it was noted that the shift in brain trimming was toward the caudal pole. In conclusion, we developed and validated a trimming protocol for the rat brain that allow comparable extensiveness, homology, and relevance of coronal sections as the landmark-guided trimming with the advantage of being quickly learned by technicians. © 2014 by The Author(s).

  19. Dai-Kenchu-To, a Herbal Medicine, Attenuates Colorectal Distention-induced Visceromotor Responses in Rats

    PubMed Central

    Nakaya, Kumi; Nagura, Yohko; Hasegawa, Ryoko; Ito, Hitomi; Fukudo, Shin

    2016-01-01

    Background/Aims Dai-kenchu-to (DKT), a traditional Japanese herbal medicine, is known to increase gastrointestinal motility and improve ileal function. We tested our hypotheses that (1) pretreatment with DKT would block the colorectal distention-induced visceromotor response in rats, and (2) pretreatment with DKT would attenuate colorectal distention-induced adrenocorticotropic hormone (ACTH) release and anxiety-related behavior. Methods Rats were pretreated with vehicle or DKT (300 mg/kg/5 mL, per os). Visceromotor responses were analyzed using electromyography in response to colorectal distention (10, 20, 40, 60, and 80 mmHg for 20 seconds at 3-minutes intervals). Anxiety-related behavior was measured during exposure to an elevated-plus maze after colorectal distention. Plasma ACTH and serum corticosterone levels were measured after exposure to the elevated-plus maze. Results Colorectal distention produced robust contractions of the abdominal musculature, graded according to stimulus intensity, in vehicle-treated rats. At 40, 60, and 80 mmHg of colorectal distention, the visceromotor responses of DKT-treated rats was significantly lower than that of vehicle-treated rats. At 80 mmHg, the amplitude was suppressed to approximately one-third in DKT-treated rats, compared with that in vehicle-treated rats. Smooth muscle compliance and the velocity of accommodation to 60 mmHg of stretching did not significantly differ between the vehicle-treated and DKT-treated rats. Similarly, the DKT did not influence colorectal distention-induced ACTH release, corticosterone levels, or anxiety-related behavior in rats. Conclusions Our results suggest that DKT attenuates the colorectal distention-induced visceromotor responses, without increasing smooth muscle compliance, ACTH release or anxiety-related behavior in rats. PMID:27095743

  20. Dai-Kenchu-To, a Herbal Medicine, Attenuates Colorectal Distention-induced Visceromotor Responses in Rats.

    PubMed

    Nakaya, Kumi; Nagura, Yohko; Hasegawa, Ryoko; Ito, Hitomi; Fukudo, Shin

    2016-10-30

    Dai-kenchu-to (DKT), a traditional Japanese herbal medicine, is known to increase gastrointestinal motility and improve ileal function. We tested our hypotheses that (1) pretreatment with DKT would block the colorectal distention-induced visceromotor response in rats, and (2) pretreatment with DKT would attenuate colorectal distention-induced adrenocorticotropic hormone (ACTH) release and anxiety-related behavior. Rats were pretreated with vehicle or DKT (300 mg/kg/5 mL, per os). Visceromotor responses were analyzed using electromyography in response to colorectal distention (10, 20, 40, 60, and 80 mmHg for 20 seconds at 3-minutes intervals). Anxiety-related behavior was measured during exposure to an elevated-plus maze after colorectal distention. Plasma ACTH and serum corticosterone levels were measured after exposure to the elevated-plus maze. Colorectal distention produced robust contractions of the abdominal musculature, graded according to stimulus intensity, in vehicle-treated rats. At 40, 60, and 80 mmHg of colorectal distention, the visceromotor responses of DKT-treated rats was significantly lower than that of vehicle-treated rats. At 80 mmHg, the amplitude was suppressed to approximately one-third in DKT-treated rats, compared with that in vehicle-treated rats. Smooth muscle compliance and the velocity of accommodation to 60 mmHg of stretching did not significantly differ between the vehicle-treated and DKT-treated rats. Similarly, the DKT did not influence colorectal distention-induced ACTH release, corticosterone levels, or anxiety-related behavior in rats. Our results suggest that DKT attenuates the colorectal distention-induced visceromotor responses, without increasing smooth muscle compliance, ACTH release or anxiety-related behavior in rats.

  1. The 5-HT(1A) receptor agonist, 8-OH-DPAT, attenuates stress-induced anorexia in conjunction with the suppression of hypothalamic serotonin release in rats.

    PubMed

    Shimizu, N; Hori, T; Ogino, C; Kawanishi, T; Hayashi, Y

    2000-12-22

    The effect of the selective 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) on stress-induced anorexia and serotonin (5-HT) release in the rat hypothalamus was studied with brain microdialysis. Subcutaneous injection of 8-OH-DPAT (1 mg/kg) significantly attenuated the immobilization-induced anorexia for 3 h, but had no effect during the following 9 h. Injection of 8-OH-DPAT itself had no effect on basal release of 5-HT, while it significantly blocked the immobilization-induced 5-HT release in the lateral hypothalamus. The results suggest that 8-OH-DPAT attenuated the stress-induced anorexia through the activation of 5-HT(1A) autoreceptors in dorsal raphe nucleus.

  2. Prenatal choline supplementation attenuates spatial learning deficits of offspring rats exposed to low-protein diet during fetal period.

    PubMed

    Zhu, Cui-Hong; Wu, Ting; Jin, Yu; Huang, Bi-Xia; Zhou, Rui-Fen; Wang, Yi-Qin; Luo, Xiao-Lin; Zhu, Hui-Lian

    2016-06-01

    Prenatal intake of choline has been reported to lead to enhanced cognitive function in offspring, but little is known about the effects on spatial learning deficits. The present study examined the effects of prenatal choline supplementation on developmental low-protein exposure and its potential mechanisms. Pregnant female rats were fed either a normal or low-protein diet containing sufficient choline (1.1g/kg choline chloride) or supplemented choline (5.0g/kg choline chloride) until delivery. The Barnes maze test was performed at postnatal days 31-37. Choline and its metabolites, the synaptic structural parameters of the CA1 region in the brain of the newborn rat, were measured. The Barnes maze test demonstrated that prenatal low-protein pups had significantly greater error scale values, hole deviation scores, strategy scores and spatial search strategy and had lesser random search strategy values than normal protein pups (all P<.05). These alterations were significantly reversed by choline supplementation. Choline supplementation increased the brain levels of choline, betaine, phosphatidylethanolamine and phosphatidylcholine of newborns by 51.35% (P<.05), 33.33% (P<.001), 28.68% (P<.01) and 23.58% (P<.05), respectively, compared with the LPD group. Prenatal choline supplementation reversed the increased width of the synaptic cleft (P<.05) and decreased the curvature of the synaptic interface (P<.05) induced by a low-protein diet. Prenatal choline supplementation could attenuate the spatial learning deficits caused by prenatal protein malnutrition by increasing brain choline, betaine and phospholipids and by influencing the hippocampus structure. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Cobalt chloride attenuates hypobaric hypoxia induced vascular leakage in rat brain: Molecular mechanisms of action of cobalt chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalpana, S.; Dhananjay, S.; Anju, B.

    2008-09-15

    This study reports the efficacy of cobalt preconditioning in preventing hypobaric hypoxia induced vascular leakage (an indicator of cerebral edema) using male Sprague-Dawley rats as model system. Exposure of animals to hypobaric hypoxia led to a significant increase in vascular leakage, reactive oxygen species (ROS), nitric oxide (NO), and vascular endothelial growth factor (VEGF) levels. There was a marked increase in Nuclear Factor {kappa}B (NF{kappa}B) DNA binding activity and levels of pro-inflammatory cytokines such as Monocyte chemoattractant protein (MCP-1), Interferon-{gamma} (IFN-{gamma}), Interleukin-1 (IL-1), and Tumor Necrosis Factor-{alpha} (TNF-{alpha}) and cell adhesion molecules such as Vascular Cell Adhesion Molecule-1 (VCAM-1), andmore » P-selectin. Chemical preconditioning by cobalt for 7 days (12.5 mg Co/kg b.w., oral) significantly attenuated cerebral vascular leakage and the expression of inflammatory mediators induced by hypoxia. Administration of NF{kappa}B inhibitor, curcumin (50 mg/kg b.w.; i.p.) appreciably inhibited hypoxia induced vascular leakage indicating the involvement of NF{kappa}B in causing vascular leakage. Interestingly, cobalt when administered at 12.5 mg Co/kg b.w. (i.p.), 1 h before hypoxia could not prevent the vascular leakage indicating that cobalt per se did not have an effect on NF{kappa}B. The lower levels of NF{kappa}B observed in the brains of cobalt administered animals might be due to higher levels of antioxidant and anti-inflammatory proteins (hemeoxygenase-1 and metallothionein). To conclude cobalt preconditioning inhibited hypobaric hypoxia induced cerebral vascular leakage by lowering NF{kappa}B DNA binding activity and its regulated pro-inflammatory mediators. This is contemplated to be mediated by cobalt induced reduction in ROS/NO and increase in HO-1 and MT.« less

  4. Iron porphyrinate Fe(TPPS) reduces brain cell damage in rats intrastriatally lesioned by quinolinate.

    PubMed

    González-Cortés, Carolina; Salinas-Lara, Citlaltepetl; Gómez-López, Marcos Artemio; Tena-Suck, Martha Lilia; Pérez-De La Cruz, Verónica; Rembao-Bojórquez, Daniel; Pedraza-Chaverrí, José; Gómez-Ruiz, Celedonio; Galván-Arzate, Sonia; Ali, Syed F; Santamaría, Abel

    2008-01-01

    It has been recently demonstrated that the reactive nitrogen species (RNS) peroxynitrite (ONOO(-)) is involved in the neurotoxic pattern produced by quinolinic acid in the rat brain [V. Pérez-De La Cruz, C. González-Cortés, S. Galván-Arzate, O.N. Medina-Campos, F. Pérez-Severiano, S.F. Ali, J. Pedraza-Chaverrí, A. Santamaría, Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III), Neuroscience 135 (2005) 463-474.]. The aim of this work was to investigate whether ONOO(-) can also be responsible for morphological alterations and inflammatory events in the same paradigm. For this purpose, we evaluated the effect of a pre-treatment with the iron porphyrinate Fe(TPPS), a well-known ONOO(-) decomposition catalyst (10 mg/kg, i.p., 120 min before lesion), on the quinolinate-induced striatal cell damage and immunoreactivities to glial-fibrilar acidic protein (GFAP), interleukin 6 (IL-6) and inducible nitric oxide synthase (iNOS), one and seven days after the intrastriatal infusion of quinolinate (240 nmol/microl) to rats. The striatal tissue from animals lesioned by quinolinate showed a significant degree of damage and enhanced immunoreactivities to GFAP, IL-6 and iNOS, both at 1 and 7 days post-lesion. Pre-treatment of rats with Fe(TPPS) significantly attenuated or prevented all these markers at both post-lesion times tested, except for GFAP immunoreactivity at 7 days post-lesion and iNOS immunoreactivity at 1 day post-lesion. Altogether, our results suggest that ONOO(-) is actively participating in triggering inflammatory events and morphological alterations in the toxic model produced by quinolinate, since the use of agents affecting its formation, such as Fe(TPPS), are effective experimental tools to reduce the brain lesions associated to excitotoxic and oxidative damage.

  5. Rat strain differences in brain structure and neurochemistry in response to binge alcohol.

    PubMed

    Zahr, Natalie M; Mayer, Dirk; Rohlfing, Torsten; Hsu, Oliver; Vinco, Shara; Orduna, Juan; Luong, Richard; Bell, Richard L; Sullivan, Edith V; Pfefferbaum, Adolf

    2014-01-01

    Ventricular enlargement is a robust phenotype of the chronically dependent alcoholic human brain, yet the mechanism of ventriculomegaly is unestablished. Heterogeneous stock Wistar rats administered binge EtOH (3 g/kg intragastrically every 8 h for 4 days to average blood alcohol levels (BALs) of 250 mg/dL) demonstrate profound but reversible ventricular enlargement and changes in brain metabolites (e.g., N-acetylaspartate (NAA) and choline-containing compounds (Cho)). Here, alcohol-preferring (P) and alcohol-nonpreferring (NP) rats systematically bred from heterogeneous stock Wistar rats for differential alcohol drinking behavior were compared with Wistar rats to determine whether genetic divergence and consequent morphological and neurochemical variation affect the brain's response to binge EtOH treatment. The three rat lines were dosed equivalently and approached similar BALs. Magnetic resonance imaging and spectroscopy evaluated the effects of binge EtOH on brain. As observed in Wistar rats, P and NP rats showed decreases in NAA. Neither P nor NP rats, however, responded to EtOH intoxication with ventricular expansion or increases in Cho levels as previously noted in Wistar rats. Increases in ventricular volume correlated with increases in Cho in Wistar rats. The latter finding suggests that ventricular volume expansion is related to adaptive changes in brain cell membranes in response to binge EtOH. That P and NP rats responded differently to EtOH argues for intrinsic differences in their brain cell membrane composition. Further, differential metabolite responses to EtOH administration by rat strain implicate selective genetic variation as underlying heterogeneous effects of chronic alcoholism in the human condition.

  6. Regional rat brain noradrenaline turnover in response to restraint stress.

    PubMed

    Glavin, G B; Tanaka, M; Tsuda, A; Kohno, Y; Hoaki, Y; Nagasaki, N

    1983-08-01

    Male Wistar rats were starved for 12 hr and then subjected to either 2 hr of wire mesh "envelope" restraint at room temperature; 2 hr of supine restraint in a specially constructed harness at room temperature or were not restrained. Eight brain regions were examined for NA level and the level of its major metabolite, MHPG-SO4. Plasma corticosterone and gastric ulcer incidence were also measured. All restrained rats displayed marked elevations in MHPG-SO4 levels in most brain regions. In addition, several brain regions in restrained animals showed a reduction in NA level. All restrained rats showed elevated plasma corticosterone levels and evidence of gastric lesions. In general, supine restraint produced greater alterations in regional brain NA turnover, greater evidence of ulcer disease, and higher plasma corticosterone levels than did wire mesh restraint. These data suggest that acute but intense stress in the form of restraint causes markedly altered brain NA activity--a possible neurochemical mechanism underlying the phenomenon of stress-induced disease.

  7. Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury.

    PubMed

    Kim, Jae Young; Lee, Yong Woo; Kim, Jae Hwan; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2015-07-01

    Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.

  8. Anti-depressant effect of hesperidin in diabetic rats.

    PubMed

    El-Marasy, Salma A; Abdallah, Heba M I; El-Shenawy, Siham M; El-Khatib, Aiman S; El-Shabrawy, Osama A; Kenawy, Sanaa A

    2014-11-01

    This study aimed to investigate the anti-depressant effect of hesperidin (Hsp) in streptozotocin (STZ)-induced diabetic rats. Additionally, the effect of Hsp on hyperglycaemia, oxidative stress, inflammation, brain-derived neurotrophic factor (BDNF), and brain monoamines in diabetic rats was also assessed. The Wistar rats in the experimental groups were rendered hyperglycaemic with a single dose of STZ (52.5 mg·(kg body mass)(-1), by intraperitoneal injection). The normal group received the vehicle only. Hyperglycaemic rats were treated with Hsp (25.0, 50.0, or 100.0 mg·(kg body mass)(-1)·day(-1), per oral) and fluoxetine (Flu) (5.0 mg·(kg body mass)(-1)·day(-1), per oral) 48 h after the STZ injection, for 21 consecutive days. The normal and STZ control groups received the vehicle (distilled water). Behavioral and biochemical parameters were then assessed. When Hsp was administered to the STZ-treated rats, this reversed the STZ-induced increase in immobility duration in the forced swimming test (FST) and attenuated hyperglycaemia, decreased malondialdehyde (MDA), increased reduced glutathione (GSH) decreased interleukin-6 (IL-6), and increased BDNF levels in the brain. Treatment with Hsp attenuated STZ-induced neurochemical alterations, as indicated by increased levels of monoamines in the brain, namely, norepinephrine (NE), dopamine (DA), and serotonin (5-hydroxytryptamine; 5-HT). All of these effects of Hsp were similar to those observed with the established anti-depressant Flu. This study shows that Hsp exerted anti-depressant effect in diabetic rats, which may have been partly mediated by its amelioration of hyperglycaemia as well as its anti-oxidant and anti-inflammatory activities, the enhancement of neurogenesis, and changes in the levels of monoamines in the brain.

  9. Fenbendazole treatment may influence lipopolysaccharide effects in rat brain.

    PubMed

    Hunter, Randy L; Choi, Dong-Young; Kincer, Jeanie F; Cass, Wayne A; Bing, Guoying; Gash, Don M

    2007-10-01

    In evaluating discrepant results between experiments in our laboratory, we collected data that challenge the notion that anthelminthic drugs like FBZ do not alter inflammatory responses. We found that FBZ significantly modulates inflammation in F344 rats intrastriatally injected with LPS. FBZ treatment of LPS-injected rats significantly increased weight loss, microglial activation, and dopamine loss; in addition, FBZ attenuated the LPS-induced loss of astrocytes. Therefore, FBZ treatment altered the effects of LPS injection. Caution should be used in interpreting data collected from rats treated with LPS and FBZ.

  10. Fuel not fun: Reinterpreting attenuated brain responses to reward in obesity.

    PubMed

    Kroemer, Nils B; Small, Dana M

    2016-08-01

    There is a well-established literature linking obesity to altered dopamine signaling and brain response to food-related stimuli. Neuroimaging studies frequently report enhanced responses in dopaminergic regions during food anticipation and decreased responses during reward receipt. This has been interpreted as reflecting anticipatory "reward surfeit", and consummatory "reward deficiency". In particular, attenuated response in the dorsal striatum to primary food rewards is proposed to reflect anhedonia, which leads to overeating in an attempt to compensate for the reward deficit. In this paper, we propose an alternative view. We consider brain response to food-related stimuli in a reinforcement-learning framework, which can be employed to separate the contributions of reward sensitivity and reward-related learning that are typically entangled in the brain response to reward. Consequently, we posit that decreased striatal responses to milkshake receipt reflect reduced reward-related learning rather than reward deficiency or anhedonia because reduced reward sensitivity would translate uniformly into reduced anticipatory and consummatory responses to reward. By re-conceptualizing reward deficiency as a shift in learning about subjective value of rewards, we attempt to reconcile neuroimaging findings with the putative role of dopamine in effort, energy expenditure and exploration and suggest that attenuated brain responses to energy dense foods reflect the "fuel", not the fun entailed by the reward. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Chronic Methamphetamine Effects on Brain Structure and Function in Rats

    PubMed Central

    Thanos, Panayotis K.; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J.; Masad, Ihssan; Muniz, Jose A.; Grant, Samuel C.; Gold, Mark S.; Cadet, Jean Lud; Volkow, Nora D.

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA

  12. Chronic Methamphetamine Effects on Brain Structure and Function in Rats.

    PubMed

    Thanos, Panayotis K; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J; Masad, Ihssan; Muniz, Jose A; Grant, Samuel C; Gold, Mark S; Cadet, Jean Lud; Volkow, Nora D

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA

  13. White matter segmentation by estimating tissue optical attenuation from volumetric OCT massive histology of whole rodent brains

    NASA Astrophysics Data System (ADS)

    Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric

    2017-02-01

    A whole rodent brain was imaged using an automated massive histology setup and an Optical Coherence Tomography (OCT) microscope. Thousands of OCT volumetric tiles were acquired, each covering a size of about 2.5x2.5x0.8 mm3 with a sampling resolution of 4.9x4.9x6.5 microns. This paper shows the techniques for reconstruction, attenuation compensation and segmentation of the sliced brains. The tile positions within the mosaic were evaluated using a displacement model of the motorized stage and pairwise coregistration. Volume blending was then performed by solving the 3D Laplace equation, and consecutive slices were assembled using the cross-correlation of their 2D image gradient. This reconstruction algorithm resulted in a 3D map of optical reflectivity for the whole brain at micrometric resolution. OCT tissue slices were then used to estimate the local attenuation coefficient based on a single scattering photon model. The attenuation map obtained exhibits a high contrast for all white matter fibres, regardless of their orientation. The tissue optical attenuation from the intrinsic OCT reflectivity contributes to better white matter tissue segmentation. The combined 3D maps of reflectivity and attenuation is a step toward the study of white matter at a microscopic scale for the whole brain in small animals.

  14. TENS attenuates response to colon distension in paraplegic and quadriplegic rats.

    PubMed

    Collins, Heidi L; DiCarlo, Stephen E

    2002-10-01

    Individuals with spinal cord injuries above thoracic level 6 experience episodic bouts of life-threatening hypertension as part of a condition termed autonomic dysreflexia (AD). The hypertension can be caused by stimulation of the skin, distension of the urinary bladder or colon, and/or muscle spasms. Transcutaneous electrical nerve stimulation (TENS) may reduce the severity of AD because TENS has been used to inhibit second-order neurons in the dorsal horn. Therefore, we tested the hypothesis that TENS attenuates the hemodynamic responses to colon distension. Eleven Wistar rats underwent spinal cord transection between thoracic vertebrae 4 and 5 (paraplegic, n = 6) or between cervical vertebra 7 and thoracic vertebra 1 (quadriplegic, n = 5). After recovery, all rats were instrumented with a radiotelemetry device for recording arterial pressure. Subsequently, the hemodynamic responses to graded colon distension were determined before and during TENS. During TENS the hemodynamic responses to colon distension were significantly attenuated. Thus TENS may be a preventive approach to reduce the severity of AD in paraplegic and quadriplegic individuals.

  15. Dexmedetomidine attenuates traumatic brain injury: action pathway and mechanisms.

    PubMed

    Wang, Dong; Xu, Xin; Wu, Yin-Gang; Lyu, Li; Zhou, Zi-Wei; Zhang, Jian-Ning

    2018-05-01

    Traumatic brain injury induces potent inflammatory responses that can exacerbate secondary blood-brain barrier (BBB) disruption, neuronal injury, and neurological dysfunction. Dexmedetomidine is a novel α2-adrenergic receptor agonist that exert protective effects in various central nervous system diseases. The present study was designed to investigate the neuroprotective action of dexmedetomidine in a mouse traumatic brain injury model, and to explore the possible mechanisms. Adult male C57BL/6J mice were subjected to controlled cortical impact. After injury, animals received 3 days of consecutive dexmedetomidine therapy (25 µg/kg per day). The modified neurological severity score was used to assess neurological deficits. The rotarod test was used to evaluate accurate motor coordination and balance. Immunofluorescence was used to determine expression of ionized calcium binding adapter molecule-1, myeloperoxidase, and zonula occluden-1 at the injury site. An enzyme linked immunosorbent assay was used to measure the concentration of interleukin-1β (IL-1β), tumor necrosis factor α, and IL-6. The dry-wet weight method was used to measure brain water content. The Evans blue dye extravasation assay was used to measure BBB disruption. Western blot assay was used to measure protein expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), caspase-1 p20, IL-1β, nuclear factor kappa B (NF-κB) p65, occluding, and zonula occluden-1. Flow cytometry was used to measure cellular apoptosis. Results showed that dexmedetomidine treatment attenuated early neurological dysfunction and brain edema. Further, dexmedetomidine attenuated post-traumatic inflammation, up-regulated tight junction protein expression, and reduced secondary BBB damage and apoptosis. These protective effects were accompanied by down-regulation of the NF-κB and NLRP3 inflammasome pathways. These findings suggest that dexmedetomidine exhibits

  16. Restoring Spinal Noradrenergic Inhibitory Tone Attenuates Pain Hypersensitivity in a Rat Model of Parkinson's Disease

    PubMed Central

    Wang, Bing; Chen, Li-Hua

    2016-01-01

    In the present study, we investigated whether restoring descending noradrenergic inhibitory tone can attenuate pain in a PD rat model, which was established by stereotaxic infusion of 6-hydroxydopamine (6-OHDA) into the bilateral striatum (CPu). PD rats developed thermal and mechanical hypersensitivity at the 4th week after surgery. HPLC analysis showed that NE content, but not dopamine or 5-HT, significantly decreased in lumbar spinal cord in PD rats. Additional noradrenergic depletion by injection of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) aggravated pain hypersensitivity in PD rats. At the 5th week after injection of 6-OHDA, systemic treatment with pharmacological norepinephrine (NE) precursor droxidopa (L-DOPS) or α2 adrenoceptor agonist clonidine significantly attenuated thermal and mechanical pain hypersensitivity in PD rats. Furthermore, application of norepinephrine (NE) and 5-hydroxytryptamine (5-HT) reuptake inhibitors duloxetine, but not 5-HT selective reuptake inhibitors sertraline, significantly inhibited thermal and mechanical pain hypersensitivity in PD rats. Systemic administration of Madopar (L-DOPA) or the D2/D3 agonist pramipexole slightly inhibited the thermal, but not mechanical, hypersensitivity in PD rats. Thus, our study revealed that impairment of descending noradrenergic system may play a key role in PD-associated pain and restoring spinal noradrenergic inhibitory tone may serve as a novel strategy to manage PD-associated pain. PMID:27747105

  17. Tualang Honey Attenuates Noise Stress-Induced Memory Deficits in Aged Rats

    PubMed Central

    Azman, Khairunnuur Fairuz; Abdul Aziz, Che Badariah; Othman, Zahiruddin

    2016-01-01

    Ageing and stress exposure may lead to memory impairment while oxidative stress is thought to be one of the underlying mechanisms involved. This study aimed to investigate the potential protective effects of Tualang honey supplementation on memory performance in aged rats exposed to noise stress. Tualang honey supplementation was given orally, 200 mg/kg body weight for 28 days. Rats in the stress group were subjected to loud noise, 100 dB(A), 4 hours daily for 14 days. All rats were subjected to novel object recognition test for evaluation of memory performance. It was observed that the rats subjected to noise stress exhibited significantly lower memory performance and higher oxidative stress as evident by elevated malondialdehyde and protein carbonyl levels and reduction of antioxidant enzymes activities compared to the nonstressed rats. Tualang honey supplementation was able to improve memory performance, decrease oxidative stress levels, increase brain-derived neurotrophic factor (BDNF) concentration, decrease acetylcholinesterase activity, and enhance neuronal proliferation in the medial prefrontal cortex (mPFC) and hippocampus. In conclusion, Tualang honey protects against memory decline due to stress exposure and/or ageing via enhancement of mPFC and hippocampal morphology possibly secondary to reduction in brain oxidative stress and/or upregulation of BDNF concentration and cholinergic system. PMID:27119005

  18. Attenuating Nicotine Reinforcement and Relapse by Enhancing Endogenous Brain Levels of Kynurenic Acid in Rats and Squirrel Monkeys.

    PubMed

    Secci, Maria E; Auber, Alessia; Panlilio, Leigh V; Redhi, Godfrey H; Thorndike, Eric B; Schindler, Charles W; Schwarcz, Robert; Goldberg, Steven R; Justinova, Zuzana

    2017-07-01

    The currently available antismoking medications have limited efficacy and often fail to prevent relapse. Thus, there is a pressing need for newer, more effective treatment strategies. Recently, we demonstrated that enhancing endogenous levels of kynurenic acid (KYNA, a neuroinhibitory product of tryptophan metabolism) counteracts the rewarding effects of cannabinoids by acting as a negative allosteric modulator of α7 nicotinic receptors (α7nAChRs). As the effects of KYNA on cannabinoid reward involve nicotinic receptors, in the present study we used rat and squirrel monkey models of reward and relapse to examine the possibility that enhancing KYNA can counteract the effects of nicotine. To assess specificity, we also examined models of cocaine reward and relapse in monkeys. KYNA levels were enhanced by administering the kynurenine 3-monooxygenase (KMO) inhibitor, Ro 61-8048. Treatment with Ro 61-8048 decreased nicotine self-administration in rats and monkeys, but did not affect cocaine self-administration. In rats, Ro 61-8048 reduced the ability of nicotine to induce dopamine release in the nucleus accumbens shell, a brain area believed to underlie nicotine reward. Perhaps most importantly, Ro 61-8048 prevented relapse-like behavior when abstinent rats or monkeys were reexposed to nicotine and/or cues that had previously been associated with nicotine. Ro 61-8048 was also effective in monkey models of cocaine relapse. All of these effects of Ro 61-8048 in monkeys, but not in rats, were reversed by pretreatment with a positive allosteric modulator of α7nAChRs. These findings suggest that KMO inhibition may be a promising new approach for the treatment of nicotine addiction.

  19. DIBROMOACETIC ACID ATTENUATES A DIMETHYLDITHIOCARBAMATE-INDUCED SUPPRESSION OF THE RAT LH SURGE

    EPA Science Inventory

    DIBROMOACETIC ACID ATTENUATES A DITHIOCARBAMATE-INDUCED SUPPRESSION OF THE LH SURGE IN THE RAT. Jerome M. Goldman, Ashley S. Murr, Angela R. Buckelew, W. Keith McElroy and Janet M. Ferrell. Repro. Toxicol. Div., NHEERL, ORD, US EPA, RTP, NC

    At elevated concentrations, the ...

  20. Attenuation of oxidative stress and cardioprotective effects of zinc supplementation in experimental diabetic rats.

    PubMed

    Barman, Susmita; Srinivasan, Krishnapura

    2017-02-01

    Oxidative stress plays a major role in the pathogenesis of diabetes mellitus, which further exacerbates damage of cardiac, hepatic and other tissues. We have recently reported that Zn supplementation beneficially modulates hyperglycaemia and hypoinsulinaemia, with attendant reduction of associated metabolic abnormalities in diabetic rats. The present study assessed the potential of Zn supplementation in modulating oxidative stress and cardioprotective effects in diabetic rats. Diabetes was induced in Wistar rats with streptozotocin, and groups of diabetic rats were treated with 5- and 10-fold dietary Zn interventions (0·19 and 0·38 g Zn/kg diet) for 6 weeks. The markers of oxidative stress, antioxidant enzyme activities and concentrations of antioxidant molecules, lipid profile, and expressions of fibrosis and pro-apoptotic factors in the cardiac tissue were particularly assessed. Supplemental Zn showed significant attenuation of diabetes-induced oxidative stress in terms of altered antioxidant enzyme activities and increased the concentrations of antioxidant molecules. Hypercholesterolaemia and hyperlipidaemia were also significantly countered by Zn supplementation. Along with attenuated oxidative stress, Zn supplementation also showed significant cardioprotective effects by altering the mRNA expressions of fibrosis and pro-apoptotic factors (by >50 %). The expression of lipid oxidative marker 4-hydroxy-2-nonenal (4-HNE) protein in cardiac tissue of diabetic animals was rectified (68 %) by Zn supplementation. Elevated cardiac and hepatic markers in circulation and pathological abnormalities in cardiac and hepatic tissue architecture of diabetic animals were ameliorated by dietary Zn intervention. The present study indicates that Zn supplementation can attenuate diabetes-induced oxidative stress in circulation as well as in cardiac and hepatic tissues.

  1. Correlation between light scattering signal and tissue reversibility in rat brain exposed to hypoxia

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2010-02-01

    Light scattering signal is a potential indicator of tissue viability in brain because cellular and subcellular structural integrity should be associated with cell viability in brain tissue. We previously performed multiwavelength diffuse reflectance measurement for a rat global ischemic brain model and observed a unique triphasic change in light scattering at a certain time after oxygen and glucose deprivation. This triphasic scattering change (TSC) was shown to precede cerebral ATP exhaustion, suggesting that loss of brain tissue viability can be predicted by detecting scattering signal. In the present study, we examined correlation between light scattering signal and tissue reversibility in rat brain in vivo. We performed transcranial diffuse reflectance measurement for rat brain; under spontaneous respiration, hypoxia was induced for the rat by nitrogen gas inhalation and reoxygenation was started at various time points. We observed a TSC, which started at 140 +/- 15 s after starting nitrogen gas inhalation (mean +/- SD, n=8). When reoxygenation was started before the TSC, all rats survived (n=7), while no rats survived when reoxygenation was started after the TSC (n=8). When reoxygenation was started during the TSC, rats survived probabilistically (n=31). Disability of motor function was not observed for the survived rats. These results indicate that TSC can be used as an indicator of loss of tissue reversibility in brains, providing useful information on the critical time zone for treatment to rescue the brain.

  2. Resistance training attenuates fat mass regain after weight loss in ovariectomized rats.

    PubMed

    Pighon, Abdolnaser; Paquette, Amélie; Barsalani, Razieh; Chapados, Natalie Ann; Rabasa-Lhoret, Rémi; Yasari, Siham; Prud'homme, Denis; Lavoie, Jean-Marc

    2009-09-20

    The aim of the present study was to investigate the effects of maintaining only one of the two components of a food restriction (FR)+resistance training (RT) regimen on the regain of body weight and fat mass (liver and adipocytes) in ovariectomized (Ovx) rats. Five week Ovx rats were submitted to a weight loss program consisting of a 26% FR combined with RT (OvxFR+RT) for 8 weeks. RT consisted of climbing a 1.5m vertical grid with a load attached to the tail, 20-40 times with progressively increasing loads 4 times/week. Following this weight loss intervention, OvxFR+RT rats were sub-divided into 3 groups for an additional 5 weeks: 2 groups went back to a normal ad libitum feeding with or without RT and the other group kept only FR. Combined FR+RT program in Ovx rats led to lower body mass gain, liver triacylglycerol (TAG) levels, and fat mass gain compared to sedentary normally fed Ovx rats (P<0.01). Stopping both FR and RT over a 5 week period resulted in the regain of body weight, intra-abdominal fat pad weight and liver TAG (P<0.01). When only FR was maintained, the regain of body and fat pad weight as well as liver and plasma TAG concentrations was completely prevented. However, when only RT was maintained, regain in the aforementioned parameters was attenuated but not prevented (P<0.05). It is concluded that following a FR+RT weight loss program, continuation of only RT constitutes an asset to attenuate body weight and fat mass regain in Ovx rats; although the impact is less than the maintaining FR alone. These results suggest that, in post-menopausal women, RT is a positive strategy to reduce body weight and fat mass relapse.

  3. Oxaloacetate decreases the infarct size and attenuates the reduction in evoked responses after photothrombotic focal ischemia in the rat cortex.

    PubMed

    Nagy, David; Marosi, Mate; Kis, Zsolt; Farkas, Tamas; Rakos, Gabriella; Vecsei, Laszlo; Teichberg, Vivian I; Toldi, Jozsef

    2009-09-01

    A traumatic brain injury or a focal brain lesion is followed by acute excitotoxicity caused by the presence of abnormally high glutamate (Glu) levels in the cerebrospinal and interstitial fluids. It has recently been demonstrated that this excess Glu in the brain can be eliminated into the blood following the intravenous administration of oxaloacetate (OxAc), which, by scavenging the blood Glu, induces an enhanced and neuroprotective brain-to-blood Glu efflux. In this study, we subjected rats to a photothrombotic lesion and treated them after the illumination with a single 30-min-long administration of OxAc (1.2 mg/100 g, i.v.). Following induction of the lesion, we measured the infarct size and the amplitudes of the somatosensory evoked potentials (SEPs) as recorded from the skull surface. The photothrombotic lesion resulted in appreciably decreased amplitudes of the evoked potentials, but OxAc administration significantly attenuated this reduction, and also the infarct size assessed histologically. We suggest that the neuroprotective effects of OxAc are due to its blood Glu-scavenging activity, which, by increasing the brain-to-blood Glu efflux, reduces the excess Glu responsible for the anatomical and functional correlates of the ischemia, as evaluated by electrophysiological evoked potential (EP) measurements.

  4. Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses.

    PubMed

    Hall, Kelley D; Lifshitz, Jonathan

    2010-04-06

    Traumatic brain injury can initiate an array of chronic neurological deficits, effecting executive function, language and sensorimotor integration. Mechanical forces produce the diffuse pathology that disrupts neural circuit activation across vulnerable brain regions. The present manuscript explores the hypothesis that the extent of functional activation of brain-injured circuits is a consequence of initial disruption and consequent reorganization. In the rat, enduring sensory sensitivity to whisker stimulation directs regional analysis to the whisker barrel circuit. Adult, male rats were subjected to midline fluid percussion brain or sham injury and evaluated between 1day and 42days post-injury. Whisker somatosensory regions of the cortex and thalamus maintained cellular composition as visualized by Nissl stain. Within the first week post-injury, quantitatively less cFos activation was elicited by whisker stimulation, potentially due to axotomy within and surrounding the whisker circuit as visualized by amyloid precursor protein immunohistochemistry. Over six weeks post-injury, cFos activation after whisker stimulation showed a significant linear correlation with time in the cortex (r(2)=0.545; p=0.015), non-significant correlation in the thalamus (r(2)=0.326) and U-shaped correlation in the dentate gyrus (r(2)=0.831), all eventually exceeding sham levels. Ongoing neuroplastic responses in the cortex are evidenced by accumulating growth associated protein and synaptophysin gene expression. In the thalamus, the delayed restoration of plasticity markers may explain the broad distribution of neuronal activation extending into the striatum and hippocampus with whisker stimulation. The sprouting of diffuse-injured circuits into diffuse-injured tissue likely establishes maladaptive circuits responsible for behavioral morbidity. Therapeutic interventions to promote adaptive circuit restructuring may mitigate post-traumatic morbidity. Copyright 2010 Elsevier B.V. All

  5. EPO improved neurologic outcome in rat pups late after traumatic brain injury.

    PubMed

    Schober, Michelle E; Requena, Daniela F; Rodesch, Christopher K

    2018-05-01

    In adult rats, erythropoietin improved outcomes early and late after traumatic brain injury, associated with increased levels of Brain Derived Neurotrophic Factor. Using our model of pediatric traumatic brain injury, controlled cortical impact in 17-day old rats, we previously showed that erythropoietin increased hippocampal neuronal fraction in the first two days after injury. Erythropoietin also decreased activation of caspase3, an apoptotic enzyme modulated by Brain Derived Neurotrophic Factor, and improved Novel Object Recognition testing 14 days after injury. Data on long-term effects of erythropoietin on Brain Derived Neurotrophic Factor expression, histology and cognitive function after developmental traumatic brain injury are lacking. We hypothesized that erythropoietin would increase Brain Derived Neurotrophic Factor and improve long-term object recognition in rat pups after controlled cortical impact, associated with increased neuronal fraction in the hippocampus. Rats pups received erythropoietin or vehicle at 1, 24, and 48 h and 7 days after injury or sham surgery followed by histology at 35 days, Novel Object Recognition testing at adulthood, and Brain Derived Neurotrophic Factor measurements early and late after injury. Erythropoietin improved Novel Object Recognition performance and preserved hippocampal volume, but not neuronal fraction, late after injury. Improved object recognition in erythropoietin treated rats was associated with preserved hippocampal volume late after traumatic brain injury. Erythropoietin is approved to treat various pediatric conditions. Coupled with exciting experimental and clinical studies suggesting it is beneficial after neonatal hypoxic ischemic brain injury, our preliminary findings support further study of erythropoietin use after developmental traumatic brain injury. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  6. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury☆

    PubMed Central

    Jiang, Jindou; Bu, Xingyao; Liu, Meng; Cheng, Peixun

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury. PMID:25806058

  7. Probing Intrinsic Resting-State Networks in the Infant Rat Brain

    PubMed Central

    Bajic, Dusica; Craig, Michael M.; Borsook, David; Becerra, Lino

    2016-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) measures spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signal in the absence of external stimuli. It has become a powerful tool for mapping large-scale brain networks in humans and animal models. Several rs-fMRI studies have been conducted in anesthetized and awake adult rats, reporting consistent patterns of brain activity at the systems level. However, the evolution to adult patterns of resting-state activity has not yet been evaluated and quantified in the developing rat brain. In this study, we hypothesized that large-scale intrinsic networks would be easily detectable but not fully established as specific patterns of activity in lightly anesthetized 2-week-old rats (N = 11). Independent component analysis (ICA) identified 8 networks in 2-week-old-rats. These included Default mode, Sensory (Exteroceptive), Salience (Interoceptive), Basal Ganglia-Thalamic-Hippocampal, Basal Ganglia, Autonomic, Cerebellar, as well as Thalamic-Brainstem networks. Many of these networks consisted of more than one component, possibly indicative of immature, underdeveloped networks at this early time point. Except for the Autonomic network, infant rat networks showed reduced connectivity with subcortical structures in comparison to previously published adult networks. Reported slow fluctuations in the BOLD signal that correspond to functionally relevant resting-state networks in 2-week-old rats can serve as an important tool for future studies of brain development in the settings of different pharmacological applications or disease. PMID:27803653

  8. Chronic wheel running affects cocaine-induced c-Fos expression in brain reward areas in rats.

    PubMed

    Zlebnik, Natalie E; Hedges, Valerie L; Carroll, Marilyn E; Meisel, Robert L

    2014-03-15

    Emerging evidence from human and animal studies suggests that exercise is a highly effective treatment for drug addiction. However, most work has been done in behavioral models, and the effects of exercise on the neurobiological substrates of addiction have not been identified. Specifically, it is unknown whether prior exercise exposure alters neuronal activation of brain reward circuitry in response to drugs of abuse. To investigate this hypothesis, rats were given 21 days of daily access to voluntary wheel running in a locked or unlocked running wheel. Subsequently, they were challenged with a saline or cocaine (15 mg/kg, i.p.) injection and sacrificed for c-Fos immunohistochemistry. The c-Fos transcription factor is a measure of cellular activity and was used to quantify cocaine-induced activation of reward-processing areas of the brain: nucleus accumbens (NAc), caudate putamen (CPu), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC). The mean fold change in cocaine-induced c-Fos cell counts relative to saline-induced c-Fos cell counts was significantly higher in exercising compared to control rats in the NAc core, dorsomedial and dorsolateral CPu, the prelimbic area, and the OFC, indicating differential cocaine-specific cellular activation of brain reward circuitry between exercising and control animals. These results suggest neurobiological mechanisms by which voluntary wheel running attenuates cocaine-motivated behaviors and provide support for exercise as a novel treatment for drug addiction. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats

    PubMed Central

    McBride, Devin W.; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H.

    2015-01-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 hours after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in a significantly elevated frontal lobe brain water content 24 and 72 hours after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study’s results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 hours post-SBI. PMID:25975171

  10. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats.

    PubMed

    McBride, Devin W; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H

    2015-09-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 h after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in significantly elevated frontal lobe brain water content 24 and 72 h after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study's results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 h post-SBI. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Polyenylphosphatidylcholine attenuates alcohol-induced fatty liver and hyperlipemia in rats.

    PubMed

    Navder, K P; Baraona, E; Lieber, C S

    1997-09-01

    Chronic administration of a soybean-derived polyenylphosphatidylcholine (PPC) extract prevents the development of cirrhosis in alcohol-fed baboons. To assess whether this phospholipid also affects earlier changes induced by alcohol consumption (such as fatty liver and hyperlipemia), 28 male rat littermates were pair-fed liquid diets containing 36% of energy either as ethanol or as additional carbohydrate for 21 d, and killed 90 min after intragastric administration of the corresponding diets. Half of the rats were given PPC (3 g/l), whereas the other half received the same amount of linoleate (as safflower oil) and choline (as bitartrate salt). PPC did not affect diet or alcohol consumption [15.4 +/- 0.5 G/(kg.d)], but the ethanol-induced hepatomegaly and the hepatic accumulation of lipids (principally triglycerides and cholesterol esters) and proteins were about half those in rats not given PPC. The ethanol-induced postprandial hyperlipemia was lower with PPC than without, despite an enhanced fat absorption and no difference in the level of plasma free fatty acids. The attenuation of fatty liver and hyperlipemia was associated with correction of the ethanol-induced inhibition of mitochondrial oxidation of palmitoyl-1-carnitine and the depression of cytochrome oxidase activity, as well as the increases in activity of serum glutamate dehydrogenase and aminotransferases. Thus, PPC attenuates early manifestations of alcohol toxicity, at least in part, by improving mitochondrial injury. These beneficial effects of PPC at the initial stages of alcoholic liver injury may prevent or delay the progression to more advanced forms of alcoholic liver disease.

  12. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats

    PubMed Central

    Lee, Eunjo; Song, Min-ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung

    2016-01-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats. PMID:27610034

  13. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

    PubMed

    Lee, Eunjo; Song, Min-Ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Kim, Inkyeom

    2016-09-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

  14. Iron overload prevents oxidative damage to rat brain after chlorpromazine administration.

    PubMed

    Piloni, Natacha E; Caro, Andres A; Puntarulo, Susana

    2018-05-15

    The hypothesis tested is that Fe administration leads to a response in rat brain modulating the effects of later oxidative challenges such as chlorpromazine (CPZ) administration. Either a single dose (acute Fe overload) or 6 doses every second day (sub-chronic Fe overload) of 500 or 50 mg Fe-dextran/kg, respectively, were injected intraperitoneally (ip) to rats. A single dose of 10 mg CPZ/kg was injected ip 8 h after Fe treatment. DNA integrity was evaluated by quantitative PCR, lipid radical (LR · ) generation rate by electron paramagnetic resonance (EPR), and catalase (CAT) activity by UV spectrophotometry in isolated brains. The maximum increase in total Fe brain was detected after 6 or 2 h in the acute and sub-chronic Fe overload model, respectively. Mitochondrial and nuclear DNA integrity decreased after acute Fe overload at the time of maximal Fe content; the decrease in DNA integrity was lower after sub-chronic than after acute Fe overload. CPZ administration increased LR · generation rate in control rat brain after 1 and 2 h; however, CPZ administration after acute or sub-chronic Fe overload did not affect LR · generation rate. CPZ treatment did not affect CAT activity after 1-4 h neither in control rats nor in acute Fe-overloaded rats. However, CPZ administration to rats treated sub-chronically with Fe showed increased brain CAT activity after 2 or 4 h, as compared to control values. Fe supplementation prevented brain damage in both acute and sub-chronic models of Fe overload by selectively activating antioxidant pathways.

  15. Salvia miltiorrhiza Bunge (Danshen) extract attenuates permanent cerebral ischemia through inhibiting platelet activation in rats.

    PubMed

    Fei, Yu-Xiang; Wang, Si-Qi; Yang, Li-Jian; Qiu, Yan-Ying; Li, Yi-Ze; Liu, Wen-Yuan; Xi, Tao; Fang, Wei-Rong; Li, Yun-Man

    2017-07-31

    Danshen is a crude herbal drug isolated from dried roots of Salvia miltiorrhiza Bunge. This plant is widely used in oriental medicine for the treatment of cardiovascular and cerebrovascular diseases. The supercritical CO 2 extract from Danshen (SCED) (57.85%, 5.67% and 4.55% for tanshinone IIA, tanshinone I and cryptotanshinone respectively) was studied in this article, whose potential molecular mechanism remains unclear, especially in anti-thrombosis. The present study was designed to observe the protective effect of SCED on ischemic stroke in rats and to explore the underlying anti-thrombosis mechanism. Following induction of cerebral ischemia in rats by permanent middle cerebral artery occlusion (pMCAO). Neurological defect score, cerebral blood flow, infarct size, and brain edema were measured to evaluate the injury. Arteriovenous shunt thrombosis model and adenosine 5'-diphosphate (ADP) induced acute pulmonary embolism model were conducted to estimate the antithrombotic effect of SCED. In order to investigate the effects of SCED on platelet aggregation, rat platelet-rich-plasma (PRP) were incubated with SCED prior to the addition of the stimuli (ADP or 9, 11-dideoxy-11α, 9α-epoxymethanoprostaglandin F2α (U46619)). Aggregation was monitored in a light transmission aggregometer. Inhibitory effect of SCED on thromboxane A2 (TXA 2 ) release was detected by ELISA kit. Phospholipase C (PLC)/ Protein kinase C (PKC) signaling pathway was analyzed by a Western blot technique. The effect of the SCED was also studied in vivo on bleeding time in mice. SCED improved the neurological defect score, increased cerebral blood flow, reduced infarct size and alleviated brain edema in rats exposed to pMCAO. After administration of SCED, thrombosis formation in arteriovenous shunt was inhibited and recovery time in pulmonary embolism was shortened. The inhibitory effect of SCED on platelet activation was further confirmed by TXB 2 ELISA kit and Western blot analysis of PLC

  16. Dexmedetomidine attenuates persistent postsurgical pain by upregulating K+-Cl- cotransporter-2 in the spinal dorsal horn in rats.

    PubMed

    Dai, Shuhong; Qi, Yu; Fu, Jie; Li, Na; Zhang, Xu; Zhang, Juan; Zhang, Wei; Xu, Haijun; Zhou, Hai; Ma, Zhengliang

    2018-01-01

    Dexmedetomidine (DEX) could have an analgesic effect on pain transmission through the modulation of brain-derived neurotrophic factor (BDNF). In addition, KCC2-induced shift in neuronal Cl- homeostasis is crucial for postsynaptic inhibition mediated by GABAA receptors. Accumulating evidence shows that nerve injury, peripheral inflammation and stress activate the spinal BDNF/TrkB signal, which results in the downregulation of KCC2 transport and expression, eventually leads to GAGAergic disinhibition and hyperalgesia. The aim of this experiment was to explore the interaction between DEX and KCC2 at a molecular level in rats in the persistent postsurgical pain (PPSP). PPSP in rats was evoked by the skin/muscle incision and retraction (SMIR). Mechanical hypersensitivity was assessed with the Dynamic Plantar Aesthesiometer. Western blot and immunofluorescence assay were used to assess the expressions of related proteins. In the first part of our experiment, the results revealed that the BDNF/TrkB-KCC2 signal plays a critical role in the development of SMIR-evoked PPSP; the second part showed that intraperitoneal administrations of 40 µg/kg DEX at 15 min presurgery and 1 to 3 days post-surgery significantly attenuated SMIR-evoked PPSP. Simultaneously, SMIR-induced KCC2 downregulation was partly reversed, which coincided with the inhibition of the BDNF/TrkB signal in the spinal dorsal horn. Moreover, intrathecal administrations of KCC2 inhibitor VU0240551 significantly reduced the analgesic effect of DEX on SMIR-evoked PPSP. The results of our study indicated that DEX attenuated PPSP by restoring KCC2 function through reducing BDNF/TrkB signal in the spinal dorsal horn in rats, which provides a new insight into the treatment of chronic pain in clinical postsurgical pain management.

  17. The role of glycogen synthase kinase 3 beta in brain injury induced by myocardial ischemia/reperfusion injury in a rat model of diabetes mellitus.

    PubMed

    Zhao, Bo; Gao, Wen-Wei; Liu, Ya-Jing; Jiang, Meng; Liu, Lian; Yuan, Quan; Hou, Jia-Bao; Xia, Zhong-Yuan

    2017-10-01

    Myocardial ischemia/reperfusion injury can lead to severe brain injury. Glycogen synthase kinase 3 beta is known to be involved in myo-cardial ischemia/reperfusion injury and diabetes mellitus. However, the precise role of glycogen synthase kinase 3 beta in myocardial ischemia/reperfusion injury-induced brain injury is unclear. In this study, we observed the effects of glycogen synthase kinase 3 beta on brain injury induced by myocardial ischemia/reperfusion injury in diabetic rats. Rat models of diabetes mellitus were generated via intraperitoneal injection of streptozotocin. Models of myocardial ischemia/reperfusion injury were generated by occluding the anterior descending branch of the left coronary artery. Post-conditioning comprised three cycles of ischemia/reperfusion. Immunohistochemical staining and western blot assays demonstrated that after 48 hours of reperfusion, the structure of the brain was seriously damaged in the experimental rats compared with normal controls. Expression of Bax, interleukin-6, interleukin-8, terminal deoxynucleotidyl transferase dUTP nick end labeling, and cleaved caspase-3 in the brain was significantly increased, while expression of Bcl-2, interleukin-10, and phospho-glycogen synthase kinase 3 beta was decreased. Diabetes mellitus can aggravate inflammatory reactions and apoptosis. Ischemic post-conditioning with glycogen synthase kinase 3 beta inhibitor lithium chloride can effectively reverse these changes. Our results showed that myocardial ischemic post-conditioning attenuated myocardial ischemia/reperfusion injury-induced brain injury by activating glyco-gen synthase kinase 3 beta. According to these results, glycogen synthase kinase 3 beta appears to be an important factor in brain injury induced by myocardial ischemia/reperfusion injury.

  18. Enhancement of in vivo antioxidant ability in the brain of rats fed tannin.

    PubMed

    Nakajima, Akira; Ueda, Yuto; Matsuda, Emiko; Sameshima, Hiroshi; Ikenoue, Tsuyomu

    2013-07-01

    The effect of the oral administration of mimosa tannin (MMT) on the rat intra-hippocampal antioxidant ability was examined. Wistar rats at the age of 6 weeks were reared for 8 weeks with the rodent diet (RD) consisting of 0.1 g/kg of MMT (RD-MMT). The antioxidant ability of rat brain was evaluated from the decay of a brain-blood-barrier permeable stable nitroxide, 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (PCAM) measured by the microdialysis-electron spin resonance system under a freely moving state. The decay rate of PCAM in the brain of rats fed RD-MMT was significantly larger than that of rats fed control rodent diet, which indicates the increase of the antioxidant ability in the brain of rats fed RD-MMT. In vitro study showed that MMT did not reduce PCAM directly but enhanced the reduction of PCAM by ascorbic acid. These results indicate that MMT is a potent antioxidant in vitro and in vivo.

  19. Ganoderma Lucidum Protects Rat Brain Tissue Against Trauma-Induced Oxidative Stress.

    PubMed

    Özevren, Hüseyin; İrtegün, Sevgi; Deveci, Engin; Aşır, Fırat; Pektanç, Gülsüm; Deveci, Şenay

    2017-10-01

    Traumatic brain injury causes tissue damage, breakdown of cerebral blood flow and metabolic regulation. This study aims to investigate the protective influence of antioxidant Ganoderma lucidum ( G. lucidum ) polysaccharides (GLPs) on brain injury in brain-traumatized rats. Sprague-Dawley conducted a head-traumatized method on rats by dropping off 300 g weight from 1 m height. Groups were categorized as control, G. lucidum , trauma, trauma+ G. lucidum (20 mL/kg per day via gastric gavage). Brain tissues were dissected from anesthetized rats 7 days after injury. For biochemical analysis, malondialdehyde, glutathione and myeloperoxidase values were measured. In histopathological examination, neuronal damage in brain cortex and changes in blood brain barrier were observed. In the analysis of immunohistochemical and western blot, p38 mitogen-activated protein kinase, vascular endothelial growth factor and cluster of differentiation 68 expression levels were shown. These analyzes demonstrated the beneficial effects of GLPs on brain injury. We propose that GLPs treatment after brain injury could be an alternative treatment to decraseing inflammation and edema, preventing neuronal and glial cells degeneration if given in appropriate dosage and in particular time intervals.

  20. Brain tumor specifies intermediate progenitor cell identity by attenuating β-catenin/Armadillo activity

    PubMed Central

    Komori, Hideyuki; Xiao, Qi; McCartney, Brooke M.; Lee, Cheng-Yu

    2014-01-01

    During asymmetric stem cell division, both the daughter stem cell and the presumptive intermediate progenitor cell inherit cytoplasm from their parental stem cell. Thus, proper specification of intermediate progenitor cell identity requires an efficient mechanism to rapidly extinguish the activity of self-renewal factors, but the mechanisms remain unknown in most stem cell lineages. During asymmetric division of a type II neural stem cell (neuroblast) in the Drosophila larval brain, the Brain tumor (Brat) protein segregates unequally into the immature intermediate neural progenitor (INP), where it specifies INP identity by attenuating the function of the self-renewal factor Klumpfuss (Klu), but the mechanisms are not understood. Here, we report that Brat specifies INP identity through its N-terminal B-boxes via a novel mechanism that is independent of asymmetric protein segregation. Brat-mediated specification of INP identity is critically dependent on the function of the Wnt destruction complex, which attenuates the activity of β-catenin/Armadillo (Arm) in immature INPs. Aberrantly increasing Arm activity in immature INPs further exacerbates the defects in the specification of INP identity and enhances the supernumerary neuroblast mutant phenotype in brat mutant brains. By contrast, reducing Arm activity in immature INPs suppresses supernumerary neuroblast formation in brat mutant brains. Finally, reducing Arm activity also strongly suppresses supernumerary neuroblasts induced by overexpression of klu. Thus, the Brat-dependent mechanism extinguishes the function of the self-renewal factor Klu in the presumptive intermediate progenitor cell by attenuating Arm activity, balancing stem cell maintenance and progenitor cell specification. PMID:24257623

  1. Protective effect of pyruvate against ethanol-induced apoptotic neurodegeneration in the developing rat brain.

    PubMed

    Ullah, Najeeb; Naseer, Muhammad Imran; Ullah, Ikram; Lee, Hae Young; Koh, Phil Ok; Kim, Myeong Ok

    2011-12-01

    Exposure to alcohol during the early stages of brain development can lead to neurological disorders in the CNS. Apoptotic neurodegeneration due to ethanol exposure is a main feature of alcoholism. Exposure of developing animals to alcohol (during the growth spurt period in particular) elicits apoptotic neuronal death and causes fetal alcohol effects (FAE) or fetal alcohol syndrome (FAS). A single episode of ethanol intoxication (at 5 g/kg) in a seven-day-old developing rat can activate the apoptotic cascade, leading to widespread neuronal death in the brain. In the present study, we investigated the potential protective effect of pyruvate against ethanol-induced neuroapoptosis. After 4h, a single dose of ethanol induced upregulation of Bax, release of mitochondrial cytochrome-c into the cytosol, activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP-1), all of which promote apoptosis. These effects were all reversed by co-treatment with pyruvate at a well-tolerated dosage (1000 mg/kg). Histopathology performed at 24 and 48 h with Fluoro-Jade-B and cresyl violet stains showed that pyruvate significantly reduced the number of dead cells in the cerebral cortex, hippocampus and thalamus. Immunohistochemical analysis at 24h confirmed that ethanol-induced cell death is both apoptotic and inhibited by pyruvate. These findings suggest that pyruvate treatment attenuates ethanol-induced neuronal cell loss in the developing rat brain and holds promise as a safe therapeutic and neuroprotective agent in the treatment of neurodegenerative disorders in newborns and infants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. GSK-3β inhibitor TWS119 attenuates rtPA-induced hemorrhagic transformation and activates the Wnt/β-catenin signaling pathway after acute ischemic stroke in rats.

    PubMed

    Wang, Wei; Li, Mingchang; Wang, Yuefei; Li, Qian; Deng, Gang; Wan, Jieru; Yang, Qingwu; Chen, Qianxue; Wang, Jian

    2016-12-01

    Hemorrhagic transformation (HT) is a devastating complication for patients with acute ischemic stroke who are treated with tissue plasminogen activator (tPA). It is associated with high morbidity and mortality, but no effective treatments are currently available to reduce HT risk. Therefore, methods to prevent HT are urgently needed. In this study, we used TWS119, an inhibitor of glycogen synthase kinase 3β (GSK-3β), to evaluate the role of the Wnt/β-catenin signaling pathway in recombinant tPA (rtPA)-induced HT. Sprague-Dawley rats were subjected to a middle cerebral artery occlusion (MCAO) model of ischemic stroke and then were administered rtPA, rtPA combined with TWS119, or vehicle at 4 h. The animals were sacrificed 24 h after infarct induction. Rats treated with rtPA showed evident HT, had more severe neurologic deficit, brain edema, and blood-brain barrier breakdown, and had larger infarction volume than did the vehicle group. Rats treated with TWS119 had significantly improved outcomes compared with those of rats treated with rtPA alone. In addition, Western blot analysis showed that TWS119 increased the protein expression of β-catenin, claudin-3, and ZO-1 while suppressing the expression of GSK-3β. These results suggest that TWS119 reduces rtPA-induced HT and attenuates blood-brain barrier disruption, possibly through activation of the Wnt/β-catenin signaling pathway. This study provides a potential therapeutic strategy to prevent tPA-induced HT after acute ischemic stroke.

  3. Vitamin K1 attenuates bile duct ligation-induced liver fibrosis in rats.

    PubMed

    Jiao, Kun; Sun, Quan; Chen, Baian; Li, Shengli; Lu, Jing

    2014-06-01

    Vitamin K1 is used as a liver protection drug for cholestasis-induced liver fibrosis in China, but the mechanism of vitamin K1's action in liver fibrosis is unclear. In this study, a model of liver fibrosis was achieved via bile duct ligation in rats. The rats were then injected with vitamin K1, and the levels of serum aspartate aminotransferase, alanine transaminase, total bilirubin and the fibrotic grade score, collagen content, the expressions of α-smooth muscle actin (SMA) and cytokeratin 19 (CK19) were measured on day 28 after ligation. The levels of the biochemical parameters, fibrotic score and collagen content were significantly reduced by treatment with vitamin K1 in bile duct-ligated rats. In addition, α-SMA and CK19 expression was significantly reduced by vitamin K1 treatment in bile duct-ligated rats. These results suggested that vitamin K1 may attenuate liver fibrosis by inhibiting hepatic stellate cell activation in bile duct-ligated rats.

  4. Stress-sensitive arterial hypertension, haemodynamic changes and brain metabolites in hypertensive ISIAH rats: MRI investigation.

    PubMed

    Seryapina, A A; Shevelev, O B; Moshkin, M P; Markel, A L; Akulov, A E

    2017-05-01

    What is the central question of this study? Stress-sensitive arterial hypertension is considered to be controlled by changes in central and peripheral sympathetic regulating mechanisms, which eventually result in haemodynamic alterations and blood pressure elevation. Therefore, study of the early stages of development of hypertension is of particular interest, because it helps in understanding the aetiology of the disease. What is the main finding and its importance? Non-invasive in vivo investigation in ISIAH rats demonstrated that establishment of sustainable stress-sensitive hypertension is accompanied by a decrease in prefrontal cortex activity and mobilization of hypothalamic processes, with considerable correlations between haemodynamic parameters and individual metabolite ratios. The study of early development of arterial hypertension in association with emotional stress is of great importance for better understanding of the aetiology and pathogenesis of the hypertensive disease. Magnetic resonance imaging (MRI) was applied to evaluate the changes in haemodynamics and brain metabolites in 1- and 3-month-old inherited stress-induced arterial hypertension (ISIAH) rats (10 male rats) with stress-sensitive arterial hypertension and in control normotensive Wistar Albino Glaxo (WAG) rats (eight male rats). In the 3-month-old ISIAH rats, the age-dependent increase in blood pressure was associated with increased blood flow through the renal arteries and decreased blood flow in the lower part of the abdominal aorta. The renal vascular resistance in the ISIAH rats decreased during ageing, although at both ages it remained higher than the renal vascular resistance in WAG rats. An integral metabolome portrait demonstrated that development of hypertension in the ISIAH rats was associated with an attenuation of the excitatory and energetic activity in the prefrontal cortex, whereas in the WAG rats the opposite age-dependent changes were observed. In contrast, in the

  5. A combination of an iron chelator with an antioxidant effectively diminishes the dendritic loss, tau-hyperphosphorylation, amyloids-β accumulation and brain mitochondrial dynamic disruption in rats with chronic iron-overload.

    PubMed

    Sripetchwandee, Jirapas; Wongjaikam, Suwakon; Krintratun, Warunsorn; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2016-09-22

    Iron-overload can cause cognitive impairment due to blood-brain barrier (BBB) breakdown and brain mitochondrial dysfunction. Although deferiprone (DFP) has been shown to exert neuroprotection, the head-to-head comparison among iron chelators used clinically on brain iron-overload has not been investigated. Moreover, since antioxidant has been shown to be beneficial in iron-overload condition, its combined effect with iron chelator has not been tested. Therefore, the hypothesis is that all chelators provide neuroprotection under iron-overload condition, and that a combination of an iron chelator with an antioxidant has greater efficacy than monotherapy. Male Wistar rats (n=42) were assigned to receive a normal diet (ND) or a high-iron diet (HFe) for 4months. At the 2nd month, HFe-fed rats were treated with a vehicle, deferoxamine (DFO), DFP, deferasirox (DFX), n-acetyl cysteine (NAC) or a combination of DFP with NAC, while ND-fed rats received vehicle. At the end of the experiment, rats were decapitated and brains were removed to determine brain iron level and deposition, brain mitochondrial function, BBB protein expression, brain mitochondrial dynamic, brain apoptosis, tau-hyperphosphorylation, amyloid-β (Aβ) accumulation and dendritic spine density. The results showed that iron-overload induced BBB breakdown, brain iron accumulation, brain mitochondrial dysfunction, impaired brain mitochondrial dynamics, tau-hyperphosphorylation, Aβ accumulation and dendritic spine reduction. All treatments, except DFX, attenuated these impairments. Moreover, combined therapy provided a greater efficacy than monotherapy. These findings suggested that iron-overload induced brain iron toxicity and a combination of an iron chelator with an antioxidant provided a greatest efficacy for neuroprotection than monotherapy. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Astaxanthin intake attenuates muscle atrophy caused by immobilization in rats.

    PubMed

    Shibaguchi, Tsubasa; Yamaguchi, Yusuke; Miyaji, Nobuyuki; Yoshihara, Toshinori; Naito, Hisashi; Goto, Katsumasa; Ohmori, Daijiro; Yoshioka, Toshitada; Sugiura, Takao

    2016-08-01

    Astaxanthin is a carotenoid pigment and has been shown to be an effective inhibitor of oxidative damage. We tested the hypothesis that astaxanthin intake would attenuate immobilization-induced muscle atrophy in rats. Male Wistar rats (14-week old) were fed for 24 days with either astaxanthin or placebo diet. After 14 days of each experimental diet intake, the hindlimb muscles of one leg were immobilized in plantar flexion position using a plaster cast. Following 10 days of immobilization, both the atrophic and the contralateral plantaris muscles were removed and analyzed to determine the level of muscle atrophy along with measurement of the protein levels of CuZn-superoxide dismutase (CuZn-SOD) and selected proteases. Compared with placebo diet animals, the degree of muscle atrophy in response to immobilization was significantly reduced in astaxanthin diet animals. Further, astaxanthin supplementation significantly prevented the immobilization-induced increase in the expression of CuZn-SOD, cathepsin L, calpain, and ubiquitin in the atrophied muscle. These results support the postulate that dietary astaxanthin intake attenuates the rate of disuse muscle atrophy by inhibiting oxidative stress and proteolysis via three major proteolytic pathways. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  7. Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats.

    PubMed

    Abdel-Moneim, Adel; Yousef, Ahmed I; Abd El-Twab, Sanaa M; Abdel Reheim, Eman S; Ashour, Mohamed B

    2017-08-01

    The brain of diabetics revealed deterioration in many regions, especially the hippocampus. Hence, the present study aimed to evaluate the effects of gallic acid and p-coumaric acid against the hippocampal neurodegeneration in type 2 diabetic rats. Adult male albino rats were randomly allocated into four groups: Group 1 served as control ones and others were induced with diabetes. Group 2 considered as diabetic, and groups 3 and 4 were further orally treated with gallic acid (20 mg/kg b.wt./day) and p-coumaric acid (40 mg/kg b.wt./day) for six weeks. Diabetic rats revealed significant elevation in the levels of serum glucose, blood glycosylated hemoglobin and serum tumor necrosis factor-α, while the level of serum insulin was significantly declined. Furthermore, the brain of diabetic rats showed a marked increase in oxidative stress and a decrease of antioxidant parameters as well as upregulation the protein expression of Bax and downregulation the protein expression of Bcl-2 in the hippocampus. Treatment of diabetic rats with gallic acid and p-coumaric acid significantly ameliorated glucose tolerance, diminished the brain oxidative stress and improved antioxidant status, declined inflammation and inhibited apoptosis in the hippocampus. The overall results suggested that gallic acid and p-coumaric acid may inhibit hippocampal neurodegeneration via their potent antioxidant, anti-inflammatory and anti-apoptotic properties. Therefore, both compounds can be recommended as hopeful adjuvant agents against brain neurodegeneration in diabetics.

  8. Shock wave-induced brain injury in rat: novel traumatic brain injury animal model.

    PubMed

    Nakagawa, Atsuhiro; Fujimura, Miki; Kato, Kaoruko; Okuyama, Hironobu; Hashimoto, Tokitada; Takayama, Kazuyoshi; Tominaga, Teiji

    2008-01-01

    In blast wave injury and high-energy traumatic brain injury, shock waves (SW) play an important role along with cavitation phenomena. However, due to lack of reliable and reproducible technical approaches, extensive study of this type of injury has not yet been reported. The present study aims to develop reliable SW-induced brain injury model by focusing micro-explosion generated SW in the rat brain. Adult male rats were exposed to single SW focusing created by detonation of microgram order of silver azide crystals with laser irradiation at a focal point of a truncated ellipsoidal cavity of20 mm minor diameter and the major to minor diameter ratio of 1.41 after craniotomy. The pressure profile was recorded using polyvinylidene fluoride needle hydrophone. Animals were divided into three groups according to the given overpressure: Group I: Control, Group II: 12.5 +/- 2.5 MPa (high pressure), and Group III: 1.0 +/- 0.2 MPa (low pressure). Histological changes were evaluated over time by hematoxylin-eosin staining. Group II SW injuries resulted in contusional hemorrhage in reproducible manner. Group III exposure resulted in spindle-shaped changes of neurons and elongation of nucleus without marked neuronal injury. The use of SW loading by micro-explosion is useful to provide a reliable and reproducible SW-induced brain injury model in rats.

  9. Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation

    PubMed Central

    Reisenauer, Chris J.; Bhatt, Dhaval P.; Mitteness, Dane J.; Slanczka, Evan R.; Gienger, Heidi M.; Watt, John A.; Rosenberger, Thad A.

    2011-01-01

    Glyceryl triacetate (GTA), a compound effective at increasing circulating and tissue levels of acetate was used to treat rats subjected to a continual 28 day intra-ventricular infusion of bacterial lipopolysaccharide (LPS). This model produces a neuroinflammatory injury characterized by global neuroglial activation and a decrease in choline acetyltransferase immunoreactivity in the basal forebrain. During the LPS infusion, rats were given a daily treatment of either water or GTA at a dose of 6g/kg by oral gavage. In parallel experiments free-CoA and acetyl-CoA levels were measured in microwave fixed brains and flash frozen heart, liver, kidney and muscle following a single oral dose of GTA. We found that a single oral dose of GTA significantly increased plasma acetate levels by 15 min and remained elevated for up to 4 hr. At 30 min the acetyl-CoA levels in microwave-fixed brain and flash frozen heart and liver were increased at least 2.2-fold. The concentrations of brain acetyl-CoA was significantly increased between 30 and 45 min following treatment and remained elevated for up to 4 hr. The concentration of free-CoA in brain was significantly decreased compared to controls at 240 min. Immunohistochemical and morphological analysis demonstrated that a daily treatment with GTA significantly reduced the percentage of reactive GFAP-positive astrocytes and activated CD11b-positive microglia by 40–50% in rats subjected to LPS-induced neuroinflammation. Further, in rats subjected to neuroinflammation, GTA significantly increased the number of ChAT-positive cells by 40% in the basal forebrain compared to untreated controls. These data suggest that acetate supplementation increases intermediary short chain acetyl-CoA metabolism and that treatment is potentially anti-inflammatory and neuroprotective with regards to attenuating neuroglial activation and increasing ChAT immunoreactivity in this model. PMID:21272004

  10. [Expression of aquaporin-4 during brain edema in rats with thioacetamide-induced acute encephalopathy].

    PubMed

    Wang, Li-Qing; Zhu, Sheng-Mei; Zhou, Heng-Jun; Pan, Cai-Fei

    2011-09-27

    To investigate the expression of aquaporin-4 (AQP4) during brain edema in rats with thioacetamide-induced acute liver failure and encephalopathy. The rat model of acute hepatic failure and encephalopathy was induced by intraperitoneal injection of thioacetamide (TAA) at a 24-hour interval for 2 consecutive days. Thirty-two SD rats were randomly divided into the model group (n = 24) and the control group (normal saline, n = 8). And then the model group was further divided into 3 subgroups by the timepoint of decapitation: 24 h (n = 8), 48 h (n = 8) and 60 h (n = 8). Then we observed their clinical symptoms and stages of HE, indices of liver function and ammonia, liver histology and brain water content. The expression of AQP4 protein in brain tissues was measured with Western blot and the expression of AQP4mRNA with RT-PCR (reverse transcription-polymerase chain reaction). Typical clinical manifestations of hepatic encephalopathy occurred in all TAA-administrated rats. The model rats showed the higher indices of ALT (alanine aminotransferase), AST (aspartate aminotransferase), TBIL (total bilirubin) and ammonia than the control rats (P < 0.05). The brain water content was significantly elevated in TAA-administrated rats compared with the control (P < 0.05). The expressions of AQP4 protein and mRNA in brain tissues significantly increased in TAA-administrated rats (P < 0.05). In addition, the expressions of AQP4 protein and mRNA were positively correlated with brain water content (r = 0.536, P < 0.01; r = 0.566, P = 0.01). The high expression of AQP4 in rats with TAA-induced acute liver failure and encephalopathy plays a significant role during brain edema. AQP4 is one of the molecular mechanisms for the occurrence of brain edema in hepatic encephalopathy.

  11. Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Kut, Carmen; Liang, Wenxuan; Li, Xingde

    2017-03-01

    Cancer is known to alter the local optical properties of tissues. The detection of OCT-based optical attenuation provides a quantitative method to efficiently differentiate cancer from non-cancer tissues. In particular, the intraoperative use of quantitative OCT is able to provide a direct visual guidance in real time for accurate identification of cancer tissues, especially these without any obvious structural layers, such as brain cancer. However, current methods are suboptimal in providing high-speed and accurate OCT attenuation mapping for intraoperative brain cancer detection. In this paper, we report a novel frequency-domain (FD) algorithm to enable robust and fast characterization of optical attenuation as derived from OCT intensity images. The performance of this FD algorithm was compared with traditional fitting methods by analyzing datasets containing images from freshly resected human brain cancer and from a silica phantom acquired by a 1310 nm swept-source OCT (SS-OCT) system. With graphics processing unit (GPU)-based CUDA C/C++ implementation, this new attenuation mapping algorithm can offer robust and accurate quantitative interpretation of OCT images in real time during brain surgery.

  12. A study on the antioxidant effect of Coriolus versicolor polysaccharide in rat brain tissues.

    PubMed

    Chen, Jiayu; Jin, Xiaoyan; Zhang, Liting; Yang, Linjun

    2013-01-01

    The objective of the study was to investigate the antioxidant effect of Chinese medicine Coriolus versicolor polysaccharide on brain tissue and its mechanism in rats. SOD, MDA and GSH-Px levels in rat brain tissues were determined with SD rats as the animal model. The results showed that Coriolus versicolor polysaccharide can reduce the lipid peroxidation level in brain tissues during exhaustive exercise in rats, and can accelerate the removal of free radicals. The study concluded that its antioxidant effect is relatively apparent.

  13. Inadequate Antioxidative Responses in Kidneys of Brain-Dead Rats.

    PubMed

    Hoeksma, Dane; Rebolledo, Rolando A; Hottenrott, Maximilia; Bodar, Yves S; Wiersema-Buist, Janneke J; Van Goor, Harry; Leuvenink, Henri G D

    2017-04-01

    Brain death (BD)-related lipid peroxidation, measured as serum malondialdehyde (MDA) levels, correlates with delayed graft function in renal transplant recipients. How BD affects lipid peroxidation is not known. The extent of BD-induced organ damage is influenced by the speed at which intracranial pressure increases. To determine possible underlying causes of lipid peroxidation, we investigated the renal redox balance by assessing oxidative and antioxidative processes in kidneys of brain-dead rats after fast and slow BD induction. Brain death was induced in 64 ventilated male Fisher rats by inflating a 4.0F Fogarty catheter in the epidural space. Fast and slow inductions were achieved by an inflation speed of 0.45 and 0.015 mL/min, respectively, until BD confirmation. Healthy non-brain-dead rats served as reference values. Brain-dead rats were monitored for 0.5, 1, 2, or 4 hours, after which organs and blood were collected. Increased MDA levels became evident at 2 hours of slow BD induction at which increased superoxide levels, decreased glutathione peroxidase (GPx) activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased plasma creatinine levels were evident. At 4 hours after slow BD induction, superoxide, MDA, and plasma creatinine levels increased further, whereas GPx activity remained decreased. Increased MDA and plasma creatinine levels also became evident after 4 hours fast BD induction. Brain death leads to increased superoxide production, decreased GPx activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased MDA and plasma creatinine levels. These effects were more pronounced after slow BD induction. Modulation of these processes could lead to decreased incidence of delayed graft function.

  14. Phosphorylated recombinant HSP27 protects the brain and attenuates blood-brain barrier disruption following stroke in mice receiving intravenous tissue-plasminogen activator.

    PubMed

    Shimada, Yoshiaki; Shimura, Hideki; Tanaka, Ryota; Yamashiro, Kazuo; Koike, Masato; Uchiyama, Yasuo; Urabe, Takao; Hattori, Nobutaka

    2018-01-01

    Loss of integrity of the blood-brain barrier (BBB) in ischemic stroke victims initiates a devastating cascade of events causing brain damage. Maintaining the BBB is important to preserve brain function in ischemic stroke. Unfortunately, recombinant tissue plasminogen activator (tPA), the only effective fibrinolytic treatment at the acute stage of ischemic stroke, also injures the BBB and increases the risk of brain edema and secondary hemorrhagic transformation. Thus, it is important to identify compounds that maintain BBB integrity in the face of ischemic injury in patients with stroke. We previously demonstrated that intravenously injected phosphorylated recombinant heat shock protein 27 (prHSP27) protects the brains of mice with transient middle cerebral artery occlusion (tMCAO), an animal stroke-model. Here, we determined whether prHSP27, in addition to attenuating brain injury, also decreases BBB damage in hyperglycemic tMCAO mice that had received tPA. After induction of hyperglycemia and tMCAO, we examined 4 treatment groups: 1) bovine serum albumin (BSA), 2) prHSP27, 3) tPA, 4) tPA plus prHSP27. We examined the effects of prHSP27 by comparing the BSA and prHSP27 groups and the tPA and tPA plus prHSP27 groups. Twenty-four hours after injection, prHSP27 reduced infarct volume, brain swelling, neurological deficits, the loss of microvessel proteins and endothelial cell walls, and mortality. It also reduced the rates of hemorrhagic transformation, extravasation of endogenous IgG, and MMP-9 activity, signs of BBB damage. Therefore, prHSP27 injection attenuated brain damage and preserved the BBB in tPA-injected, hyperglycemic tMCAO experimental stroke-model mice, in which the BBB is even more severely damaged than in simple tMCAO mice. The attenuation of brain damage and BBB disruption in the presence of tPA suggests the effectiveness of prHSP27 and tPA as a combination therapy. prHSP27 may be a novel therapeutic agent for ischemic stroke patients whose BBBs are

  15. Adolescent Choline Supplementation Attenuates Working Memory Deficits in Rats Exposed to Alcohol During the Third Trimester Equivalent.

    PubMed

    Schneider, Ronald D; Thomas, Jennifer D

    2016-04-01

    Children exposed to alcohol prenatally may suffer from behavioral and cognitive alterations that adversely affect their quality of life. Animal studies have shown that perinatal supplementation with the nutrient choline can attenuate ethanol's adverse effects on development; however, it is not clear how late in development choline can be administered and still effectively reduce the consequences of prenatal alcohol exposure. Using a rodent model, this study examined whether choline supplementation is effective in mitigating alcohol's teratogenic effects when administered during adolescence/young adulthood. Sprague-Dawley rats were exposed to alcohol (5.25 g/kg/d) during the third trimester equivalent brain growth spurt, which occurs from postnatal day (PD) 4 to 9, via oral intubation. Sham-intubated and nontreated controls were included. Subjects were treated with 100 mg/kg/d choline chloride or vehicle from PD 40 to 60, a period equivalent to young adulthood in the rat. After the choline treatment had ceased, subjects were tested on a series of behavioral tasks: open field activity (PD 61 to 64), Morris water maze spatial learning (PD 65 to 73), and spatial working memory (PD 87 to 91). Ethanol-exposed subjects were overactive in the activity chambers and impaired on both the spatial and the working memory versions of the Morris water maze. Choline treatment failed to attenuate alcohol-related overactivity in the open field and deficits in Morris water maze performance. In contrast, choline supplementation significantly mitigated alcohol-related deficits in working memory, which may suggest that choline administration at this later developmental time affects functioning of the prefrontal cortex. The results indicate that adolescent choline supplementation can attenuate some, but not all, of the behavioral deficits associated with early developmental alcohol exposure. The results of this study indicate that dietary intervention may reduce some fetal alcohol effects

  16. Adolescent Choline Supplementation Attenuates Working Memory Deficits in Rats Exposed to Alcohol During the Third Trimester Equivalent

    PubMed Central

    Schneider, Ronald D.; Thomas, Jennifer D.

    2018-01-01

    Background Children exposed to alcohol prenatally may suffer from behavioral and cognitive alterations that adversely affect their quality of life. Animal studies have shown that perinatal supplementation with the nutrient choline can attenuate ethanol’s adverse effects on development; however, it is not clear how late in development choline can be administered and still effectively reduce the consequences of prenatal alcohol exposure. Using a rodent model, this study examined whether choline supplementation is effective in mitigating alcohol’s teratogenic effects when administered during adolescence/young adulthood. Methods Sprague–Dawley rats were exposed to alcohol (5.25 g/kg/d) during the third trimester equivalent brain growth spurt, which occurs from postnatal day (PD) 4 to 9, via oral intubation. Sham-intubated and nontreated controls were included. Subjects were treated with 100 mg/kg/d choline chloride or vehicle from PD 40 to 60, a period equivalent to young adulthood in the rat. After the choline treatment had ceased, subjects were tested on a series of behavioral tasks: open field activity (PD 61 to 64), Morris water maze spatial learning (PD 65 to 73), and spatial working memory (PD 87 to 91). Results Ethanol-exposed subjects were overactive in the activity chambers and impaired on both the spatial and the working memory versions of the Morris water maze. Choline treatment failed to attenuate alcohol-related overactivity in the open field and deficits in Morris water maze performance. In contrast, choline supplementation significantly mitigated alcohol-related deficits in working memory, which may suggest that choline administration at this later developmental time affects functioning of the prefrontal cortex. Conclusions The results indicate that adolescent choline supplementation can attenuate some, but not all, of the behavioral deficits associated with early developmental alcohol exposure. The results of this study indicate that dietary

  17. Defining the Phosphodiesterase Superfamily Members in Rat Brain Microvessels

    PubMed Central

    2011-01-01

    Eleven phosphodiesterase (PDE) families are known, each having several different isoforms and splice variants. Recent evidence indicates that expression of individual PDE family members is tissue-specific. Little is known concerning detailed PDE component expression in brain microvessels where the blood-brain-barrier and the local cerebral blood flow are thought to be regulated by PDEs. The present study attempted to identify PDE family members that are expressed in brain microvessels. Adult male F344 rats were sacrificed and blocks of the cerebral cortex and infratentorial areas were dissected. Microvessels were isolated using a filtration method, and total RNA was extracted. RNA quality and quantity were determined using an Agilent bioanalyzer. The isolated cortical and infratentorial microvessel total RNA amounts were 2720 ± 750 ng (n = 2) and 250 ± 40 ng (n = 2), respectively. Microarrays with 22 000 transcripts demonstrated that there were 16 PDE transcripts in the PDE superfamily, exhibiting quantifiable density in the microvessels. An additional immunofluorescent study verified that PDE4D (cAMP-specific) and PDE5A (cGMP-specific) were colocalized with RECA-1 (an endothelial marker) in the cerebral cortex using both F344 rats and Sprague–Dawley rats (n = 3–6/strain). In addition, PDE4D and PDE5A were found to be colocalized with alpha-smooth muscle actin which delineates cerebral arteries and arterioles as well as pericytes. In conclusion, a filtration method followed by microarray analyses allows PDE components to be identified in brain microvessels, and confirmed that PDE4D and PDE5A are the primary forms expressed in rat brain microvessels. PMID:22860158

  18. MASCULINIZATION OF FEMALE RATS BY PRENATAL TESTOSTERONE PROPIONATE IS PARTIALLY ATTENUATED BY VINCLOZOLIN

    EPA Science Inventory

    MASCULINIZATION OF FEMALE RATS BY PRENATAL TESTOSTERONE PROPIONATE IS PARTIALLY ATTENUATED BY VINCLOZOLIN
    Cynthia Wolf1,2, Gerald LeBlanc2, Andrew Hotchkiss3, Jonathan Furr1, L Earl Gray, Jr.1
    1USEPA, Reproductive Toxicology Division, RTP, NC 27711, 2Dept. Molecular and En...

  19. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Wang, Jian-Qin; Yin, Jie; Song, Yan-Feng; Zhang, Lang; Ren, Ying-Xiang; Wang, De-Gui; Gao, Li-Ping; Jing, Yu-Hong

    2014-01-01

    Objective. Numerous epidemiological studies have linked diabetes mellitus (DM) with an increased risk of developing Alzheimer's disease (AD). However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ-) induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC). Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies. PMID:25197672

  20. Isolated spinal cord contusion in rats induces chronic brain neuroinflammation, neurodegeneration, and cognitive impairment

    PubMed Central

    Wu, Junfang; Stoica, Bogdan A; Luo, Tao; Sabirzhanov, Boris; Zhao, Zaorui; Guanciale, Kelsey; Nayar, Suresh K; Foss, Catherine A; Pomper, Martin G; Faden, Alan I

    2014-01-01

    Cognitive dysfunction has been reported in patients with spinal cord injury (SCI), but it has been questioned whether such changes may reflect concurrent head injury, and the issue has not been addressed mechanistically or in a well-controlled experimental model. Our recent rodent studies examining SCI-induced hyperesthesia revealed neuroinflammatory changes not only in supratentorial pain-regulatory sites, but also in other brain regions, suggesting that additional brain functions may be impacted following SCI. Here we examined effects of isolated thoracic SCI in rats on cognition, brain inflammation, and neurodegeneration. We show for the first time that SCI causes widespread microglial activation in the brain, with increased expression of markers for activated microglia/macrophages, including translocator protein and chemokine ligand 21 (C–C motif). Stereological analysis demonstrated significant neuronal loss in the cortex, thalamus, and hippocampus. SCI caused chronic impairment in spatial, retention, contextual, and fear-related emotional memory—evidenced by poor performance in the Morris water maze, novel objective recognition, and passive avoidance tests. Based on our prior work implicating cell cycle activation (CCA) in chronic neuroinflammation after SCI or traumatic brain injury, we evaluated whether CCA contributed to the observed changes. Increased expression of cell cycle-related genes and proteins was found in hippocampus and cortex after SCI. Posttraumatic brain inflammation, neuronal loss, and cognitive changes were attenuated by systemic post-injury administration of a selective cyclin-dependent kinase inhibitor. These studies demonstrate that chronic brain neurodegeneration occurs after isolated SCI, likely related to sustained microglial activation mediated by cell cycle activation. PMID:25483194

  1. Correlation Between Subacute Sensorimotor Deficits and Brain Edema in Rats after Surgical Brain Injury.

    PubMed

    McBride, Devin W; Wang, Yuechun; Adam, Loic; Oudin, Guillaume; Louis, Jean-Sébastien; Tang, Jiping; Zhang, John H

    2016-01-01

    No matter how carefully a neurosurgical procedure is performed, it is intrinsically linked to postoperative deficits resulting in delayed healing caused by direct trauma, hemorrhage, and brain edema, termed surgical brain injury (SBI). Cerebral edema occurs several hours after SBI and is a major contributor to patient morbidity, resulting in increased postoperative care. Currently, the correlation between functional recovery and brain edema after SBI remains unknown. Here we examine the correlation between neurological function and brain water content in rats 42 h after SBI. SBI was induced in male Sprague-Dawley rats via frontal lobectomy. Twenty-four hours post-ictus animals were subjected to four neurobehavior tests: composite Garcia neuroscore, beam walking test, corner turn test, and beam balance test. Animals were then sacrificed for right-frontal brain water content measurement via the wet-dry method. Right-frontal lobe brain water content was found to significantly correlate with neurobehavioral deficits in the corner turn and beam balance tests: the number of left turns (percentage of total turns) for the corner turn test and distance traveled for the beam balance test were both inversely proportional with brain water content. No correlation was observed for the composite Garcia neuroscore or the beam walking test.

  2. Osthole attenuates the development of carrageenan-induced lung inflammation in rats.

    PubMed

    Li, Zhipeng; Ji, Haijie; Song, Xiuyun; Hu, Jinfeng; Han, Ning; Chen, Naihong

    2014-05-01

    Osthole has been reported to possess a variety of pharmacological activities, such as antiinflammatory effect. In the present study, we have investigated the effect of osthole on lung inflammation associated with carrageenan-induced pleurisy in rats. The result showed that osthole could inhibit significantly pleural exudates formation and PMNs infiltration. Histological examination revealed osthole could reduce lung inflammation in rats treated with carrageenan. The myeloperoxidase (MPO) level was examined in pleural exudates. The result showed that osthole could attenuate MPO level in pleural exudates. Further studies showed osthole could decrease tumor necrosis factor alpha (TNF-α) and interleukin 1beta (IL-1β) levels in the lungs. Taken together, the present results suggested that osthole could inhibit lung inflammation on carrageenan-induced pleurisy in rats and that could be related to a reduction of PMNs infiltration and release of inflammatory factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. ANTIANDROGENIC EFFECTS OF VINCLOZOLIN ON MALE RATS ARE PARTIALLY ATTENUATED BY TESTOSTERONE PROPIONATE

    EPA Science Inventory

    ANTIANDROGENIC EFFECTS OF VINCLOZOLIN ON MALE RATS ARE PARTIALLY ATTENUATED BY TESTOSTERONE PROPIONATE

    Cynthia Wolf1,2 , Joe Ostby1, Jonathan Furr 1, Gerald A. LeBlanc2, and L. Earl Gray, Jr.1
    1 US Environmental Protection Agency, NHEERL, RTD, RTP, NC 27711, 2 Departmen...

  4. Propagation of damage in the rat brain following sarin exposure: Differential progression of early processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel

    Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. Inmore » all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti

  5. Hydrogen Gas Attenuates Myocardial Ischemia Reperfusion Injury Independent of Postconditioning in Rats by Attenuating Endoplasmic Reticulum Stress-Induced Autophagy.

    PubMed

    Gao, Yunan; Yang, Hongxiao; Chi, Jing; Xu, Qiannan; Zhao, Luqi; Yang, Weijia; Liu, Weifan; Yang, Wei

    2017-01-01

    To study the effect of inhaling hydrogen gas on myocardial ischemic/reperfusion(I/R) injury in rats. Seventy male Wistar albino rats were divided into five groups at random as the sham group (Sham). The I/R group (I/R), The ischemic postconditioning group (IPo), The I/R plus hydrogen group (IH2) and the ischemic postconditioning plus hydrogen group (IPoH2). The Sham group was without coronary occlusion. In I/R group, Ischemic/reperfusion injury was induced by coronary occlusion for 1 hour. Followed by 2 hours of reperfusion. In the IPo and IPoH2 group, four cycles of 1 min reperfusion/1 min ischemia was given at the end of 1 hour coronary occlusion. While 2% hydrogen was administered by inhalation 5 min before reperfusion till 2 hours after reperfusion in both the IPoH2 and IH2 group. The heart and blood samples were harvested at the end of the surgical protocol. Then the myocardium cell endoplasmic reticulum(ER) stress and autophagy was observed by electron microscope. In addition, the cardiac ER stress and autophagy related proteins expression were detected by Western blotting analysis. Both inhaling 2% hydrogen and ischemic postconditioning treatment reduced the ischemic size and serum troponin I level in rats with I/R injury, and inhaling hydrogen showed a more curative effect compared with ischemic postconditioning treatment. Meanwhile inhaling hydrogen showed a better protective effect in attenuating tissue reactive oxygen species. Malondialdehyde levels and immunoreactivities against 8-hydroxy-2'-deoxyguanosine and inhibiting cardiac endoplasmic reticulum stress and down-regulating autophagy as compared with ischemic postconditioning treatment. These results revealed a better protective effect of hydrogen on myocardial ischemic/reperfusion injury in rats by attenuating endoplasmic reticulum stress and down-regulating autophagy compared with ischemic postconditioning treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.

  6. Evaluation of MLACF based calculated attenuation brain PET imaging for FDG patient studies

    NASA Astrophysics Data System (ADS)

    Bal, Harshali; Panin, Vladimir Y.; Platsch, Guenther; Defrise, Michel; Hayden, Charles; Hutton, Chloe; Serrano, Benjamin; Paulmier, Benoit; Casey, Michael E.

    2017-04-01

    Calculating attenuation correction for brain PET imaging rather than using CT presents opportunities for low radiation dose applications such as pediatric imaging and serial scans to monitor disease progression. Our goal is to evaluate the iterative time-of-flight based maximum-likelihood activity and attenuation correction factors estimation (MLACF) method for clinical FDG brain PET imaging. FDG PET/CT brain studies were performed in 57 patients using the Biograph mCT (Siemens) four-ring scanner. The time-of-flight PET sinograms were acquired using the standard clinical protocol consisting of a CT scan followed by 10 min of single-bed PET acquisition. Images were reconstructed using CT-based attenuation correction (CTAC) and used as a gold standard for comparison. Two methods were compared with respect to CTAC: a calculated brain attenuation correction (CBAC) and MLACF based PET reconstruction. Plane-by-plane scaling was performed for MLACF images in order to fix the variable axial scaling observed. The noise structure of the MLACF images was different compared to those obtained using CTAC and the reconstruction required a higher number of iterations to obtain comparable image quality. To analyze the pooled data, each dataset was registered to a standard template and standard regions of interest were extracted. An SUVr analysis of the brain regions of interest showed that CBAC and MLACF were each well correlated with CTAC SUVrs. A plane-by-plane error analysis indicated that there were local differences for both CBAC and MLACF images with respect to CTAC. Mean relative error in the standard regions of interest was less than 5% for both methods and the mean absolute relative errors for both methods were similar (3.4%  ±  3.1% for CBAC and 3.5%  ±  3.1% for MLACF). However, the MLACF method recovered activity adjoining the frontal sinus regions more accurately than CBAC method. The use of plane-by-plane scaling of MLACF images was found to be a

  7. Cortistatin is induced in brain tissue and exerts neuroprotection in a rat model of bacterial meningoencephalitis.

    PubMed

    Chiu, Chien-Tsai; Wen, Li-Li; Pao, Hsin-Ping; Wang, Jia-Yi

    2011-11-15

    There are fewer reports of brain infection by Klebsiella pneumoniae than there are in other organs, but an increase incidence and morbidity has been noted. We have previously developed a rat model of K. pneumoniae meningoencephalitis. Cortistatin (CST) is a recently discovered neuropeptide with endocrine activities in humans. In this study, we found that brain infection by K. pneumoniae increased endogenous prepro-CST messenger RNA expression, which occurred earlier than did leukocyte infiltration in vivo and also occurred in cultured neuron-glia. Postinfection treatment with CST (either intracerebroventricularly or intraperitoneally), but not somatostatin, reduced leukocyte recruitment and clinical illness as revealed by fever and clinical score in vivo. Postinfection increases of proinflammatory cytokine messenger RNA levels were attenuated by CST in neuron-glia cultures, further confirming a direct effect on neuroinflammation. Administration of CST resulted in less postinfection neuronal loss in vitro, suggesting a direct neuroprotective effect and potential as an adjuvant for treating bacterial meningoencephalitis.

  8. Peripheral anosmia attenuates female-enhanced aggression in male rats.

    PubMed

    Bergvall, A H; Vega Matuszczyk, J; Dahlöf, L G; Hansen, S

    1991-07-01

    It is well established that male rats with prior access to sexually active females show enhanced offensive aggression toward unfamiliar male intruders. The present study assessed the importance of the sense of smell for this facilitatory effect. It was found in 2 independent experiments that anosmia, induced peripherally by surgically removing the olfactory epithelium and cutting the olfactory nerves, reduced baseline levels of offensive aggression and significantly attenuated the female-enhanced aggression effect. It was also found that sexual performance of anosmic rats was context-dependent, in that it was more impaired in the homecage environment than in standard observation cages. In contrast to sham-operated males, the experimental animals showed no preference for estrous over anestrous females in a mate choice test. Anosmic males did not appear more fearful than controls, as assessed in a hyponeophagia test, but they showed less exploratory behavior (rearing and head-dipping) in the hole-board test, and less rearing activity in automated activity boxes.

  9. Brain GLP-1/IGF-1 Signaling and Autophagy Mediate Exendin-4 Protection Against Apoptosis in Type 2 Diabetic Rats.

    PubMed

    Candeias, Emanuel; Sebastião, Inês; Cardoso, Susana; Carvalho, Cristina; Santos, Maria Sancha; Oliveira, Catarina Resende; Moreira, Paula I; Duarte, Ana I

    2018-05-01

    Type 2 diabetes (T2D) is a modern socioeconomic burden, mostly due to its long-term complications affecting nearly all tissues. One of them is the brain, whose dysfunctional intracellular quality control mechanisms (namely autophagy) may upregulate apoptosis, leading to cognitive dysfunction and Alzheimer disease (AD). Since impaired brain insulin signaling may constitute the crosslink between T2D and AD, its restoration may be potentially therapeutic herein. Accordingly, the insulinotropic anti-T2D drugs from glucagon-like peptide-1 (GLP-1) mimetics, namely, exendin-4 (Ex-4), could be a promising therapy. In line with this, we hypothesized that peripherally administered Ex-4 rescues brain intracellular signaling pathways, promoting autophagy and ultimately protecting against chronic T2D-induced apoptosis. Thus, we aimed to explore the effects of chronic, continuous, subcutaneous (s.c.) exposure to Ex-4 in brain cortical GLP-1/insulin/insulin-like growth factor-1 (IGF-1) signaling, and in autophagic and cell death mechanisms in middle-aged (8 months old), male T2D Goto-Kakizaki (GK) rats. We used brain cortical homogenates obtained from middle-aged (8 months old) male Wistar (control) and T2D GK rats. Ex-4 was continuously administered for 28 days, via s.c. implanted micro-osmotic pumps (5 μg/kg/day; infusion rate 2.5 μL/h). Peripheral characterization of the animal models was given by the standard biochemical analyses of blood or plasma, the intraperitoneal glucose tolerance test, and the heart rate. GLP-1, insulin, and IGF-1, their downstream signaling and autophagic markers were evaluated by specific ELISA kits and Western blotting. Caspase-like activities and other apoptotic markers were given by colorimetric methods and Western blotting. Chronic Ex-4 treatment attenuated peripheral features of T2D in GK rats, including hyperglycemia and insulin resistance. Furthermore, s.c. Ex-4 enhanced their brain cortical GLP-1 and IGF-1 levels, and subsequent

  10. Notoginsenoside R1 attenuates renal ischemia-reperfusion injury in rats.

    PubMed

    Liu, Wen-Jun; Tang, Hong-Tai; Jia, Yi-Tao; Ma, Bing; Fu, Jin-Feng; Wang, Yu; Lv, Kai-Yang; Xia, Zhao-Fan

    2010-09-01

    Ischemia-reperfusion (I/R) injury of the kidney is a complex pathophysiological process and a major cause of acute renal failure. It has been shown that I/R injury is related to inflammatory responses and activation of apoptotic pathways. Inhibition of certain elements of inflammatory responses and apoptotic pathway seemed to ameliorate renal I/R injury. As an effective element of Panax notoginseng, NR1 has antioxidant, anti-inflammatory, antiapoptotic, and immune-stimulatory activities. Therefore, we speculate that NR1 can attenuate renal I/R injury. Ischemia-reperfusion injury was induced by renal pedicle ligation followed by reperfusion along with a contralateral nephrectomy. Male Sprague-Dawley rats were randomized to four groups: sham group, I/R control group, NR1-1 group (rats treated with NR1, 20 mg.kg.d) and NR1-2 group (rats treated with NR1, 40 mg.kg.d). All animals were killed 72 h after I/R induction. Blood and renal tissues were collected. Renal dysfunction was observed by the level of serum creatinine and histological evaluation. Apoptosis and inflammatory response in the tissue of kidney were detected mainly with molecular biological methods. NR1 attenuated I/R-induced renal dysfunction as indicated by the level of serum creatinine and histological evaluation. It prevented the I/R-induced increases in the levels of proinflammatory cytokine TNF-alpha, myeloperoxidase activity, phosphorylation of p38, and activation of nuclear factor kappaB with cell apoptosis in the kidney and enhanced expression of antiapoptosis cytokine bcl-2. Treatment with NR1 improves renal function after I/R associated with a significant reduction in cell apoptosis and inflammatory responses, which may be related to p38 and nuclear factor kappaB inhibition.

  11. Blockade and knock-out of CALHM1 channels attenuate ischemic brain damage.

    PubMed

    Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Ruiz, Asier; Chara, Juan C; Pérez-Samartín, Alberto; Marambaud, Philippe; Matute, Carlos

    2018-06-01

    Overactivation of purinergic receptors during cerebral ischemia results in a massive release of neurotransmitters, including adenosine triphosphate (ATP), to the extracellular space which leads to cell death. Some hypothetical pathways of ATP release are large ion channels, such as calcium homeostasis modulator 1 (CALHM1), a membrane ion channel that can permeate ATP. Since this transmitter contributes to postischemic brain damage, we hypothesized that CALHM1 activation may be a relevant target to attenuate stroke injury. Here, we analyzed the contribution of CALHM1 to postanoxic depolarization after ischemia in cultured neurons and in cortical slices. We observed that the onset of postanoxic currents in neurons in those preparations was delayed after its blockade with ruthenium red or silencing of Calhm1 gene by short hairpin RNA, as well as in slices from CALHM1 knockout mice. Subsequently, we used transient middle cerebral artery occlusion and found that ruthenium red, a blocker of CALHM1, or the lack of CALHM1, substantially attenuated the motor symptoms and reduced significantly the infarct volume. These results show that CALHM1 channels mediate postanoxic depolarization in neurons and brain damage after ischemia. Therefore, targeting CALHM1 may have a high therapeutic potential for treating brain damage after ischemia.

  12. MR brain volumetric measurements are predictive of neurobehavioral impairment in the HIV-1 transgenic rat.

    PubMed

    Casas, Rafael; Muthusamy, Siva; Wakim, Paul G; Sinharay, Sanhita; Lentz, Margaret R; Reid, William C; Hammoud, Dima A

    2018-01-01

    HIV infection is known to be associated with brain volume loss, even in optimally treated patients. In this study, we assessed whether dynamic brain volume changes over time are predictive of neurobehavorial performance in the HIV-1 transgenic (Tg) rat, a model of treated HIV-positive patients. Cross-sectional brain MRI imaging was first performed comparing Tg and wild type (WT) rats at 3 and 19 months of age. Longitudinal MRI and neurobehavioral testing of another group of Tg and WT rats was then performed from 5 to 23 weeks of age. Whole brain and subregional image segmentation was used to assess the rate of brain growth over time. We used repeated-measures mixed models to assess differences in brain volumes and to establish how predictive the volume differences are of specific neurobehavioral deficits. Cross-sectional imaging showed smaller whole brain volumes in Tg compared to WT rats at 3 and at 19 months of age. Longitudinally, Tg brain volumes were smaller than age-matched WT rats at all time points, starting as early as 5 weeks of age. The Tg striatal growth rate delay between 5 and 9 weeks of age was greater than that of the whole brain. Striatal volume in combination with genotype was the most predictive of rota-rod scores and in combination with genotype and age was the most predictive of total exploratory activity scores in the Tg rats. The disproportionately delayed striatal growth compared to whole brain between 5 and 9 weeks of age and the role of striatal volume in predicting neurobehavioral deficits suggest an important role of the dopaminergic system in HIV associated neuropathology. This might explain problems with motor coordination and executive decisions in this animal model. Smaller brain and subregional volumes and neurobehavioral deficits were seen as early as 5 weeks of age, suggesting an early brain insult in the Tg rat. Neuroprotective therapy testing in this model should thus target this early stage of development, before brain

  13. Mild hypothermia alleviates brain oedema and blood-brain barrier disruption by attenuating tight junction and adherens junction breakdown in a swine model of cardiopulmonary resuscitation

    PubMed Central

    Li, Jiebin; Li, Chunsheng; Yuan, Wei; Wu, Junyuan; Li, Jie; Li, Zhenhua; Zhao, Yongzhen

    2017-01-01

    Mild hypothermia improves survival and neurological recovery after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). However, the mechanism underlying this phenomenon is not fully elucidated. The aim of this study was to determine whether mild hypothermia alleviates early blood–brain barrier (BBB) disruption. We investigated the effects of mild hypothermia on neurologic outcome, survival rate, brain water content, BBB permeability and changes in tight junctions (TJs) and adherens junctions (AJs) after CA and CPR. Pigs were subjected to 8 min of untreated ventricular fibrillation followed by CPR. Mild hypothermia (33°C) was intravascularly induced and maintained at this temperature for 12 h, followed by active rewarming. Mild hypothermia significantly reduced cortical water content, decreased BBB permeability and attenuated TJ ultrastructural and basement membrane breakdown in brain cortical microvessels. Mild hypothermia also attenuated the CPR-induced decreases in TJ (occludin, claudin-5, ZO-1) and AJ (VE-cadherin) protein and mRNA expression. Furthermore, mild hypothermia decreased the CA- and CPR-induced increases in matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) expression and increased angiogenin-1 (Ang-1) expression. Our findings suggest that mild hypothermia attenuates the CA- and resuscitation-induced early brain oedema and BBB disruption, and this improvement might be at least partially associated with attenuation of the breakdown of TJ and AJ, suppression of MMP-9 and VEGF expression, and upregulation of Ang-1 expression. PMID:28355299

  14. Ursolic Acid Inhibits Superoxide Production in Activated Neutrophils and Attenuates Trauma-Hemorrhage Shock-Induced Organ Injury in Rats

    PubMed Central

    Hwang, Tsong-Long; Shen, Hsin-I; Liu, Fu-Chao; Tsai, Hsin-I; Wu, Yang-Chang; Chang, Fang-Rong; Yu, Huang-Ping

    2014-01-01

    Neutrophil activation is associated with the development of organ injury after trauma–hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma–hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma–hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma–hemorrhagic shock-induced organ injury in rats. PMID:25360589

  15. Crocin attenuates hemorrhagic shock-induced oxidative stress and organ injuries in rats.

    PubMed

    Yang, Long; Dong, Xiujuan

    2017-06-01

    We aimed to evaluate the effect of natural antioxidant crocin in alleviating hemorrhagic shock (HS)-induced organ damages. HS rats were treated with crocin during resuscitation. Mortality at 12h and 24h post resuscitation was documented. HS and resuscitation induced organ injuries, as characterized by elevated wet/dry ratio, quantitative assessment ratio, blood urea nitrogen, creatinine, aspartate aminotransferase and alanine aminotransferase, whereas rats received crocin treatment demonstrated improvements in all the above characteristics. This protective effect coincided with reduced malondialdehyde and increased glutathione in both serum and lung tissues, indicating attenuated oxidative stress in crocin-treated rats. Myeloperoxide levels in lung, kidney and liver were also reduced. Crocin can potentially be used to protect organs from HS-induced damages during resuscitation due to its anti-oxidative role. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Pharmacological attenuation of chronic alcoholic pancreatitis induced hypersensitivity in rats.

    PubMed

    McIlwrath, Sabrina L; Westlund, Karin N

    2015-01-21

    To characterize an alcohol and high fat diet induced chronic pancreatitis rat model that mimics poor human dietary choices. Experimental rats were fed a modified Lieber-DeCarli alcohol (6%) and high-fat (65%) diet (AHF) for 10 wk while control animals received a regular rodent chow diet. Weekly behavioral tests determined mechanical and heat sensitivity. In week 10 a fasting glucose tolerance test was performed, measuring blood glucose levels before and after a 2 g/kg bodyweight intraperitoneal (i.p.) injection of glucose. Post mortem histological analysis was performed by staining pancreas and liver tissue sections with hematoxylin and eosin. Pancreas sections were also stained with Sirius red and fast green to quantify collagen content. Insulin-expressing cells were identified immunohistochemically in separate sections. Tissue staining density was quantified using Image J software. After mechanical and heat sensitivity became stable (weeks 6-10) in the AHF-fed animals, three different drugs were tested for their efficacy in attenuating pancreatitis associated hypersensitivity: a Group II metabotropic glutamate receptor specific agonist (2R,4R)-4-Aminopyrrolidine-2,4-dicarboxylate (APDC, 3 mg/kg, ip; Tocris, Bristol, United Kingdom), nociceptin (20, 60, 200 nmol/kg, ip; Tocris), and morphine sulfate (3 mg/kg, μ-opioid receptor agonist; Baxter Healthcare, Deerfield, IL, United States). Histological analysis of pancreas and liver determined that unlike control rats, AHF fed animals had pancreatic fibrosis, acinar and beta cell atrophy, with steatosis in both organs. Fat vacuolization was significantly increased in AHF fed rats (6.4% ± 1.1% in controls vs 23.8% ± 4.2%, P < 0.05). Rats fed the AHF diet had reduced fasting glucose tolerance in week 10 when peak blood glucose levels reached significantly higher concentrations than controls (127.4 ± 9.2 mg/dL in controls vs 161.0 ± 8.6 mg/dL, P < 0.05). This concurred with a 3.5 fold higher incidence of single and

  17. Pharmacological attenuation of chronic alcoholic pancreatitis induced hypersensitivity in rats

    PubMed Central

    McIlwrath, Sabrina L; Westlund, Karin N

    2015-01-01

    AIM: To characterize an alcohol and high fat diet induced chronic pancreatitis rat model that mimics poor human dietary choices. METHODS: Experimental rats were fed a modified Lieber-DeCarli alcohol (6%) and high-fat (65%) diet (AHF) for 10 wk while control animals received a regular rodent chow diet. Weekly behavioral tests determined mechanical and heat sensitivity. In week 10 a fasting glucose tolerance test was performed, measuring blood glucose levels before and after a 2 g/kg bodyweight intraperitoneal (i.p.) injection of glucose. Post mortem histological analysis was performed by staining pancreas and liver tissue sections with hematoxylin and eosin. Pancreas sections were also stained with Sirius red and fast green to quantify collagen content. Insulin-expressing cells were identified immunohistochemically in separate sections. Tissue staining density was quantified using Image J software. After mechanical and heat sensitivity became stable (weeks 6-10) in the AHF-fed animals, three different drugs were tested for their efficacy in attenuating pancreatitis associated hypersensitivity: a Group II metabotropic glutamate receptor specific agonist (2R,4R)-4-Aminopyrrolidine-2,4-dicarboxylate (APDC, 3 mg/kg, ip; Tocris, Bristol, United Kingdom), nociceptin (20, 60, 200 nmol/kg, ip; Tocris), and morphine sulfate (3 mg/kg, μ-opioid receptor agonist; Baxter Healthcare, Deerfield, IL, United States). RESULTS: Histological analysis of pancreas and liver determined that unlike control rats, AHF fed animals had pancreatic fibrosis, acinar and beta cell atrophy, with steatosis in both organs. Fat vacuolization was significantly increased in AHF fed rats (6.4% ± 1.1% in controls vs 23.8% ± 4.2%, P < 0.05). Rats fed the AHF diet had reduced fasting glucose tolerance in week 10 when peak blood glucose levels reached significantly higher concentrations than controls (127.4 ± 9.2 mg/dL in controls vs 161.0 ± 8.6 mg/dL, P < 0.05). This concurred with a 3.5 fold higher

  18. Administration of an oxytocin receptor antagonist attenuates sexual motivation in male rats.

    PubMed

    Blitzer, D S; Wells, T E; Hawley, W R

    2017-08-01

    In male rats, oxytocin impacts both sexual arousal and certain types of consummatory sexual behaviors. However, the role of oxytocin in the motivational aspects of sexual behavior has received limited attention. Given the role that oxytocin signaling plays in consummatory sexual behaviors, it was hypothesized that pharmacological attenuation of oxytocin signaling would reduce sexual motivation in male rats. Sexually experienced Long-Evans male rats were administered either an oxytocin receptor antagonist (L368,899 hydrochloride; 1mg/kg) or vehicle control into the intraperitoneal cavity 40min prior to placement into the center chamber of a three-chambered arena designed to assess sexual motivation. During the 20-minute test, a sexually experienced stimulus male rat and a sexually receptive stimulus female rat were separately confined to smaller chambers that were attached to the larger end chambers of the arena. However, physical contact between test and stimulus rats was prevented by perforated dividers. Immediately following the sexual motivation test, test male rats were placed with a sexually receptive female to examine consummatory sexual behaviors. Although both drug and vehicle treated rats exhibited a preference for the female, treatment with an oxytocin receptor antagonist decreased the amount of time spent with the female. There were no differences between drug and vehicle treated rats in either general activity, exploratory behaviors, the amount of time spent near the stimulus male rat, or consummatory sexual behaviors. Extending previous findings, these results indicate that oxytocin receptors are involved in sexual motivation in male rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Long-Lasting Attenuation of Amygdala-Kindled Seizures after Convection-Enhanced Delivery of Botulinum Neurotoxins A and B into the Amygdala in Rats

    PubMed Central

    Gasior, Maciej; Tang, Rebecca

    2013-01-01

    Botulinum neurotoxins (BoNTs) are well recognized to cause potent, selective, and long-lasting neuroparalytic actions by blocking cholinergic neurotransmission to muscles and glands. There is evidence that BoNT isoforms can also inhibit neurotransmission in the brain. In this study, we examined whether locally delivered BoNT/A and BoNT/B can attenuate kindling measures in amygdala-kindled rats. Male rats were implanted with a combination infusion cannula–stimulating electrode assembly into the right basolateral amygdala. Fully kindled animals received a single infusion of vehicle or BoNT/A or BoNT/B at doses of 1, 3.2, or 10 ng over a 20-minute period by convection-enhanced delivery. Electrographic (EEG) and behavioral kindling measures were determined at selected times during the 3- to 64-day period after the infusion. BoNT/B produced a dose-dependent elevation in after-discharge threshold and duration and a reduction in the seizure stage and duration of behavioral seizures that lasted for up to 50 days after infusion. BoNT/A had similar effects on EEG measures; behavioral seizure measures were also reduced, but the effect did not reach statistical significance. The effects of both toxins on EEG and behavioral measures progressively resolved during the latter half of the observation period. Animals gained weight normally, maintained normal body temperature, and did not show altered behavior. This study demonstrates for the first time that locally delivered BoNTs can produce prolonged inhibition of brain excitability, indicating that they could be useful for the treatment of brain disorders, including epilepsy, that would benefit from long-lasting suppression of neurotransmission within a circumscribed brain region. PMID:23772062

  20. Petroselinum crispum extract attenuates hepatic steatosis in rats fed with fructose enriched diet.

    PubMed

    Nair, V Yuneesha; Balakrishanan, N; Antony Santiago, J Victor

    2015-01-01

    Non alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and ongoing research efforts are focused on understanding the underlying pathophysiology of hepatic steatosis with the anticipation that these efforts will identify novel therapeutic targets. This study investigated the Petroselinum crispum extract in hepatic steatosis in rats fed with fructose enriched diet. Rats were divided into the 4 groups: Group 1 rats received standard pellet diet with corn starch for the entire experimental period of 8 weeks. Group 2 rats received standard pellet diet and 2 gm/kg body weight crude Parsley leaf ethanol extract for the entire experimental period of 8 weeks. Group 3 rats received modified fructose diet. Group 4 rats received modified fructose diet and 2gm/kg crude Parsley leaf ethanol extract. Hepatic function and structure was evaluated in these rats. Modified fructose diet produced dyslipidemia, hepatic steatosis and infiltration of inflammatory cells in the liver and higher plasma hepatic markers. Petroselinum crispum extract reversed metabolic changes such as abnormal crispum extract attenuated chronic changes in modified fructose diet induced NAFLD (Tab. 2, Fig. 3, Ref. 43).

  1. Photoacoustic imaging to detect rat brain activation after cocaine hydrochloride injection

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Yang, Xinmai

    2011-03-01

    Photoacoustic imaging (PAI) was employed to detect small animal brain activation after the administration of cocaine hydrochloride. Sprague Dawley rats were injected with different concentrations (2.5, 3.0, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution through tail veins. The brain functional response to the injection was monitored by photoacoustic tomography (PAT) system with horizontal scanning of cerebral cortex of rat brain. Photoacoustic microscopy (PAM) was also used for coronal view images. The modified PAT system used multiple ultrasonic detectors to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The measured photoacoustic signal changes confirmed that cocaine hydrochloride injection excited high blood volume in brain. This result shows PAI can be used to monitor drug abuse-induced brain activation.

  2. Development of brain-wide connectivity architecture in awake rats.

    PubMed

    Ma, Zilu; Ma, Yuncong; Zhang, Nanyin

    2018-08-01

    Childhood and adolescence are both critical developmental periods, evidenced by complex neurophysiological changes the brain undergoes and high occurrence rates of neuropsychiatric disorders during these periods. Despite substantial progress in elucidating the developmental trajectories of individual neural circuits, our knowledge of developmental changes of whole-brain connectivity architecture in animals is sparse. To fill this gap, here we longitudinally acquired rsfMRI data in awake rats during five developmental stages from juvenile to adulthood. We found that the maturation timelines of brain circuits were heterogeneous and system specific. Functional connectivity (FC) tended to decrease in subcortical circuits, but increase in cortical circuits during development. In addition, the developing brain exhibited hemispheric functional specialization, evidenced by reduced inter-hemispheric FC between homotopic regions, and lower similarity of region-to-region FC patterns between the two hemispheres. Finally, we showed that whole-brain network development was characterized by reduced clustering (i.e. local communication) but increased integration (distant communication). Taken together, the present study has systematically characterized the development of brain-wide connectivity architecture from juvenile to adulthood in awake rats. It also serves as a critical reference point for understanding circuit- and network-level changes in animal models of brain development-related disorders. Furthermore, FC data during brain development in awake rodents contain high translational value and can shed light onto comparative neuroanatomy. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats

    PubMed Central

    Ruderman, Neil B.; Ross, Peter S.; Berger, Michael; Goodman, Michael N.

    1974-01-01

    1. The effects of starvation and diabetes on brain fuel metabolism were examined by measuring arteriovenous differences for glucose, lactate, acetoacetate and 3-hydroxybutyrate across the brains of anaesthetized fed, starved and diabetic rats. 2. In fed animals glucose represented the sole oxidative fuel of the brain. 3. After 48h of starvation, ketone-body concentrations were about 2mm and ketone-body uptake accounted for 25% of the calculated O2 consumption: the arteriovenous difference for glucose was not diminished, but lactate release was increased, suggesting inhibition of pyruvate oxidation. 4. In severe diabetic ketosis, induced by either streptozotocin or phlorrhizin (total blood ketone bodies >7mm), the uptake of ketone bodies was further increased and accounted for 45% of the brain's oxidative metabolism, and the arteriovenous difference for glucose was decreased by one-third. The arteriovenous difference for lactate was increased significantly in the phlorrhizin-treated rats. 5. Infusion of 3-hydroxybutyrate into starved rats caused marked increases in the arteriovenous differences for lactate and both ketone bodies. 6. To study the mechanisms of these changes, steady-state concentrations of intermediates and co-factors of the glycolytic pathway were determined in freeze-blown brain. 7. Starved rats had increased concentrations of acetyl-CoA. 8. Rats with diabetic ketosis had increased concentrations of fructose 6-phosphate and decreased concentrations of fructose 1,6-diphosphate, indicating an inhibition of phosphofructokinase. 9. The concentrations of acetyl-CoA, glycogen and citrate, a potent inhibitor of phosphofructokinase, were increased in the streptozotocin-treated rats. 10. The data suggest that cerebral glucose uptake is decreased in diabetic ketoacidosis owing to inhibition of phosphofructokinase as a result of the increase in brain citrate. 11. The inhibition of brain pyruvate oxidation in starvation and diabetes can be related to the

  4. A cannabinoid receptor 2 agonist reduces blood-brain barrier damage via induction of MKP-1 after intracerebral hemorrhage in rats.

    PubMed

    Li, Lin; Yun, Debo; Zhang, Yuan; Tao, Yihao; Tan, Qiang; Qiao, Fei; Luo, Bo; Liu, Yi; Fan, Runjin; Xian, Jishu; Yu, Anyong

    2018-06-07

    The blood-brain barrier (BBB) disruption and the following development of brain edema, is the most life-threatening secondary injury after intracerebral hemorrhage (ICH). This study is to investigate a potential role and mechanism of JWH133, a selected cannabinoid receptor type2 (CB2R) agonist, on protecting blood-brain barrier integrity after ICH. 192 adult male Sprague-Dawley (SD) rats were randomly divided into Sham; ICH+Vehicle; ICH+JWH 1.0mg/kg, ICH+JWH 1.5mg/kg and ICH+JWH 2.0mg/kg; ICH+SR+JWH respectively. Animals were euthanized at 24 hours following western blots and immunofluorescence staining, we also examined the effect of JWH133 on the brain water contents, neurobehavioral deficits and blood brain barrier (BBB) permeability, meanwhile reassessed the inflammatory cytokines concentrations around the hematoma by enzyme-linked immunosorbent assay (ELISA) in each group. JWH133 (1.5mg/kg) administration ameliorated brain edema, neurological deficits and blood-brain barrier damage, as well as microglia activation. The expression of pro-inflammatory mediators interleukin 1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and matrix metallopeptidase-2/9(MMP2/9) were attenuated, but not monocyte chemoattractant protein-1 (MCP-1). Additionally, decreases in zonula occludens-1 (ZO-1) and claudin-5 expression were partially recovered by JWH133. Furthermore, JWH133 upregulated the expression level of MKP-1, which leads to the inhibition of MAPKs signaling pathway activation, especially for ERK and P38. However, these effects were reversed by pretreatment with a selective CB2R antagonist, SR144528. CB2R agonist alleviated neuroinflammation and protected blood-brain barrier permeability in a rat ICH model. Further molecular mechanisms revealed which is probably mediated by enhancing the expression of MKP-1, then inhibited MAPKs signal transduction. Copyright © 2018. Published by Elsevier B.V.

  5. Abdominal surgery activates nesfatin-1 immunoreactive brain nuclei in rats

    PubMed Central

    Stengel, Andreas; Goebel, Miriam; Wang, Lixin; Taché, Yvette

    2011-01-01

    Abdominal surgery-induced postoperative gastric ileus is well established to induce Fos expression in specific brain nuclei in rats within 2-h after surgery. However, the phenotype of activated neurons has not been thoroughly characterized. Nesfatin-1 was recently discovered in the rat hypothalamus as a new anorexigenic peptide that also inhibits gastric emptying and is widely distributed in rat brain autonomic nuclei suggesting an involvement in stress responses. Therefore, we investigated whether abdominal surgery activates nesfatin-1-immunoreactive (ir) neurons in the rat brain. Two hours after abdominal surgery with cecal palpation under short isoflurane anesthesia or anesthesia alone, rats were transcardially perfused and brains processed for double immunohistochemical labeling of Fos and nesfatin-1. Abdominal surgery, compared to anesthesia alone, induced Fos expression in neurons of the supraoptic nucleus (SON), paraventricular nucleus (PVN), locus coeruleus (LC), Edinger-Westphal nucleus (EW), rostral raphe pallidus (rRPa), nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM). Double Fos/nesfatin-1 labeling showed that of the activated cells, 99% were nesfatin-1-immunoreactive in the SON, 91% in the LC, 82% in the rRPa, 74% in the EW and VLM, 71% in the anterior parvicellular PVN, 47% in the lateral magnocellular PVN, 41% in the medial magnocellular PVN, 14 % in the NTS and 9% in the medial parvicellular PVN. These data established nesfatin-1 immunoreactive neurons in specific hypothalamic and pontine nuclei as part of the neuronal response to abdominal surgery and suggest a possible implication of nesfatin-1 in the alterations of food intake and gastric transit associated with such a stressor. PMID:19944727

  6. CT-based attenuation and scatter correction compared with uniform attenuation correction in brain perfusion SPECT imaging for dementia

    NASA Astrophysics Data System (ADS)

    Gillen, Rebecca; Firbank, Michael J.; Lloyd, Jim; O'Brien, John T.

    2015-09-01

    This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer’s Disease (n=38 ), Dementia with Lewy Bodies (n=29 ) or healthy normal controls (n=30 ), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject’s CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used. We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.

  7. Strain-related differences after experimental traumatic brain injury in rats.

    PubMed

    Reid, Wendy Murdock; Rolfe, Andrew; Register, David; Levasseur, Joseph E; Churn, Severn B; Sun, Dong

    2010-07-01

    The present study directly compares the effects of experimental brain injury in two commonly used rat strains: Fisher 344 and Sprague-Dawley. We previously found that Fisher rats have a higher mortality rate and more frequent seizure attacks at the same injury level than Sprague-Dawley rats. Although strain differences in rats are commonly accepted as contributing to variability among studies, there is a paucity of literature addressing strain influence in experimental neurotrauma. Therefore this study compares outcome measures in two rat strains following lateral fluid percussion injury. Fisher 344 and Sprague-Dawley rats were monitored for changes in physiological measurements, intracranial pressure, and electroencephalographic activity. We further analyzed neuronal degeneration and cell death in the injured brain using Fluoro-Jade-B (FJB) histochemistry and caspase-3 immunostaining. Behavioral studies using the beam walk and Morris water maze were conducted to characterize strain differences in both motor and cognitive functional recovery following injury. We found that Fisher rats had significantly higher intracranial pressure, prolonged seizure activity, increased FJB-positive staining in the injured cortex and thalamus, and increased caspase-3 expression than Sprague-Dawley rats. On average, Fisher rats displayed a greater amount of total recording time in seizure activity and had longer ictal durations. The Fisher rats also had increased motor deficits, correlating with the above results. In spite of these results, Fisher rats performed better on cognitive tests following injury. The results demonstrate that different rat strains respond to injury differently, and thus in preclinical neurotrauma studies strain influence is an important consideration when evaluating outcomes.

  8. Strain-Related Differences after Experimental Traumatic Brain Injury in Rats

    PubMed Central

    Rolfe, Andrew; Register, David; Levasseur, Joseph E.; Churn, Severn B.; Sun, Dong

    2010-01-01

    Abstract The present study directly compares the effects of experimental brain injury in two commonly used rat strains: Fisher 344 and Sprague-Dawley. We previously found that Fisher rats have a higher mortality rate and more frequent seizure attacks at the same injury level than Sprague-Dawley rats. Although strain differences in rats are commonly accepted as contributing to variability among studies, there is a paucity of literature addressing strain influence in experimental neurotrauma. Therefore this study compares outcome measures in two rat strains following lateral fluid percussion injury. Fisher 344 and Sprague-Dawley rats were monitored for changes in physiological measurements, intracranial pressure, and electroencephalographic activity. We further analyzed neuronal degeneration and cell death in the injured brain using Fluoro-Jade-B (FJB) histochemistry and caspase-3 immunostaining. Behavioral studies using the beam walk and Morris water maze were conducted to characterize strain differences in both motor and cognitive functional recovery following injury. We found that Fisher rats had significantly higher intracranial pressure, prolonged seizure activity, increased FJB-positive staining in the injured cortex and thalamus, and increased caspase-3 expression than Sprague-Dawley rats. On average, Fisher rats displayed a greater amount of total recording time in seizure activity and had longer ictal durations. The Fisher rats also had increased motor deficits, correlating with the above results. In spite of these results, Fisher rats performed better on cognitive tests following injury. The results demonstrate that different rat strains respond to injury differently, and thus in preclinical neurotrauma studies strain influence is an important consideration when evaluating outcomes. PMID:20392137

  9. Lifelong consumption of sodium selenite: gender differences on blood-brain barrier permeability in convulsive, hypoglycemic rats.

    PubMed

    Seker, F Burcu; Akgul, Sibel; Oztas, Baria

    2008-07-01

    The aim of this study was to compare the effects of hypoglycemia and induced convulsions on the blood-brain barrier permeability in rats with or without lifelong administration of sodium selenite. There is a significant decrease of the blood-brain barrier permeability in three brain regions of convulsive, hypoglycemic male rats treated with sodium selenite when compared to sex-matched untreated rats (p<0.05), but the decrease was not significant in female rats (p>0.05). The blood-brain barrier permeability of the left and right hemispheres of untreated, moderately hypoglycemic convulsive rats of both genders was better than their untreated counterparts (p<0.05). Our results suggest that moderate hypoglycemia and lifelong treatment with sodium selenite have a protective effect against blood-brain barrier permeability during convulsions and that the effects of sodium selenite are gender-dependent.

  10. Antibiotic Treatment Attenuates Behavioral and Neurochemical Changes Induced by Exposure of Rats to Group A Streptococcal Antigen

    PubMed Central

    Lotan, Dafna; Cunningham, Madeleine; Joel, Daphna

    2014-01-01

    Post-streptococcal A (GAS) sequelae including movement and neuropsychiatric disorders have been associated with improvement in response to antibiotic therapy. Besides eradication of infection, the underlying basis of attenuation of neuropsychiatric symptoms following antibiotic treatment is not known. The aim of the present study was to test the efficacy of antibiotic treatment in a rat model of GAS-related neuropsychiatric disorders. In the model, rats were not infected but were exposed to GAS-antigen or to adjuvants only (Control rats) and treated continuously with the antibiotic ampicillin in their drinking water from the first day of GAS-antigen exposure. Two additional groups of rats (GAS and Control) did not receive ampicillin in their drinking water. Behavior of the four groups was assessed in the forced swim, marble burying and food manipulation assays. We assessed levels of D1 and D2 dopamine receptors and tyrosine hydroxylase in the prefrontal cortex and striatum, and IgG deposition in the prefrontal cortex, striatum and thalamus. Ampicillin treatment prevented emergence of the motor and some of the behavioral alterations induced by GAS-antigen exposure, reduced IgG deposition in the thalamus of GAS-exposed rats, and tended to attenuate the increase in the level of TH and D1 and D2 receptors in their striatum, without concomitantly reducing the level of sera anti-GAS antibodies. Our results reinforce the link between exposure to GAS antigen, dysfunction of central dopaminergic pathways and motor and behavioral alterations. Our data further show that some of these deleterious effects can be attenuated by antibiotic treatment, and supports the latter’s possible efficacy as a prophylactic treatment in GAS-related neuropsychiatric disorders. PMID:24979049

  11. Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI.

    PubMed

    Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib

    2016-04-15

    In quantitative PET/MR imaging, attenuation correction (AC) of PET data is markedly challenged by the need of deriving accurate attenuation maps from MR images. A number of strategies have been developed for MRI-guided attenuation correction with different degrees of success. In this work, we compare the quantitative performance of three generic AC methods, including standard 3-class MR segmentation-based, advanced atlas-registration-based and emission-based approaches in the context of brain time-of-flight (TOF) PET/MRI. Fourteen patients referred for diagnostic MRI and (18)F-FDG PET/CT brain scans were included in this comparative study. For each study, PET images were reconstructed using four different attenuation maps derived from CT-based AC (CTAC) serving as reference, standard 3-class MR-segmentation, atlas-registration and emission-based AC methods. To generate 3-class attenuation maps, T1-weighted MRI images were segmented into background air, fat and soft-tissue classes followed by assignment of constant linear attenuation coefficients of 0, 0.0864 and 0.0975 cm(-1) to each class, respectively. A robust atlas-registration based AC method was developed for pseudo-CT generation using local weighted fusion of atlases based on their morphological similarity to target MR images. Our recently proposed MRI-guided maximum likelihood reconstruction of activity and attenuation (MLAA) algorithm was employed to estimate the attenuation map from TOF emission data. The performance of the different AC algorithms in terms of prediction of bones and quantification of PET tracer uptake was objectively evaluated with respect to reference CTAC maps and CTAC-PET images. Qualitative evaluation showed that the MLAA-AC method could sparsely estimate bones and accurately differentiate them from air cavities. It was found that the atlas-AC method can accurately predict bones with variable errors in defining air cavities. Quantitative assessment of bone extraction accuracy based on

  12. Wheel running exercise attenuates vulnerability to self-administer nicotine in rats.

    PubMed

    Sanchez, Victoria; Lycas, Matthew D; Lynch, Wendy J; Brunzell, Darlene H

    2015-11-01

    Preventing or postponing tobacco use initiation could greatly reduce the number of tobacco-related deaths. While evidence suggests that exercise is a promising treatment for tobacco addiction, it is not clear whether exercise could prevent initial vulnerability to tobacco use. Thus, using an animal model, we examined whether exercise attenuates vulnerability to the use and reinforcing effects of nicotine, the primary addictive chemical in tobacco. Initial vulnerability was assessed using an acquisition procedure wherein exercising (unlocked running wheel, n=10) and sedentary (locked or no wheel, n=12) male adolescent rats had access to nicotine infusions (0.01-mg/kg) during daily 21.5-h sessions beginning on postnatal day 30. Exercise/sedentary sessions (2-h/day) were conducted prior to each of the acquisition sessions. The effects of exercise on nicotine's reinforcing effects were further assessed in separate groups of exercising (unlocked wheel, n=7) and sedentary (no wheel, n=5) rats responding for nicotine under a progressive-ratio schedule with exercise/sedentary sessions (2-h/day) conducted before the daily progressive-ratio sessions. While high rates of acquisition of nicotine self-administration were observed among both groups of sedentary controls, acquisition was robustly attenuated in the exercise group with only 20% of exercising rats meeting the acquisition criterion within the 16-day testing period as compared to 67% of the sedentary controls. Exercise also decreased progressive-ratio responding for nicotine as compared to baseline and to sedentary controls. Exercise may effectively prevent the initiation of nicotine use in adolescents by reducing the reinforcing effects of nicotine. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Ginkgo biloba extract EGb761 attenuates brain death-induced renal injury by inhibiting pro-inflammatory cytokines and the SAPK and JAK-STAT signalings

    PubMed Central

    Li, Yifu; Xiong, Yunyi; Zhang, Huanxi; Li, Jun; Wang, Dong; Chen, Wenfang; Yuan, Xiaopeng; Su, Qiao; Li, Wenwen; Huang, Huiting; Bi, Zirong; Liu, Longshan; Wang, Changxi

    2017-01-01

    This study aimed to investigate the protective effects of EGb761, a Ginkgo Biloba extract, against brain death-induced kidney injury. Sixty male Sprague Dawley rats were randomly divided into six groups: sham, brain-death (BD), BD + EGb b48h (48 hours before BD), BD + EGb 2 h (2 hours after BD), BD + EGb 1 h, and BD + EGb 0.5 h. Six hours after BD, serum sample and kidney tissues were collected for analyses. The levels of blood urea nitrogen (BUN) and serum creatinine significantly elevated in the BD group than in sham group. In all the EGb761-treated BD animals except for the BD + Gb 2 h group, the levels of BUN and serum creatinine significantly reduced (all P < 0.01). EGb761 attenuated tubular injury and lowered the histological score. In addition, the longer duration of drug treatment was, the better protective efficacy could be observed. EGb761 significantly reduced IL-1β, IL-6, TNF-α, MCP-1, IP-10 mRNA expression and macrophage infiltration in the kidney. EGb761 treatment at 48 hour before brain death significantly attenuate the levels of p-JNK-MAPK, p-p38-MAPK, and p-STAT3 proteins (all P < 0.05, compared to BD group). In summary, our data showed that EGb761 treatment protected donor kidney from BD-induced damages by blocking SAPK and JAK-STAT signalings. Early administration of EGb761 can provide better protective efficacy. PMID:28332628

  14. Salicylic Acid Attenuates Gentamicin-Induced Nephrotoxicity in Rats

    PubMed Central

    Randjelovic, Pavle; Veljkovic, Slavimir; Stojiljkovic, Nenad; Jankovic-Velickovic, Ljubinka; Sokolovic, Dusan; Stoiljkovic, Milan; Ilic, Ivan

    2012-01-01

    Gentamicin (GM) is a widely used antibiotic against serious and life-threatening infections, but its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine the protective effect of salicylic acid (SA) in gentamicin-induced nephrotoxicity in rats. Quantitative evaluation of gentamicin-induced structural alterations and degree of functional alterations in the kidneys were performed by histopathological and biochemical analyses in order to determine potential beneficial effects of SA coadministration with gentamicin. Gentamicin was observed to cause a severe nephrotoxicity which was evidenced by an elevation of serum urea and creatinine levels. The significant increases in malondialdehyde (MDA) levels and protein carbonyl groups indicated that GM-induced tissue injury was mediated through oxidative reactions. On the other hand, simultaneous SA administration protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by GM treatment. Exposure to GM caused necrosis of tubular epithelial cells. Necrosis of tubules was found to be prevented by SA pretreatment. The results from our study indicate that SA supplement attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation in gentamicin-treated rats. PMID:22666115

  15. Methylene Blue Attenuates Lung Injury Induced by Hindlimb Ischemia Reperfusion in Rats

    PubMed Central

    Wang, Liangrong; Chen, Baihui; Lin, Bi; Ye, Yuzhu; Bao, Caiying; Zhao, Xiyue; Jin, Lida

    2018-01-01

    Objective This study was aimed to investigate the protective effect of methylene blue against lung injury induced by reperfusion of ischemic hindlimb in a rat model. Methods Twenty-four healthy adult male Sprague-Dawley rats were equally randomized into three groups: sham (SM) group, ischemia reperfusion (IR) group, and methylene blue (MB) group. Rats in both IR and MB groups were subjected to 4 h of ischemia by clamping the left femoral artery and then followed by 4 h of reperfusion. Treatment with 1% methylene blue (50 mg/kg) was administrated intraperitoneally at 10 min prior to reperfusion in the MB group. After 4 h of reperfusion, malondialdehyde (MDA) level, myeloperoxidase (MPO), and superoxide dismutase (SOD) activities in lung tissue were detected; inflammatory cytokines, including IL-1β and IL-6, were measured in bronchoalveolar lavage fluid (BALF); correspondingly, the morphological changes and water content in both gastrocnemius muscle and lung samples were evaluated. Results Hindlimb IR caused remarkable morphological abnormalities and edema in both muscle and lung tissues. SOD activity was decreased, both the MPO activity and MDA level in lung tissue, as well as IL-1β and IL-6 levels in BALF, were increased in the IR group (p < 0.05). Compared with the IR group, SOD activity was increased, whereas MPO activity and MDA level in lung tissue and IL-1β and IL-6 levels in BALF were decreased in the MB group (p < 0.05). Also, the histological damage and edema in both lung and muscle tissues were significantly attenuated by the treatment of methylene blue. Conclusion Methylene blue attenuates lung injury induced by hindlimb IR in rats, at least in part, by inhibiting oxidative stress. PMID:29713238

  16. MRI Reveals Edema in Larynx (But Not in Brain) During Anaphylactic Hypotension in Anesthetized Rats

    PubMed Central

    Toyota, Ichiro; Tanida, Mamoru; Wang, Mofei; Kurata, Yasutaka; Tonami, Hisao

    2013-01-01

    Purpose Anaphylactic shock is sometimes accompanied by local interstitial edema due to increased vascular permeability. We performed magnetic resonance imaging (MRI) to compare edema in the larynx and brain of anesthetized rats during anaphylactic hypotension versus vasodilator-induced hypotension. Methods Male Sprague Dawley rats were subjected to hypotension induced by the ovalbumin antigen (n=7) or a vasodilator sodium nitroprusside (SNP; n=7). Apparent diffusion coefficient (ADC) and T2-relaxation time (T2RT) were quantified on MRI performed repeatedly for up to 68 min after the injection of either agent. The presence of laryngeal edema was also examined by histological examination. Separately, the occurrence of brain edema was assessed by measuring brain water content using the wet/dry method in rats with anaphylaxis (n=5) or SNP (n=5) and the non-hypotensive control rats (n=5). Mast cells in hypothalamus were morphologically examined. Results Mean arterial blood pressure similarly decreased to 35 mmHg after an injection of the antigen or SNP. Hyperintensity on T2-weighted images (as reflected by elevated T2RT) was found in the larynx as early as 13 min after an injection of the antigen, but not SNP. A postmortem histological examination revealed epiglottic edema in the rats with anaphylaxis, but not SNP. In contrast, no significant changes in T2RT or ADC were detectable in the brains of any rats studied. In separate experiments, the quantified brain water content did not increase in either anaphylaxis or SNP rats, as compared with the non-hypotensive control rats. The numbers of mast cells with metachromatic granules in the hypothalamus were not different between rats with anaphylaxis and SNP, suggesting the absence of anaphylactic reaction in hypothalamus. Conclusion Edema was detected using the MRI technique in the larynx during rat anaphylaxis, but not in the brain. PMID:24179686

  17. MRI reveals edema in larynx (but not in brain) during anaphylactic hypotension in anesthetized rats.

    PubMed

    Toyota, Ichiro; Tanida, Mamoru; Shibamoto, Toshishige; Wang, Mofei; Kurata, Yasutaka; Tonami, Hisao

    2013-11-01

    Anaphylactic shock is sometimes accompanied by local interstitial edema due to increased vascular permeability. We performed magnetic resonance imaging (MRI) to compare edema in the larynx and brain of anesthetized rats during anaphylactic hypotension versus vasodilator-induced hypotension. Male Sprague Dawley rats were subjected to hypotension induced by the ovalbumin antigen (n=7) or a vasodilator sodium nitroprusside (SNP; n=7). Apparent diffusion coefficient (ADC) and T2-relaxation time (T2RT) were quantified on MRI performed repeatedly for up to 68 min after the injection of either agent. The presence of laryngeal edema was also examined by histological examination. Separately, the occurrence of brain edema was assessed by measuring brain water content using the wet/dry method in rats with anaphylaxis (n=5) or SNP (n=5) and the non-hypotensive control rats (n=5). Mast cells in hypothalamus were morphologically examined. Mean arterial blood pressure similarly decreased to 35 mmHg after an injection of the antigen or SNP. Hyperintensity on T2-weighted images (as reflected by elevated T2RT) was found in the larynx as early as 13 min after an injection of the antigen, but not SNP. A postmortem histological examination revealed epiglottic edema in the rats with anaphylaxis, but not SNP. In contrast, no significant changes in T2RT or ADC were detectable in the brains of any rats studied. In separate experiments, the quantified brain water content did not increase in either anaphylaxis or SNP rats, as compared with the non-hypotensive control rats. The numbers of mast cells with metachromatic granules in the hypothalamus were not different between rats with anaphylaxis and SNP, suggesting the absence of anaphylactic reaction in hypothalamus. Edema was detected using the MRI technique in the larynx during rat anaphylaxis, but not in the brain.

  18. Further refinement of the Escherichia coli brain abscess model in rat.

    PubMed

    Nazzaro, J M; Pagel, M A; Neuwelt, E A

    1992-09-01

    The rat brain abscess model provides a substrate for the modeling of delivery of therapeutic agents to intracerebral mass lesions. We now report refinement of the Escherichia coli brain abscess model in rat. A K1 surface antigen-negative E. coli isolated from human blood culture was stereotaxically inoculated into deep brain sites. Histopathologic analyses and quantitative cultures demonstrated the consistent production of lesions. No animal in this consecutive series developed meningitis, ventriculitis or sepsis. By contrast, prior experience with E. coli abscess production resulted in 25% failure rate of abscess production or death from sepsis. This improvement in the model may be attributable to specific characteristics of the bacteria used, modification of the inoculation method or the intracerebral placement technique. The present work suggests a reliable and consistent brain abscess model, which may be further used to study brain suppuration.

  19. Resveratrol pretreatment attenuates traumatic brain injury in rats by suppressing NLRP3 inflammasome activation via SIRT1.

    PubMed

    Zou, Peng; Liu, Xiaoxiao; Li, Gang; Wang, Yangang

    2018-02-01

    The inflammatory response in the cerebral cortex serves an important role in the progression of secondary injury following traumatic brain injury (TBI). The NLR family pyrin domain containing 3 (NLRP3) inflammasome is necessary for initiating inflammation and is involved in various central nervous system disorders. The aim of the present study was to investigate the neuroprotective effect of resveratrol and elucidate the underlying mechanisms of resveratrol associated regulation of the NLRP3 inflammasome in TBI. The results demonstrated that the activation of NLRP3, caspase‑1 and sirtuin 1 (SIRT1), enhanced the production of inflammatory cytokines and reactive oxygen species (ROS) following TBI. Administration of resveratrol alleviated the degree of TBI, as evidenced by the reduced neuron‑specific enolase (NSE) and brain water content (WBC). Resveratrol pretreatment also inhibited the activation of NLRP3 and caspase‑1, and reduced the production of inflammatory cytokines and ROS. In addition, resveratrol further promoted SIRT1 activation. Furthermore, the suppressing effect of resveratrol on the NLRP3 inflammasome and ROS was blocked by the SIRT1 inhibitor, sirtinol. The results revealed that the activation of the NLRP3 inflammasome and the subsequent inflammatory responses in the cerebral cortex were involved in the process of TBI. Resveratrol may attenuate the inflammatory response and relieve TBI by reducing ROS production and inhibiting NLRP3 activation. The effect of resveratrol on NLRP3 inflammasome and ROS may also be SIRT1 dependent.

  20. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    PubMed

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  1. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats

    PubMed Central

    Kolosova, Nataliya G.; Vitovtov, Anton O.; Muraleva, Natalia A; Akulov, Andrey E.; Stefanova, Natalia A.; Blagosklonny, Mikhail V.

    2013-01-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span in C elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wistar rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging. PMID:23817674

  2. Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation.

    PubMed

    Reisenauer, Chris J; Bhatt, Dhaval P; Mitteness, Dane J; Slanczka, Evan R; Gienger, Heidi M; Watt, John A; Rosenberger, Thad A

    2011-04-01

    Glyceryl triacetate (GTA), a compound effective at increasing circulating and tissue levels of acetate was used to treat rats subjected to a continual 28 day intra-ventricular infusion of bacterial lipopolysaccharide (LPS). This model produces a neuroinflammatory injury characterized by global neuroglial activation and a decrease in choline acetyltransferase immunoreactivity in the basal forebrain. During the LPS infusion, rats were given a daily treatment of either water or GTA at a dose of 6 g/kg by oral gavage. In parallel experiments, free-CoA and acetyl-CoA levels were measured in microwave fixed brains and flash frozen heart, liver, kidney and muscle following a single oral dose of GTA. We found that a single oral dose of GTA significantly increased plasma acetate levels by 15 min and remained elevated for up to 4 h. At 30 min the acetyl-CoA levels in microwave-fixed brain and flash frozen heart and liver were increased at least 2.2-fold. The concentrations of brain acetyl-CoA was significantly increased between 30 and 45 min following treatment and remained elevated for up to 4 h. The concentration of free-CoA in brain was significantly decreased compared to controls at 240 min. Immunohistochemical and morphological analysis demonstrated that a daily treatment with GTA significantly reduced the percentage of reactive glial fibrillary acidic protein-positive astrocytes and activated CD11b-positive microglia by 40-50% in rats subjected to LPS-induced neuroinflammation. Further, in rats subjected to neuroinflammation, GTA significantly increased the number of choline acetyltransferase (ChAT)-positive cells by 40% in the basal forebrain compared to untreated controls. These data suggest that acetate supplementation increases intermediary short chain acetyl-CoA metabolism and that treatment is potentially anti-inflammatory and neuroprotective with regards to attenuating neuroglial activation and increasing ChAT immunoreactivity in this model. © 2011 The Authors

  3. The effect of butylphthalide on the brain edema, blood-brain barrier of rats after focal cerebral infarction and the expression of Rho A.

    PubMed

    Hu, Jinyang; Wen, Qingping; Wu, Yue; Li, Baozhu; Gao, Peng

    2014-06-01

    The aim of this study was to explore the effect of butylphthalide on the brain edema, blood-brain barrier of rats of rats after focal cerebral infarction and the expression of Rho A. A total of 195 sprague-dawley male rats were randomly divided into control group, model group, and butylphthalide group (40 mg/kg, once a day, by gavage). The model was made by photochemical method. After surgery 3, 12, 24, 72, and 144 h, brain water content was done to see the effect of butylphthalide for the cerebral edema. Evans blue extravasation method was done to see the changes in blood-brain barrier immunohistochemistry, and Western blot was done to see the expression of Rho A around the infarction. Compared with the control group, the brain water content of model group and butylphthalide group rats was increased, the permeability of blood-brain barrier of model group and butylphthalide group rats was increased, and the Rho A protein of model group and butylphthalide group rats was increased. Compared with the model group, the brain water content of butylphthalide group rats was induced (73.67 ± 0.67 vs 74.14 ± 0.46; 74.89 ± 0.57 vs 75.61 ± 0.52; 77.49 ± 0.34 vs 79.33 ± 0.49; 76.31 ± 0.56 vs 78.01 ± 0.48; 72.36 ± 0.44 vs 73.12 ± 0.73; P < 0.05), the permeability of blood-brain barrier of butylphthalide group rats was induced (319.20 ± 8.11 vs 394.60 ± 6.19; 210.40 ± 9.56 vs 266.40 ± 7.99; 188.00 ± 9.22 vs 232.40 ± 7.89; 288.40 ± 7.86 vs 336.00 ± 6.71; 166.60 ± 6.23 vs 213.60 ± 13.79; P < 0.05), and the Rho A protein of butylphthalide group rats was decreased (western blot result: 1.2230 ± 0.0254 vs 1.3970 ± 0.0276; 1.5985 ± 0.0206 vs 2.0368 ± 0.0179; 1.4229 ± 0.0167 vs 1.7930 ± 0.0158;1.3126 ± 0.0236 vs 1.5471 ± 0.0158; P < 0.05). The butylphthalide could reduce the brain edema, protect the blood-brain barrier, and decrease the expression of Rho A around the infarction.

  4. Malva Sylvestris Attenuates Cognitive Deficits in a Repetitive Mild Traumatic Brain Injury Rat Model by Reducing Neuronal Degeneration and Astrocytosis in the Hippocampus

    PubMed Central

    Qin, Hailin; Qin, Jie; Hu, Junmin; Huang, He; Ma, Lianting

    2017-01-01

    Background The aim of our study was to evaluate the effect of Malva sylvestris (MS) on cognitive dysfunction in a repetitive mild traumatic brain injury (MTBI). Material/Methods MTBI was induced in all the study animals by hitting a metallic pendulum near the parietal-occipital area of the skull three times a day for ten days. Animals were treated with MS (250 mg/kg and 500 mg/kg) intragastrically per day for seven consecutive days. Cognitive function was estimated by the Morris water maze (MWM) method. Histopathology studies were performed on the hippocampal region by Nissl staining and anti GFAP staining. Concentrations of reactive oxygen species (ROS), and oxidative parameters including superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (LPO), and inflammatory cytokines in the brain tissues were measured. Result Treatment with MS significantly improved cognitive function compared to the negative control. Histopathology studies suggested that treatment with MS significantly decreased (p<0.01) the count of neurodegenerative cells and induction of astrocytosis in the MTBI treated group compared to the negative control group. However, the concentrations of ROS and LPO, and the activities of SOD and CAT were significantly decreased in the MS treated groups of MTBI rats compared to the negative control group. Inflammatory cytokines, such as IL-1β, IL6, and TNF-α were significantly decreased (p<0.01) in the brain tissues of the MTBI treated group compared to the control group of rats. Conclusions This study concluded that treatment with MS significantly improved cognitive dysfunction by reducing neurodegeneration and astrocytosis in brain tissues via decreasing oxidative stress and inflammation in neuronal cells. PMID:29276216

  5. PPARγ activation attenuates glucose intolerance induced by mTOR inhibition with rapamycin in rats.

    PubMed

    Festuccia, William T; Blanchard, Pierre-Gilles; Belchior, Thiago; Chimin, Patricia; Paschoal, Vivian A; Magdalon, Juliana; Hirabara, Sandro M; Simões, Daniel; St-Pierre, Philippe; Carpinelli, Angelo; Marette, André; Deshaies, Yves

    2014-05-01

    mTOR inhibition with rapamycin induces a diabetes-like syndrome characterized by severe glucose intolerance, hyperinsulinemia, and hypertriglyceridemia, which is due to increased hepatic glucose production as well as reduced skeletal muscle glucose uptake and adipose tissue PPARγ activity. Herein, we tested the hypothesis that pharmacological PPARγ activation attenuates the diabetes-like syndrome associated with chronic mTOR inhibition. Rats treated with the mTOR inhibitor rapamycin (2 mg·kg(-1)·day(-1)) in combination or not with the PPARγ ligand rosiglitazone (15 mg·kg(-1)·day(-1)) for 15 days were evaluated for insulin secretion, glucose, insulin, and pyruvate tolerance, skeletal muscle and adipose tissue glucose uptake, and insulin signaling. Rosiglitazone corrected fasting hyperglycemia, attenuated the glucose and insulin intolerances, and abolished the increase in fasting plasma insulin and C-peptide levels induced by rapamycin. Surprisingly, rosiglitazone markedly increased the plasma insulin and C-peptide responses to refeeding in rapamycin-treated rats. Furthermore, rosiglitazone partially attenuated rapamycin-induced gluconeogenesis, as evidenced by the improved pyruvate tolerance and reduced mRNA levels of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Rosiglitazone also restored insulin's ability to stimulate glucose uptake and its incorporation into glycogen in skeletal muscle of rapamycin-treated rats, which was associated with normalization of Akt Ser(473) phosphorylation. However, the rapamycin-mediated impairments of adipose tissue glucose uptake and incorporation into triacylglycerol were unaffected by rosiglitazone. Our findings indicate that PPARγ activation ameliorates some of the disturbances in glucose homeostasis and insulin action associated with chronic rapamycin treatment by reducing gluconeogenesis and insulin secretion and restoring muscle insulin signaling and glucose uptake.

  6. Effects of NOS inhibition on the cardiopulmonary system and brain microvascular markers after intermittent hypoxia in rats.

    PubMed

    Barer, G R; Fairlie, J; Slade, J Y; Ahmed, S; Laude, E A; Emery, C J; Thwaites-Bee, D; Oakley, A E; Barer, D H; Kalaria, R N

    2006-07-07

    We previously demonstrated that rats subjected to intermittent hypoxia (IH) by exposure to 10% O(2) for 4 h daily for 56 days in a normobaric chamber, developed pulmonary hypertension, right ventricular hypertrophy and wall-thickening in pulmonary arterioles, compared with normoxic (N) controls. These changes were greater in rats subjected to continuous hypoxia (CH breathing 10% O(2) for 56 days). Cerebral angiogenesis was demonstrated by immunostaining with glucose transporter 1 (GLUT1) antibody, in viable vessels, in CH and to a lesser degree in IH. In this study, adult Wistar rats were subjected to the same hypoxic regimes and given the nitric oxide synthase (NOS) inhibitor N(6)-nitro-L-arginine methyl ester (L-NAME) in drinking water (NLN, IHLN and CHLN regimes) to induce hypertension. There was significant systemic hypertension in NLN and IHLN rats, compared with N and IH, but surprisingly not in CHLN compared with CH. Hematocrit rose in all hypoxic groups (up to 79% in CHLN). There was no significant pulmonary hypertension in IHLN versus NLN rats, although there was asymmetric wall thickening in pulmonary arterioles. Cerebral GLUT1 immunoreactivity increased with L-NAME, with or without hypoxia, especially in CHLN rats, but conspicuously there was no evidence of angiogenesis in brains of IHLN compared with NLN rats. NOS blockade may attenuate the cerebral and pulmonary vascular changes of IH while augmenting cerebral angiogenesis in continuous hypoxia. However, whether cerebral effects are due to systemic hypertension or changes in cerebral nitric oxide production needs to be evaluated.

  7. Transcranial Photoacoustic Measurements of Cold-Injured Brains in Rats

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshinori; Sato, Shunichi; Hasegawa, Makoto; Nawashiro, Hiroshi; Saitoh, Daizoh; Shima, Katsuji; Ashida, Hiroshi; Obara, Minoru

    2005-09-01

    We performed transcranial photoacoustic measurements of cold-injured brains in rats. Before inducing injury, a signal peak was observed at two locations corresponding to the surfaces of the skull and brain, while after injury, a third peak appeared at a location corresponding to the back surface of the skull; the third peak was found to be caused by subdural hematoma. The signal peak for the brain surface shifted to a deeper region with elapse of time after injury, indicating deformation of the brain. These findings suggest that small hemorrhage and morphological change of the brain can be transcranially detected by photoacoustic measurement.

  8. A Recombinant Respiratory Syncytial Virus Vaccine Candidate Attenuated by a Low-Fusion F Protein Is Immunogenic and Protective against Challenge in Cotton Rats

    PubMed Central

    Rostad, Christina A.; Stobart, Christopher C.; Gilbert, Brian E.; Pickles, Ray J.; Hotard, Anne L.; Meng, Jia; Blanco, Jorge C. G.; Moin, Syed M.; Graham, Barney S.; Piedra, Pedro A.

    2016-01-01

    ABSTRACT Although respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, a safe and effective vaccine is not yet available. Live-attenuated vaccines (LAVs) are the most advanced vaccine candidates in RSV-naive infants. However, designing an LAV with appropriate attenuation yet sufficient immunogenicity has proven challenging. In this study, we implemented reverse genetics to address these obstacles with a multifaceted LAV design that combined the codon deoptimization of genes for nonstructural proteins NS1 and NS2 (dNS), deletion of the small hydrophobic protein (ΔSH) gene, and replacement of the wild-type fusion (F) protein gene with a low-fusion RSV subgroup B F consensus sequence of the Buenos Aires clade (BAF). This vaccine candidate, RSV-A2-dNS-ΔSH-BAF (DB1), was attenuated in two models of primary human airway epithelial cells and in the upper and lower airways of cotton rats. DB1 was also highly immunogenic in cotton rats and elicited broadly neutralizing antibodies against a diverse panel of recombinant RSV strains. When vaccinated cotton rats were challenged with wild-type RSV A, DB1 reduced viral titers in the upper and lower airways by 3.8 log10 total PFU and 2.7 log10 PFU/g of tissue, respectively, compared to those in unvaccinated animals (P < 0.0001). DB1 was thus attenuated, highly immunogenic, and protective against RSV challenge in cotton rats. DB1 is the first RSV LAV to incorporate a low-fusion F protein as a strategy to attenuate viral replication and preserve immunogenicity. IMPORTANCE RSV is a leading cause of infant hospitalizations and deaths. The development of an effective vaccine for this high-risk population is therefore a public health priority. Although live-attenuated vaccines have been safely administered to RSV-naive infants, strategies to balance vaccine attenuation with immunogenicity have been elusive. In this study, we introduced a novel strategy to attenuate a recombinant RSV

  9. Aniracetam, a pyrrolidinone-type cognition enhancer, attenuates the hydroxyl free radical formation in the brain of mice with brain ischaemia.

    PubMed

    Himori, N; Suzuki, T; Ueno, K

    1995-03-01

    We demonstrate here that aniracetam has the ability to block the formation of cytotoxic hydroxyl radicals (.OH) during ischaemia-reperfusion of mouse brain. The fact that brain ischeamia for 40 min followed by reperfusion increased .OH was evidenced by detection of a peaked increase at 20 min after an ischaemic insult in the formation of 2,3-dihydroxybenzoate (DHBA) from salicylate in cerebroventricular perfusate, a means of monitoring .OH formation. A clearcut increase in dopamine was also observed during and after brain ischaemia. The ischaemia-reperfusion mice given aniracetam at an intraperitoneal dose of 30 or 100 mg kg-1 showed a smaller increase in the formation of DHBA than those given the vehicle only. Aniracetam at 100 mg kg-1 significantly suppressed the formation of DHBA by approximately 80%, becoming evident at 20 min after reperfusion and thereafter. Protection against death in mice insulted with a 40-min brain ischaemia (3/13 vs 13/25) was observed following 100 mg kg-1 aniracetam. The increase in the dopamine levels was substantially reduced following aniracetam treatment and the reduction became significant at 20 min after reperfusion and thereafter in parallel with attenuation by aniracetam of DHBA formation. This finding suggests that the inhibitory activity of aniracetam in attenuating the hydroxyl free-radical formation in ischaemic mice is probably due, at least in part, to its palliative action on the dopaminergic neurons.

  10. Volumetric abnormalities of the brain in a rat model of recurrent headache.

    PubMed

    Jia, Zhihua; Tang, Wenjing; Zhao, Dengfa; Hu, Guanqun; Li, Ruisheng; Yu, Shengyuan

    2018-01-01

    Voxel-based morphometry is used to detect structural brain changes in patients with migraine. However, the relevance of migraine and structural changes is not clear. This study investigated structural brain abnormalities based on voxel-based morphometry using a rat model of recurrent headache. The rat model was established by infusing an inflammatory soup through supradural catheters in conscious male rats. Rats were subgrouped according to the frequency and duration of the inflammatory soup infusion. Tactile sensory testing was conducted prior to infusion of the inflammatory soup or saline. The periorbital tactile thresholds in the high-frequency inflammatory soup stimulation group declined persistently from day 5. Increased white matter volume was observed in the rats three weeks after inflammatory soup stimulation, brainstem in the in the low-frequency inflammatory soup-infusion group and cortex in the high-frequency inflammatory soup-infusion group. After six weeks' stimulation, rats showed gray matter volume changes. The brain structural abnormalities recovered after the stimulation was stopped in the low-frequency inflammatory soup-infused rats and persisted even after the high-frequency inflammatory soup stimulus stopped. The changes of voxel-based morphometry in migraineurs may be the result of recurrent headache. Cognition, memory, and learning may play an important role in the chronification of migraines. Reducing migraine attacks has the promise of preventing chronicity of migraine.

  11. Sulthiame but not levetiracetam exerts neurotoxic effect in the developing rat brain.

    PubMed

    Manthey, Daniela; Asimiadou, Stella; Stefovska, Vanya; Kaindl, Angela M; Fassbender, Jessica; Ikonomidou, Chrysanthy; Bittigau, Petra

    2005-06-01

    Antiepileptic drugs (AEDs) used to treat seizures in pregnant women, infants, and young children can cause cognitive impairment. One mechanism implicated in the development of neurocognitive deficits is a pathologic enhancement of physiologically occurring apoptotic neuronal death in the developing brain. We investigated whether the newer antiepileptic drug levetiracetam (LEV) and the older antiepileptic drug sulthiame (SUL) have neurotoxic properties in the developing rat brain. SUL significantly enhanced neuronal death in the brains of rat pups ages 0 to 7 days at doses of 100 mg/kg and above, whereas LEV did not show this neurotoxic effect. Dosages of both drugs used in the context of this study comply with an effective anticonvulsant dose range applied in rodent seizure models. Thus, LEV is an AED which lacks neurotoxicity in the developing rat brain and should be considered in the treatment of epilepsy in pregnant women, infants, and toddlers once general safety issues have been properly addressed.

  12. Citrus peel extract attenuates acute cyanide poisoning-induced seizures and oxidative stress in rats.

    PubMed

    Abdel Moneim, Ahmed E

    2014-01-01

    The primary aimed of this study was to investigate the potential protective effects of methanolic extract of citrus peel (MECP) on acute cyanide (KCN) poisoning-induced seizures and oxidative stress in rats. The intraperitoneal LD50 value of KCN (6.3 mg/Kg bwt), based on 24 hrs mortality, was significantly increased by 9, 52 or 113% by oral administration of MECP (500 mg/Kg bwt) pre-administered for 1, 2 and 3 days, respectively, in rats in a time-dependent manner. Intraperitoneal injection of the sublethal dose of KCN (3 mg/Kg bwt) into rats increased, 24 hrs later, lipid peroxidation (LPO), nitric oxide (NO), glutamate levels and acetylcholinesterase (AChE) activity in hippocampus, striatum and cerebral cortex. KCN also decreased brain glutathione (GSH) level and superoxide dismutase (SOD) and catalase (CAT) activities in these animals. Pre-treatment of rats with MECP inhibited KCN-induced increases in LPO, NO, and glutamate levels and AChE activity as well as decreases in brain GSH level and SOD and CAT activities. In addition, KCN significantly decreased norepinephrine, dopamine and serotonin levels in different brain regions which were resolved by MECP. From the present results, it can be concluded that the neuroprotective effects of MECP against KCN-induced seizures and oxidative stress may be due to the inhibition of oxidative stress overproduction and maintenance of antioxidant defense mechanisms.

  13. Mefunidone Attenuates Tubulointerstitial Fibrosis in a Rat Model of Unilateral Ureteral Obstruction

    PubMed Central

    Liu, Chunyan; Mei, Wenjuan; Tang, Juan; Yuan, Qiongjing; Huang, Ling; Lu, Miaomiao; Wu, Lin; Peng, Zhangzhe; Meng, Jie; Yang, Huixiang; Shen, Hong; Lv, Ben; Hu, Gaoyun; Tao, Lijian

    2015-01-01

    Background Inflammation has a crucial role in renal interstitial fibrosis, which is the common pathway of chronic kidney diseases. Mefunidone (MFD) is a new compound which could effectively inhibit the proliferation of renal fibroblasts in vitro. However, the overall effect of Mefunidone in renal fibrosis remains unknown. Methods Sprague-Dawley rats were randomly divided intro 6 groups: sham operation, unilateral ureteral obstruction (UUO), UUO/Mefunidone (25, 50, 100mg/kg/day) and UUO/PFD (500mg/kg/day). The rats were sacrificed respectively on days 3, 7, and 14 after the operation. Tubulointerstitial injury index, interstitial collagen deposition, expression of fibronectin (FN), α-smooth muscle actin (α-SMA), type I and III collagen and the number of CD3+ and CD68+ cells were determined. The expressions of proinflammatory cytokines, p-ERK, p-IκB, and p-STAT3 were measured in human renal proximal tubular epithelial cells of HK-2 or macrophages. Results Mefunidone treatment significantly attenuated tubulointerstitial injury, interstitial collagen deposition, expression of FN, α-SMA, type I and III collagen in the obstructive kidneys, which correlated with significantly reduced the number of T cells and macrophages in the obstructive kidneys. Mechanistically, Mefunidone significantly inhibited tumor necrosis factor-α (TNF-α-) or lipopolysaccharide (LPS)-induced production of proinflammatory cytokines. This effect is possibly due to the inhibition of phosphorylation of ERK, IκB, and STAT3. Conclusion Mefunidone treatment attenuated tubulointerstitial fibrosis in a rat model of UUO, at least in part, through inhibition of inflammation. PMID:26042668

  14. Curcumin attenuates blood-brain barrier disruption after subarachnoid hemorrhage in mice.

    PubMed

    Yuan, Jichao; Liu, Wei; Zhu, Haitao; Zhang, Xuan; Feng, Yang; Chen, Yaxing; Feng, Hua; Lin, Jiangkai

    2017-01-01

    Early brain injury, one of the most important mechanisms underlying subarachnoid hemorrhage (SAH), comprises edema formation and blood-brain barrier (BBB) disruption. Curcumin, an active extract from the rhizomes of Curcuma longa, alleviates neuroinflammation by as yet unknown neuroprotective mechanisms. In this study, we examined whether curcumin treatment ameliorates SAH-induced brain edema and BBB permeability changes, as well as the mechanisms underlying this phenomenon. We induced SAH in mice via endovascular perforation, administered curcumin 15 min after surgery and evaluated neurologic scores, brain water content, Evans blue extravasation, Western blot assay results, and immunohistochemical analysis results 24 h after surgery. Curcumin significantly improved neurologic scores and reduced brain water content in treated mice compared with SAH mice. Furthermore, curcumin decreased Evans blue extravasation, matrix metallopeptidase-9 expression, and the number of Iba-1-positive microglia in treated mice compared with SAH mice. At last, curcumin treatment increased the expression of the tight junction proteins zonula occludens-1 and occludin in treated mice compared with vehicle-treated and sample SAH mice. We demonstrated that curcumin inhibits microglial activation and matrix metallopeptidase-9 expression, thereby reducing brain edema and attenuating post-SAH BBB disruption in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Ferulic Acid Attenuates the Injury-Induced Decrease of Protein Phosphatase 2A Subunit B in Ischemic Brain Injury

    PubMed Central

    Koh, Phil-Ok

    2013-01-01

    Background Ferulic acid provides a neuroprotective effect during cerebral ischemia through its anti-oxidant function. Protein phosphatase 2A (PP2A) is a serine and threonine phosphatase that contributes broadly to normal brain function. This study investigated whether ferulic acid regulates PP2A subunit B in a middle cerebral artery occlusion (MCAO) animal model and glutamate toxicity-induced neuronal cell death. Methodology/Principal Findings MCAO was surgically induced to yield permanent cerebral ischemic injury in rats. The rats were treated with either vehicle or ferulic acid (100 mg/kg, i.v.) immediately after MCAO, and cerebral cortex tissues were collected 24 h after MCAO. A proteomics approach, RT-PCR, and Western blot analyses performed to identification of PP2A subunit B expression levels. Ferulic acid significantly reduced the MCAO-induced infarct volume of the cerebral cortex. A proteomics approach elucidated the reduction of PP2A subunit B in MCAO-induced animals, and ferulic acid treatment prevented the injury-induced reduction in PP2A subunit B levels. RT-PCR and Western blot analyses also showed that ferulic acid treatment attenuates the injury-induced decrease in PP2A subunit B levels. Moreover, the number of PP2A subunit B-positive cells was reduced in MCAO-induced animals, and ferulic acid prevented these decreases. In cultured neuronal cells, ferulic acid treatment protected cells against glutamate toxicity and prevented the glutamate-induced decrease in PP2A subunit B. Conclusions/Significance These results suggest that the maintenance of PP2A subunit B by ferulic acid in ischemic brain injury plays an important role for the neuroprotective function of ferulic acid. PMID:23349830

  16. VEGF attenuated increase of outward delayed-rectifier potassium currents in hippocampal neurons induced by focal ischemia via PI3-K pathway.

    PubMed

    Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y

    2015-07-09

    We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.

  17. Flavocoxid attenuates gentamicin-induced nephrotoxicity in rats.

    PubMed

    El-Kashef, Dalia H; El-Kenawi, Asmaa E; Suddek, Ghada M; Salem, Hatem A

    2015-12-01

    Gentamicin is a widely used antibiotic against serious and life-threatening infections; however, its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine whether flavocoxid has a protective effect against gentamicin-induced nephrotoxicity in rats. For this purpose, we quantitatively evaluated gentamicin-induced renal structural and functional alterations using histopathological and biochemical approaches. Furthermore, the effect of flavocoxid on gentamicin induced hypersensitivity of urinary bladder rings to acetylcholine (ACh) was determined. Twenty-four male Wistar albino rats were randomly divided into three groups, namely control, gentamicin (100 mg/kg, i.p.) and gentamicin plus flavocoxid (20 mg/kg, orally). At the end of the study, all rats were sacrificed and then blood, urine samples and kidneys were collected for further analysis. Gentamicin administration caused a severe nephrotoxicity which was evidenced by an elevated renal somatic index (RSI), serum creatinine, blood urea nitrogen, serum lactate dehydrogenase, and protein in urine with a concomitant reduction in serum albumin and normalized creatinine clearance value as compared with the controls. Moreover, a significant increase in renal contents of malondialdehyde, myeloperoxidase, and tumor necrosis factor-alpha with a significant decrease in renal reduced glutathione and superoxide dismutase activities was detected upon gentamicin administration together with increasing the sensitivity of isolated urinary bladder rings to ACh. Exposure to gentamicin induced necrosis of renal tubular epithelial cells. Flavocoxid protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by gentamicin treatment. In addition, flavocoxid significantly reduced the responses of isolated bladder rings to ACh. The results from our study indicate that flavocoxid supplement attenuates gentamicin-induced renal injury via the amelioration of

  18. The influence of microwave radiation from cellular phone on fetal rat brain.

    PubMed

    Jing, Ji; Yuhua, Zhang; Xiao-qian, Yang; Rongping, Jiang; Dong-mei, Guo; Xi, Cui

    2012-03-01

    The increasing use of cellular phones in our society has brought focus on the potential detrimental effects to human health by microwave radiation. The aim of our study was to evaluate the intensity of oxidative stress and the level of neurotransmitters in the brains of fetal rats chronically exposed to cellular phones. The experiment was performed on pregnant rats exposed to different intensities of microwave radiation from cellular phones. Thirty-two pregnant rats were randomly divided into four groups: CG, GL, GM, and GH. CG accepted no microwave radiation, GL group radiated 10 min each time, GM group radiated 30 min, and GH group radiated 60 min. The 3 experimental groups were radiated 3 times a day from the first pregnant day for consecutively 20 days, and on the 21st day, the fetal rats were taken and then the contents of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), noradrenaline (NE), dopamine (DA), and 5-hydroxyindole acetic acid (5-HT) in the brain were assayed. Compared with CG, there were significant differences (P<0.05) found in the contents of SOD, GSH-Px, and MDA in GM and GH; the contents of SOD and GSH-Px decreased and the content of MDA increased. The significant content differences of NE and DA were found in fetal rat brains in GL and GH groups, with the GL group increased and the GH group decreased. Through this study, we concluded that receiving a certain period of microwave radiation from cellular phones during pregnancy has certain harm on fetal rat brains.

  19. Distribution of renin activity and angiotensinogen in rat brain. Effects of dietary sodium chloride intake on brain renin.

    PubMed Central

    Genain, C P; Van Loon, G R; Kotchen, T A

    1985-01-01

    The purpose of this study was to investigate the biochemistry and the regulation of the brain renin-angiotensin system in the Sprague-Dawley rat. Renin activity and angiotensinogen concentrations (direct and indirect radioimmunoassays) were measured in several brain areas and in neuroendocrine glands. Regional renin activities were measured in separate groups of rats on high and low NaCl diets. Mean tissue renin activities ranged from 2.2 +/- 0.6 to 54.4 +/- 19.7 fmol/mg protein per h (mean of 7 +/- SD), with the highest amounts in pineal, pituitary, and pons-medulla. NaCl depletion increased renin activity in selected regions; based on estimates of residual plasma contamination (despite perfusion of brains with saline), increased renin activity of pineal gland and posterior pituitary was attributed to higher plasma renin. To eliminate contamination by plasma renin, 16-h-nephrectomized rats were also studied. In anephric rats, NaCl depletion increased renin activity by 92% in olfactory bulbs and by 97% in anterior pituitary compared with NaCl-replete state. These elevations could not be accounted for by hyperreninemia. Brain renin activity was low and was unaffected by dietary NaCl in amygdala, hypothalamus, striatum, frontal cortex, and cerebellum. In contrast to renin, highest angiotensinogen concentrations were measured in hypothalamus and cerebellum. Overall, angiotensinogen measurements with the direct and the indirect assays were highly correlated (n = 56, r = 0.96, P less than 0.001). We conclude that (a) NaCl deprivation increases renin in olfactory bulbs and anterior pituitary of the rat, unrelated to contamination by plasma renin; and (b) the existence of angiotensinogen, the precursor of angiotensins, is demonstrated by direct radioimmunoassay throughout the brain and in neuroendocrine glands. PMID:3902894

  20. Opuntia ficus indica (nopal) attenuates hepatic steatosis and oxidative stress in obese Zucker (fa/fa) rats.

    PubMed

    Morán-Ramos, Sofía; Avila-Nava, Azalia; Tovar, Armando R; Pedraza-Chaverri, José; López-Romero, Patricia; Torres, Nimbe

    2012-11-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with multiple factors such as obesity, insulin resistance, and oxidative stress. Nopal, a cactus plant widely consumed in the Mexican diet, is considered a functional food because of its antioxidant activity and ability to improve biomarkers of metabolic syndrome. The aim of this study was to assess the effect of nopal consumption on the development of hepatic steatosis and hepatic oxidative stress and on the regulation of genes involved in hepatic lipid metabolism. Obese Zucker (fa/fa) rats were fed a control diet or a diet containing 4% nopal for 7 wk. Rats fed the nopal-containing diet had ∼50% lower hepatic TG than the control group as well as a reduction in hepatomegaly and biomarkers of hepatocyte injury such as alanine and aspartate aminotransferases. Attenuation of hepatic steatosis by nopal consumption was accompanied by a higher serum concentration of adiponectin and a greater abundance of mRNA for genes involved in lipid oxidation and lipid export and production of carnitine palmitoyltransferase-1 and microsomal TG transfer proteins in liver. Hepatic reactive oxygen species and lipid peroxidation biomarkers were significantly lower in rats fed nopal compared with the control rats. Furthermore, rats fed the nopal diet had a lower postprandial serum insulin concentration and a greater liver phosphorylated protein kinase B (pAKT):AKT ratio in the postprandial state. This study suggests that nopal consumption attenuates hepatic steatosis by increasing fatty acid oxidation and VLDL synthesis, decreasing oxidative stress, and improving liver insulin signaling in obese Zucker (fa/fa) rats.

  1. Mangiferin attenuates blast-induced traumatic brain injury via inhibiting NLRP3 inflammasome.

    PubMed

    Fan, Kaihua; Ma, Jie; Xiao, Wenjing; Chen, Jingmin; Wu, Juan; Ren, Jiandong; Hou, Jun; Hu, Yonghe; Gu, Jianwen; Yu, Botao

    2017-06-01

    There is growing evidence that Mangiferin possess therapeutic benefit during neuroinflammation on various brain injury models due to its anti-inflammatory properties. It is reported that inflammatory plays a crucial role in the pathogenesis of secondary injury induced by the blast-induced traumatic brain injury (bTBI). However, the role of mangiferin in bTBI is yet to be studied. In our study, the potential effect of mangiferin in the duration of bTBI was examined first. Fortunately, the amelioration of cerebral cortex damage was found in rats suffering bTBI after mangiferin administration. Furthermore, the detail mechanism of mangiferin's beneficial actions in bTBI was also studied. The results revealed that mangiferin might alleviate brain damage in rats with bTBI by inhibiting the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome activation, which was accompanied by mangiferin's inhibition of oxidative stress and pro-inflammatory cytokines production. Therefore, this research allows us to speculate that, for first time, NLRP3 is involved in the anti-inflammatory effect of mangiferin in the cerebral cortex, and mangiferin could be a potential therapy drug for bTBI. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. [Antitumor effect of baicalin on rat brain glioma].

    PubMed

    Hu, Yong-zhen; Wang, Dian-hong; Luan, Yu; Gong, Hai-dong

    2013-01-01

    To investigate the therapeutic mechanism of baicalin on rat brain glioma. Deep brain glioma models were established by injection of glioma cell line C6 cells into the brain of Wistar rats. The rats at 7 days after modeling were randomly divided into tumor control group (0.9% NaCl solution 30 mg×kg(-1)×d(-1) gavage)and experimental groups. The experimental rats was divided into 3 groups: low dose group (50 mg×kg(-1)×d(-1)), middle dose group (100 mg×kg(-1)×d(-1)) and high dose group (200 mg×kg(-1)×d(-1)), given the baicalin by gavage. Pathological and electron microscopic changes were observed. The expressions of p53 and Bcl-2 were determined by immunohistochemistry, and the changes of MRI, the average survival time and body weight of the rats in each group after treatments were analyzed. Compared with the control group, the tumor diameter and volume of high dose group rats before sacrifice were significantly reduced (P < 0.01), and the survival time was significantly prolonged (P < 0.01). Immunohistochemistry revealed strong positive expression rate of mutant p53 (84.47 ± 3.74)% and moderately positive rate (47.28 ± 2.38)% in the control group, significantly higher than that in the negative group (12.91 ± 1.07)% (P < 0.01). The positive rate of mutant p53 of the high dose group was (46.42 ± 2.19)%, significantly lower than that of the control group (84.47 ± 3.74)% (P < 0.01). The expression rate of Bcl-2 in the control group was strongly positive (86.51 ± 4.17)% and moderate positive (48.19 ± 2.11)%, significantly higher than that of the negative group (10.36 ± 1.43)% (P < 0.01). Electron microscopy revealed that baicalin caused damages of the cell nuclei and organelles in the gliomas. Baicalin has significant inhibitory effect on glioma in vivo, and its mechanism may be related to cell apoptosis induced by down-regulated expression of mutant p53, but not related with Bcl-2 expression.

  3. Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats.

    PubMed

    Ahmed, Maha A E; El Morsy, Engy M; Ahmed, Amany A E

    2014-08-21

    Interruption to blood flow causes ischemia and infarction of brain tissues with consequent neuronal damage and brain dysfunction. Pomegranate extract is well tolerated, and safely consumed all over the world. Interestingly, pomegranate extract has shown remarkable antioxidant and anti-inflammatory effects in experimental models. Many investigators consider natural extracts as novel therapies for neurodegenerative disorders. Therefore, this study was carried out to investigate the protective effects of standardized pomegranate extract against cerebral ischemia/reperfusion-induced brain injury in rats. Adult male albino rats were randomly divided into sham-operated control group, ischemia/reperfusion (I/R) group, and two other groups that received standardized pomegranate extract at two dose levels (250, 500 mg/kg) for 15 days prior to ischemia/reperfusion (PMG250+I/R, and PMG500+I/R groups). After I/R or sham operation, all rats were sacrificed and brains were harvested for subsequent biochemical analysis. Results showed reduction in brain contents of MDA (malondialdehyde), and NO (nitric oxide), in addition to enhancement of SOD (superoxide dismutase), GPX (glutathione peroxidase), and GRD (glutathione reductase) activities in rats treated with pomegranate extract prior to cerebral I/R. Moreover, pomegranate extract decreased brain levels of NF-κB p65 (nuclear factor kappa B p65), TNF-α (tumor necrosis factor-alpha), caspase-3 and increased brain levels of IL-10 (interleukin-10), and cerebral ATP (adenosine triphosphate) production. Comet assay showed less brain DNA (deoxyribonucleic acid) damage in rats protected with pomegranate extract. The present study showed, for the first time, that pre-administration of pomegranate extract to rats, can offer a significant dose-dependent neuroprotective activity against cerebral I/R brain injury and DNA damage via antioxidant, anti-inflammatory, anti-apoptotic and ATP-replenishing effects. Copyright © 2014 Elsevier Inc

  4. Anti-correlated cortical networks of intrinsic connectivity in the rat brain.

    PubMed

    Schwarz, Adam J; Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang

    2013-01-01

    In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline "DMN-like" network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans.

  5. Anti-Correlated Cortical Networks of Intrinsic Connectivity in the Rat Brain

    PubMed Central

    Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang

    2013-01-01

    Abstract In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline “DMN-like” network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans. PMID:23919836

  6. Abnormal Injury Response in Spontaneous Mild Ventriculomegaly Wistar Rat Brains: A Pathological Correlation Study of Diffusion Tensor and Magnetization Transfer Imaging in Mild Traumatic Brain Injury.

    PubMed

    Tu, Tsang-Wei; Lescher, Jacob D; Williams, Rashida A; Jikaria, Neekita; Turtzo, L Christine; Frank, Joseph A

    2017-01-01

    Spontaneous mild ventriculomegaly (MVM) was previously reported in ∼43% of Wistar rats in association with vascular anomalies without phenotypic manifestation. This mild traumatic brain injury (TBI) weight drop model study investigates whether MVM rats (n = 15) have different injury responses that could inadvertently complicate the interpretation of imaging studies compared with normal rats (n = 15). Quantitative MRI, including diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI), and immunohistochemistry (IHC) analysis were used to examine the injury pattern up to 8 days post-injury in MVM and normal rats. Prior to injury, the MVM brain showed significant higher mean diffusivity, axial diffusivity, and radial diffusivity, and lower fractional anisotropy (FA) and magnetization transfer ratio (MTR) in the corpus callosum than normal brain (p < 0.05). Following TBI, normal brains exhibited significant decreases of FA in the corpus callosum, whereas MVM brains demonstrated insignificant changes in FA, suggesting less axonal injury. At day 8 after mild TBI, MTR of the normal brains significantly decreased whereas the MTR of the MVM brains significantly increased. IHC staining substantiated the MRI findings, demonstrating limited axonal injury with significant increase of microgliosis and astrogliosis in MVM brain compared with normal animals. The radiological-pathological correlation data showed that both DTI and MTI were sensitive in detecting mild diffuse brain injury, although DTI metrics were more specific in correlating with histologically identified pathologies. Compared with the higher correlation levels reflecting axonal injury pathology in the normal rat mild TBI, the DTI and MTR metrics were more affected by the increased inflammation in the MVM rat mild TBI. Because MVM Wistar rats appear normal, there was a need to screen rats prior to TBI research to rule out the presence of ventriculomegaly, which may complicate the

  7. Abnormal Injury Response in Spontaneous Mild Ventriculomegaly Wistar Rat Brains: A Pathological Correlation Study of Diffusion Tensor and Magnetization Transfer Imaging in Mild Traumatic Brain Injury

    PubMed Central

    Lescher, Jacob D.; Williams, Rashida A.; Jikaria, Neekita; Turtzo, L. Christine; Frank, Joseph A.

    2017-01-01

    Abstract Spontaneous mild ventriculomegaly (MVM) was previously reported in ∼43% of Wistar rats in association with vascular anomalies without phenotypic manifestation. This mild traumatic brain injury (TBI) weight drop model study investigates whether MVM rats (n = 15) have different injury responses that could inadvertently complicate the interpretation of imaging studies compared with normal rats (n = 15). Quantitative MRI, including diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI), and immunohistochemistry (IHC) analysis were used to examine the injury pattern up to 8 days post-injury in MVM and normal rats. Prior to injury, the MVM brain showed significant higher mean diffusivity, axial diffusivity, and radial diffusivity, and lower fractional anisotropy (FA) and magnetization transfer ratio (MTR) in the corpus callosum than normal brain (p < 0.05). Following TBI, normal brains exhibited significant decreases of FA in the corpus callosum, whereas MVM brains demonstrated insignificant changes in FA, suggesting less axonal injury. At day 8 after mild TBI, MTR of the normal brains significantly decreased whereas the MTR of the MVM brains significantly increased. IHC staining substantiated the MRI findings, demonstrating limited axonal injury with significant increase of microgliosis and astrogliosis in MVM brain compared with normal animals. The radiological-pathological correlation data showed that both DTI and MTI were sensitive in detecting mild diffuse brain injury, although DTI metrics were more specific in correlating with histologically identified pathologies. Compared with the higher correlation levels reflecting axonal injury pathology in the normal rat mild TBI, the DTI and MTR metrics were more affected by the increased inflammation in the MVM rat mild TBI. Because MVM Wistar rats appear normal, there was a need to screen rats prior to TBI research to rule out the presence of ventriculomegaly, which may complicate

  8. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens

    PubMed Central

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-01-01

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse. PMID:27327255

  9. A multiscale cerebral neurochemical connectome of the rat brain

    PubMed Central

    Schöttler, Judith; Ercsey-Ravasz, Maria; Cosa-Linan, Alejandro; Varga, Melinda; Toroczkai, Zoltan; Spanagel, Rainer

    2017-01-01

    Understanding the rat neurochemical connectome is fundamental for exploring neuronal information processing. By using advanced data mining, supervised machine learning, and network analysis, this study integrates over 5 decades of neuroanatomical investigations into a multiscale, multilayer neurochemical connectome of the rat brain. This neurochemical connectivity database (ChemNetDB) is supported by comprehensive systematically-determined receptor distribution maps. The rat connectome has an onion-type structural organization and shares a number of structural features with mesoscale connectomes of mouse and macaque. Furthermore, we demonstrate that extremal values of graph theoretical measures (e.g., degree and betweenness) are associated with evolutionary-conserved deep brain structures such as amygdala, bed nucleus of the stria terminalis, dorsal raphe, and lateral hypothalamus, which regulate primitive, yet fundamental functions, such as circadian rhythms, reward, aggression, anxiety, and fear. The ChemNetDB is a freely available resource for systems analysis of motor, sensory, emotional, and cognitive information processing. PMID:28671956

  10. Cafeteria feeding induces interleukin-1beta mRNA expression in rat liver and brain.

    PubMed

    Hansen, M K; Taishi, P; Chen, Z; Krueger, J M

    1998-06-01

    intake affects gut-immune function and can provide a strong intestinal antigen challenge resulting in activation of host defense mechanisms in the digestive system. Previously, we showed that feeding rats a cafeteria diet increases non-rapid eye movement sleep by a subdiaphragmatic mechanism. Food intake and sleep regulation and the immune system share the regulatory molecule interleukin-1beta (IL-1beta). Thus this study examined the effects of a cafeteria diet on IL-1beta mRNA and IL-1 receptor accessory protein (IL-1RAP) mRNA expression in rat liver and brain. Rats were fed normal rat chow or a palatable diet consisting of bread, chocolate, and shortbread cookies (cafeteria diet). After 3 days, midway between the light period of the light-dark cycle, rats were killed by decapitation. Feeding rats a cafeteria diet resulted in increased IL-1beta mRNA expression in the liver and hypothalamus compared with rats fed only the normal rat chow. In addition, cafeteria feeding decreased IL-1RAP mRNA levels in the liver and brain stem. These results indicate that feeding has direct effects on cytokine production and together with other data suggest that the increased sleep that accompanies increased feeding may be the result of increased brain IL-1beta. These results further suggest that cytokine-to-brain communication may be important in normal physiological conditions, such as feeding, as well as being important during inflammatory responses.

  11. Brain protection by methylprednisolone in rats with spinal cord injury.

    PubMed

    Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung

    2009-07-01

    Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.

  12. Hibiscus sabdariffa Linnaeus aqueous extracts attenuate the progression of renal injury in 5/6 nephrectomy rats.

    PubMed

    Seujange, Yuyen; Leelahavanichkul, Asada; Yisarakun, Waranurin; Khawsuk, Witoon; Meepool, Ardool; Phamonleatmongkol, Ponlapat; Saechau, Walai; Onlamul, Winita; Tantiwarattanatikul, Pansa; Oonsook, Worapong; Eiam-Ong, Somchai; Eiam-Ong, Somchit

    2013-01-01

    Hibiscus sabdariffa Linn. (HS) is a tropical wild plant with antioxidant, antibacterial, antihypertensive, and lipid-lowering properties. In several animal models, HS aqueous extracts reduced the severity of the multi-organ injuries such as hypertension and diabetic nephropathy. One of the multiorgan injuries is chronic kidney disease (CKD), which results from the loss of nephron function. HS was used in a 5/6 nephrectomy (5/6 Nx) rat model to determine if it could attenuate the progression of CKD. HS (250 mg/kg/day) or placebo was orally administered to 5/6 Nx male Sprague-Dawley rats. The Nx+HS group had fewer renal injuries as measured by blood urea nitrogen, serum creatinine, creatinine clearance, and renal pathology when compared with the Nx group. In order to determine which property of HS, either vasodilatory and/or antioxidant, was important in attenuating the progression of CKD, systolic blood pressure (SBP) and serum levels of malondialdehyde (MDA) were assessed. In the Nx+HS group, the SBP and the serum levels of MDA were significantly lower at Week 7. In conclusion, through either antihypertensive and/or antioxidant properties, HS was able to attenuate the progression of renal injury after 5/6 Nx. Hence, HS should be considered as one of the new, promising drugs that can be used to attenuate the progression of CKD.

  13. Human umbilical cord blood-derived mesenchymal stem cells attenuate hyperoxia-induced lung injury in neonatal rats.

    PubMed

    Chang, Yun Sil; Oh, Wonil; Choi, Soo Jin; Sung, Dong Kyung; Kim, Soo Yoon; Choi, Eun Yang; Kang, Saem; Jin, Hye Jin; Yang, Yoon Sun; Park, Won Soon

    2009-01-01

    Recent evidence suggests mesenchymal stem cells (MSCs) can downmodulate bleomycin-induced lung injury, and umbilical cord blood (UCB) is a promising source for human MSCs. This study examined whether intratracheal or intraperitoneal transplantation of human UCB-derived MSCs can attenuate hyperoxia-induced lung injury in immunocompetent newborn rats. Wild-type Sprague-Dawley rats were randomly exposed to 95% oxygen or air from birth. In the transplantation groups, a single dose of PKH26-labeled human UCB-derived MSCs was administered either intratracheally (2 x 10(6) cells) or intraperitoneally (5 x 10(5) cells) at postnatal day (P) 5. At P14, the harvested lungs were examined for morphometric analyses of alveolarization and TUNEL staining, as well as the myeoloperoxidase activity, the level of tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and transforming growth factor (TGF)-beta mRNA, alpha-smooth muscle actin (SMA) protein, and collagen levels. Differentiation of MSCs to the respiratory epithelium was also evaluated both in vitro before transplantation and in vivo after transplantation. Despite one fourth dosage of MSCs, significantly more PKH26-labeled donor cells were recovered with intratracheal administration than with intraperitoneal administration both during normoxia and hyperoxia. The hyperoxia-induced increase in the number of TUNEL-positive cells, myeloperoixdase activity, and the level of IL-6 mRNA were significantly attenuated with both intratracheal and intraperitoneal MSCs transplantation. However, the hyperoxia-induced impaired alveolarization and increased the level of TNF-alpha and TGF-beta mRNA, alpha-SMA protein, and collagen were significantly attenuated only with intratracheal MSCs transplantation. MSCs differentiated into respiratory epithelium in vitro and a few PKH26-positive donor cells were colocalized with pro surfactant protein C in the damaged lungs. In conclusion, intratracheal transplantation of human UCB-derived MSCs is

  14. Neuroprotective effects of kolaviron against psycho-emotional stress induced oxidative brain injury in rats: The whisker removal model.

    PubMed

    Ibironke, G F; Fasanmade, A A

    2016-09-01

    The study investigated the neuroprotective potentials of kolaviron (a biflavonoid complex of Garcinia kola) against psycho-emotional stress induced oxidative brain injury in Wistar rats. Twenty-four adult Wistar rats (180-220g) randomly divided into four groups (1-1V,n=6) were used for the study . Group 1 served as control (non stressed), group 11 consisted of stressed rats induced by complete removal' of the whiskers around the mouth and the nose without anaesthesia. The rats in group 111 were pre- treated with 200mg/kg kolaviron per oral (p.o), daily for seven days before being subjected to the stress procedure' while group 1V rats also had 200mg/kg oral kolaviron alone without being stressed. The animals were later euthanized by cervical dislocation, cerebellum and frontal cortex removed and then subjected to biochemical and histopathological analysis. Whisker removal significantly(p<0.05) increased lipid peroxidation (U/mg protein) in the cerebellum (3.82±0.22 vs 6.50±0.41) and the cerebral cortex (14.57±2.50 vs 30.11± 4.70) compared with their controls, it also produced significant reductions 'in catalase activities (U/min/mg protein) in cerebellum (169.65±11.02 vs 87.72, p <0.001) and the cerebral cortex (264.5 ± 40.57 vs 122.71 ± 15.70,p< 0.001). Glutathione levels (U/mg protein) were similarly significantly (P<0.001) reduced in both cerebellum (132.40 ± 4.81 vs 37.60 ± 1.50) and the cerebral cortex (370.42 ±20.51 vs 120.51± 25.35) compared with their corresponding controls. There were also histological abnormalities like cellular degeneration and necrosis in both the frontal cortex and the cerebellum of the stressed rats. Pre- treatment with kolaviron not only reversed these biochemical alterations but also significantly attenuated these observed histopathological changes. The present study demonstrated the neuroprotective potential of kolaviron against psycho-emotional stress-induced oxidative brain injury through the inhibition of oxidative

  15. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis.

    PubMed

    Peleli, Maria; Al-Mashhadi, Ammar; Yang, Ting; Larsson, Erik; Wåhlin, Nils; Jensen, Boye L; G Persson, A Erik; Carlström, Mattias

    2016-01-01

    Hydronephrosis is associated with the development of salt-sensitive hypertension. Studies have suggested that increased sympathetic nerve activity and oxidative stress play important roles in hypertension and the modulation of salt sensitivity. The present study primarily aimed to examine the role of renal sympathetic nerve activity in the development of hypertension in rats with hydronephrosis. In addition, we aimed to investigate if NADPH oxidase (NOX) function could be affected by renal denervation. Partial unilateral ureteral obstruction (PUUO) was created in 3-wk-old rats to induce hydronephrosis. Sham surgery or renal denervation was performed at the same time. Blood pressure was measured during normal, high-, and low-salt diets. The renal excretion pattern, NOX activity, and expression as well as components of the renin-angiotensin-aldosterone system were characterized after treatment with the normal salt diet. On the normal salt diet, rats in the PUUO group had elevated blood pressure compared with control rats (115 ± 3 vs. 87 ± 1 mmHg, P < 0.05) and displayed increased urine production and lower urine osmolality. The blood pressure change in response to salt loading (salt sensitivity) was more pronounced in the PUUO group compared with the control group (15 ± 2 vs. 5 ± 1 mmHg, P < 0.05). Renal denervation in PUUO rats attenuated both hypertension (97 ± 3 mmHg) and salt sensitivity (5 ± 1 mmHg, P < 0.05) and normalized the renal excretion pattern, whereas the degree of renal fibrosis and inflammation was not changed. NOX activity and expression as well as renin and ANG II type 1A receptor expression were increased in the renal cortex from PUUO rats and normalized by denervation. Plasma Na(+) and K(+) levels were elevated in PUUO rats and normalized after renal denervation. Finally, denervation in PUUO rats was also associated with reduced NOX expression, superoxide production, and fibrosis in the heart. In conclusion, renal denervation attenuates

  16. Multi-atlas attenuation correction supports full quantification of static and dynamic brain PET data in PET-MR

    NASA Astrophysics Data System (ADS)

    Mérida, Inés; Reilhac, Anthonin; Redouté, Jérôme; Heckemann, Rolf A.; Costes, Nicolas; Hammers, Alexander

    2017-04-01

    In simultaneous PET-MR, attenuation maps are not directly available. Essential for absolute radioactivity quantification, they need to be derived from MR or PET data to correct for gamma photon attenuation by the imaged object. We evaluate a multi-atlas attenuation correction method for brain imaging (MaxProb) on static [18F]FDG PET and, for the first time, on dynamic PET, using the serotoninergic tracer [18F]MPPF. A database of 40 MR/CT image pairs (atlases) was used. The MaxProb method synthesises subject-specific pseudo-CTs by registering each atlas to the target subject space. Atlas CT intensities are then fused via label propagation and majority voting. Here, we compared these pseudo-CTs with the real CTs in a leave-one-out design, contrasting the MaxProb approach with a simplified single-atlas method (SingleAtlas). We evaluated the impact of pseudo-CT accuracy on reconstructed PET images, compared to PET data reconstructed with real CT, at the regional and voxel levels for the following: radioactivity images; time-activity curves; and kinetic parameters (non-displaceable binding potential, BPND). On static [18F]FDG, the mean bias for MaxProb ranged between 0 and 1% for 73 out of 84 regions assessed, and exceptionally peaked at 2.5% for only one region. Statistical parametric map analysis of MaxProb-corrected PET data showed significant differences in less than 0.02% of the brain volume, whereas SingleAtlas-corrected data showed significant differences in 20% of the brain volume. On dynamic [18F]MPPF, most regional errors on BPND ranged from -1 to  +3% (maximum bias 5%) for the MaxProb method. With SingleAtlas, errors were larger and had higher variability in most regions. PET quantification bias increased over the duration of the dynamic scan for SingleAtlas, but not for MaxProb. We show that this effect is due to the interaction of the spatial tracer-distribution heterogeneity variation over time with the degree of accuracy of the attenuation maps. This

  17. Multi-atlas attenuation correction supports full quantification of static and dynamic brain PET data in PET-MR.

    PubMed

    Mérida, Inés; Reilhac, Anthonin; Redouté, Jérôme; Heckemann, Rolf A; Costes, Nicolas; Hammers, Alexander

    2017-04-07

    In simultaneous PET-MR, attenuation maps are not directly available. Essential for absolute radioactivity quantification, they need to be derived from MR or PET data to correct for gamma photon attenuation by the imaged object. We evaluate a multi-atlas attenuation correction method for brain imaging (MaxProb) on static [ 18 F]FDG PET and, for the first time, on dynamic PET, using the serotoninergic tracer [ 18 F]MPPF. A database of 40 MR/CT image pairs (atlases) was used. The MaxProb method synthesises subject-specific pseudo-CTs by registering each atlas to the target subject space. Atlas CT intensities are then fused via label propagation and majority voting. Here, we compared these pseudo-CTs with the real CTs in a leave-one-out design, contrasting the MaxProb approach with a simplified single-atlas method (SingleAtlas). We evaluated the impact of pseudo-CT accuracy on reconstructed PET images, compared to PET data reconstructed with real CT, at the regional and voxel levels for the following: radioactivity images; time-activity curves; and kinetic parameters (non-displaceable binding potential, BP ND ). On static [ 18 F]FDG, the mean bias for MaxProb ranged between 0 and 1% for 73 out of 84 regions assessed, and exceptionally peaked at 2.5% for only one region. Statistical parametric map analysis of MaxProb-corrected PET data showed significant differences in less than 0.02% of the brain volume, whereas SingleAtlas-corrected data showed significant differences in 20% of the brain volume. On dynamic [ 18 F]MPPF, most regional errors on BP ND ranged from -1 to  +3% (maximum bias 5%) for the MaxProb method. With SingleAtlas, errors were larger and had higher variability in most regions. PET quantification bias increased over the duration of the dynamic scan for SingleAtlas, but not for MaxProb. We show that this effect is due to the interaction of the spatial tracer-distribution heterogeneity variation over time with the degree of accuracy of the attenuation

  18. Formoterol attenuates increased oxidative stress and myosin protein loss in respiratory and limb muscles of cancer cachectic rats

    PubMed Central

    Salazar-Degracia, Anna; Busquets, Sílvia; Argilés, Josep M.; López-Soriano, Francisco J.

    2017-01-01

    Muscle mass loss and wasting are characteristic features of patients with chronic conditions including cancer. Therapeutic options are still scarce. We hypothesized that cachexia-induced muscle oxidative stress may be attenuated in response to treatment with beta2-adrenoceptor-selective agonist formoterol in rats. In diaphragm and gastrocnemius of tumor-bearing rats (108 AH-130 Yoshida ascites hepatoma cells inoculated intraperitoneally) with and without treatment with formoterol (0.3 mg/kg body weight/day for seven days, daily subcutaneous injection), redox balance (protein oxidation and nitration and antioxidants) and muscle proteins (1-dimensional immunoblots), carbonylated proteins (2-dimensional immunoblots), inflammatory cells (immunohistochemistry), and mitochondrial respiratory chain (MRC) complex activities were explored. In the gastrocnemius, but not the diaphragm, of cancer cachectic rats compared to the controls, protein oxidation and nitration levels were increased, several functional and structural proteins were carbonylated, and in both study muscles, myosin content was reduced, inflammatory cell counts were greater, while no significant differences were seen in MRC complex activities (I, II, and IV). Treatment of cachectic rats with formoterol attenuated all the events in both respiratory and limb muscles. In this in vivo model of cancer-cachectic rats, the diaphragm is more resistant to oxidative stress. Formoterol treatment attenuated the rise in oxidative stress in the limb muscles, inflammatory cell infiltration, and the loss of myosin content seen in both study muscles, whereas no effects were observed in the MRC complex activities. These findings have therapeutic implications as they demonstrate beneficial effects of the beta2 agonist through decreased protein oxidation and inflammation in cachectic muscles, especially the gastrocnemius. PMID:29255650

  19. Brain Activation Patterns at Exhaustion in Rats That Differ in Inherent Exercise Capacity

    PubMed Central

    Foley, Teresa E.; Brooks, Leah R.; Gilligan, Lori J.; Burghardt, Paul R.; Koch, Lauren G.; Britton, Steven L.; Fleshner, Monika

    2012-01-01

    In order to further understand the genetic basis for variation in inherent (untrained) exercise capacity, we examined the brains of 32 male rats selectively bred for high or low running capacity (HCR and LCR, respectively). The aim was to characterize the activation patterns of brain regions potentially involved in differences in inherent running capacity between HCR and LCR. Using quantitative in situ hybridization techniques, we measured messenger ribonuclease (mRNA) levels of c-Fos, a marker of neuronal activation, in the brains of HCR and LCR rats after a single bout of acute treadmill running (7.5–15 minutes, 15° slope, 10 m/min) or after treadmill running to exhaustion (15–51 minutes, 15° slope, initial velocity 10 m/min). During verification of trait differences, HCR rats ran six times farther and three times longer prior to exhaustion than LCR rats. Running to exhaustion significantly increased c-Fos mRNA activation of several brain areas in HCR, but LCR failed to show significant elevations of c-Fos mRNA at exhaustion in the majority of areas examined compared to acutely run controls. Results from these studies suggest that there are differences in central c-Fos mRNA expression, and potential brain activation patterns, between HCR and LCR rats during treadmill running to exhaustion and these differences could be involved in the variation in inherent running capacity between lines. PMID:23028992

  20. Japanese traditional miso soup attenuates salt-induced hypertension and its organ damage in Dahl salt-sensitive rats.

    PubMed

    Yoshinaga, Mariko; Toda, Natsuko; Tamura, Yuki; Terakado, Shouko; Ueno, Mai; Otsuka, Kie; Numabe, Atsushi; Kawabata, Yukari; Uehara, Yoshio

    2012-09-01

    We investigated the effects of long-term miso soup drinking on salt-induced hypertension in Dahl salt-sensitive (Dahl S) rats. Dahl S rats were divided into four groups that consumed 1) water, 2) a 0.9% NaCl solution, 3) a 1.3% sodium NaCl solution, or 4) miso soup containing 1.3% NaCl. They were followed for 8 wk. Systolic blood pressure and hypertensive organ damage were determined. Systolic blood pressure increased in an age- and dose-dependent manner in Dahl S rats drinking salt solutions. The systolic blood pressure increase was significantly less in the Dahl S rats that drank miso soup, although the ultimate cumulative salt loading was greater than that in the Dahl S rats given the 1.3% NaCl solution. This blood pressure decrease was associated with a morphologic attenuation of glomerular sclerosis in the kidney and collagen infiltration in the heart. Urinary protein excretions were less in the miso group than in the rats given the 1.3% NaCl solution. The fractional excretion of sodium was increased and that of potassium was decreased in Dahl S rats given the 1.3% NaCl solution, and these effects were reversed in rats given miso soup toward the values of the control. We found that long-term miso soup drinking attenuates the blood pressure increase in salt-induced hypertension with organ damage. This may be caused by a possible retardation of sodium absorption in the gastrointestinal tract or by the direct effects of nutrients in the miso soup from soybeans. The decrease was associated with decreases in cardiovascular and renal damage. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Inhibition of rat brain monoamine oxidase by repeated administration of pirlindol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verevkina, I.V.; Asnina, V.V.; Gorkin, V.Z.

    1985-10-01

    Since pirlindol, like other antidepressants, is used for a long time and since its therapeutic effect usually appears 5-7 days or more after the beginning of treatment, the authors investigate its action on activity of MAO of types A and B in rat brain when administered repeatedly. MAO activity was determined in 50% homogenates of rat brain, made up in 10 mM phosphate buffer, pH 7.4, containing 2% detergent Triton X-100. It is shown that an important role in the antidepressant effect of pirlindol is played by its property of selectively blocking deamination of neurotrans mitters such as serotonin andmore » noradrenalin in the human brain.« less

  2. Brain-penetrating 2-aminobenzimidazole H(1)-antihistamines for the treatment of insomnia.

    PubMed

    Coon, Timothy; Moree, Wilna J; Li, Binfeng; Yu, Jinghua; Zamani-Kord, Said; Malany, Siobhan; Santos, Mark A; Hernandez, Lisa M; Petroski, Robert E; Sun, Aixia; Wen, Jenny; Sullivan, Sue; Haelewyn, Jason; Hedrick, Michael; Hoare, Samuel J; Bradbury, Margaret J; Crowe, Paul D; Beaton, Graham

    2009-08-01

    The benzimidazole core of the selective non-brain-penetrating H(1)-antihistamine mizolastine was used to identify a series of brain-penetrating H(1)-antihistamines for the potential treatment of insomnia. Using cassette PK studies, brain-penetrating H(1)-antihistamines were identified and in vivo efficacy was demonstrated in a rat EEG/EMG model. Further optimization focused on strategies to attenuate an identified hERG liability, leading to the discovery of 4i with a promising in vitro profile.

  3. The effect of electromagnetic radiation on the rat brain: an experimental study.

    PubMed

    Eser, Olcay; Songur, Ahmet; Aktas, Cevat; Karavelioglu, Ergun; Caglar, Veli; Aylak, Firdevs; Ozguner, Fehmi; Kanter, Mehmet

    2013-01-01

    The aim of this study is to determine the structural changes of electromagnetic waves in the frontal cortex, brain stem and cerebellum. 24 Wistar Albino adult male rats were randomly divided into four groups: group I consisted of control rats, and groups II-IV comprised electromagnetically irradiated (EMR) with 900, 1800 and 2450 MHz. The heads of the rats were exposed to 900, 1800 and 2450 MHz microwaves irradiation for 1h per day for 2 months. While the histopathological changes in the frontal cortex and brain stem were normal in the control group, there were severe degenerative changes, shrunken cytoplasm and extensively dark pyknotic nuclei in the EMR groups. Biochemical analysis demonstrated that the Total Antioxidative Capacity level was significantly decreased in the EMR groups and also Total Oxidative Capacity and Oxidative Stress Index levels were significantly increased in the frontal cortex, brain stem and cerebellum. IL-1β level was significantly increased in the EMR groups in the brain stem. EMR causes to structural changes in the frontal cortex, brain stem and cerebellum and impair the oxidative stress and inflammatory cytokine system. This deterioration can cause to disease including loss of these areas function and cancer development.

  4. Optical coherence tomography and optical coherence domain reflectometry for deep brain stimulation probe guidance

    NASA Astrophysics Data System (ADS)

    Jeon, Sung W.; Shure, Mark A.; Baker, Kenneth B.; Chahlavi, Ali; Hatoum, Nagi; Turbay, Massud; Rollins, Andrew M.; Rezai, Ali R.; Huang, David

    2005-04-01

    Deep Brain Stimulation (DBS) is FDA-approved for the treatment of Parkinson's disease and essential tremor. Currently, placement of DBS leads is guided through a combination of anatomical targeting and intraoperative microelectrode recordings. The physiological mapping process requires several hours, and each pass of the microelectrode into the brain increases the risk of hemorrhage. Optical Coherence Domain Reflectometry (OCDR) in combination with current methodologies could reduce surgical time and increase accuracy and safety by providing data on structures some distance ahead of the probe. For this preliminary study, we scanned a rat brain in vitro using polarization-insensitive Optical Coherence Tomography (OCT). For accurate measurement of intensity and attenuation, polarization effects arising from tissue birefringence are removed by polarization diversity detection. A fresh rat brain was sectioned along the coronal plane and immersed in a 5 mm cuvette with saline solution. OCT images from a 1294 nm light source showed depth profiles up to 2 mm. Light intensity and attenuation rate distinguished various tissue structures such as hippocampus, cortex, external capsule, internal capsule, and optic tract. Attenuation coefficient is determined by linear fitting of the single scattering regime in averaged A-scans where Beer"s law is applicable. Histology showed very good correlation with OCT images. From the preliminary study using OCT, we conclude that OCDR is a promising approach for guiding DBS probe placement.

  5. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui

    Highlights: •Forced exercise can ameliorate WBI induced cognitive impairment in our rat model. •Mature BDNF plays an important role in the effects of forced exercise. •Exercise may be a possible treatment of the radiation-induced cognitive impairment. -- Abstract: Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating themore » effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague–Dawley rats received a single dose of 20 Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2 months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF–pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF–pCREB signaling in non

  6. Lithium Visibility in Rat Brain and Muscle in Vivoby 7Li NMR Imaging

    NASA Astrophysics Data System (ADS)

    Komoroski, Richard A.; Pearce, John M.; Newton, Joseph E. O.

    1998-07-01

    The apparent concentration of lithium (Li)in vivowas determined for several regions in the brain and muscle of rats by7Li NMR imaging at 4.7 T with inclusion of an external standard of known concentration and visibility. The average apparent concentrations were 10.1 mM for muscle, and 4.2-5.3 mM for various brain regions under the dosing conditions used. The results were compared to concentrations determinedin vitroby high-resolution7Li NMR spectroscopy of extracts of brain and muscle tissue from the same rats. The comparison provided estimates of the7Li NMR visibility of the Li cation in each tissue region. Although there was considerable scatter of the calculated visibilities among the five rats studied, the results suggested essentially full visibility (96%) for Li in muscle, and somewhat reduced visibility (74-93%) in the various brain regions.

  7. Quercetin attenuates lambda cyhalothrin-induced reproductive toxicity in male rats.

    PubMed

    Ben Abdallah, Fatma; Fetoui, Hamadi; Zribi, Nassira; Fakhfakh, Feiza; Keskes, Leila

    2013-12-01

    The aim of this study was to evaluate the possible protective effects of Quercetin (Qe) against oxidative stress induced by λ cyhalothrin (LTC) in reproductive system. Thirty-two male rats were divided into four groups. First group was allocated as the control group. Second group was given a Qe alone while the third group received a LTC alone. Animals in the fourth group were given a Qe with LTC. Caudae epididymis was removed for sperm analysis. Lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and reduced glutathione (GSH) were determined in the testis. Additionally, the different histopathologic changes were observed in the testis of animals. LTC exposure significantly increased the abnormal morphology and LPO. On the contrary, sperm motility, viability and count, levels of GSH, and activities of SOD, CAT, GPx, and GST were significantly decreased compared to controls. Qe with LTC offset the decrease in functional sperm parameters, antioxidants enzymatic activities, and nonenzymatic antioxidant levels when compared with LTC-treated rats. Furthermore, LTC showed irregular seminiferous tubules containing only Sertoli cells and Qe with LTC caused regular seminiferous tubules showing spermatogenesis at level of spermatocytes. We conclude that LTC-induced oxidative stress and functional sperm parameters in male rats, and dietary of Qe attenuates the reproductive toxicity of LTC to restore the antioxidant system and sperm parameters in male rats. Copyright © 2011 Wiley Periodicals, Inc.

  8. Minocycline Transiently Reduces Microglia/Macrophage Activation but Exacerbates Cognitive Deficits Following Repetitive Traumatic Brain Injury in the Neonatal Rat

    PubMed Central

    Hanlon, Lauren A.; Huh, Jimmy W.

    2016-01-01

    Elevated microglial/macrophage-associated biomarkers in the cerebrospinal fluid of infant victims of abusive head trauma (AHT) suggest that these cells play a role in the pathophysiology of the injury. In a model of AHT in 11-day-old rats, 3 impacts (24 hours apart) resulted in spatial learning and memory deficits and increased brain microglial/macrophage reactivity, traumatic axonal injury, neuronal degeneration, and cortical and white-matter atrophy. The antibiotic minocycline has been effective in decreasing injury-induced microglial/macrophage activation while simultaneously attenuating cellular and functional deficits in models of neonatal hypoxic ischemia, but the potential for this compound to rescue deficits after impact-based trauma to the immature brain remains unexplored. Acute minocycline administration in this model of AHT decreased microglial/macrophage reactivity in the corpus callosum of brain-injured animals at 3 days postinjury, but this effect was lost by 7 days postinjury. Additionally, minocycline treatment had no effect on traumatic axonal injury, neurodegeneration, tissue atrophy, or spatial learning deficits. Interestingly, minocycline-treated animals demonstrated exacerbated injury-induced spatial memory deficits. These results contrast with previous findings in other models of brain injury and suggest that minocycline is ineffective in reducing microglial/macrophage activation and ameliorating injury-induced deficits following repetitive neonatal traumatic brain injury. PMID:26825312

  9. Rapamycin alleviates brain edema after focal cerebral ischemia reperfusion in rats.

    PubMed

    Guo, Wei; Feng, Guoying; Miao, Yanying; Liu, Guixiang; Xu, Chunsheng

    2014-06-01

    Brain edema is a major consequence of cerebral ischemia reperfusion. However, few effective therapeutic options are available for retarding the brain edema progression after cerebral ischemia. Recently, rapamycin has been shown to produce neuroprotective effects in rats after cerebral ischemia reperfusion. Whether rapamycin could alleviate this brain edema injury is still unclear. In this study, the rat stroke model was induced by a 1-h left transient middle cerebral artery occlusion using an intraluminal filament, followed by 48 h of reperfusion. The effects of rapamycin (250 μg/kg body weight, intraperitoneal; i.p.) on brain edema progression were evaluated. The results showed that rapamycin treatment significantly reduced the infarct volume, the water content of the brain tissue and the Evans blue extravasation through the blood-brain barrier (BBB). Rapamycin treatment could improve histological appearance of the brain tissue, increased the capillary lumen space and maintain the integrity of BBB. Rapamycin also inhibited matrix metalloproteinase 9 (MMP9) and aquaporin 4 (AQP4) expression. These data imply that rapamycin could improve brain edema progression after reperfusion injury through maintaining BBB integrity and inhibiting MMP9 and AQP4 expression. The data of this study provide a new possible approach for improving brain edema after cerebral ischemia reperfusion by administration of rapamycin.

  10. Post-traumatic seizure susceptibility is attenuated by hypothermia therapy

    PubMed Central

    Atkins, Coleen M.; Truettner, Jessie S.; Lotocki, George; Sanchez-Molano, Juliana; Kang, Yuan; Alonso, Ofelia F.; Sick, Thomas J.; Dietrich, W. Dalton; Bramlett, Helen M.

    2010-01-01

    Traumatic brain injury (TBI) is a major risk factor for the subsequent development of epilepsy. Currently, chronic seizures after brain injury are often poorly controlled by available anti-epileptic drugs. Hypothermia treatment, a modest reduction in brain temperature, reduces inflammation, activates pro-survival signaling pathways, and improves cognitive outcome after TBI. Given the well-known effect of therapeutic hypothermia to ameliorate pathological changes in the brain after TBI, we hypothesized that hypothermia therapy may attenuate the development of post-traumatic epilepsy and some of the pathomechanisms that underlie seizure formation. To test this hypothesis, adult male Sprague Dawley rats received moderate parasagittal fluid-percussion brain injury, and then were maintained at normothermic or moderate hypothermic temperatures for 4 hr. At 12 weeks after recovery, seizure susceptibility was assessed by challenging the animals with pentylenetetrazole (PTZ), a GABAA receptor antagonist. PTZ elicited a significant increase in seizure frequency in TBI normothermic animals as compared to sham surgery animals and this was significantly reduced in TBI hypothermic animals. Early hypothermia treatment did not rescue chronic dentate hilar neuronal loss, nor did it improve loss of doublecortin-labeled cells in the dentate gyrus post-seizure. However, mossy fiber sprouting was significantly attenuated by hypothermia therapy. These findings demonstrate that reductions in seizure susceptibility after TBI are improved with post-traumatic hypothermia and provide a new therapeutic avenue for the treatment of post-traumatic epilepsy. PMID:21044182

  11. Protection against Blast-Induced Traumatic Brain Injury by Increase in Brain Volume.

    PubMed

    Gu, Ming; Kawoos, Usmah; McCarron, Richard; Chavko, Mikulas

    2017-01-01

    Blast-induced traumatic brain injury (bTBI) is a leading cause of injuries in recent military conflicts and it is responsible for an increased number of civilian casualties by terrorist attacks. bTBI includes a variety of neuropathological changes depending on the intensity of blast overpressure (BOP) such as brain edema, neuronal degeneration, diffuse axonal damage, and vascular dysfunction with neurological manifestations of psychological and cognitive abnormalities. Internal jugular vein (IJV) compression is known to reduce intracranial compliance by causing an increase in brain volume and was shown to reduce brain damage during closed impact-induced TBI. We investigated whether IJV compression can attenuate signs of TBI in rats after exposure to BOP. Animals were exposed to three 110 ± 5 kPa BOPs separated by 30 min intervals. Exposure to BOP resulted in a significant decrease of neuronal nuclei (NeuN) together with upregulation of aquaporin-4 (AQP-4), 3-nitrotyrosine (3-NT), and endothelin 1 receptor A (ETRA) expression in frontal cortex and hippocampus one day following exposures. IJV compression attenuated this BOP-induced increase in 3-NT in cortex and ameliorated the upregulation of AQP-4 in hippocampus. These results suggest that elevated intracranial pressure and intracerebral volume have neuroprotective potential in blast-induced TBI.

  12. Palmitoylethanolamide Ameliorates Hippocampal Damage and Behavioral Dysfunction After Perinatal Asphyxia in the Immature Rat Brain

    PubMed Central

    Herrera, María I.; Udovin, Lucas D.; Toro-Urrego, Nicolás; Kusnier, Carlos F.; Luaces, Juan P.; Capani, Francisco

    2018-01-01

    Perinatal asphyxia (PA) is an obstetric complication associated with an impaired gas exchange. This health problem continues to be a determinant of neonatal mortality and neurodevelopmental disorders. Palmitoylethanolamide (PEA) has exerted neuroprotection in several models of brain injury and neurodegeneration. We aimed at evaluating the potential neuroprotective role of PEA in an experimental model, which induces PA in the immature rat brain. PA was induced by placing Sprague Dawley newborn rats in a water bath at 37°C for 19 min. Once their physiological conditions improved, they were given to surrogate mothers that had delivered normally within the last 24 h. The control group was represented by non-fostered vaginally delivered pups, mimicking the clinical situation. Treatment with PEA (10 mg/kg) was administered within the first hour of life. Modifications in the hippocampus were analyzed with conventional electron microscopy, immunohistochemistry (for NeuN, pNF-H/M, MAP-2, and GFAP) and western blot (for pNF H/M, MAP-2, and GFAP). Behavior was also studied throughout Open Field (OF) Test, Passive Avoidance (PA) Task and Elevated Plus Maze (EPM) Test. After 1 month of the PA insult, we observed neuronal nucleus degeneration in CA1 using electron microscopy. Immunohistochemistry revealed a significant increase in pNF-H/M and decrease in MAP-2 in CA1 reactive area. These changes were also observed when analyzing the level of expression of these markers by western blot. Vertical exploration impairments and anxiety-related behaviors were encountered in the OF and EPM tests. PEA treatment attenuated PA-induced hippocampal damage and its corresponding behavioral alterations. These results contribute to the elucidation of PEA neuroprotective role after PA and the future establishment of therapeutic strategies for the developing brain. PMID:29662433

  13. A Recombinant Respiratory Syncytial Virus Vaccine Candidate Attenuated by a Low-Fusion F Protein Is Immunogenic and Protective against Challenge in Cotton Rats.

    PubMed

    Rostad, Christina A; Stobart, Christopher C; Gilbert, Brian E; Pickles, Ray J; Hotard, Anne L; Meng, Jia; Blanco, Jorge C G; Moin, Syed M; Graham, Barney S; Piedra, Pedro A; Moore, Martin L

    2016-08-15

    Although respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, a safe and effective vaccine is not yet available. Live-attenuated vaccines (LAVs) are the most advanced vaccine candidates in RSV-naive infants. However, designing an LAV with appropriate attenuation yet sufficient immunogenicity has proven challenging. In this study, we implemented reverse genetics to address these obstacles with a multifaceted LAV design that combined the codon deoptimization of genes for nonstructural proteins NS1 and NS2 (dNS), deletion of the small hydrophobic protein (ΔSH) gene, and replacement of the wild-type fusion (F) protein gene with a low-fusion RSV subgroup B F consensus sequence of the Buenos Aires clade (BAF). This vaccine candidate, RSV-A2-dNS-ΔSH-BAF (DB1), was attenuated in two models of primary human airway epithelial cells and in the upper and lower airways of cotton rats. DB1 was also highly immunogenic in cotton rats and elicited broadly neutralizing antibodies against a diverse panel of recombinant RSV strains. When vaccinated cotton rats were challenged with wild-type RSV A, DB1 reduced viral titers in the upper and lower airways by 3.8 log10 total PFU and 2.7 log10 PFU/g of tissue, respectively, compared to those in unvaccinated animals (P < 0.0001). DB1 was thus attenuated, highly immunogenic, and protective against RSV challenge in cotton rats. DB1 is the first RSV LAV to incorporate a low-fusion F protein as a strategy to attenuate viral replication and preserve immunogenicity. RSV is a leading cause of infant hospitalizations and deaths. The development of an effective vaccine for this high-risk population is therefore a public health priority. Although live-attenuated vaccines have been safely administered to RSV-naive infants, strategies to balance vaccine attenuation with immunogenicity have been elusive. In this study, we introduced a novel strategy to attenuate a recombinant RSV vaccine by

  14. Agmatine attenuates the discriminative stimulus and hyperthermic effects of methamphetamine in male rats.

    PubMed

    Thorn, David A; Li, Jiuzhou; Qiu, Yanyan; Li, Jun-Xu

    2016-09-01

    Methamphetamine abuse remains an alarming public heath challenge, with no approved pharmacotherapies available. Agmatine is a naturally occurring cationic polyamine that has previously been shown to attenuate the rewarding and psychomotor-sensitizing effects of methamphetamine. This study examined the effects of agmatine on the discriminative stimulus and hyperthermic effects of methamphetamine. Adult male rats were trained to discriminate 0.32 mg/kg methamphetamine from saline. Methamphetamine dose dependently increased drug-associated lever responding. The nonselective dopamine receptor antagonist haloperidol (0.1 mg/kg) significantly attenuated the discriminative stimulus effects of methamphetamine (5.9-fold rightward shift). Agmatine (10-100 mg/kg) did not substitute for methamphetamine, but significantly attenuated the stimulus effects of methamphetamine, leading to a maximum of a 3.5-fold rightward shift. Acute 10 mg/kg methamphetamine increased the rectal temperature by a maximum of 1.96±0.17°C. Agmatine (10-32 mg/kg) pretreatment significantly attenuated the hyperthermic effect of methamphetamine. Agmatine (10 mg/kg) also significantly reversed methamphetamine-induced temperature increase. Together, these results support further exploration of the value that agmatine may have for the treatment of methamphetamine abuse and overdose.

  15. Agmatine attenuates the discriminative stimulus and hyperthermic effects of methamphetamine in male rats

    PubMed Central

    Thorn, David A.; Li, Jiuzhou; Qiu, Yanyan; Li, Jun-Xu

    2016-01-01

    Methamphetamine abuse remains an alarming public heath challenge with no approved pharmacotherapies available. Agmatine is a naturally-occurring cationic polyamine that has previously been shown to attenuate the rewarding and psychomotor-sensitizing effects of methamphetamine. This study examined the effects of agmatine on the discriminative stimulus and hyperthermic effects of methamphetamine. Adult male rats were trained to discriminate 0.32 mg/kg methamphetamine from saline. Methamphetamine dose-dependently increased drug-associated lever responding. The nonselective dopamine receptor antagonist haloperidol (0.1 mg/kg) significantly attenuated the discriminative stimulus effects of methamphetamine (5.9-fold rightward shift). Agmatine (10 –100 mg/kg) did not substitute for methamphetamine but significantly attenuated the stimulus effects of methamphetamine, leading to a maximum of 3.5-fold rightward shift. Acute 10 mg/kg methamphetamine increased the rectal temperature by a maximum of 1.96 ± 0.17 °C. Agmatine (10 – 32 mg/kg) pretreatment significantly attenuated the hyperthermic effect of methamphetamine. Agmatine (10 mg/kg) also significantly reversed methamphetamine-induced temperature increase. Together, these results support further exploration of the value that agmatine may have for treating methamphetamine abuse and overdose. PMID:27232669

  16. Anthocyanins in chokeberry and purple maize attenuate diet-induced metabolic syndrome in rats.

    PubMed

    Bhaswant, Maharshi; Shafie, Siti Raihanah; Mathai, Michael L; Mouatt, Peter; Brown, Lindsay

    2017-09-01

    Increased consumption of fruits and vegetables as functional foods leads to the reduction of signs of metabolic syndrome. The aim of this study was to measure and compare cardiovascular, liver, and metabolic parameters following chronic administration of the same dose of anthocyanins either from chokeberry (CB) or purple maize (PM) in rats with diet-induced metabolic syndrome. Male Wistar rats were fed a maize starch (C) or high-carbohydrate, high-fat diet (H) and divided into six groups for 16 wk. The rats were fed C, C with CB or PM for the last 8 wk (CCB or CPM), H, H with CB or PM for the last 8 wk (HCB or HPM); CB and PM rats received ∼8 mg anthocyanins/kg daily. The rats were monitored for changes in blood pressure, cardiovascular and hepatic structure and function, glucose tolerance, and adipose tissue mass. HCB and HPM rats showed reduced visceral adiposity index, total body fat mass, and systolic blood pressure; improved glucose tolerance, liver, and cardiovascular structure and function; decreased plasma triacylglycerols and total cholesterol compared with H rats. Inflammatory cell infiltration was reduced in heart and liver. CB and PM interventions gave similar responses, suggesting that anthocyanins are the bioactive molecules in the attenuation or reversal of metabolic syndrome by prevention of inflammation-induced damage. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Cardiaprotective effect of crocetin by attenuating apoptosis in isoproterenol induced myocardial infarction rat model.

    PubMed

    Zhang, Weili; Li, Yuhui; Ge, Zhiming

    2017-09-01

    Given study evaluates the cardioprotective effect of crocetin in myocardial infracted (MI) rats. MI was produced by administering isoproterenol (90mg/kg/day, i.p.) in rats for two consecutive days. all the animals were divided in to four groups such as control group receives only saline; MI group which receives only isoproterenol and crocetin treated group which receives crocetin (50, 100 and 200mg/kg/day, p.o.) for the duration of 15 days. At the end of dosing left ventricular functions was assessed to estimate its effect on cardiac functions. Catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), creatine kinase (CK-MB), lactate dehydrogenase (LDH) and inflammatory cytokines were determined in the cardiac tissue homogenate. Histopathology study was also carried out using hematoxylin and eosin staining. Immunohistochemistry was done for the estimation of Caspase-3, Bcl-2, Bax and Nrf-2 level in the myocardial tissues of MI rats. Result of the study suggested that GSH, CAT, CK-MB, and LDH were (p<0.01) increased in the tissue homogenate of crocetin treated group than MI group. However crocetin significantly (p<0.01) decreases the level of MDA and activity of SOD in the tissue homogenate than MI group. It was observed that treatment with crocetin attenuates the level of inflammatory cytokines in the myocardial tissues of MI rats. Moreover level of caspase-3, Bax and Nrf-2 significantly reduced and Bcl-2 enhanced in the myocardial tissues of MI rats than MI group. The altered cellular architecture of heart tissue sections in the myocardial infracted rats were reversed by administration of crocetin treatment. Taking all these data together, it may be suggested that the crocetin act as a possible protective agent in myocardial infarction by decreasing oxidative stress and inflammatory cytokines and thereby attenuates the apoptosis of myocardial cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Novel brain-penetrating oximes for reactivation of cholinesterase inhibited by sarin and VX surrogates.

    PubMed

    Chambers, Janice E; Meek, Edward C; Chambers, Howard W

    2016-06-01

    Current oxime reactivators for organophosphate-inhibited cholinesterase (ChE) do not effectively cross the blood-brain barrier and therefore cannot restore brain ChE activity in vivo. Our laboratories have studied highly relevant sarin and VX surrogates, which differ from their respective nerve agents only in the leaving group and thereby leave ChE phosphylated with the same chemical moiety as sarin and VX. Our laboratories have developed novel substituted phenoxyalkyl pyridinium oximes that lead to reduced ChE inhibition in the brains of rats challenged with a high sublethal dosage of the sarin surrogate, whereas 2-PAM did not, using a paradigm designed to demonstrate brain penetration. In addition, treatment of rats with these novel oximes is associated with attenuation of seizure-like behavior compared to rats treated with 2-PAM, providing additional evidence that the oximes penetrate the blood-brain barrier. Further, some of the oximes provided 24-h survival superior to 2-PAM, and shortened the duration of seizure-like behavior when rats were challenged with lethal dosages of the sarin and VX surrogates, providing additional support for the conclusion that these oximes penetrate the brain. © 2016 New York Academy of Sciences.

  19. Photoacoustic micro-imaging of focused ultrasound induced blood-brain-barrier opening in a rat model

    NASA Astrophysics Data System (ADS)

    Wang, Po-Hsun; Hsu, Po-Hung; Liu, Hao-Li; Wang, Churng-Ren Chris; Li, Meng-Lin

    2010-02-01

    Blood brain barrier (BBB) prevents most of the drug from transmitting into the brain tissue and decreases the treatment performance for brain disease. One of the methods to overcome the difficulty of drug delivery is to locally increase the permeability of BBB with high-intensity focused ultrasound. In this study, we have investigated the feasibility of photoacoustic microscopy of focused-ultrasound induced BBB opening in a rat model in vivo with gold nanorods (AuNRs) as a contrast agent. This study takes advantage of the strong near-infrared absorption of AuNRs and their extravasation tendency from BBB opening foci due to their nano-scale size. Before the experiments, craniotomy was performed on rats to provide a path for focused ultrasound beam. Localized BBB opening at the depth of about 3 mm from left cortex of rat brains was achieved by delivering 1.5 MHz focused ultrasound energy into brain tissue in the presence of microbubbles. PEGylated AuNRs with a peak optical absorption at ~800 nm were then intravenously administered. Pre-scan prior to BBB disruption and AuNR injection was taken to mark the signal background. After injection, the distribution of AuNRs in rat brains was monitored up to 2 hours. Experimental results show that imaging AuNRs reveals BBB disruption area in left brains while there are no changes observed in the right brains. From our results, photoacoustic imaging plus AuNRs shows the promise as a novel monitoring strategy in identifying the location and variation of focused-ultrasound BBB-opening in a rat model.

  20. Effects of the Acute and Chronic Ethanol Intoxication on Acetate Metabolism and Kinetics in the Rat Brain.

    PubMed

    Hsieh, Ya-Ju; Wu, Liang-Chih; Ke, Chien-Chih; Chang, Chi-Wei; Kuo, Jung-Wen; Huang, Wen-Sheng; Chen, Fu-Du; Yang, Bang-Hung; Tai, Hsiao-Ting; Chen, Sharon Chia-Ju; Liu, Ren-Shyan

    2018-02-01

    Ethanol (EtOH) intoxication inhibits glucose transport and decreases overall brain glucose metabolism; however, humans with long-term EtOH consumption were found to have a significant increase in [1- 11 C]-acetate uptake in the brain. The relationship between the cause and effect of [1- 11 C]-acetate kinetics and acute/chronic EtOH intoxication, however, is still unclear. [1- 11 C]-acetate positron emission tomography (PET) with dynamic measurement of K 1 and k 2 rate constants was used to investigate the changes in acetate metabolism in different brain regions of rats with acute or chronic EtOH intoxication. PET imaging demonstrated decreased [1- 11 C]-acetate uptake in rat brain with acute EtOH intoxication, but this increased with chronic EtOH intoxication. Tracer uptake rate constant K 1 and clearance rate constant k 2 were decreased in acutely intoxicated rats. No significant change was noted in K 1 and k 2 in chronic EtOH intoxication, although 6 of 7 brain regions showed slightly higher k 2 than baseline. These results indicate that acute EtOH intoxication accelerated acetate transport and metabolism in the rat brain, whereas chronic EtOH intoxication status showed no significant effect. In vivo PET study confirmed the modulatory role of EtOH, administered acutely or chronically, in [1- 11 C]-acetate kinetics and metabolism in the rat brain. Acute EtOH intoxication may inhibit the transport and metabolism of acetate in the brain, whereas chronic EtOH exposure may lead to the adaptation of the rat brain to EtOH in acetate utilization. [1- 11 C]-acetate PET imaging is a feasible approach to study the effect of EtOH on acetate metabolism in rat brain. Copyright © 2017 by the Research Society on Alcoholism.

  1. Carnosine reverses the aging-induced down regulation of brain regional serotonergic system.

    PubMed

    Banerjee, Soumyabrata; Ghosh, Tushar K; Poddar, Mrinal K

    2015-12-01

    The purpose of the present investigation was to study the role of carnosine, an endogenous dipeptide biomolecule, on brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) serotonergic system during aging. Results showed an aging-induced brain region specific significant (a) increase in Trp (except cerebral cortex) and their 5-HIAA steady state level with an increase in their 5-HIAA accumulation and declination, (b) decrease in their both 5-HT steady state level and 5-HT accumulation (except cerebral cortex). A significant decrease in brain regional 5-HT/Trp ratio (except cerebral cortex) and increase in 5-HIAA/5-HT ratio were also observed during aging. Carnosine at lower dosages (0.5-1.0μg/Kg/day, i.t. for 21 consecutive days) didn't produce any significant response in any of the brain regions, but higher dosages (2.0-2.5μg/Kg/day, i.t. for 21 consecutive days) showed a significant response on those aging-induced brain regional serotonergic parameters. The treatment with carnosine (2.0μg/Kg/day, i.t. for 21 consecutive days), attenuated these brain regional aging-induced serotonergic parameters and restored towards their basal levels that observed in 4 months young control rats. These results suggest that carnosine attenuates and restores the aging-induced brain regional down regulation of serotonergic system towards that observed in young rats' brain regions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain.

    PubMed

    Amara, Salem; Slama, Imen Ben; Omri, Karim; El Ghoul, Jaber; El Mir, Lassaad; Rhouma, Khemais Ben; Abdelmelek, Hafedh; Sakly, Mohsen

    2015-12-01

    Over recent years, nanotoxicology and the potential effects on human body have grown in significance, the potential influences of nanosized materials on the central nervous system have received more attention. The aim of this study was to determine whether zinc oxide (ZnO) nanoparticles (NPs) exposure cause alterations in emotional behavior and trace elements homeostasis in rat brain. Rats were treated by intraperitoneal injection of ZnO NPs (20-30 nm) at a dose of 25 mg/kg body weight. Sub -: acute ZnO NPs treatment induced no significant increase in the zinc content in the homogenate brain. Statistically significant decreases in iron and calcium concentrations were found in rat brain tissue compared to control. However, sodium and potassium contents remained unchanged. Also, there were no significant changes in the body weight and the coefficient of brain. In the present study, the anxiety-related behavior was evaluated using the plus-maze test. ZnO NPs treatment modulates slightly the exploratory behaviors of rats. However, no significant differences were observed in the anxious index between ZnO NP-treated rats and the control group (p > 0.05). Interestingly, our results demonstrated minimal effects of ZnO NPs on emotional behavior of animals, but there was a possible alteration in trace elements homeostasis in rat brain. © The Author(s) 2012.

  3. Estrone is neuroprotective in rats after traumatic brain injury.

    PubMed

    Gatson, Joshua W; Liu, Ming-Mei; Abdelfattah, Kareem; Wigginton, Jane G; Smith, Scott; Wolf, Steven; Simpkins, James W; Minei, Joseph P

    2012-08-10

    In various animal and human studies, early administration of 17β-estradiol, a strong antioxidant, anti-inflammatory, and anti-apoptotic agent, significantly decreases the severity of injury in the brain associated with cell death. Estrone, the predominant estrogen in postmenopausal women, has been shown to be a promising neuroprotective agent. The overall goal of this project was to determine if estrone mitigates secondary injury following traumatic brain injury (TBI) in rats. Male rats were given either placebo (corn oil) or estrone (0.5 mg/kg) at 30 min after severe TBI. Using a controlled cortical impact device in rats that underwent a craniotomy, the right parietal cortex was injured using the impactor tip. Non-injured control and sham animals were also included. At 72 h following injury, the animals were perfused intracardially with 0.9% saline followed by 10% phosphate-buffered formalin. The whole brain was removed, sliced, and stained for TUNEL-positive cells. Estrone decreased cortical lesion volume (p<0.01) and neuronal injury (p<0.001), and it reduced cerebral cortical levels of TUNEL-positive staining (p<0.0001), and decreased numbers of TUNEL-positive cells in the corpus callosum (p<0.03). We assessed the levels of β-amyloid in the injured animals and found that estrone significantly decreased the cortical levels of β-amyloid after brain injury. Cortical levels of phospho-ERK1/2 were significantly (p<0.01) increased by estrone. This increase was associated with an increase in phospho-CREB levels (p<0.021), and brain-derived neurotrophic factor (BDNF) expression (p<0.0006). In conclusion, estrone given acutely after injury increases the signaling of protective pathways such as the ERK1/2 and BDNF pathways, decreases ischemic secondary injury, and decreases apoptotic-mediated cell death. These results suggest that estrone may afford protection to those suffering from TBI.

  4. Attenuation of alcohol-induced apoptosis of hepatocytes in rat livers by polyenylphosphatidylcholine (PPC).

    PubMed

    Mi, L J; Mak, K M; Lieber, C S

    2000-02-01

    Alcohol consumption increases apoptosis of hepatocytes. This effect appears to be mediated by the induction of hepatic cytochrome P-4502E1(CYP2E1) and its generation of free radicals, which results in an enhanced lipid peroxidation that initiates apoptosis. Because polyenylphosphatidylcholine (PPC), a soybean extract rich in polyunsaturated phosphatidylcholines, decreases the induction of ethanol-specific CYP2E1 and opposes oxidative stress, we hypothesized that PPC supplementation may attenuate hepatocyte apoptosis caused by ethanol ingestion. Twenty-eight male Sprague Dawley rats were pair-fed Lieber-DeCarli liquid diets containing 36% of energy as alcohol or an isocaloric amount of carbohydrate for 28 days. Half of the rats were given PPC (3 g/liter), whereas the other half received the same amount of linoleate (as safflower oil) and of choline as the bitartrate. An additional dose of alcohol (3 g/kg) was given intragastrically 90 min before the livers were removed. We assessed apoptosis in formalin-fixed, paraffin-embedded liver sections by using the TUNEL (terminal transferase dUTP nick end labeling) assay. Apoptotic hepatocytes were identified by positive TUNEL staining in conjunction with condensation of nucleoplasm or margination of chromatin. In each rat, 20,000 to 60,000 hepatocytes were counted by light microscopy by using Image-Pro Plus computer software, and the incidence of apoptosis was expressed as the percentage of total hepatocytes. Alcohol feeding resulted in a 4.5-fold increase in apoptosis of hepatocytes compared to pair-fed control rats; PPC supplementation decreased the alcohol-induced apoptosis to less than half. No difference in the incidence of apoptosis between the control and PPC-supplemented rats was found in the absence of alcohol. Apoptosis was distributed randomly in the liver lobules of the rats fed the control diet, whereas the alcohol-induced apoptosis was significantly increased in the perivenular area. PPC supplementation

  5. Antioxidant Vitamin C attenuates experimental abdominal aortic aneurysm development in an elastase-induced rat model.

    PubMed

    Shang, Tao; Liu, Zhao; Liu, Chang-jian

    2014-05-01

    We investigated the hypothesis that an antioxidant, Vitamin C, could attenuate abdominal aortic aneurysm (AAA) development in a rat model. An AAA model induced by intraluminal infusion was created in 36 male Sprague Dawley rats, which were randomly distributed into three groups: Sham (saline infused, placebo treated), Control (elastase infused, placebo treated), and Vitamin C (elastase infused, vitamin C treated). Vitamin C and placebo were intraperitoneally injected, initiating 1 wk before the infusion and continuing throughout the study. The aortic dilatation ratio was measured, and aortic tissues were further examined using biochemical and histologic techniques. Vitamin C attenuated the development of AAA, decreasing maximal aortic diameter by 25.8% (P < 0.05) and preserving elastin lamellae (P < 0.05). Vitamin C also decreased 8-hydroxyguanine (a marker of oxidative damage to DNA) and 8-isoprostane content (a marker of oxidative stress) in aortic tissues (P < 0.05, respectively). The proteins of matrix metalloproteinase (MMP)-2, MMP-9, and interleukin 6 were markedly downregulated (P < 0.05, respectively), accompanied with notably reduced messenger RNA expression of tumor necrosis factor-α, MMP-2/9, and interleukin 1β (P < 0.05, respectively). However, messenger RNA of tissue inhibitors of metalloproteinase-1 and tissue inhibitors of metalloproteinase-2 were both significantly upregulated in Vitamin C group. Vitamin C treatment had no significant effect on systolic blood pressure (P > 0.05). Vitamin C attenuated AAA development in an elastase-induced rat model via crucial protective effect, which was mediated by an increased level of antioxidant in cooperation with preserving elastin lamellae, inhibiting matrix-degrading proteinases and suppressing inflammatory responses. Copyright © 2014. Published by Elsevier Inc.

  6. Sexual differentiation of the adolescent rat brain: A longitudinal voxel-based morphometry study.

    PubMed

    Sumiyoshi, Akira; Nonaka, Hiroi; Kawashima, Ryuta

    2017-03-06

    The sexual differentiation of the rat brain during the adolescent period has been well documented in post-mortem histological studies. However, to further understand the morphological changes occurring in the entire brain, a noninvasive neuroimaging method allowing an unbiased, comprehensive, and longitudinal investigation of brain morphology should be used. In this study, we investigated the sexual differentiation of the rat brain during the adolescent period using longitudinal voxel-based morphometry (VBM) analysis. Male and female Wistar rats (n=12 of each) were scanned in a 7.0-T MRI scanner at five time points from 6 to 10 weeks of age. The T2-weighted MRI images were segmented using the rat brain tissue priors that have been published by our laboratory. At the global level, the results of the VBM analysis showed greater increases in total gray matter volume in the males during the adolescent period, although we did not find significant differences in total white matter volume. At the voxel level, we found significant increases in the regional gray matter volume of the occipital cortex, amygdala, hippocampal formation, and cerebellum. At the regional level, only the occipital cortex in the females exhibited decreases during the adolescent period. These results were, at least in part, consistent with those of previous longitudinal VBM studies in humans, thus providing translational evidence of the sexual differentiation of the developing brain between rodents and humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease.

    PubMed

    Dhanalakshmi, Chinnasamy; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed; Kalandar, Ameer; Khan, Mohammed Abdul Sattar; Guillemin, Gilles J

    2016-08-01

    Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. We previously reported the neuroprotective effect of vanillin against rotenone induced in in vitro model of PD. The present experiment was aimed to analyze the neuroprotective effect of vanillin on the motor and non-motor deficits, neurochemical variables, oxidative, anti-oxidative indices and the expression of apoptotic markers against rotenone induced rat model of Parkinson's disease (PD). Rotenone treatment exhibited motor and non-motor impairments, neurochemical deficits, oxidative stress and apoptosis, whereas oral administration of vanillin attenuated the above-said indices. However further studies are needed to explore the mitochondrial protective and anti-inflammatory properties of vanillin, as these processes play a vital role in the cause and progression of PD.

  8. (-)-Epigallocatechin-3-gallate (EGCG) attenuates arsenic-induced cardiotoxicity in rats.

    PubMed

    Sun, Tao-Li; Liu, Zhi; Qi, Zheng-Jun; Huang, Yong-Pan; Gao, Xiao-Qin; Zhang, Yan-Yan

    2016-07-01

    Chronic arsenic exposure in drinking water is associated with the abnormalities of cardiac tissue. Excessive generation of ROS induced by arsenic has a central role in arsenic-induced cardiotoxicity. (-)-Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, possesses a potent antioxidant capacity and exhibits extensive pharmacological activities. This study was aim to evaluate the effect of EGCG on arsenic-induced cardiotoxicity in vivo and in vitro. Treatment with NaAsO2 seriously affected the morphology and ultrastructure of myocardium, and induced cardiac injuries, oxidative stress, intracellular calcium accumulation and apoptosis in rats. In consistent with in vivo study, the injuries, oxidative stress and apoptosis were also observed in NaAsO2-treated H9c2 cells. All of these effects induced by NaAsO2 were attenuated by EGCG. These results suggest EGCG could attenuate NaAsO2-induced cardiotoxicity, and the mechanism may involve its potent antioxidant capacity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. DPP IV inhibitor treatment attenuates bone loss and improves mechanical bone strength in male diabetic rats.

    PubMed

    Glorie, Lorenzo; Behets, Geert J; Baerts, Lesley; De Meester, Ingrid; D'Haese, Patrick C; Verhulst, Anja

    2014-09-01

    Dipeptidyl peptidase IV (DPP IV) modulates protein activity by removing dipeptides. DPP IV inhibitors are currently used to improve glucose tolerance in type 2 diabetes patients. DPP IV substrates not only increase insulin secretion but also affect bone metabolism. In this study, the effect of DPP IV inhibitor sitagliptin on bone was evaluated in normal and streptozotocin-induced diabetic rats. This study included 64 male Wistar rats divided into four groups (n = 16): two diabetic and two control groups. One diabetic and one control group received sitagliptin through drinking water. Tibiae were scanned every 3 wk using an in vivo μCT scanner. After 6 and 12 wk, rats were euthanized for histomorphometric analysis of bone parameters. The mechanical resistance of femora to fracture was assessed using a three-point bending test, and serum levels of bone metabolic markers were measured. Efficient DPP IV inhibition was achieved in sitagliptin-treated groups. Trabecular bone loss, the decrease in trabecular number, and the increase in trabecular spacing was attenuated through sitagliptin treatment in diabetic rats, as shown by in vivo μCT. Bone histomorphometry was in line with these results. μCT analysis furthermore showed that sitagliptin prevented cortical bone growth stagnation in diabetic rats, resulting in stronger femora during three-point bending. Finally, the serum levels of the resorption marker CTX-I were significantly lower in sitagliptin-treated diabetic animals compared with untreated diabetic animals. In conclusion, sitagliptin treatment attenuates bone loss and increases bone strength in diabetic rats probably through the reduction of bone resorption and independent of glycemic management. Copyright © 2014 the American Physiological Society.

  10. Pentadecapeptide BPC 157 attenuates gastric lesions induced by alloxan in rats and mice.

    PubMed

    Petek, M; Sikiric, P; Anic, T; Buljat, G; Separovic, J; Stancic-Rokotov, D; Seiwerth, S; Grabarevic, Z; Rucman, R; Mikus, D; Zoricic, I; Prkacin, I; Sebecic, B; Ziger, T; Coric, V; Turkovic, B; Aralica, G; Rotkvic, I; Mise, S; Hahn, V

    1999-12-01

    A diabetogenic alloxan regimen produced lesions in all stomachs of treated animals, either rats (200 mg x kg(-1) s.c.) or mice (400 mg x kg(-1) i.p.). In control animals, the lesions, when developed (i.e. 24 h following application), appear to be quite sustained, and consistently present also after 1 or 2 weeks. The application of the pentadecapeptide BPC 157 (10 microg or 10 ng x kg(-1) i.p. coadministered together with alloxan) would significantly attenuate these lesions' appearance. This beneficial effect seems to be present in either rats or mice and in either of the tested intervals. Importantly, the beneficial effect seems to be shared by both microgram and nanogram regimens.

  11. Agmatine attenuates brain edema through reducing the expression of aquaporin-1 after cerebral ischemia

    PubMed Central

    Kim, Jae Hwan; Lee, Yong Woo; Park, Kyung Ah; Lee, Won Taek; Lee, Jong Eun

    2010-01-01

    Brain edema is frequently shown after cerebral ischemia. It is an expansion of brain volume because of increasing water content in brain. It causes to increase mortality after stroke. Agmatine, formed by the decarboxylation of -arginine by arginine decarboxylase, has been shown to be neuroprotective in trauma and ischemia models. The purpose of this study was to investigate the effect of agmatine for brain edema in ischemic brain damage and to evaluate the expression of aquaporins (AQPs). Results showed that agmatine significantly reduced brain swelling volume 22 h after 2 h middle cerebral artery occlusion in mice. Water content in brain tissue was clearly decreased 24 h after ischemic injury by agmatine treatment. Blood–brain barrier (BBB) disruption was diminished with agmatine than without. The expressions of AQPs-1 and -9 were well correlated with brain edema as water channels, were significantly decreased by agmatine treatment. It can thus be suggested that agmatine could attenuate brain edema by limitting BBB disruption and blocking the accumulation of brain water content through lessening the expression of AQP-1 after cerebral ischemia. PMID:20029450

  12. Nose-to-brain transport of melatonin from polymer gel suspensions: a microdialysis study in rats.

    PubMed

    Jayachandra Babu, R; Dayal, Pankaj Patrick; Pawar, Kasturi; Singh, Mandip

    2011-11-01

    Exogenous melatonin (MT) has significant neuroprotective roles in Alzheimer's and Parkinson's diseases. This study investigates the delivery MT to brain via nasal route as a polymeric gel suspension using central brain microdialysis in anesthetized rats. Micronized MT suspensions using polymers [carbopol, carboxymethyl cellulose (CMC)] and polyethylene glycol 400 (PEG400) were prepared and characterized for nasal administration. In vitro permeation of the formulations was measured across a three-dimensional tissue culture model EpiAirway(™). The central brain delivery into olfactory bulb of nasally administered MT gel suspensions was studied using brain microdialysis in male Wistar rats. The MT content of microdialysis samples was analyzed by high performance liquid chromatography (HPLC) using electrochemical detection. The nose-to-brain delivery of MT formulations was compared with intravenously administered MT solution. MT suspensions in carbopol and CMC vehicles have shown significantly higher permeability across Epiairway(™) as compared to control, PEG400 (P < 0.05). The brain (olfactory bulb) levels of MT after intranasal administration were 9.22, 6.77 and 4.04-fold higher for carbopol, CMC and PEG400, respectively, than that of intravenous MT in rats. In conclusion, microdialysis studies demonstrated increased brain levels of MT via nasal administration in rats.

  13. Nose-to-brain transport of melatonin from polymer gel suspensions: a microdialysis study in rats

    PubMed Central

    Babu, R. Jayachandra; Dayal, Pankaj Patrick; Pawar, Kasturi; Singh, Mandip

    2012-01-01

    Purpose Exogenous melatonin (MT) has significant neuroprotective roles in Alzheimer’s and Parkinson’s diseases. This study investigates the delivery MT to brain via nasal route as a polymeric gel suspension using central brain microdialysis in anesthetized rats. Methods Micronized MT suspensions using polymers [carbopol, carboxymethyl cellulose (CMC)] and polyethylene glycol 400 (PEG400) were prepared and characterized for nasal administration. In vitro permeation of the formulations was measured across a three-dimensional tissue culture model EpiAirway™. The central brain delivery into olfactory bulb of nasally administered MT gel suspensions was studied using brain microdialysis in male Wistar rats. The MT content of microdialysis samples was analyzed by high performance liquid chromatography (HPLC) using electrochemical detection. The nose-to-brain delivery of MT formulations was compared with intravenously administered MT solution. Results MT suspensions in carbopol and CMC vehicles have shown significantly higher permeability across Epiairway™ as compared to control, PEG400 (P < 0.05). The brain (olfactory bulb) levels of MT after intranasal administration were 9.22, 6.77 and 4.04-fold higher for carbopol, CMC and PEG400, respectively, than that of intravenous MT in rats. In conclusion, microdialysis studies demonstrated increased brain levels of MT via nasal administration in rats. PMID:21428693

  14. Overexpression of caveolin-1 attenuates brain edema by inhibiting tight junction degradation.

    PubMed

    Choi, Kang-Ho; Kim, Hyung-Seok; Park, Man-Seok; Lee, Eun-Bin; Lee, Jung-Kil; Kim, Joon-Tae; Kim, Ja-Hae; Lee, Min-Cheol; Lee, Hong-Joon; Cho, Ki-Hyun

    2016-10-18

    Cerebral edema from the disruption of the blood-brain barrier (BBB) after cerebral ischemia is a major cause of morbidity and mortality as well as a common event in patients with stroke. Caveolins (Cavs) are thought to regulate BBB functions. Here, we report for the first time that Cav-1 overexpression (OE) decreased brain edema from BBB disruption following ischemic insult. Edema volumes and Cav-1 expression levels were measured following photothrombosis and middle cerebral artery occlusion (MCAO). Endothelial cells that were transduced with a Cav-1 lentiviral expression vector were transplanted into rats. BBB permeability was quantified with Evans blue extravasation. Edema volume was determined from measures of the extravasation area, brain water content, and average fluorescence intensity after Cy5.5 injections. Tight junction (TJ) protein expression was measured with immunoblotting. Cav-1 expression levels and vasogenic brain edema correlated strongly after ischemic insult. Cav-1 expression and BBB disruption peaked 3 d after the MCAO. In addition, intravenous administration of endothelial cells expressing Cav-1 effectively increased the Cav-1 levels 3 d after the MCAO ischemic insult. Importantly, Cav-1 OE ameliorated the vasogenic edema by inhibiting the degradation of TJ protein expression in the acute phase of ischemic stroke. These results suggested that Cav-1 OE protected the integrity of the BBB mainly by preventing the degradation of TJ proteins in rats. These findings need to be confirmed in a clinical setting in human subjects.

  15. Geraniol promotes functional recovery and attenuates neuropathic pain in rats with spinal cord injury.

    PubMed

    Lv, Yan; Zhang, Liang; Li, Na; Mai, Naiken; Zhang, Yu; Pan, Shuyi

    2017-12-01

    Geraniol, a plant-derived monoterpene, has been extensively studied and showed a wide variety of beneficial effects. The aim of this study was to investigate the therapeutic effect of geraniol on functional recovery and neuropathic pain in rats with spinal cord injury (SCI). Rats received a clip-compression SCI and were treated with geraniol 6 h following SCI. Treatment of SCI rats with geraniol markedly improved locomotor function, and reduced sensitivity to the mechanical allodynia and thermal hyperalgesia. Treatment of SCI rats with geraniol increased NeuN-positive cells, suppressed expression of glial fibrillary acidic protein, and reduced activity of caspase-3 in the injured region. Treatment of SCI rats with geraniol reduced levels of malondialdehyde and 3-nitrotyrosine, upregulated protein expression of nuclear factor-erythroid 2-related factor 2 and heme oxygenase 1, and suppressed expression of inducible nitric oxide synthase in the injured region. In addition, treatment of SCI rats with geraniol downregulated protein expression of N-methyl-d-aspartate receptor 1 and reduced the number of CD68-positive cells and protein levels of TNF-α in the injured region. In conclusion, geraniol significantly promoted the recovery of neuronal function and attenuated neuropathic pain after SCI.

  16. Disruption of behavior and brain metabolism in artificially reared rats.

    PubMed

    Aguirre-Benítez, Elsa L; Porras, Mercedes G; Parra, Leticia; González-Ríos, Jacquelina; Garduño-Torres, Dafne F; Albores-García, Damaris; Avendaño, Arturo; Ávila-Rodríguez, Miguel A; Melo, Angel I; Jiménez-Estrada, Ismael; Mendoza-Garrido, Ma Eugenia; Toriz, César; Diaz, Daniel; Ibarra-Coronado, Elizabeth; Mendoza-Ángeles, Karina; Hernández-Falcón, Jesús

    2017-12-01

    Early adverse life stress has been associated to behavioral disorders that can manifest as inappropriate or aggressive responses to social challenges. In this study, we analyzed the effects of artificial rearing on the open field and burial behavioral tests and on GFAP, c-Fos immunoreactivity, and glucose metabolism measured in anxiety-related brain areas. Artificial rearing of male rats was performed by supplying artificial milk through a cheek cannula and tactile stimulation, mimicking the mother's licking to rat pups from the fourth postnatal day until weaning. Tactile stimulation was applied twice a day, at morning and at night, by means of a camel brush on the rat anogenital area. As compared to mother reared rats, greater aggressiveness, and boldness, stereotyped behavior (burial conduct) was observed in artificially reared rats which occurred in parallel to a reduction of GFAP immunoreactivity in somatosensory cortex, c-Fos immunoreactivity at the amygdala and primary somatosensory cortex, and lower metabolism in amygdala (as measured by 2-deoxi-2-[ 18 fluoro]-d-glucose uptake, assessed by microPET imaging). These results could suggest that tactile and/or chemical stimuli from the mother and littermates carry relevant information for the proper development of the central nervous system, particularly in brain areas involved with emotions and social relationships of the rat. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1413-1429, 2017. © 2017 Wiley Periodicals, Inc.

  17. Positron Spectroscopy Investigation of Normal Brain Section and Brain Section with Glioma Derived from a Rat Glioma Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, SH.; Ballmann, C.; Quarles, C. A.

    2009-03-10

    The application of positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS) to the study of animal or human tissue has only recently been reported [G. Liu, et al. phys. stat. sol. (C) 4, Nos. 10, 3912-3915 (2007)]. We have initiated a study of normal brain section and brain section with glioma derived from a rat glioma model. For the rat glioma model, 200,000 C6 cells were implanted in the basal ganglion of adult Sprague Dawley rats. The rats were sacrificed at 21 days after implantation. The brains were harvested, sliced into 2 mm thick coronal sections, and fixedmore » in 4% formalin. PALS lifetime runs were made with the samples soaked in formalin, and there was not significant evaporation of formalin during the runs. The lifetime spectra were analyzed into two lifetime components. While early results suggested a small decrease in ortho-Positronium (o-Ps) pickoff lifetime between the normal brain section and brain section with glioma, further runs with additional samples have showed no statistically significant difference between the normal and tumor tissue for this type of tumor. The o-Ps lifetime in formalin alone was lower than either the normal tissue or glioma sample. So annihilation in the formalin absorbed in the samples would lower the o-Ps lifetime and this may have masked any difference due to the glioma itself. DBS was also used to investigate the difference in positronium formation between tumor and normal tissue. Tissue samples are heterogeneous and this needs to be carefully considered if PALS and DBS are to become useful tools in distinguishing tissue samples.« less

  18. Effect of sildenafil citrate (Viagra®) on trace element concentration in serum and brain of rats.

    PubMed

    Fayed, Abdel-Hasseb A; Gad, Shereen B

    2011-12-01

    As a vasodilator with good hemodynamic effects, sildenafil has been successfully used in the treatment of patients with pulmonary hypertension and cardiovascular diseases. By selectively inhibiting phosphodiestrase type 5 (PDE-5) and thus effectively reducing the breakdown of c GMP, sildenafil administration can markedly improve the erectile dysfunction. Sildenafil also elevates localized cerebral blood flow in rat brain. The objective of the present study was to investigate the effect of sildenafil on the level of trace elements (Zinc (Zn), copper (Cu), iron (Fe), selenium (Se), cobalt (Co), and chromium (Cr)) in blood and brain of rats. Sixteen male albino rats weighing 180-200 g were divided into two groups (8 rats/group). Sildenafil (Viagra, Pfizer Inc.) was dissolved in saline and administered at a dose of 10mg/kg i.p. (0.5 ml volume) to rats in the treated group every 72 h for 12 injections. Rats in the control group were administered the same volume of saline as in treated group. All rats were sacrificed 24h after the last injection. Blood samples were collected and serum was separated and stored at -20°C. Brains were dissected and stored frozen until analysis. Trace elements concentrations were determined by flame emission atomic absorption spectrophotometer. Results showed that sildenafil injection significantly (P<0.05) increased serum and brain Se and Cu concentrations. Moreover, sildenafil increased the Cr concentration in the brain tissue. It was concluded that sildenafil citrate administration increased serum Se and Cu as well as, increased brain Se, Cu, and Cr concentrations in rats. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. EVALUATION OF PERFLUOROOCTANE SULFONATE IN THE RAT BRAIN

    EPA Science Inventory

    Perfluorooctane Sulfonate (PFOS) is an environmentally persistent chemical that has been detected in humans and wildlife. PFOS is primarily distributed in liver and blood. The current study evaluated the level of PFOS in the adult and neonatal rat brain and determined whether t...

  20. Minocycline Effects on Intracerebral Hemorrhage-Induced Iron Overload in Aged Rats: Brain Iron Quantification With Magnetic Resonance Imaging.

    PubMed

    Cao, Shenglong; Hua, Ya; Keep, Richard F; Chaudhary, Neeraj; Xi, Guohua

    2018-04-01

    Brain iron overload is a key factor causing brain injury after intracerebral hemorrhage (ICH). This study quantified brain iron levels after ICH with magnetic resonance imaging R2* mapping. The effect of minocycline on iron overload and ICH-induced brain injury in aged rats was also determined. Aged (18 months old) male Fischer 344 rats had an intracerebral injection of autologous blood or saline, and brain iron levels were measured by magnetic resonance imaging R2* mapping. Some ICH rats were treated with minocycline or vehicle. The rats were euthanized at days 7 and 28 after ICH, and brains were used for immunohistochemistry and Western blot analyses. Magnetic resonance imaging (T2-weighted, T2* gradient-echo, and R2* mapping) sequences were performed at different time points. ICH-induced brain iron overload in the perihematomal area could be quantified by R2* mapping. Minocycline treatment reduced brain iron accumulation, T2* lesion volume, iron-handling protein upregulation, neuronal cell death, and neurological deficits ( P <0.05). Magnetic resonance imaging R2* mapping is a reliable and noninvasive method, which can quantitatively measure brain iron levels after ICH. Minocycline reduced ICH-related perihematomal iron accumulation and brain injury in aged rats. © 2018 American Heart Association, Inc.

  1. Mesenchymal stem cells attenuate blood-brain barrier leakage after cerebral ischemia in mice.

    PubMed

    Cheng, Zhuo; Wang, Liping; Qu, Meijie; Liang, Huaibin; Li, Wanlu; Li, Yongfang; Deng, Lidong; Zhang, Zhijun; Yang, Guo-Yuan

    2018-05-03

    Ischemic stroke induced matrixmetallo-proteinase-9 (MMP-9) upregulation, which increased blood-brain barrier permeability. Studies demonstrated that mesenchymal stem cell therapy protected blood-brain barrier disruption from several cerebrovascular diseases. However, the underlying mechanism was largely unknown. We therefore hypothesized that mesenchymal stem cells reduced blood-brain barrier destruction by inhibiting matrixmetallo-proteinase-9 and it was related to intercellular adhesion molecule-1 (ICAM-1). Adult ICR male mice (n = 118) underwent 90-min middle cerebral artery occlusion and received 2 × 10 5 mesenchymal stem cell transplantation. Neurobehavioral outcome, infarct volume, and blood-brain barrier permeability were measured after ischemia. The relationship between myeloperoxidase (MPO) activity and ICAM-1 release was further determined. We found that intracranial injection of mesenchymal stem cells reduced infarct volume and improved behavioral function in experimental stroke models (p < 0.05). IgG leakage, tight junction protein loss, and inflammatory cytokines IL-1β, IL-6, and TNF-α reduced in mesenchymal stem cell-treated mice compared to the control group following ischemia (p < 0.05). After transplantation, MMP-9 was decreased in protein and activity levels as compared with controls (p < 0.05). Furthermore, myeloperoxidase-positive cells and myeloperoxidase activity were decreased in mesenchymal stem cell-treated mice (p < 0.05). The results showed that mesenchymal stem cell therapy attenuated blood-brain barrier disruption in mice after ischemia. Mesenchymal stem cells attenuated the upward trend of MMP-9 and potentially via downregulating ICAM-1 in endothelial cells. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway may influence MMP-9 expression of neutrophils and resident cells, and ICAM-1 acted as a key factor in the paracrine actions of mesenchymal stem cell.

  2. Epigallocatechin gallate attenuates ET-1-induced contraction in carotid artery from type 2 diabetic OLETF rat at chronic stage of disease.

    PubMed

    Matsumoto, Takayuki; Watanabe, Shun; Kawamura, Ryusuke; Taguchi, Kumiko; Kobayashi, Tsuneo

    2014-11-24

    There is a growing body of evidence suggesting that epigallocatechin gallate (EGCG), a major catechin isolated from green tea, has several beneficial effects, such as anti-oxidant and anti-inflammatory activities. However, whether treatment with EGCG can suppress the endothelin-1 (ET-1)-induced contraction in carotid arteries from type 2 diabetic rats is unknown, especially at the chronic stage of the disease. We hypothesized that long-term treatment with EGCG would attenuate ET-1-induced contractions in type 2 diabetic arteries. Otsuka Long-Evans Tokushima fatty (OLETF) rats (43 weeks old) were treated with EGCG (200 mg/kg/day for 2 months, p.o.), and the responsiveness to ET-1, phenylephrine (PE), acetylcholine (ACh) and sodium nitroprusside (SNP) was measured in common carotid artery (CA) from EGCG-treated and -untreated OLETF rats and control Long-Evans Tokushima Otsuka (LETO) rats. In OLETF rats, EGCG attenuated responsiveness to ET-1 in CA compared to untreated groups. However, EGCG did not alter PE-induced contractions in CA from OLETF rats. In endothelium-denuded arteries, EGCG did not affect ET-1-induced contractions in either the OLETF or LETO group. Acetylcholine-induced relaxation was increased by EGCG treatment in CA from the OLETF group. The expressions of ET receptors, endothelial nitric oxide synthase, superoxide dismutases, and gp91(phox) [an NAD(P)H oxidase component] in CA were not altered by EGCG treatment in either group. Our data suggest that, within the timescale investigated here, EGCG attenuates ET-1-induced contractions in CA from type 2 diabetic rats, and one of the mechanisms may involve normalizing endothelial function. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Peroxisome proliferator-activated receptor-α activation attenuates 3-nitropropionic acid induced behavioral and biochemical alterations in rats: possible neuroprotective mechanisms.

    PubMed

    Bhateja, Deepak Kumar; Dhull, Dinesh K; Gill, Aneet; Sidhu, Akramdeep; Sharma, Saurabh; Reddy, B V Krishna; Padi, Satyanarayana S V

    2012-01-05

    Peroxisome proliferators activated receptor is regarded as potential therapeutic targets to control various neurodegenerative disorders. However, none of the study has elucidated its effect in the treatment of Huntington's disease. We explored whether peroxisome proliferators activated receptor-α agonist may attenuate various behavioral and biochemical alterations induced by systemic administration of 3-nitropropionic acid (3-NP), an accepted experimental animal model of Huntington's disease phenotype. Intraperitoneal administration of 3-NP (20mg/kg., i.p.) for 4days in rats produced hypolocomotion, muscle incoordination, and cognitive dysfunction. Daily treatment with fenofibrate (100 or 200mg/kg., p.o.), 30min prior to 3-NP administration for a total of 4days, significantly improved the 3-NP induced motor and cognitive impairment. Biochemical analysis revealed that systemic 3-NP administration significantly increased oxidative and nitrosative stress (increase lipid peroxidation, protein carbonyls and nitrite level), lactate dehydrogenase activity whereas, decreased the activities of catalase, superoxide dismutase, reduced glutathione, and succinate dehydrogenase. Fenofibrate treatment significantly attenuated oxidative damage, cytokines and improved mitochondrial complexes enzyme activity in brain. In the present study, MK886, a selective inhibitor of peroxisome proliferators activated receptor-α was employed to elucidate the beneficial effect through either receptor dependent or receptor independent neuroprotective mechanisms. Administration of MK886 (1mg/kg, i.p.) prior to fenofibrate (200mg/kg, p.o.) abolished the effect of fenofibrate. The results showed that receptor dependent neuroprotective effects of fenofibrate in 3-NP administered rats provide a new evidence for a role of PPAR-α activation in neuroprotection that is attributed by modulating oxidative stress and inflammation. Copyright © 2011. Published by Elsevier B.V.

  4. Perfluorooctane Sulfonate-Induced Hepatic Steatosis in Male Sprague Dawley Rats Is Not Attenuated by Dietary Choline Supplementation.

    PubMed

    Bagley, Bradford D; Chang, Shu-Ching; Ehresman, David J; Eveland, Alan; Zitzow, Jeremiah D; Parker, George A; Peters, Jeffrey M; Wallace, Kendall B; Butenhoff, John L

    2017-12-01

    Perfluorooctane sulfonate (PFOS) is an environmentally persistent chemical. Dietary 100 ppm PFOS fed to male mice and rats for 4 weeks caused hepatic steatosis through an unknown mechanism. Choline deficient diets can cause hepatic steatosis. A hepatic choline:PFOS ion complex was hypothesized to cause this effect in mice. This study tested whether dietary choline supplementation attenuates PFOS-induced hepatic steatosis in rats. Sprague Dawley rats (12/sex/group) were fed control, choline supplemented (CS), 100 ppm PFOS, or 100 ppm PFOS + CS diets for 3 weeks. Male rats fed both PFOS-containing diets had decreased serum cholesterol and triglycerides (TGs) on days 9, 16, and/or 23 and increased hepatic free fatty acids and TG (ie, steatosis). Female rats fed both PFOS diets had decreased serum cholesterol on days 9 and 16 and decreased hepatic free fatty acid and TG at termination (ie, no steatosis). Liver PFOS concentrations were similar for both sexes. Liver choline concentrations were increased in male rats fed PFOS (±CS), but the increase was lower in the PFOS + CS group. Female liver choline concentrations were not altered by any diet. These findings demonstrate a clear sex-related difference in PFOS-induced hepatic steatosis in the rat. Additional evaluated mechanisms (ie, nuclear receptor activation, mRNA upregulation, and choline kinase activity inhibition) did not appear to be involved in the hepatic steatosis. Dietary PFOS (100 ppm) induced hepatic steatosis in male, but not female, rats that was not attenuated by choline supplementation. The mechanism of lipid accumulation and the sex-related differences warrant further investigation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist.

    PubMed

    Newman, L A; Gold, P E

    2016-03-01

    Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist-to decrease scopolamine-induced increases in acetylcholine output or to decrease postsynaptic acetylcholine receptor activation-may mediate the negative effects on memory of muscarinic antagonists.

  6. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist

    PubMed Central

    Newman, L. A.

    2015-01-01

    Rationale Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. Objectives The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. Results Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. Conclusions These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist—to decrease scopolamine-induced increases in acetylcholine output or to decrease post-synaptic acetylcholine receptor activation—may mediate the negative effects on memory of muscarinic antagonists. PMID:26660295

  7. Effect of naturally mouldy wheat or fungi administration on metallothioneins level in brain tissues of rats.

    PubMed

    Vasatkova, Anna; Krizova, Sarka; Krystofova, Olga; Adam, Vojtech; Zeman, Ladislav; Beklova, Miroslava; Kizek, Rene

    2009-01-01

    The aim of this study is to determine level of metallothioneins (MTs) in brain tissues of rats administered by feed mixtures with different content of mouldy wheat or fungi. Selected male laboratory rats of Wistar albino at age of 28 days were used in our experiments. The rats were administered by feed mixtures with different content of vitamins, naturally mouldy wheat or fungi for 28 days. At the very end of the experiment, the animals were put to death and brains were sampled. MT level was determined by differential pulse voltammetry Brdicka reaction. We found that MTs' level in brain tissues from rats administered by standard feed mixtures was significantly higher compared to the level of MTs in rats supplemented by vitamins. Further we studied the effect of supplementation of naturally mouldy wheat on MTs level in rats. In mouldy wheat we detected the presence of following fungi species: Mucor spp., Absidia spp., Penicillium spp., Aspergillus spp. and Fusarium spp. Moreover we also identified and quantified following mycotoxins - deoxynivalenol, zearalenone, T2-toxin and aflatoxins. Level of MTs determined in rats treated with 33 or 66% of mouldy wheat was significantly lower compared to control ones. On the other hand rats treated with 100% of mouldy wheat had less MTs but not significantly. Supplementation of vitamins to rats fed by mouldy wheat had adverse effect on MTs level compared to rats with no other supplementation by vitamins. Moreover vitamins supplementation has no effect on MTs level in brain tissues of rats treated or non-treated with Ganoderma lucidum L. Both mycotoxins and vitamins have considerable effect on level of MTs in brain tissues. It can be assumed that the administered substances markedly influence redox metabolism, which could negatively influence numerous biochemical pathways including those closely related with MTs.

  8. Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging

    NASA Astrophysics Data System (ADS)

    Ladefoged, Claes N.; Benoit, Didier; Law, Ian; Holm, Søren; Kjær, Andreas; Højgaard, Liselotte; Hansen, Adam E.; Andersen, Flemming L.

    2015-10-01

    The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR sequence was proposed as a basis for MR-AC as this sequence shows a small signal in bone. The purpose of this study was to develop a new clinically feasible MR-AC method with patient specific continuous-valued linear attenuation coefficients in bone that provides accurate reconstructed PET image data. A total of 164 [18F]FDG PET/MR patients were included in this study, of which 10 were used for training. MR-AC was based on either standard CT (reference), UTE or our method (RESOLUTE). The reconstructed PET images were evaluated in the whole brain, as well as regionally in the brain using a ROI-based analysis. Our method segments air, brain, cerebral spinal fluid, and soft tissue voxels on the unprocessed UTE TE images, and uses a mapping of R2* values to CT Hounsfield Units (HU) to measure the density in bone voxels. The average error of our method in the brain was 0.1% and less than 1.2% in any region of the brain. On average 95% of the brain was within  ±10% of PETCT, compared to 72% when using UTE. The proposed method is clinically feasible, reducing both the global and local errors on the reconstructed PET images, as well as limiting the number and extent of the outliers.

  9. Transcranial MRI-guided FUS-induced BBB opening in the rat brain

    NASA Astrophysics Data System (ADS)

    Treat, Lisa H.; McDannold, Nathan J.; Hynynen, Kullervo

    2004-05-01

    The blood-brain barrier (BBB) has been a major limitation in treating diseases of the brain because therapeutic agents are either unable to penetrate or have dose-limiting side effects in diffuse opening of the BBB. A previous study demonstrated that focused ultrasound (FUS) can locally open the BBB in a rabbit model when a piece of skull is removed and that magnetic resonance imaging (MRI) can be used to guide and monitor the procedure. This study examined whether the same desired effect of local BBB disruption can be achieved by applying FUS through an intact skull in a rat model. Twenty-eight Sprague-Dawley rats were anesthetized, shaved, and sonicated at four focal locations in the brain, using a 1.5-MHz focused transducer. Contrast-enhanced MR images were obtained before and after sonication. The images indicated contrast agent penetration at the focal coordinates following Optison-enhanced sonication. This study demonstrated that the distortion of the ultrasound beam by the rat skull was not significant enough to inhibit focal BBB opening. Subsequent experiments using MRI-guided FUS to aid in targeted drug delivery to brain tumors in a rodent model could thus be performed more efficiently without cranial surgery. [Research funded by NIH Grant No. CA76550.

  10. Beneficial effect of zinc chloride and zinc ionophore pyrithione on attenuated cardioprotective potential of preconditioning phenomenon in STZ-induced diabetic rat heart.

    PubMed

    Jamwal, Sumit; Kumar, Kushal; Reddy, B V Krishna

    2016-05-01

    Ischemic preconditioning (IPC) is well demonstrated to produce cardioprotection by phosphorylation and subsequent inactivation of glycogen synthase kinase-3β (GSk-3β) in the normal rat heart, but its effect is attenuated in the diabetic rat heart. This study was designed to investigate the effect of zinc chloride and zinc ionophore pyrithione (ZIP) on the attenuated cardioprotective potential of IPC in the diabetic rat heart. Diabetes mellitus (DM) was induced by a single intraperitoneal administration of streptozotocin (STZ) (50 mg/kg; i.p). The isolated perfused rat heart was subjected to 30 minutes of ischemia followed by 120 minutes of reperfusion. Myocardial infarct size was estimated by triphenyltetrazolium chloride (TTC) staining and cardiac injury was measured by estimating lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) in the coronary effluent. Also, GSK-3β was measured and neutrophil accumulation was measured by estimating myeloperoxidase (MPO) levels. IPC significantly decreased the myocardial infarct size, the release of LDH and CK-MB, the GSK-3β levels and the MPO levels in the normal rat heart. Pre- and post-ischemic treatment with zinc chloride and zinc ionophore pyrithione (ZIP) in the normal and diabetic rat hearts significantly decreased the myocardial infarct size, the level of CK-MB and LDH in the coronary effluent and GSK-3β and MPO levels. Our results suggest that pharmacological preconditioning with zinc chloride and ZIP significantly restored the attenuated cardioprotective potential of IPC in the diabetic rat heart. © The Author(s) 2015.

  11. Dimethylaminoethanol (deanol) metabolism in rat brain and its effect on acetylcholine synthesis.

    PubMed

    Jope, R S; Jenden, D J

    1979-12-01

    Specific methods utilizing combined gas chromatography mass spectrometry were used to measure the metabolism of [2H6] deanol and its effects on acetylcholine concentration in vitro and in vivo. In vitro [2H6]deanol was rapidly taken up by rat brain synaptosomes, but was neither methylated nor acetylated. [2H6]Deanol was a weak competitive inhibitor of the high affinity transport of [2H4]choline, thus reducing the synthesis of [2H4]acetylcholine. In vivo [2H6]deanol was present in the brain after i.p. or p.o. administration, but was not methylated or acetylated. Treatment of rats with [2H6]deanol significantly increased the concentration of choline in the plasma and brain but did not alter the concentration of acetylcholine in the brain. Treatment of rats with atropine (to stimulate acetylcholine turnover) or with hemicholinium-3 (to inhibit the high affinity transport of choline) did not reveal any effect of [2H6]deanol on acetylcholine synthesis in vivo. However, since [2H6]deanol did increase brain choline, it may prove therapeutically useful when the production of choline is reduced or when the utilization of choline for the synthesis of acetylcholine is impaired.

  12. INTERMITTENT ACCESS TO A NUTRITIONALLY COMPLETE HIGH-FAT DIET ATTENUATES ALCOHOL DRINKING IN RATS

    PubMed Central

    Sirohi, Sunil; Van Cleef, Arriel; Davis, Jon F.

    2017-01-01

    Binge eating disorder and alcohol use disorder (AUD) frequently co-occur in the presence of other psychiatric conditions. Data suggest that binge eating engages similar behavioral and neurochemical processes common to AUD, which might contribute to the etiology or maintenance of alcoholism. However, it is unclear how binge feeding behavior and alcohol intake interact to promote initiation or maintenance of AUD. We investigated the impact of binge-like feeding on alcohol intake and anxiety-like behavior in male Long Evans rats. Rats received chow (controls) or extended intermittent access (24 hr twice a week; Int-HFD) to a nutritionally complete high-fat diet for six weeks. Standard rodent chow was available ad-libitum to all groups and food intake was measured. Following HFD exposure, 20.0% ethanol, 2.0% sucrose intake and endocrine peptide levels were evaluated. Anxiety-like behavior was measured using a light-dark (LD) box apparatus. Rats in the Int-HFD group displayed a binge-like pattern of feeding (alternations between caloric overconsumption and voluntary caloric restriction). Surprisingly, alcohol intake was significantly attenuated in the Int-HFD group whereas sugar consumption was unaffected. Plasma acyl-ghrelin levels were significantly elevated in the Int-HFD group, whereas glucagon-like peptide-1 levels did not change. Moreover, rats in the Int-HFD group spent more time in the light side of the LD box compared to controls, indicating that binge-like feeding induced anxiolytic effects. Collectively, these data suggest that intermittent access to HFD attenuates alcohol intake through reducing anxiety-like behavior, a process potentially controlled by elevated plasma ghrelin levels. PMID:27998722

  13. Chronic prazosin attenuates the natriuretic response to a modest saline load in anaesthetized rats.

    PubMed Central

    Penner, S. B.; Smyth, D. D.

    1988-01-01

    1. The effect of chronic prazosin pretreatment (3 days) on the ability to excrete a modest saline load (i.v. saline, 0.097 ml min-1) was studied in the anaesthetized rat. Three days before the experiment, the drinking water was replaced with 0.5% dextrose (control), 0.015 mg ml-1 prazosin in 0.5% dextrose (low dose) or 0.15 mg ml-1 prazosin in 0.5% dextrose (high dose). 2. The selectivity of the prazosin for alpha 1-adrenoceptors was evaluated in pithed rats. The pressor response to phenylephrine was partially attenuated by the low dose of prazosin and completely attenuated by the high dose of prazosin. The pressor response to clonidine was slightly decreased by the 3 day prazosin pretreatment indicating a selectivity for alpha 1-adrenoceptors. 3. In rats pretreated with the low dose of prazosin, there was a significant decrease in sodium and water, but not potassium excretion as compared to the control group. Captopril failed to alter these effects of the low dose of prazosin. Blood pressure and creatinine clearance were the same in both groups. In rats pretreated with the high dose of prazosin, there was a further decrease in sodium and water but not potassium excretion. However, this dose of prazosin also significantly decreased blood pressure and increased creatinine clearance. A decrease in renal perfusion pressure with an aortic clamp to the same level as that observed with the high prazosin dose also decreased sodium and water but not potassium excretion. The decrease in sodium and water excretion was not as great as that observed with the high dose of prazosin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2896036

  14. Nicotinamide attenuates the ischemic brain injury-induced decrease of Akt activation and Bad phosphorylation.

    PubMed

    Koh, Phil-Ok

    2011-07-08

    Nicotinamide protects cortical neuronal cells against cerebral ischemic injury through activation of various cytoprotective mechanisms. Here, this study confirmed the neuroprotective effects of nicotinamide in focal cerebral ischemic injury and investigated whether nicotinamide modulates a crucial survival pathway, Akt and its downstream targets. Adult male rats were treated with vehicle or nicotinamide (500 mg/kg) 2h after the onset of middle cerebral artery occlusion (MCAO). Brains were collected 24h after MCAO and infarct volumes were analyzed. Nicotinamide significantly reduced the infarct volume in the cerebral cortex. Potential activation was measured by phosphorylation of PDK1 at Ser(241), Akt at Ser(473), and Bad at Ser(136) using Western blot analysis. Nicotinamide prevented the injury-induced decrease of pPDK1, pAkt, and pBad levels. 14-3-3 levels were not different between vehicle- and nicotinamide-treated animals. However, pBad and 14-3-3 interaction levels decreased during MCAO, but were maintained in the presence of nicotinamide, compared to levels in control animals. These findings suggest that nicotinamide attenuates cell death due to focal cerebral ischemic injury and that neuroprotective effects are mediated through the Akt signaling pathway, thus enhancing neuronal survival. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Effects of acupuncture on tissue oxygenation of the rat brain.

    PubMed

    Chen, G S; Erdmann, W

    1978-04-01

    Acupuncture has been claimed to be effective in restoring consciousness in some comatose patients. Possible mechanisms to explain alleged acupuncture-induced arousal may include vasodilatory effects caused by smypathetic stimulation which leads to an augmentation of cerebral microcirculation and thereby improves oxygen supply to the brain tissue. Experiments were performed in ten albino rats (Wistar) employing PO2 microelectrodes which were inserted into the cortex through small burholes. Brain tissue PO2 was continuously recorded before, during, and after acupuncture. Stimulation of certain acupuncture points (Go-26) resulted in immediate increase of PO2 in the frontal cortex of the rat brain. This effect was reproducible and was comparable to that obtained with increase of inspiratory CO2 known to induce arterial vasodilatation and thus capillary perfusion pressure. The effect was more significant as compared to tissue PO2 increases obtained after increase in inspiratory oxygen concentration from 21% to 100%. It appears that acupuncture causes increased brain tissue perfusion which may be, at least in part, responsible for arousal of unconscious patients.

  16. Anteroventral Third Ventricle Lesions Attenuate Pressor Responses to Serotonin in Anesthetized Rats

    NASA Technical Reports Server (NTRS)

    Muntzel, Martin S.; Lewis, Stephen J.; Johnson, Alan Kim

    1996-01-01

    When administered intravenously, serotonin (5-hydroxytryptamine; 5-HT) evokes a triphasic blood pressure response, consisting of the Bezold-Jarisch-associated depressor response, a pressor action, and long-lasting depressor response. Because the pressor response may, in part, be caused by central nervous system (CNS) activation by 5-HT, we predicted that destruction of the anteroventral third ventricle (AV3V) region, an area rich in 5-HT receptors, would attenuate increases in blood pressure to intravenous 5-HT. In anesthetized sham-lesioned and AV3V-lesioned Sprague-Dawley rats. we measured mean arterial pressure (MAP), heart rate (HR), and lumbar sympathetic nerve activity (SNA) to increasing bolus doses of intravenous 5-HT (1, 2.5, 5, 10, 25 microg/kg), before and after blockade of bradycardia using methylatropine (200 microg/kg). In all rats, bolus injections of 5-HT elicited bradycardia accompanied by a fall in lumbar SNA and an initial hypotension followed by a pressor response and a longer lasting hypotensive response. The bradycardia, reduction in lumbar SNA, and both depressor responses were equivalent in sham-lesioned and AV3V-lesioned groups. Importantly, AV3V lesions attenuated pressor responses to increasing doses of 5-HT (3 +/- 1, 6 +/- 4, 6 +/- 4, 17 +/- 4, 35 +/- 3 mmHg) compared to sham-lesioned controls (6 +/- 3, 16 +/- 7, 33 +/- 5, 54 +/- 4, 51 +/- 6 mmHg; P < 0.0001). This attenuation was conserved following blockade of bradycardia with methylatropine (P < 0.01). In summary, pressor responses to intravenous 5-HT are diminished by AV3V lesions. These data indicate that the pressor component of the blood pressure response to intravenous 5-HT is partly dependent upon interaction with the CNS.

  17. Metabolic mapping of the effects of the antidepressant fluoxetine on the brains of congenitally helpless rats.

    PubMed

    Shumake, Jason; Colorado, Rene A; Barrett, Douglas W; Gonzalez-Lima, F

    2010-07-09

    Antidepressants require adaptive brain changes before efficacy is achieved, and they may impact the affectively disordered brain differently than the normal brain. We previously demonstrated metabolic disturbances in limbic and cortical regions of the congenitally helpless rat, a model of susceptibility to affective disorder, and we wished to test whether administration of fluoxetine would normalize these metabolic differences. Fluoxetine was chosen because it has become a first-line drug for the treatment of affective disorders. We hypothesized that fluoxetine antidepressant effects may be mediated by decreasing metabolism in the habenula and increasing metabolism in the ventral tegmental area. We measured the effects of fluoxetine on forced swim behavior and regional brain cytochrome oxidase activity in congenitally helpless rats treated for 2 weeks with fluoxetine (5mg/kg, i.p., daily). Fluoxetine reduced immobility in the forced swim test as anticipated, but congenitally helpless rats responded in an atypical manner, i.e., increasing climbing without affecting swimming. As hypothesized, fluoxetine reduced metabolism in the habenula and increased metabolism in the ventral tegmental area. In addition, fluoxetine reduced the metabolism of the hippocampal dentate gyrus and dorsomedial prefrontal cortex. This study provided the first detailed mapping of the regional brain effects of an antidepressant drug in congenitally helpless rats. All of the effects were consistent with previous studies that have metabolically mapped the effects of serotonergic antidepressants in the normal rat brain, and were in the predicted direction of metabolic normalization of the congenitally helpless rat for all affected brain regions except the prefrontal cortex. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. Interval training attenuates the metabolic disturbances in type 1 diabetes rat model.

    PubMed

    Rocha, Ricelli Endrigo Ruppel; Coelho, Isabela; Pequito, Daniela Cristina T; Yamagushi, Adriana; Borghetti, Gina; Yamazaki, Ricardo Key; Brito, Gleisson Alisson Pereira de; Machado, Juliano; Kryczyk, Marcelo; Nunes, Everson Araújo; Venera, Graciela; Fernandes, Luiz Claudio

    2013-11-01

    This study investigated the effect of interval training on blood biochemistry and immune parameters in type 1 diabetic rats. Male Wistar rats were divided into four groups: sedentary (SE, n = 15), interval training (IT, n = 17), diabetic sedentary (DSE, n = 17), diabetic interval training (DIT, n = 17). Diabetes was induced by i.v. injection of streptozotocin (60 mg/kg). Swimming Interval Training consisted of 30-s exercise with 30-s rest, for 30 minutes, during 6 weeks, four times a week, with an overload of 15% of body mass. Plasma glucose, lactate, triacylglycerol and total cholesterol concentrations, phagocytic capacity, cationic vesicle content, and superoxide anion and hydrogen peroxide production by blood neutrophils and peritoneal macrophages were evaluated. Proliferation of mesenteric lymphocytes was also estimated. Interval training resulted in attenuation of the resting hyperglycemic state and decreased blood lipids in the DIT group. Diabetes increased the functionality of blood neutrophils and peritoneal macrophages in the DSE group. Interval training increased all functionality parameters of peritoneal macrophages in the IT group. Interval training also led to a twofold increase in the proliferation of mesenteric lymphocytes after 6 weeks of exercise in the DIT group. Low-volume high-intensity physical exercise attenuates hyperglycemia and dislipidemia induced by type 1 diabetes, and induces changes in the functionality of innate and acquired immunity.

  19. Minocycline attenuates noise-induced hearing loss in rats.

    PubMed

    Zhang, Jing; Song, Yong-Li; Tian, Ke-Yong; Qiu, Jian-Hua

    2017-02-03

    Noise-induced hearing loss (NIHL) is a serious health concern and prevention of hair cell death or therapeutic intervention at the early stage of NIHL is critical to preserve hearing. Minocycline is a semi-synthetic derivative of tetracycline and has been shown to have otoprotective effects in ototoxic drug-induced hearing impairment, however, whether minocycline can protect against NIHL has not been investigated. The present study demonstrated elevated ABR (auditory brainstem response) thresholds and outer hair cell loss following traumatic noise exposure, which was mitigated by intraperitoneal administration of minocycline (45mg/kg/d) for 5 consecutive days. In conclusion, the present study demonstrated that minocycline, a clinically approved drug with a good safety profile, can attenuate NIHL in rats and may potentially be used for treatment of hearing loss in clinic. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Two rat brain staufen isoforms differentially bind RNA.

    PubMed

    Monshausen, M; Putz, U; Rehbein, M; Schweizer, M; DesGroseillers, L; Kuhl, D; Richter, D; Kindler, S

    2001-01-01

    In neurones, a limited number of mRNAs is found in dendrites, including transcripts encoding the microtubule-associated protein 2 (MAP2). Recently, we identified a cis-acting dendritic targeting element (DTE) in MAP2 mRNAs. Here we used the yeast tri-hybrid system to identify potential trans-acting RNA-binding factors of the DTE. A cDNA clone was isolated that encodes a member of a mammalian protein family that is highly homologous to the Drosophila RNA-binding protein Staufen. Mammalian Staufen appears to be expressed in most tissues and brain areas. Two distinct rat brain Staufen isoforms, rStau+I6 and rStau-I6, are encoded by alternatively spliced mRNAs. Both isoforms contain four double-stranded RNA-binding domains (dsRBD). In the larger rStau+I6 isoform, six additional amino acids are inserted in the second dsRBD. Although both isoforms interacted with the MAP2-DTE and various additional RNA fragments in an in vitro north-western assay, rStau-I6 exhibited a stronger signal of bound radioactively labelled RNAs as compared with rStau+I6. Using an antibody directed against mammalian Staufen, the protein was detected in somata and dendrites of neurones of the adult rat hippocampus and cerebral cortex. Ultrastructural studies revealed that in dendrites, rat Staufen accumulates along microtubules. Thus in neurones, rat Staufen may serve to link RNAs to the dendritic microtubular cytoskeleton and may thereby regulate their subcellular localization.

  1. Proinflammatory cytokines correlate with early exercise attenuating anxiety-like behavior after cerebral ischemia.

    PubMed

    Zhang, Qi; Zhang, Jingjun; Yan, Yuzhong; Zhang, Pengyue; Zhang, Wei; Xia, Rong

    2017-11-01

    Stroke may cause neuropsychiatric problems, which have negative effects on cognitive functions and behavior. Exercise plays an important role in reducing the occurrence and development of stroke, the concrete mechanism is not fully clarified. In this study, we attempted to determine whether early treadmill exercise attenuates anxiety-like behavior by regulation of inflammation after brain ischemia. We subjected adult male rats to middle cerebral artery occlusion (MCAO) for 90 min and trained rats started to run on a treadmill from postoperative day 1 to day 14. The effects of treadmill on cognitive functions, anxiety-like behavior, and immune activation were analyzed by Morris water maze test, open field test, elevated plus maze test, and enzyme-linked immunosorbent assay. Early treadmill exercise significantly improved cognitive function, alleviated anxiety-like behavior in ischemic rats model; this improvement was associated with significantly decreased activation of astrocytes and microglia cells and proinflammatory markers (platelet-activating factor [PAF], interleukin-6 [IL-6], tumor necrosis factor-alpha [TNF-α], intercellular adhesion molecule-1 [ICAM-1], and vascular cell adhesion molecule-1 [VCAM-1]). Our results indicated that early treadmill exercise attenuated anxiety-like behavior by decreasing inflammation response, exercise conferred a great benefit of attenuating anxiety-like behavior via anti-inflammatory treatment may prove to be a novel neuroprotective strategy for stroke.

  2. Low glucose utilization and neurodegenerative changes caused by sodium fluoride exposure in rat's developmental brain.

    PubMed

    Jiang, Chunyang; Zhang, Shun; Liu, Hongliang; Guan, Zhizhong; Zeng, Qiang; Zhang, Cheng; Lei, Rongrong; Xia, Tao; Wang, Zhenglun; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei; Cui, Yushan; Yu, Linyu; Wang, Aiguo

    2014-03-01

    Fluorine, a toxic and reactive element, is widely prevalent throughout the environment and can induce toxicity when absorbed into the body. This study was to explore the possible mechanisms of developmental neurotoxicity in rats treated with different levels of sodium fluoride (NaF). The rats' intelligence, as well as changes in neuronal morphology, glucose absorption, and functional gene expression within the brain were determined using the Morris water maze test, transmission electron microscopy, small-animal magnetic resonance imaging and Positron emission tomography and computed tomography, and Western blotting techniques. We found that NaF treatment-impaired learning and memory in these rats. Furthermore, NaF caused neuronal degeneration, decreased brain glucose utilization, decreased the protein expression of glucose transporter 1 and glial fibrillary acidic protein, and increased levels of brain-derived neurotrophic factor in the rat brains. The developmental neurotoxicity of fluoride may be closely associated with low glucose utilization and neurodegenerative changes.

  3. Perinatal choline supplementation attenuates behavioral alterations associated with neonatal alcohol exposure in rats.

    PubMed

    Thomas, Jennifer D; Garrison, Megan; O'Neill, Teresa M

    2004-01-01

    Children exposed to alcohol prenatally suffer from a variety of behavioral alterations, including hyperactivity and learning deficits. Given that women continue to drink alcohol during pregnancy, it is critical that effective interventions and treatments be identified. Previously, we reported that early postnatal choline supplementation can reduce the severity of learning deficits in rats exposed to alcohol prenatally. The present study examined whether choline supplementation can reduce the severity of behavioral alterations associated with alcohol exposure during the third trimester equivalent brain growth spurt. Male neonatal rats were assigned to one of three treatment groups. One group was exposed to alcohol (6.6 g/kg/day) from postnatal days (PD) 4-9 via an artificial rearing procedure. Artificially reared and normally reared control groups were included. One half of subjects from each treatment received daily subcutaneous injections of a choline chloride solution from PD 4-30, whereas the other half received saline vehicle injections. On PD 31-34, after choline treatment was complete, activity level was monitored and, on PD 40-42, subjects were tested on a serial spatial discrimination reversal learning task. Subjects exposed to alcohol were significantly hyperactive compared to controls. The severity of ethanol-induced hyperactivity was attenuated with choline treatment. In addition, subjects exposed to ethanol during the neonatal period committed a significantly greater number of perseverative-type errors on the reversal learning task compared to controls. Exposure to choline significantly reduced the number of ethanol-related errors. Importantly, these behavioral changes were not due to the acute effects of choline, but were related to long-lasting organizational effects of early choline supplementation. These data suggest that early dietary interventions may reduce the severity of fetal alcohol effects.

  4. A Curve Fitting Approach Using ANN for Converting CT Number to Linear Attenuation Coefficient for CT-based PET Attenuation Correction

    NASA Astrophysics Data System (ADS)

    Lai, Chia-Lin; Lee, Jhih-Shian; Chen, Jyh-Cheng

    2015-02-01

    Energy-mapping, the conversion of linear attenuation coefficients (μ) calculated at the effective computed tomography (CT) energy to those corresponding to 511 keV, is an important step in CT-based attenuation correction (CTAC) for positron emission tomography (PET) quantification. The aim of this study was to implement energy-mapping step by using curve fitting ability of artificial neural network (ANN). Eleven digital phantoms simulated by Geant4 application for tomographic emission (GATE) and 12 physical phantoms composed of various volume concentrations of iodine contrast were used in this study to generate energy-mapping curves by acquiring average CT values and linear attenuation coefficients at 511 keV of these phantoms. The curves were built with ANN toolbox in MATLAB. To evaluate the effectiveness of the proposed method, another two digital phantoms (liver and spine-bone) and three physical phantoms (volume concentrations of 3%, 10% and 20%) were used to compare the energy-mapping curves built by ANN and bilinear transformation, and a semi-quantitative analysis was proceeded by injecting 0.5 mCi FDG into a SD rat for micro-PET scanning. The results showed that the percentage relative difference (PRD) values of digital liver and spine-bone phantom are 5.46% and 1.28% based on ANN, and 19.21% and 1.87% based on bilinear transformation. For 3%, 10% and 20% physical phantoms, the PRD values of ANN curve are 0.91%, 0.70% and 3.70%, and the PRD values of bilinear transformation are 3.80%, 1.44% and 4.30%, respectively. Both digital and physical phantoms indicated that the ANN curve can achieve better performance than bilinear transformation. The semi-quantitative analysis of rat PET images showed that the ANN curve can reduce the inaccuracy caused by attenuation effect from 13.75% to 4.43% in brain tissue, and 23.26% to 9.41% in heart tissue. On the other hand, the inaccuracy remained 6.47% and 11.51% in brain and heart tissue when the bilinear transformation

  5. Gelam Honey Attenuates Carrageenan-Induced Rat Paw Inflammation via NF-κB Pathway

    PubMed Central

    Hussein, Saba Zuhair; Mohd Yusoff, Kamaruddin; Makpol, Suzana; Mohd Yusof, Yasmin Anum

    2013-01-01

    The activation of nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of a number of inflammatory diseases. In this study, we investigated the anti-inflammatory mechanism of Gelam honey in inflammation induced rats via NF-κB signalling pathway. Rats paw edema was induced by subplantar injection of 1% carrageenan into the right hind paw. Rats were pre-treated with Gelam honey at different doses (1 or 2 g/kg, p.o.) and NSAID Indomethacin (10 mg/kg, p.o.), in two time points (1 and 7 days). Our results showed that Gelam honey at both concentrations suppressed the gene expressions of NF-κB (p65 & p50) and IκBα in inflamed rats paw tissues. In addition, Gelam honey inhibited the nuclear translocation and activation of NF-κB and decreased the cytosolic degradation of IκBα dose dependently in inflamed rats paw tissues. The immunohistochemical expressions of pro-inflammatory mediators COX-2 and TNF-α were also decreased in inflamed rats paw tissues when treated with Gelam honey. The results of our findings suggest that Gelam honey exhibits its inhibitory effects by attenuating NF-κB translocation to the nucleus and inhibiting IκBα degradation, with subsequent decrease of inflammatory mediators COX-2 and TNF-α. PMID:24015236

  6. In situ rat brain and liver spontaneous chemiluminescence after acute ethanol intake.

    PubMed

    Boveris, A; Llesuy, S; Azzalis, L A; Giavarotti, L; Simon, K A; Junqueira, V B; Porta, E A; Videla, L A; Lissi, E A

    1997-09-19

    The influence of acute ethanol administration on the oxidative stress status of rat brain and liver was assessed by in situ spontaneous organ chemiluminescence (CL). Brain and liver CL was significantly increased after acute ethanol administration to fed rats, a response that is time-dependent and evidenced at doses higher than 1 g/kg. Ethanol-induced CL development is faster in liver compared with brain probably due to the greater ethanol metabolic capacity of the liver, whereas the net enhancement in brain light emission at 3 h after ethanol treatment is higher than that of the liver, which could reflect the greater susceptibility of brain to oxidative stress. The effect of ethanol on brain and liver CL seems to be mediated by acetaldehyde, due to its abolishment by the alcohol dehydrogenase inhibitor 4-methylpyrazole and exacerbation by the aldehyde dehydrogenase inhibitor disulfiram. In brain, these findings were observed in the absence of changes in the activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase. However, the content of brain glutathione was significantly decreased by 31%, by ethanol, thus establishing an enhanced oxidative stress in this tissue.

  7. Branched-chain amino acids attenuate early kidney injury in diabetic rats.

    PubMed

    Mi, Na; Zhang, Xiu Juan; Ding, Yan; Li, Guo Hua; Wang, Wei Dong; Xian, Hui Xia; Xu, Jin

    2015-10-16

    Diabetic nephropathy (DN) is the most severe diabetic microvascular complication. The pathogenesis of diabetic nephropathy is complex, and oxidative stress plays an important role in the development of diabetic nephropathy. Elevated reactive oxygen species (ROS) levels activate various signaling pathways and influence the activities of transforming growth factor-β (TGF-β) and matrix metalloproteinase-9 (MMP-9), which contributes to glomerular hypertrophy. Branched-chain amino acids (BCAAs) are widely used in clinical treatment, and BCAAs can reduce the oxidative stress associated with the diabetic pancreas and some liver diseases. Thus, the aim of the present study was to determine whether BCAAs could attenuate oxidative stress in the kidneys of streptozotocin (STZ)-induced diabetic rats to prevent early diabetic kidney injury. Male Wistar rats were fed for two weeks with a normal chow diet or a high-fat diet in which 40% of calories were derived from fat. After this two-week period, the mice fed normal chow were injected with vehicle, while the high-fat diet group was injected intraperitoneally (i.p.) with 40 mg/kg STZ. The STZ-treated group was randomly divided into four subgroups that were treated with different doses of BCAAs or vehicle for two months by oral gavage. Plasma glucose, plasma creatinine, urinary protein and JNK, TGF-β, and MMP-9 mRNA and protein expression levels were measured in the rats. The ROS levels and proteinuria in the STZ-induced diabetic rats were significantly higher than those in the control groups. Moreover, early kidney injury occurred in the STZ-induced diabetic rats. However, BCAAs treatment decreased ROS levels, proteinuria and kidney injury. Moreover, JNK, TGF-β and MMP-9 mRNA and protein levels were significantly increased in the diabetic rats when compared with the control rats, and BCAAs treatment reversed these changes. Our results suggest that BCAAs counter oxidative stress in the kidneys of diabetic rats and alleviate

  8. Boron deprivation alters rat behaviour and brain mineral composition differently when fish oil instead of safflower oil is the diet fat source.

    PubMed

    Nielsen, Forrest H; Penland, James G

    2006-01-01

    To determine whether boron deprivation affects rat behaviour and whether behavioural responses to boron deprivation are modified by differing amounts of dietary long-chain omega-3 fatty acids. Female rats were fed diets containing 0.1 mg (9 micromol)/kg boron in a factorial arrangement with dietary variables of supplemental boron at 0 and 3mg (278 micromol)/kg and fat sources of 75 g/kg safflower oil or 65 g/kg fish (menhaden) oil plus 10 g/kg linoleic acid. After 6 weeks, six females per treatment were bred. Dams and pups continued on their respective diets through gestation, lactation and after weaning. Between ages 6 and 20 weeks, behavioural tests were performed on 13-15 male offspring from three dams in each dietary treatment. The rats were euthanized at age 21 weeks for the collection of tissues and blood. At ages 6 and 19 weeks, auditory startle was evaluated with an acoustic startle system and avoidance behaviour was evaluated by using an elevated plus maze. At ages 7 and 20 weeks, spontaneous behaviour activity was evaluated with a photobeam activity system. A brightness discrimination test was performed on the rats between age 15 and 16 weeks. Brain mineral composition was determined by coupled argon plasma atomic emission spectroscopy. Plasma total glutathione was determined by HPLC and total cholesterol and 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha) were determined by using commercially available kits. Boron-deficient rats were less active than boron-adequate rats when fed safflower oil based on reduced number, distance and time of horizontal movements, front entries, margin distance and vertical breaks and jumps in the spontaneous activity evaluation. Feeding fish oil instead of safflower oil attenuated the activity response to boron deprivation. In the plus maze evaluation, the behavioural reactivity of the boron-deficient rats fed fish oil was noticeably different than the other three treatments. They made more entries into both open and closed

  9. Hyperbaric oxygen preconditioning protects against traumatic brain injury at high altitude.

    PubMed

    Hu, S L; Hu, R; Li, F; Liu, Z; Xia, Y Z; Cui, G Y; Feng, H

    2008-01-01

    Recent studies have shown that preconditioning with hyperbaric oxygen (HBO) can reduce ischemic and hemorrhagic brain injury. We investigated effects of HBO preconditioning on traumatic brain injury (TBI) at high altitude and examined the role of matrix metalloproteinase-9 (MMP-9) in such protection. Rats were randomly divided into 3 groups: HBO preconditioning group (HBOP; n = 13), high-altitude group (HA; n = 13), and high-altitude sham operation group (HASO; n = 13). All groups were subjected to head trauma by weight-drop device, except for HASO group. HBOP rats received 5 sessions of HBO preconditioning (2.5 ATA, 100% oxygen, 1 h daily) and then were kept in hypobaric chamber at 0.6 ATA (to simulate pressure at 4000m altitude) for 3 days before operation. HA rats received control pretreatment (1 ATA, room air, 1 h daily), then followed the same procedures as HBOP group. HASO rats were subjected to skull opening only without brain injury. Twenty-four hours after TBI, 7 rats from each group were examined for neurological function and brain water content; 6 rats from each group were killed for analysis by H&E staining and immunohistochemistry. Neurological outcome in HBOP group (0.71 +/- 0.49) was better than HA group (1.57 +/- 0.53; p < 0.05). Preconditioning with HBO significantly reduced percentage of brain water content (86.24 +/- 0.52 vs. 84.60 +/- 0.37; p < 0.01). Brain morphology and structure seen by light microscopy was diminished in HA group, while fewer pathological injuries occurred in HBOP group. Compared to HA group, pretreatment with HBO significantly reduced the number of MMP-9-positive cells (92.25 +/- 8.85 vs. 74.42 +/- 6.27; p < 0.01). HBO preconditioning attenuates TBI in rats at high altitude. Decline in MMP-9 expression may contribute to HBO preconditioning-induced protection of brain tissue against TBI.

  10. Rifaximin, but not growth factor 1, reduces brain edema in cirrhotic rats

    PubMed Central

    Òdena, Gemma; Miquel, Mireia; Serafín, Anna; Galan, Amparo; Morillas, Rosa; Planas, Ramon; Bartolí, Ramon

    2012-01-01

    AIM: To compare rifaximin and insulin-like growth factor (IGF)-1 treatment of hyperammonemia and brain edema in cirrhotic rats with portal occlusion. METHODS: Rats with CCl4-induced cirrhosis with ascites plus portal vein occlusion and controls were randomized into six groups: Cirrhosis; Cirrhosis + IGF-1; Cirrhosis + rifaximin; Controls; Controls + IGF-1; and Controls + rifaximin. An oral glutamine-challenge test was performed, and plasma and cerebral ammonia, glucose, bilirubin, transaminases, endotoxemia, brain water content and ileocecal cultures were measured and liver histology was assessed. RESULTS: Rifaximin treatment significantly reduced bacterial overgrowth and endotoxemia compared with cirrhosis groups, and improved some liver function parameters (bilirubin, alanine aminotransferase and aspartate aminotransferase). These effects were associated with a significant reduction in cerebral water content. Blood and cerebral ammonia levels, and area-under-the-curve values for oral glutamine-challenge tests were similar in rifaximin-treated cirrhotic rats and control group animals. By contrast, IGF-1 administration failed to improve most alterations observed in cirrhosis. CONCLUSION: By reducing gut bacterial overgrowth, only rifaximin was capable of normalizing plasma and brain ammonia and thereby abolishing low-grade brain edema, alterations associated with hepatic encephalopathy. PMID:22563196

  11. Soft-food diet induces oxidative stress in the rat brain.

    PubMed

    Yoshino, Fumihiko; Yoshida, Ayaka; Hori, Norio; Ono, Yumie; Kimoto, Katsuhiko; Onozuka, Minoru; Lee, Masaichi Chang-il

    2012-02-02

    Decreased dopamine (DA) release in the hippocampus may be caused by dysfunctional mastication, although the mechanisms involved remain unclear. The present study examined the effects of soft- and hard-food diets on oxidative stress in the brain, and the relationship between these effects and hippocampal DA levels. The present study showed that DA release in the hippocampus was decreased in rats fed a soft-food diet. Electron spin resonance studies using the nitroxyl spin probe 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl directly demonstrated a high level of oxidative stress in the rat brain due to soft-food diet feeding. In addition, we confirmed that DA directly react with reactive oxygen species such as hydroxyl radical and superoxide. These observations suggest that soft-food diet feeding enhances oxidative stress, which leads to oxidation and a decrease in the release of DA in the hippocampus of rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Naloxone attenuates the conditioned place preference induced by wheel running in rats.

    PubMed

    Lett, B T; Grant, V L; Koh, M T

    2001-02-01

    Pairings, during which an episode of wheel running is followed by confinement in a distinctive place, produce conditioned place preference (CPP) in rats. This finding indicates that wheel running has a rewarding effect that outlasts the activity itself. In two similar experiments, we tested the hypothesis that this rewarding effect of wheel running is mediated by endogenous opioids. During a paired trial, the rats in the naloxone group were first allowed to wheel run for 2 h, then injected with naloxone (0.5 or 0.1 mg/kg in Experiments 1 and 2, respectively), and 10 min later placed in a distinctive chamber. During an unpaired trial, these rats were confined in an adjoining chamber without wheel running. Naloxone was injected before placement in both chambers, so that if naloxone-induced conditioned place aversion occurred, it would have counteracting effects on performance during the preference test. The rats in the saline group were similarly treated, except that saline was injected instead of naloxone. CPP occurred in the saline group, but not in the naloxone group. Thus, naloxone attenuated the CPP induced by wheel running. This finding supports the hypothesis that the rewarding effect of wheel running is mediated by endogenous opioids.

  13. Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hong-Bao; Qin, Da-Nian, E-mail: dnqin@stu.edu.cn; Ma, Le

    The hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play a critical role in the generation and maintenance of sympathetic nerve activity. The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. This study was designed to determine whether inhibition of the angiotensin-converting enzyme (ACE) in the PVN modulates cytokines and attenuates oxidative stress (ROS) in the RVLM, and decreases the blood pressure and sympathetic activity in renovascular hypertensive rats. Renovascular hypertension was induced in male Sprague–Dawley rats by the two-kidney one-clip (2K1C) method. Renovascular hypertensive rats received bilateral PVN infusion with ACE inhibitor lisinoprilmore » (LSP, 10 μg/h) or vehicle via osmotic minipump for 4 weeks. Mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and plasma proinflammatory cytokines (PICs) were significantly increased in renovascular hypertensive rats. The renovascular hypertensive rats also had higher levels of ACE in the PVN, and lower level of interleukin-10 (IL-10) in the RVLM. In addition, the levels of PICs, the chemokine MCP-1, the subunit of NAD(P)H oxidase (gp91{sup phox}) and ROS in the RVLM were increased in hypertensive rats. PVN treatment with LSP attenuated those changes occurring in renovascular hypertensive rats. Our findings suggest that the beneficial effects of ACE inhibition in the PVN in renovascular hypertension are partly due to modulation cytokines and attenuation oxidative stress in the RVLM. - Highlights: • Chronic ACE inhibition in PVN on renovascular hypertension was investigated. • 2K1C resulted in sympathoexcitation, increased plasma PICs and hypertension. • 2K1C rats had higher levels of cytokines and reactive oxygen species (ROS) in RVLM. • Chronic inhibiting PVN ACE attenuates cytokines and ROS in RVLM in hypertension.« less

  14. Adenosine transport systems on dissociated brain cells from mouse, guinea-pig, and rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, M.E.; Geiger, J.D.

    1990-09-01

    The kinetics and sodium dependence of adenosine transport were determined using an inhibitor-stop method on dissociated cell body preparations obtained from mouse, guinea-pig and rat brain. Transport affinity (KT) values for the high affinity adenosine transport systems KT(H) were significantly different between these three species; mean +/- SEM values were 0.34 +/- 0.1 in mouse, 0.9 +/- 0.2 in rat, and 1.5 +/- 0.5 microM in guinea-pig. The KT values for the low affinity transport system KT(L) were not different between the three species. Brain cells from rat displayed a significantly greater maximal capacity to accumulate (3H)adenosine (Vmax) than didmore » mouse or guinea-pig for the high affinity system, or than did mouse for the low affinity system. When sodium chloride was replaced in the transport medium with choline chloride, the KT(H) values for guinea-pig and rat were both increased by approximately 100%; only in rat did the change reach statistical significance. The sodium-dependence of adenosine transport in mouse brain was clearly absent. The differences between KT(H) values in mouse and those in guinea-pig or rat were accentuated in the absence of sodium. The differences in kinetic values, ionic requirements, and pharmacological characteristics between adenosine transporters in CNS tissues of mouse, guinea-pig and rat may help account for some of the variability noted among species in terms of their physiological responses to adenosine.« less

  15. Identification and localization of glucagon-related peptides in rat brain.

    PubMed

    Tager, H; Hohenboken, M; Markese, J; Dinerstein, R J

    1980-10-01

    Immunochemical and immunocytochemical techniques have been used to identify and characterize glucagon-related peptides of the rat central nervous system. These peptides show immunoreactivity with antiglucagon sera directed towards the central portion of the hormone, but not with antisera specific for the free COOH terminus of glucagon. Highest concentrations were found in hypothalamus (6.1 +/- 1.6 ng/g wet weight) although lower amounts (approximately 2 ng/g) were found in cortex, thalamus, cerebellum, and brain stem. Gel filtration of brain extracts revealed at least two immunoreactive forms, which have molecular weights of about 12,000 and 8000. Both peptides had radioimmunoassay dilution curves parallel to the curve for glucagon and both had identical counterparts in extracts of rat intestine. Digestion of the brain and intestinal peptides with trypsin plus carboxypeptidase B released the immunoreactive COOH-terminal tryptic fragment of pancreatic glucagon from these larger forms. Immunocytochemical studies using antiglucagon serum and peroxidase-antiperoxidase staining identified glucagon-like material in neuronal cell bodie and processes in the magnocellular portion of the paraventricular nucleus, as well as in scattered cells in the supraoptic nucleus and in fibers in the median eminence. These results suggest that glucagon-containing peptides that have undergone the intestinal type of posttranslational modification are present in neuronal cells of the rat hypothalamus.

  16. Elevated mu-opioid receptor expression in the nucleus of the solitary tract accompanies attenuated withdrawal signs after chronic low dose naltrexone in opiate-dependent rats.

    PubMed

    Van Bockstaele, E J; Rudoy, C; Mannelli, P; Oropeza, V; Qian, Y

    2006-02-15

    We previously described a decrease in withdrawal behaviors in opiate-dependent rats that were chronically treated with very low doses of naltrexone in their drinking water. Attenuated expression of withdrawal behaviors correlated with decreased c-Fos expression and intracellular signal transduction elements [protein kinase A regulatory subunit II (PKA) and phosphorylated cAMP response element binding protein (pCREB)] in brainstem noradrenergic nuclei. In this study, to determine whether similar cellular changes occurred in forebrain nuclei associated with drug reward, expressions of PKA and pCREB were analyzed in the ventral tegmental area, frontal cortex, striatum, and amygdala of opiate-treated rats that received low doses of naltrexone in their drinking water. No significant difference in PKA or pCREB was detected in these regions following drug treatment. To examine further the cellular mechanisms in noradrenergic nuclei that could underlie attenuated withdrawal behaviors following low dose naltrexone administration, the nucleus of the solitary tract (NTS) and locus coeruleus (LC) were examined for opioid receptor (OR) protein expression. Results showed a significant increase in muOR expression in the NTS of morphine-dependent rats that received low doses of naltrexone in their drinking water, and increases in muOR expression were also found to be dose dependent. Protein expression of muOR in the LC and deltaOR in either brain region remained unchanged. In conclusion, our previously reported decreases in c-Fos and PKA expression in the NTS following pretreatment with low doses of naltrexone may be partially explained by a greater inhibition of NTS neurons resulting from increased muOR expression in this region.

  17. Brain electrophysiology in Sprague-Dawley rats fed low copper diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penland, J.G.; Sawler, B.G.; Klevay, L.M.

    1986-03-01

    Electrical activity of the brain was assessed in 38 unanesthetized male rats fed a Cu deficient diet for c.100 days after weaning. Rats were supplemented with drinking solutions containing 0, 0.75, or 2 ..mu..g Cu/ml and 10 ..mu..g Zn/ml (as sulfate and acetate, respectively). Three weeks prior to recording, dural ball electrodes were placed bilaterally 1 mm anterior to the lambda and 4 mm lateral to the midline, with a midline reference 2 mm anterior to the bregma. Cu deficiency was verified by atomic absorption spectroscopy of plasma Cu (p < .0001). The electroencephalogram revealed dietary effects on both logmore » power and arcsin percent-total power in each of four frequency bands (1-3, 4-7, 8-12, 13-18 Hz). Low dietary Cu resulted in less log power and percent-total power in the lowest frequencies, and log power evidenced lateralized effects in the higher frequencies. Rats fed the diet most deficient in Cu had lower left and higher right hemisphere power than did rats fed the more adequate Cu diets. Percent-total power was higher in the mid-range frequencies in both hemispheres for rats fed the Cu deficient diets, compared to rats supplemented with the largest amount of Cu. The findings confirm a previous experiment (unpublished) and suggest that dietary Cu influences the electrical activity of the brain in a select (i.e., frequency and location specific) rather than undifferentiated manner.« less

  18. Attenuation of lead neurotoxicity by supplementation of polyunsaturated fatty acid in Wistar rats.

    PubMed

    Singh, Pramod Kumar; Nath, Rajendra; Ahmad, Mohammad Kaleem; Rawat, Akash; Babu, Suresh; Dixit, Rakesh Kumar

    2016-11-01

    Among various types of polyunsaturated fatty acid (PUFA), omega-3 fatty acids play a crucial role in development and function of the brain. This study was undertaken to investigate the possible neuroprotective efficacy of omega-3 fatty acid on lead-induced neurotoxicity in rats. The experiment was carried out on 32 male Wistar rats divided into four groups. The first group (control) was treated with distilled water and second group with lead acetate at the doses of 3 mg/kg b.wt. (body weight)/oral, whereas third and fourth groups were simultaneously treated with lead acetate (3 mg/kg b.wt.) plus omega-3 fatty acid (300 mg/kg b.wt./oral) and lead acetate (3 mg/kg b.wt.) plus vitamin E (100 mg/kg b.wt./oral), respectively, for a period of 90 days. Their biochemical and histopathological investigations have been carried out. The level of lead was markedly elevated in brain (4.71-fold) and blood (5.65-fold), also increased levels of ROS, GSH, LPO with concomitant reduction in the activities of delta-ALAD, CAT, SOD, and GPx. In addition, lead-induced brain damage was indicated by histopathological changes. Omega-3 fatty acid resulted in marked improvement in most of the biochemical parameters as well as histopathological changes in rats. The results obtained were compared with vitamin E as the standard antioxidant agents. Omega-3 fatty acid significantly (P < 0.05) decreased the effect of lead-induced brain damage as well as biochemical changes similar to that of standard drug, vitamin E. So, our result suggested that omega-3 fatty acid may play a protective role in lead-induced neurotoxicity and associated human health risk.

  19. Effects of Orally Administered Augmentin on Glutamate Transporter 1, Cystine-glutamate Exchanger Expression as well as Ethanol Intake in Alcohol-Preferring Rats

    PubMed Central

    Hakami, Alqassem Y.; Alshehri, Fahad S.; Althobaiti, Yusuf S.; Sari, Youssef

    2016-01-01

    Alcohol dependence is associated with deficits in glutamate uptake and impairment of glutamate homeostasis in different brain reward regions. Glutamate transporter subtype 1 (GLT-1), cystine-glutamate exchanger (xCT) and glutamate/aspartate transporter (GLAST) are the key players in regulating extracellular glutamate concentration in the brain. Parenteral treatment with ceftriaxone, β-lactam antibiotic, has been reported to attenuate ethanol consumption and reinstatement to cocaine-seeking behavior, in part, by restoring the expression of GLT-1 and xCT in mesocorticolimbic brain regions in rats. In this study, we focus to test Augmentin (amoxicillin/clavulanate), which can be administered orally to subjects. Therefore, we examined the effects of orally administered Augmentin on ethanol intake as well as GLT-1, xCT and GLAST expression in alcohol-preferring (P) rats. We found that orally administered Augmentin significantly attenuated ethanol consumption in P rats as compared to the vehicle-treated group. Importantly, the attenuation in ethanol consumption was associated with a significant upregulation of GLT-1 and xCT expression in nucleus accumbens (NAc) and prefrontal cortex (PFC). There was no effect of oral Augmentin on GLAST expression in either NAc or PFC. These findings present strong evidence that oral administration of Augmentin can be used as an alternative to parenteral administration. PMID:27993695

  20. Regional traumatic limb hypothermia attenuates distant hepatic and renal injury following blast limb trauma in rats.

    PubMed

    Zhao, Hongzhi; Ning, Jiaolin; Duan, Jiaxiang; Gu, Jianteng; Yi, Bin; Lu, Kaizhi; Mo, Liwen; Lai, Xinan; Hennah, Lindsay; Ma, Daqing

    2014-09-01

    Blast limb injury was reported to result in distant organ injury including the lungs, which can be attenuated with transient regional hypothermia (RH) to the injured limb. We aimed to further study hepatic and renal injuries following blast limb trauma and also to evaluate the protective effects of regional traumatic limb hypothermia on such injuries in rats. Blast limb trauma (BLT) was created using chartaceous electricity detonators in anesthetized male Sprague-Dawley rats. The BLT rats were randomly allocated to undergo regional traumatic limb hypothermic treatment (RH) for 30 minutes, 60 minutes, or 6 hours immediately after the onset of blast or without RH (n = 8 per group). The severity of hepatic and renal injury was assessed through histologic examination and water content (wet/dry weight) in all animals 6 hours later. The level of plasma tumor necrosis factor α (TNF-α), interleukin 6, hydrogen sulfide (H2S), and myeloperoxidase (MPO) together with hepatic and renal MPO, malondialdehyde (MDA), superoxide dismutase, and total antioxidant capacity were measured 6 hours after the blast injury. Following BLT, hepatic injury was evidenced by histopathologic changes, increased water content, as well as plasma alanine aminotransferase and aspartate aminotransferase. Renal histopathologic but not functional changes were also found. RH treatment for all durations attenuated this distant renal injury, but only RH treatment for 60 minutes and 6 hours attenuated distant hepatic injury following BLT. RH treatment for all durations decreased plasma TNF-α and interleukin 6, reduced liver and kidney MPO activity and kidney MDA, and elevated superoxide dismutase and total antioxidant capacity in both liver and kidneys. RH treatment for 60 minutes is the most effective duration to reduce hepatic MPO activity, plasma TNF-α, and kidney MDA. This study indicates that BLT-induced distant renal and hepatic injury could be attenuated by RH treatment through reduction of

  1. Effect of maternal excessive sodium intake on postnatal brain development in rat offspring.

    PubMed

    Shin, Jung-a; Ahn, Young-mo; Lee, Hye-ah; Park, Hyesook; Kim, Young-ju; Lee, Hwa-young

    2015-04-01

    Postnatal brain development is affected by the in utero environment. Modern people usually have a high sodium intake. The aim of this study was to investigate the effect of sodium hyperingestion during pregnancy on the postnatal brain development of rat offspring. The sodium-overloaded rats received 1.8% NaCl in their drinking water for 7 days during the last week of gestation. Their body weight, urine, and blood levels of sodium and other parameters were measured. Some rats were sacrificed at pregnancy day 22 and the weight and length of the placenta and foetus were measured. The cerebral cortex and hippocampus were obtained from their offspring at postnatal day 1 and at postnatal weeks 1, 2, 4, and 8. Western blot analyses were conducted with brain tissue lysates. The sodium-overloaded animals had decreased weight gain in the last week of gestation as well as decreased food intake, increased water intake, urine volume, urine sodium, and serum sodium. There were no differences in placental weight and length. The foetuses of sodium-overloaded rats showed decreased body weight and size, and this difference was maintained postnatally for 2 weeks. In the cerebral cortex and hippocampus of the offspring, the protein levels of myelin basic protein, calmodulin/calcium-dependent protein kinase II, and brain-derived neurotrophic factor were decreased or aberrantly expressed. The present data suggest that increased sodium intake during pregnancy affects the brain development of the offspring.

  2. Effects of acupuncture on tissue-oxygenation of the rat brain.

    PubMed

    Chen, G S; Erdmann, W

    1977-01-01

    Acupuncture has been claimed to be effective in restoring consciousness in some comatose patients. Possible mechanisms to explain alleged acupuncture-induced arousal may include vasodilatory effects caused by sympathetic stimulation which leads to an augmentation of cerebral microcirculation and thereby improves oxygen supply to the brain tissue. Experiments were performed in ten albino rats (Wistar) employing PO2 microelectrodes which were inserted into the cortex of the animals through small burholes. Brain tissue PO2 was continuously recorded before, during, and after acupuncture. Stimulation of certain acupuncture loci (Go-26) resulted in immediate increase of PO2 in the frontal cortex of the rat brain. This effect was reproducible. The effect was comparable to that obtained with increase of inspiratory CO2 known to induce arterial vasodilatation and thus capillary perfusion pressure. The effect was more significant as compared to tissue PO2 increases obtained after increase of inspiratory oxygen concentration from 21% to 100%. It appears that acupuncture causes an increase of brain tissue perfusion which may be, at least in part, responsible for arousal of unconscious patients. Dilatation of cerebral vascular vessels and improvement of autoregulation in the brain by acupuncture stimulation may also explain the effectiveness of acupuncture in the treatment of migraine headache.

  3. Effect of baculovirus P35 protein on apoptosis in brain tissue of rats with acute cerebral infarction.

    PubMed

    Ji, J F; Ma, X H

    2015-08-10

    We explored the effect of baculovirus P35 protein on apoptosis in the brain tissue of rats with acute cerebral infarction (ACI). A rat model of middle cerebral artery infarction was created. The rats were randomly divided into sham, model, and treatment groups. Baculovirus P35 protein was injected into the intracranial arteries of the treatment group rats. The rats in the model group were given an equal volume of phosphate-buffered saline. The rats were sacrificed after 72 h and the brain tissue was separated. The levels of caspase-3, Bcl-2, and Bax mRNA, the brain cell apoptosis index, and the infarct size were determined. After 72 h, the levels of caspase-3 and Bax mRNA in the model and treatment groups were significantly greater than in the sham group, and the levels of Bcl-2 mRNA were significantly smaller (P < 0.05). The levels of caspase-3 and Bax mRNA were significantly lower in the treatment group than in the model group, and the level of Bcl-2 mRNA was significantly greater (P < 0.05). Compared with the sham group, the brain tissue apoptosis index and the cerebral infarction area increased significantly in the model and treatment groups (P < 0.05). The brain tissue apoptosis index and cerebral infarction area in the treatment group were significantly lower than in the model group (P < 0.05). Baculovirus P35 protein can effectively inhibit brain cell apoptosis in rats with ACI. It delayed apoptosis and necrosis in subjects with ACI tissue and had a protective effect on brain tissue.

  4. Subject-specific bone attenuation correction for brain PET/MR: can ZTE-MRI substitute CT scan accurately?

    PubMed

    Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude

    2017-09-21

    In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units ([Formula: see text]) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into [Formula: see text] was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of [Formula: see text] corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.

  5. Subject-specific bone attenuation correction for brain PET/MR: can ZTE-MRI substitute CT scan accurately?

    NASA Astrophysics Data System (ADS)

    Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude

    2017-10-01

    In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units (HU ) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into HU was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of 4~mm corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.

  6. A combined solenoid-surface RF coil for high-resolution whole-brain rat imaging on a 3.0 Tesla clinical MR scanner.

    PubMed

    Underhill, Hunter R; Yuan, Chun; Hayes, Cecil E

    2010-09-01

    Rat brain models effectively simulate a multitude of human neurological disorders. Improvements in coil design have facilitated the wider utilization of rat brain models by enabling the utilization of clinical MR scanners for image acquisition. In this study, a novel coil design, subsequently referred to as the rat brain coil, is described that exploits and combines the strengths of both solenoids and surface coils into a simple, multichannel, receive-only coil dedicated to whole-brain rat imaging on a 3.0 T clinical MR scanner. Compared with a multiturn solenoid mouse body coil, a 3-cm surface coil, a modified Helmholtz coil, and a phased-array surface coil, the rat brain coil improved signal-to-noise ratio by approximately 72, 61, 78, and 242%, respectively. Effects of the rat brain coil on amplitudes of static field and radiofrequency field uniformity were similar to each of the other coils. In vivo, whole-brain images of an adult male rat were acquired with a T(2)-weighted spin-echo sequence using an isotropic acquisition resolution of 0.25 x 0.25 x 0.25 mm(3) in 60.6 min. Multiplanar images of the in vivo rat brain with identification of anatomic structures are presented. Improvement in signal-to-noise ratio afforded by the rat brain coil may broaden experiments that utilize clinical MR scanners for in vivo image acquisition. 2010 Wiley-Liss, Inc.

  7. Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions.

    PubMed

    Hamezah, Hamizah Shahirah; Durani, Lina Wati; Ibrahim, Nor Faeizah; Yanagisawa, Daijiro; Kato, Tomoko; Shiino, Akihiko; Tanaka, Sachiko; Damanhuri, Hanafi Ahmad; Ngah, Wan Zurinah Wan; Tooyama, Ikuo

    2017-12-01

    Impairments in cognitive and locomotor functions usually occur with advanced age, as do changes in brain volume. This study was conducted to assess changes in brain volume, cognitive and locomotor functions, and oxidative stress levels in middle- to late-aged rats. Forty-four male Sprague-Dawley rats were divided into four groups: 14, 18, 23, and 27months of age. 1 H magnetic resonance imaging (MRI) was performed using a 7.0-Tesla MR scanner system. The volumes of the lateral ventricles, medial prefrontal cortex (mPFC), hippocampus, striatum, cerebellum, and whole brain were measured. Open field, object recognition, and Morris water maze tests were conducted to assess cognitive and locomotor functions. Blood was taken for measurements of malondialdehyde (MDA), protein carbonyl content, and antioxidant enzyme activity. The lateral ventricle volumes were larger, whereas the mPFC, hippocampus, and striatum volumes were smaller in 27-month-old rats than in 14-month-old rats. In behavioral tasks, the 27-month-old rats showed less exploratory activity and poorer spatial learning and memory than did the 14-month-old rats. Biochemical measurements likewise showed increased MDA and lower glutathione peroxidase (GPx) activity in the 27-month-old rats. In conclusion, age-related increases in oxidative stress, impairment in cognitive and locomotor functions, and changes in brain volume were observed, with the most marked impairments observed in later age. Copyright © 2017. Published by Elsevier Inc.

  8. Magnetic-field-induced DNA strand breaks in brain cells of the rat.

    PubMed Central

    Lai, Henry; Singh, Narendra P

    2004-01-01

    In previous research, we found that rats acutely (2 hr) exposed to a 60-Hz sinusoidal magnetic field at intensities of 0.1-0.5 millitesla (mT) showed increases in DNA single- and double-strand breaks in their brain cells. Further research showed that these effects could be blocked by pretreating the rats with the free radical scavengers melatonin and N-tert-butyl-alpha-phenylnitrone, suggesting the involvement of free radicals. In the present study, effects of magnetic field exposure on brain cell DNA in the rat were further investigated. Exposure to a 60-Hz magnetic field at 0.01 mT for 24 hr caused a significant increase in DNA single- and double-strand breaks. Prolonging the exposure to 48 hr caused a larger increase. This indicates that the effect is cumulative. In addition, treatment with Trolox (a vitamin E analog) or 7-nitroindazole (a nitric oxide synthase inhibitor) blocked magnetic-field-induced DNA strand breaks. These data further support a role of free radicals on the effects of magnetic fields. Treatment with the iron chelator deferiprone also blocked the effects of magnetic fields on brain cell DNA, suggesting the involvement of iron. Acute magnetic field exposure increased apoptosis and necrosis of brain cells in the rat. We hypothesize that exposure to a 60-Hz magnetic field initiates an iron-mediated process (e.g., the Fenton reaction) that increases free radical formation in brain cells, leading to DNA strand breaks and cell death. This hypothesis could have an important implication for the possible health effects associated with exposure to extremely low-frequency magnetic fields in the public and occupational environments. PMID:15121512

  9. The Synthetic Peroxisome Proliferator-Activated Receptor-γ Agonist Ciglitazone Attenuates Neuroinflammation and Accelerates Encapsulation in Bacterial Brain Abscesses1

    PubMed Central

    Kielian, Tammy; Md. Syed, Mohsin; Liu, Shuliang; Phulwani, Nirmal K.; Phillips, Napoleon; Wagoner, Gail; Drew, Paul D.; Esen, Nilufer

    2008-01-01

    Brain abscesses result from a pyogenic parenchymal infection commonly initiated by Gram-positive bacteria such as Staphylococcus aureus. Although the host immune response elicited following infection is essential for effective bacterial containment, this response also contributes to the significant loss of brain parenchyma by necrosis that may be reduced by modulating the inflammatory response. Ciglitazone, a PPAR-γ agonist with anti-inflammatory properties, was evaluated for its ability to influence the course of brain abscess development when treatment was initiated 3 days following infection. Interestingly, abscess-associated bacterial burdens were significantly lower following ciglitazone administration, which could be explained, in part, by the finding that ciglitazone enhanced S. aureus phagocytosis by microglia. In addition, ciglitazone attenuated the expression of select inflammatory mediators during brain abscess development including inducible NO synthase, TNF-α, IL-1β, CXCL2, and CCL3. Unexpectedly, ciglitazone also accelerated brain abscess encapsulation, which was typified by the heightened expression of fibronectin and α-smooth muscle actin-positive myofibroblasts. Collectively, through its ability to attenuate excessive inflammation and accelerate abscess encapsulation, ciglitazone may effectively sequester brain abscesses and limit bacterial dissemination. PMID:18354226

  10. Inflammation is detrimental for neurogenesis in adult brain

    NASA Astrophysics Data System (ADS)

    Ekdahl, Christine T.; Claasen, Jan-Hendrik; Bonde, Sara; Kokaia, Zaal; Lindvall, Olle

    2003-11-01

    New hippocampal neurons are continuously generated in the adult brain. Here, we demonstrate that lipopolysaccharide-induced inflammation, which gives rise to microglia activation in the area where the new neurons are born, strongly impairs basal hippocampal neurogenesis in rats. The increased neurogenesis triggered by a brain insult is also attenuated if it is associated with microglia activation caused by tissue damage or lipopolysaccharide infusion. The impaired neurogenesis in inflammation is restored by systemic administration of minocycline, which inhibits microglia activation. Our data raise the possibility that suppression of hippocampal neurogenesis by activated microglia contributes to cognitive dysfunction in aging, dementia, epilepsy, and other conditions leading to brain inflammation.

  11. Developmental vitamin D deficiency alters multiple neurotransmitter systems in the neonatal rat brain.

    PubMed

    Kesby, James P; Turner, Karly M; Alexander, Suzanne; Eyles, Darryl W; McGrath, John J; Burne, Thomas H J

    2017-11-01

    Epidemiological evidence suggests that developmental vitamin D (DVD) deficiency is a risk factor for neuropsychiatric disorders, such as schizophrenia. DVD deficiency in rats is associated with altered brain structure and adult behaviours indicating alterations in dopamine and glutamate signalling. Developmental alterations in dopamine neurotransmission have also been observed in DVD-deficient rats but a comprehensive assessment of brain neurochemistry has not been undertaken. Thus, the current study determined the regional concentrations of dopamine, noradrenaline, serotonin, glutamine, glutamate and γ-aminobutyric acid (GABA), and associated metabolites, in DVD-deficient neonates. Sprague-Dawley rats were fed a vitamin D deficient diet or control diet six weeks prior to mating until birth and housed under UVB-free lighting conditions. Neurotransmitter concentration was assessed by high-performance liquid chromatography on post-mortem neonatal brain tissue. Ubiquitous reductions in the levels of glutamine (12-24%) were observed in DVD-deficient neonates compared with control neonates. Similarly, in multiple brain regions DVD-deficient neonates had increased levels of noradrenaline and serine compared with control neonates. In contrast, increased levels of dopamine and decreased levels of serotonin in DVD-deficient neonates were limited to striatal subregions compared with controls. Our results confirm that DVD deficiency leads to changes in multiple neurotransmitter systems in the neonate brain. Importantly, this regionally-based assessment in DVD-deficient neonates identified both widespread neurotransmitter changes (glutamine/noradrenaline) and regionally selective neurotransmitter changes (dopamine/serotonin). Thus, vitamin D may have both general and local actions depending on the neurotransmitter system being investigated. Taken together, these data suggest that DVD deficiency alters neurotransmitter systems relevant to schizophrenia in the developing rat

  12. Housing conditions influence motor functions and exploratory behavior following focal damage of the rat brain.

    PubMed

    Gornicka-Pawlak, Elzbieta; Jabłońska, Anna; Chyliński, Andrzej; Domańska-Janik, Krystyna

    2009-01-01

    The present study investigated influence of housing conditions on motor functions recovery and exploratory behavior following ouabain focal brain lesion in the rat. During 30 days post-surgery period rats were housed individually in standard cages (IS) or in groups in enriched environment (EE) and behaviorally tested. The EE lesioned rats showed enhanced recovery from motor impairments in walking beam task, comparing with IS animals. Contrarily, in the open field IS rats (both lesioned and control) traveled a longer distance, showed less habituation and spent less time resting at the home base than the EE animals. Unlike the EE lesioned animals, the lesioned IS rats, presented a tendency to hyperactivity in postinjury period. Turning tendency was significantly affected by unilateral brain lesion only in the EE rats. We can conclude that housing conditions distinctly affected the rat's behavior in classical laboratory tests.

  13. Reduced tumorigenicity of rat glioma cells in the brain when mediated by hygromycin phosphotransferase.

    PubMed

    Hormigo, A; Friedlander, D R; Brittis, P A; Zagzag, D; Grumet, M

    2001-04-01

    A variant of C6 glioma cells, C6R-G/H cells express hygromycin phosphotransferase (HPT) and appear to have reduced tumorigenicity in the embryonic brain. The goal of this study was to investigate their reduced capacity to generate tumors in the adult rat brain. Cell lines were implanted into rat brains and tumorigenesis was evaluated. After 3 weeks, all rats with C6 cells showed signs of neurological disease, whereas rats with C6R-G/H cells did not and were either killed then or allowed to survive until later. Histological studies were performed to analyze tumor size, malignancy, angiogenesis, and cell proliferation. Cells isolated from rat brain tumors were analyzed for mutation to HPT by testing their sensitivity to hygromycin. The results indicate that HPT suppresses tumor formation. Three weeks after implantation, only 44% of animals implanted with C6R-G/H cells developed tumors, whereas all animals that received C6 glioma cells developed high-grade gliomas. The C6R-G/H cells filled a 20-fold smaller maximal cross-sectional area than the C6 cells, and exhibited less malignant characteristics, including reduced angiogenesis, mitosis, and cell proliferation. Similar results were obtained in the brain of nude rats, indicating that the immune system did not play a significant role in suppressing tumor growth. The combination of green fluorescent protein (GFP) and HPT was more effective in suppressing tumorigenesis than either plasmid by itself, indicating that the GFP may protect against inactivation of the HPT. Interestingly. hygromycin resistance was lost in tumor cells that were recovered from a group of animals in which C6R-G/H cells formed tumors, confirming the correlation of HPT with reduced tumorigenicity.

  14. [Alterations of glial fibrillary acidic protein in rat brain after gamma knife irradiation].

    PubMed

    Ma, Z M; Jiang, B; Ma, J R

    2001-08-28

    To study glial fibrillary acidic protein (GFAP) immunoreactivity in different time and water content of the rat brain treated with gamma knife radiotherapy and to understand the alteration course of the brain lesion after a single high dose radiosurgical treatment. In the brains of the normal rats were irradiated by gamma knife with 160 Gy-high dose. The irradiated rats were then killed on the 1st day, 7th day, 14th day, and 28th day after radiotherapy, respectively. The positive cells of GFAP in brain tissue were detected by immunostaining; the water content of the brain tissue was measured by microgravimetry. The histological study of the irradiated brain tissue was performed with H.E. and examined under light microscope. The numbers of GFAP-positive astrocytes began to increase on the 1st day after gamma knife irradiation. It was enlarged markedly in the number and size of GFAP-stained astrocytes over the irradiated areas. Up to the 28th day, circumscribed necrosis foci (4 mm in diameter) was seen in the central area of the target. In the brain tissue around the necrosis, GFAP-positive astrocytes significantly increased (P < 0.01, compared with the control group). The swelling of cells in irradiated region was observed on the 1st day; after irradiation endothelial cells degenerated and red blood cells escaped from blood vessel on the 7th day; leakage of Evans blue dye was observed in the target region on the 14th day. There was a significant decrease of specific gravity in the irradiated brain tissue the 14th and 28th day after irradiation. The results suggest that GFAP can be used as a marker for the radiation-induced brain injury. The brain edema and disruption of brain-blood barrier can be occurred during the acute stage after irradiation.

  15. Dairy fat blends high in α-linolenic acid are superior to n-3 fatty-acid-enriched palm oil blends for increasing DHA levels in the brains of young rats.

    PubMed

    Du, Qin; Martin, Jean-Charles; Agnani, Genevieve; Pages, Nicole; Leruyet, Pascale; Carayon, Pierre; Delplanque, Bernadette

    2012-12-01

    Achieving an appropriate docosahexaenoic acid (DHA) status in the neonatal brain is an important goal of neonatal nutrition. We evaluated how different dietary fat matrices improved DHA content in the brains of both male and female rats. Forty rats of each gender were born from dams fed over gestation and lactation with a low α-linolenic acid (ALA) diet (0.4% of fatty acids) and subjected for 6 weeks after weaning to a palm oil blend-based diet (10% by weight) that provided either 1.5% ALA or 1.5% ALA and 0.12% DHA with 0.4% arachidonic acid or to an anhydrous dairy fat blend that provided 1.5% or 2.3% ALA. Fatty acids in the plasma, red blood cells (RBCs) and whole brain were determined by gas chromatography. The 1.5% ALA dairy fat was superior to both the 1.5% ALA palm oil blends for increasing brain DHA (14.4% increase, P<.05), and the 2.3% ALA dairy blend exhibited a further increase that could be ascribed to both an ALA increase and n-6/n-3 ratio decrease. Females had significantly higher brain DHA due to a gender-to-diet interaction, with dairy fats attenuating the gender effect. Brain DHA was predicted with a better accuracy by some plasma and RBC fatty acids when used in combination (R(2) of 0.6) than when used individually (R(2)=0.47 for RBC n-3 docosapentaenoic acid at best). In conclusion, dairy fat blends enriched with ALA appear to be an interesting strategy for achieving optimal DHA levels in the brain of postweaning rats. Human applications are worth considering. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Neonatal handling alters brain organization but does not influence recovery from perinatal cortical injury.

    PubMed

    Gibb, Robbin; Kolb, Bryan

    2005-10-01

    Handling rat pups by removing them from the nest during the preweaning period has been shown to influence brain and behavioral development. The authors hypothesized that handling rats with perinatal (Day 4) medial frontal cortex removals might attenuate behavioral deficits and reverse dendritic atrophy associated with such an injury. On the day after surgery, pups were removed from the nest for 15 min, 3 times per day until weaning. Animals were tested as adults in the Morris water task and on skilled reaching. Handled animals showed no improvement in behavioral performance. The handling procedure led to a decrease in dendritic length in parietal cortex, but spine density was unchanged. No therapeutic advantage was observed following the preweaning handling of brain-injured rats.

  17. Study of blood and brain lithium pharmacokinetics in the rat according to three different modalities of poisoning.

    PubMed

    Hanak, Anne-Sophie; Chevillard, Lucie; El Balkhi, Souleiman; Risède, Patricia; Peoc'h, Katell; Mégarbane, Bruno

    2015-01-01

    Lithium-induced neurotoxicity may be life threatening. Three patterns have been described, including acute, acute-on-chronic, and chronic poisoning, with unexplained discrepancies in the relationship between clinical features and plasma lithium concentrations. Our objective was to investigate differences in plasma, erythrocyte, cerebrospinal fluid, and brain lithium pharmacokinetics using a multicompartmental approach in rat models mimicking the three human intoxication patterns. We developed acute (intraperitoneal administration of 185 mg/kg Li₂CO₃ in naive rats), acute-on-chronic (intraperitoneal administration of 185 mg/kg Li₂CO₃ in rats receiving 800 mg/l Li₂CO₃ in water during 28 days), and chronic poisoning models (intraperitoneal administration of 74 mg/kg Li₂CO₃ during 5 days in rats with 15 mg/kg K₂Cr₂O₇-induced renal failure). Delayed absorption (4.03 vs 0.31 h), increased plasma elimination (0.65 vs 0.37 l/kg/h) and shorter half-life (1.75 vs 2.68 h) were observed in acute-on-chronically compared with acutely poisoned rats. Erythrocyte and cerebrospinal fluid kinetics paralleled plasma kinetics in both models. Brain lithium distribution was rapid (as early as 15 min), inhomogeneous and with delayed elimination (over 78 h). However, brain lithium accumulation was more marked in acute-on-chronically than acutely poisoned rats [area-under-the-curve of brain concentrations (379 ± 41 vs 295 ± 26, P < .05) and brain-to-plasma ratio (45 ± 10 vs 8 ± 2, P < .0001) at 54 h]. Moreover, brain lithium distribution was increased in chronically compared with acute-on-chronically poisoned rats (brain-to-plasma ratio: 9 ± 1 vs 3 ± 0, P < .01). In conclusion, prolonged rat exposure results in brain lithium accumulation, which is more marked in the presence of renal failure. Our data suggest that differences in plasma and brain kinetics may at least partially explain the observed

  18. Effects of ebselen on ischemia/reperfusion injury in rat brain.

    PubMed

    Aras, M; Altaş, M; Meydan, S; Nacar, E; Karcıoğlu, M; Ulutaş, K T; Serarslan, Y

    2014-10-01

    Interruption of blood flow may result in considerable tissue damage via ischemia/reperfusion (I/R) injury-induced oxidative stress in brain tissues. The aim of the present study was to investigate the effects of Ebselen treatment in short-term global brain I/R injury in rats. The study was carried out on 27 Wistar-albino rats, divided into three groups including Sham group (n = 11), I/R group (n = 8) and I/R+Ebselen group (n = 8). Malondialdehyde (MDA) levels were significantly increased in I/R group in comparison with the Sham group and I/R+Ebselen group (p < 0.001 and p < 0.01). Superoxide dismutase (SOD) activity was significantly lower in I/R group in comparison to both Sham (p < 0.001) and I/R+Ebselen (p < 0.01) groups. Similarly, SOD activity was decreased in I/R+Ebselen group when compared with Sham group (p < 0.001). Sham and I/R groups were similar in terms of nitric oxide (NO) levels. In contrast, the NO level was lower in I/R+Ebselen group when compared with Sham (p < 0.001) and I/R (p < 0.01) groups. There was no significant difference among the groups in terms of glutathione peroxidase and catalase activities. In histopathological examination, the brain tissues of rats that received Ebselen showed morphological improvement. Ebselen has neuron-protective effects due to its antioxidant properties as shown by the decrease in MDA overproduction, increase in SOD activity and the histological improvement after administration of Ebselen to I/R in brain tissue.

  19. Non-signalling energy use in the developing rat brain

    PubMed Central

    Engl, Elisabeth; Jolivet, Renaud; Hall, Catherine N

    2016-01-01

    Energy use in the brain constrains its information processing power, but only about half the brain's energy consumption is directly related to information processing. Evidence for which non-signalling processes consume the rest of the brain's energy has been scarce. For the first time, we investigated the energy use of the brain's main non-signalling tasks with a single method. After blocking each non-signalling process, we measured oxygen level changes in juvenile rat brain slices with an oxygen-sensing microelectrode and calculated changes in oxygen consumption throughout the slice using a modified diffusion equation. We found that the turnover of the actin and microtubule cytoskeleton, followed by lipid synthesis, are significant energy drains, contributing 25%, 22% and 18%, respectively, to the rate of oxygen consumption. In contrast, protein synthesis is energetically inexpensive. We assess how these estimates of energy expenditure relate to brain energy use in vivo, and how they might differ in the mature brain. PMID:27170699

  20. Controlled Attenuation Parameter and Liver Stiffness Measurements for Steatosis Assessment in the Liver Transplant of Brain Dead Donors.

    PubMed

    Mancia, Claire; Loustaud-Ratti, Véronique; Carrier, Paul; Naudet, Florian; Bellissant, Eric; Labrousse, François; Pichon, Nicolas

    2015-08-01

    One of the main selection criteria of the quality of a liver graft is the degree of steatosis, which will determine the success of the transplantation. The aim of this study was to evaluate the ability of FibroScan and its related methods Controlled Attenuation Parameter and Liver Stiffness to assess objectively steatosis and fibrosis in livers from brain-dead donors to be potentially used for transplantation. Over a period of 10 months, 23 consecutive brain dead donors screened for liver procurement underwent a FibroScan and a liver biopsy. The different predictive models of liver retrievability using liver biopsy as the gold standard have led to the following area under receiver operating characteristic curve: 76.6% (95% confidence intervals [95% CIs], 48.2%-100%) when based solely on controlled attenuation parameter, 75.0% (95% CIs, 34.3%-100%) when based solely on liver stiffness, and 96.7% (95% CIs, 88.7%-100%) when based on combined indices. Our study suggests that a preoperative selection of brain-dead donors based on a combination of both Controlled Attenuation Parameter and Liver Stiffness obtained with FibroScan could result in a good preoperative prediction of the histological status and degree of steatosis of a potential liver graft.

  1. Optimization of choline administration regimen for correction of cognitive functions in rats after brain injury.

    PubMed

    Guseva, M V; Kamenskii, A A; Gusev, V B

    2013-06-01

    Choline diet promotes improvement of the brain cognitive functions in rats with moderate-to-severe traumatic brain injury. In previous studies, the rats received choline being standard (0.2%) or choline-supplemented (2%) diet for 2 weeks prior to and 2 weeks after experimental brain injury. To the end of the experiments (in 4 weeks), the post-traumatic disturbances in the cognitive functions were observed in both groups, although they were less pronounced than in the rats kept on the choline-supplemented diet. Based on original mathematical model, this paper proposes a method to calculate the most efficient use of choline to correct the brain cognitive functions. In addition to evaluating the cognitive functions, the study assessed expression of α7 nicotinic acetylcholine receptors, the amount of consumed food and water, and the dynamics of body weight.

  2. Silibinin ameliorates Aβ25-35-induced memory deficits in rats by modulating autophagy and attenuating neuroinflammation as well as oxidative stress.

    PubMed

    Song, Xiaoyu; Zhou, Biao; Cui, Lingyu; Lei, Di; Zhang, Pingping; Yao, Guodong; Xia, Mingyu; Hayashi, Toshihiko; Hattori, Shunji; Ushiki-Kaku, Yuko; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2017-04-01

    Alzheimer's disease (AD) is a progressive, neurodegenerative disease. Accumulating evidence suggests that inflammatory response, oxidative stress and autophagy are involved in amyloid β (Aβ)-induced memory deficits. Silibinin (silybin), a flavonoid derived from the herb milk thistle, is well known for its hepatoprotective activities. In this study, we investigated the neuroprotective effect of silibinin on Aβ 25-35 -injected rats. Results demonstrated that silibinin significantly attenuated Aβ 25-35 -induced memory deficits in Morris water maze and novel object-recognition tests. Silibinin exerted anxiolytic effect in Aβ 25-35 -injected rats as determined in elevated plus maze test. Silibinin attenuated the inflammatory responses, increased glutathione (GSH) levels and decreased malondialdehyde (MDA) levels, and upregulated autophagy levels in the Aβ 25-35 -injected rats. In conclusion, silibinin is a potential candidate for AD treatment because of its anti-inflammatory, antioxidant and autophagy regulating activities.

  3. Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain.

    PubMed

    Shah, Shahid Ali; Amin, Faiz Ul; Khan, Mehtab; Abid, Muhammad Noman; Rehman, Shafiq Ur; Kim, Tae Hyun; Kim, Min Woo; Kim, Myeong Ok

    2016-11-08

    Glutamate-induced excitotoxicity, oxidative damage, and neuroinflammation are believed to play an important role in the development of a number of CNS disorders. We recently reported that a high dose of glutamate could induce AMPK-mediated neurodegeneration in the postnatal day 7 (PND7) rat brain. Yet, the mechanism of glutamate-induced oxidative stress and neuroinflammation in the postnatal brain is not well understood. Here, we report for the first time the mechanism of glutamate-induced oxidative damage, neuroinflammation, and neuroprotection by polyphenolic anthocyanins in PND7. PND7 rat brains, SH-SY5Y, and BV2 cells treated either alone with glutamate or in combination with anthocyanins and compound C were examined with Western blot and immunofluorescence techniques. Additionally, reactive oxygen species (ROS) assay and other ELISA kit assays were employed to know the therapeutic efficacy of anthocyanins against glutamate. A single injection of glutamate to developing rats significantly increased brain glutamate levels, activated and phosphorylated AMPK induction, and inhibited nuclear factor-E2-related factor 2 (Nrf2) after 2, 3, and 4 h in a time-dependent manner. In contrast, anthocyanin co-treatment significantly reduced glutamate-induced AMPK induction, ROS production, neuroinflammation, and neurodegeneration in the developing rat brain. Most importantly, anthocyanins increased glutathione (GSH and GSSG) levels and stimulated the endogenous antioxidant system, including Nrf2 and heme oxygenase-1 (HO-1), against glutamate-induced oxidative stress. Interestingly, blocking AMPK with compound C in young rats abolished glutamate-induced neurotoxicity. Similarly, all these experiments were replicated in SH-SY5Y cells by silencing AMPK with siRNA, which suggests that AMPK is the key mediator in glutamate-induced neurotoxicity. Here, we report for the first time that anthocyanins can potentially decrease glutamate-induced neurotoxicity in young rats. Our work

  4. Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney.

    PubMed

    Duan, Xiaolu; Kong, Zhenzhen; Mai, Xin; Lan, Yu; Liu, Yang; Yang, Zhou; Zhao, Zhijian; Deng, Tuo; Zeng, Tao; Cai, Chao; Li, Shujue; Zhong, Wen; Wu, Wenqi; Zeng, Guohua

    2018-06-01

    Hyperoxaluria-induced oxidative injury of renal tubular epithelial cell is a casual and essential factor in kidney calcium oxalate (CaOx) stone formation. Autophagy has been shown to be critical for the regulation of oxidative stress-induced renal tubular injury; however, little is known about its role in kidney CaOx stone formation. In the present study, we found that the autophagy antagonist chloroquine could significantly attenuate oxalate-induced autophagy activation, oxidative injury and mitochondrial damage of renal tubular cells in vitro and in vivo, as well as hyperoxaluria-induced CaOx crystals depositions in rat kidney, whereas the autophagy agonist rapamycin exerted contrasting effects. In addition, oxalate-induced p38 phosphorylation was significantly attenuated by chloroquine pretreatment but was markedly enhanced by rapamycin pretreatment, whereas the protective effect of chloroquine on rat renal tubular cell oxidative injury was partly reversed by a p38 protein kinase activator anisomycin. Furthermore, the knockdown of Beclin1 represented similar effects to chloroquine on oxalate-induced cell oxidative injury and p38 phosphorylation in vitro. Taken together, our results revealed that autophagy inhibition could attenuate oxalate-induced oxidative injury of renal tubular cell and CaOx crystal depositions in the rat kidney via, at least in part, inhibiting the activation of p38 signaling pathway, thus representing a novel role of autophagy in the regulation of oxalate-induced renal oxidative injury and CaOx crystal depositions for the first time. Copyright © 2018. Published by Elsevier B.V.

  5. Immunological cross-reactivity of cultured rat hippocampal neurons with goldfish brain proteins synthesized during memory consolidation.

    PubMed

    Schmidt, R; Löffler, F; Müller, H W; Seifert, W

    1986-10-29

    Ependymins are goldfish brain glycoproteins exhibiting a specifically enhanced rate of synthesis when the animals adopt a new pattern of swimming behavior. With specific antisera against ependymins it has become possible to look for ependymin-like immunoreactivity in other animal species, both qualitatively by immunofluorescence staining and quantitatively by radioimmunoassay. Ependymin-like immunoreactivity was detected not only in other fish but also in rat brain. In the rat radioimmunoassay measurements were highest for the hippocampal formation and for cultured neurons derived from the embryonic hippocampus. Immunofluorescence staining was performed on various cell culture systems derived from rat brain, in order to establish which cell type contains the antigen. Only neuronal cell populations reacted with the anti-ependymin antisera. Cells derived from embryonic rat brain hippocampus which resembled pyramidal neurons stained particularly bright for ependymin-like immunoreactivity. The antigenic material was distributed throughout the cytoplasm including the neuronal extensions. Various neuron-specific antisera have been used to counterstain the cells containing ependymin-like immunoreactivity.

  6. Lipopolysaccharide endotoxemia induces amyloid-β and p-tau formation in the rat brain.

    PubMed

    Wang, Li-Ming; Wu, Qi; Kirk, Ryan A; Horn, Kevin P; Ebada Salem, Ahmed H; Hoffman, John M; Yap, Jeffrey T; Sonnen, Joshua A; Towner, Rheal A; Bozza, Fernando A; Rodrigues, Rosana S; Morton, Kathryn A

    2018-01-01

    Amyloid beta (Aβ) plaques are not specific to Alzheimer's disease and occur with aging and neurodegenerative disorders. Soluble brain Aβ may be neuroprotective and increases in response to neuroinflammation. Sepsis is associated with neurocognitive compromise. The objective was to determine, in a rat endotoxemia model of sepsis, whether neuroinflammation and soluble Aβ production are associated with Aβ plaque and hyperphosphorylated tau deposition in the brain. Male Sprague Dawley rats received a single intraperitoneal injection of 10 mg/kg of lipopolysaccharide endotoxin (LPS). Brain and blood levels of IL-1β, IL-6, and TNFα and cortical microglial density were measured in LPS-injected and control animals. Soluble brain Aβ and p-tau were compared and Aβ plaques were quantified and characterized. Brain uptake of [ 18 F]flutemetamol was measured by phosphor imaging. LPS endotoxemia resulted in elevations of cytokines in blood and brain. Microglial density was increased in LPS-treated rats relative to controls. LPS resulted in increased soluble Aβ and in p-tau levels in whole brain. Progressive increases in morphologically-diffuse Aβ plaques occurred throughout the interval of observation (to 7-9 days post LPS). LPS endotoxemia resulted in increased [ 18 F]flutemetamol in the cortex and increased cortex: white matter ratios of activity. In conclusion, LPS endotoxemia causes neuroinflammation, increased soluble Aβ and Aβ diffuse plaques in the brain. Aβ PET tracers may inform this neuropathology. Increased p-tau in the brain of LPS treated animals suggests that downstream consequences of Aβ plaque formation may occur. Further mechanistic and neurocognitive studies to understand the causes and consequences of LPS-induced neuropathology are warranted.

  7. Cilostazol attenuates cholestatic liver injury and its complications in common bile duct ligated rats.

    PubMed

    Abdel Kawy, Hala S

    2015-04-05

    Cilostazol is a phosphodiesterase III inhibitor increases adenosine 3', 5'-cyclic monophosphate (cyclic AMP) level which inhibits hepatic stellate cell activation. Its pharmacological effects include vasodilation, inhibition of vascular smooth muscle cell growth, inhibition of platelet activation and aggregation. The aim of the current study was to determine the effects of early administration of low dose cilostazol on cholestatic liver injury induced by common bile duct ligation (CBDL) in rat. Male Wistar rats (180-200g) were divided into three groups: Group A; simple laparotomy group (sham). Group B; CBDL, Group C; CBDL rats treated with cilostazol (9mg/kg daily for 21 days). Six rats from each group were killed by the end of weeks one and three after surgery, livers and serum were collected for biochemical and histopathological studies. Aspartate aminotransferase, alanine aminotransferase, gama glutamyl transferase, alkaline phosphatase and total bilirubin serum levels decreased in the cilostazol treated rats, when compared with CBDL rats. The hepatic levels of tumor necrosis factor-alpha, transforming growth factor-beta, and platelet derived growth factor-B were significantly lower in cilostazol treated rats than that in CBDL rats. Cilostazol decreased vascular endothelial growth factor level and hemoglobin content in the livers. Cilostazol significantly lowered portal pressure, inhibited ductular proliferation, portal inflammation, hepatic fibrosis and decreased hepatic hydroxyproline contents. Administration of cilostazol in CBDL rats improved hepatic functions, decreased ductular proliferation, ameliorated portal inflammation, lowered portal hypertension and reduced fibrosis. These effects of cilostazol may be useful in the attenuation of liver injury in cholestasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. An age-related change in susceptibility of rat brain to encephalomyocarditis virus infection

    PubMed Central

    IKEGAMI, HISASHI; TAKEDA, MAKIO; DOI, KUNIO

    1997-01-01

    Rats were inoculated intraperitoneally (i.p.) or intracerebrally (i.c.) with 1 × 104 plaque forming units (PFU)/animal of the D variant of encephalomyocarditis virus (EMC-D) at 2, 4, 7, 14, 28 or 56 days of age for virological and histopathological examination. In the i.p.-inoculation study, neither viral replication nor lesions were detected in the animals inoculated at 28 and 56 days of age. In the animals inoculated when younger than 14 days of age, lesions were restricted to the brain although viral replication was detected in the brain, heart and pancreas. The brain lesions were characterized by acute meningoencephalitis with neuronal necrosis in the cerebral cortex, hippocampus and thalamus, and viral RNA was detected in degenerated and/or intact neurons. In the i.c.-inoculation study, similar age-related changes in susceptibility of rat brain to EMC-D infection were observed, but a minor difference was that viral replication and lesions were still detected in the hippocampus of some animals inoculated at 28 days of age. These results suggest that an age-related decrease in the susceptibility of rat brain to EMC virus infection may reflect an age-related change in the susceptibility of neurons themselves as well as in maturation of the immune system. PMID:9203984

  9. Effects of orally administered Augmentin on glutamate transporter 1, cystine-glutamate exchanger expression and ethanol intake in alcohol-preferring rats.

    PubMed

    Hakami, Alqassem Y; Alshehri, Fahad S; Althobaiti, Yusuf S; Sari, Youssef

    2017-03-01

    Alcohol dependence is associated with deficits in glutamate uptake and impairment of glutamate homeostasis in different brain reward regions. Glutamate transporter subtype 1 (GLT-1), cystine-glutamate exchanger (xCT) and glutamate/aspartate transporter (GLAST) are one of the key players in regulating extracellular glutamate concentration in the brain. Parenteral treatment with ceftriaxone, β-lactam antibiotic, has been reported to attenuate ethanol consumption and reinstatement to cocaine-seeking behavior, in part, by restoring the expression of GLT-1 and xCT in mesocorticolimbic brain regions in rats. In this study, we focused to test Augmentin (amoxicillin/clavulanate), which can be administered orally to subjects. Therefore, we examined the effects of orally administered Augmentin on ethanol intake as well as GLT-1, xCT and GLAST expression in male alcohol-preferring (P) rats. We found that orally administered Augmentin significantly attenuated ethanol consumption in P rats as compared to the vehicle-treated group. Importantly, the attenuation in ethanol consumption was associated with a significant upregulation of GLT-1 and xCT expression in nucleus accumbens (NAc) and prefrontal cortex (PFC). There was no effect of orally administered Augmentin on GLAST expression in either NAc or PFC. These findings present strong evidence that oral administration of Augmentin can be used as an alternative to parenteral treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Antioxidant potential properties of mushroom extract (Agaricus bisporus) against aluminum-induced neurotoxicity in rat brain.

    PubMed

    Waly, Mostafa I; Guizani, Nejib

    2014-09-01

    Aluminum (Al) is an environmental toxin that induces oxidative stress in neuronal cells. Mushroom cultivar extract (MCE) acted as a potent antioxidant agent and protects against cellular oxidative stress in human cultured neuronal cells. This study aimed to investigate the neuroprotective effect of MCE against Al-induced neurotoxicity in rat brain. Forty Sprague-Dawley rats were divided into 4 groups (10 rats per group), control group, MCE-fed group, Al-administered group and MCE/Al-treated group. Animals were continuously fed ad-libitum their specific diets for 4 weeks. At the end of the experiment, all rats were sacrificed and the brain tissues were homogenized and examined for biochemical measurements of neurocellular oxidative stress indices [glutathione (GSH), Total Antioxidant Capacity (TAC), antioxidant enzymes and oxidized dichlorofluorescein (DCF)]. Al-administration caused inhibition of antioxidant enzymes and a significant decrease in GSH and TAC levels, meanwhile it positively increased cellular oxidized DCF level, as well as Al concentration in brain tissues. Feeding animals with MCE had completely offset the Al-induced oxidative stress and significantly restrict the Al accumulation in brain tissues of Al-administered rats. The results obtained suggest that MCE acted as a potent dietary antioxidant and protects against Al-mediated neurotoxicity, by abrogating neuronal oxidative stress.

  11. Caspase 7: increased expression and activation after traumatic brain injury in rats.

    PubMed

    Larner, Stephen F; McKinsey, Deborah M; Hayes, Ronald L; W Wang, Kevin K

    2005-07-01

    Caspases, a cysteine proteinase family, are required for the initiation and execution phases of apoptosis. It has been suggested that caspase 7, an apoptosis executioner implicated in cell death proteolysis, is redundant to the main executioner caspase 3 and it is generally believed that it is not present in the brain or present in only minute amounts with highly restricted activity. Here we report evidence that caspase 7 is up-regulated and activated after traumatic brain injury (TBI) in rats. TBI disrupts homeostasis resulting in pathological apoptotic activation. After controlled cortical impact TBI of adult male rats we observed, by semiquantitative real-time PCR, increased mRNA levels within the traumatized cortex and hippocampus peaking in the former about 5 days post-injury and in the latter within 6-24 h of trauma. The activation of caspase 7 protein after TBI, demonstrated by immunoblot by the increase of the active form of caspase 7 peaking 5 days post-injury in the cortex and hippocampus, was found to be up-regulated in both neurons and astrocytes by immunohistochemistry. These findings, the first to document the up-regulation of caspase 7 in the brain after acute brain injury in rats, suggest that caspase 7 activation could contribute to neuronal cell death on a scale not previously recognized.

  12. Development of a brain monitoring system for multimodality investigation in awake rats.

    PubMed

    Limnuson, Kanokwan; Narayan, Raj K; Chiluwal, Amrit; Bouton, Chad; Ping Wang; Chunyan Li

    2016-08-01

    Multimodal brain monitoring is an important approach to gain insight into brain function, modulation, and pathology. We have developed a unique micromachined neural probe capable of real-time continuous monitoring of multiple physiological, biochemical and electrophysiological variables. However, to date, it has only been used in anesthetized animals due to a lack of an appropriate interface for awake animals. We have developed a versatile headstage for recording the small neural signal and bridging the sensors to the remote sensing units for multimodal brain monitoring in awake rats. The developed system has been successfully validated in awake rats by simultaneously measuring four cerebral variables: electrocorticography, oxygen tension, temperature and cerebral blood flow. Reliable signal recordings were obtained with minimal artifacts from movement and environmental noise. For the first time, multiple variables of cerebral function and metabolism were simultaneously recorded from awake rats using a single neural probe. The system is envisioned for studying the effects of pharmacologic treatments, mapping the development of central nervous system diseases, and better understanding normal cerebral physiology.

  13. Altered brain serotonergic neurotransmission following caffeine withdrawal produces behavioral deficits in rats.

    PubMed

    Khaliq, Saima; Haider, Saida; Naqvi, Faizan; Perveen, Tahira; Saleem, Sadia; Haleem, Darakhshan Jabeen

    2012-01-01

    Caffeine administration has been shown to enhance performance and memory in rodents and humans while its withdrawal on the other hand produces neurobehavioral deficits which are thought to be mediated by alterations in monoamines neurotransmission. A role of decreased brain 5-HT (5-hydroxytryptamine, serotonin) levels has been implicated in impaired cognitive performance and depression. Memory functions of rats were assessed by Water Maze (WM) and immobility time by Forced Swim Test (FST). The results of this study showed that repeated caffeine administration for 6 days at 30 mg/kg dose significantly increases brain 5-HT (p<0.05) and 5-HIAA (p<0.05) levels and its withdrawal significantly (p<0.05) decreased brain 5-HT levels. A significant decrease in latency time was exhibited by rats in the WM repeatedly injected with caffeine. Withdrawal of caffeine however produced memory deficits and significantly increases the immobility time of rats in FST. The results of this study are linked with caffeine induced alterations in serotonergic neurotransmission and its role in memory and depression.

  14. Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats

    PubMed Central

    Lorón-Sánchez, Alejandro; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David; Portell-Cortés, Isabel

    2016-01-01

    The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI) or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group) or 0.01 mg/kg epinephrine (TBI-Epi group) or no injection (TBI-0 and Sham-0 groups). Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal. PMID:27127685

  15. Caspase-3 inhibitor prevents the apoptosis of brain tissue in rats with acute cerebral infarction.

    PubMed

    Sun, Yuhua; Xu, Yuming; Geng, Lijiao

    2015-07-01

    The aim of the present study was to investigate the effect of the caspase-3 inhibitor z-DEVD-fmk on the apoptosis of the brain tissues of rats with acute cerebral infarction. Middle cerebral artery occlusion was used to establish a rat model of infarction, and the rats were randomly divided into a sham group (n=15), model group (n=15) and treatment group (n=15). z-DEVD-fmk (2.5 µg/kg) was injected into the intracranial artery of rats in the treatment group, while the same volume of phosphate-buffered saline solution was administered to the rats of the sham and model groups. After 48 h, all rats were sacrificed and their brain tissues were removed. The caspase-3 mRNA level, protein level and activity, brain cell apoptosis index and infarction scope of the three groups were analyzed. Neurological impairment was also assessed. At 48 h after model establishment, the caspase-3 mRNA and protein levels in the brain tissues of the model group were significantly higher than those of the sham group, and those in the treatment group were significantly lower than those in the model group (P<0.05); however, they remained significantly higher than those in the sham group. Caspase-3 activity in the model group was significantly higher than that in the sham group, and treatment with the caspase-3 inhibitor significantly reduced caspase-3 activity compared with that in the model group (P<0.05). The apoptosis index and infarction scope in the model and treatment groups were significantly increased compared with those in the sham group, and were significantly lower in the treatment group than in the model group (P<0.05). The neurological impairment of rats in the model and treatment groups was increased significantly compared with that in the sham group, and the treatment group exhibited a significantly lower level of neurological impairment than the model group (P<0.05). In conclusion, the caspase-3 inhibitor z-DEVD-fmk effectively inhibited apoptosis and delayed the necrosis of

  16. A comparison of neurodegeneration linked with neuroinflammation in different brain areas of rats after intracerebroventricular colchicine injection.

    PubMed

    Sil, Susmita; Ghosh, Rupsa; Sanyal, Moumita; Guha, Debjani; Ghosh, Tusharkanti

    2016-01-01

    Colchicine induces neurodegeneration, but the extent of neurodegeneration in different areas of the brain in relation to neuroinflammation remains unclear. Such information may be useful to allow for the development of a model to compare colchicine-induced neurodegeneration with other neurodegenerative diseases such as Alzheimer's Disease (AD). The present study was designed to investigate the extent of neurodegeneration along with neuroinflammation in different areas of the brain, e.g. frontal cortex, parietal cortex, occipital cortex, corpus striatum, amygdala and hippocampus, in rats along with memory impairment 21 days after a single intracerebroventricular (icv) injection of colchicine. Memory parameters were measured before and after icv colchicine injection in all test groups of rats (control, sham-operated, colchicine-injected [ICIR] rats). On Day 21 post-injection, rats from all groups were anesthesized and tissues from the various brain areas were collected for assessment of biomarkers of neuroinflammation (i.e. levels of ROS, nitrite and proinflammatory cytokines TNFα and IL-1β) and neurodegeneration (assessed histologically). The single injection of colchicine resulted in impaired memory and neurodegeneration (significant presence of plaques, Nissl granule chromatolysis) in various brain areas (frontal cortex, amygdala, parietal cortex, corpus striatum), with maximum severity in the hippocampus. While IL-1β, TNFα, ROS and nitrite levels were altered in different brain areas in the ICIR rats, these parameters had their greatest change in the hippocampus. This study showed that icv injection of colchicine caused strong neurodegeneration and neuroinflammation in the hippocampus of rats and the increases in neurodegeneration were corroborated with those of neuroinflammation at the site. The present study also showed that the extent of neurodegeneration and neuroinflammation in different brain areas of the colchicine-injected rats were AD-like and

  17. The Effects of Shilajit on Brain Edema, Intracranial Pressure and Neurologic Outcomes following the Traumatic Brain Injury in Rat.

    PubMed

    Khaksari, Mohammad; Mahmmodi, Reza; Shahrokhi, Nader; Shabani, Mohammad; Joukar, Siavash; Aqapour, Mobin

    2013-07-01

    Brain edema is one of the most serious causes of death within the first few days after trauma brain injury (TBI). In this study we have investigated the role of Shilajit on brain edema, blood-brain barrier (BBB) permeability, intracranial pressure (ICP) and neurologic outcomes following brain trauma. Diffuse traumatic brain trauma was induced in rats by drop of a 250 g weight from a 2 m high (Marmarou's methods). Animals were randomly divided into 5 groups including sham, TBI, TBI-vehicle, TBI-Shi150 group and TBI-Shi250 group. Rats were undergone intraperitoneal injection of Shilajit and vehicle at 1, 24, 48 and 72 hr after trauma. Brain water content, BBB permeability, ICP and neurologic outcomes were finally measured. Brain water and Evans blue dye contents showed significant decrease in Shilajit-treated groups compared to the TBI-vehicle and TBI groups. Intracranial pressure at 24, 48 and 72 hr after trauma had significant reduction in Shilajit-treated groups as compared to TBI-vehicle and TBI groups (P<0.001). The rate of neurologic outcomes improvement at 4, 24, 48 and 72 hr after trauma showed significant increase in Shilajit-treated groups in comparison to theTBI- vehicle and TBI groups (P <0.001). The present results indicated that Shilajit may cause in improvement of neurologic outcomes through decreasing brain edema, disrupting of BBB, and ICP after the TBI.

  18. Increased CD147 (EMMPRIN) expression in the rat brain following traumatic brain injury.

    PubMed

    Wei, Ming; Li, Hong; Shang, Yanguo; Zhou, Ziwei; Zhang, Jianning

    2014-10-17

    The extracellular matrix metalloproteinase inducer (EMMPRIN), or CD147, has been known to play a key regulatory role in vascular permeability and leukocyte activation by inducing the expression of matrix metalloproteinases (MMPs). The effects of traumatic brain injury on the expression of EMMPRIN remain poorly understood. In this study, we investigated changes in EMMPRIN expression in a rat model of fluid percussion injury (FPI) and examined the potential association between EMMPRIN and MMP-9 expression. Adult male rats were subjected to FPI. EMMPRIN expression was markedly up-regulated in the brain tissue surrounding the injured region 6-48 h after TBI, as measured by immunoblot and immunohistochemistry. EMMPRIN expression was localized to inflammatory cells. The increase in EMMPRIN expression was temporally correlated with an increase in MMP-9 levels. These data demonstrate, for the first time, changes in CD147 and MMP-9 expression following TBI. These data also suggest that CD147 and MMP-9 may play a role in vascular injuries after TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Brain-Targeted (Pro)Renin Receptor Knockdown attenuates Angiotensin II-Dependent Hypertension

    PubMed Central

    Li, Wencheng; Peng, Hua; Cao, Theresa; Sato, Ryosuke; McDaniels, Sarah. J.; Kobori, Hiroyuki; Navar, L. Gabriel; Feng, Yumei

    2012-01-01

    The (pro)renin receptor is a newly discovered member of the brain renin-angiotensin system. To investigate the role of brain (pro)renin receptor in hypertension, adeno-associated virus-mediated (pro)renin receptor shRNA was used to knockdown (pro)renin receptor expression in the brain of non-transgenic normotensive and human renin-angiotensinogen double transgenic hypertensive mice. Blood pressure was monitored using implanted telemetric probes in conscious animals. Real-time PCR and immunostaining were performed to determine (pro)renin receptor, angiotensin II type 1 receptor and vasopressin mRNA levels. Plasma vasopressin levels were determined by Enzyme-Linked Immuno Sorbent Assay. Double transgenic mice exhibited higher blood pressure, elevated cardiac and vascular sympathetic tone, and impaired spontaneous baroreflex sensitivity. Intracerebroventricular delivery of (pro)renin receptor shRNA significantly reduced blood pressure, cardiac and vasomotor sympathetic tone, and improved baroreflex sensitivity compared to the control virus treatment in double transgenic mice. (Pro)renin receptor knockdown significantly reduced angiotensin II type 1 receptor and vasopressin levels in double transgenic mice. These data indicate that (pro)renin receptor knockdown in the brain attenuates angiotensin II-dependent hypertension and is associated with a decrease insympathetic tone and an improvement of the baroreflex sensitivity. In addition, brain-targeted (pro)renin receptor knockdown is associated with down-regulation of angiotensin II type 1 receptor and vasopressin levels. We conclude that central (pro)renin receptor contributes to the pathogenesis of hypertension in human renin-angiotensinogen transgenic mice. PMID:22526255

  20. Intrinsic sensory deprivation induced by neonatal capsaicin treatment induces changes in rat brain and behaviour of possible relevance to schizophrenia

    PubMed Central

    Newson, Penny; Lynch-Frame, Ann; Roach, Rebecca; Bennett, Sarah; Carr, Vaughan; Chahl, Loris A

    2005-01-01

    Schizophrenia is considered to be a neurodevelopmental disorder with origins in the prenatal or neonatal period. Brains from subjects with schizophrenia have enlarged ventricles, reduced cortical thickness (CT) and increased neuronal density in the prefrontal cortex compared with those from normal subjects. Subjects with schizophrenia have reduced pain sensitivity and niacin skin flare responses, suggesting that capsaicin-sensitive primary afferent neurons might be abnormal in schizophrenia. This study tested the hypothesis that intrinsic somatosensory deprivation, induced by neonatal capsaicin treatment, causes changes in the brains of rats similar to those found in schizophrenia. Wistar rats were treated with capsaicin, 50 mg kg−1 subcutaneously, or vehicle (control) at 24–36 h of life. At 5–7 weeks behavioural observations were made, and brains removed, fixed and sectioned. The mean body weight of capsaicin-treated rats was not significantly different from control, but the mean brain weight of male, but not female, rats, was significantly lower than control. Capsaicin-treated rats were hyperactive compared with controls. The hyperactivity was abolished by haloperidol. Coronal brain sections of capsaicin-treated rats had smaller cross-sectional areas, reduced CT, larger ventricles and aqueduct, smaller hippocampal area and reduced corpus callosum thickness, than brain sections from control rats. Neuronal density was increased in several cortical areas and the caudate putamen, but not in the visual cortex. It is concluded that neonatal capsaicin treatment of rats produces brain changes that are similar to those found in brains of subjects with schizophrenia. PMID:16041396

  1. Tannoid principles of Emblica officinalis renovate cognitive deficits and attenuate amyloid pathologies against aluminum chloride induced rat model of Alzheimer's disease.

    PubMed

    Justin Thenmozhi, Arokiasamy; Dhivyabharathi, Mathiyazahan; William Raja, Tharsius Raja; Manivasagam, Thamilarasan; Essa, Musthafa Mohamed

    2016-07-01

    Emblica officinalis is mentioned as a maharasayana in many Ayurvedic texts and promotes intelligence, memory, freedom from disease, longevity, and strength of the senses. The present study has been designed to explore the memory-enhancing effect of the tannoid principles of E. officinalis (EoT) at the biochemical, anatomical, behavioral, and molecular levels against aluminum chloride (AlCl3) induced Alzheimer's disease (AD) in rats. Aluminum is reported to have an important role in the etiology, pathogenesis, and development of AD. Male Wistar rats were divided into control, AlCl3 treated, AlCl3 and EoT (50, 100, and 200 mg/kg bw) co-treated, and EoT (200 mg/kg bw) alone treated groups. In control and experimental rats, behavior tests including water maze and open field test, estimation of aluminum, assay of acetylcholinesterase (AChE) activity, and expression of amyloidogenic proteins were performed. Intraperitonial injection of AlCl3 (100 mg/kg bw) for 60 days significantly elevated the concentration of aluminum (Al), activity of AChE and protein expressions of amyloid precursor protein, A-beta1-42, beta-, and gamma-secretases as compared to control group in hippocampus and cortex. Co-administration of EoT orally to AlCl3 rats for 60 days significantly revert back the Al concentration, AChE activity, and A-beta synthesis-related molecules in the studied brain regions. The spatial learning, memory, and locomotor impairments observed in AlCl3 treated rats were significantly attenuated by EoT. Therefore, EoT may be a promising therapy in ameliorating neurotoxicity of aluminum, however further studies are warranted to elucidate the exact mechanism of action of EoT.

  2. Ghrelin Pre-treatment Attenuates Local Oxidative Stress and End Organ Damage During Cardiopulmonary Bypass in Anesthetized Rats

    PubMed Central

    Sukumaran, Vijayakumar; Tsuchimochi, Hirotsugu; Fujii, Yutaka; Hosoda, Hiroshi; Kangawa, Kenji; Akiyama, Tsuyoshi; Shirai, Mikiyasu; Tatsumi, Eisuke; Pearson, James T.

    2018-01-01

    Cardiopulmonary bypass (CPB) induced systemic inflammation significantly contributes to the development of postoperative complications, including respiratory failure, myocardial, renal and neurological dysfunction and ultimately can lead to failure of multiple organs. Ghrelin is a small endogenous peptide with wide ranging physiological effects on metabolism and cardiovascular regulation. Herein, we investigated the protective effects of ghrelin against CPB-induced inflammatory reactions, oxidative stress and acute organ damage. Adult male Sprague Dawley rats randomly received vehicle (n = 5) or a bolus of ghrelin (150 μg/kg, sc, n = 5) and were subjected to CPB for 4 h (protocol 1). In separate rats, ghrelin pre-treatment (protocol 2) was compared to two doses of ghrelin (protocol 3) before and after CPB for 2 h followed by recovery for 2 h. Blood samples were taken prior to CPB, and following CPB at 2 h and 4 h. Organ nitrosative stress (3-nitrotyrosine) was measured by Western blotting. CPB induced leukocytosis with increased plasma levels of tumor necrosis factor-α and interleukin-6 indicating a potent inflammatory response. Ghrelin treatment significantly reduced plasma organ damage markers (lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase) and protein levels of 3-nitrotyrosine, particularly in the brain, lung and liver, but only partly suppressed inflammatory cell invasion and did not reduce proinflammatory cytokine production. Ghrelin partially attenuated the CPB-induced elevation of epinephrine and to a lesser extent norepinephrine when compared to the CPB saline group, while dopamine levels were completely suppressed. Ghrelin treatment sustained plasma levels of reduced glutathione and decreased glutathione disulphide when compared to CPB saline rats. These results suggest that even though ghrelin only partially inhibited the large CPB induced increase in catecholamines and organ macrophage infiltration, it reduced oxidative

  3. [UPLC-MS/MS determination of content of three iridoids of xingnaojing oral preparation in rat brains and study on their brain pharmacokinetics].

    PubMed

    Xu, Pan; Du, Shou-Ying; Lu, Yang; Bai, Jie; Liu, Hui-Min; Du, Qiu; Chen, Zhen-Zhen; Wang, Zhen

    2014-06-01

    To establish a UPLC-MS/MS method for the simultaneous determination of geniposide, genipin 1-O-beta-D-gentiobioside and geniposidic acid in rat brains and study the brain pharmacokinetics of the three iridoid glycosides in stroke rat after the oral administration of Xingnaojing. In this experiment, brain samples were precipitated with protein for twice. Acquity BEH C18 column was adopted, with acetonitrile-0.1% formic acid-water as the mobile phase for gradient elution. ESI source was adopted for mass spectra; multiple reaction monitoring (MRM) was conducted to detect negative ions. The time for sample analysis was 3.5 min. the results showed good linear relations among the three iridoid glycosides, with the extraction recovery between 99.6% and 114.3%, good intra- and inter-day precisions and accuracies and stability in line with the requirements. The t1/2 and MRT in the three components were similar in brains of stroke rats. Geniposide and genipin 1-O-beta-D-gentiobioside showed double peaks; where as geniposidic acid showed a single peak. In conclusion, the method is so specific, sensitive, accurate and reliable that it can be used to study the brain pharmacokinetics of Xingnaojing oral preparation.

  4. High-sensitivity terahertz imaging of traumatic brain injury in a rat model

    NASA Astrophysics Data System (ADS)

    Zhao, Hengli; Wang, Yuye; Chen, Linyu; Shi, Jia; Ma, Kang; Tang, Longhuang; Xu, Degang; Yao, Jianquan; Feng, Hua; Chen, Tunan

    2018-03-01

    We demonstrated that different degrees of experimental traumatic brain injury (TBI) can be differentiated clearly in fresh slices of rat brain tissues using transmission-type terahertz (THz) imaging system. The high absorption region in THz images corresponded well with the injured area in visible images and magnetic resonance imaging results. The THz image and absorption characteristics of dehydrated paraffin-embedded brain slices and the hematoxylin and eosin (H&E)-stained microscopic images were investigated to account for the intrinsic differences in the THz images for the brain tissues suffered from different degrees of TBI and normal tissue aside from water. The THz absorption coefficients of rat brain tissues showed an increase in the aggravation of brain damage, particularly in the high-frequency range, whereas the cell density decreased as the order of mild, moderate, and severe TBI tissues compared with the normal tissue. Our results indicated that the different degrees of TBI were distinguishable owing to the different water contents and probable hematoma components distribution rather than intrinsic cell intensity. These promising results suggest that THz imaging has great potential as an alternative method for the fast diagnosis of TBI.

  5. Repeated administration of an acetylcholinesterase inhibitor attenuates nicotine taking in rats and smoking behavior in human smokers

    PubMed Central

    Ashare, R L; Kimmey, B A; Rupprecht, L E; Bowers, M E; Hayes, M R; Schmidt, H D

    2016-01-01

    Tobacco smoking remains the leading cause of preventable death worldwide and current smoking cessation medications have limited efficacy. Thus, there is a clear need for translational research focused on identifying novel pharmacotherapies for nicotine addiction. Our previous studies demonstrated that acute administration of an acetylcholinesterase inhibitor (AChEI) attenuates nicotine taking and seeking in rats and suggest that AChEIs could be repurposed for smoking cessation. Here, we expand upon these findings with experiments designed to determine the effects of repeated AChEI administration on voluntary nicotine taking in rats as well as smoking behavior in human smokers. Rats were trained to self-administer intravenous infusions of nicotine (0.03 mg kg−1 per 0.59 ml) on a fixed-ratio-5 schedule of reinforcement. Once rats maintained stable nicotine taking, galantamine or donepezil was administered before 10 consecutive daily nicotine self-administration sessions. Repeated administration of 5.0 mg kg−1 galantamine and 3.0 mg kg−1 donepezil attenuated nicotine self-administration in rats. These effects were reinforcer-specific and not due to adverse malaise-like effects of drug treatment as repeated galantamine and donepezil administration had no effects on sucrose self-administration, ad libitum food intake and pica. The effects of repeated galantamine (versus placebo) on cigarette smoking were also tested in human treatment-seeking smokers. Two weeks of daily galantamine treatment (8.0 mg (week 1) and 16.0 mg (week 2)) significantly reduced smoking rate as well as smoking satisfaction and reward compared with placebo. This translational study indicates that repeated AChEI administration reduces nicotine reinforcement in rats and smoking behavior in humans at doses not associated with tolerance and/or adverse effects. PMID:26784967

  6. [Effects of electromagnetic pulse on blood-brain barrier permeability and tight junction proteins in rats].

    PubMed

    Qiu, Lian-bo; Ding, Gui-rong; Zhang, Ya-mei; Zhou, Yan; Wang, Xiao-wu; Li, Kang-chu; Xu, Sheng-long; Tan, Juan; Zhou, Jia-xing; Guo, Guo-zhen

    2009-09-01

    To study the effect of electromagnetic pulse (EMP) on the permeability of blood-brain barrier, tight junction (TJ)-associated protein expression and localization in rats. 66 male SD rats, weighing (200 approximately 250) g, were sham or whole-body exposed to EMP at 200 kV/m for 200 pulses. The repetition rate was 1 Hz. The permeability of the blood-brain barrier in rats was assessed by albumin immunohistochemistry. The expression of typical tight junction protein ZO-1 and occludin in both cerebral cortex homogenate and cerebral cortex microvessel homogenate was analyzed by the Western blotting and the distribution of ZO-1 and occludin was examined by immunofluorescence microscopy. In the sham exposure rats, no brain capillaries showed albumin leakage, at 0.5 h after 200 kV/m EMP exposure for 200 pulses; a few brain capillaries with extravasated serum albumin was found, with the time extended, the number of brain capillaries with extravasated serum albumin increased, and reached the peak at 3 h, then began to recover at 6 h. In addition, no change in the distribution of the occludin was found after EMP exposure. Total occludin expression had no significant change compared with the control. However, the expression level of ZO-1 significantly decreased at 1 h and 3 h after EMP exposure in both cerebral cortex homogenate and cerebral cortex microvessel homogenate. Furthermore, immunofluorescence studies also showed alterations in ZO-1 protein localization in cerebral cortex microvessel. The EMP exposure (200 kV/m, 200 pulses) could increase blood-brain barrier permeability in rat, and this change is associated with specific alterations in tight junction protein ZO-1.

  7. Royal jelly attenuates azathioprine induced toxicity in rats.

    PubMed

    Ahmed, Walaa M S; Khalaf, A A; Moselhy, Walaa A; Safwat, Ghada M

    2014-01-01

    In the present study, we investigated the potential protective effects of royal jelly against azathioprine-induced toxicity in rat. Intraperitoneal administration of azathioprine (50 mg/kgB.W.) induced a significant decrease in RBCs count, Hb concentration, PCV%, WBCs count, differential count and platelet count, hepatic antioxidant enzymes (reduced glutathione and glutathione s-transferase) and increase of serum transaminases (alanine aminotransferase and aspartate aminotransferase enzymes) activities, alkaline phosphatase and malondialdehyde formation. Azathioprine induced hepatotoxicity was reflected by marked pathological changes in the liver. Oral administration of royal jelly (200 mg/kgB.W.) was efficient in counteracting azathioprine toxicity whereas it altered the anemic condition, leucopenia and thrombocytopenia induced by azathioprine. Furthermore, royal jelly exerted significant protection against liver damage induced by azathioprine through reduction of the elevated activities of serum hepatic enzymes. Moreover, royal jelly blocked azathioprine-induced lipid peroxidation through decreasing the malondialdehyde formation. In conclusion, royal jelly possesses a capability to attenuate azathioprine-induced toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Mycophenolate mofetil attenuates pulmonary arterial hypertension in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Chihiro; Takahashi, Masafumi; Morimoto, Hajime

    Pulmonary arterial hypertension (PAH) is characterized by abnormal proliferation of smooth muscle cells (SMCs), leading to occlusion of pulmonary arterioles, right ventricular (RV) hypertrophy, and death. We investigated whether mycophenolate mofetil (MMF), a potent immunosuppresssant, prevents the development of monocrotaline (MCT)-induced PAH in rats. MMF effectively decreased RV systolic pressure and RV hypertrophy, and reduced the medial thickness of pulmonary arteries. MMF significantly inhibited the number of proliferating cell nuclear antigen (PCNA)-positive cells, infiltration of macrophages, and expression of P-selectin and interleukin-6 on the endothelium of pulmonary arteries. The infiltration of T cells and mast cells was not affected bymore » MMF. In vitro experiments revealed that mycophenolic acid (MPA), an active metabolite of MMF, dose-dependently inhibited proliferation of human pulmonary arterial SMCs. MMF attenuated the development of PAH through its anti-inflammatory and anti-proliferative properties. These findings provide new insight into the potential role of immunosuppressants in the treatment of PAH.« less

  9. Acetate transport and utilization in the rat brain.

    PubMed

    Deelchand, Dinesh K; Shestov, Alexander A; Koski, Dee M; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2009-05-01

    Acetate, a glial-specific substrate, is an attractive alternative to glucose for the study of neuronal-glial interactions. The present study investigates the kinetics of acetate uptake and utilization in the rat brain in vivo during infusion of [2-13C]acetate using NMR spectroscopy. When plasma acetate concentration was increased, the rate of brain acetate utilization (CMR(ace)) increased progressively and reached close to saturation for plasma acetate concentration > 2-3 mM, whereas brain acetate concentration continued to increase. The Michaelis-Menten constant for brain acetate utilization (K(M)(util) = 0.01 +/- 0.14 mM) was much smaller than for acetate transport through the blood-brain barrier (BBB) (K(M)(t) = 4.18 +/- 0.83 mM). The maximum transport capacity of acetate through the BBB (V(max)(t) = 0.96 +/- 0.18 micromol/g/min) was nearly twofold higher than the maximum rate of brain acetate utilization (V(max)(util) = 0.50 +/- 0.08 micromol/g/min). We conclude that, under our experimental conditions, brain acetate utilization is saturated when plasma acetate concentrations increase above 2-3 mM. At such high plasma acetate concentration, the rate-limiting step for glial acetate metabolism is not the BBB, but occurs after entry of acetate into the brain.

  10. Isolated spinal cord contusion in rats induces chronic brain neuroinflammation, neurodegeneration, and cognitive impairment. Involvement of cell cycle activation.

    PubMed

    Wu, Junfang; Stoica, Bogdan A; Luo, Tao; Sabirzhanov, Boris; Zhao, Zaorui; Guanciale, Kelsey; Nayar, Suresh K; Foss, Catherine A; Pomper, Martin G; Faden, Alan I

    2014-01-01

    Cognitive dysfunction has been reported in patients with spinal cord injury (SCI), but it has been questioned whether such changes may reflect concurrent head injury, and the issue has not been addressed mechanistically or in a well-controlled experimental model. Our recent rodent studies examining SCI-induced hyperesthesia revealed neuroinflammatory changes not only in supratentorial pain-regulatory sites, but also in other brain regions, suggesting that additional brain functions may be impacted following SCI. Here we examined effects of isolated thoracic SCI in rats on cognition, brain inflammation, and neurodegeneration. We show for the first time that SCI causes widespread microglial activation in the brain, with increased expression of markers for activated microglia/macrophages, including translocator protein and chemokine ligand 21 (C-C motif). Stereological analysis demonstrated significant neuronal loss in the cortex, thalamus, and hippocampus. SCI caused chronic impairment in spatial, retention, contextual, and fear-related emotional memory-evidenced by poor performance in the Morris water maze, novel objective recognition, and passive avoidance tests. Based on our prior work implicating cell cycle activation (CCA) in chronic neuroinflammation after SCI or traumatic brain injury, we evaluated whether CCA contributed to the observed changes. Increased expression of cell cycle-related genes and proteins was found in hippocampus and cortex after SCI. Posttraumatic brain inflammation, neuronal loss, and cognitive changes were attenuated by systemic post-injury administration of a selective cyclin-dependent kinase inhibitor. These studies demonstrate that chronic brain neurodegeneration occurs after isolated SCI, likely related to sustained microglial activation mediated by cell cycle activation.

  11. Blocking Cyclic Adenosine Diphosphate Ribose-mediated Calcium Overload Attenuates Sepsis-induced Acute Lung Injury in Rats

    PubMed Central

    Peng, Qian-Yi; Zou, Yu; Zhang, Li-Na; Ai, Mei-Lin; Liu, Wei; Ai, Yu-Hang

    2016-01-01

    Background: Acute lung injury (ALI) is a common complication of sepsis that is associated with high mortality. Intracellular Ca2+ overload plays an important role in the pathophysiology of sepsis-induced ALI, and cyclic adenosine diphosphate ribose (cADPR) is an important regulator of intracellular Ca2+ mobilization. The cluster of differentiation 38 (CD38)/cADPR pathway has been found to play roles in multiple inflammatory processes but its role in sepsis-induced ALI is still unknown. This study aimed to investigate whether the CD38/cADPR signaling pathway is activated in sepsis-induced ALI and whether blocking cADPR-mediated calcium overload attenuates ALI. Methods: Septic rat models were established by cecal ligation and puncture (CLP). Rats were divided into the sham group, the CLP group, and the CLP+ 8-bromo-cyclic adenosine diphosphate ribose (8-Br-cADPR) group. Nicotinamide adenine dinucleotide (NAD+), cADPR, CD38, and intracellular Ca2+ levels in the lung tissues were measured at 6, 12, 24, and 48 h after CLP surgery. Lung histologic injury, tumor necrosis factor (TNF)-α, malondialdehyde (MDA) levels, and superoxide dismutase (SOD) activities were measured. Results: NAD+, cADPR, CD38, and intracellular Ca2+ levels in the lungs of septic rats increased significantly at 24 h after CLP surgery. Treatment with 8-Br-cADPR, a specific inhibitor of cADPR, significantly reduced intracellular Ca2+ levels (P = 0.007), attenuated lung histological injury (P = 0.023), reduced TNF-α and MDA levels (P < 0.001 and P = 0.002, respectively) and recovered SOD activity (P = 0.031) in the lungs of septic rats. Conclusions: The CD38/cADPR pathway is activated in the lungs of septic rats, and blocking cADPR-mediated calcium overload with 8-Br-cADPR protects against sepsis-induced ALI. PMID:27411462

  12. Thyroid insufficiency in developing rat brain: A genomic analysis.

    EPA Science Inventory

    Thyroid Insufficiency in the Developing Rat Brain: A Genomic Analysis. JE Royland and ME Gilbert, Neurotox. Div., U.S. EPA, RTP, NC, USA. Endocrine disruption (ED) is an area of major concern in environmental neurotoxicity. Severe deficits in thyroid hormone (TH) levels have bee...

  13. Structural and functional effects of social isolation on the hippocampus of rats with traumatic brain injury.

    PubMed

    Khodaie, Babak; Lotfinia, Ahmad Ali; Ahmadi, Milad; Lotfinia, Mahmoud; Jafarian, Maryam; Karimzadeh, Fariba; Coulon, Philippe; Gorji, Ali

    2015-02-01

    Social isolation has significant long-term psychological and physiological consequences. Both social isolation and traumatic brain injury (TBI) alter normal brain function and structure. However, the influence of social isolation on recovery from TBI is unclear. This study aims to evaluate if social isolation exacerbates the anatomical and functional deficits after TBI in young rats. Juvenile male rats were divided into four groups; sham operated control with social contacts, sham control with social isolation, TBI with social contacts, and TBI with social isolation. During four weeks after brain injury in juvenile rats, we evaluated the animal behaviors by T-maze and open-field tests, recorded brain activity with electrocorticograms and assessed structural changes by histological procedures in the hippocampal dentate gyrus, CA1, and CA3 areas. Our findings revealed significant memory impairments and hyperactivity conditions in rats with TBI and social isolation compared to the other groups. Histological assessments showed an increase of the mean number of dark neurons, apoptotic cells, and caspase-3 positive cells in all tested areas of the hippocampus in TBI rats with and without social isolation compared to sham rats. Furthermore, social isolation significantly increased the number of dark cells, apoptotic neurons, and caspase-3 positive cells in the hippocampal CA3 region in rats with TBI. This study indicates the harmful effect of social isolation on anatomical and functional deficits induced by TBI in juvenile rats. Prevention of social isolation may improve the outcome of TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Rapamycin ameliorates brain metabolites alterations after transient focal ischemia in rats.

    PubMed

    Chauhan, Anjali; Sharma, Uma; Jagannathan, Naranamangalam R; Gupta, Yogendra Kumar

    2015-06-15

    Rapamycin has been shown to protect against middle cerebral artery occlusion (MCAo) induced ischemic injury. In this study, the neuroprotective effect of rapamycin on the metabolic changes induced by MCAo was evaluated using nuclear magnetic resonance (NMR) spectroscopy of brain tissues. MCAo in rats was induced by insertion of nylon filament. One hour after ischemia, rapamycin (250 µg/kg, i.p.) in dimethyl sulfoxide was administered. Reperfusion was done 2h after ischemia. Twenty-four hours after ischemia phospholipase A2 (PLA2) levels and metabolic changes were assessed. Perchloric acid extraction was performed on the brain of all animals (n=7; sham, vehicle; DMSO and rapamycin 250 µg/kg) and the various brain metabolites were assessed by NMR spectroscopy. In all 44 metabolites were assigned in the proton NMR spectrum of rat brain tissues. In the vehicle group, we observed increased lactate levels and decreased levels of glutamate/glutamine, choline containing compounds, creatine/phosphocreatine (Cr/PCr), taurine, myo-inositol, γ-amino butryic acid (GABA), N-aspartyl aspartate (NAA), purine and pyrimidine metabolites. In rapamycin treated rats, there was increase in the levels of choline containing compounds, NAA, myo-inositol, glutamate/glutamine, GABA, Cr/PCr and taurine as compared to those of vehicle control (P<0.05). Rapamycin treatment reduced PLA2 levels as compared to vehicle group (P<0.05). Our findings indicated that rapamycin reduced the increased PLA2 levels and altered brain metabolites after MCAo. These protective effects might be attributed to its effect on cell membrane metabolism; glutamate induced toxicity and calcium homeostasis in stroke. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Nandrolone attenuates aortic adaptation to exercise in rats.

    PubMed

    Sun, Mengwei; Shen, Weili; Zhong, Meifang; Wu, Pingping; Chen, Hong; Lu, Aiyun

    2013-03-15

    In this study, we investigated the interaction between exercise-induced mitochondrial adaptation of large vessels and the effects of chronic anabolic androgenic steroids (AASs). Four groups of Sprague-Dawley rats were studied: (i) sedentary, (ii) sedentary + nandrolone-treated, (iii) aerobic exercise trained, and (iv) trained + nandrolone-treated. Aerobic training increased the levels of aortic endothelial nitric oxide synthase (eNOS) and heme oxygenase-1 (HO-1) in accordance with improved acetylcholine-induced vascular relaxation. These beneficial effects were associated with induction of mitochondrial complexes I and V, increased mitochondrial DNA copy number, and greater expression of transcription factors involved in mitochondrial biogenesis/fusion. We also observed enhanced mitochondrial autophagy pathway activity, including increased conversion of LC3-I to LC3-II and greater expression of beclin1 and autophagy-related protein-7 (ATG7). The levels of thiobarbituric acid-reactive substances and protein carbonyls remained unchanged, whereas significant increases in catalase and mitochondrial manganese superoxide dismutase (MnSOD) levels were observed in the aortas of trained animals, when compared with sedentary controls. Nandrolone increased oxidative stress biomarkers and inhibited exercise-induced increases of eNOS, HO-1, catalase, and MnSOD expression. In addition, it also attenuated elevated peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and mitofusin-2 expression, and further up-regulated LC3II conversion, beclin1, ATG7, and dynamin-related protein-1 expression. These results demonstrate that nandrolone attenuates aortic adaptations to exercise by regulating mitochondrial dynamic remodelling, including down-regulation of mitochondrial biogenesis and intensive autophagy.

  16. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics.

    PubMed

    Marmarou, A; Foda, M A; van den Brink, W; Campbell, J; Kita, H; Demetriadou, K

    1994-02-01

    This report describes the development of an experimental head injury model capable of producing diffuse brain injury in the rodent. A total of 161 anesthetized adult rats were injured utilizing a simple weight-drop device consisting of a segmented brass weight free-falling through a Plexiglas guide tube. Skull fracture was prevented by cementing a small stainless-steel disc on the calvaria. Two groups of rats were tested: Group 1, consisting of 54 rats, to establish fracture threshold; and Group 2, consisting of 107 animals, to determine the primary cause of death at severe injury levels. Data from Group 1 animals showed that a 450-gm weight falling from a 2-m height (0.9 kg-m) resulted in a mortality rate of 44% with a low incidence (12.5%) of skull fracture. Impact was followed by apnea, convulsions, and moderate hypertension. The surviving rats developed decortication flexion deformity of the forelimbs, with behavioral depression and loss of muscle tone. Data from Group 2 animals suggested that the cause of death was due to central respiratory depression; the mortality rate decreased markedly in animals mechanically ventilated during the impact. Analysis of mathematical models showed that this mass-height combination resulted in a brain acceleration of 900 G and a brain compression gradient of 0.28 mm. It is concluded that this simple model is capable of producing a graded brain injury in the rodent without a massive hypertensive surge or excessive brain-stem damage.

  17. Postnatal Development of Brain-Derived Neurotrophic Factor (BDNF) and Tyrosine Protein Kinase B (TrkB) Receptor Immunoreactivity in Multiple Brain Stem Respiratory-Related Nuclei of the Rat

    PubMed Central

    Liu, Qiuli; Wong-Riley, Margaret T.T.

    2013-01-01

    Previously, we found a transient imbalance between suppressed excitation and enhanced inhibition in the respiratory network of the rat around postnatal days (P) 12–13, a critical period when the hypoxic ventilatory response is at its weakest. The mechanism underlying the imbalance is poorly understood. Brain-derived neurotrophic factor (BDNF) and its tyrosine protein kinase B (TrkB) receptors are known to potentiate glutamatergic and attenuate gamma-aminobutyric acid (GABA)ergic neurotransmission, and BDNF is essential for respiratory development. We hypothesized that the excitation-inhibition imbalance during the critical period stemmed from a reduced expression of BDNF and TrkB at that time within respiratory-related nuclei of the brain stem. An in-depth, semiquantitative immunohistochemical study was undertaken in seven respiratory-related brain stem nuclei and one nonrespiratory nucleus in P0–21 rats. The results indicate that the expressions of BDNF and TrkB: 1) in the pre-Bötzinger complex, nucleus ambiguus, commissural and ventrolateral subnuclei of solitary tract nucleus, and retrotrapezoid nucleus/parafacial respiratory group were significantly reduced at P12, but returned to P11 levels by P14; 2) in the lateral paragigantocellular nucleus and parapyramidal region were increased from P0 to P7, but were strikingly reduced at P10 and plateaued thereafter; and 3) in the nonrespiratory cuneate nucleus showed a gentle plateau throughout the first 3 post-natal weeks, with only a slight decline of BDNF expression after P11. Thus, the significant downregulation of both BDNF and TrkB in respiratory-related nuclei during the critical period may form the basis of, or at least contribute to, the inhibitory-excitatory imbalance within the respiratory network during this time. PMID:22678720

  18. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    PubMed Central

    Weaver, John; Yang, Yirong; Purvis, Rebecca; Weatherwax, Theodore; Rosen, Gerald M.; Liu, Ke Jian

    2014-01-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O2 may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O2 is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO2 in vivo remains largely uncharacterized. This study investigated striatal tissue pO2 changes in male C57BL/6 mice (16–20g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO2 in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO2 was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO2 to 64%. More importantly, pO2 did not recover fully to control levels even 24 hrs after administration of a single dose of METH. and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO2 indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO2, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. PMID:24412707

  19. Specific binding of [(18)F]fluoroethyl-harmol to monoamine oxidase A in rat brain cryostat sections, and compartmental analysis of binding in living brain.

    PubMed

    Maschauer, Simone; Haller, Adelina; Riss, Patrick J; Kuwert, Torsten; Prante, Olaf; Cumming, Paul

    2015-12-01

    We investigated [(18)F]fluoroethyl-harmol ([(18)F]FEH) as a reversible and selective ligand for positron emission tomography (PET) studies of monoamine oxidase A (MAO-A). Binding of [(18)F]FEH in rat brain cryostat sections indicated high affinity (KD = 3 nM), and density (Bmax; 600 pmol/g). The plasma free fraction was 45%, and untransformed parent constituted only 13% of plasma radioactivity at 10 min after injection. Compartmental analysis of PET recordings in pargyline-treated rats showed high permeability to brain (K1; 0.32 mL/g/min) and slow washout (k2; 0.024/min), resulting in a uniformly high equilibrium distribution volume (VD; 20 mL/g). Using this VD to estimate unbound ligand in brain of untreated rats, the binding potential ranged from 4.2 in cerebellum to 7.2 in thalamus. We also calculated maps of rats receiving [(18)F]FEH at a range of specific activities, and then estimated saturation binding parameters in the living brain. In thalamus, striatum and frontal cortex KD was globally close to 300 nM and Bmax was close to 1600 pmol/g; the 100-fold discrepancy in affinity suggests a very low free fraction for [(18)F]FEH in the living brain. Based on a synthesis of findings, we calculate the endogenous dopamine concentration to be 0.4 μM in the striatal compartment containing MAO-A, thus unlikely to exert competition against [(18)F]FEH binding in vivo. In summary, [(18)F]FEH has good properties for the detection of MAO-A in the rat brain by PET, and may present logistic advantages for clinical research at centers lacking a medical cyclotron. We made a compartmental analysis of [(18)F]fluoroethylharmol ([(18)F]FEH) binding to monoamine oxidase A (MAO-A) in living rat brain and estimated the saturation binding parameters from the binding potential (BPND). The Bmax was of comparable magnitude to that in vitro, but with apparent affinity (300 nM), it was 100-fold lower in vivo. PET imaging with [(18) F]FEH is well suited for quantitation of MAO-A in living

  20. Oxidative stress induces the decline of brain EPO expression in aging rats.

    PubMed

    Li, Xu; Chen, Yubao; Shao, Siying; Tang, Qing; Chen, Weihai; Chen, Yi; Xu, Xiaoyu

    2016-10-01

    Brain Erythropoietin (EPO), an important neurotrophic factor and neuroprotective factor, was found to be associated with aging. Studies found EPO expression was significantly decreased in the hippocampus of aging rat compared with that of the youth. But mechanisms of the decline of the brain EPO during aging remain unclear. The present study utilized a d-galactose (d-gal)-induced aging model in which the inducement of aging was mainly oxidative injury, to explore underlying mechanisms for the decline of brain EPO in aging rats. d-gal-induced aging rats (2months) were simulated by subcutaneously injecting with d-gal at doses of 50mg·kg(-1), 150mg·kg(-1) and 250mg·kg(-1) daily for 8weeks while the control group received vehicle only. These groups were all compared with the aging rats (24months) which had received no other treatment. The cognitive impairment was assessed using Morris water maze (MWM) in the prepared models, and the amount of β-galactosidase, the lipid peroxidation product malondialdehyde (MDA) level and the superoxide dismutase (SOD) activity in the hippocampus was examined by assay kits. The levels of EPO, EPOR, p-JAK2 and hypoxia-inducible factor-2α (HIF-2α) in the hippocampus were detected by western blot. Additionally, the correlation coefficient between EPO/EPOR expression and MDA level was analyzed. The MWM test showed that compared to control group, the escape latency was significantly extended and the times of crossing the platform was decreased at the doses of 150mg·kg(-1) and 250mg·kg(-1) (p<0.05). Also, the amount of β-galactosidase and the MDA level in the hippocampus were significantly increased but the SOD activity was significantly decreased (p<0.05, 0.01 and 0.01, respectively). Similar to aging rats, the expressions of EPO, EPOR, p-JAK2, and HIF-2αin the brain of d-gal-treated rats were significantly decreased (p<0.05) at 150mg·kg(-1) and 250mg·kg(-1). Interestingly, negative correlations were found between EPOR (r=-0

  1. Neuroprotective Effects of the Glutamate Transporter Activator (R)-(−)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153) following Traumatic Brain Injury in the Adult Rat

    PubMed Central

    Fox, Douglas P.; Zoubroulis, Argie; Valente Mortensen, Ole; Raghupathi, Ramesh

    2016-01-01

    Abstract Traumatic brain injury (TBI) in humans and in animals leads to an acute and sustained increase in tissue glutamate concentrations within the brain, triggering glutamate-mediated excitotoxicity. Excitatory amino acid transporters (EAATs) are responsible for maintaining extracellular central nervous system glutamate concentrations below neurotoxic levels. Our results demonstrate that as early as 5 min and up to 2 h following brain trauma in brain-injured rats, the activity (Vmax) of EAAT2 in the cortex and the hippocampus was significantly decreased, compared with sham-injured animals. The affinity for glutamate (KM) and the expression of glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST) were not altered by the injury. Administration of (R)-(−)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), a GLT-1 activator, beginning immediately after injury and continuing for 24 h, significantly decreased neurodegeneration, loss of microtubule-associated protein 2 and NeuN (+) immunoreactivities, and attenuated calpain activation in both the cortex and the hippocampus at 24 h after the injury; the reduction in neurodegeneration remained evident up to 14 days post-injury. In synaptosomal uptake assays, MS-153 up-regulated GLT-1 activity in the naïve rat brain but did not reverse the reduced activity of GLT-1 in traumatically-injured brains. This study demonstrates that administration of MS-153 in the acute post-traumatic period provides acute and long-term neuroprotection for TBI and suggests that the neuroprotective effects of MS-153 are related to mechanisms other than GLT-1 activation, such as the inhibition of voltage-gated calcium channels. PMID:26200170

  2. Attenuating Ischemic Disruption of K+ Homeostasis in the Cortex of Hypoxic-Ischemic Neonatal Rats: DOR Activation vs. Acupuncture Treatment.

    PubMed

    Chao, Dongman; Wang, Qinyu; Balboni, Gianfranco; Ding, Guanghong; Xia, Ying

    2016-12-01

    Perinatal hypoxic-ischemic (HI) brain injury results in death or profound long-term neurologic disability in both children and adults. However, there is no effective pharmacological therapy due to a poor understanding of HI events, especially the initial triggers for hypoxic-ischemic injury such as disrupted ionic homeostasis and the lack of effective intervention strategy. In the present study, we showed that neonatal brains undergo a developmental increase in the disruption of K + homeostasis during simulated ischemia, oxygen-glucose deprivation (OGD) and neonatal HI cortex has a triple phasic response (earlier attenuation, later enhancement, and then recovery) of disrupted K + homeostasis to OGD. This response partially involves the activity of the δ-opioid receptor (DOR) since the earlier attenuation of ischemic disruption of K + homeostasis could be blocked by DOR antagonism, while the later enhancement was reversed by DOR activation. Similar to DOR activation, acupuncture, a strategy to promote DOR activity, could partially reverse the later enhanced ischemic disruption of K + homeostasis in the neonatal cortex. Since maintaining cellular K + homeostasis and inhibiting excessive K + fluxes in the early phase of hypoxic-ischemic insults may be of therapeutic benefit in the treatment of ischemic brain injury and related neurodegenerative conditions, and since many neurons and other cells can be rescued during the "window of opportunity" after HI insults, our first findings regarding the role of acupuncture and DOR in attenuating ischemic disruption of K + homeostasis in the neonatal HI brain suggest a potential intervention therapy in the treatment of neonatal brain injury, especially hypoxic-ischemic encephalopathy.

  3. Over-expression of copper/zinc superoxide dismutase in the median preoptic nucleus attenuates chronic angiotensin II-induced hypertension in the rat.

    PubMed

    Collister, John P; Bellrichard, Mitch; Drebes, Donna; Nahey, David; Tian, Jun; Zimmerman, Matthew C

    2014-12-02

    The brain senses circulating levels of angiotensin II (AngII) via circumventricular organs, such as the subfornical organ (SFO), and is thought to adjust sympathetic nervous system output accordingly via this neuro-hormonal communication. However, the cellular signaling mechanisms involved in these communications remain to be fully understood. Previous lesion studies of either the SFO, or the downstream median preoptic nucleus (MnPO) have shown a diminution of the hypertensive effects of chronic AngII, without providing a clear explanation as to the intracellular signaling pathway(s) involved. Additional studies have reported that over-expressing copper/zinc superoxide dismutase (CuZnSOD), an intracellular superoxide (O2·-) scavenging enzyme, in the SFO attenuates chronic AngII-induced hypertension. Herein, we tested the hypothesis that overproduction of O2·- in the MnPO is an underlying mechanism in the long-term hypertensive effects of chronic AngII. Adenoviral vectors encoding human CuZnSOD (AdCuZnSOD) or control vector (AdEmpty) were injected directly into the MnPO of rats implanted with aortic telemetric transmitters for recording of arterial pressure. After a 3 day control period of saline infusion, rats were intravenously infused with AngII (10 ng/kg/min) for ten days. Rats over-expressing CuZnSOD (n = 7) in the MnPO had a blood pressure increase of only 6 ± 2 mmHg after ten days of AngII infusion while blood pressure increased 21 ± 4 mmHg in AdEmpty-infected rats (n = 9). These results support the hypothesis that production of O2·- in the MnPO contributes to the development of chronic AngII-dependent hypertension.

  4. Protective effect of Corchorus olitorius leaves against arsenic-induced oxidative stress in rat brain.

    PubMed

    Das, Anup K; Dewanjee, Saikat; Sahu, Ranabir; Dua, Tarun K; Gangopadhyay, Moumita; Sinha, Mohit K

    2010-01-01

    The present study was undertaken to evaluate the protective effect of an aqueous extract of Corchorus olitorius leaves (AECO) against NaAsO(2) induced brain toxicity in experimental rats. The animals exposed to NaAsO(2) (10mg/kg, p.o.) for 10 days exhibited a significant inhibition (p<0.01) of superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase and reduced glutathione levels in rat brain. In addition, the toxin increased (p<0.01) the levels of oxidized glutathione and thiobarbituric acid reactive substances in the brain tissue of experimental rats. Treatment with AECO (50 and 100mg/kg, p.o.) for 15 days prior to arsenic intoxication significantly improved antioxidant markers in a dose dependant manner. Histological studies on the ultrastructural changes of brain tissue supported the protective activity of the AECO. The results suggest that treatment with AECO prior to arsenic intoxication has a significant role in protecting animals from arsenic-induced toxicity. Copyright © 2009 Elsevier B.V. All rights reserved.

  5. Combined Therapy of Iron Chelator and Antioxidant Completely Restores Brain Dysfunction Induced by Iron Toxicity

    PubMed Central

    Sripetchwandee, Jirapas; Pipatpiboon, Noppamas; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-01-01

    Background Excessive iron accumulation leads to iron toxicity in the brain; however the underlying mechanism is unclear. We investigated the effects of iron overload induced by high iron-diet consumption on brain mitochondrial function, brain synaptic plasticity and learning and memory. Iron chelator (deferiprone) and antioxidant (n-acetyl cysteine) effects on iron-overload brains were also studied. Methodology Male Wistar rats were fed either normal diet or high iron-diet consumption for 12 weeks, after which rats in each diet group were treated with vehicle or deferiprone (50 mg/kg) or n-acetyl cysteine (100 mg/kg) or both for another 4 weeks. High iron-diet consumption caused brain iron accumulation, brain mitochondrial dysfunction, impaired brain synaptic plasticity and cognition, blood-brain-barrier breakdown, and brain apoptosis. Although both iron chelator and antioxidant attenuated these deleterious effects, combined therapy provided more robust results. Conclusion In conclusion, this is the first study demonstrating that combined iron chelator and anti-oxidant therapy completely restored brain function impaired by iron overload. PMID:24400127

  6. Adiponectin attenuates neuronal apoptosis induced by hypoxia-ischemia via the activation of AdipoR1/APPL1/LKB1/AMPK pathway in neonatal rats.

    PubMed

    Xu, Ningbo; Zhang, Yixin; Doycheva, Desislava Met; Ding, Yan; Zhang, Yiting; Tang, Jiping; Guo, Hongbo; Zhang, John H

    2018-05-01

    Adiponectin is an important adipocyte-derived plasma protein that has beneficial effects on cardio- and cerebrovascular diseases. A low level of plasma Adiponectin is associated with increased mortality post ischemic stroke; however, little is known about the causal role of Adiponectin as well as its molecular mechanisms in neonatal hypoxia ischemia (HI). In the present study, ten-day-old rat pups were subjected to right common carotid artery ligation followed by 2.5 h hypoxia. Recombinant human Adiponectin (rh-Adiponectin) was administered intranasally 1 h post HI. Adiponectin Receptor 1 (AdipoR1) siRNA, APPL1 siRNA, LKB1 siRNA were administered through intracerebroventricular injection 48 h before HI. Brain infarct area measurement, neurological function test, western blot, Fluoro Jade C (FJC), TUNEL, and immunofluorescence staining were conducted. Results revealed that endogenous Adiponectin, AdipoR1 and APPL1 were increased in a time dependent manner after HI. Administration of rh-Adiponectin reduced brain infarct area, neuronal apoptosis, brain atrophy and improved neurological function at 24 h and 4 weeks post HI. Furthermore, rh-Adiponectin treatment increased Adiponectin, AdipoR1, APPL1, cytosolic LKB1, p-AMPK expression levels and thereby attenuated apoptosis as shown by the decreased expression of the pro-apoptotic marker, Cleaved Caspase 3 (C-Cas3), as well as the number of FJC and TUNEL positively stained neurons. AdipoR1, APPL1 and LKB1 siRNAs abolished the anti-apoptotic effects of rh-Adiponectin at 24 h after HI. Collectively, the data provided evidence that intranasal administration of rh-Adiponectin attenuated neuronal apoptosis at least in part via activating AdipoR1/APPL1/LKB1/AMPK signaling pathway. Adiponectin could represent a therapeutic target for treatment of neonatal hypoxic ischemic encephalopathy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. [Hydrogen-rich saline attenuates hyperalgesia and reduces cytokines in rats with post-herpetic neuralgia via activating autophagy].

    PubMed

    Ma, Hongtao; Chen, Hongguang; Dong, Aili; Wang, Yanyan; Bian, Yingxue; Xie, Keliang

    2017-02-01

    To investigate the role of autophagy in hydrogen-rich saline attenuating post-herpetic neuralgia( PHN) in rats. A total of 100 male SD rats were randomly divided into the five groups( n = 20) : control group,PHN group,PHN group treated with hydrogen-rich saline( PHN-H2group),PHN group treated with hydrogen-rich saline and3-MA( PHN-H2-3-MA group),PHN group treated with hydrogen-rich saline and rapamycin( PHN-H2-Rap group). PHN models were established by varicella-zoster virus( VZV) inoculation. After modeling,15 mg / kg 3-MA or 10 mg / kg rapamycin were intraperitoneally injected in corresponding rats with PHN once two days for 3 times. Hydrogen-rich saline( 10 m L / kg)was injected intraperitoneally twice a day for 7 consecutive days in PHN-H2 group,PHN-H2-3-MA group and PHN-H2-Rap group after VZV injection. The paw withdrawal thresholds( PWT) of 50 rats were detected at 3,7,14 and 21 days after modeling. Spinal cord enlargements of the other 50 rats were collected to examine tumor necrosis factor α( TNF-α),interleukine 1β( IL-1β) and IL-6 by ELISA and autophagy protein microtubule-associated protein 1 light chain 3( LC3),beclin 1and P62 by Western blotting. Compared with the control group,the rats in the PHN group presented with decreased PWT,increased levels of TNF-α,IL-1β,IL-6,LC3Ⅱ and beclin 1,and down-regulated P62 expression. Compared with PHN group,the rats in the PHN-H2 group and PHN-H2-Rap group showed increased PWT,decreased levels of TNF-α,IL-1β and IL-6,further up-regulated expressions of LC3 and beclin 1 as wel as P62 expression. Compared with PHN-H2 group,the rats in the PHN-H2-3-MA group had reduced PWT,elevated expressions of TNF-α,IL-1β and IL-6,suppressed expressions of LC3 and beclin 1,and enhanced p62 expression. Hydrogen-rich saline attenuated PWT and inhibited the release of cytokines TNF-α,IL-1β,IL-6 in rats with PHN via activating autophagy.

  8. Characterization of a cerebral palsy-like model in rats: Analysis of gait pattern and of brain and spinal cord motor areas.

    PubMed

    Dos Santos, Adriana Souza; de Almeida, Wellington; Popik, Bruno; Sbardelotto, Bruno Marques; Torrejais, Márcia Miranda; de Souza, Marcelo Alves; Centenaro, Lígia Aline

    2017-08-01

    In an attempt to propose an animal model that reproduces in rats the phenotype of cerebral palsy, this study evaluated the effects of maternal exposure to bacterial endotoxin associated with perinatal asphyxia and sensorimotor restriction on gait pattern, brain and spinal cord morphology. Two experimental groups were used: Control Group (CTG) - offspring of rats injected with saline during pregnancy and Cerebral Palsy Group (CPG) - offspring of rats injected with lipopolysaccharide during pregnancy, submitted to perinatal asphyxia and sensorimotor restriction for 30days. At 29days of age, the CPG exhibited coordination between limbs, weight-supported dorsal steps or weight-supported plantar steps with paw rotation. At 45days of age, CPG exhibited plantar stepping with the paw rotated in the balance phase. An increase in the number of glial cells in the primary somatosensory cortex and dorsal striatum were observed in the CPG, but the corpus callosum thickness and cross-sectional area of lateral ventricle were similar between studied groups. No changes were found in the number of motoneurons, glial cells and soma area of the motoneurons in the ventral horn of spinal cord. The combination of insults in the pre, peri and postnatal periods produced changes in hindlimbs gait pattern of animals similar to those observed in diplegic patients, but motor impairments were attenuated over time. Besides, the greater number of glial cells observed seems to be related to the formation of a glial scar in important sensorimotor brain areas. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  9. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel

    2015-05-15

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brainmore » were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife.« less

  10. Exposure to As, Cd and Pb-mixture impairs myelin and axon development in rat brain, optic nerve and retina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Nagendra Kumar; Ashok, Anushruti; Developmental Toxicology, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research

    Arsenic (As), lead (Pb) and cadmium (Cd) are the major metal contaminants of ground water in India. We have reported the toxic effect of their mixture (metal mixture, MM), at human relevant doses, on developing rat astrocytes. Astrocyte damage has been shown to be associated with myelin disintegration in CNS. We, therefore, hypothesized that the MM would perturb myelinating white matter in cerebral cortex, optic nerve (O.N.) and retina. We observed modulation in the levels of myelin and axon proteins, such as myelin basic protein (MBP), proteolipid protein, 2′-, 3′-cyclic-nucleotide-3′-phosphodiesterase, myelin-associated glycoprotein and neurofilament (NF) in the brain of developingmore » rats. Dose and time-dependent synergistic toxic effect was noted. The MBP- and NF-immunolabeling, as well as luxol-fast blue (LFB) staining demonstrated a reduction in the area of intact myelin-fiber, and an increase in vacuolated axons, especially in the corpus-callosum. Transmission electron microscopy (TEM) of O.N. revealed a reduction in myelin thickness and axon-density. The immunolabeling with MBP, NF, and LFB staining in O.N. supported the TEM data. The hematoxylin and eosin staining of retina displayed a decrease in the thickness of nerve-fiber, plexiform-layer, and retinal ganglion cell (RGC) count. Investigating the mechanism revealed a loss in glutamine synthetase activity in the cerebral cortex and O.N., and a fall in the brain derived neurotrophic factor in retina. An enhanced apoptosis in MBP, NF and Brn3b-containing cells justified the diminution in myelinating axons in CNS. Our findings for the first time indicate white matter damage by MM, which may have significance in neurodevelopmental-pediatrics, neurotoxicology and retinal-cell biology. - Highlights: • As, Cd and Pb-mixture, at human relevant dose, demyelinate developing rat CNS. • The attenuation in myelin and axon is synergistic. • The optic nerve and brain demonstrate reduced glutamine

  11. Gabapentin’s minimal action on markers of rat brain arachidonic acid metabolism agrees with its inefficacy against bipolar disorder

    PubMed Central

    Reese, Edmund A.; Cheon, Yewon; Ramadan, Epolia; Kim, Hyung-Wook; Chang, Lisa; Rao, Jagadeesh S.; Rapoport, Stanley I.; Taha, Ameer Y.

    2012-01-01

    In rats, FDA-approved mood stabilizers used for treating bipolar disorder (BD) selectively downregulate brain markers of the arachidonic acid (AA) cascade, which are upregulated in postmortem BD brain. Phase III clinical trials show that gabapentin (GBP) is ineffective in treating BD. We hypothesized that GBP would not alter the rat brain AA cascade. Chronic GBP (10 mg/kg body weight, injected i.p. for 30 days) compared to saline vehicle did not significantly alter brain expression or activity of AA-selective cytosolic phospholipase A2 (cPLA2) IVA or secretory (s) PLA2 IIA, activity of cyclooxygenase-2, or prostaglandin or thromboxane concentrations. Plasma AA concentration was unaffected. These results, taken with evidence of an upregulated AA cascade in the BD brain and that approved mood stabilizers downregulate rat brain AA cascade, support the hypothesis that effective anti-BD drugs act by targeting the AA cascade, and suggest that the rat model might be used for drug screening PMID:22841517

  12. Increased PI3-kinase in presympathetic brain areas of the spontaneously hypertensive rat.

    PubMed

    Veerasingham, Shereeni J; Yamazato, Masanobu; Berecek, Kathleen H; Wyss, J Michael; Raizada, Mohan K

    2005-02-18

    Existing evidence led us to hypothesize that increases in p85alpha, a regulatory subunit of PI3-kinase, in presympathetic brain areas contribute to hypertension. PI3-kinase p85alpha, p110alpha, and p110delta mRNA was 1.5- to 2-fold higher in the paraventricular nucleus (PVN) of spontaneously hypertensive rats (SHR) compared with their controls, Wistar Kyoto rats (WKY). The increase in p85alpha/p110delta was attenuated in SHR treated with captopril, an angiotensin (Ang)-converting enzyme inhibitor, from in utero to 6 months of age. In the rostral ventrolateral medulla (RVLM), p110delta mRNA was approximately 2-fold higher in SHR than in WKY. Moreover, the increases in mRNA were associated with higher PI3-kinase activity in both nuclei. The functional relevance was studied in neuronal cultures because SHR neurons reflect the augmented p85alpha mRNA and PI3-kinase activity. Expression of a p85 dominant-negative mutant decreased norepinephrine (NE) transporter mRNA and [3H]NE uptake by approximately 60% selectively in SHR neurons. In summary, increased p85alpha/p110delta expression in the PVN and RVLM is associated with increased PI3-kinase activity in the SHR. Furthermore, normalized PI3-kinase p85alpha/p110delta expression within the PVN might contribute to the overall effect of captopril, perhaps attributable to a consequent decrease in NE availability.

  13. Spirulina platensis attenuates the associated neurobehavioral and inflammatory response impairments in rats exposed to lead acetate.

    PubMed

    Khalil, Samah R; Khalifa, Hesham A; Abdel-Motal, Sabry M; Mohammed, Hesham H; Elewa, Yaser H A; Mahmoud, Hend Atta

    2018-08-15

    Heavy metals are well known as environmental pollutants with hazardous impacts on human and animal health because of their wide industrial usage. In the present study, the role of Spirulina platensis in reversing the oxidative stress-mediated brain injury elicited by lead acetate exposure was evaluated. In order to accomplish this aim, rats were orally administered with 300 mg/kg bw Spirulina for 15 d, before and simultaneously with an intraperitoneal injection of 50 mg/kg bw lead acetate [6 injections through the two weeks]. As a result, the co-administration of Spirulina with lead acetate reversed the most impaired open field behavioral indices; however, this did not happen for swimming performance, inclined plane, and grip strength tests. In addition, it was observed that Spirulina diminished the lead content that accumulated in both the blood and the brain tissue of the exposed rats, and reduced the elevated levels of oxidative damage indices, and brain proinflammatory markers. Also, because of the Spirulina administration, the levels of the depleted biomarkers of antioxidant status and interleukin-10 in the lead-exposed rats were improved. Moreover, Spirulina protected the brain tissue (cerebrum and cerebellum) against the changes elicited by lead exposure, and also decreased the reactivity of HSP70 and Caspase-3 in both cerebrum and cerebellum tissues. Collectively, our findings demonstrate that Spirulina has a potential use as a food supplement in the regions highly polluted with heavy metals. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Rat brain digital stereotaxic white matter atlas with fine tract delineation in Paxinos space and its automated applications in DTI data analysis.

    PubMed

    Liang, Shengxiang; Wu, Shang; Huang, Qi; Duan, Shaofeng; Liu, Hua; Li, Yuxiao; Zhao, Shujun; Nie, Binbin; Shan, Baoci

    2017-11-01

    To automatically analyze diffusion tensor images of the rat brain via both voxel-based and ROI-based approaches, we constructed a new white matter atlas of the rat brain with fine tracts delineation in the Paxinos and Watson space. Unlike in previous studies, we constructed a digital atlas image from the latest edition of the Paxinos and Watson. This atlas contains 111 carefully delineated white matter fibers. A white matter network of rat brain based on anatomy was constructed by locating the intersection of all these tracts and recording the nuclei on the pathway of each white matter tract. Moreover, a compatible rat brain template from DTI images was created and standardized into the atlas space. To evaluate the automated application of the atlas in DTI data analysis, a group of rats with right-side middle cerebral artery occlusion (MCAO) and those without were enrolled in this study. The voxel-based analysis result shows that the brain region showing significant declines in signal in the MCAO rats was consistent with the occlusion position. We constructed a stereotaxic white matter atlas of the rat brain with fine tract delineation and a compatible template for the data analysis of DTI images of the rat brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Role of 5-hydroxytryptamine in the regulation of brain neuropeptides in normal and diabetic rat

    NASA Technical Reports Server (NTRS)

    Kolta, Malak G.; Williams, Byron B.; Soliman, Karam F. A.

    1986-01-01

    The effect of 5-hydroxytryptamine (5-HT) alteration on brain dopamine (DA), norepinephrine (NE), beta-endorphin (beta-E), and immunoreactive insulin was studied in Sprague-Dawley diabetic and control rats. Diabetes was induced using alloxan (45 mg/kg), 15 days prior to sacrificing. Both control and diabetic animals were treated with either p-chlorophenylalanine (PCPA, 300 mg/kg) three days prior to sacrificing or fluoxetine (10 mg/kg) twice daily for three days. PCPA treatment significantly decreased brain content of 5-HT and 5-hydroxyindolel acetic acid, while it caused significant increase and decrease in brain beta-E and insulin levels, respectively, in both normal and diabetic rat. Meanwhile, the administration of fluoxetine resulted in significant increase in brain content of 5-HT, DA, NE and insulin but significant decline of beta-E in diabetic and saline control rats. The results of this experiment indicate that 5-HT may be regulating both beta-E and insulin regardless of the availability of pancreatic insulin.

  16. High-fat diet-induced plasma protein and liver changes in obese rats can be attenuated by melatonin supplementation.

    PubMed

    Wongchitrat, Prapimpun; Klosen, Paul; Pannengpetch, Supitcha; Kitidee, Kuntida; Govitrapong, Piyarat; Isarankura-Na-Ayudhya, Chartchalerm

    2017-06-01

    Obesity triggers changes in protein expression in various organs that might participate in the pathogenesis of obesity. Melatonin has been reported to prevent or attenuate such pathological protein changes in several chronic diseases. However, such melatonin effects on plasma proteins have not yet been studied in an obesity model. Using a proteomic approach, we investigated the effect of melatonin on plasma protein profiles after rats were fed a high-fat diet (HFD) to induce obesity. We hypothesized that melatonin would attenuate abnormal protein expression in obese rats. After 10weeks of the HFD, animals displayed increased body weight and fat accumulation as well as increased glucose levels, indicating an obesity-induced prediabetes mellitus-like state. Two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry revealed 12 proteins whose expression was altered in response to the HFD and the melatonin treatment. The altered proteins are related to the development of liver pathology, such as cirrhosis (α1-antiproteinase), thrombosis (fibrinogen, plasminogen), and inflammation (mannose-binding protein A, complement C4, complement factor B), contributing to liver steatosis or hepatic cell death. Melatonin treatment most probably reduced the severity of the HFD-induced obesity by reducing the amplitude of HFD-induced plasma protein changes. In conclusion, we identified several potential biomarkers associated with the progression of obesity and its complications, such as liver damage. Furthermore, our findings reveal melatonin's beneficial effect of attenuating plasma protein changes and liver pathogenesis in obese rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The Effects of Shilajit on Brain Edema, Intracranial Pressure and Neurologic Outcomes following the Traumatic Brain Injury in Rat

    PubMed Central

    Khaksari, Mohammad; Mahmmodi, Reza; Shahrokhi, Nader; Shabani, Mohammad; Joukar, Siavash; Aqapour, Mobin

    2013-01-01

    Objective(s): Brain edema is one of the most serious causes of death within the first few days after trauma brain injury (TBI). In this study we have investigated the role of Shilajit on brain edema, blood-brain barrier (BBB) permeability, intracranial pressure (ICP) and neurologic outcomes following brain trauma. Materials and Methods: Diffuse traumatic brain trauma was induced in rats by drop of a 250 g weight from a 2 m high (Marmarou’s methods). Animals were randomly divided into 5 groups including sham, TBI, TBI-vehicle, TBI-Shi150 group and TBI-Shi250 group. Rats were undergone intraperitoneal injection of Shilajit and vehicle at 1, 24, 48 and 72 hr after trauma. Brain water content, BBB permeability, ICP and neurologic outcomes were finally measured. Results: Brain water and Evans blue dye contents showed significant decrease in Shilajit-treated groups compared to the TBI-vehicle and TBI groups. Intracranial pressure at 24, 48 and 72 hr after trauma had significant reduction in Shilajit-treated groups as compared to TBI-vehicle and TBI groups (P<0.001). The rate of neurologic outcomes improvement at 4, 24, 48 and 72 hr after trauma showed significant increase in Shilajit-treated groups in comparison to theTBI- vehicle and TBI groups (P <0.001). Conclusion: The present results indicated that Shilajit may cause in improvement of neurologic outcomes through decreasing brain edema, disrupting of BBB, and ICP after the TBI. PMID:23997917

  18. Bile duct ligation in developing rats: temporal progression of liver, kidney, and brain damage.

    PubMed

    Sheen, Jiunn-Ming; Huang, Li-Tung; Hsieh, Chih-Sung; Chen, Chih-Cheng; Wang, Jia-Yi; Tain, You-Lin

    2010-08-01

    Cholestatic liver disease may result in progressive end-stage liver disease and other extrahepatic complications. We explored the temporal progression of bile duct ligation (BDL)-induced cholestasis in developing rats, focusing on brain cognition and liver and kidney pathology, to elucidate whether these findings were associated with asymmetric dimethylarginine and oxidative stress alterations. Three groups of young male Sprague-Dawley rats were studied: one group underwent laparotomy (sham), another group underwent laparotomy and BDL for 2 weeks (BDL2), and a third group underwent laparotomy and BDL for 4 weeks (BDL4). The effect of BDL on liver was represented by transforming growth factor beta1 levels and histology activity index scores, which were worse in the BDL4 rats than in the BDL2 rats. BDL4 rats also exhibited more severe spatial memory deficits than BDL2 rats. In addition, renal injury was more progressive in BDL4 rats than in BDL2 rats because BDL4 rats displayed higher Cr levels, elevated tubulointerstitial injury scores, neutrophil gelatinase-associated lipocalin, and symmetric dimethylarginine levels. Our findings highlight the fact that young BDL rats exhibit similar trends of progression of liver, kidney, and brain damage. Further studies are needed to better delineate the nature of progression of organ damage in young cholestatic rats. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Electrical stimulation of dorsal root entry zone attenuates wide-dynamic range neuronal activity in rats

    PubMed Central

    Yang, Fei; Zhang, Chen; Xu, Qian; Tiwari, Vinod; He, Shao-Qiu; Wang, Yun; Dong, Xinzhong; Vera-Portocarrero, Louis P.; Wacnik, Paul W.; Raja, Srinivasa N.; Guan, Yun

    2014-01-01

    Objectives Recent clinical studies suggest that neurostimulation at the dorsal root entry zone (DREZ) may alleviate neuropathic pain. However, the mechanisms of action for this therapeutic effect are unclear. Here, we examined whether DREZ stimulation inhibits spinal wide-dynamic-range (WDR) neuronal activity in nerve-injured rats. Materials and Methods We conducted in vivo extracellular single-unit recordings of WDR neurons in rats after an L5 spinal nerve ligation (SNL) or sham surgery. We set bipolar electrical stimulation (50 Hz, 0.2 ms, 5 min) of the DREZ at the intensity that activated only Aα/β-fibers by measuring the lowest current at which DREZ stimulation evoked a peak antidromic sciatic Aα/β-compound action potential without inducing an Aδ/C-compound action potential (i.e., Ab1). Results The elevated spontaneous activity rate of WDR neurons in SNL rats [n=25; data combined from day 14–16 (n = 15) and day 45–75 post-SNL groups (n=10)] was significantly decreased from the pre-stimulation level (p<0.01) at 0–15 min and 30–45 min post-stimulation. In both sham-operated (n=8) and nerve-injured rats, DREZ stimulation attenuated the C-component, but not A-component, of the WDR neuronal response to graded intracutaneous electrical stimuli (0.1–10 mA, 2 ms) applied to the skin receptive field. Further, DREZ stimulation blocked windup (a short form of neuronal sensitization) to repetitive noxious stimuli (0.5 Hz) at 0–15 min in all groups (p<0.05). Conclusions Attenuation of WDR neuronal activity may contribute to DREZ stimulation-induced analgesia. This finding supports the notion that DREZ may be a useful target for neuromodulatory control of pain. PMID:25308522

  20. Tofacitinib attenuates arthritis manifestations and reduces the pathogenic CD4 T cells in adjuvant arthritis rats.

    PubMed

    Gertel, Smadar; Mahagna, Hussein; Karmon, Gidi; Watad, Abdulla; Amital, Howard

    2017-11-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by pronounced inflammation and leukocyte infiltration in affected joints. Tofacitinib is new agent, a selective inhibitor of Janus kinase (JAK) signaling pathways mediated by JAK1 and JAK3 and inhibits the key transcription factors STAT1 and STAT3. We investigated the action mechanisms of tofacitinib in rats with adjuvant-induced-arthritis (AIA). AIA-rats were treated orally with tofacitinib or with methotrexate. Arthritis severity and serum C-reactive protein (CRP) levels were evaluated, splenic cells were examined by flow cytometry and cytokines were analyzed by real-time PCR. Tofacitinib markedly reduced the clinical status of treated rats in comparison to control group. Reduced joints inflammation and down-regulated serum CRP levels reflected the clinical manifestations of the treated rats. Tofacitinib down-regulated significantly the frequency of CD4 + IFN-γ + T cells and reduced IL-1β mRNA expression levels in the spleen of the treated rats. These results show that tofacitinib attenuated arthritis severity, modified splenic populations and cytokine imbalance. Copyright © 2017. Published by Elsevier Inc.

  1. Liquid chromatographic determination of minocycline in brain-to-plasma distribution studies in the rat.

    PubMed

    Colovic, Milena; Caccia, Silvio

    2003-07-05

    An isocratic reversed-phase high-performance liquid chromatographic procedure was developed for the determination of minocycline in rat plasma and brain and applied to brain-to-blood (plasma) distribution studies. The procedure is based on isolation of the compound and the internal standard (either demeclocycline or tetracycline may be used) from plasma and brain constituents using the Oasis HLB cartridge, with satisfactory recovery and specificity, and separation on a Symmetry Shield RP8 (15 cm x 4.6 mm, 3.5 microm) column coupled with a UV detector set at 350 nm. The assay was linear over a wide range, with a lower limit of quantification of 50 ng ml(-1) or g(-1), using 0.2 ml of plasma and about 200 mg of brain tissue. Precision and accuracy were acceptable. In the rat minocycline crossed the blood-brain barrier slowly, achieving mean brain concentrations between 30 and 40% of the equivalent systemic exposure, regardless of the dose and route of administration.

  2. Tissue distribution of pretomanid in rat brain via mass spectrometry imaging.

    PubMed

    Shobo, Adeola; Bratkowska, Dominika; Baijnath, Sooraj; Naiker, Suhashni; Somboro, Anou M; Bester, Linda A; Singh, Sanil D; Naicker, Tricia; Kruger, Hendrik G; Govender, Thavendran

    2016-01-01

    1. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) combines the sensitivity and selectivity of mass spectrometry with spatial analysis to provide a new dimension for histological analyses of the distribution of drugs in tissue. Pretomanid is a pro-drug belonging to a class of antibiotics known as nitroimidizoles, which have been proven to be active under hypoxic conditions and to the best of our knowledge there have been no studies investigating the distribution and localisation of this class of compounds in the brain using MALDI MSI. 2. Herein, we report on the distribution of pretomanid in the healthy rat brain after intraperitoneal administration (20 mg/kg) using MALDI MSI. Our findings showed that the drug localises in specific compartments of the rat brain viz. the corpus callosum, a dense network of neurons connecting left and right cerebral hemispheres. 3. This study proves that MALDI MSI technique has great potential for mapping the pretomanid distribution in uninfected tissue samples, without the need for molecular labelling.

  3. Vinpocetine attenuates neointimal hyperplasia in diabetic rat carotid arteries after balloon injury.

    PubMed

    Wang, Ke; Wen, Li; Peng, Wenhui; Li, Hailing; Zhuang, Jianhui; Lu, Yuyan; Liu, Baoxin; Li, Xiankai; Li, Weiming; Xu, Yawei

    2014-01-01

    Diabetes exacerbates abnormal vascular smooth muscle cell (VSMC) accumulation in response to arterial wall injury. Vinpocetine has been shown to improve vascular remolding; however, little is known about the direct effects of vinpocetine on vascular complications mediated by diabetes. The objective of this study was to determine the effects of vinpocetine on hyperglycemia-facilitated neointimal hyperplasia and explore its possible mechanism. Nondiabetic and diabetic rats were subjected to balloon injury of the carotid artery followed by 3-week treatment with either vinpocetine (10 mg/kg/day) or saline. Morphological analysis and proliferating cell nuclear antigen (PCNA) immunostaining were performed on day 21. Rat VSMCs proliferation was determined with 5-ethynyl-20-deoxyuridine cell proliferation assays. Chemokinesis was monitored with scratch assays, and production of reactive oxygen species (ROS) was assessed using a 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) flow cytometric assay. Apoptosis was detected by annexin V-FITC/PI flow cytometric assay. Cell signaling was assessed by immunblotting. Vinpocetine prevented intimal hyperplasia in carotid arteries in both normal (I/M ratio: 93.83 ± 26.45% versus 143.2 ± 38.18%, P<0.05) and diabetic animals (I/M ratio: 120.5 ± 42.55% versus 233.46 ± 33.98%, P<0.05) when compared to saline. The in vitro study demonstrated that vinpocetine significantly inhibited VSMCs proliferation and chemokinesis as well as ROS generation and apoptotic resistance, which was induced by high glucose (HG) treatment. Vinpocetine significantly abolished HG-induced phosphorylation of Akt and JNK1/2 without affecting their total levels. For downstream targets, HG-induced phosphorylation of IκBα was significantly inhibited by vinpocetine. Vinpocetine also attenuated HG-enhanced expression of PCNA, cyclin D1 and Bcl-2. Vinpocetine attenuated neointimal formation in diabetic rats and inhibited HG-induced VSMCs proliferation

  4. Vinpocetine Attenuates Neointimal Hyperplasia in Diabetic Rat Carotid Arteries after Balloon Injury

    PubMed Central

    Peng, Wenhui; Li, Hailing; Zhuang, Jianhui; Lu, Yuyan; Liu, Baoxin; Li, Xiankai; Li, Weiming; Xu, Yawei

    2014-01-01

    Background Diabetes exacerbates abnormal vascular smooth muscle cell (VSMC) accumulation in response to arterial wall injury. Vinpocetine has been shown to improve vascular remolding; however, little is known about the direct effects of vinpocetine on vascular complications mediated by diabetes. The objective of this study was to determine the effects of vinpocetine on hyperglycemia-facilitated neointimal hyperplasia and explore its possible mechanism. Materials and Methods Nondiabetic and diabetic rats were subjected to balloon injury of the carotid artery followed by 3-week treatment with either vinpocetine (10 mg/kg/day) or saline. Morphological analysis and proliferating cell nuclear antigen (PCNA) immunostaining were performed on day 21. Rat VSMCs proliferation was determined with 5-ethynyl-20-deoxyuridine cell proliferation assays. Chemokinesis was monitored with scratch assays, and production of reactive oxygen species (ROS) was assessed using a 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) flow cytometric assay. Apoptosis was detected by annexin V-FITC/PI flow cytometric assay. Cell signaling was assessed by immunblotting. Results Vinpocetine prevented intimal hyperplasia in carotid arteries in both normal (I/M ratio: 93.83 ± 26.45% versus 143.2 ± 38.18%, P<0.05) and diabetic animals (I/M ratio: 120.5 ± 42.55% versus 233.46 ± 33.98%, P<0.05) when compared to saline. The in vitro study demonstrated that vinpocetine significantly inhibited VSMCs proliferation and chemokinesis as well as ROS generation and apoptotic resistance, which was induced by high glucose (HG) treatment. Vinpocetine significantly abolished HG-induced phosphorylation of Akt and JNK1/2 without affecting their total levels. For downstream targets, HG-induced phosphorylation of IκBα was significantly inhibited by vinpocetine. Vinpocetine also attenuated HG-enhanced expression of PCNA, cyclin D1 and Bcl-2. Conclusions Vinpocetine attenuated neointimal formation in diabetic

  5. Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes.

    PubMed

    Aydin, Suleyman; Kuloglu, Tuncay; Aydin, Suna; Eren, Mehmet Nesimi; Yilmaz, Musa; Kalayci, Mehmet; Sahin, Ibrahim; Kocaman, Nevin; Citil, Cihan; Kendir, Yalcin

    2013-08-01

    We have investigated how diabetes affects the expression of adropin (ADR) in rat brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The rats in the diabetic group were administered an intraperitoneal (i.p.) injection of a single dose of 60 mg/kg streptozotocin (STZ) dissolved in a 0.1 M phosphate-citrate buffer (pH 4.5). The rats were maintained in standard laboratory conditions in a temperature between 21 and 23 °C and a relative humidity of 70 %, under a 12-h light/dark cycle. The animals were fed a standard commercial pellet diet. After 10 weeks, the animals were sacrified. ADR concentrations in the serum and tissue supernatants were measured by ELISA, and immunohistochemical staining was used to follow the expression of the hormones in the brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The quantities were then compared. Increased ADR immunoreaction was seen in the brain, cerebellum, kidneys, heart, liver, and pancreas in the diabetes-induced rats compared to control subjects. ADR was detected in the brain (vascular area, pia mater, neuroglial cell, and neurons), cerebellum (neuroglial cells, Purkinje cells, vascular areas, and granular layer), kidneys (glomerulus, peritubular interstitial cells, and peritubular capillary endothelial cells), heart (endocardium, myocardium, and epicardium), liver (sinusoidal cells), and pancreas (serous acini). Its concentrations (based on mg/wet weight tissues) in these tissues were measured by using ELISA showed that the levels of ADR were higher in the diabetic rats compared to the control rats. Tissue ADR levels based on mg/wet weight tissues were as follows: Pancreas > liver > kidney > heart > brain > cerebellar tissues. Evidence is presented that shows ADR is expressed in various tissues in the rats and its levels increased in STZ-induced diabetes; however, this effect on the pathophysiology of the disorder remains to be understood.

  6. Altered metabolic activity in the developing brain of rats predisposed to high versus low depression-like behavior

    PubMed Central

    Melendez-Ferro, Miguel; Perez-Costas, Emma; Glover, Matthew E.; Jackson, Nateka L.; Stringfellow, Sara A.; Pugh, Phyllis C.; Fant, Andrew D.; Clinton, Sarah M.

    2016-01-01

    Individual differences in human temperament can increase risk for psychiatric disorders like depression and anxiety. Our laboratory utilized a rat model of temperamental differences to assess neurodevelopmental factors underlying emotional behavior differences. Rats selectively bred for low novelty exploration (Low Responders, LR) display high levels of anxiety- and depression-like behavior compared to High Novelty Responder (HR) rats. Using transcriptome profiling, the present study uncovered vast gene expression differences in the early postnatal HR versus LR limbic brain, including changes in genes involved in cellular metabolism. These data led us to hypothesize that rats prone to high (versus low) anxiety/depression-like behavior exhibit distinct patterns of brain metabolism during the first weeks of life, which may reflect disparate patterns of synaptogenesis and brain circuit development. Thus, in a second experiment we examined activity of Cytochrome C Oxidase (COX), an enzyme responsible for ATP production and a correlate of metabolic activity, to explore functional energetic differences in HR/LR early postnatal brain. We found that HR rats display higher COX activity in the amygdala and specific hippocampal subregions compared to LRs during the first 2 weeks of life. Correlational analysis examining COX levels across several brain regions and multiple early postnatal time points suggested desynchronization in the developmental timeline of the limbic HR versus LR brain during the first two postnatal weeks. These early divergent COX activity levels may reflect altered circuitry or synaptic activity in the early postnatal HR/LR brain, which could contribute to the emergence of their distinct behavioral phenotypes. PMID:26979051

  7. A quantitative magnetic resonance histology atlas of postnatal rat brain development with regional estimates of growth and variability.

    PubMed

    Calabrese, Evan; Badea, Alexandra; Watson, Charles; Johnson, G Allan

    2013-05-01

    There has been growing interest in the role of postnatal brain development in the etiology of several neurologic diseases. The rat has long been recognized as a powerful model system for studying neuropathology and the safety of pharmacologic treatments. However, the complex spatiotemporal changes that occur during rat neurodevelopment remain to be elucidated. This work establishes the first magnetic resonance histology (MRH) atlas of the developing rat brain, with an emphasis on quantitation. The atlas comprises five specimens at each of nine time points, imaged with eight distinct MR contrasts and segmented into 26 developmentally defined brain regions. The atlas was used to establish a timeline of morphometric changes and variability throughout neurodevelopment and represents a quantitative database of rat neurodevelopment for characterizing rat models of human neurologic disease. Published by Elsevier Inc.

  8. Brain regional differences in social encounter-induced Fos expression in male and female rats after post-weaning social isolation.

    PubMed

    Ahern, Megan; Goodell, Dayton J; Adams, Jessica; Bland, Sondra T

    2016-01-01

    Early life adversity has been related to a number of psychological disorders including mood and other disorders that can manifest as inappropriate or aggressive responses to social challenges. The present study used post-weaning social isolation (PSI) in rats, a model of early life adversity, to examine its effects on Fos protein expression produced by exposure to a novel social encounter. We have previously reported that the social encounter-induced increase in Fos expression in the medial prefrontal cortex observed in group-housed controls (GRP) was attenuated in rats that had experienced PSI. Here we assessed Fos expression in other brain regions thought to be involved in emotion regulation and social behavior. Male and female rats were housed in same-sex groups or in isolation (ISO) for 4 weeks beginning on postnatal day (P) 21 and were exposed to a single 15 min social encounter with a novel same-sex conspecific on P49. Fos positive cells were assessed using immunohistochemistry in 16 regions within the forebrain. Exposure to a novel conspecific increased Fos expression in the forebrain of GRP rats in a region- and sex-specific fashion. This increase was blunted or absent in ISO rats within many regions including cortical regions, thalamus, habenula, dentate gyrus, lateral septum, and basolateral amygdala. In several regions, the increase in Fos was greater in male than in female group housed rats. Negative relationships were observed between social interactions and Fos in some regions. Forebrain hypofunction produced by early-life adversity may be involved in socially inappropriate behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Dynamic Multi-Coil Technique (DYNAMITE) Shimming of the Rat Brain at 11.7 Tesla

    PubMed Central

    Juchem, Christoph; Herman, Peter; Sanganahalli, Basavaraju G.; Brown, Peter B.; McIntyre, Scott; Nixon, Terence W.; Green, Dan; Hyder, Fahmeed; de Graaf, Robin A.

    2014-01-01

    The in vivo rat model is a workhorse in neuroscience research, preclinical studies and drug development. A repertoire of MR tools has been developed for its investigation, however, high levels of B0 magnetic field homogeneity are required for meaningful results. The homogenization of magnetic fields in the rat brain, i.e. shimming, is a difficult task due to a multitude of complex, susceptibility-induced field distortions. Conventional shimming with spherical harmonic (SH) functions is capable of compensating shallow field distortions in limited areas, e.g. in the cortex, but performs poorly in difficult-to-shim subcortical structures or for the entire brain. Based on the recently introduced multi-coil approach for magnetic field modeling, the DYNAmic Multi-coIl TEchnique (DYNAMITE) is introduced for magnetic field shimming of the in vivo rat brain and its benefits for gradient-echo echo-planar imaging (EPI) are demonstrated. An integrated multi-coil/radio-frequency (MC/RF) system comprising 48 individual localized DC coils for B0 shimming and a surface transceive RF coil has been developed that allows MR investigations of the anesthetized rat brain in vivo. DYNAMITE shimming with this MC/RF setup is shown to reduce the B0 standard deviation to a third of that achieved with current shim technology employing static first through third order SH shapes. The EPI signal over the rat brain increased by 31% and a 24% gain in usable EPI voxels could be realized. DYNAMITE shimming is expected to critically benefit a wide range of preclinical and neuroscientific MR research. Improved magnetic field homogeneity, along with the achievable large brain coverage of this method will be crucial when signal pathways, cortical circuitry or the brain’s default network are studied. Along with the efficiency gains of MC-based shimming compared to SH approaches demonstrated recently, DYNAMITE shimming has the potential to replace conventional SH shim systems in small bore animal

  10. Protective role of Cynodon dactylon in ameliorating the aluminium-induced neurotoxicity in rat brain regions.

    PubMed

    Sumathi, Thangarajan; Shobana, Chandrasekar; Kumari, Balasubramanian Rathina; Nandhini, Devarajulu Nisha

    2011-12-01

    Cynodon dactylon (Poaceae) is a creeping grass used as a traditional ayurvedic medicine in India. Aluminium-induced neurotoxicity is well known and different salts of aluminium have been reported to accelerate damage to biomolecules like lipids, proteins and nucleic acids. The objective of the present study was to investigate whether the aqueous extract of C. dactylon (AECD) could potentially prevent aluminium-induced neurotoxicity in the cerebral cortex, hippocampus and cerebellum of the rat brain. Male albino rats were administered with AlCl(3) at a dose of 4.2 mg/kg/day i.p. for 4 weeks. Experimental rats were given C. dactylon extract in two different doses of 300 mg and 750 mg/keg/day orally 1 h prior to the AlCl(3) administration for 4 weeks. At the end of the experiments, antioxidant status and activities of ATPases in cerebral cortex, hippocampus and cerebellum of rat brain were measured. Aluminium administration significantly decreased the level of GSH and the activities of SOD, GPx, GST, Na(+)/K(+) ATPase, and Mg(2+) ATPase and increased the level of lipid peroxidation (LPO) in all the brain regions when compared with control rats. Pre-treatment with AECD at a dose of 750 mg/kg b.w increased the antioxidant status and activities of membrane-bound enzymes (Na(+)/K(+) ATPase and Mg(2+) ATPase) and also decreased the level of LPO significantly, when compared with aluminium-induced rats. The results of this study indicated that AECD has potential to protect the various brain regions from aluminium-induced neurotoxicity.

  11. Disruption of δ-opioid receptor phosphorylation at threonine 161 attenuates morphine tolerance in rats with CFA-induced inflammatory hypersensitivity.

    PubMed

    Chen, Hai-Jing; Xie, Wei-Yan; Hu, Fang; Zhang, Ying; Wang, Jun; Wang, Yun

    2012-04-01

    Our previous study identified Threonine 161 (Thr-161), located in the second intracellular loop of the δ-opioid receptor (DOR), as the only consensus phosphorylation site for cyclin-dependent kinase 5 (Cdk5). The aim of this study was to assess the function of DOR phosphorylation by Cdk5 in complete Freund's adjuvant (CFA)-induced inflammatory pain and morphine tolerance. Dorsal root ganglion (DRG) neurons of rats with CFA-induced inflammatory pain were acutely dissociated and the biotinylation method was used to explore the membrane localization of phosphorylated DOR at Thr-161 (pThr-161-DOR), and paw withdrawal latency was measured after intrathecal delivery of drugs or Tat-peptide, using a radiant heat stimulator in rats with CFA-induced inflammatory pain. Both the total amount and the surface localization of pThr-161-DOR were significantly enhanced in the ipsilateral DRG following CFA injection. Intrathecal delivery of the engineered Tat fusion-interefering peptide corresponding to the second intracellular loop of DOR (Tat-DOR-2L) increased inflammatory hypersensitivity, and inhibited DOR- but not µ-opioid receptor-mediated spinal analgesia in CFA-treated rats. However, intrathecal delivery of Tat-DOR-2L postponed morphine antinociceptive tolerance in rats with CFA-induced inflammatory pain. Phosphorylation of DOR at Thr-161 by Cdk5 attenuates hypersensitivity and potentiates morphine tolerance in rats with CFA-induced inflammatory pain, while disruption of the phosphorylation of DOR at Thr-161 attenuates morphine tolerance.

  12. Aerobic Exercise Training Attenuates Tumor Growth and Reduces Insulin Secretion in Walker 256 Tumor-Bearing Rats

    PubMed Central

    Moreira, Veridiana Mota; da Silva Franco, Claudinéia Conationi; Prates, Kelly Valério; Gomes, Rodrigo Mello; de Moraes, Ana Maria Praxedes; Ribeiro, Tatiane Aparecida; Martins, Isabela Peixoto; Previate, Carina; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Almeida, Douglas Lopes; Francisco, Flávio Andrade; Malta, Ananda; Tófolo, Laize Peron; da Silva Silveira, Sandra; Saavedra, Lucas Paulo Jacinto; Machado, Katia; da Silva, Paulo Henrique Olivieri; Fabrício, Gabriel S.; Palma-Rigo, Kesia; de Souza, Helenir Medri; de Fátima Silva, Flaviane; Biazi, Giuliana Regina; Pereira, Taís Susane; Vieira, Elaine; Miranda, Rosiane Aparecida; de Oliveira, Júlio Cezar; da Costa Lima, Luiz Delmar; Rinaldi, Wilson; Ravanelli, Maria Ida; de Freitas Mathias, Paulo Cezar

    2018-01-01

    Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55–65% VO2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training

  13. Aerobic Exercise Training Attenuates Tumor Growth and Reduces Insulin Secretion in Walker 256 Tumor-Bearing Rats.

    PubMed

    Moreira, Veridiana Mota; da Silva Franco, Claudinéia Conationi; Prates, Kelly Valério; Gomes, Rodrigo Mello; de Moraes, Ana Maria Praxedes; Ribeiro, Tatiane Aparecida; Martins, Isabela Peixoto; Previate, Carina; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Almeida, Douglas Lopes; Francisco, Flávio Andrade; Malta, Ananda; Tófolo, Laize Peron; da Silva Silveira, Sandra; Saavedra, Lucas Paulo Jacinto; Machado, Katia; da Silva, Paulo Henrique Olivieri; Fabrício, Gabriel S; Palma-Rigo, Kesia; de Souza, Helenir Medri; de Fátima Silva, Flaviane; Biazi, Giuliana Regina; Pereira, Taís Susane; Vieira, Elaine; Miranda, Rosiane Aparecida; de Oliveira, Júlio Cezar; da Costa Lima, Luiz Delmar; Rinaldi, Wilson; Ravanelli, Maria Ida; de Freitas Mathias, Paulo Cezar

    2018-01-01

    Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55-65% VO 2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO 2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training

  14. Rat brain CYP2D enzymatic metabolism alters acute and chronic haloperidol side-effects by different mechanisms.

    PubMed

    Miksys, Sharon; Wadji, Fariba Baghai; Tolledo, Edgor Cole; Remington, Gary; Nobrega, Jose N; Tyndale, Rachel F

    2017-08-01

    Risk for side-effects after acute (e.g. parkinsonism) or chronic (e.g. tardive dyskinesia) treatment with antipsychotics, including haloperidol, varies substantially among people. CYP2D can metabolize many antipsychotics and variable brain CYP2D metabolism can influence local drug and metabolite levels sufficiently to alter behavioral responses. Here we investigated a role for brain CYP2D in acutely and chronically administered haloperidol levels and side-effects in a rat model. Rat brain, but not liver, CYP2D activity was irreversibly inhibited with intracerebral propranolol and/or induced by seven days of subcutaneous nicotine pre-treatment. The role of variable brain CYP2D was investigated in rat models of acute (catalepsy) and chronic (vacuous chewing movements, VCMs) haloperidol side-effects. Selective inhibition and induction of brain, but not liver, CYP2D decreased and increased catalepsy after acute haloperidol, respectively. Catalepsy correlated with brain, but not hepatic, CYP2D enzyme activity. Inhibition of brain CYP2D increased VCMs after chronic haloperidol; VCMs correlated with brain, but not hepatic, CYP2D activity, haloperidol levels and lipid peroxidation. Baseline measures, hepatic CYP2D activity and plasma haloperidol levels were unchanged by brain CYP2D manipulations. Variable rat brain CYP2D alters side-effects from acute and chronic haloperidol in opposite directions; catalepsy appears to be enhanced by a brain CYP2D-derived metabolite while the parent haloperidol likely causes VCMs. These data provide novel mechanistic evidence for brain CYP2D altering side-effects of haloperidol and other antipsychotics metabolized by CYP2D, suggesting that variation in human brain CYP2D may be a risk factor for antipsychotic side-effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Prolactin prevents acute stress-induced hypocalcemia and ulcerogenesis by acting in the brain of rat.

    PubMed

    Fujikawa, Takahiko; Soya, Hideaki; Tamashiro, Kellie L K; Sakai, Randall R; McEwen, Bruce S; Nakai, Naoya; Ogata, Masato; Suzuki, Ikukatsu; Nakashima, Kunio

    2004-04-01

    Stress causes hypocalcemia and ulcerogenesis in rats. In rats under stressful conditions, a rapid and transient increase in circulating prolactin (PRL) is observed, and this enhanced PRL induces PRL receptors (PRLR) in the choroid plexus of rat brain. In this study we used restraint stress in water to elucidate the mechanism by which PRLR in the rat brain mediate the protective effect of PRL against stress-induced hypocalcemia and ulcerogenesis. We show that rat PRL acts through the long form of PRLR in the hypothalamus. This is followed by an increase in the long form of PRLR mRNA expression in the choroid plexus of the brain, which provides protection against restraint stress in water-induced hypocalcemia and gastric erosions. We also show that PRL induces the expression of PRLR protein and corticotropin-releasing factor mRNA in the paraventricular nucleus. These results suggest that the PRL levels increase in response to stress, and it moves from the circulation to the cerebrospinal fluid to act on the central nervous system and thereby plays an important role in helping to protect against acute stress-induced hypocalcemia and gastric erosions.

  16. Localized Down-regulation of P-glycoprotein by Focused Ultrasound and Microbubbles induced Blood-Brain Barrier Disruption in Rat Brain

    NASA Astrophysics Data System (ADS)

    Cho, Hongseok; Lee, Hwa-Youn; Han, Mun; Choi, Jong-Ryul; Ahn, Sanghyun; Lee, Taekwan; Chang, Yongmin; Park, Juyoung

    2016-08-01

    Multi-drug resistant efflux transporters found in Blood-Brain Barrier (BBB) acts as a functional barrier, by pumping out most of the drugs into the blood. Previous studies showed focused ultrasound (FUS) induced microbubble oscillation can disrupt the BBB by loosening the tight junctions in the brain endothelial cells; however, no study was performed to investigate its impact on the functional barrier of the BBB. In this study, the BBB in rat brains were disrupted using the MRI guided FUS and microbubbles. The immunofluorescence study evaluated the expression of the P-glycoprotein (P-gp), the most dominant multi-drug resistant protein found in the BBB. Intensity of the P-gp expression at the BBB disruption (BBBD) regions was significantly reduced (63.2 ± 18.4%) compared to the control area. The magnitude of the BBBD and the level of the P-gp down-regulation were significantly correlated. Both the immunofluorescence and histologic analysis at the BBBD regions revealed no apparent damage in the brain endothelial cells. The results demonstrate that the FUS and microbubbles can induce a localized down-regulation of P-gp expression in rat brain. The study suggests a clinically translation of this method to treat neural diseases through targeted delivery of the wide ranges of brain disorder related drugs.

  17. Increased transfer of 45Ca into brain and cerebrospinal fluid from plasma during chronic hypocalcemia in rats.

    PubMed

    Murphy, V A; Rapoport, S I

    1988-06-28

    Recent studies have shown regulation of central nervous system [Ca] after chronic hypo- and hypercalcemia. To investigate the mechanism of this regulation, 3-week-old rats were fed diets for 8 weeks that contained low or normal levels of Ca. Plasma [Ca] was 40% less in rats fed the low Ca diet than in animals fed normal diet. Unidirectional transfer coefficients for Ca (KCa) and Cl (KCl) into cerebrospinal fluid (CSF) and brain were determined from the 10 min uptake of intravenously injected 45Ca and 36Cl in awake animals. KCa for CSF was 68% greater in low-Ca rats than in normal rats. Likewise, the values of KCa for brain regions with areas adjacent to the ventricles like the hippocampus and pons-medulla were 50% higher than in normal animals. On the other hand, KCas for parietal cortex, a brain region distant from the choroid plexus and not expected to be influenced by Ca entry into CSF, were similar between the groups. Comparison of the regional ratios of KCa/KCl revealed that a selective increase of Ca transport occurred into CSF and all brain regions except the parietal cortex in Ca-deficient rats. The results suggest that Ca homeostasis of CSF and brain [Ca] during chronic hypocalcemia is due to increased transfer of Ca from blood to brain, and that the regulation occurs via the CSF, possibly at the choroid plexus, but not via the cerebral capillaries.

  18. Structural differences in the brain between wild and laboratory rats (Rattus norvegicus): potential contribution to wariness.

    PubMed

    Koizumi, Ryoko; Kiyokawa, Yasushi; Mikami, Kaori; Ishii, Akiko; Tanaka, Kazuyuki D; Tanikawa, Tsutomu; Takeuchi, Yukari

    2018-05-11

    Wild animals typically exhibit defensive behaviors in response to a wider range and/or a weaker intensity of stimuli compared with domestic animals. However, little is known about the neural mechanisms underlying "wariness" in wild animals. Wild rats are one of the most accessible wild animals for experimental research. Laboratory rats are a domesticated form of wild rat, belonging to the same species, and are therefore considered suitable control animals for wild rats. Based on these factors, we analyzed structural differences in the brain between wild and laboratory rats to elucidate the neural mechanisms underlying wariness. We examined wild rats trapped in Tokyo, and weight-matched laboratory rats. We then prepared brain sections and compared the basolateral complex of the amygdala (BLA), the bed nucleus of the stria terminalis (BNST), the main olfactory bulb, and the accessory olfactory bulb. The results revealed that wild rats exhibited larger BLA, BNST and caudal part of the accessory olfactory bulb compared with laboratory rats. These results suggest that the BLA, BNST, and vomeronasal system potentially contribute to wariness in wild rats.

  19. Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats

    PubMed Central

    2012-01-01

    Background Higher aluminum (Al) content in infant formula and its effects on neonatal brain development are a cause for concern. This study aimed to evaluate the distribution and concentration of Al in neonatal rat brain following Al treatment, and oxidative stress in brain tissues induced by Al overload. Methods Postnatal day 3 (PND 3) rat pups (n =46) received intraperitoneal injection of aluminum chloride (AlCl3), at dosages of 0, 7, and 35 mg/kg body wt (control, low Al (LA), and high Al (HA), respectively), over 14 d. Results Aluminum concentrations were significantly higher in the hippocampus (751.0 ± 225.8 ng/g v.s. 294.9 ± 180.8 ng/g; p < 0.05), diencephalon (79.6 ± 20.7 ng/g v.s. 20.4 ± 9.6 ng/g; p < 0.05), and cerebellum (144.8 ± 36.2 ng/g v.s. 83.1 ± 15.2 ng/g; p < 0.05) in the HA group compared to the control. The hippocampus, diencephalon, cerebellum, and brain stem of HA animals displayed significantly higher levels of lipid peroxidative products (TBARS) than the same regions in the controls. However, the average superoxide dismutase (SOD) activities in the cerebral cortex, hippocampus, cerebellum, and brain stem were lower in the HA group compared to the control. The HA animals demonstrated increased catalase activity in the diencephalon, and increased glutathione peroxidase (GPx) activity in the cerebral cortex, hippocampus, cerebellum, and brain stem, compared to controls. Conclusion Aluminum overload increases oxidative stress (H2O2) in the hippocampus, diencephalon, cerebellum, and brain stem in neonatal rats. PMID:22613782

  20. Forsythia suspensa extract attenuates lipopolysaccharide-induced inflammatory liver injury in rats via promoting antioxidant defense mechanisms.

    PubMed

    Zhao, Panfeng; Piao, Xiangshu; Pan, Long; Zeng, Zhikai; Li, Qingyun; Xu, Xiao; Wang, Hongliang

    2017-06-01

    Reactive oxygen species (ROS) have been shown to have a role in inflammation. We investigated whether Forsythia suspensa extract (FSE) could exert its antioxidant potential against lipopolysaccharide (LPS)-induced inflammatory liver injury in rats. Rats were orally fed FSE once daily for 7 consecutive days prior to LPS (Escherichia coli, serotype O55:B5) injection. LPS treatment caused liver dysfunction as evidenced by massive histopathological changes and increased serum alanine aminotransferase and aspartate aminotransferase activities which were ameliorated by FSE pretreatment. FSE attenuated LPS-induced depletion of cytosolic nuclear factor-erythroid 2-related factor 2 (Nrf2) and suppression of Nrf2 nuclear translocation in liver, and the generation of ROS and malondialdehyde in serum and liver. FSE increased the Nrf2-mediated induction of heme oxygenase-1 in liver, as well as superoxide dismutase and glutathione peroxidase activities in serum and liver. Importantly, FSE attenuated LPS-induced nuclear factor-кB (NF-кB) nuclear translocation in liver, and subsequently decreased tumor necrosis factor-α, interleukin (IL)-1β and IL-6 levels in serum and liver, which were associated with FSE-induced activation of Nrf2 in liver. These results indicate that the protective mechanisms of FSE may be involved in the attenuation of oxidative stress and the inhibition of the NF-кB-mediated inflammatory response by modulating the Nrf2-mediated antioxidant response against LPS-induced inflammatory liver injury. © 2016 Japanese Society of Animal Science.