Science.gov

Sample records for rat brain attenuation

  1. Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats.

    PubMed

    Gu, Xiaohuan; Wei, Zheng Zachory; Espinera, Alyssa; Lee, Jin Hwan; Ji, Xiaoya; Wei, Ling; Dix, Thomas A; Yu, Shan Ping

    2015-05-01

    Neonatal brain trauma is linked to higher risks of mortality and neurological disability. The use of mild to moderate hypothermia has shown promising potential against brain injuries induced by stroke and traumatic brain injury (TBI) in various experimental models and in clinical trials. Conventional methods of physical cooling, however, are difficult to use in acute treatments and in induction of regulated hypothermia. In addition, general anesthesia is usually required to mitigate the negative effects of shivering during physical cooling. Our recent investigations demonstrate the potential therapeutic benefits of pharmacologically induced hypothermia (PIH) using the neurotensin receptor (NTR) agonist HPI201 (formerly known as ABS201) in stroke and TBI models of adult rodents. The present investigation explored the brain protective effects of HPI201 in a P14 rat pediatric model of TBI induced by controlled cortical impact. When administered via intraperitoneal (i.p.) injection, HPI201 induced dose-dependent reduction of body and brain temperature. A 6-h hypothermic treatment, providing an overall 2-3°C reduction of brain and body temperature, showed significant effect of attenuating the contusion volume versus TBI controls. Attenuation occurs whether hypothermia is initiated 15min or 2h after TBI. No shivering response was seen in HPI201-treated animals. HPI201 treatment also reduced TUNEL-positive and TUNEL/NeuN-colabeled cells in the contusion area and peri-injury regions. TBI-induced blood-brain barrier damage was attenuated by HPI201 treatment, evaluated using the Evans Blue assay. HPI201 significantly decreased MMP-9 levels and caspase-3 activation, both of which are pro-apototic, while it increased anti-apoptotic Bcl-2 gene expression in the peri-contusion region. In addition, HPI201 prevented the up-regulation of pro-inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. In sensorimotor activity assessments, rats in the HPI201

  2. Hydrogen-rich water attenuates brain damage and inflammation after traumatic brain injury in rats.

    PubMed

    Tian, Runfa; Hou, Zonggang; Hao, Shuyu; Wu, Weichuan; Mao, Xiang; Tao, Xiaogang; Lu, Te; Liu, Baiyun

    2016-04-15

    Inflammation and oxidative stress are the two major causes of apoptosis after traumatic brain injury (TBI). Most previous studies of the neuroprotective effects of hydrogen-rich water on TBI primarily focused on antioxidant effects. The present study investigated whether hydrogen-rich water (HRW) could attenuate brain damage and inflammation after traumatic brain injury in rats. A TBI model was induced using a controlled cortical impact injury. HRW or distilled water was injected intraperitoneally daily following surgery. We measured survival rate, brain edema, blood-brain barrier (BBB) breakdown and neurological dysfunction in all animals. Changes in inflammatory cytokines, inflammatory cells and Cho/Cr metabolites in brain tissues were also detected. Our results demonstrated that TBI-challenged rats exhibited significant brain injuries that were characterized by decreased survival rate and increased BBB permeability, brain edema, and neurological dysfunction, while HRW treatment ameliorated the consequences of TBI. HRW treatment also decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β and HMGB1), inflammatory cell number (Iba1) and inflammatory metabolites (Cho) and increased the levels of an anti-inflammatory cytokine (IL-10) in the brain tissues of TBI-challenged rats. In conclusion, HRW could exert a neuroprotective effect against TBI and attenuate inflammation, which suggests HRW as an effective therapeutic strategy for TBI patients.

  3. Moderate Hypothermia Inhibits Brain Inflammation and Attenuates Stroke-induced Immunodepression in Rats

    PubMed Central

    Gu, Li-Juan; Xiong, Xiao-Xing; Ito, Takashi; Lee, Jessica; Xu, Bao-Hui; Krams, Sheri; Steinberg, Gary K.; Zhao, Heng

    2013-01-01

    Summary Aims Stroke causes both brain inflammation and immunodepression. Mild to moderate hypothermia is known to attenuate brain inflammation but its role in stroke-induced immunodepression (SIID) of the peripheral immune system remains unknown. This study investigated the effects in rats of moderate intra-ischemic hypothermia on SIID and brain inflammation. Methods Stroke was induced in rats by permanent distal MCA occlusion combined with transient bilateral CCA occlusion while body temperature was reduced to 30°C. Real-time PCR, flow cytometry, in vitro T cell proliferation assays and confocal microscopy were used to study SIID and brain inflammation. Results Brief Intra-Ischemic hypothermia helped maintain certain leukocytes in the peripheral blood and spleen, and enhanced T cell proliferation in vitro and delayed-type hypersensitivity in vivo, suggesting that hypothermia reduces SIID. In contrast, in the brain, brief intra-Ischemic hypothermia inhibited mRNA expression of anti-inflammatory cytokine IL-10 and pro-inflammatory cytokines INF-γ, TNF-α, IL-2, IL-1β and MIP-2. Brief intra-Ischemic hypothermia also attenuated the infiltration of lymphocytes, neutrophils (MPO+ cells) and macrophages (CD68+ cells) into the ischemic brain, suggesting that hypothermia inhibited brain inflammation. Conclusions Brief intra-ischemic hypothermia attenuated SIID and protected against acute brain inflammation. PMID:23981596

  4. L-histidine but not D-histidine attenuates brain edema following cryogenic injury in rats.

    PubMed

    Ikeda, Y; Mochizuki, Y; Matsumoto, H; Nakamura, Y; Dohi, K; Jimbo, H; Shimazu, M; Hayashi, M; Matsumoto, K

    2000-01-01

    Oxygen free radicals have been implicated in the genesis of traumatic brain injury and brain edema (BE). Recent studies have suggested that hydroxyl radical can initiate lipid peroxidation, thus producing lipid-free radicals that may become important sources of singlet oxygen. L-histidine, a singlet oxygen scavenger, potentially can be used to treat BE. In this study we investigated the effects of L-histidine and D-histidine on BE following cryogenic injury in rats. Male Wistar rats were anaesthetized with chloral hydrate. Vasogenic BE was produced by a cortical freezing lesion. Generation of singlet oxygen from photoactivation of rose bengal was studied by electron spin resonance (ESR). Animals were separated into four groups: sham rats (n = 5), saline-treated rats (n = 10), L-histidine treated rats (n = 6) and D-histidine treated rats (n = 7). Each agent (100 mg/kg) was administered intravenously at 30 minutes before lesion production. Animals were sacrificed at 24 hours after lesion production and the brain water content was determined by the dry-wet weight method. L-histidine had no effect on rectal and brain temperature. Election Spin Resonance studies demonstrated that L-histidine is a singlet oxygen scavenger. L-histidine but not D-histidine significantly attenuated BE following cryogenic injury (p < 0.05). In conclusion, L-histidine is useful in the treatment of traumatic BE.

  5. Curcumin Mediated Attenuation of Carbofuran Induced Oxidative Stress in Rat Brain

    PubMed Central

    Jaiswal, Sunil Kumar; Sharma, Ashish; Gupta, Vivek Kumar; Singh, Rakesh Kumar; Sharma, Bechan

    2016-01-01

    The indiscriminate use of carbofuran to improve crop productivity causes adverse effects in nontargets including mammalian systems. The objective of this study was to evaluate carbofuran induced oxidative stress in rat brain stem and its attenuation by curcumin, a herbal product. Out of 6 groups of rats, 2 groups received two different doses of carbofuran, that is, 15 and 30% of LD50, respectively, for 30 days. Out of these, 2 groups receiving same doses of carbofuran were pretreated with curcumin (100 mg/kg body weight). The levels of antioxidants, TBARS, GSH, SOD, catalase, and GST were determined in rat brain stem. The 2 remaining groups served as placebo and curcumin treated, respectively. The data suggested that carbofuran at different doses caused significant alterations in the levels of TBARS and GSH in dose dependent manner. The TBARS and GSH contents were elevated. The activities of SOD, catalase, and GST were significantly inhibited at both doses of carbofuran. The ratio of P/A was also found to be sharply increased. The pretreatment of curcumin exhibited significant protection from carbofuran induced toxicity. The results suggested that carbofuran at sublethal doses was able to induce oxidative stress in rat brain which could be attenuated by curcumin. PMID:27213055

  6. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    PubMed

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells

  7. Rat umbilical cord blood cells attenuate hypoxic–ischemic brain injury in neonatal rats

    PubMed Central

    Nakanishi, Keiko; Sato, Yoshiaki; Mizutani, Yuka; Ito, Miharu; Hirakawa, Akihiro; Higashi, Yujiro

    2017-01-01

    Increasing evidence has suggested that human umbilical cord blood cells (hUCBC) have a favorable effect on hypoxic–ischemic (HI) brain injury. However, the efficacy of using hUCBCs to treat this injury has been variable and the underlying mechanism remains elusive. Here, we investigated its effectiveness using stereological analysis in an allogeneic system to examine whether intraperitoneal injection of cells derived from UCBCs of green fluorescent protein (GFP)-transgenic rats could ameliorate brain injury in neonatal rats. Three weeks after the HI event, the estimated residual brain volume was larger and motor function improved more in the cell-injected rats than in the control (PBS-treated) rats. The GFP-positive cells were hardly detectable in the brain (0.0057% of injected cells) 9 days after injection. Although 60% of GFP-positive cells in the brain were Iba1-positive, none of these were positive for NeuroD or DCX. While the number of proliferating cells increased in the hippocampus, that of activated microglia/macrophages decreased and a proportion of M2 microglia/macrophages increased in the ipsilateral hemisphere of cell-injected rats. These results suggest that intraperitoneal injection of cells derived from UCBCs could ameliorate HI injury, possibly through an endogenous response and not by supplying differentiated neurons derived from the injected stem cells. PMID:28281676

  8. Enalapril attenuates ischaemic brain oedema and protects the blood-brain barrier in rats via an anti-oxidant action.

    PubMed

    Panahpour, Hamdollah; Dehghani, Gholam Abbas; Bohlooli, Shahab

    2014-03-01

    1. In the present study, we investigated the effects of postischaemic angiotensin-converting enzyme (ACE) inhibition with enalapril on vasogenic oedema formation and blood-brain barrier (BBB) integrity following transient focal cerebral ischaemia in rats. 2. Cerebral ischaemia was induced by 60 min occlusion of the right middle cerebral artery, followed by 24 h reperfusion. Vehicle and a non-hypotensive dose of enalapril (0.03 mg/kg) were administered at the beginning of the reperfusion period. A neurological deficit score (NDS) was determined for all rats at the end of the reperfusion period. Then, brain oedema formation was investigated using the wet-dry weight method and BBB permeability was evaluated on the basis of extravasation of Evans blue (EB) dye. In addition, oxidative stress was assessed by measuring reduced glutathione (GSH) and malondialdehyde (MDA) in brain homogenates. 3. Inhibition of ACE by enalapril significantly reduced NDS and decreased brain oedema formation (P < 0.05 for both). Disruption of the BBB following ischaemia resulted in considerable leakage of EB dye into the brain parenchyma of the ipsilateral hemispheres of vehicle-treated rats. Enalapril significantly (P < 0.05) decreased EB extravasation into the lesioned hemisphere. Enalapril also augmented anti-oxidant activity in ischaemic brain tissue by increasing GSH concentrations and significantly (P < 0.05) attenuating the increased MDA levels in response to ischaemia. 4. In conclusion, inhibition of ACE with a non-hypotensive dose of enalapril may protect BBB function and attenuate oedema formation via anti-oxidant actions.

  9. Thymoquinone Attenuates Brain Injury via an Anti-oxidative Pathway in a Status Epilepticus Rat Model

    PubMed Central

    Shao, Yi-ye; Li, Bing; Huang, Yong-mei; Luo, Qiong; Xie, Yang-mei; Chen, Ying-hui

    2017-01-01

    Abstract Aim Status epilepticus (SE) results in the generation of reactive oxygen species (ROS), which contribute to seizure-induced brain injury. It is well known that oxidative stress plays a pivotal role in status epilepticus (SE). Thymoquinone (TQ) is a bioactive monomer extracted from black cumin (Nigella sativa) seed oil that has anti-inflammatory, anti-cancer, and antioxidant activity in various diseases. This study evaluated the protective effects of TQ on brain injury in a lithium-pilocarpine rat model of SE and investigated the underlying mechanism related to antioxidative pathway. Methods Electroencephalogram and Racine scale were used to value seizure severity. Passive-avoidance test was used to determine learning and memory function. Moreover, anti-oxidative activity of TQ was observed using Western blot and super oxide dismutase (SOD) activity assay. Results Latency to SE increased in the TQ-pretreated group compared with rats in the model group, while the total power was significantly lower. Seizure severity measured on the Racine scale was significantly lower in the TQ group compared with the model group. Results of behavioral experiments suggest that TQ may also have a protective effect on learning and memory function. Investigation of the protective mechanism of TQ showed that TQ-pretreatment significantly increased the expression of Nrf2, HO-1 proteins and SOD in the hippocampus. Conclusion These findings showed that TQ attenuated brain injury induced by SE via an anti-oxidative pathway.

  10. Sarin-induced brain damage in rats is attenuated by delayed administration of midazolam.

    PubMed

    Chapman, Shira; Yaakov, Guy; Egoz, Inbal; Rabinovitz, Ishai; Raveh, Lily; Kadar, Tamar; Gilat, Eran; Grauer, Ettie

    2015-07-01

    Sarin poisoned rats display a hyper-cholinergic activity including hypersalivation, tremors, seizures and death. Here we studied the time and dose effects of midazolam treatment following nerve agent exposure. Rats were exposed to sarin (1.2 LD50, 108 μg/kg, im), and treated 1 min later with TMB4 and atropine (TA 7.5 and 5 mg/kg, im, respectively). Midazolam was injected either at 1 min (1 mg/kg, im), or 1 h later (1 or 5 mg/kg i.m.). Cortical seizures were monitored by electrocorticogram (ECoG). At 5 weeks, rats were assessed in a water maze task, and then their brains were extracted for biochemical analysis and histological evaluation. Results revealed a time and dose dependent effects of midazolam treatment. Rats treated with TA only displayed acute signs of sarin intoxication, 29% died within 24h and the ECoG showed seizures for several hours. Animals that received midazolam within 1 min survived with only minor clinical signs but with no biochemical, behavioral, or histological sequel. Animals that lived to receive midazolam at 1h (87%) survived and the effects of the delayed administration were dose dependent. Midazolam 5 mg/kg significantly counteracted the acute signs of intoxication and the impaired behavioral performance, attenuated some of the inflammatory response with no effect on morphological damage. Midazolam 1mg/kg showed only a slight tendency to modulate the cognitive function. In addition, the delayed administration of both midazolam doses significantly attenuated ECoG compared to TA treatment only. These results suggest that following prolonged seizure, high dose midazolam is beneficial in counteracting adverse effects of sarin poisoning.

  11. CDP-choline (citicoline) attenuates brain damage in a rat model of birth asphyxia.

    PubMed

    Fiedorowicz, Michał; Makarewicz, Dorota; Stańczak-Mrozek, Kinga I; Grieb, Paweł

    2008-01-01

    To estimate protective potential of citicoline in a model of birth asphyxia, the drug was given to 7-day old rats subjected to permanent unilateral carotid artery occlusion and exposed for 65 min to a hypoxic gas mixture. Daily citicoline doses of 100 or 300 m/kg, or vehicle, were injected intraperitoneally for 7 consecutive days beginning immediately after the end of the ischemic-hypoxic insult, and brain damage was assessed by gross zorphology score and weight deficit two weeks after the insult. Caspase-3, alpha-fodrin, Bcl-2, and Hsp70 levels were assessed at 0, 1, and 24 h after the end of the hypoxic insult in another group of rat pups subjected to the same insult and given a single dose of 300 m/kg of citicoline or the vehicle. Citicoline markedly reduced caspase-3 activation and Hsp70 expression 24 h after the insult, and dose-dependently attenuated brain damage. In the context of the well-known excellent safety profile of citicoline, these data suggest that clinical evaluation of the efficacy of the drug in human birth asphyxia may be warranted.

  12. Edaravone attenuates brain damage in rats after acute CO poisoning through inhibiting apoptosis and oxidative stress.

    PubMed

    Li, Qin; Bi, Ming Jun; Bi, Wei Kang; Kang, Hai; Yan, Le Jing; Guo, Yun-Liang

    2016-03-01

    Acute carbon monoxide (CO) poisoning is the most common cause of death from poisoning all over the world and may result in neuropathologic and neurophysiologic changes. Acute brain damage and delayed encephalopathy are the most serious complication, yet their pathogenesis is poorly understood. The present study aimed to evaluate the neuroprotective effects of Edaravone against apoptosis and oxidative stress after acute CO poisoning. The rat model of CO poisoning was established in a hyperbaric oxygen chamber by exposed to CO. Ultrastructure changes were observed by transmission electron microscopy (TEM). TUNEL stain was used to assess apoptosis. Immunohistochemistry and immunofluorescence double stain were used to evaluate the expression levels of heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf-2) protein and their relationship. By dynamically monitored the carboxyhemoglobin (HbCO) level in blood, we successfully established rat model of severe CO poisoning. Ultrastructure changes, including chromatin condensation, cytoplasm dissolution, vacuoles formation, nucleus membrane and cell organelles decomposition, could be observed after CO poisoning. Edaravone could improve the ultrastructure damage. CO poisoning could induce apoptosis. Apoptotic cells were widely distributed in cortex, striatum and hippocampus. Edaravone treatment attenuated neuronal apoptosis as compared with the poisoning group (P < 0.01). Basal expressions of HO-1 and Nrf-2 proteins were found in normal brain tissue. CO poisoning could activate HO-1/Nrf-2 pathway, start oxidative stress response. After the administration of Edaravone, the expression of HO-1 and Nrf-2 significantly increased (P < 0.01). These findings suggest that Edaravone may inhibit apoptosis, activate the Keapl-Nrf/ARE pathway, and thus improve the ultrastructure damage and neurophysiologic changes following acute CO poisoning.

  13. Simvastatin combined with antioxidant attenuates the cerebral vascular endothelial inflammatory response in a rat traumatic brain injury.

    PubMed

    Wang, Kuo-Wei; Wang, Hao-Kuang; Chen, Han-Jung; Liliang, Po-Chou; Liang, Cheng-Loong; Tsai, Yu-Duan; Cho, Chung-Lung; Lu, Kang

    2014-01-01

    Traumatic brain injury (TBI) leads to important and deleterious neuroinflammation, as evidenced by indicators such as edema, cytokine production, induction of nitric oxide synthase, and leukocyte infiltration. After TBI, cerebral vascular endothelial cells play a crucial role in the pathogenesis of inflammation. In our previous study, we proved that simvastatin could attenuate cerebral vascular endothelial inflammatory response in a rat traumatic brain injury. This purpose of this study was to determine whether simvastatin combined with an antioxidant could produce the same effect or greater and to examine affected surrogate biomarkers for the neuroinflammation after traumatic brain injury in rat. In our study, cortical contusions were induced, and the effect of acute and continuous treatment of simvastatin and vitamin C on behavior and inflammation in adult rats following experimental TBI was evaluated. The results demonstrated that simvastatin combined with an antioxidant could provide neuroprotection and it may be attributed to a dampening of cerebral vascular endothelial inflammatory response.

  14. Garlic extract attenuates brain mitochondrial dysfunction and cognitive deficit in obese-insulin resistant rats.

    PubMed

    Pintana, Hiranya; Sripetchwandee, Jirapas; Supakul, Luerat; Apaijai, Nattayaporn; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-12-01

    Oxidative stress in the obese-insulin resistant condition has been shown to affect cognitive as well as brain mitochondrial functions. Garlic extract has exerted a potent antioxidant effect. However, the effects of garlic extract on the brain of obese-insulin resistant rats have never been investigated. We hypothesized that garlic extract improves cognitive function and brain mitochondrial function in obese-insulin resistant rats induced by long-term high-fat diet (HFD) consumption. Male Wistar rats were fed either normal diet or HFD for 16 weeks (n = 24/group). At week 12, rats in each dietary group received either vehicle or garlic extract (250 and 500 mg·kg(-1)·day(-1)) for 28 days. Learning and memory behaviors, metabolic parameters, and brain mitochondrial function were determined at the end of treatment. HFD led to increased body weight, visceral fat, plasma insulin, cholesterol, and malondialdehyde (MDA) levels, indicating the development of insulin resistance. Furthermore, HFD rats had cognitive deficit and brain mitochondrial dysfunction. HFD rats treated with both doses of garlic extract had decreased body weight, visceral fat, plasma cholesterol, and MDA levels. Garlic extract also improved cognitive function and brain mitochondrial function, which were impaired in obese-insulin resistant rats caused by HFD consumption.

  15. Testosterone replacement attenuates cognitive decline in testosterone-deprived lean rats, but not in obese rats, by mitigating brain oxidative stress.

    PubMed

    Pintana, Hiranya; Pongkan, Wanpitak; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2015-10-01

    Testosterone replacement improves metabolic parameters and cognitive function in hypogonadism. However, the effects of testosterone therapy on cognition in obese condition with testosterone deprivation have not been investigated. We hypothesized that testosterone replacement improves cognitive function in testosterone-deprived obese rats by restoring brain insulin sensitivity, brain mitochondrial function, and hippocampal synaptic plasticity. Thirty male Wistar rats had either a bilateral orchiectomy (ORX: O, n = 24) or a sham operation (S, n = 6). ORX rats were further divided into two groups fed with either a normal diet (NDO) or a high-fat diet (HFO) for 12 weeks. Then, ORX rats in each dietary group were divided into two subgroups (n = 6/subgroup) and were given either castor oil or testosterone (2 mg/kg/day, s.c.) for 4 weeks. At the end of this protocol, cognitive function, metabolic parameters, brain insulin sensitivity, hippocampal synaptic plasticity, and brain mitochondrial function were determined. We found that testosterone replacement increased peripheral insulin sensitivity, decreased circulation and brain oxidative stress levels, and attenuated brain mitochondrial ROS production in HFO rats. However, testosterone failed to restore hippocampal synaptic plasticity and cognitive function in HFO rats. In contrast, in NDO rats, testosterone decreased circulation and brain oxidative stress levels, attenuated brain mitochondrial ROS production, and restored hippocampal synaptic plasticity as well as cognitive function. These findings suggest that testosterone replacement improved peripheral insulin sensitivity and decreased oxidative stress levels, but failed to restore hippocampal synaptic plasticity and cognitive function in testosterone-deprived obese rats. However, it provided beneficial effects in reversing cognitive impairment in testosterone-deprived non-obese rats.

  16. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain.

    PubMed

    Nonato, L F; Rocha-Vieira, E; Tossige-Gomes, R; Soares, A A; Soares, B A; Freitas, D A; Oliveira, M X; Mendonça, V A; Lacerda, A C; Massensini, A R; Leite, H R

    2016-09-29

    Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain.

  17. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain

    PubMed Central

    Nonato, L.F.; Rocha-Vieira, E.; Tossige-Gomes, R.; Soares, A.A.; Soares, B.A.; Freitas, D.A.; Oliveira, M.X.; Mendonça, V.A.; Lacerda, A.C.; Massensini, A.R.; Leite, H.R.

    2016-01-01

    Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain. PMID:27706439

  18. Minocycline attenuates brain tissue levels of TNF-α produced by neurons after prolonged hypothermic cardiac arrest in rats

    PubMed Central

    Drabek, Tomas; Janata, Andreas; Wilson, Caleb D.; Stezoski, Jason; Janesko-Feldman, Keri; Tisherman, Samuel A.; Foley, Lesley M.; Verrier, Jonathan; Kochanek, Patrick M.

    2014-01-01

    Neuro-cognitive disabilities are a well-recognized complication of hypothermic circulatory arrest. We and others have reported that prolonged cardiac arrest (CA) produces neuronal death and microglial proliferation and activation that are only partially mitigated by hypothermia. Microglia, and possibly other cells, are suggested to elaborate tumor necrosis factor alpha (TNF-α) which can trigger neuronal death cascades and exacerbate edema after CNS insults. Minocycline is neuroprotective in some brain ischemia models in part by blunting the microglial response. We tested the hypothesis that minocycline would attenuate neuroinflammation as reflected by brain tissue levels of TNF-α after hypothermic CA in rats. Rats were subjected to rapid exsanguination, followed by a 6 min normothermic CA. Hypothermia (30 °C) was then induced by an aortic saline flush. After a total of 20 min CA, resuscitation was achieved via cardiopulmonary bypass (CPB). After 5 min reperfusion, minocycline (90 mg/kg; n=6) or vehicle (PBS; n=6) were given. Hypothermia (34 °C) was maintained for 6 h. Rats were sacrificed at 6 or 24 h. TNF-α was quantified (ELISA) in four brain regions (cerebellum, CEREB; cortex, CTX; hippocampus, HIP; striatum, STRI). Naïve rats (n=6) and rats subjected to the same anesthesia and CPB but no CA served as controls (n=6). Immunocytochemistry was used to localize TNF-α. Naïve rats and CPB controls had no detectable TNF-α in any brain region. CA markedly increased brain TNF-α. Regional differences were seen, with the highest TNF-α levels in striatum in CA groups (10-fold higher, P<0.05 vs. all other brain regions). TNF-α was undetectable at 24 h. Minocycline attenuated TNF-α levels in CTX, HIP and STRI (P<0.05). TNF-α showed unique co-localization with neurons. In conclusion, we report region-dependent early increases in brain TNF-α levels after prolonged hypothermic CA, with maximal increases in striatum. Surprisingly, TNF-α co-localized in neurons and

  19. Ketamine coadministration attenuates morphine tolerance and leads to increased brain concentrations of both drugs in the rat

    PubMed Central

    Lilius, T O; Jokinen, V; Neuvonen, M S; Niemi, M; Kalso, E A; Rauhala, P V

    2015-01-01

    Background and Purpose The effects of ketamine in attenuating morphine tolerance have been suggested to result from a pharmacodynamic interaction. We studied whether ketamine might increase brain morphine concentrations in acute coadministration, in morphine tolerance and morphine withdrawal. Experimental Approach Morphine minipumps (6 mg·day–1) induced tolerance during 5 days in Sprague–Dawley rats, after which s.c. ketamine (10 mg·kg–1) was administered. Tail flick, hot plate and rotarod tests were used for behavioural testing. Serum levels and whole tissue brain and liver concentrations of morphine, morphine-3-glucuronide, ketamine and norketamine were measured using HPLC-tandem mass spectrometry. Key Results In morphine-naïve rats, ketamine caused no antinociception whereas in morphine-tolerant rats there was significant antinociception (57% maximum possible effect in the tail flick test 90 min after administration) lasting up to 150 min. In the brain of morphine-tolerant ketamine-treated rats, the morphine, ketamine and norketamine concentrations were 2.1-, 1.4- and 3.4-fold, respectively, compared with the rats treated with morphine or ketamine only. In the liver of morphine-tolerant ketamine-treated rats, ketamine concentration was sixfold compared with morphine-naïve rats. After a 2 day morphine withdrawal period, smaller but parallel concentration changes were observed. In acute coadministration, ketamine increased the brain morphine concentration by 20%, but no increase in ketamine concentrations or increased antinociception was observed. Conclusions and Implications The ability of ketamine to induce antinociception in rats made tolerant to morphine may also be due to increased brain concentrations of morphine, ketamine and norketamine. The relevance of these findings needs to be assessed in humans. PMID:25297798

  20. Rhubarb attenuates blood-brain barrier disruption via increased zonula occludens-1 expression in a rat model of intracerebral hemorrhage

    PubMed Central

    WANG, YANG; PENG, FAN; XIE, GUI; CHEN, ZE-QI; LI, HAI-GANG; TANG, TAO; LUO, JIE-KUN

    2016-01-01

    Blood-brain barrier (BBB) disruption is a key pathophysiological factor of intracerebral hemorrhage (ICH). The level of zonula occludens-1 (ZO-1) has been closely associated with the degree of BBB damage, and is an indicator of BBB destruction. The aim of the present study was to evaluate the effects of rhubarb on BBB function in a rat model of ICH. ICH was induced in rats by treatment with type VII collagenase. Sham-operated rats were administered with an equal volume of saline. Following the administration of rhubarb decoction (20 g/kg), neurobehavioral function evaluation and Evans blue extravasation assays were performed at days 1, 3 and 5 after ICH. ZO-1 expression in the brain of ICH-induced rats were analyzed via reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemical analyses. The results suggested that rhubarb significantly ameliorated neurological symptoms and attenuated BBB permeability. The results of immunohistochemistry and RT-PCR studies indicated that the expression of ZO-1 expression was robust in the sham-operated group and was weak in the vehicle-treated group at day 3. The present data indicated that rhubarb effectively attenuated ICH-induced BBB damage in rats, raising the possibility that rhubarb or its active components may be considered useful as neuroprotective drugs for ICH. The protective mechanisms appeared to involve the preservation of BBB integrity and elevation of ZO-1 protein expression levels. PMID:27347045

  1. N-acetylcysteine attenuates copper overload-induced oxidative injury in brain of rat.

    PubMed

    Ozcelik, Dervis; Uzun, Hafize; Nazıroglu, Mustafa

    2012-06-01

    Copper is an integral part of many important enzymes involved in a number of vital biological processes. Even though it is essential to life, at elevated tissue concentrations, copper can become toxic to cells. Recent studies have reported oxidative damage due to copper in various tissues. Considering the vulnerability of the brain to oxidative stress, this study was undertaken to explore possible beneficial antioxidant effects of N-acetylcysteine on oxidative stress induced by copper overload in brain tissue of rats. Thirty-two Wistar rats were equally divided into four groups. The first group was used as control. The second, third, and fourth groups were given 1 g/L copper in their drinking water for 1 month. At the end of this period, the group 2 rats were sacrificed. During the next 2 weeks, the rats in group 3 were injected intraperitoneally with physiological saline and those in group 4 with 20 mg/kg intraperitoneal injections of N-acetylcysteine. In group 2 the lipid peroxidation and nitric oxide levels were increased in the brain cortex while the activities of superoxide dismutase and catalase and the concentration of glutathione were decreased. In rats treated with N-acetylcysteine, lipid peroxidation decreased and the activities of antioxidant enzyme improved in the brain cortex. In conclusion, treatment with N-acetylcysteine modulated the antioxidant redox system and reduced brain oxidative stress induced by copper.

  2. Intranasal delivery of nerve growth factor attenuates aquaporins-4-induced edema following traumatic brain injury in rats.

    PubMed

    Lv, Qiushi; Fan, Xinying; Xu, Gelin; Liu, Qian; Tian, Lili; Cai, Xiaoyi; Sun, Wenshan; Wang, Xiaomeng; Cai, Qiankun; Bao, Yuanfei; Zhou, Lulu; Zhang, Yao; Ge, Liang; Guo, Ruibing; Liu, Xinfeng

    2013-02-01

    Traumatic brain injury (TBI) remains the leading cause of injury-related death and disability. Brain edema, one of the most major complications of TBI, contributes to elevated intracranial pressure, and poor prognosis following TBI. Nerve growth factor (NGF) appears to be a viable strategy to treat brain edema and TBI. Unfortunately, due to its poor blood-brain barrier (BBB) permeability, the clinical application of NGF has been greatly limited. We previously demonstrated that intranasal NGF could bypass the BBB and distribute throughout the brain. Here we further studied whether intranasal NGF could attenuate TBI-induced brain edema and its putative mechanisms. TBI was produced by a modified weight-drop model. We found that intranasal administration of NGF (5μg/d) attenuated the brain edema, as assayed by hemisphere water content, at 12h, 24h and 72h after TBI induction. This attenuation was associated with a prominent decrease of the content of aquaporin-4, which plays a pivotal role in the formation of brain edema. By the use of RT-PCR and ELISA, we showed that intranasal NGF markedly inhibited the transcription and expression of pro-inflammatory cytokines including IL-1β and TNF-α. An electrophoretic mobility shift assay (EMSA) displayed a significant activation of nuclear factor-κB following TBI, which was, however, much lowered in the NGF-treated rats. Furthermore, upon intranasal NGF supplementation, mitochondria-mediated apoptosis following TBI was minimized, as indicated by upregulation of Bcl-2 and downregulation of caspase-3. Collectively, our findings suggested that intranasal NGF may be a promising strategy to treat brain edema and TBI.

  3. Sodium tungstate attenuate oxidative stress in brain tissue of streptozotocin-induced diabetic rats.

    PubMed

    Nakhaee, Alireza; Bokaeian, Mohammad; Akbarzadeh, Azim; Hashemi, Mohammad

    2010-08-01

    High blood glucose concentration in diabetes induces free radical production and, thus, causes oxidative stress. Damage of cellular structures by free radicals play an important role in development of diabetic complications. In this study, we evaluated effects of sodium tungstate on enzymatic and nonenzymatic markers of oxidative stress in brain of streptozotocin (STZ)-induced diabetic rats. Rats were divided into four groups (ten rats in each group): untreated control, sodium tungstate-treated control, untreated diabetic, and sodium tungstate-treated diabetic. Diabetes was induced with an intraperitoneal STZ injection (65 mg/kg body weight), and sodium tungstate with concentration of 2 g/L was added to drinking water of treated animals for 4 weeks. Diabetes caused a significant increase in the brain thiobarbituric acid reactive substances (P < 0.01) and protein carbonyl levels (P < 0.01) and a decrease in ferric reducing antioxidant power (P < 0.01). Moreover, diabetic rats presented a reduction in brain glucose-6-phosphate dehydrogenase (21%), superoxide dismutase (41%), glutathione peroxidase (19%), and glutathione reductase (36%) activities. Sodium tungstate reduced the hyperglycemia and restored the diabetes-induced changes in all mentioned markers of oxidative stress. However, catalase activity was not significantly affected by diabetes (P = 0.4), while sodium tungstate caused a significant increase in enzyme activity of treated animals (P < 0.05). Data of present study indicated that sodium tungstate can ameliorate brain oxidative stress in STZ-induced diabetic rats, probably by reducing of the high glucose-induced oxidative stress and/or increasing of the antioxidant defense mechanisms.

  4. Polyhydroxylated fullerene nanoparticles attenuate brain infarction and oxidative stress in rat model of ischemic stroke

    PubMed Central

    Vani, Javad Rasouli; Mohammadi, Mohammad Taghi; Foroshani, Mahsa Sarami; Jafari, Mahvash

    2016-01-01

    Oxidative stress is the common underlying mechanism of damage in ischemic stroke. Therefore, we aimed to evaluate the possible protective effects of polyhydroxylated fullerene derivatives on brain infarction and oxidative/nitrosative stress in a rat model of ischemic stroke. The experiment was performed by four groups of rats (each; n=12); Sham, Control ischemia, and ischemic treatment groups (Pretreatment and Posttreatment). Brain ischemia was induced by 90 min middle cerebral artery occlusion (MCAO) followed by 24 hours reperfusion. Rats received fullerene nanoparticles at dose of 1 mg/kg 30 min before MCAO and immediately after beginning of reperfusion. Infarct volume, contents of malondialdehyde (MDA), glutathione (GSH) and nitrate as well as superoxide dismutase (SOD) activity were assessed 24 hours after termination of MCAO. Brain infarct volume was 310 ± 21 mm3 in control group. Administration of fullerene nanoparticles before and after MCAO significantly decreased the infarct volume by 53 % (145 ± 45 mm3) and 81 % (59 ± 13 mm3), respectively. Ischemia also enhanced MDA and nitrate contents of ischemic hemispheres by 45 % and 25 % , respectively. Fullerene nanoparticles considerably reduced the MDA and nitrate contents of ischemic hemispheres before MCAO by 58 % and 17 % , respectively, and after MCAO by 38 % and 21 % , respectively. Induction of MCAO significantly decreased GSH content (19 % ) and SOD activity (52 % ) of ischemic hemispheres, whereas fullerene nanoparticles increased the GSH content and SOD activity of ischemic hemispheres by 19 % and 52 % before MCAO, respectively, and 21 % and 55 % after MCAO, respectively. Our findings indicate that fullerene nanoparticles, as a potent scavenger of free radicals, protect the brain cells against ischemia/reperfusion injury and inhibit brain oxidative/nitrosative damage. PMID:27540350

  5. Acute ethanol intake attenuates inflammatory cytokines after brain injury in rats: a possible role for corticosterone.

    PubMed

    Gottesfeld, Zehava; Moore, Anthony N; Dash, Pramod K

    2002-03-01

    It has been reported that acute ethanol intoxication exerts dose-dependent effects, both beneficial and detrimental, on the outcome of traumatic brain injury (TBI), although the mechanism(s) has not been determined. Given that pro-inflammatory cytokines are either neuroprotective or neurotoxic, depending on their tissue levels, ethanol-induced alterations in brain cytokine production may be involved in determining the recovery after TBI. The present study was undertaken to examine the effect of acute ethanol pretreatments (producing blood alcohol concentrations of 100+/-16 mg/dL, and 220+/-10 mg/dL, considered low and intoxicating doses, respectively) on interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) levels in discrete brain regions. In addition, serum corticosterone levels were also examined because the hormone is a modulator of cytokine production, its secretion is stimulated by ethanol, and it has been associated with the severity of post-injury neurologic dysfunction. The data presented in this report demonstrate that moderate cortical impact brain injury elicits a marked increase in IL-1beta and TNF-alpha in the injured cortex as well as in the hippocampus ipsilateral to the injury. Ethanol pretreatment lowered cytokine levels in the cortex, hippocampus and hypothalamus in a dose-dependent manner after TBI compared to the untreated injured rats. Serum corticosterone levels were markedly increased in the injured rats, and were further augmented in the ethanol-pretreated injured animals in a dose-dependent manner. Our findings suggest that ethanol-induced decrease in pro-inflammatory cytokine production may be linked to increased circulating corticosterone, both of which may contribute to the outcome of brain injury.

  6. Cannabinoid CB2 receptor stimulation attenuates brain edema and neurological deficits in a germinal matrix hemorrhage rat model.

    PubMed

    Tao, Yihao; Tang, Jun; Chen, Qianwei; Guo, Jing; Li, Lin; Yang, Liming; Feng, Hua; Zhu, Gang; Chen, Zhi

    2015-03-30

    Germinal matrix hemorrhage (GMH) is one of the most common and devastating cerebrovascular events that affect premature infants, resulting in a significant socioeconomic burden. However, GMH has been largely unpreventable, and clinical treatments are mostly inadequate. In the present study, we tested the hypothesis that JWH133, a selective CB2 receptor agonist, could attenuate brain injury and neurological deficits in a clostridial collagenase VII induced GMH model in seven-day-old (P7) S-D rat pups. Up to 1h post-injury, the administration of JWH133 (1mg/kg, intraperitoneal injection) significantly attenuated brain edema at 24h post-GMH, which was reversed by a selective CB2R antagonist, SR144528 (3mg/kg, intraperitoneal injection). Long-term brain morphology and neurofunctional outcomes were also improved. In contrast, JWH133 did not have a noticeable effect on the hematoma volume during the acute phase. These data also showed that microglia activation and inflammatory cytokine (TNF-α) release were significantly inhibited by JWH133 after GMH. This current study suggests a potential clinical utility for CB2R agonists as a potential therapy to reduce neurological injury and improve patient outcomes after GMH.

  7. Calcium-sensing receptor antagonist NPS2390 attenuates neuronal apoptosis though intrinsic pathway following traumatic brain injury in rats.

    PubMed

    Xue, Zhaoliang; Song, Zhengfei; Wan, Yingfeng; Wang, Kun; Mo, Lianjie; Wang, Yirong

    2017-03-20

    Traumatic brain injury (TBI) initiates a complex cascade of neurochemical and signaling changes that leads to neuronal apoptosis, which contributes to poor outcomes for patients with TBI. Previous study indicates that calcium-sensing receptor (CaSR) activation contributes to neuron death in focal cerebral ischemia-reperfusion mice, however, its role in neuronal apoptosis after TBI is not well-established. Using a controlled cortical impact model in rats, the present study was designed to determine the effect of CaSR inhibitor NPS2390 upon neuronal apoptosis after TBI. Rats were randomly distributed into three groups undergoing the sham surgery or TBI procedure, and NPS2390 (1.5 mg/kg) was infused subcutaneously at 30 min and 120 min after TBI. All rats were sacrificed at 24 h after TBI. Our data indicated that NPS2390 significantly reduced the brain edema and improved the neurological function after TBI. In addition, NPS2390 decreased caspase-3 levels and the number of apoptotic neurons. Furthermore, NPS2390 up-regulated anti-apoptotic protein Bcl-2 expression and down-regulated pro-apoptotic protein Bax, and reduced subsequent release of cytochrome c into the cytosol. In summary, this study indicated that inhibition of CaSR by NPS2390 attenuates neuronal apoptosis after TBI, in part, through modulating intrinsic apoptotic pathway.

  8. Exendin-4 attenuates brain death-induced liver damage in the rat.

    PubMed

    Carlessi, Rodrigo; Lemos, Natalia E; Dias, Ana L; Brondani, Leticia A; Oliveira, Jarbas R; Bauer, Andrea C; Leitão, Cristiane B; Crispim, Daisy

    2015-11-01

    The majority of liver grafts destined for transplantation originate from brain dead donors. However, significantly better posttransplantation outcomes are achieved when organs from living donors are used, suggesting that brain death (BD) causes irreversible damage to the liver tissue. Recently, glucagon-like peptide-1 (GLP1) analogues were shown to possess interesting hepatic protection effects in different liver disease models. We hypothesized that donor treatment with the GLP1 analogue exendin-4 (Ex-4) could alleviate BD-induced liver damage. A rat model of BD was employed in order to estimate BD-induced liver damage and Ex-4's potential protective effects. Liver damage was assessed by biochemical determination of circulating hepatic markers. Apoptosis in the hepatic tissue was assessed by immunoblot and immunohistochemistry using an antibody that only recognizes the active form of caspase-3. Gene expression changes in inflammation and stress response genes were monitored by quantitative real-time polymerase chain reaction. Here, we show that Ex-4 administration to the brain dead liver donors significantly reduces levels of circulating aspartate aminotransferase and lactate dehydrogenase. This was accompanied by a remarkable reduction in hepatocyte apoptosis. In this model, BD caused up-regulation of tumor necrosis factor and stress-related genes, confirming previous findings in clinical and animal studies. In conclusion, treatment of brain dead rats with Ex-4 reduced BD-induced liver damage. Further investigation is needed to determine the molecular basis of the observed liver protection. After testing in a randomized clinical trial, the inclusion of GLP1 analogues in organ donor management might help to improve organ quality, maximize organ donation, and possibly increase liver transplantation success rates.

  9. Cannabinoid type 2 receptor stimulation attenuates brain edema by reducing cerebral leukocyte infiltration following subarachnoid hemorrhage in rats.

    PubMed

    Fujii, Mutsumi; Sherchan, Prativa; Krafft, Paul R; Rolland, William B; Soejima, Yoshiteru; Zhang, John H

    2014-07-15

    Early brain injury (EBI), following subarachnoid hemorrhage (SAH), comprises blood-brain barrier (BBB) disruption and consequent edema formation. Peripheral leukocytes can infiltrate the injured brain, thereby aggravating BBB leakage and neuroinflammation. Thus, anti-inflammatory pharmacotherapies may ameliorate EBI and provide neuroprotection after SAH. Cannabinoid type 2 receptor (CB2R) agonism has been shown to reduce neuroinflammation; however, the precise protective mechanisms remain to be elucidated. This study aimed to evaluate whether the selective CB2R agonist, JWH133 can ameliorate EBI by reducing brain-infiltrated leukocytes after SAH. Adult male Sprague-Dawley rats were randomly assigned to the following groups: sham-operated, SAH with vehicle, SAH with JWH133 (1.0mg/kg), or SAH with a co-administration of JWH133 and selective CB2R antagonist SR144528 (3.0mg/kg). SAH was induced by endovascular perforation, and JWH133 was administered 1h after surgery. Neurological deficits, brain water content, Evans blue dye extravasation, and Western blot assays were evaluated at 24h after surgery. JWH133 improved neurological scores and reduced brain water content; however, SR144528 reversed these treatment effects. JWH133 reduced Evans blue dye extravasation after SAH. Furthermore, JWH133 treatment significantly increased TGF-β1 expression and prevented an SAH-induced increase in E-selectin and myeloperoxidase. Lastly, SAH resulted in a decreased expression of the tight junction protein zonula occludens-1 (ZO-1); however, JWH133 treatment increased the ZO-1 expression. We suggest that CB2R stimulation attenuates neurological outcome and brain edema, by suppressing leukocyte infiltration into the brain through TGF-β1 up-regulation and E-selectin reduction, resulting in protection of the BBB after SAH.

  10. Attenuation of Oxidative Damage by Boerhaavia diffusa L. Against Different Neurotoxic Agents in Rat Brain Homogenate.

    PubMed

    Ayyappan, Prathapan; Palayyan, Salin Raj; Kozhiparambil Gopalan, Raghu

    2016-01-01

    Due to a high rate of oxidative metabolic activity in the brain, intense production of reactive oxygen metabolite occurs, and the subsequent generation of free radicals is implicated in the pathogenesis of traumatic brain injury, epilepsy, and ischemia as well as chronic neurodegenerative diseases. In the present study, protective effects of polyphenol rich ethanolic extract of Boerhaavia diffusa (BDE), a neuroprotective edible medicinal plant against oxidative stress induced by different neurotoxic agents, were evaluated. BDE was tested against quinolinic acid (QA), 3-nitropropionic acid (NPA), sodium nitroprusside (SNP), and Fe (II)/EDTA complex induced oxidative stress in rat brain homogenates. QA, NPA, SNP, and Fe (II)/EDTA treatment caused an increased level of thiobarbituric acid reactive substances (TBARS) in brain homogenates along with a decline in the activities of antioxidant enzymes. BDE treatment significantly decreased the production of TBARS (p < .05) and increased the activities of antioxidant enzymes like catalase and superoxide dismutase along with increased concentration of non-enzymatic antioxidant, reduced glutathione (GSH). Similarly, BDE caused a significant decrease in the lipid peroxidation (LPO) in the cerebral cortex. Inhibitory potential of BDE against deoxyribose degradation (IC50 value 38.91 ± 0.12 μg/ml) shows that BDE can protect hydroxyl radical induced DNA damage in the tissues. Therefore, B. diffusa had high antioxidant potential that could inhibit the oxidative stress induced by different neurotoxic agents in brain. Since many of the neurological disorders are associated with free radical injury, these data may imply that B. diffusa, functioning as an antioxidant agent, may be beneficial for reducing various neurodegenerative complications.

  11. Potassium Aspartate Attenuates Brain Injury Induced by Controlled Cortical Impact in Rats Through Increasing Adenosine Triphosphate (ATP) Levels, Na+/K+-ATPase Activity and Reducing Brain Edema

    PubMed Central

    Gu, Yi; Zhang, Jie; Zhao, Yumei; Su, Yujin; Zhang, Yazhuo

    2016-01-01

    Background Potassium aspartate (PA), as an electrolyte supplement, is widely used in clinical practice. In our previous study, we found PA had neuroprotective effects against apoptosis after cerebral ischemia/reperfusion in rats. In this study, we examine whether PA has protective effects on traumatic brain injury (TBI). Material/Methods TBI was induced by controlled cortical impact (CCI) in rats. Vehicle treatment (control) or PA treatment was administered intraperitoneally at 30 minutes after CCI. The modified neurological severity score (mNSS) and cortical lesion volume were examined. Brain edema and blood-brain barrier (BBB) integrity were measured, as well as brain ATP contents, lactic acid levels, and Na+/K+-ATPase activities. Results We found that CCI induced cortical injury in rats. Acute PA treatment at the dose of 62.5 mg/kg and 125 mg/kg significantly improved neurological deficits (p<0.05 and p<0.001, respectively) and decreased the cortical lesion volume (p<0.05 and p<0.001, respectively) compared with vehicle-only treatment. PA treatment at the dose of 125 mg/kg attenuated brain edema and ameliorated BBB integrity. In addition, PA treatment significantly reduced the loss of ATP (p<0.01), reduced lactic acid levels (p<0.001), and increased the activity of Na+/K+-ATPase (p<0.01). Conclusions Our results indicate PA has neuroprotective effects on TBI through increasing ATP levels, Na+/K+-ATPase activity, and reducing brain edema. It provides experimental evidence for the clinical application of PA. PMID:27959885

  12. Lignans from Schisandra chinensis ameliorate cognition deficits and attenuate brain oxidative damage induced by D-galactose in rats.

    PubMed

    Yan, Tingxu; Shang, Lei; Wang, Mengshi; Zhang, Chenning; Zhao, Xu; Bi, Kaishun; Jia, Ying

    2016-06-01

    The aim of this study was to explore the neuroprotective effects of active compounds from Schisandra chinensis (Trucz.) Baill. (Magnoliaceae) against the D-galactose (D-gal)-induced neurotoxicity in rat. The Wistar rats were subcutaneously injected with D-gal (150 mg/(kg day)) for six weeks and orally administered with water extract or 95 % ethanol extract (partitioned with petroleum ether (PE), chloroform (CF), ethyl acetate (EA) and n-Butanol (NB), respectively) of the fruits of Schisandra chinensis simultaneously. The alteration of cognitive functions was assessed by using Morris water maze and Step-down type passive avoidance test. The results demonstrated that PE fraction was the most effective fraction to ameliorate cognitive deficits. Further biochemical examination indicated that PE could attenuate the activities decreasing of superoxide dismutase (SOD), catalase (CAT), the total antioxidant (T-AOC) induced by D-gal, and maintain the normal levels of glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) in the serum, prefrontal cortex, striatum and hippocampus of the brain of related rat, selectively. Meanwhile, the compounds of PE fraction were also identified as mainly lignans, thus, these results suggest that lignans from the PE fraction of Schisandra chinensis represented a potential source of medicine for the treatment of the aging-associated neurodegenerative diseases.

  13. Nerve growth factor attenuates cholinergic deficits following traumatic brain injury in rats.

    PubMed

    Dixon, C E; Flinn, P; Bao, J; Venya, R; Hayes, R L

    1997-08-01

    Traumatic brain injury (TBI) results in chronic derangements in central cholinergic neurotransmission that may contribute to posttraumatic memory deficits. Intraventricular cannula (IVC) nerve growth factor (NGF) infusion can reduce axotomy-induced spatial memory deficits and morphologic changes observed in medial septal cholinergic neurons immunostained for choline acetyltransferase (ChAT). We examined the efficacy of NGF to (1) ameliorate reduced posttraumatic spatial memory performance, (2) release of hippocampal acetylcholine (ACh), and (3) ChAT immunoreactivity in the rat medial septum. Rats (n = 36) were trained prior to TBI on the functional tasks and retested on Days 1-5 (motor) and on Day 7 (memory retention). Immediately following injury, an IVC and osmotic pump were implanted, and NGF or vehicle was infused for 7 days. While there were no differences in motor performance, the NGF-treated group had significantly better spatial memory retention (P < 0.05) than the vehicle-treated group. The IVC cannula was then removed on Day 7, and a microdialysis probe was placed into the dorsal hippocampus. After a 22-h equilibration period, samples were collected prior to and after administration of scopolamine (1 mg/kg), which evoked ACh release by blocking autoreceptors. The posttraumatic reduction in scopolamine-evoked ACh release was completely reversed with NGF. Injury produced a bilateral reduction in the number and cross-sectional area of ChAT immunopositive medial septal neurons that was reversed by NGF treatment. These data suggest that cognitive but not motor deficits following TBI are, in part, mediated by chronic deficits in cholinergic systems that can be modulated by neurotrophic factors such as NGF.

  14. Resuscitation with Pooled and Pathogen-Reduced Plasma Attenuates the Increase in Brain Water Content following Traumatic Brain Injury and Hemorrhagic Shock in Rats.

    PubMed

    Genét, Gustav Folmer; Bentzer, Peter; Ostrowski, Sisse Rye; Johansson, Pär Ingemar

    2017-03-01

    Traumatic brain injury and hemorrhagic shock is associated with blood-brain barrier (BBB) breakdown and edema formation. Recent animal studies have shown that fresh frozen plasma (FFP) resuscitation reduces brain swelling and improves endothelial function compared to isotonic NaCl (NS). The aim of this study was to investigate whether pooled and pathogen-reduced plasma (OctaplasLG(®) [OCTA]; Octapharma, Stockholm, Sweden) was comparable to FFP with regard to effects on brain water content, BBB permeability, and plasma biomarkers of endothelial glycocalyx shedding and cell damage. After fluid percussion brain injury, hemorrhage (20 mL/kg), and 90-min shock, 48 male Sprague-Dawley rats were randomized to resuscitation with OCTA, FFP, or NS (n = 16/group). Brain water content (wet/dry weight) and BBB permeability (transfer constant for (51)Cr-EDTA) were measured at 24 h. Plasma osmolality, oncotic pressure, and biomarkers of systemic glycocalyx shedding (syndecan-1) and cell damage (histone-complexed DNA) were measured at 0 and 23 h. At 24 h, brain water content was 80.44 ± 0.39%, 80.82 ± 0.82%, and 81.15 ± 0.86% in the OCTA, FFP, and NS groups (lower in OCTA vs. NS; p = 0.026), with no difference in BBB permeability. Plasma osmolality and oncotic pressures were highest in FFP and OCTA resuscitated, and osmolality was further highest in OCTA versus FFP (p = 0.027). In addition, syndecan-1 was highest in FFP and OCTA resuscitated (p = 0.010). These results suggest that pooled solvent-detergent (SD)-treated plasma attenuates the post-traumatic increase in brain water content, and that this effect may, in part, be explained by a high crystalloid and colloid osmotic pressure in SD-treated plasma.

  15. Cobalt chloride attenuates hypobaric hypoxia induced vascular leakage in rat brain: molecular mechanisms of action of cobalt chloride.

    PubMed

    Kalpana, S; Dhananjay, S; Anju, B; Lilly, G; Sai Ram, M

    2008-09-15

    This study reports the efficacy of cobalt preconditioning in preventing hypobaric hypoxia induced vascular leakage (an indicator of cerebral edema) using male Sprague-Dawley rats as model system. Exposure of animals to hypobaric hypoxia led to a significant increase in vascular leakage, reactive oxygen species (ROS), nitric oxide (NO), and vascular endothelial growth factor (VEGF) levels. There was a marked increase in Nuclear Factor kappaB (NFkappaB) DNA binding activity and levels of pro-inflammatory cytokines such as Monocyte chemoattractant protein (MCP-1), Interferon-gamma (IFN-gamma), Interleukin-1 (IL-1), and Tumor Necrosis Factor-alpha (TNF-alpha) and cell adhesion molecules such as Vascular Cell Adhesion Molecule-1 (VCAM-1), and P-selectin. Chemical preconditioning by cobalt for 7 days (12.5 mg Co/kg b.w., oral) significantly attenuated cerebral vascular leakage and the expression of inflammatory mediators induced by hypoxia. Administration of NFkappaB inhibitor, curcumin (50 mg/kg b.w.; i.p.) appreciably inhibited hypoxia induced vascular leakage indicating the involvement of NFkappaB in causing vascular leakage. Interestingly, cobalt when administered at 12.5 mg Co/kg b.w. (i.p.), 1 h before hypoxia could not prevent the vascular leakage indicating that cobalt per se did not have an effect on NFkappaB. The lower levels of NFkappaB observed in the brains of cobalt administered animals might be due to higher levels of antioxidant and anti-inflammatory proteins (hemeoxygenase-1 and metallothionein). To conclude cobalt preconditioning inhibited hypobaric hypoxia induced cerebral vascular leakage by lowering NFkappaB DNA binding activity and its regulated pro-inflammatory mediators. This is contemplated to be mediated by cobalt induced reduction in ROS/NO and increase in HO-1 and MT.

  16. Cobalt chloride attenuates hypobaric hypoxia induced vascular leakage in rat brain: Molecular mechanisms of action of cobalt chloride

    SciTech Connect

    Kalpana, S.; Dhananjay, S.; Anju, B. Lilly, G.; Sai Ram, M.

    2008-09-15

    This study reports the efficacy of cobalt preconditioning in preventing hypobaric hypoxia induced vascular leakage (an indicator of cerebral edema) using male Sprague-Dawley rats as model system. Exposure of animals to hypobaric hypoxia led to a significant increase in vascular leakage, reactive oxygen species (ROS), nitric oxide (NO), and vascular endothelial growth factor (VEGF) levels. There was a marked increase in Nuclear Factor {kappa}B (NF{kappa}B) DNA binding activity and levels of pro-inflammatory cytokines such as Monocyte chemoattractant protein (MCP-1), Interferon-{gamma} (IFN-{gamma}), Interleukin-1 (IL-1), and Tumor Necrosis Factor-{alpha} (TNF-{alpha}) and cell adhesion molecules such as Vascular Cell Adhesion Molecule-1 (VCAM-1), and P-selectin. Chemical preconditioning by cobalt for 7 days (12.5 mg Co/kg b.w., oral) significantly attenuated cerebral vascular leakage and the expression of inflammatory mediators induced by hypoxia. Administration of NF{kappa}B inhibitor, curcumin (50 mg/kg b.w.; i.p.) appreciably inhibited hypoxia induced vascular leakage indicating the involvement of NF{kappa}B in causing vascular leakage. Interestingly, cobalt when administered at 12.5 mg Co/kg b.w. (i.p.), 1 h before hypoxia could not prevent the vascular leakage indicating that cobalt per se did not have an effect on NF{kappa}B. The lower levels of NF{kappa}B observed in the brains of cobalt administered animals might be due to higher levels of antioxidant and anti-inflammatory proteins (hemeoxygenase-1 and metallothionein). To conclude cobalt preconditioning inhibited hypobaric hypoxia induced cerebral vascular leakage by lowering NF{kappa}B DNA binding activity and its regulated pro-inflammatory mediators. This is contemplated to be mediated by cobalt induced reduction in ROS/NO and increase in HO-1 and MT.

  17. Chronic Carbamazepine Administration Attenuates Dopamine D2-like Receptor-Initiated Signaling via Arachidonic Acid in Rat Brain

    PubMed Central

    Chang, Lisa; Chen, Mei; Bell, Jane M.; Rapoport, Stanley I.

    2016-01-01

    Observations that dopaminergic antagonists are beneficial in bipolar disorder and that dopaminergic agonists can produce mania suggest that bipolar disorder involves excessive dopaminergic transmission. Thus, mood stabilizers used to treat the disease might act in part by downregulating dopaminergic transmission. In agreement, we reported that dopamine D2-like receptor mediated signaling involving arachidonic acid (AA, 20:4n-6) was downregulated in rats chronically treated with lithium. To see whether chronic carbamazepine, another mood stabilizer, did this as well, we injected i.p. saline or the D2-like receptor agonist, quinpirole (1 mg/kg), into unanesthetized rats that had been pretreated for 30 days with i.p. carbamazepine (25 mg/kg/day) or vehicle, and used quantitative autoradiography to measure regional brain incorporation coefficients (k*) for AA, markers of signaling. We also measured brain prostaglandin E2 (PGE2), an AA metabolite. In vehicle-treated rats, quinpirole compared with saline significantly increased k* for AA in 35 of 82 brain regions examined, as well as brain PGE2 concentration. Affected regions belong to dopaminergic circuits and have high D2-like receptor densities. Chronic carbamazepine pretreatment prevented the quinpirole-induced increments in k* and in PGE2. These findings are consistent with the hypothesis that effective mood stabilizers generally downregulate brain AA signaling via D2-like receptors, and that this signaling is upregulated in bipolar disorder. PMID:18302021

  18. Increasing angiotensin-(1-7) levels in the brain attenuates metabolic syndrome-related risks in fructose-fed rats.

    PubMed

    Guimaraes, Priscila S; Oliveira, Mariana F; Braga, Janaína F; Nadu, Ana Paula; Schreihofer, Ann; Santos, Robson A S; Campagnole-Santos, Maria Jose

    2014-05-01

    We evaluated effects of chronic intracerebroventricular infusion of angiotensin (Ang)-(1-7) on cardiovascular and metabolic parameters in fructose-fed (FF) rats. After 6 weeks of fructose intake (10% in drinking water), Sprague-Dawley rats were subjected to intracerebroventricular infusion of Ang-(1-7) (200 ng/h; FF+A7 group) or 0.9% sterile saline (FF group) for 4 weeks with continued access to fructose. Compared with control rats, FF rats had increased mean arterial pressure and cardiac sympathetic tone with impaired baroreflex sensitivity. FF rats also presented increased circulating triglycerides, leptin, insulin, and glucose with impaired glucose tolerance. Furthermore, relative weights of liver and retroperitoneal adipose tissue were increased in FF rats. Glycogen content was reduced in liver, but increased in muscle. In contrast, fructose-fed rats subjected to chronic intracerebroventricular infusion of Ang-(1-7) presented reduced cardiac sympathetic tone with normalized mean arterial pressure, baroreflex sensitivity, glucose and insulin levels, and improved glucose tolerance. Relative weight of liver, and hepatic and muscle glycogen contents were also normalized in FF+A7 rats. In addition, FF+A7 rats had reduced mRNA expression for neuronal nitric oxide synthase and NR1 subunit of N-methyl-d-aspartate receptor in hypothalamus and dorsomedial medulla. Ang-(1-7) infusion did not alter fructose-induced hyperleptinemia and increased relative weight of retroperitoneal adipose tissue. There were no differences in body weights, neither in liver mRNA expression of phosphoenolpyruvate carboxykinase or glucose-6-phosphatase among the groups. These data indicate that chronic increase in Ang-(1-7) levels in the brain may have a beneficial role in fructose-fed rats by ameliorating cardiovascular and metabolic disorders.

  19. Pentoxifylline attenuates TNF-α protein levels and brain edema following temporary focal cerebral ischemia in rats.

    PubMed

    Vakili, Abedin; Mojarrad, Somye; Akhavan, Maziar Mohammad; Rashidy-Pour, Ali

    2011-03-04

    Cerebral edema is the most common cause of neurological deterioration and mortality during acute ischemic stroke. Despite the clinical importance of cerebral ischemia, the underlying mechanisms remain poorly understood. Recent studies suggest a role for TNF-α in the brain edema formation. To further investigate whether TNF-α would play a role in brain edema formation, we examined the effects of pentoxifylline (PTX, an inhibitor of TNF-α synthesis) on the brain edema and TNF-α levels in a model of transient focal cerebral ischemia. The right middle cerebral artery (MCA) of rats was occluded for 60 min using the intraluminal filament method. The animals received PTX (60 mg/kg) immediately, 1, 3, or 6h post-ischemic induction. Twenty-four hours after induction of ischemic injury, permeability of the blood-brain barrier (BBB) and brain edema were determined by in situ brain perfusion of Evans Blue (EB) and wet-to-dry weight ratio, respectively. TNF-α protein levels in ischemic cortex were also measured at 1, 4, and 24h after the beginning of an ischemic stroke by using an enzyme-linked immunosorbent assay method. The administration of PTX up to 6h after occlusion of the MCA significantly reduced the brain edema. Moreover, PTX significantly reduced the concentration of TNF-α in ischemic brain cortex up to 4h post-transient focal stroke (P<0.002). Finally, treatment by PTX led to a significant decrease in EB extravasations (P<0.001). Our data demonstrate that PTX administration up to 6h after ischemia can reduce brain edema in a model of transient focal cerebral ischemia. The beneficial effects of PTX may be mediated, at least in part, through a decline in TNF-α production and BBB breakdown.

  20. Anti-high mobility group box-1 (HMGB1) antibody attenuates delayed cerebral vasospasm and brain injury after subarachnoid hemorrhage in rats

    PubMed Central

    Haruma, Jun; Teshigawara, Kiyoshi; Hishikawa, Tomohito; Wang, Dengli; Liu, Keyue; Wake, Hidenori; Mori, Shuji; Takahashi, Hideo Kohka; Sugiu, Kenji; Date, Isao; Nishibori, Masahiro

    2016-01-01

    Although delayed cerebral vasospasm (DCV) following subarachnoid hemorrhage (SAH) is closely related to the progression of brain damage, little is known about the molecular mechanism underlying its development. High mobility group box-1 (HMGB1) plays an important role as an initial inflammatory mediator in SAH. In this study, an SAH rat model was employed to evaluate the effects of anti-HMGB1 monoclonal antibody (mAb) on DCV after SAH. A vasoconstriction of the basilar artery (BA) associated with a reduction of nuclear HMGB1 and its translocation in vascular smooth muscle cells were observed in SAH rats, and anti-HMGB1 mAb administration significantly suppressed these effects. Up-regulations of inflammation-related molecules and vasoconstriction-mediating receptors in the BA of SAH rats were inhibited by anti-HMGB1 mAb treatment. Anti-HMGB1 mAb attenuated the enhanced vasocontractile response to thrombin of the isolated BA from SAH rats and prevented activation of cerebrocortical microglia. Moreover, locomotor activity and weight loss recovery were also enhanced by anti-HMGB1 mAb administration. The vasocontractile response of the BA under SAH may be induced by events that are downstream of responses to HMGB1-induced inflammation and inhibited by anti-HMGB1 mAb. Anti-HMGB1 mAb treatment may provide a novel therapeutic strategy for DCV and early brain injury after SAH. PMID:27883038

  1. Standardized extract of Bacopa monniera (BESEB CDRI-08) attenuates contextual associative learning deficits in the aging rat's brain induced by D-galactose.

    PubMed

    Prisila Dulcy, Charles; Singh, Hemant K; Preethi, Jayakumar; Rajan, Koilmani Emmanuvel

    2012-10-01

    In this study, we examined the neuroprotective effect of standardized Bacopa monniera extract (BME: BESEB CDRI-08) against the D-galactose (D-gal)-induced brain aging in rats. Experimental groups were subjected to contextual-associative learning task. We found that the administration of BME in the D-gal-treated group attenuated contextual-associative learning deficits; the individuals showed more correct responses and retrieved the reward with less latency. Subsequent analysis showed that the BME administration significantly decreased advance glycation end product (AGE) in serum and increased the activity of antioxidant response element (ARE) and the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and nuclear transcription factor NF-E2-related factor 2 (Nrf2), accompanied by a reduction in the level of serotonin (5-HT) in the hippocampus. The BME treatment also reversed D-gal-induced brain aging by upregulating the levels of the presynaptic proteins synaptotagmin I (SYT1) and synaptophysin (SYP) and the postsynaptic proteins Ca(2+) /calmodulin dependent protein kinase II (αCaMKII) and postsynaptic density protein-95 (PSD-95) in the hippocampus during synaptic plasticity. A significant finding is that the D-gal- + BME-treated rats exhibited more correct responses in contextual-associative learning than D-gal alone-treated rats. Our findings suggest that BME treatment attenuates D-gal-induced brain aging and regulates the level of antioxidant enzymes, Nrf2 expression, and the level of 5-HT, which was accompanied by concomitantly increased levels of synaptic proteins SYT1, SYP, αCaMKII, p-αCaMKII, and PSD-95.

  2. Inhibitor of nuclear factor-Kappa B activation attenuates venular constriction, leukocyte rolling-adhesion and microvessel rupture induced by ethanol in intact rat brain microcirculation: relation to ethanol-induced brain injury.

    PubMed

    Altura, Burton M; Gebrewold, Asefa

    2002-12-06

    The present study was designed to test the hypothesis that acute, local administration of a specific inhibitor of nuclear factor-Kappa B activation (which prevents rapid proteolysis of IKB-alpha) will attenuate cerebral (cortical) venular constrictions, leukocyte-endothelial wall interactions and postcapillary damage induced by medium to high concentrations of ethanol in the intact rat brain. Perivascular or i.p. administration of ethanol (100, 250 mg/dl) to the intact rat brain resulted in concentration-dependent venular vasospasm, rolling and adherence of leukocytes to venular walls and rupture of postcapillary venules with focal hemorrhages. Superfusion of the in-situ brain with N(alpha)-L-tosyl-L-phenylalanine chloromethyl ketone (TPCK), a specific inhibitor of IKB-alpha proteolysis, attenuated greatly the spasmogenic, leukocyte rolling-endothelial cell adhesion and postcapillary hemorrhages induced by ethanol. These new data suggest that inhibition of alcohol-inducible degradation of IKB-alpha by TPKC can prevent much of the adverse microvascular actions of ethanol in the intact rat brain. Moreover, these new in-situ results suggest that activation of nuclear factor-Kappa B seems to play a major modulatory role in the adverse cerebral vascular actions of concentrations of alcohol found in the blood of alcohol-intoxicated subjects and human stroke victims.

  3. Attenuation of Acute Phase Injury in Rat Intracranial Hemorrhage by Cerebrolysin that Inhibits Brain Edema and Inflammatory Response.

    PubMed

    Yang, Yang; Zhang, Yan; Wang, Zhaotao; Wang, Shanshan; Gao, Mou; Xu, Ruxiang; Liang, Chunyang; Zhang, Hongtian

    2016-04-01

    The outcome of intracerebral hemorrhage (ICH) is mainly determined by the volume of the hemorrhage core and the secondary brain damage to penumbral tissues due to brain swelling, microcirculation disturbance and inflammation. The present study aims to investigate the protective effects of cerebrolysin on brain edema and inhibition of the inflammation response surrounding the hematoma core in the acute stage after ICH. The ICH model was induced by administration of type VII bacterial collagenase into the stratum of adult rats, which were then randomly divided into three groups: ICH + saline; ICH + Cerebrolysin (5 ml/kg) and sham. Cerebrolysin or saline was administered intraperitoneally 1 h post surgery. Neurological scores, extent of brain edema content and Evans blue dye extravasation were recorded. The levels of pro-inflammatory factors (IL-1β, TNF-α and IL-6) were assayed by Real-time PCR and Elisa kits. Aquaporin-4 (AQP4) and tight junction proteins (TJPs; claudin-5, occludin and zonula occluden-1) expression were measured at multiple time points. The morphological and intercellular changes were characterized by Electron microscopy. It is found that cerebrolysin (5 ml/kg) improved the neurological behavior and reduced the ipsilateral brain water content and Evans blue dye extravasation. After cerebrolysin treated, the levels of pro-inflammatory factors and AQP4 in the peri-hematomal areas were markedly reduced and were accompanied with higher expression of TJPs. Electron microscopy showed the astrocytic swelling and concentrated chromatin in the ICH group and confirmed the cell junction changes. Thus, early cerebrolysin treatment ameliorates secondary injury after ICH and promotes behavioral performance during the acute phase by reducing brain edema, inflammatory response, and blood-brain barrier permeability.

  4. Prostaglandin E2 EP4 Receptor Activation Attenuates Neuroinflammation and Early Brain Injury Induced by Subarachnoid Hemorrhage in Rats.

    PubMed

    Xu, Jie; Xu, Zhen; Yan, Ai

    2017-02-27

    Activation of E prostanoid 4 receptor (EP4) shows neuroprotective effects in multiple central nervous system (CNS) lesions, but the roles of EP4 receptor in subarachnoid hemorrhage (SAH) are not explored. This study was designed to research the effects of EP4 modulation on early brain injury (EBI) after experimental SAH in rats. We found that the administration of EP4 selective agonist AE1-329 significantly improved neurological dysfunction, blood brain barrier (BBB) damage and brain edema at 24 h after SAH. Furthermore, AE1-329 obviously reduced the number of activated microglia and the mRNA and protein levels of pro-inflammatory cytokines, and increased Ser1177 phosphorylated endothelial nitric oxide synthase (Ser1177 p-eNOS). Moreover, AE1-329 significantly reduced the number of TUNEL-positive cells and active caspase-3 in cortex after SAH. The EP4 selective antagonist AE3-208 was also administrated and the opposite effects were achieved. Our results indicate that activation of EP4 protects brain from EBI through downregulating neuroinflammation reaction after SAH.

  5. MMP-9 inhibitor SB-3CT attenuates behavioral impairments and hippocampal loss after traumatic brain injury in rat.

    PubMed

    Jia, Feng; Yin, Yu Hua; Gao, Guo Yi; Wang, Yu; Cen, Lian; Jiang, Ji-Yao

    2014-07-01

    The aim of this study was to evaluate the potential efficacy of SB-3CT, a matrix metallopeptidase 9 inhibitor, on behavioral and histological outcomes after traumatic brain injury (TBI) in rats. Adult male Sprague-Dawley rats were randomly divided into three groups (n=15/group): TBI with SB-3CT treatment, TBI with saline, and sham injury. The TBI model was induced by a fluid percussion TBI device. SB-3CT (50 mg/kg in 10% dimethyl sulfoxide) was administered intraperitoneally at 30 min, 6 h, and 12 h after the TBI. Motor function (beam-balance/beam-walk tests) and spatial learning/memory (Morris water maze) were assessed on post-operative Days 1-5 and 11-15, respectively. Fluoro-Jade staining, immunofluorescence, and cresyl violet-staining were carried out for histopathological evaluation at 24 h, 72 h, and 15 days after TBI, respectively. It was shown that TBI can result in significant behavioral deficit induced by acute neurodegeneration, increased expression of cleaved caspase-3, and long-term neuronal loss. SB-3CT intervention via the current regime provides robust behavioral protection and hippocampal neurons preservation from the deleterious effects of TBI. Hence, the efficacy of SB-3CT on TBI prognosis could be ascertained. It is believed that the current study adds to the growing literature in identifying SB-3CT as a potential therapy for human brain injury.

  6. Pharmacological Inhibition of PERK Attenuates Early Brain Injury After Subarachnoid Hemorrhage in Rats Through the Activation of Akt.

    PubMed

    Yan, Feng; Cao, Shenglong; Li, Jianru; Dixon, Brandon; Yu, Xiaobo; Chen, Jingyin; Gu, Chi; Lin, Wang; Chen, Gao

    2017-04-01

    Neuronal apoptosis is a central pathological process in subarachnoid hemorrhage (SAH)-induced early brain injury. Endoplasmic reticulum (ER) stress was reported to have a vital role in the pathophysiology of neuronal apoptosis in the brain. The present study was designed to investigate the potential effects of ER stress and its downstream signals in early brain injury after SAH. One hundred thirty-four rats were subjected to an endovascular perforation model of SAH. The RNA-activated protein kinase-like ER kinase (PERK) inhibitor GSK2606414 and the Akt inhibitor MK2206 were injected intracerebroventricularly. SAH grade, neurologic scores, and brain water content were measured 72 h after subarachnoid hemorrhage. Expression of PERK and its downstream signals, Akt, Bcl-2, Bax, and cleaved caspase-3, were examined using Western blot analysis. Specific cell types that expressed PERK were detected with double immunofluorescence staining. Neuronal cell death was demonstrated with terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL). Our results showed that the expression of p-PERK and its downstream targets, p-eIF2α and ATF4, increased after SAH and peaked at 72 h after SAH. PERK was expressed mostly in neurons. The inhibition of PERK with GSK2606414 reduced p-PERK, p-eIF2α, and ATF4 expression. Furthermore, GSK2606414 treatment increased p-Akt levels and the Bcl-2/Bax ratio as well as decreased cleaved caspase-3 expression and neuronal death, thereby improving neurological deficits at 72 h after SAH. The selective Akt inhibitor MK2206 abolished the beneficial effects of GSK2606414. PERK, the major transducer of ER stress, is involved in neuronal apoptosis after SAH. The inhibition of PERK reduces early brain injury via Akt-related anti-apoptosis pathways. PERK may serve as a promising target for future therapeutic intervention.

  7. The anti-inflammatory properties of Satureja khuzistanica Jamzad essential oil attenuate the effects of traumatic brain injuries in rats

    PubMed Central

    Abbasloo, Elham; Dehghan, Fatemeh; Khaksari, Mohammad; Najafipour, Hamid; Vahidi, Reza; Dabiri, Shahriar; Sepehri, Gholamreza; Asadikaram, Golamreza

    2016-01-01

    Traumatic brain injury (TBI) is a major health concern affecting the general public as well as military personnel. However, there is no FDA-approved therapy for the treatment of TBIs. In this work, we investigated the neurotherapeutic effects of the well-known natural Iranian medicine Satureja Khuzistanica Jamzad (SKJ) essential oil (SKEO) on the outcomes of diffused experimental TBI, with particular attention paid to its anti-inflammatory and anti-apoptotic effects. Male Wistar rats were treated with doses of 50, 100 and 200 (mg/kg, i.p) SKEO after induction of diffused TBIs. The results showed that injecting SKEO (200 mg/kg) 30 minutes after TBI significantly reduced brain oedema and damage to the blood-brain barrier (BBB) and limited the post-TBI increase in intracranial pressure. The veterinary coma scale (VCS) scores significantly improved in the treatment group. Also, inflammatory marker assays showed reduced levels of TNF-α, IL-1β, and IL-6 and increased IL-10 in the treated groups. Moreover, the immunohistochemical results indicated that SKEO not only reduced neuronal death and BBB permeability but also affected astrocytic activation. Overall, our data indicate potential clinical neurological applications for SKEO. PMID:27535591

  8. Administration of a PTEN inhibitor BPV(pic) attenuates early brain injury via modulating AMPA receptor subunits after subarachnoid hemorrhage in rats.

    PubMed

    Chen, Yujie; Luo, Chunxia; Zhao, Mingyue; Li, Qiang; Hu, Rong; Zhang, John H; Liu, Zhi; Feng, Hua

    2015-02-19

    The aim of this study was to investigate whether the phosphatase and tensin homolog deleted on chromosome ten (PTEN) inhibitor dipotassium bisperoxo(pyridine-2-carboxyl) oxovanadate (BPV(pic)) attenuates early brain injury by modulating α-amino-3-hydroxy-5-methyl-4-isoxa-zolep-propionate (AMPA) receptor subunits after subarachnoid hemorrhage (SAH). A standard intravascular perforation model was used to produce the experimental SAH in Sprague-Dawley rats. BPV(pic) treatment (0.2mg/kg) was evaluated for effects on neurological score, brain water content, Evans blue extravasation, hippocampal neuronal death and AMPA receptor subunits alterations after SAH. We found that BPV(pic) is effective in attenuating BBB disruption, lowering edema, reducing hippocampal neural death and improving neurological outcomes. In addition, the AMPA receptor subunit GluR1 protein expression at cytomembrane was downregulated, whereas the expression of GluR2 and GluR3 was upregulated after BPV(pic) treatment. Our results suggest that PTEN inhibited by BPV(pic) plays a neuroprotective role in SAH pathophysiology, possibly by alterations in glutamate AMPA receptor subunits.

  9. Amantadine preserves dopamine level and attenuates depression-like behavior induced by traumatic brain injury in rats.

    PubMed

    Tan, Liang; Ge, Hongfei; Tang, Jun; Fu, Chuhua; Duanmu, Wangsheng; Chen, Yujie; Hu, Rong; Sui, Jianfeng; Liu, Xin; Feng, Hua

    2015-02-15

    Traumatic brain injury (TBI) often results in multiple neuropsychiatric sequelae, including cognitive, emotional, and behavioral problems. Among them, depression is a common psychiatric symptom, and links to poorer recovery. Amantadine, as an antiparkinsonian, increases dopamine release, and blocks dopamine reuptake, but has recently received attention for its effectiveness as an antidepressant. In the present study, we first induced a post-TBI depression rat model to probe the efficacy of amantadine therapy in reducing post-TBI depression. The DA concentration in the striatum of the injured rats, as well as the degeneration and apoptosis of dopaminergic neurons in the substantia nigra (SN), were checked along with the depression-like behavior. The results showed that amantadine therapy could significantly ameliorate the depression-like behavior, improving the DA level in the striatum and decreasing the degeneration and apoptosis of dopaminergic neurons in the SN. The results indicated that the anti-depression effect may result from the increase of extracellular DA concentration in the striatum and/or the indirect neuroprotection on the dopaminergic neurons in the SN. We conclude that DA plays a critical role in post-TBI depression, and that amantadine shows its potential value in anti-depression treatment for TBI.

  10. Topiramate attenuates early brain injury following subarachnoid haemorrhage in rats via duplex protection against inflammation and neuronal cell death.

    PubMed

    Tian, Yong; Guo, Song-Xue; Li, Jian-Ru; Du, Hang-Gen; Wang, Chao-Hui; Zhang, Jian-Min; Wu, Qun

    2015-10-05

    Early brain injury (EBI) following aneurysmal subarachnoid haemorrhage (SAH) insults contributes to the poor prognosis and high mortality observed in SAH patients. Topiramate (TPM) is a novel, broad-spectrum, antiepileptic drug with a reported protective effect against several brain injuries. The current study aimed to investigate the potential of TPM for neuroprotection against EBI after SAH and the possible dose-dependency of this effect. An endovascular perforation SAH model was established in rats, and TPM was administered by intraperitoneal injection after surgery at three different doses (20mg/kg, 40mg/kg, and 80mg/kg). The animals' neurological scores and brain water content were evaluated, and ELISA, Western blotting and immunostaining assays were conducted to assess the effect of TPM. The results revealed that TPM lowers the elevated levels of myeloperoxidase and proinflammatory mediators observed after SAH in a dose-related fashion, and the nuclear factor-kappa B (NF-κB) signalling pathway is the target of neuroinflammation regulation. In addition, TPM ameliorated SAH-induced cortical neuronal apoptosis by influencing Bax, Bcl-2 and cleaved caspase-3 protein expression, and the effect of TPM was enhanced in a dose-dependent manner. Various dosages of TPM also upregulated the protein expression of the γ-aminobutyric acid (GABA)-ergic signalling molecules, GABAA receptor (GABAAR) α1, GABAAR γ2, and K(+)-Cl(-) co-transporter 2 (KCC2) together and downregulated Na(+)-K(+)-Cl(-) co-transporter 1 (NKCC1) expression. Thus, TPM may be an effective neuroprotectant in EBI after SAH by regulating neuroinflammation and neuronal cell death.

  11. Post-Traumatic Stress Avoidance is Attenuated by Corticosterone and Associated with Brain Levels of Steroid Receptor Co-Activator-1 in Rats

    PubMed Central

    Whitaker, Annie M.; Farooq, Muhammad A.; Edwards, Scott; Gilpin, Nicholas W.

    2016-01-01

    Individuals with post-traumatic stress disorder (PTSD) avoid trauma-related stimuli and exhibit blunted hypothalamic-pituitary-adrenal (HPA) axis activation at the time of stress. Our laboratory has established a rodent model of stress that mimics the avoidance symptom cluster of PTSD. Rats are classified as ‘Avoiders’ or ‘Non-Avoiders’ post-stress based on avoidance of a predator-odor paired context. Previously, we demonstrated that Avoiders exhibit an attenuated HPA stress response to predator odor. We hypothesized that corticosterone administration prior to stress would reduce magnitude and incidence of avoidance of a stress-paired context. Furthermore, we predicted that Avoiders would exhibit altered expression of GR signaling machinery elements, such as steroid receptor co-activator (SRC)-1. Male Wistar rats (n = 16) were pre-treated with corticosterone (25 mg/kg) or saline and exposed to predator odor stress paired with a context, and tested for avoidance 24 h later, A second group of corticosterone-naïve rats (n = 24) were stressed (or not stressed), indexed for avoidance 24 h later, and killed 48 h post-odor exposure for analysis of phosphorylated GR, FKBP51, and SRC-1 levels in the paraventricular nucleus (PVN), central amygdala (CeA) and ventral hippocampus (VH), all brain sites that express high quantities of GRs and regulate HPA function. Rats pre-treated with corticosterone exhibited lower magnitude and incidence of avoidance. Predator odor exposure also reduced SRC-1 expression in the PVN and CeA of Avoiders, and increased SRC-1 expression in the VH of Avoiders. SRC-1 expression in PVN, CeA, and VH was predicted by prior avoidance behavior. These results suggest that blunted HPA stress response may contribute to stress-induced neuroadaptations in central SRC-1 levels and behavioral dysfunction in Avoider rats. PMID:26482332

  12. Post-traumatic stress avoidance is attenuated by corticosterone and associated with brain levels of steroid receptor co-activator-1 in rats.

    PubMed

    Whitaker, Annie M; Farooq, Muhammad A; Edwards, Scott; Gilpin, Nicholas W

    2016-01-01

    Individuals with post-traumatic stress disorder (PTSD) avoid trauma-related stimuli and exhibit blunted hypothalamic-pituitary-adrenal (HPA) axis activation at the time of stress. Our rodent model of stress mimics the avoidance symptom cluster of PTSD. Rats are classified as "Avoiders" or "Non-Avoiders" post-stress based on the avoidance of a predator-odor paired context. Previously, we found Avoiders exhibit an attenuated HPA stress response to predator odor. We hypothesized that corticosterone administration before stress would reduce the magnitude and incidence of stress-paired context avoidance. Furthermore, we also predicted that Avoiders would exhibit altered expression of glucocorticoid receptor (GR) signaling machinery elements, including steroid receptor co-activator (SRC)-1. Male Wistar rats (n = 16) were pretreated with corticosterone (25 mg/kg) or saline and exposed to predator-odor stress paired with a context and tested for avoidance 24 h later. A second group of corticosterone-naïve rats (n = 24) were stressed (or not), indexed for avoidance 24 h later, and killed 48 h post-odor exposure to measure phosphorylated GR, FKBP51 and SRC-1 levels in the paraventricular nucleus (PVN), central amygdala (CeA) and ventral hippocampus (VH), all brain sites that highly express GRs and regulate HPA function. Corticosterone pretreatment reduced the magnitude and incidence of avoidance. In Avoiders, predator-odor exposure led to lower SRC-1 expression in the PVN and CeA, and higher SRC-1 expression in the VH. SRC-1 expression in PVN, CeA and VH was predicted by prior avoidance behavior. Hence, a blunted HPA stress response may contribute to stress-induced neuroadaptations in central SRC-1 levels and behavioral dysfunction in Avoider rats.

  13. Stachybotrys microspora triprenyl phenol-7, a novel fibrinolytic agent, suppresses superoxide production, matrix metalloproteinase-9 expression, and thereby attenuates ischemia/reperfusion injury in rat brain.

    PubMed

    Akamatsu, Yosuke; Saito, Atsushi; Fujimura, Miki; Shimizu, Hiroaki; Mekawy, Moataz; Hasumi, Keiji; Tominaga, Teiji

    2011-10-03

    Stachybotrys microspora triprenyl phenol-7 (SMTP-7) is a novel fibrinolytic agent with anti-inflammatory effect. Previous study demonstrated that SMTP-7 further ameliorated infarction volume in a mouse embolic stroke model compared with tissue type plasminogen activator (tPA), but the reason SMTP-7 has more beneficial effect than tPA has not yet been determined. In the present study, we investigated whether SMTP-7 has an intrinsic neuroprotective effect against transient focal cerebral ischemia (tFCI). Sprague-Dawley rats were subjected to tFCI by intraluminal middle cerebral artery occlusion for 2h. Following induction of tFCI, rats were randomized into two groups based on the agent administered: SMTP-7 group and vehicle group. We examined cerebral infarction volume 24h after reperfusion, and evaluated superoxide production, the expressions of nitrotyrosine and matrix metalloproteinase-9 (MMP-9), which play major roles in secondary brain injury and hemorrhagic transformation. The findings showed that SMTP-7 significantly suppressed superoxide production, the expression of nitrotyrosine and MMP-9 after tFCI, and consequently attenuated ischemic neuronal damage. These results suggest that SMTP-7 has an intrinsic neuroprotective effect on ischemia/reperfusion injury through the suppression of oxidative stress and MMP-9 activation.

  14. Attenuation of working memory and spatial acquisition deficits after a delayed and chronic bromocriptine treatment regimen in rats subjected to traumatic brain injury by controlled cortical impact.

    PubMed

    Kline, Anthony E; Massucci, Jaime L; Marion, Donald W; Dixon, C Edward

    2002-04-01

    Cognitive impairments are pervasive and persistent sequelae of human traumatic brain injury (TBI). In vivo models of TBI, such as the controlled cortical impact (CCI) and fluid percussion (FP), are utilized extensively to produce deficits reminiscent of those seen clinically with the hope that empirical study will lead to viable therapeutic interventions. Both CCI and FP produce spatial learning acquisition deficits, but only the latter has been reported to impair working memory in rats tested in the Morris water maze (MWM). We hypothesized that a CCI injury would impair working memory similarly to that produced by FP, and that delayed and chronic treatment with the D2 receptor agonist bromocriptine would attenuate both working memory and spatial learning acquisition deficits. To test these hypotheses, isoflurane-anesthetized adult male rats received either a CCI (2.7 mm deformation, 4 m/sec) or sham injury, and 24 h later were administered bromocriptine (5 mg/kg, i.p.) or vehicle, with continued daily injections until all behavioral assessments were completed. Motor function was assessed on beam balance and beam walking tasks on postoperative days 1-5 and cognitive function was evaluated in the MWM on days 11-15 for working memory (experiment 1) and on days 14-18 for spatial learning acquisition (experiment 2). Histological examination (hippocampal CA1 and CA3 cell loss/survival and cortical lesion volume) was conducted 4 weeks after surgery. All injured groups exhibited initial impairments in motor function, working memory, and spatial learning acquisition. Bromocriptine did not affect motor function, but did ameliorate working memory and significantly attenuated spatial acquisition deficits relative to the injured vehicle-treated controls. Additionally, the injured bromocriptine-treated group exhibited significantly more morphologically intact CA3 neurons than the injured vehicle-treated group (55.60 +/- 3.10% vs. 38.34 +/- 7.78% [p = 0.03]). No significant

  15. Deep brain stimulation of the nucleus accumbens shell attenuates cue-induced reinstatement of both cocaine and sucrose seeking in rats.

    PubMed

    Guercio, Leonardo A; Schmidt, Heath D; Pierce, R Christopher

    2015-03-15

    Stimuli previously associated with drug taking can become triggers that can elicit craving and lead to relapse of drug-seeking behavior. Here, we examined the influence of deep brain stimulation (DBS) in the nucleus accumbens shell on cue-induced reinstatement of cocaine seeking, an animal model of relapse. Rats were allowed to self-administer cocaine (0.254 mg, i.v.) for 2 h daily for 21 days, with each infusion of cocaine being paired with a cue light. After 21 days of self-administration, cocaine-taking behavior was extinguished by replacing cocaine with saline in the absence of the cue light. Next, during the reinstatement phase, DBS was administered bilaterally into the nucleus accumbens shell through bipolar stainless steel electrodes immediately prior to re-exposure to cues previously associated with cocaine reinforcement. DBS continued throughout the 2 h reinstatement session. Parallel studies examined the influence of accumbens shell DBS on reinstatement induced by cues previously associated with sucrose reinforcement. Results indicated that DBS of the nucleus accumbens shell significantly attenuated cue-induced reinstatement of cocaine and sucrose seeking. Together, these results indicate that DBS of the accumbens shell disrupts cue-induced reinstatement associated with both a drug and a natural reinforcer.

  16. boc-Aspartyl(OMe)-fluoromethylketone attenuates mitochondrial release of cytochrome c and delays brain tissue loss after traumatic brain injury in rats.

    PubMed

    Clark, Robert S B; Nathaniel, Paula D; Zhang, Xiaopeng; Dixon, C Edward; Alber, Sean M; Watkins, Simon C; Melick, John A; Kochanek, Patrick M; Graham, Steven H

    2007-02-01

    The pathobiology of traumatic brain injury (TBI) includes activation of multiple caspases followed by cell death with a spectrum of apoptotic phenotypes. There are initiator (e.g. caspase-2, -8, and -9) and effector (e.g. caspase-3 and -7) caspases. Recently, caspase-2 and -8 have been shown to regulate cell death via provoking cytochrome c release from the mitochondria upstream of caspase-9. Here, we show that an intracerebral injection of the pan-caspase inhibitor boc-Aspartyl(OMe)-fluoromethylketone (BAF; 1 micromol) 1 min after TBI in rats reduces caspase-3-like activity, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) and tissue damage, and cytochrome c release in ipsilateral cortex at 24 h versus vehicle. To investigate whether either caspase-2 and/or caspase-8 activation may contribute to cytochrome release, the effect of BAF treatment on caspase-2 and caspase-8 proteolysis was also examined. boc-aspartyl(OMe)-fluoromethylketone treatment inhibited proteolysis of caspase-2 but not caspase-8 24 h after TBI in rats versus vehicle. However, BAF with or without nerve growth factor (12.5 ng/h x 14 days intracerebrally via osmotic pump) did not result in differences in motor function, Morris water maze performance, hippocampal neuron survival, nor contusion volume at 14 days. These data suggest that BAF treatment reduces acute cell death after TBI by inhibiting mitochondrial release of cytochrome c, possibly via a mechanism involving initiator caspases; however, BAF appears to delay cell death, rather than result in permanent protection.

  17. Hyperbaric oxygen therapy or hydroxycobalamin attenuates surges in brain interstitial lactate and glucose; and hyperbaric oxygen improves respiratory status in cyanide-intoxicated rats.

    PubMed

    Lawson-Smith, P; Olsen, N V; Hyldegaard, O

    2011-01-01

    Cyanide (CN) intoxication inhibits cellular oxidative metabolism and may result in brain damage. Hydroxycobalamin (OHCob) is one among other antidotes that may be used following intoxication with CN. Hyperbaric oxygen (HBO2) is recommended when supportive measures or antidotes fail. However, the effect of hydroxycobalamin or HBO2 on brain lactate and glucose concentrations during CN intoxication is unknown. We used intracerebral microdialysis to study the in vivo effect of hydroxycobalamin or HBO2 treatment on acute CN-induced deterioration in brain metabolism. Anesthetized rats were allocated to four groups receiving potassium CN (KCN) 5.4 mg/kg or vehicle intra-arterially: 1) vehicle-treated control rats; 2) KCN-poisoned rats; 3) KCN-poisoned rats receiving hydroxycobalamin (25 mg); and 4) KCN-poisoned rats treated with HBO2 (284 kPa for 90 minutes). KCN alone caused a prompt increase in interstitial brain lactate and glucose concentrations peaking at 60 minutes. Both hydroxycobalamin and HBO2 abolished KCN-induced increases in brain lactate and glucose concentration. However, whereas HBO2 treatment increased cerebral PtO2 and reduced respiratory distress and cyanosis, OHCob did not have this beneficial effect. In conclusion, CN intoxication in anesthetized rats produces specific uncoupling of cerebral oxidative metabolism resulting in interstitial lactate and glucose surges that may be ameliorated by treatment with either hydroxycobalamin or HBO2.

  18. Serum metabolites from walnut-fed aged rats attenuate stress-induced neurotoxicity in brain cells in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The shift in equilibrium towards excess reactive oxygen or nitrogen species production from innate antioxidant defense in brain is a critical factor in the declining neural functions and cognitive deficits accompanying age. In aging, there are noticeable alterations in the membrane microenvironment,...

  19. Rose oil (from Rosa × damascena Mill.) vapor attenuates depression-induced oxidative toxicity in rat brain.

    PubMed

    Nazıroğlu, Mustafa; Kozlu, Süleyman; Yorgancıgil, Emre; Uğuz, Abdülhadi Cihangir; Karakuş, Kadir

    2013-01-01

    Oxidative stress is a critical route of damage in various physiological stress-induced disorders, including depression. Rose oil may be a useful treatment for depression because it contains flavonoids which include free radical antioxidant compounds such as rutin and quercetin. We investigated the effects of absolute rose oil (from Rosa × damascena Mill.) and experimental depression on lipid peroxidation and antioxidant levels in the cerebral cortex of rats. Thirty-two male rats were randomly divided into four groups. The first group was used as control, while depression was induced in the second group using chronic mild stress (CMS). Oral (1.5 ml/kg) and vapor (0.15 ml/kg) rose oil were given for 28 days to CMS depression-induced rats, constituting the third and fourth groups, respectively. The sucrose preference test was used weekly to identify depression-like phenotypes during the experiment. At the end of the experiment, cerebral cortex samples were taken from all groups. The lipid peroxidation levels in the cerebral cortex in the CMS group were higher than in control whereas their levels were decreased by rose oil vapor exposure. The vitamin A, vitamin E, vitamin C and β-carotene concentrations in the cerebral cortex were lower in the CMS group than in the control group whereas their concentrations were higher in the rose oil vapor plus CMS group. The CMS-induced antioxidant vitamin changes were not modulated by oral treatment. Glutathione peroxidase activity and reduced glutathione did not change statistically in the four groups following CMS or either treatment. In conclusion, experimental depression is associated with elevated oxidative stress while treatment with rose oil vapor induced protective effects on oxidative stress in depression.

  20. Melatonin attenuates methamphetamine-induced reduction of tyrosine hydroxylase, synaptophysin and growth-associated protein-43 levels in the neonatal rat brain.

    PubMed

    Kaewsuk, Sukit; Sae-ung, Kwankanit; Phansuwan-Pujito, Pansiri; Govitrapong, Piyarat

    2009-11-01

    Methamphetamine (METH) is a most commonly abused drug which damages nerve terminals by causing formation of reactive oxygen species (ROS), apoptosis, and finally neuronal damage. Fetal exposure to neurotoxic METH causes significant behavioral effects. The developing fetus is substantially deficient in most antioxidative enzymes, and may therefore be at high risk from both endogenous and drug-enhanced oxidative stress. Little is known about the effects of METH on vesicular proteins such as synaptophysin and growth-associated protein 43 (GAP-43) in the immature brain. The present study attempted to investigate the effects of METH-induced neurotoxicity in the dopaminergic system of the neonatal rat brain. Neonatal rats were subcutaneously exposed to 5-10mg/kg METH daily from postnatal day 4-10 for 7 consecutive days. The results showed that tyrosine hydroxylase enzyme levels were significantly decreased in the dorsal striatum, prefrontal cortex, nucleus accumbens and substantia nigra, synaptophysin levels decreased in the striatum and prefrontal cortex and growth-associated protein-43 (GAP-43) levels significantly decreased in the nucleus accumbens of neonatal rats. Pretreatment with 2mg/kg melatonin 30 min prior to METH administration prevented METH-induced reduction in tyrosine hydroxylase, synaptophysin and growth-associated protein-43 protein levels in different brain regions. These results suggest that melatonin provides a protective effect against METH-induced nerve terminal degeneration in the immature rat brain probably via its antioxidant properties.

  1. Quercetin attenuates cell apoptosis in focal cerebral ischemia rat brain via activation of BDNF-TrkB-PI3K/Akt signaling pathway.

    PubMed

    Yao, Rui-Qin; Qi, Da-Shi; Yu, Hong-Li; Liu, Jing; Yang, Li-Hua; Wu, Xiu-Xiang

    2012-12-01

    Many studies have demonstrated that apoptosis play an important role in cerebral ischemic pathogenesis and may represent a target for treatment. Neuroprotective effect of quercetin has been shown in a variety of brain injury models including ischemia/reperfusion. It is not clear whether BDNF-TrkB-PI3K/Akt signaling pathway mediates the neuroprotection of quercetin, though there has been some reports on the quercetin increased brain-derived neurotrophic factor (BDNF) level in brain injury models. We therefore first examined the neurological function, infarct volume and cell apoptosis in quercetin treated middle cerebral artery occlusion (MCAO) rats. Then the protein expression of BDNF, cleaved caspase-3 and p-Akt were evaluated in either the absence or presence of PI3K inhibitor (LY294002) or tropomyosin receptor kinase B (TrkB) receptor antagonist (K252a) by immunohistochemistry staining and western blotting. Quercetin significantly improved neurological function, while it decreased the infarct volume and the number of TdT mediated dUTP nick end labeling positive cells in MCAO rats. The protein expression of BDNF, TrkB and p-Akt also increased in the quercetin treated rats. However, treatment with LY294002 or K252a reversed the quercetin-induced increase of BDNF and p-Akt proteins and decrease of cleaved caspase-3 protein in focal cerebral ischemia rats. These results demonstrate that quercetin can decrease cell apoptosis in the focal cerebral ischemia rat brain and the mechanism may be related to the activation of BDNF-TrkB-PI3K/Akt signaling pathway.

  2. C1q/Tumor Necrosis Factor-Related Protein-3 Attenuates Brain Injury after Intracerebral Hemorrhage via AMPK-Dependent Pathway in Rat

    PubMed Central

    Wang, Shaohua; Zhou, Yang; Yang, Bo; Li, Lingyu; Yu, Shanshan; Chen, Yanlin; Zhu, Jin; Zhao, Yong

    2016-01-01

    C1q/tumor necrosis factor (TNF)-related protein-3 (CTRP3) is a recently discovered adiponectin paralog with established metabolic regulatory properties. However, the role of CTRP3 in intracerebral hemorrhage (ICH) is still mostly unresolved. The aim of the present report was to explore the possible neuroprotective effect of CTRP3 in an ICH rat model and to elucidate the fundamental mechanisms. ICH was induced in rats by intracerebral infusion of autologous arterial blood. The effects of exogenous CTRP3 (recombinant or lentivirus CTRP3) on brain injury were explored on day 7. Treatment with CTRP3 reduced brain edema, protected against disruption of the blood-brain barrier (BBB), improved neurological functions and promoted angiogenesis. Furthermore, CTRP3 greatly intensified phosphorylation of AMP-activated protein kinase (AMPK) in addition to expression of hypoxia inducing factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Finally, the protective effects of CTRP3 could be blocked by either AMPK or VEGF inhibitors. Our findings give the first evidence that CTRP3 is a new proangiogenic and neuroprotective adipokine, which may exert its protective effects at least partly through an AMPK/HIF-1α/ VEGF-dependent pathway, and suggest that CTRP3 may provide a new therapeutic strategy for ICH. PMID:27807406

  3. Nerve growth factor administration attenuates cognitive but not neurobehavioral motor dysfunction or hippocampal cell loss following fluid-percussion brain injury in rats.

    PubMed

    Sinson, G; Voddi, M; McIntosh, T K

    1995-11-01

    Lateral fluid-percussion brain injury in rats results in cognitive deficits, motor dysfunction, and selective hippocampal cell loss. Neurotrophic factors have been shown to have potential therapeutic applications in neurodegenerative diseases, and nerve growth factor (NGF) has been shown to be neuroprotective in models of excitotoxicity. This study evaluated the neuroprotective efficacy of intracerebral NGF infusion after traumatic brain injury. Male Sprague-Dawley rats received lateral fluid-percussion brain injury of moderate severity (2.1-2.3 atm). A miniosmotic pump was implanted 24 h after injury to infuse NGF (n = 34) or vehicle (n = 16) directly into the region of maximal cortical injury. Infusions of NGF continued until the animal was killed at 72 h, 1 week, or 2 weeks after injury. Animals were evaluated for cognitive dysfunction (Morris Water Maze) and regional neuronal cell loss (Nissl staining) at each of the three time points. Animals surviving for 1 or 2 weeks were also evaluated for neurobehavioral motor function. Although an improvement in memory scores was not observed at 72 h after injury, animals receiving NGF infusions showed significantly improved memory scores when tested at 1 or 2 weeks after injury compared with injured animals receiving vehicle infusions (p < 0.05). Motor scores and CA3 hippocampal cell loss were not significantly different in any group of NGF-treated animals when compared with controls. These data suggest that NGF administration, in the acute, posttraumatic period following fluid-percussion brain injury, may have potential in improving post-traumatic cognitive deficits.

  4. N-acetylcysteine attenuates lipopolysaccharide-induced impairment in lamination of Ctip2-and Tbr1- expressing cortical neurons in the developing rat fetal brain

    PubMed Central

    Chao, Ming-Wei; Chen, Chie-Pein; Yang, Yu-Hsiu; Chuang, Yu-Chen; Chu, Tzu-Yun; Tseng, Chia-Yi

    2016-01-01

    Oxidative stress and inflammatory insults are the major instigating events of bacterial intrauterine infection that lead to fetal brain injury. The purpose of this study is to investigate the remedial effects of N-acetyl-cysteine (NAC) for inflammation-caused deficits in brain development. We found that lipopolysaccharide (LPS) induced reactive oxygen species (ROS) production by RAW264.7 cells. Macrophage-conditioned medium caused noticeable cortical cell damage, specifically in cortical neurons. LPS at 25 μg/kg caused more than 75% fetal loss in rats. An increase in fetal cortical thickness was noted in the LPS-treated group. In the enlarged fetal cortex, laminar positioning of the early born cortical cells expressing Tbr1 and Ctip2 was disrupted, with a scattered distribution. The effect was similar, but minor, in later born Satb2-expressing cortical cells. NAC protected against LPS-induced neuron toxicity in vitro and counteracted pregnancy loss and alterations in thickness and lamination of the neocortex in vivo. Fetal loss and abnormal fetal brain development were due to LPS-induced ROS production. NAC is an effective protective agent against LPS-induced damage. This finding highlights the key therapeutic impact of NAC in LPS-caused abnormal neuronal laminar distribution during brain development. PMID:27577752

  5. Pentylenetetrazol-induced seizures affect the levels of prolyl oligopeptidase, thimet oligopeptidase and glial proteins in rat brain regions, and attenuation by MK-801 pretreatment.

    PubMed

    Ahmed, M Mahiuddin; Arif, Mohammad; Chikuma, Toshiyuki; Kato, Takeshi

    2005-09-01

    The regulatory mechanisms of neuropeptide-metabolizing enzymes often play a critical role in the pathogenesis of neuronal damage. A systemic administration of pentylenetetrazol (PTZ), an antagonist of GABA(A) receptor ion channel binding site, causes generalized epilepsy in an animal model. In the present study, we examined the involvement of prolyl oligopeptidase (POP), thimet oligopeptidase/neurolysin (EP 24.15/16) and glial proteins in PTZ-treated rat brain regions, and the suppressive effect of MK-801, a non-competitive NMDA receptor antagonist, pretreatment for their proteins. The activity of POP significantly decreased in the hippocampus at 30min and 3h, and in the frontal cortex at 3h after PTZ treatment, and pretreatment with MK-801 recovered the activity in the cortex at 3h. The activity of EP 24.15/16 significantly decreased in the hippocampus at 3h and 1 day, and in the cortex at 3h after the PTZ administration, whereas pretreatment with MK-801 recovered the change of the activity. The Western blot analysis of EP 24.15 showed significant decrease of the protein level in the hippocampus 3h after the PTZ treatment, whereas pretreatment with MK-801 recovered. The expression of GFAP and CD11b immunohistochemically increased in the hippocampus of the PTZ-treated rat as compared with controls. Pretreatment with MK-801 also recovered the GFAP and CD11b expression. These data suggest that PTZ-induced seizures of the rats cause indirect activation of glutamate NMDA receptors, then decrease POP and EP 24.15/16 enzyme activities and EP 24.15 immunoreactivity in the neuronal cells of the hippocampal formation. We speculate that changes of those peptidases in the brain may be related to the levels of the neuropeptides regulating PTZ-induced seizures.

  6. Compensation for non-uniform attenuation in SPECT brain imaging

    SciTech Connect

    Glick, S.J.; King, M.A.; Pan, T.S.

    1994-05-01

    Photon attenuation is a major limitation in performing quantitative SPECT brain imaging. A number of methods have been proposed for compensation of attenuation in regions of the body that can be modelled as a uniform attenuator. The magnitude of the errors introduced into reconstructed brain images by assuming the head to be a uniform attenuator are uncertain (the skull, sinus cavities and head holder all have different attenuation properties than brain tissue). Brain imaging is unique in that the radioisotope, for the most part, is taken up within a uniform attenuation medium (i.e., brain tissue) which is surrounded by bone (i.e., the skull) of a different density. Using this observation, Bellini`s method for attenuation compensation (which is an exact solution to the exponential Radon transform) has been modified to account for the different attenuation properties of the skull. To test this modified Bellini method, a simple mathematical phantom was designed to model the brain and a skull of varying thickness less than 7.5 mm. To model brain imaging with Tc-99m HMPAO, the attenuation coefficient of the brain tissue and skull were set to 0.15 cm{sup -1} and 0.22 cm{sup -1} respectively. A ray-driven projector which accounted for non-uniform attenuation was used to simulate projection data from 128 views. The detector response and scatter were not simulated. It was observed that reconstructions processed with uniform attenuation compensation (i.e., where it was assumed that the brain tissue and the skull had the same attenuation coefficient) provided errors of 6-20%, whereas those processed with the non-uniform Bellini algorithm were biased by only 0-5%.

  7. Ampelopsin attenuates brain aging of D-gal-induced rats through miR-34a-mediated SIRT1/mTOR signal pathway

    PubMed Central

    Chen, Xianbing; Li, Jie; Yang, Xiaoqi; Fan, Jingjing; Yang, Yi; Chen, Ning

    2016-01-01

    The underlying molecular mechanisms for aging-related neurodegenerative diseases such as Alzheimer's disease (AD) are not fully understood. Currently, growing evidences have revealed that microRNAs (miRNAs) are involved in aging and aging-related diseases. The up-regulation of miR-34a has been reported to be associated with aging-related diseases, and thus it should be a promising therapeutic target. Ampelopsin, also called dihydromyricetin (DHM), a natural flavonoid from Chinese herb Ampelopsis grossedentata, has been reported to possess multiple pharmacological functions including anti-inflammatory, anti-oxidative and anti-cancer functions. Meanwhile, it has also gained tremendous attention against neurodegenerative diseases as an anti-aging compound. In the present study, the model rats with D-gal-induced brain aging revealed an obvious expression of miR-34a; in contrast, it could be significantly suppressed upon DHM treatment. In addition, target genes associated with miR-34a in the presence of DHM treatment were also explored. DHM supplementation inhibited D-gal-induced apoptosis and rescued impaired autophagy of neurons in hippocampus tissue. Moreover, DHM activated autophagy through up-regulated SIRT1 and down-regulated mTOR signal pathways due to the down-regulated miR-34a. In conclusion, DHM can execute the prevention and treatment of D-gal-induced brain aging by miR-34a-mediated SIRT1-mTOR signal pathway. PMID:27780933

  8. Hyperforin attenuates brain damage induced by transient middle cerebral artery occlusion (MCAO) in rats via inhibition of TRPC6 channels degradation.

    PubMed

    Lin, Yun; Zhang, Jian-Cheng; Fu, Jun; Chen, Fang; Wang, Jie; Wu, Zhi-Lin; Yuan, Shi-Ying

    2013-02-01

    Hyperforin, a lipophilic constituent of medicinal herb St John's wort, has been identified as the main active ingredient of St John's wort extract for antidepressant action by experimental and clinical studies. Hyperforin is currently known to activate transient receptor potential canonical (subtype) 6 (TRPC6) channel, increase the phosphorylated CREB (p-CREB), and has N-methyl-D-aspartate receptor-antagonistic effect that convert potential neuroprotective effects in vitro. However, the protective effects of hyperforin on ischemic stroke in vivo remain controversial and its neuroprotective mechanisms are still unclear. This study was designed to examine the effects of intracerebroventricular (i.c.v.) injection of hyperforin on transient focal cerebral ischemia in rats. Hyperforin, when applied immediately after middle cerebral artery occlusion (MCAO) onset, significantly reduced infarct volumes and apoptotic cells, and also increased neurologic scores at 24 hours after reperfusion accompanied by elevated TRPC6 and p-CREB activity and decreased SBDP145 activity. When MEK or CaMKIV activity was specifically inhibited, the neuroprotective effect of hyperforin was attenuated, and we observed a correlated decrease in CREB activity. In conclusion, our results clearly showed that i.c.v. injection of hyperforin immediately after MCAO onset blocked calpain-mediated TRPC6 channels degradation, and then to stimulate the Ras/MEK/ERK and CaMKIV pathways that converge on CREB activation, contributed to neuroprotection.

  9. CT scanning phantom for normalization of infant brain attenuation.

    PubMed

    Thompson, J R; Triolo, P J; Moore, R J; Hinshaw, D B; Hasso, A N

    1984-01-01

    The x-ray attenuation values of brain studied with computed tomography (CT) are strikingly affected by the ages of the subjects. Premature neonates, for example, may have brain attenuation values 20-30 H below adult values. These lower attenuation values for developing compared with adult brain can be ascribed partly to machine-related effects (beam-hardening, adult algorithms, scanning geometry, etc.). A scanning phantom made from aluminum was developed that can be used to develop a nomogram for any particular scanner from which normalized brain attenuation may be derived for any small head size. Using this nomogram, predicted neonatal attenuations are still 10-15 H higher than those actually observed in scanning neonates. The model predicts that, at the most, 3-4 H of this discrepancy can be accounted for by less beam-hardening from the lower bone attenuation of the thinner developing skull. Presumably, the rest is from a lower brain density in neonates (higher water content). By normalizing to cerebrospinal fluid (water) with special care to avoid partial-volume artifacts, one can predict attenuation values for developing brain more accurately.

  10. Backscatter and attenuation properties of mammalian brain tissues

    NASA Astrophysics Data System (ADS)

    Wijekularatne, Pushpani Vihara

    Traumatic Brain Injury (TBI) is a common category of brain injuries, which contributes to a substantial number of deaths and permanent disability all over the world. Ultrasound technology plays a major role in tissue characterization due to its low cost and portability that could be used to bridge a wide gap in the TBI diagnostic process. This research addresses the ultrasonic properties of mammalian brain tissues focusing on backscatter and attenuation. Orientation dependence and spatial averaging of data were analyzed using the same method resulting from insertion of tissue sample between a transducer and a reference reflector. Apparent backscatter transfer function (ABTF) at 1 to 10 MHz, attenuation coefficient and backscatter coefficient (BSC) at 1 to 5 MHz frequency ranges were measured on ovine brain tissue samples. The resulting ABTF was a monotonically decreasing function of frequency and the attenuation coefficient and BSC generally were increasing functions of frequency, results consistent with other soft tissues such as liver, blood and heart.

  11. MLKL inhibition attenuates hypoxia-ischemia induced neuronal damage in developing brain.

    PubMed

    Qu, Yi; Shi, Jing; Tang, Ying; Zhao, Fengyan; Li, Shiping; Meng, Junjie; Tang, Jun; Lin, Xuemei; Peng, Xiaodong; Mu, Dezhi

    2016-05-01

    Mixed lineage kinase domain-like protein (MLKL) is a critical molecule mediating cell necroptosis. However, its role in brain injury remains obscure. We first investigated the functions and mechanisms of MLKL in mediating neuronal damage in developing brain after hypoxia-ischemia. Neuronal necroptosis was induced by oxygen-glucose deprivation (OGD) plus caspase inhibitor zVAD treatment (OGD/zVAD). We found that two important necroptosis related proteins, receptor-interacting protein 1 and 3 (RIP1, RIP3) were upregulated. Furthermore, the interaction of RIP1-RIP3 with MLKL increased. Inhibition of MLKL through siRNA diminished RIP1-RIP3-MLKL interaction and attenuated neuronal death induced by OGD/zVAD. The translocation of oligomerized MLKL to the neuronal membrane leading to the injury of cellular membrane is the possible new mechanism of neuronal necroptosis. Animal experiment with neonatal rats further proved that MLKL inhibition attenuated brain damage induced by hypoxia-ischemia. These findings suggest that MLKL is a target to attenuate brain damage in developing brain.

  12. Real-Ear Attenuation Testing System (RATS)

    DTIC Science & Technology

    1991-01-01

    transmission of noise from outside the chamber through vibrations of the walls. The four walls of the new chamber are made up of two double layers of drywall ... drywall separated by 2’ x 10" joists and a layer of fiberglass blanket insulation. The edges of the new chamber and door frame are sealed with acoustic...amount of attenuation the Wil sonics attenuators must provide to obtain the minimum SPL is shown in row 9. Table 10 compares the maximum SPL required

  13. Pharmacologic Antagonism of Ghrelin Receptors Attenuates Development of Nicotine Induced Locomotor Sensitization in Rats

    PubMed Central

    Wellman, Paul J.; Clifford, P. Shane; Rodriguez, Juan; Hughes, Samuel; Eitan, Shoshana; Brunel, Luc; Fehrentz, Jean-Alain; Martinez, Jean

    2011-01-01

    Aims Ghrelin (GHR) is an orexigenic gut peptide that interacts with ghrelin receptors (GHR-Rs) to modulate brain reinforcement circuits. Systemic GHR infusions augment cocaine stimulated locomotion and conditioned place preference (CPP) in rats, whereas genetic or pharmacological ablation of GHR-Rs has been shown to attenuate the acute locomotor-enhancing effects of nicotine, cocaine, amphetamine and alcohol and to blunt the CPP induced by food, alcohol, amphetamine and cocaine in mice. The stimulant nicotine can induce CPP and like amphetamine and cocaine, repeated administration of nicotine induces locomotor sensitization in rats. A key issue is whether pharmacological antagonism of GHR-Rs would similarly attenuate nicotine-induced locomotor sensitization. Method To examine the role of GHR-Rs in the behavioral sensitizing effects of nicotine, adult male rats were injected with either 0, 3 or 6 mg/kg of the GHR-R receptor antagonist JMV 2959 (i.p.) and 20 minutes later with either vehicle or 0.4 mg/kg nicotine hydrogen tartrate (s.c.) on each of 7 consecutive days. Results Rats treated with nicotine alone showed robust locomotor sensitization, whereas rats pretreated with JMV 2959 showed significantly attenuated nicotine-induced hyperlocomotion. Conclusions These results suggest that GHR-R activity is required for the induction of locomotor sensitization to nicotine and complement an emerging literature implicating central GHR systems in drug reward/reinforcement. PMID:21903141

  14. Prenatal tactile stimulation attenuates drug-induced behavioral sensitization, modifies behavior, and alters brain architecture.

    PubMed

    Muhammad, Arif; Kolb, Bryan

    2011-07-11

    Based on the findings of postnatal tactile stimulation (TS), a favorable experience in rats, the present study examined the influence of prenatal TS on juvenile behavior, adult amphetamine (AMPH) sensitization, and structural alteration in the prefrontal cortex (PFC) and the striatum. Female rats received TS through a baby hair brush throughout pregnancy, and the pups born were tested for open field locomotion, elevated plus maze (EPM), novel object recognition (NOR), and play fighting behaviors. Development and persistence of drug-induced behavioral sensitization in adults were tested by repeated AMPH administration and a challenge, respectively. Structural plasticity in the brain was assessed from the prefrontal cortical thickness and striatum size from serial coronal sections. The results indicate that TS females showed enhanced exploration in the open field. TS decreased the frequency of playful attacks whereas the response to face or evade an attack was not affected. Anxiety-like behavior and cognitive performance were not influenced by TS. AMPH administration resulted in gradual increase in locomotor activity (i.e., behavioral sensitization) that persisted at least for 2 weeks. However, both male and female TS rats exhibited attenuated AMPH sensitization compared to sex-matched controls. Furthermore, the drug-associated alteration in the prefrontal cortical thickness and striatum size observed in controls were prevented by TS experience. In summary, TS during prenatal development modified juvenile behavior, attenuated drug-induced behavioral sensitization in adulthood, and reorganized brain regions implicated in drug addiction.

  15. The rat brain hippocampus proteome.

    PubMed

    Fountoulakis, Michael; Tsangaris, George T; Maris, Antony; Lubec, Gert

    2005-05-05

    The hippocampus is crucial in memory storage and retrieval and plays an important role in stress response. In humans, the CA1 area of hippocampus is one of the first brain areas to display pathology in Alzheimer's disease. A comprehensive analysis of the hippocampus proteome has not been accomplished yet. We applied proteomics technologies to construct a two-dimensional database for rat brain hippocampus proteins. Hippocampus samples from eight months old animals were analyzed by two-dimensional electrophoresis and the proteins were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The database comprises 148 different gene products, which are in the majority enzymes, structural proteins and heat shock proteins. It also includes 39 neuron specific gene products. The database may be useful in animal model studies of neurological disorders.

  16. A neurotensin analog, NT69L, attenuates intravenous nicotine self-administration in rats.

    PubMed

    Boules, Mona; Oliveros, Alfredo; Liang, Yanqi; Williams, Katrina; Shaw, Amanda; Robinson, Jessica; Fredrickson, Paul; Richelson, Elliott

    2011-02-01

    NT69L is a neurotensin analog that blocks nicotine-induced locomotor activity and has sustained efficacy in a rat model of nicotine-induced sensitization when administered peripherally. Additionally, NT69L attenuates food-reinforcement in rats. The present study tested the effect of acute administration of NT69L on nicotine self-infusion in Sprague-Dawley rats. Rats were trained to self-infuse nicotine intravenously (0.03mg/kg per infusion) following operant training. Once the rats acquired stable responding to nicotine self-infusion they were pretreated with NT69L (1mg/kg, i.p.) or saline 30min before being assessed for nicotine self-infusion. Pretreatment with NT69L significantly attenuated nicotine self-infusion under FR1 (fixed ratio of 1) and FR5 schedule of reinforcement as compared to saline pretreatment. Control rats that were response-independent "yoked" as well as rats that self-infused saline or NT69L showed minimal responses, indicating that nicotine served as a reinforcer. Additionally, NT69L modulated serum corticosterone; brain norepinephrine serotonin; and dopamine receptors mRNA levels altered in the nicotine self-infused rats after a 24h withdrawal period. Pretreatment with NT69L significantly decreased the nicotine-induced increase in serum corticosterone levels and striatal norepinephrine and increased the nicotine-induced reduction in serotonin in both the striatum and the prefrontal cortex (PFC). NT69L might modulate dopamine neurotransmission implicated in the reinforcing effects of nicotine by modulating tyrosine hydroxylase and dopamine receptor mRNA levels in the PFC and striatum. These data support further study of the effects of NT analogs on attenuating the reinforcing effects of psychostimulants.

  17. Cerebrolysin attenuates cerebral and hepatic injury due to lipopolysaccharide in rats.

    PubMed

    Abdel-Salam, O M E; Omara, E A; Mohammed, N A; Youness, E R; Khadrawy, Y A; Sleem, A A

    2013-12-01

    This study aimed to investigate the effect of cerebrolysin on oxidative stress in the brain and liver during systemic inflammation. Rats were intraperitoneally challenged with a single subseptic dose of lipopolysaccharide (LPS; 300 μg/kg) without or with cerebrolysin at doses of 21.5, 43 or 86 mg/kg. After 4 h, rats were euthanized and the brain and liver tissues were subjected to biochemical and histopathological analyses. Cerebrolysin revealed inhibitory effects on the elevation of lipid peroxidation and nitric oxide induced by LPS. In contrast, the decrease in reduced glutathione level and paraoxonase activity induced by LPS was attenuated by an injection of cerebrolysin in a dose-dependent manner. Moreover, cerebrolysin reduced LPS-induced activation of brain NF-κB and reversed LPS-induced decline of brain butyrylcholinesterase and acetylcholinesterase activities in a dose-dependent manner. Histopathological analyses revealed that neuronal damage and liver necrosis induced by LPS were ameliorated by cerebrolysin dose-dependently. Cerebrolysin treatment dose-dependently attenuated LPS-induced expressions in cyclooxygenase 2, inducible nitric oxide synthase, and caspase-3 in the cortex or striatum as well as the liver. These results suggest that cerebrolysin treatment might have beneficial therapeutic effects in cerebral inflammation. Cerebrolysin might also prove of value in liver disease and this possibility requires further exploration.

  18. Improved attenuation correction for freely moving animal brain PET studies using a virtual scanner geometry

    NASA Astrophysics Data System (ADS)

    Angelis, Georgios I.; Ryder, William J.; Kyme, Andre Z.; Fulton, Roger R.; Meikle, Steven R.

    2014-03-01

    Attenuation correction in positron emission tomography brain imaging of freely moving animals can be very challenging since the body of the animal is often within the field of view and introduces a non negligible atten- uating factor that can degrade the quantitative accuracy of the reconstructed images. An attractive approach that avoids the need for a transmission scan involves the generation of the convex hull of the animal's head based on the reconstructed emission images. However, this approach ignores the potential attenuation introduced by the animal's body. In this work, we propose a virtual scanner geometry, which moves in synchrony with the animal's head and discriminates between those events that traverse only the animal's head (and therefore can be accurately compensated for attenuation) and those that might have also traversed the animal's body. For each pose a new virtual scanner geometry was defined and therefore a new system matrix was calculated leading to a time-varying system matrix. This new approach was evaluated on phantom data acquired on the microPET Focus 220 scanner using a custom-made rat phantom. Results showed that when the animal's body is within the FOV and not accounted for during attenuation correction it can lead to bias of up to 10%. On the contrary, at- tenuation correction was more accurate when the virtual scanner was employed leading to improved quantitative estimates (bias <2%), without the need to account for the animal's body.

  19. Methamphetamine self-administration attenuates hippocampal serotonergic deficits: Role of brain derived neurotrophic factor

    PubMed Central

    McFadden, Lisa M.; Vieira-Brock, Paula L.; Hanson, Glen R.; Fleckenstein, Annette E.

    2014-01-01

    Preclinical studies suggest that prior treatment with escalating doses of methamphetamine (METH) attenuates the persistent deficits in hippocampal serotonin (5-hydroxytryptamine; 5HT) transporter (SERT) function resulting from a subsequent “binge” METH exposure. Previous work also demonstrates that brain derived neurotrophic factor (BDNF) exposure increases SERT function. The current study investigated changes in hippocampal BDNF protein and SERT function in rats exposed to saline or METH self-administration prior to a binge exposure to METH or saline. Results revealed that METH self-administration increased hippocampal mature BDNF (mBDNF) immunoreactivity compared to saline-treated rats as assessed 24 h after the start of the last session. Further, mBDNF immunoreactivity was increased and SERT function was not altered at this timepoint in rats that self-administered METH prior to the binge METH exposure. These results suggest that prior exposure to contingent METH increases hippocampal mBDNF, and this may contribute to attenuated deficits in SERT function. PMID:24650575

  20. Low dose naltrexone administration in morphine dependent rats attenuates withdrawal-induced norepinephrine efflux in forebrain.

    PubMed

    Van Bockstaele, Elisabeth J; Qian, Yaping; Sterling, Robert C; Page, Michelle E

    2008-05-15

    The administration of low dose opioid antagonists has been explored as a potential means of detoxification in opiate dependence. Previous results from our laboratory have shown that concurrent administration of low dose naltrexone in the drinking water of rats implanted with subcutaneous morphine pellets attenuates behavioral and biochemical signs of withdrawal in brainstem noradrenergic nuclei. Noradrenergic projections originating from the nucleus tractus solitarius (NTS) and the locus coeruleus (LC) have previously been shown to be important neural substrates involved in the somatic expression of opiate withdrawal. The hypothesis that low dose naltrexone treatment attenuates noradrenergic hyperactivity typically associated with opiate withdrawal was examined in the present study by assessing norepinephrine tissue content and norepinephrine efflux using in vivo microdialysis coupled to high performance liquid chromatography (HPLC) with electrochemical detection (ED). The frontal cortex (FC), amygdala, bed nucleus of the stria terminalis (BNST) and cerebellum were analyzed for tissue content of norepinephrine following withdrawal in morphine dependent rats. Naltrexone-precipitated withdrawal elicited a significant decrease in tissue content of norepinephrine in the BNST and amygdala. This decrease was significantly attenuated in the BNST of rats that received low dose naltrexone pre-treatment compared to controls. No significant difference was observed in the other brain regions examined. In a separate group of rats, norepinephrine efflux was assessed with in vivo microdialysis in the BNST or the FC of morphine dependent rats or placebo treated rats subjected to naltrexone-precipitated withdrawal that received either naltrexone in their drinking water (5 mg/L) or unadulterated water. Following baseline dialysate collection, withdrawal was precipitated by injection of naltrexone and sample collection continued for an additional 4 h. At the end of the experiment

  1. Attenuated cold defense responses in orexin neuron-ablated rats

    PubMed Central

    Mohammed, Mazher; Yanagisawa, Masashi; Blessing, William; Ootsuka, Youichirou

    2016-01-01

    ABSTRACT Recent reports of the use of transgenic mice targeting orexin neurons show that the ablation of orexin neurons in the hypothalamus causes hypothermia during cold exposure. This suggests the importance of orexin neurons for cold-induced autonomic and physiological defense responses, including brown adipose tissue (BAT) thermogenesis and vasoconstriction in thermoregulatory cutaneous vascular bed. The present study investigated whether the ablation of orexin neurons attenuated cold-elicited BAT thermogenesis and cutaneous vasoconstriction. The study took advantage of our established conscious rat experimental model of direct measurement of BAT and body temperature and tail cutaneous blood flow. The study used transgenic orexin neurons-ablated (ORX-AB) rats and wild type (WT) rats. BAT temperature and tail artery blood flow with pre-implanted probes were measured, as well as behavioral locomotor activity under conscious free-moving condition. Gradually, the ambient temperature was decreased to below 5°C. ORX-AB rats showed an attenuated cold-induced BAT thermogenesis and behavioral activity, and delayed tail vasoconstriction. An ambient temperature that initiated BAT thermogenesis and established full cutaneous vasoconstriction was 14.1 ± 1.9 °C, which was significantly lower than 20.5 ± 1.9 °C, the corresponding value in WT rats (n = 10, P < 0.01). The results from this study suggest that the integrity of orexin-synthesising neurons in thermoregulatory networks is important for full expression of the cold defense responses. PMID:28349086

  2. Paeoniflorin attenuates hippocampal damage in a rat model of vascular dementia

    PubMed Central

    Zhang, Ying; Wang, Li-Li; Wu, Yan; Wang, Ning; Wang, Shang-Ming; Zhang, Bin; Shi, Cui-Ge; Zhang, Shu-Cheng

    2016-01-01

    Paeoniflorn (PF), the principal bioactive component of Paeoniae radix prescribed in traditional Chinese medicine, possesses a wide range of biological effects and exhibits neuroprotective effects in numerous diseases. Previous studies have demonstrated that PF significantly attenuates memory impairment in rats with vascular dementia (VD). In the present study, a bilateral common carotid artery occlusion (BCCAO) rat model was used to explore the underlying mechanisms of PF. The expression levels of neuron-specific enolase (NSE), S100β, B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X protein, cytochrome c and brain-derived neurotrophic factor (BDNF) in the hippocampus were measured by western blot analysis. The results showed that administration of PF for 28 days significantly decreased the expression levels of NSE and S100β, both sensitive markers for brain damage, in vascular dementia (VD) model rats. In addition, PF inhibited the initiation of apoptotic cell death and attenuated the decreased expression levels of BDNF induced by bilateral common carotid artery occlusion. These data confirm the neuroprotective effects of PF on VD and provide a novel insight into the long-term use of PF as a potential treatment in the stages of early cognitive impairment in VD. PMID:28101164

  3. Simvastatin Attenuates Astrogliosis after Traumatic Brain Injury through the Modulation of EGFR in Lipid Rafts

    PubMed Central

    Wu, Hongtao; Mahmood, Asim; Lu, Dunyue; Jiang, Hao; Xiong, Ye; Zhou, Dong; Chopp, Michael

    2010-01-01

    Objective Our previous studies demonstrated that simvastatin treatment promotes neuronal survival and reduces inflammatory cytokine release from astrocytes after traumatic brain injury (TBI) in rats. Since reactive astrocytes produce inflammation mediators, in the current study we investigated the effect of simvastatin on astrocyte activation after TBI and its underlying signaling mechanisms. Methods Saline or simvastatin (1 mg/kg) was orally administered to rats starting at Day 1 after TBI and then daily for 14 days. Rats were sacrificed at 1, 3, 7, 14 days after treatment. Brain sections and tissues were prepared for immunohistochemical staining and Western blot analysis, respectively. Cultured astrocytes were subjected to oxygen-glucose deprivation (OGD) and followed by immunocytochemical staining with GFAP/caveolin-1 and Western blot analysis. Lipid rafts were isolated from the cell lysate and Western blot was carried out to detect the changes in epidermal growth factor receptor (EGFR) expression and phosphorylation in the lipid rafts. Results Simvastatin significantly promoted neuronal survival after TBI and attenuated activation of astrocytes. Simvastatin modified the caveolin-1 expression in lipid rafts in astrocyte cell membrane, suppressed the phosphorylation of EGFR in lipid rafts of astrocytes after OGD, and inhibited the OGD-induced interleukin-1 (IL-1) production. Conclusions These data suggest that simvastatin reduces reactive astrogliosis and rescues neuronal cells after TBI. These beneficial effects of simvastatin may be mediated by inhibiting astrocyte activation after TBI through modifying the caveolin-1 expression in lipid rafts and the subsequent modulation of EGFR phosphorylation in lipid rafts. PMID:19895202

  4. Exercise pretraining attenuates endotoxin-induced hemodynamic alteration in type I diabetic rats.

    PubMed

    Hung, Ching-Hsia; Chen, Yu-Wen; Shao, Dong-Zi; Chang, Che-Ning; Tsai, Yung-Yuh; Cheng, Juei-Tang

    2008-10-01

    Higher expression of heat shock protein 72 (HSP72) reduces the mortality rate and organ damage in septic shock and prevents cardiac mitochondrial dysfunction due to lipopolysaccharide (LPS). Our hypothesis is that exercise preconditioning may increase the expression of HSP72 in heart and the nucleus tractus solitarii (NTS) of the brain to alleviate the cardiovascular dysfunction in type I diabetic rats receiving endotoxin. Wistar rats were randomly assigned to the following groups: sedentary normal, sedentary type I diabetic rats, and type I diabetic rats with exercise training. The trained rats ran on a treadmill 5 d.week-1, 30-60 min.d-1, at an intensity of 1.0 mile.h-1 (1 mile = 1.6 km) over a 3 week period. Twenty-four hours after the last training session, we compared the temporal profiles of mean arterial pressure, heart rate, cardiac output, stroke volume, and serum tumor necrosis factor alpha level in rats receiving an injection of LPS. In addition, HSP72 expression in heart and NTS from each group was determined. We found that HSP72 expression in the heart and NTS was significantly increased in diabetic rats with exercise training. After administration of LPS, the survival time was significantly longer in diabetic rats with exercise training. Additionaly, serum tumor necrosis factor alpha levels decreased as compared with those rats not receiving exercise training. Exercise training also diminished cardiovascular dysfunction in diabetic rats during endotoxemia. These data suggest that exercise may increase the expression of HSP72 in the heart and NTS to protect against the high mortality rate and attenuate cardiovascular dysfunction in diabetic rats during endotoxemia.

  5. Helium preconditioning attenuates hypoxia/ischemia-induced injury in the developing brain.

    PubMed

    Liu, Yi; Xue, Feng; Liu, Guoke; Shi, Xin; Liu, Yun; Liu, Wenwu; Luo, Xu; Sun, Xuejun; Kang, Zhimin

    2011-02-28

    Recent studies show helium may be one kind of neuroprotective gas. This study aimed to examine the short and long-term neuroprotective effects of helium preconditioning in an established neonatal cerebral hypoxia-ischemia (HI) model. Seven-day-old rat pups were subjected to left common carotid artery ligation and then 90 min of hypoxia (8% oxygen at 37°C). The preconditioning group inhaled 70% helium-30% oxygen for 5 min three times with an interval of 5 min 24h before HI insult. Pups were decapitated 24h after HI and brain morphological injury was assessed by 2,3,5-triphenyltetrazolium chloride (TTC) staining, Nissl and TUNEL staining. Caspase-3 activity in the brain was measured. Five weeks after HI, postural reflex testing and Morris water maze testing were conducted. Our results showed that helium preconditioning reduced the infarct ratio, increased the number of survival neurons, and inhibited apoptosis at the early stage of HI insult. Furthermore, the sensorimotor function and the cognitive function were improved significantly in rats with helium preconditioning. The results indicate that helium preconditioning attenuates HI induced brain injury.

  6. Tetramethylpyrazine-2'-O-sodium ferulate attenuates blood-brain barrier disruption and brain oedema after cerebral ischemia/reperfusion.

    PubMed

    Xu, S-H; Yin, M-S; Liu, B; Chen, M-L; He, G-W; Zhou, P-P; Cui, Y-J; Yang, D; Wu, Y-L

    2016-07-06

    Disruption of blood-brain barrier (BBB) and subsequent oedema are major causes of the pathogenesis in ischaemic stroke with which the current clinical therapy remains unsatisfied. In this study, we examined the therapeutic effect of tetramethylpyrazine-2'-O-sodium ferulate (TSF)-a novel analogue of tetramethylpyrazine in alleviating BBB breakdown and brain oedema after cerebral ischaemia/reperfusion (I/R). Then, we explored the potential mechanism of the protection on BBB disruption in cerebral I/R rat models. Male Sprague-Dawley rats (250-300 g) were subjected to 120 min middle cerebral artery occlusion (MCAO), followed by 48 h reperfusion. TSF (10.8, 18 and 30 mg kg(-1)) and ozagrel (18 mg kg(-1)) were administrated by intravenous injection immediately for the first time and then received the same dose every 24 h for 2 days. We found that TSF treatment significantly attenuated the cerebral water content, infarction volume and improved neurological outcomes in MCAO rats compared to I/R models. Moreover, we investigated the effect of TSF on the BBB for that cerebral oedema is closely related to the permeability of the BBB. We found that the permeability of BBB was improved significantly in TSF groups compared to I/R model group by Evans blue leakage testing. Furthermore, the expressions of tight junction (TJ) proteins junction adhesion molecule-1 and occludin significantly decreased, but the protein expression of matrix metalloproteinase-9 (MMP-9) and aquaporin 4 (AQP4) increased after cerebral I/R, all of which were alleviated by TSF treatment. In conclusion, TSF significantly reduced BBB permeability and brain oedema, which were correlated with regulating the expression of TJ proteins, MMP-9 and AQP4. These findings provide a novel approach to the treatment of ischaemic stroke.

  7. Aerobic exercise attenuates inhibitory avoidance memory deficit induced by paradoxical sleep deprivation in rats.

    PubMed

    Fernandes, Jansen; Baliego, Luiz Guilherme Zaccaro; Peixinho-Pena, Luiz Fernando; de Almeida, Alexandre Aparecido; Venancio, Daniel Paulino; Scorza, Fulvio Alexandre; de Mello, Marco Tulio; Arida, Ricardo Mario

    2013-09-05

    The deleterious effects of paradoxical sleep deprivation (SD) on memory processes are well documented. Physical exercise improves many aspects of brain functions and induces neuroprotection. In the present study, we investigated the influence of 4 weeks of treadmill aerobic exercise on both long-term memory and the expression of synaptic proteins (GAP-43, synapsin I, synaptophysin, and PSD-95) in normal and sleep-deprived rats. Adult Wistar rats were subjected to 4 weeks of treadmill exercise training for 35 min, five times per week. Twenty-four hours after the last exercise session, the rats were sleep-deprived for 96 h using the modified multiple platform method. To assess memory after SD, all animals underwent training for the inhibitory avoidance task and were tested 24h later. The aerobic exercise attenuated the long-term memory deficit induced by 96 h of paradoxical SD. Western blot analysis of the hippocampus revealed increased levels of GAP-43 in exercised rats. However, the expression of synapsin I, synaptophysin, and PSD-95 was not modified by either exercise or SD. Our results suggest that an aerobic exercise program can attenuate the deleterious effects of SD on long-term memory and that this effect is not directly related to changes in the expression of the pre- and post-synaptic proteins analyzed in the study.

  8. Quantification of light attenuation in optically cleared mouse brains

    PubMed Central

    d’Esposito, Angela; Nikitichev, Daniil; Desjardins, Adrien; Walker-Samuel, Simon; Lythgoe, Mark F.

    2015-01-01

    Optical clearing, in combination with recently developed optical imaging techniques, enables visualization and acquisition of high resolution, three-dimensional images of biological structures deep within tissue. Many different approaches can be used to reduce light absorption and scattering within the tissue, but there is a paucity of research on the quantification of clearing efficacy. With the use of a custom-made spectroscopy system, we developed a way to quantify the quality of clearing in biological tissue, and applied it to the mouse brain. Three clearing techniques were compared: BABB (Murray’s clear), pBABB (a modification of BABB which includes the use of hydrogen peroxide) and passive CLARITY. Despite being limited to autofluorescence studies, we found that pBABB produced the highest degree of optical clearing. Furthermore, the approach allows regional measurement of light attenuation to be performed, and. our results show that light is most attenuated in regions with high lipid content. This work provides a way to choose between the multiple clearing protocols available, and it could prove useful for evaluating images that are acquired with cleared tissues. PMID:26277988

  9. Over-dose insulin and stable gastric pentadecapeptide BPC 157. Attenuated gastric ulcers, seizures, brain lesions, hepatomegaly, fatty liver, breakdown of liver glycogen, profound hypoglycemia and calcification in rats.

    PubMed

    Ilic, S; Brcic, I; Mester, M; Filipovic, M; Sever, M; Klicek, R; Barisic, I; Radic, B; Zoricic, Z; Bilic, V; Berkopic, L; Brcic, L; Kolenc, D; Romic, Z; Pazanin, L; Seiwerth, S; Sikiric, P

    2009-12-01

    We focused on over-dose insulin (250 IU/kg i.p.) induced gastric ulcers and then on other disturbances that were concomitantly induced in rats, seizures (eventually fatal), severely damaged neurons in cerebral cortex and hippocampus, hepatomegaly, fatty liver, increased AST, ALT and amylase serum values, breakdown of liver glycogen with profound hypoglycemia and calcification development. Calcium deposits were present in the blood vessel walls, hepatocytes surrounding blood vessels and sometimes even in parenchyma of the liver mainly as linear and only occasionally as granular accumulation. As an antidote after insulin, we applied the stable gastric pentadecapeptide BPC 157 (10 microg/kg) given (i) intraperitoneally or (ii) intragastrically immediately after insulin. Controls received simultaneously an equivolume of saline (5 ml/kg). Those rats that survived till the 180 minutes after over-dose application were further assessed. Interestingly, pentadecapeptide BPC 157, as an antiulcer peptide, may besides stomach ulcer consistently counteract all insulin disturbances and fatal outcome. BPC 157 rats showed no fatal outcome, they were mostly without hypoglycemic seizures with apparently higher blood glucose levels (glycogen was still present in hepatocytes), less liver pathology (i.e., normal liver weight, less fatty liver), decreased ALT, AST and amylase serum values, markedly less damaged neurons in brain and they only occasionally had small gastric lesions. BPC 157 rats exhibited mostly only dot-like calcium presentation. In conclusion, the success of BPC 157 therapy may indicate a likely role of BPC 157 in insulin controlling and BPC 157 may influence one or more causative process(es) after excessive insulin application.

  10. Attenuation of Cocaine Induced Locomotor Sensitization in Rats Sustaining Genetic or Pharmacologic Antagonism of Ghrelin Receptors

    PubMed Central

    Clifford, P. Shane; Rodriguez, Juan; Schul, Destri; Hughes, Samuel; Kniffin, Tracey; Hart, Nigel; Eitan, Shoshana; Wellman, Paul J.; Brunel, Luc; Fehrentz, Jean-Alain; Martinez, Jean

    2011-01-01

    Systemic infusions of the orexigenic peptide ghrelin (GHR) increase dopamine levels within the nucleus accumbens and augment cocaine stimulated locomotion and conditioned place preference in rats; observations that suggest an important role for ghrelin and GHR receptors (GHR-Rs) in drug reinforcement. In the present studies, we examined the development of cocaine locomotor sensitization in rats sustaining either pharmacologic antagonism or genetic ablation of GHR-Rs. In a pharmacologic study, adult male rats were injected (i.p.) with either 0, 3 or 6 mg/kg JMV 2959 (a GHR-R1 receptor antagonist) and 20 minutes later with either vehicle or 10 mg/kg cocaine HCl on each of 7 consecutive days. Rats pretreated with JMV 2959 showed significantly attenuated cocaine-induced hyperlocomotion. In a second study, adult wild type (WT) or mutant rats sustaining ENU-induced knockout of GHR-R (GHR-R (−/−)) received daily injections (i.p) of vehicle (0.9% saline) or 10.0 mg/kg cocaine HCl for 14 successive days. GHR-R null rats treated repeatedly with cocaine showed diminished development of cocaine locomotor sensitization relative to WT rats treated with cocaine. To verify the lack of GHR-R function in the GHR-R (−/−) rats, a separate feeding experiment was conducted in which WT rats, but not GHR-R (−/−) rats, were noted to eat more after a systemic injection of 15 nmol ghrelin than after vehicle. These results suggest that GHR-R activity is required for the induction of locomotor sensitization to cocaine and complement an emerging literature implicating central GHR systems in drug reward. Ghrelin (GHR) is an orexigenic gut peptide that is transported across the blood brain barrier and interacts with GHR receptors (GHR-R) located on ventral tegmental dopamine neurons. PMID:21790898

  11. Attenuation of arsenic neurotoxicity by curcumin in rats

    SciTech Connect

    Yadav, Rajesh S.; Sankhwar, Madhu Lata; Shukla, Rajendra K.; Chandra, Ramesh; Pant, Aditya B.; Islam, Fakhrul; Khanna, Vinay K.

    2009-11-01

    In view of continued exposure to arsenic and associated human health risk including neurotoxicity, neuroprotective efficacy of curcumin, a polyphenolic antioxidant, has been investigated in rats. A significant decrease in locomotor activity, grip strength (26%) and rota-rod performance (82%) was observed in rats treated with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) as compared to controls. The arsenic treated rats also exhibited a decrease in the binding of striatal dopamine receptors (32%) and tyrosine hydroxylase (TH) immunoreactivity (19%) in striatum. Increased arsenic levels in corpus striatum (6.5 fold), frontal cortex (6.3 fold) and hippocampus (7.0 fold) associated with enhanced oxidative stress in these brain regions, as evident by an increase in lipid perioxidation, protein carbonyl and a decrease in the levels of glutathione and activity of superoxide dismutase, catalase and glutathione peroxidase with differential effects were observed in arsenic treated rats compared to controls. Simultaneous treatment with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) and curcumin (100 mg/kg body weight, p.o., 28 days) caused an increase in locomotor activity and grip strength and improved the rota-rod performance in comparison to arsenic treated rats. Binding of striatal dopamine receptors and TH expression increased while arsenic levels and oxidative stress decreased in these brain regions in co-treated rats as compared to those treated with arsenic alone. No significant effect on any of these parameters was observed in rats treated with curcumin (100 mg/kg body weight, p.o., 28 days) alone compared to controls. A significant protection in behavioral, neurochemical and immunohistochemical parameters in rats simultaneously treated with arsenic and curcumin suggest the neuroprotective efficacy of curcumin.

  12. Erythropoietin attenuates loss of potassium chloride co-transporters following prenatal brain injury.

    PubMed

    Jantzie, L L; Getsy, P M; Firl, D J; Wilson, C G; Miller, R H; Robinson, S

    2014-07-01

    Therapeutic agents that restore the inhibitory actions of γ-amino butyric acid (GABA) by modulating intracellular chloride concentrations will provide novel avenues to treat stroke, chronic pain, epilepsy, autism, and neurodegenerative and cognitive disorders. During development, upregulation of the potassium-chloride co-transporter KCC2, and the resultant switch from excitatory to inhibitory responses to GABA guide the formation of essential inhibitory circuits. Importantly, maturation of inhibitory mechanisms is also central to the development of excitatory circuits and proper balance between excitatory and inhibitory networks in the developing brain. Loss of KCC2 expression occurs in postmortem samples from human preterm infant brains with white matter lesions. Here we show that late gestation brain injury in a rat model of extreme prematurity impairs the developmental upregulation of potassium chloride co-transporters during a critical postnatal period of circuit maturation in CA3 hippocampus by inducing a sustained loss of oligomeric KCC2 via a calpain-dependent mechanism. Further, administration of erythropoietin (EPO) in a clinically relevant postnatal dosing regimen following the prenatal injury protects the developing brain by reducing calpain activity, restoring oligomeric KCC2 expression and attenuating KCC2 fragmentation, thus providing the first report of a safe therapy to address deficits in KCC2 expression. Together, these data indicate it is possible to reverse abnormalities in KCC2 expression during the postnatal period, and potentially reverse deficits in inhibitory circuit formation central to cognitive impairment and epileptogenesis.

  13. Intranasal basic fibroblast growth factor attenuates endoplasmic reticulum stress and brain injury in neonatal hypoxic-ischaemic injury

    PubMed Central

    Lin, Zhenlang; Hu, Yingying; Wang, Zhouguang; Pan, Shulin; Zhang, Hao; Ye, Libing; Zhang, Hongyu; Fang, Mingchu; Jiang, Huai; Ye, Junming; Xiao, Jian; Liu, Li

    2017-01-01

    Brain injury secondary to birth asphyxia is the major cause of death and long-term disability in newborns. Intranasal drug administration enables agents to bypass the blood-brain barrier (BBB) and enter the brain directly. In this study, we determined whether intranasal basic fibroblast growth factor (bFGF) could exert neuroprotective effects in neonatal rats after hypoxic-ischaemic (HI) brain injury and assessed whether attenuation of endoplasmic reticulum (ER) stress was associated with these neuroprotective effects. Rats were subjected to HI brain injury via unilateral carotid artery ligation followed by 2.5 h of hypoxia and then treated with intranasal bFGF or vehicle immediately after HI injury. We found that the unfolded protein response (UPR) was strongly activated after HI injury and that bFGF significantly reduced the levels of the ER stress signalling proteins GRP78 and PDI. bFGF also decreased brain infarction volumes and conferred long-term neuroprotective effects against brain atrophy and neuron loss after HI brain injury. Taken together, our results suggest that intranasal bFGF provides neuroprotection function partly by inhibiting HI injury-induced ER stress. bFGF may have potential as a therapy for human neonates after birth asphyxia. PMID:28337259

  14. Nebivolol Attenuates Maladaptive Proximal Tubule Remodeling in Transgenic Rats

    PubMed Central

    Hayden, Melvin R.; Habibi, Javad; Whaley-Connell, Adam; Sowers, Dilek; Johnson, Megan; Tilmon, Roger; Jain, Deepika; Ferrario, Carlos; Sowers, James R.

    2010-01-01

    Background/Aims The impact of nebivolol therapy on the renal proximal tubular cell (PTC) structure and function was investigated in a transgenic (TG) rodent model of hypertension and the cardiometabolic syndrome. The TG Ren2 rat develops nephropathy with proteinuria, increased renal angiotensin II levels and oxidative stress, and PTC remodeling. Nebivolol, a β1-antagonist, has recently been shown to reduce albuminuria, in part, through reductions in renal oxidative stress. Accordingly, we hypothesized that nebivolol therapy would attenuate PTC damage and tubulointerstitial fibrosis. Methods Young Ren2 (R2-N) and SD (SD-N) rats were treated with nebivolol (10 mg/kg/day) or vehicle (R2-C; SD-C) for 3 weeks. PTC structure and function were tested using transmission electron microscopy and functional measurements. Results Nebivolol treatment decreased urinary N-acetyl-β-D-glucosaminidase, tubulointerstitial ultrastructural remodeling and fibrosis, NADPH oxidase activity, 3-nitrotyrosine levels, and increased megalin and lysosomal-associated membrane protein-2 immunostaining in PTCs. Ultrastructural abnormalities that were improved with therapy included altered canalicular structure, reduced endosomes/lysosomes and PTC vacuoles, basement membrane thickening, and mitochondrial remodeling/fragmentation. Conclusion These observations support the notion that nebivolol may improve PTC reabsorption of albumin and other glomerular filtered small molecular weight proteins in association with the attenuation of oxidative stress, tubulointerstitial injury and fibrosis in this rat model of metabolic kidney disease. PMID:20110666

  15. Captopril and Valsartan May Improve Cognitive Function Through Potentiation of the Brain Antioxidant Defense System and Attenuation of Oxidative/Nitrosative Damage in STZ-Induced Dementia in Rat

    PubMed Central

    Arjmand Abbassi, Yasaman; Mohammadi, Mohammad Taghi; Sarami Foroshani, Mahsa; Raouf Sarshoori, Javad

    2016-01-01

    Purpose: Previous findings have shown the crucial roles of brain renin-angiotensin system (RAS) in pathogenesis of Alzheimer’s disease (AD). Since RAS inhibitors may have beneficial effects on dementia and cognitive function in elderly people, the aim of present study was to examine the neuroprotective actions of captopril and valsartan on memory function and neuronal damage in experimental model of AD. Methods: Adult forty male Wistar rats (220-280g) were randomly divided into 5 groups; Control, Vehicle, Alzheimer and treatment groups. AD was induced by the injections of streptozotocin (3mg/kg, bilateral intracerebroventricular) at days 1&3. Treated rats received orally captopril (50mg/kg/day) and valsartan (30mg/kg/day). Memory function and histological assessments were done at termination of experiment. Finally, superoxide dismutase (SOD) and catalase (CAT) activities as well as malondialdehyde (MDA) and NOx contents were determined. Results: There was a significant increase in the mean value of latency in Alzheimer group (66%). Captopril and valsartan considerably decreased this value in both treatment groups (45% and 72%, respectively). In Alzheimer group the activities of brain’s SOD and CAT reduced (40% and 47%, respectively) in accompany with an increase in MDA and NOx contents (49% and 50%, respectively). Captopril and valsartan significantly increased the activities of brain’s SOD and CAT concomitant reduction in MDA and NOx contents. Also, histopathological damages noticeably decreased in both treatment groups. Conclusion: Our findings indicate that RAS inhibition by using captopril and valsartan potentiates the antioxidant defense system of brain and reduces oxidative/nitrosative stress in accompany with neuronal damage during AD. PMID:28101460

  16. Berberine attenuates intestinal disaccharidases in streptozotocin-induced diabetic rats.

    PubMed

    Liu, Li; Deng, Yuanxiong; Yu, Sen; Lu, Shousi; Xie, Lin; Liu, Xiaodong

    2008-05-01

    Previous studies demonstrated anti-diabetic effects of berberine. However, the facts that berberine had low bioavailability and poor absorption through the gut wall indicated that berberine might exert its antihyperglycaemic effect in the intestinal tract before absorption. The purpose of this study was to investigate whether berberine attenuates disaccharidase activities and beta-glucuronidase activity in the small intestine of streptozotocin (STZ)-induced diabetic rats. Two groups of STZ-induced diabetic rats were treated with protamine zinc insulin (10 U/Kg) subcutaneously twice daily and berberine (100 mg/Kg) orally once daily for 4 weeks, respectively. Both age-matched normal rats and diabetic control rats received physiological saline only. Fasting blood glucose levels, body weight, intestinal disaccharidase and beta-glucuronidase activities in duodenum, jejunum and ileum were assessed for changes. Our findings suggested that berberine treatment significantly decreases the activities of intestinal disaccharidases and beta-glucuronidase in STZ-induced diabetic rats. The results demonstrated that the inhibitory effect on intestinal disaccharidases and beta-glucuronidase of berberine might be one of the mechanisms for berberine as an antihyperglycaemic agent.

  17. Endotoxemia in newborn rats attenuates acute pancreatitis at adult age.

    PubMed

    Jaworek, J; Konturek, S J; Macko, M; Kot, M; Szklarczyk, J; Leja-Szpak, A; Nawrot-Porabka, K; Stachura, J; Tomaszewska, R; Siwicki, A; Pawlik, W W

    2007-03-01

    . Pretreatment of suckling rats with LPS at dose of 10 mg/kg-day x 5 days resulted in the most prominent attenuation of acute pancreatitis at adult age, whereas LPS at dose of 5 mg/kg-day x 5 days given to the neonatal rats failed to affect significantly acute pancreatitis induced in these animals 2 months later. We conclude that: 1/ Prolonged exposition of suckling rats to bacterial endotoxin attenuated acute pancreatitis induced in these animals at adult age. 2/ This effect could be related to the increased concentration of antioxidative enzyme SO in the pancreatic tissue and to the modulation of cytokines production in these animals.

  18. Brain derived neurotrophic factor and insulin like growth factor-1 attenuate upregulation of nitric oxide synthase and cell injury following trauma to the spinal cord. An immunohistochemical study in the rat.

    PubMed

    Sharma, H S; Nyberg, F; Westman, J; Alm, P; Gordh, T; Lindholm, D

    1998-01-01

    The possibility that brain derived neurotrophic factor (BDNF) and insulin like growth factor-1 (IGF) induced neuroprotection is influenced by mechanisms involving nitric oxide was examined in a rat model of focal spinal cord injury. BDNF or IGF-I (0.1 microgram/10 microliters in phosphate buffer saline) was applied topically 30 min before injury on the exposed spinal cord followed by repeated doses of growth factors immediately before and 30 min after injury. Thereafter application of BDNF or IGF was carried out at every 1 h interval until sacrifice. Five hours after injury, the tissue pieces from the T9 segment were processed for nNOS immunostaining, edema and cell injury. Untreated injured rats showed a profound upregulation of nNOS which was most pronounced in the nerve cells of the ipsilateral side. A marked increase in the blood-spinal cord barrier (BSCB) permeability to 125I-albumin, water content and cell injury in these perifocal segments was also found. Pretreatment with BDNF and IGF significantly reduced the upregulation of nNOS in the spinal cord. This effect of the growth factors was most pronounced in the contralateral side. Rats treated with these neurotrophic factors showed much less signs of BSCB damage, edema and cell injury. These results suggest that BDNF and IGF pretreatment is neuroprotective in spinal cord injury and that these neurotrophic factors have the capacity to down regulate nNOS expression following trauma to the spinal cord. Our data provide new experimental evidences which suggest that BDNF and IGF may exert their potential neuroprotective effects probably via regulation of NOS activity.

  19. Magnesium nitrate attenuates blood pressure rise in SHR rats.

    PubMed

    Vilskersts, Reinis; Kuka, Janis; Liepinsh, Edgars; Cirule, Helena; Gulbe, Anita; Kalvinsh, Ivars; Dambrova, Maija

    2014-01-01

    The administration of magnesium supplements and nitrates/nitrites decreases arterial blood pressure and attenuates the development of hypertension-induced complications. This study was performed to examine the effects of treatment with magnesium nitrate on the development of hypertension and its complications in spontaneously hypertensive (SHR) rats. Male SHR rats with persistent hypertension at the age of 12-13 weeks were allocated to two groups according to their arterial blood pressure. Rats from the control group received purified water, while the experimental animals from the second group received magnesium nitrate dissolved in purified water at a dose of 50 mg/kg. After four weeks of treatment, blood pressure was measured, the anatomical and functional parameters of the heart were recorded using an ultrasonograph, vascular reactivity was assayed in organ bath experiments and the cardioprotective effects of magnesium nitrate administration was assayed in an ex vivo experimental heart infarction model. Treatment with magnesium nitrate significantly increased the nitrate concentration in the plasma (from 62 ± 8 μmol/l to 111 ± 8 μmol/L), and attenuated the increase in the arterial blood pressure. In the control and magnesium nitrate groups, the blood pressure rose by 21 ± 3 mmHg and 6 ± 4 mmHg, respectively. The administration of magnesium nitrate had no effect on the altered vasoreactivity, heart function or the size of the heart infarction. In conclusion, our results demonstrate that magnesium nitrate effectively attenuates the rise in arterial blood pressure. However, a longer period of administration or earlier onset of treatment might be needed to delay the development of complications due to hypertension.

  20. Lesion of the tuberomammillary nucleus E2-region attenuates postictal seizure protection in rats.

    PubMed

    Jin, Chun-Lei; Zhuge, Zheng-Bing; Wu, Deng-Chang; Zhu, Yuan-Yuan; Wang, Shuang; Luo, Jian-Hong; Chen, Zhong

    2007-03-01

    Postictal seizure protection (PSP) is an endogenous anticonvulsant phenomenon that follows an epileptic seizure and inhibits the induction of further seizures. The tuberomammillary nucleus (TM), located in the posterior hypothalamus, consists of five subregions and is the sole source of histaminergic neurons in the brain. To determine whether the TM is involved in PSP in rats, we tested the effects of bilateral electrolytic lesions of the TM E2-region on seizures induced by intermittent maximal electroshock (MES). The TM E2-region lesions significantly attenuated PSP during the intermittent MES procedure. Furthermore, intracerebroventricular injection of alpha-fluoromethylhistidine (100 microg), a selective and irreversible histidine decarboxylase inhibitor, mimicked the attenuation of PSP induced by the lesion of TM E2-region. In addition, neurochemical experiments revealed that the TM E2-region lesions markedly decreased basal histamine levels in the cortex, hippocampus, brainstem and hypothalamus, but had no significant effect on basal glutamate and GABA levels. Moreover, intermittent MES induced a persistent decrease of brain histamine levels in both sham-operated and lesioned rats. These results indicate that through its intrinsic histaminergic system, the TM may exert powerful inhibitory function during the intermittent MES procedure and actively participate in the mechanisms of PSP.

  1. Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats.

    PubMed

    Lv, Hongdi; Wang, Ling; Shen, Jinchang; Hao, Shaojun; Ming, Aimin; Wang, Xidong; Su, Feng; Zhang, Zhengchen

    2015-06-01

    Silent information regulator 1 (SIRT1), a histone deacetylase, has been suggested to be effective in ischemic brain diseases. Salvianolic acid B (SalB) is a polyphenolic and one of the active components of Salvia miltiorrhiza Bunge. Previous studies suggested that SalB is protective against ischemic stroke. However, the role of SIRT1 in the protective effect of SalB against cerebral ischemia has not been explored. In this study, the rat brain was subjected to middle cerebral artery occlusion (MCAO). Before this surgery, rats were intraperitoneally administrated SalB with or without EX527, a specific SIRT1 inhibitor. The infarct volume, neurological score and brain water content were assessed. In addition, levels of TNF-α and IL-1β in the brain tissues were detected by commercial ELISA kits. And the expression levels of SIRT, Ac-FOXO1, Bcl-2 and Bax were detected by Western blot. The results suggested that SalB exerted a cerebral-protective effect, as shown by reduced infarct volume, lowered brain edema and increased neurological scores. SalB also exerted anti-inflammatory effects as indicated by the decreased TNF-α and IL-1β levels in the brain tissue. Moreover, SalB upregulated the expression of SIRT1 and Bcl-2 and downregulated the expression of Ac-FOXO1 and Bax. These effects of SalB were abolished by EX527 treatment. In summary, our results demonstrate that SalB treatment attenuates brain injury induced by ischemic stoke via reducing apoptosis and inflammation through the activation of SIRT1 signaling.

  2. Neuroprotection of Selective Brain Cooling After Penetrating Ballistic-like Brain Injury in Rats.

    PubMed

    Wei, Guo; Lu, Xi-Chun M; Shear, Deborah A; Yang, Xiaofang; Tortella, Frank C

    2011-01-01

    Induced hypothermia has been reported to provide neuroprotection against traumatic brain injury. We recently developed a novel method of selective brain cooling (SBC) and demonstrated its safety and neuroprotection efficacy in a rat model of ischemic brain injury. The primary focus of the current study was to evaluate the potential neuroprotective efficacy of SBC in a rat model of penetrating ballistic-like brain injury (PBBI) with a particular focus on the acute cerebral pathophysiology, neurofunction, and cognition. SBC (34°C) was induced immediately after PBBI, and maintained for 2 hours, followed by a spontaneous re-warming. Intracranial pressure (ICP) and regional cerebral blood flow were monitored continuously for 3 hours, and the ICP was measured again at 24 hours postinjury. Brain swelling, blood-brain barrier permeability, intracerebral hemorrhage, lesion size, and neurological status were assessed at 24 hours postinjury. Cognitive abilities were evaluated in a Morris water maze task at 12-16 days postinjury. Results showed that SBC significantly attenuated PBBI-induced elevation of ICP (PBBI = 33.2 ± 10.4; PBBI + SBC = 18.8 ± 6.7 mmHg) and reduced brain swelling, blood-brain barrier leakage, intracerebral hemorrhage, and lesion volume by 40%-45% for each matrix, and significantly improved neurologic function. However, these acute neuroprotective benefits of SBC did not translate into improved cognitive performance in the Morris water maze task. These results indicate that 34°C SBC is effective in protecting against acute brain damage and related neurological dysfunction. Further studies are required to establish the optimal treatment conditions (i.e., duration of cooling and/or combined therapeutic approaches) needed to achieve significant neurocognitive benefits.

  3. Rutaecarpine attenuates hypoxia-induced right ventricular remodeling in rats.

    PubMed

    Li, Wen-Qun; Li, Xiao-Hui; Du, Jie; Zhang, Wang; Li, Dai; Xiong, Xiao-Ming; Li, Yuan-Jian

    2016-07-01

    Rutaecarpine has been shown to exhibit wide pharmacological effects in the cardiovascular system via stimulation of calcitonin gene-related peptide (CGRP) release. In the present study, the effect of rutaecarpine on hypoxia-induced right ventricular (RV) remodeling and the underlying mechanisms were evaluated. RV remodeling was induced by hypoxia (10 % O2, 3 weeks) in rats. Rats were treated with rutaecarpine (20 or 40 mg/kg) by intragastric administration. Proliferation of cardiac fibroblasts was induced by TGF-β1 (5 ng/mL) and determined by MTS and EdU incorporation method. Cardiac fibroblasts were treated with exogenous CGRP (10 or 100 nM). The concentrations of CGRP and TGF-β1 in plasma were measured by ELISA. The expression of eIF3a, p27, α-SMA, collagen-I/III, ANP, and BNP were measured by real-time PCR or western blot. Hypoxia induced an increase of right ventricle systolic pressure (RVSP), ration of RV/LV+S, and RV/tibial length in rats, while cardiac hypertrophy, apoptosis, and fibrosis were detected. The expression of ANP, BNP, α-SMA, collagen-I, collagen-III, eIF3a, and TGF-β1 was up-regulated, and the expression of p27 was down-regulated in the right ventricle of hypoxia-treated rats. The plasma concentration of CGRP was decreased and TGF-β1 was increased in hypoxia-treated rats. All of these effects induced by hypoxia were attenuated by rutaecarpine in a dose-dependent manner. In cultured cardiac fibroblasts, TGF-β1 significantly promoted the proliferation and up-regulated the expression of α-SMA and collagen-I/III, while the expression of eIF3a was up-regulated and the expression of p27 was down-regulated. The effects of TGF-β1 were attenuated by CGRP. CGRP8-37, a selective CGRP receptor antagonist, abolished the effects of CGRP. Rutaecarpine attenuates hypoxia-induced RV remodeling via stimulation of CGRP release, and the effects of rutaecarpine involve the eIF3a/p27 pathway.

  4. Catechin attenuates behavioral neurotoxicity induced by 6-OHDA in rats.

    PubMed

    Teixeira, M D A; Souza, C M; Menezes, A P F; Carmo, M R S; Fonteles, A A; Gurgel, J P; Lima, F A V; Viana, G S B; Andrade, G M

    2013-09-01

    This study was designed to investigate the beneficial effect of catechin in a model of Parkinson's disease. Unilateral, intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned rats were pretreated with catechin (10 and 30 mg/kg) by intraperitoneal (i.p.) injection 2h before surgery and for 14 days afterwards. After treatments, apomorphine-induced rotations, locomotor activity, working memory and early and late aversive memories were evaluated. The mesencephalon was used to determine the levels of monoamines and measurement of glutathione (GSH). Immunohistochemical staining was also used to evaluate the expression of tyrosine hydroxylase (TH) in mesencephalic and striatal tissues. Catechin administration attenuated the increase in rotational behavior and the decrease in locomotor activity observed in lesioned rats. Although catechin did not rescue the impairment of late aversive memory, it protected the animals against 6-OHDA-induced working memory deficits. Furthermore, catechin treatment restored GSH levels, and significantly increased dopamine and DOPAC content, and TH-immunoreactivity in 6-OHDA-lesioned rats. Catechin protected 6-OHDA-lesioned rats due to its antioxidant action, indicating that it could be useful as an adjunctive therapy for the treatment of Parkinson's disease.

  5. Carnosine Reduces Oxidative Stress and Reverses Attenuation of Righting and Postural Reflexes in Rats with Thioacetamide-Induced Liver Failure.

    PubMed

    Milewski, Krzysztof; Hilgier, Wojciech; Fręśko, Inez; Polowy, Rafał; Podsiadłowska, Anna; Zołocińska, Ewa; Grymanowska, Aneta W; Filipkowski, Robert K; Albrecht, Jan; Zielińska, Magdalena

    2016-02-01

    Cerebral oxidative stress (OS) contributes to the pathogenesis of hepatic encephalopathy (HE). Existing evidence suggests that systemic administration of L-histidine (His) attenuates OS in brain of HE animal models, but the underlying mechanism is complex and not sufficiently understood. Here we tested the hypothesis that dipeptide carnosine (β-alanyl-L-histidine, Car) may be neuroprotective in thioacetamide (TAA)-induced liver failure in rats and that, being His metabolite, may mediate the well documented anti-OS activity of His. Amino acids [His or Car (100 mg/kg)] were administrated 2 h before TAA (i.p., 300 mg/kg 3× in 24 h intervals) injection into Sprague-Dawley rats. The animals were thus tested for: (i) brain prefrontal cortex and blood contents of Car and His, (ii) amount of reactive oxygen species (ROS), total antioxidant capacity (TAC), GSSG/GSH ratio and thioredoxin reductase (TRx) activity, and (iii) behavioral changes (several models were used, i.e. tests for reflexes, open field, grip test, Rotarod). Brain level of Car was reduced in TAA rats, and His administration significantly elevated Car levels in control and TAA rats. Car partly attenuated TAA-induced ROS production and reduced GSH/GSSG ratio, whereas the increase of TRx activity in TAA brain was not significantly modulated by Car. Further, Car improved TAA-affected behavioral functions in rats, as was shown by the tests of righting and postural reflexes. Collectively, the results support the hypothesis that (i) Car may be added to the list of neuroprotective compounds of therapeutic potential on HE and that (ii) Car mediates at least a portion of the OS-attenuating activity of His in the setting of TAA-induced liver failure.

  6. Lidocaine attenuates cognitive impairment after isoflurane anesthesia in old rats.

    PubMed

    Lin, Daowei; Cao, Lin; Wang, Zhi; Li, Jiejie; Washington, Jacqueline M; Zuo, Zhiyi

    2012-03-17

    Post-operative cognitive dysfunction (POCD) is a clinical phenomenon that has drawn significant attention from the public and scientific community. Age is a risk factor for POCD. However, the contribution of general anesthesia/anesthetics to POCD and the underlying neuropathology are not clear. Here, we showed that 18-month-old male Fisher 344 rats exposed to 1.2% isoflurane, a general anesthetic, for 2h had significant learning and memory impairments assessed at 2-4 weeks after isoflurane exposure. These isoflurane effects were attenuated by intravenous lidocaine (1.5mg/kg as a bolus and then 2mg/kg/h during isoflurane exposure), a local anesthetic that has neuroprotective effect. Exposure to isoflurane or isoflurane plus lidocaine did not change the neuronal and synaptic density as well as the expression of NeuN (a neuronal protein), drebrin (a dendritic spine protein), synaptophysin (a synaptic protein), activated caspase 3 and caspase-activated DNase in the hippocampus at 29 days after isoflurane exposure when cognitive impairment was present. Isoflurane and lidocaine did not affect the amount of β-amyloid peptide, total tau and phospho-tau in the cerebral cortex as well as interleukin-1β and tumor necrosis factor-α in the hippocampus at 29 days after isoflurane exposure. Thus, isoflurane induces learning and memory impairment in old rats. Lidocaine attenuates these isoflurane effects. Isoflurane may not cause long-lasting neuropathological changes.

  7. Fluoxetine and sertraline attenuate postischemic brain injury in mice.

    PubMed

    Shin, Tae Kyeong; Kang, Mi Sun; Lee, Ho Youn; Seo, Moo Sang; Kim, Si Geun; Kim, Chi Dae; Lee, Won Suk

    2009-06-01

    This study aimed to investigate whether selective serotonin reuptake inhibitors (SSRIs) attenuate brain injury and facilitate recovery following photothrombotic cortical ischemia in mice. Male ICR mice were anesthetized and systemically administered Rose Bengal. Permanent focal ischemia was induced in the medial frontal and somatosensory cortices by irradiating the skull with cold light laser. The animals were treated with fluoxetine or sertraline once a day for 14 d starting 1 h after ischemic insult. Treatment with fluoxetine and sertraline significantly reduced the infarct size. The Evans blue extravasation indices of the fluoxetine- and sertraline-treated groups were significantly lower than that of the vehicle group. Treatment with fluoxetine and sertraline shifted the lower limit of the mean arterial blood pressure for cerebral blood flow autoregulation toward normal, and significantly increased the expression of heme oxygenase-1 (HO-1) and hypoxia-inducible factor-1alpha (HIF-1alpha) proteins in the ischemic region. These results suggest that SSRIs, such as fluoxetine and sertraline, facilitate recovery following photothrombotic cortical ischemia via enhancement of HO-1 and HIF-1alpha proteins expression, thereby providing a benefit in therapy of cerebral ischemia.

  8. Low-dose memantine attenuated morphine addictive behavior through its anti-inflammation and neurotrophic effects in rats.

    PubMed

    Chen, Shiou-Lan; Tao, Pao-Luh; Chu, Chun-Hsien; Chen, Shih-Heng; Wu, Hsiang-En; Tseng, Leon F; Hong, Jau-Shyong; Lu, Ru-Band

    2012-06-01

    Opioid abuse and dependency are international problems. Studies have shown that neuronal inflammation and degeneration might be related to the development of opioid addiction. Thus, using neuroprotective agents might be beneficial for treating opioid addiction. Memantine, an Alzheimer's disease medication, has neuroprotective effects in vitro and in vivo. In this study, we evaluated whether a low dose of memantine prevents opioid-induced drug-seeking behavior in rats and analyzed its mechanism. A conditioned-place-preference test was used to investigate the morphine-induced drug-seeking behaviors in rats. We found that a low-dose (0.2-1 mg/kg) of subcutaneous memantine significantly attenuated the chronic morphine-induced place-preference in rats. To clarify the effects of chronic morphine and low-dose memantine, serum and brain levels of cytokines and brain-derived neurotrophic factor (BDNF) were measured. After 6 days of morphine treatment, cytokine (IL-1β, IL-6) levels had significantly increased in serum; IL-1β and IL-6 mRNA levels had significantly increased in the nucleus accumbens and medial prefrontal cortex, both addiction-related brain areas; and BDNF levels had significantly decreased, both in serum and in addiction-related brain areas. Pretreatment with low-dose memantine significantly attenuated chronic morphine-induced increases in serum and brain cytokines. Low-dose memantine also significantly potentiated serum and brain BDNF levels. We hypothesize that neuronal inflammation and BDNF downregulation are related to the progression of opioid addiction. We hypothesize that the mechanism low-dose memantine uses to attenuate morphine-induced addiction behavior is its anti-inflammatory and neurotrophic effects.

  9. Deformation-based brain morphometry in rats.

    PubMed

    Gaser, Christian; Schmidt, Silvio; Metzler, Martin; Herrmann, Karl-Heinz; Krumbein, Ines; Reichenbach, Jürgen R; Witte, Otto W

    2012-10-15

    Magnetic resonance imaging (MRI)-based morphometry provides in vivo evidence for macro-structural plasticity of the brain. Experiments on small animals using automated morphometric methods usually require expensive measurements with ultra-high field dedicated animal MRI systems. Here, we developed a novel deformation-based morphometry (DBM) tool for automated analyses of rat brain images measured on a 3-Tesla clinical whole body scanner with appropriate coils. A landmark-based transformation of our customized reference brain into the coordinates of the widely used rat brain atlas from Paxinos and Watson (Paxinos Atlas) guarantees the comparability of results to other studies. For cross-sectional data, we warped images onto the reference brain using the low-dimensional nonlinear registration implemented in the MATLAB software package SPM8. For the analysis of longitudinal data sets, we chose high-dimensional registrations of all images of one data set to the first baseline image which facilitate the identification of more subtle structural changes. Because all deformations were finally used to transform the data into the space of the Paxinos Atlas, Jacobian determinants could be used to estimate absolute local volumes of predefined regions-of-interest. Pilot experiments were performed to analyze brain structural changes due to aging or photothrombotically-induced cortical stroke. The results support the utility of DBM based on commonly available clinical whole-body scanners for highly sensitive morphometric studies on rats.

  10. Laser scattering by transcranial rat brain illumination

    NASA Astrophysics Data System (ADS)

    Sousa, Marcelo V. P.; Prates, Renato; Kato, Ilka T.; Sabino, Caetano P.; Suzuki, Luis C.; Ribeiro, Martha S.; Yoshimura, Elisabeth M.

    2012-06-01

    Due to the great number of applications of Low-Level-Laser-Therapy (LLLT) in Central Nervous System (CNS), the study of light penetration through skull and distribution in the brain becomes extremely important. The aim is to analyze the possibility of precise illumination of deep regions of the rat brain, measure the penetration and distribution of red (λ = 660 nm) and Near Infra-Red (NIR) (λ = 808 nm) diode laser light and compare optical properties of brain structures. The head of the animal (Rattus Novergicus) was epilated and divided by a sagittal cut, 2.3 mm away from mid plane. This section of rat's head was illuminated with red and NIR lasers in points above three anatomical structures: hippocampus, cerebellum and frontal cortex. A high resolution camera, perpendicularly positioned, was used to obtain images of the brain structures. Profiles of scattered intensities in the laser direction were obtained from the images. There is a peak in the scattered light profile corresponding to the skin layer. The bone layer gives rise to a valley in the profile indicating low scattering coefficient, or frontal scattering. Another peak in the region related to the brain is an indication of high scattering coefficient (μs) for this tissue. This work corroborates the use of transcranial LLLT in studies with rats which are subjected to models of CNS diseases. The outcomes of this study point to the possibility of transcranial LLLT in humans for a large number of diseases.

  11. Genetic influence on brain catecholamines: high brain norepinephrine in salt-sensitive rats

    SciTech Connect

    Iwai, J; Friedman, R; Tassinari, L

    1980-01-01

    Rats genetically sensitive to salt-induced hypertension evinced higher levels of plasma norepinephrine and epinephrine than rats genetically resistant to hypertension. The hypertension-sensitive rats showed higher hypothalamic norepinephrine and lower epinephrine than resistant rats. In response to a high salt diet, brain stem norepinephrine increased in sensitive rats while resistant rats exhibited a decrease on the same diet.

  12. Gastrin attenuates ischemia-reperfusion-induced intestinal injury in rats

    PubMed Central

    Liu, Zhihao; Luo, Yongli; Cheng, Yunjiu; Zou, Dezhi; Zeng, Aihong; Yang, Chunhua

    2016-01-01

    Intestinal ischemia-reperfusion (I/R) injury is a devastating complication when the blood supply is reflowed in ischemic organs. Gastrin has critical function in regulating acid secretion, proliferation, and differentiation in the gastric mucosa. We aimed to determine whether gastrin has an effect on intestinal I/R damage. Intestinal I/R injury was induced by 60-min occlusion of the superior mesenteric artery followed by 60-min reperfusion, and the rats were induced to be hypergastrinemic by pretreated with omeprazole or directly injected with gastrin. Some hypergastrinemic rats were injected with cholecystokinin-2 (CCK-2) receptor antagonist prior to I/R operation. After the animal surgery, the intestine was collected for histological analysis. Isolated intestinal epithelial cells or crypts were harvested for RNA and protein analysis. CCK-2 receptor expression, intestinal mucosal damage, cell apoptosis, and apoptotic protein caspase-3 activity were measured. We found that high gastrin in serum significantly reduced intestinal hemorrhage, alleviated extensive epithelial disruption, decreased disintegration of lamina propria, downregulated myeloperoxidase activity, tumor necrosis factor-α, and caspase-3 activity, and lead to low mortality in response to I/R injury. On the contrary, CCK-2 receptor antagonist L365260 could markedly impair intestinal protection by gastrin on intestinal I/R. Severe edema of mucosal villi with severe intestinal crypt injury and numerous intestinal villi disintegrated were observed again in the hypergastrinemic rats with L365260. The survival in the hypergastrinemic rats after intestinal I/R injury was shortened by L365260. Finally, gastrin could remarkably upregulated intestinal CCK-2 receptor expression. Our data suggest that gastrin by omeprazole remarkably attenuated I/R induced intestinal injury by enhancing CCK-2 receptor expression and gastrin could be a potential mitigator for intestinal I/R damage in the clinical setting. PMID

  13. Deep brain stimulation of the nucleus accumbens shell attenuates cocaine reinstatement through local and antidromic activation.

    PubMed

    Vassoler, Fair M; White, Samantha L; Hopkins, Thomas J; Guercio, Leonardo A; Espallergues, Julie; Berton, Olivier; Schmidt, Heath D; Pierce, R Christopher

    2013-09-04

    Accumbal deep brain stimulation (DBS) is a promising therapeutic modality for the treatment of addiction. Here, we demonstrate that DBS in the nucleus accumbens shell, but not the core, attenuates cocaine priming-induced reinstatement of drug seeking, an animal model of relapse, in male Sprague Dawley rats. Next, we compared DBS of the shell with pharmacological inactivation. Results indicated that inactivation using reagents that influenced (lidocaine) or spared (GABA receptor agonists) fibers of passage blocked cocaine reinstatement when administered into the core but not the shell. It seems unlikely, therefore, that intrashell DBS influences cocaine reinstatement by inactivating this nucleus or the fibers coursing through it. To examine potential circuit-wide changes, c-Fos immunohistochemistry was used to examine neuronal activation following DBS of the nucleus accumbens shell. Intrashell DBS increased c-Fos induction at the site of stimulation as well as in the infralimbic cortex, but had no effect on the dorsal striatum, prelimbic cortex, or ventral pallidum. Recent evidence indicates that accumbens DBS antidromically stimulates axon terminals, which ultimately activates GABAergic interneurons in cortical areas that send afferents to the shell. To test this hypothesis, GABA receptor agonists (baclofen/muscimol) were microinjected into the anterior cingulate, and prelimbic or infralimbic cortices before cocaine reinstatement. Pharmacological inactivation of all three medial prefrontal cortical subregions attenuated the reinstatement of cocaine seeking. These results are consistent with DBS of the accumbens shell attenuating cocaine reinstatement via local activation and/or activation of GABAergic interneurons in the medial prefrontal cortex via antidromic stimulation of cortico-accumbal afferents.

  14. Mycophenolate mofetil attenuates pulmonary arterial hypertension in rats

    SciTech Connect

    Suzuki, Chihiro; Takahashi, Masafumi . E-mail: masafumi@sch.md.shinshu-u.ac.jp; Morimoto, Hajime; Izawa, Atsushi; Ise, Hirohiko; Hongo, Minoru; Hoshikawa, Yasushi; Ito, Takayuki; Miyashita, Hiroshi; Kobayashi, Eiji; Shimada, Kazuyuki; Ikeda, Uichi

    2006-10-20

    Pulmonary arterial hypertension (PAH) is characterized by abnormal proliferation of smooth muscle cells (SMCs), leading to occlusion of pulmonary arterioles, right ventricular (RV) hypertrophy, and death. We investigated whether mycophenolate mofetil (MMF), a potent immunosuppresssant, prevents the development of monocrotaline (MCT)-induced PAH in rats. MMF effectively decreased RV systolic pressure and RV hypertrophy, and reduced the medial thickness of pulmonary arteries. MMF significantly inhibited the number of proliferating cell nuclear antigen (PCNA)-positive cells, infiltration of macrophages, and expression of P-selectin and interleukin-6 on the endothelium of pulmonary arteries. The infiltration of T cells and mast cells was not affected by MMF. In vitro experiments revealed that mycophenolic acid (MPA), an active metabolite of MMF, dose-dependently inhibited proliferation of human pulmonary arterial SMCs. MMF attenuated the development of PAH through its anti-inflammatory and anti-proliferative properties. These findings provide new insight into the potential role of immunosuppressants in the treatment of PAH.

  15. Minocycline attenuates noise-induced hearing loss in rats.

    PubMed

    Zhang, Jing; Song, Yong-Li; Tian, Ke-Yong; Qiu, Jian-Hua

    2017-02-03

    Noise-induced hearing loss (NIHL) is a serious health concern and prevention of hair cell death or therapeutic intervention at the early stage of NIHL is critical to preserve hearing. Minocycline is a semi-synthetic derivative of tetracycline and has been shown to have otoprotective effects in ototoxic drug-induced hearing impairment, however, whether minocycline can protect against NIHL has not been investigated. The present study demonstrated elevated ABR (auditory brainstem response) thresholds and outer hair cell loss following traumatic noise exposure, which was mitigated by intraperitoneal administration of minocycline (45mg/kg/d) for 5 consecutive days. In conclusion, the present study demonstrated that minocycline, a clinically approved drug with a good safety profile, can attenuate NIHL in rats and may potentially be used for treatment of hearing loss in clinic.

  16. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Shi, Xianbao; Sun, Hongzhi; Zhou, Dun; Xi, Huanjiu; Shan, Lina

    2015-04-01

    Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. We found that ATG pretreatment attenuated the LPS-induced ALI, as evidenced by the reduced histological scores, myeloperoxidase activity, and wet-to-dry weight ratio in the lung tissues. This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway.

  17. Brain and Serum Androsterone Is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury

    PubMed Central

    Servatius, Richard J.; Marx, Christine E.; Sinha, Swamini; Avcu, Pelin; Kilts, Jason D.; Naylor, Jennifer C.; Pang, Kevin C. H.

    2016-01-01

    Exposure to lateral fluid percussion (LFP) injury consistent with mild traumatic brain injury (mTBI) persistently attenuates acoustic startle responses (ASRs) in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM). ASRs were measured post injury days (PIDs) 1, 3, 7, 14, 21, and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34), PID 35 (S35), on both days (2S), or the experimental context (CON). Levels of the neurosteroids pregnenolone (PREG), allopregnanolone (ALLO), and androsterone (ANDRO) were determined for the prefrontal cortex, hippocampus, and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30, and 60 min post-stressor for determination of corticosterone (CORT) levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA) receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration. PMID:27616978

  18. Brain and Serum Androsterone Is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury.

    PubMed

    Servatius, Richard J; Marx, Christine E; Sinha, Swamini; Avcu, Pelin; Kilts, Jason D; Naylor, Jennifer C; Pang, Kevin C H

    2016-01-01

    Exposure to lateral fluid percussion (LFP) injury consistent with mild traumatic brain injury (mTBI) persistently attenuates acoustic startle responses (ASRs) in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM). ASRs were measured post injury days (PIDs) 1, 3, 7, 14, 21, and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34), PID 35 (S35), on both days (2S), or the experimental context (CON). Levels of the neurosteroids pregnenolone (PREG), allopregnanolone (ALLO), and androsterone (ANDRO) were determined for the prefrontal cortex, hippocampus, and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30, and 60 min post-stressor for determination of corticosterone (CORT) levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA) receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration.

  19. Diallyl disulfide attenuates acetaminophen-induced renal injury in rats

    PubMed Central

    Shin, Jin-Young; Han, Ji-Hee; Ko, Je-Won; Park, Sung-Hyeuk; Shin, Na-Rae; Jung, Tae-Yang; Kim, Hyun-A; Kim, Sung-Hwan; Shin, In-Sik

    2016-01-01

    This study investigated the protective effects of diallyl disulfide (DADS) against acetaminophen (AAP)-induced acute renal injury in male rats. We also investigated the effects of DADS on kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), which are novel biomarkers of nephrotoxicity in renal tissues, in response to AAP treatment. The following four experimental groups were evaluated: (1) vehicle control, (2) AAP (1,000 mg/kg), (3) AAP&DADS, and (4) DADS (50 mg/kg/day). AAP treatment caused acute kidney injury evidenced by increased serum blood urea nitrogen (BUN) levels and histopathological alterations. Additionally, Western blot and immunohistochemistry analysis showed increased expression of KIM-1 and NGAL proteins in renal tissues of AAP-treated rats. In contrast, DADS pretreatment significantly attenuated the AAP-induced nephrotoxic effects, including serum BUN level and expression of KIM-1 and NGAL proteins. Histopathological studies confirmed the renoprotective effect of DADS. The results suggest that DADS prevents AAP-induced acute nephrotoxicity, and that KIM-1 and NGAL may be useful biomarkers for the detection and monitoring of acute kidney injury associated with AAP exposure. PMID:28053613

  20. Salicylic acid attenuates gentamicin-induced nephrotoxicity in rats.

    PubMed

    Randjelovic, Pavle; Veljkovic, Slavimir; Stojiljkovic, Nenad; Jankovic-Velickovic, Ljubinka; Sokolovic, Dusan; Stoiljkovic, Milan; Ilic, Ivan

    2012-01-01

    Gentamicin (GM) is a widely used antibiotic against serious and life-threatening infections, but its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine the protective effect of salicylic acid (SA) in gentamicin-induced nephrotoxicity in rats. Quantitative evaluation of gentamicin-induced structural alterations and degree of functional alterations in the kidneys were performed by histopathological and biochemical analyses in order to determine potential beneficial effects of SA coadministration with gentamicin. Gentamicin was observed to cause a severe nephrotoxicity which was evidenced by an elevation of serum urea and creatinine levels. The significant increases in malondialdehyde (MDA) levels and protein carbonyl groups indicated that GM-induced tissue injury was mediated through oxidative reactions. On the other hand, simultaneous SA administration protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by GM treatment. Exposure to GM caused necrosis of tubular epithelial cells. Necrosis of tubules was found to be prevented by SA pretreatment. The results from our study indicate that SA supplement attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation in gentamicin-treated rats.

  1. Diallyl disulfide attenuates acetaminophen-induced renal injury in rats.

    PubMed

    Shin, Jin-Young; Han, Ji-Hee; Ko, Je-Won; Park, Sung-Hyeuk; Shin, Na-Rae; Jung, Tae-Yang; Kim, Hyun-A; Kim, Sung-Hwan; Shin, In-Sik; Kim, Jong-Choon

    2016-12-01

    This study investigated the protective effects of diallyl disulfide (DADS) against acetaminophen (AAP)-induced acute renal injury in male rats. We also investigated the effects of DADS on kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), which are novel biomarkers of nephrotoxicity in renal tissues, in response to AAP treatment. The following four experimental groups were evaluated: (1) vehicle control, (2) AAP (1,000 mg/kg), (3) AAP&DADS, and (4) DADS (50 mg/kg/day). AAP treatment caused acute kidney injury evidenced by increased serum blood urea nitrogen (BUN) levels and histopathological alterations. Additionally, Western blot and immunohistochemistry analysis showed increased expression of KIM-1 and NGAL proteins in renal tissues of AAP-treated rats. In contrast, DADS pretreatment significantly attenuated the AAP-induced nephrotoxic effects, including serum BUN level and expression of KIM-1 and NGAL proteins. Histopathological studies confirmed the renoprotective effect of DADS. The results suggest that DADS prevents AAP-induced acute nephrotoxicity, and that KIM-1 and NGAL may be useful biomarkers for the detection and monitoring of acute kidney injury associated with AAP exposure.

  2. Intermedin attenuates LPS-induced inflammation in the rat testis.

    PubMed

    Li, Lei; Ma, Ping; Liu, Yongjun; Huang, Chen; O, Wai-sum; Tang, Fai; Zhang, Jian V

    2013-01-01

    First reported as a vasoactive peptide in the cardiovascular system, intermedin (IMD), also known as adrenomedullin 2 (ADM2), is a hormone with multiple potent roles, including its antioxidant action on the pulmonary, central nervous, cardiovascular and renal systems. Though IMD may play certain roles in trophoblast cell invasion, early embryonic development and cumulus cell-oocyte interaction, the role of IMD in the male reproductive system has yet to be investigated. This paper reports our findings on the gene expression of IMD, its receptor components and its protein localization in the testes. In a rat model, bacterial lippolysaccharide (LPS) induced atypical orchitis, and LPS treatment upregulated the expression of IMD and one of its receptor component proteins, i.e. receptor activity modifying protein 2 (RAMP2). IMD decreased both plasma and testicular levels of reactive oxygen species (ROS) production, attenuated the increase in the gene expression of the proinflammatory cytokines tumor necrosis factor alpha (TNFα), interleukin 6 (IL6) and interleukin 1 beta (IL1β), rescued spermatogenesis, and prevented the decrease in plasma testosterone levels caused by LPS. The restorative effect of IMD on steroidogenesis was also observed in hydrogen peroxide-treated rat primary Leydig cells culture. Our results indicate IMD plays an important protective role in spermatogenesis and steroidogenesis, suggesting therapeutic potential for IMD in pathological conditions such as orchitis.

  3. Pharmacological attenuation of chronic alcoholic pancreatitis induced hypersensitivity in rats

    PubMed Central

    McIlwrath, Sabrina L; Westlund, Karin N

    2015-01-01

    AIM: To characterize an alcohol and high fat diet induced chronic pancreatitis rat model that mimics poor human dietary choices. METHODS: Experimental rats were fed a modified Lieber-DeCarli alcohol (6%) and high-fat (65%) diet (AHF) for 10 wk while control animals received a regular rodent chow diet. Weekly behavioral tests determined mechanical and heat sensitivity. In week 10 a fasting glucose tolerance test was performed, measuring blood glucose levels before and after a 2 g/kg bodyweight intraperitoneal (i.p.) injection of glucose. Post mortem histological analysis was performed by staining pancreas and liver tissue sections with hematoxylin and eosin. Pancreas sections were also stained with Sirius red and fast green to quantify collagen content. Insulin-expressing cells were identified immunohistochemically in separate sections. Tissue staining density was quantified using Image J software. After mechanical and heat sensitivity became stable (weeks 6-10) in the AHF-fed animals, three different drugs were tested for their efficacy in attenuating pancreatitis associated hypersensitivity: a Group II metabotropic glutamate receptor specific agonist (2R,4R)-4-Aminopyrrolidine-2,4-dicarboxylate (APDC, 3 mg/kg, ip; Tocris, Bristol, United Kingdom), nociceptin (20, 60, 200 nmol/kg, ip; Tocris), and morphine sulfate (3 mg/kg, μ-opioid receptor agonist; Baxter Healthcare, Deerfield, IL, United States). RESULTS: Histological analysis of pancreas and liver determined that unlike control rats, AHF fed animals had pancreatic fibrosis, acinar and beta cell atrophy, with steatosis in both organs. Fat vacuolization was significantly increased in AHF fed rats (6.4% ± 1.1% in controls vs 23.8% ± 4.2%, P < 0.05). Rats fed the AHF diet had reduced fasting glucose tolerance in week 10 when peak blood glucose levels reached significantly higher concentrations than controls (127.4 ± 9.2 mg/dL in controls vs 161.0 ± 8.6 mg/dL, P < 0.05). This concurred with a 3.5 fold higher

  4. Curcumin Attenuates Hepatotoxicity Induced by Zinc Oxide Nanoparticles in Rats

    PubMed Central

    Khorsandi, Layasadat; Mansouri, Esrafil; Orazizadeh, Mahmoud; Jozi, Zahra

    2016-01-01

    Background: Zinc oxide nanoparticles (NZnO) are increasingly used in modern life. Most metal nanoparticles have adverse effects on the liver. Aims: To explore the protective action of curcumin (Cur) against hepatotoxicity induced by NZnO in rats. Study Design: Animal experimentation. Methods: Control group animals received normal saline, while the Cur group animals were treated with 200 mg/kg of Cur orally for 21 days. NZnO-intoxicated rats received 50 mg/kg of NZnO for 14 days by gavage method. In the NZnO+Cur group, rats were pretreated with Cur for 7 days before NZnO administration. Plasma activities of Alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) were measured as biomarkers of hepatotoxicity. Hepatic levels of malondialdehyde (MDA) and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were measured for detection of oxidative stress in liver tissue. Histological changes and apoptosis in liver tissue were studied by using Hematoxylin-eosin staining and the transferase dUTP nick end labeling (TUNEL) method. Results: NZnO induced a significant increase in plasma AST (2.8-fold), ALT (2.7-fold) and ALP (1.97-fold) activity in comparison to the control group (p<0.01). NZnO increased MDA content and reduced SOD and GPx activities. NZnO caused liver damage including centrilobular necrosis and microvesicular steatosis. The percentage of apoptosis in hepatocytes was increased in NZnO-treated rats (p<0.01). Pre-treatment of Cur significantly reduced lipid peroxidation (39%), increased SOD (156%) and GPx (26%) activities, and attenuated ALT (47%), AST (41%) and ALP (30%) activities. Pre-treatment with Cur also decreased the histology changes and apoptotic index of hepatocytes (p<0.05). Conclusion: These findings indicate that Cur effectively protects against NZnO-induced hepatotoxicity in rats. However, future studies are required to propose Cur as a potential protective agent against hepatotoxicity

  5. Flavocoxid attenuates gentamicin-induced nephrotoxicity in rats.

    PubMed

    El-Kashef, Dalia H; El-Kenawi, Asmaa E; Suddek, Ghada M; Salem, Hatem A

    2015-12-01

    Gentamicin is a widely used antibiotic against serious and life-threatening infections; however, its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine whether flavocoxid has a protective effect against gentamicin-induced nephrotoxicity in rats. For this purpose, we quantitatively evaluated gentamicin-induced renal structural and functional alterations using histopathological and biochemical approaches. Furthermore, the effect of flavocoxid on gentamicin induced hypersensitivity of urinary bladder rings to acetylcholine (ACh) was determined. Twenty-four male Wistar albino rats were randomly divided into three groups, namely control, gentamicin (100 mg/kg, i.p.) and gentamicin plus flavocoxid (20 mg/kg, orally). At the end of the study, all rats were sacrificed and then blood, urine samples and kidneys were collected for further analysis. Gentamicin administration caused a severe nephrotoxicity which was evidenced by an elevated renal somatic index (RSI), serum creatinine, blood urea nitrogen, serum lactate dehydrogenase, and protein in urine with a concomitant reduction in serum albumin and normalized creatinine clearance value as compared with the controls. Moreover, a significant increase in renal contents of malondialdehyde, myeloperoxidase, and tumor necrosis factor-alpha with a significant decrease in renal reduced glutathione and superoxide dismutase activities was detected upon gentamicin administration together with increasing the sensitivity of isolated urinary bladder rings to ACh. Exposure to gentamicin induced necrosis of renal tubular epithelial cells. Flavocoxid protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by gentamicin treatment. In addition, flavocoxid significantly reduced the responses of isolated bladder rings to ACh. The results from our study indicate that flavocoxid supplement attenuates gentamicin-induced renal injury via the amelioration of

  6. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.

    PubMed

    Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang

    2016-04-01

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes.

  7. EVALUATION OF PERFLUOROOCTANE SULFONATE (PFOS) IN THE RAT BRAIN

    EPA Science Inventory

    This study examined whether there is a differential distribution of PFOS within the brain, and compares adult rats with neonatal rats at an age when formation of the blood-brain barrier is not yet complete (postnatal day 7). Male and female Sprague-Dawley rats (60-70 day old, 4/...

  8. IL-1 receptor antagonist attenuates neonatal lipopolysaccharide-induced long-lasting learning impairment and hippocampal injury in adult rats

    PubMed Central

    Pang, Yi; Bhatt, Abhay J.; Fan, Lir-Wan

    2015-01-01

    We have previously reported that neonatal lipopolysaccharide (LPS) exposure resulted in an increase in interleukin-1β (IL-1β) content, injury to the hippocampus, and cognitive deficits in juvenile male and female rats, as well as female adult rats. The present study aimed to determine whether an antiinflammatory cytokine, interleukin-1 receptor antagonist (IL-1ra), protects against the neonatal LPS exposure-induced inflammatory responses, hippocampal injury, and long-lasting learning deficits in adult rats. LPS (1 mg/kg) or LPS plus IL-1ra (0.1 mg/kg) was injected intracerebrally to Sprague-Dawley male rat pups at postnatal day 5 (P5). Neurobehavioral tests were carried out on P21, P49, and P70, while neuropathological studies were conducted on P71. Our results showed that neonatal LPS exposure resulted in learning deficits in rats at both developmental and adult ages, as demonstrated by a significantly impaired performance in the passive avoidance task (P21, P49, and P70), reduced hippocampal volume, and reduced number of Nissl+ cells in the CA1 region of the middle dorsal hippocampus of P71 rat brain. Those neuropathological and neurobehavioral alterations by LPS exposure were associated with a sustained inflammatory response in the P71 rat hippocampus, indicated by increased number of activated microglia as well as elevated levels of IL-1β. Neonatal administration of IL-1ra significantly attenuated LPS-induced long-lasting learning deficits, hippocampal injury, and sustained inflammatory responses in P71 rats. Our study demonstrates that neonatal LPS exposure leads to a persistent injury to the hippocampus, resulting in long-lasting learning disabilities related to chronic inflammation in rats, and these effects can be attenuated with an IL-1 receptor antagonist. PMID:25665855

  9. IL-1 receptor antagonist attenuates neonatal lipopolysaccharide-induced long-lasting learning impairment and hippocampal injury in adult rats.

    PubMed

    Lan, Kuo-Mao; Tien, Lu-Tai; Pang, Yi; Bhatt, Abhay J; Fan, Lir-Wan

    2015-04-02

    We have previously reported that neonatal lipopolysaccharide (LPS) exposure resulted in an increase in interleukin-1β (IL-1β) content, injury to the hippocampus, and cognitive deficits in juvenile male and female rats, as well as female adult rats. The present study aimed to determine whether an anti-inflammatory cytokine, interleukin-1 receptor antagonist (IL-1ra), protects against the neonatal LPS exposure-induced inflammatory responses, hippocampal injury, and long-lasting learning deficits in adult rats. LPS (1 mg/kg) or LPS plus IL-1ra (0.1 mg/kg) was injected intracerebrally to Sprague-Dawley male rat pups at postnatal day 5 (P5). Neurobehavioral tests were carried out on P21, P49, and P70, while neuropathological studies were conducted on P71. Our results showed that neonatal LPS exposure resulted in learning deficits in rats at both developmental and adult ages, as demonstrated by a significantly impaired performance in the passive avoidance task (P21, P49, and P70), reduced hippocampal volume, and reduced number of Nissl+ cells in the CA1 region of the middle dorsal hippocampus of P71 rat brain. Those neuropathological and neurobehavioral alterations by LPS exposure were associated with a sustained inflammatory response in the P71 rat hippocampus, indicated by increased number of activated microglia as well as elevated levels of IL-1β. Neonatal administration of IL-1ra significantly attenuated LPS-induced long-lasting learning deficits, hippocampal injury, and sustained inflammatory responses in P71 rats. Our study demonstrates that neonatal LPS exposure leads to a persistent injury to the hippocampus, resulting in long-lasting learning disabilities related to chronic inflammation in rats, and these effects can be attenuated with an IL-1 receptor antagonist.

  10. Embelin Attenuates Intracerebroventricular Streptozotocin-Induced Behavioral, Biochemical, and Neurochemical Abnormalities in Rats.

    PubMed

    Arora, Rimpi; Deshmukh, Rahul

    2016-10-15

    Embelin, the main active constituent of Embelia ribes, has been reported to possess various pharmacological actions, including anti-inflammatory, antioxidant, anticonvulsant, and neuroprotective. The present study was designed to investigate neuroprotective mechanisms and therapeutic potential of embelin against intracerebroventricular streptozotocin (ICV-STZ)-induced experimental sporadic dementia in rats. STZ was infused bilaterally at the dose of (3 mg/kg/1 μl/1 min) ICV on day first and third. Spatial and non-spatial memory was evaluated using Morris water maze and object recognition task in rats. Embelin (2.5, 5, and 10 mg/kg, i.p.) was administrated for 14 days from seventh day onwards after first ICV-STZ infusion in rats. On day 22, rats were sacrificed and hippocampal brain regions were used to identify biochemical, neurochemical, and neuroinflammatory alterations. STZ-infused rats showed significant learning and memory deficit which was associated with an increase in oxidative stress (lipid peroxidation and nitrite), compromised antioxidant defense (reduced glutathione), neurotransmitter alterations (AChE, dopamine, noradrenaline, 5-hydroxytryptamine, gama amino butyric acid, and glutamate), and elevation in neuroinflammatory cytokine (IL-1 β, IL-6, and TNF-α) levels. Embelin dose dependently attenuated STZ-induced cognitive deficit and biochemical alterations and restored hippocampal neurochemical levels. The observed protective effect might be attributed to the antioxidant and anti-inflammatory potential of embelin and its ability to restore hippocampal neurochemistry. Thus, the outcomes of the current study suggest therapeutic potential of embelin in cognitive disorders such as sporadic Alzheimer's disease (SAD).

  11. Imaging of sialidase activity in rat brain sections by a highly sensitive fluorescent histochemical method.

    PubMed

    Minami, Akira; Shimizu, Hirotaka; Meguro, Yuko; Shibata, Naoki; Kanazawa, Hiroaki; Ikeda, Kiyoshi; Suzuki, Takashi

    2011-09-01

    Sialidase (EC 3.2.1.18) removes sialic acid from sialoglycoconjugates. Since sialidase extracellularly applied to the rat hippocampus influences many neural functions, including synaptic plasticity and innervations of glutamatergic neurons, endogenous sialidase activities on the extracellular membrane surface could also affect neural functions. However, the distribution of sialidase activity in the brain remains unknown. To visualize extracellular sialidase activity on the membrane surface in the rat brain, acute brain slices were incubated with 5-bromo-4-chloroindol-3-yl-α-d-N-acetylneuraminic acid (X-Neu5Ac) and Fast Red Violet LB (FRV LB) at pH 7.3. After 1h, myelin-abundant regions showed intense fluorescence in the rat brain. Although the hippocampus showed weak fluorescence in the brain, mossy fiber terminals in the hippocampus showed relatively intense fluorescence. These fluorescence intensities were attenuated with a sialidase-specific inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA, 1mM). Additionally, the fluorescence intensities caused by X-Neu5Ac and FRV LB were correlated with the sialidase activity measured with 4-methylumbelliferyl-α-d-N-acetylneuraminic acid (4MU-Neu5Ac), a classical substrate for quantitative measurement of sialidase activity, in each brain region. Therefore, staining with X-Neu5Ac and FRV LB is specific for sialidase and useful for quantitative analysis of sialidase activities. The results suggest that white matter of the rat brain has intense sialidase activity.

  12. Attenuation correction for the large non-human primate brain imaging using microPET

    NASA Astrophysics Data System (ADS)

    Naidoo-Variawa, S.; Lehnert, W.; Kassiou, M.; Banati, R.; Meikle, S. R.

    2010-04-01

    Assessment of the biodistribution and pharmacokinetics of radiopharmaceuticals in vivo is often performed on animal models of human disease prior to their use in humans. The baboon brain is physiologically and neuro-anatomically similar to the human brain and is therefore a suitable model for evaluating novel CNS radioligands. We previously demonstrated the feasibility of performing baboon brain imaging on a dedicated small animal PET scanner provided that the data are accurately corrected for degrading physical effects such as photon attenuation in the body. In this study, we investigated factors affecting the accuracy and reliability of alternative attenuation correction strategies when imaging the brain of a large non-human primate (papio hamadryas) using the microPET Focus 220 animal scanner. For measured attenuation correction, the best bias versus noise performance was achieved using a 57Co transmission point source with a 4% energy window. The optimal energy window for a 68Ge transmission source operating in singles acquisition mode was 20%, independent of the source strength, providing bias-noise performance almost as good as for 57Co. For both transmission sources, doubling the acquisition time had minimal impact on the bias-noise trade-off for corrected emission images, despite observable improvements in reconstructed attenuation values. In a [18F]FDG brain scan of a female baboon, both measured attenuation correction strategies achieved good results and similar SNR, while segmented attenuation correction (based on uncorrected emission images) resulted in appreciable regional bias in deep grey matter structures and the skull. We conclude that measured attenuation correction using a single pass 57Co (4% energy window) or 68Ge (20% window) transmission scan achieves an excellent trade-off between bias and propagation of noise when imaging the large non-human primate brain with a microPET scanner.

  13. Luteolin attenuates endotoxin-induced uveitis in Lewis rats

    PubMed Central

    KANAI, Kazutaka; HATTA, Takuya; NAGATA, Sho; SUGIURA, Yuichi; SATO, Kazuaki; YAMASHITA, Yohei; KIMURA, Yuya; ITOH, Naoyuki

    2016-01-01

    The aim of the present study was to investigate the efficacy of luteolin on endotoxin-induced uveitis (EIU) in rats. EIU was induced in Lewis rats by subcutaneous injections of lipopolysaccharide (LPS). One hr before the LPS injection, 0.1, 1 or 10 mg/kg luteolin or 1 mg/kg prednisolone was intraperitoneally injected. We investigated its effect upon clinical scores, cellular infiltration and protein leakage, as well as on the level of tumor necrosis factor (TNF)-α, nitric oxide (NO) and prostaglandin (PG) E2 in the aqueous humor (AqH). Histologic examination and immunohistochemical analysis in the iris-ciliary body (ICB) were performed to determine the expressions of cyclooxygenase (COX)-2 and inducible NO synthase (iNOS), and then the activated nuclear factor (NF)-κB p65, I kappa B (IκB)-α degradation, phosphorylated (p)-IκB kinase (IKK) α/β and activator protein (AP)-1 c-Jun. Luteolin suppressed, in a dose-dependent manner, the clinical scores, number of inflammatory cells, the protein concentration, and the TNF-α, NO and PGE2 levels in the AqH and improved the histiologic status of the ocular tissue. Luteolin suppressed the expression of iNOS and COX-2 and the activated NF-κB p65, IκB-α degradation, p-IKKα/β and AP-1 p-c-Jun in the ICB. The anti-inflammatory potency of 10 mg/kg luteolin was as strong as that observed with 1 mg/kg prednisolone. These results demonstrate that luteolin attenuates ocular inflammation by inhibiting expression and release of inflammatory markers, along with the inhibition of the activated NF-κB pathway and at least partly AP-1 activity in the ICB. PMID:27098110

  14. Hyperbaric oxygen preconditioning attenuates postoperative cognitive impairment in aged rats.

    PubMed

    Sun, Li; Xie, Keliang; Zhang, Changsheng; Song, Rui; Zhang, Hong

    2014-06-18

    Cognitive decline after surgery in the elderly population is a major clinical problem with high morbidity. Hyperbaric oxygen (HBO) preconditioning can induce significant neuroprotection against acute neurological injury. We hypothesized that HBO preconditioning would prevent the development of postoperative cognitive impairment. Elderly male rats (20 months old) underwent stabilized tibial fracture operation under general anesthesia after HBO preconditioning (once a day for 5 days). Separate cohorts of animals were tested for cognitive function with fear conditioning and Y-maze tests, or euthanized at different times to assess the blood-brain barrier integrity, systemic and hippocampal proinflammatory cytokines, and caspase-3 activity. Animals exhibited significant cognitive impairment evidenced by a decreased percentage of freezing time and an increased number of learning trials on days 1, 3, and 7 after surgery, which were significantly prevented by HBO preconditioning. Furthermore, HBO preconditioning significantly ameliorated the increase in serum and hippocampal proinflammatory cytokines tumor necrosis factor-α, interleukin-1 β (IL-1β), IL-6, and high-mobility group protein 1 in surgery-challenged animals. Moreover, HBO preconditioning markedly improved blood-brain barrier integrity and caspase-3 activity in the hippocampus of surgery-challenged animals. These findings suggest that HBO preconditioning could significantly mitigate surgery-induced cognitive impairment, which is strongly associated with the reduction of systemic and hippocampal proinflammatory cytokines and caspase-3 activity.

  15. Cerebralcare Granule® attenuates cognitive impairment in rats continuously overexpressing microRNA-30e

    PubMed Central

    XU, YONG; LIU, ZHIFEN; SONG, XI; ZHANG, KERANG; LI, XINGRONG; LI, JIANHONG; YAN, XU; LI, YUAN; XIE, ZHONGCHEN; ZHANG, HUI

    2015-01-01

    Previous studies have demonstrated that dysregulation of micro (mi)RNAs is associated with the etiology of various neuropsychiatric disorders, including depression and schizophrenia. Cerebralcare Granule® (CG) is a Chinese herbal medicine, which has been reported to have an ameliorative effect on brain injury by attenuating blood-brain barrier disruption and improving hippocampal neural function. The present study aimed to evaluate the cognitive behavior of rats continuously overexpressing miRNA-30e (lenti-miRNA-30e), prior to and following the administration of CG. In addition, the mechanisms underlying the ameliorative effects of CG were investigated. The cognitive ability of the rats was assessed using an open-field test and a Morris water maze spatial reference/working memory test. A terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to detect neuronal apoptosis in the dentate gyrus of the hippocampus. Immunohistochemical analysis and western blotting were conducted to detect the expression levels of B-cell lymphoma 2 (BCL-2) and ubiquitin-conjugating enzyme 9 (UBC9), in order to examine neuronal apoptosis. The lenti-miRNA-30e rats exhibited increased signs of anxiety, depression, hyperactivity and schizophrenia, which resulted in a severe impairment in cognitive ability. Furthermore, in the dentate gyrus of these rats, the expression levels of BCL-2 and UBC9 were reduced and apoptosis was increased. The administration of CG alleviated cognitive impairment, enhanced the expression levels of BCL-2 and UBC9, and reduced apoptosis in the dentate gyrus in the lenti-miRNA-30e rats. No significant differences were detected in behavioral indicators between the lenti-miRNA-30e rats treated with CG and the normal controls. These findings suggested that CG exerts a potent therapeutic effect, conferred by its ability to enhance the expression levels of BCL-2 and UBC9, which inhibits the apoptotic process in neuronal cells. Therefore, CG may be

  16. Royal jelly attenuates azathioprine induced toxicity in rats.

    PubMed

    Ahmed, Walaa M S; Khalaf, A A; Moselhy, Walaa A; Safwat, Ghada M

    2014-01-01

    In the present study, we investigated the potential protective effects of royal jelly against azathioprine-induced toxicity in rat. Intraperitoneal administration of azathioprine (50 mg/kgB.W.) induced a significant decrease in RBCs count, Hb concentration, PCV%, WBCs count, differential count and platelet count, hepatic antioxidant enzymes (reduced glutathione and glutathione s-transferase) and increase of serum transaminases (alanine aminotransferase and aspartate aminotransferase enzymes) activities, alkaline phosphatase and malondialdehyde formation. Azathioprine induced hepatotoxicity was reflected by marked pathological changes in the liver. Oral administration of royal jelly (200 mg/kgB.W.) was efficient in counteracting azathioprine toxicity whereas it altered the anemic condition, leucopenia and thrombocytopenia induced by azathioprine. Furthermore, royal jelly exerted significant protection against liver damage induced by azathioprine through reduction of the elevated activities of serum hepatic enzymes. Moreover, royal jelly blocked azathioprine-induced lipid peroxidation through decreasing the malondialdehyde formation. In conclusion, royal jelly possesses a capability to attenuate azathioprine-induced toxicity.

  17. Sulodexide pretreatment attenuates renal ischemia-reperfusion injury in rats.

    PubMed

    Yin, Jianyong; Chen, Weibin; Ma, Fenfen; Lu, Zeyuan; Wu, Rui; Zhang, Guangyuan; Wang, Niansong; Wang, Feng

    2017-02-07

    Sulodexide is a potent antithrombin agent, however, whether it has beneficial effects on renal ischemia-reperfusion injury (IRI) remains unknown. In the present study, we assessed the therapeutic effects of sulodexide in renal IRI and tried to investigate the potential mechanism. One dose of sulodexide was injected intravenously in Sprague-Dawley rats 30 min before bilateral kidney ischemia for 45 min. The animals were sacrificed at 3h and 24h respectively. Our results showed that sulodexide pretreatment improved renal dysfunction and alleviated tubular pathological injury at 24h after reperfusion, which was accompanied with inhibition of oxidative stress, inflammation and cell apoptosis. Moreover, we noticed that antithrombin III (ATIII) was activated at 3h after reperfusion, which preceded the alleviation of renal injury. For in vitro study, hypoxia/reoxygenation (H/R) injury model for HK2 cells was carried out and apoptosis and reactive oxygen species (ROS) levels were evaluated after sulodexide pretreatment. Consistently, sulodexide pretreatment could reduce apoptosis and ROS level in HK2 cells under H/R injury. Taken together, sulodexide pretreatment might attenuate renal IRI through inhibition of inflammation, oxidative stress and apoptosis, and activation of ATIII.

  18. Yulangsan polysaccharide attenuates withdrawal symptoms and regulates the NO pathway in morphine-dependent rats.

    PubMed

    Chen, Chunxia; Nong, Zhihuan; Huang, Jiangchun; Chen, Zhaoni; Zhang, Shijun; Jiao, Yang; Chen, Xiaoyu; Huang, Renbin

    2014-06-06

    Yulangsan polysaccharide (YLSP) has been utilized as a phytomedicine to managing nervous dysfunction in China. Thus, this study aimed to evaluate the potential YLSP-mediated detoxification role against morphine dependence in rats. The results indicated that the morphine dependence model significantly increased withdrawal symptoms, levels of NO and NOS (P<0.05). Furthermore, monoaminergic neurotransmitters, including DA and NE, were detected at elevated levels in the ventral tegmental area (VTA), hippocampus (HIP) and prefrontal cortex (PFC), respectively, while the level of DA was decreased and NE was increased in the nucleus accumbens (NAc). Conversely, YLSP administration significantly reversed naloxone-induced withdrawal symptoms, expression of brain NO and NOS, and monoaminergic neurotransmitters (P<0.05). Interestingly, YLSP shows an even more effective trend in attenuating withdrawal symptoms than does clonidine, although without a significant difference. These findings indicate that YLSP attenuation of the naloxone-induced withdrawal symptoms of morphine dependence may be mediated by regulation of the NO pathway and modulation of monoaminergic neurotransmitters.

  19. Caffeic acid attenuates oxidative stress, learning and memory deficit in intra-cerebroventricular streptozotocin induced experimental dementia in rats.

    PubMed

    Deshmukh, Rahul; Kaundal, Madhu; Bansal, Vikas; Samardeep

    2016-07-01

    Oxidative stress has been implicated in cognitive decline as seen during normal aging and in sporadic Alzheimer's disease (AD). Caffeic acid, a polyphenolic compound, has been reported to possess potent antioxidant and neuroprotective properties. The role of caffeic acid in experimental dementia is not fully understood. Thus the present study was designed to investigate the therapeutic potential of caffeic acid in streptozotocin (STZ)-induced experimental dementia of Alzheimer's type in rats. Streptozotocin (STZ) was administered intracerebroventrically (ICV) on day 1 and 3 (3mg/kg, ICV bilaterally) in Wistar rats. Caffeic acid was administered (10, 20 and 40mg/kg/day p.o.) 1h following STZ infusion upto 21st day. Morris water maze and object recognition task were used to assess learning and memory in rats. Terminally, acetylcholinesterase (AChE) activity and the levels of oxido-nitrosative stress markers were determined in cortical and hippocampal brain regions of rats. STZ produced significant (p<0.001) learning and memory impairment, oxido-nitrosative stress and cholinergic deficit in rats. Whereas, caffeic acid treatment significantly (p<0.001) and dose dependently attenuated STZ induced behavioral and biochemical abnormalities in rats. The observed cognitive improvement following caffeic acid in STZ treated rats may be due to its antioxidant activity and restoration of cholinergic functions. Our results suggest the therapeutic potential of caffeic acid in cognitive disorders such as AD.

  20. Pharmacological induction of hemeoxygenase-1 activity attenuates intracerebroventricular streptozotocin induced neurocognitive deficit and oxidative stress in rats.

    PubMed

    Bhardwaj, Manveen; Deshmukh, Rahul; Kaundal, Madhu; Krishna Reddy, B V

    2016-02-05

    Under conditions of oxidative stress associated with neurodegenerative disorders, alterations in hemeoxygenase-1 (HO-1) activity have been reported. In the present study we have investigated the role of HO-1 pathway in intracerebroventricular (ICV) streptozotocin (STZ) induced neurocognitive deficits and oxidative stress in rats. STZ was infused ICV bilaterally (3mg/Kg) on the alternate days in rats. Hemin was used as a pharmacological inducer of HO-1 activity and tin-protoporphyrin (SnPP) as HO-1 inhibitor. Hemin was administered with or without SnPP from day to 21 following 1st STZ infusion in rats. The cognitive functions were assessed by Morris water maze (MWM) and object recognition task (ORT) in rats. Biochemically, rat hippocampal and cortical brain homogenate was used to assess the levels of oxidative stress markers and acetylcholinesterase and HO-1 activity. Infusion of STZ caused significant elevation HO-1 activity on day 7 following 1st STZ infusion, however it was decreased on day 21, indicating its oxidative modification. Hemin caused significant elevation in HO-1 activity and attenuated STZ-induced oxidative stress. Moreover, hemin restored acetylcholinesterase activity and cognitive functions in STZ infused rats. Pre-administration of SnPP completely abrogated beneficial effects of hemin in STZ rats, indicating HO-1 dependency. The observed beneficial effects of hemin on spatial memory may be due to its ability to favorably modulate HO-1 pathway and antioxidant mechanisms.

  1. CT-based attenuation and scatter correction compared with uniform attenuation correction in brain perfusion SPECT imaging for dementia

    NASA Astrophysics Data System (ADS)

    Gillen, Rebecca; Firbank, Michael J.; Lloyd, Jim; O'Brien, John T.

    2015-09-01

    This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer’s Disease (n=38 ), Dementia with Lewy Bodies (n=29 ) or healthy normal controls (n=30 ), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject’s CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used. We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.

  2. The edaravone and 3-n-butylphthalide ring-opening derivative 10b effectively attenuates cerebral ischemia injury in rats

    PubMed Central

    Hua, Kai; Sheng, Xiao; Li, Ting-ting; Wang, Lin-na; Zhang, Yi-hua; Huang, Zhang-jian; Ji, Hui

    2015-01-01

    Aim: Compound 10b is a hybrid molecule of edaravone and a ring-opening derivative of 3-n-butylphthalide (NBP). The aim of this study was to examine the effects of compound 10b on brain damage in rats after focal cerebral ischemia. Methods: SD rats were subjected to 2-h-middle cerebral artery occlusion (MCAO). At the onset of reperfusion, the rats were orally treated with NBP (60 mg/kg), edaravone (3 mg/kg), NBP (60 mg/kg)+edaravone (3 mg/kg), or compound 10b (70, 140 mg/kg). The infarct volume, motor behavior deficits, brain water content, histopathological alterations, and activity of GSH, SOD, and MDA were analyzed 24 h after reperfusion. The levels of relevant proteins in the ipsilateral striatum were examined using immunoblotting. Results: Administration of compound 10b (70 or 140 mg/kg) significantly reduced the infarct volume and neurological deficits in MCAO rats. The neuroprotective effects of compound 10b were more pronounced compared to NBP, edaravone or NBP+edaravone. Furthermore, compound 10b significantly upregulated the protein levels of the cytoprotective molecules Bcl-2, HO-1, Nrf2, Trx, P-NF-κB p65, and IκB-α, while decreasing the expression of Bax, caspase 3, caspase 9, Txnip, NF-κB p65, and P-IκB-α. Conclusion: Oral administration of compound 10b effectively attenuates rat cerebral ischemia injury. PMID:26073328

  3. Cannabinoid receptor 2 attenuates microglial accumulation and brain injury following germinal matrix hemorrhage via ERK dephosphorylation in vivo and in vitro.

    PubMed

    Tang, Jun; Tao, Yihao; Tan, Liang; Yang, Liming; Niu, Yin; Chen, Qianwei; Yang, Yunfeng; Feng, Hua; Chen, Zhi; Zhu, Gang

    2015-08-01

    Microglia accumulation plays detrimental roles in the pathology of germinal matrix hemorrhage (GMH) in the immature preterm brain. However, the underlying mechanisms remain poorly defined. Here, we investigated the effects of a cannabinoid receptor 2 (CB2R) agonist on microglia proliferation and the possible involvement of the mitogen-activated protein kinase (MAPK) family pathway in a collagenase-induced GMH rat model and in thrombin-induced rat microglia cells. We demonstrated that activation of CB2R played a key role in attenuating brain edema, neuronal degeneration, microglial accumulation and the phosphorylated extracellular signal-regulated kinase (p-ERK) protein level 24 h following GMH. In vitro, Western blot analysis and immunostaining indicated that ERK and P38 phosphorylation levels in microglia stimulated by thrombin were decreased after JWH-133 (CB2R selective agonist) treatment in a concentration-dependent manner. Microglia proliferation (EDU + microglia) and inflammatory and oxidative stress responses were attenuated by UO126 (ERK pathway inhibitor) 24 h after thrombin stimulation, an activity that was prevented by AM630 (CB2R selective antagonist). Overall, these findings suggest that activation of the endocannabinoid system might attenuate inflammation-induced secondary brain injury after GMH in rats by reducing microglia accumulation through a mechanism involving ERK dephosphorylation. Enhancing CB2R activation is a potential treatment to slow down the course of GMH in preterm newborns.

  4. Errors in MR-based attenuation correction for brain imaging with PET/MR scanners

    NASA Astrophysics Data System (ADS)

    Rota Kops, Elena; Herzog, Hans

    2013-02-01

    AimAttenuation correction of PET data acquired by hybrid MR/PET scanners remains a challenge, even if several methods for brain and whole-body measurements have been developed recently. A template-based attenuation correction for brain imaging proposed by our group is easy to handle and delivers reliable attenuation maps in a short time. However, some potential error sources are analyzed in this study. We investigated the choice of template reference head among all the available data (error A), and possible skull anomalies of the specific patient, such as discontinuities due to surgery (error B). Materials and methodsAn anatomical MR measurement and a 2-bed-position transmission scan covering the whole head and neck region were performed in eight normal subjects (4 females, 4 males). Error A: Taking alternatively one of the eight heads as reference, eight different templates were created by nonlinearly registering the images to the reference and calculating the average. Eight patients (4 females, 4 males; 4 with brain lesions, 4 w/o brain lesions) were measured in the Siemens BrainPET/MR scanner. The eight templates were used to generate the patients' attenuation maps required for reconstruction. ROI and VOI atlas-based comparisons were performed employing all the reconstructed images. Error B: CT-based attenuation maps of two volunteers were manipulated by manually inserting several skull lesions and filling a nasal cavity. The corresponding attenuation coefficients were substituted with the water's coefficient (0.096/cm). ResultsError A: The mean SUVs over the eight templates pairs for all eight patients and all VOIs did not differ significantly one from each other. Standard deviations up to 1.24% were found. Error B: After reconstruction of the volunteers' BrainPET data with the CT-based attenuation maps without and with skull anomalies, a VOI-atlas analysis was performed revealing very little influence of the skull lesions (less than 3%), while the filled nasal

  5. Exercise training attenuates anaphylactic venoconstriction in rat perfused liver, but does not affect anaphylactic hypotension in conscious rats.

    PubMed

    Cui, Sen; Shibamoto, Toshishige; Zhang, Wei; Kurata, Yasutaka; Kashimura, Osamu; Miyamae, Shunichi

    2010-09-01

    1. Exercise training attenuates circulatory shock due to haemorrhage, endotoxin or heatstroke. However, it remains unknown whether exercise training attenuates anaphylactic shock. Hepatic venoconstriction is involved in rat anaphylactic hypotension. In the present study, we determined the effects of exercise training on both anaphylaxis-induced segmental venoconstriction in rat perfused livers and systemic anaphylaxis in conscious rats. The role of nitric oxide (NO) in the effect of exercise on the venoconstriction of perfused livers was also examined. 2. Rats were subjected to running training on a motorized treadmill for 4 weeks. Two weeks prior to the anaphylaxis experiment, Sprague-Dawley rats were actively sensitized with the antigen ovalbumin. In isolated livers perfused portally with blood, the portal venous pressure (P(pv)) and sinusoidal pressure were measured to determine the pre- and post-sinusoidal resistances (R(pre) and R(post), respectively). In conscious rats, systemic arterial pressure (SAP) and P(pv) were determined. 3. In the perfused livers of sedentary rats, antigen administration led to a predominant presinusoidal constriction, as evidenced by 4.6- and 1.7-fold increases in R(pre) and R(post), respectively. The anaphylaxis-induced increase in R(pre) was significantly attenuated by 24% by exercise training. Inhibition of NO synthase with N(G)-nitro-L-arginine methyl ester (100 micromol/L) 10 min prior to the injection of antigen enhanced anaphylactic venoconstriction, but did not alter the effect of exercise training on the increase in R(pre). In contrast, exercise training did not attenuate either anaphylactic hypotension or portal hypertension in conscious rats. 4. In conclusion, exercise training attenuates the anaphylaxis-induced presinusoidal constriction in rat isolated perfused livers, independent of NO production. However, this action is not evident in conscious rats and exercise training does not affect anaphylactic hypotension in

  6. Studies of aluminum in rat brain

    SciTech Connect

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  7. Scutellarin Attenuates Hypertension-Induced Expression of Brain Toll-Like Receptor 4/Nuclear Factor Kappa B

    PubMed Central

    Chen, Xingyong; Shi, Xiaogeng; Zhang, Xu; Lei, Huixin; Long, Simei; Su, Huanxing; Pei, Zhong; Huang, Ruxun

    2013-01-01

    Hypertension is associated with low-grade inflammation, and Toll-like receptor 4 (TLR4) has been shown to be linked to the development and maintenance of hypertension. This study aimed to investigate the effects of scutellarin (administered by oral gavage daily for 2 weeks) on brain TLR4/nuclear factor kappa B-(NF-κB-) mediated inflammation and blood pressure in renovascular hypertensive (using the 2-kidney, 2-clip method) rats. Immunofluorescence and western immunoblot analyses revealed that hypertension contributed to the activation of TLR4 and NF-κB, accompanied by significantly enhanced expression of proinflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-18 (IL-18). Furthermore, expression of the antiapoptotic protein, myeloid cell leukemia-1 (Mcl1), was decreased, and the pro-apoptotic proteins, Bax and cleavedcaspase-3 p17 were increased in combined cerebral cortical/striatal soluble lysates. Scutellarin significantly lowered blood pressure and attenuated the number of activated microglia and macrophages in brains of hypertensive rats. Furthermore, scutellarin significantly reduced the expression of TLR4, NF-κB p65, TNF-α, IL-1β, IL-18, Bax and cleaved-caspase-3 p17, and increased the expression of Mcl1. Overall, these results revealed that scutellarin exhibits anti-inflammatory and anti-apoptotic properties and decreases blood pressure in hypertensive rats. Therefore, scutellarin may be a potential therapeutic agent in hypertension-associated diseases. PMID:24223475

  8. Sesamin attenuates behavioral, biochemical and histological alterations induced by reversible middle cerebral artery occlusion in the rats.

    PubMed

    Khan, Mohd Moshahid; Ishrat, Tauheed; Ahmad, Ajmal; Hoda, Md Nasrul; Khan, M Badruzzaman; Khuwaja, Gulrana; Srivastava, Pallavi; Raza, Syed Shadab; Islam, Fakhrul; Ahmad, Saif

    2010-01-05

    Restoration of blood flow to an ischemic brain region is associated with generation of reactive oxygen species (ROS) with consequent reperfusion injury. ROS cause lipid peroxidation, protein oxidation, and DNA damage, all of which are deleterious to cells. So diminishing the production of free radicals and scavenging them may be a successful therapeutic strategy for the protection of brain tissue in cerebral stroke. The present study investigated the neuroprotective effect of sesamin (Sn) to reduce brain injury after middle cerebral artery occlusion (MCAO). The middle cerebral artery (MCA) of adult male Wistar rat was occluded for 2h and reperfused for 22h. Sesamin is the most abundant lignan in sesame seed oil is a potent antioxidant. Sesamin (30 mg/kg) was given orally twice, 30 min before the onset of ischemia and 12h after reperfusion. The initial investigations revealed that sesamin reduced the neurological deficits in terms of behavior and reduced the level of thiobarbituric acid reactive species (TBARS), and protein carbonyl (PC) in the different areas of the brain when compared with the MCAO group. A significantly depleted level of glutathione and its dependent enzymes (glutathione peroxidase [GPx] and glutathione reductase [GR]) in MCAO group were protected significantly in MCAO group treated with sesamin. The present study suggests that sesamin may be able to attenuate the ischemic cell death and plays a crucial role as a neuroprotectant in regulating levels of reactive oxygen species in the rat brain. Thus, sesamin may be a potential compound in stroke therapy.

  9. Intralipid Vehicle Does Not Interfere with the Efficacy of Progesterone in Attenuating Edema following Traumatic Brain Injury.

    PubMed

    Wali, Bushra; Stein, Donald G; Sayeed, Iqbal

    2017-02-27

    The recent disappointing results of phase III trials for progesterone (PROG) in traumatic brain injury (TBI) have triggered speculation about reasons for the negative outcomes. One confounding factor may have been the vehicle used to administer PROG. Virtually all of the many pre-clinical experiments informing the clinical trials and reporting beneficial PROG effects used more soluble 2-hydroxypropyl-b-cyclodextrin as a vehicle given intraperitoneally or subcutaneously rather than a lipid formulation given intravenously (IV). The present investigation compared the effect of PROG infusion with that of lipid emulsion (Intralipid(®)) as a carrier/vehicle on edema following TBI in rats. Eight-mg/kg doses of PROG with 20% Intralipid were given IV via central venous catheter beginning 1 h post-injury over a 1 h duration (1.2 mL/h). Animals were killed and brains removed at 24 h post-injury. All the brain-injured groups showed more edema compared with the control group. However, PROG+Intralipid significantly attenuated cerebral swelling compared with Intralipid alone. No difference was observed between the TBI-alone and Intralipid groups. Although this study used much a smaller volume and shorter duration of Intralipid infusion than the clinical trials (up to 5 days of continuous infusion), our results suggest that the use of Intralipid in rats did not prevent or mask the beneficial effect of PROG.

  10. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism.

  11. N-acetylcysteine attenuates dimethylnitrosamine induced oxidative stress in rats.

    PubMed

    Sathish, Priya; Paramasivan, Vijayalakshmi; Palani, Vivekanandan; Sivanesan, Karthikeyan

    2011-03-05

    Oxidative stress has been implicated in the pathogenesis and progression of various hepatic disorders and hence screening for a good hepatoprotective and antioxidant agent is the need of the hour. The present study was aimed to investigate the hepatoprotective and antioxidant property of N-acetylcysteine (NAC) against dimethylnitrosamine (DMN) induced oxidative stress and hepatocellular damage in male Wistar albino rats. Administration of single dose of DMN (5mg/kg b.w.; i.p.) resulted in significant elevation in the levels of serum aspartate transaminase and alanine transaminase, indicating hepatocellular damage. Oxidative stress induced by DMN treatment was confirmed by an elevation in the status of lipid peroxidation (LPO) and reduction in the activities of enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase and in the levels of non-enzymic antioxidants, reduced glutathione, vitamin-C and vitamin-E in the liver tissue. DMN induced oxidative stress and hepatocellular membrane instability was further substantiated by a decline in the status of the membrane bound ATPases in the liver tissue. Post-treatment with NAC (50mg/kg b.w.; p.o.) for 7days effectively protected against the DMN induced insult to liver by preventing the elevation in the status of the serum marker enzymes and LPO, and restoring the activities of both the enzymic and non-enzymic antioxidants and membrane bound ATPases towards normalcy. These results demonstrate that NAC acts as a good hepatoprotective and antioxidant agent in attenuating DMN induced oxidative stress and hepatocellular damage.

  12. Brain-targeted ACE2 overexpression attenuates neurogenic hypertension by inhibiting COX mediated inflammation

    PubMed Central

    Sriramula, Srinivas; Xia, Huijing; Xu, Ping; Lazartigues, Eric

    2014-01-01

    Overactivity of the renin angiotensin system (RAS), oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that Angiotensin-Converting Enzyme 2 (ACE2) overexpression in the brain attenuates the development of DOCA-salt hypertension, a neurogenic hypertension model with enhanced brain RAS and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. DOCA-salt hypertension significantly increased expression of Nox-2 (+61 ±5 %), Nox-4 (+50 ±13 %) and nitrotyrosine (+89 ±32 %) and reduced activity of the antioxidant enzymes, catalase (−29 ±4 %) and SOD (−31 ±7 %), indicating increased oxidative stress in the brain of non-transgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. DOCA-salt-induced reduction of nNOS expression (−26 ±7 %) and phosphorylated eNOS/total eNOS (−30 ±3 %), and enhanced phosphorylation of Akt and ERK1/2 in the paraventricular nucleus (PVN), were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the PVN. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuro-inflammation, ultimately attenuating DOCA-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuro-inflammation, improves anti-oxidant and nitric oxide signaling, and thereby attenuates the development of neurogenic hypertension. PMID:25489058

  13. Forebrain and brain stem neural circuits contribute to altered sympathetic responses to heating in senescent rats.

    PubMed

    Kenney, Michael J; Fels, Richard J

    2003-11-01

    Acute heating in young rats increases visceral sympathetic nerve discharge (SND); however, renal and splanchnic SND responses to hyperthermia are attenuated in senescent compared with young Fischer 344 (F344) rats (Kenney MJ and Fels RJ. Am J Physiol Regul Integr Comp Physiol 283: R513-R520, 2002). Central mechanisms by which aging alters visceral SND responses to heating are unknown. We tested the hypothesis that forebrain neural circuits are involved in suppressing sympathoexcitatory responses to heating in chloralose-anesthetized, senescent F344 rats. Renal and splanchnic SND responses to increased (38 degrees C-41 degrees C) internal temperature were determined in midbrain-transected (MT) and sham-MT young (3-mo-old), mature (12-mo-old), and senescent (24-mo-old) F344 rats and in cervical-transected (CT) and sham-CT senescent rats. Renal SND remained unchanged during heating in MT and sham-MT senescent rats but was increased in CT senescent rats. Splanchnic SND responses to heating were higher in MT vs. sham-MT senescent rats and in CT vs. MT senescent rats. SND responses to heating were similar in MT and sham-MT young and mature rats. Mean arterial pressure (MAP) was increased during heating in MT but not in sham-MT senescent rats, whereas heating-induced increases in MAP were higher in sham-MT vs. MT young rats. These data suggest that in senescent rats suppression of splanchnic SND to heating involves forebrain and brain stem neural circuits, whereas renal suppression is mediated solely by brain stem neural circuits. These results support the concept that aging alters the functional organization of pathways regulating SND and arterial blood pressure responses to acute heating.

  14. The effects of Tanshinone IIA on blood-brain barrier and brain edema after transient middle cerebral artery occlusion in rats.

    PubMed

    Tang, Chao; Xue, Hongli; Bai, Changlin; Fu, Rong; Wu, Anhua

    2010-12-01

    Disruption of blood-brain barrier (BBB) and edema formation play a key role in the development of neurological dysfunction after cerebral ischemia. In this study, the effects of Tanshinone IIA (Tan IIA), one of the active ingredients of Salvia miltiorrhiza root, on the BBB and brain edema after transient middle cerebral artery occlusion in rats were examined. Our study demonstrated that Tan IIA reduced brain infarct area, water content in the ischemic hemisphere. Furthermore, Tan IIA significantly decreased BBB permeability to Evans blue, suppressed the expression of intercellular adhesion molecule-1 (ICAM-1), matrix metalloproteinase-9 (MMP-9), inhibited the degradation of tight junction proteins zonula occludens-1 (ZO-1) and Occludin. These results demonstrated that Tan IIA was effective for attenuating the extent of brain edema formation in response to ischemia injury in rats, partly by Tan IIA's protective effect on the BBB. Our results may have implications in the treatment of brain edema in cerebral ischemia.

  15. Effects of beta-hydroxybutyrate on brain vascular permeability in rats with traumatic brain injury.

    PubMed

    Orhan, Nurcan; Ugur Yilmaz, Canan; Ekizoglu, Oguzhan; Ahishali, Bulent; Kucuk, Mutlu; Arican, Nadir; Elmas, Imdat; Gürses, Candan; Kaya, Mehmet

    2016-01-15

    This study investigates the effect of beta-hydroxybutyrate (BHB) on blood-brain barrier (BBB) integrity during traumatic brain injury (TBI) in rats. Evans blue (EB) and horseradish peroxidase (HRP) were used as determinants of BBB permeability. Glutathione (GSH) and malondialdehyde (MDA) levels were estimated in the right (injury side) cerebral cortex of animals. The gene expression levels for occludin, glucose transporter (Glut)-1, aquaporin4 (AQP4) and nuclear factor-kappaB (NF-κB) were performed, and Glut-1 and NF-κB activities were analyzed. BHB treatment decreased GSH and MDA levels in intact animals and in those exposed to TBI (P<0.05). Glut-1 protein levels decreased in sham, BHB and TBI plus BHB groups (P<0.05). NF-κB protein levels increased in animals treated with BHB and/or exposed to TBI (P<0.05). The expression levels of occludin and AQP4 did not significantly change among experimental groups. Glut-1 expression levels increased in BHB treated and untreated animals exposed to TBI (P<0.05). While NF-κB expression levels increased in animals in TBI (P<0.01), a decrease was noticed in these animals upon BHB treatment (P<0.01). In animals exposed to TBI, EB extravasation was observed in the ipsilateral cortex regardless of BHB treatment. Ultrastructurally, BHB attenuated but did not prevent the presence of HRP in brain capillary endothelial cells of animals with TBI; moreover, the drug also led to the observation of the tracer when used in intact rats (P<0.01). Altogether, these results showed that BHB not only failed to provide overall protective effects on BBB in TBI but also led to BBB disruption in healthy animals.

  16. Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development.

    PubMed

    Ohta, Ken-Ichi; Suzuki, Shingo; Warita, Katsuhiko; Kaji, Tomohiro; Kusaka, Takashi; Miki, Takanori

    2017-04-01

    Maternal separation (MS) is known to affect hippocampal function such as learning and memory, yet the molecular mechanism remains unknown. We hypothesized that these impairments are attributed to abnormities of neural circuit formation by MS, and focused on brain-derived neurotrophic factor (BDNF) as key factor because BDNF signaling has an essential role in synapse formation during early brain development. Using rat offspring exposed to MS for 6 h/day during postnatal days (PD) 2-20, we estimated BDNF signaling in the hippocampus during brain development. Our results show that MS attenuated BDNF expression and activation of extracellular signal-regulated kinase (ERK) around PD 7. Moreover, plasticity-related immediate early genes, which are transcriptionally regulated by BDNF-ERK signaling, were also reduced by MS around PD 7. Interestingly, detailed analysis revealed that MS particularly reduced expression of BDNF gene and immediate early genes in the cornu ammonis 1 (CA1) of hippocampus at PD 7. Considering that BDNF-ERK signaling is involved in spine formation, we next evaluated spine formation in the hippocampus during the weaning period. Our results show that MS particularly reduced mature spine density in proximal apical dendrites of CA1 pyramidal neurons at PD 21. These results suggest that MS could attenuate BDNF-ERK signaling during primary synaptogenesis with a region-specific manner, which is likely to lead to decreased spine formation and maturation observed in the hippocampal CA1 region. It is speculated that this incomplete spine formation during early brain development has an influence on learning capabilities throughout adulthood.

  17. Oxymatrine attenuated isoproterenol-induced heart failure in rats via regulation of COX-2/PGI2 pathway.

    PubMed

    Zhou, Ru; Xu, Qingbin; Xu, Yehua; Xiong, Aiqin; Wang, Yang; Ma, Ping

    2016-12-01

    Oxymatrine (OMT) is an active constituent of traditional Chinese herb Sophora japonica Ait which has been shown to exert potent anti-inflammatory,anti-oxidant and anti-fibrosis properties. Our previous studies have demonstrated that OMT has protective effects on isoproterenol-induced heart failure in rats through regulation of DDAH/ADMA metabolism pathway.In this study,we further investigated whether OMT could attenuate isoproterenol-induced heart failure through the regulation of COX-2/PGI2 pathway. Heart failure was induced in Sprague-Dawley rats by 5mg/kg isoproterenol subcutaneous injection for 7days. The rats were maintained on normal diet and randomly divided into five groups: control, isoproterenol, isoproterenol with OMT (50, 100mg/kg), and OMT alone groups (n=12 in each group). Serum brain natruretic peptide (BNP, a heart failure biomarker), histopathological variables, expression of Cytosolic phospholipase A2 (cPLA2), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and Prostacyclin synthase (PGIS) were analysed. Administration of OMT significantly reduced the increased BNP in plasm of isoproterenol-induced rats, attenuated cardiac fibrosis,suppressed overexpression of myocardial COX-1 expression, up-regulated COX-2 and PGIS expression, but had no effects on isoproterenol-induced elevated protein cPLA2. And compared with control group, any indexes in sham rats treated with OMT (100mg/kg) alone were unaltered. These results demonstrated that OMT has cardioprotective effects on isoproterenol-induced heart failure in rats by regulating COX-2/PGI2 pathway.

  18. Hydrogen-Rich Saline Attenuates Cardiac and Hepatic Injury in Doxorubicin Rat Model by Inhibiting Inflammation and Apoptosis

    PubMed Central

    2016-01-01

    Doxorubicin (DOX) remains the most effective anticancer agent which is widely used in several adult and pediatric cancers, but its application is limited for its cardiotoxicity and hepatotoxicity. Hydrogen, as a selective antioxidant, is a promising potential therapeutic option for many diseases. In this study, we found that intraperitoneal injection of hydrogen-rich saline (H2 saline) ameliorated the mortality, cardiac dysfunction, and histopathological changes caused by DOX in rats. Meanwhile, serum brain natriuretic peptide (BNP), aspartate transaminase (AST), alanine transaminase (ALT), albumin (ALB), tissue reactive oxygen species (ROS), and malondialdehyde (MDA) levels were also attenuated after H2 saline treatment. What is more, we further demonstrated that H2 saline treatment could inhibit cardiac and hepatic inflammation and apoptosis relative proteins expressions by western blotting test. In conclusion, our results revealed a protective effect of H2 saline on DOX-induced cardiotoxicity and hepatotoxicity in rats by inhibiting inflammation and apoptosis. PMID:28104928

  19. Effect of soluble complement receptor-1 on neutrophil accumulation after traumatic brain injury in rats.

    PubMed

    Kaczorowski, S L; Schiding, J K; Toth, C A; Kochanek, P M

    1995-09-01

    As part of the acute inflammatory response, neutrophils accumulate in the central nervous system after injury. Recently, a soluble human recombinant complement receptor (sCR1; BRL 55730; T Cell Sciences, Inc., Cambridge, MA, U.S.A.) has been developed that inhibits the activation of both the classical and the alternative pathways of complement. sCR1 attenuates the effects of the acute inflammatory response in several models of injury outside the central nervous system. The role of complement in traumatic brain injury, however, remains undefined. We hypothesized that treatment with sCR1 would attenuate neutrophil accumulation in the brain after cerebral trauma. Using a randomized, blinded protocol, 18 anesthetized Sprague-Dawley rats were pre-treated with sCR1 or saline (control) at both 2 h and 2 min before trauma (weight drop) to the exposed right parietal cortex. A third dose of sCR1 (or saline) was given 6 h after trauma. Coronal brain sections centered on the site of trauma were obtained at 24 h after trauma and analyzed for myeloperoxidase (MPO) activity as a marker of neutrophil accumulation. Complete blood counts with differential were obtained before treatment with sCR1 and at 24 h after trauma. At 24 h after trauma, brain MPO activity was reduced by 41% in sCR1-treated rats compared with control rats [0.1599 +/- 0.102 versus 0.2712 +/- 0.178 U/g (mean +/- SD); p = 0.02]. The neutrophil count in peripheral blood increased approximately twofold in both groups. Neutrophil accumulation occurring in the brain after trauma is inhibited by sCR1 treatment. This suggests that complement activation is involved in the local inflammatory response to traumatic brain injury and plays an important role in neutrophil accumulation in the injured brain.

  20. Amantadine attenuates levodopa-induced dyskinesia in mice and rats preventing the accompanying rise in nigral GABA levels.

    PubMed

    Bido, Simone; Marti, Matteo; Morari, Michele

    2011-09-01

    Amantadine is the only drug marketed for treating levodopa-induced dyskinesia. However, its impact on basal ganglia circuitry in the dyskinetic brain, particularly on the activity of striatofugal pathways, has not been evaluated. We therefore used dual probe microdialysis to investigate the effect of amantadine on behavioral and neurochemical changes in the globus pallidus and substantia nigra reticulata of 6-hydroxydopamine hemi-lesioned dyskinetic mice and rats. Levodopa evoked abnormal involuntary movements (AIMs) in dyskinetic mice, and simultaneously elevated GABA release in substantia nigra reticulata (∼3-fold) but not globus pallidus. Glutamate levels were unaffected in both areas. Amantadine (40 mg/kg, i.p.), ineffective alone, attenuated (∼50%) AIMs expression and prevented the GABA rise. Moreover, it unraveled a facilitatory effect of levodopa on pallidal glutamate levels. Levodopa also evoked AIMs expression and a GABA surge (∼2-fold) selectively in the substantia nigra of dyskinetic rats. However, different from mice, glutamate levels rose simultaneously. Amantadine, ineffective alone, attenuated (∼50%) AIMs expression preventing amino acid increase and leaving unaffected pallidal glutamate. Overall, the data provide neurochemical evidence that levodopa-induced dyskinesia is accompanied by activation of the striato-nigral pathway in both mice and rats, and that the anti-dyskinetic effect of amantadine partly relies on the modulation of this pathway.

  1. Nafamostat mesilate attenuates transient focal ischemia/reperfusion-induced brain injury via the inhibition of endoplasmic reticulum stress.

    PubMed

    Kwon, Sun Kwan; Ahn, Moonsang; Song, Hee-Jung; Kang, Shin Kwang; Jung, Saet-Byel; Harsha, Nagar; Jee, Sungju; Moon, Jae Young; Suh, Kwang-Sun; Lee, Sang Do; Jeon, Byeong Hwa; Kim, Dong Woon; Kim, Cuk-Seong

    2015-11-19

    Nafamostat mesilate (NM), a serine protease inhibitor, has a broad range of clinical applications that include use as an anticoagulant during hemodialysis in cerebral hemorrhage patients, as a hemoperfusion anticoagulant for patients with intravascular coagulation, hemorrhagic lesions, and hemorrhagic tendencies, and for the improvement of acute pancreatitis. However, the effects of NM on acute cerebral ischemia have yet to be investigated. Thus, the present study utilized a rat model in which transient middle cerebral artery occlusion (MCAO) was used to induce ischemic injury to investigate the effects of NM on infarct volume and histological and biological changes. NM (1mg/kg) was intravenously administered prior to and after the MCAO procedure. Compared to control rats, the administration of NM significantly decreased infarct size and the extent of brain edema after the induction of focal ischemia via MCAO. Additionally, NM treatment attenuated MCAO-induced neuronal degeneration and activation of microglia and astrocytes. NM treatment also inhibited the MCAO-induced expression levels of glucose-regulated protein 78 (GRP78), CATT/EBP homologous protein (CHOP), and p-eukaryotic initiation factor 2α (eIF2α), which are endoplasmic reticulum (ER) stress markers, in the cerebral cortex. The present findings demonstrate that NM exerts neuroprotective effects in the brain following focal ischemia via, at least in part, the inhibition of ER stress.

  2. Attenuation correction for freely moving small animal brain PET studies based on a virtual scanner geometry

    NASA Astrophysics Data System (ADS)

    Angelis, G. I.; Kyme, A. Z.; Ryder, W. J.; Fulton, R. R.; Meikle, S. R.

    2014-10-01

    Attenuation correction in positron emission tomography brain imaging of freely moving animals is a very challenging problem since the torso of the animal is often within the field of view and introduces a non negligible attenuating factor that can degrade the quantitative accuracy of the reconstructed images. In the context of unrestrained small animal imaging, estimation of the attenuation correction factors without the need for a transmission scan is highly desirable. An attractive approach that avoids the need for a transmission scan involves the generation of the hull of the animal’s head based on the reconstructed motion corrected emission images. However, this approach ignores the attenuation introduced by the animal’s torso. In this work, we propose a virtual scanner geometry which moves in synchrony with the animal’s head and discriminates between those events that traversed only the animal’s head (and therefore can be accurately compensated for attenuation) and those that might have also traversed the animal’s torso. For each recorded pose of the animal’s head a new virtual scanner geometry is defined and therefore a new system matrix must be calculated leading to a time-varying system matrix. This new approach was evaluated on phantom data acquired on the microPET Focus 220 scanner using a custom-made phantom and step-wise motion. Results showed that when the animal’s torso is within the FOV and not appropriately accounted for during attenuation correction it can lead to bias of up to 10% . Attenuation correction was more accurate when the virtual scanner was employed leading to improved quantitative estimates (bias < 2%), without the need to account for the attenuation introduced by the extraneous compartment. Although the proposed method requires increased computational resources, it can provide a reliable approach towards quantitatively accurate attenuation correction for freely moving animal studies.

  3. Thoracic duct ligation in the rat attenuates lung injuries in acute pancreatitis.

    PubMed

    Zhang, D; Tsui, N; Li, Y; Wang, F

    2013-09-01

    In acute pancreatitis (AP), inflammatory cells and products disseminated in abdominal lymph and blood induce systemic inflammation. Interruption of abdominal lymph flow, and thereby reduction of lymphatic dissemination, could alter the course of the disease. Therefore, we investigated whether thoracic duct ligation (TDL) in a rat model of cerulein-induced AP results in reduced lung damage as a marker for reduction of systemic dissemination through the lymphatic system. Thirty-four male rats were assigned to TDL (TDL-rats, n=8), AP (AP-rats, n=8), TDL+AP (TDL+AP-rats, n=9) or sham TDL (Ctr-rats, n=9) groups. TDL and sham TDL were established first. Two days later, AP was induced in AP- and TDL+AP-rats by a series of subcutaneous injections of cerulein. Vehicle was injected in the same manner in Ctr- and TDL-rats as controls. Rats were sacrificed six hours after the end of the serial injections. Histological examination showed that AP-induced damage to the pancreas and ileum were similar in AP- and TDL+AP-rats whereas lung damage was less severe in TDL+AP-rats than in AP-rats. Assays demonstrated that: hepatic and pulmonary myeloperoxidase activities were increased in AP-rats but not in the TDL+AP-rats; more Il-6 was found in AP-rat than TDL+AP-rat lungs; and lung-lavage fluid from AP-rats yielded more angiopoietin-2 than TDL+AP-rats. In conclusion, prior TDL in the rat attenuates lung damage in acute pancreatitis.

  4. Stress-sensitive arterial hypertension, hemodynamic changes and brain metabolites in hypertensive ISIAH rats: MRI investigation.

    PubMed

    Seryapina, A A; Shevelev, O B; Moshkin, M P; Markel, A L; Akulov, A E

    2017-03-08

    The study of early development of the arterial hypertension in association with emotional stress is of great importance for better understanding of etiolody and pathogenesis of the hypertensive disease. MRI technique was applied to evaluate the hemodynamic and brain metabolites changes in 1- and 3-Mo-old ISIAH rats (10 male rats) with stress-sensitive arterial hypertension and in control normotensive WAG rats (8 male rats). In the 3-Mo-old ISIAH rats, age-dependent increase in the blood pressure was associated with increased blood flow through the renal arteries and decreased blood flow in the lower part of abdominal aorta. The renal vascular resistance in the ISIAH rats decreased while aging, though, at both ages it remained higher than the renal vascular resistance in WAG rats. Integral metabolome portrait demonstrated that hypertension development in the ISIAH rats was associated with attenuation of excitatory and energetic activity in the prefrontal cortex, whereas in the WAG rats, the opposite age-dependent changes were observed. In contrast, in hypothalamus of 3-Mo-old ISIAH rats, an increase in energetic activity and prevalence of excitatory neurotransmitters over inhibitory was noticed. The blood flow through the main arteries showed positive correlation with glutamate and glutamine levels in hypothalamus, and negative one - with hypothalamic GABA level. The blood pressure values positively correlated with hypothalamic choline levels. Thus, the early development of the stress-sensitive hypertension in the ISIAH rats is accompanied by considerable changes both in brain metabolite ratios and in the parameters of blood flow through the main arteries. This article is protected by copyright. All rights reserved.

  5. Transferring Xenogenic Mitochondria Provides Neural Protection Against Ischemic Stress in Ischemic Rat Brains.

    PubMed

    Huang, Po-Jui; Kuo, Chi-Chung; Lee, Hsiu-Chin; Shen, Ching-I; Cheng, Fu-Chou; Wu, Shih-Fang; Chang, Jui-Chih; Pan, Hung-Chuan; Lin, Shinn-Zong; Liu, Chin-San; Su, Hong-Lin

    2016-01-01

    Transferring exogenous mitochondria has therapeutic effects on damaged heart, liver, and lung tissues. Whether this protective effect requires the symbiosis of exogenous mitochondria in host cells remains unknown. Here xenogenic mitochondria derived from a hamster cell line were applied to ischemic rat brains and rat primary cortical neurons. Isolated hamster mitochondria, either through local intracerebral or systemic intra-arterial injection, significantly restored the motor performance of brain-ischemic rats. The brain infarct area and neuronal cell death were both attenuated by the exogenous mitochondria. Although internalized mitochondria could be observed in neurons and astrocytes, the low efficacy of mitochondrial internalization could not completely account for the high rate of rescue of the treated neural cells. We further illustrated that disrupting electron transport or ATPase synthase in mitochondria significantly attenuated the protective effect, suggesting that intact respiratory activity is essential for the mitochondrial potency on neural protection. These results emphasize that nonsymbiotic extracellular mitochondria can provide an effective cell defense against acute injurious ischemic stress in the central nervous system.

  6. Hybridizable ribonucleic acid of rat brain

    PubMed Central

    Bondy, S. C.; Roberts, Sidney

    1968-01-01

    1. Cerebral RNA of adult and newborn rats was labelled in vivo by intracervical injection of [5-3H]uridine or [32P]phosphate. Hepatic RNA of similar animals was labelled by intraperitoneal administration of [6-14C]orotic acid. Nuclear and cytoplasmic fractions were isolated and purified by procedures involving extraction with phenol and repeated precipitation with ethanol. 2. The fraction of pulse-labelled RNA from cerebral nuclei that hybridized to homologous DNA exhibited a wide range of turnover values and was heterogeneous in sucrose density gradients. 3. Base composition of the hybridizable RNA was similar to that of the total pulse-labelled material; both were DNA-like. 4. Pulse-labelled cerebral nuclear RNA hybridized to a greater extent than cytoplasmic RNA for at least a week after administration of labelled precursor. This finding suggested that cerebral nuclei contained a hybridizable component that was not transferred to cytoplasm. 5. The rates of decay of the hybridizable fractions of cerebral nuclei and cytoplasm were faster in the newborn animal than in the adult. Presumably a larger proportion of labile messenger RNA molecules was present in the immature brain. 6. Cerebral nuclear and cytoplasmic RNA fractions from newborn or adult rats, labelled either in vivo for periods varying from 4min. to 7 days or in vitro by exposure to [3H]-dimethyl sulphate, uniformly hybridized more effectively than the corresponding hepatic preparation. These data suggested that a larger proportion of RNA synthesis was oriented towards messenger RNA formation in brain than in liver. PMID:5683505

  7. HIF-1α inhibition ameliorates neonatal brain injury in a rat pup hypoxic-ischemic model

    PubMed Central

    Chen, Wanqiu; Jadhav, Vikram; Tang, Jiping; Zhang, John H.

    2008-01-01

    Hypoxia-inducible factor-1alpha (HIF-1α) has been considered as a regulator of both prosurvival and prodeath pathways in the nervous system. The present study was designed to elucidate the role of HIF-1α in neonatal hypoxic-ischemic (HI) brain injury. Rice-Vannucci model of neonatal hypoxic-ischemic brain injury was used in seven-day-old rats, by subjecting unilateral carotid artery ligation followed by 2h of hypoxia (8% O2 at 37°C). HIF-1α activity was inhibited by 2-methoxyestradiol (2ME2) and enhanced by dimethyloxalylglycine (DMOG). Results showed that 2ME2 exhibited dose-dependent neuroprotection by decreasing infarct volume and reducing brain edema at 48 h post HI. The neuroprotection was lost when 2ME2 was administered 3 h post HI. HIF-1α upregulation by DMOG increased the permeability of the BBB and brain edema compared with HI group. 2ME2 attenuated the increase in HIF-1α and VEGF 24 h after HI. 2ME2 also had a long-term effect of protecting against the loss of brain tissue. The study showed that the early inhibition of HIF-1α acutely after injury provided neuroprotection after neonatal hypoxia-ischemia which was associated with preservation of BBB integrity, attenuation of brain edema, and neuronal death. PMID:18602008

  8. Treatment with dexamethasone and vitamin D3 attenuates neuroinflammatory age-related changes in rat hippocampus.

    PubMed

    Moore, Michelle; Piazza, Alessia; Nolan, Yvonne; Lynch, Marina A

    2007-10-01

    Among the changes which occur in the brain with age is an increase in hippocampal concentration of proinflammatory cytokines like interleukin-1beta (IL-1beta) and an increase in IL-1beta-induced signaling. Here we demonstrate that the increase in IL-1beta concentration is accompanied by an increase in expression of IL-1 type I receptor (IL-1RI) and an age-related increase in microglial activation, as shown by increased expression of the cell surface marker, major histocompatibility complex II (MHCII) and increased MHCII staining. The evidence indicates that these age-related changes were abrogated in hippocampus of aged rats treated with dexamethasone and vitamin D3. Similarly, the age-related increases in activation of the stress-activated protein kinase, c-Jun N-terminal kinase (JNK), as well as caspase-3 and PARP were all attenuated in hippocampal tissue prepared from rats that received dexamethasone and vitamin D3. The data indicate that dexamethasone and vitamin D3 ameliorated the age-related increase in IFNgamma and suggest that IFNgamma may be the trigger leading to microglial activation, since it increases MHCII mRNA and IL-1beta release from cultured glia. In parallel with its ability to decrease microglial activation in vivo, we report that treatment of cultured glia with dexamethasone and vitamin D3 blocked the lipopolysaccharide increased MHCII mRNA and IL-1beta concentration, while the IL-1beta-induced increases in activation of JNK and caspase 3 in cultured neurons were also reversed by treatment with dexamethasone and vitamin D3. The data suggest that the antiinflammatory effect of dexamethasone and vitamin D3 derives from their ability to downreguate microglial activation.

  9. Brain adaptation to acute hyponatremia in young rats.

    PubMed

    Silver, S M; Schroeder, B M; Bernstein, P; Sterns, R H

    1999-06-01

    Brain swelling after acute hyponatremia in prepubescent rats, in contrast to adults, has recently been associated with an increase in brain sodium and a high mortality that could be prevented by preadministration of testosterone. To reexamine the effect of acute hyponatremia in young brain, we measured brain water and solute content in prepubescent rats after induction of hyponatremia over 4 h with water and arginine vasopressin. An 18% decrease in plasma sodium was associated with a 13% increase in brain water and a decrease in brain sodium and glutamate contents. No animals died. To assess the effect of sex hormones on brain adaptation, prepubescent rats were pretreated with estrogen or testosterone before acute hyponatremia. Brain sodium and potassium contents were significantly reduced in comparison to normonatremia in testosterone-pretreated but not estrogen-pretreated animals. However, there was no difference between estrogen-pretreated and testosterone-pretreated groups in mortality or in brain contents of water, electrolytes, or major organic osmolytes. In conclusion, we found that brain adaptation to acute hyponatremia in prepubescent rats is similar to that observed in adults.

  10. Motor intention determines sensory attenuation of brain responses to self-initiated sounds.

    PubMed

    Timm, Jana; SanMiguel, Iria; Keil, Julian; Schröger, Erich; Schönwiesner, Marc

    2014-07-01

    One of the functions of the brain is to predict sensory consequences of our own actions. In auditory processing, self-initiated sounds evoke a smaller brain response than passive sound exposure of the same sound sequence. Previous work suggests that this response attenuation reflects a predictive mechanism to differentiate the sensory consequences of one's own actions from other sensory input, which seems to form the basis for the sense of agency (recognizing oneself as the agent of the movement). This study addresses the question whether attenuation of brain responses to self-initiated sounds can be explained by brain activity involved in movement planning rather than movement execution. We recorded ERPs in response to sounds initiated by button presses. In one condition, participants moved a finger to press the button voluntarily, whereas in another condition, we initiated a similar, but involuntary, finger movement by stimulating the corresponding region of the primary motor cortex with TMS. For involuntary movements, no movement intention (and no feeling of agency) could be formed; thus, no motor plans were available to the forward model. A portion of the brain response evoked by the sounds, the N1-P2 complex, was reduced in amplitude following voluntary, self-initiated movements, but not following movements initiated by motor cortex stimulation. Our findings demonstrate that movement intention and the corresponding feeling of agency determine sensory attenuation of brain responses to self-initiated sounds. The present results support the assumptions of a predictive internal forward model account operating before primary motor cortex activation.

  11. Sodium selenate treatment mitigates reduction of bone volume following traumatic brain injury in rats

    PubMed Central

    Brady, R.D.; Grills, B.L.; Romano, T.; Wark, J.D.; O’Brien, T.J.; Shultz, S.R.; McDonald, S.J.

    2016-01-01

    Objectives: Administration of sodium selenate to rats given traumatic brain injury (TBI) attenuates brain damage and improves long-term behavioural outcomes. We have previously provided evidence that TBI causes bone loss in rats, however the effect of sodium selenate treatment on bone quantity following TBI is unknown. Methods: Rats were randomly assigned into sham injury or fluid percussion injury (FPI) groups and administered saline or sodium selenate for 12 weeks post-injury. Femora were analysed using histomorphometry, peripheral quantitative computed tomography (pQCT) and biomechanical testing. Results: Distal metaphyseal trabecular bone volume fraction of FPI-selenate rats was higher than FPI-vehicle rats (41.8%; p<0.01), however, femora from selenate-treated groups were shorter in length (4.3%; p<0.01) and had increased growth plate width (22.1%; p<0.01), indicating that selenate impaired long bone growth. pQCT analysis demonstrated that distal metaphyseal cortical thickness was decreased in TBI rats compared to shams (11.7%; p<0.05), however selenate treatment to TBI animals offset this reduction (p<0.05). At the midshaft we observed no differences in biomechanical measures. Conclusion: These are the first findings to indicate that mitigating TBI-induced neuropathology may have the added benefit of preventing osteoporosis and associated fracture risk following TBI. PMID:27973389

  12. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood-brain barrier integrity.

    PubMed

    Kunze, Reiner; Urrutia, Andrés; Hoffmann, Angelika; Liu, Hui; Helluy, Xavier; Pham, Mirko; Reischl, Stefan; Korff, Thomas; Marti, Hugo H

    2015-04-01

    Brain edema is a hallmark of various neuropathologies, but the underlying mechanisms are poorly understood. We aim to characterize how tissue hypoxia, together with oxidative stress and inflammation, leads to capillary dysfunction and breakdown of the blood-brain barrier (BBB). In a mouse stroke model we show that systemic treatment with dimethyl fumarate (DMF), an antioxidant drug clinically used for psoriasis and multiple sclerosis, significantly prevented edema formation in vivo. Indeed, DMF stabilized the BBB by preventing disruption of interendothelial tight junctions and gap formation, and decreased matrix metalloproteinase activity in brain tissue. In vitro, DMF directly sustained endothelial tight junctions, inhibited inflammatory cytokine expression, and attenuated leukocyte transmigration. We also demonstrate that these effects are mediated via activation of the redox sensitive transcription factor NF-E2 related factor 2 (Nrf2). DMF activated the Nrf2 pathway as shown by up-regulation of several Nrf2 target genes in the brain in vivo, as well as in cerebral endothelial cells and astrocytes in vitro, where DMF also increased protein abundance of nuclear Nrf2. Finally, Nrf2 knockdown in endothelial cells aggravated subcellular delocalization of tight junction proteins during ischemic conditions, and attenuated the protective effect exerted by DMF. Overall, our data suggest that DMF protects from cerebral edema formation during ischemic stroke by targeting interendothelial junctions in an Nrf2-dependent manner, and provide the basis for a completely new approach to treat brain edema.

  13. Aluminium toxicity in the rat liver and brain

    NASA Astrophysics Data System (ADS)

    Yumoto, S.; Ohashi, H.; Nagai, H.; Kakimi, S.; Ishikawa, A.; Kobayashi, K.; Ogawa, Y.; Ishii, K.

    1993-04-01

    To investigate the etiology of Alzheimer's disease, we examined the brain and liver tissue uptake of aluminium 5-75 days after aluminium injection into healthy rats. Ten days after the last injection, Al was detected in the brain and the brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Al was also demonstrated in the liver and the liver cell nuclei by PIXE analysis and electron energy loss spectrometry (EELS). The morphological changes of the rat brain examined 75 days after the injection were similar to those which have been reportedly observed in the brain of patients with Alzheimer's disease. These results support the theory that Alzheimer's disease is caused by irreversible accumulation of aluminium in the brain, as well as in the nuclei of brain cells.

  14. 26Al uptake and accumulation in the rat brain

    NASA Astrophysics Data System (ADS)

    Yumoto, S.; Nagai, H.; Imamura, M.; Matsuzaki, H.; Hayashi, K.; Masuda, A.; Kumazawa, H.; Ohashi, H.; Kobayashi, K.

    1997-03-01

    To investigate the cause of Alzheimer's disease (senile dementia), 26Al incorporation in the rat brain was studied by accelerator mass spectrometry (AMS). When 26Al was injected into healthy rats, a considerable amount of 26Al entered the brain (cerebrum) through the blood-brain barrier 5 days after a single injection, and the brain 26Al level remained almost constant from 5 to 270 days. On the other hand, the level of 26Al in the blood decreased remarkably 75 days after injection. Approximately 89% of the 26Al taken in by the brain cell nuclei bound to chromatin. This study supports the theory that Alzheimer's disease is caused by irreversible accumulation of aluminium (Al) in the brain, and brain cell nuclei.

  15. Xenon preconditioning reduces brain damage from neonatal asphyxia in rats.

    PubMed

    Ma, Daqing; Hossain, Mahmuda; Pettet, Garry K J; Luo, Yan; Lim, Ta; Akimov, Stanislav; Sanders, Robert D; Franks, Nicholas P; Maze, Mervyn

    2006-02-01

    Xenon attenuates on-going neuronal injury in both in vitro and in vivo models of hypoxic-ischaemic injury when administered during and after the insult. In the present study, we sought to investigate whether the neuroprotective efficacy of xenon can be observed when administered before an insult, referred to as 'preconditioning'. In a neuronal-glial cell coculture, preexposure to xenon for 2 h caused a concentration-dependent reduction of lactate dehydrogenase release from cells deprived of oxygen and glucose 24 h later; xenon's preconditioning effect was abolished by cycloheximide, a protein synthesis inhibitor. Preconditioning with xenon decreased propidium iodide staining in a hippocampal slice culture model subjected to oxygen and glucose deprivation. In an in vivo model of neonatal asphyxia involving hypoxic-ischaemic injury to 7-day-old rats, preconditioning with xenon reduced infarction size when assessed 7 days after injury. Furthermore, a sustained improvement in neurologic function was also evident 30 days after injury. Phosphorylated cAMP (cyclic adenosine 3',5'-monophosphate)-response element binding protein (pCREB) was increased by xenon exposure. Also, the prosurvival proteins Bcl-2 and brain-derived neurotrophic factor were upregulated by xenon treatment. These studies provide evidence for xenon's preconditioning effect, which might be caused by a pCREB-regulated synthesis of proteins that promote survival against neuronal injury.

  16. Hesperidin, an antioxidant flavonoid, prevents acrylonitrile-induced oxidative stress in rat brain.

    PubMed

    El-Sayed, El-Sayed M; Abo-Salem, Osama M; Abd-Ellah, Mohamed F; Abd-Alla, Gamil M

    2008-01-01

    Acrylonitrile (ACN) is a volatile, toxic liquid used as a monomer in the manufacture of synthetic rubber, styrene plastics, acrylic fiber, and adhesives. ACN is a potent neurotoxin. A role for free radical mediated lipid peroxidation in the toxicity of ACN has been suggested. We examined the ability of hesperidin, an antioxidant flavonoid, to attenuate ACN-induced alterations in lipid peroxidation in rat brains. The daily oral administration of ACN to male albino rats in a dose of 50 mg/kg bwt for a period of 28 days produced a significant elevation in brain lipid peroxides measured as malondialdehyde (MDA) amounting to 107%, accompanied by a marked decrease in brain-reduced glutathione (GSH) content reaching 63%. In addition, ACN administration resulted in significant reductions in the enzymatic antioxidant parameters of brain; superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione-S-transferase (GST) recording 43%, 64%, 52%, and 43%, respectively. On the other hand, pretreatment with hesperidin and its coadministration with ACN once daily in a dose of 200 mg/kg bwt i.p. for 28 days ameliorated ACN-induced alterations in brain lipid peroxidation. These results suggest that hesperidin may have a beneficial role against ACN-induced oxidative stress in the brain; an effect that is mainly attributed to the antioxidant property of hesperidin.

  17. ANTIANDROGENIC EFFECTS OF VINCLOZOLIN ON MALE RATS ARE PARTIALLY ATTENUATED BY TESTOSTERONE PROPIONATE

    EPA Science Inventory

    ANTIANDROGENIC EFFECTS OF VINCLOZOLIN ON MALE RATS ARE PARTIALLY ATTENUATED BY TESTOSTERONE PROPIONATE

    Cynthia Wolf1,2 , Joe Ostby1, Jonathan Furr 1, Gerald A. LeBlanc2, and L. Earl Gray, Jr.1
    1 US Environmental Protection Agency, NHEERL, RTD, RTP, NC 27711, 2 Departmen...

  18. MASCULINIZATION OF FEMALE RATS BY PRENATAL TESTOSTERONE PROPIONATE IS PARTIALLY ATTENUATED BY VINCLOZOLIN

    EPA Science Inventory

    MASCULINIZATION OF FEMALE RATS BY PRENATAL TESTOSTERONE PROPIONATE IS PARTIALLY ATTENUATED BY VINCLOZOLIN
    Cynthia Wolf1,2, Gerald LeBlanc2, Andrew Hotchkiss3, Jonathan Furr1, L Earl Gray, Jr.1
    1USEPA, Reproductive Toxicology Division, RTP, NC 27711, 2Dept. Molecular and En...

  19. Berberine attenuates cardiac dysfunction in hyperglycemic and hypercholesterolemic rats.

    PubMed

    Dong, Shi-Fen; Hong, Ying; Liu, Ming; Hao, Ying-Zhi; Yu, Hai-Shi; Liu, Yang; Sun, Jian-Ning

    2011-06-25

    The positive effects of berberine (30 mg/kg/day, i.g. for 6 weeks) on cardiac dysfunction were evaluated in the rat model of hyperglycemia and hypercholesterolemia. Hyperglycemia and hypercholesterolemia were induced by feeding high-sucrose/fat diet (HSFD) consisting of 20% sucrose, 10% lard, 2.5% cholesterol, 1% bile salt for 12 weeks and streptozotocin (30 mg/kg, i.p.). The plasma sugar, total cholesterol, and triglyceride levels were significantly increased (422, 194 and 82%, respectively) in the HSFD/streptozotocin-treated rats, when compared with control animals receiving normal diet and vehicle. Berberine treatment reduced the plasma sugar and lipid levels by 24-69% in the rat model of hyperglycemia and hypercholesterolemia. Cardiac functions signed as values of cardiac output, left ventricular systolic pressure, the maximum rate of myocardial contraction (+dp/dtmax), left ventricular end diastolic pressure and the maximum rate of myocardial diastole (-dp/dtmax) were injured by 16-55% in the hyperglycemic/hypercholesterolemic rats. Berberine increased cardiac output, left ventricular systolic pressure and +dp/dtmax by 64, 16 and 79%, but decreased left ventricular end diastolic pressure and -dp/dtmax by 121 and 61% in the rats receiving HSFD/streptozotocin, respectively, when compared with the drug-untreated rats of hyperglycemia and hypercholesterolemia. Berberine caused significant increase in cardiac fatty acid transport protein-1 (159%), fatty acid transport proteins (56%), fatty acid beta-oxidase (52%), as well as glucose transporter-4 and peroxisome proliferator-activated receptor-γ (PPARγ), but decrease in PPARα mRNA and protein expression in hyperglycemic/hypercholesterolemic rats. These results indicated that berberine exerted protective effects on cardiac dysfunction induced by hyperglycemia/hypercholesterolemia through alleviating cardiac lipid accumulation and promoting glucose transport.

  20. Effects of delayed treatment with nebracetam on neurotransmitters in brain regions after microsphere embolism in rats

    PubMed Central

    Takeo, Satoshi; Hayashi, Hideki; Miyake, Keiko; Takagi, Kaori; Tadokoro, Mina; Takagi, Norio; Oshikawa, Sayuri

    1997-01-01

    The effects of delayed treatment with nebracetam, a novel nootropic drug, on neurotransmitters of brain regions were examined in rats with microsphere embolism-induced cerebral ischaemia. Cerebral ischaemia was induced by administration of 900 microspheres (48 μm) into the internal carotid artery. The rats with stroke-like symptoms were treated p.o. with 30 mg kg−1 nebracetam twice daily. The levels of acetylcholine, dopamine, noradrenaline, 5-hydroxytryptamine (5-HT) and their metabolites in the cerebral cortex, striatum and hippocampus of animals with microsphere embolism were determined by high performance liquid chromatography (h.p.l.c.) on the 3rd and 7th days after the operation. Although the microsphere embolism induced significant changes in most of the neurotransmitters and some of their metabolites in the brain regions, the delayed treatment with nebracetam partially restored only the hippocampal 5-HT and the striatal dopamine metabolite contents on the 3rd day. The hippocampal in vivo 5-HT synthesis, but not the striatal dopamine synthesis, was attenuated in rats with microsphere embolism on the 3rd day, but was restored by treatment with nebracetam. In vivo striatal dopamine turnover rate of the rats with microsphere embolism was inhibited on the 3rd day irrespective of treatment with nebracetam. The present study provides evidence for a possible action of nebracetam on 5-HT metabolism in the ischaemic brain. PMID:9179389

  1. Topical ethosomal capsaicin attenuates edema and nociception in arthritic rats.

    PubMed

    Kumar Sarwa, Khomendra; Rudrapal, Mithun; Mazumder, Bhaskar

    2015-12-01

    In this study, topical ethosomal formulation of capsaicin was prepared and evaluated for bio-efficacy in arthritic rats. Physical and biological characterizations of prepared capsaicin-loaded nano vesicular systems were also carried out. Ethosomal capsaicin showed significant reduction of rat paw edema along with promising antinociceptive action. The topical antiarthritic efficacy of prepared formulation of capsaicin was found more than that of Thermagel, a marketed gel of capsaicin. From toxicological study, no predictable signs of toxicity such as skin irritation (of experimental rats) were observed. Based on this finding, ethosomal capsaicin could be proposed as an effective as well as a safe topical delivery system for the long-term treatment of arthritis and associated inflammo-musculoskeletal disorders. Such exciting result would eventually enlighten the analgesic and anti-inflammatory potential of capsaicin for topical remedy.

  2. Restoring Spinal Noradrenergic Inhibitory Tone Attenuates Pain Hypersensitivity in a Rat Model of Parkinson's Disease

    PubMed Central

    Wang, Bing; Chen, Li-Hua

    2016-01-01

    In the present study, we investigated whether restoring descending noradrenergic inhibitory tone can attenuate pain in a PD rat model, which was established by stereotaxic infusion of 6-hydroxydopamine (6-OHDA) into the bilateral striatum (CPu). PD rats developed thermal and mechanical hypersensitivity at the 4th week after surgery. HPLC analysis showed that NE content, but not dopamine or 5-HT, significantly decreased in lumbar spinal cord in PD rats. Additional noradrenergic depletion by injection of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) aggravated pain hypersensitivity in PD rats. At the 5th week after injection of 6-OHDA, systemic treatment with pharmacological norepinephrine (NE) precursor droxidopa (L-DOPS) or α2 adrenoceptor agonist clonidine significantly attenuated thermal and mechanical pain hypersensitivity in PD rats. Furthermore, application of norepinephrine (NE) and 5-hydroxytryptamine (5-HT) reuptake inhibitors duloxetine, but not 5-HT selective reuptake inhibitors sertraline, significantly inhibited thermal and mechanical pain hypersensitivity in PD rats. Systemic administration of Madopar (L-DOPA) or the D2/D3 agonist pramipexole slightly inhibited the thermal, but not mechanical, hypersensitivity in PD rats. Thus, our study revealed that impairment of descending noradrenergic system may play a key role in PD-associated pain and restoring spinal noradrenergic inhibitory tone may serve as a novel strategy to manage PD-associated pain. PMID:27747105

  3. Acute and chronic tianeptine treatments attenuate ethanol withdrawal syndrome in rats.

    PubMed

    Uzbay, Tayfun; Kayir, Hakan; Celik, Turgay; Yüksel, Nevzat

    2006-05-01

    Effects of acute and chronic tianeptine treatments on ethanol withdrawal syndrome were investigated in rats. Ethanol (7.2% v/v) was given to adult male Wistar rats by a liquid diet for 30 days. Acute or chronic (twice daily) tianeptine (5, 10 and 20 mg/kg) and saline were administered to rats intraperitoneally. Acute and last chronic tianeptine injections and saline were done 30 min before ethanol withdrawal testing. After 2nd, 4th and 6th hours of ethanol withdrawal, rats were observed for 5 min, and withdrawal signs which included locomotor hyperactivity, agitation, tremor, wet dog shakes, stereotyped behavior and audiogenic seizures were recorded or rated. Locomotor activity in naive (no ethanol-dependent rats) was also tested after acute tianeptine treatments. Acute but not chronic tianeptine treatment attenuated locomotor hyperactivity and agitation in ethanol-dependent rats. Both acute and chronic tianeptine treatment produced some significant inhibitory effects on tremor, wet dog shakes, stereotyped behaviors and audiogenic seizures during the ethanol withdrawal. Our results suggest that acute or chronic tianeptine treatment attenuates ethanol withdrawal syndrome in ethanol-dependent rats and this drug may be useful for treatment of ethanol-type dependence.

  4. Transmission, attenuation and reflection of shear waves in the human brain.

    PubMed

    Clayton, Erik H; Genin, Guy M; Bayly, Philip V

    2012-11-07

    Traumatic brain injuries (TBIs) are caused by acceleration of the skull or exposure to explosive blast, but the processes by which mechanical loads lead to neurological injury remain poorly understood. We adapted motion-sensitive magnetic resonance imaging methods to measure the motion of the human brain in vivo as the skull was exposed to harmonic pressure excitation (45, 60 and 80 Hz). We analysed displacement fields to quantify the transmission, attenuation and reflection of distortional (shear) waves as well as viscoelastic material properties. Results suggest that internal membranes, such as the falx cerebri and the tentorium cerebelli, play a key role in reflecting and focusing shear waves within the brain. The skull acts as a low-pass filter over the range of frequencies studied. Transmissibility of pressure waves through the skull decreases and shear wave attenuation increases with increasing frequency. The skull and brain function mechanically as an integral structure that insulates internal anatomic features; these results are valuable for building and validating mathematical models of this complex and important structural system.

  5. Apelin-13 attenuates traumatic brain injury-induced damage by suppressing autophagy.

    PubMed

    Bao, Hai-Jun; Zhang, Lin; Han, Wen-Can; Dai, Ding-Kun

    2015-01-01

    The adipocytokine apelin is a peptide, Apelin and its receptor are abundantly expressed in the nervous and cardiovascular systems. Previous studies had found apelin-13 reduces brain injuries and postischemic cerebral edema through blocking programmed cell death, Apelin-13 is also able to inhibit glucose deprivation induced cardiomyocyte autophagy in a concentration dependent fashion. To observe the effect of Apelin-13 on the brain injury induced by traumatic brain injury (TBI), and explore the effect of Apelin-13 on autophagy in TBI, We performed The neurological test, and the numbers of TBI-induced neural cell death were also counted by propidium iodide labeling. At last, the autophagy associated proteins LC3, Beclin-1, Bcl-2, p62 were also assessed with western-blotting. Compared with saline vehicle groups, the neural cell death, lesion volume, and neural dysfunction were attenuated by apelin-13 after TBI. In additionally, Apelin-13 also reversed TBI induced downregulation of LC3, Beclin-1, Bcl-2, p62 expression, compared with saline vehicle groups, at 24 and 48 h post TBI. Apelin-13 attenuates TBI induced brain damage by suppressing autophagy. All these results revealed that Apelin-13 suppressed autophagy. The autophagy may be involved in the mechanism of Apelin-13 rescue the subsequent damaged neuron in TBI.

  6. Simvastatin attenuates chromium-induced nephrotoxicity in rats

    PubMed Central

    Goodarzi, Zahra; Karami, Esmaeil; Ahmadizadeh, Massumeh

    2017-01-01

    Background Hexavalent Chromium (Cr (VI)) compounds are extremely toxic and have been demonstrated to induce nephrotoxicity associated with oxidative stress in humans and animals. The wide environmental distribution of these agents lead to an increase interest of preventive effects of its adverse effects. Objectives The propose of the present study was to determine the potential protective effects of simvastatin (SIMV) on Cr (VI)-induced nephrotoxicity in rat. Materials and Methods Forty-eight adult male Wistar rats (180-220 g BW) were randomly assigned to eight groups (n = 6). Group one received SIMV 20 mg/kg/day. Group two was given vehicle only. Groups three, five and seven received intraperitoneally (i.p) sodium dichromate (Cr (VI)) at doses of 8, 12 and 16 mg/kg body weight. Groups four, six and eight pretreated with the 20 mg/kg SIMV 30 minutes to prior administration of Cr (VI) at doses of 8, 12 and 16 mg/kg, respectively. The experiment repeated for eight consecutive days. Twenty-four hours after the last administration, animals were killed with overdose of sodium pentobarbital. Kidney tissues were excised for measuring malondialdehyde (MDA), glutathione (GSH) and histopathological examination. Results Chromium induced a dose dependent elevation of MDA and reduction of GSH levels. Histopathological manifestations were observed in Cr (VI)-treated rats. SIMV administration restored Cr (VI) produced biochemical and morphological changes in rat kidney. SIMV decreased MDA values and increased GSH levels in Cr (VI)-treated rats. SIMV clearly reversed the microscopic damage, demonstrating its protective effects against Cr (VI)-induced kidney injury. Conclusions This observation suggests that SIMV may have a protective effect against Cr (VI)-induced oxidative stress in rat kidney. PMID:28042547

  7. Ibuprofen attenuates nephropathy in streptozotocin‑induced diabetic rats.

    PubMed

    Liu, Yao-Wu; Zhu, Xia; Cheng, Ya-Qin; Lu, Qian; Zhang, Fan; Guo, Hao; Yin, Xiao-Xing

    2016-06-01

    Ibuprofen, a commonly administered nonsteroidal anti‑inflammatory therapeutic agent, is also a partial agonist of peroxisome proliferator‑activated receptor γ (PPARγ). The present study investigated the effects of ibuprofen on type 1 diabetic nephropathy (DN) in rats, and the potential mechanisms associated with the activation of PPARγ. Diabetic rats were induced through a single intraperitoneal injection of streptozotocin before oral treatment with ibuprofen or pioglitazone for 8 weeks. The 24‑h urine collection was performed for measurement of total protein content. The kidney was fixed in 10% formalin for periodic acid‑Schiff and Masson's trichrome staining. Blood and residual kidney tissue samples were collected to measure the associated biochemical parameters. Chronic ibuprofen treatment decreased urinary protein excretion, blood urea nitrogen, glomerular basement membrane thickening and renal fibrosis, which were accompanied by increases in PPARγ protein expression, glutathione (GSH) level, and superoxide dismutase (SOD) activity, decreases in cyclooxygenase 2 and inducible nitric oxide synthase protein expressions, as well as a decreased interleukin 1β (IL‑1β) level in the renal cortex of DN rats. Furthermore, the reduced IL‑1β level, increased GSH quantities and stronger SOD activity in the rat serum were evaluated in ibuprofen‑treated diabetic rats and were compared with untreated diabetic rats. Regarding GSH and IL‑1β levels, ibuprofen was identified to be superior to the positive control, pioglitazone, while levels of the other indices were identified to be similar. Thus, ibuprofen was observed to prevent the development of DN, caused by type 1 diabetes, by anti‑inflammatory and anti‑oxidative action, potentially via PPARγ activation.

  8. Testosterone attenuates and the selective estrogen receptor modulator, raloxifene, potentiates amphetamine-induced locomotion in male rats.

    PubMed

    Purves-Tyson, Tertia D; Boerrigter, Danny; Allen, Katherine; Zavitsanou, Katerina; Karl, Tim; Djunaidi, Vanezha; Double, Kay L; Desai, Reena; Handelsman, David J; Weickert, Cynthia Shannon

    2015-04-01

    Although sex steroids are known to modulate brain dopamine, it is still unclear how testosterone modifies locomotor behaviour controlled, at least in part, by striatal dopamine in adolescent males. Our previous work suggests that increasing testosterone during adolescence may bias midbrain neurons to synthesise more dopamine. We hypothesised that baseline and amphetamine-induced locomotion would differ in adult males depending on testosterone exposure during adolescence. We hypothesised that concomitant stimulation of estrogen receptor signaling, through a selective estrogen receptor modulator (SERM), raloxifene, can counter testosterone effects on locomotion. Male Sprague-Dawley rats at postnatal day 45 were gonadectomised (G) or sham-operated (S) prior to the typical adolescent testosterone increase. Gonadectomised rats were either given testosterone replacement (T) or blank implants (B) for six weeks and sham-operated (i.e. intact or endogenous testosterone group) were given blank implants. Subgroups of sham-operated, gonadectomised and gonadectomised/testosterone-replaced rats were treated with raloxifene (R, 5mg/kg) or vehicle (V), daily for the final four weeks. There were six groups (SBV, GBV, GTV, SBR, GBR, GTR). Saline and amphetamine-induced (1.25mg/kg) locomotion in the open field was measured at PND85. Gonadectomy increased amphetamine-induced locomotion compared to rats with endogenous or with exogenous testosterone. Raloxifene increased amphetamine-induced locomotion in rats with either endogenous or exogenous testosterone. Amphetamine-induced locomotion was negatively correlated with testosterone and this relationship was abolished by raloxifene. Lack of testosterone during adolescence potentiates and testosterone exposure during adolescence attenuates amphetamine-induced locomotion. Treatment with raloxifene appears to potentiate amphetamine-induced locomotion and to have an opposite effect to that of testosterone in male rats.

  9. Transcranial Photoacoustic Measurements of Cold-Injured Brains in Rats

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshinori; Sato, Shunichi; Hasegawa, Makoto; Nawashiro, Hiroshi; Saitoh, Daizoh; Shima, Katsuji; Ashida, Hiroshi; Obara, Minoru

    2005-09-01

    We performed transcranial photoacoustic measurements of cold-injured brains in rats. Before inducing injury, a signal peak was observed at two locations corresponding to the surfaces of the skull and brain, while after injury, a third peak appeared at a location corresponding to the back surface of the skull; the third peak was found to be caused by subdural hematoma. The signal peak for the brain surface shifted to a deeper region with elapse of time after injury, indicating deformation of the brain. These findings suggest that small hemorrhage and morphological change of the brain can be transcranially detected by photoacoustic measurement.

  10. Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression.

    PubMed

    Zielinski, Mark R; Kim, Youngsoo; Karpova, Svetlana A; McCarley, Robert W; Strecker, Robert E; Gerashchenko, Dmitry

    2014-09-19

    Acute sleep loss increases pro-inflammatory and synaptic plasticity-related molecules in the brain, including interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and brain-derived neurotrophic factor (BDNF). These molecules enhance non-rapid eye movement sleep slow wave activity (SWA), also known as electroencephalogram delta power, and modulate neurocognitive performance. Evidence suggests that chronic sleep restriction (CSR), a condition prevalent in today's society, does not elicit the enhanced SWA that is seen after acute sleep loss, although it cumulatively impairs neurocognitive functioning. Rats were continuously sleep deprived for 18h per day and allowed 6h of ad libitum sleep opportunity for 1 (SR1), 3 (SR3), or 5 (SR5) successive days (i.e., CSR). IL-1β, TNF-α, and BDNF mRNA levels were determined in the somatosensory cortex, frontal cortex, hippocampus, and basal forebrain. Largely, brain IL-1β and TNF-α expression were significantly enhanced throughout CSR. In contrast, BDNF mRNA levels were similar to baseline values in the cortex after 1 day of SR and significantly lower than baseline values in the hippocampus after 5 days of SR. In the basal forebrain, BDNF expression remained elevated throughout the 5 days of CSR, although IL-1β expression was significantly reduced. The chronic elevations of IL-1β and TNF-α and inhibition of BDNF might contribute to the reported lack of SWA responses reported after CSR. Further, the CSR-induced enhancements in brain inflammatory molecules and attenuations in hippocampal BDNF might contribute to neurocognitive and vigilance detriments that occur from CSR.

  11. Inhomogeneity in optical properties of rat brain: a study for LLLT dosimetry

    NASA Astrophysics Data System (ADS)

    Sousa, Marcelo V. P.; Prates, Renato; Kato, Ilka T.; Sabino, Caetano P.; Yoshimura, Tania M.; Suzuki, Luis C.; Magalhães, Ana C.; Yoshimura, Elisabeth M.; Ribeiro, Martha S.

    2013-03-01

    Over the last few years, low-level light therapy (LLLT) has shown an incredible suitability for a wide range of applications for central nervous system (CNS) related diseases. In this therapeutic modality light dosimetry is extremely critical so the study of light propagation through the CNS organs is of great importance. To better understand how light intensity is delivered to the most relevant neural sites we evaluated optical transmission through slices of rat brain point by point. We experimented red (λ = 660 nm) and near infrared (λ = 808 nm) diode laser light analyzing the light penetration and distribution in the whole brain. A fresh Wistar rat (Rattus novergicus) brain was cut in sagittal slices and illuminated with a broad light beam. A high-resolution digital camera was employed to acquire data of transmitted light. Spatial profiles of the light transmitted through the sample were obtained from the images. Peaks and valleys in the profiles show sites where light was less or more attenuated. The peak intensities provide information about total attenuation and the peak widths are correlated to the scattering coefficient at that individual portion of the sample. The outcomes of this study provide remarkable information for LLLT dose-dependent studies involving CNS and highlight the importance of LLLT dosimetry in CNS organs for large range of applications in animal and human diseases.

  12. Binge-like eating attenuates nisoxetine feeding suppression, stress activation, and brain norepinephrine activity.

    PubMed

    Bello, Nicholas T; Yeh, Chung-Yang; Verpeut, Jessica L; Walters, Amy L

    2014-01-01

    Stress is often associated with binge eating. A critical component of the control of stress is the central norepinephrine system. We investigated how dietary-induced binge eating alters central norepinephrine and related behaviors. Young male Sprague Dawley rats received calorie deprivation (24 h) and /or intermittent sweetened fat (vegetable shortening with sucrose; 30 min) twice a week for 10 weeks. The groups were Restrict Binge (calorie deprivation/sweetened fat), Binge (sweetened fat), Restrict (calorie deprivation), and Naive (no calorie deprivation/no sweetened fat). Dietary-induced binge eating was demonstrated by Restrict Binge and Binge, which showed an escalation in 30-min intake over time. Feeding suppression following nisoxetine (3 mg/kg; IP), a selective norepinephrine reuptake inhibitor, was not evident in Restrict Binge (Restrict Binge: 107±13, Binge: 52±9, Restrict: 80±8, Naive: 59±13% of saline injection at 1 h). In subsequent experiments with Restrict Binge and Naive, Restrict Binge had reduced corticosterone (Restrict Binge: 266±25; Naive: 494±36 ng/ml) and less feeding suppression (Restrict Binge: 81±12, Naive: 50±11% of non-restraint intake at 30 min) following restraint stress (1 h). Dietary-induced binge eating in Restrict Binge was not altered by a dorsal noradrenergic bundle lesion caused by N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4), but frontal cortex norepinephrine was positively correlated with the average 30-min intake post-lesion (0.69; p<0.01). In a separate set of animals, single-unit in vivo electrophysiological recording of locus coeruleus-norepinephrine neural activity demonstrated reduced sensory-evoked response as a consequence of the Restrict Binge schedule (Restrict Binge: 8.1±0.67, Naive: 11.9±1.09 Hz). These results, which suggest that a consequence of dietary-induced binge eating is to attenuate the responsiveness of the brain norepinephrine system, will further our understanding of how highly palatable

  13. Estradiol attenuates down-regulation of PEA-15 and its two phosphorylated forms in ischemic brain injury

    PubMed Central

    2015-01-01

    Estradiol exerts a neuroprotective effect against focal cerebral ischemic injury through the inhibition of apoptotic signals. Phosphoprotein enriched in astrocytes 15 (PEA-15) is mainly expressed in brain that perform anti-apoptotic functions. This study investigated whether estradiol modulates the expression of PEA-15 and two phosphorylated forms of PEA-15 (Ser 104 and Ser 116) in middle cerebral artery occlusion (MCAO)-induced injury and glutamate exposure-induced neuronal cell death. Adult female rats were ovariectomized to remove endogenous estradiol and treated with vehicle or estradiol prior to MCAO. Focal cerebral ischemia was induced by MCAO and cerebral cortices were collected 24 h after MCAO. Western blot analysis indicated that estradiol prevents the MCAO-induced decrease in PEA-15, phospho-PEA-15 (Ser 104), phospho-PEA-15 (Ser 116). Glutamate exposure induced a reduction in PEA-15, phospho-PEA-15 (Ser 104), phospho-PEA-15 (Ser 116) in cultured neurons, whereas estradiol treatment attenuated the glutamate toxicity-induced decrease in the expression of these proteins. It has been known that phosphorylation of PEA-15 is an important step in carrying out its anti-apoptotic function. Thus, these findings suggest that the regulation of PEA-15 phosphorylation by estradiol contributes to the neuroprotective function of estradiol in ischemic brain injury. PMID:25806082

  14. Effect of zinc supplements in the attenuated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat heart.

    PubMed

    Kansal, Sunil Kumar; Jyoti, Uma; Sharma, Samridhi; Kaura, Arun; Deshmukh, Rahul; Goyal, Sandeep

    2015-06-01

    Hyperlipidemia is regarded as independent risk factor in the development of ischemic heart disease, and it can increase the myocardial susceptibility to ischemia-/reperfusion (I/R)-induced injury. Hyperlipidemia attenuates the cardioprotective response of ischemic preconditioning (IPC). The present study investigated the effect of zinc supplements in the attenuated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat hearts. Hyperlipidemia was induced in rat by feeding high-fat diet (HFD) for 6 weeks then the serum lipid profile was observed. In experiment, the isolated Langendorff rat heart preparation was subjected to 4 cycles of ischemic preconditioning (IPC), then 30 min of ischemia followed by 120 min of reperfusion. Myocardial infarct size was elaborated morphologically by triphenyltetrazolium chloride (TTC) staining and biochemically by lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) release from coronary effluent and left ventricular collagen content. However, the effect of zinc supplement, i.e., zinc pyrithione (10 μM) perfused during reperfusion for 120 min, significantly abrogated the attenuated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat heart whereas administration of chelator of this zinc ionophore, i.e., N,N,N',N'-tetrakis(2-pyridylmethyl)ethylene diamine (TPEN; 10 μM), perfused during reperfusion 2 min before the perfusion of zinc pyrithione abrogated the cardioprotective effect of zinc supplement during experiment in hyperlipidemic rat heart. Thus, the administration of zinc supplements limits the infarct size, LDH, and CK-MB and enhanced the collagen level which suggests that the attenuated cardioprotective effect of IPC in hyperlipidemic rat is due to zinc loss during reperfusion caused by ischemia/reperfusion.

  15. Bupropion attenuates methamphetamine self-administration in adult male rats.

    PubMed

    Reichel, Carmela M; Murray, Jennifer E; Grant, Kathleen M; Bevins, Rick A

    2009-02-01

    Bupropion is a promising candidate medication for methamphetamine use disorder. As such, we used a preclinical model of drug-taking to determine the effects of bupropion on the reinforcing effects of methamphetamine (0.025, 0.05 or 0.1 mg/kg/infusion). Specificity was determined by investigating the effects of bupropion on responding maintained by sucrose. In the self-administration study, rats were surgically prepared with indwelling jugular catheters and trained to self-administer methamphetamine under an FR5 schedule. A separate group of rats was trained to press a lever for sucrose. Once responding stabilized, rats were pretreated with bupropion (0, 10, 30 and 60 mg/kg i.p.) 5 min before chamber placement in a unique testing order. Following acute testing, rats were then repeatedly pretreated with 30 and 60 mg/kg bupropion. Acute treatments of bupropion dose dependently reduced drug intake for 0.025-0.1 mg/kg methamphetamine; sucrose deliveries were only reduced with the high bupropion dose. Repeated exposure to 60 mg/kg bupropion before the session resulted in a consistent decrease in methamphetamine intake (0.05 and 0.1 mg/kg) and sucrose deliveries. Considered together, this pattern of findings demonstrates that bupropion decreases responding for methamphetamine, but the effects are only somewhat specific.

  16. Memantine ameliorates autistic behavior, biochemistry & blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-06-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder, commonly characterized by altered social behavior, communication, biochemistry and pathological conditions. One percent of the worldwide population suffers from autism and males suffer more than females. NMDA receptors have the important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. This study has been designed to investigate the role of memantine, a NMDA receptor modulator, in prenatal valproic acid-induced autism in rats. Animals with prenatal valproic acid have shown the reduction in social interaction (three-chamber social behavior apparatus), spontaneous alternation (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complex I, II, IV). Furthermore, prenatal valproic acid-treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood-brain barrier permeability. Treatment with memantine has significantly attenuated prenatal valproic acid-induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, memantine has also attenuated the prenatal valproic acid-induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood-brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behavior, biochemistry and blood-brain barrier impairment in animals, which were significantly attenuated by memantine. NMDA receptor modulators like memantine should be explored further for the therapeutic

  17. Brain tumor specifies intermediate progenitor cell identity by attenuating β-catenin/Armadillo activity.

    PubMed

    Komori, Hideyuki; Xiao, Qi; McCartney, Brooke M; Lee, Cheng-Yu

    2014-01-01

    During asymmetric stem cell division, both the daughter stem cell and the presumptive intermediate progenitor cell inherit cytoplasm from their parental stem cell. Thus, proper specification of intermediate progenitor cell identity requires an efficient mechanism to rapidly extinguish the activity of self-renewal factors, but the mechanisms remain unknown in most stem cell lineages. During asymmetric division of a type II neural stem cell (neuroblast) in the Drosophila larval brain, the Brain tumor (Brat) protein segregates unequally into the immature intermediate neural progenitor (INP), where it specifies INP identity by attenuating the function of the self-renewal factor Klumpfuss (Klu), but the mechanisms are not understood. Here, we report that Brat specifies INP identity through its N-terminal B-boxes via a novel mechanism that is independent of asymmetric protein segregation. Brat-mediated specification of INP identity is critically dependent on the function of the Wnt destruction complex, which attenuates the activity of β-catenin/Armadillo (Arm) in immature INPs. Aberrantly increasing Arm activity in immature INPs further exacerbates the defects in the specification of INP identity and enhances the supernumerary neuroblast mutant phenotype in brat mutant brains. By contrast, reducing Arm activity in immature INPs suppresses supernumerary neuroblast formation in brat mutant brains. Finally, reducing Arm activity also strongly suppresses supernumerary neuroblasts induced by overexpression of klu. Thus, the Brat-dependent mechanism extinguishes the function of the self-renewal factor Klu in the presumptive intermediate progenitor cell by attenuating Arm activity, balancing stem cell maintenance and progenitor cell specification.

  18. Brain tumor specifies intermediate progenitor cell identity by attenuating β-catenin/Armadillo activity

    PubMed Central

    Komori, Hideyuki; Xiao, Qi; McCartney, Brooke M.; Lee, Cheng-Yu

    2014-01-01

    During asymmetric stem cell division, both the daughter stem cell and the presumptive intermediate progenitor cell inherit cytoplasm from their parental stem cell. Thus, proper specification of intermediate progenitor cell identity requires an efficient mechanism to rapidly extinguish the activity of self-renewal factors, but the mechanisms remain unknown in most stem cell lineages. During asymmetric division of a type II neural stem cell (neuroblast) in the Drosophila larval brain, the Brain tumor (Brat) protein segregates unequally into the immature intermediate neural progenitor (INP), where it specifies INP identity by attenuating the function of the self-renewal factor Klumpfuss (Klu), but the mechanisms are not understood. Here, we report that Brat specifies INP identity through its N-terminal B-boxes via a novel mechanism that is independent of asymmetric protein segregation. Brat-mediated specification of INP identity is critically dependent on the function of the Wnt destruction complex, which attenuates the activity of β-catenin/Armadillo (Arm) in immature INPs. Aberrantly increasing Arm activity in immature INPs further exacerbates the defects in the specification of INP identity and enhances the supernumerary neuroblast mutant phenotype in brat mutant brains. By contrast, reducing Arm activity in immature INPs suppresses supernumerary neuroblast formation in brat mutant brains. Finally, reducing Arm activity also strongly suppresses supernumerary neuroblasts induced by overexpression of klu. Thus, the Brat-dependent mechanism extinguishes the function of the self-renewal factor Klu in the presumptive intermediate progenitor cell by attenuating Arm activity, balancing stem cell maintenance and progenitor cell specification. PMID:24257623

  19. Dai-Kenchu-To, a Herbal Medicine, Attenuates Colorectal Distention-induced Visceromotor Responses in Rats

    PubMed Central

    Nakaya, Kumi; Nagura, Yohko; Hasegawa, Ryoko; Ito, Hitomi; Fukudo, Shin

    2016-01-01

    Background/Aims Dai-kenchu-to (DKT), a traditional Japanese herbal medicine, is known to increase gastrointestinal motility and improve ileal function. We tested our hypotheses that (1) pretreatment with DKT would block the colorectal distention-induced visceromotor response in rats, and (2) pretreatment with DKT would attenuate colorectal distention-induced adrenocorticotropic hormone (ACTH) release and anxiety-related behavior. Methods Rats were pretreated with vehicle or DKT (300 mg/kg/5 mL, per os). Visceromotor responses were analyzed using electromyography in response to colorectal distention (10, 20, 40, 60, and 80 mmHg for 20 seconds at 3-minutes intervals). Anxiety-related behavior was measured during exposure to an elevated-plus maze after colorectal distention. Plasma ACTH and serum corticosterone levels were measured after exposure to the elevated-plus maze. Results Colorectal distention produced robust contractions of the abdominal musculature, graded according to stimulus intensity, in vehicle-treated rats. At 40, 60, and 80 mmHg of colorectal distention, the visceromotor responses of DKT-treated rats was significantly lower than that of vehicle-treated rats. At 80 mmHg, the amplitude was suppressed to approximately one-third in DKT-treated rats, compared with that in vehicle-treated rats. Smooth muscle compliance and the velocity of accommodation to 60 mmHg of stretching did not significantly differ between the vehicle-treated and DKT-treated rats. Similarly, the DKT did not influence colorectal distention-induced ACTH release, corticosterone levels, or anxiety-related behavior in rats. Conclusions Our results suggest that DKT attenuates the colorectal distention-induced visceromotor responses, without increasing smooth muscle compliance, ACTH release or anxiety-related behavior in rats. PMID:27095743

  20. Actin purification from a gel of rat brain extracts.

    PubMed

    Levilliers, N; Peron-Renner, M; Coffe, G; Pudles, J

    1984-01-01

    Actin, 99% pure, has been recovered from rat brain with a high yield (greater than 15 mg/100 g brain). We have shown that: 1. a low ionic strength extract from rat brain tissue is capable of giving rise to a gel; 2. actin is the main gel component and its proportion is one order of magnitude higher than in the original extract; 3. actin can be isolated from this extract by a three-step procedure involving gelation, dissociation of the gel in 0.6 M KCl, followed by one or two depolymerization-polymerization cycles.

  1. Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease.

    PubMed

    Dhanalakshmi, Chinnasamy; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed; Kalandar, Ameer; Khan, Mohammed Abdul Sattar; Guillemin, Gilles J

    2016-08-01

    Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. We previously reported the neuroprotective effect of vanillin against rotenone induced in in vitro model of PD. The present experiment was aimed to analyze the neuroprotective effect of vanillin on the motor and non-motor deficits, neurochemical variables, oxidative, anti-oxidative indices and the expression of apoptotic markers against rotenone induced rat model of Parkinson's disease (PD). Rotenone treatment exhibited motor and non-motor impairments, neurochemical deficits, oxidative stress and apoptosis, whereas oral administration of vanillin attenuated the above-said indices. However further studies are needed to explore the mitochondrial protective and anti-inflammatory properties of vanillin, as these processes play a vital role in the cause and progression of PD.

  2. Fenbendazole treatment may influence lipopolysaccharide effects in rat brain.

    PubMed

    Hunter, Randy L; Choi, Dong-Young; Kincer, Jeanie F; Cass, Wayne A; Bing, Guoying; Gash, Don M

    2007-10-01

    In evaluating discrepant results between experiments in our laboratory, we collected data that challenge the notion that anthelminthic drugs like FBZ do not alter inflammatory responses. We found that FBZ significantly modulates inflammation in F344 rats intrastriatally injected with LPS. FBZ treatment of LPS-injected rats significantly increased weight loss, microglial activation, and dopamine loss; in addition, FBZ attenuated the LPS-induced loss of astrocytes. Therefore, FBZ treatment altered the effects of LPS injection. Caution should be used in interpreting data collected from rats treated with LPS and FBZ.

  3. Effects of photoradiation therapy on normal rat brain

    SciTech Connect

    Cheng, M.K.; McKean, J.; Boisvert, D.; Tulip, J.; Mielke, B.W.

    1984-12-01

    Laser photoradiation of the brain via an optical fiber positioned 5 mm above a burr hole was performed after the injection of hematoporphyrin derivative (HpD) in 33 normal rats and 6 rats with an intracerebral glioma. Normal rats received HpD, 5 or 10 mg/kg of body weight, followed by laser exposure at various doses or were exposed to a fixed laser dose after the administration of HpD, 2.5 to 20 mg/kg. One control group received neither HpD nor laser energy, and another was exposed to laser energy only. The 6 rats bearing an intracranial 9L glioma were treated with HpD, 5 mg/kg, followed by laser exposure at various high doses. The temperature in the cortex or tumor was measured with a probe during laser exposure. The rats were killed 72 hours after photoradiation, and the extent of necrosis of cerebral tissue was measured microscopically. In the normal rats, the extent of brain damage correlated with increases in the dose of both the laser and the HpD. In all 6 glioma-bearing rats, the high laser doses produced some focal necrosis in the tumors but also damaged adjacent normal brain tissue. The authors conclude that damage to normal brain tissue may be a significant complication of high dose photoradiation therapy for intracranial tumors.

  4. Can Urtica dioica supplementation attenuate mercury intoxication in Wistar rats?

    PubMed Central

    Siouda, Wafa; Abdennour, Cherif

    2015-01-01

    Aim: The objective of this study was to investigate the possible protective role of nettle Urtica dioica (UD) against Hg-induced toxicity. Materials and Methods: A total of 28 rats were equally divided into four groups: the control, the Hg (0.8 g HgCl2/kg in the diet), the UD (1.5 ml UD/rat by gavage), and the Hg+UD group. HgCl2 was daily dissolved in distilled water and immediately mixed with the standard diet. A solution of daily infused fresh nettle leaves in boiling water (16 g in 25 ml) was obtained and then it was administrated by gavage. Biochemical and reproductive markers, in addition to glutathione (GSH) level (liver, kidney and testis) and the histological profiles (testis and epididymis) were evaluated after 1 month exposure. Results: Compared to the control, the levels of glucose, triglycerides, urea, creatinine, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were significantly raised in the Hg group. In the latter group, the concentrations of Mg, Fe, and Ca were significantly decreased. Besides, Hg+UD group has only showed raised AST activity and reduced Mg level. Concerning the fertility markers, Hg has provoked a significant decrease in the spermatozoa’s concentration and motility and in plasma testosterone level as well. Furthermore, hepatic, renal and testicular GSH concentrations have declined significantly in the Hg treated rat compared to the control. A remarkable enhancement of the GSH level was observed in all organs of the UD group. The histological examinations of the Hg group have revealed marked testicular degeneration of the most seminiferous tubules, and showed few sperms in the lumen of epididymis ducts. However, the Hg+UD rats have demonstrated an improved histological structure with the presence of important numbers of sperms in the lumen. In addition, a clear stabilization of organized seminiferous tubules and an increased sperms’ numbers were noted in the UD supplemented rats

  5. Bisphenol A attenuates phenylbiguanide-induced cardio-respiratory reflexes in anaesthetized rats.

    PubMed

    Pant, Jayanti; Pant, Mahendra K; Deshpande, Shripad B

    2012-11-14

    Bisphenol A (BPA), a toxic chemical released from plastics, produces respiratory arrest and hypotension after a latency. The latency was similar to the reflex apnoea induced by the vagal C fibre stimulation. Therefore, the present study was undertaken to examine the effects of chronic and acute exposure to BPA on cardio-respiratory reflexes elicited by phenylbiguanide (PBG). Acute and chronic experiments were performed on adult female rats. In chronic experiments, the animals were ingested with pellets containing BPA (2 μg/kg body weight) or without BPA (time-matched control) for 30 days. Subsequently, the animals were anaesthetized and prepared for recording blood pressure, ECG and respiratory excursions. PBG was injected through jugular vein to evoke reflexes in these animals. In acute experiments, the PBG reflexes were obtained before and after injecting BPA/ethanol. Also vagal afferent activity was recorded in some rats. In time-matched control rats, PBG produced bradycardia, hypotension and tachypnoea over a period of time. The maximal changes were around 50-65%. In BPA treated group, the PBG-induced heart rate and respiratory frequency changes were attenuated significantly. Acute exposure of animals to BPA (35 mg/kg body weight) for 30 min also attenuated the PBG-induced responses significantly. The attenuation of the PBG reflex responses by BPA in acute experiments was associated with decreased vagal afferent activity. The present results indicate that BPA attenuates the protective cardio-respiratory reflexes due to decreased vagal afferent activity.

  6. Chronic Valproate Treatment Blocks D2-like Receptor-Mediated Brain Signaling via Arachidonic Acid in Rats

    PubMed Central

    Ramadan, Epolia; Basselin, Mireille; Taha, Ameer Y.; Cheon, Yewon; Chang, Lisa; Chen, Mei; Rapoport, Stanley I.

    2011-01-01

    Background and Objective Hyperdopaminergic signaling and an upregulated brain arachidonic acid (AA) cascade may contribute to bipolar disorder (BD). Lithium and carbamazepine, FDA-approved for the treatment of BD, attenuate brain dopaminergic D2-like (D2, D3, and D4) receptor signaling involving AA when given chronically to awake rats. We hypothesized that valproate (VPA), with mood-stabilizing properties, would also reduce the D2-like-mediated signaling via AA. Methods An acute dose of quinpirole (1 mg/kg) or saline was administered to unanesthetized rats that had been treated for 30 days with a therapeutically relevant dose of VPA (200 mg/kg/day) or vehicle. Regional brain AA incorporation coefficients, k*, and incorporation rates, Jin, markers of AA signaling and metabolism, were measured by quantitative autoradiography after intravenous [1-14C]AA infusion. Whole brain concentrations of prostaglandin (PG)E2 and thromboxane (TX)B2 also were measured. Results Quinpirole compared to saline significantly increased k* in 40 of 83 brain regions, and increased brain concentrations of PGE2 in chronic vehicle-treated rats. VPA treatment by itself reduced concentrations of plasma unesterified AA and whole brain PGE2 and TXB2, and blocked the quinpirole-induced increments in k* and PGE2. Conclusion These results further support our hypothesis that similar to lithium and carbamazepine, VPA downregulates brain dopaminergic D2-like receptor-signaling involving AA. PMID:21839100

  7. Evaluation of MLACF based calculated attenuation brain PET imaging for FDG patient studies

    NASA Astrophysics Data System (ADS)

    Bal, Harshali; Panin, Vladimir Y.; Platsch, Guenther; Defrise, Michel; Hayden, Charles; Hutton, Chloe; Serrano, Benjamin; Paulmier, Benoit; Casey, Michael E.

    2017-04-01

    Calculating attenuation correction for brain PET imaging rather than using CT presents opportunities for low radiation dose applications such as pediatric imaging and serial scans to monitor disease progression. Our goal is to evaluate the iterative time-of-flight based maximum-likelihood activity and attenuation correction factors estimation (MLACF) method for clinical FDG brain PET imaging. FDG PET/CT brain studies were performed in 57 patients using the Biograph mCT (Siemens) four-ring scanner. The time-of-flight PET sinograms were acquired using the standard clinical protocol consisting of a CT scan followed by 10 min of single-bed PET acquisition. Images were reconstructed using CT-based attenuation correction (CTAC) and used as a gold standard for comparison. Two methods were compared with respect to CTAC: a calculated brain attenuation correction (CBAC) and MLACF based PET reconstruction. Plane-by-plane scaling was performed for MLACF images in order to fix the variable axial scaling observed. The noise structure of the MLACF images was different compared to those obtained using CTAC and the reconstruction required a higher number of iterations to obtain comparable image quality. To analyze the pooled data, each dataset was registered to a standard template and standard regions of interest were extracted. An SUVr analysis of the brain regions of interest showed that CBAC and MLACF were each well correlated with CTAC SUVrs. A plane-by-plane error analysis indicated that there were local differences for both CBAC and MLACF images with respect to CTAC. Mean relative error in the standard regions of interest was less than 5% for both methods and the mean absolute relative errors for both methods were similar (3.4%  ±  3.1% for CBAC and 3.5%  ±  3.1% for MLACF). However, the MLACF method recovered activity adjoining the frontal sinus regions more accurately than CBAC method. The use of plane-by-plane scaling of MLACF images was found to be a

  8. Berberine Attenuates Intestinal Mucosal Barrier Dysfunction in Type 2 Diabetic Rats.

    PubMed

    Gong, Jing; Hu, Meilin; Huang, Zhaoyi; Fang, Ke; Wang, Dingkun; Chen, Qingjie; Li, Jingbin; Yang, Desen; Zou, Xin; Xu, Lijun; Wang, Kaifu; Dong, Hui; Lu, Fuer

    2017-01-01

    Background: Intestinal mucosal barrier dysfunction plays an important role in the development of diabetes mellitus (DM). Berberine (BBR), a kind of isoquinoline alkaloid, is widely known to be effective for both DM and diarrhea. Here, we explored whether the anti-diabetic effect of BBR was related to the intestine mucosal barrier. Methods and Results: The rat model of T2DM was established by high glucose and fat diet feeding and intravenous injection of streptozocin. Then, those diabetic rats were treated with BBR at different concentrations for 9 weeks. The results showed, in addition to hyperglycemia and hyperlipidemia, diabetic rats were also characterized by proinflammatory intestinal changes, altered gut-derived hormones, and 2.77-fold increase in intestinal permeability. However, the treatment with BBR significantly reversed the above changes in diabetic rats, presenting as the improvement of the high glucose and triglyceride levels, the relief of the inflammatory changes of intestinal immune system, and the attenuation of the intestinal barrier damage. BBR treatment at a high concentration also decreased the intestinal permeability by 27.5% in diabetic rats. Furthermore, BBR regulated the expressions of the molecules involved in TLR4/MyD88/NF-κB signaling pathways in intestinal tissue of diabetic rats. Conclusion: The hypoglycemic effects of BBR might be related to the improvement in gut-derived hormones and the attenuation of intestinal mucosal mechanic and immune barrier damages.

  9. Exercise training attenuates the pressor response evoked by peripheral chemoreflex in rats with heart failure.

    PubMed

    Calegari, Leonardo; Mozzaquattro, Bruna B; Rossato, Douglas D; Quagliotto, Edson; Ferreira, Janaina B; Rasia-Filho, Alberto; Dal Lago, Pedro

    2016-09-01

    The effects of exercise training (ExT) on the pressor response elicited by potassium cyanide (KCN) in the rat model of ischemia-induced heart failure (HF) are unknown. We evaluated the effects of ExT on chemoreflex sensitivity and its interaction with baroreflex in rats with HF. Wistar rats were divided into four groups: trained HF (Tr-HF), sedentary HF (Sed-HF), trained sham (Tr-Sham), and sedentary sham (Sed-Sham). Trained animals underwent to a treadmill running protocol for 8 weeks (60 m/day, 5 days/week, 16 m/min). After ExT, arterial pressure (AP), baroreflex sensitivity (BRS), peripheral chemoreflex (KCN: 100 μg/kg body mass), and cardiac function were evaluated. The results demonstrate that ExT induces an improvement in BRS and attenuates the pressor response to KCN relative to the Sed-HF group (P < 0.05). The improvement in BRS was associated with a reduction in the pressor response following ExT in HF rats (P < 0.05). Moreover, ExT induced a reduction in left ventricular end-diastolic pressure and pulmonary congestion compared with the Sed-HF group (P < 0.05). The pressor response to KCN in the hypotensive state is decreased in sedentary HF rats. These results suggest that ExT improves cardiac function and BRS and attenuates the pressor response evoked by KCN in HF rats.

  10. Berberine Attenuates Intestinal Mucosal Barrier Dysfunction in Type 2 Diabetic Rats

    PubMed Central

    Gong, Jing; Hu, Meilin; Huang, Zhaoyi; Fang, Ke; Wang, Dingkun; Chen, Qingjie; Li, Jingbin; Yang, Desen; Zou, Xin; Xu, Lijun; Wang, Kaifu; Dong, Hui; Lu, Fuer

    2017-01-01

    Background: Intestinal mucosal barrier dysfunction plays an important role in the development of diabetes mellitus (DM). Berberine (BBR), a kind of isoquinoline alkaloid, is widely known to be effective for both DM and diarrhea. Here, we explored whether the anti-diabetic effect of BBR was related to the intestine mucosal barrier. Methods and Results: The rat model of T2DM was established by high glucose and fat diet feeding and intravenous injection of streptozocin. Then, those diabetic rats were treated with BBR at different concentrations for 9 weeks. The results showed, in addition to hyperglycemia and hyperlipidemia, diabetic rats were also characterized by proinflammatory intestinal changes, altered gut-derived hormones, and 2.77-fold increase in intestinal permeability. However, the treatment with BBR significantly reversed the above changes in diabetic rats, presenting as the improvement of the high glucose and triglyceride levels, the relief of the inflammatory changes of intestinal immune system, and the attenuation of the intestinal barrier damage. BBR treatment at a high concentration also decreased the intestinal permeability by 27.5% in diabetic rats. Furthermore, BBR regulated the expressions of the molecules involved in TLR4/MyD88/NF-κB signaling pathways in intestinal tissue of diabetic rats. Conclusion: The hypoglycemic effects of BBR might be related to the improvement in gut-derived hormones and the attenuation of intestinal mucosal mechanic and immune barrier damages. PMID:28217099

  11. Induction of oxidative stress in rat brain by acrylonitrile (ACN).

    PubMed

    Jiang, J; Xu, Y; Klaunig, J E

    1998-12-01

    Chronic treatment with acrylonitrile (ACN) has been shown to produce a dose-related increase in glial cell tumors (astrocytomas) in rats. The mechanism(s) for ACN-induced carcinogenicity remains unclear. While ACN has been reported to induce DNA damage in a number of short-term systems, evidence for a genotoxic mechanism of tumor induction is the brain is not strong. Other toxic mechanisms appear to participate in the induction of tumor or induce the astrocytomas solely. In particular, nongenotoxic mechanisms of carcinogen induction have been implicated in this ACN-induced carcinogenic effect in the rat brain. One major pathway of ACN metabolism is through glutathione (GSH) conjugation. Extensive utilization and depletion of GSH, an important intracellular antioxidant, by ACN may lead to cellular oxidative stress. The present study examined the ability of ACN to induce oxidative stress in male Sprague-Dawley rats. Rats were administered ACN at concentrations of 0, 5, 10, 100, or 200 ppm in the drinking water and sampled after 14, 28, or 90 days of continuous treatment. Oxidative DNA damage indicated by the presence of 8-hydroxy-2'-deoxyguanosine (OH8dG) and lipid peroxidation indicated by the presence of malondialdehyde (MDA), a lipid peroxidation product, in rat brains and livers were examined. The levels of reactive oxygen species (ROS) were also determined in different rat tissues. Both the levels of nonenzymatic antioxidants (GSH, vitamin E) and the activities of enzymatic antioxidants (catalase, superoxide dismutase, glutathione peroxidase) in rat brains and livers were measured. Increased levels of OH8dG, MDA, and ROS were found in the brains of ACN-treated rats. Decreased levels of GSH and activities of catalase and SOD were also observed in the brains of ACN-treated rats compared to the control group. Interestingly, there were no changes of these indicators of oxidative stress in the livers of ACN-treated rats. Rat liver is not a target for ACN

  12. Predatory Bacteria Attenuate Klebsiella pneumoniae Burden in Rat Lungs

    PubMed Central

    Singleton, Eric; Tang, Chi; Zuena, Michael; Shukla, Sean; Gupta, Shilpi; Dharani, Sonal; Onyile, Onoyom; Rinaggio, Joseph; Connell, Nancy D.

    2016-01-01

    ABSTRACT Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus are predatory bacteria that naturally—and obligately—prey on other Gram-negative bacteria, and their use has been proposed as a potential new approach to control microbial infection. The ability of predatory bacteria to prey on Gram-negative human pathogens in vitro is well documented; however, the in vivo safety and efficacy of predatory bacteria have yet to be fully assessed. In this study, we examined whether predatory bacteria can reduce bacterial burden in the lungs in an in vivo mammalian system. Initial safety studies were performed by intranasal inoculation of rats with predatory bacteria. No adverse effects or lung pathology were observed in rats exposed to high concentrations of predatory bacteria at up to 10 days postinoculation. Enzyme-linked immunosorbent assay (ELISA) of the immune response revealed a slight increase in inflammatory cytokine levels at 1 h postinoculation that was not sustained by 48 h. Additionally, dissemination experiments showed that predators were efficiently cleared from the host by 10 days postinoculation. To measure the ability of predatory bacteria to reduce microbial burden in vivo, we introduced sublethal concentrations of Klebsiella pneumoniae into the lungs of rats via intranasal inoculation and followed with multiple doses of predatory bacteria over 24 h. Predatory bacteria were able to reduce K. pneumoniae bacterial burden, on average, by more than 3.0 log10 in the lungs of most rats as measured by CFU plating. The work presented here provides further support for the idea of developing predatory bacteria as a novel biocontrol agent. PMID:27834203

  13. Losartan attenuates paraquat-induced pulmonary fibrosis in rats.

    PubMed

    Guo, F; Sun, Y B; Su, L; Li, S; Liu, Z F; Li, J; Hu, X T; Li, J

    2015-05-01

    Paraquat (PQ) is one of the most widely used herbicides in the world and can cause pulmonary fibrosis in the cases with intoxication. Losartan, an angiotensin II type 1 receptor antagonist, has beneficial effects on the treatment of fibrosis. The aim of this study was to examine the effect of losartan on pulmonary fibrosis in PQ-intoxicated rats. Adult male Sprague Dawley rats (n = 32, 180-220 g) were randomly assigned to four groups: (i) control group; (ii) PQ group; (iii) PQ + losartan 7d group; and (iv) PQ + losartan 14d group. Losartan treatment (intragastrically (i.g.), 10 mg/kg) was performed for 7 and 14 days after a single i.g. dose of 40 mg/kg PQ. All rats were killed on the 16th day, and hematoxylin-eosin and Masson's trichrome staining were used to examine lung injury and fibrosis. The levels of hydroxyproline and transforming growth factor β1 (TGF-β1), matrix metallopeptidase 9 (Mmp9), and tissue inhibitor of metalloproteinase 1 (TIMP-1) messenger RNA (mRNA) expression and relative expression levels of collagen type I and III were also detected. PQ caused a significant increase in hydroxyproline content, mRNA expression of TGF-β1, Mmp9, and TIMP-1, and relative expression levels of collagen type I and III ( p < 0.05), while losartan significantly decreased the amount of hydroxyproline and downregulated TGF-β1, Mmp9, and TIMP-1 mRNA and collagen type I and III expressions ( p < 0.05). Histological examination of PQ-treated rats showed lung injury and widespread inflammatory cell infiltration in the alveolar space and pulmonary fibrosis, while losartan could markedly reduce such damage and prevent pulmonary fibrosis. The results of this study indicated that losartan could reduce lung damage and prevent pulmonary fibrosis induced by PQ.

  14. Curcumin attenuates hyperglycaemia-mediated AMPK activation and oxidative stress in cerebrum of streptozotocin-induced diabetic rat.

    PubMed

    Lakshmanan, Arun Prasath; Watanabe, Kenichi; Thandavarayan, Rajarajan A; Sari, Flori R; Meilei, Harima; Soetikno, Vivian; Arumugam, Somasundaram; Giridharan, Vijayasree V; Suzuki, Kenji; Kodama, Makoto

    2011-07-01

    Oxidative stress has been strongly implicated in the pathogenesis of diabetic encephalopathy (DE). Numerous studies have demonstrated a close relationship between oxidative stress and AMPK activation in various disorders, including diabetes-related brain disorders. Since curcumin has powerful antioxidant properties, this study investigated its effects on hyperglycaemia-mediated oxidative stress and AMPK activation in rats with DE. Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ-55 mg/kg BW). The diabetic rats were then orally administered curcumin (100 mg/kg BW) or vehicle for 8 weeks. The cerebra of the diabetic rats displayed upregulated protein expression of AdipoR1, p-AMPKα1, Tak1, GLUT4, NADPH oxidase sub-units, caspase-12 and 3-NT and increased lipid peroxidation in comparison with the controls and all of these effects were significantly attenuated with curcumin treatment, except for the increase in AdipoR1 expressions. These results provide a new insight into the beneficial effects of curcumin on hyperglycaemia-mediated DE, which are produced through the down-regulation of AMPK-mediated gluconeogenesis associated with its anti-oxidant property.

  15. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats

    PubMed Central

    Lee, Eunjo; Song, Min-ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung

    2016-01-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats. PMID:27610034

  16. Tumor necrosis factor-α inhibition attenuates middle cerebral artery remodeling but increases cerebral ischemic damage in hypertensive rats.

    PubMed

    Pires, Paulo W; Girgla, Saavia S; Moreno, Guillermo; McClain, Jonathon L; Dorrance, Anne M

    2014-09-01

    Hypertension causes vascular inflammation evidenced by an increase in perivascular macrophages and proinflammatory cytokines in the arterial wall. Perivascular macrophage depletion reduced tumor necrosis factor (TNF)-α expression in cerebral arteries of hypertensive rats and attenuated inward remodeling, suggesting that TNF-α might play a role in the remodeling process. We hypothesized that TNF-α inhibition would improve middle cerebral artery (MCA) structure and reduce damage after cerebral ischemia in hypertensive rats. Six-week-old male stroke-prone spontaneously hypertensive rats (SHRSP) were treated with the TNF-α inhibitor etanercept (ETN; 1.25 mg·kg(-1)·day(-1) ip daily) or PBS (equivolume) for 6 wk. The myogenic tone generation, postischemic dilation, and passive structure of MCAs were assessed by pressure myography. Cerebral ischemia was induced by MCA occlusion (MCAO). Myogenic tone was unchanged, but MCAs from SHRSP + ETN had larger passive lumen diameter and reduced wall thickness and wall-to-lumen ratio. Cerebral infarct size was increased in SHRSP + ETN after transient MCAO, despite an improvement in dilation of nonischemic MCA. The increase in infarct size was linked to a reduction in the number of microglia in the infarct core and upregulation of markers of classical macrophage/microglia polarization. There was no difference in infarct size after permanent MCAO or when untreated SHRSP subjected to transient MCAO were given ETN at reperfusion. Our data suggests that TNF-α inhibition attenuates hypertensive MCA remodeling but exacerbates cerebral damage following ischemia/reperfusion injury likely due to inhibition of the innate immune response of the brain.

  17. Transport of 3-hydroxybutyrate by cultured rat brain astrocytes

    SciTech Connect

    McKenna, M.C.; Tildon, J.T.; Stevenson, J.H.; Couto, R.; Caprio, F.J. )

    1990-02-26

    Studies by a number of investigators have shown that 3-hydroxybutyrate is a preferred energy substrate for brain during early development. Since recent studies by the authors group suggest that the utilization of oxidizable substrates by brain may be regulated in part by transport across the plasma membrane, the authors investigated the transport of ({sup 3}H) D- and L-3-hydroxybutyrate and 3-hydroxy-(3-{sup 14}C) butyrate by primary cultures of rat brain astrocytes. The data is consistent with the hypothesis that 3-hydroxybutyrate is taken up into cultured rat brain astrocytes by both diffusion and a carrier mediated transport system, and further support the concept that transport at the cellular level contributes to the regulation of substrate utilization by brain cells.

  18. Non-signalling energy use in the developing rat brain

    PubMed Central

    Engl, Elisabeth; Jolivet, Renaud; Hall, Catherine N

    2016-01-01

    Energy use in the brain constrains its information processing power, but only about half the brain's energy consumption is directly related to information processing. Evidence for which non-signalling processes consume the rest of the brain's energy has been scarce. For the first time, we investigated the energy use of the brain's main non-signalling tasks with a single method. After blocking each non-signalling process, we measured oxygen level changes in juvenile rat brain slices with an oxygen-sensing microelectrode and calculated changes in oxygen consumption throughout the slice using a modified diffusion equation. We found that the turnover of the actin and microtubule cytoskeleton, followed by lipid synthesis, are significant energy drains, contributing 25%, 22% and 18%, respectively, to the rate of oxygen consumption. In contrast, protein synthesis is energetically inexpensive. We assess how these estimates of energy expenditure relate to brain energy use in vivo, and how they might differ in the mature brain. PMID:27170699

  19. Non-signalling energy use in the developing rat brain.

    PubMed

    Engl, Elisabeth; Jolivet, Renaud; Hall, Catherine N; Attwell, David

    2017-03-01

    Energy use in the brain constrains its information processing power, but only about half the brain's energy consumption is directly related to information processing. Evidence for which non-signalling processes consume the rest of the brain's energy has been scarce. For the first time, we investigated the energy use of the brain's main non-signalling tasks with a single method. After blocking each non-signalling process, we measured oxygen level changes in juvenile rat brain slices with an oxygen-sensing microelectrode and calculated changes in oxygen consumption throughout the slice using a modified diffusion equation. We found that the turnover of the actin and microtubule cytoskeleton, followed by lipid synthesis, are significant energy drains, contributing 25%, 22% and 18%, respectively, to the rate of oxygen consumption. In contrast, protein synthesis is energetically inexpensive. We assess how these estimates of energy expenditure relate to brain energy use in vivo, and how they might differ in the mature brain.

  20. Autophagy activation attenuates renal ischemia-reperfusion injury in rats

    PubMed Central

    Zhang, Ya-Li; Cui, Li-Yan; Yang, Shuo

    2015-01-01

    Ischemia-reperfusion (I/R) injury is a leading cause of acute kidney injury (AKI), which is a common clinical complication but lacks effective therapies. This study investigated the role of autophagy in renal I/R injury and explored potential mechanisms in an established rat renal I/R injury model. Forty male Wistar rats were randomly divided into four groups: Sham, I/R, I/R pretreated with 3-methyladenine (3-MA, autophagy inhibitor), or I/R pretreated with rapamycin (autophagy activator). All rats were subjected to clamping of the left renal pedicle for 45 min after right nephrectomy, followed by 24 h of reperfusion. The Sham group underwent the surgical procedure without ischemia. 3-MA and rapamycin were injected 15 min before ischemia. Renal function was indicated by blood urea nitrogen and serum creatinine. Tissue samples from the kidneys were scored histopathologically. Autophagy was indicated by light chain 3 (LC3), Beclin-1, and p62 levels and the number of autophagic vacuoles. Apoptosis was evaluated by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method and expression of caspase-3. Autophagy was activated after renal I/R injury. Inhibition of autophagy by 3-MA before I/R aggravated renal injury, with worsened renal function, higher renal tissue injury scores, and more tubular apoptosis. In contrast, rapamycin pretreatment ameliorated renal injury, with improved renal function, lower renal tissue injury scores, and inhibited apoptosis based on fewer TUNEL-positive cells and lower caspase-3 expression. Our results demonstrate that autophagy could be activated during I/R injury and play a protective role in renal I/R injury. The mechanisms were involved in the regulation of several autophagy and apoptosis-related genes. Furthermore, autophagy activator may be a promising therapy for I/R injury and AKI in the future. PMID:25898836

  1. Effect of carnosine on rats under experimental brain ischemia.

    PubMed

    Gallant, S; Kukley, M; Stvolinsky, S; Bulygina, E; Boldyrev, A

    2000-06-01

    The effect of dietary carnosine on the behavioral and biochemical characteristics of rats under experimental ischemia was studied. Carnosine was shown to improve the animals orientation and learning in "Open Field" and "T-Maze" tests, and this effect was accompanied with an increase in glutamate binding to N-methyl-D-aspartate (NMDA) receptors in brain synaptosomes. Long-term brain ischemia induced by both sides' occlusion of common carotid arteries resulted in 55% mortality of experimental rats, and those who survived were characterized by partial suppression of orientation in T-maze. In the group of rats treated with carnosine, mortality after ischemic attack was decreased (from 55% to 17%) and most of the learning parameters were kept at the pre-ischemic level. Monoamine oxidase B (MAO B) activity in brain of the carnosine treated rats was not changed by ischemia significantly (compared to that of ischemic untreated rats) but NMDA binding to brain synaptosomal membranes being increased by ischemic attack was significantly suppressed and reached the level characteristic of normal brain. The suggestion was made that carnosine possesses a dual effect on NMDA receptors resulting in increase in their amount after long-term treatment but decrease the capacity to bind NMDA after ischemic attack.

  2. Attenuation and cross-attenuation in taste aversion learning in the rat: Studies with ionizing radiation, lithium chloride and ethanol

    SciTech Connect

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1988-12-01

    The preexposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired preexposures to lithium chloride (3.0 mEq/kg, IP) blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium chloride (3.0 or 1.5 mEq/kg). Preexposure to ethanol (4 g/kg, PO) disrupted the acquisition of an ethanol-induced taste aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiation or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.

  3. Daily sesame oil supplement attenuates joint pain by inhibiting muscular oxidative stress in osteoarthritis rat model.

    PubMed

    Hsu, Dur-Zong; Chu, Pei-Yi; Jou, I-Ming

    2016-03-01

    Osteoarthritis (OA) is the most common form of arthritis, affecting approximately 15% of the population. The aim of this study was to evaluate the efficacy of sesame oil in controlling OA pain in rats. Rat joint pain was induced by medial meniscal transection in Sprague-Dawley rats and assessed by using hindlimb weight distribution method. Muscular oxidative stress was assessed by determining lipid peroxidation, reactive oxygen species and circulating antioxidants. Sesame oil significantly decreased joint pain compared with positive control group in a dose-dependent manner. Sesame oil decreased lipid peroxidation in muscle but not in serum. Further, sesame oil significantly decreased muscular superoxide anion and peroxynitrite generations but increased muscular glutathione and glutathione peroxidase levels. Further, sesame oil significantly increased nuclear factor erythroid-2-related factor (Nrf2) expression compared with positive control group. We concluded that daily sesame oil supplement may attenuate early joint pain by inhibiting Nrf2-associated muscular oxidative stress in OA rat model.

  4. SEROTONIN BINDING TO PREPARATIONS FROM RAT BRAIN,

    DTIC Science & Technology

    BRAIN , SEROTONIN, SEROTONIN, OXIDOREDUCTASES, LYSERGIC ACIDS, RESERPINE, CHLORPROMAZINE, ACETYLCHOLINE, FATTY ACIDS, NOREPINEPHRINE, LEARNING, PERMEABILITY, MITOCHONDRIA, MORPHOLOGY(BIOLOGY), DRUGS, PHYSIOLOGY.

  5. Attenuation of colitis injury in rats using Garcinia cambogia extract.

    PubMed

    dos Reis, Samara Bonesso; de Oliveira, Caroline Candida; Acedo, Simone Coghetto; Miranda, Daniel Duarte da Conceição; Ribeiro, Marcelo Lima; Pedrazzoli, José; Gambero, Alessandra

    2009-03-01

    Inflammatory bowel disease (IBD), Crohn's disease and ulcerative colitis are chronic enteropathies that probably result from a dysregulated mucosal immune response. These pathologies are characterized by oxidative and nitrosative stress, leukocyte infiltration and up-regulation of pro-inflammatory substances. Current IBD treatment presents limitations in both efficacy and safety that stimulated the search for new active compounds. Garcinia cambogia extract has attracted interest due to its pharmacological properties, including gastroprotective effects. In this study, the antiinflammatory activity of a garcinia extract was assessed in TNBS-induced colitis rats. The results obtained revealed that garcinia administration to colitic rats significantly improved the macroscopic damage and caused substantial reductions in increases in MPO activity, COX-2 and iNOS expression. In addition, garcinia extract treatment was able to reduce PGE(2) and IL-1beta colonic levels. These antiinflammatory actions could be related to a reduction in DNA damage in isolated colonocytes, observed with the comet assay. Finally, garcinia extract caused neither mortality nor toxicity signals after oral administration. As such, the antiinflammatory effects provided by the Garcinia cambogia extract result in an improvement of several parameters analysed in experimental colitis and could provide a source for the search for new antiinflammatory compounds useful in IBD treatment.

  6. Protective function of nicotinamide against ketamine-induced apoptotic neurodegeneration in the infant rat brain.

    PubMed

    Ullah, Najeeb; Ullah, Ikram; Lee, Hae Young; Naseer, Muhammad Imran; Seok, Park Moon; Ahmed, Jawad; Kim, Myeong Ok

    2012-05-01

    During development, anesthetics activate neuroapoptosis and produce damage in the central nervous system that leads to several types of neurological disorders. A single dose of ketamine (40 mg/kg) during synaptogenesis in a 7-day-old rat brain activated the apoptotic cascade and caused extensive neuronal cell death in the forebrain. In this study, we investigated the protective effect of nicotinamide against ketamine-induced apoptotic neurodegeneration. After 4 h, neuronal cell death induced by ketamine was associated with the induction of Bax, release of cytochrome c into the cytosol, and activation of caspase-3. One single dose of 1 mg/g nicotinamide was administered to a developing rat and was found to inhibit ketamine-induced neuroapoptosis by downregulating Bax, inhibiting cytochrome c release from mitochondria into cytosol, and inhibiting the expression of activated caspase-3. TUNEL and immunohistochemical analyses showed that ketamine-induced cell death occurred through apoptosis and that it was inhibited by nicotinamide. Fluoro-Jade-B staining demonstrated an increased number of dead cells in the cortex and thalamus after ketamine treatment; treatment with nicotinamide reduced the number of dead cells in these brain regions. Our findings suggest that nicotinamide attenuated ketamine-induced neuronal cell loss in the developing rat brain and is a promising therapeutic and neuroprotective agent for the treatment of neurodevelopmental disorders.

  7. Overexpression of caveolin-1 attenuates brain edema by inhibiting tight junction degradation

    PubMed Central

    Choi, Kang-Ho; Lee, Eun-Bin; Lee, Jung-Kil; Kim, Joon-Tae; Kim, Ja-Hae; Lee, Min-Cheol; Lee, Hong-Joon; Cho, Ki-Hyun

    2016-01-01

    Cerebral edema from the disruption of the blood-brain barrier (BBB) after cerebral ischemia is a major cause of morbidity and mortality as well as a common event in patients with stroke. Caveolins (Cavs) are thought to regulate BBB functions. Here, we report for the first time that Cav-1 overexpression (OE) decreased brain edema from BBB disruption following ischemic insult. Edema volumes and Cav-1 expression levels were measured following photothrombosis and middle cerebral artery occlusion (MCAO). Endothelial cells that were transduced with a Cav-1 lentiviral expression vector were transplanted into rats. BBB permeability was quantified with Evans blue extravasation. Edema volume was determined from measures of the extravasation area, brain water content, and average fluorescence intensity after Cy5.5 injections. Tight junction (TJ) protein expression was measured with immunoblotting. Cav-1 expression levels and vasogenic brain edema correlated strongly after ischemic insult. Cav-1 expression and BBB disruption peaked 3 d after the MCAO. In addition, intravenous administration of endothelial cells expressing Cav-1 effectively increased the Cav-1 levels 3 d after the MCAO ischemic insult. Importantly, Cav-1 OE ameliorated the vasogenic edema by inhibiting the degradation of TJ protein expression in the acute phase of ischemic stroke. These results suggested that Cav-1 OE protected the integrity of the BBB mainly by preventing the degradation of TJ proteins in rats. These findings need to be confirmed in a clinical setting in human subjects. PMID:27708218

  8. Repeated exposure attenuates the behavioral response of rats to static high magnetic fields

    PubMed Central

    Houpt, Thomas A.; Cassell, Jennifer A.; Hood, Alison; DenBleyker, Megan; Janowitz, Ilana; Mueller, Kathleen; Ortega, Breyda; Smith, James C.

    2010-01-01

    Exposure of rats to high strength static magnetic fields of 7 T or above has behavioral effects such as the induction of locomotor circling, the suppression of rearing, and the acquisition of conditioned taste aversion (CTA). To determine if habituation occurs across magnetic field exposures, rats were pre-exposed two times to a 14 T static magnetic field for 30 min on two consecutive days; on the third day, rats were given access to a novel 0.125% saccharin prior to a third 30-min exposure to the 14 T magnetic field. Compared to sham-exposed rats, pre-exposed rats showed less locomotor circling and an attenuated CTA. Rearing was suppressed in all magnet-exposed groups regardless of pre-exposure, suggesting that the suppression of rearing is more sensitive than other behavioral responses to magnet exposure. Habituation was also observed when rats under went pre-exposures at 2–3 hour intervals on a single day. Components of the habituation were also long lasting; a diminished circling response was observed when rats were exposed to magnetic field 36 days after 2 pre-exposures. To control for possible effects of unconditioned stimulus pre-exposure, rats were also tested in a similar experimental design with two injections of LiCl prior to the pairing of saccharin with a third injection of LiCl. Pre-exposure to LiCl did not attenuate the LiCl-induced CTA, suggesting that 2 pre-exposures to an unconditioned stimulus are not sufficient to explain the habituation to magnet exposure. Because the effects of magnetic field exposure are dependent on an intact vestibular apparatus, and because the vestibular system can habituate to many forms of perturbation, habituation to magnetic field exposure is consistent with mediation of magnetic field effects by the vestibular system. PMID:20045422

  9. Intraspinal transplantation of GABAergic neural progenitors attenuates neuropathic pain in rats: a pharmacologic and neurophysiological evaluation

    PubMed Central

    Jergova, Stanislava; Hentall, Ian D.; Gajavelli, Shyam; Varghese, Mathew S.; Sagen, Jacqueline

    2012-01-01

    Dysfunctional γ-aminobutyric acid (GABA)-ergic inhibitory neurotransmission is hypothesized to underlie chronic neuropathic pain. Intraspinal transplantation of GABAergic neural progenitor cells (NPCs) may reduce neuropathic pain by restoring dorsal horn inhibition. Rat NPCs pre-differentiated to a GABAergic phenotype were transplanted into the dorsal horn of rats with unilateral chronic constriction injury (CCI) of the sciatic nerve. GABA signaling in antinociceptive effects of NPC grafts was tested with the GABAA receptor antagonist bicuculline (BIC), GABAB receptor antagonist CGP35348 (CGP) and GABA reuptake inhibitor SKF 89976A (SKF). NPC-treated animals showed decreased hyperalgesia and allodynia 1-3 week post-transplantation; vehicle-injected CCI rats continued displaying pain behaviors. Intrathecal application of BIC or CGP attenuated the antinociceptive effects of the NPC transplants while SKF injection induced analgesia in control rats. Electrophysiological recordings in NPC treated rats showed reduced responses of wide dynamic range (WDR) neurons to peripheral stimulation compared to controls. A spinal application of BIC or CGP increased wind-up response and post-discharges of WDR neurons in NPC treated animals. Results suggest that transplantation of GABAergic NPCs attenuate pain behaviors and reduce exaggerated dorsal horn neuronal firing induced by CCI. The effects of GABA receptor inhibitors suggest participation of continuously released GABA in the grafted animals. PMID:22193109

  10. Pleurotus tuber-regium Polysaccharides Attenuate Hyperglycemia and Oxidative Stress in Experimental Diabetic Rats

    PubMed Central

    Huang, Hui-Yu; Korivi, Mallikarjuna; Chaing, Ying-Ying; Chien, Ting-Yi; Tsai, Ying-Chieh

    2012-01-01

    Pleurotus tuber-regium contains polysaccharides that are responsible for pharmacological actions, and medicinal effects of these polysaccharides have not yet been studied in diabetic rats. We examined the antidiabetic, antihyperlipidemic, and antioxidant properties of P. tuber-regium polysaccharides in experimental diabetic rats. Forty rats were equally assigned as diabetic high-fat (DHF) diet and polysaccharides treated DHF groups (DHF+1P, DHF+2P, and DHF+3P, 20 mg/kg bodyweight/8-week). Diabetes was induced by chronic low-dose streptozotocin injections and a high-fat diet to mimic type 2 diabetes. Polysaccharides (1P, 2P, and 3P) were extracted from three different strains of P. tuber-regium. Fasting blood glucose and glycosylated hemoglobin (HbA1c) levels substantially decreased, while serum insulin levels were restored by polysaccharides treatment compared to DHF. Furthermore, plasma total cholesterol, triglycerides, and low-density lipoprotein levels were significantly (P < 0.01) lower in polysaccharide groups. High-density lipoprotein levels were attenuated with polysaccharides against diabetes condition. Polysaccharides inhibited (P < 0.01) the lipid peroxidation index (malondialdehyde), and restored superoxide dismutase and glutathione peroxidase activities in the liver of diabetic rats. The antihyperglycemic property of polysaccharides perhaps boosts the antioxidant system that attenuates oxidative stress. We emphasize that P. tuber-regium polysaccharides can be considered as an alternative medicine to treat hyperglycemia and oxidative stress in diabetic rats. PMID:22973406

  11. An Aminopyridazine Inhibitor of Death Associated Protein Kinase Attenuates Hypoxia-Ischemia Induced Brain Damage

    SciTech Connect

    Velentza, A.V.; Wainwright, M.S.; Zasadzki, M.; Mirzoeva, S.; Haiech, J.; Focia, P.J.; Egli, M.; Watterson, D.M.

    2010-03-08

    Death associated protein kinase (DAPK) is a calcium and calmodulin regulated enzyme that functions early in eukaryotic programmed cell death, or apoptosis. To validate DAPK as a potential drug discovery target for acute brain injury, the first small molecule DAPK inhibitor was synthesized and tested in vivo. A single injection of the aminopyridazine-based inhibitor administered 6 h after injury attenuated brain tissue or neuronal biomarker loss measured, respectively, 1 week and 3 days later. Because aminopyridazine is a privileged structure in neuropharmacology, we determined the high-resolution crystal structure of a binary complex between the kinase domain and a molecular fragment of the DAPK inhibitor. The co-crystal structure describes a structural basis for interaction and provides a firm foundation for structure-assisted design of lead compounds with appropriate molecular properties for future drug development.

  12. Amygdala central nucleus lesions attenuate acoustic startle stimulus-evoked heart rate changes in rats.

    PubMed

    Young, B J; Leaton, R N

    1996-04-01

    Amygdala central nucleus (CNA) lesions were used to test the hypothesis that stimulus-evoked heart rate changes can reflect the development of fear during acoustic startle testing. A 120-dB white noise startle stimulus produced freezing as well as phasic heart rate accelerations and decelerations, and an abrupt decrease in tonic heart rate, in sham-operated rats. These responses were all significantly reduced in CNA-lesioned rats. In contrast, an 87-dB stimulus elicited only significant phasic decelerations that were similarly attenuated by the CNA lesions. In a follow-up experiment, the CNA lesions also attenuated phasic cardiac decelerations evoked by a conditioned stimulus-like, 85-dB pure tone. The results support the contention (B. J. Young & R.N. Leaton, 1994) that heart rate changes can reflect fear conditioned during acoustic startle testing and, in addition, suggest that the amygdala mediates responses to nonsignal acoustic stimuli.

  13. Proinflammatory cytokines in injured rat brain following perinatal asphyxia.

    PubMed

    Maślińska, Danuta; Laure-Kamionowska, Milena; Kaliszek, Agnieszka; Makarewicz, Dorota

    2002-01-01

    In contrast to astrogliosis, which is common to injuries of the adult CNS, in the developing brain this process is minimal. Reasons postulated for this include the relative immaturity of the immune system and the consequent insufficient production of cytokines to evoke astrogliosis. To explore this hypothesis, the study was undertaken to detect the presence of some proinflammatory cytokines in the injured rat brain following perinatal asphyxia (ischaemia/hypoxia). The localisation of TNF-alpha, IL-15, IL-17 and IL-17 receptors was visualised by means of immunohistochemistry. In numerous neurones of the rat brain, the IL-17 appeared to be constitutively expressed. In the early period of inflammation the IL-15 was produced mainly by the blood cells penetrating the injured brain but later it was synthesised also by reactive astrocytes surrounding brain cysts and forming dense astrogliosis around necrotic brain regions. The direct effect on astrogliosis of other estimated cytokines seems to be negligible. All the results lead to the conclusion that from all cytokines identified in the injured immature rat brain the IL-15 plays the most important role during inflammatory response and participates in the gliosis of reactive astrocytes.

  14. Thermal imaging of brain tumors in a rat glioma model

    NASA Astrophysics Data System (ADS)

    Papaioannou, Thanassis; Thompson, Reid C.; Kateb, Babak; Sorokoumov, Oleg; Grundfest, Warren S.; Black, Keith L.

    2002-05-01

    We have explored the capability of thermal imaging for the detection of brain tumors in a rat glioma mode. Fourteen Wistar rats were injected stereotactically with 100,000 C6 glioma cells. Approximately one and two weeks post implantation, the rats underwent bilateral craniotomy and the exposed brain surface was imaged with a short wave thermal camera. Thermal images were obtained at both low (approximately 28.7 degree(s)C) and high (approximately 38 degree(s)C) core temperatures. Temperature gradients between the tumor site and the contralateral normal brain were calculated. Overall, the tumors appeared cooler than normal brain, for both high and low core temperatures. Average temperature difference between tumor and normal brain were maximal in more advanced tumors (two weeks) and at higher core temperatures. At one week (N equals 6), the average temperature gradient between tumor and normal sites was 0.1 degree(s)C and 0.2 degree(s)C at low and high core temperatures respectively (P(greater than)0.05). At two weeks (N equals 8), the average temperature gradient was 0.3 degree(s)C and 0.7 degree(s)C at low and high core temperatures respectively (P<0.05). We conclude that thermal imaging can detect temperature differences between tumor and normal brain tissue in this model, particularly in more advanced tumors. Thermal imaging may provide a novel means to identify brain tumors intraoperatively.

  15. Isoflurane anesthesia initiated at the onset of reperfusion attenuates oxidative and hypoxic-ischemic brain injury.

    PubMed

    Sosunov, Sergey A; Ameer, Xavier; Niatsetskaya, Zoya V; Utkina-Sosunova, Irina; Ratner, Veniamin I; Ten, Vadim S

    2015-01-01

    This study demonstrates that in mice subjected to hypoxia-ischemia (HI) brain injury isoflurane anesthesia initiated upon reperfusion limits a release of mitochondrial oxidative radicals by inhibiting a recovery of complex-I dependent mitochondrial respiration. This significantly attenuates an oxidative stress and reduces the extent of HI brain injury. Neonatal mice were subjected to HI, and at the initiation of reperfusion were exposed to isoflurane with or without mechanical ventilation. At the end of HI and isoflurane exposure cerebral mitochondrial respiration, H2O2 emission rates were measured followed by an assessment of cerebral oxidative damage and infarct volumes. At 8 weeks after HI navigational memory and brain atrophy were assessed. In vitro, direct effect of isoflurane on mitochondrial H2O2 emission was compared to that of complex-I inhibitor, rotenone. Compared to controls, 15 minutes of isoflurane anesthesia inhibited recovery of the compex I-dependent mitochondrial respiration and decreased H2O2 production in mitochondria supported with succinate. This was associated with reduced oxidative brain injury, superior navigational memory and decreased cerebral atrophy compared to the vehicle-treated HI-mice. Extended isoflurane anesthesia was associated with sluggish recovery of cerebral blood flow (CBF) and the neuroprotection was lost. However, when isoflurane anesthesia was supported with mechanical ventilation the CBF recovery improved, the event associated with further reduction of infarct volume compared to HI-mice exposed to isoflurane without respiratory support. Thus, in neonatal mice brief isoflurane anesthesia initiated at the onset of reperfusion limits mitochondrial release of oxidative radicals and attenuates an oxidative stress. This novel mechanism contributes to neuroprotective action of isoflurane. The use of mechanical ventilation during isoflurane anesthesia counterbalances negative effect of isoflurane anesthesia on recovery of

  16. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    SciTech Connect

    Yeh, Lee-Chuan C.; Ford, Jeffery J.; Lee, John C.; Adamo, Martin L.

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  17. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    SciTech Connect

    Weaver, John; Yang, Yirong; Purvis, Rebecca; Weatherwax, Theodore; Rosen, Gerald M.; Liu, Ke Jian

    2014-03-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O{sub 2} may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O{sub 2} is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO{sub 2}in vivo remains largely uncharacterized. This study investigated striatal tissue pO{sub 2} changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO{sub 2}in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO{sub 2} was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO{sub 2} to 64%. More importantly, pO{sub 2} did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO{sub 2} indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO{sub 2}, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO{sub 2}in vivo after METH administration by EPR oximetry. • pO{sub 2} was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO{sub 2} did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO{sub 2} may be associated with a decrease in

  18. Ramelteon attenuates age-associated hypertension and weight gain in spontaneously hypertensive rats.

    PubMed

    Oxenkrug, Gregory F; Summergrad, Paul

    2010-06-01

    The neuroendocrine theory of aging suggests the common mechanisms of developmental (prereproductive) and aging (postreproductive) processes and identified a cluster of conditions (hypertension, obesity, dyslipidemia, type 2 diabetes, menopause, late onset depression, vascular cognitive impairment, impairment of immune defense, and some forms of cancer) as age-associated neuroendocrine disorders (AAND). Obesity, dyslipidemia, hypertension, and type 2 diabetes were later described as metabolic syndrome (MetS). Because melatonin attenuated development of MetS is age-dependent, that is, in young and old, but not in middle-aged rats, we studied the effect of the selective melatonin agonist, Ramelteon, on the two core symptoms of MetS/AAND: hypertension and body weight gain in spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto male rats (WKY). SHR rats developed hypertension at the time of maximal weight gain that coincided with the onset of reproductive activity (8-10 weeks old). Chronic (but not acute) administration of Ramelteon (in drinking water, 8 mg/kg/day, from 4 to 12 weeks of age) attenuated age-associated increase of systolic blood pressure (tail-cuff method) by 45%, and age-associated body weight gain by 30%. Acute and chronic Ramelteon did not affect blood pressure and body weight in normotensive WKY rats. Ramelteon-induced attenuation of age-associated hypertension and weight gain suggests that Ramelteon might attenuate the other symptoms of MetS/AAND and might be useful in the treatment of MetS/AAND during puberty, menopause, and old age.

  19. Effect of Hemin on Brain Alterations and Neuroglobin Expression in Water Immersion Restraint Stressed Rats

    PubMed Central

    Ragy, Merhan; Ali, Fatma; Ramzy, Maggie M.

    2016-01-01

    In the brain, the heme oxygenase (HO) system has been reported to be very active and its modulation seems to play a crucial role in the pathophysiology of neurodegenerative disorders. Hemin as HO-1 inducer has been shown to attenuate neuronal injury so the goal of this study was to assess the effect of hemin therapy on the acute stress and how it would modulate neurological outcome. Thirty male albino rats were divided into three groups: control group and stressed group with six-hour water immersion restraint stress (WIRS) and stressed group, treated with hemin, in which each rat received a single intraperitoneal injection of hemin at a dose level of 50 mg/kg body weight at 12 hours before exposure to WIRS. Stress hormones, oxidative stress markers, malondialdehyde (MDA), and total antioxidant capacity (TAC) were measured and expressions of neuroglobin and S100B mRNA in brain tissue were assayed. Our results revealed that hemin significantly affects brain alterations induced by acute stress and this may be through increased expression of neuroglobin and through antioxidant effect. Hemin decreased blood-brain barrier damage as it significantly decreased the expression of S100B. These results suggest that hemin may be an effective therapy for being neuroprotective against acute stress. PMID:27073715

  20. Swimming attenuates D-galactose-induced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics.

    PubMed

    Kou, Xianjuan; Li, Jie; Liu, Xingran; Chang, Jingru; Zhao, Qingxia; Jia, Shaohui; Fan, Jingjing; Chen, Ning

    2017-03-16

    MicroRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. In order to explore the regulatory role of miR-34a in aging-related diseases such as Alzheimer's disease (AD) during exercise intervention, we constructed a rat model with (D-galactose) D-gal-induced oxidative stress and cognitive impairment coupled with dysfunctional autophagy and abnormal mitochondrial dynamics, determined the mitigation of cognitive impairment of D-gal-induced aging rats during swimming intervention, and evaluated miR-34a-mediated functional status of autophagy and abnormal mitochondrial dynamics. Meanwhile, whether the up-regulation of miR-34a can lead to dysfunctional autophagy and abnormal mitochondrial dynamics was confirmed in human SH-SY5Y cells with silenced miR-34a by the transfection of miR-34a inhibitor. Results indicated that swimming intervention could significantly attenuate cognitive impairment, rescue the up-regulation of miR-34a, mitigate the dysfunctional autophagy, and inhibit the increase of Drp1 in D-gal-induced aging model rats. In contrast, miR-34a inhibitor in cell model not only attenuated D-gal-induced autophagy impairment, but also decreased the expression of Drp1 and Mfn2. Therefore, swimming training can attenuate the impairment of miR-34a-mediated autophagy and abnormal mitochondrial dynamics during D-gal-induced aging process in rat hippocampal tissue, which may be one of the mechanisms for delaying brain aging through swimming training, and miR-34a could be the novel therapeutic target for aging-related diseases such as AD.

  1. Quetiapine attenuates cognitive impairment and decreases seizure susceptibility possibly through promoting myelin development in a rat model of malformations of cortical development.

    PubMed

    Ma, Lei; Yang, Feng; Zhao, Rui; Li, Li; Kang, Xiaogang; Xiao, Lan; Jiang, Wen

    2015-10-05

    Developmental delay, cognitive impairment, and refractory epilepsy are the most frequent consequences found in patients suffering from malformations of cortical development (MCD). However, therapeutic options for these psychiatric and neurological comorbidities are currently limited. The development of white matter undergoes dramatic changes during postnatal brain maturation, thus myelination deficits resulting from MCD contribute to its comorbid diseases. Consequently, drugs specifically targeting white matter are a promising therapeutic option for the treatment of MCD. We have used an in utero irradiation rat model of MCD to investigate the effects of postnatal quetiapine treatment on brain myelination as well as neuropsychological and cognitive performances and seizure susceptibility. Fatally irradiated rats were treated with quetiapine (10mg/kg, i.p.) or saline once daily from postnatal day 0 (P0) to P30. We found that postnatal administration of quetiapine attenuated object recognition memory impairment and improved long-term spatial memory in the irradiated rats. Quetiapine treatment also reduced the susceptibility and severity of pentylenetetrazol-induced seizures. Importantly, quetiapine treatment resulted in an inhibition of irradiation-induced myelin breakdown in the cerebral cortex and corpus callosum. These findings suggest that quetiapine may have beneficial, postnatal effects in the irradiated rats, strongly suggesting that improving MCD-derived white matter pathology is a possible underlying mechanism. Collectively, these results indicate that brain myelination represents an encouraging pharmacological target to improve the prognosis of patients with MCD.

  2. Prenatal choline supplementation attenuates spatial learning deficits of offspring rats exposed to low-protein diet during fetal period.

    PubMed

    Zhu, Cui-Hong; Wu, Ting; Jin, Yu; Huang, Bi-Xia; Zhou, Rui-Fen; Wang, Yi-Qin; Luo, Xiao-Lin; Zhu, Hui-Lian

    2016-06-01

    Prenatal intake of choline has been reported to lead to enhanced cognitive function in offspring, but little is known about the effects on spatial learning deficits. The present study examined the effects of prenatal choline supplementation on developmental low-protein exposure and its potential mechanisms. Pregnant female rats were fed either a normal or low-protein diet containing sufficient choline (1.1g/kg choline chloride) or supplemented choline (5.0g/kg choline chloride) until delivery. The Barnes maze test was performed at postnatal days 31-37. Choline and its metabolites, the synaptic structural parameters of the CA1 region in the brain of the newborn rat, were measured. The Barnes maze test demonstrated that prenatal low-protein pups had significantly greater error scale values, hole deviation scores, strategy scores and spatial search strategy and had lesser random search strategy values than normal protein pups (all P<.05). These alterations were significantly reversed by choline supplementation. Choline supplementation increased the brain levels of choline, betaine, phosphatidylethanolamine and phosphatidylcholine of newborns by 51.35% (P<.05), 33.33% (P<.001), 28.68% (P<.01) and 23.58% (P<.05), respectively, compared with the LPD group. Prenatal choline supplementation reversed the increased width of the synaptic cleft (P<.05) and decreased the curvature of the synaptic interface (P<.05) induced by a low-protein diet. Prenatal choline supplementation could attenuate the spatial learning deficits caused by prenatal protein malnutrition by increasing brain choline, betaine and phospholipids and by influencing the hippocampus structure.

  3. Role of AT1 receptors in permeability of the blood-brain barrier in diabetic hypertensive rats.

    PubMed

    Awad, Azza S

    2006-09-01

    The precise mechanisms of vascular diseases in patients with diabetic hypertensive are not clearly understood. There are evidences of alteration in permeability of blood-brain barrier (BBB) in diabetic hypertensive rats. This study sought to examine the effect of candesartan on the systolic blood pressure and the brain endothelial barrier function and antioxidant enzymes in rat brain. Five groups of eight male Sprague-Dawley rats include: control group (gpI), diabetic hypertensive group (gpII), diabetic hypertensive group treated with candesartan (gpIII), diabetic hypertensive rats with epinephrine (gpIV) and diabetic hypertensive rats with epinephrine treated with candesartan (gpV). Diabetes was induced by single injection of 55 mg kg(-1) streptozotocin (STZ) i.p. Blood glucose was measured, rats with blood glucose higher than 300 mg/dl were identified as diabetic. After induction of diabetes, rats received L-NAME (0.5 mg/ml in drinking water for 1 week) starting on the day 4 after STZ injection. Systolic blood pressure (SBP) was recorded two times, at day 0 (before starting L-NAME) and at day 7 (after L-NAME treatment). Also, body weight was measured two times, at initial time (before STZ injection) and terminal (at the last day in the experiment). On the day of acute experiment, rats were anesthetized with sodium pentobarbital (35 mg/kg, i.p.). The integrity of the BBB was investigated using Evans blue (EB) dye (4 ml/kg, 2%). Epinephrine was used (40 micro g/kg) to increase the permeability of the brain. After decapitation, first the brain was removed, next homogenized and then the content of EB dye in the brain was measured. Another five groups of rats manipulated with the same manner except EB dye injection. These second group to evaluate antioxidant enzymes, reduced glutathione (GSH), lipid peroxides and superoxide dismutase (SOD) in brain homogenate. This study indicates that, in diabetic hypertensive rats, epinephrine administration leads to increase in

  4. Bees' Honey Attenuation of Metanil-Yellow-Induced Hepatotoxicity in Rats

    PubMed Central

    Al-Malki, Abdulrahman L.; Sayed, Ahmed Amir Radwan

    2013-01-01

    The present study aims to investigate the protective effect of bees' honey against metanil-yellow-induced hepatotoxicity in rats. Rats were divided into 7 groups: control group; three groups treated with 50, 100, and 200 mg/kg metanil yellow, and three groups treated with metanil yellow plus 2.5 mg · kg−1 · day−1 bees' honey for 8 weeks. The obtained data showed that the antioxidant/anti-inflammatory activity of bees' honey reduced the oxidative stress in the liver tissue and downregulated the inflammatory markers. In addition, the elevated levels of AGE and the activated NF-κB in the metanil-yellow-treated animals were significantly attenuated. Moreover, the levels of TNF-α and IL-1β were significantly attenuated as a result of bees' honey administration. Furthermore, the histopathological examination of the liver showed that bees' honey reduced fatty degeneration, cytoplasmic vacuolization, and necrosis in metanil-yellow-treated rats. In conclusion, the obtained data suggest that bees' honey has hepatoprotective effect on acute liver injuries induced by metanil-yellow in vivo, and the results suggested that the effect of bees' honey against metanil yellow-induced liver damage is related to its antioxidant/anti-inflammatory properties which attenuate the activation of NF-κB and its controlled genes like TNF-α and IL-1β. PMID:23818929

  5. Petroselinum crispum extract attenuates hepatic steatosis in rats fed with fructose enriched diet.

    PubMed

    Nair, V Yuneesha; Balakrishanan, N; Antony Santiago, J Victor

    2015-01-01

    Non alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and ongoing research efforts are focused on understanding the underlying pathophysiology of hepatic steatosis with the anticipation that these efforts will identify novel therapeutic targets. This study investigated the Petroselinum crispum extract in hepatic steatosis in rats fed with fructose enriched diet. Rats were divided into the 4 groups: Group 1 rats received standard pellet diet with corn starch for the entire experimental period of 8 weeks. Group 2 rats received standard pellet diet and 2 gm/kg body weight crude Parsley leaf ethanol extract for the entire experimental period of 8 weeks. Group 3 rats received modified fructose diet. Group 4 rats received modified fructose diet and 2gm/kg crude Parsley leaf ethanol extract. Hepatic function and structure was evaluated in these rats. Modified fructose diet produced dyslipidemia, hepatic steatosis and infiltration of inflammatory cells in the liver and higher plasma hepatic markers. Petroselinum crispum extract reversed metabolic changes such as abnormal crispum extract attenuated chronic changes in modified fructose diet induced NAFLD (Tab. 2, Fig. 3, Ref. 43).

  6. Hydrophilic solute transport across the rat blood-brain barrier

    SciTech Connect

    Lucchesi, K.J.

    1987-01-01

    Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB) was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of {sup 3}H-inulin and {sup 14}C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients.

  7. Estrogen attenuates chronic volume overload induced structural and functional remodeling in male rat hearts.

    PubMed

    Gardner, Jason D; Murray, David B; Voloshenyuk, Tetyana G; Brower, Gregory L; Bradley, Jessica M; Janicki, Joseph S

    2010-02-01

    We have previously reported gender differences in ventricular remodeling and development of heart failure using the aortocaval fistula model of chronic volume overload in rats. In contrast to males, female rats exhibited no adverse ventricular remodeling and less mortality in response to volume overload. This gender-specific cardioprotection was lost following ovariectomy and was partially restored using estrogen replacement. However, it is not known if estrogen treatment would be as effective in males. The purpose of this study was to evaluate the structural and functional effects of estrogen in male rats subjected to chronic volume overload. Four groups of male rats were studied at 3 days and 8 wk postsurgery as follows: fistula and sham-operated controls, with and without estrogen treatment. Biochemical and histological studies were performed at 3 days postsurgery, with chronic structural and functional effects studied at 8 wk. Measurement of systolic and diastolic pressure-volume relationships was obtained using a blood-perfused isolated heart preparation. Both fistula groups developed significant ventricular hypertrophy after 8 wk of volume overload. Untreated rats with fistula exhibited extensive ventricular dilatation, which was coupled with a loss of systolic function. Estrogen attenuated left ventricular dilatation and maintained function in treated rats. Estrogen treatment was also associated with a reduction in oxidative stress and circulating endothelin-1 levels, as well as prevention of matrix metalloproteinase-2 and -9 activation and breakdown of ventricular collagen in the early stage of remodeling. These data demonstrate that estrogen attenuates ventricular remodeling and disease progression in male rats subjected to chronic volume overload.

  8. Environmental enrichment attenuates the blood brain barrier dysfunction induced by the neonatal hypoxia-ischemia.

    PubMed

    Diaz, Ramiro; Miguel, Patrícia Maidana; Deniz, Bruna Ferrary; Confortim, Heloísa Deola; Barbosa, Sílvia; Mendonça, Monique Culturato Padilha; da Cruz-Höfling, Maria Alice; Pereira, Lenir Orlandi

    2016-10-01

    Environmental enrichment (EE) is considered an efficient neuroprotector against neonatal hypoxia-ischemia (HI). Nevertheless, the mechanisms involved are not yet clear. In this context, the aim of this study was to investigate the effects of neonatal HI and environmental stimulation in the hippocampus of rats at 3 different time points (PND 8, 22 and 60), evaluating some aspects of BBB structure and function. Seven-day-old Wistar rats were divided into four groups: a control group maintained in a standard environment (CTSE), a control group maintained in an enrichment environment (CTEE), an HI group maintained in a standard environment (HISE) and an HI group maintained in an enrichment environment (HIEE). At the 7th postnatal day (PND), rats were submitted to the Levine-Rice model of neonatal HI. This method consists of permanent occlusion of the right common carotid artery with subsequent exposure to hypoxia. Rats from CTEE and HIEE were stimulated with environmental enrichment. The EE protocol started 24h after HI, in which pup rats with their dams were stimulated in a maintained EE (PND 8-22). Subsequently, animals were submitted to daily EE (1h/day, PND 23-60). The expression of some proteins involved in BBB structure (β-catenin, occludin, connexin-43, aquaporin-4, glut-1 and GFAP) were quantified by western blotting in the hippocampi of rats in three periods, at PND 8, 22 and 60. The BBB permeability and integrity was assessed by Evans blue staining and the immunohistochemistry for GFAP in the CA1 region of the hippocampus were also performed. The results showed an HI-induced decreased occludin expression at PND 22 and low levels of occludin, β-catenin and GFAP at PND 60 in the hippocampus of the hypoxic-ischemic rats. Interestingly, in young and adult rats, EE reversed these effects. Evans blue extravasation into the brain parenchyma confirmed the BBB dysfunction brought on by HI. No differences were observed at PND 8, probably due to the immaturity of the

  9. Attenuated glomerular arginine transport prevents hyperfiltration and induces HIF-1α in the pregnant uremic rat.

    PubMed

    Schwartz, Idit F; Grupper, Ayelet; Soetendorp, Hila; Hillel, Oren; Laron, Ido; Chernichovski, Tamara; Ingbir, Merav; Shtabski, Allexander; Weinstein, Talia; Chernin, Gil; Shashar, Moshe; Hershkoviz, Rami; Schwartz, Doron

    2012-08-01

    Pregnancy worsens renal function in females with chronic renal failure (CRF) through an unknown mechanism. Reduced nitric oxide (NO) generation induces renal injury. Arginine transport by cationic amino acid transporter-1 (CAT-1), which governs endothelial NO generation, is reduced in both renal failure and pregnancy. We hypothesize that attenuated maternal glomerular arginine transport promotes renal damage in CRF pregnant rats. In uremic rats, pregnancy induced a significant decrease in glomerular arginine transport and cGMP generation (a measure of NO production) compared with CRF or pregnancy alone and these effects were prevented by l-arginine. While CAT-1 abundance was unchanged in all experimental groups, protein kinase C (PKC)-α, phosphorylated PKC-α (CAT-1 inhibitor), and phosphorylated CAT-1 were significantly augmented in CRF, pregnant, and pregnant CRF animals; phenomena that were prevented by coadministrating l-arginine. α-Tocopherol (PKC inhibitor) significantly increased arginine transport in both pregnant and CRF pregnant rats, effects that were attenuated by ex vivo incubation of glomeruli with PMA (a PKC stimulant). Renal histology revealed no differences between all experimental groups. Inulin and p-aminohippurate clearances failed to augment and renal cortical expression of hypoxia inducible factor-1α (HIF-1α) significantly increased in CRF pregnant rat, findings that were prevented by arginine. These studies suggest that in CRF rats, pregnancy induces a profound decrease in glomerular arginine transport, through posttranslational regulation of CAT-1 by PKC-α, resulting in attenuated NO generation. These events provoke renal damage manifested by upregulation of renal HIF-1α and loss of the ability to increase glomerular filtration rate during gestation.

  10. Effects of ghrelin on postresuscitation brain injury in a rat model of cardiac arrest.

    PubMed

    Xie, Xuemeng; Zhang, Jincheng; Chen, Di; Pan, Hao; Wu, Ziqian; Ge, Dong; Yang, Guangtian

    2015-05-01

    Poor neurological outcome remains a major problem in patients with cardiac arrest. Ghrelin has been shown to be neuroprotective in models of neurologic injury in vitro and in vivo. This study was performed to assess the effects of ghrelin on postresuscitation brain injury in a rat model of cardiac arrest. Sprague-Dawley rats were subjected to 6-min cardiac arrest and resuscitated successfully. Either vehicle (saline) or ghrelin (80 μg/kg) was injected blindly immediately after return of spontaneous circulation (ROSC). A tape removal test was performed to evaluate neurological function at 24, 48, and 72 h after ROSC. Then, brain tissues were harvested and coronal brain sections were analyzed by hematoxylin and eosin (HE) staining for neuronal viability and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining for apoptosis in hippocampal CA1 sectors. In additional groups, rats were sacrificed at 6 h after ROSC, and hippocampal tissues were collected for further analysis. We found that animals treated with ghrelin had improved neurological performances, reduced neuronal injury, and inhibited neuronal apoptosis compared with the vehicle group. Moreover, ghrelin treatment was associated with the following: (1) a decrease in caspase-3 up-regulation and an increased Bcl-2/Bax ratio, (2) a reduction in maleic dialdehyde content and an up-regulation in superoxide dismutase activity, and (3) an increase in uncoupling protein 2 (UCP-2) expression. Our results suggest that ghrelin treatment attenuated postresuscitation brain injury in rats, possibly via regulation of apoptosis, oxidative stress, and mitochondrial UCP-2 expression. Ghrelin may have therapeutic potential when administered after cardiac arrest and cardiopulmonary resuscitation.

  11. Peripheral administration of fetuin-A attenuates early cerebral ischemic injury in rats

    PubMed Central

    Wang, Haichao; Li, Wei; Zhu, Shu; Li, Jianhua; D'Amore, Jason; Ward, Mary F; Yang, Huan; Wu, Rongqian; Jahnen-Dechent, Willi; Tracey, Kevin J; Wang, Ping; Sama, Andrew E

    2010-01-01

    Cerebral ischemia-elicited inflammatory responses are driven by inflammatory mediators produced both by central (e.g., neurons and microglia) and infiltrating peripheral immune cells (e.g., macrophage/monocyte), and contribute to the evolution of tissue injury. A ubiquitous molecule, spermine, is released from injured cells, and counter-regulates release of various proinflammatory cytokines. However, the spermine-mediated anti-inflammatory activities are dependent on the availability of fetuin-A, a liver-derived negative acute-phase protein. Using an animal model of focal cerebral ischemia (i.e., permanent middle cerebral artery occlusion, MCAo), we found that levels of fetuin-A in the ischemic brain tissue were elevated in a time-dependent manner, starting between 2 and 6 h, peaking around 24 to 48 h, and returning to baseline 72 h after MCAo. When administered peripherally, exogenous fetuin-A gained entry across the BBB into the ischemic brain tissue, and dose dependently reduced brain infarct volume at 24 h after MCAo. Meanwhile, fetuin-A effectively attenuated (i) ischemia-induced HMGB1 depletion from the ischemic core; (ii) activation of centrally (e.g., microglia) and peripherally derived immune cells (e.g., macrophage/monocytes); and (iii) TNF production in ischemic brain tissue. Taken together, these experimental data suggest that fetuin-A protects against early cerebral ischemic injury partly by attenuating the brain inflammatory response. PMID:19953099

  12. Apigenin protects blood-brain barrier and ameliorates early brain injury by inhibiting TLR4-mediated inflammatory pathway in subarachnoid hemorrhage rats.

    PubMed

    Zhang, Tingting; Su, Jingyuan; Guo, Bingyu; Wang, Kaiwen; Li, Xiaoming; Liang, Guobiao

    2015-09-01

    Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is associated with high morbidity and mortality. Inflammation has been considered as the major contributor to brain damage after SAH. SAH induces a systemic increase in pro-inflammatory cytokines and chemokines. Disruption of blood-brain barrier (BBB) facilitates the influx of inflammatory cells. It has been reported that the activation of toll-like receptor 4 (TLR4)/NF-κB signaling pathway plays a vital role in the central nervous system diseases. Apigenin, a common plant flavonoid, possesses anti-inflammation effect. In this study, we focused on the effects of apigenin on EBI following SAH and its anti-inflammation mechanism. Our results showed that apigenin (20mg/kg) administration significantly attenuated EBI (including brain edema, BBB disruption, neurological deficient, severity of SAH, and cell apoptosis) after SAH in rats by suppressing the expression of TLR4, NF-κB and their downstream pro-inflammatory cytokines in the cortex and by up-regulating the expression of tight junction proteins of BBB. Double immunofluorescence staining demonstrated that TLR4 was activated following SAH in neurons, microglia cells, and endothelial cells but not in astrocytes. Apigenin could suppress the activation of TLR4 induced by SAH and inhibit apoptosis of cells in the cortex. These results suggested that apigenin could attenuate EBI after SAH in rats by suppressing TLR4-mediated inflammation and protecting against BBB disruption.

  13. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Farkhondeh, Tahereh; Samini, Fariborz

    2017-03-01

    Restraint stress has been indicated to induce oxidative damage in tissues. Several investigations have reported that curcumin (CUR) may have a protective effect against oxidative stress. The present study was designed to investigate the protective effects of CUR on restraint stress induced oxidative stress damage in the brain, liver and kidneys. For chronic restraint stress, rats were kept in the restrainers for 1h every day, for 21 consecutive days. The animals received systemic administrations of CUR daily for 21days. In order to evaluate the changes of the oxidative stress parameters following restraint stress, the levels of malondialdehyde (MDA), reduced glutathione (GSH), as well as antioxidant enzyme activities superoxide dismutase (SOD) glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were measured in the brain, liver and kidney of rats after the end of restraint stress. The restraint stress significantly increased MDA level, but decreased the level of GSH and activists of SOD, GPx, GR, and CAT the brain, liver and kidney of rats in comparison to the normal rats (P<0.001). Intraperitoneal administration of CUR significantly attenuated oxidative stress and lipid peroxidation, prevented apoptosis, and increased antioxidant defense mechanism activity in the tissues versus the control group (P<0.05). This study shows that CUR can prevent restraint stress-induced oxidative damage in the brain, liver and kidney of rats and propose that CUR may be useful agents against oxidative stress in the tissues.

  14. Chrysin, a flavonoid attenuates histological changes of hyperammonemic rats: A dose dependent study.

    PubMed

    Renuka, Mani; Vijayakumar, Natesan; Ramakrishnan, Arumugam

    2016-08-01

    Chrysin (5,7-dihydroxyflavone) is a major component of some traditional medicinal herbs present in honey, propolis and many plant extracts. The study was aimed to illuminate the effect of chrysin in the pathogenesis of ammonium chloride (NH4Cl) induced hyperammonemic rat model in a dose dependent manner. Rats were injected with NH4Cl (100mg/kg b.w.) by intraperitonially (i.p) thrice a week for 8 consecutive weeks for the induction of experimental hyperammonemia. Hyperammonemic rats were treated with chrysin by orally at a dose of 25, 50 & 100mg/kg b.w. respectively. Protective effect of chrysin against hyperammonemia was evaluated by performing biochemical estimations and morphopathological investigations of hematoxylin and eosin stained sections of liver, brain and kidney tissues. Supplementation of chrysin reinstated the levels of blood ammonia, plasma urea, uric acid, total bilirubin, creatinine, brain glutamate, glutamine, nitric oxide (NO) and the activities of Na(+)/K(+)-ATPase, and liver marker enzymes. On the other hand increased level of plasma urea was observed in chrysin treated rats as compared with hyperammonemic rats. Chrysin administration caused distortion of hepatic, brain and kidney architecture as shown by histological examination. Chrysin at a dose (100mg/kg b.w.) showed an utmost decline in the level of all biochemical estimations. Both biochemical and morphological studies clearly revealed that chrysin protects against cell injury induced by ammonia intoxication in a dose-response manner with respect to endogenous antioxidants and hypoammonemic effects.

  15. A morphine conjugate vaccine attenuates the behavioral effects of morphine in rats

    PubMed Central

    Kosten, Therese A.; Shen, Xiaoyun Y.; O'Malley, Patrick W.; Kinsey, Berma M.; Lykissa, Ernest D.; Orson, Frank M.; Kosten, Thomas R.

    2013-01-01

    Vaccines for opioid dependence may provide a treatment that would reduce or slow the distribution of the drug to brain, thus reducing the drug's reinforcing effects. We tested whether a conjugate vaccine against morphine (keyhole limpet hemocyanin-6-succinylmorphine; KLH-6-SM) administered to rats would produce antibodies and show specificity for morphine or other heroin metabolites. The functional effects of the vaccine were tested with antinociceptive and conditioned place preference (CPP) tests. Rats were either vaccinated with KLH-6-SM and received two boosts 3 and 16 weeks later or served as controls and received KLH alone. Anti-morphine antibodies were produced in vaccinated rats; levels increased and were sustained at moderate levels through 24 weeks. Antibody binding was inhibited by free morphine and other heroin metabolites as demonstrated by competitive inhibition ELISA. Vaccinated rats showed reduced morphine CPP, tested during weeks 4 to 6, and decreased antinociceptive responses to morphine, tested at week 7. Brain morphine levels, assessed using gas-chromatography coupled to mass spectrometry (GC–MS) on samples obtained at 26 weeks, were significantly lower in vaccinated rats. This suggests that morphine entry into the brain was reduced or slowed. These results provide support for KLH-6-SM as a candidate vaccine for opioid dependence. PMID:23739535

  16. A morphine conjugate vaccine attenuates the behavioral effects of morphine in rats.

    PubMed

    Kosten, Therese A; Shen, Xiaoyun Y; O'Malley, Patrick W; Kinsey, Berma M; Lykissa, Ernest D; Orson, Frank M; Kosten, Thomas R

    2013-08-01

    Vaccines for opioid dependence may provide a treatment that would reduce or slow the distribution of the drug to brain, thus reducing the drug's reinforcing effects. We tested whether a conjugate vaccine against morphine (keyhole limpet hemocyanin-6-succinylmorphine; KLH-6-SM) administered to rats would produce antibodies and show specificity for morphine or other heroin metabolites. The functional effects of the vaccine were tested with antinociceptive and conditioned place preference (CPP) tests. Rats were either vaccinated with KLH-6-SM and received two boosts 3 and 16 weeks later or served as controls and received KLH alone. Anti-morphine antibodies were produced in vaccinated rats; levels increased and were sustained at moderate levels through 24 weeks. Antibody binding was inhibited by free morphine and other heroin metabolites as demonstrated by competitive inhibition ELISA. Vaccinated rats showed reduced morphine CPP, tested during weeks 4 to 6, and decreased antinociceptive responses to morphine, tested at week 7. Brain morphine levels, assessed using gas-chromatography coupled to mass spectrometry (GC-MS) on samples obtained at 26 weeks, were significantly lower in vaccinated rats. This suggests that morphine entry into the brain was reduced or slowed. These results provide support for KLH-6-SM as a candidate vaccine for opioid dependence.

  17. The nootropic compound BMY-21502 improves spatial learning ability in brain injured rats.

    PubMed

    Pierce, J E; Smith, D H; Eison, M S; McIntosh, T K

    1993-10-08

    Although long-lasting cognitive dysfunction often follows clinical traumatic brain injury (TBI), few pharmacologic regimens have been developed to treat post-traumatic cognitive deficits. We have previously shown that, in the rat, experimental lateral fluid-percussion (FP) brain injury induces a profound impairment in retrograde memory. In the present study, we characterized alterations in the ability of rats to learn a novel task following lateral FP brain injury and examined the potential modulatory effects of the nootropic cognitive enhancer BMY-21502 on post-injury learning. Male Sprague-Dawley rats were subjected to lateral (parasagittal) FP brain injury of moderate severity (2.4 atm) or sham surgery (no injury). On days 7 and 8 post-injury, animals were tested in a Morris water maze for their ability to learn to navigate to a submerged, invisible platform using external visual cues. BMY-21502 (10 mg/kg) or vehicle was administered 30 min prior to the first trial on both days. A highly significant (P < 0.001) impairment in post-injury learning was observed in vehicle-treated brain-injured animals compared with vehicle-treated sham animals. Injured animals treated with BMY-21502 at one week post-injury showed significantly (P < 0.05) improvement in post-injury learning ability compared to injured animals treated with vehicle. Paradoxically, in uninjured control animals BMY-21502 treatment appeared to worsen learning scores. The results of this study indicate that BMY-21502 may be useful for attenuating the dysfunction in learning ability that occurs following TBI.

  18. Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat.

    PubMed

    Feng, Yangzheng; Paul, Ian A; LeBlanc, Michael H

    2006-03-31

    Nicotinamide reduces ischemic brain injury in adult rats. Can similar brain protection be seen in newborn animals? Seven-day-old rat pups had the right carotid artery permanently ligated followed by 2.5 h of 8% oxygen. Nicotinamide 250 or 500 mg/kg was administered i.p. 5 min after reoxygenation, with a second dose given at 6 h after the first. Brain damage was evaluated by weight deficit of the right hemisphere at 22 days following hypoxia. Nicotinamide 500 mg/kg reduced brain weight loss from 24.6 +/- 3.6% in vehicle pups (n = 28) to 11.9 +/- 2.6% in the treated pups (n = 29, P < 0.01), but treatment with 250 mg/kg did not affect brain weight. Nicotinamide 500 mg/kg also improved behavior in rotarod performance. Levels of 8-isoprostaglandin F2alpha measured in the cortex by enzyme immune assay 16 h after reoxygenation was 115 +/- 7 pg/g in the shams (n = 6), 175 +/- 17 pg/g in the 500 mg/kg nicotinamide treated (n = 7), and 320 +/- 79 pg/g in the vehicle treated pups (n = 7, P < 0.05 versus sham, P < 0.05 versus nicotinamide). Nicotinamide reduced the increase in caspase-3 activity caused by hypoxic ischemia (P < 0.01). Nicotinamide reduces brain injury in the neonatal rat, possibly by reducing oxidative stress and caspase-3 activity.

  19. Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat

    PubMed Central

    Feng, Yangzheng; Paul, Ian A.; LeBlanc, Michael H.

    2011-01-01

    Nicotinamide reduces ischemic brain injury in adult rats. Can similar brain protection be seen in newborn animals? Seven-day-old rat pups had the right carotid artery permanently ligated followed by 2.5 h of 8% oxygen. Nicotinamide 250 or 500 mg/kg was administered i.p. 5 min after reoxygenation, with a second dose given at 6 h after the first. Brain damage was evaluated by weight deficit of the right hemisphere at 22 days following hypoxia. Nicotinamide 500 mg/kg reduced brain weight loss from 24.6 ± 3.6% in vehicle pups (n = 28) to 11.9 ± 2.6% in the treated pups (n = 29, P < 0.01), but treatment with 250 mg/kg did not affect brain weight. Nicotinamide 500 mg/kg also improved behavior in rotarod performance. Levels of 8-isoprostaglandin F2α measured in the cortex by enzyme immune assay 16 h after reoxygenation was 115 ± 7 pg/g in the shams (n = 6), 175 ± 17 pg/g in the 500 mg/kg nicotinamide treated (n = 7), and 320 ± 79 pg/g in the vehicle treated pups (n = 7, P < 0.05 versus sham, P < 0.05 versus nicotinamide). Nicotinamide reduced the increase in caspase-3 activity caused by hypoxic ischemia (P < 0.01). Nicotinamide reduces brain injury in the neonatal rat, possibly by reducing oxidative stress and caspase-3 activity. PMID:16533659

  20. Edaravone attenuates intracerebroventricular streptozotocin-induced cognitive impairment in rats.

    PubMed

    Reeta, K H; Singh, Devendra; Gupta, Yogendra K

    2017-02-15

    Alzheimer's disease is a major cause of dementia worldwide. Edaravone, a potent free radical scavenger, is reported to be neuroprotective. The present study was designed to investigate the effect of chronic edaravone administration on intracerebroventricular-streptozotocin (ICV-STZ) induced cognitive impairment in male Wistar rats. Cognitive impairment was developed by single ICV-STZ (3 mg/kg) injection bilaterally on day 1. Edaravone (1, 3 and 10 mg/kg, orally, once daily) was administered for 28 days. Morris water maze and passive avoidance tests were used to assess cognitive functions at baseline and on days 14 and 28. ICV-STZ caused cognitive impairment as evidenced by increased escape latency and decreased time spent in target quadrant in the Morris water maze test and reduced retention latency in the passive avoidance test. STZ caused increase in oxidative stress, cholinesterases, inflammatory cytokines and protein expression of ROCK-II and decrease in protein expression of ChAT. Edaravone ameliorated the STZ-induced cognitive impairment. STZ-induced increase in oxidative stress and increased levels of pro-inflammatory cytokines (TNF-α, IL-1β) were mitigated by edaravone. Edaravone also prevented STZ-induced increased protein expression of ROCK-II. Moreover, edaravone significantly prevented STZ-induced increased activity of cholinesterases in the cortex and hippocampus. The decreased expression of ChAT caused by STZ was brought towards normal by edaravone in the hippocampus. The results thus show that edaravone is protective against STZ-induced cognitive impairment, oxidative stress, cholinergic dysfunction and altered protein expressions. This study thus suggests the potential of edaravone as an adjuvant in the treatment of Alzheimer's disease.

  1. Isatin, regional distribution in rat brain and tissues.

    PubMed

    Watkins, P; Clow, A; Glover, V; Halket, J; Przyborowska, A; Sandler, M

    1990-01-01

    Isatin has recently been identified in rat tissues and normal human urine, where it forms the major proportion of the endogenous monoamine oxidase inhibitor, tribulin. In this paper, we show that isatin, measured by gas chromatography/mass spectrometry, has a distinct regional distribution in rat tissues, with highest concentrations in seminal vesicles (1.6 ?g/g) and vas deferens (3.4 ?g/g). There was also a discontinuous distribution within rat brain, concentrations being highest in the hippocampus (0.13 ?g/g).

  2. Hyperbaric oxygen treatment promotes neural stem cell proliferation in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage.

    PubMed

    Feng, Zhichun; Liu, Jing; Ju, Rong

    2013-05-05

    Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.

  3. Oxidative damage to rat brain in iron and copper overloads.

    PubMed

    Musacco-Sebio, Rosario; Ferrarotti, Nidia; Saporito-Magriñá, Christian; Semprine, Jimena; Fuda, Julián; Torti, Horacio; Boveris, Alberto; Repetto, Marisa G

    2014-08-01

    This study reports on the acute brain toxicity of Fe and Cu in male Sprague-Dawley rats (200 g) that received 0 to 60 mg kg(-1) (ip) FeCl2 or CuSO4. Brain metal contents and time-responses were determined for rat survival, in situ brain chemiluminescence and phospholipid and protein oxidation products. Metal doses hyperbolically defined brain metal content. Rat survival was 91% and 60% after Fe and Cu overloads. Brain metal content increased from 35 to 114 μg of Fe per g and from 3.6 to 34 μg of Cu per g. Brain chemiluminescence (10 cps cm(-2)) increased 3 and 2 times after Fe and Cu overloads, with half maximal responses (C50) of 38 μg of Fe per g of brain and 15 μg of Cu per g of brain, and with half time responses (t1/2) of 12 h for Fe and 20 h for Cu. Phospholipid peroxidation increased by 56% and 31% with C50 of 40 μg of Fe per g and 20 μg of Cu per g and with t1/2 of 9 h and 14 h. Protein oxidation increased by 45% for Fe with a C50 of 40 μg of Fe per g and 18% for Cu with a C50 of 10 μg of Cu per g and a t1/2 of 12 h for both metals. Fe and Cu brain toxicities are likely mediated by Haber-Weiss type HO˙ formation with subsequent oxidative damage.

  4. Sesamol attenuates oxidative stress-mediated experimental acute pancreatitis in rats.

    PubMed

    Chu, P-Y; Srinivasan, P; Deng, J-F; Liu, M-Y

    2012-04-01

    Acute pancreatitis is a potentially fatal disease with no known cure. The initial events in acute pancreatitis may occur within the acinar cells. We examined the effect of sesamol on (i) a cerulein-induced pancreatic acinar cancer cell line, AR42J, and (ii) cerulein-induced experimental acute pancreatitis in rats. Sesamol inhibited amylase activity and increased cell survival. It also inhibited medium lipid peroxidation and 8-hydroxydeoxyguanosine in AR42J cells compared with the cerulein-alone groups. In addition, in cerulein-treated rats, sesamol inhibited serum amylase and lipase levels, pancreatic edema, and lipid peroxidation, but it increased pancreatic glutathione and nitric oxide levels. Thus, we hypothesize that sesamol attenuates cerulein-induced experimental acute pancreatitis by inhibiting the pancreatic acinar cell death associated with oxidative stress in rats.

  5. Regulation of atrial natriuretic peptide receptors in the rat brain

    SciTech Connect

    Saavedra, J.M.

    1987-06-01

    We have studied the localization, kinetics, and regulation of receptors for the circulating form of the atrial natriuretic peptide (ANP; 99-126) in the rat brain. Quantitative autoradiographic techniques and a /sup 125/I-labeled ligand, /sup 125/I-ANP (99-126), were employed. After in vitro autoradiography, quantification was achieved by computerized microdensitometry followed by comparison with /sup 125/I-standards. ANP receptors were discretely localized in the rat brain, with the highest concentrations in circumventricular organs, the choroid plexus, and selected hypothalamic nuclei involved in the production of the antidiuretic hormone vasopressin and in blood-pressure control. Spontaneously (genetic) hypertensive rats showed much lower numbers of ANP receptors than normotensive controls in the subfornical organ, the area postrema, the nucleus of the solitary tract, and the choroid plexus. These changes are in contrast to those observed for receptors of angiotensin II, another circulating peptide with actions opposite to those of ANP. Under conditions of acute dehydration after water deprivation, as well as under conditions of chronic dehydration such as those present in homozygous Brattleboro rats, there was an up-regulation of ANP receptors in the subfornical organ. Our results indicate that in the brain, circumventricular organs contain ANP receptors which could respond to variations in the concentration of circulating ANP. In addition, brain areas inside the blood-brain barrier contain ANP receptors probably related to the endogenous, central ANP system. The localization of ANP receptors and the alterations in their regulation present in genetically hypertensive rats and after dehydration indicate that brain ANP receptors are probably related to fluid regulation, including the secretion of vasopressin, and to cardiovascular function.

  6. Inhibition of miRNA-210 reverses nicotine-induced brain hypoxic-ischemic injury in neonatal rats

    PubMed Central

    Wang, Lei; Ke, Jun; Li, Yong; Ma, Qinyi; Dasgupta, Chiranjib; Huang, Xiaohui; Zhang, Lubo; Xiao, DaLiao

    2017-01-01

    Maternal tobacco use in pregnancy increases the risk of neurodevelopmental disorders and neurobehavioral deficits in postnatal life. The present study tested the hypothesis that perinatal nicotine exposure exacerbated brain vulnerability to hypoxic-ischemic (HI) injury in neonatal rats through up-regulation of miR-210 expression in the developing brain. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps. Experiments of HI brain injury were performed in 10-day-old pups. Perinatal nicotine treatment significantly decreased neonatal body and brain weights, but increased the brain to body weight ratio. Perinatal nicotine exposure caused a significant increase in HI brain infarct size in the neonates. In addition, nicotine enhanced miR-210 expression and significantly attenuated brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase isoform B (TrkB) protein abundance in the brain. Of importance, intracerebroventricular administration of a miR-210 inhibitor (miR-210-LNA) significantly decreased HI-induced brain infarct size and reversed the nicotine-increased vulnerability to brain HI injury in the neonate. Furthermore, miR-210-LNA treatment also reversed nicotine-mediated down-regulation of BDNF and TrkB protein expression in the neonatal brains. These findings provide novel evidence that the increased miR-210 plays a causal role in perinatal nicotine-induced developmental programming of ischemic sensitive phenotype in the brain. It represents a potential novel therapeutic approach for treatment of brain hypoxic-ischemic encephalopathy in the neonate-induced by fetal stress. PMID:28123348

  7. Attenuated dopaminergic tone in the paraventricular nucleus contributing to sympathoexcitation in rats with Type 2 diabetes

    PubMed Central

    Liu, Xuefei; Li, Yulong; Mishra, Paras K.; Patel, Kaushik P.

    2013-01-01

    The study was conducted to investigate the role for dopamine in the centrally mediated sympathoexcitatory response in rats with Type 2 diabetes (T2D). T2D was induced by a combination of high-fat diet (HFD) and low-dose streptozotocin (STZ). HFD/STZ treatment for 12–14 wk resulted in significant increase in the number of FosB-positive cells in the paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM). In anesthetized rats, administration of exogenous dopamine (dopamine hydrochloride, 20 mM) in the PVN, but not in the RVLM, elicited decreases in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in control rats and but not in the T2D rats. Blocking the endogenous dopamine with dopamine D1/D5 receptor antagonist SCH39166 (2 mM) in the PVN and RVLM, resulted in increases in RSNA, MAP, and heart rate (HR) in both control and T2D rats. These responses were significantly attenuated in T2D rats compared with control rats (PVN − ΔRSNA: 21 ± 10 vs. 44 ± 2%; ΔMAP: 7 ± 3 vs. 19 ± 6 mmHg, ΔHR: 17 ± 5 vs. 32 ± 4 bpm, P < 0.05). There were no significant increases in response to dopamine D2/D3 receptor antagonist raclopride application in the PVN and RVLM of both control and T2D rats. Furthermore, there were decreased dopamine D1 receptor and D2 receptor expressions in the PVN of T2D rats. Taken together, these data suggest that reduced endogenous dopaminergic tone within the PVN may contribute to the sympathoexcitation in T2D. PMID:24305061

  8. Endotoxin or cytokines attenuate ozone-induced DNA synthesis in rat nasal transitional epithelium

    SciTech Connect

    Hotchkiss, J.A.; Harkema, J.R. )

    1992-06-01

    Pretreatment of rats with endotoxin (E), a potent inducer of tumor necrosis factor alpha (TNF), and interleukin 1 beta (IL 1), or a combination of TNF and IL1, has been shown to increase levels of lung antioxidant enzymes and protect against pulmonary toxicity associated with hyperoxia. Inhalation of ozone (O3) induces cell injury, followed by increased DNA synthesis, cell proliferation, and secretory cell metaplasia in rat nasal transitional epithelium (NTE). This study was designed to test the effects of E, TNF, and IL1 pretreatment on acute O3-induced NTE cell injury as measured by changes in NTE cell DNA synthesis. Rats were exposed to either 0.8 ppm O3 or air for 6 hr in whole-body inhalation chambers. Immediately before exposure, rats in each group were injected intraperitoneally (ip) with either saline alone or saline containing E, TNF, IL1, or both TNF and IL1. Eighteen hours postexposure, rats were injected ip with bromodeoxyuridine to label cells undergoing DNA synthesis and were euthanized 2 hr later. NTE was processed for light microscopy and immunochemically stained to identify cells that had incorporated BrdU into nuclear DNA. The number of BrdU-labeled NTE nuclei per millimeter of basal lamina was quantitated. There were no significant differences in the number of BrdU-labeled NTE nuclei in air-exposed rats that were injected with E, TNF, IL1, or TNF/IL1 compared with those in saline-injected, air-exposed controls. Rats that were injected with saline and exposed to O3 had approximately 10 times the number of BrdU-labeled NTE nuclei than saline-injected, air-exposed control rats. O3 exposure also induced a significant increase in labeled nuclei in rats that were pretreated with TNF alone. In contrast, pretreatment with E, IL1, or TNF/IL1 attenuated the O3-induced increase in NTE DNA synthesis.

  9. Gelam Honey Attenuates Carrageenan-Induced Rat Paw Inflammation via NF-κB Pathway

    PubMed Central

    Hussein, Saba Zuhair; Mohd Yusoff, Kamaruddin; Makpol, Suzana; Mohd Yusof, Yasmin Anum

    2013-01-01

    The activation of nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of a number of inflammatory diseases. In this study, we investigated the anti-inflammatory mechanism of Gelam honey in inflammation induced rats via NF-κB signalling pathway. Rats paw edema was induced by subplantar injection of 1% carrageenan into the right hind paw. Rats were pre-treated with Gelam honey at different doses (1 or 2 g/kg, p.o.) and NSAID Indomethacin (10 mg/kg, p.o.), in two time points (1 and 7 days). Our results showed that Gelam honey at both concentrations suppressed the gene expressions of NF-κB (p65 & p50) and IκBα in inflamed rats paw tissues. In addition, Gelam honey inhibited the nuclear translocation and activation of NF-κB and decreased the cytosolic degradation of IκBα dose dependently in inflamed rats paw tissues. The immunohistochemical expressions of pro-inflammatory mediators COX-2 and TNF-α were also decreased in inflamed rats paw tissues when treated with Gelam honey. The results of our findings suggest that Gelam honey exhibits its inhibitory effects by attenuating NF-κB translocation to the nucleus and inhibiting IκBα degradation, with subsequent decrease of inflammatory mediators COX-2 and TNF-α. PMID:24015236

  10. Gelam honey attenuates carrageenan-induced rat paw inflammation via NF-κB pathway.

    PubMed

    Hussein, Saba Zuhair; Mohd Yusoff, Kamaruddin; Makpol, Suzana; Mohd Yusof, Yasmin Anum

    2013-01-01

    The activation of nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of a number of inflammatory diseases. In this study, we investigated the anti-inflammatory mechanism of Gelam honey in inflammation induced rats via NF-κB signalling pathway. Rats paw edema was induced by subplantar injection of 1% carrageenan into the right hind paw. Rats were pre-treated with Gelam honey at different doses (1 or 2 g/kg, p.o.) and NSAID Indomethacin (10 mg/kg, p.o.), in two time points (1 and 7 days). Our results showed that Gelam honey at both concentrations suppressed the gene expressions of NF-κB (p65 & p50) and IκBα in inflamed rats paw tissues. In addition, Gelam honey inhibited the nuclear translocation and activation of NF-κB and decreased the cytosolic degradation of IκBα dose dependently in inflamed rats paw tissues. The immunohistochemical expressions of pro-inflammatory mediators COX-2 and TNF-α were also decreased in inflamed rats paw tissues when treated with Gelam honey. The results of our findings suggest that Gelam honey exhibits its inhibitory effects by attenuating NF-κB translocation to the nucleus and inhibiting IκBα degradation, with subsequent decrease of inflammatory mediators COX-2 and TNF-α.

  11. Evaluation of attenuated Salmonella choleraesuis-mediated inhibin recombinant DNA vaccine in rats.

    PubMed

    Hui, F M; Meng, C L; Guo, N N; Yang, L G; Shi, F X; Mao, D G

    2014-08-07

    DNA vaccination has been studied intensively as a potential vaccine technology. We evaluated the effect of an attenuated Salmonella choleraesuis-mediated inhibin DNA vaccine in rats. First, 15 rats were treated with different doses of an inhibin vaccine to evaluate vaccine safety. Next, 30 rats were divided into 3 groups and injected intramuscularly with the inhibin vaccine two (T1) or three times (T2) or with control bacteria (Con) at 4-week intervals. The inhibin antibody levels increased [positive/negative well (P/N) value: T1 vs Con = 2.39 ± 0.01 vs 1.08 ± 0.1; T2 vs Con = 2.36 ± 0.1 vs 1.08 ± 0.1, P < 0.05] at week 2 and were maintained at a high level in T1 and T2 until week 8, although a small decrease in T2 was observed at week 10. Rats in the T1 group showed more corpora lutea compared with the Con group (10.50 ± 0.87 vs 7.4 ± 0.51, P < 0.05). Estradiol (0.439 ± 0.052 vs 0.719 ± 0.063 ng/mL, P < 0.05) and progesterone (1.315 ± 0.2 vs 0.737 ± 0.11 ng/mL, P < 0.05) levels differed significantly at metestrus after week 10 between rats in the T1 and Con groups. However, there were no significant differences in body, ovary, uterus weights, or pathological signs in the ovaries after immunization, indicating that this vaccine is safe. In conclusion, the attenuated S. choleraesuis-mediated inhibin vaccine may be an alternative to naked inhibin plasmids for stimulating ovarian follicular development to increase the ovulation rate in rats.

  12. Ultrafine carbon black attenuates the antihypertensive effect of captopril in spontaneously hypertensive rats.

    PubMed

    Zhang, Xinru; Chen, Yiyong; Wei, Hongying; Qin, Yu; Hao, Yu; Zhu, Yidan; Deng, Furong; Guo, Xinbiao

    2014-12-01

    Particulate matter (PM) has been associated with increased blood pressure (BP) by affecting renin-angiotensin system (RAS) on a systemic level in spontaneously hypertensive rats (SHR). RAS in SHR is also an important target for the angiotensin converting enzyme (ACE) inhibitors such as captopril. We aimed to determine if ultrafine carbon black (UCB) could affect antihypertensive effect of captopril in SHR. The rats were randomly divided into six groups. Group 1 did not receive intratracheal instillation; group 2 received saline instillation plus captopril administration; groups 3, 4 and 5 received 0.15 mg/kg, 0.45 mg/kg and 1.35 mg/kg UCB per instillation plus captopril administration, respectively; group 6 received 1.35 mg/kg UCB instillation only. Rats in the above groups were intratracheally instilled with saline or UCB once every two days for three times and captopril was administered to group 2-5 after the final UCB treatment, once a day for one week. The BP was measured 24 h after each intratracheal instillation. During captopril administration and 24 h after last captopril administration, we measured BP every two days for four times. Our results showed that UCB at the dose of 1.35 mg/kg induced pulmonary and systemic inflammation in SHR. Captopril reduced BP in rats exposed to 0, 0.15 and 0.45 mg/kg UCB seven and eleven days after the first UCB instillation, and had no effect on BP in rats exposed to 1.35 mg/kg UCB. Captopril also reduced angiotensin II (AngII) in rats exposed to saline. The reduction, however, was attenuated with increasing doses of UCB. We conclude that UCB attenuated the antihypertensive effect of captopril in SHR, and the effect was accompanied by a systemic increase in the concentration of AngII.

  13. α-Amyrin attenuates high fructose diet-induced metabolic syndrome in rats.

    PubMed

    Prabhakar, Pankaj; Reeta, K H; Maulik, Subir Kumar; Dinda, Amit Kumar; Gupta, Yogendra Kumar

    2017-01-01

    This study investigated the effect of α-amyrin (a pentacyclic triterpene) on high-fructose diet (HFD)-induced metabolic syndrome in rats. Male Wistar rats were randomly distributed into different groups. The control group was fed normal rat chow diet. The HFD group was fed HFD (60%; w/w) for 42 days. Pioglitazone (10 mg/kg, orally, once daily) was used as a standard drug. α-Amyrin was administered in 3 doses (50, 100, and 200 mg/kg, orally, once daily along with HFD). Plasma glucose, total cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL-C) were estimated. Changes in blood pressure, oral glucose tolerance, and insulin tolerance were measured. Hepatic oxidative stress as well as messenger RNA (mRNA) and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) were analyzed. A significant increase in systolic blood pressure, plasma glucose, total cholesterol, and plasma triglycerides and a significant decrease in HDL-C were observed in HFD rats as compared with control rats. Glucose tolerance and insulin tolerance were also significantly impaired with HFD. α-Amyrin prevented these changes in a dose-dependent manner. Hepatic oxidative stress as well as micro- and macrovesicular fatty changes in hepatocytes caused by HFD were also attenuated by α-amyrin. α-Amyrin preserved the hepatic mRNA and protein levels of PPAR-α, which was reduced in HFD group. This study thus demonstrates that α-amyrin attenuates HFD-induced metabolic syndrome in rats.

  14. TNF-α receptor antagonist attenuates isoflurane-induced cognitive impairment in aged rats

    PubMed Central

    YANG, NENGLI; LIANG, YAFENG; YANG, PEI; WANG, WEIJIAN; ZHANG, XUEZHENG; WANG, JUNLU

    2016-01-01

    Postoperative cognitive dysfunction (POCD), a common clinical in aged patients, is characterized by deficits in cognitive functions in patients following anesthesia and surgery. It has been demonstrated that isoflurane may lead to cognitive impairment in aged rats; however, effective clinical interventions for preventing this disorder are limited. Tumor necrosis factor (TNF)-α has been suggested to be involved in neuroinflammation as well as the development of POCD. Accordingly, the present study aimed to investigate whether TNF-α signaling is involved in the isoflurane-induced cognitive impairment in aged rats, and whether TNF-α receptor antagonist are able to attenuate isoflurane-induced cognitive impairment in aged rats. A population of 20-month-old rats were administered TNF-α receptor antagonist R-7050 or an equal volume of saline by intraperitoneal injection 12 h prior to exposure to isoflurane to model cognitive impairment following anesthesia in old patients. Then the rats were exposed to 1.3% isoflurane for 4 h. In the control group, rats showed impaired cognitive functions evaluated by Morris water maze assay after isoflurane exposure. Furthermore, isoflurane exposure induced marked upregulation of proinflammatory cytokines, including interleukin (IL)-1β, TNF-α, IL-6 and IL-8 in the hippocampus tissue. In the experimental group, intracisternal administration of TNF-α receptor antagonist R-7050 significantly attenuated isoflurane-induced cognitive impairment and upregulation of proinflammatory cytokines. Further investigation revealed that intracisternal administration of TNF-α receptor antagonist R-7050 notably suppressed isoflurane-induced activation of NF-κB and MAPK signaling. Collectively, the present results suggest that TNF-α receptor antagonist may serve as a potential agent for the prevention of anesthesia-induced cognitive decline in aged patients. PMID:27347079

  15. Demonstration of endogenous imipramine like material in rat brain

    SciTech Connect

    Rehavi, M.; Ventura, I.; Sarne, Y.

    1985-02-18

    The extraction and partial purification of an endogenous imipramine-like material from rat brain is described. The endogenous factor obtained after gel filtration and silica chromatography inhibits (/sup 3/H) imipramine specific binding and mimics the inhibitory effect of imipramine on (/sup 3/H) serotonin uptake in both brain and platelet preparations. The effects of the endogenous material are dose-dependent and it inhibits (/sup 3/H) imipramine binding in a competitive fashion. The factor is unevenly distributed in the brain with high concentration in the hypothalamus and low concentration in the cerebellum.

  16. Differential effect of nimodipine in attenuating iron-induced toxicity in brain- and blood-brain barrier-associated cell types.

    PubMed

    Lockman, J A; Geldenhuys, W J; Bohn, K A; Desilva, S F; Allen, D D; Van der Schyf, C J

    2012-01-01

    Metal homeostasis is increasingly being evaluated as a therapeutic target in stroke and neurodegenerative diseases. Metal dysregulation has been shown to lead to protein aggregation, plaque formation and neuronal death. In 2007, we first reported that voltage-gated calcium channels act as a facile conduit for the entry of free ferrous (Fe(2+)) ions into neurons. Herein, we evaluate differential iron toxicity to central nervous system cells and assess the ability of the typical L-type voltage-gated calcium channel blocker nimodipine to attenuate iron-induced toxicity. The data demonstrate that iron sulfate induces a dose-dependent decrease in cell viability in rat brain endothelial cells (RBE4; LC(50) = 150 μM), neuronal cells (Neuro-2α neuroblastoma; LC(50) = 400 μM), and in astrocytes (DI TNC1; LC(50) = 1.1 mM). Pre-treatment with nimodipine prior to iron sulfate exposure provided a significant (P < 0.05) increase in viable cell numbers for RBE4 (2.5-fold), Neuro2-α (~2-fold), and nearly abolished toxicity in primary neurons. Astrocytes were highly resistant to iron toxicity compared to the other cell types tested and nimodipine had no (P > 0.05) protective effect in these cells. The data demonstrate variable susceptibility to iron overload conditions in different cell types of the brain and suggest that typical L-type voltage-gated calcium channel blockers (here represented by nimodipine), may serve as protective agents in conditions involving iron overload, particularly in cell types highly susceptible to iron toxicity.

  17. Attenuation of oxidative stress and cardioprotective effects of zinc supplementation in experimental diabetic rats.

    PubMed

    Barman, Susmita; Srinivasan, Krishnapura

    2017-02-01

    Oxidative stress plays a major role in the pathogenesis of diabetes mellitus, which further exacerbates damage of cardiac, hepatic and other tissues. We have recently reported that Zn supplementation beneficially modulates hyperglycaemia and hypoinsulinaemia, with attendant reduction of associated metabolic abnormalities in diabetic rats. The present study assessed the potential of Zn supplementation in modulating oxidative stress and cardioprotective effects in diabetic rats. Diabetes was induced in Wistar rats with streptozotocin, and groups of diabetic rats were treated with 5- and 10-fold dietary Zn interventions (0·19 and 0·38 g Zn/kg diet) for 6 weeks. The markers of oxidative stress, antioxidant enzyme activities and concentrations of antioxidant molecules, lipid profile, and expressions of fibrosis and pro-apoptotic factors in the cardiac tissue were particularly assessed. Supplemental Zn showed significant attenuation of diabetes-induced oxidative stress in terms of altered antioxidant enzyme activities and increased the concentrations of antioxidant molecules. Hypercholesterolaemia and hyperlipidaemia were also significantly countered by Zn supplementation. Along with attenuated oxidative stress, Zn supplementation also showed significant cardioprotective effects by altering the mRNA expressions of fibrosis and pro-apoptotic factors (by >50 %). The expression of lipid oxidative marker 4-hydroxy-2-nonenal (4-HNE) protein in cardiac tissue of diabetic animals was rectified (68 %) by Zn supplementation. Elevated cardiac and hepatic markers in circulation and pathological abnormalities in cardiac and hepatic tissue architecture of diabetic animals were ameliorated by dietary Zn intervention. The present study indicates that Zn supplementation can attenuate diabetes-induced oxidative stress in circulation as well as in cardiac and hepatic tissues.

  18. Salvianolic acid A attenuates vascular remodeling in a pulmonary arterial hypertension rat model

    PubMed Central

    Chen, Yu-cai; Yuan, Tian-yi; Zhang, Hui-fang; Wang, Dan-shu; Yan, Yu; Niu, Zi-ran; Lin, Yi-huang; Fang, Lian-hua; Du, Guan-hua

    2016-01-01

    Aim: The current therapeutic approaches have a limited effect on the dysregulated pulmonary vascular remodeling, which is characteristic of pulmonary arterial hypertension (PAH). In this study we examined whether salvianolic acid A (SAA) extracted from the traditional Chinese medicine 'Dan Shen' attenuated vascular remodeling in a PAH rat model, and elucidated the underlying mechanisms. Methods: PAH was induced in rats by injecting a single dose of monocrotaline (MCT 60 mg/kg, sc). The rats were orally treated with either SAA (0.3, 1, 3 mg·kg−1·d−1) or a positive control bosentan (30 mg·kg−1·d−1) for 4 weeks. Echocardiography and hemodynamic measurements were performed on d 28. Then the hearts and lungs were harvested, the organ indices and pulmonary artery wall thickness were calculated, and biochemical and histochemical analysis were conducted. The levels of apoptotic and signaling proteins in the lungs were measured using immunoblotting. Results: Treatment with SAA or bosentan effectively ameliorated MCT-induced pulmonary artery remodeling, pulmonary hemodynamic abnormalities and the subsequent increases of right ventricular systolic pressure (RVSP). Furthermore, the treatments significantly attenuated MCT-induced hypertrophic damage of myocardium, parenchymal injury and collagen deposition in the lungs. Moreover, the treatments attenuated MCT-induced apoptosis and fibrosis in the lungs. The treatments partially restored MCT-induced reductions of bone morphogenetic protein type II receptor (BMPRII) and phosphorylated Smad1/5 in the lungs. Conclusion: SAA ameliorates the pulmonary arterial remodeling in MCT-induced PAH rats most likely via activating the BMPRII-Smad pathway and inhibiting apoptosis. Thus, SAA may have therapeutic potential for the patients at high risk of PAH. PMID:27180980

  19. Waxholm Space atlas of the Sprague Dawley rat brain.

    PubMed

    Papp, Eszter A; Leergaard, Trygve B; Calabrese, Evan; Johnson, G Allan; Bjaalie, Jan G

    2014-08-15

    Three-dimensional digital brain atlases represent an important new generation of neuroinformatics tools for understanding complex brain anatomy, assigning location to experimental data, and planning of experiments. We have acquired a microscopic resolution isotropic MRI and DTI atlasing template for the Sprague Dawley rat brain with 39 μm isotropic voxels for the MRI volume and 78 μm isotropic voxels for the DTI. Building on this template, we have delineated 76 major anatomical structures in the brain. Delineation criteria are provided for each structure. We have applied a spatial reference system based on internal brain landmarks according to the Waxholm Space standard, previously developed for the mouse brain, and furthermore connected this spatial reference system to the widely used stereotaxic coordinate system by identifying cranial sutures and related stereotaxic landmarks in the template using contrast given by the active staining technique applied to the tissue. With the release of the present atlasing template and anatomical delineations, we provide a new tool for spatial orientation analysis of neuroanatomical location, and planning and guidance of experimental procedures in the rat brain. The use of Waxholm Space and related infrastructures will connect the atlas to interoperable resources and services for multi-level data integration and analysis across reference spaces.

  20. EVALUATION OF PERFLUOROOCTANE SULFONATE IN THE RAT BRAIN

    EPA Science Inventory

    Perfluorooctane Sulfonate (PFOS) is an environmentally persistent chemical that has been detected in humans and wildlife. PFOS is primarily distributed in liver and blood. The current study evaluated the level of PFOS in the adult and neonatal rat brain and determined whether t...

  1. Experimental induction of corpora amylacea in adult rat brain.

    PubMed

    Schipper, H M

    1998-10-01

    Corpora amylacea (CA) are glycoproteinaceous inclusions that accumulate in astroglia and other brain cells as a function of advancing age and, to an even greater extent, in several human neurodegenerative conditions. The mechanisms responsible for their biogenesis and their subcellular origin(s) remain unclear. We previously demonstrated that the sulfhydryl agent, cysteamine (CSH), promotes the accumulation of CA-like inclusions in cultured rat astroglia. In the present study, we show that subcutaneous administration of CSH to adult rats (150 mg/kg for 6 weeks followed by a 5-week drug-washout period) elicits the accumulation of CA in many cortical and subcortical brain regions. As in the aging human brain and in CSH-treated rat astrocyte cultures, the inclusions are periodic acid-Schiff -positive and are consistently immunostained with antibodies directed against mitochondrial epitopes and ubiquitin. Our findings support our contention that mitochondria are important structural precursors of CA, and that CSH accelerates aging-like processes in rat astroglia both in vitro and in the intact brain.

  2. Thyroid insufficiency in developing rat brain: A genomic analysis.

    EPA Science Inventory

    Thyroid Insufficiency in the Developing Rat Brain: A Genomic Analysis. JE Royland and ME Gilbert, Neurotox. Div., U.S. EPA, RTP, NC, USA. Endocrine disruption (ED) is an area of major concern in environmental neurotoxicity. Severe deficits in thyroid hormone (TH) levels have bee...

  3. Autoradiographic localization of relaxin binding sites in rat brain

    SciTech Connect

    Osheroff, P.L.; Phillips, H.S. )

    1991-08-01

    Relaxin is a member of the insulin family of polypeptide hormones and exerts its best understood actions in the mammalian reproductive system. Using a biologically active 32P-labeled human relaxin, the authors have previously shown by in vitro autoradiography specific relaxin binding sites in rat uterus, cervix, and brain tissues. Using the same approach, they describe here a detailed localization of human relaxin binding sites in the rat brain. Displaceable relaxin binding sites are distributed in discrete regions of the olfactory system, neocortex, hypothalamus, hippocampus, thalamus, amygdala, midbrain, and medulla of the male and female rat brain. Characterization of the relaxin binding sites in the subfornical organ and neocortex reveals a single class of high-affinity sites (Kd = 1.4 nM) in both regions. The binding of relaxin to two of the circumventricular organs (subfornical organ and organum vasculosum of the lamina terminalis) and the neurosecretory magnocellular hypothalamic nuclei (i.e., paraventricular and supraoptic nuclei) provides the anatomical and biochemical basis for emerging physiological evidence suggesting a central role for relaxin in the control of blood pressure and hormone release. They conclude that specific, high-affinity relaxin binding sites are present in discrete regions of the rat brain and that the distribution of some of these sites may be consistent with a role for relaxin in control of vascular volume and blood pressure.

  4. Peripheral administration of the selective inhibitor of soluble Tumor Necrosis Factor (TNF) XPro®1595 attenuates nigral cell loss and glial activation in 6-OHDA hemiparkinsonian rats

    PubMed Central

    Barnum, Christopher J.; Chen, Xi; Chung, Jaegwon; Chang, Jianjun; Williams, Martha; Grigoryan, Nelly; Tesi, Raymond J.; Tansey, Malú G.

    2014-01-01

    BACKGROUND Parkinson's disease (PD) is a complex multi-system age-related neurodegenerative disorder. Targeting the ongoing neuroinflammation in PD patients is one strategy postulated to slow down or halt disease progression. Proof-of-concept studies from our group demonstrated that selective inhibition of soluble Tumor Necrosis Factor (solTNF) by intranigral delivery of dominant negative TNF (DN-TNF) inhibitors reduced neuroinflammation and nigral dopamine (DA) neuron loss in endotoxin and neurotoxin rat models of nigral degeneration. OBJECTIVE As a next step toward human clinical trials, we aimed to determine the extent to which peripherally administered DN-TNF inhibitor XPro®1595 could: i) cross the blood-brain-barrier in therapeutically relevant concentrations, ii) attenuate neuroinflammation (microglia and astrocyte), and iii) mitigate loss of nigral DA neurons in rats receiving a unilateral 6-hydroxydopamine (6-OHDA) striatal lesion. METHODS Rats received unilateral 6-OHDA (20 μg into the right striatum). Three or 14 days after lesion, rats were dosed with XPro®1595 (10 mg/kg in saline, subcutaneous) every third day for 35 days. Forelimb asymmetry was used to assess motor deficits after the lesion; brains were harvested 35 days after the lesion for analysis of XPro®1595 levels, glial activation, and nigral DA neuron number. RESULTS Peripheral subcutaneous dosing of XPro®1595 achieved plasma levels of 1–8 μg/mL and CSF levels of 1–6 ng/mL depending on the time the rats were killed after final XPro®1595 injection. Irrespective of start date, XPro®1595 significantly reduced microglia and astrocyte number in SNpc whereas loss of nigral DA neurons was attenuated when drug was started 3, but not 14 days after the 6-OHDA lesion. CONCLUSIONS Our data suggest that systemically administered XPro®1595 may have disease-modifying potential in PD patients where inflammation is part of their pathology. PMID:25061061

  5. FACS purification of immunolabeled cell types from adult rat brain.

    PubMed

    Guez-Barber, Danielle; Fanous, Sanya; Harvey, Brandon K; Zhang, Yongqing; Lehrmann, Elin; Becker, Kevin G; Picciotto, Marina R; Hope, Bruce T

    2012-01-15

    Molecular analysis of brain tissue is greatly complicated by having many different classes of neurons and glia interspersed throughout the brain. Fluorescence-activated cell sorting (FACS) has been used to purify selected cell types from brain tissue. However, its use has been limited to brain tissue from embryos or transgenic mice with promoter-driven reporter genes. To overcome these limitations, we developed a FACS procedure for dissociating intact cell bodies from adult wild-type rat brains and sorting them using commercially available antibodies against intracellular and extracellular proteins. As an example, we isolated neurons using a NeuN antibody and confirmed their identity using microarray and real time PCR of mRNA from the sorted cells. Our FACS procedure allows rapid, high-throughput, quantitative assays of molecular alterations in identified cell types with widespread applications in neuroscience.

  6. Locomotor damage and brain oxidative stress induced by lead exposure are attenuated by gallic acid treatment.

    PubMed

    Reckziegel, Patrícia; Dias, Verônica Tironi; Benvegnú, Dalila; Boufleur, Nardeli; Silva Barcelos, Raquel Cristine; Segat, Hecson Jesser; Pase, Camila Simonetti; Dos Santos, Clarissa Marques Moreira; Flores, Erico Marlon Moraes; Bürger, Marilise Escobar

    2011-05-30

    We investigated the antioxidant potential of gallic acid (GA), a natural compound found in vegetal sources, on the motor and oxidative damages induced by lead. Rats exposed to lead (50 mg/kg, i.p., once a day, 5 days) were treated with GA (13.5mg/kg, p.o.) or EDTA (110 mg/kg, i.p.) daily, for 3 days. Lead exposure decreased the locomotor and exploratory activities, reduced blood ALA-D activity, and increased brain catalase (CAT) activity without altering other antioxidant defenses. Brain oxidative stress (OS) estimated by lipid peroxidation (TBARS) and protein carbonyl were increased by lead. GA reversed the motor behavior parameters, the ALA-D activity, as well as the markers of OS changed by lead exposure. CAT activity remained high, possibly as a compensatory mechanism to eliminate hydroperoxides during lead poisoning. EDTA, a conventional chelating agent, was not beneficial on the lead-induced motor behavior and oxidative damages. Both GA (less) and EDTA (more) reduced the lead accumulation in brain tissue. Negative correlations were observed between the behavioral parameters and lipid peroxidation and the lead levels in brain tissue. In conclusion, GA may be an adjuvant in lead exposure, mainly by its antioxidant properties against the motor and oxidative damages resulting from such poisoning.

  7. Toxic Chemical from Plastics Attenuates Phenylbiguanide-induced Cardio-respiratory Reflexes in Anaesthetized Rats.

    PubMed

    Pant, Jayanti; Pant, Mahendra K; Chouhan, Shikha; Singh, Surya P; Deshpande, Shripad B

    2015-01-01

    Bisphenol A (BPA) attenuated phenylbiguanide (PBG)-induced cardio-respiratory reflexes involving decreased vagal afferent activity. BPA leaches out from plastics thus it is expected that chronic exposure to plastic boiled (PBW) water will also produce similar changes. Therefore, the present study was undertaken to evaluate the effects of chronic ingestion of PBW on PBG evoked reflexes and were compared with BPA. Adult female rats were ingested BPA containing pellets (2 µg/kg body weight)/PBW/tap water (ad libitum) for 30 days. On day 30, the animals were anaesthetized and BP, ECG and respiratory excursions were recorded. Further, PBG was injected intravenously to evoke cardio-respiratory reflexes and at the end lungs were excised for histopathological examination. BPA concentration in PBW was 6.6 µg/ml estimated by HPLC. In rats receiving tap water, PBG produced bradycardia, hypotension and tachypnoea. In PBW/BPA treated groups, PBG-induced reflexes were attenuated significantly along with emphysematous and consolidative changes in lungs. The present results indicate that PBW attenuates the protective cardio-respiratory reflexes and also produces histopathological changes in lungs.

  8. Prenatal ethanol exposure increases brain cholesterol content in adult rats.

    PubMed

    Barceló-Coblijn, Gwendolyn; Wold, Loren E; Ren, Jun; Murphy, Eric J

    2013-11-01

    Fetal alcohol syndrome is the most severe expression of the fetal alcohol spectrum disorders (FASD). Although alterations in fetal and neonate brain fatty acid composition and cholesterol content are known to occur in animal models of FASD, the persistence of these alterations into adulthood is unknown. To address this question, we determined the effect of prenatal ethanol exposure on individual phospholipid class fatty acid composition, individual phospholipid class mass, and cholesterol mass in brains from 25-week-old rats that were exposed to ethanol during gestation beginning at gestational day 2. While total phospholipid mass was unaffected, phosphatidylinositol and cardiolipin mass was decreased 14 and 43 %, respectively. Exposure to prenatal ethanol modestly altered brain phospholipid fatty acid composition, and the most consistent change was a significant 1.1-fold increase in total polyunsaturated fatty acids (PUFA), in the n-3/n-6 ratio, and in the 22:6n-3 content in ethanolamine glycerophospholipids and in phosphatidylserine. In contrast, prenatal ethanol consumption significantly increased brain cholesterol mass 1.4-fold and the phospholipid to cholesterol ratio was significantly increased 1.3-fold. These results indicate that brain cholesterol mass was significantly increased in adult rats exposed prenatally to ethanol, but changes in phospholipid mass and phospholipid fatty acid composition were extremely limited. Importantly, suppression of postnatal ethanol consumption was not sufficient to reverse the large increase in cholesterol observed in the adult rats.

  9. Perinatal manganese exposure and hydroxyl radical formation in rat brain.

    PubMed

    Bałasz, Michał; Szkilnik, Ryszard; Brus, Ryszard; Malinowska-Borowska, Jolanta; Kasperczyk, Sławomir; Nowak, Damian; Kostrzewa, Richard M; Nowak, Przemysław

    2015-01-01

    The present study was designed to investigate the role of pre- and postnatal manganese (Mn) exposure on hydroxyl radical (HO(•)) formation in the brains of dopamine (DA) partially denervated rats (Parkinsonian rats). Wistar rats were given tap water containing 10,000 ppm manganese chloride during the duration of pregnancy and until the time of weaning. Control rat dams consumed tap water without added Mn. Three days after birth, rats of both groups were treated with 6-hydroxydopamine at one of three doses (15, 30, or 67 µg, intraventricular on each side), or saline vehicle. We found that Mn content in the brain, kidney, liver, and bone was significantly elevated in dams exposed to Mn during pregnancy. In neonates, the major organs that accumulated Mn were the femoral bone and liver. However, Mn was not elevated in tissues in adulthood. To determine the possible effect on generation of the reactive species, HO(•) in Mn-induced neurotoxicity, we analyzed the contents of 2.3- and 2.5-dihydroxybenzoic acid (spin trap products of salicylate; HO(•) being an index of in vivo HO(•) generation), as well as antioxidant enzyme activities of superoxide dismutase (SOD) isoenzymes and glutathione S-transferase (GST). 6-OHDA-depletion of DA produced enhanced HO(•) formation in the brain tissue of newborn and adulthood rats that had been exposed to Mn, and the latter effect did not depend on the extent of DA denervation. Additionally, the extraneuronal, microdialysate, content of HO(•) in neostriatum was likewise elevated in 6-OHDA-lesioned rats. Interestingly, there was no difference in extraneuronal HO(•) formation in the neostriatum of Mn-exposed versus control rats. In summary, findings in this study indicate that Mn crosses the placenta but in contrast to other heavy metals, Mn is not deposited long term in tissues. Also, damage to the dopaminergic system acts as a "trigger mechanism," initiating a cascade of adverse events leading to a protracted increase in

  10. Citrus peel extract attenuates acute cyanide poisoning-induced seizures and oxidative stress in rats.

    PubMed

    Abdel Moneim, Ahmed E

    2014-01-01

    The primary aimed of this study was to investigate the potential protective effects of methanolic extract of citrus peel (MECP) on acute cyanide (KCN) poisoning-induced seizures and oxidative stress in rats. The intraperitoneal LD50 value of KCN (6.3 mg/Kg bwt), based on 24 hrs mortality, was significantly increased by 9, 52 or 113% by oral administration of MECP (500 mg/Kg bwt) pre-administered for 1, 2 and 3 days, respectively, in rats in a time-dependent manner. Intraperitoneal injection of the sublethal dose of KCN (3 mg/Kg bwt) into rats increased, 24 hrs later, lipid peroxidation (LPO), nitric oxide (NO), glutamate levels and acetylcholinesterase (AChE) activity in hippocampus, striatum and cerebral cortex. KCN also decreased brain glutathione (GSH) level and superoxide dismutase (SOD) and catalase (CAT) activities in these animals. Pre-treatment of rats with MECP inhibited KCN-induced increases in LPO, NO, and glutamate levels and AChE activity as well as decreases in brain GSH level and SOD and CAT activities. In addition, KCN significantly decreased norepinephrine, dopamine and serotonin levels in different brain regions which were resolved by MECP. From the present results, it can be concluded that the neuroprotective effects of MECP against KCN-induced seizures and oxidative stress may be due to the inhibition of oxidative stress overproduction and maintenance of antioxidant defense mechanisms.

  11. Inducible Gene Manipulations in Brain Serotonergic Neurons of Transgenic Rats

    PubMed Central

    Tews, Björn; Bartsch, Dusan

    2011-01-01

    The serotonergic (5-HT) system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP), in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system. PMID:22140568

  12. Anesthesia-induced neurodegeneration in fetal rat brains

    PubMed Central

    Wang, Shouping; Peretich, Kelly; Zhao, Yifan; Liang, Ge; Meng, Qingcheng; Wei, Huafeng

    2011-01-01

    Summary We investigated the extent of isoflurane induced neurodegeneration on the fetuses of pregnant rats exposed in utero. Pregnant rats at gestational day 21 were divided into three experimental groups. Rats in the control group spontaneously breathed 100% oxygen for one hour. Rats in the treatment groups breathed either 1.3% or 3% isoflurane in 100% oxygen through an endotracheal tube with mechanical ventilation for one hour. Rat pups were delivered by Caesarian section six hours after treatment and fetal blood was sampled from the left ventricle of each fetal heart and evaluated for S100β. Fetal brains were then evaluated for apoptosis using caspase-3 immunohistochemistry in the CA1 region of the hippocampus and the retrosplenial cortex (RS). The 3% isoflurane treatment group showed significantly higher levels of S100β levels and significantly increased average densities of total caspase-3 positive cells in the CA1 hippocampus and RS cortex as compared to the control and 1.3% isoflurane groups. There were no differences in S100β levels or densities of caspase-3 positive cells between the control and 1.3% isoflurane groups. Isoflurane at a concentration of 3% for one hour increased neurodegeneration in the hippocampal CA1 area and the retrosplenial cortex in the developing brain of fetal rats. PMID:20016413

  13. Pharmacological modulation of blood-brain barrier increases permeability of doxorubicin into the rat brain.

    PubMed

    Sardi, Iacopo; la Marca, Giancarlo; Cardellicchio, Stefania; Giunti, Laura; Malvagia, Sabrina; Genitori, Lorenzo; Massimino, Maura; de Martino, Maurizio; Giovannini, Maria G

    2013-01-01

    Our group recently demonstrated in a rat model that pretreatment with morphine facilitates doxorubicin delivery to the brain in the absence of signs of increased acute systemic toxicity. Morphine and other drugs such as dexamethasone or ondansetron seem to inhibit MDR proteins localized on blood-brain barrier, neurons and glial cells increasing the access of doxorubicin to the brain by efflux transporters competition. We explored the feasibility of active modification of the blood-brain barrier protection, by using morphine dexamethasone or ondansetron pretreatment, to allow doxorubicin accumulation into the brain in a rodent model. Rats were pretreated with morphine (10 mg/kg, i.p.), dexamethasone (2 mg/kg, i.p.) or ondansetron (2 mg/kg, i.p.) before injection of doxorubicin (12 mg/kg, i.p.). Quantitative analysis of doxorubicin was performed by mass spectrometry. Acute hearth and kidney damage was analyzed by measuring doxorubicin accumulation, LDH activity and malondialdehyde plasma levels. The concentration of doxorubicin was significantly higher in all brain areas of rats pretreated with morphine (P < 0.001) or ondansetron (P < 0.05) than in control tissues. The concentration of doxorubicin was significantly higher in cerebral hemispheres and brainstem (P < 0.05) but not in cerebellum of rats pretreated with dexamethasone than in control tissues. Pretreatment with any of these drugs did not increase LDH activity or lipid peroxidation compared to controls. Our data suggest that morphine, dexamethasone or ondansetron pretreatment is able to allow doxorubicin penetration inside the brain by modulating the BBB. This effect is not associated with acute cardiac or renal toxicity. This finding might provide the rationale for clinical applications in the treatment of refractory brain tumors and pave the way to novel applications of active but currently inapplicable chemotherapeutic drugs.

  14. Electroacupuncture Attenuates Cerebral Ischemia and Reperfusion Injury in Middle Cerebral Artery Occlusion of Rat via Modulation of Apoptosis, Inflammation, Oxidative Stress, and Excitotoxicity

    PubMed Central

    Shen, Mei-hong; Zhang, Chun-bing; Zhang, Jia-hui; Li, Peng-fei

    2016-01-01

    Electroacupuncture (EA) has several properties such as antioxidant, antiapoptosis, and anti-inflammatory properties. The current study was to investigate the effects of EA on the prevention and treatment of cerebral ischemia-reperfusion (I/R) injury and to elucidate possible molecular mechanisms. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 24 h. EA stimulation was applied to both Baihui and Dazhui acupoints for 30 min in each rat per day for 5 successive days before MCAO (pretreatment) or when the reperfusion was initiated (treatment). Neurologic deficit scores, infarction volumes, brain water content, and neuronal apoptosis were evaluated. The expressions of related inflammatory cytokines, apoptotic molecules, antioxidant systems, and excitotoxic receptors in the brain were also investigated. Results showed that both EA pretreatment and treatment significantly reduced infarct volumes, decreased brain water content, and alleviated neuronal injury in MCAO rats. Notably, EA exerts neuroprotection against I/R injury through improving neurological function, attenuating the inflammation cytokines, upregulating antioxidant systems, and reducing the excitotoxicity. This study provides a better understanding of the molecular mechanism underlying the traditional use of EA. PMID:27123035

  15. A live RSV vaccine with engineered thermostability is immunogenic in cotton rats despite high attenuation.

    PubMed

    Stobart, Christopher C; Rostad, Christina A; Ke, Zunlong; Dillard, Rebecca S; Hampton, Cheri M; Strauss, Joshua D; Yi, Hong; Hotard, Anne L; Meng, Jia; Pickles, Raymond J; Sakamoto, Kaori; Lee, Sujin; Currier, Michael G; Moin, Syed M; Graham, Barney S; Boukhvalova, Marina S; Gilbert, Brian E; Blanco, Jorge C G; Piedra, Pedro A; Wright, Elizabeth R; Moore, Martin L

    2016-12-21

    Respiratory syncytial virus (RSV) is a leading cause of infant hospitalization and there remains no pediatric vaccine. RSV live-attenuated vaccines (LAVs) have a history of safe testing in infants; however, achieving an effective balance of attenuation and immunogenicity has proven challenging. Here we seek to engineer an RSV LAV with enhanced immunogenicity. Genetic mapping identifies strain line 19 fusion (F) protein residues that correlate with pre-fusion antigen maintenance by ELISA and thermal stability of infectivity in live RSV. We generate a LAV candidate named OE4 which expresses line 19F and is attenuated by codon-deoptimization of non-structural (NS1 and NS2) genes, deletion of the small hydrophobic (SH) gene, codon-deoptimization of the attachment (G) gene and ablation of the secreted form of G. OE4 (RSV-A2-dNS1-dNS2-ΔSH-dGm-Gsnull-line19F) exhibits elevated pre-fusion antigen levels, thermal stability, immunogenicity, and efficacy despite heavy attenuation in the upper and lower airways of cotton rats.

  16. A live RSV vaccine with engineered thermostability is immunogenic in cotton rats despite high attenuation

    PubMed Central

    Stobart, Christopher C.; Rostad, Christina A.; Ke, Zunlong; Dillard, Rebecca S.; Hampton, Cheri M.; Strauss, Joshua D.; Yi, Hong; Hotard, Anne L.; Meng, Jia; Pickles, Raymond J.; Sakamoto, Kaori; Lee, Sujin; Currier, Michael G.; Moin, Syed M.; Graham, Barney S.; Boukhvalova, Marina S.; Gilbert, Brian E.; Blanco, Jorge C. G.; Piedra, Pedro A.; Wright, Elizabeth R.; Moore, Martin L.

    2016-01-01

    Respiratory syncytial virus (RSV) is a leading cause of infant hospitalization and there remains no pediatric vaccine. RSV live-attenuated vaccines (LAVs) have a history of safe testing in infants; however, achieving an effective balance of attenuation and immunogenicity has proven challenging. Here we seek to engineer an RSV LAV with enhanced immunogenicity. Genetic mapping identifies strain line 19 fusion (F) protein residues that correlate with pre-fusion antigen maintenance by ELISA and thermal stability of infectivity in live RSV. We generate a LAV candidate named OE4 which expresses line 19F and is attenuated by codon-deoptimization of non-structural (NS1 and NS2) genes, deletion of the small hydrophobic (SH) gene, codon-deoptimization of the attachment (G) gene and ablation of the secreted form of G. OE4 (RSV-A2-dNS1-dNS2-ΔSH-dGm-Gsnull-line19F) exhibits elevated pre-fusion antigen levels, thermal stability, immunogenicity, and efficacy despite heavy attenuation in the upper and lower airways of cotton rats. PMID:28000669

  17. Tualang Honey Attenuates Noise Stress-Induced Memory Deficits in Aged Rats

    PubMed Central

    Azman, Khairunnuur Fairuz; Abdul Aziz, Che Badariah; Othman, Zahiruddin

    2016-01-01

    Ageing and stress exposure may lead to memory impairment while oxidative stress is thought to be one of the underlying mechanisms involved. This study aimed to investigate the potential protective effects of Tualang honey supplementation on memory performance in aged rats exposed to noise stress. Tualang honey supplementation was given orally, 200 mg/kg body weight for 28 days. Rats in the stress group were subjected to loud noise, 100 dB(A), 4 hours daily for 14 days. All rats were subjected to novel object recognition test for evaluation of memory performance. It was observed that the rats subjected to noise stress exhibited significantly lower memory performance and higher oxidative stress as evident by elevated malondialdehyde and protein carbonyl levels and reduction of antioxidant enzymes activities compared to the nonstressed rats. Tualang honey supplementation was able to improve memory performance, decrease oxidative stress levels, increase brain-derived neurotrophic factor (BDNF) concentration, decrease acetylcholinesterase activity, and enhance neuronal proliferation in the medial prefrontal cortex (mPFC) and hippocampus. In conclusion, Tualang honey protects against memory decline due to stress exposure and/or ageing via enhancement of mPFC and hippocampal morphology possibly secondary to reduction in brain oxidative stress and/or upregulation of BDNF concentration and cholinergic system. PMID:27119005

  18. Tualang Honey Attenuates Noise Stress-Induced Memory Deficits in Aged Rats.

    PubMed

    Azman, Khairunnuur Fairuz; Zakaria, Rahimah; Abdul Aziz, Che Badariah; Othman, Zahiruddin

    2016-01-01

    Ageing and stress exposure may lead to memory impairment while oxidative stress is thought to be one of the underlying mechanisms involved. This study aimed to investigate the potential protective effects of Tualang honey supplementation on memory performance in aged rats exposed to noise stress. Tualang honey supplementation was given orally, 200 mg/kg body weight for 28 days. Rats in the stress group were subjected to loud noise, 100 dB(A), 4 hours daily for 14 days. All rats were subjected to novel object recognition test for evaluation of memory performance. It was observed that the rats subjected to noise stress exhibited significantly lower memory performance and higher oxidative stress as evident by elevated malondialdehyde and protein carbonyl levels and reduction of antioxidant enzymes activities compared to the nonstressed rats. Tualang honey supplementation was able to improve memory performance, decrease oxidative stress levels, increase brain-derived neurotrophic factor (BDNF) concentration, decrease acetylcholinesterase activity, and enhance neuronal proliferation in the medial prefrontal cortex (mPFC) and hippocampus. In conclusion, Tualang honey protects against memory decline due to stress exposure and/or ageing via enhancement of mPFC and hippocampal morphology possibly secondary to reduction in brain oxidative stress and/or upregulation of BDNF concentration and cholinergic system.

  19. Leptin Attenuates the Contractile Function of Adult Rat Cardiomyocytes Involved in Oxidative Stress and Autophagy

    PubMed Central

    Luo, Liu-Jin; Liu, Ying-Ping; Yuan, Xun; Zhang, Gui-Ping; Hou, Ning; Wu, Xiao-Qian; Luo, Jian-Dong; Zhang, Gen-Shui

    2016-01-01

    Background Leptin has been identified as an important protein involved in obesity. As a chronic metabolic disorder, obesity is associated with a high risk of developing cardiovascular and metabolic diseases, including heart failure. The aim of this paper was to investigate the effects and the mechanism of leptin on the contractile function of cardiomyocytes in the adult rat. Methods Isolated adult rat cardiomyocytes were exposed to leptin (1, 10, and 100 nmol/L) for 1 hour. The calcium transients and the contraction of adult rat cardiomyocytes were recorded with SoftEdge MyoCam system. Apocynin, tempol and rapamycin were added respectively, and Western blotting was employed to evaluate the expression of LC3B and Beclin-1. Results The peak shortening and maximal velocity of shortening/relengthening (± dL/dtmax) of cell shortening were significantly decreased, and the time to 50% relengthening was prolonged with leptin perfusion. Leptin also significantly reduced the baseline, peak and time to 50% baseline of calcium transient. Leptin attenuated autophagy as indicated by decreased LC3-II and Beclin-1. All of the abnormalities were significantly attenuated by apocynin, tempol or rapamycin. Conclusions Our results indicated that leptin depressed the intracellular free calcium and myocardial systolic function via increasing oxidative stress and inhibiting autophagy. PMID:27899860

  20. Haloperidol-induced extra pyramidal symptoms attenuated by imipramine in rats.

    PubMed

    Samad, Noreen; Haleem, Darakhshan Jabeen

    2014-09-01

    Effects of administration of imipramine (IMI) are determined on haloperidol-induced extrapyramidal symptoms (EPS). Haloperidol is administered orally at a dose of 0.2 mg/rat/day in rats for a period of 5 weeks, by this treatment rats developed vacuous chewing movements (VCMs) after 2 weeks, which increased in a time dependent manner as the treatment continued for 5 weeks. Motor coordination (assess on rota rod activity) impaired maximally after 3 weeks and tolerance was developed in the haloperidol induced motor impairment after 5 weeks of treatment. Motor activity in an open field or activity box was not altered. The administration of IMI (intraperitoneally, for 5 weeks) did not affect motor activity or motor coordination. Co-administration of IMI at a dose of 5 mg/ml/kg/day attenuated the induction of haloperidol elicited VCMs (Quantitative orofacial dyskinesia) as well impairment of motor coordination. Results are discussed in the context of the mechanism involved by which imipramine attenuated haloperidol-induced EPS.

  1. Attenuated allergic responses to house dust mite antigen in feed-restricted rats.

    PubMed

    Dong, W; Kari, F W; Selgrade, M K; Gilmour, M I

    2000-12-01

    Caloric restriction has been shown to alter a broad range of immunological end points in both experimental animals and humans. The objective of this study was to investigate the effect of short-term moderate feed restriction (25% reduction) on allergic immune responses in Brown Norway rats. After 3 weeks of acclimation to their feed regimens, rats were sensitized and 2 weeks later challenged with house dust mite (HDM) antigen via intratracheal instillation. Feed restriction resulted in lower levels of antigen-specific IgE in serum and reduced antigen specific lymphoproliferative activity in pulmonary lymph nodes. Feed restriction also attenuated pulmonary inflammation, as evidenced by lower levels of lactate dehydrogenase and total protein, decreased infiltration of neutrophils and eosinophils, and reduced secretion of pro-inflammatory cytokine tumor necrosis factor (TNF)-[alpha] in bronchoalveolar lavage fluid. In addition, feed restriction decreased TNF-[alpha] secretion in serum and decreased mRNA expression of TNF-[alpha] and interleukin-6 in pulmonary lymph nodes. We conclude that feed restriction strongly dampened the allergic immune responses to HDM in rats and that this attenuation was associated with decreased expression and secretion of pro-inflammatory cytokines.

  2. Brain-targeted angiotensin-converting enzyme 2 overexpression attenuates neurogenic hypertension by inhibiting cyclooxygenase-mediated inflammation.

    PubMed

    Sriramula, Srinivas; Xia, Huijing; Xu, Ping; Lazartigues, Eric

    2015-03-01

    Overactivity of the renin-angiotensin system, oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that angiotensin-converting enzyme 2 (ACE2) overexpression in the brain attenuates the development of deoxycorticosterone acetate-salt hypertension, a neurogenic hypertension model with enhanced brain renin-angiotensin system and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen-activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. Deoxycorticosterone acetate-salt hypertension significantly increased expression of Nox-2 (+61±5%), Nox-4 (+50±13%), and nitrotyrosine (+89±32%) and reduced activity of the antioxidant enzymes, catalase (-29±4%) and superoxide dismutase (-31±7%), indicating increased oxidative stress in the brain of nontransgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. Deoxycorticosterone acetate-salt-induced reduction of neuronal nitric oxide synthase expression (-26±7%) and phosphorylated endothelial nitric oxide synthase/total endothelial nitric oxide synthase (-30±3%), and enhanced phosphorylation of protein kinase B and extracellular signal-regulated kinase 1/2 in the paraventricular nucleus, were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the paraventricular nucleus. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuroinflammation, ultimately attenuating Deoxycorticosterone acetate-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuroinflammation, improves antioxidant and nitric oxide signaling, and

  3. Treatment with resveratrol attenuates sublesional bone loss in spinal cord-injured rats

    PubMed Central

    Wang, Hua-Dong; Shi, Ya-Min; Li, Li; Guo, Ji-Dong; Zhang, Yu-Peng; Hou, Shu-Xun

    2013-01-01

    BACKGROUND AND PURPOSE Sublesional osteoporosis predisposes individuals with spinal cord injury (SCI) to an increased risk of low-trauma fracture. The aim of the present work was to investigate the effect of treatment with resveratrol (RES) on sublesional bone loss in spinal cord-injured rats. EXPERIMENTAL APPROACH Complete SCI was generated by surgical transaction of the cord at the T10–12 level. Treatment with RES (400 mg·kg−1 body mass per day−1, intragastrically) was initiated 12 h after the surgery for 10 days. Then, blood was collected and femurs and tibiae were removed for evaluation of the effects of RES on bone tissue after SCI. KEY RESULTS Treatment of SCI rats with RES prevented the reduction of bone mass including bone mineral content and bone mineral density in tibiae, preserved bone structure including trabecular bone volume fraction, trabecular number, and trabecular thickness in tibiae, and preserved mechanical strength including ultimate load, stiffness, and energy in femurs. Treatment of SCI rats with RES enhanced femoral total sulfhydryl content, reduced femoral malondialdehyde and IL-6 mRNA levels. Treatment of SCI rats with RES suppressed the up-regulation of mRNA levels of PPARγ, adipose-specific fatty-acid-binding protein and lipoprotein lipase, and restored mRNA levels of Wnt1, low-density lipoprotein-related protein 5, Axin2, ctnnb1, insulin-like growth factor 1 (IGF-1) and receptor for IGF-1 in femurs and tibiae. CONCLUSIONS AND IMPLICATIONS Treatment with RES attenuated sublesional bone loss in spinal-cord-injured rats, associated with abating oxidative stress, attenuating inflammation, depressing PPARγ signalling, and restoring Wnt/β-catenin and IGF-1 signalling. PMID:23848300

  4. Fish oil supplementation attenuates changes in plasma lipids caused by dexamethasone treatment in rats.

    PubMed

    Barbosa, Amanda Marreiro; Francisco, Priscila de Cássia; Motta, Katia; Chagas, Thayz Rodrigues; Dos Santos, Cristiane; Rafacho, Alex; Nunes, Everson Araújo

    2016-04-01

    Dexamethasone is an anti-inflammatory glucocorticoid that may alter glucose and lipid homeostasis when administered in high doses or for long periods of time. Omega-3 fatty acids, present in fish oil (FO), can be used as potential modulators of intermediary glucose and lipid metabolism. Herein, we evaluate the effects of FO supplementation (1 g·kg(-1) body weight (BW)) on glucose and lipid metabolism in rats treated with dexamethasone (0.5 mg·kg(-1) BW) for 15 days. Adult male Wistar rats were distributed among 4 groups: control (saline, 1 mL·kg(-1) BW and mineral oil, 1 g·kg(-1) BW), DEX (dexamethasone and mineral oil), FO (fish oil and saline), and DFO (fish oil and dexamethasone). Dexamethasone and saline were administered intraperitoneally, and fish oil and mineral oil were administered by gavage. We evaluated functional and molecular parameters of lipid and glycemic profiles at 8 days and at the end of treatment. FO supplementation increased hepatic docosahexaenoic acid (DEX: 5.6% ± 0.7%; DFO: 10.5% ± 0.8%) and eicosapentaenoic acid (DEX: 0.3% ± 0.0%; DFO: 1.3% ± 0.1%) contents and attenuated the increase of plasma triacylglycerol, total cholesterol, and non-high-density lipoprotein cholesterol concentrations in DFO rats compared with DEX rats. These effects seem not to depend on hepatic expression of insulin receptor substrate 1, protein kinase B, peroxisome proliferator-activated receptor γ coactivator 1-α, and peroxisome proliferator-activated receptor γ. There was no effect of supplementation on body weight loss, fasting glycemia, and glucose tolerance in rats treated with dexamethasone. In conclusion, we show that FO supplementation for 15 days attenuates the dyslipidemia induced by dexamethasone treatment.

  5. Musa sapientum with exercises attenuates hyperglycemia and pancreatic islet cells degeneration in alloxan-diabetic rats

    PubMed Central

    Akinlolu, Adelaja Abdulazeez; Salau, Bamidele A.; Ekor, Martins; Otulana, Jubril

    2015-01-01

    Aim: We tested the hypothesis that administrations of methanolic extracts of Musa sapientum sucker (MEMS) with exercises attenuated hyperglycemia in alloxan-diabetic rats. Materials and Methods: A total of 40 adult male rats were divided into equal eight groups. Normoglycemic Group A was Control. Alloxan (180 mg/kg, i.p.) was administered to rats in Groups B - H to induce diabetes. Group B (diabetic control) received physiological saline. Groups C - H received MEMS (5 mg/kg), MEMS (10 mg/kg), Glibenclamide (5 mg/kg), MEMS (5 mg/kg) + exercises, MEMS (10 mg/kg) + exercises and Exercises only, respectively. Changes in body weight, blood glucose levels (BGL) and pancreatic histology were evaluated during or at the end of experiment. Body weights and BGL of rats were expressed as mean ± standard deviation and analyzed using the statistical software program SPSS 15. Statistical comparisons were done using the Student’s t-test for unpaired samples. Differences between groups were determined as significant at P ≤ 0.05. Results: Significantly (P < 0.05) decreased bodyweight was observed in B and H compared to A and C - G. Treatment with MEMS significantly (P < 0.05) decreased elevated BGL in C and D. Hypoglycemic effect of MEMS appeared enhanced with exercises in F and G. Exercises regimen alone (H) resulted in percentage reduction in BGL lower than those of C - G. Histopathological examinations revealed normal pancreas (A), atrophied islet cells (B), hyperplasia with adequate population of islet cells (C - G), and reduced hyperplasia of islet cells (H). Conclusion: MEMS with exercises attenuated hyperglycemia in alloxan-diabetic rats. PMID:26401408

  6. Active vaccination attenuates the psychostimulant effects of α-PVP and MDPV in rats.

    PubMed

    Nguyen, Jacques D; Bremer, Paul T; Ducime, Alex; Creehan, Kevin M; Kisby, Brent R; Taffe, Michael A; Janda, Kim D

    2016-12-09

    Recreational use of substituted cathinones continues to be an emerging public health problem in the United States; cathinone derivatives α-pyrrolidinopentiophenone (α-PVP) and 3,4-methylenedioxypyrovalerone (MDPV), which have been linked to human fatalities and show high potential for abuse liability in animal models, are of particular concern. The objective of this study was to develop an immunotherapeutic strategy for attenuating the effects of α-PVP and MDPV in rats, using drug-conjugate vaccines created to generate antibodies with neutralizing capacity. Immunoconjugates (α-PVP-KLH and MDPV-KLH) or the control carrier protein, keyhole limpet hemocyanin (KLH), were administered to groups (N = 12) of male Sprague-Dawley rats on Weeks 0, 2 and 4. Groups were administered α-PVP or MDPV (0.0, 0.25, 0.5, 1.0, 5.0 mg/kg, i.p.) in acute drug challenges and tested for changes in wheel activity. Increased wheel activity produced by α-PVP or MDPV in the controls was attenuated in the α-PVP-KLH and MDPV-KLH vaccinated groups, respectively. Rectal temperature decreases produced by MDPV in the controls were reduced in duration in the MDPV-KLH vaccine group. A separate group (N = 19) was trained to intravenously self-administer α-PVP (0.05, 0.1 mg/kg/inf) and vaccinated with KLH or α-PVP-KLH, post-acquisition. Self-administration in α-PVP-KLH rats was initially higher than in the KLH rats but then significantly decreased following a final vaccine booster, unlike the stable intake of KLH rats. The data demonstrate that active vaccination provides functional protection against the effects of α-PVP and MDPV, in vivo, and recommend additional development of vaccines as potential therapeutics for mitigating the effects of designer cathinone derivatives.

  7. Methylphenidate attenuates limbic brain inhibition after cocaine-cues exposure in cocaine abusers.

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Tomasi, D.; Telang, F.; Fowler, J.S.; Pradhan, K.; Jayne, M.; Logan, J.; Goldstein, R.Z.; Alia-Klein, N.; Wong, C.T.

    2010-07-01

    Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and {sup 18}FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2-5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic

  8. Methylphenidate attenuates limbic brain inhibition after cocaine-cues exposure in cocaine abusers.

    PubMed

    Volkow, Nora D; Wang, Gene-Jack; Tomasi, Dardo; Telang, Frank; Fowler, Joanna S; Pradhan, Kith; Jayne, Millard; Logan, Jean; Goldstein, Rita Z; Alia-Klein, Nelly; Wong, Christopher

    2010-07-09

    Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and (18)FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2-5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic

  9. Stimulation of Brain AMP-Activated Protein Kinase Attenuates Inflammation and Acute Lung Injury in Sepsis

    PubMed Central

    Mulchandani, Nikhil; Yang, Weng-Lang; Khan, Mohammad Moshahid; Zhang, Fangming; Marambaud, Philippe; Nicastro, Jeffrey; Coppa, Gene F; Wang, Ping

    2015-01-01

    Sepsis and septic shock are enormous public health problems with astronomical financial repercussions on health systems worldwide. The central nervous system (CNS) is closely intertwined in the septic process but the underlying mechanism is still obscure. AMP-activated protein kinase (AMPK) is a ubiquitous energy sensor enzyme and plays a key role in regulation of energy homeostasis and cell survival. In this study, we hypothesized that activation of AMPK in the brain would attenuate inflammatory responses in sepsis, particularly in the lungs. Adult C57BL/6 male mice were treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR, 20 ng), an AMPK activator, or vehicle (normal saline) by intracerebroventricular (ICV) injection, followed by cecal ligation and puncture (CLP) at 30 min post-ICV. The septic mice treated with AICAR exhibited elevated phosphorylation of AMPKα in the brain along with reduced serum levels of aspartate aminotransferase, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), compared with the vehicle. Similarly, the expressions of TNF-α, IL-1β, keratinocyte-derived chemokine and macrophage inflammatory protein-2 as well as myeloperoxidase activity in the lungs of AICAR-treated mice were significantly reduced. Moreover, histological findings in the lungs showed improvement of morphologic features and reduction of apoptosis with AICAR treatment. We further found that the beneficial effects of AICAR on septic mice were diminished in AMPKα2 deficient mice, showing that AMPK mediates these effects. In conclusion, our findings reveal a new functional role of activating AMPK in the CNS to attenuate inflammatory responses and acute lung injury in sepsis. PMID:26252187

  10. Intravenous injection of Xuebijing attenuates acute kidney injury in rats with paraquat intoxication

    PubMed Central

    Xu, Jia-jun; Zhen, Jian-tao; Tang, Li; Lin, Qing-ming

    2017-01-01

    BACKGROUND: The study aimed to investigate the therapeutic benefits of intravenous Xuebijing on acute kidney injury (AKI) in rats with paraquat intoxication. METHODS: Male Sprague-Dawley rats were randomly divided equally into three groups: sham group (n=8), paraquat group (n=8) and Xuebijing-treated group (n=8) using a random number table. The rats were intraperitoneally injected with 50 mg/kg of paraquat. One hour after paraquat administration, the rats were treated intravenously with Xuebijing (8 mL/kg). At 12 hours after paraquat administration, serum was collected to evaluate kidney function, then the rats were sacrificed and kidney samples were immediately harvested. AKI scores were evaluated by renal histopathology and pro-inflammatory cytokines mRNA levels in kidney were assayed using real-time RT-PCR. RESULTS: Serum urea nitrogen, creatinine and AKI scores were significantly higher in the paraquat group, compared with the sham group (P<0.05, respectively). Moreover, interleukin (IL)-1β, IL-6 and TNF-α mRNA levels were significantly higher in the paraquat group (P<0.01, respectively). However, intravenous Xuebijing significantly decreased serum urea nitrogen, creatinine, AKI scores and IL-1β, IL-6 and TNF-α mRNA levels, compared with the paraquat group (P<0.05, respectively). CONCLUSION: Intravenous Xuebijing attenuates AKI following paraquat poisoning by suppressing inflammatory response. PMID:28123623

  11. Nicotine attenuates relapse to methamphetamine-seeking behavior (craving) in rats.

    PubMed

    Hiranita, Takato; Anggadiredja, Kusnandar; Fujisaki, Chie; Watanabe, Shigenori; Yamamoto, Tsuneyuki

    2004-10-01

    This study clarifies the modulating action of the nicotinic cholinergic system on reinstatement of methamphetamine (MAP)-seeking behavior (craving) using an intravenous, self-administration paradigm in rats. After self-administration of MAP for 10 days, replacing MAP with saline solution (MAP withdrawal) gradually decreased lever-pressing responses. On the sixth day of MAP withdrawal, MAP (1.0 mg/kg, i.p.)-priming injection significantly increased lever-pressing responses (reinstatement of MAP-seeking behavior). This MAP-seeking behavior was attenuated by repeated nicotine administration for 5 days during MAP withdrawal, and this attenuating effect was antagonized by the nicotinic antagonist mecamylamine. These results suggest that the appearance of MAP-seeking behavior may be due to inactivation of the nicotinic cholinergic neuron. Furthermore, it is suggested that nicotinic activating agents may be useful in preventing relapse to drug abuse.

  12. Chronic Methamphetamine Effects on Brain Structure and Function in Rats

    PubMed Central

    Thanos, Panayotis K.; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J.; Masad, Ihssan; Muniz, Jose A.; Grant, Samuel C.; Gold, Mark S.; Cadet, Jean Lud; Volkow, Nora D.

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA

  13. Chronic Methamphetamine Effects on Brain Structure and Function in Rats.

    PubMed

    Thanos, Panayotis K; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J; Masad, Ihssan; Muniz, Jose A; Grant, Samuel C; Gold, Mark S; Cadet, Jean Lud; Volkow, Nora D

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA

  14. Effects of environmental tobacco smoke on adult rat brain biochemistry.

    PubMed

    Fuller, Brian F; Gold, Mark S; Wang, Kevin K W; Ottens, Andrew K

    2010-05-01

    Environmental tobacco smoke (ETS) has been linked to deleterious health effects, particularly pulmonary and cardiac disease; yet, the general public considers ETS benign to brain function in adults. In contrast, epidemiological data have suggested that ETS impacts the brain and potentially modulates neurodegenerative disease. The present study begins to examine yet unknown biochemical effects of ETS on the adult mammalian brain. In the developed animal model, adult male rats were exposed to ETS 3 h a day for 3 weeks. Biochemical data showed altered glial fibrillary acid protein levels as a main treatment effect of ETS, suggestive of reactive astrogliosis. Yet, markers of oxidative and cell stress were unaffected by ETS exposure in the brain regions examined. Increased proteolytic degradation of alphaII-spectrin by caspase-3 and the dephosphorylation of serine(116) on PEA-15 indicated greater apoptotic cell death modulated by the extrinsic pathway in the brains of ETS-exposed animals. Further, beta-synuclein was upregulated by ETS, a neuroprotective protein previously reported to exhibit anti-apoptotic and anti-fibrillogenic properties. These findings demonstrate that ETS exposure alters the neuroproteome of the adult rat brain, and suggest modulation of inflammatory and cell death processes.

  15. Hyperbaric oxygen preconditioning attenuates hyperglycemia-enhanced hemorrhagic transformation by inhibiting matrix metalloproteinases in focal cerebral ischemia in rats.

    PubMed

    Soejima, Yoshiteru; Hu, Qin; Krafft, Paul R; Fujii, Mutsumi; Tang, Jiping; Zhang, John H

    2013-09-01

    Hyperglycemia dramatically aggravates brain infarct and hemorrhagic transformation (HT) after ischemic stroke. Oxidative stress and matrix metalloproteinases (MMPs) play an important role in the pathophysiology of HT. Hyperbaric oxygen preconditioning (HBO-PC) has been proved to decrease oxidative stress and has been demonstrated to be neuroprotective in experimental stroke models. The present study determined whether HBO-PC would ameliorate HT by a pre-ischemic increase of reactive oxygen species (ROS) generation, and a suppression of MMP-2 and MMP-9 in hyperglycemic middle cerebral artery occlusion (MCAO) rats. Rats were pretreated with HBO (100% O₂, 2.5 atmosphere absolutes) 1 h daily for 5 days before MCAO. Acute hyperglycemia was induced by an injection of 50% dextrose. Neurological deficits, infarction volume and hemorrhagic volume were assessed 24 h and 7 days after ischemia. ROS scavenger n-acetyl cysteine (NAC), hypoxia-inducible factor-1α (HIF-1α), inhibitor 2-methoxyestradiol (2ME2) and activator cobalt chloride (CoCl₂), and MMP inhibitor SB-3CT were administrated for mechanism study. The activity of MMP-2 and MMP-9, and the expression HIF-1α were measured. HBO-PC improved neurological deficits, and reduced hemorrhagic volume; the expression of HIF-1α was significantly decreased, and the activity of MMP-2 and MMP-9 was reduced by HBO-PC compared with vehicle group. Our results suggested that HBO-PC attenuated HT via decreasing HIF-1α and its downstream MMP-2 and MMP-9 in hyperglycemic MCAO rats.

  16. Mast Cell Inhibition Attenuates Myocardial Damage, Adverse Remodeling and Dysfunction during Fulminant Myocarditis in Rat

    PubMed Central

    Mina, Yair; Rinkevich-Shop, Shunit; Konen, Eli; Goitein, Orly; Kushnir, Tammar; Epstein, Frederick H.; Feinberg, Micha S.; Leor, Jonathan; Landa-Rouben, Natalie

    2013-01-01

    Background Myocarditis is a life-threatening heart disease characterized by myocardial inflammation, necrosis and chronic fibrosis. While mast cell inhibition has been suggested to prevents fibrosis in rat myocarditis, little is known about its effectiveness in attenuating cardiac remodeling and dysfunction in myocarditis. Thus, we sought to test the hypothesis that mast cell inhibition will attenuate the inflammatory reaction and associated left ventricular (LV) remodeling and dysfunction after fulminant autoimmune myocarditis. Methods and Results To induce experimental autoimmune myocarditis, we immunized 30 rats with porcine cardiac myosin twice at a 7-day interval. On day 8 animals were randomized into treatment either with an intraperitoneal (IP) injection of 25mg/kg of cromolyn sodium (n=13), or an equivalent volume (~0.5ml IP) of normal saline (n=11). All animals were scanned by serial echocardiography studies before treatment (baseline echocardiogram) and after 20 days of cromolyn sodium (28 days after immunization). Furthermore, serial cardiac magnetic resonance was performed in a subgroup of 12 animals. After 20 days of treatment (28 days from first immunization), hearts were harvested for histopathological analysis. By echocardiography, cromolyn sodium prevented LV dilatation and attenuated LV dysfunction, compared with controls. Postmortem analysis of hearts showed that cromolyn sodium reduced myocardial fibrosis, as well as the number and size of cardiac mast cells in the inflamed myocardium, compared with controls. Conclusions Our study suggests that mast cell inhibition with cromolyn sodium attenuates adverse LV remodeling and dysfunction in myocarditis. This mechanism-based therapy is clinically relevant and could improve the outcome of patients at risk for inflammatory cardiomyopathy and heart failure. PMID:23172937

  17. Tobacco smoke chemicals attenuate brain-to-blood potassium transport mediated by the Na,K,2Cl-cotransporter during hypoxia-reoxygenation.

    PubMed

    Paulson, Jennifer R; Roder, Karen E; McAfee, Ghia; Allen, David D; Van der Schyf, Cornelis J; Abbruscato, Thomas J

    2006-01-01

    Smoking tobacco, including cigarettes, has been associated with an increased incidence and relative risk for cerebral infarction in both men and women. Recently, we have shown that nicotine and cotinine attenuate abluminal (brain facing) K(+) uptake mediated by the Na,K,2Cl-cotransporter (NKCC) in bovine brain microvessel endothelial cells (BBMECs) after hypoxic/aglycemic exposure (stroke conditions). The purpose of the current study was to explore the effects of nicotine and tobacco smoke chemicals on K(+) movement through the blood-brain barrier during both hypoxia/aglycemia and reoxygenation. BBMECs were exposed to nicotine/cotinine, nicotine-containing cigarette smoke extract (N-CSE), or nicotine-free cigarette smoke extract (NF-CSE) in quantities designed to mimic plasma concentrations of smokers. Stroke conditions were mimicked in vitro in BBMECs through 6 h of hypoxia/aglycemia with or without 12 h of reoxygenation, after which NKCC-mediated K(+) uptake and paracellular integrity were measured with (86)Rb and [(14)C]sucrose, respectively. In addition, K(+) concentrations in brain extracellular fluid were estimated in (86)Rb-injected rats that were administered nicotine, N-CSE, or NF-CSE and on whom global ischemia/reperfusion by in vivo four-vessel occlusion was performed. Both in vitro and in vivo paradigms showed nicotine, the major alkaloid present in tobacco smoke, to be the determining factor of an inhibited response of abluminal NKCC in BBMECs during and after stroke conditions. This was measured as a decrease in abluminal brain endothelial cell NKCC activity and as an increase in brain extracellular K(+) concentration measured as the brain extracellular fluid (86)Rb/plasma ratio after in vivo four-vessel occlusion with reperfusion.

  18. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    PubMed

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  19. Dietary inhibition of xanthine oxidase attenuates radiation-induced endothelial dysfunction in rat aorta.

    PubMed

    Soucy, Kevin G; Lim, Hyun Kyo; Attarzadeh, David O; Santhanam, Lakshmi; Kim, Jae Hyung; Bhunia, Anil K; Sevinc, Baris; Ryoo, Sungwoo; Vazquez, Marcelo E; Nyhan, Daniel; Shoukas, Artin A; Berkowitz, Dan E

    2010-05-01

    Radiation exposure is associated with the development of various cardiovascular diseases. Although irradiation is known to cause elevated oxidant stress and chronic inflammation, both of which are detrimental to vascular function, the molecular mechanisms remain incompletely understood. We previously demonstrated that radiation causes endothelial dysfunction and increased vascular stiffness by xanthine oxidase (XO) activation. In this study, we investigated whether dietary inhibition of XO protects against radiation-induced vascular injury. We exposed 4-mo-old rats to a single dose of 0 or 5 Gy gamma radiation. These rats received normal drinking water or water containing 1 mM oxypurinol, an XO inhibitor. We measured XO activity and superoxide production in rat aorta and demonstrated that both were significantly elevated 2 wk after radiation exposure. However, oxypurinol treatment in irradiated rats prevented aortic XO activation and superoxide elevation. We next investigated endothelial function through fluorescent measurement of nitric oxide (NO) and vascular tension dose responses. Radiation reduced endothelium-dependent NO production in rat aorta. Similarly, endothelium-dependent vasorelaxation in the aorta of irradiated rats was significantly attenuated compared with the control group. Dietary XO inhibition maintained NO production at control levels and prevented the development of endothelial dysfunction. Furthermore, pulse wave velocity, a measure of vascular stiffness, increased by 1 day postirradiation and remained elevated 2 wk after irradiation, despite unchanged blood pressures. In oxypurinol-treated rats, pulse wave velocities remained unchanged from baseline throughout the experiment, signifying preserved vascular health. These findings demonstrate that XO inhibition can offer protection from radiation-induced endothelial dysfunction and cardiovascular complications.

  20. Dietary medium-chain triglycerides attenuate hepatic lipid deposition in growing rats with protein malnutrition.

    PubMed

    Kuwahata, Masashi; Kubota, Hiroyo; Amano, Saki; Yokoyama, Meiko; Shimamura, Yasuhiro; Ito, Shunsuke; Ogawa, Aki; Kobayashi, Yukiko; Miyamoto, Ken-ichi; Kido, Yasuhiro

    2011-01-01

    The objective of this study was to investigate the effects of dietary medium-chain triglycerides (MCT) on hepatic lipid accumulation in growing rats with protein malnutrition. Weaning rats were fed either a low-protein diet (3%, LP) or control protein diet (20%, CP), in combination with or without MCT. The four groups were as follows: CP-MCT, CP+MCT, LP-MCT, and LP+MCT. Rats in the CP-MCT, CP+MCT and LP+MCT groups were pair-fed their respective diets based on the amount of diet consumed by the LP-MCT group. Rats were fed each experimental diet for 30 d. Four weeks later, the respiratory quotient was higher in the LP-MCT group than those in the other groups during the fasting period. Hepatic triglyceride content increased in the LP groups compared with the CP groups. Hepatic triglyceride content in the LP+MCT group, however, was significantly decreased compared with that in the LP-MCT group. Levels of carnitine palmitoyltransferase (CPT) 1a mRNA and CPT2 mRNA were significantly decreased in the livers of the LP-MCT group, as compared with corresponding mRNA levels of the other groups. These results suggest that ingestion of a low-protein diet caused fatty liver in growing rats. However, when rats were fed the low-protein diet with MCT, hepatic triglyceride deposition was attenuated, and mRNA levels encoding CPT1a and CPT2 were preserved at the levels of rats fed control protein diets.

  1. Curcumin Alters Neural Plasticity and Viability of Intact Hippocampal Circuits and Attenuates Behavioral Despair and COX-2 Expression in Chronically Stressed Rats

    PubMed Central

    Choi, Ga-Young; Kim, Hyun-Bum; Hwang, Eun-Sang; Lee, Seok; Kim, Min-Ji; Choi, Ji-Young; Lee, Sung-Ok

    2017-01-01

    Curcumin is a major diarylheptanoid component of Curcuma longa with traditional usage for anxiety and depression. It has been known for the anti-inflammatory, antistress, and neurotropic effects. Here we examined curcumin effect in neural plasticity and cell viability. 60-channel multielectrode array was applied on organotypic hippocampal slice cultures (OHSCs) to monitor the effect of 10 μM curcumin in long-term depression (LTD) through low-frequency stimulation (LFS) to the Schaffer collaterals and commissural pathways. Cell viability was assayed by propidium iodide uptake test in OHSCs. In addition, the influence of oral curcumin administration on rat behavior was assessed with the forced swim test (FST). Finally, protein expression levels of brain-derived neurotrophic factor (BDNF) and cyclooxygenase-2 (COX-2) were measured by Western blot in chronically stressed rats. Our results demonstrated that 10 μM curcumin attenuated LTD and reduced cell death. It also recovered the behavior immobility of FST, rescued the attenuated BDNF expression, and inhibited the enhancement of COX-2 expression in stressed animals. These findings indicate that curcumin can enhance postsynaptic electrical reactivity and cell viability in intact neural circuits with antidepressant-like effects, possibly through the upregulation of BDNF and reduction of inflammatory factors in the brain. PMID:28167853

  2. R-citalopram attenuates anxiolytic effects of escitalopram in a rat ultrasonic vocalisation model.

    PubMed

    Sánchez, Connie

    2003-03-19

    Escitalopram mediates the serotonin reuptake inhibitory effect of citalopram. To investigate the potential interactive effects between escitalopram and R-citalopram, they were studied at standard and elevated serotonin levels in a model predictive of anxiolytic activity (inhibition of footshock-induced ultrasonic vocalisation in adult rats). At standard levels, citalopram partially inhibited (64%) and escitalopram abolished (97%) vocalisation. Co-treatment with L-5-hydroxytryptophan resulted in complete inhibition with citalopram and a substantially enhanced response to escitalopram, while R-citalopram increased the vocalisation significantly. Furthermore, R-citalopram attenuated the effect of escitalopram. These findings may be relevant to the enhanced clinical efficacy seen with escitalopram compared to citalopram.

  3. Mild hypothermia alleviates brain oedema and blood-brain barrier disruption by attenuating tight junction and adherens junction breakdown in a swine model of cardiopulmonary resuscitation

    PubMed Central

    Li, Jiebin; Li, Chunsheng; Yuan, Wei; Wu, Junyuan; Li, Jie; Li, Zhenhua; Zhao, Yongzhen

    2017-01-01

    Mild hypothermia improves survival and neurological recovery after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). However, the mechanism underlying this phenomenon is not fully elucidated. The aim of this study was to determine whether mild hypothermia alleviates early blood–brain barrier (BBB) disruption. We investigated the effects of mild hypothermia on neurologic outcome, survival rate, brain water content, BBB permeability and changes in tight junctions (TJs) and adherens junctions (AJs) after CA and CPR. Pigs were subjected to 8 min of untreated ventricular fibrillation followed by CPR. Mild hypothermia (33°C) was intravascularly induced and maintained at this temperature for 12 h, followed by active rewarming. Mild hypothermia significantly reduced cortical water content, decreased BBB permeability and attenuated TJ ultrastructural and basement membrane breakdown in brain cortical microvessels. Mild hypothermia also attenuated the CPR-induced decreases in TJ (occludin, claudin-5, ZO-1) and AJ (VE-cadherin) protein and mRNA expression. Furthermore, mild hypothermia decreased the CA- and CPR-induced increases in matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) expression and increased angiogenin-1 (Ang-1) expression. Our findings suggest that mild hypothermia attenuates the CA- and resuscitation-induced early brain oedema and BBB disruption, and this improvement might be at least partially associated with attenuation of the breakdown of TJ and AJ, suppression of MMP-9 and VEGF expression, and upregulation of Ang-1 expression. PMID:28355299

  4. Alterations of amino Acid level in depressed rat brain.

    PubMed

    Yang, Pei; Li, Xuechun; Ni, Jian; Tian, Jingchen; Jing, Fu; Qu, Changhai; Lin, Longfei; Zhang, Hui

    2014-10-01

    Amino-acid neurotransmitter system dysfunction plays a major role in the pathophysiology of depression. Several studies have demonstrated the potential of amino acids as a source of neuro-specific biomarkers could be used in future diagnosis of depression. Only partial amino acids such as glycine and asparagine were determined from certain parts of rats' brain included hippocampi and cerebral cortex in previous studies. However, according to systematic biology, amino acids in different area of brain are interacted and interrelated. Hence, the determination of 34 amino acids through entire rats' brain was conducted in this study in order to demonstrate more possibilities for biomarkers of depression by discovering other potential amino acids in more areas of rats' brain. As a result, 4 amino acids (L-aspartic acid, L-glutamine, taurine and γ-amino-n-butyric acid) among 34 were typically identified as potentially primary biomarkers of depression by data statistics. Meanwhile, an antidepressant called Fluoxetine was employed to verify other potential amino acids which were not identified by data statistics. Eventually, we found L-α-amino-adipic acid could also become a new potentially secondary biomarker of depression after drug validation. In conclusion, we suggested that L-aspartic acid, L-glutamine, taurine, γ-amino-n-butyric acid and L-α-amino-adipic acid might become potential biomarkers for future diagnosis of depression and development of antidepressant.

  5. Human and rat brain lipofuscin proteome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of an autofluorescent pigment called lipofuscin in neurons is an invariable hallmark of brain aging. So far, this material has been considered to be waste material without particular relevance for cellular pathology. However, two lines of evidence argue that lipofuscin may have yet ...

  6. Alcohol induced changes in phosphoinositide signaling system in rat brain

    SciTech Connect

    Pandey, S.; Piano, M.; Schwertz, D.; Davis, J.; Pandey, G. )

    1991-03-11

    Agonist-induced phosphoinositide break down functions as a signal generating system in a manner similar to the C-AMP system. In order to examine if the changes produced by chronic ethanol treatment on membrane lipid composition and metabolism effect the cellular functions of the neuron, the authors have examined the effect of chronic ethanol exposure on norepinephrine (NE) serotonin (5HT) and calcium ionophore (CI) stimulated phosphoinositide (PI) hydrolysis in rat cortical slices. Rats were maintained on liber-decarli diet alcohol and control liquid diet containing isocaloric sucrose substitute for two months. They were then sacrificed and brain was removed for determination of PI turnover. 5HT stimulated {sup 3}H- inositol monophosphate ({sup 3}H-IPI) formation was significantly lower in the cortex of alcohol treated rats as compared to control rats. However, neither CI nor NE stimulated IP1 formation was significantly different from control rats. The results thus indicate that chronic exposure to ethanol decreases 5HT induced PI breakdown in rat cortex. In order to examine if this decrease is related to a decrease in 5HT2 receptors, or decreased in coupling of receptor to the effector pathway, the authors are currently determining the number and affinity of 5HT2 receptors in alcohol treated rats.

  7. Regional development of glutamate dehydrogenase in the rat brain.

    PubMed

    Leong, S F; Clark, J B

    1984-07-01

    The development of glutamate dehydrogenase enzyme activity in rat brain regions has been followed from the late foetal stage to the adult and through to the aged (greater than 2 years) adult. In the adult brain the enzyme activity was greatest in the medulla oblongata and pons greater than midbrain = hypothalamus greater than cerebellum = striatum = cortex. In the aged adult brain, glutamate dehydrogenase activity was significantly lower in the medulla oblongata and pons when compared to the 90-day-old adult value, but not in other regions. The enzyme-specific activity of nonsynaptic (free) mitochondria purified from the medulla oblongata and pons of 90-day-old animals was about twice that of mitochondria purified from the striatum and the cortex. The specific activity of the enzyme in synaptic mitochondria purified from the above three brain regions, however, remained almost constant.

  8. Effect of acute thioacetamide administration on rat brain phospholipid metabolism

    SciTech Connect

    Osada, J.; Aylagas, H.; Miro-Obradors, M.J.; Arce, C.; Palacios-Alaiz, E.; Cascales, M. )

    1990-09-01

    Brain phospholipid composition and the ({sup 32}P)orthophosphate incorporation into brain phospholipids of control and rats treated for 3 days with thioacetamide were studied. Brain phospholipid content, phosphatidylcholine, phosphatidylethanolamine, lysolecithin and phosphatidic acid did not show any significant change by the effect of thioacetamide. In contrast, thioacetamide induced a significant decrease in the levels of phosphatidylserine, sphingomyelin, phosphatidylinositol and diphosphatidylglycerol. After 75 minutes of intraperitoneal label injection, specific radioactivity of all the above phospholipids with the exception of phosphatidylethanolamine and phosphatidylcholine significantly increased. After 13 hours of isotope administration the specific radioactivity of almost all studied phospholipid classes was elevated, except for phosphatidic acid, the specific radioactivity of which did not change and for diphosphatidylglycerol which showed a decrease in specific radioactivity. These results suggest that under thioacetamide treatment brain phospholipids undergo metabolic transformations that may contribute to the hepatic encephalopathy induced by thioacetamide.

  9. Effect of glycolysis inhibition on mitochondrial function in rat brain.

    PubMed

    Cano-Ramírez, D; Torres-Vargas, C E; Guerrero-Castillo, S; Uribe-Carvajal, S; Hernández-Pando, R; Pedraza-Chaverri, J; Orozco-Ibarra, M

    2012-05-01

    Inhibition of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase enhances the neural vulnerability to excitotoxicity both in vivo and in vitro through an unknown mechanism possibly related to mitochondrial failure. However, as the effect of glycolysis inhibition on mitochondrial function in brain has not been studied, the aim of the present work was to evaluate the effect of glycolysis inhibition induced by iodoacetate on mitochondrial function and oxidative stress in brain. Mitochondria were isolated from brain cortex, striatum and cerebellum of rats treated systemically with iodoacetate (25 mg/kg/day for 3 days). Oxygen consumption, ATP synthesis, transmembrane potential, reactive oxygen species production, lipoperoxidation, glutathione levels, and aconitase activity were assessed. Oxygen consumption and aconitase activity decreased in the brain cortex and striatum, showing that glycolysis inhibition did not trigger severe mitochondrial impairment, but a slight mitochondrial malfunction and oxidative stress were present.

  10. Determination of boron distribution in rat's brain, kidney and liver.

    PubMed

    Pazirandeh, Ali; Jameie, Behnam; Zargar, Maysam

    2009-07-01

    To determine relative boron distribution in rat's brain, liver and kidney, a mixture of boric acid and borax, was used. After transcardial injection of the solution, the animals were sacrificed and the brain, kidney and liver were removed. The coronal sections of certain areas of the brain were prepared by freezing microtome. The slices were sandwiched within two pieces of CR-39. The samples were bombarded in a thermal neutron field of the TRR pneumatic facility. The alpha tracks are registered on CR-39 after being etched in NaOH. The boron distribution was determined by counting these alpha tracks CR-39 plastics. The distribution showed non-uniformity in brain, liver and kidney.

  11. Pentadecapeptide BPC 157 attenuates gastric lesions induced by alloxan in rats and mice.

    PubMed

    Petek, M; Sikiric, P; Anic, T; Buljat, G; Separovic, J; Stancic-Rokotov, D; Seiwerth, S; Grabarevic, Z; Rucman, R; Mikus, D; Zoricic, I; Prkacin, I; Sebecic, B; Ziger, T; Coric, V; Turkovic, B; Aralica, G; Rotkvic, I; Mise, S; Hahn, V

    1999-12-01

    A diabetogenic alloxan regimen produced lesions in all stomachs of treated animals, either rats (200 mg x kg(-1) s.c.) or mice (400 mg x kg(-1) i.p.). In control animals, the lesions, when developed (i.e. 24 h following application), appear to be quite sustained, and consistently present also after 1 or 2 weeks. The application of the pentadecapeptide BPC 157 (10 microg or 10 ng x kg(-1) i.p. coadministered together with alloxan) would significantly attenuate these lesions' appearance. This beneficial effect seems to be present in either rats or mice and in either of the tested intervals. Importantly, the beneficial effect seems to be shared by both microgram and nanogram regimens.

  12. DPP4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption.

    PubMed

    Pipatpiboon, Noppamas; Pintana, Hiranya; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2013-03-01

    High-fat diet (HFD) consumption has been demonstrated to cause peripheral and neuronal insulin resistance, and brain mitochondrial dysfunction in rats. Although the dipeptidyl peptidase-4 inhibitor, vildagliptin, is known to improve peripheral insulin sensitivity, its effects on neuronal insulin resistance and brain mitochondrial dysfunction caused by a HFD are unknown. We tested the hypothesis that vildagliptin prevents neuronal insulin resistance, brain mitochondrial dysfunction, learning and memory deficit caused by HFD. Male rats were divided into two groups to receive either a HFD or normal diet (ND) for 12 weeks, after which rats in each group were fed with either vildagliptin (3 mg/kg/day) or vehicle for 21 days. The cognitive function was tested by the Morris Water Maze prior to brain removal for studying neuronal insulin receptor (IR) and brain mitochondrial function. In HFD rats, neuronal insulin resistance and brain mitochondrial dysfunction were demonstrated, with impaired learning and memory. Vildagliptin prevented neuronal insulin resistance by restoring insulin-induced long-term depression and neuronal IR phosphorylation, IRS-1 phosphorylation and Akt/PKB-ser phosphorylation. It also improved brain mitochondrial dysfunction and cognitive function. Vildagliptin effectively restored neuronal IR function, increased glucagon-like-peptide 1 levels and prevented brain mitochondrial dysfunction, thus attenuating the impaired cognitive function caused by HFD.

  13. Low Intensity Physical Exercise Attenuates Cardiac Remodeling and Myocardial Oxidative Stress and Dysfunction in Diabetic Rats

    PubMed Central

    Gimenes, C.; Gimenes, R.; Rosa, C. M.; Xavier, N. P.; Campos, D. H. S.; Fernandes, A. A. H.; Cezar, M. D. M.; Guirado, G. N.; Cicogna, A. C.; Takamoto, A. H. R.; Okoshi, M. P.; Okoshi, K.

    2015-01-01

    We evaluated the effects of a low intensity aerobic exercise protocol on cardiac remodeling and myocardial function in diabetic rats. Wistar rats were assigned into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary diabetes (DM-Sed), and exercised diabetes (DM-Ex). Diabetes was induced by intraperitoneal injection of streptozotocin. Rats exercised for 9 weeks in treadmill at 11 m/min, 18 min/day. Myocardial function was evaluated in left ventricular (LV) papillary muscles and oxidative stress in LV tissue. Statistical analysis was given by ANOVA or Kruskal-Wallis. Echocardiogram showed diabetic groups with higher LV diastolic diameter-to-body weight ratio and lower posterior wall shortening velocity than controls. Left atrium diameter was lower in DM-Ex than DM-Sed (C-Sed: 5.73 ± 0.49; C-Ex: 5.67 ± 0.53; DM-Sed: 6.41 ± 0.54; DM-Ex: 5.81 ± 0.50 mm; P < 0.05 DM-Sed vs C-Sed and DM-Ex). Papillary muscle function was depressed in DM-Sed compared to C-Sed. Exercise attenuated this change in DM-Ex. Lipid hydroperoxide concentration was higher in DM-Sed than C-Sed and DM-Ex. Catalase and superoxide dismutase activities were lower in diabetics than controls and higher in DM-Ex than DM-Sed. Glutathione peroxidase activity was lower in DM-Sed than C-Sed and DM-Ex. Conclusion. Low intensity exercise attenuates left atrium dilation and myocardial oxidative stress and dysfunction in type 1 diabetic rats. PMID:26509175

  14. Intermittent access to a nutritionally complete high-fat diet attenuates alcohol drinking in rats.

    PubMed

    Sirohi, Sunil; Van Cleef, Arriel; Davis, Jon F

    2017-02-01

    Binge eating disorder and alcohol use disorder (AUD) frequently co-occur in the presence of other psychiatric conditions. Data suggest that binge eating engages similar behavioral and neurochemical processes common to AUD, which might contribute to the etiology or maintenance of alcoholism. However, it is unclear how binge feeding behavior and alcohol intake interact to promote initiation or maintenance of AUD. We investigated the impact of binge-like feeding on alcohol intake and anxiety-like behavior in male Long Evans rats. Rats received chow (controls) or extended intermittent access (24h twice a week; Int-HFD) to a nutritionally complete high-fat diet for six weeks. Standard rodent chow was available ad-libitum to all groups and food intake was measured. Following HFD exposure, 20.0% ethanol, 2.0% sucrose intake and endocrine peptide levels were evaluated. Anxiety-like behavior was measured using a light-dark (LD) box apparatus. Rats in the Int-HFD group displayed a binge-like pattern of feeding (alternations between caloric overconsumption and voluntary caloric restriction). Surprisingly, alcohol intake was significantly attenuated in the Int-HFD group whereas sugar consumption was unaffected. Plasma acyl-ghrelin levels were significantly elevated in the Int-HFD group, whereas glucagon-like peptide-1 levels did not change. Moreover, rats in the Int-HFD group spent more time in the light side of the LD box compared to controls, indicating that binge-like feeding induced anxiolytic effects. Collectively, these data suggest that intermittent access to HFD attenuates alcohol intake through reducing anxiety-like behavior, a process potentially controlled by elevated plasma ghrelin levels.

  15. Inflammation During Gestation Induced Spatial Memory and Learning Deficits: Attenuated by Physical Exercise in Juvenile Rats

    PubMed Central

    Thangarajan, Rajesh; Rai, Kiranmai. S.; Gopalakrishnan, Sivakumar; Perumal, Vivek

    2015-01-01

    Background Gestational infections induced inflammation (GIII) is a cause of various postnatal neurological deficits in developing countries. Such intra uterine insults could result in persistent learning-memory disabilities. There are no studies elucidating the efficacy of adolescence exercise on spatial learning- memory abilities of young adult rats pre-exposed to inflammatory insult during fetal life. Aims and Objectives The present study addresses the efficacy of physical (running) exercise during adolescent period in attenuating spatial memory deficits induced by exposure to GIII in rats. Materials and Methods Pregnant Wistar dams were randomly divided into control and lipopolysaccharide (LPS) groups, injected intra peritoneally (i.p) with saline (0.5ml) or lipopolysaccharide (LPS) (0.5mg/kg) on alternate days from gestation day 14 (GD 14) till delivery. After parturition, pups were divided into 3 groups (n=6/group) a) Sham control and LPS group divided into 2 subgroups- b) LPS and c) LPS exercise group. Running exercise was given only to LPS exercise group during postnatal days (PNDs) 30 to 60 (15min/day). Spatial learning and memory performance was assessed by Morris water maze test (MWM), on postnatal day 61 to 67 in all groups. Results Young rats pre-exposed to GIII and subjected to running exercise through juvenile period displayed significant decrease in latency to reach escape platform and spent significant duration in target quadrant in MWM test, compared to age matched LPS group. Results of the current study demonstrated that exercise through juvenile/adolescent period effectively mitigates gestational inflammation-induced cognitive deficits in young adult rats. Conclusion Inflammation during gestation impairs offspring’s spatial memory and learning abilities. Whereas, early postnatal physical exercise attenuates, to higher extent, cognitive impairment resulted from exposure to LPS induced inflammation during intrauterine growth period. PMID:26266117

  16. Experimental chronic kidney disease attenuates ischemia-reperfusion injury in an ex vivo rat lung model

    PubMed Central

    Huang, Kun-Lun; Lan, Chou-Chin; Hsu, Yu-Juei; Wu, Geng-Chin; Peng, Chia-Hui

    2017-01-01

    Lung ischemia reperfusion injury (LIRI) is one of important complications following lung transplant and cardiopulmonary bypass. Although patients on hemodialysis are still excluded as lung transplant donors because of the possible effects of renal failure on the lungs, increased organ demand has led us to evaluate the influence of chronic kidney disease (CKD) on LIRI. A CKD model was induced by feeding Sprague-Dawley rats an adenine-rich (0.75%) diet for 2, 4 and 6 weeks, and an isolated rat lung in situ model was used to evaluate ischemia reperfusion (IR)-induced acute lung injury. The clinicopathological parameters of LIRI, including pulmonary edema, lipid peroxidation, histopathological changes, immunohistochemistry changes, chemokine CXCL1, inducible nitric oxide synthase (iNOS), proinflammatory and anti-inflammatory cytokines, heat shock protein expression, and nuclear factor-κB (NF-κB) activation were determined. Our results indicated that adenine-fed rats developed CKD as characterized by increased blood urea nitrogen and creatinine levels and the deposition of crystals in the renal tubules and interstitium. IR induced a significant increase in the pulmonary arterial pressure, lung edema, lung injury scores, the expression of CXCL1 mRNA, iNOS level, and protein concentration of the bronchial alveolar lavage fluid (BALF). The tumor necrosis factor-α levels in the BALF and perfusate; the interleukin-10 level in the perfusate; and the malondialdehyde levels in the lung tissue and perfusate were also significantly increased by LIRI. Counterintuitively, adenine-induced CKD significantly attenuated the severity of lung injury induced by IR. CKD rats exhibited increased heat shock protein 70 expression and decreased activation of NF-κB signaling. In conclusion, adenine-induced CKD attenuated LIRI by inhibiting the NF-κB pathway. PMID:28291795

  17. Stress preconditioning attenuates oxidative injury to the alveolar epithelium of the lung following haemorrhage in rats

    PubMed Central

    Pittet, J F; Lu, L N; Geiser, T; Lee, H; Matthay, M A; Welch, W J

    2002-01-01

    Inhibition of cAMP-dependent stimulation of vectorial fluid transport across the alveolar epithelium following haemorrhagic shock is mediated by reactive nitrogen species released within the airspaces of the lung. We tested here the hypothesis that the prior activation of the cellular heat shock or stress response, via exposure to either heat or geldanamycin, would attenuate the release of airspace nitric oxide (NO) responsible for the shock-mediated failure of the alveolar epithelium to respond to catecholamines in rats. Rats were haemorrhaged to a mean arterial pressure of 30–35 mmHg for 60 min, and then resuscitated with a 4 % albumin solution. Alveolar fluid clearance was measured by change in concentration of a protein solution instilled into the airspaces 5 h after the onset of haemorrhage. Stress preconditioning restored the cAMP-mediated upregulation of alveolar liquid clearance after haemorrhage. The protective effect of stress preconditioning was mediated in part by a decrease in the expression of iNOS in the lung. Specifically, stress preconditioning decreased the production of nitrite by endotoxin-stimulated alveolar macrophages removed from haemorrhaged rats or by A549 and rat alveolar epithelial type II cell monolayers stimulated with cytomix (a mixture of TNF-α, IL-1β and IFN-γ) for 24 h. In summary, these results provide the first in vivo evidence that stress preconditioning restores a normal fluid transport capacity of the alveolar epithelium in the early phase following haemorrhagic shock by attenuating NO-mediated oxidative stress to the lung epithelium. PMID:11790821

  18. Wogonin Attenuates Hippocampal Neuronal Loss and Cognitive Dysfunction in Trimethyltin-Intoxicated Rats

    PubMed Central

    Lee, Bombi; Sur, Bongjun; Cho, Seong-Guk; Yeom, Mijung; Shim, Insop; Lee, Hyejung; Hahm, Dae-Hyun

    2016-01-01

    We examined whether wogonin (WO) improved hippocampal neuronal activity, behavioral alterations and cognitive impairment, in rats induced by administration of trimethyltin (TMT), an organotin compound that is neurotoxic to these animals. The ability of WO to improve cognitive efficacy in the TMT-induced neurodegenerative rats was investigated using a passive avoidance test, and the Morris water maze test, and using immunohistochemistry to detect components of the acetylcholinergic system, brain-derived neurotrophic factor (BDNF), and cAMP-response element-binding protein (CREB) expression. Rats injected with TMT showed impairments in learning and memory and daily administration of WO improved memory function, and reduced aggressive behavior. Administration of WO significantly alleviated the TMT-induced loss of cholinergic immunoreactivity and restored the hippocampal expression levels of BDNF and CREB proteins and their encoding mRNAs to normal levels. These findings suggest that WO might be useful as a new therapy for treatment of various neurodegenerative diseases. PMID:27133262

  19. Up-regulation of GBP2 is Associated with Neuronal Apoptosis in Rat Brain Cortex Following Traumatic Brain Injury.

    PubMed

    Miao, Qi; Ge, Meihong; Huang, Lili

    2017-02-27

    Guanylate binding protein 2 (GBP2) is one member of GBP family. Recently, GBP2 has been proposed to be a novel target of anti-cancer drugs. However, the role of GBP2 in the traumatic brain injury (TBI) is very limited. In this study, we sought to define GBP2's role in brain injury. GBP2 protein levels were significantly increased in the brain 3 days after injury, suggesting a functional role for GBP2 in TBI. Neuronal cells overexpressing GBP2 exhibited up-regulation of co-location of GBP2 and NeuN following TBI, suggesting that GBP2 potentiates the neuron apoptosis. To confirm the role of GBP2 in neuron apoptosis process, we employed a highly potent inhibitor of GBP2 (GBP2 RNAi). In H2O2-stimulated PC12 cells, in vitro blockade of GBP2 activity using GBP2 RNAi markedly attenuated the neuron apoptosis number. GBP2 RNAi also inhibited the expression levels of active caspase3 and p-Stat1. Furthermore, we found the expression of p-Stat1 in line with GBP2 and GBP2 interacted with p-Stat1 following TBI. The Jak2 inhibitor, AG490 inhibited this interaction and decreased the active caspase3 expression as well as promoted the functional recovery. Taken together, these data suggest that GBP2 RNAi has a protective effect in a rat TBI. This study demonstrates that GBP2 is an important positive regulator of TBI and is a promising therapeutic target for brain injury.

  20. Comparison of immune responses to attenuated rabies virus and street virus in mouse brain.

    PubMed

    Miao, Fa-Ming; Zhang, Shou-Feng; Wang, Shu-Chao; Liu, Ye; Zhang, Fei; Hu, Rong-Liang

    2017-01-01

    Rabies is a lethal neurological disease caused by the neurotropic rabies virus (RABV). To investigate the innate immune response in the brain during rabies infection, key gene transcripts indicative of innate immunity in a mouse model system were measured using real-time RT-PCR. Mice were infected via the intracerebral or intramuscular route with either attenuated rabies virus (SRV9) or pathogenic rabies virus (BD06). Infection with SRV9 resulted in the early detection of viral replication and the rapid induction of innate immune response gene expression in the brain. BD06 infection elicited innate immune response gene expression during only the late stage of infection. We measured Na-fluorescein uptake to assess blood-brain barrier (BBB) permeability, which was enhanced during the early stage of SRV9 infection and significantly enhanced during the late stage of BD06 infection. Furthermore, early SRV9 replication increased the maturation and differentiation of dendritic cells (DCs) and B cells in the inguinal lymph nodes and initiated the generation of virus-neutralizing antibodies (VNAs), which cooperate with the innate immune response to eliminate virus from the CNS. However, BD06 infection did not stimulate VNA production; thus, the virus was able to evade the host immune response and cause encephalitis. The rabies virus phosphoprotein has been reported to counteract IFN activation. In an in vitro study of the relationship between IFN antagonism and RABV pathogenicity, we demonstrated that SRV9 more strongly antagonized IFN activity than did BD06. Therefore, there is no positive relationship between the IFN antagonist activity of the virus and its pathogenicity.

  1. Mutual interaction of histamine H3-receptors and alpha 2-adrenoceptors on noradrenergic terminals in mouse and rat brain cortex.

    PubMed

    Schlicker, E; Behling, A; Lümmen, G; Malinowska, B; Göthert, M

    1992-06-01

    Brain cortex slices were preincubated with 3H-noradrenaline and superfused with physiological salt solution containing desipramine. We studied the inhibition of the electrically evoked tritium overflow caused by histamine in the presence of alpha-adrenoceptor ligands (mouse and rat brain cortex), and the inhibition caused by talipexole (the former B-HT 920) in the presence of H3-receptor ligands (mouse brain cortex). In mouse brain cortex slices, the inhibitory effect of histamine on the tritium overflow evoked by 36 pulses, 0.3 Hz was not changed by the alpha 1-adrenoceptor antagonist prazosin, but increased by the alpha 2-adrenoceptor antagonist rauwolscine. When the current strength or the duration of electrical pulses was reduced to compensate for the increase in evoked tritium overflow produced by rauwolscine, the latter still enhanced the effect of histamine. The histamine-induced inhibition of tritium overflow evoked by 360 pulses, 3 Hz was not affected by the alpha 1-adrenoceptor agonist phenylephrine but attenuated by the alpha 2-adrenoceptor agonist talipexole. Finally, the inhibition by histamine of the tritium overflow evoked by 3 pulses, 100 Hz was attenuated by talipexole but not affected by rauwolscine. Conversely, the inhibitory effect of talipexole on tritium overflow elicited by 360 pulses, 3 Hz was slightly attenuated by the H3-receptor agonist R-(-)-alpha-methylhistamine but not affected by the H3-receptor antagonist thioperamide. In rat brain cortex slices, histamine only tended to inhibit tritium overflow evoked by 360 pulses, 3 Hz, both in the absence of alpha-adrenoceptor antagonists and in the presence of prazosin. However, histamine markedly inhibited the evoked overflow in the presence of rauwolscine.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Differential expression of sirtuins in the aging rat brain

    PubMed Central

    Braidy, Nady; Poljak, Anne; Grant, Ross; Jayasena, Tharusha; Mansour, Hussein; Chan-Ling, Tailoi; Smythe, George; Sachdev, Perminder; Guillemin, Gilles J.

    2015-01-01

    Although there are seven mammalian sirtuins (SIRT1-7), little is known about their expression in the aging brain. To characterize the change(s) in mRNA and protein expression of SIRT1-7 and their associated proteins in the brain of “physiologically” aged Wistar rats. We tested mRNA and protein expression levels of rat SIRT1-7, and the levels of associated proteins in the brain using RT-PCR and western blotting. Our data shows that SIRT1 expression increases with age, concurrently with increased acetylated p53 levels in all brain regions investigated. SIRT2 and FOXO3a protein levels increased only in the occipital lobe. SIRT3-5 expression declined significantly in the hippocampus and frontal lobe, associated with increases in superoxide and fatty acid oxidation levels, and acetylated CPS-1 protein expression, and a reduction in MnSOD level. While SIRT6 expression declines significantly with age acetylated H3K9 protein expression is increased throughout the brain. SIRT7 and Pol I protein expression increased in the frontal lobe. This study identifies previously unknown roles for sirtuins in regulating cellular homeostasis and healthy aging. PMID:26005404

  3. Rat brains also have a default mode network

    PubMed Central

    Lu, Hanbing; Zou, Qihong; Gu, Hong; Raichle, Marcus E.; Stein, Elliot A.; Yang, Yihong

    2012-01-01

    The default mode network (DMN) in humans has been suggested to support a variety of cognitive functions and has been implicated in an array of neuropsychological disorders. However, its function(s) remains poorly understood. We show that rats possess a DMN that is broadly similar to the DMNs of nonhuman primates and humans. Our data suggest that, despite the distinct evolutionary paths between rodent and primate brain, a well-organized, intrinsically coherent DMN appears to be a fundamental feature in the mammalian brain whose primary functions might be to integrate multimodal sensory and affective information to guide behavior in anticipation of changing environmental contingencies. PMID:22355129

  4. Procaine Attenuates Pain Behaviors of Neuropathic Pain Model Rats Possibly via Inhibiting JAK2/STAT3

    PubMed Central

    Li, Donghua; Yan, Yurong; Yu, Lingzhi; Duan, Yong

    2016-01-01

    Neuropathic pain (NPP) is the main culprit among chronic pains affecting the normal life of patients. Procaine is a frequently-used local anesthesia with multiple efficacies in various diseases. However, its role in modulating NPP has not been reported yet. This study aims at uncovering the role of procaine in NPP. Rats were pretreated with procaine by intrathecal injection. Then NPP rat model was induced by sciatic nerve chronic compression injury (CCI) and behavior tests were performed to analyze the pain behaviors upon mechanical, thermal and cold stimulations. Spinal expression of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) was detected by qRT-PCR and western blot. JAK2 was also overexpressed in procaine treated model rats for behavior tests. Results showed that procaine pretreatment improved the pain behaviors of model rats upon mechanical, thermal and cold stimulations, with the best effect occurring on the 15th day post model construction (p<0.05). Procaine also inhibited JAK2 and STAT3 expression in both mRNA (p<0.05) and protein levels. Overexpression of JAK2 increased STAT3 level and reversed the improvement effects of procaine in pain behaviors (p<0.01). These findings indicate that procaine is capable of attenuating NPP, suggesting procaine is a potential therapeutic strategy for treating NPP. Its role may be associated with the inhibition on JAK2/STAT3 signaling. PMID:27530113

  5. Angelica Sinensis attenuates inflammatory reaction in experimental rat models having spinal cord injury.

    PubMed

    Xu, Jun; E, Xiao-Qiang; Liu, Hui-Yong; Tian, Jun; Yan, Jing-Long

    2015-01-01

    This study was aimed to evaluate the effect of Angelica Sinensis on experimental rat models in which spinal cord injury was induced by studying different factors. Different factors causing inflammation play a key role in pathophysiology of SCI. Here three groups of rats (n=15, each was used). These included a sham control group where only laminectomy was performed, SCI group where SCI was induced and AS/SCI group where although SCI was induced but Angelica Sinensis was also administered to study its effect and draw a comparison with control. The expression of I-kBα and NF-kB p65 was also studied using western blotting and after recording optical density (OD) values of western blots. MPO activity was used to measure the effect of 20 mg/kg Angelica Sinensis. The levels of proinflammatory cytokines TNF-α, IL-1β and IL-6 were also studied. As compared with SCI group and sham control it was observed that Angelica Sinensis significantly reduced the expression of I-kBα and NF-kB p65, (P<0.05), while MPO activity was also significantly reduced. Proinflammatory cytokine level was also reduced in treated group as compared to both other groups. On the basis of this study we concluded that the use of 20 mg/kg Angelica Sinensis in rat models can attenuate the secondary damage caused by SCI and thus help in controlling the pathology of SCI in rats.

  6. Supplementation of parenteral nutrition with fish oil attenuates acute lung injury in a rat model

    PubMed Central

    Kohama, Keisuke; Nakao, Atsunori; Terashima, Mariko; Aoyama-Ishikawa, Michiko; Shimizu, Takayuki; Harada, Daisuke; Nakayama, Mitsuo; Yamashita, Hayato; Fujiwara, Mayu; Kotani, Joji

    2014-01-01

    Fish oil rich in n-3 polyunsaturated fatty acids has diverse immunomodulatory properties and attenuates acute lung injury when administered in enternal nutrition. However, enteral nutrition is not always feasible. Therefore, we investigated the ability of parenteral nutrition supplemented with fish oil to ameliorate acute lung injury. Rats were infused with parenteral nutrition solutions (without lipids, with soybean oil, or with soybean oil and fish oil) for three days. Lipopolysaccharide (15 mg/kg) was then administered intratracheally to induce acute lung injury, characterized by impaired lung function, polymorphonuclear leukocyte recruitment, parenchymal tissue damage, and upregulation of mRNAs for inflammatory mediators. Administration of parenteral nutrition supplemented with fish oil prior to lung insult improved gas exchange and inhibited neutrophil recruitment and upregulation of mRNAs for inflammatory mediators. Parenteral nutrition supplemented with fish oil also prolonged survival. To investigate the underlying mechanisms, leukotriene B4 and leukotriene B5 secretion was measured in neutrophils from the peritoneal cavity. The neutrophils from rats treated with fish oil-rich parenteral nutrition released significantly more leukotriene B5, an anti-inflammatory eicosanoid, than neutrophils isolated from rats given standard parenteral nutrition. Parenteral nutrition with fish oil significantly reduced lipopolysaccharide-induced lung injury in rats in part by promoting the synthesis of anti-inflammatory eicosanoids. PMID:24688221

  7. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injury in stroke rats

    PubMed Central

    Xu, Yi; Du, Shiwei; Yu, Xinguang; Han, Xiao; Hou, Jincai; Guo, Hao

    2014-01-01

    Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that intravenous transplantation of human bone marrow mesenchymal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including microtubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These findings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneficial effects include resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration. PMID:25657721

  8. Angelica Sinensis attenuates inflammatory reaction in experimental rat models having spinal cord injury

    PubMed Central

    Xu, Jun; E, Xiao-Qiang; Liu, Hui-Yong; Tian, Jun; Yan, Jing-Long

    2015-01-01

    This study was aimed to evaluate the effect of Angelica Sinensis on experimental rat models in which spinal cord injury was induced by studying different factors. Different factors causing inflammation play a key role in pathophysiology of SCI. Here three groups of rats (n=15, each was used). These included a sham control group where only laminectomy was performed, SCI group where SCI was induced and AS/SCI group where although SCI was induced but Angelica Sinensis was also administered to study its effect and draw a comparison with control. The expression of I-kBα and NF-kB p65 was also studied using western blotting and after recording optical density (OD) values of western blots. MPO activity was used to measure the effect of 20 mg/kg Angelica Sinensis. The levels of proinflammatory cytokines TNF-α, IL-1β and IL-6 were also studied. As compared with SCI group and sham control it was observed that Angelica Sinensis significantly reduced the expression of I-kBα and NF-kB p65, (P<0.05), while MPO activity was also significantly reduced. Proinflammatory cytokine level was also reduced in treated group as compared to both other groups. On the basis of this study we concluded that the use of 20 mg/kg Angelica Sinensis in rat models can attenuate the secondary damage caused by SCI and thus help in controlling the pathology of SCI in rats. PMID:26261562

  9. The neutrophil elastase inhibitor, sivelestat, attenuates sepsis-related kidney injury in rats

    PubMed Central

    Li, Guofu; Jia, Jia; Ji, Kaiqiang; Gong, Xiaoying; Wang, Rui; Zhang, Xiaoli; Wang, Haiyuan; Zang, Bin

    2016-01-01

    Sepsis-induced acute kidney injury (AKI) represents a major cause of mortality in intensive care units. Sivelestat, a selective inhibitor of neutrophil elastase (NE), can attenuate sepsis-related acute lung injury. However, whether sivelestat can preserve kidney function during sepsis remains unclear. In this study, we thus examined the effects of sivelestat on sepsis-related AKI. Cecal ligation and puncture (CLP) was performed to induce multiple bacterial infection in male Sprague-Dawley rats, and subsequently, 50 or 100 mg/kg sivelestat were administered by intraperitoneal injection immediately after the surgical procedure. In the untreated rats with sepsis, the mean arterial pressure (MAP) and glomerular filtration rate (GFR) were decreased, whereas serum blood urea nitrogen (BUN) and neutrophil gelatinase-associated lipocalin (NGAL) levels were increased. We found that sivelestat promoted the survival of the rats with sepsis, restored the impairment of MAP and GFR, and inhibited the increased BUN and NGAL levels; specifically, the higher dose was more effective. In addition, sivelestat suppressed the CLP-induced macrophage infiltration, the overproduction of pro-inflammatory mediators (tumor necrosis factor-α, interleukin-1β, high-mobility group box 1 and inducible nitric oxide synthase) and serine/threonine kinase (Akt) pathway activation in the rats. Collectively, our data suggest that the inhibition of NE activity with the inhibitor, sivelestat, is beneficial in ameliorating sepsis-related kidney injury. PMID:27430552

  10. Intrathecal siRNA against GPNMB attenuates nociception in a rat model of neuropathic pain.

    PubMed

    Hou, Lili; Zhang, Yanfeng; Yang, Yong; Xiang, Kai; Tan, Qindong; Guo, Qulian

    2015-02-01

    Neuropathic pain is characterized by hyperalgesia, allodynia, and spontaneous pain. Recent studies have shown that glycoprotein nonmetastatic melanoma B (GPNMB) plays a pivotal role in neuronal survival and neuroprotection. However, the role of GPNMB in neuropathic pain remains unknown. The aim of the present study was to assess the role of GPNMB in neuropathic pain. In cultured spinal cord neurons, we used two small interfering RNAs (siRNAs) targeting the complementary DNA (cDNA) sequence of rat GPNMB that had potent inhibitory effects on GPNMB, and siRNA1-GPNMB was selected for further in vivo study as it had the higher inhibitory effect. After sciatic nerve injury in rats, the endogenous level of GPNMB was increased in a time-dependent manner in the spinal cord. Furthermore, the intrathecal injection of siRNA1-GPNMB inhibited the expression of GPNMB and pro-inflammatory factors (TNF-α, IL-1β, and IL-6) and alleviated mechanical allodynia and thermal hyperalgesia in the chronic constriction injury (CCI) model of rats. Taken together, our findings suggest that siRNA against GPNMB can alleviate the chronic neuropathic pain caused by CCI, and this effect may be mediated by attenuated expression of TNF-α, IL-1β, and IL-6 in the spinal cord of CCI rats. Therefore, inhibition of GPNMB may provide a novel strategy for the treatment of neuropathic pain.

  11. The neutrophil elastase inhibitor, sivelestat, attenuates sepsis-related kidney injury in rats.

    PubMed

    Li, Guofu; Jia, Jia; Ji, Kaiqiang; Gong, Xiaoying; Wang, Rui; Zhang, Xiaoli; Wang, Haiyuan; Zang, Bin

    2016-09-01

    Sepsis-induced acute kidney injury (AKI) represents a major cause of mortality in intensive care units. Sivelestat, a selective inhibitor of neutrophil elastase (NE), can attenuate sepsis-related acute lung injury. However, whether sivelestat can preserve kidney function during sepsis remains unclear. In this study, we thus examined the effects of sivelestat on sepsis-related AKI. Cecal ligation and puncture (CLP) was performed to induce multiple bacterial infection in male Sprague-Dawley rats, and subsequently, 50 or 100 mg/kg sivelestat were administered by intraperitoneal injection immediately after the surgical procedure. In the untreated rats with sepsis, the mean arterial pressure (MAP) and glomerular filtration rate (GFR) were decreased, whereas serum blood urea nitrogen (BUN) and neutrophil gelatinase-associated lipocalin (NGAL) levels were increased. We found that sivelestat promoted the survival of the rats with sepsis, restored the impairment of MAP and GFR, and inhibited the increased BUN and NGAL levels; specifically, the higher dose was more effective. In addition, sivelestat suppressed the CLP-induced macrophage infiltration, the overproduction of pro-inflammatory mediators (tumor necrosis factor‑α, interleukin-1β, high-mobility group box 1 and inducible nitric oxide synthase) and serine/threonine kinase (Akt) pathway activation in the rats. Collectively, our data suggest that the inhibition of NE activity with the inhibitor, sivelestat, is beneficial in ameliorating sepsis-related kidney injury.

  12. Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: a pro-inflammatory pathway in rats.

    PubMed

    Gong, Qi-Hai; Wang, Qian; Pan, Li-Long; Liu, Xin-Hua; Huang, Hui; Zhu, Yi-Zhun

    2010-07-01

    The present study investigated the effect of sodium hydrosulfide (NaHS), a H(2)S donor, on cognitive impairment and neuroinflammatory changes induced by bilateral intracerebroventricular injections of LPS at a dose of 10mug/rat. Rats received 5mg/kg NaHS or volume-matched vehicle administration by intraperitoneal injection 3days before LPS injection then for 9days once daily. Morris water maze was used to detect the cognitive function. Compared to the sham-treated rats, LPS injection significantly prolonged the mean escape latency in the navigation test (P<0.05) and shortened the adjusted escape latency by approximately 30% (P<0.05). Meanwhile, LPS injection decreased H(2)S level but increased pro-inflammatory mediators (i.e., TNF-alpha, TNFR1, degradation of IkappaB-alpha and thereafter activation of NF-kappaB) in hippocampus. However, these effects of LPS were significantly ameliorated with NaHS treatment (P<0.05 vs vehicle-treated group). The present data suggest that H(2)S attenuates LPS-induced cognitive impairment through reducing the overproduction of pro-inflammatory mediators via inhibition of NF-kappaB pathways in rats. This study sets the stage for exploring a novel H(2)S releasing agent for preventing or retarding the development or progression of neurological disorders such as Alzheimer's disease.

  13. Juvenile exposure to methamphetamine attenuates behavioral and neurochemical responses to methamphetamine in adult rats.

    PubMed

    McFadden, Lisa M; Carter, Samantha; Matuszewich, Leslie

    2012-04-01

    Previous research has shown that children living in clandestine methamphetamine (MA) labs are passively exposed to the drug [1]. The long-term effects of this early exposure on the dopaminergic systems are unknown, but may be important for adult behaviors mediated by dopamine, such as drug addiction. The current study sought to determine if juvenile exposure to low doses of MA would lead to altered responsiveness to the stimulant in adulthood. Young male and female rats (PD20-34) were injected daily with 0 or 2 mg/kg MA or left undisturbed and then tested at PD90. In the open field, adult rats exposed to MA during preadolescence had reduced locomotor activity compared to control non-exposed rats following an acute injection of MA (2 mg/kg). Likewise, methamphetamine-induced dopamine increases in the dorsal striatum were attenuated in male and female rats that had been exposed to MA as juveniles, although there were no changes in basal in vivo or ex vivo dopamine levels. These findings suggest that exposure of juveniles to MA leads to persistent changes in the behavioral and neurochemical responses to stimulants in adulthood.

  14. HEPES prevents edema in rat brain slices.

    PubMed

    MacGregor, D G; Chesler, M; Rice, M E

    2001-05-11

    Brain slices gain water when maintained in bicarbonate-buffered artificial cerebro-spinal fluid (ACSF) at 35 degrees C. We previously showed that this edema is linked to glutamate receptor activation and oxidative stress. An additional factor that may contribute to swelling is acidosis, which arises from high CO2 tension in brain slices. To examine the role of acidosis in slice edema, we added N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) to osmotically balanced ACSF (HEPES-ACSF), thereby increasing buffering capacity beyond that provided by bicarbonate/CO2. Water gain was markedly inhibited in HEPES-ACSF. After 3 h incubation in HEPES-ACSF at 35 degrees C, water gain was limited to that of fresh slices after 1 h recovery in ACSF at room temperature. The effect of HEPES in decreasing slice water gain was concentration dependent from 0.3 to 20 mM. The inhibition of water gain by HEPES suggests that tissue acidosis is a contributing factor in brain slice edema.

  15. Inhibition of Brain Mitogen-Activated Protein Kinase Signaling Reduces Central Endoplasmic Reticulum Stress and Inflammation and Sympathetic Nerve Activity in Heart Failure Rats.

    PubMed

    Wei, Shun-Guang; Yu, Yang; Weiss, Robert M; Felder, Robert B

    2016-01-01

    Mitogen-activated protein kinase (MAPK) signaling and endoplasmic reticulum (ER) stress in the brain have been implicated in the pathophysiology of hypertension. This study determined whether ER stress occurs in subfornical organ and hypothalamic paraventricular nucleus in heart failure (HF) and how MAPK signaling interacts with ER stress and other inflammatory mediators. HF rats had significantly higher levels of the ER stress biomarkers (glucose-regulated protein 78, activating transcription factor 6, activating transcription factor 4, X-box binding protein 1, P58(IPK), and C/EBP homologous protein) in subfornical organ and paraventricular nucleus, which were attenuated by a 4-week intracerebroventricular infusion of inhibitors selective for p44/42 MAPK (PD98059), p38 MAPK (SB203580), or c-Jun N-terminal kinase (SP600125). HF rats also had higher mRNA levels of tumor necrosis factor-α, interleukin-1β, cyclooxygenase-2, and nuclear factor-κB p65, and a lower mRNA level of IκB-α, in subfornical organ and paraventricular nucleus, compared with SHAM rats, and these indicators of increased inflammation were attenuated in the HF rats treated with the MAPK inhibitors. Plasma norepinephrine level was higher in HF rats than in SHAM rats but was reduced in the HF rats treated with PD98059 and SB203580. A 4-week intracerebroventricular infusion of PD98059 also improved some hemodynamic and anatomic indicators of left ventricular function in HF rats. These data demonstrate that ER stress increases in the subfornical organ and paraventricular nucleus of rats with ischemia-induced HF and that inhibition of brain MAPK signaling reduces brain ER stress and inflammation and decreases sympathetic excitation in HF. An interaction between MAPK signaling and ER stress in cardiovascular regions of the brain may contribute to the development of HF.

  16. Silencing salusin-β attenuates cardiovascular remodeling and hypertension in spontaneously hypertensive rats

    PubMed Central

    Ren, Xing-Sheng; Ling, Li; Zhou, Bing; Han, Ying; Zhou, Ye-Bo; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2017-01-01

    Salusin-β is a bioactive peptide involved in vascular smooth muscle cell proliferation, vascular fibrosis and hypertension. The present study was designed to determine the effects of silencing salusin-β on hypertension and cardiovascular remodeling in spontaneously hypertensive rats (SHR). Thirteen-week-old male SHR and normotensive Wistar-Kyoto rats (WKY) were subjected to intravenous injection of PBS, adenoviral vectors encoding salusin-β shRNA (Ad-Sal-shRNA) or a scramble shRNA. Salusin-β levels in plasma, myocardium and mesenteric artery were increased in SHR. Silencing salusin-β had no significant effect on blood pressure in WKY, but reduced blood pressure in SHR. It reduced the ratio of left ventricle weight to body weight, cross-sectional areas of cardiocytes and perivascular fibrosis, and decreased the media thickness and the media/lumen ratio of arteries in SHR. Silencing salusin-β almost normalized plasma norepinephrine and angiotensin II levels in SHR. It prevented the upregulation of angiotensin II and AT1 receptors, and reduced the NAD(P)H oxidase activity and superoxide anion levels in myocardium and mesenteric artery of SHR. Knockdown of salusin-β attenuated cell proliferation and fibrosis in vascular smooth muscle cells from SHR. These results indicate that silencing salusin-β attenuates hypertension and cardiovascular remodeling in SHR. PMID:28230187

  17. Saturated hydrogen saline attenuates endotoxin-induced acute liver dysfunction in rats.

    PubMed

    Xu, X-F; Zhang, J

    2013-01-01

    To determine the effect of saturated hydrogen saline on lipopolysaccharide (LPS)-induced acute liver dysfunction, rats were divided into control, LPS, and LPS plus saturated hydrogen saline (LPS+H(2)) groups. Treatment with saturated hydrogen saline prolonged the median survival time and reduced liver dysfunction. Moreover, saturated hydrogen saline significantly reduced pathological alterations in liver tissues, the number of ballooned hepatocytes, serum tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 levels, and myeloperoxidase (MPO) and malondialdehyde (MDA) levels in liver tissues (P<0.05). Cell apoptosis was detected in liver tissues after LPS treatment, and attenuated by saturated hydrogen saline treatment. Saturated hydrogen saline also decreased phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated Jun kinase (p-JNK), nuclear factor-kappa B (NF-kappaB), and second mitochondria-derived activator of caspase (Smac) levels, and increased p38 activation (P<0.05). Thus, saturated hydrogen saline may attenuate LPS-induced acute liver dysfunction in rats, possibly by reducing inflammation and cell apoptosis. Mitogen-activated protein kinase (MAPK), NF-kappaB, and Smac may contribute to saturated hydrogen saline-mediated liver protection.

  18. Inhibition of type I insulin-like growth factor receptor signaling attenuates the development of breast cancer brain metastasis.

    PubMed

    Saldana, Sandra M; Lee, Heng-Huan; Lowery, Frank J; Khotskaya, Yekaterina B; Xia, Weiya; Zhang, Chenyu; Chang, Shih-Shin; Chou, Chao-Kai; Steeg, Patricia S; Yu, Dihua; Hung, Mien-Chie

    2013-01-01

    Brain metastasis is a common cause of mortality in cancer patients, yet potential therapeutic targets remain largely unknown. The type I insulin-like growth factor receptor (IGF-IR) is known to play a role in the progression of breast cancer and is currently being investigated in the clinical setting for various types of cancer. The present study demonstrates that IGF-IR is constitutively autophosphorylated in brain-seeking breast cancer sublines. Knockdown of IGF-IR results in a decrease of phospho-AKT and phospho-p70s6k, as well as decreased migration and invasion of MDA-MB-231Br brain-seeking cells. In addition, transient ablation of IGFBP3, which is overexpressed in brain-seeking cells, blocks IGF-IR activation. Using an in vivo experimental brain metastasis model, we show that IGF-IR knockdown brain-seeking cells have reduced potential to establish brain metastases. Finally, we demonstrate that the malignancy of brain-seeking cells is attenuated by pharmacological inhibition with picropodophyllin, an IGF-IR-specific tyrosine kinase inhibitor. Together, our data suggest that the IGF-IR is an important mediator of brain metastasis and its ablation delays the onset of brain metastases in our model system.

  19. Cloning and expression of a rat brain GABA transporter

    SciTech Connect

    Guastella, J.; Czyzyk, L.; Davidson, N.; Lester, H.A. ); Nelson, N.; Nelson, H.; Miedel, M.C. ); Keynan, S.; Kanner, B.I. )

    1990-09-14

    A complementary DNA clone (designated GAT-1) encoding a transporter for the neurotransmitter {gamma}-aminobutyric acid (GABA) has been isolated from rat brain, and its functional properties have been examined in Xenopus oocytes. Oocytes injected with GAT-1 synthetic messenger RNA accumulated ({sup 3}H)GABA to levels above control values. The transporter encoded by GAT-1 has a high affinity for GABA, is sodium- and chloride-dependent, and is pharmacologically similar to neuronal GABA transporters. The GAT-1 protein shares antigenic determinants with a native rat brain GABA transporter. The nucleotide sequence of GAT-1 predicts a protein of 599 amino acids with a molecular weight of 67 kilodaltons. Hydropathy analysis of the deduced protein suggests multiple transmembrane regions, a feature shared by several cloned transporters; however, database searches indicate that GAT-1 is not homologous to any previously identified proteins. Therefore, GAT-1 appears to be a member of a previously uncharacterized family of transport molecules.

  20. Reduced glutathione attenuates liver injury induced by methyl parathion in rats.

    PubMed

    Jiang, Na; Lu, Lina; Wang, Tian; Zhang, Leiming; Xin, Wenyu; Fu, Fenghua

    2010-02-01

    The aim of this study was to investigate whether exogenous reduced glutathione (GSH) could protect liver injury induced by methyl parathion. Rats were allocated into four groups named as control, MP (methyl parathion poisoning), MP+GSH1 (methyl parathion poisoning treated with GSH 600 mg/kg), and MP+GSH2 (methyl parathion poisoning treated with GSH 1200 mg/kg). Each one of the last three groups was assigned into 6 h, 24 h, and 72 h sub-groups. The activities of acetylcholinesterase (AChE), glutamate pyruvate transaminase (GPT), and glutamic oxalacetic transaminase (GOT) in plasma, and superoxide dismutase (SOD) and glutathione peroxidase (GPx) in liver were assayed. The malondialdehyde (MDA) in liver was also determined. Histopathological changes in liver were observed. Results showed that AChE activity was significantly inhibited by methyl parathion and attenuated after GSH administered. GSH could relieve hepatocellular edema and fatty degeneration, and attenuate the increased activities of GPT and GOT. GSH treatment increased the SOD and GPx activities, but had no effect on the MDA level. These results indicated that GSH could attenuate liver injury induced by methyl parathion.

  1. Mdivi-1 Alleviates Early Brain Injury After Experimental Subarachnoid Hemorrhage in Rats, Possibly via Inhibition of Drp1-Activated Mitochondrial Fission and Oxidative Stress.

    PubMed

    Wu, Pei; Li, Yuchen; Zhu, Shiyi; Wang, Chunlei; Dai, Jiaxing; Zhang, Guang; Zheng, Bingjie; Xu, Shancai; Wang, Ligang; Zhang, Tongyu; Zhou, PeiQuan; Zhang, John H; Shi, Huaizhang

    2017-02-16

    Mdivi-1 is a selective inhibitor of mitochondrial fission protein, Drp1, and can penetrate the blood-brain barrier. Previous studies have shown that Mdivi-1 improves neurological outcomes after ischemia, seizures and trauma but it remains unclear whether Mdivi-1 can attenuate early brain injury after subarachnoid hemorrhage (SAH). We thus investigated the therapeutic effect of Mdivi-1 on early brain injury following SAH. Rats were randomly divided into four groups: sham; SAH; SAH + vehicle; and SAH + Mdivi-1. The SAH model was induced by standard intravascular perforation and all of the rats were subsequently sacrificed 24 h after SAH. Mdivi-1 (1.2 mg/kg) was administered to rats 30 min after SAH. We found that Mdivi-1 markedly improved neurologic deficits, alleviated brain edema and BBB permeability, and attenuated apoptotic cell death. Mdivi-1 also significantly reduced the expression of cleaved caspase-3, Drp1 and p-Drp1((Ser616)), attenuated the release of Cytochrome C from mitochondria, inhibited excessive mitochondrial fission, and restored the ultra-structure of mitochondria. Furthermore, Mdivi-1 reduced levels of MDA, 3-NT, and 8-OHdG, and improved SOD activity. Taken together, our data suggest that Mdivi-1 exerts neuroprotective effects against cell death induced by SAH and the underlying mechanism may be inhibition of Drp1-activated mitochondrial fission and oxidative stress.

  2. [Effect of phenibut on interhemispheric transmission in the rat brain].

    PubMed

    Borodkina, L E; Molodavkin, G M; Tiurenkov, I N

    2009-01-01

    Effects of the nootropic drug phenibut on the transcallosal potential amplitude in the sensomotor brain cortex have been studied in rats. It is established that a single administration of phenibut in a dose of 25 mg/kg (i.p.) increases the transcallosal response amplitude, thus improving the interhemispheric transmission. This effect, being an objective evidence of the nootrope activity, confirms the drug status and corroborates the positive action of phenibut on the learning and memory processes.

  3. Identification of rat brain opioid (enkephalin) receptor by photoaffinity labeling

    SciTech Connect

    Yeung, C.W.

    1986-01-01

    A photoreactive, radioactive enkephalin derivative was prepared and purified by high performance liquid chromatography. Rat brain and spinal cord plasma membranes were incubated with this radioiodinated photoprobe and were subsequently photolysed. Autoradiography of the sodium dodecyl sulfate gel electrophoresis of the solubilized and reduced membranes showed that a protein having an apparent molecular weight of 46,000 daltons was specifically labeled, suggesting that this protein may be the opioid (enkephalin) receptor.

  4. Oxidative changes in brain of aniline-exposed rats

    SciTech Connect

    Kakkar, P.; Awasthi, S.; Viswanathan, P.N. )

    1992-10-01

    Oxidative stress in rat cerebellum, cortex and brain stem after a short-term high-dose exposure to aniline vapors under conditions akin to those after major chemical accidents, was studied. Significant increases in superoxide dismutase isozyme activities and formation of thiobarbituric acid reactive material along with depletion of ascorbic acid and non-protein sulfhydryl content suggest impairment of antioxidant defenses 24 h after single exposure to 15,302 ppm aniline vapors for 10 min.

  5. Development of specificity and stereoselectivity of rat brain dopamine receptors.

    PubMed

    Miller, J C; Friedhoff, A J

    1986-01-01

    Prenatal exposure to the neuroleptic haloperidol has been reported to produce an enduring decrement in the number of dopamine D2 receptors in rat striatum and a persistent diminution of a dopamine dependent behavior, stereotypy. The ontogeny of rat brain dopamine binding sites has been studied in terms of the kinetic properties and phenotypic specificity in rat fetal brain through early postnatal development. Sites showing some properties of the D2 binding site can be found prior to gestational day (GD) 18, can be labeled with [3H]dopamine or [3H]spiroperidol and can be displaced with dopaminergic agonists and antagonists. Saturation kinetics for specific [3H]spiroperidol has previously been found to occur on or about GD 18. It is of interest that the critical period for the prenatal effect of haloperidol to reduce striatal D2 binding sites, GD's 15-18, coincides with the period during which dopamine binding sites lack true specificity, but can be labeled with dopaminergic ligands. In these experiments the development of stereoselectivity of brain dopamine binding sites has been examined. When rat mothers were given either the neuroleptic (+)-butaclamol or its therapeutically inactive isomer (-)-butaclamol during the critical period GD's 15-18, the number of [3H]spiroperidol binding sites in striata of offspring was significantly reduced by both stereoisomers. This is in marked contrast to the postnatal treatment effect by a neuroleptic in which upregulation of striatal D2 binding sites occurs only by treatment with the therapeutically active isomer (+)-butaclamol. In vitro studies of the direct effect of the stereoisomers of butaclamol indicate that the recognition sites detected during fetal brain development with [3H]spiroperidol do not distinguish between the isomers of butaclamol.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Multiple opiate receptors in the brain of spontaneously hypertensive rats

    SciTech Connect

    Das, S.; Bhargava, H.N.

    1986-03-01

    The characteristics of ..mu.., delta and kappa -opiate receptors in the brain of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats were determined using the receptor binding assays. The ligands used were /sup 3/H-naltrexone (..mu..), /sup 3/H-ethylketocyclazocine (EKC, kappa) and /sup 3/H-Tyr-D-Ser-Gly-Phe-Leu-Thr (DSTLE, delta). Since EKC binds to ..mu.. and delta receptors in addition to kappa, the binding was done in the presence of 100 nM each of DAGO and DADLE to suppress ..mu.. and delta sites, respectively. All three ligands bound to brain membranes of WKY rats at a single high affinity site with the following B/sub max/ (fmol/mg protein) and K/sub d/ (nM) values: /sup 3/H-naltrexone (130.5; 0.43) /sup 3/H-EKC (19.8, 1.7) and /sup 3/H-DSTLE (139, 2.5). The binding of /sup 3/H-naltrexone and /sup 3/H-DSTLE in the brain of WKY and SH did not differ. A consistent increase (22%) in B/sub max/ of /sup 3/H-EKC was found in SHR compared to WKY rats. However, the K/sub d/ values did not differ. The increase in B/sub max/ was due to increases in hypothalamus and cortex. It is concluded that SH rats have higher density of kappa-opiate receptors, particularly in hypothalamus and cortex, compared to WKY rats, and that kappa-opiate receptors may be involved in the pathophysiology of hypertension.

  7. Light attenuation in rat skin following low level laser therapy on burn healing process

    NASA Astrophysics Data System (ADS)

    Teixeira Silva, Daniela Fátima; Simões Ribeiro, Martha

    2010-04-01

    Low-level laser therapy (LLLT) is commonly used to accelerate wound healing. Besides, the technique of imaging the light distribution inside biological tissues permits us to understand several effects about light-tissue interaction. The purpose of this study was to determine the relative attenuation coefficient of the light intensity in healthy and burned skin rats during cutaneous repair following LLLT or not. Two burns about 6mm in diameter were cryogenerated using liquid N2 on the back of 15 rats. Lesion L was irradiated by a He-Ne laser (λ= 632.8nm) and fluence 1.0J/cm2; Lesion C was control and received sham irradiation. A healthy skin area (H) was also analyzed. The lesions were irradiated at days 3, 7, 10 and 14 post-burning. The animals were euthanized at days 3, 10 and 31 and skin samples were carefully removed and placed between two microscope slides, spaced by z= 1mm. A laser beam irradiated the sandwiched tissue from epidermis to dermis. A CCD camera was placed orthogonal to the beam path and it photographed the distribution of the scattered light. The light decay occurred according to the Beer's Law. Significance was accepted at p <0.01 by using t-Student test. Our results show that the light decay along any direction was close to an exponential. Burned skin samples presented decay significantly faster than healthy skin samples. Besides, attenuation coefficient changed during burning healing comparing treated and control lesions. These findings suggest that the relative attenuation coefficient is a suitable parameter to optimize LLLT during wound healing.

  8. Anteroventral Third Ventricle Lesions Attenuate Pressor Responses to Serotonin in Anesthetized Rats

    NASA Technical Reports Server (NTRS)

    Muntzel, Martin S.; Lewis, Stephen J.; Johnson, Alan Kim

    1996-01-01

    When administered intravenously, serotonin (5-hydroxytryptamine; 5-HT) evokes a triphasic blood pressure response, consisting of the Bezold-Jarisch-associated depressor response, a pressor action, and long-lasting depressor response. Because the pressor response may, in part, be caused by central nervous system (CNS) activation by 5-HT, we predicted that destruction of the anteroventral third ventricle (AV3V) region, an area rich in 5-HT receptors, would attenuate increases in blood pressure to intravenous 5-HT. In anesthetized sham-lesioned and AV3V-lesioned Sprague-Dawley rats. we measured mean arterial pressure (MAP), heart rate (HR), and lumbar sympathetic nerve activity (SNA) to increasing bolus doses of intravenous 5-HT (1, 2.5, 5, 10, 25 microg/kg), before and after blockade of bradycardia using methylatropine (200 microg/kg). In all rats, bolus injections of 5-HT elicited bradycardia accompanied by a fall in lumbar SNA and an initial hypotension followed by a pressor response and a longer lasting hypotensive response. The bradycardia, reduction in lumbar SNA, and both depressor responses were equivalent in sham-lesioned and AV3V-lesioned groups. Importantly, AV3V lesions attenuated pressor responses to increasing doses of 5-HT (3 +/- 1, 6 +/- 4, 6 +/- 4, 17 +/- 4, 35 +/- 3 mmHg) compared to sham-lesioned controls (6 +/- 3, 16 +/- 7, 33 +/- 5, 54 +/- 4, 51 +/- 6 mmHg; P < 0.0001). This attenuation was conserved following blockade of bradycardia with methylatropine (P < 0.01). In summary, pressor responses to intravenous 5-HT are diminished by AV3V lesions. These data indicate that the pressor component of the blood pressure response to intravenous 5-HT is partly dependent upon interaction with the CNS.

  9. Metformin attenuates hyperalgesia and allodynia in rats with painful diabetic neuropathy induced by streptozotocin.

    PubMed

    Ma, Junxiong; Yu, Hailong; Liu, Jun; Chen, Yu; Wang, Qi; Xiang, Liangbi

    2015-10-05

    Painful diabetic neuropathy is a common complication of diabetes mellitus, which often makes the patients suffer from severe hyperalgesia and allodynia. Thus far, the treatment of painful diabetic neuropathy remains unsatisfactory. Metformin, which is the first-line drug for type-2 diabetes, has been proved to attenuate hyperexcitability in sensory neurons linked to chemotherapy-induced neuropathic pain, highlighting its potential in alleviating pain related with painful diabetic neuropathy. The present study was designed to investigate the potential beneficial effect of metformin on hyperalgesia and allodynia in diabetic rats. The mechanical sensitivity, heat nociception, and cold allodynia were examined. The levels of malondialdehyde, superoxide dismutase, and advanced glycation end-products in the blood were measured. The expression of adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and AMPK target genes were examined in the sciatic nerves of the animals. It was found that metformin was capable of attenuating diabetes-induced mechanical hyperalgesia, heat hyperalgesia and cold allodynia. In addition, metformin was capable of decreasing malondialdehyde and glycation end-products levels in blood, as well as increasing superoxide dismutas activity, indicating the inhibitory effect of metformin against diabetes-induced oxidative stress. Further studies showed that metformin could activate AMPK and increase the AMPK target genes in sciatic nerves in diabetic rats. In conclusion, metformin is able to attenuate diabetes-induced hyperalgesia and allodynia, which might be associated its anti-oxidative effect through AMPK pathway. Metformin might be used as an effective drug, especially with fewer side effects, for abnormal sensation in painful diabetic neuropathy.

  10. Functional brain networks underlying latent inhibition of conditioned disgust in rats.

    PubMed

    Gasalla, Patricia; Begega, Azucena; Soto, Alberto; Dwyer, Dominic Michael; López, Matías

    2016-12-15

    The present experiment examined the neuronal networks involved in the latent inhibition of conditioned disgust by measuring brain oxidative metabolism. Rats were given nonreinforced intraoral (IO) exposure to saccharin (exposed groups) or water (non-exposed groups) followed by a conditioning trial in which the animals received an infusion of saccharin paired (or unpaired) with LiCl. On testing, taste reactivity responses displayed by the rats during the infusion of the saccharin were examined. Behavioral data showed that preexposure to saccharin attenuated the development of LiCl-induced conditioned disgust reactions, indicating that the effects of taste aversion on hedonic taste reactivity had been reduced. With respect to cumulative oxidative metabolic activity across the whole study period, the parabrachial nucleus was the only single region examined which showed differential activity between groups which received saccharin-LiCl pairings with and without prior non-reinforced saccharin exposure, suggesting a key role in the effects of latent inhibition of taste aversion learning. In addition, many functional connections between brain regions were revealed through correlational analysis of metabolic activity, in particular an accumbens-amygdala interaction that may be involved in both positive and negative hedonic responses.

  11. Neuroprotective Effects of Acetyl-L-Carnitine on Neonatal Hypoxia Ischemia-Induced Brain Injury in Rats.

    PubMed

    Tang, Shiyu; Xu, Su; Lu, Xin; Gullapalli, Rao P; McKenna, Mary C; Waddell, Jaylyn

    2016-01-01

    Perinatal hypoxia ischemia (HI) is a significant cause of brain injury in surviving infants. Although hypothermia improves outcomes in some infants, additional therapies are needed since about 40% of infants still have a poor outcome. Acetyl-L-carnitine (ALCAR), an acetylated derivative of L-carnitine, protected against early changes in brain metabolites and mitochondrial function after HI on postnatal day (PND) 7 in a rat pup model of near-term HI injury. However, its efficacy in long-term structural and functional outcomes remains unexplored. We determined the efficacy of ALCAR therapy administered to rat pups after HI at PND 7, using both longitudinal in vivo magnetic resonance imaging and behavioral tests, in male and female rats. HI led to sex-specific behavioral impairment, with males exhibiting more global functional deficits than females. Interestingly, HI reduced the volume of the contralateral hemisphere in males only, suggesting that the brain injury is more diffuse in males than in females. Treatment with ALCAR improved both morphological and functional outcomes in both male and female rats. These results suggest that ALCAR may be a potential therapy for clinical use since the treatment attenuated the moderate injury produced under the experimental conditions used and improved the functional outcome in preclinical studies.

  12. Gelation and fodrin purification from rat brain extracts.

    PubMed

    Levilliers, N; Péron-Renner, M; Coffe, G; Pudles, J

    1986-06-03

    Extracts from rat brain tissue have been shown to give rise to a gel which exhibits the following features. It is mainly enriched in actin and in a high-molecular-weight protein with polypeptide chains of 235 and 240 kDa, which we identified as fodrin. Tubulin is also a major component of the gel but it appears to be trapped non-specifically during the gelation process. Gelation is pH-, ionic strength- and Ca2+-concentration-dependent, and is optimal under the conditions which promote the interaction between polymerized actin and fodrin. In a similar way to that described for the purification of rat brain actin (Levilliers, N., Péron-Renner, M., Coffe, G. and Pudles, J. (1984) Biochimie 66, 531-537), we used the gelation system as a selective means of recovering fodrin from the mixture of a low-ionic-strength extract from whole rat brain and a high-ionic-strength extract of the particulate fraction. From this gel, fodrin was purified with a good yield by a simple procedure involving gel dissociation in 0.5 M KCl and depolymerization in 0.7 M KI, Bio-Gel A-15m chromatography, followed by ammonium sulfate precipitation.

  13. Ketone-body utilization by homogenates of adult rat brain

    SciTech Connect

    Lopes-Cardozo, M.; Klein, W.

    1982-06-01

    The regulation of ketone-body metabolism and the quantitative importance of ketone bodies as lipid precursors in adult rat brain has been studied in vitro. Utilization of ketone bodies and of pyruvate by homogenates of adult rat brain was measured and the distribution of /sup 14/C from (3-/sup 14/C)ketone bodies among the metabolic products was analysed. The rate of ketone-body utilization was maximal in the presence of added Krebs-cycle intermediates and uncouplers of oxidative phosphorylation. The consumption of acetoacetate was faster than that of D-3-hydroxybutyrate, whereas, pyruvate produced twice as much acetyl-CoA as acetoacetate under optimal conditions. Millimolar concentrations of ATP in the presence of uncoupler lowered the consumption of ketone bodies but not of pyruvate. Indirect evidence is presented suggesting that ATP interferes specifically with the mitochondrial uptake of ketone bodies. Interconversion of ketone bodies and the accumulation of acid-soluble intermediates (mainly citrate and glutamate) accounted for the major part of ketone-body utilization, whereas only a small part was oxidized to CO/sub 2/. Ketone bodies were not incorporated into lipids or protein. We conclude that adult rat-brain homogenates use ketone bodies exclusively for oxidative purposes.

  14. Brain oxidative stress induced by obstructive jaundice in rats.

    PubMed

    Chroni, Elisabeth; Patsoukis, Nikolaos; Karageorgos, Nikolaos; Konstantinou, Dimitris; Georgiou, Christos

    2006-02-01

    The effect of experimental obstructive jaundice on the oxidative status of brain tissues in rats was examined. Twenty-four male Wistar rats were divided into 4 groups: Group I was the control, group II was the sham operated, and groups III and IV were bile duct ligated and killed on the 5th and the 10th day, respectively. Oxidative stress was assessed by measuring the thiol redox state (protein and nonprotein components) and lipid peroxidation level variations in samples from the cerebral cortex, midbrain, and cerebellar tissue in all animals. Results indicated the presence of oxidative stress in the jaundiced animals that was more pronounced on the 10th day as indicated by a decrease in reduced glutathione and protein thiol and an increase in protein disulphide and lipid peroxidation. A dramatic elevation of the level of total nonprotein mixed disulphide level was found specifically in the midbrain in the 10th day group. This suggests an accumulation of nonprotein disulfides other than oxidized glutathione, which remained unchanged, in this particular brain area. This study showed a correlation between experimental obstructive jaundice and the oxidative stress in the rats' brain, implying that a similar pathogenetic mechanism may play a key role in cholestatic liver disease, resulting in hepatic encephalopathy in humans.

  15. Intrinsic optical signals of brains in rats during loss of tissue viability: effect of brain temperature

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Kikuchi, Makoto

    2007-07-01

    Noninvasive, real-time monitoring of brain tissue viability is crucial for the patients with stroke, traumatic brain injury, etc. For this purpose, measurement of intrinsic optical signal (IOS) is attractive because it can provide direct information about the viability of brain tissue noninvasively. We performed simultaneous measurements of IOSs that are related to morphological characteristics, i.e., light scattering, and energy metabolism for rat brains during saline infusion as a model with temporal loss of brain tissue viability. The results showed that the scattering signal was steady in an initial phase but showed a drastic, triphasic change in a certain range of infusion time, during which the reduction of CuA in cytochrome c oxidase started and proceeded rapidly. The start time of triphasic scattering change was delayed for about 100 s by lowering brain temperature from 29°C to 24°C, demonstrating the optical detection of cerebroprotection effect by brain cooling. Electron microscopic observation showed morphological changes of dendrite and mitochondria in the cortical surface tissue after the triphasic scattering change, which was thought to be associated with the change in light scattering we observed. These findings suggest that the simultaneous measurement of the intrinsic optical signals related to morphological characteristics and energy metabolism is useful for monitoring tissue viability in brain.

  16. Effect of a novel neurotensin analog, NT69L, on nicotine-induced alterations in monoamine levels in rat brain.

    PubMed

    Liang, Yanqi; Boules, Mona; Shaw, Amanda M; Williams, Katrina; Fredrickson, Paul; Richelson, Elliott

    2008-09-22

    NT69L, is a novel neurotensin (8-13) analog that participates in the modulation of the dopaminergic pathways implicated in addiction to psychostimulants. NT69L blocks nicotine-induced hyperactivity as well as the initiation and expression of sensitization in rats. Recent evidence suggests that stimulation of mesocorticolimbic dopamine system, with influences from the other monoamine systems, e.g. norepinephrine and serotonin, is involved in nicotine's reinforcing properties. The aim of the present study was to investigate the effect of pretreatment with NT69L on nicotine-induced changes in monoamine levels in the rat brain using in vivo microdialysis. Acute or chronic (0.4 mg/kg, sc, once daily for 2 weeks) administration of nicotine elicited increases in extracellular levels of dopamine, dopamine metabolites, norepinephrine, or serotonin in medial prefrontal cortex, nucleus accumbens shell, and core of rats. Pretreatment with NT69L (1 mg/kg, intraperitoneally, ip) administered 40 min before nicotine injection significantly attenuated the acute nicotine-evoked increases in norepinephrine levels in medial prefrontal cortex, dopamine and serotonin in nucleus accumbens shell. After chronic nicotine administration, pretreatment of NT69L markedly reversed the increase in dopamine levels in the nucleus accumbens core. NT69L's attenuation of some of the biochemical effects of acute and chronic nicotine is consistent with this peptide's attenuation of nicotine-induced behavioral effects. These data further support a role for NT69L or other neurotensin receptor agonists to treat nicotine addiction.

  17. Concurrent nimodipine attenuates the withdrawal signs and the increase of cerebral dihydropyridine binding after chronic morphine treatment in rats.

    PubMed

    Zharkovsky, A; Tötterman, A M; Moisio, J; Ahtee, L

    1993-05-01

    The effect of chronic administration of dihydropyridine calcium channel antagonist nimodipine (1 mg/kg/day) given concurrently with morphine on the signs of morphine withdrawal and on the [3H]nitrendipine binding in the rat brain has been investigated. Chronic morphine administration in increasing daily doses from 20 mg/kg to 70 mg/kg for 24 days and consequent withdrawal for 24 h induced loss of body weight, wet dog shakes, episodes of writhing and yawning behaviour. The density of [3H]nitrendipine binding was elevated in the cortex and limbic structures but not in the striatum after chronic morphine treatment. Chronic concurrent administration of nimodipine prevented the loss of body weight and reduced the scores of wet dog shakes and writhing, but did not affect yawning behaviour at 24 h after morphine withdrawal. The concurrent nimodipine treatment also prevented the rise in the density of central dihydropyridine binding sites which occurred upon chronic morphine treatment. These results suggest that chronic nimodipine treatment attenuates the development of the withdrawal signs which occur upon the termination of chronic morphine treatment by preventing the up-regulation of the central dihydropyridine-sensitive binding sites.

  18. Inhibition of TLR4 Signalling-Induced Inflammation Attenuates Secondary Injury after Diffuse Axonal Injury in Rats

    PubMed Central

    Zhao, Yonglin; Zhang, Ming; Zhao, Junjie; Ma, Xudong; Huang, Tingqin; Pang, Honggang

    2016-01-01

    Increasing evidence suggests that secondary injury after diffuse axonal injury (DAI) damages more axons than the initial insult, but the underlying mechanisms of this phenomenon are not fully understood. Recent studies show that toll-like receptor 4 (TLR4) plays a critical role in promoting adaptive immune responses and have been shown to be associated with brain damage. The purpose of this study was to investigate the role of the TLR4 signalling pathway in secondary axonal injury in the cortices of DAI rats. TLR4 was mainly localized in microglial cells and neurons, and the levels of TLR4 downstream signalling molecules, including TLR4, myeloid differentiation primary response gene 88, toll/IR-1-(TIR-) domain-containing adaptor protein inducing interferon-beta, interferon regulatory factor 3, interferon β, nuclear factor κB (NF-κB) p65, and phospho-NF-κB p65, significantly increased and peaked at 1 d after DAI. Inhibition of TLR4 by TAK-242 attenuated apoptosis, neuronal and axonal injury, and glial responses. The neuroprotective effects of TLR4 inhibition were associated with decreases in the levels of TLR4 downstream signalling molecules and inflammatory factors, including interleukin-1β, interleukin-6, and tumour necrosis factor-α. These results suggest that the TLR4 signalling pathway plays an important role in secondary injury and may be an important therapeutic target following DAI. PMID:27478307

  19. Encoding-based brain-computer interface controlled by non-motor area of rat brain.

    PubMed

    Lang, Yiran; Du, Ping; Shin, Hyung-Cheul

    2011-09-01

    As the needs of disabled patients are increasingly recognized in society, researchers have begun to use single neuron activity to construct brain-computer interfaces (BCI), designed to facilitate the daily lives of individuals with physical disabilities. BCI systems typically allow users to control computer programs or external devices via signals produced in the motor or pre-motor areas of the brain, rather than producing actual motor movements. However, impairments in these brain areas can hinder the application of BCI. The current paper demonstrates the feasibility of a one-dimensional (1D) machine controlled by rat prefrontal cortex (PFC) neurons using an encoding method. In this novel system, rats are able to quench thirst by varying neuronal firing rate in the PFC to manipulate a water dish that can rotate in 1D. The results revealed that control commands generated by an appropriate firing frequency in rat PFC exhibited performance improvements with practice, indicated by increasing water-drinking duration and frequency. These results demonstrated that it is possible for rats to understand an encoding-based BCI system and control a 1D machine using PFC activity to obtain reward.

  20. Outer brain barriers in rat and human development

    PubMed Central

    Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456

  1. A 3D digital map of rat brain.

    PubMed

    Toga, A W; Santori, E M; Hazani, R; Ambach, K

    1995-01-01

    A three dimensional (3D) computerized map of rat brain anatomy created with digital imaging techniques is described. Six male Sprague-Dawley rats, weighing 270-320 g, were used in the generation of this atlas. Their heads were frozen, and closely spaced cryosectional images were digitally captured. Each serial data set was organized into a digital volume, reoriented into a flat skull position, and brought into register with each other. A volume representative of the group following registration was chosen based on its anatomic correspondence with the other specimens as measured by image correlation coefficients and landmark matching. Mean positions of lambda, bregma, and the interaural plane of the group within the common coordinate system were used to transform the representative volume into a 3D map of rat neuroanatomy. images reconstructed from this 3D map are available to the public via Internet with an anonymous file transfer protocol (FTP) and World Wide Web. A complete description of the digital map is provided in a comprehensive set of sagittal planes (up to 0.031 mm spacing) containing stereotaxic reference grids. Sets of coronal and horizontal planes, resampled at the same increment, also are included. Specific anatomic features are identified in a second collection of images. Stylized anatomic boundaries and structural labels were incorporated into selected orthogonal planes. Electronic sharing and interactive use are benefits afforded by a digital format, but the foremost advantage of this 3D map is its whole brain integrated representation of rat in situ neuroanatomy.

  2. Polyenylphosphatidylcholine attenuates alcohol-induced fatty liver and hyperlipemia in rats.

    PubMed

    Navder, K P; Baraona, E; Lieber, C S

    1997-09-01

    Chronic administration of a soybean-derived polyenylphosphatidylcholine (PPC) extract prevents the development of cirrhosis in alcohol-fed baboons. To assess whether this phospholipid also affects earlier changes induced by alcohol consumption (such as fatty liver and hyperlipemia), 28 male rat littermates were pair-fed liquid diets containing 36% of energy either as ethanol or as additional carbohydrate for 21 d, and killed 90 min after intragastric administration of the corresponding diets. Half of the rats were given PPC (3 g/l), whereas the other half received the same amount of linoleate (as safflower oil) and choline (as bitartrate salt). PPC did not affect diet or alcohol consumption [15.4 +/- 0.5 G/(kg.d)], but the ethanol-induced hepatomegaly and the hepatic accumulation of lipids (principally triglycerides and cholesterol esters) and proteins were about half those in rats not given PPC. The ethanol-induced postprandial hyperlipemia was lower with PPC than without, despite an enhanced fat absorption and no difference in the level of plasma free fatty acids. The attenuation of fatty liver and hyperlipemia was associated with correction of the ethanol-induced inhibition of mitochondrial oxidation of palmitoyl-1-carnitine and the depression of cytochrome oxidase activity, as well as the increases in activity of serum glutamate dehydrogenase and aminotransferases. Thus, PPC attenuates early manifestations of alcohol toxicity, at least in part, by improving mitochondrial injury. These beneficial effects of PPC at the initial stages of alcoholic liver injury may prevent or delay the progression to more advanced forms of alcoholic liver disease.

  3. Wheel running exercise attenuates vulnerability to self-administer nicotine in rats

    PubMed Central

    Sanchez, Victoria; Lycas, Matthew D; Lynch, Wendy J; Brunzell, Darlene H

    2015-01-01

    Background Preventing or postponing tobacco use initiation could greatly reduce the number of tobacco-related deaths. While evidence suggests that exercise is a promising treatment for tobacco addiction, it is not clear whether exercise could prevent initial vulnerability to tobacco use. Thus, using an animal model, we examined whether exercise attenuates vulnerability to the use and reinforcing effects of nicotine, the primary addictive chemical in tobacco. Methods Initial vulnerability was assessed using an acquisition procedure wherein exercising (unlocked running wheel, n = 10) and sedentary (locked or no wheel, n = 12) male adolescent rats had access to nicotine infusions (0.01-mg/kg) during daily 21.5-hr sessions beginning on postnatal day 30. Exercise/sedentary sessions (2-hr/day) were conducted prior to each of the acquisition sessions. The effects of exercise on nicotine’s reinforcing effects were further assessed in separate groups of exercising (unlocked wheel, n = 7) and sedentary (no wheel, n = 5) rats responding for nicotine under a progressive-ratio schedule with exercise/sedentary sessions (2-hr/day) conducted before the daily progressive-ratio sessions. Results While high rates of acquisition of nicotine self-administration were observed among both groups of sedentary controls, acquisition was robustly attenuated in the exercise group with only 20% of exercising rats meeting the acquisition criterion within the 16-day testing period as compared to 67% of the sedentary controls. Exercise also decreased progressive-ratio responding for nicotine as compared to baseline and to sedentary controls. Conclusions Exercise may effectively prevent the initiation of nicotine use in adolescents by reducing the reinforcing effects of nicotine. PMID:26433561

  4. Zingiber officinale attenuates retinal microvascular changes in diabetic rats via anti-inflammatory and antiangiogenic mechanisms

    PubMed Central

    Dongare, Shirish; Mathur, Rajani; Saxena, Rohit; Mathur, Sandeep; Agarwal, Renu; Nag, Tapas C.; Srivastava, Sushma; Kumar, Pankaj

    2016-01-01

    Purpose Diabetic retinopathy is a common microvascular complication of long-standing diabetes. Several complex interconnecting biochemical pathways are activated in response to hyperglycemia. These pathways culminate into proinflammatory and angiogenic effects that bring about structural and functional damage to the retinal vasculature. Since Zingiber officinale (ginger) is known for its anti-inflammatory and antiangiogenic properties, we investigated the effects of its extract standardized to 5% 6-gingerol, the major active constituent of ginger, in attenuating retinal microvascular changes in rats with streptozotocin-induced diabetes. Methods Diabetic rats were treated orally with the vehicle or the ginger extract (75 mg/kg/day) over a period of 24 weeks along with regular monitoring of bodyweight and blood glucose and weekly fundus photography. At the end of the 24-week treatment, the retinas were isolated for histopathological examination under a light microscope, transmission electron microscopy, and determination of the retinal tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and vascular endothelial growth factor (VEGF) levels. Results Oral administration of the ginger extract resulted in significant reduction of hyperglycemia, the diameter of the retinal vessels, and vascular basement membrane thickness. Improvement in the architecture of the retinal vasculature was associated with significantly reduced expression of NF-κB and reduced activity of TNF-α and VEGF in the retinal tissue in the ginger extract–treated group compared to the vehicle-treated group. Conclusions The current study showed that ginger extract containing 5% of 6-gingerol attenuates the retinal microvascular changes in rats with streptozotocin-induced diabetes through anti-inflammatory and antiangiogenic actions. Although precise molecular targets remain to be determined, 6-gingerol seems to be a potential candidate for further investigation. PMID:27293376

  5. Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging.

    PubMed

    Ladefoged, Claes N; Benoit, Didier; Law, Ian; Holm, Søren; Kjær, Andreas; Højgaard, Liselotte; Hansen, Adam E; Andersen, Flemming L

    2015-10-21

    The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR sequence was proposed as a basis for MR-AC as this sequence shows a small signal in bone. The purpose of this study was to develop a new clinically feasible MR-AC method with patient specific continuous-valued linear attenuation coefficients in bone that provides accurate reconstructed PET image data. A total of 164 [(18)F]FDG PET/MR patients were included in this study, of which 10 were used for training. MR-AC was based on either standard CT (reference), UTE or our method (RESOLUTE). The reconstructed PET images were evaluated in the whole brain, as well as regionally in the brain using a ROI-based analysis. Our method segments air, brain, cerebral spinal fluid, and soft tissue voxels on the unprocessed UTE TE images, and uses a mapping of R(*)2 values to CT Hounsfield Units (HU) to measure the density in bone voxels. The average error of our method in the brain was 0.1% and less than 1.2% in any region of the brain. On average 95% of the brain was within  ±10% of PETCT, compared to 72% when using UTE. The proposed method is clinically feasible, reducing both the global and local errors on the reconstructed PET images, as well as limiting the number and extent of the outliers.

  6. Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging

    NASA Astrophysics Data System (ADS)

    Ladefoged, Claes N.; Benoit, Didier; Law, Ian; Holm, Søren; Kjær, Andreas; Højgaard, Liselotte; Hansen, Adam E.; Andersen, Flemming L.

    2015-10-01

    The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR sequence was proposed as a basis for MR-AC as this sequence shows a small signal in bone. The purpose of this study was to develop a new clinically feasible MR-AC method with patient specific continuous-valued linear attenuation coefficients in bone that provides accurate reconstructed PET image data. A total of 164 [18F]FDG PET/MR patients were included in this study, of which 10 were used for training. MR-AC was based on either standard CT (reference), UTE or our method (RESOLUTE). The reconstructed PET images were evaluated in the whole brain, as well as regionally in the brain using a ROI-based analysis. Our method segments air, brain, cerebral spinal fluid, and soft tissue voxels on the unprocessed UTE TE images, and uses a mapping of R2* values to CT Hounsfield Units (HU) to measure the density in bone voxels. The average error of our method in the brain was 0.1% and less than 1.2% in any region of the brain. On average 95% of the brain was within  ±10% of PETCT, compared to 72% when using UTE. The proposed method is clinically feasible, reducing both the global and local errors on the reconstructed PET images, as well as limiting the number and extent of the outliers.

  7. Photoacoustic imaging for transvascular drug delivery to the rat brain

    NASA Astrophysics Data System (ADS)

    Watanabe, Ryota; Sato, Shunichi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Takemura, Toshiya; Terakawa, Mitsuhiro

    2015-03-01

    Transvascular drug delivery to the brain is difficult due to the blood-brain barrier (BBB). Thus, various methods for safely opening the BBB have been investigated, for which real-time imaging methods are desired both for the blood vessels and distribution of a drug. Photoacoustic (PA) imaging, which enables depth-resolved visualization of chromophores in tissue, would be useful for this purpose. In this study, we performed in vivo PA imaging of the blood vessels and distribution of a drug in the rat brain by using an originally developed compact PA imaging system with fiber-based illumination. As a test drug, Evans blue (EB) was injected to the tail vein, and a photomechanical wave was applied to the targeted brain tissue to increase the permeability of the blood vessel walls. For PA imaging of blood vessels and EB distribution, nanosecond pulses at 532 nm and 670 nm were used, respectively. We clearly visualized blood vessels with diameters larger than 50 μm and the distribution of EB in the brain, showing spatiotemporal characteristics of EB that was transvascularly delivered to the target tissue in the brain.

  8. Chemical sympathectomy attenuates inflammation, glycocalyx shedding and coagulation disorders in rats with acute traumatic coagulopathy.

    PubMed

    Xu, Lin; Yu, Wen-Kui; Lin, Zhi-Liang; Tan, Shan-Jun; Bai, Xiao-Wu; Ding, Kai; Li, Ning

    2015-03-01

    Acute traumatic coagulopathy (ATC) may trigger sympathoadrenal activation associated with endothelial damage and coagulation disturbances. Overexcitation of sympathetic nerve in this state would disrupt sympathetic-vagal balance, leading to autonomic nervous system dysfunction. The aim of this study was to evaluate the autonomic function in ATC and its influence on inflammation, endothelial and coagulation activation. Male Sprague-Dawley rats were randomly assigned to sham, ATC control (ATCC) and ATC with sympathectomy by 6-hydroxydopamine (ATCS) group. Sham animals underwent the same procedure without trauma and bleeding. Following trauma and hemorrhage, rats underwent heart rate variability (HRV) test, which predicts autonomic dysfunction through the analysis of variation in individual R-R intervals. Then, rats were euthanized at baseline, and at 0, 1 and 2 h after shock and blood gas, conventional coagulation test and markers of inflammation, coagulation, fibrinolysis, endothelial damage and catecholamine were measured. HRV showed an attenuation of total power and high frequency, along with a rise of low frequency and low frequency : high frequency ratio in the ATC rats, which both were reversed by sympathectomy in the ATCS group. Additionally, sympathetic denervation significantly suppressed the increase of proinflammatory cytokines, tumor necrosis factor-α and the fibrinolysis markers including tissue-type plasminogen activator and plasmin-antiplasmin complex. Serum catecholamine, soluble thrombomodulin and syndecan-1 were also effectively inhibited by sympathectomy. These data indicated that autonomic dysfunction in ATC involves both sympathetic activation and parasympathetic inhibition. Moreover, sympathectomy yielded anti-inflammatory, antifibrinolysis and endothelial protective effects in rats with ATC. The role of autonomic neuropathy in ATC should be explored further.

  9. fliP influences Citrobacter koseri macrophage uptake, cytokine expression and brain abscess formation in the neonatal rat.

    PubMed

    Townsend, Stacy M; Gonzalez-Gomez, Ignacio; Badger, Julie L

    2006-12-01

    Citrobacter koseri causes neonatal meningitis frequently complicated with multiple brain abscesses. During C. koseri central nervous system infection in the neonatal rat model, previous studies have documented many bacteria-filled macrophages within the neonatal rat brain and abscesses. Previous studies have also shown that C. koseri is taken up by, survives phagolysosomal fusion and replicates in macrophages in vitro and in vivo. In this study, in order to elucidate genetic and cellular factors contributing to C. koseri persistence, a combinatory technique of differential fluorescence induction and transposon mutagenesis was employed to isolate C. koseri genes induced while inside macrophages. Several banks of mutants were subjected to a series of enrichments to select for gfp : : transposon fusion into genes that are turned off in vitro but expressed when intracellular within macrophages. Further screening identified several mutants attenuated in their recovery from macrophages compared with the wild-type. A mutation within an Escherichia coli fliP homologue caused significant attenuation in uptake and hypervirulence in vivo, resulting in death within 24 h. Furthermore, analysis of the immunoregulatory interleukin (IL)-10/IL-12 cytokine response during infection suggested that C. koseri fliP expression may alter this response. A better understanding of the bacteria-macrophage interaction at the molecular level and its contribution to brain abscess formation will assist in developing preventative and therapeutic strategies.

  10. Chrysin improves cognitive deficits and brain damage induced by chronic cerebral hypoperfusion in rats.

    PubMed

    He, Xiao-Li; Wang, Yue-Hua; Bi, Ming-Gang; Du, Guan-Hua

    2012-04-05

    Chronic cerebral hypoperfusion, induced by permanent occlusion of bilateral common carotid arteries (2VO), is related to neurological disorders and contributes to cognitive decline. Chrysin (5,7-dihydroxyflavone) is an important member of the flavonoid family. The aim of this study is to investigate the effects of chrysin on cognitive deficits and brain damage in this rat 2VO model. At 52days after ligation, the escape latency in Morris water maze was significantly increased in rats subjected to 2VO, the neuronal damage was also increased accompanied by a large proliferation in glial fibrillary acidic protein (GFAP) immunoreactivity with marked white matter lesions, and neuronal cell apoptosis, all of which were significantly alleviated by long treatment of chrysin (30mg/kg). Biochemical examinations revealed that chrysin decreased lipid peroxide, reduced the increased activities of superoxide dismutase, and attenuated the decreased activities of glutathione peroxidase in 2VO rats. The results suggest that chrysin may have therapeutic potential for the treatment of neurodegeneration and dementia caused by decreased cerebral blood flow, which is most likely related, at least in part, to its anti-inflammatory and antioxidant properties.

  11. Performance Enhancement of the RatCAP Awake Rate Brain PET System

    SciTech Connect

    Vaska, P.; Vaska, P.; Woody, C.; Schlyer, D.; Radeka, V.; O'Connor, P.; Park, S.-J.; Pratte, J.-F.; Junnarkar, M.; Purschke, S.; Southekal, S.; Stoll, S.; Schiffer, W.; Neill, J.; Wharton, D.; Myers, N.; Wiley, S.; Kandasamy, A.; Fried, J.; Krishnamoorthy, S. Kriplani, A.; Maramraju, S.; Lecomte, R.; Fontaine, R.

    2011-03-01

    The first full prototype of the RatCAP PET system, designed to image the brain of a rat while conscious, has been completed. Initial results demonstrated excellent spatial resolution, 1.8 mm FWHM with filtered backprojection and <1.5 mm FWHM with a Monte Carlo based MLEM method. However, noise equivalent countrate studies indicated the need for better timing to mitigate the effect of randoms. Thus, the front-end ASIC has been redesigned to minimize time walk, an accurate coincidence time alignment method has been implemented, and a variance reduction technique for the randoms is being developed. To maximize the quantitative capabilities required for neuroscience, corrections are being implemented and validated for positron range and photon noncollinearity, scatter (including outside the field of view), attenuation, randoms, and detector efficiency (deadtime is negligible). In addition, a more robust and compact PCI-based optical data acquisition system has been built to replace the original VME-based system while retaining the linux-based data processing and image reconstruction codes. Finally, a number of new animal imaging experiments have been carried out to demonstrate the performance of the RatCAP in real imaging situations, including an F-18 fluoride bone scan, a C-11 raclopride scan, and a dynamic C-11 methamphetamine scan.

  12. Neuroprotective effects of dexmedetomidine against hyperoxia-induced injury in the developing rat brain

    PubMed Central

    Endesfelder, Stefanie; Makki, Hanan; von Haefen, Clarissa; Spies, Claudia D.; Bührer, Christoph; Sifringer, Marco

    2017-01-01

    Dexmedetomidine (DEX) is a highly selective agonist of α2-receptors with sedative, anxiolytic, and analgesic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on hippocampal neurogenesis, specifically the proliferation capacity and maturation of neurons and neuronal plasticity following the induction of hyperoxia in neonatal rats. Six-day old sex-matched Wistar rats were exposed to 80% oxygen or room air for 24 h and treated with 1, 5 or 10 μg/kg of dexmedetomidine or normal saline. A single pretreatment with DEX attenuated the hyperoxia-induced injury in terms of neurogenesis and plasticity. In detail, both the proliferation capacity (PCNA+ cells) as well as the expression of neuronal markers (Nestin+, PSA-NCAM+, NeuN+ cells) and transcription factors (SOX2, Tbr1/2, Prox1) were significantly reduced under hyperoxia compared to control. Furthermore, regulators of neuronal plasticity (Nrp1, Nrg1, Syp, and Sema3a/f) were also drastically decreased. A single administration of dexmedetomidine prior to oxygen exposure resulted in a significant up-regulation of expression-profiles compared to hyperoxia. Our results suggest that dexmedetomidine may have neuroprotective effects in an acute hyperoxic model of the neonatal rat. PMID:28158247

  13. GSK-3β inhibitor TWS119 attenuates rtPA-induced hemorrhagic transformation and activates the Wnt/β-catenin signaling pathway after acute ischemic stroke in rats

    PubMed Central

    Wang, Wei; Li, Mingchang; Wang, Yuefei; Li, Qian; Deng, Gang; Wan, Jieru; Yang, Qingwu

    2016-01-01

    Hemorrhagic transformation (HT) is a devastating complication for patients with acute ischemic stroke who are treated with tissue plasminogen activator (tPA). It is associated with high morbidity and mortality, but no effective treatments are currently available to reduce HT risk. Therefore, methods to prevent HT are urgently needed. In this study, we used TWS119, an inhibitor of glycogen synthase kinase 3β (GSK-3β), to evaluate the role of the Wnt/β-catenin signaling pathway in recombinant tPA (rtPA)-induced HT. Sprague–Dawley rats were subjected to a middle cerebral artery occlusion (MCAO) model of ischemic stroke and then were administered rtPA, rtPA combined with TWS119, or vehicle at 4 h. The animals were sacrificed 24 h after infarct induction. Rats treated with rtPA showed evident HT, had more severe neurologic deficit, brain edema, and blood–brain barrier breakdown, and had larger infarction volume than did the vehicle group. Rats treated with TWS119 had significantly improved outcomes compared with those of rats treated with rtPA alone. In addition, Western blot analysis showed that TWS119 increased the protein expression of β-catenin, claudin-3, and ZO-1 while suppressing the expression of GSK-3β. These results suggest that TWS119 reduces rtPA-induced HT and attenuates blood–brain barrier disruption, possibly through activation of the Wnt/β-catenin signaling pathway. This study provides a potential therapeutic strategy to prevent tPA-induced HT after acute ischemic stroke. PMID:26671619

  14. Inulin oligofructose attenuates metabolic syndrome in high-carbohydrate, high-fat diet-fed rats.

    PubMed

    Kumar, Senthil A; Ward, Leigh C; Brown, Lindsay

    2016-11-01

    Prebiotics alter bacterial content in the colon, and therefore could be useful for obesity management. We investigated the changes following addition of inulin oligofructose (IO) in the food of rats fed either a corn starch (C) diet or a high-carbohydrate, high-fat (H) diet as a model of diet-induced metabolic syndrome. IO did not affect food intake, but reduced body weight gain by 5·3 and 12·3 % in corn starch+inulin oligofructose (CIO) and high-carbohydrate, high-fat with inulin oligofructose (HIO) rats, respectively. IO reduced plasma concentrations of free fatty acids by 26·2 % and TAG by 75·8 % in HIO rats. IO increased faecal output by 93·2 %, faecal lipid excretion by 37·9 % and weight of caecum by 23·4 % and colon by 41·5 % in HIO rats. IO improved ileal morphology by reducing inflammation and improving the density of crypt cells in HIO rats. IO attenuated H diet-induced increases in abdominal fat pads (C 275 (sem 19), CIO 264 (sem 40), H 688 (sem 55), HIO 419 (sem 32) mg/mm tibial length), fasting blood glucose concentrations (C 4·5 (sem 0·1), CIO 4·2 (sem 0·1), H 5·2 (sem 0·1), HIO 4·3 (sem 0·1) mmol/l), systolic blood pressure (C 124 (sem 2), CIO 118 (sem 2), H 152 (sem 2), HIO 123 (sem 3) mmHg), left ventricular diastolic stiffness (C 22·9 (sem 0·6), CIO 22·9 (sem 0·5), H 27·8 (sem 0·5), HIO 22·6 (sem 1·2)) and plasma alanine transaminase (C 29·6 (sem 2·8), CIO 32·1 (sem 3·0), H 43·9 (sem 2·6), HIO 33·6 (sem 2·0) U/l). IO attenuated H-induced increases in inflammatory cell infiltration in the heart and liver, lipid droplets in the liver and plasma lipids as well as impaired glucose and insulin tolerance. These results suggest that increasing soluble fibre intake with IO improves signs of the metabolic syndrome by decreasing gastrointestinal carbohydrate and lipid uptake.

  15. Ginkgo biloba extract EGb761 attenuates brain death-induced renal injury by inhibiting pro-inflammatory cytokines and the SAPK and JAK-STAT signalings

    PubMed Central

    Li, Yifu; Xiong, Yunyi; Zhang, Huanxi; Li, Jun; Wang, Dong; Chen, Wenfang; Yuan, Xiaopeng; Su, Qiao; Li, Wenwen; Huang, Huiting; Bi, Zirong; Liu, Longshan; Wang, Changxi

    2017-01-01

    This study aimed to investigate the protective effects of EGb761, a Ginkgo Biloba extract, against brain death-induced kidney injury. Sixty male Sprague Dawley rats were randomly divided into six groups: sham, brain-death (BD), BD + EGb b48h (48 hours before BD), BD + EGb 2 h (2 hours after BD), BD + EGb 1 h, and BD + EGb 0.5 h. Six hours after BD, serum sample and kidney tissues were collected for analyses. The levels of blood urea nitrogen (BUN) and serum creatinine significantly elevated in the BD group than in sham group. In all the EGb761-treated BD animals except for the BD + Gb 2 h group, the levels of BUN and serum creatinine significantly reduced (all P < 0.01). EGb761 attenuated tubular injury and lowered the histological score. In addition, the longer duration of drug treatment was, the better protective efficacy could be observed. EGb761 significantly reduced IL-1β, IL-6, TNF-α, MCP-1, IP-10 mRNA expression and macrophage infiltration in the kidney. EGb761 treatment at 48 hour before brain death significantly attenuate the levels of p-JNK-MAPK, p-p38-MAPK, and p-STAT3 proteins (all P < 0.05, compared to BD group). In summary, our data showed that EGb761 treatment protected donor kidney from BD-induced damages by blocking SAPK and JAK-STAT signalings. Early administration of EGb761 can provide better protective efficacy. PMID:28332628

  16. Inhibition of brain mitogen-activated protein kinase signaling reduces central endoplasmic reticulum stress and inflammation and sympathetic nerve activity in heart failure rats

    PubMed Central

    Wei, Shun-Guang; Yu, Yang; Weiss, Robert M.; Felder, Robert B.

    2015-01-01

    Mitogen-activated protein kinase (MAPK) signaling and endoplasmic reticulum (ER) stress in the brain have been implicated in the pathophysiological mechanisms in hypertension. The present study determined whether ER stress occurs in subfornical organ (SFO) and hypothalamic paraventricular nucleus (PVN) in heart failure (HF), and how MAPK signaling interacts with ER stress and other inflammatory mediators. HF rats had significantly higher levels of the ER stress biomarkers (GRP78, ATF6, ATF4, XBP-1, P58IPK and CHOP) in SFO and PVN, which were attenuated by a 4-week intracerebroventricular (ICV) infusion of inhibitors selective for p44/42 MAPK (PD98059), p38 MAPK (SB203580) or JNK (SP600125). HF rats also had higher mRNA levels of tumor necrosis factor-α, interleukin-1β, cyclooxygenase-2 and NF-κB p65 and lower mRNA level of IκB-α in SFO and PVN, compared with SHAM rats, and these indicators of increased inflammation were attenuated in the HF rats treated with the MAPK inhibitors. Plasma norepinephrine level was higher in HF than SHAM rats, but was reduced in the HF rats treated with PD98059 and SB203580. A 4-week ICV infusion of PD98059 also improved some hemodynamic and anatomic indicators of left ventricular function in HF rats. These data demonstrate that ER stress increases in the SFO and PVN of rats with ischemia-induced HF, and that inhibition of brain MAPK signaling reduces brain ER stress and inflammation and decreases sympathetic excitation in HF. An interaction between MAPK signaling and ER stress in cardiovascular regions of the brain may contribute to the development of HF. PMID:26573710

  17. Novel TRPM8 antagonist attenuates cold hypersensitivity after peripheral nerve injury in rats.

    PubMed

    Patel, Ryan; Gonçalves, Leonor; Newman, Robert; Jiang, Feng Li; Goldby, Anne; Reeve, Jennifer; Hendrick, Alan; Teall, Martin; Hannah, Duncan; Almond, Sarah; Brice, Nicola; Dickenson, Anthony H

    2014-04-01

    Abnormal cold sensitivity is a common feature of a range of neuropathies. In the murine somatosensory system, multiple aspects of cold sensitivity are dependent on TRPM8, both short term and in response to peripheral nerve injury. The specialized nature of cold-sensitive afferents and the restricted expression of TRPM8 render it an attractive target for the treatment of cold hypersensitivity. This current study examines the effect of a novel TRPM8 antagonist (M8-An) in naive and spinal nerve-ligated rats through behavioral and in vivo electrophysiological approaches. In vitro, M8-An inhibited icilin-evoked Ca(2+) currents in HEK293 cells stably expressing human TRPM8 with an IC(50) of 10.9 nM. In vivo, systemic M8-An transiently decreased core body temperature. Deep dorsal horn recordings were made in vivo from neurons innervating the hind paw. M8-An inhibited neuronal responses to innocuous and noxious cooling of the receptive field in spinal nerve-ligated rats but not in naive rats. No effect on neuronal responses to mechanical and heat stimulation was observed. In addition, M8-An also attenuated behavioral responses to cold but not mechanical stimulation after nerve ligation without affecting the uninjured contralateral response. The data presented here support a contribution of TRPM8 to the pathophysiology of cold hypersensitivity in this model and highlight the potential of the pharmacological block of TRPM8 in alleviating the associated symptoms.

  18. Morphine Attenuates Testosterone Response to Central Injection of Kisspeptin in Male Rats

    PubMed Central

    Mahmoudi, Fariba; Khazali, Homayoun; Janahmadi, Mahyar

    2014-01-01

    Background Kisspeptin and naloxone stimulate the reproductive axis while morphine inhibits its function. We have investigated the effect of central injection of kisspeptin-10 on mean plasma testosterone concentration in morphine or naloxone pretreated rats. Materials and Methods In this experimental study, 60 male Wistar rats that were divid- ed into 12 groups (n=5 per group) received saline, kisspeptin (1 nmol, ICV), naloxone (2 mg/kg, subcutaneously), morphine (5 or 10 mg/kg, sc) or co-administrations of kisspeptin, morphine and naloxone at 09:00 - 09:30. In the co-administrated groups, kisspeptin was injected 15 minutes following morphine or naloxone injections. Blood samples were collected 60 minutes following injections via the tail vein. Plasma testosterone concentration was measured by a rat testosterone ELISA kit. Results Central injection of kisspeptin or subcutaneous injection of naloxone significantly increased the mean plasma testosterone concentration compared to saline while subcutaneous injections of different doses of morphine (5 or 10 mg/kg) significantly decreased testosterone compared to saline. The results revealed that morphine significantly attenuated the testosterone increase after kisspeptin injection compared to kisspeptin while a stimulatory additive effect was observed in the kisspeptin/naloxone group compared to either naloxone or kisspeptin. Conclusion Morphine and kisspeptin systems may interact with each other to control the hypothalamic-pituitary-gonadal (HPG) axis. PMID:25083187

  19. Garlic and Onion Attenuates Vascular Inflammation and Oxidative Stress in Fructose-Fed Rats

    PubMed Central

    Vazquez-Prieto, Marcela Alejandra; Rodriguez Lanzi, Cecilia; Lembo, Carina; Galmarini, Claudio Rómulo; Miatello, Roberto Miguel

    2011-01-01

    This study evaluates the antioxidant and the anti-inflammatory properties of garlic (G) and onion (O) in fructose-fed rats (FFR). Thirty-day-old male Wistar rats were assigned to control (C), F (10% fructose in drinking water), F+T (tempol 1 mM as control antioxidant), F+G, and F+O. Aqueous G and O extracts were administered orally in doses of 150 and 400 mg/kg/d respectively, and along with tempol, were given during the last 8 weeks of a 14-week period. At the end of the study, FFR had developed insulin resistance, aortic NADPH oxidase activity, increased SBP, plasma TBARS and vascular cell adhesion molecule-1 (VCAM-1) expression in mesenteric arteries, and a decrease in heart endothelial nitric oxide synthase (eNOS). Garlic and onion administration to F rats reduced oxidative stress, increased eNOS activity, and also attenuated VCAM-1 expression. These results provide new evidence showing the anti-inflammatory and antioxidant effect of these vegetables. PMID:21876795

  20. IB4-Saporin Attenuates Acute and Eliminates Chronic Muscle Pain in the Rat

    PubMed Central

    Alvarez, Pedro; Gear, Robert W.; Green, Paul G.; Levine, Jon D.

    2012-01-01

    The function of populations of nociceptors in muscle pain syndromes remain poorly understood. We compared the contribution of two major classes, isolectin B4-positive (IB4(+)) and IB4-negative (IB4(−)) nociceptors, in acute and chronic inflammatory and ergonomic muscle pain. Baseline mechanical nociceptive threshold was assessed in the gastrocnemius muscle of rats treated with IB4-saporin, which selectively destroys IB4(+) nociceptors. Rats were then submitted to models of acute inflammatory (intramuscular carrageenan)- or ergonomic intervention (eccentric exercise or vibration)-induced muscle pain, and each of the three models also evaluated for the transition from acute to chronic pain, manifest as prolongation of prostaglandin E2 (PGE2)-induced hyperalgesia, after recovery from the hyperalgesia induced by acute inflammation or ergonomic interventions. IB4-saporin treatment did not affect baseline mechanical nociceptive threshold. However, compared to controls, IB4-saporin treated rats exhibited shorter duration mechanical hyperalgesia in all three models and attenuated peak hyperalgesia in the ergonomic pain models. And, IB4-saporin treatment completely prevented prolongation of PGE2-induced mechanical hyperalgesia. Thus, IB4(+) and IB4(−) neurons contribute to acute muscle hyperalgesia induced by diverse insults. However, only IB4+ nociceptors participate in the long term consequence of acute hyperalgesia. Finally, using retrograde labelling we found that approximately 70% of sensory neurons innervating the gastrocnemius muscle are IB4(+). PMID:22206923

  1. Red Palm Oil Attenuates Lead Acetate Induced Testicular Damage in Adult Male Sprague-Dawley Rats.

    PubMed

    Jegede, A I; Offor, U; Azu, O O; Akinloye, O

    2015-01-01

    To study the protective effect of Red Palm Oil (RPO) on testicular damage induced by administration of lead acetate on male Sprague-Dawley rats, 28 rats divided into four groups of 7 animals each were used. They were administered orally with RPO (1 mL and 2 mL) and lead acetate (i.p.) 6 mg/kg body weight/day, respectively. Treatment was conducted for 8 weeks, and 24 hrs after the last treatment the rats were sacrificed using cervical dislocation. Sperms collected from epididymis were used for seminal fluid analyses; while the testes sample was used for ROS and oxidative enzyme activities assessment. Statistical analysis was carried out using GraphPad Prism 5.02 statistical analysis package. Administration of lead acetate increased generation of reactive oxygen species (ROS) significantly (p < 0.05) as evidenced by the elevated value of H2O2 and LPO and decreased GSH level. Also there was reduced epididymal sperm count, poor grade of sperm motility, and lower percentage of normal sperm morphology significantly. Coadministration with RPO, however, has a protective effect against lead toxicity by decreasing H2O2 production, increased GSH level, and increased sperm qualities especially. This shows that RPO has a potential to attenuate the toxic effect of lead on testicular cells preventing possible resultant male infertility.

  2. Environmental enrichment and cafeteria diet attenuate the response to chronic variable stress in rats.

    PubMed

    Zeeni, N; Bassil, M; Fromentin, G; Chaumontet, C; Darcel, N; Tome, D; Daher, C F

    2015-02-01

    Exposure to an enriched environment (EE) or the intake of a highly palatable diet may reduce the response to chronic stress in rodents. To further explore the relationships between EE, dietary intake and stress, male Sprague-Dawley rats were fed one of two diets for 5 weeks: high carbohydrate (HC) or "cafeteria" (CAF) (Standard HC plus a choice of highly palatable cafeteria foods: chocolate, biscuits, and peanut butter). In addition, they were either housed in empty cages or cages with EE. After the first two weeks, half of the animals from each group were stressed daily using a chronic variable stress (CVS) paradigm, while the other half were kept undisturbed. Rats were sacrificed at the end of the 5-week period. The effects of stress, enrichment and dietary intake on animal adiposity, serum lipids, and stress hormones were analyzed. Results showed an increase in intra-abdominal fat associated with the CAF diet and an increase in body weight gain associated with both the CAF diet and EE. Furthermore, the increase in ACTH associated with CVS was attenuated in the presence of EE and the CAF diet independently while the stress-induced increase in corticosterone was reduced by the combination of EE and CAF feeding. The present study provides evidence that the availability of a positive environment combined to a highly palatable diet increases resilience to the effects of CVS in rats. These results highlight the important place of palatable food and supportive environments in reducing central stress responses.

  3. A Green Algae Mixture of Scenedesmus and Schroederiella Attenuates Obesity-Linked Metabolic Syndrome in Rats

    PubMed Central

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C.; Paul, Nicholas A.; Brown, Lindsay

    2015-01-01

    This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC) containing protein (46.1% of dry algae), insoluble fibre (19.6% of dry algae), minerals (3.7% of dry algae) and omega-3 fatty acids (2.8% of dry algae) as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68%) and fats (saturated and trans fats from beef tallow, total 24%). High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food) lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome. PMID:25875119

  4. Metformin attenuates hyperoxia-induced lung injury in neonatal rats by reducing the inflammatory response

    PubMed Central

    Chen, Xueyu; Walther, Frans J.; Sengers, Rozemarijn M. A.; Laghmani, El Houari; Salam, Asma; Folkerts, Gert; Pera, Tonio

    2015-01-01

    Because therapeutic options are lacking for bronchopulmonary dysplasia (BPD), there is an urgent medical need to discover novel targets/drugs to treat this neonatal chronic lung disease. Metformin, a drug commonly used to lower blood glucose in type 2 diabetes patients, may be a novel therapeutic option for BPD by reducing pulmonary inflammation and fibrosis and improving vascularization. We investigated the therapeutic potential of daily treatment with 25 and 100 mg/kg metformin, injected subcutaneously in neonatal Wistar rats with severe experimental BPD, induced by continuous exposure to 100% oxygen for 10 days. Parameters investigated included survival, lung and heart histopathology, pulmonary fibrin and collagen deposition, vascular leakage, right ventricular hypertrophy, and differential mRNA expression in the lungs of key genes involved in BPD pathogenesis, including inflammation, coagulation, and alveolar development. After daily metformin treatment rat pups with experimental BPD had reduced mortality, alveolar septum thickness, lung inflammation, and fibrosis, demonstrated by a reduced influx of macrophages and neutrophils and hyperoxia-induced collagen III and fibrin deposition (25 mg/kg), as well as improved vascularization (100 mg/kg) compared with control treatment. However, metformin did not ameliorate alveolar enlargement, small arteriole wall thickening, vascular alveolar leakage, and right ventricular hypertrophy. In conclusion metformin prolongs survival and attenuates pulmonary injury by reducing pulmonary inflammation, coagulation, and fibrosis but does not affect alveolar development or prevent pulmonary arterial hypertension and right ventricular hypertrophy in neonatal rats with severe hyperoxia-induced experimental BPD. PMID:26047641

  5. Red Palm Oil Attenuates Lead Acetate Induced Testicular Damage in Adult Male Sprague-Dawley Rats

    PubMed Central

    Jegede, A. I.; Offor, U.; Azu, O. O.; Akinloye, O.

    2015-01-01

    To study the protective effect of Red Palm Oil (RPO) on testicular damage induced by administration of lead acetate on male Sprague-Dawley rats, 28 rats divided into four groups of 7 animals each were used. They were administered orally with RPO (1 mL and 2 mL) and lead acetate (i.p.) 6 mg/kg body weight/day, respectively. Treatment was conducted for 8 weeks, and 24 hrs after the last treatment the rats were sacrificed using cervical dislocation. Sperms collected from epididymis were used for seminal fluid analyses; while the testes sample was used for ROS and oxidative enzyme activities assessment. Statistical analysis was carried out using GraphPad Prism 5.02 statistical analysis package. Administration of lead acetate increased generation of reactive oxygen species (ROS) significantly (p < 0.05) as evidenced by the elevated value of H2O2 and LPO and decreased GSH level. Also there was reduced epididymal sperm count, poor grade of sperm motility, and lower percentage of normal sperm morphology significantly. Coadministration with RPO, however, has a protective effect against lead toxicity by decreasing H2O2 production, increased GSH level, and increased sperm qualities especially. This shows that RPO has a potential to attenuate the toxic effect of lead on testicular cells preventing possible resultant male infertility. PMID:26516332

  6. Metformin attenuates hyperoxia-induced lung injury in neonatal rats by reducing the inflammatory response.

    PubMed

    Chen, Xueyu; Walther, Frans J; Sengers, Rozemarijn M A; Laghmani, El Houari; Salam, Asma; Folkerts, Gert; Pera, Tonio; Wagenaar, Gerry T M

    2015-08-01

    Because therapeutic options are lacking for bronchopulmonary dysplasia (BPD), there is an urgent medical need to discover novel targets/drugs to treat this neonatal chronic lung disease. Metformin, a drug commonly used to lower blood glucose in type 2 diabetes patients, may be a novel therapeutic option for BPD by reducing pulmonary inflammation and fibrosis and improving vascularization. We investigated the therapeutic potential of daily treatment with 25 and 100 mg/kg metformin, injected subcutaneously in neonatal Wistar rats with severe experimental BPD, induced by continuous exposure to 100% oxygen for 10 days. Parameters investigated included survival, lung and heart histopathology, pulmonary fibrin and collagen deposition, vascular leakage, right ventricular hypertrophy, and differential mRNA expression in the lungs of key genes involved in BPD pathogenesis, including inflammation, coagulation, and alveolar development. After daily metformin treatment rat pups with experimental BPD had reduced mortality, alveolar septum thickness, lung inflammation, and fibrosis, demonstrated by a reduced influx of macrophages and neutrophils and hyperoxia-induced collagen III and fibrin deposition (25 mg/kg), as well as improved vascularization (100 mg/kg) compared with control treatment. However, metformin did not ameliorate alveolar enlargement, small arteriole wall thickening, vascular alveolar leakage, and right ventricular hypertrophy. In conclusion metformin prolongs survival and attenuates pulmonary injury by reducing pulmonary inflammation, coagulation, and fibrosis but does not affect alveolar development or prevent pulmonary arterial hypertension and right ventricular hypertrophy in neonatal rats with severe hyperoxia-induced experimental BPD.

  7. Ethanolic extract of Trigonella Foenum Graecum attenuates cisplatin-induced nephro- and hepatotoxicities in rats.

    PubMed

    Hegazy, Marwa G A; Emam, Manal A

    2015-11-25

    Nephro-and hepatotoxicities are important complications in cancer patients undergoing cisplatin (CP) therapy. We aimed to study the protective effect of fenugreek (FG) on CP induced renal and hepatic injuries in rats. Cisplatin intoxication resulted in structural and functional renal and hepatic impairments, which were revealed by massive histopathological changes and elevated kidney and liver function tests. However, it was associated with oxidative stress and lipid peroxidation as evident by increased reactive oxygen species (ROS) and malondialdehyde (MDA) with decreased levels of total antioxidant activity. Cisplatin administration triggered inflammatory responses and apoptosis in rat livers and kidneys as evident by increased expression of pro-inflammatory cytokine, tumor necrosis factor- α (TNF-α) and apoptotic marker p38 mitogen-activated protein kinase (p38 MAPK) as results of overproduction of ROS. FG significantly attenuated the cisplatin-induced biochemical and histopathological alterations, inflammation and apoptosis in rat livers and kidneys. Results suggested that fenugreek co-administration has a powerful antioxidant effect and may serves as a novel and promising preventive strategy against cisplatin-induced nephron- and hepatotoxicities.

  8. Glycyrrhizin attenuates rat ischemic spinal cord injury by suppressing inflammatory cytokines and HMGB1

    PubMed Central

    Gong, Gu; Yuan, Li-bang; Hu, Ling; Wu, Wei; Yin, Liang; Hou, Jing-li; Liu, Ying-hai; Zhou, Le-shun

    2012-01-01

    Aim: To investigate the neuroprotective effect of glycyrrhizin (Gly) against the ischemic injury of rat spinal cord and the possible role of the nuclear protein high-mobility group box 1 (HMGB1) in the process. Methods: Male Sprague-Dawley rats were subjected to 45 min aortic occlusion to induce transient lumbar spinal cord ischemia. The motor functions of the animals were assessed according to the modified Tarlov scale. The animals were sacrificed 72 h after reperfusion and the lumbar spinal cord segment (L2–L4) was taken out for histopathological examination and Western blotting analysis. Serum inflammatory cytokine and HMGB1 levels were analyzed using ELISA. Results: Gly (6 mg/kg) administered intravenously 30 min before inducing the transient lumbar spinal cord ischemia significantly improved the hind-limb motor function scores, and reduced the number of apoptotic neurons, which was accompanied by reduced levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in the plasma and injured spinal cord. Moreover, the serum HMGB1 level correlated well with the serum TNF-α, IL-1β and IL-6 levels during the time period of reperfusion. Conclusion: The results suggest that Gly can attenuate the transient spinal cord ischemic injury in rats via reducing inflammatory cytokines and inhibiting the release of HMGB1. PMID:22158106

  9. Attenuated baroreflex control of sympathetic nerve activity after cardiovascular deconditioning in rats

    NASA Technical Reports Server (NTRS)

    Moffitt, J. A.; Foley, C. M.; Schadt, J. C.; Laughlin, M. H.; Hasser, E. M.

    1998-01-01

    The effect of cardiovascular deconditioning on baroreflex control of the sympathetic nervous system was evaluated after 14 days of hindlimb unloading (HU) or the control condition. Rats were chronically instrumented with catheters and sympathetic nerve recording electrodes for measurement of mean arterial pressure (MAP) and heart rate (HR) and recording of lumbar (LSNA) or renal (RSNA) sympathetic nerve activity. Experiments were conducted 24 h after surgery, with the animals in a normal posture. Baroreflex function was assessed using a logistic function that related HR and LSNA or RSNA to MAP during infusion of phenylephrine and nitroprusside. Baroreflex influence on HR was not affected by HU. Maximum baroreflex-elicited LSNA was significantly reduced in HU rats (204 +/- 11.9 vs. 342 +/- 30.6% baseline LSNA), as was maximum reflex gain (-4.0 +/- 0.6 vs. -7.8 +/- 1.3 %LSNA/mmHg). Maximum baroreflex-elicited RSNA (259 +/- 10.8 vs. 453 +/- 28.0% baseline RSNA), minimum baroreflex-elicited RSNA (-2 +/- 2.8 vs. 13 +/- 4.5% baseline RSNA), and maximum gain (-5.8 +/- 0.5 vs. -13.6 +/- 3.1 %RSNA/mmHg) were significantly decreased in HU rats. Results demonstrate that baroreflex modulation of sympathetic nervous system activity is attenuated after cardiovascular deconditioning in rodents. Data suggest that alterations in the arterial baroreflex may contribute to orthostatic intolerance after a period of bedrest or spaceflight in humans.

  10. Brain tumour differentiation: rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared spectroscopy.

    PubMed

    Hands, James R; Clemens, Graeme; Stables, Ryan; Ashton, Katherine; Brodbelt, Andrew; Davis, Charles; Dawson, Timothy P; Jenkinson, Michael D; Lea, Robert W; Walker, Carol; Baker, Matthew J

    2016-05-01

    The ability to diagnose cancer rapidly with high sensitivity and specificity is essential to exploit advances in new treatments to lead significant reductions in mortality and morbidity. Current cancer diagnostic tests observing tissue architecture and specific protein expression for specific cancers suffer from inter-observer variability, poor detection rates and occur when the patient is symptomatic. A new method for the detection of cancer using 1 μl of human serum, attenuated total reflection-Fourier transform infrared spectroscopy and pattern recognition algorithms is reported using a 433 patient dataset (3897 spectra). To the best of our knowledge, we present the largest study on serum mid-infrared spectroscopy for cancer research. We achieve optimum sensitivities and specificities using a Radial Basis Function Support Vector Machine of between 80.0 and 100 % for all strata and identify the major spectral features, hence biochemical components, responsible for the discrimination within each stratum. We assess feature fed-SVM analysis for our cancer versus non-cancer model and achieve 91.5 and 83.0 % sensitivity and specificity respectively. We demonstrate the use of infrared light to provide a spectral signature from human serum to detect, for the first time, cancer versus non-cancer, metastatic cancer versus organ confined, brain cancer severity and the organ of origin of metastatic disease from the same sample enabling stratified diagnostics depending upon the clinical question asked.

  11. Hesperidin ameliorates heavy metal induced toxicity mediated by oxidative stress in brain of Wistar rats.

    PubMed

    Khan, Mohammad Haaris Ajmal; Parvez, Suhel

    2015-01-01

    Cadmium (Cd) induces neurotoxicity owing to its highly deleterious capacity to cross the blood brain barrier (BBB). Recent studies have provided insights on antioxidant properties of bioflavonoids which have emerged as potential therapeutic and nutraceutical agents. The aim of our study was to examine the hypothesis that hesperidin (HP) ameliorates oxidative stress and may have mitigatory effects in the extent of heavy metal-induced neurotoxicity. Cd (3mg/kg body weight) was administered subcutaneously for 21 days while HP (40 mg/kg body weight) was administered orally once every day. The results of the current investigation demonstrate significant elevated levels of oxidative stress markers such as lipid peroxidation (LPO) and protein carbonyl (PC) along with significant depletion in the activity of non-enzymatic antioxidants like glutathione (GSH) and non-protein thiol (NP-SH) and enzymatic antioxidants in the Cd treated rats' brain. Activity of neurotoxicity biomarkers such as acetylcholinesterase (AchE), monoamine oxidase (MAO) and total ATPase were also altered significantly and HP treatment significantly attenuated the altered levels of oxidative stress and neurotoxicity biomarkers while salvaging the antioxidant sentinels of cells to near normal levels thus exhibiting potent antioxidant and neuroprotective effects on the brain tissue against oxidative damage in Cd treated rodent model.

  12. Dexmedetomidine attenuates isoflurane-induced cognitive impairment through antioxidant, anti-inflammatory and anti-apoptosis in aging rat

    PubMed Central

    Wang, Xiaoning; Zhao, Binjiang; Li, Xue

    2015-01-01

    As a kind of α2 adrenergic receptor agonists, dexmedetomidine generates sedation, anti-anxiety and anesthesia effects by hyperpolarizing noradrenergic nerve cells in locus coeruleus. This study was designed to investigate the neuroprotective of dexmedetomidine attenuates isoflurane-induced cognitive impairment, and the possible underlying mechanism in aging rat. Firstly, we used isoflurane-induced aging rat model to analyze the therapeutical effect of dexmedetomidine on cognitive impairment. Next, commercial ELISA kits were used to analyze tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), methane dicarboxylic aldehyde (MDA) and superoxide dismutase (SOD) and caspase-3 levels. In addition, Western blotting was used to detect the protein expression of P38 MAPK, PTEN and phosphorylation-Akt (p-Akt) expression. Our results showed that the neuroprotective of dexmedetomidine significantly attenuates isoflurane-induced cognitive impairment in aging rat. Moreover, dexmedetomidine significantly inhibited these TNF-α, IL-1β, MDA, SOD and caspase-3 activities in isoflurane-induced aging rat. Meanwhile, the neuroprotective effects of dexmedetomidine on isoflurane-induced cognitive impairment significantly suppressed Bcl-xL/Bad rate, P38 MAPK and PTEN protein expression and activated p-Akt protein expression in aging rat. Collectively, neuroprotective effect of dexmedetomidine attenuates isoflurane-induced cognitive impairment through antioxidant, anti-inflammatory and anti-apoptosis in aging rat. PMID:26770320

  13. Global profiling of influence of intra-ischemic brain temperature on gene expression in rat brain.

    PubMed

    Kobayashi, Megumi Sugahara; Asai, Satoshi; Ishikawa, Koichi; Nishida, Yayoi; Nagata, Toshihito; Takahashi, Yasuo

    2008-06-01

    Mild to moderate differences in brain temperature are known to greatly affect the outcome of cerebral ischemia. The impact of brain temperature on ischemic disorders has been mainly evaluated through pathological analysis. However, no comprehensive analyses have been conducted at the gene expression level. Using a high-density oligonucleotide microarray, we screened 24000 genes in the hippocampus under hypothermic (32 degrees C), normothermic (37 degrees C), and hyperthermic (39 degrees C) conditions in a rat ischemia-reperfusion model. When the ischemic group at each intra-ischemic brain temperature was compared to a sham-operated control group, genes whose expression levels changed more than three-fold with statistical significance could be detected. In our screening condition, thirty-three genes (some of them novel) were obtained after screening, and extensive functional surveys and literature reviews were subsequently performed. In the hypothermic condition, many neuroprotective factor genes were obtained, whereas cell death- and cell damage-associated genes were detected as the brain temperature increased. At all intra-ischemic brain temperatures, multiple molecular chaperone genes were obtained. The finding that intra-ischemic brain temperature affects the expression level of many genes related to neuroprotection or neurotoxicity coincides with the different pathological outcomes at different brain temperatures, demonstrating the utility of the genetic approach.

  14. Long-term fish oil supplementation attenuates seizure activity in the amygdala induced by 3-mercaptopropionic acid in adult male rats.

    PubMed

    Flores-Mancilla, L E; Hernández-González, M; Guevara, M A; Benavides-Haro, D E; Martínez-Arteaga, P

    2014-04-01

    Several studies have provided evidence of significant effects of omega-3 fatty acids on brain functionality, including seizures and disorders such as epilepsy. Fish oil (FO) is a marine product rich in unsaturated omega-3 fatty acids. Considering that the amygdala is one of the brain structures most sensitive to seizure generation, we aimed to evaluate the effect of long-term chronic FO supplementation (from embryonic conception to adulthood) on the severity of seizures and amygdaloid electroencephalographic activity (EEG) in a 3-mercaptopropionic acid (3-MPA)-induced seizure model using adult rats. Female Wistar rats were fed a commercial diet supplemented daily with FO (300mg/kg) from puberty through mating, gestation, delivery, and weaning of the pups. Only the male pups were then fed daily with a commercial diet supplemented with the same treatment as the dam up to the age of 150days postpartum, when they were bilaterally implanted in the amygdala to record behavior and EEG activity before, during, and after seizures induced by administering 3-MPA. Results were compared with those obtained from rats supplemented with palm oil (PO) and rats treated with a vehicle (CTRL). The male rats treated with FO showed longer latency to seizure onset, fewer convulsive episodes, and attenuated severity compared those in the PO and CTRL groups according to the Racine scale. Moreover, long-term FO supplementation was associated with a reduction of the absolute power (AP) of the fast frequencies (12-25Hz) in the amygdala during the seizure periods. These findings support the idea that chronic supplementation with omega-3 of marine origin may have antiseizure properties as other studies have suggested.

  15. Electrical stimulation of the aortic depressor nerve in conscious rats overcomes the attenuation of the baroreflex in chronic heart failure.

    PubMed

    Pinto, Tomás O C Teixeira; Lataro, Renata M; Castania, Jaci A; Durand, Marina T; Silva, Carlos A A; Patel, Kaushik P; Fazan, Rubens; Salgado, Helio C

    2016-04-01

    Chronic heart failure (CHF) is characterized by autonomic dysfunction combined with baroreflex attenuation. The hypotensive and bradycardic responses produced by electrical stimulation of the aortic depressor nerve (ADN) were examined in conscious CHF and control male Wistar rats (12-13 wk old). Furthermore, the role of parasympathetic and sympathetic nervous system in mediating the cardiovascular responses to baroreflex activation was evaluated by selective β1-adrenergic and muscarinic receptor antagonists. CHF was induced by myocardial infarction. After 6 wk, the subjects were implanted with electrodes for ADN stimulation. Twenty-four hours later, electrical stimulation of the ADN was applied for 20 s using five different frequencies (5, 15, 30, 60, and 90 Hz), while the arterial pressure was recorded by a catheter implanted into the femoral artery. Electrical stimulation of the ADN elicited progressive and similar hypotensive and bradycardic responses in control (n = 12) and CHF (n = 11) rats, while the hypotensive response was not affected by methylatropine. Nevertheless, the reflex bradycardia was attenuated by methylatropine in control, but not in CHF rats. Atenolol did not affect the hypotensive or bradycardic response in either group. The ADN function was examined under anesthesia through electroneurographic recordings. The arterial pressure-ADN activity relationship was attenuated in CHF rats. In conclusion, despite the attenuation of baroreceptor function in CHF rats, the electrical stimulation of the ADN elicited a stimulus-dependent hypotension and bradycardia of similar magnitude as observed in control rats. Therefore, electrical activation of the aortic baroreflex overcomes both the attenuation of parasympathetic function and the sympathetic overdrive.

  16. Effects of tetrahydrocannabinol on glucose uptake in the rat brain.

    PubMed

    Miederer, I; Uebbing, K; Röhrich, J; Maus, S; Bausbacher, N; Krauter, K; Weyer-Elberich, V; Lutz, B; Schreckenberger, M; Urban, R

    2017-02-20

    Δ(9)-Tetrahydrocannabinol (THC) is the psychoactive component of the plant Cannabis sativa and acts as a partial agonist at cannabinoid type 1 and type 2 receptors in the brain. The goal of this study was to assess the effect of THC on the cerebral glucose uptake in the rat brain. 21 male Sprague Dawley rats (12-13 w) were examined and received five different doses of THC ranging from 0.01 to 1 mg/kg. For data acquisition a Focus 120 small animal PET scanner was used and 24.1-28.0 MBq of [(18)F]-fluoro-2-deoxy-d-glucose were injected. The data were acquired for 70 min and arterial blood samples were collected throughout the scan. THC, THC-OH and THC-COOH were determined at 55 min p.i. Nine volumes of interest were defined, and the cerebral glucose uptake was calculated for each brain region. Low blood THC levels of < 1 ng/ml (injected dose: ≤ 0.01 mg/kg) corresponded to an increased glucose uptake (6-30 %), particularly in the hypothalamus (p = 0.007), while blood THC levels > 10 ng/ml (injected dose: ≥ 0.05 mg/kg) coincided with a decreased glucose uptake (-2 to -22 %), especially in the cerebellar cortex (p = 0.008). The effective concentration in this region was estimated 2.4 ng/ml. This glucose PET study showed that stimulation of CB1 receptors by THC affects the glucose uptake in the rat brain, whereby the effect of THC is regionally different and dependent on dose - an effect that may be of relevance in behavioural studies.

  17. Light-sheet microscopy imaging of a whole cleared rat brain with Thy1-GFP transgene

    PubMed Central

    Stefaniuk, Marzena; Gualda, Emilio J.; Pawlowska, Monika; Legutko, Diana; Matryba, Paweł; Koza, Paulina; Konopka, Witold; Owczarek, Dorota; Wawrzyniak, Marcin; Loza-Alvarez, Pablo; Kaczmarek, Leszek