Science.gov

Sample records for rat cerebellar cortex

  1. Electrophysiological monitoring of injury progression in the rat cerebellar cortex

    PubMed Central

    Ordek, Gokhan; Proddutur, Archana; Santhakumar, Vijayalakshmi; Pfister, Bryan J.; Sahin, Mesut

    2014-01-01

    The changes of excitability in affected neural networks can be used as a marker to study the temporal course of traumatic brain injury (TBI). The cerebellum is an ideal platform to study brain injury mechanisms at the network level using the electrophysiological methods. Within its crystalline morphology, the cerebellar cortex contains highly organized topographical subunits that are defined by two main inputs, the climbing (CFs) and mossy fibers (MFs). Here we demonstrate the use of cerebellar evoked potentials (EPs) mediated through these afferent systems for monitoring the injury progression in a rat model of fluid percussion injury (FPI). A mechanical tap on the dorsal hand was used as a stimulus, and EPs were recorded from the paramedian lobule (PML) of the posterior cerebellum via multi-electrode arrays (MEAs). Post-injury evoked response amplitudes (EPAs) were analyzed on a daily basis for 1 week and compared with pre-injury values. We found a trend of consistently decreasing EPAs in all nine animals, losing as much as 72 ± 4% of baseline amplitudes measured before the injury. Notably, our results highlighted two particular time windows; the first 24 h of injury in the acute period and day-3 to day-7 in the delayed period where the largest drops (~50% and 24%) were observed in the EPAs. In addition, cross-correlations of spontaneous signals between electrode pairs declined (from 0.47 ± 0.1 to 0.35 ± 0.04, p < 0.001) along with the EPAs throughout the week of injury. In support of the electrophysiological findings, immunohistochemical analysis at day-7 post-injury showed detectable Purkinje cell loss at low FPI pressures and more with the largest pressures used. Our results suggest that sensory evoked potentials (SEPs) recorded from the cerebellar surface can be a useful technique to monitor the course of cerebellar injury and identify the phases of injury progression even at mild levels. PMID:25346664

  2. Loss of connexin36 in rat hippocampus and cerebellar cortex in persistent Borna disease virus infection.

    PubMed

    Köster-Patzlaff, Christiane; Hosseini, Seyed Mehdi; Reuss, Bernhard

    2009-03-01

    Neonatal Borna disease virus (BDV) infection of the Lewis rat leads to progressive degeneration of dentate gyrus granule cells, and cerebellar Purkinje neurons. Our aim here was to clarify whether BDV interfered with the formation of electrical synapses, and we, therefore, analysed expression of the neuronal gap junction protein connexin36 (Cx36) in the Lewis rat hippocampal formation, and cerebellar cortex, 4 and 8 weeks after neonatal infection. Semiquantitative RT-PCR, revealed a BDV-dependent decrease in Cx36 mRNA in the hippocampal formation 4 and 8 weeks post-infection (p.i.), and in the cerebellar cortex 8 weeks p.i. Correspondingly, immunofluorescent staining revealed reduced Cx36 immunoreactivity in both dentate gyrus, and ammons horn CA3 region, 4 and 8 weeks post-infection. In the cerebellar cortex, Cx36 immunoreactivity was detected only 8 weeks post-infection in the molecular layer, where it was down regulated by BDV. Our findings demonstrate, for the first time, distinct BDV-dependent reductions in Cx36 mRNA and protein in the rat hippocampal formation and cerebellar cortex, suggesting altered neuronal network properties to be an important feature of persistent viral brain infections.

  3. Role of Muscarinic Acetylcholine Receptor-2 in the Cerebellar Cortex in Cardiovascular Modulation in Anaesthetized Rats.

    PubMed

    Zhang, Changzheng; Sun, Tingzhe; Zhou, Peiling; Zhu, Qingfeng; Zhang, Liefeng

    2016-04-01

    Our previous investigations have demonstrated that microinjection of acetylcholine (ACh) or muscarinic ACh receptor activation in the cerebellar cortex induces a systemic blood pressure depressor response. This study aimed to determine the role of muscarinic ACh receptor-2 (M2 receptor) in the cerebellar cortex in cardiovascular function regulation in rats. A nonselective muscarinic receptor agonist (oxotremorine M, OXO; 30 mM), a selective M2 receptor agonist (arecaidine but-2-ynyl ester tosylate, ABET; 3, 10, and 30 mM), 30 mM OXO mixed with a selective M2 receptor antagonist (methoctramine hydrate, MCT; 0.3, 1, and 3 mM), and normal saline (0.9 % NaCl) were separately microinjected (0.5 µl/5 s) into the cerebellar cortex (lobule VI) of anaesthetized rats. We measured the mean arterial pressure (MAP), maximum change in MAP, and reactive time (RT; the duration required for the blood pressure to return to basal levels), heart rate (HR) and the maximum change in HR during the RT in response to drug activation. The results demonstrated that ABET dose-dependently decreased MAP and HR, increased the maximum change in MAP and the maximum change in HR, and prolonged the RT. Furthermore, MCT dose-dependently blocked the OXO-mediated cardiovascular depressor response. This study provides the first evidence that M2 receptors in the cerebellar cortex are involved in cardiovascular regulation, the activation of which evokes significant depressor and bradycardic responses.

  4. Synapse-to-neuron ratios in rat cerebellar cortex following lengthy periods of undernutrition.

    PubMed Central

    Warren, M A; Bedi, K S

    1990-01-01

    Black and white hooded Lister rats were undernourished for various times up to 150 days of age; some of them were nutritionally rehabilitated from 75 days. Undernourished rats weighed significantly less than well-fed controls at all ages studied. After embedding in resin, sections of cerebellar cortex were cut and examined at the light and electron microscopical levels using traditional morphometric methods. Undernourished rats showed significant deficits in synapse-to-neuron ratio, compared with controls, at 21 days of age. This deficit disappeared by 75 days despite continued undernutrition. Indeed, there was no alteration in this ratio even when undernutrition was extended up to 150 days even though the ratio for the controls decreased after that period. Rats undernourished from birth to 75 days and subsequently rehabilitated to 150 days had significantly more synapses per neuron than controls. The functional sequelae of these morphological changes remain unknown. Images Fig. 1 Fig. 2 PMID:2254161

  5. Transcranial theta-burst stimulation alters GLT-1 and vGluT1 expression in rat cerebellar cortex.

    PubMed

    Mancic, Bojana; Stevanovic, Ivana; Ilic, Tihomir V; Djuric, Ana; Stojanovic, Ivana; Milanovic, Sladjan; Ninkovic, Milica

    2016-11-01

    Repetitive transcranial magnetic stimulation (rTMS) induces changes in expression of proteins engaged in activity of excitatory and inhibitory systems as well as redox homeostasis. Our aim was to investigate the effect of single (SS) and repeated session (RS) of intermittent and continuous theta-burst stimulation (iTBS; cTBS) on the expression of vesicular and plasmatic glutamate transporters 1 (vGluT1 and GLT-1), glial fibrillary acidic protein (GFAP) and influence on oxidative status in rats cerebellar tissue and plasma. Redox state parameters in cerebellar tissue and plasma were assessed 24 h after single and 48 h after the last TBS session. Molecular changes were examined by immunofluorescence. Stimulation significantly increased thiol groups (SH) in tissue of SS iTBS group, and decreased in iTBS RS. Activity of glucose-6-phosphate-dehydrogenase (G6PD) was increased markedly in cTBS RS. Immunoreactivity of vGluT1 in cTBS RS decreased, while GLT-1 increased in cTBS SS and cTBS RS, compared to control. Present study gives insight in molecular and biochemical mechanisms by which iTBS and cTBS exerts its effects on rats cerebellar cortex.

  6. [Cytochemical research on the matrix activity and status of the histone component of the neurocyte chromatin in the rat cerebellar cortex during postnatal differentiation].

    PubMed

    Grigor'eva, A V; Iarygin, V N

    1986-08-01

    Evident differences in the ammoniacal silver staining pattern of histones were demonstrated for neurones of different layers of adult rat cerebellar cortex. These differences were formed during postnatal differentiation. It has been also shown for Purkinje and granular cells that time-course of age-dependent changes in histone staining are not coincident with that for template activity of these cells.

  7. Topographical organization of pathways from somatosensory cortex through the pontine nuclei to tactile regions of the rat cerebellar hemispheres.

    PubMed

    Leergaard, Trygve B; Lillehaug, Sveinung; De Schutter, Erik; Bower, James M; Bjaalie, Jan G

    2006-11-01

    The granule cell layer of the cerebellar hemispheres contains a patchy and noncontinuous map of the body surface, consisting of a complex mosaic of multiple perioral tactile representations. Previous physiological studies have shown that cerebrocerebellar mossy fibre projections, conveyed through the pontine nuclei, are mapped in registration with peripheral tactile projections to the cerebellum. In contrast to the fractured cerebellar map, the primary somatosensory cortex (SI) is somatotopically organized. To understand better the map transformation occurring in cerebrocerebellar pathways, we injected axonal tracers in electrophysiologically defined locations in Sprague-Dawley rat folium crus IIa, and mapped the distribution of retrogradely labelled neurons within the pontine nuclei using three-dimensional (3-D) reconstructions. Tracer injections within the large central upper lip patch in crus IIa-labelled neurons located centrally in the pontine nuclei, primarily contralateral to the injected side. Larger injections (covering multiple crus IIa perioral representations) resulted in labelling extending only slightly beyond this region, with a higher density and more ipsilaterally labelled neurons. Combined axonal tracer injections in upper lip representations in SI and crus IIa, revealed a close spatial correspondence between the cerebropontine terminal fields and the crus IIa projecting neurons. Finally, comparisons with previously published three-dimensional distributions of pontine neurons labelled following tracer injections in face receiving regions in the paramedian lobule (downloaded from http://www.rbwb.org) revealed similar correspondence. The present data support the coherent topographical organization of cerebro-ponto-cerebellar networks previously suggested from physiological studies. We discuss the present findings in the context of transformations from cerebral somatotopic to cerebellar fractured tactile representations.

  8. Importance of Nitric Oxide for Local Increases of Blood Flow in Rat Cerebellar Cortex During Electrical Stimulation

    NASA Astrophysics Data System (ADS)

    Akgoren, Nuran; Fabricius, Martin; Lauritzen, Martin

    1994-06-01

    The endothelium-derived relaxing factor, probably nitric oxide (NO), is a potent vasodilator that regulates the vascular tone in several vascular beds, including the brain. We explored the possibility that NO might be of importance for the increase of cerebral blood flow (CBF) associated with activity of the well-defined neuronal circuits of the rat cerebellar cortex. Laser-Doppler flowmetry was used to measure increases of cerebellar blood flow evoked by trains of electrical stimulations of the dorsal surface. The evoked increases of CBF were frequency-dependent, being larger on than off the parallel fiber tracts, suggesting that conduction along parallel fibers and synaptic activation of target cells were important for the increase of CBF. This was verified experimentally since the evoked CBF increases were abolished by tetrodotoxin and reduced by 10 mM Mg2+ and selective antagonists for non-N-methyl-D-aspartate receptors. The cerebellar cortex contains high levels of NO synthase. This raised the possibility that NO was involved in the increase of CBF associated with neuronal activation. NO synthase inhibition by topical application of N^G-nitro-L-arginine attenuated the evoked CBF increase by about 50%. This effect was partially reversed by pretreatment with L-arginine, the natural substrate for the enzyme, while N^G-nitro-D-arginine, the inactive enantiomer, had no effect on the evoked CBF increases. Simultaneous blockade of non-N-methyl-D-aspartate receptors and NO synthase had no further suppressing effect on the blood flow increase than either substance alone, suggesting that the NO-dependent flow rise was dependent on postsynaptic mechanisms. These findings are consistent with the idea that local synthesis of NO is involved in the transduction mechanism between neuronal activity and increased CBF.

  9. Importance of nitric oxide for local increases of blood flow in rat cerebellar cortex during electrical stimulation.

    PubMed Central

    Akgören, N; Fabricius, M; Lauritzen, M

    1994-01-01

    The endothelium-derived relaxing factor, probably nitric oxide (NO), is a potent vasodilator that regulates the vascular tone in several vascular beds, including the brain. We explored the possibility that NO might be of importance for the increase of cerebral blood flow (CBF) associated with activity of the well-defined neuronal circuits of the rat cerebellar cortex. Laser-Doppler flowmetry was used to measure increases of cerebellar blood flow evoked by trains of electrical stimulations of the dorsal surface. The evoked increases of CBF were frequency-dependent, being larger on than off the parallel fiber tracts, suggesting that conduction along parallel fibers and synaptic activation of target cells were important for the increase of CBF. This was verified experimentally since the evoked CBF increases were abolished by tetrodotoxin and reduced by 10 mM Mg2+ and selective antagonists for non-N-methyl-D-aspartate receptors. The cerebellar cortex contains high levels of NO synthase. This raised the possibility that NO was involved in the increase of CBF associated with neuronal activation. NO synthase inhibition by topical application of NG-nitro-L-arginine attenuated the evoked CBF increase by about 50%. This effect was partially reversed by pretreatment with L-arginine, the natural substrate for the enzyme, while NG-nitro-D-arginine, the inactive enantiomer, had no effect on the evoked CBF increases. Simultaneous blockade of non-N-methyl-D-aspartate receptors and NO synthase had no further suppressing effect on the blood flow increase than either substance alone, suggesting that the NO-dependent flow rise was dependent on postsynaptic mechanisms. These findings are consistent with the idea that local synthesis of NO is involved in the transduction mechanism between neuronal activity and increased CBF. Images PMID:7517038

  10. Layer specific changes of astroglial gap junctions in the rat cerebellar cortex by persistent Borna Disease Virus infection.

    PubMed

    Köster-Patzlaff, Christiane; Hosseini, Seyed Mehdi; Reuss, Bernhard

    2008-07-11

    Neonatal Borna Disease Virus (BDV) infection of the Lewis rat brain, leads to Purkinje cell degeneration, in association with astroglial activation. Since astroglial gap junctions (GJ) are known to influence neuronal degeneration, we investigated BDV dependent changes in astroglial GJ connexins (Cx) Cx43, and Cx30 in the Lewis rat cerebellum, 4, and 8 weeks after neonatal infection. On the mRNA level, RT-PCR demonstrated a BDV dependent increase in cerebellar Cx43, and a decrease in Cx30, 8, but not 4 weeks p.i. On the protein level, Western blot analysis revealed no overall upregulation of Cx43, but an increase of its phosphorylated forms, 8 weeks p.i. Cx30 protein was downregulated. Immunohistochemistry revealed a BDV dependent reduction of Cx43 in the granular layer (GL), 4 weeks p.i. 8 weeks p.i., Cx43 immunoreactivity recovered in the GL, and was induced in the molecular layer (ML). Cx30 revealed a BDV dependent decrease in the GL, both 4, and 8 weeks p.i. Changes in astroglial Cxs correlated not with expression of the astrogliotic marker GFAP, which was upregulated in radial glia. With regard to functional coupling, primary cerebellar astroglial cultures, revealed a BDV dependent increase of Cx43, and Cx30 immunoreactivity and in spreading of the GJ permeant dye Lucifer Yellow. These results demonstrate a massive, BDV dependent reorganization of astroglial Cx expression, and of functional GJ coupling in the cerebellar cortex, which might be of importance for the BDV dependent neurodegeneration in this brain region.

  11. Cerebellar dentate nuclei lesions alter prefrontal cortex dendritic spine morphology.

    PubMed

    Bauer, David J; Peterson, Todd C; Swain, Rodney A

    2014-01-28

    Anatomical tracing studies in primates have revealed neural tracts from the cerebellar dentate nuclei to prefrontal cortex, implicating a cerebellar role in nonmotor processes. Experiments in rats examining the functional role of this cerebellothalamocortical pathway have demonstrated the development of visuospatial and motivational deficits following lesions of the dentate nuclei, in the absence of motor impairment. These behavioral deficits possibly occur due to structural modifications of the cerebral cortex secondary to loss of cerebellar input. The current study characterized morphological alterations in prefrontal cortex important for visuospatial and motivational processes following bilateral cerebellar dentate nuclei lesions. Rats received either bilateral electrolytic cerebellar dentate nuclei lesions or sham surgery followed by a 30-day recovery. Randomly selected Golgi-impregnated neurons in prefrontal cortex were examined for analysis. Measures of branch length and spine density revealed no differences between lesioned and sham rats in either apical or basilar arbors; however, the proportion of immature to mature spines significantly decreased in lesioned rats as compared to sham controls, with reductions of 33% in the basilar arbor and 28% in the apical arbor. Although expected pruning of branches and spines did not occur, the results are consistent with the hypothesis that cerebellar lesions influence prefrontal morphology and support the possibility that functional deficits following cerebellar dentate nuclei lesions are related to prefrontal morphological alteration.

  12. VAMP-2, SNAP-25A/B and syntaxin-1 in glutamatergic and GABAergic synapses of the rat cerebellar cortex

    PubMed Central

    2011-01-01

    Background The aim of this study was to assess the distribution of key SNARE proteins in glutamatergic and GABAergic synapses of the adult rat cerebellar cortex using light microscopy immunohistochemical techniques. Analysis was made of co-localizations of vGluT-1 and vGluT-2, vesicular transporters of glutamate and markers of glutamatergic synapses, or GAD, the GABA synthetic enzyme and marker of GABAergic synapses, with VAMP-2, SNAP-25A/B and syntaxin-1. Results The examined SNARE proteins were found to be diffusely expressed in glutamatergic synapses, whereas they were rarely observed in GABAergic synapses. However, among glutamatergic synapses, subpopulations which did not contain VAMP-2, SNAP-25A/B and syntaxin-1 were detected. They included virtually all the synapses established by terminals of climbing fibres (immunoreactive for vGluT-2) and some synapses established by terminals of parallel and mossy fibres (immunoreactive for vGluT-1, and for vGluT-1 and 2, respectively). The only GABA synapses expressing the SNARE proteins studied were the synapses established by axon terminals of basket neurons. Conclusion The present study supplies a detailed morphological description of VAMP-2, SNAP-25A/B and syntaxin-1 in the different types of glutamatergic and GABAergic synapses of the rat cerebellar cortex. The examined SNARE proteins characterize most of glutamatergic synapses and only one type of GABAergic synapses. In the subpopulations of glutamatergic and GABAergic synapses lacking the SNARE protein isoforms examined, alternative mechanisms for regulating trafficking of synaptic vesicles may be hypothesized, possibly mediated by different isoforms or homologous proteins. PMID:22094010

  13. Caytaxin Deficiency Disrupts Signaling Pathways in Cerebellar Cortex

    PubMed Central

    Xiao, Jianfeng; Gong, Suzhen; LeDoux, Mark S.

    2007-01-01

    The genetically dystonic (dt) rat, an autosomal recessive model of generalized dystonia, harbors an insertional mutation in Atcay. As a result, dt rats are deficient in Atcay transcript and the neuronally-restricted protein caytaxin. Previous electrophysiological and biochemical studies have defined olivocerebellar pathways, particularly the climbing fiber projection to Purkinje cells, as a site of significant functional abnormality in dt rats. In normal rats, Atcay transcript is abundantly expressed in the granular and Purkinje cell layers of cerebellar cortex. To better understand the consequences of caytaxin deficiency in cerebellar cortex, differential gene expression was examined in dt rats and their normal littermates. Data from oligonucleotide microarrays and quantitative real-time RT-PCR (QRT-PCR) identified phosphatidylinositol signaling pathways, calcium homeostasis, and extracellular matrix interactions as domains of cellular dysfunction in dt rats. In dt rats, genes encoding the corticotropin-releasing hormone receptor 1 (CRH-R1, Crhr1) and calcium-transporting plasma membrane ATPase 4 (PMCA4, Atp2b4) showed the greatest up-regulation with QRT-PCR. Immunocytochemical experiments demonstrated that CRH-R1, CRH, and PMCA4 were up-regulated in cerebellar cortex of mutant rats. Along with previous electrophysiological and pharmacological studies, our data indicate that caytaxin plays a critical role in the molecular response of Purkinje cells to climbing fiber input. Caytaxin may also contribute to maturational events in cerebellar cortex. PMID:17092653

  14. Caytaxin deficiency disrupts signaling pathways in cerebellar cortex.

    PubMed

    Xiao, J; Gong, S; Ledoux, M S

    2007-01-19

    The genetically dystonic (dt) rat, an autosomal recessive model of generalized dystonia, harbors an insertional mutation in Atcay. As a result, dt rats are deficient in Atcay transcript and the neuronally-restricted protein caytaxin. Previous electrophysiological and biochemical studies have defined olivocerebellar pathways, particularly the climbing fiber projection to Purkinje cells, as sites of significant functional abnormality in dt rats. In normal rats, Atcay transcript is abundantly expressed in the granular and Purkinje cell layers of cerebellar cortex. To better understand the consequences of caytaxin deficiency in cerebellar cortex, differential gene expression was examined in dt rats and their normal littermates. Data from oligonucleotide microarrays and quantitative real-time reverse transcriptase-PCR (QRT-PCR) identified phosphatidylinositol signaling pathways, calcium homeostasis, and extracellular matrix interactions as domains of cellular dysfunction in dt rats. In dt rats, genes encoding the corticotropin-releasing hormone receptor 1 (CRH-R1, Crhr1) and plasma membrane calcium-dependent ATPase 4 (PMCA4, Atp2b4) showed the greatest up-regulation with QRT-PCR. Immunocytochemical experiments demonstrated that CRH-R1, CRH, and PMCA4 were up-regulated in cerebellar cortex of mutant rats. Along with previous electrophysiological and pharmacological studies, our data indicate that caytaxin plays a critical role in the molecular response of Purkinje cells to climbing fiber input. Caytaxin may also contribute to maturational events in cerebellar cortex.

  15. Morphological features of encephalopathy after chronic administration of the antiepileptic drug valproate to rats. A transmission electron microscopic study of capillaries in the cerebellar cortex.

    PubMed

    Sobaniec-Lotowska, M E; Sobaniec, W

    1996-01-01

    Long-term intragastric application of the antiepileptic drug sodium valproate (Vupral "Polfa") at the effective dose of 200 mg/kg b. w. once daily to rats for 1, 3, 6, 9 and 12 months revealed neurological disorders indicating cerebellum damage ("valproate encephalopathy"). The first ultrastructural changes in structural elements of the blood-brain-barrier (BBB) in the cerebellar cortex were detectable after 3 months of the experiment. They became more severe in the later months of the experiment, and were most severe after 12 months, located mainly in the molecular layer of the cerebellar cortex. Lesions of the capillary included necrosis of endothelial cells. Organelles of these cells, in particular the mitochondria (increased number and size, distinct degeneration of their matrix and cristae) and Golgi apparatus were altered. Reduced size of capillary lumen and occlusion were caused by swollen endothelial cells which had luminal protrusions and swollen microvilli. Pressure on the vessel wall was produced by enlarged perivascular astrocytic processes. Fragments of necrotic endothelial cells were in the vascular lumens and in these there was loosening and breaking of tight cellular junctions. Damage to the vascular basement lamina was also observed. Damage to the capillary was accompanied by marked damage to neuroglial cells, mainly to perivascular processes of astrocytes. The proliferation of astrocytes (Bergmann's in particular) and occasionally of oligodendrocytes was found. Alterations in the structural elements of the BBB coexisted with marked lesions of neurons of the cerebellum (Purkinje cells are earliest). In electron micrographs both luminal and antiluminal sides of the BBB of the cerebellar cortex had similar lesions. The possible influence of the hepatic damage, mainly hyperammonemia, upon the development of valproate encephalopathy is discussed.

  16. An integrator circuit in cerebellar cortex.

    PubMed

    Maex, Reinoud; Steuber, Volker

    2013-09-01

    The brain builds dynamic models of the body and the outside world to predict the consequences of actions and stimuli. A well-known example is the oculomotor integrator, which anticipates the position-dependent elasticity forces acting on the eye ball by mathematically integrating over time oculomotor velocity commands. Many models of neural integration have been proposed, based on feedback excitation, lateral inhibition or intrinsic neuronal nonlinearities. We report here that a computational model of the cerebellar cortex, a structure thought to implement dynamic models, reveals a hitherto unrecognized integrator circuit. In this model, comprising Purkinje cells, molecular layer interneurons and parallel fibres, Purkinje cells were able to generate responses lasting more than 10 s, to which both neuronal and network mechanisms contributed. Activation of the somatic fast sodium current by subthreshold voltage fluctuations was able to maintain pulse-evoked graded persistent activity, whereas lateral inhibition among Purkinje cells via recurrent axon collaterals further prolonged the responses to step and sine wave stimulation. The responses of Purkinje cells decayed with a time-constant whose value depended on their baseline spike rate, with integration vanishing at low (< 1 per s) and high rates (> 30 per s). The model predicts that the apparently fast circuit of the cerebellar cortex may control the timing of slow processes without having to rely on sensory feedback. Thus, the cerebellar cortex may contain an adaptive temporal integrator, with the sensitivity of integration to the baseline spike rate offering a potential mechanism of plasticity of the response time-constant. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Altered expression and localization of synaptophysin in developing cerebellar cortex of neonatal rats due to maternal diabetes mellitus.

    PubMed

    Hami, Javad; Vafaei-Nezhad, Saeed; Ivar, Ghasem; Sadeghi, Akram; Ghaemi, Kazem; Mostafavizadeh, Mostafa; Hosseini, Mehran

    2016-12-01

    There is sufficient evidence that diabetes during pregnancy is associated with a higher risk of neurodevelopmental anomalies including learning deficits, behavioral problems and motor dysfunctions in the offspring. Synaptophysin (SYP) is an integral membrane protein of synaptic vesicles and is considered as a marker for synaptogenesis and synaptic density. This study aimed to examine the effects of maternal diabetes in pregnancy on the expression and localization of SYP in the developing rat cerebellum. Wistar female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was euthanized at postnatal day (P) 0, 7, and 14. The results revealed a significant down-regulation in the mRNA expression of SYP in the offspring born to diabetic animals at both P7 and P14 (P < 0.05 each). One week after birth, there was a significant reduction in the localization of SYP expression in the external granular (EGL) and in the molecular (ML) layers of neonates born to diabetic animals (P < 0.05 each). We also found a marked decrease in the expression of SYP in all of the cerebellar cortical layers of STZ-D group pups at P14 (P < 0.05 each). Moreover, our results revealed no significant changes in either expression or localization of SYP in insulin-treated group pups when compared with the controls (P ≥ 0.05 each). The present study demonstrated that maternal diabetes has adverse effects on the synaptogenesis in the offspring's cerebellum. Furthermore, the rigid maternal blood glucose control in the most cases normalized these negative impacts.

  18. [Ultrastructure of the cortex of the cerebellar nodulus in rats after a flight on the biosatellite Kosmos-1514].

    PubMed

    Krasnov, I B; D'iachkova, L N

    1986-01-01

    The ultrastructure of moss fibers and granule cells of the cortex of the cerebellum nodulus of rats flown for 5 days onboard the biosatellite Cosmos-1514 and exposed to 1 g for 6-8 hours upon return to Earth is indicative of an excess excitation of terminals of moss fibers and excitation of granule cells. The excitation of moss fiber terminals reflect the excitatory state of hair cells of the otolith apparatus and neurons of the vestibular ganglion produced by the effect of 1 g after exposure to microgravity. This state can be viewed as evidence of a greater sensitivity of the hair cell of the otolith organ--neuron of the vestibular ganglion system during exposure to microgravity. It is hypothesized that the sensitivity of this system of other mammals may also increase in microgravity.

  19. Cerebellar Processing of Sensory Inputs Primes Motor Cortex Plasticity

    PubMed Central

    Velayudhan, B.; Hubsch, C.; Pradeep, S.; Roze, E.; Vidailhet, M.; Meunier, S.; Kishore, A.

    2013-01-01

    Plasticity of the human primary motor cortex (M1) has a critical role in motor control and learning. The cerebellum facilitates these functions using sensory feedback. We investigated whether cerebellar processing of sensory afferent information influences the plasticity of the primary motor cortex (M1). Theta-burst stimulation protocols (TBS), both excitatory and inhibitory, were used to modulate the excitability of the posterior cerebellar cortex and to condition an ongoing M1 plasticity. M1 plasticity was subsequently induced in 2 different ways: by paired associative stimulation (PAS) involving sensory processing and TBS that exclusively involves intracortical circuits of M1. Cerebellar excitation attenuated the PAS-induced M1 plasticity, whereas cerebellar inhibition enhanced and prolonged it. Furthermore, cerebellar inhibition abolished the topography-specific response of PAS-induced M1 plasticity, with the effects spreading to adjacent motor maps. Conversely, cerebellar excitation had no effect on the TBS-induced M1 plasticity. This demonstrates the key role of the cerebellum in priming M1 plasticity, and we propose that it is likely to occur at the thalamic or olivo-dentate nuclear level by influencing the sensory processing. We suggest that such a cerebellar priming of M1 plasticity could shape the impending motor command by favoring or inhibiting the recruitment of several muscle representations. PMID:22351647

  20. Analysis of protein pool of neuronal populations of cerebellar cortex in rodents of different species.

    PubMed

    Orlyanskaya, T Y; Lyutikova, T M

    2000-12-01

    The protein pool of neuronal population of the cerebellar cortex was studied by interference cytometry in rodents occupying different ecological niches and differing by life style, nutrition habits, and motor activity. In all cell populations protein concentrations in the cytoplasm were higher than in the nucleus in all studied rodents and did not depend on the functional characteristics of neurons. The extreme values of protein content were determined for populations of granular and ganglion cells. High protein concentrations per volume unit of cell structure were detected in functionally different cerebellar neurons of gray rats, characterized by high motor activity and a certain degree of synanthropy, while low values were detected in mole rats, slow-moving underground rodents. Therefore, the specific protein pool of neuronal populations of the cerebellar cortex of rodents can be regarded as adaptation to habitation conditions.

  1. Cerebellar atrophy without cerebellar cortex hyperintensity in infantile neuroaxonal dystrophy (INAD) due to PLA2G6 mutation.

    PubMed

    Biancheri, Roberta; Rossi, Andrea; Alpigiani, Giannina; Filocamo, Mirella; Gandolfo, Carlo; Lorini, Renata; Minetti, Carlo

    2007-05-01

    Infantile neuroaxonal dystrophy (INAD) is a rare neurodegenerative disorder characterized by infantile onset and rapid progression of psychomotor regression and hypotonia evolving into spasticity. The neuroradiologic hallmark of the disease is represented by cerebellar atrophy and signal hyperintensity in the cerebellar cortex on MR T2-weighted images. We report a 2-year-old boy with psychomotor regression and hypotonia carrying a homozygous 5' splice site mutation in PLA2G6 gene, whose brain MRI revealed cerebellar atrophy with normal cerebellar cortex signal intensity. The absence of the signal hyperintensity of the cerebellar cortex does not rule out the diagnosis of INAD.

  2. Neocortical networks entrain neuronal circuits in cerebellar cortex

    PubMed Central

    Roš, Hana; Sachdev, Robert N. S.; Yu, Yuguo; Šestan, Nenad; McCormick, David A.

    2011-01-01

    Activity in neocortex is often characterized by synchronized oscillations of neurons and networks, resulting in the generation of a local field potential and electroencephalogram. Do the neuronal networks of the cerebellum also generate synchronized oscillations and are they under the influence of those in the neocortex? Here we show that in the absence of any overt external stimulus, the cerebellar cortex generates a slow oscillation that is correlated with that of the neocortex. Disruption of the neocortical slow oscillation abolishes the cerebellar slow oscillation, whereas blocking cerebellar activity has no overt effect on the neocortex. We provide evidence that the cerebellar slow oscillation results in part from the activation of granule, Golgi, and Purkinje neurons. In particular, we show that granule and Golgi cells discharge trains of single spikes, and Purkinje cells generate complex spikes, during the Up state of the slow oscillation. Purkinje cell simple spiking is weakly related to the cerebellar and neocortical slow oscillation in a minority of cells. Our results indicate that the cerebellum generates rhythmic network activity that can be recorded as an LFP in the anesthetized animal, which is driven by synchronized oscillations of the neocortex. Furthermore, we show that correlations between neocortical and cerebellar LFPs persist in the awake animal, indicating that neocortical circuits modulate cerebellar neurons in a similar fashion in natural behavioral states. Thus, the projection neurons of the neocortex collectively exert a driving and modulatory influence on cerebellar network activity. PMID:19692605

  3. Diurnal influences on electrophysiological oscillations and coupling in the dorsal striatum and cerebellar cortex of the anesthetized rat

    PubMed Central

    Frederick, Ariana; Bourget-Murray, Jonathan; Chapman, C. Andrew; Amir, Shimon; Courtemanche, Richard

    2014-01-01

    Circadian rhythms modulate behavioral processes over a 24 h period through clock gene expression. What is largely unknown is how these molecular influences shape neural activity in different brain areas. The clock gene Per2 is rhythmically expressed in the striatum and the cerebellum and its expression is linked with daily fluctuations in extracellular dopamine levels and D2 receptor activity. Electrophysiologically, dopamine depletion enhances striatal local field potential (LFP) oscillations. We investigated if LFP oscillations and synchrony were influenced by time of day, potentially via dopamine mechanisms. To assess the presence of a diurnal effect, oscillatory power and coherence were examined in the striatum and cerebellum of rats under urethane anesthesia at four different times of day zeitgeber time (ZT1, 7, 13 and 19—indicating number of hours after lights turned on in a 12:12 h light-dark cycle). We also investigated the diurnal response to systemic raclopride, a D2 receptor antagonist. Time of day affected the proportion of LFP oscillations within the 0–3 Hz band and the 3–8 Hz band. In both the striatum and the cerebellum, slow oscillations were strongest at ZT1 and weakest at ZT13. A 3–8 Hz oscillation was present when the slow oscillation was lowest, with peak 3–8 Hz activity occurring at ZT13. Raclopride enhanced the slow oscillations, and had the greatest effect at ZT13. Within the striatum and with the cerebellum, 0–3 Hz coherence was greatest at ZT1, when the slow oscillations were strongest. Coherence was also affected the most by raclopride at ZT13. Our results suggest that neural oscillations in the cerebellum and striatum, and the synchrony between these areas, are modulated by time of day, and that these changes are influenced by dopamine manipulation. This may provide insight into how circadian gene transcription patterns influence network electrophysiology. Future experiments will address how these network alterations are

  4. Early degeneration of the cerebellar cortex, particularly the granular cells.

    PubMed

    Bugiani, O; Berio, A; Di Stefano, A; Mangiante, G; Mancardi, G L; Leonardi, A

    1978-12-07

    An 8 month old infant, who died of severe gastroenteritis, presented a degeneration of the cerebellar cortex involving cells arising from the outer granular layer as well as Purkinje and Golgi II cells. Residual Purkinje cells showed vacuolar change of the cell body and dendritic abnormalities. Related lesions were atrophy of the inferior olives and degeneration of the mossy fibers.

  5. Long lasting cerebellar alterations after perinatal asphyxia in rats.

    PubMed

    Campanille, Verónica; Saraceno, G Ezequiel; Rivière, Stéphanie; Logica, Tamara; Kölliker, Rodolfo; Capani, Francisco; Castilla, Rocío

    2015-07-01

    The developing brain may be particularly vulnerable to injury before, at and after birth. Among possible insults, hypoxia suffered as a consequence of perinatal asphyxia (PA) exhibits the highest incidence levels and the cerebellar circuitry appears to be particularly susceptible, as the cellular makeup and the quantity of inputs change quickly during days and weeks following birth. In this work, we have used a murine model to induce severe global PA in rats at the time of birth. Short-term cerebellar alterations within this PA model have been previously reported but whether such alterations remain in adulthood has not been conclusively determined yet. For this reason, and given the crucial cerebellar role in determining connectivity patterns in the brain, the aim of our work is to unveil long-term cerebellum histomorphology following a PA insult. Morphological and cytological neuronal changes and glial reaction in the cerebellar cortex were analyzed at postnatal 120 (P120) following injury performed at birth. As compared to control, PA animals exhibited: (1) an increase in molecular and granular thickness, both presenting lower cellular density; (2) a disarrayed Purkinje cell layer presenting a higher number of anomalous calbindin-stained cells. (3) focal swelling and marked fragmentation of microtubule-associated protein 2 (MAP-2) in Purkinje cell dendrites and, (4) an increase in glial fibrillary acidic protein (GFAP) expression in Bergmann cells and the granular layer. In conclusion, we demonstrate that PA produces long-term damage in cellular histomorphology in rat cerebellar cortex which could be involved in the pathogenesis of cognitive deficits observed in both animals and humans.

  6. Toluene decreases Purkinje cell output by enhancing inhibitory synaptic transmission in the cerebellar cortex.

    PubMed

    Gmaz, Jimmie M; McKay, Bruce E

    2014-02-07

    Toluene belongs to a class of psychoactive drugs known as inhalants. Found in common household products such as adhesives, paint products, and aerosols, toluene is inhaled for its intoxicating and euphoric properties. Additionally, exposure to toluene disrupts motor behaviors in a manner consistent with impairments to cerebellar function. Previous work has suggested a role of GABA in mediating toluene's neurobehavioral effects, but how this manifests in the cerebellar cortex is not yet understood. In the present study, we examined the effects of toluene on cerebellar Purkinje cell action potential output and inhibitory synaptic transmission onto Purkinje cells using patch clamp electrophysiology in acute rat cerebellar slices. Toluene (1mM) reduced the frequency of Purkinje cell action potential output without affecting input resistance. Furthermore, toluene dose-dependently enhanced inhibitory synaptic transmission onto Purkinje cells, increasing the amplitude and frequency of inhibitory postsynaptic currents; no change in the frequency of action potentials from molecular layer interneurons was noted. The observed decreases in Purkinje cell action potential output could contribute to toluene-evoked impairments in cerebellar and motor functions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Neurodevelopmental malformations of the cerebellar vermis in genetically engineered rats

    EPA Science Inventory

    The cerebellar vermis is particularly vulnerable to neurodevelopmental malformations in humans and rodents. Sprague-Dawley, and Long-Evans rats exhibit spontaneous cerebellar malformations consisting of heterotopic neurons and glia in the molecular layer of the vermis. Malformati...

  8. Neurodevelopmental malformations of the cerebellar vermis in genetically engineered rats

    EPA Science Inventory

    The cerebellar vermis is particularly vulnerable to neurodevelopmental malformations in humans and rodents. Sprague-Dawley, and Long-Evans rats exhibit spontaneous cerebellar malformations consisting of heterotopic neurons and glia in the molecular layer of the vermis. Malformati...

  9. Back to front: cerebellar connections and interactions with the prefrontal cortex

    PubMed Central

    Watson, Thomas C.; Becker, Nadine; Apps, Richard; Jones, Matthew W.

    2014-01-01

    Although recent neuroanatomical evidence has demonstrated closed-loop connectivity between prefrontal cortex and the cerebellum, the physiology of cerebello-cerebral circuits and the extent to which cerebellar output modulates neuronal activity in neocortex during behavior remain relatively unexplored. We show that electrical stimulation of the contralateral cerebellar fastigial nucleus (FN) in awake, behaving rats evokes distinct local field potential (LFP) responses (onset latency ~13 ms) in the prelimbic (PrL) subdivision of the medial prefrontal cortex. Trains of FN stimulation evoke heterogeneous patterns of response in putative pyramidal cells in frontal and prefrontal regions in both urethane-anesthetized and awake, behaving rats. However, the majority of cells showed decreased firing rates during stimulation and subsequent rebound increases; more than 90% of cells showed significant changes in response. Simultaneous recording of on-going LFP activity from FN and PrL while rats were at rest or actively exploring an open field arena revealed significant network coherence restricted to the theta frequency range (5–10 Hz). Granger causality analysis indicated that this coherence was significantly directed from cerebellum to PrL during active locomotion. Our results demonstrate the presence of a cerebello-prefrontal pathway in rat and reveal behaviorally dependent coordinated network activity between the two structures, which could facilitate transfer of sensorimotor information into ongoing neocortical processing during goal directed behaviors. PMID:24550789

  10. Back to front: cerebellar connections and interactions with the prefrontal cortex.

    PubMed

    Watson, Thomas C; Becker, Nadine; Apps, Richard; Jones, Matthew W

    2014-01-01

    Although recent neuroanatomical evidence has demonstrated closed-loop connectivity between prefrontal cortex and the cerebellum, the physiology of cerebello-cerebral circuits and the extent to which cerebellar output modulates neuronal activity in neocortex during behavior remain relatively unexplored. We show that electrical stimulation of the contralateral cerebellar fastigial nucleus (FN) in awake, behaving rats evokes distinct local field potential (LFP) responses (onset latency ~13 ms) in the prelimbic (PrL) subdivision of the medial prefrontal cortex. Trains of FN stimulation evoke heterogeneous patterns of response in putative pyramidal cells in frontal and prefrontal regions in both urethane-anesthetized and awake, behaving rats. However, the majority of cells showed decreased firing rates during stimulation and subsequent rebound increases; more than 90% of cells showed significant changes in response. Simultaneous recording of on-going LFP activity from FN and PrL while rats were at rest or actively exploring an open field arena revealed significant network coherence restricted to the theta frequency range (5-10 Hz). Granger causality analysis indicated that this coherence was significantly directed from cerebellum to PrL during active locomotion. Our results demonstrate the presence of a cerebello-prefrontal pathway in rat and reveal behaviorally dependent coordinated network activity between the two structures, which could facilitate transfer of sensorimotor information into ongoing neocortical processing during goal directed behaviors.

  11. Microarchitectural changes during development of the cerebellar cortex.

    PubMed

    Mecha, Miriam; Peña-Melián, Angel L; Blanco, Maria J

    2010-01-01

    The cerebellum is a highly conserved structure in the Central Nervous System (CNS) of vertebrates, and is involved in the coordination of voluntary motor behaviour. Supporting this function, the cerebellar cortex presents a layered structure which requires a precise spatial and temporal coordination of proliferation, migration and differentiation events. One of the characteristics of the developing cortex is the formation of the external granule cell layer (EGL) in the outermost part. The EGL is a highly proliferative transient layer which disappears when cells migrate inwards to form the inner granule cell layer. The balance between proliferation and migration leads to changes in EGL thickness, and might be related to "indentations" observed in the surface of the developing chick cerebellum. We have extended the observation of this feature to quail and mouse, supporting the idea that this phenomenon forms part of the mechanisms of cerebellar morphogenesis. Different factors involved in both mitotic activity and migration were analyzed in this study. Our results indicate that proliferation, more than formation of raphes for cell migration, is involved in the formation of indentations in the EGL. In addition, we show that vessels penetrating from the pial surface divide the EGL into regular regions at the time of the appearance of bulges and furrows. We conclude that indentations are the result of a coincidence in time of both the increase in thickness of the EGL and the establishment of the embryonic vascular pattern, which confers a characteristic transitory morphology to the surface of folia.

  12. Cerebellar cortex and cerebellar nuclei are concomitantly activated during eyeblink conditioning: a 7T fMRI study in humans.

    PubMed

    Thürling, Markus; Kahl, Fabian; Maderwald, Stefan; Stefanescu, Roxana M; Schlamann, Marc; Boele, Henk-Jan; De Zeeuw, Chris I; Diedrichsen, Jörn; Ladd, Mark E; Koekkoek, Sebastiaan K E; Timmann, Dagmar

    2015-01-21

    There are controversies whether learning of conditioned eyeblink responses primarily takes place within the cerebellar cortex, the interposed nuclei, or both. It has also been suggested that the cerebellar cortex may be important during early stages of learning, and that there is a shift to the cerebellar nuclei during later stages. As yet, human studies have provided little to resolve this question. In the present study, we established a setup that allows ultra-high-field 7T functional magnetic resonance imaging (fMRI) of the cerebellar cortex and interposed cerebellar nuclei simultaneously during delay eyeblink conditioning in humans. Event-related fMRI signals increased concomitantly in the cerebellar cortex and nuclei during early acquisition of conditioned eyeblink responses in 20 healthy human subjects. ANOVAs with repeated-measures showed significant effects of time across five blocks of 20 conditioning trials in the cortex and nuclei (p < 0.05, permutation corrected). Activations were most pronounced in, but not limited to, lobules VI and interposed nuclei. Increased activations were most prominent at the first time the maximum number of conditioned responses was achieved. Our data are consistent with a simultaneous and synergistic two-site model of learning during acquisition of classically conditioned eyeblinks. Because increased MRI signal reflects synaptic activity, concomitantly increased signals in the cerebellar nuclei and cortex are consistent with findings of learning related potentiation at the mossy fiber to nuclear cell synapse and mossy fiber to granule cell synapse. Activity related to the expression of conditioned responses, however, cannot be excluded.

  13. Localization of the Cerebellar Cortical Zone Mediating Acquisition of Eyeblink Conditioning in Rats

    PubMed Central

    Steinmetz, Adam B.; Freeman, John H.

    2014-01-01

    Delay eyeblink conditioning is established by paired presentations of a conditioned stimulus (CS) such as a tone or light and an unconditioned stimulus (US) that elicits eyelid closure before training. The CS and US inputs converge on Purkinje cells in the cerebellar cortex. The cerebellar cortex plays a substantial role in acquisition of delay eyeblink conditioning in rabbits and rodents, but the specific area of the cortex that is necessary for acquisition in rodents has not been identified. A recent study identified an eyeblink microzone in the mouse cerebellar cortex at the base of the primary fissure (Heiney, Kim, Augustine, & Medina, 2014). There is no evidence that the cortex in this eyeblink microzone plays a role in rodent eyeblink conditioning but it is a good candidate region. Experiment 1 examined the effects of unilateral (ipsilateral to the US) lesions of lobule HVI, the lateral anterior lobe, or the base of the primary fissure on eyeblink conditioning in rats. Lesions of either the anterior lobe or lobule HVI impaired acquisition, but lesions of the base of the primary fissure produced the largest deficit. Experiment 2 used reversible inactivation with muscimol to demonstrate that inactivation of the putative eyeblink microzone severely impaired acquisition and had only a modest effect on retention of eyeblink conditioning. The findings indicate that the base of the primary fissure is the critical zone of the cerebellar cortex for acquisition of eyeblink conditioning in rats. PMID:24931828

  14. Laterality Differences in Cerebellar-Motor Cortex Connectivity.

    PubMed

    Schlerf, John E; Galea, Joseph M; Spampinato, Danny; Celnik, Pablo A

    2015-07-01

    Lateralization of function is an important organizational feature of the motor system. Each effector is predominantly controlled by the contralateral cerebral cortex and the ipsilateral cerebellum. Transcranial magnetic stimulation studies have revealed hemispheric differences in the stimulation strength required to evoke a muscle response from the primary motor cortex (M1), with the dominant hemisphere typically requiring less stimulation than the nondominant. The current study assessed whether the strength of the connection between the cerebellum and M1 (CB-M1), known to change in association with motor learning, have hemispheric differences and whether these differences have any behavioral correlate. We observed, in right-handed individuals, that the connection between the right cerebellum and left M1 is typically stronger than the contralateral network. Behaviorally, we detected no lateralized learning processes, though we did find a significant effect on the amplitude of reaching movements across hands. Furthermore, we observed that the strength of the CB-M1 connection is correlated with the amplitude variability of reaching movements, a measure of movement precision, where stronger connectivity was associated with better precision. These findings indicate that lateralization in the motor system is present beyond the primary motor cortex, and points to an association between cerebellar M1 connectivity and movement execution. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Re-defining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits

    PubMed Central

    Cerminara, Nadia L; Lang, Eric J; Sillitoe, Roy V; Apps, Richard

    2015-01-01

    The adult mammalian cerebellar cortex is generally assumed to have a uniform cytoarchitecture. Differences in cerebellar function are thought to arise, in the main, through distinct patterns of input and output connectivity, rather than as a result of variations in cortical microcircuitry. However, evidence from anatomical, physiological and genetic studies is increasingly challenging this orthodoxy and there are now various lines of evidence that the cerebellar cortex is non uniform. Here we develop the hypothesis that regional differences in cerebellar cortical microcircuit properties lead to important differences in information processing. PMID:25601779

  16. Antenatal betamethasone produces protracted changes in anxiety-like behaviors and in the expression of microtubule-associated protein 2, brain-derived neurotrophic factor and the tyrosine kinase B receptor in the rat cerebellar cortex.

    PubMed

    Pascual, Rodrigo; Valencia, Martina; Bustamante, Carlos

    2015-06-01

    Using classic Golgi staining methods, we previously showed that the administration of synthetic glucocorticoid betamethasone in equivalent doses to those given in cases of human premature birth generates long-term alterations in Purkinje cell dendritic development in the cerebellar cortex. In the present study, we evaluated whether betamethasone alters the immunohistochemical expression of proteins that participate in cerebellar Purkinje cell dendritic development and maintenance, including microtubule-associated protein 2 (MAP2), brain-derived neurotrophic factor (BDNF) and the tyrosine kinase B receptor (TrkB), which are located predominantly in the cerebellar molecular layer where Purkinje cell dendritogenesis occurs. Consistent with our previous Golgi stain studies, we observed that animals prenatally exposed to a single course of betamethasone showed long-term alterations in the expression of MAP2, BDNF and TrkB. Additionally, these protracted molecular changes were accompanied by anxiety-like behaviors in the elevated plus maze and marble burying tests.

  17. [MORPHOFUNCTIONAL ADJUSTMENT VASCULAR AND CELLULAR COMPONENTS OF THE CEREBELLAR CORTEX IN EXPOSURE TO BODY SULFATES OF COPPER, ZINC AND IRON].

    PubMed

    Grintsova, N; Vasko, L; Kiptenko, L; Gortinsky, A; Murenets, N

    2015-09-01

    In order to analyze the morphological and morphometric reconstructions of the vascular bed, and Purkinje cells of the cerebellar cortex of rats in long-term action (for 90 days) on the body of sulphates of copper, zinc and iron, an experiment was conducted on 48 adult white male rats weighing 200-250 g in age 5-7 months. We used anatomical, morphometric, statistical and common methods of microanatomical research. It was found that the combined effect on the body of sulphates of copper and zinc, and iron in the cerebellum has enough expressive toxicity, which affects the condition of the vascular bed, and Purkinje cells. The degree of morphological transformations is in direct proportion to the duration of the experiment. In the pathogenesis of violations leading role played by hypoxia, develop signs of swelling of the cerebellar cortex with signs hemorrhagic infiltration, the severity of which is maximum on the 60th day of the experiment.

  18. Qualitative and quantitative aspects of the microanatomy of the African elephant cerebellar cortex.

    PubMed

    Maseko, Busisiwe C; Jacobs, Bob; Spocter, Muhammad A; Sherwood, Chet C; Hof, Patrick R; Manger, Paul R

    2013-01-01

    The current study provides a number of novel observations on the organization and structure of the cerebellar cortex of the African elephant by using a combination of basic neuroanatomical and immunohistochemical stains with Golgi and stereologic analysis. While the majority of our observations indicate that the cerebellar cortex of the African elephant is comparable to other mammalian species, several features were unique to the elephant. The three-layered organization of the cerebellar cortex, the neuronal types and some aspects of the expression of calcium-binding proteins were common to a broad range of mammalian species. The Lugaro neurons observed in the elephant were greatly enlarged in comparison to those of other large-brained mammals, suggesting a possible alteration in the processing of neural information in the elephant cerebellar cortex. Analysis of Golgi impregnations indicated that the dendritic complexity of the different interneuron types was higher in elephants than other mammals. Expression of parvalbumin in the parallel fibers and calbindin expressed in the stellate and basket cells also suggested changes in the elephant cerebellar neuronal circuitry. The stereologic analysis confirmed and extended previous observations by demonstrating that neuronal density is low in the elephant cerebellar cortex, providing for a larger volume fraction of the neuropil. With previous results indicating that the elephants have the largest relative cerebellar size amongst mammals, and one of the absolutely largest mammalian cerebella, the current observations suggest that the elephants have a greater volume of a potentially more complexly organized cerebellar cortex compared to other mammals. This quantitatively larger and more complex cerebellar cortex likely represents part of the neural machinery required to control the complex motor patterns involved in movement of the trunk and the production of infrasonic vocalizations. Copyright © 2012 S. Karger AG, Basel.

  19. Developmental Injury to the Cerebellar Cortex Following Hydroxyurea Treatment in Early Postnatal Life: An Immunohistochemical and Electron Microscopic Study.

    PubMed

    Martí, Joaquín; Molina, Vanesa; Santa-Cruz, M C; Hervás, José P

    2017-02-01

    Postnatal development of the cerebellar cortex was studied in rats administered with a single dose (2 mg/g) of the cytotoxic agent hydroxyurea (HU) on postnatal day (P) 9 and collected at appropriate times ranging from 6 h to 45 days. Quantification of several parameters such as the density of pyknotic, mitotic, BrdU-positive, and vimentin-stained cells revealed that HU compromises the survival of the external granular layer (EGL) cells. Moreover, vimentin immunocytochemistry revealed overexpression and thicker immunoreactive glial processes in HU-treated rats. On the other hand, we also show that HU leads to the activation of apoptotic cellular events, resulting in a substantial number of dying EGL cells, as revealed by TUNEL staining and at the electron microscope level. Additionally, we quantified several features of the cerebellar cortex of rats exposed to HU in early postnatal life and collected in adulthood. Data analysis indicated that the analyzed parameters were less pronounced in rats administered with this agent. Moreover, we observed several alterations in the cerebellar cortex cytoarchitecture of rats injected with HU. Anomalies included ectopic placement of Purkinje cells and abnormities in the dendritic arbor of these macroneurons. Ectopic granule cells were also found in the molecular layer. These findings provide a clue for investigating the mechanisms of HU-induced toxicity during the development of the central nervous system. Our results also suggest that it is essential to avoid underestimating the adverse effects of this hydroxylated analog of urea when administered during early postnatal life.

  20. Prenatal glucocorticoid administration persistently increased the immunohistochemical expression of type-1 metabotropic glutamate receptor and Purkinje cell dendritic growth in the cerebellar cortex of the rat.

    PubMed

    Pascual, Rodrigo; Santander, Odra; Cuevas, Isabel; Valencia, Martina

    2017-01-01

    Several studies have indicated that abnormal prenatal changes in the circulating glucocorticoids (GCs), induced by either maternal stress or exogenous GC administration, significantly alter the development of Purkinje cells (PCs). Among the suggested mechanisms that could mediate this GC-dependent PC susceptibility are changes in the expression of type-1 metabotropic glutamate receptors (mGluR1). In the current study, we analyzed whether a single course of prenatally administered betamethasone phosphate (BET) in pregnant rats increased the immunohistochemical expression of mGluR1 in PCs and decreased PC dendritic growth. The data obtained showed that in utero BET exposure resulted in a significant immunohistochemical overexpression of mGluR1 and a significant reduction in Purkinje cell dendritic outgrowth during postnatal life.

  1. Ultrastructure of synaptic junctions in the cerebellar cortex in experimental valproate encephalopathy and after terminating chronic application of the antiepileptic.

    PubMed

    Sobaniec-Lotowska, Maria E

    2002-01-01

    The aim of the study was to analyse in TEM the evolution of changes in structural elements of synaptic junctions of the cerebellar cortex in rats in valproate encephalopathy induced by chronic 12-month administration of sodium valproate - VPA (once daily intragastrically, in a dose of 200 mg/kg b.w.) and after withdrawal of this antiepileptic for 1 and 3 months. After 9 and 12 months of the experiment, synaptic endings of both the symmetrical and asymmetrical synapses in the neuropil of the cerebellar cortex, especially in the molecular layer, showed signs of severe damage (mainly swelling) and even disintegration. They were mostly observed in axodendritic endings and axospinal endings on the dendritic spines of Purkinje cells, being manifested in the presence of large vacuolar structures, electron lucent areas and swollen mitochondria within the cytoplasm. A reduced number of axonal synaptic vesicles (with more type F vesicles preserved) could be seen. One and 3 months after the end of chronic application of VPA, the synaptic junctions did not show morphological exponents of the repair processes. The alterations observed in the synapticjunctions of the cerebellar cortex may suggest disorders in neurotransmission processes, such as exhaustion and damage caused by ischaemia due to damage to the blood-brain barrier induced by VPA and/or its toxic metabolites.

  2. Ultrastructure of Purkinje cell perikarya and their dendritic processes in the rat cerebellar cortex in experimental encephalopathy induced by chronic application of valproate

    PubMed Central

    SOBANIEC-LOTOWSKA, MARIA E

    2001-01-01

    Long-term intragastric administration of the antiepileptic drug sodium valproate (Vuprol ‘Polfa’) to rats for 1, 3, 6, 9 and 12 months, once daily at the effective dose of 200 mg/kg body weight showed morphological evidence of encephalopathy, manifested by numerous nonspecific changes within Purkinje cell perikarya and their dendritic processes. The first ultrastructural abnormalities appeared after 3 months. They became more severe in animals with longer survival and were most pronounced after 12 months. The changes were maintained both 1 and 3 months after drug withdrawal. Mitochondria of Purkinje cell perikarya were most severely affected. Damage to mitochondria was accompanied by disintegration and fragmentation of granular endoplasmic reticulum, dilation of channels and cisterns of Golgi apparatus, enlargement of smooth endoplasmic reticulum elements including submembranous cisterns, and accumulation of profuse lipofuscin deposits. Frequently, Purkinje cells appeared as ‘dark’ ischemic neurones, with focally damaged cellular membrane and features of disintegration. Swollen Bergmann's astrocytes were seen among damaged Purkinje cells or at the site of their loss. The general pattern of submicroscopic alterations of Purkinje cell perikarya suggested severe disorders in several intercellular biochemical extents, including inhibition of oxidative phosphorylation and abnormal protein synthesis, both of which could lead to lethal damage. Ultrastructural abnormalities within dendrites were characterized by damage to elements of smooth endoplasmic reticulum, which was considerably enlarged, with formation of large vacuolar structures situated deep in the dendroplasm. Mitochondrial lesions and alterations in cytoskeletal elements – disintegration of microtubules or even their complete loss –were also observed. The general pattern of abnormalities within the organelles and cytoskeletal elements of dendritic processes in Purkinje cells in the VPA chronic

  3. Ultrastructure of Purkinje cell perikarya and their dendritic processes in the rat cerebellar cortex in experimental encephalopathy induced by chronic application of valproate.

    PubMed

    Sobaniec-Lotowska, M E

    2001-12-01

    Long-term intragastric administration of the antiepileptic drug sodium valproate (Vuprol Polfa) to rats for 1, 3, 6, 9 and 12 months, once daily at the effective dose of 200 mg/kg body weight showed morphological evidence of encephalopathy, manifested by numerous nonspecific changes within Purkinje cell perikarya and their dendritic processes. The first ultrastructural abnormalities appeared after 3 months. They became more severe in animals with longer survival and were most pronounced after 12 months. The changes were maintained both 1 and 3 months after drug withdrawal. Mitochondria of Purkinje cell perikarya were most severely affected. Damage to mitochondria was accompanied by disintegration and fragmentation of granular endoplasmic reticulum, dilation of channels and cisterns of Golgi apparatus, enlargement of smooth endoplasmic reticulum elements including submembranous cisterns, and accumulation of profuse lipofuscin deposits. Frequently, Purkinje cells appeared as dark ischemic neurones, with focally damaged cellular membrane and features of disintegration. Swollen Bergmann's astrocytes were seen among damaged Purkinje cells or at the site of their loss. The general pattern of submicroscopic alterations of Purkinje cell perikarya suggested severe disorders in several intercellular biochemical extents, including inhibition of oxidative phosphorylation and abnormal protein synthesis, both of which could lead to lethal damage. Ultrastructural abnormalities within dendrites were characterized by damage to elements of smooth endoplasmic reticulum, which was considerably enlarged, with formation of large vacuolar structures situated deep in the dendroplasm. Mitochondrial lesions and alterations in cytoskeletal elements--disintegration of microtubules or even their complete loss--were also observed. The general pattern of abnormalities within the organelles and cytoskeletal elements of dendritic processes in Purkinje cells in the VPA chronic experimental model

  4. Diversity and complexity of roles of granule cells in the cerebellar cortex. Editorial.

    PubMed

    Manto, Mario; De Zeeuw, Chris I

    2012-03-01

    The cerebellar granule cell, the most numerous neurons in the brain, forms the main excitatory neuron of the cerebellar cortical circuitry. Granule cells are synaptically connected with both mossy fibers and Golgi cells inside specialized structures called glomeruli, and thereby, they are subject to both feed-forward and feed-back inhibition. Their unique architecture with about four dendrites and a single axon ascending in the cerebellar cortex to bifurcate into two parallel fibers making synapses with Purkinje neurons has attracted numerous scientists. Recent advances show that they are much more than just relays of mossy fibers. They perform diverse and complex transformations in the spatiotemporal domain. This special issue highlights novel avenues in our understanding of the roles of this key neuronal population of the cerebellar cortex, ranging from developmental up to physiological and pathological points of view.

  5. Circadian oscillators in the mouse brain: molecular clock components in the neocortex and cerebellar cortex.

    PubMed

    Rath, Martin F; Rovsing, Louise; Møller, Morten

    2014-09-01

    The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice with conditional cell-specific clock gene deletions. This prompted us to analyze the molecular clockwork of the mouse neocortex and cerebellum in detail. Here, by use of in situ hybridization and quantitative RT-PCR, we show that clock genes are expressed in all six layers of the neocortex and the Purkinje and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes are similar in the neocortex and cerebellum, but they are delayed by 5 h as compared to the SCN, suggestively reflecting a master-slave relationship between the SCN and extra-hypothalamic oscillators. Furthermore, ARNTL protein products are detectable in neurons of the mouse neocortex and cerebellum, as revealed by immunohistochemistry. These findings give reason to further pursue the physiological significance of circadian oscillators in the mouse neocortex and cerebellum.

  6. Neurodevelopmental Malformations of the Cerebellar Vermis in Genetically Engineered Rats.

    PubMed

    Ramos, Raddy L; Van Dine, Sarah E; Gilbert, Mary E; Leheste, Joerg R; Torres, German

    2015-12-01

    The cerebellar vermis is particularly vulnerable to neurodevelopmental malformations in humans and rodents. Sprague-Dawley, and Long-Evans rats exhibit spontaneous cerebellar malformations consisting of heterotopic neurons and glia in the molecular layer of the vermis. Malformations are almost exclusively found along the primary fissure and are indicative of deficits of neuronal migration during cerebellar development. In the present report, we test the prediction that genetically engineered rats on Sprague-Dawley or Long-Evans backgrounds will also exhibit the same cerebellar malformations. Consistent with our hypothesis, we found that three different transgenic lines on two different backgrounds had cerebellar malformations. Heterotopia in transgenic rats had identical cytoarchitecture as that observed in wild-type rats including altered morphology of Bergmann glia. In light of the possibility that heterotopia could affect results from behavioral studies, these data suggest that histological analyses be performed in studies of cerebellar function or development when using genetically engineered rats on these backgrounds in order to have more careful interpretation of experimental findings.

  7. Ontogeny of rapid estrogen-mediated extracellular signal-regulated kinase signaling in the rat cerebellar cortex: potent nongenomic agonist and endocrine disrupting activity of the xenoestrogen bisphenol A.

    PubMed

    Zsarnovszky, Attila; Le, Hoa H; Wang, Hong-Sheng; Belcher, Scott M

    2005-12-01

    In addition to regulating estrogen receptor-dependent gene expression, 17beta-estradiol (E(2)) can directly influence intracellular signaling. In primary cultured cerebellar neurons, E(2) was previously shown to regulate growth and oncotic cell death via rapid stimulation of ERK1/2 signaling. Here we show that ERK1/2 signaling in the cerebellum of neonatal and mature rats was rapidly responsive to E(2) and during development to the environmental estrogen bisphenol A (BPA). In vivo dose-response analysis for each estrogenic compound was performed by brief (6-min) intracerebellar injection, followed by rapid fixation and phosphorylation-state-specific immunohistochemistry to quantitatively characterize changes in activated ERK1/2 (pERK) immunopositive cell numbers. Beginning on postnatal d 8, E(2) significantly influenced the number of pERK-positive cells in a cell-specific manner that was dependent on concentration and age but not sex. In cerebellar granule cells on postnatal d 10, E(2) or BPA increased pERK-positive cell numbers at low doses (10(-12) to 10(-10) M) and at higher (10(-7) to 10(-6) M) concentrations. Intermediate concentrations of either estrogenic compound did not modify basal ERK signaling. Rapid E(2)-induced increases in pERK immunoreactivity were specific to the ERK1/2 pathway as demonstrated by coinjection of the mitogen-activated, ERK-activating kinase (MEK)1/2 inhibitor U0126. Coadministration of BPA (10(-12) to 10(-10) M) with 10(-10) M E(2) dose-dependently inhibited rapid E(2)-induced ERK1/2 activation in developing cerebellar neurons. The ability of BPA to act as a highly potent E(2) mimetic and to also disrupt the rapid actions of E(2) at very low concentrations during cerebellar development highlights the potential low-dose impact of xenoestrogens on the developing brain.

  8. Comparative neuronal morphology of the cerebellar cortex in afrotherians, carnivores, cetartiodactyls, and primates.

    PubMed

    Jacobs, Bob; Johnson, Nicholas L; Wahl, Devin; Schall, Matthew; Maseko, Busisiwe C; Lewandowski, Albert; Raghanti, Mary A; Wicinski, Bridget; Butti, Camilla; Hopkins, William D; Bertelsen, Mads F; Walsh, Timothy; Roberts, John R; Reep, Roger L; Hof, Patrick R; Sherwood, Chet C; Manger, Paul R

    2014-01-01

    Although the basic morphological characteristics of neurons in the cerebellar cortex have been documented in several species, virtually nothing is known about the quantitative morphological characteristics of these neurons across different taxa. To that end, the present study investigated cerebellar neuronal morphology among eight different, large-brained mammalian species comprising a broad phylogenetic range: afrotherians (African elephant, Florida manatee), carnivores (Siberian tiger, clouded leopard), cetartiodactyls (humpback whale, giraffe) and primates (human, common chimpanzee). Specifically, several neuron types (e.g., stellate, basket, Lugaro, Golgi, and granule neurons; N = 317) of the cerebellar cortex were stained with a modified rapid Golgi technique and quantified on a computer-assisted microscopy system. There was a 64-fold variation in brain mass across species in our sample (from clouded leopard to the elephant) and a 103-fold variation in cerebellar volume. Most dendritic measures tended to increase with cerebellar volume. The cerebellar cortex in these species exhibited the trilaminate pattern common to all mammals. Morphologically, neuron types in the cerebellar cortex were generally consistent with those described in primates (Fox et al., 1967) and rodents (Palay and Chan-Palay, 1974), although there was substantial quantitative variation across species. In particular, Lugaro neurons in the elephant appeared to be disproportionately larger than those in other species. To explore potential quantitative differences in dendritic measures across species, MARSplines analyses were used to evaluate whether species could be differentiated from each other based on dendritic characteristics alone. Results of these analyses indicated that there were significant differences among all species in dendritic measures.

  9. Comparative neuronal morphology of the cerebellar cortex in afrotherians, carnivores, cetartiodactyls, and primates

    PubMed Central

    Jacobs, Bob; Johnson, Nicholas L.; Wahl, Devin; Schall, Matthew; Maseko, Busisiwe C.; Lewandowski, Albert; Raghanti, Mary A.; Wicinski, Bridget; Butti, Camilla; Hopkins, William D.; Bertelsen, Mads F.; Walsh, Timothy; Roberts, John R.; Reep, Roger L.; Hof, Patrick R.; Sherwood, Chet C.; Manger, Paul R.

    2014-01-01

    Although the basic morphological characteristics of neurons in the cerebellar cortex have been documented in several species, virtually nothing is known about the quantitative morphological characteristics of these neurons across different taxa. To that end, the present study investigated cerebellar neuronal morphology among eight different, large-brained mammalian species comprising a broad phylogenetic range: afrotherians (African elephant, Florida manatee), carnivores (Siberian tiger, clouded leopard), cetartiodactyls (humpback whale, giraffe) and primates (human, common chimpanzee). Specifically, several neuron types (e.g., stellate, basket, Lugaro, Golgi, and granule neurons; N = 317) of the cerebellar cortex were stained with a modified rapid Golgi technique and quantified on a computer-assisted microscopy system. There was a 64-fold variation in brain mass across species in our sample (from clouded leopard to the elephant) and a 103-fold variation in cerebellar volume. Most dendritic measures tended to increase with cerebellar volume. The cerebellar cortex in these species exhibited the trilaminate pattern common to all mammals. Morphologically, neuron types in the cerebellar cortex were generally consistent with those described in primates (Fox et al., 1967) and rodents (Palay and Chan-Palay, 1974), although there was substantial quantitative variation across species. In particular, Lugaro neurons in the elephant appeared to be disproportionately larger than those in other species. To explore potential quantitative differences in dendritic measures across species, MARSplines analyses were used to evaluate whether species could be differentiated from each other based on dendritic characteristics alone. Results of these analyses indicated that there were significant differences among all species in dendritic measures. PMID:24795574

  10. Ultrastructural pathology of human peritumoural oedematous cerebellar cortex.

    PubMed

    Castejón, O J

    2016-01-01

    Cerebellar cortical biopsies of the peritumoural region of seven patients with cerebellar haemangioma, mesencephalic meningioma, cerebellopontine astrocytoma, cerebellopontine meningioma, and medulloblastoma of cerebellar vermis were examined by means of conventional transmission electron microscopy. Granule cells showed oedematous cytoplasm and mitochondria. Swollen Golgi cells exhibited lipofuscin granules and intranuclear inclusions. Both neuron cell types displayed swollen dendritic digits synapsing with afferent mossy fibre endings. Degenerated myelinated axons corresponding to afferent mossy and climbing fibres and efferent Purkinje cell axons were observed at the granular layer. Dense and clear ischaemic Purkinje cells established degenerated synapses with swollen parallel fibre synaptic varicosities. Degenerated Purkinje cell recurrent axonal collaterals were found at the molecular layer. Swollen and clear Bergmann glial cell cytoplasm was observed closely applied to the oedematous clear and dark Purkinje cell body, dendritic trunk, secondary and tertiary dendritic branches. Swollen climbing fibre endings featured by numerous microtubules and neurofilaments, and a decreased number of synaptic vesicles were observed making degenerated axo-spinodendritic synapses with clear and swollen dendritic spines from Purkinje, Golgi, basket and stellate cell dendrites. Swollen stellate neurons showed oedematous mitochondria. Lipofuscin-rich astrocytes and reactive phagocytic astrocytes were observed. The latter appeared engulfing haematogenous proteinaceous oedema fluid. All cerebellar neurons showed stress endoplasmic reticulum dysfunction featured by focal dilated cisterns and detachment of associated ribosomes. Myelin sheath degeneration was related with oligodendrocyte degenerating hydropic changes. The peritumoural ischaemic cerebellar nerve and glial cell abnormalities were related with neurobehavioral changes, tremor, nystagmus, dismetry and gait disturbance

  11. Stars and stripes in the cerebellar cortex: a voltage sensitive dye study.

    PubMed

    Rokni, Dan; Llinas, Rodolfo; Yarom, Yosef

    2007-01-01

    The lattice-like structure of the cerebellar cortex and its anatomical organization in two perpendicular axes provided the foundations for many theories of cerebellar function. However, the functional organization does not always match the anatomical organization. Thus direct measurement of the functional organization is central to our understanding of cerebellar processing. Here we use voltage sensitive dye imaging in the isolated cerebellar preparation to characterize the spatio-temporal organization of the climbing and mossy fiber (MF) inputs to the cerebellar cortex. Spatial and temporal parameters were used to develop reliable criteria to distinguish climbing fiber (CF) responses from MF responses. CF activation excited postsynaptic neurons along a parasagittal cortical band. These responses were composed of slow ( approximately 25 ms), monophasic depolarizing signals. Neither the duration nor the spatial distribution of CF responses were affected by inhibition. Activation of MF generated responses that were organized in radial patches, and were composed of a fast ( approximately 5 ms) depolarizing phase followed by a prolonged ( approximately 100 ms) negative wave. Application of a GABA(A) blocker eliminated the hyperpolarizing phase and prolonged the depolarizing phase, but did not affect the spatial distribution of the response, thus suggesting that it is not the inhibitory system that is responsible for the inability of the MF input to generate beams of activity that propagate along the parallel fiber system.

  12. Precise localization of the voltage-gated potassium channel subunits Kv3.1b and Kv3.3 revealed in the molecular layer of the rat cerebellar cortex by a pre-embedding immunogold method.

    PubMed

    Puente, Nagore; Mendizabal-Zubiaga, Juan; Elezgarai, Izaskun; Reguero, Leire; Buceta, Ianire; Grandes, Pedro

    2010-10-01

    A proper motor activity relies on a correct cerebellar function. The Kv3.1 and Kv3.3 voltage-gated potassium channels are key proteins involved in cerebellar function and dysfunction, as the lack of these causes severe motor deficits. Both channel subunits are coexpressed in granule cells and are rapidly activated at relatively positive potentials to support the generation of fast action potentials. However, the contribution of each subunit to the molecular architecture of the parallel fibers, the granule cell axons, is so far unknown. The goal of this study was to elucidate the relative distribution of Kv3.1b and Kv3.3 in specific compartments of the rat parallel fibers by using a pre-embedding immunocytochemical method for electron microscopy. Numerous Kv3.1b and Kv3.3 silver-intensified gold particles were associated with membranes of parallel fiber synaptic terminals and their intervaricose segments. Kv3.1b was found in about 85% of parallel fiber synaptic terminals and in about 47% of their intervaricose portions. However, only 28% of intervaricosities and 23% of parallel fiber presynaptic boutons were Kv3.3 immunopositive. The analysis also revealed that 54% of Purkinje cell dendritic spines localized Kv3.3. Although both potassium channel subunits share localization in the same presynaptic parallel fiber compartments, the present results with the method used indicate that there are a higher percentage of parallel fibers labeled for Kv3.1b than for Kv3.3, and that the labeling intensity for each subunit is higher in specific subcompartments analyzed than in others.

  13. The rat cortex in stereotaxic coordinates.

    PubMed

    Schober, W

    1986-01-01

    On the basis of Nissl-preparations the cortex of albino rats has been mapped cytoarchitectonically. 13 frontal sections through the cortex are illustrated with coordinates. Therewith exists a stereotaxic atlas of the cortex of the rat and one can realize exactly experimental investigations in the different cortical areas.

  14. Cerebellar structure and function in male Wistar-Kyoto hyperactive rats.

    PubMed

    Thanellou, Alexandra; Green, John T

    2013-04-01

    Previous research has suggested that the Wistar-Kyoto Hyperactive (WKHA) rat strain may model some of the behavioral features associated with attention-deficit/hyperactivity disorder (ADHD). We have shown that, in cerebellar-dependent eyeblink conditioning, male WKHAs emit eyeblink CRs with shortened onset latencies. To further characterize the shortened CR onset latencies seen in male WKHA rats, we examined 750-ms delay conditioning with either a tone conditional stimulus (CS) or a light CS, we extended acquisition training, and we included Wistar rats as an additional, outbred control strain. Our results indicated that WKHAs learned more quickly and showed a shortened CR onset latency to a tone CS compared to both Wistar-Kyoto Hypertensive (WKHT) and Wistars. WKHAs and Wistars show a lengthening of CR onset latency over conditioning with a tone CS and an increasing confinement of CRs to the later part of the tone CS (inhibition of delay). WKHAs learned more quickly to a light CS only in comparison to WKHTs, and showed a shortened CR onset latency only in comparison to Wistars. Wistars showed an increasing confinement of CRs to the late part of the light CS over conditioning. We used unbiased stereology to estimate the number of Purkinje and granule cells in the cerebellar cortex of the three strains. Our results indicated that WKHAs have more granule cells than Wistars and WKHTs and more Purkinje cells than Wistars. Results are discussed in terms of CS processing and cerebellar cortical contributions to EBC.

  15. Cerebellar Structure and Function in Male Wistar-Kyoto Hyperactive Rats

    PubMed Central

    Thanellou, Alexandra; Green, John T.

    2014-01-01

    Previous research has suggested that the Wistar-Kyoto Hyperactive (WKHA) rat strain may model some of the behavioral features associated with attention-deficit/hyperactivity disorder (ADHD). We have shown that, in cerebellar-dependent eyeblink conditioning, WKHA emit eyeblink CRs with shortened onset latencies. To further characterize the shortened CR onset latencies seen in WKHA rats, we examined 750-ms delay conditioning with either a tone CS or a light CS, we extended acquisition training, and we included Wistar rats as an additional, outbred control strain. Our results indicated that WKHAs learned more quickly and showed a shortened CR onset latency to a tone CS compared to both Wistar-Kyoto Hypertensive (WKHT) and Wistars. WKHAs and Wistars show a lengthening of CR onset latency over conditioning with a tone CS and an increasing confinement of CRs to the later part of the tone CS (inhibition of delay). WKHAs learned more quickly to a light CS only in comparison to WKHTs and showed a shortened CR onset latency only in comparison to Wistars. Wistars showed an increasing confinement of CRs to the late part of the light CS over conditioning. We used unbiased stereology to estimate the number of Purkinje and granule cells in the cerebellar cortex of the three strains. Our results indicated that WKHAs have more granule cells than Wistars and WKHTs and more Purkinje cells than Wistars. Results are discussed in terms of CS processing and cerebellar cortical contributions to EBC. PMID:23398437

  16. Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich's ataxia.

    PubMed

    Stefanescu, Maria R; Dohnalek, Moritz; Maderwald, Stefan; Thürling, Markus; Minnerop, Martina; Beck, Andreas; Schlamann, Marc; Diedrichsen, Joern; Ladd, Mark E; Timmann, Dagmar

    2015-05-01

    Spinocerebellar ataxia type 3, spinocerebellar ataxia type 6 and Friedreich's ataxia are common hereditary ataxias. Different patterns of atrophy of the cerebellar cortex are well known. Data on cerebellar nuclei are sparse. Whereas cerebellar nuclei have long been thought to be preserved in spinocerebellar ataxia type 6, histology shows marked atrophy of the nuclei in Friedreich's ataxia and spinocerebellar ataxia type 3. In the present study susceptibility weighted imaging was used to assess atrophy of the cerebellar nuclei in patients with spinocerebellar ataxia type 6 (n = 12, age range 41-76 years, five female), Friedreich's ataxia (n = 12, age range 21-55 years, seven female), spinocerebellar ataxia type 3 (n = 10, age range 34-67 years, three female), and age- and gender-matched controls (total n = 23, age range 22-75 years, 10 female). T1-weighted magnetic resonance images were used to calculate the volume of the cerebellum. In addition, ultra-high field functional magnetic resonance imaging was performed with optimized normalization methods to assess function of the cerebellar cortex and nuclei during simple hand movements. As expected, the volume of the cerebellum was markedly reduced in spinocerebellar ataxia type 6, preserved in Friedreich's ataxia, and mildy reduced in spinocerebellar ataxia type 3. The volume of the cerebellar nuclei was reduced in the three patient groups compared to matched controls (P-values < 0.05; two-sample t-tests). Atrophy of the cerebellar nuclei was most pronounced in spinocerebellar ataxia type 6. On a functional level, hand-movement-related cerebellar activation was altered in all three disorders. Within the cerebellar cortex, functional magnetic resonance imaging signal was significantly reduced in spinocerebellar ataxia type 6 and Friedreich's ataxia compared to matched controls (P-values < 0.001, bootstrap-corrected cluster-size threshold; two-sample t-tests). The difference missed significance in spinocerebellar ataxia

  17. Responses evoked in the cerebellar cortex by stimulation of the caudate nucleus in the cat

    PubMed Central

    Fox, Mary; Williams, T. D.

    1968-01-01

    1. Responses evoked in the cerebellar cortex following stimulation of caudate nucleus are described. 2. The evoked responses recorded from the surface of the cerebellar cortex were found to be of two types, one with a short (4-6 msec) latency and one with a longer (12-17 msec) latency. 3. The short latency response was maximal in the lobulus simplex, the longer latency response was maximal in paramedian lobule. 4. Following lesions in the inferior olive the longer latency response was absent. 5. Recordings from within the cerebellar cortex showed that the short latency response was uniformly distributed throughout the grey matter, the longer latency response was maximal in the region of the Purkinje cell bodies. 6. It was concluded that the short latency response was due to activation via the mossy fibres and the longer latency response to activation via the climbing fibres. 7. It was found that responses could be evoked in the cerebellum following stimulation of only the latero-ventral part of the caudate nucleus; stimulation of the rest of the nucleus caused no response in the cerebellum. This division of the caudate nucleus into two parts is similar to the subdivision of the caudate nucleus made by other workers using different criteria. PMID:5698279

  18. Eyeblink conditioning leads to fewer synapses in the rabbit cerebellar cortex.

    PubMed

    Connor, S; Bloomfield, J; LeBoutillier, J C; Thompson, R F; Petit, T L; Weeks, A C W

    2009-08-01

    Eyeblink conditioning involves the pairing of a conditioned stimulus (tone) to an aversive unconditioned stimulus (air puff). Although the circuitry that underlies this form of learning is well defined, synaptic changes in these structures have not been fully investigated. This experiment examined synaptic structural plasticity in the cerebellar cortex, a structure that has been found to modulate the acquisition and timing of the conditioned response. Long-term depression of Purkinje cells (PCs) in the cerebellar cortex has been proposed as a mechanism for releasing inhibition of the interpositus nuclei, a structure critical for the formation of the CR. Adult albino rabbits were randomly allocated to either a paired, unpaired, or exposure-only condition. The results showed a significant decrease in the number of excitatory synapses in the outer layer of the cerebellar cortex in the conditioned rabbits compared with controls. This finding suggests that a reduction in the number of excitatory synapses may contribute to the lasting depression of PC activity that is associated with eyeblink conditioning. 2009 APA, all rights reserved

  19. Inhibition of classically conditioned eyeblink responses by stimulation of the cerebellar cortex in the decerebrate cat.

    PubMed

    Hesslow, G

    1994-04-15

    The purpose of the present study was to test the hypothesis that neurones in the anterior interpositus nucleus, under the control of Purkinje cells in the c1 and c3 zones of the cerebellar cortex, exert some control over classically conditioned responses. In particular, the experiments were designed to determine whether the cerebellar control of conditioned and unconditioned responses is different. The experiments were performed on cats decerebrated rostral to the red nucleus under halothane anaesthesia. The cats were conditioned using either a 1000 Hz tone or trains of stimuli through the skin of the proximal forelimb as the conditioned stimulus, and periorbital electrical stimulation as the unconditioned stimulus. A large proportion of the animals acquired conditioned responses at normal rates. It could be shown that these were true conditioned responses and did not result from sensitization or pseudoconditioning. For instance, unpaired presentations of conditioned and unconditioned stimuli caused rapid extinction. Cerebellar areas controlling eyeblink were identified by recording climbing fibre responses in the cerebellar cortex and recording EMG activity in the eyelid evoked by stimulation of the cerebellar cortex. When single shocks of 40-70 microA were applied to these areas during the emission of conditioned eyeblink responses, the latter were strongly inhibited. The inhibition had a latency of about 10 ms and a duration of 25-75 ms. It was shown that this inhibition of the conditioned responses was topographically specific and could only be evoked from cortical sites identified as controlling eyeblink. Stimulation of the periphery of an eyeblink area caused little or no inhibition. The effect of cortical stimulation on unconditioned reflex responses in the orbicularis oculi muscle was also tested. Some inhibition of unconditioned responses was observed, but quantitative analysis showed that this inhibition was considerably weaker than the corresponding

  20. Inhibition of classically conditioned eyeblink responses by stimulation of the cerebellar cortex in the decerebrate cat.

    PubMed Central

    Hesslow, G

    1994-01-01

    The purpose of the present study was to test the hypothesis that neurones in the anterior interpositus nucleus, under the control of Purkinje cells in the c1 and c3 zones of the cerebellar cortex, exert some control over classically conditioned responses. In particular, the experiments were designed to determine whether the cerebellar control of conditioned and unconditioned responses is different. The experiments were performed on cats decerebrated rostral to the red nucleus under halothane anaesthesia. The cats were conditioned using either a 1000 Hz tone or trains of stimuli through the skin of the proximal forelimb as the conditioned stimulus, and periorbital electrical stimulation as the unconditioned stimulus. A large proportion of the animals acquired conditioned responses at normal rates. It could be shown that these were true conditioned responses and did not result from sensitization or pseudoconditioning. For instance, unpaired presentations of conditioned and unconditioned stimuli caused rapid extinction. Cerebellar areas controlling eyeblink were identified by recording climbing fibre responses in the cerebellar cortex and recording EMG activity in the eyelid evoked by stimulation of the cerebellar cortex. When single shocks of 40-70 microA were applied to these areas during the emission of conditioned eyeblink responses, the latter were strongly inhibited. The inhibition had a latency of about 10 ms and a duration of 25-75 ms. It was shown that this inhibition of the conditioned responses was topographically specific and could only be evoked from cortical sites identified as controlling eyeblink. Stimulation of the periphery of an eyeblink area caused little or no inhibition. The effect of cortical stimulation on unconditioned reflex responses in the orbicularis oculi muscle was also tested. Some inhibition of unconditioned responses was observed, but quantitative analysis showed that this inhibition was considerably weaker than the corresponding

  1. Surface-based atlases of cerebellar cortex in the human, macaque, and mouse

    NASA Technical Reports Server (NTRS)

    Van Essen, David C.

    2002-01-01

    This study describes surface reconstructions and associated flat maps that represent the highly convoluted shape of cerebellar cortex in three species: human, macaque, and mouse. The reconstructions were based on high-resolution structural MRI data obtained from other laboratories. The surface areas determined for the fiducial reconstructions are about 600 cm(2) for the human, 60 cm(2) for the macaque, and 0.8 cm(2) for the mouse. As expected from the ribbon-like pattern of cerebellar folding, the cerebellar flat maps are elongated along the axis parallel to the midline. However, the degree of elongation varies markedly across species. The macaque flat map is many times longer than its mean width, whereas the mouse flat map is only slightly elongated and the human map is intermediate in its aspect ratio. These cerebellar atlases, along with associated software for visualization and for mapping experimental data onto the atlas, are freely available to the neuroscience community (see http:/brainmap.wustl.edu).

  2. Surface-based atlases of cerebellar cortex in the human, macaque, and mouse

    NASA Technical Reports Server (NTRS)

    Van Essen, David C.

    2002-01-01

    This study describes surface reconstructions and associated flat maps that represent the highly convoluted shape of cerebellar cortex in three species: human, macaque, and mouse. The reconstructions were based on high-resolution structural MRI data obtained from other laboratories. The surface areas determined for the fiducial reconstructions are about 600 cm(2) for the human, 60 cm(2) for the macaque, and 0.8 cm(2) for the mouse. As expected from the ribbon-like pattern of cerebellar folding, the cerebellar flat maps are elongated along the axis parallel to the midline. However, the degree of elongation varies markedly across species. The macaque flat map is many times longer than its mean width, whereas the mouse flat map is only slightly elongated and the human map is intermediate in its aspect ratio. These cerebellar atlases, along with associated software for visualization and for mapping experimental data onto the atlas, are freely available to the neuroscience community (see http:/brainmap.wustl.edu).

  3. Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations

    PubMed Central

    2011-01-01

    Background Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. Results Isolated GoCs coupled by gap junctions had a strong tendency to generate spontaneous oscillations without affecting their mean firing frequencies in response to distributed mossy fiber input. Conversely, when GoCs were synaptically connected in the granular layer, gap junctions increased the power of the oscillations, but the oscillations were primarily driven by the synaptic feedback loop between GoCs and GCs, and the gap junctions did not change oscillation frequency or the mean firing rate of either GoCs or GCs. Conclusion Our modeling results suggest that gap junctions between GoCs increase the robustness of cerebellar cortex oscillations that are primarily driven by the feedback loop between GoCs and GCs. The robustness effect of gap junctions on synaptically driven oscillations observed in our model may be a general mechanism, also present in other regions of the brain. PMID:22330240

  4. Is essential tremor a Purkinjopathy? The role of the cerebellar cortex in its pathogenesis.

    PubMed

    Grimaldi, Giuliana; Manto, Mario

    2013-11-01

    Essential tremor (ET) encompasses a group of progressive neurological diseases in which the primary clinical feature is kinetic tremor of the arms. There is accumulating evidence to suggest that the cerebellum is involved in the pathogenesis of ET; the clinical presentation, neurophysiological data, and functional and metabolic abnormalities revealed by neuroimaging studies all point toward the dysregulation of cerebellar circuits. Recent neuropathological findings at postmortem demonstrate that Purkinje neurons, and some brainstem neurons, play an integral role in the pathogenesis of this common neurological disorder. The assessment of Purkinje cell linear density shows that Purkinje density is abnormal in ET brains. Specific efforts need be devoted to understanding the molecular and cellular events occurring in the Purkinje neurons of the cerebellar cortex, which are emerging as being of particular importance in the pathogenesis of ET in a subgroup of patients. © 2013 International Parkinson and Movement Disorder Society.

  5. Traveling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity.

    PubMed

    Watt, Alanna J; Cuntz, Hermann; Mori, Masahiro; Nusser, Zoltan; Sjöström, P Jesper; Häusser, Michael

    2009-04-01

    Correlated network activity is important in the development of many neural circuits. Purkinje cells are among the first neurons to populate the cerebellar cortex, where they sprout exuberant axon collaterals. We used multiple patch-clamp recordings targeted with two-photon microscopy to characterize monosynaptic connections between the Purkinje cells of juvenile mice. We found that Purkinje cell axon collaterals projected asymmetrically in the sagittal plane, directed away from the lobule apex. On the basis of our anatomical and physiological characterization of this connection, we constructed a network model that robustly generated waves of activity that traveled along chains of connected Purkinje cells. Consistent with the model, we observed traveling waves of activity in Purkinje cells in sagittal slices from young mice that require GABA(A) receptor-mediated transmission and intact Purkinje cell axon collaterals. These traveling waves are absent in adult mice, suggesting they have a developmental role in wiring the cerebellar cortical microcircuit.

  6. Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation.

    PubMed

    Shutoh, F; Ohki, M; Kitazawa, H; Itohara, S; Nagao, S

    2006-05-12

    Adaptation of ocular reflexes is a prototype of motor learning. While the cerebellum is acknowledged as the critical site for motor learning, the functional differences between the cerebellar cortex and nuclei in motor memory formation are not precisely known. Two different views are proposed: one that the memory is formed within the cerebellar flocculus, and the other that the memory is formed within vestibular nuclei. Here we developed a new paradigm of long-term adaptation of mouse horizontal optokinetic response eye movements and examined the location of its memory trace. We also tested the role of flocculus and inferior olive in long-term adaptation by chronic lesion experiments. Reversible bilateral flocculus shutdown with local application of 0.5 microl-5% lidocaine extinguished the memory trace of day-long adaptation, while it very little affected the memory trace of week-long adaptation. The responsiveness of vestibular nuclei after week-long adaptation was examined by measuring the extracellular field responses to the electrical stimulation of vestibular nerve under trichloroacetaldehyde anesthesia. The amplitudes and slopes of evoked monosynaptic field response (N1) of week-long adapted mice were enhanced around the medial vestibular nucleus compared with those of control mice. Chronic flocculus or inferior olive lesions abolished both day and week-long adaptations. These results suggest that the functional memory trace of short-term adaptation is formed initially within the cerebellar cortex, and later transferred to vestibular nuclei to be consolidated to a long-term memory. Both day and week-long adaptations were markedly depressed when neural nitric oxide was pharmacologically blocked locally and when neuronal nitric oxide synthase was ablated by gene knockout, suggesting that cerebellar long-term depression underlies both acquisition and consolidation of motor memory.

  7. A composite neurobehavioral test to evaluate acute functional deficits after cerebellar haemorrhage in rats.

    PubMed

    McBride, Devin W; Nowrangi, Derek; Kaur, Harpreet; Wu, Guangyong; Huang, Lei; Lekic, Tim; Tang, Jiping; Zhang, John H

    2017-01-01

    Cerebellar haemorrhage accounts for 5-10% of all intracerebral haemorrhages and leads to severe, long-lasting functional deficits. Currently, there is limited research on this stroke subtype, which may be due to the lack of a suitable composite neuroscoring system specific for cerebellar injury in rodents. The purpose of this study is to develop a comprehensive composite neuroscore test for cerebellar injury using a rat model of cerebellar haemorrhage. Sixty male Sprague-Dawley rats were subjected to either sham surgery or cerebellar haemorrhage. Twenty-four hours post-injury, neurological behaviour was evaluated using 17 cost-effective and easy-to-perform tests, and a composite neuroscore was developed. The composite neuroscore was then used to assess functional recovery over seven days after cerebellar haemorrhage. Differences in the composite neuroscore deficits for the mild and moderate cerebellar haemorrhage models were observed for up to five days post-ictus. Until now, a composite neuroscore for cerebellar injury was not available for rodent studies. Herein, using mild and moderate cerebellar haemorrhage rat models a composite neuroscore for cerebellar injury was developed and used to assess functional deficits after cerebellar haemorrhage. This composite neuroscore may also be useful for other cerebellar injury models.

  8. Changes in the cerebellar cortex of hairless Rhino-J mice (hr-rh-j).

    PubMed

    García-Atares, N; San Jose, I; Cabo, R; Vega, J A; Represa, J

    1998-10-30

    A mutation in the hr gene is responsible for typical epithelium phenotype in hairless mice. As this gene is expressed at high levels not only in the skin but also in the brain, the aim of the study was to clarify its role in the central nervous system. We have analyzed by morphological and immunocytochemical methods (calbindin D-28k, phosphorylated and 200 kDa neurofilament protein) the cerebellum of a mutated mouse strain, the hairless (hr-rh-j) type carrying the homozygous hr gene rhino mutation. The cerebellar cortex was studied in young (3 months) and adult (9 months) wild type and mutated mice. No major structural change was found in any of the groups and neuronal density or neuronal arrangement were similar in mutated animals to their age-matched controls. Nevertheless there were changes in shape and size of the Purkinje neurons in the old mutated animals respect to their normal littermates, while the molecular and the granule cell layers were apparently invariable. Calbindin (CB) immunohistochemistry revealed a significant decrease in the expression of this protein in the Purkinje cells of the aged mutated mice. Immunohistochemistry for a neurofilament protein (NFP) showed a reduction of staining in all the cerebellar cortex layers in the older animals, which was much more evident in the (hr-rh-j) mutated mice. These results suggest that hr gene is involved in the structural maintenance of the mature cerebellar cortex, rather than in the development. Our findings may also be consistent with an accelerated aging of the central nervous system in rh-rh-j mice.

  9. Neurotoxicological effects of nicotine on the embryonic development of cerebellar cortex of chick embryo during various stages of incubation.

    PubMed

    El-Beltagy, Abd El-Fattah B M; Abou-El-Naga, Amoura M; Sabry, Dalia M

    2015-10-01

    Long-acting nicotine is known to exert pathological effects on almost all tissues including the cerebellar cortex. The present work was designed to elucidate the effect of nicotine on the development of cerebellar cortex of chick embryo during incubation period. The fertilized eggs of hen (Gallus gallus domesticus) were injected into the air space by a single dose of long acting nicotine (1.6 mg/kg/egg) at the 4th day of incubation. The embryos were taken out of the eggs on days 8, 12 and 16 of incubation. The cerebellum of the control and treated embryos at above ages were processed for histopathological examination. The TEM were examined at 16th day of incubation. The results of the present study revealed that, exposure to long-acting nicotine markedly influence the histogenesis of cerebellar cortex of chick embryo during the incubation period. At 8th day of incubation, nicotine delayed the differentiation of the cerebellar analge; especially the external granular layer (EGL) and inner cortical layer (ICL). Furthermore, at 12th day of incubation, the cerebellar foliation was irregular and the Purkinje cells not recognized. By 16th day of incubation, the cerebellar foliations were irregular with interrupted cerebellar cortex and irregular arrangement of Purkinje cells. Immunohistochemical analysis for antibody P53 protein revealed that the cerebellar cortex in all stages of nicotine treated groups possessed a moderate to weak reaction for P53 protein however; this reaction was markedly stronger in the cerebellar cortex of control groups. Moreover, the flow cytometric analysis confirmed that the percentage of apoptosis in control group was significantly higher compared with that of nicotine treated group. At the TEM level, the cerebellar Purkinje cells of 16th day of treated groups showed multiple subcellular alterations in compared with those of the corresponding control group. Such changes represented by appearing of vacuolated mitochondria, cisternal

  10. Reevaluation of the Beam and Radial Hypotheses of Parallel Fiber Action in the Cerebellar Cortex

    PubMed Central

    Cramer, Samuel W.; Gao, Wangcai; Chen, Gang

    2013-01-01

    The role of parallel fibers (PFs) in cerebellar physiology remains controversial. Early studies inspired the “beam” hypothesis whereby granule cell (GC) activation results in PF-driven, postsynaptic excitation of beams of Purkinje cells (PCs). However, the “radial” hypothesis postulates that the ascending limb of the GC axon provides the dominant input to PCs and generates patch-like responses. Using optical imaging and single-cell recordings in the mouse cerebellar cortex in vivo, this study reexamines the beam versus radial controversy. Electrical stimulation of mossy fibers (MFs) as well as microinjection of NMDA in the granular layer generates beam-like responses with a centrally located patch-like response. Remarkably, ipsilateral forepaw stimulation evokes a beam-like response in Crus I. Discrete molecular layer lesions demonstrate that PFs contribute to the peripherally generated responses in Crus I. In contrast, vibrissal stimulation induces patch-like activation of Crus II and GABAA antagonists fail to convert this patch-like activity into a beam-like response, implying that molecular layer inhibition does not prevent beam-like responses. However, blocking excitatory amino acid transporters (EAATs) generates beam-like responses in Crus II. These beam-like responses are suppressed by focal inhibition of MF-GC synaptic transmission. Using EAAT4 reporter transgenic mice, we show that peripherally evoked patch-like responses in Crus II are aligned between parasagittal bands of EAAT4. This is the first study to demonstrate beam-like responses in the cerebellar cortex to peripheral, MF, and GC stimulation in vivo. Furthermore, the spatial pattern of the responses depends on extracellular glutamate and its local regulation by EAATs. PMID:23843513

  11. Age-related decline in the responsiveness of motor cortex to plastic forces reverses with levodopa or cerebellar stimulation.

    PubMed

    Kishore, Asha; Popa, Traian; James, Praveen; Yahia-Cherif, Lydia; Backer, Febina; Varughese Chacko, Lijo; Govind, Preetha; Pradeep, Salini; Meunier, Sabine

    2014-11-01

    The plasticity of motor cortex is integral for motor memory and skills acquisition but it declines with aging. Forty healthy volunteers, across 6 decades, were tested to examine the (a) age-dependency of motor cortex responsiveness to plasticity induction, as measured from the response to paired associative stimulation (PAS) and the (b) effect of aging on the cerebellar modulation of motor cortex response to PAS. We examined if reduced dopaminergic transmission was involved in the age-related decline of response to PAS by retesting 10 of the older subjects after a single dose of levodopa. There was a substantial decline in the motor cortex response to PAS with aging, which was restored by levodopa in the older subjects. The cerebellar modulation of motor cortex response to PAS was less vulnerable to aging and a single session of cerebellar inhibition reinstated the cortical responsiveness in older subjects. Both levodopa and cerebellar inhibition can be tested for their ability to enhance motor skills acquisition and motor performance in the elderly individuals.

  12. Pontine and cerebellar norepinephrine content in adult rats recovering from focal cortical injury.

    PubMed

    Gonzalez-Pina, Rigoberto; Bueno-Nava, Antonio; Montes, Sergio; Alfaro-Rodriguez, Alfonso; Gonzalez-Maciel, Angelica; Reynoso-Robles, Rafael; Ayala-Guerrero, Fructuoso

    2006-12-01

    Norepinephrine (NE) plays an important role in motor recovery after brain damage. Most studies concerning NE activity have been performed in the cerebellum, while the role of the pons, the site where the norepinephrinergic locus coeruleus is located, has not yet been elucidated. For this work, we studied the changes in cerebellar and pontine NE content in sham-operated (n = 17), motor cortex injured (n = 6) and recovered rats (n = 12). Motor effects were assessed by means of footprint analysis and sensorimotor evaluation. It was found that after cortical brain damage, the stride length decreases while the stride angle increases after 6 h post-surgery, while the sensorimotor evaluation showed an increase in the motor deficit. Recovery was observed after 24 h. NE content increased in the pons after 6 h and returned to normal levels in recovered rats, with no significant changes observed in the cerebellum. Based on the functional remote inhibition, it is possible that NE exerts an autoinhibitory effect in the pons after motor cortical ablation. On the other hand, the absence of an effect in the cerebellum suggests that cerebellar NE activity related to damage and/or recovery is limited to discrete areas of the structure.

  13. A novel site of synaptic relay for climbing fibre pathways relaying signals from the motor cortex to the cerebellar cortical C1 zone

    PubMed Central

    Ackerley, Rochelle; Pardoe, Joanne; Apps, Richard

    2006-01-01

    The climbing fibre projection from the motor cortex to the cerebellar cortical C1 zone in the posterior lobe of the rat cerebellum was investigated using a combination of physiological, anatomical and neuropharmacological techniques. Electrical stimulation of the ipsilateral fore- or hindimbs or somatotopically corresponding parts of the contralateral motor cortex evoked climbing fibre field potentials at the same cerebellar recording sites. Forelimb-related responses were located in the C1 zone in the paramedian lobule or lobulus simplex and hindlimb-related responses were located in the C1 zone in the copula pyramidis. Microinjections of anterograde axonal tracer (Fluoro-Ruby or Fluoro-Emerald) were made into the fore- or hindlimb parts of the motor cortex where stimulation evoked the largest cerebellar responses. After a survival period of 7–10 days, the neuraxis was examined for anterograde labelling. No terminal labelling was ever found in the inferior olive, but labelled terminals were consistently found in a well-localized site in the dorso-medial medulla, ventral to the gracile nucleus, termed the matrix region. Pharmacological inactivation of the matrix region (2 mm caudal to the obex) selectively reduced transmission in descending (cerebro-olivocerebellar) but not ascending (spino-olivocerebellar) paths targeting fore- or hindlimb-receiving parts of the C1 zone. Transmission in spino-olivocerebellar paths was either unaffected, or in some cases increased. The identification of a novel pre-olivary relay in cerebro-olivocerebellar paths originating from fore- and hindlimb motor cortex has implications for the regulation of transmission in climbing fibre pathways during voluntary movements and motor learning. PMID:16887878

  14. Time‐invariant feed‐forward inhibition of Purkinje cells in the cerebellar cortex in vivo

    PubMed Central

    Blot, Antonin; de Solages, Camille; Ostojic, Srdjan; Szapiro, German; Hakim, Vincent; Léna, Clément

    2016-01-01

    Key points We performed extracellular recording of pairs of interneuron–Purkinje cells in vivo.A single interneuron produces a substantial, short‐lasting, inhibition of Purkinje cells.Feed‐forward inhibition is associated with characteristic asymmetric cross‐correlograms. In vivo, Purkinje cell spikes only depend on the most recent synaptic activity. Abstract Cerebellar molecular layer interneurons are considered to control the firing rate and spike timing of Purkinje cells. However, interactions between these cell types are largely unexplored in vivo. Using tetrodes, we performed simultaneous extracellular recordings of neighbouring Purkinje cells and molecular layer interneurons, presumably basket cells, in adult rats in vivo. The high levels of afferent synaptic activity encountered in vivo yield irregular spiking and reveal discharge patterns characteristic of feed‐forward inhibition, thus suggesting an overlap of the afferent excitatory inputs between Purkinje cells and basket cells. Under conditions of intense background synaptic inputs, interneuron spikes exert a short‐lasting inhibitory effect, delaying the following Purkinje cell spike by an amount remarkably independent of the Purkinje cell firing cycle. This effect can be explained by the short memory time of the Purkinje cell potential as a result of the intense incoming synaptic activity. Finally, we found little evidence for any involvement of the interneurons that we recorded with the cerebellar high‐frequency oscillations promoting Purkinje cell synchrony. The rapid interactions between interneurons and Purkinje cells might be of particular importance in fine motor control because the inhibitory action of interneurons on Purkinje cells leads to deep cerebellar nuclear disinhibition and hence increased cerebellar output. PMID:26918702

  15. Time-invariant feed-forward inhibition of Purkinje cells in the cerebellar cortex in vivo.

    PubMed

    Blot, Antonin; de Solages, Camille; Ostojic, Srdjan; Szapiro, German; Hakim, Vincent; Léna, Clément

    2016-05-15

    We performed extracellular recording of pairs of interneuron-Purkinje cells in vivo. A single interneuron produces a substantial, short-lasting, inhibition of Purkinje cells. Feed-forward inhibition is associated with characteristic asymmetric cross-correlograms. In vivo, Purkinje cell spikes only depend on the most recent synaptic activity. Cerebellar molecular layer interneurons are considered to control the firing rate and spike timing of Purkinje cells. However, interactions between these cell types are largely unexplored in vivo. Using tetrodes, we performed simultaneous extracellular recordings of neighbouring Purkinje cells and molecular layer interneurons, presumably basket cells, in adult rats in vivo. The high levels of afferent synaptic activity encountered in vivo yield irregular spiking and reveal discharge patterns characteristic of feed-forward inhibition, thus suggesting an overlap of the afferent excitatory inputs between Purkinje cells and basket cells. Under conditions of intense background synaptic inputs, interneuron spikes exert a short-lasting inhibitory effect, delaying the following Purkinje cell spike by an amount remarkably independent of the Purkinje cell firing cycle. This effect can be explained by the short memory time of the Purkinje cell potential as a result of the intense incoming synaptic activity. Finally, we found little evidence for any involvement of the interneurons that we recorded with the cerebellar high-frequency oscillations promoting Purkinje cell synchrony. The rapid interactions between interneurons and Purkinje cells might be of particular importance in fine motor control because the inhibitory action of interneurons on Purkinje cells leads to deep cerebellar nuclear disinhibition and hence increased cerebellar output. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  16. Synaptic and cellular properties of the feed-forward inhibitory circuit within the input layer of the cerebellar cortex

    PubMed Central

    Kanichay, Roby T.; Silver, R. Angus

    2010-01-01

    Precise representation of the timing of sensory stimuli is essential for rapid motor coordination, a core function of the cerebellum. Feed-forward inhibition has been implicated in precise temporal signalling in several regions of the brain, but little is known about this type of inhibitory circuit within the input layer of the cerebellar cortex. We have investigated the synaptic properties of feed-forward inhibition at near physiological temperatures (35°C) in rat cerebellar slices. We establish that the previously uncharacterized mossy fibre–Golgi cell–granule cell pathway can act as a functional feed-forward inhibitory circuit. The synchronous activation of 4 mossy fibres, releasing a total of 6 quanta onto a Golgi cell, can reset spontaneous Golgi cell firing with high temporal precision (200μs). However, only modest increases in Golgi cell firing rate were observed during trains of high frequency mossy fibre stimulation. This decoupling of Golgi cell activity from mossy fibre firing rate was due to a strong after-hyperpolarization following each action potential, preventing mossy fibre–Golgi cell signalling for ~50 ms. Feed-forward excitation of Golgi cells induced a temporally precise inhibitory conductance in granule cells that curtailed the excitatory action of the mossy fibre EPSC. The synaptic and cellular properties of this feed-forward circuit appear tuned to trigger a fast inhibitory conductance in granule cells at the onset of stimuli that produce intense bursts of activity in multiple mossy fibres, thereby conserving the temporal precision of the initial granule cell response. PMID:18768689

  17. FoxP2 expression in the cerebellum and inferior olive: development of the transverse stripe-shaped expression pattern in the mouse cerebellar cortex.

    PubMed

    Fujita, Hirofumi; Sugihara, Izumi

    2012-02-15

    Many molecules are expressed heterogeneously in subpopulations of cerebellar Purkinje cells (PCs) and inferior olive (IO) neurons during development or in adulthood. These expression patterns are often organized in longitudinal stripes in the cerebellar cortex, which may be related to functional compartmentalization. FoxP2, a transcription factor, is expressed in PCs and IO neurons, but the details of its expression pattern remain unclear. Here we examined FoxP2 expression patterns systematically by immunostaining serial sections of the hindbrain from embryonic day 14.5 to adulthood in mice. FoxP2 was highly expressed in virtually all PCs at and before postnatal day 6 (P6), except for those in the flocculus and small parts of the nodulus (vermal lobule X), where FoxP2 expression was moderate or absent. After P6, FoxP2 expression gradually diminished in PCs in some areas. In adults, FoxP2 was expressed, less intensely than in earlier stages, in subsets of PCs that were mostly arranged transversely along the folial apices. In contrast, FoxP2 was expressed intensely in most IO neurons during development and in adulthood. FoxP2 was also expressed in a small population of neurons in the cerebellar nuclei. FoxP2 expression in adult rats and chicks was generally comparable to that in adult mice, suggesting evolutionary conservation of the expression pattern. Thus, the FoxP2 expression pattern reflects new transverse compartmentalization in the adult cerebellar cortex, although its functional significance remains unclear.

  18. Stereotyped spatial patterns of functional synaptic connectivity in the cerebellar cortex

    PubMed Central

    Valera, Antoine M; Binda, Francesca; Pawlowski, Sophie A; Dupont, Jean-Luc; Casella, Jean-François; Rothstein, Jeffrey D; Poulain, Bernard; Isope, Philippe

    2016-01-01

    Motor coordination is supported by an array of highly organized heterogeneous modules in the cerebellum. How incoming sensorimotor information is channeled and communicated between these anatomical modules is still poorly understood. In this study, we used transgenic mice expressing GFP in specific subsets of Purkinje cells that allowed us to target a given set of cerebellar modules. Combining in vitro recordings and photostimulation, we identified stereotyped patterns of functional synaptic organization between the granule cell layer and its main targets, the Purkinje cells, Golgi cells and molecular layer interneurons. Each type of connection displayed position-specific patterns of granule cell synaptic inputs that do not strictly match with anatomical boundaries but connect distant cortical modules. Although these patterns can be adjusted by activity-dependent processes, they were found to be consistent and predictable between animals. Our results highlight the operational rules underlying communication between modules in the cerebellar cortex. DOI: http://dx.doi.org/10.7554/eLife.09862.001 PMID:26982219

  19. Temporal dynamics of cerebellar and motor cortex physiological processes during motor skill learning.

    PubMed

    Spampinato, D; Celnik, P

    2017-01-16

    Learning motor tasks involves distinct physiological processes in the cerebellum (CB) and primary motor cortex (M1). Previous studies have shown that motor learning results in at least two important neurophysiological changes: modulation of cerebellar output mediated in-part by long-term depression of parallel fiber-Purkinje cell synapse and induction of long-term plasticity (LTP) in M1, leading to transient occlusion of additional LTP-like plasticity. However, little is known about the temporal dynamics of these two physiological mechanisms during motor skill learning. Here we use non-invasive brain stimulation to explore CB and M1 mechanisms during early and late motor skill learning in humans. We predicted that early skill acquisition would be proportional to cerebellar excitability (CBI) changes, whereas later stages of learning will result in M1 LTP-like plasticity modifications. We found that early, and not late into skill training, CBI changed. Whereas, occlusion of LTP-like plasticity over M1 occurred only during late, but not early training. These findings indicate a distinct temporal dissociation in the physiological role of the CB and M1 when learning a novel skill. Understanding the role and temporal dynamics of different brain regions during motor learning is critical to device optimal interventions to augment learning.

  20. Information processing in the hemisphere of the cerebellar cortex for control of wrist movement

    PubMed Central

    Tomatsu, Saeka; Ishikawa, Takahiro; Tsunoda, Yoshiaki; Lee, Jongho; Hoffman, Donna S.

    2015-01-01

    A region of cerebellar lobules V and VI makes strong loop connections with the primary motor (M1) and premotor (PM) cortical areas and is assumed to play essential roles in limb motor control. To examine its functional role, we compared the activities of its input, intermediate, and output elements, i.e., mossy fibers (MFs), Golgi cells (GoCs), and Purkinje cells (PCs), in three monkeys performing wrist movements in two different forearm postures. The results revealed distinct steps of information processing. First, MF activities displayed temporal and directional properties that were remarkably similar to those of M1/PM neurons, suggesting that MFs relay near copies of outputs from these motor areas. Second, all GoCs had a stereotyped pattern of activity independent of movement direction or forearm posture. Instead, GoC activity resembled an average of all MF activities. Therefore, inhibitory GoCs appear to provide a filtering function that passes only prominently modulated MF inputs to granule cells. Third, PCs displayed highly complex spatiotemporal patterns of activity, with coordinate frames distinct from those of MF inputs and directional tuning that changed abruptly before movement onset. The complexity of PC activities may reflect rapidly changing properties of the peripheral motor apparatus during movement. Overall, the cerebellar cortex appears to transform a representation of outputs from M1/PM into different movement representations in a posture-dependent manner and could work as part of a forward model that predicts the state of the peripheral motor apparatus. PMID:26467515

  1. Temporal dynamics of cerebellar and motor cortex physiological processes during motor skill learning

    PubMed Central

    Spampinato, D.; Celnik, P.

    2017-01-01

    Learning motor tasks involves distinct physiological processes in the cerebellum (CB) and primary motor cortex (M1). Previous studies have shown that motor learning results in at least two important neurophysiological changes: modulation of cerebellar output mediated in-part by long-term depression of parallel fiber-Purkinje cell synapse and induction of long-term plasticity (LTP) in M1, leading to transient occlusion of additional LTP-like plasticity. However, little is known about the temporal dynamics of these two physiological mechanisms during motor skill learning. Here we use non-invasive brain stimulation to explore CB and M1 mechanisms during early and late motor skill learning in humans. We predicted that early skill acquisition would be proportional to cerebellar excitability (CBI) changes, whereas later stages of learning will result in M1 LTP-like plasticity modifications. We found that early, and not late into skill training, CBI changed. Whereas, occlusion of LTP-like plasticity over M1 occurred only during late, but not early training. These findings indicate a distinct temporal dissociation in the physiological role of the CB and M1 when learning a novel skill. Understanding the role and temporal dynamics of different brain regions during motor learning is critical to device optimal interventions to augment learning. PMID:28091578

  2. An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex

    PubMed Central

    Kuhn, Bernd; Ozden, Ilker; Lampi, Yulia; Hasan, Mazahir T.; Wang, Samuel S.-H.

    2012-01-01

    Recording of identified neuronal network activity using genetically encoded calcium indicators (GECIs) requires labeling that is cell type-specific and bright enough for the detection of functional signals. However, specificity and strong expression are often not achievable using the same promoter. Here we present a combinatorial approach for targeted expression and single-cell-level quantification in which a weak promoter is used to drive trans-amplification under a strong general promoter. We demonstrated this approach using recombinant adeno-associated viruses (rAAVs) to deliver the sequence of the GECI D3cpv in the mouse cerebellar cortex. Direct expression under the human synapsin promoter (hSYN) led to high levels of expression (50–100 μM) in five interneuron types of the cerebellar cortex but not in Purkinje cells (PCs) (≤10 μM), yielding sufficient contrast to allow functional signals to be recorded from somata and processes in awake animals using two-photon microscopy. When the hSYN promoter was used to drive expression of the tetracycline transactivator (tTA), a second rAAV containing the bidirectional TET promoter (Ptetbi) could drive strong D3cpv expression in PCs (10–300 μM), enough to allow reliable complex spike detection in the dendritic arbor. An amplified approach should be of use in monitoring neural processing in selected cell types and boosting expression of optogenetic probes. Additionally, we overcome cell toxicity associated with rAAV injection and/or local GECI overexpression by combining the virus injection with systemic pre-injection of hyperosmotic D-mannitol, and by this double the time window for functional imaging. PMID:22866030

  3. Age-related changes in rat cerebellar basket cells: a quantitative study using unbiased stereological methods

    PubMed Central

    HENRIQUE, RUI M. F.; ROCHA, EDUARDO; REIS, ALCINDA; MARCOS, RICARDO; OLIVEIRA, MARIA H.; SILVA, MARIA W.; MONTEIRO, ROGÉRIO A. F.

    2001-01-01

    Cortical cerebellar basket cells are stable postmitotic cells; hence, they are liable to endure age-related changes. Since the cerebellum is a vital organ for the postural control, equilibrium and motor coordination, we aimed to determine the quantitative morphological changes in those interneurons with the ageing process, using unbiased techniques. Material from the cerebellar cortex (Crus I and Crus II) was collected from female rats aged 2, 6, 9, 12, 15, 18, 21 and 24 mo (5 animals per each age group), fixed by intracardiac perfusion, and processed for transmission electron microscopy, using conventional techniques. Serial semithin sections were obtained (5 blocks from each rat), enabling the determination of the number-weighted mean nuclear volume (by the nucleator method). On ultrathin sections, 25 cell profiles from each animal were photographed. The volume density of the nucleus, ground substance, mitochondria, Golgi apparatus (Golgi) and dense bodies (DB), and the mean surface density of the rough endoplasmic reticulum (RER) were determined, by point counting, using a morphometric grid. The mean total volumes of the soma and organelles and the mean total surface area of the RER [s̄N (RER)] were then calculated. The results were analysed with 1-way ANOVA; posthoc pairwise comparisons of group means were performed using the Newman-Keuls test. The relation between age and each of the parameters was studied by regression analysis. Significant age-related changes were observed for the mean volumes of the soma, ground substance, Golgi, DB, and s̄N (RER). Positive linear trends were found for the mean volumes of the ground substance, Golgi, and DB; a negative linear trend was found for the s̄N (RER). These results indicate that rat cerebellar basket cells endure important age-related changes. The significant decrease in the s̄N (RER) may be responsible for a reduction in the rate of protein synthesis. Additionally, it may be implicated in a cascade of events

  4. Hydroxyurea Treatment and Development of the Rat Cerebellum: Effects on the Neurogenetic Profiles and Settled Patterns of Purkinje Cells and Deep Cerebellar Nuclei Neurons.

    PubMed

    Martí, Joaquín; Santa-Cruz, M C; Serra, Roger; Hervás, José P

    2016-11-01

    The current paper analyzes the development of the male and female rat cerebellum exposed to hydroxyurea (HU) (300 or 600 mg/kg) as embryo and collected at postnatal day 90. Our study reveals that the administration of this drug compromises neither the cytoarchitecture of the cerebellar cortex nor deep nuclei (DCN). However, in comparison with the saline group, we observed that several cerebellar parameters were lower in the HU injected groups. These parameters included area of the cerebellum, cerebellar cortex length, molecular layer area, Purkinje cell number, granule cell counts, internal granular layer, white matter and cerebellar nuclei areas, and number of deep cerebellar nuclei neurons. These features were larger in the rats injected with saline, smaller in those exposed to 300 mg/kg of HU and smallest in the group receiving 600 mg/kg of this agent. No sex differences in the effect of the HU were observed. In addition, we infer the neurogenetic timetables and the neurogenetic gradients of PCs and DCN neurons in rats exposed to either saline or HU as embryos. For this purpose, 5-bromo-2'-deoxyuridine was injected into pregnant rats previously administered with saline or HU. This thymidine analog was administered following a progressively delayed cumulative labeling method. The data presented here show that systematic differences exist in the pattern of neurogenesis and in the spatial location of cerebellar neurons between rats injected with saline or HU. No sex differences in the effect of the HU were observed. These findings have implications for the administration of this compound to women in gestation as the effects of HU on the development of the cerebellum might persist throughout their offsprings' life.

  5. Cerebellar cortex development in the weaver condition presents regional and age-dependent abnormalities without differences in Purkinje cells neurogenesis.

    PubMed

    Martí, Joaquín; Santa-Cruz, María C; Hervás, José P; Bayer, Shirley A; Villegas, Sandra

    2016-01-01

    Ataxias are neurological disorders associated with the degeneration of Purkinje cells (PCs). Homozygous weaver mice (wv/wv) have been proposed as a model for hereditary cerebellar ataxia because they present motor abnormalities and PC loss. To ascertain the physiopathology of the weaver condition, the development of the cerebellar cortex lobes was examined at postnatal day (P): P8, P20 and P90. Three approaches were used: 1) quantitative determination of several cerebellar features; 2) qualitative evaluation of the developmental changes occurring in the cortical lobes; and 3) autoradiographic analyses of PC generation and placement. Our results revealed a reduction in the size of the wv/wv cerebellum as a whole, confirming previous results. However, as distinguished from these reports, we observed that quantified parameters contribute differently to the abnormal growth of the wv/wv cerebellar lobes. Qualitative analysis showed anomalies in wv/wv cerebellar cytoarchitecture, depending on the age and lobe analyzed. Such abnormalities included the presence of the external granular layer after P20 and, at P90, ectopic cells located in the molecular layer following several placement patterns. Finally, we obtained autoradiographic evidence that wild-type and wv/wv PCs presented similar neurogenetic timetables, as reported. However, the innovative character of this current work lies in the fact that the neurogenetic gradients of wv/wv PCs were not modified from P8 to P90. A tendency for the accumulation of late-formed PCs in the anterior and posterior lobes was found, whereas early-generated PCs were concentrated in the central and inferior lobes. These data suggested that wv/wv PCs may migrate properly to their final destinations. The extrapolation of our results to patients affected with cerebellar ataxias suggests that all cerebellar cortex lobes are affected with several age-dependent alterations in cytoarchitectonics. We also propose that PC loss may be regionally

  6. Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells

    PubMed Central

    Elisabetta Cesana, Lia Forti; Mapelli, Jonathan; D'Angelo, Egidio

    2006-01-01

    Although Golgi cells (GoCs), the main type of inhibitory interneuron in the cerebellar granular layer (GL), are thought to play a central role in cerebellar network function, their excitable properties have remained unexplored. GoCs fire rhythmically in vivo and in slices, but it was unclear whether this activity originated from pacemaker ionic mechanisms. We explored this issue in acute cerebellar slices from 3-week-old rats by combining loose cell-attached (LCA) and whole-cell (WC) recordings. GoCs displayed spontaneous firing at 1–10 Hz (room temperature) and 2–20 Hz (35–37°C), which persisted in the presence of blockers of fast synaptic receptors and mGluR and GABAB receptors, thus behaving, in our conditions, as pacemaker neurons. ZD 7288 (20 μm), a potent hyperpolarization-activated current (Ih) blocker, slowed down pacemaker frequency. The role of subthreshold Na+ currents (INa,sub) could not be tested directly, but we observed a robust TTX-sensitive, non-inactivating Na+ current in the subthreshold voltage range. When studying repolarizing currents, we found that retigabine (5 μm), an activator of KCNQ K+ channels generating neuronal M-type K+ (IM) currents, reduced GoC excitability in the threshold region. The KCNQ channel antagonist XE991 (5 μm) did not modify firing, suggesting that GoC IM has low XE991 sensitivity. Spike repolarization was followed by an after-hyperpolarization (AHP) supported by apamin-sensitive Ca2+-dependent K+ currents (Iapa). Block of Iapa decreased pacemaker precision without altering average frequency. We propose that feed-forward depolarization is sustained by Ih and INa,sub, and that delayed repolarizing feedback involves an IM-like current whose properties remain to be characterized. The multiple ionic mechanisms shown here to contribute to GoC pacemaking should provide the substrate for fine regulation of firing frequency and precision, thus influencing the cyclic inhibition exerted by GoCs onto the cerebellar GL

  7. The primary vestibular projection to the cerebellar cortex in the pigeon (Columba livia)

    SciTech Connect

    Schwarz, I.E.; Schwarz, D.W.

    1983-06-01

    The cerebellar cortex of the pigeon receiving direct vestibular afferents was delineated by anterograde transport of (/sup 3/H)-amino acids injected into the vestibular nerve. Labelled mossy fiber rosettes in the granular layer were concentrated in lobule X (nodulus) and to a lesser extent, in the ventral portion of lobule IXd (uvula and paraflocculus). A few solitary labelled rosettes were also found in more dorsal portions of lobule IX, as well as in the anterior lobe between lobule II and IV. The lingula remained unlabelled. Discrete injections of (/sup 3/H)-leucine into the cristae of each of the three semicircular canals or the utricular macula yielded a similar distribution of fewer labelled rosettes. A few primary mossy fiber terminals labelled after cochlear injections are attributed to afferents from the lagenar macula. Since effective diffusion of label from the injection site was excluded by controls, it is concluded that projection of individual canal and macula nerves to the vestibulocerebellar cortex is not topographically separated. It is proposed that this extensive convergence of various afferents is required by the cerebellum to compute precise and directionally specific control signals during head rotation in all conceivable planes.

  8. Gestational lead exposure induces developmental abnormalities and up-regulates apoptosis of fetal cerebellar cells in rats.

    PubMed

    Mousa, Alyaa M; Al-Fadhli, Ameera S; Rao, Muddanna S; Kilarkaje, Narayana

    2015-01-01

    Lead (Pb), a known environmental toxicant, adversely affects almost all organ systems. In this study, we investigated the effects of maternal lead exposure on fetal rat cerebellum. Female Sprague-Dawley rats were given lead nitrate in drinking water (0, 0.5, and 1%) for two weeks before conception, and during pregnancy. Fetuses were collected by caesarian section on gestational day 21 and observed for developmental abnormalities. The fetal cerebellar sections from control and 1% lead group were stained with cresyl violet. Immunohistochemical expressions of p53, Bax, Bcl-2, and caspase 3 were quantified by AnalySIS image analyzer (Life Science, Germany). Lead exposure induced developmental abnormalities of eyes, ear, limbs, neck and ventral abdominal wall; however, these abnormalities were commonly seen in the 1% lead-treated group. In addition, lead also caused fetal mortality and reduced body growth in both dose groups and reduced brain weight in the 1% lead-treated group. The fetal cerebella from the 1% lead-treated group showed unorganized cerebellar cortical layers, and degenerative changes in granule and Purkinje cells such as the formation of clumps of Nissl granules. An increase in Bax and caspase 3, and a decrease in Bcl-2 (p < 0.05), but not in p53, showed apoptosis of the neurons. In conclusion, gestational lead exposure in rats induces fetal toxicity and developmental abnormalities. The lead exposure also impairs development of cerebellar layers, induces structural changes, and apoptosis in the fetal cerebellar cortex. These results suggest that lead exposure during gestation is extremely toxic to developing cerebellum in rats.

  9. Twitch-related and rhythmic activation of the developing cerebellar cortex

    PubMed Central

    Plumeau, Alan M.; Mukherjee, Didhiti; Blumberg, Mark S.

    2015-01-01

    The cerebellum is a critical sensorimotor structure that exhibits protracted postnatal development in mammals. Many aspects of cerebellar circuit development are activity dependent, but little is known about the nature and sources of the activity. Based on previous findings in 6-day-old rats, we proposed that myoclonic twitches, the spontaneous movements that occur exclusively during active sleep (AS), provide generalized as well as topographically precise activity to the developing cerebellum. Taking advantage of known stages of cerebellar cortical development, we examined the relationship between Purkinje cell activity (including complex and simple spikes), nuchal and hindlimb EMG activity, and behavioral state in unanesthetized 4-, 8-, and 12-day-old rats. AS-dependent increases in complex and simple spike activity peaked at 8 days of age, with 60% of units exhibiting significantly more activity during AS than wakefulness. Also, at all three ages, approximately one-third of complex and simple spikes significantly increased their activity within 100 ms of twitches in one of the two muscles from which we recorded. Finally, we observed rhythmicity of complex and simple spikes that was especially prominent at 8 days of age and was greatly diminished by 12 days of age, likely due to developmental changes in climbing fiber and mossy fiber innervation patterns. All together, these results indicate that the neurophysiological activity of the developing cerebellum can be used to make inferences about changes in its microcircuitry. They also support the hypothesis that sleep-related twitches are a prominent source of discrete climbing and mossy fiber activity that could contribute to the activity-dependent development of this critical sensorimotor structure. PMID:26156383

  10. Flavoprotein imaging in the cerebellar cortex in vivo: cellular and metabolic basis and insights into cerebellar function

    NASA Astrophysics Data System (ADS)

    Gao, Wangcai; Chen, Gang; Ebner, Timothy J.

    2009-02-01

    Flavoprotein autofluorescence is an activity dependent intrinsic signal. Flavoproteins are involved in the electron transport chain and change their fluorescence according to the cellular redox state. We have been using flavoprotein autofluorescence in the cerebellum to examine properties of cerebellar circuits. Studies have also focused on understanding the cellular and metabolic origins of this intrinsic optical signal. Parallel fiber stimulation evokes a beamlike response intersected by bands of decreased fluorescence. The beam response is biphasic, with an early fluorescence increase (light phase) followed by a slower decrease (dark phase). We show this signal originates from flavoproteins as determined by its wavelength selectivity and sensitivity to blockers of the electron transport chain. Selectively blocking glutamate receptors abolished the on-beam light phase with the dark phase remaining intact. This demonstrates that the light phase is due to postsynaptic neuronal activation and suggests the dark phase is primarily due to glial activation. The bands of reduced fluorescence intersecting the beam are primarily neuronal in origin, mediated by GABAergic transmission, and due to the inhibitory action of molecular layer interneurons on Purkinje cells and the interneurons themselves. This parasagittally organized molecular layer inhibition differentially modulates the spatial pattern of cerebellar cortical activity. Flavoprotein imaging also reveals the functional architectures underlying the responses to inferior olive and peripheral whisker pad stimulation. Therefore, flavoprotein autofluorescence imaging is providing new insights into cerebellar cortical function and neurometabolic coupling.

  11. Calbindin D28k distribution in neurons and reactive gliosis in cerebellar cortex of natural Rabies virus-infected cattle.

    PubMed

    Verdes, José Manuel; de Sant'Ana, Fabiano José Ferreira; Sabalsagaray, María Jesús; Okada, Kosuke; Calliari, Aldo; Moraña, José Antonio; de Barros, Claudio Severo Lombardo

    2016-07-01

    Rabies has been an enigmatic disease because microscopic findings in central nervous system tissues do not always correlate well with the severity of the clinical illness. Immunohistochemical staining of the calcium-binding protein calbindin (specifically CbD28k) seems to be the technique most used to identify Purkinje neurons under normal and pathological conditions. In the present work, we evaluated CbD28k immunoreactivity in the cerebellar cortex of normal and natural Rabies virus (RABV)-infected cattle. We examined brains from 3 normal cows and from 6 crossbreed cattle with a histologic diagnosis of rabies. Samples were taken from the cerebral cortex, cerebellum, hippocampus, and brainstem. Immunohistochemistry was carried out using the following primary antibodies: anti-RABV, anti-GFAP, and anti-CbD28k. In the cerebellar cortex, RABV infection caused the loss of CbD28k immunostaining in Purkinje cells; some large interneurons in the granular layer maintained their positive CbD28k immunoreaction. The identification of this loss of CbD28k reactivity in cerebellar Purkinje cells of RABV-infected cattle presents a potentially valuable tool to explore the impairment of Ca(2+) homeostasis. In addition, this may become a useful method to identify specific molecular alterations associated with the higher prevalence of Negri bodies in Purkinje cells of cattle. Furthermore, we detected the presence of rabies viral antigens in different regions of the central nervous system, accompanied by microglial proliferation and mild reactive astrogliosis.

  12. Determinants of rebound burst responses in rat cerebellar nuclear neurons to physiological stimuli.

    PubMed

    Dykstra, Steven; Engbers, Jordan D T; Bartoletti, Theodore M; Turner, Ray W

    2016-02-15

    Cerebellar Purkinje cells project GABAergic inhibitory input to neurons of the deep cerebellar nuclei (DCN) that generate a rebound increase in firing, but the specific patterns of input that might elicit a rebound response have not been established. We used recordings of Purkinje cell firing obtained during perioral whisker stimulation in vivo to create a physiological stimulus template to activate Purkinje cell afferents in vitro. DCN cell bursts were evoked by the stimulus pattern but not in relation to the perioral whisker stimulus, complex spikes or regular patterns within the Purkinje cell record. Reverse correlation revealed that bursts were triggered by an elevation-pause pattern of Purkinje cell firing, with pause duration a key factor in burst generation. Our data identify for the first time a physiological pattern of Purkinje cell input that can be encoded by the generation of rebound bursts in DCN cells. The end result of signal processing in cerebellar cortex is encoded in the output of Purkinje cells that project inhibitory input to deep cerebellar nuclear (DCN) neurons. DCN cells can respond to a period of inhibition in vitro with a rebound burst of firing, yet the optimal physiological pattern of Purkinje cell input that might evoke a rebound burst is unknown. The current study used spike trains recorded from rat Purkinje cells in response to perioral stimuli in vivo to create a physiological pattern to stimulate Purkinje cell axons in vitro. The perioral stimulus-evoked Purkinje cell firing pattern proved to be virtually ineffective in evoking a rebound burst despite the ability to reliably evoke rebounds using a traditional brief 100 Hz stimulus. Similarly, neither complex spike firing nor Purkinje cell patterns identified by CV2 analysis were reliably associated with rebound bursts. Reverse correlation revealed that the optimal Purkinje cell input to evoke a rebound burst was a sequential increase in mean firing rate of at least 30 Hz above

  13. Selective Developmental Increase in the Climbing Fiber Input to the Cerebellar Interpositus Nucleus in Rats

    PubMed Central

    Nicholson, Daniel A.; Freeman, John H.

    2008-01-01

    Previous studies have demonstrated that learning-related cerebellar plasticity and stimulus-elicited neuronal activity emerge ontogenetically in parallel with delay eyeblink conditioning in rats. The present study examined cerebellar interpositus field potentials and multiunit neuronal activity evoked by microstimulation of the inferior olive in Postnatal Day 17 and 24 rats. The slope and amplitude of the excitatory postsynaptic potential and the number of evoked multiunit spikes increased with age, whereas the inhibitory postsynaptic potential caused by Purkinje cell input remained stable. These results are consistent with the notion that the postsynaptic depolarization of cerebellar interpositus neurons caused by cerebellar afferents (e.g., the climbing fibers of the inferior olive) is a critical factor contributing to the ontogeny of delay eyeblink conditioning in rats. PMID:15506893

  14. From Neurons to Neuron Neighborhoods: the Rewiring of the Cerebellar Cortex in Essential Tremor

    PubMed Central

    2014-01-01

    Remarkably little has been written on the biology of essential tremor (ET), despite its high prevalence. The olivary model, first proposed in the 1970s, is the traditional disease model for ET; however, the model is problematic for a number of reasons. Recently, intensive tissue-based studies have identified a series of structural changes in the brains of most ET cases, and nearly all of the observed changes are located in the cerebellar cortex. These studies suggest that Purkinje cells are central to the pathogenesis of ET and may thus provide a focus for the development of novel therapeutic strategies. Arising from these studies, a new model of ET proposes that the population of Purkinje cells represents the site of the initial molecular/cellular events leading to ET. Furthermore, a number of secondary changes/remodeling observed in the molecular and granular layers (i.e., in the Purkinje cell “neighborhood”) are likely to be of additional mechanistic importance. On a physiological level, the presence of remodeling indicates the likely formation of aberrant synapses and the creation of new/abnormal cortical circuits in ET. Specific efforts need to be devoted to understanding the cascade of biochemical and cellular events occurring in the Purkinje cell layer in ET and its neuron neighborhood, as well as the physiological effects of secondary remodeling/rewiring that are likely to be occurring in this brain region in ET. PMID:24435423

  15. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex.

    PubMed

    Zhang, Weiping; Schmelzeisen, Steffen; Parthier, Daniel; Frings, Stephan; Möhrlen, Frank

    2015-01-01

    Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum.

  16. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex

    PubMed Central

    Parthier, Daniel; Frings, Stephan; Möhrlen, Frank

    2015-01-01

    Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum. PMID:26558388

  17. Visuokinesthetic Perception of Hand Movement is Mediated by Cerebro–Cerebellar Interaction between the Left Cerebellum and Right Parietal Cortex

    PubMed Central

    Hagura, Nobuhiro; Oouchida, Yutaka; Aramaki, Yu; Okada, Tomohisa; Matsumura, Michikazu; Sadato, Norihiro

    2009-01-01

    Combination of visual and kinesthetic information is essential to perceive bodily movements. We conducted behavioral and functional magnetic resonance imaging experiments to investigate the neuronal correlates of visuokinesthetic combination in perception of hand movement. Participants experienced illusory flexion movement of their hand elicited by tendon vibration while they viewed video-recorded flexion (congruent: CONG) or extension (incongruent: INCONG) motions of their hand. The amount of illusory experience was graded by the visual velocities only when visual information regarding hand motion was concordant with kinesthetic information (CONG). The left posterolateral cerebellum was specifically recruited under the CONG, and this left cerebellar activation was consistent for both left and right hands. The left cerebellar activity reflected the participants' intensity of illusory hand movement under the CONG, and we further showed that coupling of activity between the left cerebellum and the “right” parietal cortex emerges during this visuokinesthetic combination/perception. The “left” cerebellum, working with the anatomically connected high-order bodily region of the “right” parietal cortex, participates in online combination of exteroceptive (vision) and interoceptive (kinesthesia) information to perceive hand movement. The cerebro–cerebellar interaction may underlie updating of one's “body image,” when perceiving bodily movement from visual and kinesthetic information. PMID:18453537

  18. Quantitative analysis of granule cell axons and climbing fiber afferents in the turtle cerebellar cortex.

    PubMed

    Tolbert, D L; Conoyer, B; Ariel, M

    2004-11-01

    The turtle cerebellar cortex is a single flat sheet of gray matter that greatly facilitates quantitative analysis of biotylinated dextran amine labeled granule cell and olivocerebellar axons and Nissl-stained granule and Purkinje neurons. On average, ascending granule cell axons are relatively thicker than their parallel fiber branches (mean +/- SD: 0.84 +/- 0.17 vs 0.64 +/- 0.12 microm, respectively). Numerous en passant swellings, the site of presynaptic contact, were present on both ascending and parallel fiber granule cell axons. The swellings on ascending axons (1.82 +/- 0.34 microm, n = 52) were slightly larger than on parallel fibers (1.43 +/- 0.24 microm, n = 430). In addition, per unit length (100 microm) there were more swellings on ascending axons (11.2 +/- 4.2) than on parallel fibers (9.7 +/- 4.2). Each parallel fiber branch from an ascending axon is approximately 1.5 mm long. Olivocerebellar climbing fiber axons followed the highly tortuous dendrites of Purkinje cells in the inner most 15-20% of the molecular layer. Climbing fibers displayed relatively fewer en passant swellings. The spatial perimeter of climbing fiber arbors (area) increased 72% from anteriorly (1797 microm2) to posteriorly (3090 microm2) and 104% from medially (1690 microm2) to laterally (3450 microm2). Differences in the size and spacing of en passant swellings on granule cell axons suggest that ascending axons may have a functionally more significant impact on the excitability of a limited number of radially overlying Purkinje cells than the single contacts by parallel fiber with multiple orthogonally aligned Purkinje cell dendrites. The spatially restricted distribution of climbing fibers to the inner most molecular layer, the paucity of en passant swellings, and different terminal arbor areas are enigmatic. Nevertheless, these finding provide important anatomical information for future optical imaging and electrophysiological experiments.

  19. Cellular and Metabolic Origins of Flavoprotein Autofluorescence in the Cerebellar Cortex in vivo

    PubMed Central

    Reinert, Kenneth C.; Gao, Wangcai; Chen, Gang; Wang, Xinming; Peng, Yu-Ping

    2013-01-01

    Flavoprotein autofluorescence imaging, an intrinsic mitochondrial signal, has proven useful for monitoring neuronal activity. In the cerebellar cortex, parallel fiber stimulation evokes a beam-like response consisting of an initial, short-duration increase in fluorescence (on-beam light phase) followed by a longer duration decrease (on-beam dark phase). Also evoked are parasagittal bands of decreased fluorescence due to molecular layer inhibition. Previous work suggests that the on-beam light phase is due to oxidative metabolism in neurons. The present study further investigated the metabolic and cellular origins of the flavoprotein signal in vivo, testing the hypotheses that the dark phase is mediated by glia activation and the inhibitory bands reflect decreased flavoprotein oxidation and increased glycolysis in neurons. Blocking postsynaptic ionotropic and metabotropic glutamate receptors abolished the onbeam light phase and the parasagittal bands without altering the on-beam dark phase. Adding glutamate transporter blockers reduced the dark phase. Replacing glucose with lactate (or pyruvate) or adding lactate to the bathing media abolished the on-beam dark phase and reduced the inhibitory bands without affecting the light phase. Blocking monocarboxylate transporters eliminated the on-beam dark phase and increased the light phase. These results confirm that the on-beam light phase is due primarily to increased oxidative metabolism in neurons. They also show that the on-beam dark phase involves activation of glycolysis in glia resulting in the generation of lactate that is transferred to neurons. Oxidative savings in neurons contributes to the decrease in fluorescence characterizing the inhibitory bands. These findings provide strong in vivo support for the astrocyte–neuron lactate shuttle hypothesis. PMID:21503591

  20. Chronic electrical stimulation of the contralesional lateral cerebellar nucleus enhances recovery of motor function after cerebral ischemia in rats

    PubMed Central

    Machado, Andre G.; Baker, Kenneth B.; Schuster, Daniel; Butler, Robert S.; Rezai, Ali

    2009-01-01

    Novel neurorehabilitative strategies are needed to improve motor outcomes following stroke. Based on the disynaptic excitatory projections of the dentatothalamocortical pathway to the motor cortex as well as anterior and posterior cortical areas, we hypothesize that chronic electrical stimulation of the contralesional dentate (lateral cerebellar) nucleus output can enhance motor recovery after ischemia via augmentation of perilesional cortical excitability. Seventy five Wistar rats were pre-trained in the Montoya staircase task and subsequently suffered left cerebral ischemia with the 3-vessel occlusion model. All survivors underwent stereotactic right lateral cerebellar nucleus (LCN) implantation of bipolar electrodes. Rats were then randomized to 4 groups: LCN stimulation at 10 pps, 20 pps, 50 pps or sham stimulation, which was delivered for a period of six weeks. Performance on the Montoya task was re-assessed over the last four weeks of the stimulation period. On the right (contralesional) side, motor performance of the groups undergoing sham, 10 pps, 20 pps and 50 pps stimulation was, respectively, 2.5± 2.7; 2.1 ± 2.5; 6.0 ± 3.9 (p<0.01) and 4.5 ± 3.5 pellets. There was no difference on the left (ipsilesional) side motor performance among the sham or stimulation groups, varying from 15.9 ± 6.7 to 17.2 ± 2.1 pellets. We conclude that contralesional chronic electrical stimulation of the lateral cerebellar nucleus at 20 pps but not at 10 or 50 pps improves motor recovery in rats following ischemic strokes. This effect is likely to be mediated by increased perilesional cortical excitability via chronic activation of the dentatothalamocortical pathway. PMID:19445910

  1. Effect of methotrexate on cerebellar development in infant rats.

    PubMed

    Sugiyama, Akihiko; Sun, Jing; Ueda, Kota; Furukawa, Satoshi; Takeuchi, Takashi

    2015-07-01

    Six-day-old rats were treated intraperitoneal injections with methotrexate 1 mg/kg, and the cerebellum was examined. Both the length and width of the vermis decreased in the methotrexate-treated group instead of the control from 4 day after treatment (DAT) onward. A significant reduction in the width of the external granular layer was detected on 2 and 3 DAT in the methotrexate group. By 4 DAT, the width of the external granular layer of the methotrexate group was indistinguishable from the control, and by 8 DAT, it was greater than that of the control. The molecular layer of methotrexate group on 8 and 15 DAT was thinner than that of the control. On 1 DAT, in the methotrexate group, there were many TUNEL and cleaved caspase-3-positive granular cells throughout the external granular layer, and they decreased time-dependently. On 1 DAT, in the methotrexate group, phospho-histone H3-positive cells in the external granular layer were fewer than in the control and tended to increase on 2-4 DAT. The p21-positive-rate of the external granule cells in the MTX group was higher than in the control on 1-4 DAT. These results suggested that methotrexate exposure on postnatal day 6 induces a delay, slowing in the migration of external granular cells to the inner granular layer, attributed to decrease or inhibition in the production of external granular cells that had arisen from apoptosis and the decrease in cell proliferative activity, resulting in cerebellar hypoplasia.

  2. Developmental expression of GABA transporter-1 and 3 during formation of the GABAergic synapses in the mouse cerebellar cortex.

    PubMed

    Takayama, Chitoshi; Inoue, Yoshiro

    2005-08-08

    In the brain, gamma-amino butyric acid (GABA), released extrasynaptically and synaptically from GABAergic neurons, plays important roles in morphogenesis, expression of higher functions and so on. In the GABAergic transmission system, plasma membrane GABA transporters (GATs) mediate GABA-uptake from the synaptic cleft in the mature brain and are thought to mediate diacrine of cytosolic GABA in the immature brain. In the present study, we focused on two GATs (GAT-1 and GAT-3) in the mouse cerebellar cortex, which are widely localized in neural and glial cells. Firstly, we examined the localization of GATs in the dendrites and cell bodies of developing GABAergic neurons, where GABA is extrasynaptically distributed, to clarify the GABA-diacrine before synaptogenesis. Secondly, we examined the developmental changes in the localization of GATs to reveal the development of the GABA-uptake system. Neither transporter was detected within the dendrites and cell bodies of GABAergic neurons, including Purkinje, stellate, basket and Golgi cells, in the immature cerebellar cortex. GAT-1 was observed within the Golgi cell axon terminals after postnatal day 5 (P5) and presynaptic axons of stellate and basket cells after P7. GAT-3 was localized within the astrocyte processes, sealing the GABAergic synapses in the Purkinje cell and granular layers after P10. These results indicated that GABA-diacrine did not work in the mouse cerebellar cortex. The onset of GAT-1-expression was prior to that of GAT-3. GAT-1 started to be localized within the GABAergic axon terminals during synapse formation. GAT-3 started to be localized within astrocyte processes when they sealed the synapses.

  3. Electron Tomographic Structure and Protein Composition of Isolated Rat Cerebellar, Hippocampal and Cortical Postsynaptic Densities

    PubMed Central

    Farley, MM; Swulius, MT; Waxham, MN

    2015-01-01

    Electron tomography and immunogold labeling were used to analyze similarities and differences in the morphology and protein composition of postsynaptic densities (PSDs) isolated from adult rat cerebella, hippocampi, and cortices. There were similarities in physical dimensions and gross morphology between cortical, hippocampal and most cerebellar PSDs, although the morphology among cerebellar PSDs could be categorized into three distinct groups. The majority of cerebellar PSDs were composed of dense regions of protein, similar to cortical and hippocampal PSDs, while others were either composed of granular or latticelike protein regions. Significant differences were found in protein composition and organization across PSDs from the different brain regions. The signaling protein, βCaMKII, was found to be a major component of each PSD type and was more abundant than αCaMKII in both hippocampal and cerebellar PSDs. The scaffold molecule PSD-95, a major component of cortical PSDs, was found absent in a fraction of cerebellar PSDs and when present was clustered in its distribution. In contrast, immunogold labeling for the proteasome was significantly more abundant in cerebellar and hippocampal PSDs than cortical PSDs. Together, these results indicate that PSDs exhibit remarkable diversity in their composition and morphology, presumably as a reflection of the unique functional demands placed on different synapses. PMID:26215919

  4. A novel approach for treating cerebellar ataxias.

    PubMed

    Manto, Mario; Ben Taib, Nordeyn Oulad

    2008-01-01

    The terminology of cerebellar ataxias encompasses a variety of sporadic and inherited debilitating diseases. Patients exhibit disabling deficits such as dysmetria, kinetic tremor and ataxia of stance/gait. We are currently lacking effective treatments in degenerative cerebellar ataxias. Animal models of cerebellar disorders and studies in ataxic patients have demonstrated that the excitability of the sensorimotor cortex is severely depressed in case of cerebellar lesion. These reduced levels of excitability are associated with learning deficits. Recent experimental data show that transcranial direct current stimulation (tDCS) of the premotor cortex and low-frequency repetitive stimulation of the motor cortex (LFRSM1) restore the excitability of the motor cortex in hemicerebellectomized rats, reinstating the ability of the motor cortex to adapt to sustained peripheral stimulation. The hypothesis is based on the possibility that the combination of tDCS and contralateral LFRSM1 can improve human cerebellar ataxias. The proposed treatment consists of delivering trains of tDCS either in conjunction or in alternance with contralateral LFRSM1, in addition to application of peripheral nerve stimulation to sensitize the sensorimotor cortex. This hypothesis is to be tested in a procedure made of 3 steps in patients exhibiting a sporadic or inherited cerebellar disorder. First, patients are assessed clinically using validated scales of cerebellar ataxias and performing accepted quantified tests. Second, trains of tDCS and LFRSM1 are delivered, using a sham procedure in a cross-over design. Trains of peripheral stimulation are applied at peripheral nerves. Third, patients are re-assessed clinically and with quantified tests. Although grafting of stem cells and gene therapy are being developed, they will not be available soon. A successful treatment of combined neurostimulation would lead to a new and readily available approach in the management of cerebellar ataxias. This new

  5. Calcium-dependent chloride current in rat cerebellar Purkinje cell membranes.

    PubMed

    Vykhareva, E A; Zamoyski, V L; Grigoriev, V V; Bachurin, S O

    2015-01-01

    The presence of calcium-dependent potential-activated chloride currents in the membranes of freshly isolated rat cerebellar Purkinje cells (12-15 days) was shown by the whole-cell patch clamp technique. Chloride currents appeared in a sodium-free external solution and reversibly disappeared in the absence of external chloride and calcium ions.

  6. Protective Effect of PPARγ Agonists on Cerebellar Tissues Oxidative Damage in Hypothyroid Rats

    PubMed Central

    Baghcheghi, Yousef; Beheshti, Farimah; Salmani, Hossein; Soukhtanloo, Mohammad

    2016-01-01

    The aim of the current study was to investigate the effects of peroxisome proliferator-activated receptor gamma (PPARγ) agonists on cerebellar tissues oxidative damage in hypothyroid rats. The animals included seven groups: group I (control), the animals received drinking water; group II, the animals received 0.05% propylthiouracil (PTU) in drinking water; besides PTU, the animals in groups III, IV, V, VI, and VII, were injected with 20 mg/kg vitamin E (Vit E), 10 or 20 mg/kg pioglitazone, and 2 or 4 mg/kg rosiglitazone, respectively. The animals were deeply anesthetized and the cerebellar tissues were removed for biochemical measurements. PTU administration reduced thiol content, superoxide dismutase (SOD), and catalase (CAT) activities in the cerebellar tissues while increasing malondialdehyde (MDA) and nitric oxide (NO) metabolites. Vit E, pioglitazone, and rosiglitazone increased thiol, SOD, and CAT in the cerebellar tissues while reducing MDA and NO metabolites. The results of present study showed that, similar to Vit E, both rosiglitazone and pioglitazone as PPARγ agonists exerted protective effects against cerebellar tissues oxidative damage in hypothyroid rats. PMID:28116157

  7. The Morpho/Functional Discrepancy in the Cerebellar Cortex: Looks Alone are Deceptive

    PubMed Central

    Rokni, Dan; Llinas, Rodolfo; Yarom, Yosef

    2008-01-01

    In a recent report we demonstrated that stimulation of cerebellar mossy fibers synchronously activates Purkinje cells that are located directly above the site of stimulation. We found that the activated Purkinje cells are arranged in a radial patch on the cerebellar surface and that this organization is independent of the integrity of the inhibitory system. This arrangement of activity is counterintuitive. The anatomical structure with the extensive parallel fiber system implies that mossy fiber stimulation will activate Purkinje cells along a beam of parallel fibers. In this short review we highlight this discrepancy between anatomical structure and functional dynamics and suggest a plausible underlying mechanism. PMID:19225592

  8. Reinstating the ability of the motor cortex to modulate cutaneomuscular reflexes in hemicerebellectomized rats.

    PubMed

    Oulad Ben Taib, Nordeyn; Manto, Mario

    2008-04-14

    The pathways passing through the cerebellum calibrate cutaneomuscular responses. Indeed, the enhancement of cutaneomuscular responses associated with subthreshold high-frequency trains of stimulation applied on motor cortex following a period of peripheral repetitive stimulation (PRS) is prevented by hemicerebellectomy. We analysed the effects of low-frequency repetitive stimulation of motor cortex (LFRSM1) on interhemispheric inhibition (IHI) and on the modulation of cutaneomuscular reflexes in rats with left hemicerebellar ablation. IHI was assessed by paired-pulse method with a conditioning stimulus (CS) to M1 followed by a test stimulus (TS) to the opposite M1. LFRSM1 reduced IHI. Combination of LFRSM1 with PRS increased significantly the magnitudes of cutaneomuscular responses evoked ipsilaterally to the hemicerebellar ablation. The increase of the intensity of cutaneomuscular responses was correlated with the reduction of IHI. Excitability of anterior horn motoneurons pool, assessed by F-wave, remained unchanged. Conjunction of LFRSM1 with PRS can be used to restore the ability of the motor cortex to modulate the intensity of cutaneomuscular responses in case of extensive unilateral cerebellar lesion. This study underlines for the first time the potential role of callosal pathways in the deficits of corticomotor tuning of cutaneomuscular responses contralaterally to acute extensive cerebellar lesion.

  9. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function.

    PubMed

    Naro, Antonino; Bramanti, Alessia; Leo, Antonino; Manuli, Alfredo; Sciarrone, Francesca; Russo, Margherita; Bramanti, Placido; Calabrò, Rocco Salvatore

    2017-01-07

    The cerebellum regulates several motor functions through two main mechanisms, the cerebellum-brain inhibition (CBI) and the motor surround inhibition (MSI). Although the exact cerebellar structures and functions involved in such processes are partially known, Purkinje cells (PC) and their surrounding interneuronal networks may play a pivotal role concerning CBI and MSI. Cerebellar transcranial alternating current stimulation (tACS) has been proven to shape specific cerebellar components in a feasible, safe, effective, and non-invasive manner. The aim of our study was to characterize the cerebellar structures and functions subtending CBI and MSI using a tACS approach. Fifteen healthy individuals underwent a cerebellar tACS protocol at 10, 50, and 300 Hz, or a sham-tACS over the right cerebellar hemisphere. We measured the tACS aftereffects on motor-evoked potential (MEP) amplitude, CBI induced by tACS (tiCBI) at different frequencies, MSI, and hand motor task performance. None of the participants had any side effect related to tACS. After 50-Hz tACS, we observed a clear tiCBI-50Hz weakening (about +30%, p < 0.001) paralleled by a MEP amplitude increase (about +30%, p = 0.001) and a reduction of the time required to complete some motor task (about -20%, p = 0.01), lasting up to 30 min. The 300-Hz tACS induced a selective, specific tiCBI-300Hz and tiCBI-50Hz modulation in surrounding muscles (about -15%, p = 0.01) and MSI potentiation (about +40%, p < 0.001). The 10-Hz tACS and the sham-tACS were ineffective (p > 0.6). Our preliminary data suggest that PC may represent the last mediator of tiCBI and that the surrounding interneuronal network may have an important role in updating MSI, tiCBI, and M1 excitability during tonic muscle contraction, by acting onto the PC. The knowledge of these neurophysiological issues offers new cues to design innovative, non-invasive neuromodulation protocols to shape cerebellar-cerebral functions.

  10. Development of motor coordination and cerebellar structure in male and female rat neonates exposed to hypergravity

    NASA Astrophysics Data System (ADS)

    Nguon, K.; Ladd, B.; Baxter, M. G.; Sajdel-Sulkowska, E. M.

    2006-01-01

    We previously reported that the developing rat cerebellum is affected by exposure to hypergravity. In the present study, we explored the hypothesis that the changes in cerebellar structure in hypergravity-exposed rat neonates may affect their motor coordination. Furthermore, we hypothesized that the changes observed at 1.5G will be magnified at higher gravitational loading. To test this hypothesis, we compared motor behavior, cerebellar structure, and protein expression in rat neonates exposed to 1.5 1.75G on a 24-ft centrifuge daily for 22.5 h starting on gestational day (G) 10, through birth on G22/G23 and through postnatal day (P) 21. Exposure to hypergravity impacted the neurodevelopmental process as indicated by: (1) impaired righting response on P3, more than doubling the righting time at 1.75G, and (2) delayed onset of the startle response by one day, from P9 in controls to P10 in hypergravity-exposed pups. Hypergravity exposure resulted in impaired motor functions as evidenced by performance on a rotarod on P21; the duration of the stay on the rotarod recorded for 1.75G pups of both sexes was one tenth that of the stationary control (SC) pups. These changes in motor behavior were associated with cerebellar changes: (1) cerebellar mass on P6 was decreased by 7.5% in 1.5G-exposed male pups, 27.5% in 1.75G-exposed male pups, 17.5% in 1.5G-exposed female pups, and 22.5% in 1.75G female pups and (2) changes in the expression of glial and neuronal proteins. The results of this study suggest that perinatal exposure to hypergravity affects cerebellar development as evidenced by decreased cerebellar mass and altered cerebellar protein expression; cerebellar changes observed in hypergravity-exposed rat neonates are associated with impaired motor behavior. Furthermore, the response to hypergravity appears to be different in male and female neonates. If one accepts that the hypergravity paradigm is a useful animal model with which to predict those biological processes

  11. Cellular and Subcellular Localization of the RGS7/Gβ5/R7BP Complex in the Cerebellar Cortex

    PubMed Central

    Aguado, Carolina; Orlandi, Cesare; Fajardo-Serrano, Ana; Gil-Minguez, Mercedes; Martemyanov, Kirill A.; Luján, Rafael

    2016-01-01

    A member of regulator of G-protein signaling family, RGS7, is an essential modulator of signaling through GABAB receptors. RGS7 functions as a macromolecular complex with type 5 G protein β (Gβ5) and R7 binding protein (R7BP) to control the localization and function of the resultant heterotrimeric complexes. Here, we used co-immunoprecipitation, in situ hybridization, histoblot and immunohistochemical techniques at the light and electron microscopic level to advance understanding of RGS7-Gβ5-R7BP complexes in the central nervous system, focusing on distinct neuronal populations in the cerebellar cortex. Histoblot analysis showed that RGS7, Gβ5 and R7BP proteins were widely expressed in the brain, with mostly an overlapping pattern and showing a high expression level in the molecular layer of the cerebellar cortex. Co-immunoprecipitation experiments established that the RGS7/Gβ5 forms complexes with R7BP in the cerebellum. At the cellular level, RGS7 and R7BP mRNAs were expressed at the highest level in Purkinje cells (PCs) and Golgi cells, and at low levels in granule cells. Immunohistochemistry confirmed that labeling for RGS7, Gβ5 and R7BP were present in the three neuronal populations and concentrated in dendrites and spines. At the electron microscopic level, immunolabeling for RGS7, Gβ5 and R7BP proteins was found both at postsynaptic and presynaptic sites and showed similar distribution patterns. Immunoreactivity for the three proteins was mostly localized along the extrasynaptic plasma membrane of dendritic shafts and spines of PCs and to a lesser extent, in axon terminals (AT) establishing excitatory synapses. Quantitative analysis of immunogold particles for RGS7, Gβ5 and R7BP revealed that they are non-uniformly distributed along the surface of PCs, and show enrichment around excitatory synapses on dendritic spines. We further report that deletion of R7BP in mice reduced the targeting of both RGS7 and Gβ5 to the plasma membrane. Altogether, these

  12. [Effect of acupuncture at different acupoints on electric activities of rat cerebellar fastigial nuclear].

    PubMed

    Liang, Chao; Wang, Yuan; Xu, Bin; Yu, Zhi

    2015-04-01

    To explore whether different acupuncture signals were afferent to the cerebellar fastigial nucleus (FN) neuron and to find out their corresponding effect features through observing the effect of spontaneous discharge of cerebellar FN neuron by needling at different acupoints. Totally 120 male SD rats were anesthetized by 20% urethane and their right cerebellar FN were positioned (AP 11. 6 mm, RL 1. 0 mm, H 5. 6 mm). Extracelluar discharge was recorded by glass microelectrode (AP: -11. 6 mm, R: 1. 0 mm, H: 5.7 -7. 0 mm), using extracellular microelectrode recording method, recording the spontaneous discharge of cerebellar FN neurons as a baseline. Random order of needling at zusanli (ST36), quchi (Lil1), weishu (BL21), and zhongwan (CV12) were compared with the baseline before each acupuncture. Their effects on the discharge of cerebellar FN neurons were observed and compared with baselines. The frequency of FN neuronal discharge could be elevated by needling at zusanli (ST36), quchi (LiI), weishu (BL21), and zhongwan (CV12) (P <0. 01, P <0. 05). The response rate of needling at Zhongwan (CV12, 56. 00%) was higher than that of needling at Zusanli (ST36), Quchi (Ll1), and Weishu (BL21) (35. 00%, 34. 62%, 36. 63%, respectively) with statistical difference (P <0. 05). The response rate of needling at zhongwan (CV12) was obviously higher than that of needing at other points (F = 2. 101, P < 0. 05). Needling at zusanli (ST36 ), quchi (Lil), weishu (BL21), and zhongwan (CV12) could elevate the spontaneous discharge frequency of cerebellar FN neurons. Needling at Zhongwan (CV12) had advantageous roles in regulating cerebellar FN.

  13. Developmental regulation of glucose transporters GLUT3, GLUT4 and GLUT8 in the mouse cerebellar cortex

    PubMed Central

    Gómez, Olga; Ballester-Lurbe, Begoña; Poch, Enric; Mesonero, José E; Terrado, José

    2010-01-01

    Glucose uptake into the mammalian nervous system is mediated by the family of facilitative glucose transporter proteins (GLUT). In this work we investigate how the expression of the main neuronal glucose transporters (GLUT3, GLUT4 and GLUT8) is modified during cerebellar cortex maturation. Our results reveal that the levels of the three transporters increase during the postnatal development of the cerebellum. GLUT3 localizes in the growing molecular layer and in the internal granule cell layer. However, the external granule cell layer, Purkinje cell cytoplasm and cytoplasm of the other cerebellar cells lack GLUT3 expression. GLUT4 and GLUT8 have partially overlapping patterns, which are detected in the cytoplasm and dendrites of Purkinje cells, and also in the internal granule cell layer where GLUT8 displays a more diffuse pattern. The differential localization of the transporters suggests that they play different roles in the cerebellum, although GLUT4 and GLUT8 could also perform some compensatory or redundant functions. In addition, the increase in the levels and the area expressing the three transporters suggests that these roles become more important as development advances. Interestingly, the external granule cells, which have been shown to express the monocarboxylate transporter MCT2, express none of the three main neuronal GLUTs. However, when these cells migrate inwardly to differentiate in the internal granule cells, they begin to produce GLUT3, GLUT4 and GLUT8, suggesting that the maturation of the cerebellar granule cells involves a switch in their metabolism in such a way that they start using glucose as they mature. PMID:20819112

  14. Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex.

    PubMed

    Caligiore, Daniele; Pezzulo, Giovanni; Baldassarre, Gianluca; Bostan, Andreea C; Strick, Peter L; Doya, Kenji; Helmich, Rick C; Dirkx, Michiel; Houk, James; Jörntell, Henrik; Lago-Rodriguez, Angel; Galea, Joseph M; Miall, R Chris; Popa, Traian; Kishore, Asha; Verschure, Paul F M J; Zucca, Riccardo; Herreros, Ivan

    2017-02-01

    Despite increasing evidence suggesting the cerebellum works in concert with the cortex and basal ganglia, the nature of the reciprocal interactions between these three brain regions remains unclear. This consensus paper gathers diverse recent views on a variety of important roles played by the cerebellum within the cerebello-basal ganglia-thalamo-cortical system across a range of motor and cognitive functions. The paper includes theoretical and empirical contributions, which cover the following topics: recent evidence supporting the dynamical interplay between cerebellum, basal ganglia, and cortical areas in humans and other animals; theoretical neuroscience perspectives and empirical evidence on the reciprocal influences between cerebellum, basal ganglia, and cortex in learning and control processes; and data suggesting possible roles of the cerebellum in basal ganglia movement disorders. Although starting from different backgrounds and dealing with different topics, all the contributors agree that viewing the cerebellum, basal ganglia, and cortex as an integrated system enables us to understand the function of these areas in radically different ways. In addition, there is unanimous consensus between the authors that future experimental and computational work is needed to understand the function of cerebellar-basal ganglia circuitry in both motor and non-motor functions. The paper reports the most advanced perspectives on the role of the cerebellum within the cerebello-basal ganglia-thalamo-cortical system and illustrates other elements of consensus as well as disagreements and open questions in the field.

  15. Excitation of Rat Cerebellar Golgi Cells by Ethanol: Further Characterization of the Mechanism

    PubMed Central

    Botta, Paolo; de Souza, Fabio M. Simões; Sangrey, Thomas; De Schutter, Erik; Valenzuela, C. Fernando

    2012-01-01

    Background Studies with rodents suggest that acute ethanol exposure impairs information flow through the cerebellar cortex, in part, by increasing GABAergic input to granule cells. Experiments suggest that an increase in the excitability of specialized GABAergic interneurons that regulate granule cell activity (i.e. Golgi cells, GoCs) contributes to this effect. In GoCs, ethanol increases spontaneous action potential firing frequency, decreased the afterhyperpolarization amplitude, and depolarized the membrane potential. Studies suggest that these effects could be mediated by inhibition of the Na+/K+ ATPase. The purpose of this study was to characterize the potential role of other GoC conductances in the mechanism of action of ethanol. Methods Computer modeling techniques and patch-clamp electrophysiological recordings with acute slices from rat cerebella were used for these studies. Results Computer modeling suggested that modulation of subthreshold Na+ channels, hyperpolarization activated currents and several K+ conductances could explain some but not all actions of ethanol on GoCs. Electrophysiological studies did not find evidence consistent with a contribution of these conductances. Quinidine, a non-selective blocker of several types of channels (including several K+ channels) that also antagonizes the Na+/K+ ATPase, reduced the effect of ethanol on GoC firing. Conclusions These findings lend further support to the conclusion that ethanol increases GoC excitability via modulation of the Na+/K+ ATPase, and suggest that a quinidine-sensitive K+ channel may also play a role in the mechanism of action of ethanol. PMID:22004123

  16. Neuroscience and Learning: Lessons from Studying the Involvement of a Region of Cerebellar Cortex in Eyeblink Classical Conditioning

    PubMed Central

    Villarreal, Ronald P; Steinmetz, Joseph E

    2005-01-01

    How the nervous system encodes learning and memory processes has interested researchers for 100 years. Over this span of time, a number of basic neuroscience methods has been developed to explore the relationship between learning and the brain, including brain lesion, stimulation, pharmacology, anatomy, imaging, and recording techniques. In this paper, we summarize how different research approaches can be employed to generate converging data that speak to how structures and systems in the brain are involved in simple associative learning. To accomplish this, we review data regarding the involvement of a particular region of cerebellar cortex (Larsell's lobule HVI) in the widely used paradigm of classical eyeblink conditioning. We also present new data on the role of lobule HVI in eyeblink conditioning generated by combining temporary brain inactivation and single-cell recording methods, an approach that looks promising for further advancing our understanding of relationships between brain and behavior. PMID:16596983

  17. Effects of prenatal paraquat and mancozeb exposure on amino acid synaptic transmission in developing mouse cerebellar cortex.

    PubMed

    Miranda-Contreras, Leticia; Dávila-Ovalles, Rosaura; Benítez-Díaz, Pedro; Peña-Contreras, Zulma; Palacios-Prü, Ernesto

    2005-11-07

    The goal of this study was to analyze the effects of prenatal exposure to the pesticides paraquat (PQ) and mancozeb (MZ) on the development of synaptic transmission in mouse cerebellar cortex. Pregnant NMRI mice were treated with either saline, 10 mg/kg PQ, 30 mg/kg MZ or the combination of PQ + MZ, between gestational days 12 (E12) and E20. Variation in the levels of amino acid neurotransmitters was determined by HPLC, between postnatal day 1 (P1) and P30. Motor coordination was assessed by locomotor activity evaluation of control and experimental pups at P14, P21 and P30. Significant reductions in the levels of excitatory neurotransmitters, aspartate and glutamate, were observed in PQ-, MZ- or combined PQ + MZ-exposed pups, with respect to control, during peak periods of excitatory innervation of Purkinje cells: between P2-P5 and P11-P15. However, at P30, lower aspartate contents, in contrast with increased glutamate levels, were detected in all experimental groups. During the first two postnatal weeks, delays in GABA and glycine ontogenesis were observed in PQ- and PQ + MZ-exposed pups, whereas notable decrements in GABA and glycine levels were seen in PQ + MZ-exposed animals. Decreased taurine contents were detected at P3 and P11 in PQ- and PQ + MZ-exposed mice. Pups in different experimental groups all showed hyperactivity at P14 and then exhibited reduced locomotor activity at P30. Taken together, our results indicate that prenatal exposure to either PQ or MZ or the combination of both could alter the chronology and magnitude of synaptic transmission in developing mouse cerebellar cortex.

  18. Distinct subsynaptic localization of type 1 metabotropic glutamate receptors at glutamatergic and GABAergic synapses in the rodent cerebellar cortex.

    PubMed

    Mansouri, Mahnaz; Kasugai, Yu; Fukazawa, Yugo; Bertaso, Federica; Raynaud, Fabrice; Perroy, Julie; Fagni, Laurent; Kaufmann, Walter A; Watanabe, Masahiko; Shigemoto, Ryuichi; Ferraguti, Francesco

    2015-01-01

    Type 1 metabotropic glutamate (mGlu1) receptors play a pivotal role in different forms of synaptic plasticity in the cerebellar cortex, e.g. long-term depression at glutamatergic synapses and rebound potentiation at GABAergic synapses. These various forms of plasticity might depend on the subsynaptic arrangement of the receptor in Purkinje cells that can be regulated by protein-protein interactions. This study investigated, by means of the freeze-fracture replica immunogold labelling method, the subcellular localization of mGlu1 receptors in the rodent cerebellum and whether Homer proteins regulate their subsynaptic distribution. We observed a widespread extrasynaptic localization of mGlu1 receptors and confirmed their peri-synaptic enrichment at glutamatergic synapses. Conversely, we detected mGlu1 receptors within the main body of GABAergic synapses onto Purkinje cell dendrites. Although Homer proteins are known to interact with the mGlu1 receptor C-terminus, we could not detect Homer3, the most abundant Homer protein in the cerebellar cortex, at GABAergic synapses by pre-embedding and post-embedding immunoelectron microscopy. We then hypothesized a critical role for Homer proteins in the peri-junctional localization of mGlu1 receptors at glutamatergic synapses. To disrupt Homer-associated protein complexes, mice were tail-vein injected with the membrane-permeable dominant-negative TAT-Homer1a. Freeze-fracture replica immunogold labelling analysis showed no significant alteration in the mGlu1 receptor distribution pattern at parallel fibre-Purkinje cell synapses, suggesting that other scaffolding proteins are involved in the peri-synaptic confinement. The identification of interactors that regulate the subsynaptic localization of the mGlu1 receptor at neurochemically distinct synapses may offer new insight into its trafficking and intracellular signalling.

  19. Low in situ expression of antioxidative enzymes in rat cerebellar granular cells susceptible to methylmercury.

    PubMed

    Fujimura, M; Usuki, F

    2014-01-01

    Methylmercury (MeHg), an environmental neurotoxicant, induces site-specific toxicity in the brain. Although oxidative stress has been demonstrated with MeHg toxicity, the site-specific toxicity is not completely understood. Among the cerebellar neurons, cerebellar granule cells (CGCs) appear vulnerable to MeHg, whereas Purkinje cells and molecular layer neurons are resistant. Here, we use a MeHg-intoxicated rat model to investigate these cerebellar neurons for the different causes of susceptibility to MeHg. Rats were exposed to 20 ppm MeHg for 4 weeks and subsequently exhibited neuropathological changes in the cerebellum that were similar to those observed in humans. We first isolated the three cerebellar neuron types using a microdissection system and then performed real-time PCR analyses for antioxidative enzymes. We observed that expression of manganese-superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GPx1), and thioredoxin reductase 1 (TRxR1) was significantly higher in Purkinje cells and molecular layer neurons than in CGCs. Finally, we performed immunohistochemical analyses on the cerebellum. Immunohistochemistry showed increased expression of Mn-SOD, GPx1, and TRxR1 in Purkinje cells and molecular layer neurons, which was coincident with the mRNA expression patterns. Considering Mn-SOD, GPx1, and TRxR1 are critical for protecting cells against MeHg intoxication, the results indicate that low expression of these antioxidative enzymes increases CGCs vulnerability to MeHg toxicity.

  20. Tiagabine treatment in kainic acid induced cerebellar lesion of dystonia rat model

    PubMed Central

    Wang, Tsui-chin; Ngampramuan, Sukonthar; Kotchabhakdi, Naiphinich

    2016-01-01

    Dystonia is a neurological disorder characterized by excessive involuntary muscle contractions that lead to twisting movements. The exaggerated movements have been studied and have implicated basal ganglia as the point of origin. In more recent studies, the cerebellum has also been identified as the possible target of dystonia, in the search for alternative treatments. Tiagabine is a selective GABA transporter inhibitor, which blocks the reuptake and recycling of GABA. The study of GABAergic drugs as an alternative treatment for cerebellar induced dystonia has not been reported. In our study, tiagabine was i.p. injected into kainic acid induced, cerebellar dystonic adult rats, and the effects were compared with non-tiagabine injected and sham-operated groups. Beam walking apparatus, telemetric electromyography (EMG) recording, and histological verification were performed to confirm dystonic symptoms in the rats on post-surgery treatment. Involuntary dystonic spasm was observed with repetitive rigidity, and twisting movements in the rats were also confirmed by a high score on the dystonic scoring and a high amplitude on the EMG data. The rats with tiagabine treatment were scored based on motor amelioration assessed via beam walking. The result of this study suggests and confirms that low dose of kainic acid microinjection is sufficient to induce dystonia from the cerebellar vermis. In addition, from the results of the EMG recording and the behavioral assessment through beam walking, tiagabine is demonstrated as being effective in reducing dystonic spasm and may be a possible alternative therapeutic drug in the treatment of dystonia. PMID:28337103

  1. The treasury of the commons: making use of public gene expression resources to better characterize the molecular diversity of inhibitory interneurons in the cerebellar cortex.

    PubMed

    Schilling, Karl; Oberdick, John

    2009-12-01

    We mined the Allen Mouse Brain Atlas for genes expressed in cerebellar cortical inhibitory interneurons that would allow identification and possibly distinction of these cells. We identified some 90 genes that are highly expressed in specific subsets of cerebellar cortical inhibitory interneurons or various combinations thereof. Four genes are exclusively expressed, within the cerebellar cortex, in molecular layer interneurons, and ten genes label exclusively inhibitory interneurons in the granule cell layer or subsets thereof. Differential expression of many of these genes in cells residing in the lower versus the upper molecular layer provides evidence that these cells, traditionally referred to as basket and stellate cells, are indeed molecularly distinct. Two genes could be identified as novel markers for unipolar brush cells. Intersection of these data with embryonic expression patterns as documented in the genepaint repository does not support a hierarchical model of cerebellar interneuron development, but may be more easily reconciled with the view that cerebellar inhibitory interneurons derive from a common precursor pool from which they are specified only late into their development. The novel markers identified here should prove useful for probing the timing and mechanisms supporting cerebellar cortical interneuron specification and diversification.

  2. Compartmentation of the cerebellar cortex: adaptation to lifestyle in the star-nosed mole Condylura cristata.

    PubMed

    Marzban, Hassan; Hoy, Nathan; Buchok, Matthew; Catania, Kenneth C; Hawkes, Richard

    2015-04-01

    The adult mammalian cerebellum is histologically uniform. However, concealed beneath the simple laminar architecture, it is organized rostrocaudally and mediolaterally into complex arrays of transverse zones and parasagittal stripes that is both highly reproducible between individuals and generally conserved across mammals and birds. Beyond this conservation, the general architecture appears to be adapted to the animal's way of life. To test this hypothesis, we have examined cerebellar compartmentation in the talpid star-nosed mole Condylura cristata. The star-nosed mole leads a subterranean life. It is largely blind and instead uses an array of fleshy appendages (the "star") to navigate and locate its prey. The hypothesis suggests that cerebellar architecture would be modified to reduce regions receiving visual input and expand those that receive trigeminal afferents from the star. Zebrin II and phospholipase Cß4 (PLCß4) immunocytochemistry was used to map the zone-and-stripe architecture of the cerebellum of the adult star-nosed mole. The general zone-and-stripe architecture characteristic of all mammals is present in the star-nosed mole. In the vermis, the four typical transverse zones are present, two with alternating zebrin II/PLCß4 stripes, two wholly zebrin II+/PLCß4-. However, the central and nodular zones (prominent visual receiving areas) are proportionally reduced in size and conversely, the trigeminal-receiving areas (the posterior zone of the vermis and crus I/II of the hemispheres) are uncharacteristically large. We therefore conclude that cerebellar architecture is generally conserved across the Mammalia but adapted to the specific lifestyle of the species.

  3. Gamma oscillations in the somatosensory cortex of newborn rats.

    PubMed

    Gerasimova, E V; Zakharov, A V; Lebedeva, Yu A; Inacio, A R; Minlebaev, M G; Sitdikova, G F; Khazipov, R N

    2014-01-01

    Here we addressed a question of whether gamma oscillations previously described in the whisker-related barrel cortex are a universal pattern of activity in the somatosensory cortex of newborn rats. Intracortical recording of local field potentials and action potentials in neurons using multisite silicon electrodes in 2-7-day-old rats showed that mechanical stimulation of single fingers or specific areas on the plantar or back side of the foot evoked early gamma oscillations followed by spindle-burst oscillations in the corresponding regions of the somatosensory cortex. Early gamma oscillations had maximum amplitude in layer IV of the somatosensory cortex and effectively synchronized action potentials in layer IV neurons. It was concluded that early gamma oscillations evoked by activation of the topographic sensory input are a universal activity pattern of the entire somatosensory cortex of newborn rats.

  4. Age-Related Changes in Processing Speed: Unique Contributions of Cerebellar and Prefrontal Cortex

    PubMed Central

    Eckert, Mark A.; Keren, Noam I.; Roberts, Donna R.; Calhoun, Vince D.; Harris, Kelly C.

    2010-01-01

    Age-related declines in processing speed are hypothesized to underlie the widespread changes in cognition experienced by older adults. We used a structural covariance approach to identify putative neural networks that underlie age-related structural changes associated with processing speed for 42 adults ranging in age from 19 to 79 years. To characterize a potential mechanism by which age-related gray matter changes lead to slower processing speed, we examined the extent to which cerebral small vessel disease influenced the association between age-related gray matter changes and processing speed. A frontal pattern of gray matter and white matter variation that was related to cerebral small vessel disease, as well as a cerebellar pattern of gray matter and white matter variation were uniquely related to age-related declines in processing speed. These results demonstrate that at least two distinct factors affect age-related changes in processing speed, which might be slowed by mitigating cerebral small vessel disease and factors affecting declines in cerebellar morphology. PMID:20300463

  5. Fractal dimension values of cerebral and cerebellar activity in rats loaded with aluminium.

    PubMed

    Kekovic, Goran; Culic, Milka; Martac, Ljiljana; Stojadinovic, Gordana; Capo, Ivan; Lalosevic, Dusan; Sekulic, Slobodan

    2010-07-01

    Aluminium interferes with a variety of cellular metabolic processes in the mammalian nervous system and its intake might increase a risk of developing Alzheimer's disease (AD). While cerebral involvement even at the early stages of intoxication is well known, the role of cerebellum is underestimated. Our aim was to investigate cerebral and cerebellar electrocortical activity in adult male rats exposed to chronic aluminium treatment by nonlinear analytic tools. The adult rats in an aluminium-treated group were injected by AlCl(3), intraperitoneally (2 mg Al/kg, daily for 4 weeks). Fractal analysis of brain activity was performed off-line using Higuchi's algorithm. The average fractal dimension of electrocortical activity in aluminium-treated animals was lower than the average fractal dimension of electrocortical activity in the control rats, at cerebral but not at cerebellar level. The changes in the stationary and nonlinear properties of time series were more expressed in cerebral electrocortical activity than in cerebellar activity. This can be useful for developing effective diagnostic and therapeutic strategies in neurodegenerative diseases.

  6. Orexins excite neurons of the rat cerebellar nucleus interpositus via orexin 2 receptors in vitro.

    PubMed

    Yu, Lei; Zhang, Xiao-Yang; Zhang, Jun; Zhu, Jing-Ning; Wang, Jian-Jun

    2010-03-01

    Orexins are newfound hypothalamic neuropeptides implicated in the regulation of feeding behavior, sleep-wakefulness cycle, nociception, addiction, emotions, as well as narcolepsy. However, little is known about roles of orexins in motor control. Therefore, the present study was designed to investigate the effect of orexins on neuronal activity in the cerebellum, an important subcortical center for motor control. In this study, perfusing slices with orexin A (100 nM-1 microM) or orexin B (100 nM-1 microM) both produced neurons in the rat cerebellar interpositus nucleus (IN) a concentration-dependent excitatory response (96/143, 67.1%). Furthermore, both of the excitations induced by orexin A and B were not blocked by the low-Ca(2+)/high-Mg(2+) medium (n = 8), supporting a direct postsynaptic action of the peptides. Highly selective orexin 1 receptor antagonist SB-334867 did not block the excitatory response of cerebellar IN neurons to orexins (n = 22), but [Ala(11), D-Leu(15)] orexin B, a highly selective orexin 2 receptor (OX(2)R) agonist, mimicked the excitatory effect of orexins on the cerebellar neurons (n = 18). These results demonstrate that orexins excite the cerebellar IN neurons through OX(2)R and suggest that the central orexinergic nervous system may actively participate in motor control through its modulation on one of the final outputs of the spinocerebellum.

  7. Atypical neuropathological sCJD-MM phenotype with abundant white matter Kuru-type plaques sparing the cerebellar cortex.

    PubMed

    Gelpi, Ellen; Soler Insa, Josep Ma; Parchi, Piero; Saverioni, Daniela; Yagüe, Jordi; Nos, Carlos; Martínez-Saez, Elena; Ribalta, Teresa; Ferrer, Isidre; Sanchez-Valle, Raquel

    2013-04-01

    We describe an atypical neuropatholgical phenotype of sporadic Creutzfeldt-Jakob disease (sCJD) in a 64-year-old man presenting with a 5-month history of rapidly progressive dementia, comprising behavioral disturbances, memory complaints, disorientation and language alterations. MRI showed diffuse atrophy and hyperintensities in parietal, occipital, temporal and frontal cortices and left caudate nucleus on T2-weighted and fluid-attenuated inversion recovery images. No typical EEG alterations were observed. Repeated 14-3-3 assay was positive after a first negative test. Neuropathology showed classical CJD changes with small cortical foci of large confluent vacuoles and relatively well-preserved cerebellar cortex. The most striking feature was the presence of abundant Kuru-type plaques in both cerebral cortex and subcortical white matter. Sparse Kuru-type plaques were also seen in cerebellum, although only in white matter. Immunohistochemistry showed, in addition to unicentric plaques, diffuse synaptic and patchy perivacuolar, as well as plaque-like and periaxonal pathological prion protein deposits (PrP(res) ). Western blot studies demonstrated the co-occurrence of PrP(res) types 1 and 2 in frontal cortex and a relatively weak type 2 signal in cerebellum. PRNP genotyping revealed methionine homozygosity at codon 129 and excluded mutations. This case shows a previously undescribed combination of histopathological features which preclude its classification according to the current phenotypic and molecular sCJD classification. The observation demonstrates that Kuru-type amyloid plaques mainly involving the cerebral white matter may also occur in sCJD cases with short clinical course and the co-existence of PrP(res) types 1 and 2. This case further highlights the complexity of the correlations between histopathological phenotype and PrP(res) isotype in prion diseases. © 2012 Japanese Society of Neuropathology.

  8. The retrosplenial cortex and object recency memory in the rat.

    PubMed

    Powell, Anna L; Vann, Seralynne D; Olarte-Sánchez, Cristian M; Kinnavane, Lisa; Davies, Moira; Amin, Eman; Aggleton, John P; Nelson, Andrew J D

    2017-04-10

    It has been proposed that the retrosplenial cortex forms part of a "where/when" information network. The present study focussed on the related issue of whether retrosplenial cortex also contributes to "what/when" information, by examining object recency memory. In Experiment 1, rats with retrosplenial lesions were found to be impaired at distinguishing the temporal order of objects presented in a continuous series ('Within-Block' condition). The same lesioned rats could, however, distinguish between objects that had been previously presented in one of two discrete blocks ('Between-Block' condition). Experiment 2 used intact rats to map the expression of the immediate-early gene c-fos in retrosplenial cortex following performance of a between-block, recency discrimination. Recency performance correlated positively with levels of c-fos expression in both granular and dysgranular retrosplenial cortex (areas 29 and 30). Expression of c-fos in the granular retrosplenial cortex also correlated with prelimbic cortex and ventral subiculum c-fos activity, the latter also correlating with recency memory performance. The combined findings from both experiments reveal an involvement of the retrosplenial cortex in temporal order memory, which includes both between-block and within-block problems. The current findings also suggest that the rat retrosplenial cortex comprises one of a group of closely interlinked regions that enable recency memory, including the hippocampal formation, medial diencephalon, and medial frontal cortex. In view of the well-established importance of the retrosplenial cortex for spatial learning, the findings support the notion that, with its frontal and hippocampal connections, retrosplenial cortex has a key role for both what/when and where/when information. This article is protected by copyright. All rights reserved.

  9. Cerebellar and prefrontal cortex contributions to adaptation, strategies, and reinforcement learning.

    PubMed

    Taylor, Jordan A; Ivry, Richard B

    2014-01-01

    Traditionally, motor learning has been studied as an implicit learning process, one in which movement errors are used to improve performance in a continuous, gradual manner. The cerebellum figures prominently in this literature given well-established ideas about the role of this system in error-based learning and the production of automatized skills. Recent developments have brought into focus the relevance of multiple learning mechanisms for sensorimotor learning. These include processes involving repetition, reinforcement learning, and strategy utilization. We examine these developments, considering their implications for understanding cerebellar function and how this structure interacts with other neural systems to support motor learning. Converging lines of evidence from behavioral, computational, and neuropsychological studies suggest a fundamental distinction between processes that use error information to improve action execution or action selection. While the cerebellum is clearly linked to the former, its role in the latter remains an open question.

  10. Cerebellar and Prefrontal Cortex Contributions to Adaptation, Strategies, and Reinforcement Learning

    PubMed Central

    Taylor, Jordan A.; Ivry, Richard B.

    2014-01-01

    Traditionally, motor learning has been studied as an implicit learning process, one in which movement errors are used to improve performance in a continuous, gradual manner. The cerebellum figures prominently in this literature given well-established ideas about the role of this system in error-based learning and the production of automatized skills. Recent developments have brought into focus the relevance of multiple learning mechanisms for sensorimotor learning. These include processes involving repetition, reinforcement learning, and strategy utilization. We examine these developments, considering their implications for understanding cerebellar function and how this structure interacts with other neural systems to support motor learning. Converging lines of evidence from behavioral, computational, and neuropsychological studies suggest a fundamental distinction between processes that use error information to improve action execution or action selection. While the cerebellum is clearly linked to the former, its role in the latter remains an open question. PMID:24916295

  11. Sensory Stimulation-Dependent Plasticity in the Cerebellar Cortex of Alert Mice

    PubMed Central

    Márquez-Ruiz, Javier; Cheron, Guy

    2012-01-01

    In vitro studies have supported the occurrence of cerebellar long-term depression (LTD), an interaction between the parallel fibers and Purkinje cells (PCs) that requires the combined activation of the parallel and climbing fibers. To demonstrate the existence of LTD in alert animals, we investigated the plasticity of local field potentials (LFPs) evoked by electrical stimulation of the whisker pad. The recorded LFP showed two major negative waves corresponding to trigeminal (broken into the N2 and N3 components) and cortical responses. PC unitary extracellular recording showed that N2 and N3 occurred concurrently with PC evoked simple spikes, followed by an evoked complex spike. Polarity inversion of the N3 component at the PC level and N3 amplitude reduction after electrical stimulation of the parallel fiber volley applied on the surface of the cerebellum 2 ms earlier strongly suggest that N3 was related to the parallel fiber–PC synapse activity. LFP measurements elicited by single whisker pad stimulus were performed before and after trains of electrical stimuli given at a frequency of 8 Hz for 10 min. We demonstrated that during this later situation, the stimulation of the PC by parallel and climbing fibers was reinforced. After 8-Hz stimulation, we observed long-term modifications (lasting at least 30 min) characterized by a specific decrease of the N3 amplitude accompanied by an increase of the N2 and N3 latency peaks. These plastic modifications indicated the existence of cerebellar LTD in alert animals involving both timing and synaptic modulations. These results corroborate the idea that LTD may underlie basic physiological functions related to calcium-dependent synaptic plasticity in the cerebellum. PMID:22563448

  12. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    NASA Technical Reports Server (NTRS)

    Nguon, K.; Li, G-H; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion molecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  13. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    NASA Technical Reports Server (NTRS)

    Nguon, K.; Li, G-H; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion molecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  14. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    NASA Astrophysics Data System (ADS)

    Nguon, K.; Li, G.-H.; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum [Exp. Biol. Med. 226 (2000) 790]. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion moiecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum.

  15. Morphometric analysis of the cerebellar cortex capillaries in the course of experimental valproate encephalopathy and after chronic exposure to sodium valproate using transmission electron microscopy.

    PubMed

    Sobaniec-Lotowska, M; Sobaniec, W; Augustynowicz, A

    2001-01-01

    Morphometric analysis of the cerebellar cortex capillary cross-section area performed in experimental valproate encephalopathy using transmission electron microscopy showed that prolongation of VPA application resulted in more enhanced lumen narrowing manifested in gradual reduction in the mean value of the coefficient examined. After 6, 9 and 12 months of experiment this value was statistically different from that obtained in control subgroups, being respectively lower by approximately 22%, 48% and 65%. One month after terminating of chronic administration this value was close to the one found after 12 months of the study. Three months after the drug withdrawal the coefficient was higher by approximately 44% compared to the one after 12 months, which seemed to indicate an increase in capillary lumen patency. The morphometric analysis of the cerebellar cortex capillary cross-section area performed in the present study objectifies the results of qualitative ultrastructural investigations concerning the microcirculation of this CNS structure.

  16. Neural correlates of ticklishness in the rat somatosensory cortex.

    PubMed

    Ishiyama, S; Brecht, M

    2016-11-11

    Rats emit ultrasonic vocalizations in response to tickling by humans. Tickling is rewarding through dopaminergic mechanisms, but the function and neural correlates of ticklishness are unknown. We confirmed that tickling of rats evoked vocalizations, approach, and unsolicited jumps (Freudensprünge). Recordings in the trunk region of the rat somatosensory cortex showed intense tickling-evoked activity in most neurons, whereas a minority of cells were suppressed by tickling. Tickling responses predicted nontactile neural responses to play behaviors, which suggests a neuronal link between tickling and play. Anxiogenic conditions suppressed tickling-evoked vocalizations and trunk cortex activity. Deep-layer trunk cortex neurons discharged during vocalizations, and deep-layer microstimulation evoked vocalizations. Our findings provide evidence for deep-layer trunk cortex activity as a neural correlate of ticklishness.

  17. Growth hormone-releasing peptide-6 inhibits cerebellar cell death in aged rats.

    PubMed

    Pañeda, Covadonga; Arroba, Ana I; Frago, Laura M; Holm, Anne Mette; Rømer, John; Argente, Jesús; Chowen, Julie A

    2003-08-26

    Insulin-like growth factor (IGF)-I is essential for cerebellar granule neuron survival and a decline in IGF-I is implicated in various age-dependent processes. Here we show that IGF-I mRNA levels are decreased in the cerebellum of old rats compared with young rats and this was associated with increased cell death and activation of caspases 3 and 9. Growth hormone-releasing peptide (GHRP)-6, a synthetic ligand for the ghrelin receptor, increased IGF-I mRNA levels, decreased cell death and inhibited caspase 3 and 9 activation in the cerebellum of aged rats. These results suggest that increasing IGF-I expression in the cerebellum can decrease cell death in aged rats via inhibition of caspase 3 and 9 activation.

  18. Role of the cerebellar cortex in conditioned goal-directed behavior.

    PubMed

    Burguière, Eric; Arabo, Arnaud; Jarlier, Frederic; De Zeeuw, Chris I; Rondi-Reig, Laure

    2010-10-06

    Learning a new goal-directed behavioral task often requires the improvement of at least two processes, including an enhanced stimulus-response association and an optimization of the execution of the motor response. The cerebellum has recently been shown to play a role in acquiring goal-directed behavior, but it is unclear to what extent it contributes to a change in the stimulus-response association and/or the optimization of the execution of the motor response. We therefore designed the stimulus-dependent water Y-maze conditioning task, which allows discrimination between both processes, and we subsequently subjected Purkinje cell-specific mutant mice to this new task. The mouse mutants L7-PKCi, which suffer from impaired PKC-dependent processes such as parallel fiber to Purkinje cell long-term depression (PF-PC LTD), were able to acquire the stimulus-response association, but exhibited a reduced optimization of their motor performance. These data show that PF-PC LTD is not required for learning a stimulus-response association, but they do suggest that a PKC-dependent process in cerebellar Purkinje cells is required for optimization of motor responses.

  19. In vivo imaging of neural reactive plasticity after laser axotomy in cerebellar cortex

    NASA Astrophysics Data System (ADS)

    Allegra Mascaro, A. L.; Sacconi, L.; Maco, B.; Knott, G. W.; Pavone, F. S.

    2014-03-01

    Multi-photon imaging provides valuable insights into the continuous reshaping of neuronal connectivity in live brain. We previously showed that single neuron or even single spine ablation can be achieved by laser-mediated dissection. Furthermore, single axonal branches can be dissected avoiding collateral damage to the adjacent dendrite and the formation of a persistent glial scar. Here, we describe the procedure to address the structural plasticity of cerebellar climbing fibers by combining two-photon in vivo imaging with laser axotomy in a mouse model. This method is a powerful tool to study the basic mechanisms of axonal rewiring after single branch axotomy in vivo. In fact, despite the denervated area being very small, the injured axons consistently reshape the connectivity with surrounding neurons, as indicated by the increase in the turnover of synaptic boutons. In addition, time-lapse imaging reveals the sprouting of new branches from the injured axon. Newly formed branches with varicosities suggest the possible formation of synaptic contacts. Correlative light and electron microscopy revealed that the sprouted branch contains large numbers of vesicles, with varicosities in the close vicinity of Purkinje dendrites.

  20. Crossed Cerebellar Atrophy of the Lateral Cerebellar Nucleus in an Endothelin-1-Induced, Rodent Model of Ischemic Stroke

    PubMed Central

    Chan, Hugh H.; Cooperrider, Jessica L.; Park, Hyun-Joo; Wathen, Connor A.; Gale, John T.; Baker, Kenneth B.; Machado, Andre G.

    2017-01-01

    Crossed cerebellar diaschisis (CCD) is a functional deficit of the cerebellar hemisphere resulting from loss of afferent input consequent to a lesion of the contralateral cerebral hemisphere. It is manifested as a reduction of metabolism and blood flow and, depending on severity and duration, it can result in atrophy, a phenomenon known as crossed cerebellar atrophy (CCA). While CCA has been well-demonstrated in humans, it remains poorly characterized in animal models of stroke. In this study we evaluated the effects of cerebral cortical ischemia on contralateral cerebellar anatomy using an established rodent model of chronic stroke. The effects of cortical ischemia on the cerebellar hemispheres, vermis and deep nuclei were characterized. Intracortical microinjections of endothelin-1 (ET-1) were delivered to the motor cortex of Long Evans rats to induce ischemic stroke, with animals sacrificed 6 weeks later. Naive animals served as controls. Cerebral sections and cerebellar sections including the deep nuclei were prepared for analysis with Nissl staining. Cortical ischemia was associated with significant thickness reduction of the molecular layer at the Crus 1 and parafloccular lobule (PFL), but not in fourth cerebellar lobule (4Cb), as compared to the ipsilesional cerebellar hemisphere. A significant reduction in volume and cell density of the lateral cerebellar nucleus (LCN), the rodent correlate of the dentate nucleus, was also noted. The results highlight the relevance of corticopontocerebellar (CPC) projections for cerebellar metabolism and function, including its direct projections to the LCN. PMID:28261086

  1. Projection from the perirhinal cortex to the frontal motor cortex in the rat.

    PubMed

    Kyuhou, Shin ichi; Gemba, Hisae

    2002-03-01

    Stimulation of the anterior perirhinal cortex (PERa) induced marked surface-negative and depth-positive field potentials in the rat frontal motor cortex (MC) including the rostral and caudal forelimb areas. Injection of biotinylated dextran into the PERa densely labeled axon terminals in the superficial layers of the MC, where vigorous unit responses were evoked after PERa stimulation, indicated that the perirhinal-frontal projection preferentially activates the superficial layer neurons of the MC.

  2. Deep Brain Stimulation of the Lateral Cerebellar Nucleus Produces Frequency-Specific Alterations in Motor Evoked Potentials in the Rat In Vivo

    PubMed Central

    Baker, Kenneth B.; Schuster, Daniel; Cooperrider, Jessica; Machado, Andre G.

    2010-01-01

    The cerebral cortex is tightly and reciprocally linked to the cerebellum and the ascending dentato-thalalmo-cortical pathway influences widespread cortical regions. Using a rodent model of middle cerebral artery stroke, we showed previously that chronic, 20 Hz stimulation of the contralateral lateral cerebellar nucleus (LCN) improved motor recovery, while 50 Hz stimulation did not. Using motor evoked potentials (MEP) elicited by intracortical microstimulation, we now show the effect of LCN stimulation on motor cortex excitability as a function of pulse frequency in propofol-anesthetized rats. MEPs were recorded serially, at 15-second intervals, with cerebellar stimulation delivered in 10-minute blocks at rates of 20, 30, 40, 50 or 100 Hz. Stimulation at 20, 30, 40 or 50 Hz enhanced the average MEP response across the block, with the maximal overall increase observed during 30 Hz stimulation. However, the effect varied as a function of both repeated trials within the block and LCN stimulation frequency, such that 40 Hz and 50 Hz stimulation showed a reduced effect over time. Stimulation at 100 Hz produced a transient increase in MEP amplitude in some animals; however the overall effect across the block was a trend towards reduced cortical excitability. These results suggest that direct stimulation of the LCN can yield frequency-dependent changes in cortical excitability and may provide a therapeutic approach to modulating cortical activity for the treatment of strokes or other focal cortical lesions, movement disorders and epilepsy. PMID:20816822

  3. Differential effects of primary motor cortex and cerebellar transcranial direct current stimulation on motor learning in healthy individuals: A randomized double-blind sham-controlled study.

    PubMed

    Ehsani, F; Bakhtiary, A H; Jaberzadeh, S; Talimkhani, A; Hajihasani, A

    2016-11-01

    The purpose of study was to compare the effect of primary motor cortex (M1) and cerebellar anodal transcranial direct current stimulation (a-tDCS) on online and offline motor learning in healthy individuals. Fifty-nine healthy volunteers were randomly divided into three groups (n=20 in two experimental groups and n=19 in sham-control group). One experimental group received M1a-tDCSand another received cerebellar a-tDCS. The main outcome measure were response time (RT) and number of errors during serial response time test (SRTT) which were assessed prior, 35min and 48h after the interventions. Reduction of response time (RT) and error numbers at last block of the test compared to the first block was considered online learning. Comparison of assessments during retention tests was considered as short-term and long-term offline learning. Online RT reduction was not different among groups (P>0.05), while online error reduction was significantly greater in cerebellar a-tDCS than sham-control group (P<0.017). Moreover, a-tDCS on both M1 and cerebellar regions produced more long-term offline learning as compared to sham tDCS (P<0.01), while short-term offline RT reduction was significantly greater in M1a-tDCS than sham-control group (P<0.05). The findings indicated that although cerebellar a-tDCS enhances online learning and M1a-tDCS has more effect on short-term offline learning, both M1 and cerebellar a-tDCS can be used as a boosting technique for improvement of offline motor learning in healthy individuals.

  4. Cerebellar cortex granular layer interneurons in the macaque monkey are functionally driven by mossy fiber pathways through net excitation or inhibition.

    PubMed

    Laurens, Jean; Heiney, Shane A; Kim, Gyutae; Blazquez, Pablo M

    2013-01-01

    The granular layer is the input layer of the cerebellar cortex. It receives information through mossy fibers, which contact local granular layer interneurons (GLIs) and granular layer output neurons (granule cells). GLIs provide one of the first signal processing stages in the cerebellar cortex by exciting or inhibiting granule cells. Despite the importance of this early processing stage for later cerebellar computations, the responses of GLIs and the functional connections of mossy fibers with GLIs in awake animals are poorly understood. Here, we recorded GLIs and mossy fibers in the macaque ventral-paraflocculus (VPFL) during oculomotor tasks, providing the first full inventory of GLI responses in the VPFL of awake primates. We found that while mossy fiber responses are characterized by a linear monotonic relationship between firing rate and eye position, GLIs show complex response profiles characterized by "eye position fields" and single or double directional tunings. For the majority of GLIs, prominent features of their responses can be explained by assuming that a single GLI receives inputs from mossy fibers with similar or opposite directional preferences, and that these mossy fiber inputs influence GLI discharge through net excitatory or inhibitory pathways. Importantly, GLIs receiving mossy fiber inputs through these putative excitatory and inhibitory pathways show different firing properties, suggesting that they indeed correspond to two distinct classes of interneurons. We propose a new interpretation of the information flow through the cerebellar cortex granular layer, in which mossy fiber input patterns drive the responses of GLIs not only through excitatory but also through net inhibitory pathways, and that excited and inhibited GLIs can be identified based on their responses and their intrinsic properties.

  5. Voltage-dependent calcium signaling in rat cerebellar unipolar brush cells.

    PubMed

    Birnstiel, S; Slater, N T; McCrimmon, D R; Mugnaini, E; Hartell, N A

    2009-09-01

    Unipolar brush cells (UBCs) are a class of excitatory interneuron found in the granule cell layer of the vestibulocerebellum. Mossy fibers form excitatory inputs on to the paint brush shaped dendrioles in the form of giant, glutamatergic synapses, activation of which results in prolonged bursts of action potentials in the postsynaptic UBC. The axons of UBCs themselves form mossy fiber contacts with other UBCs and granule cells, forming an excitatory, intrinsic cerebellar network that has the capacity to synchronize and amplify mossy fiber inputs to potentially large populations of granule cells. In this paper, we demonstrate that UBCs in rat cerebellar slices express low voltage activated (LVA) fast-inactivating and high voltage activated (HVA) slowly inactivating calcium channels. LVA calcium currents are mediated by T-type calcium channels and they are associated with calcium increases in the dendrites and to a lesser extent the cell soma. HVA currents, mediated by L-type calcium channels, are slowly inactivating and they produce larger overall increases in intracellular calcium but with a similar distribution pattern. We review these observations alongside several recent papers that examine how intrinsic membrane properties influence UBCs firing patterns and we discuss how UBC signaling may affect downstream cerebellar processing.

  6. Prenatal exposure to ozone disrupts cerebellar monoamine contents in newborn rats.

    PubMed

    Gonzalez-Pina, Rigoberto; Escalante-Membrillo, Carmen; Alfaro-Rodriguez, Alfonso; Gonzalez-Maciel, Angelica

    2008-05-01

    Ozone (O3) is widely distributed in environments with high levels of air pollution. Since cerebellar morphologic disruptions have been reported with prenatal O3 exposure, O3 may have an effect on some neurotransmitter systems, such as monoamines. In order to test this hypothesis, we used 60 male rats taken from either, mothers exposed to 1 ppm of O3 during the entire pregnancy, or from mothers breathing filtered and clean air during pregnancy. The cerebellum was extracted at 0, 5, and 10 postnatal days. Tissues were processed in order to analyze by HPLC, dopamine (DA) levels, 3,4 dihydroxyphenilacetic acid (DOPAC) and homovanillic acid (HVA), norepinephrine (NA), serotonin, and 5-hydroxy-indole-acetic acid (5-HIAA) contents. Results showed a decrease of DA, NA, DOPAC and HVA mainly in 0 and 5 postnatal days. There were no changes in 5-HT levels, and 5-HIAA showed an increase after 10 postnatal days. DOPAC + HVA/DA ratio showed changes in 0 and 10 postnatal days, while 5-HIAA/5-HT ratio showed a slight decrease in 0 days. The data suggest that prenatal O3 exposure disrupts the cerebellar catecholamine system rather than the indole-amine system. Disruptions in cerebellar NA could lead to ataxic symptoms and also could limit recovery after cortical brain damage in adults. These finding are important given that recovery mechanisms observed in animals are also observed in humans.

  7. Low and high dietary folic acid levels perturb postnatal cerebellar morphology in growing rats.

    PubMed

    Partearroyo, Teresa; Pérez-Miguelsanz, Juliana; Peña-Melián, Ángel; Maestro-de-Las-Casas, Carmen; Úbeda, Natalia; Varela-Moreiras, Gregorio

    2016-06-01

    The brain is particularly sensitive to folate metabolic disturbances, because methyl groups are critical for brain functions. This study aimed to investigate the effects of different dietary levels of folic acid (FA) on postnatal cerebellar morphology, including the architecture and organisation of the various layers. A total of forty male OFA rats (a Sprague-Dawley strain), 5 weeks old, were classified into the following four dietary groups: FA deficient (0 mg/kg FA); FA supplemented (8 mg/kg FA); FA supra-supplemented (40 mg/kg FA); and control (2 mg/kg FA) (all n 10 per group). Rats were fed ad libitum for 30 d. The cerebellum was quickly removed and processed for histological and immunohistochemical analysis. Slides were immunostained for glial fibrillary acidic protein (to label Bergmann glia), calbindin (to label Purkinje cells) and NeuN (to label post-mitotic neurons). Microscopic analysis revealed two types of defect: partial disappearance of fissures and/or neuronal ectopia, primarily in supra-supplemented animals (incidence of 80 %, P≤0·01), but also in deficient and supplemented groups (incidence of 40 %, P≤0·05), compared with control animals. The primary fissure was predominantly affected, sometimes accompanied by defects in the secondary fissure. Our findings show that growing rats fed an FA-modified diet, including both deficient and supplemented diets, have an increased risk of disturbances in cerebellar corticogenesis. Defects caused by these diets may have functional consequences in later life. The present study is the first to demonstrate that cerebellar morphological defects can arise from deficient, as well as high, FA levels in the diet.

  8. Peripheral Nerve Injury in Developing Rats Reorganizes Motor Cortex.

    DTIC Science & Technology

    1986-05-19

    Island 02912 *r201-484 It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Personnel and Training Research Program May 19, 1986 Office of Naval...The Cerebral Cortex The Functional Areas of the Cerebral Cortex, E. G. Jones and A. Peters. Eds. (Plenum, New York, 1986 ) vol. 5, p. 243-270. 12. In rat...and processed for Nissl substance or cytochrome oxidase staining. In reconstructions, nap borders were defined as the mid-point between two distinct

  9. Deblurring of 3-dimensional patterns of evoked rat cerebellar cortical activity: a study using voltage-sensitive dyes and optical sectioning.

    PubMed

    Yae, H; Elias, S A; Ebner, T J

    1992-05-01

    One of the benefits of imaging neuronal activity is the capability of resolving spatial patterns in the x-y plane. With optical sectioning microscopy, the 3-dimensional (3-D) structure may also be studied without physical deformation by serially moving the focal plane of the microscope through the volume of interest along the focal axis. However, each image is blurred by contributions from neighboring planes. This degradation is most severe for low numerical aperture lenses and large amounts of defocus. In this study, an image restoration method using the optical properties of an aberration-free, defocused optical system has been developed for improving optical signals from voltage-sensitive dyes. Deblurring based on the optical transfer function (OTF) of the system was applied on two test sets of serially sectioned images: (1) fluorescent beads and (2) in vivo rat cerebellar cortex stained with the voltage-sensitive dye RH795. This method was shown to reduce significantly the out-of-focus contribution to the images, improving the spatial resolution not only in the x-y plane, but also the z axis. The algorithms were then applied to optical signals obtained by stimulation of the cerebellar surface. Optical signals having a distinct beam-like pattern were evoked and recorded over depths ranging from 0 to 300 microns prior to deblurring. Application of the deblurring algorithm reduced the depth of cerebellar cortex over which the optical signals were observed. In agreement, field potential recordings of the evoked parallel fiber volley and post-synaptic components were restricted to a narrow range of depths similar to the deblurred optical images. Removal of out-of-focus information is an essential step in the serial sectioning of central nervous system structures for neuronal imaging and 3-D reconstruction.

  10. Model-Founded Explorations of the Roles of Molecular Layer Inhibition in Regulating Purkinje Cell Responses in Cerebellar Cortex: More Trouble for the Beam Hypothesis

    PubMed Central

    Bower, James M.

    2010-01-01

    For most of the last 50 years, the functional interpretation for inhibition in cerebellar cortical circuitry has been dominated by the relatively simple notion that excitatory and inhibitory dendritic inputs sum, and if that sum crosses threshold at the soma the Purkinje cell generates an action potential. Thus, inhibition has traditionally been relegated to a role of sculpting, restricting, or blocking excitation. At the level of networks, this relatively simply notion is manifest in mechanisms like “surround inhibition” which is purported to “shape” or “tune” excitatory neuronal responses. In the cerebellum, where all cell types except one (the granule cell) are inhibitory, these assumptions regarding the role of inhibition continue to dominate. Based on our recent series of modeling and experimental studies, we now suspect that inhibition may play a much more complex, subtle, and central role in the physiological and functional organization of cerebellar cortex. This paper outlines how model-based studies are changing our thinking about the role of feed-forward molecular layer inhibition in the cerebellar cortex. The results not only have important implications for continuing efforts to understand what the cerebellum computes, but might also reveal important features of the evolution of this large and quintessentially vertebrate brain structure. PMID:20877427

  11. Dorsomedial prefrontal cortex and cerebellar contribution to in-group attitudes: a transcranial magnetic stimulation study.

    PubMed

    Gamond, Lucile; Ferrari, Chiara; La Rocca, Stefania; Cattaneo, Zaira

    2017-04-01

    We tend to express more positive judgments and behaviors toward individuals belonging to our own group compared to other (out-) groups. In this study, we assessed the role of the cerebellum and of the dorsomedial prefrontal cortex (dmPFC) - two regions critically implicated in social cognition processes - in mediating implicit valenced attitudes toward in-group and out-group individuals. To this aim, we used transcranial magnetic stimulation (TMS) in combination with a standard attitude priming task, in which Caucasian participants had to categorize the valence of a series of adjectives primed by either an in-group or an out-group face. In two behavioral experiments, we found an in-group bias (i.e. faster categorization of positive adjectives when preceded by in-group faces) but no evidence of an out-group bias. Interestingly, TMS over both the dmPFC and over the (right) cerebellum significantly interfered with the modulation exerted by group membership on adjective valence classification, abolishing the in-group bias observed at baseline. Overall, our data suggest that both the dmPFC and the cerebellum play a causal role in mediating implicit social attitudes.

  12. Rearing conditions differently affect the motor performance and cerebellar morphology of prenatally stressed juvenile rats.

    PubMed

    Ulupinar, Emel; Erol, Kevser; Ay, Hakan; Yucel, Ferruh

    2015-02-01

    The cerebellum is one of the most vulnerable parts of the brain to environmental changes. In this study, the effect of diverse environmental rearing conditions on the motor performances of prenatally stressed juvenile rats and its reflection to the cerebellar morphology were investigated. Prenatally stressed Wistar rats were grouped according to different rearing conditions (Enriched=EC, Standard=SC and Isolated=IC) after weaning. Six weeks later, male and female offspring from different litters were tested behaviorally. In rotarod and string suspension tests, females gained better scores than males. Significant gender and housing effects were observed especially on the motor functions requiring fine skills with the best performance by enriched females, but the worst by enriched males. The susceptibility of cerebellar macro- and micro-neurons to environmental conditions was compared using stereological methods. In female groups, no differences were observed in the volume proportions of cerebellar layers, soma sizes and the numerical densities of granule or Purkinje cells. However, a significant interaction between housing and gender was observed in the granule to Purkinje cell ratio of males, due to the increased numerical densities of the granule cells in enriched males. These data imply that proper functioning of the cerebellum relies on its well organized and evolutionarily conserved structure and circuitry. Although early life stress leads to long term behavioral and neurobiological consequences in the offspring, diverse rearing conditions can alter the motor skills of animals and synaptic connectivity between Purkinje and granular cells in a gender dependent manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Assessment of Anterior Cingulate Cortex (ACC) and Left Cerebellar Metabolism in Asperger's Syndrome with Proton Magnetic Resonance Spectroscopy (MRS).

    PubMed

    Goji, Aya; Ito, Hiromichi; Mori, Kenji; Harada, Masafumi; Hisaoka, Sonoka; Toda, Yoshihiro; Mori, Tatsuo; Abe, Yoko; Miyazaki, Masahito; Kagami, Shoji

    2017-01-01

    Proton magnetic resonance spectroscopy (1H MRS) is a noninvasive neuroimaging method to quantify biochemical metabolites in vivo and it can serve as a powerful tool to monitor neurobiochemical profiles in the brain. Asperger's syndrome (AS) is a type of autism spectrum disorder, which is characterized by impaired social skills and restrictive, repetitive patterns of interest and activities, while intellectual levels and language skills are relatively preserved. Despite clinical aspects have been well-characterized, neurometabolic profiling in the brain of AS remains to be clear. The present study used proton magnetic resonance spectroscopy (1H MRS) to investigate whether pediatric AS is associated with measurable neurometabolic abnormalities that can contribute new information on the neurobiological underpinnings of the disorder. Study participants consisted of 34 children with AS (2-12 years old; mean age 5.2 (±2.0); 28 boys) and 19 typically developed children (2-11 years old; mean age 5.6 (±2.6); 12 boys) who served as the normal control group. The 1H MRS data were obtained from two regions of interest: the anterior cingulate cortex (ACC) and left cerebellum. In the ACC, levels of N-acetylaspartate (NAA), total creatine (tCr), total choline-containing compounds (tCho) and myo-Inositol (mI) were significantly decreased in children with AS compared to controls. On the other hand, no significant group differences in any of the metabolites were found in the left cerebellum. Neither age nor sex accounted for the metabolic findings in the regions. The finding of decreased levels of NAA, tCr, tCho, and mI in the ACC but not in left cerebellar voxels in the AS, suggests a lower ACC neuronal density in the present AS cohort compared to controls.

  14. Assessment of Anterior Cingulate Cortex (ACC) and Left Cerebellar Metabolism in Asperger's Syndrome with Proton Magnetic Resonance Spectroscopy (MRS)

    PubMed Central

    Goji, Aya; Ito, Hiromichi; Mori, Kenji; Harada, Masafumi; Hisaoka, Sonoka; Toda, Yoshihiro; Mori, Tatsuo; Abe, Yoko; Miyazaki, Masahito; Kagami, Shoji

    2017-01-01

    Purpose Proton magnetic resonance spectroscopy (1H MRS) is a noninvasive neuroimaging method to quantify biochemical metabolites in vivo and it can serve as a powerful tool to monitor neurobiochemical profiles in the brain. Asperger’s syndrome (AS) is a type of autism spectrum disorder, which is characterized by impaired social skills and restrictive, repetitive patterns of interest and activities, while intellectual levels and language skills are relatively preserved. Despite clinical aspects have been well-characterized, neurometabolic profiling in the brain of AS remains to be clear. The present study used proton magnetic resonance spectroscopy (1H MRS) to investigate whether pediatric AS is associated with measurable neurometabolic abnormalities that can contribute new information on the neurobiological underpinnings of the disorder. Methods Study participants consisted of 34 children with AS (2–12 years old; mean age 5.2 (±2.0); 28 boys) and 19 typically developed children (2–11 years old; mean age 5.6 (±2.6); 12 boys) who served as the normal control group. The 1H MRS data were obtained from two regions of interest: the anterior cingulate cortex (ACC) and left cerebellum. Results In the ACC, levels of N-acetylaspartate (NAA), total creatine (tCr), total choline-containing compounds (tCho) and myo-Inositol (mI) were significantly decreased in children with AS compared to controls. On the other hand, no significant group differences in any of the metabolites were found in the left cerebellum. Neither age nor sex accounted for the metabolic findings in the regions. Conclusion The finding of decreased levels of NAA, tCr, tCho, and mI in the ACC but not in left cerebellar voxels in the AS, suggests a lower ACC neuronal density in the present AS cohort compared to controls. PMID:28060873

  15. T1-Weighted Hypersignal in the Deep Cerebellar Nuclei After Repeated Administrations of Gadolinium-Based Contrast Agents in Healthy Rats: Difference Between Linear and Macrocyclic Agents.

    PubMed

    Robert, Philippe; Lehericy, Stéphane; Grand, Sylvie; Violas, Xavier; Fretellier, Nathalie; Idée, Jean-Marc; Ballet, Sébastien; Corot, Claire

    2015-08-01

    To prospectively compare in healthy rats the effect of multiple injections of macrocyclic (gadoterate meglumine) and linear (gadodiamide) gadolinium-based contrast agents (GBCAs) on T1-weighted signal intensity in the deep cerebellar nuclei (DCN), including the dentate nucleus. Healthy rats (n = 7/group) received 20 intravenous injections of 0.6 mmol of gadolinium (Gd) per kilogram (4 injections per week during 5 weeks) of gadodiamide, gadoterate meglumine, or hyperosmolar saline (control group). Brain T1-weighted magnetic resonance imaging was performed before and once a week during the 5 weeks of injections and during 5 additional weeks (treatment-free period). Gadolinium concentrations were measured with inductively coupled plasma mass spectrometry in plasma and brain. Blinded qualitative and quantitative evaluations of the T1 signal intensity in DCN were performed, as well as a statistical analysis on quantitative data. A significant and persistent T1 signal hyperintensity in DCN was observed only in gadodiamide-treated rats. The DCN-to-cerebellar cortex signal ratio was significantly increased from the 12th injection of gadodiamide (1.070 ± 0.024) compared to the gadoterate meglumine group (1.000 ± 0.033; P < 0.001) and control group (1.019 ± 0.022; P < 0.001) and did not significantly decrease during the treatment-free period. Total Gd concentrations in the gadodiamide group were significantly higher in the cerebellum (3.66 ± 0.91 nmol/g) compared with the gadoterate meglumine (0.26 ± 0.12 nmol/g; P < 0.05) and control (0.06 ± 0.10 nmol/g; P < 0.05) groups. Repeated administrations of the linear GBCA gadodiamide to healthy rats are associated with progressive and persistent T1 signal hyperintensity in the DCN, with Gd deposition in the cerebellum in contrast with the macrocyclic GBCA gadoterate meglumine for which no effect was observed.

  16. Protective effect of histamine microinjected into cerebellar fastigial nucleus on stress gastric mucosal damage in rats.

    PubMed

    Qiao, Xiao; Yang, Jun; Fei, Su-Juan; Zhu, Jin-Zhou; Zhu, Sheng-Ping; Liu, Zhang-Bo; Li, Ting-Ting; Zhang, Jian-Fu

    2015-12-10

    In the study, we investigated the effect of histamine microinjected into cerebellar fastigial nucleus (FN) on stress gastric mucosal damage (SGMD), and its mechanisms in rats. The model of SGMD was established by restraining and water (21±1°C)-immersion for 3h. The gastric mucosal damage index (GMDI) indicated the severity of gastric mucosal damage. Histamine or receptor antagonist was microinjected into the FN. The decussation of superior cerebellar peduncle (DSCP) and the lateral hypothalamic area (LHA) were destroyed, respectively. The pathological changes of gastric mucosa were evaluated using biological signal acquisition system, Laser-Doppler flowmeter, and western blotting. We found that the microinjection of histamine (0.05, 0.5, and 5μg) into FN significantly attenuated the SGMD, in a dose-dependent manner, whereas, the microinjection of histamine H2 receptor antagonist, ranitidine, and glutamic acid decarboxylase antagonist, 3-mercaptopropionic acid (3-MPA) exacerbated the SGMD. The protective effect of histamine on SGMD was abolished by electrical lesion of DSCP or chemical ablation of LHA. The microinjection of histamine decreased the discharge frequency of the greater splanchnic nerve, and the gastric mucosal blood flow was increased. In addition, the cellular proliferation was enhanced, but the cellular apoptosis was reduced in the gastric mucosa. Also the pro-apoptosis protein, Bax, and caspase-3 were down-regulated, and the anti-apoptosis protein, Bcl-2 was up-regulated following microinjection of histamine. In conclusion, the FN participated in the regulation of SGMD after histamine microinjected into FN, and cerebellar-hypothalamic circuits (include: DSCP, LHA) contribute to the process, which may provide a new therapeutic strategy for SGMD.

  17. Cerebellar secretin modulates eyeblink classical conditioning

    PubMed Central

    Fuchs, Jason R.; Robinson, Gain M.; Dean, Aaron M.; Schoenberg, Heidi E.; Williams, Michael R.; Morielli, Anthony D.

    2014-01-01

    We have previously shown that intracerebellar infusion of the neuropeptide secretin enhances the acquisition phase of eyeblink conditioning (EBC). Here, we sought to test whether endogenous secretin also regulates EBC and to test whether the effect of exogenous and endogenous secretin is specific to acquisition. In Experiment 1, rats received intracerebellar infusions of the secretin receptor antagonist 5-27 secretin or vehicle into the lobulus simplex of cerebellar cortex immediately prior to sessions 1–3 of acquisition. Antagonist-infused rats showed a reduction in the percentage of eyeblink CRs compared with vehicle-infused rats. In Experiment 2, rats received intracerebellar infusions of secretin or vehicle immediately prior to sessions 1–2 of extinction. Secretin did not significantly affect extinction performance. In Experiment 3, rats received intracerebellar infusions of 5-27 secretin or vehicle immediately prior to sessions 1–2 of extinction. The secretin antagonist did not significantly affect extinction performance. Together, our current and previous results indicate that both exogenous and endogenous cerebellar secretin modulate acquisition, but not extinction, of EBC. We have previously shown that (1) secretin reduces surface expression of the voltage-gated potassium channel α-subunit Kv1.2 in cerebellar cortex and (2) intracerebellar infusions of a Kv1.2 blocker enhance EBC acquisition, much like secretin. Kv1.2 is almost exclusively expressed in cerebellar cortex at basket cell–Purkinje cell pinceaus and Purkinje cell dendrites; we propose that EBC-induced secretin release from PCs modulates EBC acquisition by reducing surface expression of Kv1.2 at one or both of these sites. PMID:25403455

  18. Cerebellar Molecular and Cellular Characterization in Rat Models of Alzheimer's Disease: Neuroprotective Mechanisms of Garcinia Biflavonoid Complex.

    PubMed

    Olajide, Olayemi Joseph; Ugbosanmi, Anita Temi; Enaibe, Bernard Ufuoma; Ogunrinola, Kehinde Yomi; Lewu, Susan Folashade; Asogwa, Nnaemeka Tobechukwu; Akapa, Tosan; Imam, Aminu; Ibrahim, Abdulmumin; Gbadamosi, Ismail Temitayo; Yawson, Emmanuel Olusola

    2017-05-01

    Recent evidences suggest that cerebellar degeneration may be associated with the development of Alzheimer's disease (AD). However, previous reports were mainly observational, lacking substantial characterization of cellular and molecular cerebellar features during AD progression. This study is aimed at characterizing the cerebellum in rat models of AD and assessing the corresponding neuroprotective mechanisms of Garcinia biflavonoid complex (GBc). Male Wistar rats were grouped and treated alone or in combination with PBS (ad libitum)/day, corn oil (CO; 2 mL/kgBw/day), GBc (200 mg/kgBw/day), sodium azide (NaN3) (15 mg/kgBw/day) and aluminium chloride (AlCl3) (100 mg/kgBw/day). Groups A and B received PBS and CO, respectively; C received GBc; D received NaN3; E received AlCl3; F received NaN3 then GBc subsequently; G received AlCl3 then GBc subsequently; H received NaN3 and GBc simultaneously while I received AlCl3 and GBc simultaneously. Following treatments, cerebellar cortices were processed for histology, immunohistochemistry and colorimetric assays. Our data revealed that cryptic granule neurons and pyknotic Purkinje cell bodies (characterized by short dendritic/axonal processes) correspond to indistinctly demarcated cerebellar layers in rats treated with AlCl3 and NaN3. These correlates, with observed hypertrophic astrogliosis, increased the neurofilament deposition, depleted the antioxidant system-shown by expressed superoxide dismutase and glutathione peroxidase, and cerebellar glucose bioenergetics dysfunction-exhibited in assayed lactate dehydrogenase and glucose-6-phosphate dehydrogenase. We further showed that GBc reverses cerebellar degeneration through modulation of neurochemical signaling pathways and stressor molecules that underlie AD pathogenesis. Cellular, molecular and metabolic neurodegeneration within the cerebellum is associated with AlCl3 and NaN3-induced AD while GBc significantly inhibits corresponding neurotoxicity and is more efficacious

  19. Decoding bipedal locomotion from the rat sensorimotor cortex

    NASA Astrophysics Data System (ADS)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.

    2015-10-01

    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Approach. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. Main results. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Significance. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds

  20. Altered Cerebellar Circuitry following Thoracic Spinal Cord Injury in Adult Rats

    PubMed Central

    2016-01-01

    Cerebellar function is critical for coordinating movement and motor learning. However, events occurring in the cerebellum following spinal cord injury (SCI) have not been investigated in detail. We provide evidence of SCI-induced cerebellar synaptic changes involving a loss of granule cell parallel fiber input to distal regions of the Purkinje cell dendritic tree. This is accompanied by an apparent increase in synaptic contacts to Purkinje cell proximal dendrites, presumably from climbing fibers originating in the inferior olive. We also observed an early stage injury-induced decrease in the levels of cerebellin-1, a synaptic organizing molecule that is critical for establishing and maintaining parallel fiber-Purkinje cell synaptic integrity. Interestingly, this transsynaptic reorganizational pattern is consistent with that reported during development and in certain transgenic mouse models. To our knowledge, such a reorganizational event has not been described in response to SCI in adult rats. Regardless, the novel results of this study are important for understanding SCI-induced synaptic changes in the cerebellum, which may prove critical for strategies focusing on promoting functional recovery. PMID:27504204

  1. Quercetin supplementation does not enhance cerebellar mitochondrial biogenesis and oxidative status in exercised rats.

    PubMed

    Casuso, Rafael A; Martínez-Amat, Antonio; Hita-Contreras, Fidel; Camiletti-Moirón, Daniel; Aranda, Pilar; Martínez-López, Emilio

    2015-07-01

    The present study tested the hypothesis that quercetin may inhibit the mitochondrial and antioxidant adaptations induced by exercise in cerebellar tissue. Thirty-five 6-week-old Wistar rats were randomly allocated into the following groups: quercetin, exercised (Q-Ex; n = 9); quercetin, sedentary (Q-Sed; n = 9); no quercetin, exercised (NQ-Ex; n = 9); and no quercetin, sedentary (NQ-Sed; n = 8). After 6 weeks of quercetin supplementation and/or exercise training, cerebellums were collected. Protein carbonyl content (PCC), sirtuin 1, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), messenger RNA levels, citrate synthase (CS), and mitochondrial DNA were measured. When Q-Sed was compared with NQ-Sed, PCC (P < .005) showed decreased levels, whereas PGC-1α, sirtuin 1 (both, P < .01), mitochondrial DNA (P < .001), and CS (P < .01) increased. However, when Q-Ex was compared with Q-Sed, PCC showed increased levels (P < .001), whereas CS decreased (P < .01). Furthermore, the NQ-Ex group experienced an increase in PGC-1α messenger RNA levels in comparison with NQ-Sed (P > .01). This effect, however, did not appear in Q-Ex (P < .05). Therefore, we must hypothesize that either the dose (25 mg/kg) or the length of the quercetin supplementation period that was used in the present study (or perhaps both) may impair exercise-induced adaptations in cerebellar tissue. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Clumsiness and disturbed cerebellar development: insights from animal experiments.

    PubMed

    Gramsbergen, Albert

    2003-01-01

    Cerebellar functioning has been implied in the fine adjustments of muscle tone, in the coordination and the feed-forward control of movements and posture, as well as in the establishment and performance of motor skills. The cerebellar cortex in mammals develops late in neuro-ontogeny and an extrapolation from experimental results indicates that in the human the proliferation of the granule cells and the development of circuitry in the cerebellar cortex starts only in the last trimester of pregnancy and lasts until beyond the first birthday. This late development makes the cerebellar development particularly vulnerable to situations like an insufficient supply of nutrients, which may follow placental dysfunction, or to side effects of pharmacological treatments like the administration of corticosteroids in the postnatal period. We studied whether such situations might also lead to motor impairments. In rats, the effects of undernutrition during the brain growth spurt were investigated as well as those of corticosteroids administered in a period that is analogous to the 7th to 8th month of pregnancy in the human. Both these interferences affect cerebellar development and our results in rats indicate that they also lead to retardations in the emergence of certain reflexes, as well as to longer lasting motor impairments during locomotion. Extrapolation of these results strongly suggests that a disturbed cerebellar development should be considered as an important etiological factor in clumsiness in human children.

  3. A stereological analysis of the cerebellar granule and Purkinje cells of 30-day-old and adult rats undernourished during early postnatal life.

    PubMed

    Bedi, K S; Hall, R; Davies, C A; Dobbing, J

    1980-10-15

    Male rats undernourished from birth to 30 days of age were nutritionally rehabilitated till 160 days of age. Quantitative stereological procedures at the light microscope level were used to estimate, among other things, the numerical densities of cerebellar granule and Purkinje cells on a "per unit volume of cortex" basis. These were subsequently used to calculate granule-to-Purkinje cell ratios. The 30-day-old undernourished rats had a mean +/- S.E. of 290 +/- 27 granule cells for every Purkinje cell present, compared to 395 +/- 34 for the controls. This was a deficit of about 27% (p < 0.05). At 160 days of age, the previously undernourished rats still showed a persisting deficit of about 25% (p < 0.05) in this ratio, despite the lengthy nutritional rehabilitation. There were no statistically significant age-related changes in this ratio. The numerical density of Purkinje cells, but not that of granule cells, was significantly greater in the previously undernourished rats than in controls, for both age groups, Increasing age caused a fall in the numerical density of both cell types. Granule and Purkinje cell nuclear diameters were unaffected by nutrition. However, Purkinje cell nuclei decreased in size by between 7%--13% with increasing age. These results indicate that undernutrition during early life can cause a permanent distortion of the relative number of the various cell types in the cerebellum.

  4. A light and electron microscope study of rat abducens nucleus neurons projecting to the cerebellar flocculus.

    PubMed Central

    Rodella, L; Rezzani, R; Corsetti, G; Simonetti, C; Stacchiotti, A; Ventura, R G

    1995-01-01

    Injection of horseradish peroxidase (HRP) into the cerebellar flocculus of the rat was employed to identify neurons in the abducens nucleus that project to the flocculus. The number, ultrastructural features and precise localisation of these neurons in the nucleus were examined. They were present bilaterally and represented about 7% of the total neuronal population of each nucleus. They were localised principally in the dorsomedial area of the cranial half of each nucleus and did not display the typical ultrastructural features of motoneurons. It is concluded that the localisation and ultrastructural characteristics of these HRP-positive neurons are useful for distinguishing them from other neuronal populations within the nucleus. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:7649835

  5. Neuroprotective Effect of Carnosine on Primary Culture of Rat Cerebellar Cells under Oxidative Stress.

    PubMed

    Lopachev, A V; Lopacheva, O M; Abaimov, D A; Koroleva, O V; Vladychenskaya, E A; Erukhimovich, A A; Fedorova, T N

    2016-05-01

    Dipeptide carnosine (β-alanyl-L-histidine) is a natural antioxidant, but its protective effect under oxidative stress induced by neurotoxins is studied insufficiently. In this work, we show the neuroprotective effect of carnosine in primary cultures of rat cerebellar cells under oxidative stress induced by 1 mM 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH), which directly generates free radicals both in the medium and in the cells, and 20 nM rotenone, which increases the amount of intracellular reactive oxygen species (ROS). In both models, adding 2 mM carnosine to the incubation medium decreased cell death calculated using fluorescence microscopy and enhanced cell viability estimated by the MTT assay. The antioxidant effect of carnosine inside cultured cells was demonstrated using the fluorescence probe dichlorofluorescein. Carnosine reduced by half the increase in the number of ROS in neurons induced by 20 nM rotenone. Using iron-induced chemiluminescence, we showed that preincubation of primary neuronal cultures with 2 mM carnosine prevents the decrease in endogenous antioxidant potential of cells induced by 1 mM AAPH and 20 nM rotenone. Using liquid chromatography-mass spectrometry, we showed that a 10-min incubation of neuronal cultures with 2 mM carnosine leads to a 14.5-fold increase in carnosine content in cell lysates. Thus, carnosine is able to penetrate neurons and exerts an antioxidant effect. Western blot analysis revealed the presence of the peptide transporter PEPT2 in rat cerebellar cells, which suggests the possibility of carnosine transport into the cells. At the same time, Western blot analysis showed no carnosine-induced changes in the level of apoptosis regulating proteins of the Bcl-2 family and in the phosphorylation of MAP kinases, which suggests that carnosine could have minimal or no side effects on proliferation and apoptosis control systems in normal cells.

  6. Hippocampal and Cerebellar Single-Unit Activity During Delay and Trace Eyeblink Conditioning in the Rat

    PubMed Central

    Green, John T.; Arenos, Jeremy D.

    2007-01-01

    In delay eyeblink conditioning, the CS overlaps with the US and only a brainstem-cerebellar circuit is necessary for learning. In trace eyeblink conditioning, the CS ends before the US is delivered and several forebrain structures, including the hippocampus, are required for learning, in addition to a brainstem-cerebellar circuit. The interstimulus interval (ISI) between CS onset and US onset is perhaps the most important factor in classical conditioning, but studies comparing delay and trace conditioning have typically not matched these procedures in this crucial factor, so it is often difficult to determine whether results are due to differences between delay and trace or to differences in ISI. In the current study, we employed a 580-ms CS-US interval for both delay and trace conditioning and compared hippocampal CA1 activity and cerebellar interpositus nucleus activity in order to determine whether a unique signature of trace conditioning exists in patterns of single-unit activity in either structure. Long-Evans rats were chronically implanted in either CA1 or interpositus with microwire electrodes and underwent either delay eyeblink conditioning, or trace eyeblink conditioning with a 300-ms trace period between CS offset and US onset. On trials with a CR in delay conditioning, CA1 pyramidal cells showed increases in activation (relative to a pre-CS baseline) during the CS-US period in sessions 1-4 that was attenuated by sessions 5-6. In contrast, on trials with a CR in trace conditioning, CA1 pyramidal cells did not show increases in activation during the CS-US period until sessions 5-6. In sessions 5-6, increases in activation were present only to the CS and not during the trace period. For rats with interpositus electrodes, activation of interpositus neurons on CR trials was present in all sessions in both delay and trace conditioning. However, activation was greater in trace compared to delay conditioning in the first half of the CS-US interval (during the

  7. Infrared thermal imaging of rat somatosensory cortex with whisker stimulation.

    PubMed

    Suzuki, Takashi; Ooi, Yasuhiro; Seki, Junji

    2012-04-01

    The present study aims to validate the applicability of infrared (IR) thermal imaging for the study of brain function through experiments on the rat barrel cortex. Regional changes in neural activity within the brain produce alterations in local thermal equilibrium via increases in metabolic activity and blood flow. We studied the relationship between temperature change and neural activity in anesthetized rats using IR imaging to visualize stimulus-induced changes in the somatosensory cortex of the brain. Sensory stimulation of the vibrissae (whiskers) was given for 10 s using an oscillating whisker vibrator (5-mm deflection at 10, 5, and 1 Hz). The brain temperature in the observational region continued to increase significantly with whisker stimulation. The mean peak recorded temperature changes were 0.048 ± 0.028, 0.054 ± 0.036, and 0.097 ± 0.015°C at 10, 5, and 1 Hz, respectively. We also observed that the temperature increase occurred in a focal spot, radiating to encompass a larger region within the contralateral barrel cortex region during single-whisker stimulation. Whisker stimulation also produced ipsilateral cortex temperature increases, which were localized in the same region as the pial arterioles. Temperature increase in the barrel cortex was also observed in rats treated with a calcium channel blocker (nimodipine), which acts to suppress the hemodynamic response to neural activity. Thus the location and area of temperature increase were found to change in accordance with the region of neural activation. These results indicate that IR thermal imaging is viable as a functional quantitative neuroimaging technique.

  8. Tactile responses in the granule cell layer of cerebellar folium crus IIa of freely behaving rats

    NASA Technical Reports Server (NTRS)

    Hartmann, M. J.; Bower, J. M.

    2001-01-01

    We recorded activity from the granule cell layer (GCL) of cerebellar folium Crus IIa as freely moving rats engaged in a variety of natural behaviors, including grooming, eating, and free tactile exploration. Multiunit responses in the 1000-4500 Hz range were found to be strongly correlated with tactile stimulation of lip and whisker (perioral) regions. These responses occurred regardless of whether the stimulus was externally or self-generated and during both active and passive touch. In contrast, perioral movements that did not tactually stimulate this region of the face (e.g., chewing) produced no detectable increases in GCL activity. In addition, GCL responses were not correlated with movement extremes. When rats used their lips actively for palpation and exploration, the tactile responses in the GCL were not detectably modulated by ongoing jaw movements. However, active palpation and exploratory behaviors did result in the largest and most continuous bursts of GCL activity: responses were on average 10% larger and 50% longer during palpation and exploration than during grooming or passive stimulation. Although activity levels differed between behaviors, the position and spatial extent of the peripheral receptive field was similar over all behaviors that resulted in tactile input. Overall, our data suggest that the 1000-4500 Hz multiunit responses in the Crus IIa GCL of awake rats are correlated with tactile input rather than with movement or any movement parameter and that these responses are likely to be of particular importance during the acquisition of sensory information by perioral structures.

  9. Tactile responses in the granule cell layer of cerebellar folium crus IIa of freely behaving rats

    NASA Technical Reports Server (NTRS)

    Hartmann, M. J.; Bower, J. M.

    2001-01-01

    We recorded activity from the granule cell layer (GCL) of cerebellar folium Crus IIa as freely moving rats engaged in a variety of natural behaviors, including grooming, eating, and free tactile exploration. Multiunit responses in the 1000-4500 Hz range were found to be strongly correlated with tactile stimulation of lip and whisker (perioral) regions. These responses occurred regardless of whether the stimulus was externally or self-generated and during both active and passive touch. In contrast, perioral movements that did not tactually stimulate this region of the face (e.g., chewing) produced no detectable increases in GCL activity. In addition, GCL responses were not correlated with movement extremes. When rats used their lips actively for palpation and exploration, the tactile responses in the GCL were not detectably modulated by ongoing jaw movements. However, active palpation and exploratory behaviors did result in the largest and most continuous bursts of GCL activity: responses were on average 10% larger and 50% longer during palpation and exploration than during grooming or passive stimulation. Although activity levels differed between behaviors, the position and spatial extent of the peripheral receptive field was similar over all behaviors that resulted in tactile input. Overall, our data suggest that the 1000-4500 Hz multiunit responses in the Crus IIa GCL of awake rats are correlated with tactile input rather than with movement or any movement parameter and that these responses are likely to be of particular importance during the acquisition of sensory information by perioral structures.

  10. Somatostatin binding to dissociated cells from rat cerebral cortex

    SciTech Connect

    Colas, B.; Prieto, J.C.; Arilla, E. )

    1990-11-01

    A method has been developed for the study of somatostatin (SS) binding to dissociated cells from rat cerebral cortex. Binding of {sup 125}I (Tyr11)SS to cells obtained by mechanical dissociation of rat cerebral cortex was dependent on time and temperature, saturable, reversible and highly specific. Under conditions of equilibrium, i.e., 60 min at 25 degrees C, native SS inhibited tracer binding in a dose-dependent manner. The Scatchard analysis of binding data was linear and yielded a dissociation constant of 0.60 +/- 0.08 nM with a maximal binding capacity of 160 +/- 16 fmol/mg protein. The binding of {sup 125}I (Tyr11)SS was specific as shown in experiments on tracer displacement by the native peptides, SS analogues, and unrelated peptides.

  11. [Atrophy of the granular layer of the cerebellar cortex in patients with nonlymphoblastic leukemia treated with cytosine arabinoside].

    PubMed

    Nowacki, P; Dolińska, D; Honczarenko, K; Zyluk, B

    1992-01-01

    The reported analysis comprised 81 patients dying of acute non-lymphoblastic leukaemia type M1, M2, M4 and blastic crises in chronic myelocytic leukaemia. It was observed that the number of cases of cerebellar granular layer atrophy rose markedly in the years 1984-1990 as compared with 1976-1983 (45.4% vs 16.2%). It is suggested that this was due to the introduction of cytostatic treatment schedules with higher doses of cytosine arabinoside (ARAC), especially TAD (6-thioguanine, ARAC, daunorubicin). Cerebellar granular layer atrophy seems to be dependent rather on the cumulative dose of ARAC and not on a single high dose of that drug.

  12. Metabolic effects of perinatal asphyxia in the rat cerebral cortex.

    PubMed

    Souza, Samir Khal; Martins, Tiago Leal; Ferreira, Gustavo Dias; Vinagre, Anapaula Sommer; Silva, Roselis Silveira Martins da; Frizzo, Marcos Emilio

    2013-03-01

    We reported previously that intrauterine asphyxia acutely affects the rat hippocampus. For this reason, the early effects of this injury were studied in the cerebral cortex, immediately after hysterectomy (acute condition) or following a recovery period at normoxia (recovery condition). Lactacidemia and glycemia were determined, as well as glycogen levels in the muscle, liver and cortex. Cortical tissue was also used to assay the ATP levels and glutamate uptake. Asphyxiated pups exhibited bluish coloring, loss of movement, sporadic gasping and hypertonia. However, the appearance of the controls and asphyxiated pups was similar at the end of the recovery period. Lactacidemia and glycemia were significantly increased by asphyxia in both the acute and recovery conditions. Concerning muscle and hepatic glycogen, the control group showed significantly higher levels than the asphyxic group in the acute condition and when compared with groups of the recovery period. In the recovery condition, the control and asphyxic groups showed similar glycogen levels. However, in the cortex, the control groups showed significantly higher glycogen levels than the asphyxic group, in both the acute and recovery conditions. In the cortical tissue, asphyxia reduced ATP levels by 70 % in the acute condition, but these levels increased significantly in asphyxic pups after the recovery period. Asphyxia did not affect glutamate transport in the cortex of both groups. Our results suggest that the cortex uses different energy resources to restore ATP after an asphyxia episode followed by a reperfusion period. This strategy could sustain the activity of essential energy-dependent mechanisms.

  13. Brain polyphosphoinositide metabolism during focal ischemia in rat cortex

    SciTech Connect

    Lin, T.N.; Liu, T.H.; Xu, J.; Hsu, C.Y.; Sun, G.Y. )

    1991-04-01

    Using a rat model of stroke, we examined the effects of focal cerebral ischemia on the metabolism of polyphosphoinositides by injecting {sup 32}Pi into both the left and right cortices. After equilibration of the label for 2-3 hours, ischemia induced a significant decrease (p less than 0.001) in the concentrations of labeled phosphatidyl 4,5-bisphosphates (66-78%) and phosphatidylinositol 4-phosphate (64-67%) in the right middle cerebral artery cortex of four rats. The phospholipid labeling pattern in the left middle cerebral artery cortex, which sustained only mild ischemia and no permanent tissue damage, was not different from that of two sham-operated controls. However, when {sup 32}Pi was injected 1 hour after the ischemic insult, there was a significant decrease (p less than 0.01) in the incorporation of label into the phospholipids in both cortices of four ischemic rats compared with four sham-operated controls. Furthermore, differences in the phospholipid labeling pattern were observed in the left cortex compared with the sham-operated controls. The change in labeling pattern was attributed to the partial reduction in blood flow following ligation of the common carotid arteries. We provide a sensitive procedure for probing the effects of focal cerebral ischemia on the polyphosphoinositide signaling pathway in the brain, which may play an important role in the pathogenesis of tissue injury.

  14. Epidural motor cortex stimulation suppresses somatosensory evoked potentials in the primary somatosensory cortex of the rat.

    PubMed

    Chiou, Ruei-Jen; Lee, Hsiao-Yun; Chang, Chen-Wei; Lin, Kuan-Hung; Kuo, Chung-Chih

    2012-06-29

    Motor cortex stimulation (MCS) is a promising clinical procedure to help alleviate chronic pain. Animal models demonstrated that MCS is effective in lessening nocifensive behaviors. The present study explored the effects of MCS on cortical somatosensory evoked potentials (SEPs) recorded at the primary somatosensory cortex (SI) of the rat. SEPs were evoked by electrical stimulation applied to the contralateral forepaws. Effects of different intensities, frequencies, and durations of MCS were tested. MCS at ≥2V suppressed SEPs of the ipsilateral SI. Suppression lasted 120 min at an intensity of 5 V. The optimal frequency was 50 Hz, and the duration was 30s. In contrast, MCS did not affect SEPs recorded on the contralateral SI. Cortical stimulation out of the motor cortex did not induce a decrease in the ipsilateral SEPs. We also investigated involvement of the endogenous opioid system in this inhibition of SEPs induced by MCS. The opioid antagonist, naloxone (0.5 mg/kg), was administered 30 min before MCS. Application of naloxone completely prevented the inhibitory effect of MCS on ipsilateral SEPs. These results demonstrate that MCS blocked the transmission of somatosensory information to the primary somatosensory cortex, and this interference was mediated by the endogenous opioid system. This inhibitory effect on sensory transmission induced by MCS may reflect its antinociceptive effect.

  15. Kv3 K+ channels enable burst output in rat cerebellar Purkinje cells.

    PubMed

    McKay, B E; Turner, R W

    2004-08-01

    The ability of cells to generate an appropriate spike output depends on a balance between membrane depolarizations and the repolarizing actions of K(+) currents. The high-voltage-activated Kv3 class of K(+) channels repolarizes Na(+) spikes to maintain high frequencies of discharge. However, little is known of the ability for these K(+) channels to shape Ca(2+) spike discharge or their ability to regulate Ca(2+) spike-dependent burst output. Here we identify the role of Kv3 K(+) channels in the regulation of Na(+) and Ca(2+) spike discharge, as well as burst output, using somatic and dendritic recordings in rat cerebellar Purkinje cells. Kv3 currents pharmacologically isolated in outside-out somatic membrane patches accounted for approximately 40% of the total K(+) current, were very fast and high voltage activating, and required more than 1 s to fully inactivate. Kv3 currents were differentiated from other tetraethylammonium-sensitive currents to establish their role in Purkinje cells under physiological conditions with current-clamp recordings. Dual somatic-dendritic recordings indicated that Kv3 channels repolarize Na(+) and Ca(2+) spikes, enabling high-frequency discharge for both types of cell output. We further show that during burst output Kv3 channels act together with large-conductance Ca(2+)-activated K(+) channels to ensure an effective coupling between Ca(2+) and Na(+) spike discharge by preventing Na(+) spike inactivation. By contributing significantly to the repolarization of Na(+) and especially Ca(2+) spikes, our data reveal a novel function for Kv3 K(+) channels in the maintenance of high-frequency burst output for cerebellar Purkinje cells.

  16. Functional specialization in rat occipital and temporal visual cortex

    PubMed Central

    Vermaercke, Ben; Gerich, Florian J.; Ytebrouck, Ellen; Arckens, Lutgarde; Van den Bergh, Gert

    2014-01-01

    Recent studies have revealed a surprising degree of functional specialization in rodent visual cortex. Anatomically, suggestions have been made about the existence of hierarchical pathways with similarities to the ventral and dorsal pathways in primates. Here we aimed to characterize some important functional properties in part of the supposed “ventral” pathway in rats. We investigated the functional properties along a progression of five visual areas in awake rats, from primary visual cortex (V1) over lateromedial (LM), latero-intermediate (LI), and laterolateral (LL) areas up to the newly found lateral occipito-temporal cortex (TO). Response latency increased >20 ms from areas V1/LM/LI to areas LL and TO. Orientation and direction selectivity for the used grating patterns increased gradually from V1 to TO. Overall responsiveness and selectivity to shape stimuli decreased from V1 to TO and was increasingly dependent upon shape motion. Neural similarity for shapes could be accounted for by a simple computational model in V1, but not in the other areas. Across areas, we find a gradual change in which stimulus pairs are most discriminable. Finally, tolerance to position changes increased toward TO. These findings provide unique information about possible commonalities and differences between rodents and primates in hierarchical cortical processing. PMID:24990566

  17. Spectral and Temporal Processing in Rat Posterior Auditory Cortex

    PubMed Central

    Pandya, Pritesh K.; Rathbun, Daniel L.; Moucha, Raluca; Engineer, Navzer D.; Kilgard, Michael P.

    2009-01-01

    The rat auditory cortex is divided anatomically into several areas, but little is known about the functional differences in information processing between these areas. To determine the filter properties of rat posterior auditory field (PAF) neurons, we compared neurophysiological responses to simple tones, frequency modulated (FM) sweeps, and amplitude modulated noise and tones with responses of primary auditory cortex (A1) neurons. PAF neurons have excitatory receptive fields that are on average 65% broader than A1 neurons. The broader receptive fields of PAF neurons result in responses to narrow and broadband inputs that are stronger than A1. In contrast to A1, we found little evidence for an orderly topographic gradient in PAF based on frequency. These neurons exhibit latencies that are twice as long as A1. In response to modulated tones and noise, PAF neurons adapt to repeated stimuli at significantly slower rates. Unlike A1, neurons in PAF rarely exhibit facilitation to rapidly repeated sounds. Neurons in PAF do not exhibit strong selectivity for rate or direction of narrowband one octave FM sweeps. These results indicate that PAF, like nonprimary visual fields, processes sensory information on larger spectral and longer temporal scales than primary cortex. PMID:17615251

  18. Spectral and temporal processing in rat posterior auditory cortex.

    PubMed

    Pandya, Pritesh K; Rathbun, Daniel L; Moucha, Raluca; Engineer, Navzer D; Kilgard, Michael P

    2008-02-01

    The rat auditory cortex is divided anatomically into several areas, but little is known about the functional differences in information processing between these areas. To determine the filter properties of rat posterior auditory field (PAF) neurons, we compared neurophysiological responses to simple tones, frequency modulated (FM) sweeps, and amplitude modulated noise and tones with responses of primary auditory cortex (A1) neurons. PAF neurons have excitatory receptive fields that are on average 65% broader than A1 neurons. The broader receptive fields of PAF neurons result in responses to narrow and broadband inputs that are stronger than A1. In contrast to A1, we found little evidence for an orderly topographic gradient in PAF based on frequency. These neurons exhibit latencies that are twice as long as A1. In response to modulated tones and noise, PAF neurons adapt to repeated stimuli at significantly slower rates. Unlike A1, neurons in PAF rarely exhibit facilitation to rapidly repeated sounds. Neurons in PAF do not exhibit strong selectivity for rate or direction of narrowband one octave FM sweeps. These results indicate that PAF, like nonprimary visual fields, processes sensory information on larger spectral and longer temporal scales than primary cortex.

  19. Bisphenol A influences oestrogen- and thyroid hormone-regulated thyroid hormone receptor expression in rat cerebellar cell culture.

    PubMed

    Somogyi, Virág; Horváth, Tamás L; Tóth, István; Bartha, Tibor; Frenyó, László Vilmos; Kiss, Dávid Sándor; Jócsák, Gergely; Kerti, Annamária; Naftolin, Frederick; Zsarnovszky, Attila

    2016-12-01

    Thyroid hormones (THs) and oestrogens are crucial in the regulation of cerebellar development. TH receptors (TRs) mediate these hormone effects and are regulated by both hormone families. We reported earlier that THs and oestradiol (E2) determine TR levels in cerebellar cell culture. Here we demonstrate the effects of low concentrations (10(-10) M) of the endocrine disruptor (ED) bisphenol A (BPA) on the hormonal (THs, E2) regulation of TRα,β in rat cerebellar cell culture. Primary cerebellar cell cultures, glia-containing and glia-destroyed, were treated with BPA or a combination of BPA and E2 and/or THs. Oestrogen receptor and TH receptor mRNA and protein levels were determined by real-time qPCR and Western blot techniques. The results show that BPA alone decreases, while BPA in combination with THs and/or E2 increases TR mRNA expression. In contrast, BPA alone increased receptor protein expressions, but did not further increase them in combination with THs and/or E2. The modulatory effects of BPA were mediated by the glia; however, the degree of changes also depended on the specific hormone ligand used. The results signify the importance of the regulatory mechanisms interposed between transcription and translation and raise the possibility that BPA could act to influence nuclear hormone receptor levels independently of ligand-receptor interaction.

  20. Neuronal activity in rat barrel cortex underlying texture discrimination.

    PubMed

    von Heimendahl, Moritz; Itskov, Pavel M; Arabzadeh, Ehsan; Diamond, Mathew E

    2007-11-01

    Rats and mice palpate objects with their whiskers to generate tactile sensations. This form of active sensing endows the animals with the capacity for fast and accurate texture discrimination. The present work is aimed at understanding the nature of the underlying cortical signals. We recorded neuronal activity from barrel cortex while rats used their whiskers to discriminate between rough and smooth textures. On whisker contact with either texture, firing rate increased by a factor of two to ten. Average firing rate was significantly higher for rough than for smooth textures, and we therefore propose firing rate as the fundamental coding mechanism. The rat, however, cannot take an average across trials, but must make an immediate decision using the signals generated on each trial. To estimate single-trial signals, we calculated the mutual information between stimulus and firing rate in the time window leading to the rat's observed choice. Activity during the last 75 ms before choice transmitted the most informative signal; in this window, neuronal clusters carried, on average, 0.03 bits of information about the stimulus on trials in which the rat's behavioral response was correct. To understand how cortical activity guides behavior, we examined responses in incorrect trials and found that, in contrast to correct trials, neuronal firing rate was higher for smooth than for rough textures. Analysis of high-speed films suggested that the inappropriate signal on incorrect trials was due, at least in part, to nonoptimal whisker contact. In conclusion, these data suggest that barrel cortex firing rate on each trial leads directly to the animal's judgment of texture.

  1. Neuronal Activity in Rat Barrel Cortex Underlying Texture Discrimination

    PubMed Central

    von Heimendahl, Moritz; Itskov, Pavel M; Arabzadeh, Ehsan; Diamond, Mathew E

    2007-01-01

    Rats and mice palpate objects with their whiskers to generate tactile sensations. This form of active sensing endows the animals with the capacity for fast and accurate texture discrimination. The present work is aimed at understanding the nature of the underlying cortical signals. We recorded neuronal activity from barrel cortex while rats used their whiskers to discriminate between rough and smooth textures. On whisker contact with either texture, firing rate increased by a factor of two to ten. Average firing rate was significantly higher for rough than for smooth textures, and we therefore propose firing rate as the fundamental coding mechanism. The rat, however, cannot take an average across trials, but must make an immediate decision using the signals generated on each trial. To estimate single-trial signals, we calculated the mutual information between stimulus and firing rate in the time window leading to the rat's observed choice. Activity during the last 75 ms before choice transmitted the most informative signal; in this window, neuronal clusters carried, on average, 0.03 bits of information about the stimulus on trials in which the rat's behavioral response was correct. To understand how cortical activity guides behavior, we examined responses in incorrect trials and found that, in contrast to correct trials, neuronal firing rate was higher for smooth than for rough textures. Analysis of high-speed films suggested that the inappropriate signal on incorrect trials was due, at least in part, to nonoptimal whisker contact. In conclusion, these data suggest that barrel cortex firing rate on each trial leads directly to the animal's judgment of texture. PMID:18001152

  2. Cytoarchitecture of mouse and rat cingulate cortex with human homologies.

    PubMed

    Vogt, Brent A; Paxinos, George

    2014-01-01

    A gulf exists between cingulate area designations in human neurocytology and those used in rodent brain atlases with a major underpinning of the former being midcingulate cortex (MCC). The present study used images extracted from the Franklin and Paxinos mouse atlas and Paxinos and Watson rat atlas to demonstrate areas comprising MCC and modifications of anterior cingulate (ACC) and retrosplenial cortices. The laminar architecture not available in the atlases is also provided for each cingulate area. Both mouse and rat have a MCC with neurons in all layers that are larger than in ACC and layer Va has particularly prominent neurons and reduced neuron densities. An undifferentiated ACC area 33 lies along the rostral callosal sulcus in rat but not in mouse and area 32 has dorsal and ventral subdivisions with the former having particularly large pyramidal neurons in layer Vb. Both mouse and rat have anterior and posterior divisions of retrosplenial areas 29c and 30, although their cytology is different in rat and mouse. Maps of the rodent cingulate cortices provide for direct comparisons with each region in the human including MCC and it is significant that rodents do not have a posterior cingulate region composed of areas 23 and 31 like the human. It is concluded that rodents and primates, including humans, possess a MCC and this homology along with those in ACC and retrosplenial cortices permit scientists inspired by human considerations to test hypotheses on rodent models of human diseases.

  3. Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na+ currents through intracellular Ca2+ release

    PubMed Central

    Liu, Dong-Dong; Ren, Zhen; Yang, Guang; Zhao, Qian-Ru; Mei, Yan-Ai

    2014-01-01

    Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low-frequency electromagnetic field (ELF-EMF)-induced Nav activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF-EMF for 60 min. significantly increased the Nav current (INa) densities by 62.5%. MT (5 μM) inhibited the ELF-EMF-induced INa increase. This inhibitory effect of MT is mimicked by an MT2 receptor agonist and was eliminated by an MT2 receptor antagonist. The Nav channel steady-state activation curve was significantly shifted towards hyperpolarization by ELF-EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF-EMF. ELF-EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK-7 did not reduce the ELF-EMF-induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF-EMF-induced Nav activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca2+ level, but it significantly elevated the intracellular Ca2+ level evoked by the high K+ stimulation in cerebellar GC that were either exposed or not exposed to ELF-EMF. In the presence of ruthenium red, a ryanodine-sensitive receptor blocker, the MT-induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF-EMF exposure through Ca2+ influx-induced Ca2+ release. PMID:24548607

  4. Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na(+) currents through intracellular Ca(2+) release.

    PubMed

    Liu, Dong-Dong; Ren, Zhen; Yang, Guang; Zhao, Qian-Ru; Mei, Yan-Ai

    2014-06-01

    Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low-frequency electromagnetic field (ELF-EMF)-induced Nav activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF-EMF for 60 min. significantly increased the Nav current (INa ) densities by 62.5%. MT (5 μM) inhibited the ELF-EMF-induced INa increase. This inhibitory effect of MT is mimicked by an MT2 receptor agonist and was eliminated by an MT2 receptor antagonist. The Nav channel steady-state activation curve was significantly shifted towards hyperpolarization by ELF-EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF-EMF. ELF-EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK-7 did not reduce the ELF-EMF-induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF-EMF-induced Nav activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca(2+) level, but it significantly elevated the intracellular Ca(2+) level evoked by the high K(+) stimulation in cerebellar GC that were either exposed or not exposed to ELF-EMF. In the presence of ruthenium red, a ryanodine-sensitive receptor blocker, the MT-induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF-EMF exposure through Ca(2+) influx-induced Ca(2+) release. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. Encoding of temporal intervals in the rat hindlimb sensorimotor cortex.

    PubMed

    Knudsen, Eric B; Flint, Robert D; Moxon, Karen A

    2012-01-01

    The gradual buildup of neural activity over experimentally imposed delay periods, termed climbing activity, is well documented and is a potential mechanism by which interval time is encoded by distributed cortico-thalamico-striatal networks in the brain. Additionally, when multiple delay periods are incorporated, this activity has been shown to scale its rate of climbing proportional to the delay period. However, it remains unclear whether these patterns of activity occur within areas of motor cortex dedicated to hindlimb movement. Moreover, the effects of behavioral training (e.g., motor tasks) under different reward conditions but with similar behavioral output are not well addressed. To address this, we recorded activity from the hindlimb sensorimotor cortex (HLSMC) of two groups of rats performing a skilled hindlimb press task. In one group, rats were trained only to a make a valid press within a finite window after cue presentation for reward (non-interval trained, nIT; n = 5), while rats in the second group were given duration-specific cues in which they had to make presses of either short or long duration to receive reward (interval trained, IT; n = 6). Using perievent time histogram (PETH) analyses, we show that cells recorded from both groups showed climbing activity during the task in similar proportions (35% IT and 47% nIT), however, only climbing activity from IT rats was temporally scaled to press duration. Furthermore, using single trial decoding techniques (Wiener filter), we show that press duration can be inferred using climbing activity from IT animals (R = 0.61) significantly better than nIT animals (R = 0.507, p < 0.01), suggesting IT animals encode press duration through temporally scaled climbing activity. Thus, if temporal intervals are behaviorally relevant then the activity of climbing neurons is temporally scaled to encode the passage of time.

  6. Encoding of temporal intervals in the rat hindlimb sensorimotor cortex

    PubMed Central

    Knudsen, Eric B.; Flint, Robert D.; Moxon, Karen A.

    2012-01-01

    The gradual buildup of neural activity over experimentally imposed delay periods, termed climbing activity, is well documented and is a potential mechanism by which interval time is encoded by distributed cortico-thalamico-striatal networks in the brain. Additionally, when multiple delay periods are incorporated, this activity has been shown to scale its rate of climbing proportional to the delay period. However, it remains unclear whether these patterns of activity occur within areas of motor cortex dedicated to hindlimb movement. Moreover, the effects of behavioral training (e.g., motor tasks) under different reward conditions but with similar behavioral output are not well addressed. To address this, we recorded activity from the hindlimb sensorimotor cortex (HLSMC) of two groups of rats performing a skilled hindlimb press task. In one group, rats were trained only to a make a valid press within a finite window after cue presentation for reward (non-interval trained, nIT; n = 5), while rats in the second group were given duration-specific cues in which they had to make presses of either short or long duration to receive reward (interval trained, IT; n = 6). Using perievent time histogram (PETH) analyses, we show that cells recorded from both groups showed climbing activity during the task in similar proportions (35% IT and 47% nIT), however, only climbing activity from IT rats was temporally scaled to press duration. Furthermore, using single trial decoding techniques (Wiener filter), we show that press duration can be inferred using climbing activity from IT animals (R = 0.61) significantly better than nIT animals (R = 0.507, p < 0.01), suggesting IT animals encode press duration through temporally scaled climbing activity. Thus, if temporal intervals are behaviorally relevant then the activity of climbing neurons is temporally scaled to encode the passage of time. PMID:23055956

  7. Ontogeny of somatostatin receptors in the rat somatosensory cortex

    SciTech Connect

    Gonzalez, B.J.; Leroux, P.; Bodenant, C.; Vaudry, H. )

    1991-03-08

    The distribution and density of SRIF receptors (SRIF-R) were studied during development in the rat somatosensory cortex by in vitro autoradiography with monoiodinated (Tyr0-DTrp8)S14. In 16-day-old fetuses (E16), intense labeling was evident in the intermediate zone of the cortex while low concentrations of SRIF-R were detected in the marginal and ventricular zones. The highest density of SRIF-R was measured in the intermediate zone at E18. At this stage, labeling was also intense in the internal part of the developing cortical plate; in contrast, the concentration of binding sites associated with the marginal and ventricular zones remained relatively low. Profound modifications in the distribution of SRIF-R appeared at birth. In particular, a transient reduction of receptor density occurred in the cortical plate. During the first postnatal week, the density of receptors measured in the intermediate zone decreased gradually; conversely, high levels of SRIF-R were observed in the developing cortical layers (II to VI). At postpartum day 13 (P13), a stage which just precedes completion of cell migration in the parietal cortex, the most intensely labeled regions were layers V-VI and future layers II-III. From P13 to adulthood, the concentrations of SRIF-R decreased in all cortical layers (I to VI) and the pattern of distribution of receptors at P21 was similar to that observed in the adults.

  8. The representation of social facial touch in rat barrel cortex.

    PubMed

    Bobrov, Evgeny; Wolfe, Jason; Rao, Rajnish P; Brecht, Michael

    2014-01-06

    Controlled presentation of stimuli to anesthetized [1] or awake [2] animals suggested that neurons in sensory cortices respond to elementary features [3, 4], but we know little about neuronal responses evoked by social interactions. Here we investigate processing in the barrel cortex of rats engaging in social facial touch [5, 6]. Sensory stimulation by conspecifics differs from classic whisker stimuli such as deflections, contact poles [7, 8], or textures [9, 10]. A large fraction of barrel cortex neurons responded to facial touch. Social touch responses peaked when animals aligned their faces and contacted each other by multiple whiskers with small, irregular whisker movements. Object touch was associated with larger, more regular whisker movements, and object responses were weaker than social responses. Whisker trimming abolished responses. During social touch, neurons in males increased their firing on average by 44%, while neurons in females increased their firing by only 19%. In females, socially evoked and ongoing firing rates were more than 1.5-fold higher in nonestrus than in estrus. Barrel cortex represented socially different contacts by distinct firing rates, and the variation of activity with sex and sexual status could contribute to the generation of gender-specific neural constructs of conspecifics.

  9. Cloned, expressed rat cerebellar nitric oxide synthase contains stoichiometric amounts of heme, which binds carbon monoxide.

    PubMed Central

    McMillan, K; Bredt, D S; Hirsch, D J; Snyder, S H; Clark, J E; Masters, B S

    1992-01-01

    The endogenous formation of nitric oxide (NO) has become an area of intense interest as evidence for its biological functions has been obtained in three distinct tissues: circulating macrophages, in which it exerts cytotoxic effects; blood vessels, in which it has been identified as endothelium-derived relaxing factor; and neuronal cells, in which it functions as a neurotransmitter. The formation of NO in brain extracts has been shown to be catalyzed by an enzyme, termed NO synthase, which generates the NO responsible for stimulation of cGMP formation, the highest levels of which occur in the cerebellum. NO synthase catalyzes the formation of citrulline from arginine with the coincident production of NO and has been shown to be a flavoprotein, containing 1 mol each of FAD and FMN, tetrahydrobiopterin, and iron. It is also reported to contain an alpha-helical, calmodulin-binding consensus sequence consistent with its stimulation by calmodulin in the presence of Ca2+. The formation of NO requires incorporation of one of the atoms of molecular oxygen into one of the guanidinium nitrogen atoms of arginine with the coincident formation of citrulline. This communication reports that rat cerebellar NO synthase, cloned and stably expressed in human kidney 293 cells, contains heme in amounts stoichiometric with the flavins FAD and FMN as evidenced by the appearance of a pyridine hemochrome and a reduced CO difference spectrum with an absorbance maximum at approximately 445 nm. The finding of a CO-binding heme moiety explains the presence of iron in the enzyme and suggests a role for prosthetic heme as an oxygenase reaction center. This report also presents evidence for incorporation of delta-[14C]aminolevulinate specifically into immunoprecipitable NO synthase in stably transfected human kidney 293 cells but not in nontransfected cells. Simultaneously, K. A. White and M. A. Marletta [(1992) Biochemistry 31, 6627-6631] have demonstrated a CO-binding heme prosthetic group in

  10. T1-Weighted Hypersignal in the Deep Cerebellar Nuclei After Repeated Administrations of Gadolinium-Based Contrast Agents in Healthy Rats

    PubMed Central

    Robert, Philippe; Lehericy, Stéphane; Grand, Sylvie; Violas, Xavier; Fretellier, Nathalie; Idée, Jean-Marc; Ballet, Sébastien; Corot, Claire

    2015-01-01

    Objectives To prospectively compare in healthy rats the effect of multiple injections of macrocyclic (gadoterate meglumine) and linear (gadodiamide) gadolinium-based contrast agents (GBCAs) on T1-weighted signal intensity in the deep cerebellar nuclei (DCN), including the dentate nucleus. Materials and Methods Healthy rats (n = 7/group) received 20 intravenous injections of 0.6 mmol of gadolinium (Gd) per kilogram (4 injections per week during 5 weeks) of gadodiamide, gadoterate meglumine, or hyperosmolar saline (control group). Brain T1-weighted magnetic resonance imaging was performed before and once a week during the 5 weeks of injections and during 5 additional weeks (treatment-free period). Gadolinium concentrations were measured with inductively coupled plasma mass spectrometry in plasma and brain. Blinded qualitative and quantitative evaluations of the T1 signal intensity in DCN were performed, as well as a statistical analysis on quantitative data. Results A significant and persistent T1 signal hyperintensity in DCN was observed only in gadodiamide-treated rats. The DCN-to-cerebellar cortex signal ratio was significantly increased from the 12th injection of gadodiamide (1.070 ± 0.024) compared to the gadoterate meglumine group (1.000 ± 0.033; P < 0.001) and control group (1.019 ± 0.022; P < 0.001) and did not significantly decrease during the treatment-free period. Total Gd concentrations in the gadodiamide group were significantly higher in the cerebellum (3.66 ± 0.91 nmol/g) compared with the gadoterate meglumine (0.26 ± 0.12 nmol/g; P < 0.05) and control (0.06 ± 0.10 nmol/g; P < 0.05) groups. Conclusions Repeated administrations of the linear GBCA gadodiamide to healthy rats are associated with progressive and persistent T1 signal hyperintensity in the DCN, with Gd deposition in the cerebellum in contrast with the macrocyclic GBCA gadoterate meglumine for which no effect was observed. PMID:26107651

  11. Developmental subchronic exposure to diphenylarsinic acid induced increased exploratory behavior, impaired learning behavior, and decreased cerebellar glutathione concentration in rats.

    PubMed

    Negishi, Takayuki; Matsunaga, Yuki; Kobayashi, Yayoi; Hirano, Seishiro; Tashiro, Tomoko

    2013-12-01

    In Japan, people using water from the well contaminated with high-level arsenic developed neurological, mostly cerebellar, symptoms, where diphenylarsinic acid (DPAA) was a major compound. Here, we investigated the adverse effects of developmental exposure to 20mg/l DPAA in drinking water (early period [0-6 weeks of age] and/or late period [7-12]) on behavior and cerebellar development in male rats. In the open field test at 6 weeks of age, early exposure to DPAA significantly increased exploratory behaviors. At 12 weeks of age, late exposure to DPAA similarly increased exploratory behavior independent of the early exposure although a 6-week recovery from DPAA could reverse that change. In the passive avoidance test at 6 weeks of age, early exposure to DPAA significantly decreased the avoidance performance. Even at 12 weeks of age, early exposure to DPAA significantly decreased the test performance, which was independent of the late exposure to DPAA. These results suggest that the DPAA-induced increase in exploratory behavior is transient, whereas the DPAA-induced impairment of passive avoidance is long lasting. At 6 weeks of age, early exposure to DPAA significantly reduced the concentration of cerebellar total glutathione. At 12 weeks of age, late, but not early, exposure to DPAA also significantly reduced the concentration of cerebellar glutathione, which might be a primary cause of oxidative stress. Early exposure to DPAA induced late-onset suppressed expression of NMDAR1 and PSD95 protein at 12 weeks of age, indicating impaired glutamatergic system in the cerebellum of rats developmentally exposed to DPAA.

  12. Developmental Subchronic Exposure to Diphenylarsinic Acid Induced Increased Exploratory Behavior, Impaired Learning Behavior, and Decreased Cerebellar Glutathione Concentration in Rats

    PubMed Central

    Negishi, Takayuki; Matsunaga, Yuki

    2013-01-01

    In Japan, people using water from the well contaminated with high-level arsenic developed neurological, mostly cerebellar, symptoms, where diphenylarsinic acid (DPAA) was a major compound. Here, we investigated the adverse effects of developmental exposure to 20mg/l DPAA in drinking water (early period [0–6 weeks of age] and/or late period [7–12]) on behavior and cerebellar development in male rats. In the open field test at 6 weeks of age, early exposure to DPAA significantly increased exploratory behaviors. At 12 weeks of age, late exposure to DPAA similarly increased exploratory behavior independent of the early exposure although a 6-week recovery from DPAA could reverse that change. In the passive avoidance test at 6 weeks of age, early exposure to DPAA significantly decreased the avoidance performance. Even at 12 weeks of age, early exposure to DPAA significantly decreased the test performance, which was independent of the late exposure to DPAA. These results suggest that the DPAA-induced increase in exploratory behavior is transient, whereas the DPAA-induced impairment of passive avoidance is long lasting. At 6 weeks of age, early exposure to DPAA significantly reduced the concentration of cerebellar total glutathione. At 12 weeks of age, late, but not early, exposure to DPAA also significantly reduced the concentration of cerebellar glutathione, which might be a primary cause of oxidative stress. Early exposure to DPAA induced late-onset suppressed expression of NMDAR1 and PSD95 protein at 12 weeks of age, indicating impaired glutamatergic system in the cerebellum of rats developmentally exposed to DPAA. PMID:24008832

  13. Diazepam reduces excitability of amygdala and further influences auditory cortex following sodium salicylate treatment in rats.

    PubMed

    Song, Yu; Liu, Junxiu; Ma, Furong; Mao, Lanqun

    2016-12-01

    Diazepam can reduce the excitability of lateral amygdala and eventually suppress the excitability of the auditory cortex in rats following salicylate treatment, indicating the regulating effect of lateral amygdala to the auditory cortex in the tinnitus procedure. To study the spontaneous firing rates (SFR) of the auditory cortex and lateral amygdala regulated by diazepam in the tinnitus rat model induced by sodium salicylate. This study first created a tinnitus rat modal induced by sodium salicylate, and recorded SFR of both auditory cortex and lateral amygdala. Then diazepam was intraperitoneally injected and the SFR changes of lateral amygdala recorded. Finally, diazepam was microinjected on lateral amygdala and the SFR changes of the auditory cortex recorded. Both SFRs of the auditory cortex and lateral amygdala increased after salicylate treatment. SFR of lateral amygdala decreased after intraperitoneal injection of diazepam. Microinjecting diazepam to lateral amygdala decreased SFR of the auditory cortex ipsilaterally and contralaterally.

  14. Motor cortex neuroplasticity associated with lingual nerve injury in rats.

    PubMed

    Adachi, Kazunori; Lee, Jye-Chang; Hu, James W; Yao, Dongyuan; Sessle, Barry J

    2007-09-01

    The aim of this study was to determine if lingual nerve trauma affects the features of face primary motor cortex (MI) defined by intracortical microstimulation (ICMS). The left lingual nerve was transected in adult male rats by an oral surgical procedure; sham rats (oral surgery but no nerve transection) as well as naive intact rats served as control groups. ICMS was applied at post-operative days 0, 7, 14, 21, and 28 to map the jaw and tongue motor representations in face MI by analyzing ICMS-evoked movements and electromyographic activity recorded in the genioglossus (GG) and anterior digastric (AD) muscles. There were no statistically significant effects of acute (day 0) nerve transection or sham procedure (p > 0.05). The surgery in the sham animals was associated with limited post-operative change; this was reflected in a significant (p < 0.05) increase in the number of GG sites in left MI at post-operative day 14 compared to day 0. However, nerve transection was associated with significant increases in the total number of AD and GG sites in left or right MI or specifically the number of GG sites in rats at post-operative days 21 or 28 compared to earlier time periods. There were also significant differences between nerve-transected and sham groups at post-operative days 7, 14, or 21. These findings suggest that lingual nerve transection is associated with significant time-dependent neuroplastic changes in the tongue motor representations in face MI.

  15. [Effect of Heroin on DLG4 Expression in Hippocampus, Amygdala and Frontal Cortex of Rats].

    PubMed

    Luo, Liang-ming; Gong, Qun; Liu, Jian-feng; Zhao, Ming-quan; Chen, Dong-dong; Xie, Yao-yao; Zhu, Hua

    2015-06-01

    To observe the expression of discs large homolog 4 (DLG4) protein in hippocampus, amygdala and frontal cortex of rats and evaluate postsynaptic density in heroin dependence. The rat heroin dependent model was established by increasing intraperitoneal injection of heroin. DLG4 proteins in hippocampus, amygdala and frontal cortex of heroin dependent 9, 18, 36 days rats were detected with immunohistochemical staining and compared with that in the control group. DLG4 proteins in hippocampus, amygdala and frontal cortex were gradually reduced with extension of heroin dependent time. Heroin dependence can affect postsynaptic density of hippocampus, amygdala and frontal cortex. The changes become more apparent with extension of heroin dependence time.

  16. Structure of zona reticularis of adrenal cortex in hypertensive NISAG rats.

    PubMed

    Buzueva, I I; Filjushina, E E; Shmerling, M D; Markel, A L; Jakobson, G S

    2008-11-01

    The structure of zona reticularis of the adrenal cortex in hypertensive NISAG rats was studied during the early, middle, and late periods of postnatal ontogeny. The detected morphological signs suggest that hypotrophic changes in zona reticularis of the adrenal cortex in hypertensive rats appeared before the onset of high blood pressure and accompanied the development of arterial hypertension in these animals.

  17. Acute and chronic administration of ibogaine to the rat results in astrogliosis that is not confined to the cerebellar vermis.

    PubMed

    O'Callaghan, J P; Rogers, T S; Rodman, L E; Page, J G

    1996-10-31

    Acute administration of high doses of ibogaine (IBG) to the male rat results in degeneration of Purkinje cells and reactive gliosis in the cerebellar vermis. We examined whether acute and chronic administration of IBG to male and female rats results in gliosis as determined by quantification of the astroglial intermediate filament protein, glial fibrillary acidic protein (GFAP). After acute administration of IBG, rats of both sexes showed dose-related increases in GFAP that were not confined to the cerebellar vermis. After chronic administration of IBG, female, but not male rats, showed large (as much as 200% of control), dose-related increases in GFAP in hippocampus, olfactory bulbs, brain stem and striatum, but not cerebellum. In hippocampus, the cytoskeletal proteins, neurofilament 68 (NF-68) and beta-tubulin were increased in females treated chronically with IBG, findings consistent with a damage-induced sprouting response. Together, the data indicate that IBG damages areas of the brain outside the cerebellum and that the sites damaged are dependent on sex and dosage regimen.

  18. Neural discriminability in rat lateral extrastriate cortex and deep but not superficial primary visual cortex correlates with shape discriminability

    PubMed Central

    Vermaercke, Ben; Van den Bergh, Gert; Gerich, Florian; Op de Beeck, Hans

    2015-01-01

    Recent studies have revealed a surprising degree of functional specialization in rodent visual cortex. It is unknown to what degree this functional organization is related to the well-known hierarchical organization of the visual system in primates. We designed a study in rats that targets one of the hallmarks of the hierarchical object vision pathway in primates: selectivity for behaviorally relevant dimensions. We compared behavioral performance in a visual water maze with neural discriminability in five visual cortical areas. We tested behavioral discrimination in two independent batches of six rats using six pairs of shapes used previously to probe shape selectivity in monkey cortex (Lehky and Sereno, 2007). The relative difficulty (error rate) of shape pairs was strongly correlated between the two batches, indicating that some shape pairs were more difficult to discriminate than others. Then, we recorded in naive rats from five visual areas from primary visual cortex (V1) over areas LM, LI, LL, up to lateral occipito-temporal cortex (TO). Shape selectivity in the upper layers of V1, where the information enters cortex, correlated mostly with physical stimulus dissimilarity and not with behavioral performance. In contrast, neural discriminability in lower layers of all areas was strongly correlated with behavioral performance. These findings, in combination with the results from Vermaercke et al. (2014b), suggest that the functional specialization in rodent lateral visual cortex reflects a processing hierarchy resulting in the emergence of complex selectivity that is related to behaviorally relevant stimulus differences. PMID:26041999

  19. Neural discriminability in rat lateral extrastriate cortex and deep but not superficial primary visual cortex correlates with shape discriminability.

    PubMed

    Vermaercke, Ben; Van den Bergh, Gert; Gerich, Florian; Op de Beeck, Hans

    2015-01-01

    Recent studies have revealed a surprising degree of functional specialization in rodent visual cortex. It is unknown to what degree this functional organization is related to the well-known hierarchical organization of the visual system in primates. We designed a study in rats that targets one of the hallmarks of the hierarchical object vision pathway in primates: selectivity for behaviorally relevant dimensions. We compared behavioral performance in a visual water maze with neural discriminability in five visual cortical areas. We tested behavioral discrimination in two independent batches of six rats using six pairs of shapes used previously to probe shape selectivity in monkey cortex (Lehky and Sereno, 2007). The relative difficulty (error rate) of shape pairs was strongly correlated between the two batches, indicating that some shape pairs were more difficult to discriminate than others. Then, we recorded in naive rats from five visual areas from primary visual cortex (V1) over areas LM, LI, LL, up to lateral occipito-temporal cortex (TO). Shape selectivity in the upper layers of V1, where the information enters cortex, correlated mostly with physical stimulus dissimilarity and not with behavioral performance. In contrast, neural discriminability in lower layers of all areas was strongly correlated with behavioral performance. These findings, in combination with the results from Vermaercke et al. (2014b), suggest that the functional specialization in rodent lateral visual cortex reflects a processing hierarchy resulting in the emergence of complex selectivity that is related to behaviorally relevant stimulus differences.

  20. Multiple pathways of Pb(2+) permeation in rat cerebellar granule neurones.

    PubMed

    Mazzolini, M; Traverso, S; Marchetti, C

    2001-10-01

    The pathways of lead (Pb(2+)) uptake were studied in fura-2-loaded cerebellar granule cells from 8-day-old rats. In a nominal Ca-free external bath, Pb(2+) (5-50 microM) determined an increase of the fluorescence emission ratio (R = E(340)/E(380)) even in the absence of any specific stimulus. This rise was dose-dependent, was not significantly affected by mM Mg(2+) or Ca(2+), but it was readily reversed by the membrane-permeant heavy metal chelator tetrakis(2-pyridylmethyl) ethylene-diamine (TPEN, 100 microM), indicating that it was due to Pb(2+) influx. The rate of rise, dR/dt, was increased up to a factor of 5 by depolarizing high-KCl solution, indicating a sizeable permeation through voltage-dependent channels. This effect was neither antagonized by nimodipine, nor enhanced by BayK8644, but it was slackened by omega-agatoxin IVA (200 nM), suggesting an involvement of non-L-type calcium channels. Pb(2+) influx was also stimulated by glutamic acid or NMDA in the presence of 10-30 microM glycine, but only in Mg-free solution, suggesting that glutamate channels of the NMDA type are an additional pathway of Pb(2+) uptake. Pb(2+) caused a time-, dose- and stimulus-dependent saturation of the dye, whose intracellular concentration is approximately 10 microM, indicating that intracellular Pb(2+) can readily reach a concentration in the micromolar range. These results indicate that the particular vulnerability of neurones to Pb(2+) poisoning is linked to the presence of specific transport systems, which mediate the rapid uptake of Pb(2+) into the neurone.

  1. 2', 3'-cyclic nucleotide 3'-phosphodiesterase is expressed in dissociated rat cerebellar cells and included in the postsynaptic density fraction.

    PubMed

    Cho, Sun-Jung; Jung, Jae Seob; Jin, IngNyol; Moon, Il Soo

    2003-08-31

    We have shown by protein sequencing that the phosphotyrosine-containing 48 kDa protein band of the rat cerebellar postsynaptic density fraction (CBL-PSD) is 2', 3'-cyclic nucleotide 3'-phosphodiesterase 2 (CNP2). Immunoblot analysis indicated that both CNP1 and CNP2 isoforms are present in the CBL-PSD fraction, whereas there is little CNP2 in the forebrain (FB)-PSD fraction. Both isoforms in the CBL-PSD fraction were tyrosine-phosphorylated to a basal extent. They were efficiently dissociated from the complexes in the PSD fraction by salt, but not by non-ionic detergents such as n-octyl glucoside (OG) and Triton X-100. Immunocytochemistry of dissociated cerebellar cultures revealed patchy CNP staining in oligodendrocytes (OLs), Purkinje cells (PCs), and unidentified PSD95-positive cells, but no staining in granule cells (GCs). Our results indicate that both CNP1 and CNP2 are expressed in cerian populations of cerebellar cells in addition to OL, and that they are associated with complexes that are co-isolated with the PSD.

  2. Ischemia deteriorates the spike encoding of rat cerebellar Purkinje cells by raising intracellular Ca{sup 2+}

    SciTech Connect

    Zhao Shidi; Chen Na; Yang Zhilai; Huang Li; Zhu Yan; Guan Sudong; Chen Qianfen; Wang Jinhui

    2008-02-08

    Ischemia-induced excitotoxicity at cerebellar Purkinje cells is presumably due to a persistent glutamate action. To the fact that they are more vulnerable to ischemia than other glutamate-innervated neurons, we studied whether additional mechanisms are present and whether cytoplasm Ca{sup 2+} plays a key role in their ischemic excitotoxicity. Ischemic changes in the excitability of Purkinje cells were measured by whole-cell recording in cerebellar slices of rats with less glutamate action. The role of cytoplasm Ca{sup 2+} was examined by two-photon cellular imaging and BAPTA infusion in Purkinje cells. Lowering perfusion rate to cerebellar slices deteriorated spike timing and raised spike capacity of Purkinje cells. These changes were associated with the reduction of spike refractory periods and threshold potentials, as well as the loss of their control to spike encoding. Ischemia-induced functional deterioration at Purkinje neurons was accompanied by cytoplasm Ca{sup 2+} rise and prevented by BAPTA infusion. Therefore, the ischemia destabilizes the spike encoding of Purkinje cells via raising cytoplasm Ca{sup 2+} without a need for glutamate, which subsequently causes their excitotoxic death.

  3. Effect of orbitofrontal cortex lesions on temporal discounting in rats

    PubMed Central

    Jo, Suhyun; Kim, Ko-Un; Lee, Daeyeol; Jung, Min Whan

    2013-01-01

    Although choices of both humans and animals are more strongly influenced by immediate than delayed rewards, methodological limitations have made it difficult to estimate the precise form of temporal discounting in animals. In the present study, we sought to characterize temporal discounting in rats and to test the role of the orbitofrontal cortex (OFC) in this process. Rats were trained in a novel intertemporal choice task in which the sequence of delay durations was randomized across trials. The animals tended to choose a small immediate reward more frequently as the delay for a large reward increased, and, consistent with previous findings in other species, their choice behavior was better accounted for by hyperbolic than exponential discount functions. In addition, model comparisons showed that the animal’s choice behavior was better accounted for by more complex discount functions with an additional parameter than a hyperbolic discount function. Following bilateral OFC lesions, rats extensively trained in this task showed no significant change in their intertemporal choice behavior. Our results suggest that the rodent OFC may not always play a role in temporal discounting when delays are randomized and/or after extensive training. PMID:23434604

  4. [Effect of diphenylhydantoin administered during gestation and lactation on the motor development and cerebellar histology of the young rat].

    PubMed

    Desor, D; Royer, R J; Netter, P; Guedenet, J C; Faure, G; Krafft, B; Grignon, G

    1978-01-01

    Rattus norvegicus females were treated by diphenylhydantoin (D.P.H.), all along pregnancy and lactation. 4 groups were constituted: a 100 mg DPH/kg/day group, a 50 mg DPH/kg/day group; a placebo group (treated with pure water), and control group. D.P.H. was given twice a day by a gastric tube. The cerebellar Purkinje cells studied through light microscopy and transmission electron microscopy in young rats (25 days old) showed no visible alteration. 2 motorcoordination tests were applied to the young rats, during their 2nd and 3rd weeks of post-natal life. Young rats of DPH 100, DPH 50 and placebo groups showed a backwardness relatively to control. This backwardness may be attributed to the maternal forced feeding stress, but not to a specific action of the DPH.

  5. Intra-cerebellar infusion of the protein kinase Mzeta (PKMζ) inhibitor ZIP disrupts eyeblink classical conditioning

    PubMed Central

    Chihabi, Kutibh; Morielli, Anthony D.; Green, John T.

    2016-01-01

    PKM-ζ, a constitutively active N-terminal truncated form of PKC-ζ, has long been implicated in a cellular correlate of learning, long-term potentiation (LTP). Inhibition of PKM-ζ with Zeta-inhibitory peptide (ZIP) has been shown in many brain structures to disrupt maintenance of AMPA receptors, irreversibly disrupting numerous forms of learning and memory that have been maintained for weeks. Delay eyeblink conditioning (EBC) is an established model for the assessment of cerebellar learning; here, we show that PKC-ζ and PKM-ζ are highly expressed in the cerebellar cortex, with highest expression found in Purkinje cell (PC) nuclei. Despite being highly expressed in the cerebellar cortex, no studies have examined how regulation of cerebellar PKM-ζ may affect cerebellar-dependent learning and memory. Given its disruption of learning in other brain structures, we hypothesized that ZIP would also disrupt delay EBC. We have shown that infusion of ZIP into the lobulus simplex of the rat cerebellar cortex can indeed significantly disrupt delay EBC. PMID:26949968

  6. Sexually Monomorphic Maps and Dimorphic Responses in Rat Genital Cortex.

    PubMed

    Lenschow, Constanze; Copley, Sean; Gardiner, Jayne M; Talbot, Zoe N; Vitenzon, Ariel; Brecht, Michael

    2016-01-11

    Mammalian external genitals show sexual dimorphism [1, 2] and can change size and shape upon sexual arousal. Genitals feature prominently in the oldest pieces of figural art [3] and phallic depictions of penises informed psychoanalytic thought about sexuality [4, 5]. Despite this longstanding interest, the neural representations of genitals are still poorly understood [6]. In somatosensory cortex specifically, many studies did not detect any cortical representation of genitals [7-9]. Studies in humans debate whether genitals are represented displaced below the foot of the cortical body map [10-12] or whether they are represented somatotopically [13-15]. We wondered what a high-resolution mapping of genital representations might tell us about the sexual differentiation of the mammalian brain. We identified genital responses in rat somatosensory cortex in a region previously assigned as arm/leg cortex. Genital responses were more common in males than in females. Despite such response dimorphism, we observed a stunning anatomical monomorphism of cortical penis and clitoris input maps revealed by cytochrome-oxidase-staining of cortical layer 4. Genital representations were somatotopic and bilaterally symmetric, and their relative size increased markedly during puberty. Size, shape, and erect posture give the cortical penis representation a phallic appearance pointing to a role in sexually aroused states. Cortical genital neurons showed unusual multi-body-part responses and sexually dimorphic receptive fields. Specifically, genital neurons were co-activated by distant body regions, which are touched during mounting in the respective sex. Genital maps indicate a deep homology of penis and clitoris representations in line with a fundamentally bi-sexual layout [16] of the vertebrate brain.

  7. Effects of differential interference with postnatal cerebellar neurogenesis on motor performance, activity level, and maze learning of rats: a developmental study.

    PubMed

    Pellegrino, L J; Altman, J

    1979-02-01

    The region of the cerebellum was X-irradiated in infant rats with selected exposure schedules designed to produce animals in which the cerebellar cortex was (a) essentially normal except for agenesis of late forming granule cells with axons situated in the uppermost molecular layer (12--15X), (b) lacking in stellate cells, with a severe reduction in granule cells with axons in the upper molecular layer (8--15X), (c) morphologically disorganized but had only intermediate cell agenesis (4--5X), or (d) disorganized and devoid of practically all postnatally forming interneurons (4--15X). In the first two experiments young adults had to traverse rotating rods that differed in texture and types of obstacles. The 8--15X animals showed no deficits on any of the rods tested. The third study dealt with spontaneous motor performance in the open field at three ages. The 4--5X and 4--15X animals were hypoactive as infants and young adults; this was attributed to their motor deficits. The 8--15X and 12--15X animals were hyperactive in the open field as young adults. The fourth experiment examined intra- and/or intersession habituation. No group differences were found in habituation patterns. In the fifth experiment, using activity wheels, the 4--15X group was hypoactive, and the 8--15X and 12--15X groups were hyperactive as young adults. In the sixth experiment young adults were tested for learning performance in a multiple-unit water maze. The 4--15X group was deficient on single alternation; the 4--5X and 12--15X groups on double alternation. The seventh experiment shed some light on the single alternation deficit of the 4--15X group; only these animals failed to alternate spontaneously in a nonaversive situation. In conclusion, these behavioral results, combined with those of recent morphological investigations, suggest that the cerebellar cortex is hierarchically organized: The basal domain of Purkinje cells and the lower molecular layer are implicated in the coordination of

  8. Requirement of the auditory association cortex for discrimination of vowel-like sounds in rats.

    PubMed

    Kudoh, Masaharu; Nakayama, Yoko; Hishida, Ryuichi; Shibuki, Katsuei

    2006-11-27

    We investigated the roles of the auditory cortex in discrimination learning of vowel-like sounds consisting of multiple formants. Rats were trained to discriminate between synthetic sounds with four formants. Bilateral electrolytic lesions including the primary auditory cortex and the dorsal auditory association cortex impaired multiformant discrimination, whereas they did not significantly affect discrimination between sounds with a single formant or between pure tones. Local lesions restricted to the dorsal/rostral auditory association cortex were sufficient to attenuate multiformant discrimination learning, and lesions restricted to the primary auditory cortex had no significant effects. These findings indicate that the dorsal/rostral auditory association cortex but not the primary auditory cortex is required for discrimination learning of vowel-like sounds with multiple formants in rats.

  9. Auditory, Somatosensory, and Multisensory Insular Cortex in the Rat

    PubMed Central

    Rodgers, Krista M.; Benison, Alexander M.; Klein, Andrea

    2008-01-01

    Compared with other areas of the forebrain, the function of insular cortex is poorly understood. This study examined the unisensory and multisensory function of the rat insula using high-resolution, whole-hemisphere, epipial evoked potential mapping. We found the posterior insula to contain distinct auditory and somatotopically organized somatosensory fields with an interposed and overlapping region capable of integrating these sensory modalities. Unisensory and multisensory responses were uninfluenced by complete lesioning of primary and secondary auditory and somatosensory cortices, suggesting a high degree of parallel afferent input from the thalamus. In light of the established connections of the posterior insula with the amygdala, we propose that integration of auditory and somatosensory modalities reported here may play a role in auditory fear conditioning. PMID:18424777

  10. Hyperspectral optical tomography of intrinsic signals in the rat cortex

    PubMed Central

    Konecky, Soren D.; Wilson, Robert H.; Hagen, Nathan; Mazhar, Amaan; Tkaczyk, Tomasz S.; Frostig, Ron D.; Tromberg, Bruce J.

    2015-01-01

    Abstract. We introduce a tomographic approach for three-dimensional imaging of evoked hemodynamic activity, using broadband illumination and diffuse optical tomography (DOT) image reconstruction. Changes in diffuse reflectance in the rat somatosensory cortex due to stimulation of a single whisker were imaged at a frame rate of 5 Hz using a hyperspectral image mapping spectrometer. In each frame, images in 38 wavelength bands from 484 to 652 nm were acquired simultaneously. For data analysis, we developed a hyperspectral DOT algorithm that used the Rytov approximation to quantify changes in tissue concentration of oxyhemoglobin (ctHbO2) and deoxyhemoglobin (ctHb) in three dimensions. Using this algorithm, the maximum changes in ctHbO2 and ctHb were found to occur at 0.29±0.02 and 0.66±0.04  mm beneath the surface of the cortex, respectively. Rytov tomographic reconstructions revealed maximal spatially localized increases and decreases in ctHbO2 and ctHb of 321±53 and 555±96  nM, respectively, with these maximum changes occurring at 4±0.2  s poststimulus. The localized optical signals from the Rytov approximation were greater than those from modified Beer–Lambert, likely due in part to the inability of planar reflectance to account for partial volume effects. PMID:26835483

  11. Interactions between two propagating waves in rat visual cortex

    PubMed Central

    Gao, Xin; Xu, Weifeng; Wang, Zhijie; Takagaki, Kentaroh; Li, Bing; Wu, Jian-young

    2012-01-01

    Sensory-evoked propagating waves are frequently observed in sensory cortex. However, it is largely unknown how an evoked propagating wave affects the activity evoked by subsequent sensory inputs, or how two propagating waves interact when evoked by simultaneous sensory inputs. Using voltage-sensitive dye imaging, we investigated the interactions between two evoked waves in rat visual cortex, and the spatiotemporal patterns of depolarization in the neuronal population due to wave-to-wave interactions. We have found that visually-evoked propagating waves have a refractory period of about 300 ms, within which the response to a subsequent visual stimulus is suppressed. Simultaneous presentation of two visual stimuli at different locations can evoke two waves propagating toward each other, and these two waves fuse. Fusion significantly shortens the latency and half-width of the response, leading to changes in the spatial profile of evoked population activity. The visually-evoked propagating wave may also be suppressed by a preceding spontaneous wave. The refractory period following a propagating wave and the fusion between two waves may contribute to visual sensory processing by modifying the spatiotemporal profile of population neuronal activity evoked by sensory events. PMID:22561730

  12. Accumulation of Sulfate by Mitochondria of Rat Kidney Cortex

    PubMed Central

    Winters, Robert W.; Delluva, Adelaide M.; Deyrup, Ingrith J.; Davies, Robert E.

    1962-01-01

    Twice washed mitochondria from rat kidney cortex can accumulate sulfate ions from low (10-7 M) ambient concentrations to create virtual gradients of several hundred to one. This sulfate is subsequently released. The activation energy for the uptake is 12,000 calories per mole; for release it is about 30,000 calories per mole. Variations in the sulfate concentration of the medium show that there is a straight line Freundlich adsorption isotherm over a million-fold range of concentration of sulfate in the medium. There are 9 x 104 sites at 10-5 M and 9 x 105 sites at 10-3 M sulfate per average single mitochondrion. Preincubation at 30°C rapidly destroys the ability to accumulate sulfate. Partial protection occurs if oxidative phosphorylation is proceeding during the preincubation. The concentration of the endogenous inorganic sulfate of twice washed mitochondria is 4.2 x 10-4 moles per liter of mitochondrial pellet water; 99.85 per cent of this endogenous sulfate is inexchangeable with external sulfate in vitro. It is all exchangeable in vivo. The pH optimum for accumulation of radiosulfate from dilute external sulfate concentrations is 5.5. These observations show that there is a delicate and specific mechanism in mitochondria from kidney cortex which accumulates sulfate. The chemical nature of the accumulated sulfate is unknown. PMID:14007618

  13. Perirhinal Cortex Hyperexcitability in Pilocarpine-Treated Epileptic Rats

    PubMed Central

    Benini, Ruba; Longo, Daniela; Biagini, Giuseppe; Avoli, Massimo

    2016-01-01

    The perirhinal cortex (PC), which is heavily connected with several epileptogenic regions of the limbic system such as the entorhinal cortex and amygdala, is involved in the generation and spread of seizures. However, the functional alterations occurring within an epileptic PC network are unknown. Here, we analyzed this issue by using in vitro electrophysiology and immunohistochemistry in brain tissue obtained from pilocarpine-treated epileptic rats and age-matched, nonepileptic controls (NECs). Neurons recorded intracellularly from the PC deep layers in the two experimental groups had similar intrinsic and firing properties and generated spontaneous depolarizing and hyperpolarizing postsynaptic potentials with comparable duration and amplitude. However, spontaneous and stimulus-induced epileptiform discharges were seen with field potential recordings in over one-fifth of pilocarpine-treated slices but never in NEC tissue. These network events were reduced in duration by antagonizing NMDA receptors and abolished by NMDA + non-NMDA glutamatergic receptor antagonists. Pharmacologically isolated isolated inhibitory postsynaptic potentials had reversal potentials for the early GABAA receptor-mediated component that were significantly more depolarized in pilocarpine-treated cells. Experiments with a potassium-chloride cotransporter 2 antibody identified, in pilocarpine-treated PC, a significant immunostaining decrease that could not be explained by neuronal loss. However, interneurons expressing parvalbumin and neuropeptide Y were found to be decreased throughout the PC, whereas cholecystokinin-positive cells were diminished in superficial layers. These findings demonstrate synaptic hyper-excitability that is contributed by attenuated inhibition in the PC of pilocarpine-treated epileptic rats and underscore the role of PC networks in temporal lobe epilepsy. PMID:20865722

  14. Effect of locomotor activity on ultrastructure of cerebellar neurons, neurological disturbances, and survival of Krushinsky-Molodkina rats with hemorrhagic stroke.

    PubMed

    Samosudova, N V; Reutov, V P; Krushinsky, A L; Kuzenkov, V S; Sorokina, E G

    2012-10-01

    We studied the effect of locomotor activity on the ultrastructure of cerebellar neurons, neurological disturbances, and survival rate in Krushinsky-Molodkina rats during the development of hemorrhagic induced by acoustic stress. In animals with high spontaneous locomotor activity, severe edema of cerebellar neurons (resulting in the destruction of surrounding structures) and swelling of the synapses (terminals of mossy fibers on granule cell dendrites) were observed. By contrast, the areas of intracerebral, subdural, and subarachnoid hemorrhages were lower in rats under conditions of forced rest.

  15. Cellular properties of principal neurons in the rat entorhinal cortex. II. The medial entorhinal cortex.

    PubMed

    Canto, Cathrin B; Witter, Menno P

    2012-06-01

    Principal neurons in different medial entorhinal cortex (MEC) layers show variations in spatial modulation that stabilize between 15 and 30 days postnatally. These in vivo variations are likely due to differences in intrinsic membrane properties and integrative capacities of neurons. The latter depends on inputs and thus potentially on the morphology of principal neurons. In this comprehensive study, we systematically compared the morphological and physiological characteristics of principal neurons in all MEC layers of newborn rats before and after weaning. We recorded simultaneously from up to four post-hoc morphologically identified MEC principal neurons in vitro. Neurons in L(ayer) I-LIII have dendritic and axonal arbors mainly in superficial layers, and LVI neurons mainly in deep layers. The dendritic and axonal trees of part of LV neurons diverge throughout all layers. Physiological properties of principal neurons differ between layers. In LII, most neurons have a prominent sag potential, resonance and membrane oscillations. Neurons in LIII and LVI fire relatively regular, and lack sag potentials and membrane oscillations. LV neurons show the most prominent spike-frequency adaptation and highest input resistance. The data indicate that adult-like principal neuron types can be differentiated early on during postnatal development. The results of the accompanying paper, in which principal neurons in the lateral entorhinal cortex (LEC) were described (Canto and Witter,2011), revealed that significant differences between LEC and MEC exist mainly in LII neurons. We therefore systematically analyzed changes in LII biophysical properties along the mediolateral axis of MEC and LEC. There is a gradient in properties typical for MEC LII neurons. These properties are most pronounced in medially located neurons and become less apparent in more laterally positioned ones. This gradient continues into LEC, such that in LEC medially positioned neurons share some properties

  16. Bilateral receptive fields of cells in rat Sm1 cortex.

    PubMed

    Armstrong-James, M; George, M J

    1988-01-01

    Single cells in the primary somatosensory (Sm1) cortex were investigated for responses to bilateral hindpaw stimulation in Wistar rats anaesthetised by continuous intravenous administration of Althesin. Fifty-one percent of cells sampled (N = 134) responded to equivalent punctate mechanical stimuli delivered to both the contralateral and ipsilateral hindpaws under light anaesthesia. The distribution by cortical depth of cells with receptive fields (RFs) on both hindpaws was not significantly different from cells which had only contralateral RFs. No cell was found with a purely ipsilateral RF. For 86% of cells tested (N = 44) the ipsilateral RF was partly or completely homologous with areas within the contralateral RF. The sizes of ipsilateral RFs were smaller on 66% of occasions when tested against their contralateral RFs. Modal latencies to ipsilateral mechanical stimulation were longer than to contralateral stimulation (34.1 +/- 9.1 ms (S.D) cf. 26.4 +/- 7.2 ms, N = 44). Ipsilateral RFs were lost for 77% of cells tested following a 33% increase in anaesthetic infusion rate. Conditioning mechanical stimuli applied to the centre receptive field (CRF) on the ipsilateral hindpaw reduced or abolished a cell's responses to equivalent test stimuli applied to it's contralateral CRF with C-T intervals of 20-200 ms. Conditioning stimuli applied to the CRF contralateral to the cell reduced or abolished responses to test stimuli on the cell's ipsilateral CRF using C-T intervals of 0-900 ms. Responses in one cortex to stimulation of the ipsilateral hindpaw were unaffected by elimination of responses from the same hindpaw in the opposite contralateral Sm1 cortex, where responses had been suppressed by topical Lignocaine administration. Retrograde transport of horseradish peroxidase from hindpaw Sm1 cortex labelled many cells in homolateral thalamus, but failed to label cells in the entire forebrain contralateral to the injection site. It is concluded that direct crossed

  17. Down regulation of cerebellar serotonergic receptors in streptozotocin induced diabetic rats: Effect of pyridoxine and Aegle marmelose.

    PubMed

    Abraham, Pretty Mary; Paul, Jes; Paulose, C S

    2010-04-29

    Oxidative stress plays an important role in cerebellar damage caused by diabetes, leading to deterioration in glucose homeostasis causing metabolic disorders. The present study was carried out to find the effects of Aegle marmelose leaf extract and insulin alone and in combination with pyridoxine on the cerebellar 5-HT through 5-HT(2A) receptor subtype, gene expression studies on the status of antioxidants-superoxide dismutase (SOD), glutathione peroxidase (GPx), 5-HT(2A) and 5-HT transporter (5-HTT) and immunohistochemical studies in streptozotocin induced diabetic rats. 5-HT and 5-HT(2A) receptor binding parameters, B(max) and K(d), showed a significant decrease (p<0.001) in the cerebellum of diabetic rats compared to control. Gene expression studies of SOD, GPx, 5-HT(2A) and 5-HTT in cerebellum showed a significant down regulation (p<0.001) in diabetic rats compared to control. Pyridoxine treated alone and in combination with insulin, A. marmelose to diabetic rats reversed the B(max), K(d) of 5-HT, 5-HT(2A) and the gene expression of SOD, GPx, 5-HT(2A) and 5-HTT in cerebellum to near control. The gene expression of 5-HT(2A) and 5-HTT were confirmed by immunohistochemical studies. Also, the Rotarod test confirms the motor dysfunction and recovery by treatment. These data suggest the antioxidant and neuroprotective role of pyridoxine and A. marmelose through the up regulation of 5-HT through 5-HT(2A) receptor in diabetic rats. Our results suggest that pyridoxine treated alone and in combination with insulin and A. marmelose has a role in the regulation of insulin synthesis and release, normalizing diabetic related oxidative stress and neurodegeneration affecting the motor ability of an individual by serotonergic receptors through 5-HT(2A) function. This has clinical significance in the management of diabetes.

  18. Perirhinal Cortex Lesions in Rats: Novelty Detection and Sensitivity to Interference

    PubMed Central

    2015-01-01

    Rats with perirhinal cortex lesions received multiple object recognition trials within a continuous session to examine whether they show false memories. Experiment 1 focused on exploration patterns during the first object recognition test postsurgery, in which each trial contained 1 novel and 1 familiar object. The perirhinal cortex lesions reduced time spent exploring novel objects, but did not affect overall time spent exploring the test objects (novel plus familiar). Replications with subsequent cohorts of rats (Experiments 2, 3, 4.1) repeated this pattern of results. When all recognition memory data were combined (Experiments 1–4), giving totals of 44 perirhinal lesion rats and 40 surgical sham controls, the perirhinal cortex lesions caused a marginal reduction in total exploration time. That decrease in time with novel objects was often compensated by increased exploration of familiar objects. Experiment 4 also assessed the impact of proactive interference on recognition memory. Evidence emerged that prior object experience could additionally impair recognition performance in rats with perirhinal cortex lesions. Experiment 5 examined exploration levels when rats were just given pairs of novel objects to explore. Despite their perirhinal cortex lesions, exploration levels were comparable with those of control rats. While the results of Experiment 4 support the notion that perirhinal lesions can increase sensitivity to proactive interference, the overall findings question whether rats lacking a perirhinal cortex typically behave as if novel objects are familiar, that is, show false recognition. Rather, the rats retain a signal of novelty but struggle to discriminate the identity of that signal. PMID:26030425

  19. Thinking about Eating Food Activates Visual Cortex with Reduced Bilateral Cerebellar Activation in Females with Anorexia Nervosa: An fMRI Study

    PubMed Central

    Brooks, Samantha J.; O'Daly, Owen; Uher, Rudolf; Friederich, Hans-Christoph; Giampietro, Vincent; Brammer, Michael; Williams, Steven C. R.; Schiöth, Helgi B.; Treasure, Janet; Campbell, Iain C.

    2012-01-01

    Background Women with anorexia nervosa (AN) have aberrant cognitions about food and altered activity in prefrontal cortical and somatosensory regions to food images. However, differential effects on the brain when thinking about eating food between healthy women and those with AN is unknown. Methods Functional magnetic resonance imaging (fMRI) examined neural activation when 42 women thought about eating the food shown in images: 18 with AN (11 RAN, 7 BPAN) and 24 age-matched controls (HC). Results Group contrasts between HC and AN revealed reduced activation in AN in the bilateral cerebellar vermis, and increased activation in the right visual cortex. Preliminary comparisons between AN subtypes and healthy controls suggest differences in cortical and limbic regions. Conclusions These preliminary data suggest that thinking about eating food shown in images increases visual and prefrontal cortical neural responses in females with AN, which may underlie cognitive biases towards food stimuli and ruminations about controlling food intake. Future studies are needed to explicitly test how thinking about eating activates restraint cognitions, specifically in those with restricting vs. binge-purging AN subtypes. PMID:22479499

  20. Infralimbic Prefrontal Cortex is Responsible for Inhibiting Cocaine Seeking in Extinguished Rats

    PubMed Central

    Peters, Jamie; LaLumiere, Ryan T.; Kalivas, Peter W.

    2008-01-01

    The rat prelimbic prefrontal cortex and nucleus accumbens core are critical for initiating cocaine seeking. In contrast, the neural circuitry responsible for inhibiting cocaine seeking during extinction is unknown. The present findings using inhibition of selected brain nuclei with GABA agonists show that the suppression of cocaine seeking produced by prior extinction training required activity in the rat infralimbic cortex. Conversely, the reinstatement of drug seeking by a cocaine injection in extinguished animals was suppressed by increasing neuronal activity in infralimbic cortex with the glutamate agonist AMPA. The cocaine seeking induced by inactivating infralimbic cortex resembled other forms of reinstated drug seeking by depending on activity in prelimbic cortex and the basolateral amygdala. A primary efferent projection from the infralimbic cortex is to the nucleus accumbens shell. Akin to infralimbic cortex, inhibition of the accumbens shell induced cocaine seeking in extinguished rats. However, bilateral inhibition of the shell also elicited increased locomotor activity. Nonetheless, unilateral inhibition of the accumbens shell did not increase motor activity, and simultaneous unilateral inactivation of the infralimbic cortex and shell induced cocaine seeking, suggesting that an interaction between these two structures is necessary for extinction training to inhibit cocaine seeking. The infralimbic cortex and accumbens shell appear to be recruited by extinction learning because inactivation of these structures prior to extinction training did not alter cocaine seeking. Together, these findings suggest that a neuronal network involving the infralimbic cortex and accumbens shell is recruited by extinction training to suppress cocaine seeking. PMID:18524910

  1. Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats.

    PubMed

    Peters, Jamie; LaLumiere, Ryan T; Kalivas, Peter W

    2008-06-04

    The rat prelimbic prefrontal cortex and nucleus accumbens core are critical for initiating cocaine seeking. In contrast, the neural circuitry responsible for inhibiting cocaine seeking during extinction is unknown. The present findings using inhibition of selected brain nuclei with GABA agonists show that the suppression of cocaine seeking produced by previous extinction training required activity in the rat infralimbic cortex. Conversely, the reinstatement of drug seeking by a cocaine injection in extinguished animals was suppressed by increasing neuronal activity in infralimbic cortex with the glutamate agonist AMPA. The cocaine seeking induced by inactivating infralimbic cortex resembled other forms of reinstated drug seeking by depending on activity in prelimbic cortex and the basolateral amygdala. A primary efferent projection from the infralimbic cortex is to the nucleus accumbens shell. Akin to infralimbic cortex, inhibition of the accumbens shell induced cocaine seeking in extinguished rats. However, bilateral inhibition of the shell also elicited increased locomotor activity. Nonetheless, unilateral inhibition of the accumbens shell did not increase motor activity, and simultaneous unilateral inactivation of the infralimbic cortex and shell induced cocaine seeking, suggesting that an interaction between these two structures is necessary for extinction training to inhibit cocaine seeking. The infralimbic cortex and accumbens shell appear to be recruited by extinction learning because inactivation of these structures before extinction training did not alter cocaine seeking. Together, these findings suggest that a neuronal network involving the infralimbic cortex and accumbens shell is recruited by extinction training to suppress cocaine seeking.

  2. Proteomic analysis of rat cerebral cortex following subchronic acrolein toxicity

    SciTech Connect

    Rashedinia, Marzieh; Lari, Parisa; Abnous, Khalil; Hosseinzadeh, Hossein

    2013-10-01

    Acrolein, a member of reactive α,β-unsaturated aldehydes, is a major environmental pollutant. Acrolein is also produced endogenously as a toxic by-product of lipid peroxidation. Because of high reactivity, acrolein may mediate oxidative damages to cells and tissues. It has been shown to be involved in a wide variety of pathological states including pulmonary, atherosclerosis and neurodegenerative diseases. In this study we employed proteomics approach to investigate the effects of subchronic oral exposures to 3 mg/kg of acrolein on protein expression profile in the brain of rats. Moreover effects of acrolein on malondialdehyde (MDA) levels and reduced glutathione (GSH) content were investigated. Our results revealed that treatment with acrolein changed levels of several proteins in diverse physiological process including energy metabolism, cell communication and transport, response to stimulus and metabolic process. Interestingly, several differentially over-expressed proteins, including β-synuclein, enolase and calcineurin, are known to be associated with human neurodegenerative diseases. Changes in the levels of some proteins were confirmed by Western blot. Moreover, acrolein increases the level of MDA, as a lipid peroxidation biomarker and decreased GSH concentrations, as a non-enzyme antioxidant in the brain of acrolein treated rats. These findings suggested that acrolein induces the oxidative stress and lipid peroxidation in the brain, and so that may contribute to the pathophysiology of neurological disorders. - Highlights: • Acrolein intoxication increased lipid peroxidation and deplete GSH in rat brain. • Effect of acrolein on protein levels of cerebral cortex was analyzed by 2DE-PAGE. • Levels of a number of proteins with different biological functions were increased.

  3. Cerebellar Development and Disease

    PubMed Central

    Gleeson, Joseph G.

    2008-01-01

    Recent Advances The molecular control of cell type specification within the developing cerebellum as well as the genetic causes of the most common human developmental cerebellar disorders have long remained mysterious. Recent genetic lineage and loss-of-function data from mice have revealed unique and non-overlapping anatomical origins for GABAergic neurons from ventricular zone precursors and glutamatergic cell from rhombic lip precursors, mirroring distinct origins for these neurotransmitter-specific cell types in the cerebral cortex. Mouse studies elucidating the role of Ptf1a as a cerebellar ventricular zone GABerigic fate switch were actually preceded by the recognition that PTF1A mutations in humans cause cerebellar agenesis, a birth defect of the human cerebellum. Indeed, several genes for congenital human cerebellar malformations have recently been identified, including genes causing Joubert syndrome, Dandy-Walker malformation and Ponto-cerebellar hypoplasia. These studies have pointed to surprisingly complex roles for transcriptional regulation, mitochondrial function and neuronal cilia in patterning, homeostasis and cell proliferation during cerebellar development. Together mouse and human studies are synergistically advancing our understanding of the developmental mechanisms that generate the uniquely complex mature cerebellum. PMID:18513948

  4. Adaptation to sensory stimulation in the Rat Barrel Cortex

    NASA Astrophysics Data System (ADS)

    Heiss, Jaime

    Sustained stimulation of sensory organs results in adaptation of the neuronal response along the sensory pathway. Whether or not cortical adaptation affects equally excitatory and inhibitory inputs is poorly understood. This question was examined using patch recordings of neurons in the barrel cortex of anesthetized rats while repetitively stimulating the principal whisker. After characterizing the excitation and inhibition evoked either by single or double whisker deflection or by different stimulation strengths, it was found that inhibition, unlike excitation, sums linearly and adapts more, causing the balance between these inputs to shift towards excitation. A comparison of the latency of thalamic firing and evoked synaptic inputs in the cortex strongly suggests that adaptation of inhibition results mostly from depression of inhibitory synapses rather than reduction in the firing of inhibitory cells. A similar change in the balance was reproduced by a simple feedforward model. The differential adaptation of the synaptic inputs that shifts the balance toward excitation may act as a gain mechanism which enhances the subthreshold response during sustained stimulation, despite a reduction in excitation. Natural sensory stimulation rarely arrives in an isolated manner, but in a context of several stimulations, like when a rat sweeps its whisker along a surface with a given texture. It was shown that individual single cells sporadically fail to respond, in a very variable fashion from trial to trial. Whether or not adaptation is correlated among neighboring neurons or is it a private, independent phenomenon was investigated by performing simultaneous recordings. Neighboring neurons presented a highly correlated responsiveness to repetitive stimulation, which strongly varied from trial to trial in a synchronized way. Population averages of a single trial obtained by LFP recordings and VSD imaging differed considerably from the time average but was highly correlated to

  5. Ablation of Cerebellar Nuclei Prevents H-Reflex Down-Conditioning in Rats

    ERIC Educational Resources Information Center

    Chen, Xiang Yang; Wolpaw, Jonathan R.

    2005-01-01

    While studies of cerebellar involvement in learning and memory have described plasticity within the cerebellum, its role in acquisition of plasticity elsewhere in the CNS is largely unexplored. This study set out to determine whether the cerebellum is needed for acquisition of the spinal cord plasticity that underlies operantly conditioned…

  6. Ablation of Cerebellar Nuclei Prevents H-Reflex Down-Conditioning in Rats

    ERIC Educational Resources Information Center

    Chen, Xiang Yang; Wolpaw, Jonathan R.

    2005-01-01

    While studies of cerebellar involvement in learning and memory have described plasticity within the cerebellum, its role in acquisition of plasticity elsewhere in the CNS is largely unexplored. This study set out to determine whether the cerebellum is needed for acquisition of the spinal cord plasticity that underlies operantly conditioned…

  7. Dysgranular Retrosplenial Cortex Lesions in Rats Disrupt Cross-Modal Object Recognition

    ERIC Educational Resources Information Center

    Hindley, Emma L.; Nelson, Andrew J. D.; Aggleton, John P.; Vann, Seralynne D.

    2014-01-01

    The retrosplenial cortex supports navigation, with one role thought to be the integration of different spatial cue types. This hypothesis was extended by examining the integration of nonspatial cues. Rats with lesions in either the dysgranular subregion of retrosplenial cortex (area 30) or lesions in both the granular and dysgranular subregions…

  8. Dysgranular Retrosplenial Cortex Lesions in Rats Disrupt Cross-Modal Object Recognition

    ERIC Educational Resources Information Center

    Hindley, Emma L.; Nelson, Andrew J. D.; Aggleton, John P.; Vann, Seralynne D.

    2014-01-01

    The retrosplenial cortex supports navigation, with one role thought to be the integration of different spatial cue types. This hypothesis was extended by examining the integration of nonspatial cues. Rats with lesions in either the dysgranular subregion of retrosplenial cortex (area 30) or lesions in both the granular and dysgranular subregions…

  9. Hippocampus, Perirhinal Cortex, and Complex Visual Discriminations in Rats and Humans

    ERIC Educational Resources Information Center

    Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.; Squire, Larry R.; Clark, Robert E.

    2015-01-01

    Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with…

  10. A Novel Role for the Rat Retrosplenial Cortex in Cognitive Control

    ERIC Educational Resources Information Center

    Nelson, Andrew J. D.; Hindley, Emma L.; Haddon, Josephine E.; Vann, Seralynne D.; Aggleton, John P.

    2014-01-01

    By virtue of its frontal and hippocampal connections, the retrosplenial cortex is uniquely placed to support cognition. Here, we tested whether the retrosplenial cortex is required for frontal tasks analogous to the Stroop Test, i.e., for the ability to select between conflicting responses and inhibit responding to task-irrelevant cues. Rats first…

  11. Hippocampus, Perirhinal Cortex, and Complex Visual Discriminations in Rats and Humans

    ERIC Educational Resources Information Center

    Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.; Squire, Larry R.; Clark, Robert E.

    2015-01-01

    Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with…

  12. Lesions of Rat Infralimbic Cortex Enhance Recovery and Reinstatement of an Appetitive Pavlovian Response

    ERIC Educational Resources Information Center

    Rhodes, Sarah E. V.; Kilcross, Simon

    2004-01-01

    The prefrontal cortex (PFC) has a well-established role in the inhibition of inappropriate responding, and evidence suggests that the infralimbic (IL) region of the rat medial PFC (MPFC) may be involved in some aspects of extinction of conditioned fear. MPFC lesions including, but not those sparing the IL cortex increase spontaneous recovery of…

  13. A Novel Role for the Rat Retrosplenial Cortex in Cognitive Control

    ERIC Educational Resources Information Center

    Nelson, Andrew J. D.; Hindley, Emma L.; Haddon, Josephine E.; Vann, Seralynne D.; Aggleton, John P.

    2014-01-01

    By virtue of its frontal and hippocampal connections, the retrosplenial cortex is uniquely placed to support cognition. Here, we tested whether the retrosplenial cortex is required for frontal tasks analogous to the Stroop Test, i.e., for the ability to select between conflicting responses and inhibit responding to task-irrelevant cues. Rats first…

  14. Milnacipran Remediates Impulsive Deficits in Rats with Lesions of the Ventromedial Prefrontal Cortex

    PubMed Central

    Tsutsui-Kimura, Iku; Yoshida, Takayuki; Izumi, Takeshi; Yoshioka, Mitsuhiro

    2015-01-01

    Background: Deficits in impulse control are often observed in psychiatric disorders in which abnormalities of the prefrontal cortex are observed, including attention-deficit/hyperactivity disorder and bipolar disorder. We recently found that milnacipran, a serotonin/noradrenaline reuptake inhibitor, could suppress impulsive action in normal rats. However, whether milnacipran could suppress elevated impulsive action in rats with lesions of the ventromedial prefrontal cortex, which is functionally comparable with the human prefrontal cortex, remains unknown. Methods: Selective lesions of the ventromedial prefrontal cortex were made using quinolinic acid in rats previously trained on a 3-choice serial reaction time task. Sham rats received phosphate buffered saline. Following a period of recovery, milnacipran (0 or 10mg/kg/d × 14 days) was orally administered 60 minutes prior to testing on the 3-choice task. After 7 days of drug cessation, Western blotting, immunohistochemistry, electrophysiological analysis, and morphological analysis were conducted. Results: Lesions of the ventromedial prefrontal cortex induced impulsive deficits, and repeated milnacipran ameliorated the impulsive deficit both during the dosing period and after the cessation of the drug. Repeated milnacipran remediated the protein levels of mature brain-derived neurotrophic factor and postsynaptic density-95, dendritic spine density, and excitatory currents in the few surviving neurons in the ventromedial prefrontal cortex of ventromedial prefrontal cortex-lesioned rats. Conclusions: The findings of this study suggest that milnacipran treatment could be a novel strategy for the treatment of psychiatric disorders that are associated with a lack of impulse control. PMID:25522418

  15. Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Aguirre, A. D.; Chen, Y.; Fujimoto, J. G.; Ruvinskaya, L.; Devor, A.; Boas, D. A.

    2006-12-01

    Co-registered optical coherence tomography (OCT) and video microscopy of the rat somatosensory cortex were acquired simultaneously through a thinned skull during forepaw electrical stimulation. Fractional signal change measured by OCT revealed a functional signal time course corresponding to the hemodynamic signal measurement made with video microscopy. OCT can provide high-resolution, cross-sectional images of functional neurovascular activation and may offer a new tool for basic neuroscience research in the important rat cerebral cortex model.

  16. Specific receptor binding of atrial natriuretic peptide to rat renal cortex

    SciTech Connect

    Ogura, T.; Mitsui, T.; Ogawa, N.; Ota, Z.

    1985-09-01

    Radiolabeled receptor assay (RRA) of atrial natriuretic peptide (ANP) was studied in rat kidney membranes. Binding of ( SVI)-ANP to membrane preparations of rat whole kidney was saturated and show a high affinity. Furthermore, renal cortex membrane had a higher affinity for ANP binding site than renal medulla membrane. This high affinity ANP receptor site in renal cortex membrane indicated that ANP controlled the balance of water and sodium excretion due to this receptor site in the kidney.

  17. Patterned expression of a cocaine- and amphetamine-regulated transcript peptide reveals complex circuit topography in the rodent cerebellar cortex.

    PubMed

    Reeber, Stacey L; Sillitoe, Roy V

    2011-06-15

    The cerebellum (Cb) of mammals and birds consists of an evolutionarily conserved map defined by Purkinje cell (PC) protein expression. In mice, ZebrinII/aldolaseC is expressed in a striking array of stripes in lobules I-V (anterior zone; AZ) and VIII-anterior IX (posterior zone; PZ), whereas the small heat shock protein 25 (HSP25) is expressed in stripes in lobules VI-VII (central zone, CZ) and posterior IX-X (nodular zone, NZ). Little is known about whether molecularly defined afferent subsets terminate within specific PC stripes or whether their topography is conserved across species. Using immunohistochemistry, we demonstrate in adult mice and rats that cocaine- and amphetamine-regulated transcript (CART) expression can be used to partition sensory-motor projections into complex topographic maps. We found that in mice CART was expressed in climbing fiber bands that generally corresponded to the pattern of HSP25-expressing PCs in the CZ/NZ. In contrast, CART was expressed in climbing fiber bands in all four transverse zones of the rat Cb. Within the rat AZ/PZ, climbing fibers terminated selectively within the dendrites of ZebrinII-immunoreactive PCs. In additional experiments, we observed CART expression in loose clusters of spinocerebellar mossy fibers in the mouse AZ/PZ, whereas in rat CART immunoreactive mossy fibers terminated predominantly in the CZ/NZ. We conclude that, although the overall topography of CART-expressing afferents is restricted within a conserved map of PC stripes and transverse zones, their termination patterns also reflect species-specific compartmental features.

  18. Early music exposure modifies GluR2 protein expression in rat auditory cortex and anterior cingulate cortex.

    PubMed

    Xu, Feng; Cai, Rui; Xu, Jinghong; Zhang, Jiping; Sun, Xinde

    2007-06-13

    GluR2, a major subunit in AMPA receptor, plays an important role in brain functional activity. We studied the effect of music exposure during development on the expression level of GluR2 proteins in the auditory cortex (AC) and anterior cingulate cortex (ACC) of SD rats. Rats were divided into three groups, Music1 (exposed to Nostalgy) group, Music2 (exposed to Wishmaster) group, and control (no music exposure) group. For music exposure groups, rats were exposed to music from postnatal day (PND) 14, and the expression levels of GluR2 proteins were determined at PND 28, 42 and 56. For the control group, the expression levels of GluR2 proteins were determined at PND1, 3, 5, 7, 9, 11, 14, 21, 28, 42, and 56. Results showed an age-dependent expression of GluR2 proteins in control rats. In AC, exposure to Music2 dramatically increased the expression of GluR2, while exposure to Music1 had no effect. In ACC, we found remarkable discrepancies in time-dependent expression of GluR2 between music exposed rats and control rats. These results indicate that exposure to music can modify the expression level of GluR2 protein in AC and ACC.

  19. Effects of a naturally occurring neurosteroid on GABAA IPSCs during development in rat hippocampal or cerebellar slices

    PubMed Central

    Cooper, Elizabeth J; Johnston, Graham A R; Edwards, Frances A

    1999-01-01

    The effects of the naturally occurring neurosteroid tetrahydrodeoxycorticosterone (THDOC) on GABAA receptor-mediated miniature, spontaneous and evoked IPSCs was tested using patch-clamp techniques in slices of hippocampus and cerebellum from rats at two developmental stages (≈10 and ≈20 days postnatal). The cells studied were hippocampal granule cells and cerebellar Purkinje and granule cells. Most miniature GABAergic currents (mIPSCs) decayed with two exponentials and neurosteroids caused a ≈4-fold increase in the decay time constant of the second exponential at the highest concentration used (2 μm). Similar effects were seen at high concentrations of THDOC (1-2 μm) in all cell groups tested. No effects were seen on amplitude or rise time of mIPSCs. The effects of THDOC (1 μm) were shown to be stereoselective and rapidly reversible, indicating that the neurosteroid binds to the GABAA receptor, rather than acting genomically. At concentrations of THDOC likely to occur physiologically (50–100 nm), the decay time of IPSCs was also enhanced (25–50 %) in all cerebellar cell groups tested. In contrast, at 100 nm THDOC, seven of 11 hippocampal granule cells were sensitive from the 10 day group but the 20 day hippocampal granule cells showed no significant enhancement in the presence of these lower concentrations of THDOC. The differences in sensitivity of hippocampal and cerebellar cells to THDOC are compared to data reported in the literature on regional development of expression of different receptor subunits in the brain and it is suggested that the progressive relative insensitivity of the 20 day hippocampal cells may depend on increasing expression of the δ subunit of the GABAA receptor and possibly an increase in the α4 subunit. PMID:10581314

  20. Exercise-induced changes of the capillaries in the cortex of middle-aged rats.

    PubMed

    Huang, C-X; Qiu, X; Wang, S; Wu, H; Xia, L; Li, C; Gao, Y; Zhang, L; Xiu, Y; Chao, F; Tang, Y

    2013-03-13

    Previous studies have shown that running exercise could increase regional cerebral blood flow. There have been previous studies investigating the effects of running exercise on capillary density in the brain and showing that running exercise could induce brain angiogenesis. However, there have been no studies investigating the effects of running exercise on the total volume, total length and total surface area of the capillaries in the cortex. Moreover, sex differences in the effects of running exercise on the capillaries of the cortex have not previously been investigated. The current study was designed to investigate the effects of running exercise on the capillaries in the cortex of middle-aged rats using the new unbiased stereological methods. The present study found that the total length and total surface area of the capillaries in the cortex of running middle-aged female rats were significantly increased, compared to control rats. Our results also reveal that there are sex differences in the effects of running exercise on the capillaries in the cortex of middle-aged rats. These results demonstrate that exercise-induced increases of the capillaries in the female rat cortex might be one of the structural bases for the exercise-induced improvement in the spatial learning capacity of middle-aged female rats. These results provide a baseline for further studies that search for strategies to delay the deleterious effects of brain aging.

  1. Masking reduces orientation selectivity in rat visual cortex.

    PubMed

    Alwis, Dasuni S; Richards, Katrina L; Price, Nicholas S C

    2016-11-01

    In visual masking the perception of a target stimulus is impaired by a preceding (forward) or succeeding (backward) mask stimulus. The illusion is of interest because it allows uncoupling of the physical stimulus, its neuronal representation, and its perception. To understand the neuronal correlates of masking, we examined how masks affected the neuronal responses to oriented target stimuli in the primary visual cortex (V1) of anesthetized rats (n = 37). Target stimuli were circular gratings with 12 orientations; mask stimuli were plaids created as a binarized sum of all possible target orientations. Spatially, masks were presented either overlapping or surrounding the target. Temporally, targets and masks were presented for 33 ms, but the stimulus onset asynchrony (SOA) of their relative appearance was varied. For the first time, we examine how spatially overlapping and center-surround masking affect orientation discriminability (rather than visibility) in V1. Regardless of the spatial or temporal arrangement of stimuli, the greatest reductions in firing rate and orientation selectivity occurred for the shortest SOAs. Interestingly, analyses conducted separately for transient and sustained target response components showed that changes in orientation selectivity do not always coincide with changes in firing rate. Given the near-instantaneous reductions observed in orientation selectivity even when target and mask do not spatially overlap, we suggest that monotonic visual masking is explained by a combination of neural integration and lateral inhibition.

  2. Effects of visual cortex lesions on perceptual grouping in rats.

    PubMed

    Kurylo, Daniel D

    2008-07-19

    Neural mechanisms mediating perceptual grouping serve to enhance associations among stimulus elements, thereby establishing unified forms. The goals of the present study were to identify cortical areas necessary to perceptually group spatially isolated elements, and to determine if these areas are distinct from regions necessary for the discrimination of simple, solid forms. Rats were trained to discriminate horizontal and vertical lines that were either solid or composed of disjunct elements in which discrimination required perceptual grouping by proximity. Psychophysical procedures established the limits at which proximity served as a cue for grouping. Following perceptual measurements, ablations were made to selective sites within visual cortex. Lesions within area 17 or area 18A, including their interface, produced nearly complete impairment of solid line discrimination as well as perceptual grouping at all levels of proximity, whereas lesions to areas 18 or the far lateral extent of area 18A no effect on these perceptual capacities. These results indicate that grouping by proximity requires early visual processing areas, and shares cortical areas necessary for simple pattern discrimination. These results suggest that mechanisms of grouping modify primary stimulus representations, constructing a pattern of activity functional similar to that elicited by solid forms.

  3. Modulation by K+ channels of action potential-evoked intracellular Ca2+ concentration rises in rat cerebellar basket cell axons

    PubMed Central

    Tan, Y P; Llano, I

    1999-01-01

    Action potential-evoked [Ca2+]i rises in basket cell axons of rat cerebellar slices were studied using two-photon laser scanning microscopy and whole-cell recording, to identify the K+ channels controlling the shape of the axonal action potential. Whole-cell recordings of Purkinje cell IPSCs were used to screen K+ channel subtypes which could contribute to axonal repolarization. α-Dendrotoxin, 4-aminopyridine, charybdotoxin and tetraethylammonium chloride increased IPSC rate and/or amplitude, whereas iberiotoxin and apamin failed to affect the IPSCs. The effects of those K+ channel blockers that enhanced transmitter release on the [Ca2+]i rises elicited in basket cell axons by action potentials fell into three groups: 4-aminopyridine strongly increased action potential-evoked [Ca2+]i; tetraethylammonium and charybdotoxin were ineffective alone but augmented the effects of 4-aminopyridine; α-dendrotoxin had no effect. We conclude that cerebellar basket cells contain at least three pharmacologically distinct K+ channels, which regulate transmitter release through different mechanisms. 4-Aminopyridine-sensitive, α-dendrotoxin-insensitive K+ channels are mainly responsible for repolarization in basket cell presynaptic terminals. K+ channels blocked by charybdotoxin and tetraethylammonium have a minor role in repolarization. α-Dendrotoxin-sensitive channels are not involved in shaping the axonal action potential waveform. The two last types of channels must therefore exert control of synaptic activity through a pathway unrelated to axonal action potential broadening. PMID:10517801

  4. Modulation by K+ channels of action potential-evoked intracellular Ca2+ concentration rises in rat cerebellar basket cell axons.

    PubMed

    Tan, Y P; Llano, I

    1999-10-01

    1. Action potential-evoked [Ca2+]i rises in basket cell axons of rat cerebellar slices were studied using two-photon laser scanning microscopy and whole-cell recording, to identify the K+ channels controlling the shape of the axonal action potential. 2. Whole-cell recordings of Purkinje cell IPSCs were used to screen K+ channel subtypes which could contribute to axonal repolarization. alpha-Dendrotoxin, 4-aminopyridine, charybdotoxin and tetraethylammonium chloride increased IPSC rate and/or amplitude, whereas iberiotoxin and apamin failed to affect the IPSCs. 3. The effects of those K+ channel blockers that enhanced transmitter release on the [Ca2+]i rises elicited in basket cell axons by action potentials fell into three groups: 4-aminopyridine strongly increased action potential-evoked [Ca2+]i; tetraethylammonium and charybdotoxin were ineffective alone but augmented the effects of 4-aminopyridine; alpha-dendrotoxin had no effect. 4. We conclude that cerebellar basket cells contain at least three pharmacologically distinct K+ channels, which regulate transmitter release through different mechanisms. 4-Aminopyridine-sensitive, alpha-dendrotoxin-insensitive K+ channels are mainly responsible for repolarization in basket cell presynaptic terminals. K+ channels blocked by charybdotoxin and tetraethylammonium have a minor role in repolarization. alpha-Dendrotoxin-sensitive channels are not involved in shaping the axonal action potential waveform. The two last types of channels must therefore exert control of synaptic activity through a pathway unrelated to axonal action potential broadening.

  5. High dosage of monosodium glutamate causes deficits of the motor coordination and the number of cerebellar Purkinje cells of rats.

    PubMed

    Prastiwi, D; Djunaidi, A; Partadiredja, G

    2015-11-01

    Monosodium glutamate (MSG) has been widely used throughout the world as a flavoring agent of food. However, MSG at certain dosages is also thought to cause damage to many organs, including cerebellum. This study aimed at investigating the effects of different doses of MSG on the motor coordination and the number of Purkinje cells of the cerebellum of Wistar rats. A total of 24 male rats aged 4 to 5 weeks were divided into four groups, namely, control (C), T2.5, T3, and T3.5 groups, which received intraperitoneal injection of 0.9% sodium chloride solution, 2.5 mg/g body weight (bw) of MSG, 3.0 mg/g bw of MSG, and 3.5 mg/g bw of MSG, respectively, for 10 consecutive days. The motor coordination of the rats was examined prior and subsequent to the treatment. The number of cerebellar Purkinje cells was estimated using physical fractionator method. It has been found that the administration of MSG at a dosage of 3.5 mg/g bw, but not at lower dosages, caused a significant decrease of motor coordination and the estimated total number of Purkinje cells of rats. There was also a significant correlation between motor coordination and the total number of Purkinje cells.

  6. Ginsenoside Rg1 prevents cerebral and cerebellar injury induced by obstructive jaundice in rats via inducing expression of TIPE-2.

    PubMed

    Zhou, Tingting; Zu, Guo; Zhou, Lu; Che, Ningwei; Guo, Jing; Liang, Zhanhua

    2016-01-01

    The aim of the study was to analyze the effect of Ginsenoside Rg1 (Rg1) on cerebral and cerebellar injury in experimental obstructive jaundice (OJ). OJ was done by ligature and section of extrahepatic biliary duct. Rg1 was injected intraperitoneally (10 mg kg(-1)d(-1) or 20 mg kg(-1) d(-1)). Comparison of serum total bile salts (TBA), total bilirubin (TBil), direct bilirubin (DBil), TNF-α, IL-6 and IL-1β among groups. Malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined, also apoptosis and mRNA and protein levels of TIPE2 (TNF-α-inducible protein 8-like 2) were tested in cerebrum and cerebellum. Our results showed that Rg1 reduced MDA and apoptosis in cerebrum and cerebellum induced by OJ, also GSH and antioxidant enzyme activity were raised obviously in rats treated with Rg1. Moreover, decreased mRNA and protein levels of TIPE2 in OJ rats and Rg1 could improve the decreased mRNA and protein levels of TIPE2 in OJ rats. In conclusion, Rg1 decreased oxidative stress and apoptosis, also recovered the antioxidant status and mRNA and protein levels of TIPE2 in the cerebrum and cerebellum of OJ rats. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. The perirhinal cortex and long-term spatial memory in rats.

    PubMed

    Ramos, Juan M J

    2002-08-30

    Two experiments examined the effects of perirhinal cortex and hippocampal neurotoxic lesions on the retention of allocentric information. Perirhinal (Expt. 1) and hippocampal rats (Expt. 2) were trained on an allocentric task until they reached a performance equal to that of the control groups. Results showed that 24 days after acquisition, during a retraining period, only the hippocampal rats presented a deficit in retention. These results suggest that the perirhinal cortex and the hippocampus can be functionally dissociated in terms of their participation in the formation of long-term spatial memory. Also, the allocentric spatial memory functions of the hippocampus seem not to depend on their afferent connections with the perirhinal cortex.

  8. Parasagittally aligned, mGluR1-dependent patches are evoked at long latencies by parallel fiber stimulation in the mouse cerebellar cortex in vivo.

    PubMed

    Wang, Xinming; Chen, Gang; Gao, Wangcai; Ebner, Timothy J

    2011-04-01

    The parallel fibers (PFs) in the cerebellar cortex extend several millimeters along a folium in the mediolateral direction. The PFs are orthogonal to and cross several parasagittal zones defined by the olivocerebellar and corticonuclear pathways and the expression of molecular markers on Purkinje cells (PCs). The functions of these two organizations remain unclear, including whether the bands respond similarly or differentially to PF input. By using flavoprotein imaging in the anesthetized mouse in vivo, this study demonstrates that high-frequency PF stimulation, which activates a beamlike response at short latency, also evokes patches of activation at long latencies. These patches consist of increased fluorescence along the beam at latencies of 20-25 s with peak activation at 35 s. The long-latency patches are completely blocked by the type 1 metabotropic glutamate receptor (mGluR(1)) antagonist LY367385. Conversely, the AMPA and NMDA glutamate receptor antagonists DNQX and APV have little effect. Organized in parasagittal bands, the long-latency patches align with zebrin II-positive PC stripes. Additional Ca(2+) imaging demonstrates that the patches reflect increases in intracellular Ca(2+). Both the PLCβ inhibitor U73122 and the ryanodine receptor inhibitor ryanodine completely block the long-latency patches, indicating that the patches are due to Ca(2+) release from intracellular stores. Robust, mGluR(1)-dependent long-term potentiation (LTP) of the patches is induced using a high-frequency PF stimulation conditioning paradigm that generates LTP of PF-PC synapses. Therefore, the parasagittal bands, as defined by the molecular compartmentalization of PCs, respond differentially to PF inputs via mGluR(1)-mediated release of internal Ca(2+).

  9. Parasagittally aligned, mGluR1-dependent patches are evoked at long latencies by parallel fiber stimulation in the mouse cerebellar cortex in vivo

    PubMed Central

    Wang, Xinming; Chen, Gang; Gao, Wangcai

    2011-01-01

    The parallel fibers (PFs) in the cerebellar cortex extend several millimeters along a folium in the mediolateral direction. The PFs are orthogonal to and cross several parasagittal zones defined by the olivocerebellar and corticonuclear pathways and the expression of molecular markers on Purkinje cells (PCs). The functions of these two organizations remain unclear, including whether the bands respond similarly or differentially to PF input. By using flavoprotein imaging in the anesthetized mouse in vivo, this study demonstrates that high-frequency PF stimulation, which activates a beamlike response at short latency, also evokes patches of activation at long latencies. These patches consist of increased fluorescence along the beam at latencies of 20–25 s with peak activation at 35 s. The long-latency patches are completely blocked by the type 1 metabotropic glutamate receptor (mGluR1) antagonist LY367385. Conversely, the AMPA and NMDA glutamate receptor antagonists DNQX and APV have little effect. Organized in parasagittal bands, the long-latency patches align with zebrin II-positive PC stripes. Additional Ca2+ imaging demonstrates that the patches reflect increases in intracellular Ca2+. Both the PLCβ inhibitor U73122 and the ryanodine receptor inhibitor ryanodine completely block the long-latency patches, indicating that the patches are due to Ca2+ release from intracellular stores. Robust, mGluR1-dependent long-term potentiation (LTP) of the patches is induced using a high-frequency PF stimulation conditioning paradigm that generates LTP of PF-PC synapses. Therefore, the parasagittal bands, as defined by the molecular compartmentalization of PCs, respond differentially to PF inputs via mGluR1-mediated release of internal Ca2+. PMID:21289138

  10. A model of long-term memory storage in the cerebellar cortex: a possible role for plasticity at parallel fiber synapses onto stellate/basket interneurons.

    PubMed

    Kenyon, G T

    1997-12-09

    By evoking changes in climbing fiber activity, movement errors are thought to modify synapses from parallel fibers onto Purkinje cells (pf*Pkj) so as to improve subsequent motor performance. Theoretical arguments suggest there is an intrinsic tradeoff, however, between motor adaptation and long-term storage. Assuming a baseline rate of motor errors is always present, then repeated performance of any learned movement will generate a series of climbing fiber-mediated corrections. By reshuffling the synaptic weights responsible for any given movement, such corrections will degrade the memories for other learned movements stored in overlapping sets of synapses. The present paper shows that long-term storage can be accomplished by a second site of plasticity at synapses from parallel fibers onto stellate/basket interneurons (pf*St/Bk). Plasticity at pf*St/Bk synapses can be insulated from ongoing fluctuations in climbing fiber activity by assuming that changes in pf*St/Bk synapses occur only after changes in pf*Pkj synapses have built up to a threshold level. Although climbing fiber-dependent plasticity at pf*Pkj synapses allows for the exploration of novel motor strategies in response to changing environmental conditions, plasticity at pf*St/Bk synapses transfers successful strategies to stable long-term storage. To quantify this hypothesis, both sites of plasticity are incorporated into a dynamical model of the cerebellar cortex and its interactions with the inferior olive. When used to simulate idealized motor conditioning trials, the model predicts that plasticity develops first at pf*Pkj synapses, but with additional training is transferred to pf*St/Bk synapses for long-term storage.

  11. Dendritic and somatic glutamate receptor channels in rat cerebellar Purkinje cells.

    PubMed Central

    Häusser, M; Roth, A

    1997-01-01

    1. The properties of glutamate receptor (GluR) channels in outside-out patches from the dendrites and somata of rat cerebellar Purkinje cells in brain slice were studied using fast agonist application techniques. Dendritic patches were isolated 40-130 micronm from the soma. 2. Outside-out patches from both dendrites and somata of Purkinje cells responded to application of glutamate with a current which desensitized rapidly and nearly completely. Currents evoked by glutamate application were blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), were mimicked by L-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and were modulated by cyclothiazide. Kainate produced small, non-desensitizing currents. No currents were observed in response to aspartate application. Responses characteristic of NMDA receptor activation were not observed. These findings indicate that glutamate-activated currents were mediated by the AMPA subtype of GluR. 3. Deactivation of the GluR channels following 1 ms pulses of glutamate occurred with a time constant of 1.23 +/- 0.07 ms in dendritic and 1.12 +/- 0.04 ms in somatic patches. Desensitization occurred with a time constant of 5.37 +/- 0.26 ms in dendritic and 5.29 +/- 0.29 ms in somatic patches. The time constant of recovery from desensitization caused by a 1 ms application of 1 mM glutamate was 36 ms in dendritic patches and 33 ms in somatic patches. 4. Half-maximal activation of the GluR channels was achieved at a glutamate concentration of 432 microM. Deactivation kinetics were not dependent on the glutamate concentration, while desensitization became slower at lower glutamate concentrations. 5. Pre-equilibration of patches with low concentrations of glutamate reduced the peak current activated by 1 mM glutamate. The IC50 for this effect was 8.7 microM. Equilibrium desensitization did not affect the kinetics of the current activated by 1 mM glutamate. 6. The current-voltage relationship of the peak current was linear in

  12. Toxic agents causing cerebellar ataxias.

    PubMed

    Manto, Mario

    2012-01-01

    The cerebellum is particularly vulnerable to intoxication and poisoning, especially so the cerebellar cortex and Purkinje neurons. In humans, the most common cause of a toxic lesion to the cerebellar circuitry is alcohol related, but the cerebellum is also a main target of drug exposure (such as anticonvulsants, antineoplastics, lithium salts, calcineurin inhibitors), drug abuse and addiction (such as cocaine, heroin, phencyclidine), and environmental toxins (such as mercury, lead, manganese, toluene/benzene derivatives). Although data for the prevalence and incidence of cerebellar lesions related to intoxication and poisoning are still unknown in many cases, clinicians should keep in mind the list of agents that may cause cerebellar deficits, since toxin-induced cerebellar ataxias are not rare in daily practice. Moreover, the patient's status may require immediate therapies when the intoxication is life-threatening. 2012 Elsevier B.V. All rights reserved.

  13. Peripheral Nerve Injury in Developing Rats Reorganizes Representation Pattern in Motor Cortex

    NASA Astrophysics Data System (ADS)

    Donoghue, John P.; Sanes, Jerome N.

    1987-02-01

    We investigated the effect of neonatal nerve lesions on cerebral motor cortex organization by comparing the cortical motor representation of normal adult rats with adult rats that had one forelimb removed on the day of birth. Mapping of cerebral neocortex with electrical stimulation revealed an altered relationship between the motor cortex and the remaining muscles. Whereas distal forelimb movements are normally elicited at the lowest threshold in the motor cortex forelimb area, the same stimuli activated shoulder and trunk muscles in experimental animals. In addition, an expanded cortical representation of intact body parts was present and there was an absence of a distinct portion of motor cortex. These data demonstrate that representation patterns in motor cortex can be altered by peripheral nerve injury during development.

  14. [Effect of Ruiqi tablet on mitochondrion activities in cerebral cortex neurons of fetal rats].

    PubMed

    Zhou, Peiyun; Ge, Wenjin; Li, Duanwu

    2010-06-01

    To explore the effect of Ruiqi tablet on mitochondrion activities in the cerebral cortex neurons of fetal mice. The cerebral cortex of fetal Wistar rats after 16- 17 gestation days were collected and randomized into Ruiqi tablet group and blank control group after 4-5 days' culture. Laser scanning confocal microscope was adopted to determine the changes in the mitochondrion activities of the primary cultured cerebral cortex neurons of fetal rats after addition of Ruiqi tablet solution. Ruiqi tablet can increase the mitochondrion activities of the cerebral cortex neurons. No significant change in the mitochondrion activities of the cerebral cortex neurons was found in the blank control group. Ruiqi tablet can increase the mitochondrion activities of the neurons and it has certain application prospects in treatment of some neurodegenerative diseases such as Alzheimer's disease, vascular dementia, Parkinson's disease and so on.

  15. Characterization of the Brain Injury, Neurobehavioral Profiles and Histopathology in a Rat Model of Cerebellar Hemorrhage

    PubMed Central

    Lekic, Tim; Rolland, William; Hartman, Richard; Kamper, Joel; Suzuki, Hidenori; Tang, Jiping; Zhang, John H.

    2010-01-01

    Spontaneous cerebellar hemorrhage (SCH) represents approximately 10% of all intracerebral hemorrhage (ICH), and is an important clinical problem of which little is known. This study stereotaxically infused collagenase (type VII) into the deep cerebellar paramedian white matter, which corresponds to the most common clinical injury region. Measures of hemostasis (brain water, hemoglobin assay, Evans blue, collagen-IV, ZO-1, and MMP-2 and MMP-9) and neurodeficit were quantified twenty-four hours later (Experiment 1). Long-term functional outcomes were measured over thirty days using the ataxia scale (modified Luciani), open field, wire suspension, beam balance and inclined plane (Experiment 2). Neurocognitive ability was assessed on the third week using the rotarod (motor learning), T-maze (working memory) and water-maze (spatial learning and memory) (Experiment 3), followed by a histopathological analysis one week later (Experiment 4). Stereotaxic collagenase infusion caused dose-dependent elevations in brain edema, neurodeficit, hematoma volume and blood-brain barrier rupture, while physiological variables remained stable. Most functional outcomes normalized by third week, while neurocognitive testing showed deficits parallel to the cystic-cavitary lesion at thirty days. All animals survived until sacrifice, and obstructive hydrocephalus did not develop. These results suggest that the model can generate important translational information about this subtype of ICH, and could be used for future investigations of therapeutic mechanisms after cerebellar hemorrhage. PMID:20887722

  16. Electrophysiology of regular firing cells in the rat perirhinal cortex.

    PubMed

    D'Antuono, M; Biagini, G; Tancredi, V; Avoli, M

    2001-01-01

    The electrophysiological properties of neurons in the rat perirhinal cortex were analyzed with intracellular recordings in an in vitro slice preparation. Cells included in this study (n = 59) had resting membrane potential (RMP) = -73.9 +/- 8.5 mV (mean +/- SD), action potential amplitude = 95.5 +/- 10.4 mV, input resistance = 36.1 +/- v 15.7 M omega, and time constant = 13.9 +/- 3.4 ms. When filled with neurobiotin (n = 27) they displayed a pyramidal shape with an apical dendrite and extensive basal dendritic tree. Injection of intracellular current pulses revealed: 1) a tetrodotoxin (TTX, 1 microM)-sensitive, inward rectification in the depolarizing direction (n = 6), and 2) a time- and voltage-dependent hyperpolarizing sag that was blocked by extracellular Cs+ (3 mM, n = 5) application. Prolonged (up to 3 s) depolarizing pulses made perirhinal cells discharge regular firing of fast action potentials that diminished over time in frequency and reached a steady level (i.e., adapted). Repetitive firing was followed by an afterhyperpolarization that was decreased, along with firing adaptation, by the Ca(2+)-channel blocker Co2+ (2 mM, n = 6). Action potential broadening became evident during repetitive firing. This behavior, which was more pronounced when larger pulses of depolarizing current were injected (and thus when repetitive firing attained higher rates), was markedly decreased by Co2+ application. Subthreshold membrane oscillations at 5-12 Hz became apparent when cells were depolarized by 10-20 mV from RMP, and action potential clusters appeared with further depolarization. Application of glutamatergic and GABAA receptor antagonists (n = 4), CO2+ (n = 6), or Cs+ (n = 5) did not prevent the occurrence of these oscillations that were abolished by TTX (n = 6). Our results show that pyramidal-like neurons in the perirhinal cortex are regular firing cells with electrophysiological features resembling those of other cortical pyramidal elements. The ability to

  17. Electrical Stimulation Normalizes c-Fos Expression in the Deep Cerebellar Nuclei of Depressive-like Rats: Implication of Antidepressant Activity.

    PubMed

    Huguet, Gemma; Kadar, Elisabet; Temel, Yasin; Lim, Lee Wei

    2017-04-01

    The electrical stimulation of specific brain targets has been shown to induce striking antidepressant effects. Despite that recent data have indicated that cerebellum is involved in emotional regulation, the mechanisms by which stimulation improved mood-related behaviors in the cerebellum remained largely obscure. Here, we investigated the stimulation effects of the ventromedial prefrontal cortex (vmPFC), nucleus accumbens (NAc), and lateral habenular nucleus on the c-Fos neuronal activity in various deep cerebellar and vestibular nuclei using the unpredictable chronic mild stress (CMS) animal model of depression. Our results showed that stressed animals had increased number of c-Fos cells in the cerebellar dentate and fastigial nuclei, as well as in the spinal vestibular nucleus. To examine the stimulation effects, we found that vmPFC stimulation significantly decreased the c-Fos activity within the cerebellar fastigial nucleus as compared to the CMS sham. Similarly, there was also a reduction of c-Fos expression in the magnocellular part of the medial vestibular nucleus in vmPFC- and NAc core-stimulated animals when compared to the CMS sham. Correlational analyses showed that the anxiety measure of home-cage emergence escape latency was positively correlated with the c-Fos neuronal activity of the cerebellar fastigial and magnocellular and parvicellular parts of the interposed nuclei in CMS vmPFC-stimulated animals. Interestingly, there was a strong correlation among activation in these cerebellar nuclei, indicating that the antidepressant-like behaviors were possibly mediated by the vmPFC stimulation-induced remodeling within the forebrain-cerebellar neurocircuitry.

  18. Anterograde and Retrograde Amnesia of Place Discrimination in Retrosplenial Cortex and Hippocampal Lesioned Rats

    ERIC Educational Resources Information Center

    Haijima, Asahi; Ichitani, Yukio

    2008-01-01

    Retrograde and anterograde amnesic effects of excitotoxic lesions of the rat retrosplenial cortex (RS) and hippocampus (HPC) were investigated. To test retrograde amnesia, rats were trained with two-arm place discrimination in a radial maze 4 wk and 1 d before surgery with a different arm pair, respectively. In the retention test 1 wk after…

  19. Analysis on bilateral hindlimb mapping in motor cortex of the rat by an intracortical microstimulation method.

    PubMed

    Seong, Han Yu; Cho, Ji Young; Choi, Byeong Sam; Min, Joong Kee; Kim, Yong Hwan; Roh, Sung Woo; Kim, Jeong Hoon; Jeon, Sang Ryong

    2014-04-01

    Intracortical microstimulation (ICMS) is a technique that was developed to derive movement representation of the motor cortex. Although rats are now commonly used in motor mapping studies, the precise characteristics of rat motor map, including symmetry and consistency across animals, and the possibility of repeated stimulation have not yet been established. We performed bilateral hindlimb mapping of motor cortex in six Sprague-Dawley rats using ICMS. ICMS was applied to the left and the right cerebral hemisphere at 0.3 mm intervals vertically and horizontally from the bregma, and any movement of the hindlimbs was noted. The majority (80%± 11%) of responses were not restricted to a single joint, which occurred simultaneously at two or three hindlimb joints. The size and shape of hindlimb motor cortex was variable among rats, but existed on the convex side of the cerebral hemisphere in all rats. The results did not show symmetry according to specific joints in each rats. Conclusively, the hindlimb representation in the rat motor cortex was conveniently mapped using ICMS, but the characteristics and inter-individual variability suggest that precise individual mapping is needed to clarify motor distribution in rats.

  20. Anterograde and Retrograde Amnesia of Place Discrimination in Retrosplenial Cortex and Hippocampal Lesioned Rats

    ERIC Educational Resources Information Center

    Haijima, Asahi; Ichitani, Yukio

    2008-01-01

    Retrograde and anterograde amnesic effects of excitotoxic lesions of the rat retrosplenial cortex (RS) and hippocampus (HPC) were investigated. To test retrograde amnesia, rats were trained with two-arm place discrimination in a radial maze 4 wk and 1 d before surgery with a different arm pair, respectively. In the retention test 1 wk after…

  1. The rat retrosplenial cortex is required when visual cues are used flexibly to determine location.

    PubMed

    Hindley, E L; Nelson, A J D; Aggleton, J P; Vann, S D

    2014-04-15

    The present study examined the consequences of retrosplenial cortex lesions in rats on two novel spatial tasks. In the first experiment, rats discriminated opposing room views from the same general location, along with their opposing directions of travel ('Perspective' task). Rats were trained with food rewards using a go/no-go design. Extensive retrosplenial cortex lesions involving both the granular and dysgranular areas impaired acquisition of this discrimination, which relied on distal visual cues. The same rats were then trained on a non-spatial go/no-go discrimination between different digging media. No lesion effect was apparent. In the final experiment, rats discriminated between two locations within a room ('Location' task) such that direction of travel at each location would be of less help in solving the problem. Both extensive retrosplenial lesions and selective dysgranular retrosplenial lesions impaired this Location task. These results highlight the importance of the retrosplenial cortex (areas 29 and 30), including the dysgranular cortex (area 30), for the effective use of distal visual cues to solve spatial problems. The findings, which help to explain the bias away from visual allocentric solutions that is shown by rats with retrosplenial cortex lesions when performing spatial tasks, also support the notion that the region assists the integration of different categories of visuospatial information. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. The effects of short-term enriched environment on capillaries of the middle-aged rat cortex.

    PubMed

    Qiu, Xuan; Li, Chen; Jiang, Rong; Chen, Lin; Huang, Chunxia; Yang, Shu; Lu, Wei; Shi, Xiaoyan; Zhao, Yuanyu; Gao, Yuan; Cheng, Guohua; Tang, Yong

    2011-11-14

    There has been no study investigating the effects of enriched environment on the capillaries of cortex with new stereological methods. In the present study, both 14 month female and male Sprague-Dawley rats were randomly divided into enriched environment (EE) rats and standard environment (SE) rats. EE rats were reared in enriched environment and SE rats were reared in standard environment for 4 months. The effects of short-term enriched environment on the cortex volume and on the total volume, total length, total surface area and mean diameter of the capillaries in the cortex of mid-aged Sprague-Dawley rats were quantitatively investigated with immunohistochemistry technique and unbiased stereological methods. There were no significant differences in the cortex volume, the total length and total surface area of the capillaries in the cortex between EE rats and SE rats. The total volume of the capillaries in the cortex of female EE rats and male EE rats was significantly increased when compared to female SE rats and male SE rats. The mean diameter of the capillaries in the cortex of female EE rats was significantly decreased when compared to that in female SE rats, but there was no significant difference in the mean diameter of the capillaries in the cortex between male EE rats and male SE rats. The present results indicate that enriched environment had a positive effect on the capillaries in the cortex of middle-aged rats. The present study might provide an important morphological basis for searching the ethology strategy to delay the progress of brain aging in the future.

  3. Induction of neuroserpin expression in rat frontal cortex after chronic antidepressant treatment and electroconvulsive treatment.

    PubMed

    Tanaka, Satoshi; Yamada, Misa; Kitahara, Sari; Higuchi, Teruhiko; Honda, Kazuo; Kamijima, Kunitoshi; Yamada, Mitsuhiko

    2006-02-01

    Using expressed sequence tag (EST) analysis, we previously identified certain molecular machinery that mediates antidepressant effects. To date, several partial cDNA fragments, termed antidepressant-related genes (ADRGs), have been isolated as ESTs from rat brain. In the present study, we identified two of the ADRGs to be rat neuroserpin. Using real-time quantitative PCR, we demonstrated increased neuroserpin mRNA expression in rat frontal cortex after chronic treatment with several classes of antidepressants, including imipramine, fluoxetine, sertraline, and venlafaxine. Electroconvulsive treatment (ECT), another therapeutic treatment for depression, also increased neuroserpin expression in rat frontal cortex. Neuroserpin is a serine protease inhibitor that is implicated in the regulation of synaptic plasticity, neuronal migration, and axogenesis in the central nervous system. In conclusion, our results support the hypothesis that neuroserpin-mediated plastic changes in frontal cortex may underlie the therapeutic action of antidepressants and ECT.

  4. Protective potential of Bacopa monniera (Brahmi) extract on aluminum induced cerebellar toxicity and associated neuromuscular status in aged rats.

    PubMed

    Tripathi, S; Mahdi, A A; Hasan, M; Mitra, K; Mahdi, F

    2011-02-12

    The present study attempts to assess the comparative effects of Bacopa monniera, (40 mg/kg body weight) and donepezil (2.5 mg/kg b. wt) on aluminum (100 mg / kg b. wt. of AlCl3) mediated oxidative damage in the cerebellum of aged rats (24 months) along with the associated dysfunctioning of neuromuscular coordination and motor activity. A significant decrease in the activities of antioxidant enzymes and increased total reacting oxygen species, lipid and protein peroxidation products observed in aluminum exposed rats. We observed that treatment with B. monniera extract restored the altered antioxidant enzyme activities more, when compared with donepezil. However, acetylcholinesterase showed similar effect both in donepezil and B. monniera treated groups. The content of aluminum was increased in all experimental groups, however, iron content was found increased in all groups except the B. monniera treated groups. Moreover, aluminum treated groups of rats exhibited significant changes in behavioral profiles but these changes were in both B. monniera and donepezil treated groups. The light microscopic and ultrastructural studies revealed damaged Purkinje's neurons and altered granular cell layer along with the increased accumulation of lipofuscin granules in aluminum treated animals. These changes were quite less pronounced in B. monniera group than that of donepezil and this may be due to the reduction of excess iron content by B. monniera. On the basis of our results it may be concluded that Al may be linked with cerebellar degeneration and neuromuscular disorders while Bacopa monniera extract helps in reversing these changes.

  5. Encoding of sound envelope transients in the auditory cortex of juvenile rats and adult rats.

    PubMed

    Lu, Qi; Jiang, Cuiping; Zhang, Jiping

    2016-02-01

    Accurate neural processing of time-varying sound amplitude and spectral information is vital for species-specific communication. During postnatal development, cortical processing of sound frequency undergoes progressive refinement; however, it is not clear whether cortical processing of sound envelope transients also undergoes age-related changes. We determined the dependence of neural response strength and first-spike latency on sound rise-fall time across sound levels in the primary auditory cortex (A1) of juvenile (P20-P30) rats and adult (8-10 weeks) rats. A1 neurons were categorized as "all-pass", "short-pass", or "mixed" ("all-pass" at high sound levels to "short-pass" at lower sound levels) based on the normalized response strength vs. rise-fall time functions across sound levels. The proportions of A1 neurons within each of the three categories in juvenile rats were similar to that in adult rats. In general, with increasing rise-fall time, the average response strength decreased and the average first-spike latency increased in A1 neurons of both groups. At a given sound level and rise-fall time, the average normalized neural response strength did not differ significantly between the two age groups. However, the A1 neurons in juvenile rats showed greater absolute response strength, longer first-spike latency compared to those in adult rats. In addition, at a constant sound level, the average first-spike latency of juvenile A1 neurons was more sensitive to changes in rise-fall time. Our results demonstrate the dependence of the responses of rat A1 neurons on sound rise-fall time, and suggest that the response latency exhibit some age-related changes in cortical representation of sound envelope rise time.

  6. Brain and heart sodium channel subtype mRNA expression in rat cerebral cortex.

    PubMed Central

    Yarowsky, P J; Krueger, B K; Olson, C E; Clevinger, E C; Koos, R D

    1991-01-01

    The expression of mRNAs coding for the alpha subunit of rat brain and rat heart sodium channels has been studied in adult and neonatal rat cerebral cortex using the reverse transcription-polymerase chain reaction (RT-PCR). Rat brain sodium channel subtype I, II, IIA, and III sequences were simultaneously amplified in the same PCR using a single oligonucleotide primer pair matched to all four subtype sequences. Identification of each subtype-specific product was inferred from the appearance of unique fragments when the product was digested with specific restriction enzymes. By using this RT-PCR method, products arising from mRNAs for all four brain sodium channel subtypes were identified in RNA extracted from adult rat cerebral cortex. The predominant component was type IIA with lesser levels of types I, II, and III. In contrast, the type II and IIA sequences were the predominant RT-PCR products in neonatal rat cortex, with slightly lower levels of type III and undetectable levels of type I. Thus, from neonate to adult, type II mRNA levels decrease relative to type IIA levels. Using a similar approach, we detected mRNA coding for the rat heart sodium channel in neonatal and adult rat cerebral cortex and in adult rat heart. These results reveal that mRNAs coding for the heart sodium channel and all four previously sequenced rat brain sodium channel subtypes are expressed in cerebral cortex and that type II and IIA channels may be differentially regulated during development. Images PMID:1658783

  7. Fetal frontal cortex transplant (/sup 14/C) 2-deoxyglucose uptake and histology: survival in cavities of host rat brain motor cortex

    SciTech Connect

    Sharp, F.R.; Gonzalez, M.F.

    1984-10-01

    Fetal frontal neocortex from 18-day-old rat embryonic brain was transplanted into cavities in 30-day-old host motor cortex. Sixty days after transplantation, 5 of 15 transplanted rats had surviving fetal transplants. The fetal cortex transplants were physically attached to the host brain, completely filled the original cavity, and had numerous surviving cells including pyramidal neurons. Cell lamination within the fetal transplant was abnormal. The (/sup 14/C) 2-deoxyglucose uptake of all five of the fetal neocortex transplants was less than adjacent cortex and contralateral host motor-sensory cortex, but more than adjacent corpus callosum white matter. The results indicate that fetal frontal neocortex can be transplanted into damaged rat motor cortex. The metabolic rate of the transplants suggests they could be partially functional.

  8. Cortical connectivity maps reveal anatomically distinct areas in the parietal cortex of the rat.

    PubMed

    Wilber, Aaron A; Clark, Benjamin J; Demecha, Alexis J; Mesina, Lilia; Vos, Jessica M; McNaughton, Bruce L

    2014-01-01

    A central feature of theories of spatial navigation involves the representation of spatial relationships between objects in complex environments. The parietal cortex has long been linked to the processing of spatial visual information and recent evidence from single unit recording in rodents suggests a role for this region in encoding egocentric and world-centered frames. The rat parietal cortex can be subdivided into four distinct rostral-caudal and medial-lateral regions, which includes a zone previously characterized as secondary visual cortex. At present, very little is known regarding the relative connectivity of these parietal subdivisions. Thus, we set out to map the connectivity of the entire anterior-posterior and medial-lateral span of this region. To do this we used anterograde and retrograde tracers in conjunction with open source neuronal segmentation and tracer detection tools to generate whole brain connectivity maps of parietal inputs and outputs. Our present results show that inputs to the parietal cortex varied significantly along the medial-lateral, but not the rostral-caudal axis. Specifically, retrosplenial connectivity is greater medially, but connectivity with visual cortex, though generally sparse, is more significant laterally. Finally, based on connection density, the connectivity between parietal cortex and hippocampus is indirect and likely achieved largely via dysgranular retrosplenial cortex. Thus, similar to primates, the parietal cortex of rats exhibits a difference in connectivity along the medial-lateral axis, which may represent functionally distinct areas.

  9. Accumulation of α-Synuclein in Cerebellar Purkinje Cells of Diabetic Rats and Its Potential Relationship with Inflammation and Oxidative Stress Markers

    PubMed Central

    Solmaz, Volkan; Eroglu, Hüseyin Avni; Aktuğ, Hüseyin; Erbaş, Oytun

    2017-01-01

    Objective. The present study was conducted to evaluate the relationship between plasma oxidative stress markers such as malondialdehyde (MDA) and glutathione (GSH), inflammatory marker pentraxin-3 (PTX3), and cerebellar accumulation of α-synuclein in streptozotocin- (STZ-) induced diabetes model in rats. Methods. Twelve rats were included in the study. Diabetes (n = 6) was induced with a single intraperitoneal injection of streptozotocin (STZ, 60 mg/kg). Diabetes was verified after 48 h by measuring blood glucose levels. Six rats served as controls. Following 8 weeks, rats were sacrificed for biochemical and immunohistochemical evaluation. Results. Plasma MDA levels were significantly higher in diabetic rats when compared with the control rats (p < 0.01), while plasma GSH levels were lower in the diabetic group than in the control group (p < 0.01). Also, plasma pentraxin-3 levels were statistically higher in diabetic rats than in the control rats (p < 0.01). The analysis of cerebellar α-synuclein immunohistochemistry showed a significant increase in α-synuclein immunoexpression in the diabetic group compared to the control group (p < 0.01). Conclusion. Due to increased inflammation and oxidative stress in the chronic period of hyperglycemia linked to diabetes, there may be α-synuclein accumulation in the cerebellum and the plasma PTX3 levels may be assessed as an important biomarker of this situation. PMID:28133547

  10. Chronic infusions of GABA into the medial prefrontal cortex induce spatial alternation deficits in aged rats.

    PubMed

    Meneses, S; Galicia, O; Brailowsky, S

    1993-10-21

    It has been proposed that functions associated with the prefrontal cortex could change as a consequence of aging. Previous experiments in young rats have demonstrated that anatomical lesions or chronic GABA infusions into this area produce deficits in spatial delayed alternation tasks. The present study examines the effect of chronic (7 days) GABA or saline infusion into the prefrontal cortex on the performance of delayed alternation task in old rats (24 months). The results suggested that aged rats needed more sessions to acquire the delayed alternation task. GABA infusions into the prefrontal cortex produced deficits in spatial alternation tasks similar to those previously observed in young rats. Performance rapidly recovered after the infusion period. Histological analysis showed similar lesion size in both groups. The results suggest that aged prefrontal cortex and/or related areas participating in the acquisition of the delayed alternation task are more sensitive to aging processes. Furthermore, the prefrontal cortex is important for the retention of a previously learned spatial delayed alternation task. The structures involved in functional recovery from these deficits appear to be fully functional in aged rats.

  11. The compartmental restriction of cerebellar interneurons

    PubMed Central

    Consalez, G. Giacomo; Hawkes, Richard

    2013-01-01

    The Purkinje cells (PC's) of the cerebellar cortex are subdivided into multiple different molecular phenotypes that form an elaborate array of parasagittal stripes. This array serves as a scaffold around which afferent topography is organized. The ways in which cerebellar interneurons may be restricted by this scaffolding are less well-understood. This review begins with a brief survey of cerebellar topography. Next, it reviews the development of stripes in the cerebellum with a particular emphasis on the embryological origins of cerebellar interneurons. These data serve as a foundation to discuss the hypothesis that cerebellar compartment boundaries also restrict cerebellar interneurons, both excitatory [granule cells, unipolar brush cells (UBCs)] and inhibitory (e.g., Golgi cells, basket cells). Finally, it is proposed that the same PC scaffold that restricts afferent terminal fields to stripes may also act to organize cerebellar interneurons. PMID:23346049

  12. [Cerebellar hypoplasias].

    PubMed

    Safronova, Marta Maia; Barbot, Clara; Resende Pereira, Jorge

    2010-01-01

    Cerebellar hypoplasias are cerebellar malformations with small but completely formed cerebellum. They can be divided in focal and in diffuse or generalized. It is sometimes difficult to make distinction between cerebellar atrophy (progressive condition) and hipoplasia (not progressive condition). Focal hypoplasias are restricted to one cerebellar hemisphere or to the vermis. Diffuse hypoplasias refer to both cerebellar hemispheres and vermis. If there is associated IVth ventricle enlargement, hypoplasias occur in the context of Dandy-Walker complex, a continuum of posterior fossa cystic anomalies. A revision of cerebellar hypoplasias and associated pathology is done, illustrated with 22 cases tha include focal and diffuse cerebellar hypoplasias, Dandy-Walker malformations and its variant, persistent Blake's pouch cyst, megacisterna magna, PEHO síndrome (progressive encephalopathy with oedema, hipsarrhythmia and optic atrophy), Joubert syndrome, congenital disorder of glycosylation type Ia, pontocerebellar hipoplasias Barth type I and II, diffuse subcortical heterotopia. The imaging finding of structural cerebellar anomalies frequently leads to diagnostic incertainty as the anomalies are mostly unspecific, implying an extenuating analytical and genetic workup. Their knowledge and classification may be useful to decide the patient adjusted laboratorial workup.

  13. Morphology of Pyramidal Neurons in the Rat Prefrontal Cortex: Lateralized Dendritic Remodeling by Chronic Stress

    PubMed Central

    Perez-Cruz, Claudia; Müller-Keuker, Jeanine I. H.; Heilbronner, Urs; Fuchs, Eberhard; Flügge, Gabriele

    2007-01-01

    The prefrontal cortex (PFC) plays an important role in the stress response. We filled pyramidal neurons in PFC layer III with neurobiotin and analyzed dendrites in rats submitted to chronic restraint stress and in controls. In the right prelimbic cortex (PL) of controls, apical and distal dendrites were longer than in the left PL. Stress reduced the total length of apical dendrites in right PL and abolished the hemispheric difference. In right infralimbic cortex (IL) of controls, proximal apical dendrites were longer than in left IL, and stress eliminated this hemispheric difference. No hemispheric difference was detected in anterior cingulate cortex (ACx) of controls, but stress reduced apical dendritic length in left ACx. These data demonstrate interhemispheric differences in the morphology of pyramidal neurons in PL and IL of control rats and selective effects of stress on the right hemisphere. In contrast, stress reduced dendritic length in the left ACx. PMID:18253468

  14. Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo.

    PubMed

    Minlebaev, Marat; Ben-Ari, Yehezkel; Khazipov, Rustem

    2007-01-01

    Early in development, cortical networks generate particular patterns of activity that participate in cortical development. The dominant pattern of electrical activity in the neonatal rat neocortex in vivo is a spatially confined spindle-burst. Here, we studied network mechanisms of generation of spindle-bursts in the barrel cortex of neonatal rats using a superfused cortex preparation in vivo. Both spontaneous and sensory-evoked spindle-bursts were present in the superfused barrel cortex. Pharmacological analysis revealed that spindle-bursts are driven by glutamatergic synapses with a major contribution of AMPA/kainate receptors, but slight participation of NMDA receptors and gap junctions. Although GABAergic synapses contributed minimally to the pacing the rhythm of spindle-burst oscillations, surround GABAergic inhibition appeared to be crucial for their compartmentalization. We propose that local spindle-burst oscillations, driven by glutamatergic synapses and spatially confined by GABAergic synapses, contribute to the development of barrel cortex during the critical period of developmental plasticity.

  15. Activation of steroid-sensitive TRPM3 channels potentiates glutamatergic transmission at cerebellar Purkinje neurons from developing rats.

    PubMed

    Zamudio-Bulcock, Paula A; Everett, Julie; Harteneck, Christian; Valenzuela, C Fernando

    2011-11-01

    The functional implications of transient receptor potential melastatin 3 (TRPM3) activation, the most recently described member of the melastatin subfamily of cation permeable TRP channels, have begun to be elucidated in recent years. The discovery of TRPM3 activation by the steroid pregnenolone sulfate (PregS) has shed new light on the physiological role of this channel. For example, TRPM3 activation enhances insulin secretion from β pancreatic cells, induces contraction of vascular smooth muscle, and is also involved in the detection of noxious heat. Although TRPM3 expression has been detected in several regions of the developing and mature brain, little is known about the roles of TRPM3 in brain physiology. In this study, we demonstrate the abundant expression of TRPM3 steroid-sensitive channels in the developing cerebellar cortex. We also show that TRPM3-like channels are expressed at glutamatergic synapses in neonatal Purkinje cells. We recently showed that PregS potentiates spontaneous glutamate release onto neonatal Purkinje cells during a period of active glutamatergic synapse formation; we now show that this effect of PregS is mediated by TRPM3-like channels. Mefenamic acid, a recently discovered TRPM3 antagonist, blocked the effect of PregS on glutamate release. The PregS effect on glutamate release was mimicked by other TRPM3 agonists (nifedipine and epipregnanolone sulfate) but not by a TRMP3-inactive steroid (progesterone). Our findings identify TRPM3 channels as novel modulators of glutamatergic transmission in the developing brain.

  16. Ultrastructure of neurons and interneuronal connections in the sensomotor cortex of progeny of alcohol-addicted rats

    SciTech Connect

    Popova, E.N.

    1985-05-01

    This paper studies the ultrastructure of neurons and interneuronal connections in the sensomotor cortex of the progeny of alcohol-addicted rats. Experiments were carried out on 12 female and four male albino rats; they were given alcohol solutions for 4 months and then mated. The female rats continued to ingest alcohol until the young rats acquired vision. The sensomotor cortex of experimental young rats aged 21 and 30 days and of intact animals of the same age was investigated; the sections were stained with uranyl acetate and studied. It is shown that alcoholic intoxication of females and males causes significant disturbances of the structural organization of the sensomotor cortex in the progeny.

  17. Inhibition of the amygdala central nucleus by stimulation of cerebellar output in rats: a putative mechanism for extinction of the conditioned fear response.

    PubMed

    Magal, Ari; Mintz, Matti

    2014-11-01

    The amygdala and the cerebellum serve two distinctively different functions. The amygdala plays a role in the expression of emotional information, whereas the cerebellum is involved in the timing of discrete motor responses. Interaction between these two systems is the basis of the two-stage theory of learning, according to which an encounter with a challenging event triggers fast classical conditioning of fear-conditioned responses in the amygdala and slow conditioning of motor-conditioned responses in the cerebellum. A third stage was hypothesised when an apparent interaction between amygdala and cerebellar associative plasticity was observed: an adaptive rate of cerebellum-dependent motor-conditioned responses was associated with a decrease in amygdala-dependent fear-conditioned responses, and was interpreted as extinction of amygdala-related fear-conditioned responses by the cerebellar output. To explore this hypothesis, we mimicked some components of classical eyeblink conditioning in anesthetised rats by applying an aversive periorbital pulse as an unconditioned stimulus and a train of pulses to the cerebellar output nuclei as a cerebellar neuronal-conditioned response. The central amygdala multiple unit response to the periorbital pulse was measured with or without a preceding train to the cerebellar output nuclei. The results showed that activation of the cerebellar output nuclei prior to periorbital stimulation produced diverse patterns of inhibition of the amygdala response to the periorbital aversive stimulus, depending upon the nucleus stimulated, the laterality of the nucleus stimulated, and the stimulus interval used. These results provide a putative extinction mechanism of learned fear behavior, and could have implications for the treatment of pathologies involving abnormal fear responses by using motor training as therapy.

  18. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex.

    PubMed

    Pinto, Joshua G A; Jones, David G; Williams, C Kate; Murphy, Kathryn M

    2015-01-01

    Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (<1 year) when only Gephyrin has high inter-individual variability. We also found that pre- and post-synaptic protein balances develop quickly, suggesting that maturation of certain synaptic functions happens within the 1 year or 2 of life. A multidimensional analysis (principle component analysis) showed that most of the variance was captured by the sum of the four synaptic proteins. We used that sum to compare development of human and rat visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic.

  19. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    PubMed Central

    Pinto, Joshua G. A.; Jones, David G.; Williams, C. Kate; Murphy, Kathryn M.

    2015-01-01

    Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (<1 year) when only Gephyrin has high inter-individual variability. We also found that pre- and post-synaptic protein balances develop quickly, suggesting that maturation of certain synaptic functions happens within the 1 year or 2 of life. A multidimensional analysis (principle component analysis) showed that most of the variance was captured by the sum of the four synaptic proteins. We used that sum to compare development of human and rat visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic. PMID:25729353

  20. Exposure to 50 Hz electromagnetic radiation promote early maturation and differentiation in newborn rat cerebellar granule neurons.

    PubMed

    Lisi, A; Ciotti, M T; Ledda, M; Pieri, M; Zona, C; Mercanti, D; Rieti, S; Giuliani, L; Grimaldi, S

    2005-08-01

    The wish of this work is the study of the effect of electromagnetic (EMF) radiations at a frequency of 50 Hz on the development of cerebellar granule neurons (CGN). Granule neurons, prepared from newborn rat cerebellum (8 days after birth), were cultured after plate-seeding in the presence of EMF radiations, with the plan of characterizing their cellular and molecular biochemistry, after exposure to the electromagnetic stimulus. Five days challenge to EMF radiations showed, by the cytotoxic glutamate (Glu) pulse test, a 30% decrease of cells survival, while only 5% of mortality was reported for unexposed sample. Moreover, blocking the glutamate receptor (GluR) with the Glu competitor MK-801, no toxicity effect after CGN challenge to EMF radiations and Glu was detected. By patch-clamp recording technique, the Kainate-induced currents from 6 days old exposed CGN exhibited a significant increase with respect to control cells. Western blot and reverse transcription-polymerase chain reaction (RT-PCR) analyses show that EMF exposure of rats CGN, induces a change in both GluRs proteins and mRNAs expression with respect to control. In addition, the use of monoclonal antibody raised against neurofilament protein (NF-200) reveals an increase in NF-200 synthesis in the exposed CGN. All these results indicate that exposure to non-ionizing radiations contribute to a premature expression of GluRs reducing the life span of CGN, leading to a more rapid cell maturation. (c) 2005 Wiley-Liss, Inc.

  1. Paraneoplastic cerebellar degeneration with a circulating antibody against neurons and non-neuronal cells.

    PubMed

    Tomimoto, H; Brengman, J M; Yanagihara, T

    1993-01-01

    We describe a woman with paraneoplastic cerebellar degeneration associated with para-ovarian adenocarcinoma, who had a circulating antibody with a corresponding antigen not only in cerebellar Purkinje cells but also in neurons located in the molecular layer of the human and rat cerebellum. The antigen was also present in neurons in the cerebral cortex, brain stem, anterior horn cells, dorsal root ganglia, intestinal autonomic neurons, retinal ganglion cells, Schwann cells of the peripheral nerve and epithelial cells of the renal glomerulus in rats. Immunoelectron microscopy revealed immunoprecipitates in the smooth and rough endoplasmic reticulum and polyribosomes in human and rat cerebellar Purkinje cells and other neuronal cell bodies as well as Schwann cells of the peripheral nerve. Even though patients with this disorder manifest primarily with cerebellar and some extracerebellar signs, the antigen also exists in many neurons other than cerebellar Purkinje cells and even in non-neuronal cells. The clinicopathologic significance of the observed immunologic reaction in diverse neurons remains to be determined.

  2. Hindlimb spasticity after unilateral motor cortex lesion in rats is reduced by contralateral nerve root transfer

    PubMed Central

    Zong, Haiyang; Ma, Fenfen; Zhang, Laiyin; Lu, Huiping; Gong, Jingru; Cai, Min; Lin, Haodong; Zhu, Yizhun; Hou, Chunlin

    2016-01-01

    Lower extremity spasticity is a common sequela among patients with acquired brain injury. The optimum treatment remains controversial. The aim of our study was to test the feasibility and effectiveness of contralateral nerve root transfer in reducing post stroke spasticity of the affected hindlimb muscles in rats. In our study, we for the first time created a novel animal hindlimb spastic hemiplegia model in rats with photothrombotic lesion of unilateral motor cortex and we established a novel surgical procedure in reducing motor cortex lesion-induced hindlimb spastic hemiplegia in rats. Thirty six rats were randomized into three groups. In group A, rats received sham operation. In group B, rats underwent unilateral hindlimb motor cortex lesion. In group C, rats underwent unilateral hindlimb cortex lesion followed by contralateral L4 ventral root transfer to L5 ventral root of the affected side. Footprint analysis, Hoffmann reflex (H-reflex), cholera toxin subunit B (CTB) retrograde tracing of gastrocnemius muscle (GM) motoneurons and immunofluorescent staining of vesicle glutamate transporter 1 (VGLUT1) on CTB-labelled motoneurons were used to assess spasticity of the affected hindlimb. Sixteen weeks postoperatively, toe spread and stride length recovered significantly in group C compared with group B (P<0.001). Hmax (H-wave maximum amplitude)/Mmax (M-wave maximum amplitude) ratio of gastrocnemius and plantaris muscles (PMs) significantly reduced in group C (P<0.01). Average VGLUT1 positive boutons per CTB-labelled motoneurons significantly reduced in group C (P<0.001). We demonstrated for the first time that contralateral L4 ventral root transfer to L5 ventral root of the affected side was effective in relieving unilateral motor cortex lesion-induced hindlimb spasticity in rats. Our data indicated that this could be an alternative treatment for unilateral lower extremity spasticity after brain injury. Therefore, contralateral neurotization may exert a potential

  3. The rat retrosplenial cortex as a link for frontal functions: A lesion analysis.

    PubMed

    Powell, Anna L; Nelson, Andrew J D; Hindley, Emma; Davies, Moira; Aggleton, John P; Vann, Seralynne D

    2017-09-29

    Cohorts of rats with excitotoxic retrosplenial cortex lesions were tested on four behavioural tasks sensitive to dysfunctions in prelimbic cortex, anterior cingulate cortex, or both. In this way the study tested whether retrosplenial cortex has nonspatial functions that reflect its anatomical interactions with these frontal cortical areas. In Experiment 1, retrosplenial cortex lesions had no apparent effect on a set-shifting digging task that taxed intradimensional and extradimensional attention, as well as reversal learning. Likewise, retrosplenial cortex lesions did not impair a strategy shift task in an automated chamber, which involved switching from visual-based to response-based discriminations and, again, included a reversal (Experiment 2). Indeed, there was evidence that the retrosplenial lesions aided the initial switch to response-based selection. No lesion deficit was found on an automated cost-benefit task that pitted size of reward against effort to achieve that reward (Experiment 3). Finally, while retrosplenial cortex lesions affected matching-to-place task in a T-maze, the profile of deficits differed from that associated with prelimbic cortex damage (Experiment 4). When the task was switched to a nonmatching design, retrosplenial cortex lesions had no apparent effect on performance. The results from the four experiments show that many frontal tasks do not require the retrosplenial cortex, highlighting the specificity of their functional interactions. The results show how retrosplenial cortex lesions spare those learning tasks in which there is no mismatch between the internal and external representations used to guide behavioural choice. In addition, these experiments further highlight the importance of the retrosplenial cortex in solving tasks with a spatial component. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Anti-Yo antibody uptake and interaction with its intracellular target antigen causes Purkinje cell death in rat cerebellar slice cultures: a possible mechanism for paraneoplastic cerebellar degeneration in humans with gynecological or breast cancers.

    PubMed

    Greenlee, John E; Clawson, Susan A; Hill, Kenneth E; Wood, Blair; Clardy, Stacey L; Tsunoda, Ikuo; Carlson, Noel G

    2015-01-01

    Anti-Yo antibodies are immunoglobulin G (IgG) autoantibodies reactive with a 62 kDa Purkinje cell cytoplasmic protein. These antibodies are closely associated with paraneoplastic cerebellar degeneration in the setting of gynecological and breast malignancies. We have previously demonstrated that incubation of rat cerebellar slice cultures with patient sera and cerebrospinal fluid containing anti-Yo antibodies resulted in Purkinje cell death. The present study addressed three fundamental questions regarding the role of anti-Yo antibodies in disease pathogenesis: 1) Whether the Purkinje cell cytotoxicity required binding of anti-Yo antibody to its intraneuronal 62 kDa target antigen; 2) whether Purkinje cell death might be initiated by antibody-dependent cellular cytotoxicity rather than intracellular antibody binding; and 3) whether Purkinje cell death might simply be a more general result of intracellular antibody accumulation, rather than of specific antibody-antigen interaction. In our study, incubation of rat cerebellar slice cultures with anti-Yo IgG resulted in intracellular antibody binding, and cell death. Infiltration of the Purkinje cell layer by cells of macrophage/microglia lineage was not observed until extensive cell death was already present. Adsorption of anti-Yo IgG with its 62 kDa target antigen abolished both antibody accumulation and cytotoxicity. Antibodies to other intracellular Purkinje cell proteins were also taken up by Purkinje cells and accumulated intracellularly; these included calbindin, calmodulin, PCP-2, and patient anti-Purkinje cell antibodies not reactive with the 62 kDa Yo antigen. However, intracellular accumulation of these antibodies did not affect Purkinje cell viability. The present study is the first to demonstrate that anti-Yo antibodies cause Purkinje cell death by binding to the intracellular 62 kDa Yo antigen. Anti-Yo antibody cytotoxicity did not involve other antibodies or factors present in patient serum and was not

  5. Proton sensitivity of rat cerebellar granule cell GABAA receptors: dependence on neuronal development

    PubMed Central

    Krishek, Belinda J; Smart, Trevor G

    2001-01-01

    The effect of GABAA receptor development in culture on the modulation of GABA-induced currents by external H+ was examined in cerebellar granule cells using whole-cell and single-channel recording. Equilibrium concentration-response curves revealed a lower potency for GABA between 11 and 12 days in vitro (DIV) resulting in a shift of the EC50 from 10.7 to 2.4 μM. For granule cells before 11 DIV, the peak GABA-activated current was inhibited at low external pH and enhanced at high pH with a pKa of 6.65. For the steady-state response, low pH was inhibitory with a pKa of 5.56. After 11 DIV, the peak GABA-activated current was largely pH insensitive; however, the steady-state current was potentiated at low pH with a pKa of 6.84. Single GABA-activated ion channels were recorded from outside-out patches of granule cell bodies. At pH 5.4-9.4, single GABA channels exhibited multiple conductance states occurring at 22-26, 16-17 and 12-14 pS. The conductance levels were not significantly altered over the time period of study, nor by changing the external H+ concentration. Two exponential functions were required to fit the open-time frequency histograms at both early (< 11 DIV) and late (> 11 DIV) development times at each H+ concentration. The short and long open time constants were unaffected either by the extracellular H+ concentration or by neuronal development. The distribution of all shut times was fitted by the sum of three exponentials designated as short, intermediate and long. At acidic pH, the long shut time constant decreased with development as did the relative contribution of these components to the overall distribution. This was concurrent with an increase in the mean probability of channel opening. In conclusion, this study demonstrates in cerebellar granule cells that external pH can either reduce, have no effect on, or enhance GABA-activated responses depending on the stage of development, possibly related to the subunit composition of the GABAA receptors

  6. Protective effect of garlic extract against maternal and fetal cerebellar damage induced by lead administration during pregnancy in rats.

    PubMed

    Saleh, Hamid Abdulraouf; Abdel El-Aziz, Gamal Said; Mustafa, Hesham N; Saleh, Asmaa Hamid Abdulraouf; Mal, Ahmed Othman; Deifalla, Abdel Haleem Salem; Abo Rass, Magda

    2017-07-13

    In spite of its indusrial usefulness and varied daily uses, lead (Pb) pollution is a widespread ecological problem that faces the humans in the 21th century. Pb was found to produces a wide range of toxic effects including neurotoxicity especially to the developing and young offspring. Recently, the utilization of herbal plants has received a significant attention where there has been rising awareness in their therapeutic use; among these is the garlic. In light of the above, the current study is designed experimentally in female pregnant rats in order to investigate the beneficial role of garlic extract in the protection from the maternal and fetal cerebellar damage that produced by administration of different doses of Pb during pregnancy. Positively pregnant female rats were divided into five groups; one control group, two Pb-treated groups (exposed to 160 and 320 mg/kg b.wt. of Pb, respectively) and two groups treated with both Pb and garlic (exposed to Pb as previous groups together with 250 mg/ kg b.wt. /day of garlic extract). Treatments started from day 1 till day 20 of pregnancy, where the mother rats of different experimental groups were sacrified to obtain the fetuses. Pb level in the maternal nd fetal blood and cerebellum was estimated by spectrophotometry. Specimens of the cerebellum of different mother and fetal groups were processed to histological and immunohistochemical staining for microscopic examination. The results showed that administration of Pb to pregnant rats resulted in a dose-dependent toxicity for both mothers and fetuses in the form of decrease of maternal weight gain, placental and fetal weights, brain weight and diminished fetal growth parameters, which were prominent in rat's group treated with larger dose of Pb. In Pb-treated rats, Pb level in blood and cerebellum was high when compared to the control. The histopathological examination of the cerebellum of treated dams and fetuses showed marked alterations mainly in the form of

  7. Callosal projections in rat somatosensory cortex are altered by early removal of afferent input.

    PubMed Central

    Koralek, K A; Killackey, H P

    1990-01-01

    During the first postnatal week, the distribution of callosal projection neurons in the rat somatosensory cortex changes from a uniform to a discontinuous pattern. To determine if this change is influenced by afferent inputs to the somatosensory cortex, the effect of both early unilateral infraorbital nerve section and unilateral removal of the dorsal thalamus on the distribution of callosal projections in rat somatosensory cortex was examined. One month after either of the above manipulations at birth, the tangential distribution of callosal projections in the somatosensory cortex was examined using the combined retrograde and anterograde transport of horseradish peroxidase. Both manipulations alter the distribution of callosal projection neurons and terminations in the somatosensory cortex. After infraorbital nerve section, the distribution of callosal projections is altered in the contralateral primary somatosensory cortex. The abnormalities observed are consistent with the altered distribution of thalamocortical projections. In addition, consistent abnormalities were observed in the pattern of callosal projections of the second somatosensory area of both hemispheres. Most notably, they are absent in a portion of the region that contains the representation of the mystacial vibrissae and sinus hairs in this area. Thalamic ablation resulted in highly aberrant patterns of callosal projections in the somatosensory cortex on the operated side, where abnormal bands and clusters of callosal projections were observed in apparently random locations. These results are interpreted as evidence that both peripheral and central inputs influence the maturational changes in the distribution of callosal projection neurons. Images PMID:2304906

  8. Cerebellar Circuit Mechanisms Which Accompany Coordinated Limb Trajectory Patterns in the Rat: Use of a Model of Spontaneous Changes in Limb Coordination

    DTIC Science & Technology

    1994-08-01

    cerebelar circuit are observed during tests of limb coordation? For thti and the following aims, chronically Implanted microwires wil simultaneously...implanted microwires to allow up to 23 indvidual single units to be discaixidated from one rat. DVscharge can that be assessed during treadnall locomotor...cerebellar circuits, Sympna•um: Hormonal and non-hormonal effects of steroids in the CNS (I. Olsetn, chair), Albuquerque, New Mexico, March. 1994. 7. Seminar presentatinn: NYU Medical School, Dept. of Physiolog April 1994. 6

  9. Cerebellar ataxias.

    PubMed

    Manto, Mario; Marmolino, Daniele

    2009-08-01

    The term 'cerebellar ataxias' encompasses the various cerebellar disorders encountered during daily practice. Patients exhibit a cerebellar syndrome and can also present with pigmentary retinopathy, extrapyramidal movement disorders, pyramidal signs, cortical symptoms (seizures, cognitive impairment/behavioural symptoms), and peripheral neuropathy. The clinical diagnosis of subtypes of ataxias is complicated by the salient overlap of the phenotypes between genetic subtypes. The identification of the causative mutations of many hereditary ataxias and the development of relevant animal models bring hope for effective therapies in neurodegenerative ataxias. We describe the current classification of cerebellar ataxias and underline the recent discoveries in molecular pathogenesis. Cerebellar disorders can be divided into sporadic forms and inherited diseases. Inherited ataxias include autosomal recessive cerebellar ataxias, autosomal dominant cerebellar ataxias/spinocerebellar ataxia) and episodic ataxias, and X-linked ataxias. From a motor control point of view, the leading theories of ataxia are based on neural representations or 'internal models' to emulate fundamental natural processes such as body motion. Recent molecular advances have direct implications for research and daily practice. We provide a framework for the diagnosis of ataxias. For the first time, the therapeutic agents under investigation are targeted to deleterious pathways.

  10. Age-related changes of microcirculation in pia mater of rats' sensorimotor cortex.

    PubMed

    Sokolova, I B; Sergeev, I V; Fedotova, O R; Melnikova, N N; Dvoretsky, D P

    2016-01-01

    We studied the density of the microvascular network in the pia mater, the tissue perfusion and saturation of the oxygen of sensorimotor cortex of hypertensive rats of different ages. Our investigations shown that the microvascular density in the pia mater was not only decreased, but also was increased. The perfusion of sensorimotor cortex was reduced and tissue saturation was enlarged. By the age of 12 months orienting-exploratory rats behavior became worse significantly in all major indicators of the test «open field».

  11. Oxidative and glicolytic metabolism of the frontal cortex (latero-frontal) and of the posterior cortex (latero-occipital) in relation with the sexual activity of the rat.

    PubMed

    Menéndez-Patterson, A; Florez-Lozano, J A; Marin, B

    1976-01-01

    The authors of this paper have ascertained the glycolytic metabolism and the oxidative metabolism (intake of QO2), of the frontal and posterior cortex in female rats at different stages of the sexual cycle, as also in ovariectomized animals, by the intake of glucose and the production of lactates. The results indicate a statistically significant increase of the oxidative metabolism of the posterior cortex (latero-occipital) in the estrual and proestrual phases, in comparisons with the diestral phase. The frontal cortex (latero-frontal) did not show any significant difference; moreover, the glycolitic metabolism did not alter in any of the tissues under observation. These findings, seem to suggest possible participation of the posterior cortex (latero-occipital) on the regulation of sexual cycle of the rat. The activation of this cortex occurs through the preponderant imbricantion of the tri-carboxylic acid cycle.

  12. Effects of cadmium on Bcl-2/ Bax expression ratio in rat cortex brain and hippocampus.

    PubMed

    Mahdavi, S; Khodarahmi, P; Roodbari, N H

    2017-01-01

    To investigate the underlying mechanism of neurotoxicity of cadmium, we examined the effects of intraperitoneal injection of cadmium on messenger RNA (mRNA) expression of Bcl-2 (B-cell lymphoma 2) and Bax (Bcl2-associated x) genes and caspase-3/7 activation in rat hippocampus and frontal cortex. Twenty-eight male Wistar rats weighing 200-250 g were randomly divided into four groups. Control group received saline and three other groups received cadmium at doses of 1, 2 and 4 mg/kg (body weight) for 15 successive days. One day after the last injection, the hippocampus and frontal cortex were dissected and removed and then the expression of Bcl-2 and Bax genes was evaluated using real-time polymerase chain reaction and apoptotic studies was done using caspase-3/7 activation assay. Cadmium reduced the mRNA level of Bcl-2 in the control group at doses of 1 ( p < 0.01), 2 and 4 mg/kg ( p < 0.001) in rat hippocampus and cortex cells. The mRNA level of Bax increased significantly compared to the control group at the doses of 1 ( p < 0.05), 2 and 4 mg/kg ( p < 0.001) in rat hippocampus. The mRNA level of Bax was increased significantly compared to the control group at the doses of 2 and 4 mg/kg ( p < 0.001) in rat cortex cells. Cadmium increased caspase-3/7 activity at doses of 1, 2 and 4 mg/kg in rat hippocampus. Caspase-3/7 activity was increased significantly at dose of 4 mg/kg in rat cortex. This decreased Bcl-2/Bax mRNA ratio induces cell apoptosis. Apoptotic effect of cadmium may be through the mitochondrial pathway by the activation of caspase-3/7.

  13. Optogenetic manipulation of cerebellar Purkinje cell activity in vivo.

    PubMed

    Tsubota, Tadashi; Ohashi, Yohei; Tamura, Keita; Sato, Ayana; Miyashita, Yasushi

    2011-01-01

    Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex. Although their anatomical connections and physiological response properties have been extensively studied, the causal role of their activity in behavioral, cognitive and autonomic functions is still unclear because PC activity cannot be selectively controlled. Here we developed a novel technique using optogenetics for selective and rapidly reversible manipulation of PC activity in vivo. We injected into rat cerebellar cortex lentiviruses expressing either the light-activated cationic channel channelrhodopsin-2 (ChR2) or light-driven chloride pump halorhodopsin (eNpHR) under the control of the PC-specific L7 promoter. Transgene expression was observed in most PCs (ChR2, 92.6%; eNpHR, 95.3%), as determined by immunohistochemical analysis. In vivo electrophysiological recordings showed that all light-responsive PCs in ChR2-transduced rats increased frequency of simple spike in response to blue laser illumination. Similarly, most light-responsive PCs (93.8%) in eNpHR-transduced rats decreased frequency of simple spike in response to orange laser illumination. We then applied these techniques to characterize the roles of rat cerebellar uvula, one of the cardiovascular regulatory regions in the cerebellum, in resting blood pressure (BP) regulation in anesthetized rats. ChR2-mediated photostimulation and eNpHR-mediated photoinhibition of the uvula had opposite effects on resting BP, inducing depressor and pressor responses, respectively. In contrast, manipulation of PC activity within the neighboring lobule VIII had no effect on BP. Blue and orange laser illumination onto PBS-injected lobule IX didn't affect BP, indicating the observed effects on BP were actually due to PC activation and inhibition. These results clearly demonstrate that the optogenetic method we developed here will provide a powerful way to elucidate a causal relationship between local PC activity and functions of the cerebellum.

  14. Effects of Hydroxyurea Exposure on the Rat Cerebellar Neuroepithelium: an Immunohistochemical and Electron Microscopic Study Along the Anteroposterior and Mediolateral Axes.

    PubMed

    Rodríguez-Vázquez, Lucía; Martí, Joaquín

    2017-07-25

    We present a histological study of the cell death of cerebellar neuroepithelial neuroblasts following treatment with the cytotoxic agent hydroxyurea (HU) during the embryonic life. Pregnant rats were treated with a single dose of HU (300 mg/kg) at embryonic days 13, 14, or 15 of gestation, and their fetuses were studied from 5 to 35 h after treatment to elucidate the mechanisms of HU-induced fetotoxicity. Quantification of several parameters such as the density of pyknotic, mitotic, and PCNA-immunoreactive cells indicated that HU compromises the survival of the cerebellar neuroepithelium neuroblasts. On the other hand, our light and electron microscopic investigations during the course of prenatal development indicated that HU leads to two types of cell death: apoptosis and cells presenting cytoplasmic vacuolization, altered organelles, and a recognizable cell nucleus. Both modalities of cell death resulted in a substantial loss of cerebellar neuroepithelium cells. Current results suggest that HU exposure during gestation is toxic to the cerebellar neuroepithelium. Moreover, they allow to examine the mechanisms of HU-induced toxicity during the early development of the central nervous system. Our data also suggest that it is essential to avoid underestimating the adverse effects of HU when administered during early prenatal life.

  15. The rat perirhinal cortex: A review of anatomy, physiology, plasticity, and function.

    PubMed

    Kealy, John; Commins, Sean

    2011-04-01

    The perirhinal cortex is located in a pivotal position to influence the flow of information into and out of the hippocampal formation. In this review, we examine the anatomical, physiological and functional properties of the rat perirhinal cortex. Firstly, we review the properties of the perirhinal cortex itself, we describe how it can be separated into two distinct subregions and consider how it differs from other neighbouring regions in terms of cell type, cellular organisation and its afferent and efferent projections. We review the forms of neurotransmission present in the perirhinal cortex and the morphological, electrophysiological and plastic properties of its neurons. Secondly, we review the perirhinal cortex in the context of its connections with other brain areas; focussing on the projections to cortical, subcortical and hippocampal/parahippocampal regions. Particular attention is paid the anatomical and electrophysiological properties of these projections. Thirdly, we review the main functions of the perirhinal cortex; its roles in perception, recognition memory, spatial and contextual memory and fear conditioning are explored. Finally, we discuss the idea of anatomical, electrophysiological and functional segregation within the perirhinal cortex itself and as part of a hippocampal-parahippocampal network and suggest that understanding this segregation is of critical importance in understanding the role and contributions made by the perirhinal cortex in general.

  16. Lanthanum-mediated modification of GABAA receptor deactivation, desensitization and inhibitory synaptic currents in rat cerebellar neurons.

    PubMed

    Zhu, W J; Wang, J F; Corsi, L; Vicini, S

    1998-09-15

    1. We investigated La3+ effects on recombinant and native gamma-aminobutyric acid A (GABAA) receptors using rapid agonist applications and on inhibitory synaptic currents (IPSCs) in granule and stellate neurons of rat cerebellar slices. 2. Rapid desensitization of currents elicited by 200 ms pulses of 1 mM GABA to small lifted cells transfected with alpha1beta3gamma2 cDNAs was greatly decreased by the coapplication of 100 microM LaCl3. 3. GABA responses were unaffected when coapplication lasted only 2 ms. In contrast, with LaCl3 pre-perfusion, a significant slowing of deactivation in response to 2 ms applications was observed. LaCl3 pre-perfusion also prolonged the duration of responses to 20 mM taurine. 4. Outside-out patches excised from cells transfected with alpha1beta3gamma2 subunit cDNAs were briefly exposed to a saturating concentration of GABA, eliciting a transient activation of single channel currents with a main conductance of 30 pS. Opening and burst durations increased by pre-equilibration of patches with LaCl3. 5. LaCl3 depressed the peak amplitude without affecting the slow deactivation and desensitization of GABA responses in cells transfected with alpha6beta3gamma2 and alpha6beta3delta cDNAs. No significant difference in La3+ modulation of GABA-gated currents was observed between alpha1beta3gamma2 and alpha1beta3delta receptors. 6. The effects of LaCl3 on deactivation and desensitization of GABA responses observed in nucleated patches excised from rat cerebellar granule and stellate neurons were comparable to those in the cells transfected with alpha1beta3gamma2 cDNAs. In addition, La3+ clearly prolonged the spontaneous IPSC time course without changing the amplitude. 7. Our results indicate that La3+ has a dual action on GABA-gated currents: it decreases desensitization and increases channel opening duration. These actions depend on receptor subunit composition and contribute to the prolongation of IPSCs.

  17. Cerebellar Degeneration

    MedlinePlus

    ... is a process in which neurons in the cerebellum - the area of the brain that controls coordination ... body, can cause neurons to die in the cerebellum. Neurological diseases that feature cerebellar degeneration include: ischemic ...

  18. Speech sound discrimination training improves auditory cortex responses in a rat model of autism

    PubMed Central

    Engineer, Crystal T.; Centanni, Tracy M.; Im, Kwok W.; Kilgard, Michael P.

    2014-01-01

    Children with autism often have language impairments and degraded cortical responses to speech. Extensive behavioral interventions can improve language outcomes and cortical responses. Prenatal exposure to the antiepileptic drug valproic acid (VPA) increases the risk for autism and language impairment. Prenatal exposure to VPA also causes weaker and delayed auditory cortex responses in rats. In this study, we document speech sound discrimination ability in VPA exposed rats and document the effect of extensive speech training on auditory cortex responses. VPA exposed rats were significantly impaired at consonant, but not vowel, discrimination. Extensive speech training resulted in both stronger and faster anterior auditory field (AAF) responses compared to untrained VPA exposed rats, and restored responses to control levels. This neural response improvement generalized to non-trained sounds. The rodent VPA model of autism may be used to improve the understanding of speech processing in autism and contribute to improving language outcomes. PMID:25140133

  19. Speech sound discrimination training improves auditory cortex responses in a rat model of autism.

    PubMed

    Engineer, Crystal T; Centanni, Tracy M; Im, Kwok W; Kilgard, Michael P

    2014-01-01

    Children with autism often have language impairments and degraded cortical responses to speech. Extensive behavioral interventions can improve language outcomes and cortical responses. Prenatal exposure to the antiepileptic drug valproic acid (VPA) increases the risk for autism and language impairment. Prenatal exposure to VPA also causes weaker and delayed auditory cortex responses in rats. In this study, we document speech sound discrimination ability in VPA exposed rats and document the effect of extensive speech training on auditory cortex responses. VPA exposed rats were significantly impaired at consonant, but not vowel, discrimination. Extensive speech training resulted in both stronger and faster anterior auditory field (AAF) responses compared to untrained VPA exposed rats, and restored responses to control levels. This neural response improvement generalized to non-trained sounds. The rodent VPA model of autism may be used to improve the understanding of speech processing in autism and contribute to improving language outcomes.

  20. Hypothalamo‑hypophysial system in rats with autotransplantation of the adrenal cortex.

    PubMed

    Takizawa, Nae; Tanaka, Susumu; Oe, Souichi; Koike, Taro; Matsuda, Tadashi; Yamada, Hisao

    2017-03-24

    Patients with bilateral pheochromocytoma often require an adrenalectomy. Autotransplantation of the adrenal cortex is an alternative therapy that could potentially be performed instead of receiving glucocorticoid replacement following adrenalectomy. Adrenal cortex autotransplantation aims to avoid the side effects of long‑term steroid treatment and adrenal insufficiency. Although the function of the hypothalamo‑hypophysial system is critical for patients who have undergone adrenal cortex autotransplantation, the details of that system, with the exception of adrenocorticotropic hormone in the subjects with adrenal autotransplantation, have been overlooked for a long time. To clarify the precise effect of adrenal autotransplantation on the pituitary gland and hypothalamus, the current study examined the gene expression of hormones produced from the hypothalamus and pituitary gland. Bilateral adrenalectomy and adrenal autotransplantation were performed in 8 to 9‑week‑old male rats. The hypothalamus and pituitary tissues were collected at 4 weeks after surgery. Transcriptional regulation of hypothalamic and pituitary hormones was subsequently examined by reverse transcription‑quantitative polymerase chain reaction. Proopiomelanocortin, glycoprotein hormone α polypeptide, and thyroid stimulating hormone β were significantly elevated in the pituitary gland of autotransplanted rats when compared with sham‑operated rats. In addition, there were significant differences in the levels of corticotropin releasing hormone receptor 1 (Crhr1), Crhr2, nuclear receptor subfamily 3 group C member 1 and thyrotropin releasing hormone receptor between the sham‑operated rats and autotransplanted rats in the pituitary gland. In the hypothalamus, corticotropin releasing hormone and urocortin 2 mRNA was significantly upregulated in autotransplanted rats compared with sham‑operated rats. The authors identified significant alterations in the function of not only the

  1. Investigation of Implantable Multi-Channel Electrode Array in Rat Cerebral Cortex Used for Recording

    NASA Astrophysics Data System (ADS)

    Taniguchi, Noriyuki; Fukayama, Osamu; Suzuki, Takafumi; Mabuchi, Kunihiko

    There have recently been many studies concerning the control of robot movements using neural signals recorded from the brain (usually called the Brain-Machine interface (BMI)). We fabricated implantable multi-electrode arrays to obtain neural signals from the rat cerebral cortex. As any multi-electrode array should have electrode alignment that minimizes invasion, it is necessary to customize the recording site. We designed three types of 22-channel multi-electrode arrays, i.e., 1) wide, 2) three-layered, and 3) separate. The first extensively covers the cerebral cortex. The second has a length of 2 mm, which can cover the area of the primary motor cortex. The third array has a separate structure, which corresponds to the position of the forelimb and hindlimb areas of the primary motor cortex. These arrays were implanted into the cerebral cortex of a rat. We estimated the walking speed from neural signals using our fabricated three-layered array to investigate its feasibility for BMI research. The neural signal of the rat and its walking speed were simultaneously recorded. The results revealed that evaluation using either the anterior electrode group or posterior group provided accurate estimates. However, two electrode groups around the center yielded poor estimates although it was possible to record neural signals.

  2. Effect of hindlimb unloading on stereological parameters of the motor cortex and hippocampus in male rats.

    PubMed

    Salehi, Mohammad Saied; Mirzaii-Dizgah, Iraj; Vasaghi-Gharamaleki, Behnoosh; Zamiri, Mohammad Javad

    2016-11-09

    Hindlimb unloading (HU) can cause motion and cognition dysfunction, although its cellular and molecular mechanisms are not well understood. The aim of the present study was to determine the stereological parameters of the brain areas involved in motion (motor cortex) and spatial learning - memory (hippocampus) under an HU condition. Sixteen adult male rats, kept under a 12 : 12 h light-dark cycle, were divided into two groups of freely moving (n=8) and HU (n=8) rats. The volume of motor cortex and hippocampus, the numerical cell density of neurons in layers I, II-III, V, and VI of the motor cortex, the entire motor cortex as well as the primary motor cortex, and the numerical density of the CA1, CA3, and dentate gyrus subregions of the hippocampus were estimated. No significant differences were observed in the evaluated parameters. Our results thus indicated that motor cortical and hippocampal atrophy and cell loss may not necessarily be involved in the motion and spatial learning memory impairment in the rat.

  3. The effect of electroacupuncture on proteomic changes in the motor cortex of 6-OHDA Parkinsonian rats.

    PubMed

    Li, Min; Li, Lijuan; Wang, Ke; Su, Wenting; Jia, Jun; Wang, Xiaomin

    2017-10-15

    Electroacupuncture (EA) has been reported to alleviate motor deficits in Parkinson's disease (PD) patients, and PD animal models. However, the mechanisms by which EA improves motor function have not been investigated. We have employed a 6-hydroxydopamine (6-OHDA) unilateral injection induced PD model to investigate whether EA alters protein expression in the motor cortex. We found that 4weeks of EA treatment significantly improved spontaneous floor plane locomotion and rotarod performance. High-throughput proteomic analysis in the motor cortex was employed. The expression of 54 proteins were altered in the unlesioned motor cortex, and 102 protein expressions were altered in the lesioned motor cortex of 6-OHDA rats compared to sham rats. Compared to non-treatment PD control, EA treatment reversed 6 proteins in unlesioned and 19 proteins in lesioned motor cortex. The present study demonstrated that PD induces proteomic changes in the motor cortex, some of which are rescued by EA treatment. These targeted proteins were mainly involved in increasing autophagy, mRNA processing and ATP binding and maintaining the balance of neurotransmitters. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Neurotoxic lesion of anteromedial/posterior parietal cortex disrupts spatial maze memory in blind rats.

    PubMed

    Pinto-Hamuy, Teresa; Montero, Vicente M; Torrealba, Fernando

    2004-08-31

    The primary visual cortex of rats is surrounded laterally (in Oc2L) and medially (in Oc2M) by several peristriate visual areas. Previous studies from our laboratory demonstrated that bilateral lesions in Oc2L result in visual pattern discrimination deficit, and in failure to solve a conditional discrimination which requires figure-background association. In contrast, neurotoxic lesions of the rostral part of Oc2M (which contains the anteromedial and anterior peristriate visual areas, collectively referred to as AM complex) result in deficits in visuospatial discrimination, and in disruptions in visual tasks involving spatial memory. The objective of this study was to behaviorally test the role of AM complex in a spatial memory task in absence of visual cues. For this purpose, we analyzed memory retention of Lashley III maze in blind rats after bilateral ibotenate lesions in AM complex, or in the primary visual cortex (V1, Oc1), to test the hypothesis that AM complex is essential for this cognitive task. The results showed a significant loss of memory retention of the maze in rats with lesions in AM complex, but not in rats with lesions in V1. Furthermore, the retention loss in rats with AM complex lesions was positively and significantly correlated with the size of the lesion. The results indicate a critical role of AM complex in spatial memory mechanisms independent on visual cues. A probable homology of rat AM complex with the posterior parietal cortex of primates is discussed.

  5. Differential expression of two-pore domain potassium channels in rat cerebellar granule neurons.

    PubMed

    Burgos, Paulina; Zúñiga, Rafael; Domínguez, Pedro; Delgado-López, Fernando; Plant, Leigh D; Zúñiga, Leandro

    2014-10-31

    Two pore domain potassium (K2P) channels are mostly present in the central nervous system (CNS) where they play important roles in modulating neuronal excitability. K2P channels give rise to background K(+) currents (IKSO) a key component in setting and maintaining the resting membrane potential in excitable cells. Here, we studied the expression and relative abundances of K2P channels in cerebellar granule neurons (CGNs), combining molecular biology, electrophysiology and immunologic techniques. The CGN IKSO was very sensitive to external pH, as previously reported. Quantitative determination of mRNA expression level demonstrated the existence of an accumulation pattern of transcripts in CGN that encode K2P9>K2P1>K2P3>K2P18>K2P2=K2P10>K2P4>K2P5 subunits. The presence of the major K2P subunits expressed was then confirmed by Western blot and immunofluorescence analysis, demonstrating robust expression of K2P1 (TWIK-1), K2P3 (TASK-1), K2P9 (TASK-3) and K2P18 (TRESK) channel protein. Based, on these results, it is concluded that K2P1, -3, -9 and -18 subunits represent the majority component of IKSO current in CGN.

  6. Neurotoxicity of amphetamine derivatives is mediated by caspase pathway activation in rat cerebellar granule cells.

    PubMed

    Jiménez, Andrés; Jordà, Elvira G; Verdaguer, Ester; Pubill, David; Sureda, Francesc X; Canudas, Anna M; Escubedo, Elena; Camarasa, Jordi; Camins, Antoni; Pallàs, Mercè

    2004-04-15

    The neurotoxic action of the abuse drugs methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA) on cerebellar granule neurones (CGNs) culture was examined. Treatment for 48 h with METH or MDMA (1-5 mM) induced a higher decrease in viability than 24 h treatment. z.VAD.fmk (100 microM) but not MK-801 nor NBQX recovered control viability values. In both cases, cell death was characterised as apoptotic rather than necrotic by morphology cell observation. Apoptosis measured by flow cytometry indicated an increase in the hypodiploid population after 48 h treatment with METH and MDMA. Apoptosis was reverted by the presence of z.VAD.fmk (100 microM) but not by 10 microM MK-801 or NBQX. Similar results were obtained by analysing nuclear chromatine condensation. These results ruled out excitotoxic participation in amphetamine derivative-induced neurotoxicity in CGNs. Participation of radical oxygen species (ROS) was evaluated using alpha-tocopherol (1-15 microM) and cytometric studies. The co-treatment with 4 mM METH or MDMA for 48 h partially reverted neurotoxic action and apoptotic features, indicating ROS implication in CGNs death by amphetamine derivatives. Alteration of mitochondrial function induced cytochrome C (Cyt C) release after 48-h treatment with METH and MDMA (4 mM). There was also indication of caspase-3-like activation, measured by immunoanalysis and biochemically. Finally, neurodegenerative action caused by amphetamine derivatives may be prevented by using caspase inhibitors.

  7. Interhemispheric modulation of sensory transmission in the primary somatosensory cortex of rats.

    PubMed

    Shin, H C; Won, C K; Jung, S C; Oh, S; Park, S; Sohn, J H

    1997-07-18

    Single unit responses of the primary somatosensory (SI) cortical neurons to the stimulation of the forepaw single digit were monitored in anesthetized rats before and after subcutaneous injection of lidocaine to an ipsilateral homologous receptive field (IHRF). Quantitative determination of the temporal changes of afferent sensory transmission was done by analyzing poststimulus time histograms of unit responses. Temporary deafferentation to the IHRF induced immediate, but reversible suppression of afferent sensory transmission in the SI cortex and this suppression lasts up to 35 min post-deafferentation period (during 10-15 min, -21.81 +/- 5.9%, P < 0.01). This result suggests that temporary absence of afferent inflow from the digit to the SI cortex may exert interhemispheric modulation of afferent sensory transmission in the opposite somatosensory cortex of anesthetized rats.

  8. No changes in cerebral microcirculatory parameters in rat during local cortex exposure to microwaves.

    PubMed

    Masuda, Hiroshi; Hirota, Shogo; Ushiyama, Akira; Hirata, Akimasa; Arima, Takuji; Watanabe, Hiroshi; Wake, Kanako; Watanabe, Soichi; Taki, Masao; Nagai, Akiko; Ohkubo, Chiyoji

    2015-01-01

    The aim of this study was to determine whether cerebral microcirculatory parameters in rats were modified during local cortex exposure to a radiofrequency electromagnetic field (RF) under non-thermal conditions. The cortex tissue targeted was locally exposed to 1439 MHz RF using a figure-8 loop antenna at an averaged specific absorption rate of 2.0 W/kg in the target area for 50 min. Three microcirculatory parameters related to cerebral inflammation were measured by the cranial window method in real-time under RF exposure. No extravasation of intravenously injected fluorescent dye was observed during RF exposure. There was no significant difference either in pial venule blood flow velocity or diameter between exposed and sham-exposed rats. Histological evaluation for the brain immediately after RF exposure did not reveal any serum albumin leakage sites or degenerate neurons. These findings suggest that no dynamic changes occurred in cerebral microcirculation even during local cortex exposure under these conditions.

  9. Effect of externally added carnitine on the synthesis of acetylcholine in rat cerebral cortex cells.

    PubMed

    Wawrzeńczyk, A; Nałecz, K A; Nałecz, M J

    1995-06-01

    Acetylcholine synthesis from radiolabelled glucose was monitored in cerebral cortex cells isolated from brains of suckling and adult rats. Acetylcholine synthesis was found much higher in suckling animals, both in the absence and presence of acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) inhibitor, paraoxon. Together with choline (20 microM), carnitine was found to stimulate acetylcholine synthesis in a synergistic way in cortex cells from adult rats (18%). Choline, however, was incapable of reversing an inhibitory effect exerted by carnitine on acetylcholine synthesis in cortex cells from suckling animals. Distribution of carnitine derivatives was found significantly different in the cells from young and old animals, the content of acetylcarnitine decreased with age with a corresponding increase of free carnitine. The observed differences in carnitine effect on acetylcholine synthesis suggested that high acetylcarnitine in cells capable of beta-oxidation might be correlated with the lower level of acetylcholine synthesis.

  10. Voltage-dependent potassium currents during fast spikes of rat cerebellar Purkinje neurons: inhibition by BDS-I toxin.

    PubMed

    Martina, Marco; Metz, Alexia E; Bean, Bruce P

    2007-01-01

    We characterized the kinetics and pharmacological properties of voltage-activated potassium currents in rat cerebellar Purkinje neurons using recordings from nucleated patches, which allowed high resolution of activation and deactivation kinetics. Activation was exceptionally rapid, with 10-90% activation in about 400 mus at +30 mV, near the peak of the spike. Deactivation was also extremely rapid, with a decay time constant of about 300 mus near -80 mV. These rapid activation and deactivation kinetics are consistent with mediation by Kv3-family channels but are even faster than reported for Kv3-family channels in other neurons. The peptide toxin BDS-I had very little blocking effect on potassium currents elicited by 100-ms depolarizing steps, but the potassium current evoked by action potential waveforms was inhibited nearly completely. The mechanism of inhibition by BDS-I involves slowing of activation rather than total channel block, consistent with the effects described in cloned Kv3-family channels and this explains the dramatically different effects on currents evoked by short spikes versus voltage steps. As predicted from this mechanism, the effects of toxin on spike width were relatively modest (broadening by roughly 25%). These results show that BDS-I-sensitive channels with ultrafast activation and deactivation kinetics carry virtually all of the voltage-dependent potassium current underlying repolarization during normal Purkinje cell spikes.

  11. Neurotoxicity of the pentabrominated diphenyl ether mixture, DE-71, and hexabromocyclododecane (HBCD) in rat cerebellar granule cells in vitro.

    PubMed

    Reistad, Trine; Fonnum, Frode; Mariussen, Espen

    2006-11-01

    Polybrominated diphenyl ethers (PBDE) and hexabromocyclododecane (HBCD) are compounds used as additive flame retardants in plastics, electronic equipment, and textiles. The aim of the present study was to investigate the in vitro effects of the pentabrominated diphenyl ether mixture, DE-71, and HBCD on cerebellar granule cells (CGC). Both DE-71 and HBCD induced death of CGC in low micromolar concentrations. The NMDA receptor antagonist MK801 (3 microM), and the antioxidant alpha-tocopherol (50 microM) significantly reduced the cell death. Incubation of the compounds together with the rat liver post-mitochondrial (S9) fraction reduced cell death by 58 and 64% for DE-71 and HBCD, respectively. No ROS formation and no elevation in intracellular calcium were observed. We further demonstrated apoptotic morphology (Hoechst straining) after exposure to low levels of the two brominated flame retardants and signs of DNA laddering were found after DE-71 exposure. However, other hallmarks of apoptosis, like caspase activity, were absent indicating an atypical form of apoptosis induced by DE-71. After intraperitoneal injection of the two compounds both DE-71 and HBCD were found in significant amounts in brain (559 +/- 194 and 49 +/- 13 microg/kg, respectively) and liver (4,010 +/- 2,437 and 1,248 +/- 505 microg/kg, respectively) 72 h after injection. Our results indicate that the lower brominated PBDEs have a higher potency of bioaccumulation than HBCD, and that both compounds have a neurotoxic potential in vitro.

  12. Sodium regulation of angiotensinogen mRNA expression in rat kidney cortex and medulla.

    PubMed Central

    Ingelfinger, J R; Pratt, R E; Ellison, K; Dzau, V J

    1986-01-01

    Rat liver angiotensinogen cDNA (pRang 3) and mouse renin cDNA (pDD-1D2) were used to identify angiotensinogen and renin mRNA sequences in rat kidney cortex and medulla in rats on high and low salt diet. Angiotensinogen mRNA sequences were present in renal cortex and medulla in apparently equal proportions, whereas renin mRNA sequences were found primarily in renal cortex. Average relative signal of rat liver to whole kidney angiotensinogen mRNA was 100:3. Densitometric analysis of Northern blots demonstrated that renal cortical angiotensinogen mRNA concentrations increased 3.5-fold (P less than 0.001) and medulla, 1.5-fold (P less than 0.005) on low sodium compared with high sodium diet, whereas renal cortex renin mRNA levels increased 6.8-fold (P less than 0.0005). Dietary sodium did not significantly influence liver angiotensinogen mRNA levels. These findings provide evidence for sodium regulation of renal renin and angiotensinogen mRNA expressions, which supports potential existence of an intrarenally regulated RAS and suggest that different factors regulate renal and hepatic angiotensinogen. Images PMID:3533999

  13. Contralateral Disconnection of the Rat Prelimbic Cortex and Dorsomedial Striatum Impairs Cue-Guided Behavioral Switching

    ERIC Educational Resources Information Center

    Baker, Phillip M.; Ragozzino, Michael E.

    2014-01-01

    Switches in reward outcomes or reward-predictive cues are two fundamental ways in which information is used to flexibly shift response patterns. The rat prelimbic cortex and dorsomedial striatum support behavioral flexibility based on a change in outcomes. The present experiments investigated whether these two brain regions are necessary for…

  14. Contralateral Disconnection of the Rat Prelimbic Cortex and Dorsomedial Striatum Impairs Cue-Guided Behavioral Switching

    ERIC Educational Resources Information Center

    Baker, Phillip M.; Ragozzino, Michael E.

    2014-01-01

    Switches in reward outcomes or reward-predictive cues are two fundamental ways in which information is used to flexibly shift response patterns. The rat prelimbic cortex and dorsomedial striatum support behavioral flexibility based on a change in outcomes. The present experiments investigated whether these two brain regions are necessary for…

  15. [Significance and expression of FKHR and AKT after subarachnoid hemorrhage in rat brain cortex].

    PubMed

    Miao, Chun-ming; Luo, Qi; Wang, Wei-wei; Kang, Jin-song; Shi, Guo-ying; Li, Hong-yan; Zhang, Yong

    2010-06-01

    To study the significance and expression of FKHR and AKT after subarachnoid hemorrhage (SAH) in rat brain cortex. Twenty-four rats were randomly divided into three groups: sham, SAH and SAH plus nimodipine (n=8 each). A reliable SAH model was established by double injections of blood into cistern magna in Wistar rats. The neurological scores were measured by Loeffler and the expressions of FKHR, P-FKHR, AKT and P-FKHR detected by Western blot. Compared with sham group, the neurological score of SAH group obviously decreased (P < 0.05), the expression of FKHR became elevated in rat cortex (P < 0.01), the expression of AKT had no change and the expressions of P-AKT and P-FKHR obviously decreased (all P < 0.01). But the neurological score markedly increased (P < 0.01) and the expressions of P-AKT and P-FKHR became elevated (all P < 0.01) after administration of nimodipine. Both P-AKT and P-FKHR are involved in the process of brain cortex damage induced by SAH. The protective effects of nimodipine on brain injury induced by SAH may be related to the elevated expressions of P-AKT and P-FKHR in brain cortex.

  16. [Effects of electric stimulation at the cerebellar fastigial nucleus on astrocytes in the hippocampus of neonatal rats with hypoxic-ischemic brain damage].

    PubMed

    Li, Xiao-Li; Jia, Tian-Ming; Luan, Bin; Liu, Tao; Yuan, Yan

    2011-04-01

    To study the effects of electric stimulation at the cerebellar fastigial nucleus on astrocytes in the hippocampus of neonatal rats with hypoxic-ischemic brain damage (HIBD) and the possible mechanism. One hundred and eighty 7-day-old neonatal Sprague-Dawley rats were randomly divided into three groups: sham-operation (control group) and HIBD with and without electric stimulation (n=60 each). The HIBD model of neonatal rats was prepared by the Rice-Vennucci method. Electric stimulation at the cerebellar fastigial nucleus was given 24 hrs after the operation in the electric stimulation group once daily and lasted for 30 minutes each time. The other two groups were not subjected to electric stimulation but captured to fix in corresponding periods. Rats were sacrificed 3, 7, 14 and 21 days after stimulations to observe the glial fibrillary acidic protein (GFAP) expression by immunohistochemisty and the ultrastructural changes of astrocytes in the hippocampus under an electron microscope. Immunohistochemical analysis showed the expression of GFAP in the HIBD groups with and without electric stimulation increased significantly compared with the control group on day 3, reached the peak on day 7, and the increased expression remained till to day 21. The GFAP expression in the electric stimulation group was significantly lower than that in the untreated HIBD group at all time points. Under the electron microscope, the astrocytes in the untreated HIBD group were swollen and the amount of organelles was reduced, while the swelling of astrocytes was alleviated and the organelles remained in integrity in the electric stimulation group. The electric stimulation at the cerebellar fastigial nucleus can inhibit the excessive proliferation of astrocytes and relieve the structural damage of astrocytes in neonatal rats following HIBD.

  17. Maternal marginal iodine deficiency limits dendritic growth of cerebellar purkinje cells in rat offspring by NF-κB signaling and MAP1B.

    PubMed

    Yu, Ye; Dong, Jing; Wang, Yuan; Wang, Yi; Min, Hui; Shan, Zhongyan; Teng, Weiping; Chen, Jie

    2017-04-01

    Iodine deficiency (ID) during early pregnancy had an adverse effect on children's psychomotor and motor function. It is worth noting that maternal marginal ID tends to be a common public health problem. Whether marginal ID potentially had adverse effects on the development of cerebellum and the underlying mechanisms remain unclear. Therefore, our aim was to study the effects of marginal ID on the dendritic growth in filial cerebellar Purkinje cells (PCs) and the underlying mechanism. In the present study, we established Wistar rat models by feeding dam rats with a diet deficient in iodine and deionized water supplemented with potassium iodide. We examined the total dendritic length using immunofluorescence, and Western blot analysis was conducted to investigate the activity of nuclear factor-κB (NF-κB) signaling and microtubule-associated protein 1B (MAP1B). Our results showed that marginal ID reduced the total dendritic length of cerebellar PCs, slightly down-regulated the activity of NF-κB signaling and decreased MAP1B in cerebellar PCs on postnatal day (PN) 7, PN14, and PN21. Our study may support the hypothesis that decreased T4 induced by marginal ID limits PCs dendritic growth, which may involve in the disturbance of NF-κB signaling and MAP1B on the cerebellum. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1241-1251, 2017.

  18. Single course of antenatal betamethasone produces delayed changes in morphology and calbindin-D28k expression in a rat's cerebellar Purkinje cells.

    PubMed

    Pascual, Rodrigo; Valencia, Martina; Larrea, Sebastián; Bustamante, Carlos

    2014-01-01

    In the current study, we analyzed the impact of antenatal betamethasone on macroscopic cerebellar development, Purkinje cell morphology and the expression of the neuroprotective protein calbindin-D28k. Pregnant rats (Sprague-Dawley) were randomly divided into two experimental groups: control (CONT) and betamethasone-treated (BET). At gestational day 20 (G20), BET dams were subcutaneously injected with a solution of 0.17 mg kg⁻¹ of betamethasone, while CONT animals received a similar volume of saline. At postnatal days 22 (P22) and P52, BET and CONT offspring were behaviorally evaluated, and the cerebella were histologically and immunohistochemically processed. Animals that were prenatally treated with a single course of betamethasone exhibited long-lasting behavioral changes consistent with anxiety-like behavior in the open-field test, together with (1) reduced cerebellar weight and volume, (2) Purkinje cell dendritic atrophy, and (3) an overexpression of calbindin-D28k. The current results indicate that an experimental single course of betamethasone in pregnant rats produces long-lasting anxiety-like behaviors, together with macroscopic and microscopic cerebellar alterations.

  19. Protein Synthesis Inhibition in the Peri-Infarct Cortex Slows Motor Recovery in Rats

    PubMed Central

    Schubring-Giese, Maximilian; Leemburg, Susan; Luft, Andreas Rüdiger; Hosp, Jonas Aurel

    2016-01-01

    Neuroplasticity and reorganization of brain motor networks are thought to enable recovery of motor function after ischemic stroke. Especially in the cortex surrounding the ischemic scar (i.e., peri-infarct cortex), evidence for lasting reorganization has been found at the level of neurons and networks. This reorganization depends on expression of specific genes and subsequent protein synthesis. To test the functional relevance of the peri-infarct cortex for recovery we assessed the effect of protein synthesis inhibition within this region after experimental stroke. Long-Evans rats were trained to perform a skilled-reaching task (SRT) until they reached plateau performance. A photothrombotic stroke was induced in the forelimb representation of the primary motor cortex (M1) contralateral to the trained paw. The SRT was re-trained after stroke while the protein synthesis inhibitor anisomycin (ANI) or saline were injected into the peri-infarct cortex through implanted cannulas. ANI injections reduced protein synthesis within the peri-infarct cortex by 69% and significantly impaired recovery of reaching performance through re-training. Improvement of motor performance within a single training session remained intact, while improvement between training sessions was impaired. ANI injections did not affect infarct size. Thus, protein synthesis inhibition within the peri-infarct cortex impairs recovery of motor deficits after ischemic stroke by interfering with consolidation of motor memory between training sessions but not short-term improvements within one session. PMID:27314672

  20. A neuro-inspired model-based closed-loop neuroprosthesis for the substitution of a cerebellar learning function in anesthetized rats

    PubMed Central

    Hogri, Roni; Bamford, Simeon A.; Taub, Aryeh H.; Magal, Ari; Giudice, Paolo Del; Mintz, Matti

    2015-01-01

    Neuroprostheses could potentially recover functions lost due to neural damage. Typical neuroprostheses connect an intact brain with the external environment, thus replacing damaged sensory or motor pathways. Recently, closed-loop neuroprostheses, bidirectionally interfaced with the brain, have begun to emerge, offering an opportunity to substitute malfunctioning brain structures. In this proof-of-concept study, we demonstrate a neuro-inspired model-based approach to neuroprostheses. A VLSI chip was designed to implement essential cerebellar synaptic plasticity rules, and was interfaced with cerebellar input and output nuclei in real time, thus reproducing cerebellum-dependent learning in anesthetized rats. Such a model-based approach does not require prior system identification, allowing for de novo experience-based learning in the brain-chip hybrid, with potential clinical advantages and limitations when compared to existing parametric “black box” models. PMID:25677559

  1. A neuro-inspired model-based closed-loop neuroprosthesis for the substitution of a cerebellar learning function in anesthetized rats

    NASA Astrophysics Data System (ADS)

    Hogri, Roni; Bamford, Simeon A.; Taub, Aryeh H.; Magal, Ari; Giudice, Paolo Del; Mintz, Matti

    2015-02-01

    Neuroprostheses could potentially recover functions lost due to neural damage. Typical neuroprostheses connect an intact brain with the external environment, thus replacing damaged sensory or motor pathways. Recently, closed-loop neuroprostheses, bidirectionally interfaced with the brain, have begun to emerge, offering an opportunity to substitute malfunctioning brain structures. In this proof-of-concept study, we demonstrate a neuro-inspired model-based approach to neuroprostheses. A VLSI chip was designed to implement essential cerebellar synaptic plasticity rules, and was interfaced with cerebellar input and output nuclei in real time, thus reproducing cerebellum-dependent learning in anesthetized rats. Such a model-based approach does not require prior system identification, allowing for de novo experience-based learning in the brain-chip hybrid, with potential clinical advantages and limitations when compared to existing parametric ``black box'' models.

  2. Effects of ammonia on high affinity glutamate uptake and glutamate transporter EAAT3 expression in cultured rat cerebellar granule cells.

    PubMed

    Chan, Helen; Zwingmann, Claudia; Pannunzio, Marc; Butterworth, Roger F

    2003-07-01

    Increased levels of extracellular glutamate are a consistent feature of hepatic encephalopathy (HE) associated with liver failure and other hyperammonemic pathologies. Reduction of glutamate uptake has been described in ammonia-exposed cultured astrocytes, synaptosomes, and in animal models of hyperammonemia. In the present study, we examine the effects of pathophysiological concentrations of ammonia on D-aspartate (a non-metabolizable analog of glutamate) uptake by cultured rat cerebellar granule neurons. Exposure of these cells to ammonia resulted in time-dependent (24% reduction at 24h and 60% reduction at 5 days, P<0.001) and dose-dependent (21, 37, and 57% reduction at 1, 2.5, and 5mM for 5 days, P<0.01) suppression of D-aspartate uptake. Kinetic analyses revealed significant decreases in the velocity of uptake (V(max)) (37% decrease at 2.5mM NH(4)Cl, P<0.05 and 52% decrease at 5mM NH(4)Cl, P<0.001) as well as significant reductions in K(m) values (25% reduction at 2.5mM NH(4)Cl, P<0.05 and 45% reduction at 5mM NH(4)Cl, P<0.001). Western blotting, on the other hand, showed no significant changes in the neuronal glutamate transporter EAAC1/EAAT3 protein, the only glutamate transporter currently known to be expressed by these cells. In addition, 1H combined with 13C-NMR spectroscopy studies using the stable isotope [1-13C]-glucose demonstrated a significant increase in intracellular glutamate levels derived from the oxidative metabolism of glucose, rather than from the deamidation of exogenous glutamine in cultured granule neurons exposed to ammonia. The present study provides evidence that the effects of ammonia on glutamate uptake are not solely an astrocytic phenomenon and that unlike the astrocytic glutamate transporter counterpart, EAAT3 protein expression in cultured cerebellar granule cells is not down-regulated when exposed to ammonia. Decrease of glutamate uptake in these cellular preparations may afford an additional regulatory mechanism aimed at

  3. Higher susceptibility of cerebral cortex and striatum to sulfite neurotoxicity in sulfite oxidase-deficient rats.

    PubMed

    Grings, Mateus; Moura, Alana Pimentel; Parmeggiani, Belisa; Motta, Marcela Moreira; Boldrini, Rafael Mello; August, Pauline Maciel; Matté, Cristiane; Wyse, Angela T S; Wajner, Moacir; Leipnitz, Guilhian

    2016-11-01

    Patients affected by sulfite oxidase (SO) deficiency present severe seizures early in infancy and progressive neurological damage, as well as tissue accumulation of sulfite, thiosulfate and S-sulfocysteine. Since the pathomechanisms involved in the neuropathology of SO deficiency are still poorly established, we evaluated the effects of sulfite on redox homeostasis and bioenergetics in cerebral cortex, striatum, cerebellum and hippocampus of rats with chemically induced SO deficiency. The deficiency was induced in 21-day-old rats by adding 200ppm of tungsten, a molybdenum competitor, in their drinking water for 9weeks. Sulfite (70mg/kg/day) was also administered through the drinking water from the third week of tungsten supplementation until the end of the treatment. Sulfite decreased reduced glutathione concentrations and the activities of glutathione reductase and glutathione S-transferase (GST) in cerebral cortex and of GST in cerebellum of SO-deficient rats. Moreover, sulfite increased the activities of complexes II and II-III in striatum and of complex II in hippocampus, but reduced the activity of complex IV in striatum of SO-deficient rats. Sulfite also decreased the mitochondrial membrane potential in cerebral cortex and striatum, whereas it had no effect on mitochondrial mass in any encephalic tissue evaluated. Finally, sulfite inhibited the activities of malate and glutamate dehydrogenase in cerebral cortex of SO-deficient rats. Taken together, our findings indicate that cerebral cortex and striatum are more vulnerable to sulfite-induced toxicity than cerebellum and hippocampus. It is presumed that these pathomechanisms may contribute to the pathophysiology of neurological damage found in patients affected by SO deficiency.

  4. Chronic In Vivo Imaging of Ponto-Cerebellar Mossy Fibers Reveals Morphological Stability during Whisker Sensory Manipulation in the Adult Rat123

    PubMed Central

    Rylkova, Daria; Crank, Aidan R.

    2015-01-01

    Abstract The cerebellum receives extensive disynaptic input from the neocortex via the basal pontine nuclei, the neurons of which send mossy fiber (MF) axons to the granule cell layer of the contralateral cerebellar hemisphere. Although this cortico-cerebellar circuit has been implicated in tasks such as sensory discrimination and motor learning, little is known about the potential role of MF morphological plasticity in the function of the cerebellar granule cell layer. To address this issue, we labeled MFs with EGFP via viral infection of the basal pons in adult rats and performed in vivo two-photon imaging of MFs in Crus I/II of the cerebellar hemisphere over a period of several weeks. Following the acquisition of baseline images, animals were housed in control, enriched, or deprived sensory environments. Morphological dynamics were assessed by tracing MF axons and their terminals, and by tracking the stability of filopodia arising from MF terminal rosettes. MF axons and terminals were found to be remarkably stable. Parameters derived neither from measurements of axonal arbor geometry nor from the morphology of individual rosettes and their filopodial extensions significantly changed under control conditions over 4 weeks of imaging. Increasing whisker stimulation by manipulating the sensory environment or decreasing such stimulation by whisker trimming also failed to alter MF structure. Our studies indicate that pontine MF axons projecting to Crus I/II in adult rats do not undergo significant structural rearrangements over the course of weeks, and that this stability is not altered by the sustained manipulation of whisker sensorimotor experience. PMID:26693178

  5. Post-treatment with amphetamine enhances reinnervation of the ipsilateral side cortex in stroke rats

    PubMed Central

    Liu, Hua-Shan; Shen, Hui; Harvey, Brandon K.; Castillo, Priscila; Lu, Hanbing; Yang, Yihong; Wang, Yun

    2011-01-01

    Amphetamine (AM) treatment has been shown to alter behavioral recovery after ischemia caused by embolism, permanent unilateral occlusion of the common carotid and middle cerebral arteries, or unilateral sensorimotor cortex ablation in rats. However, the behavioral results are inconsistent possibly due to difficulty controlling the size of the lesion before treatment. There is also evidence that AM promotes neuroregeneration in the cortex contralateral to the infarction; however the effects of AM in the ipsilateral cortex remain unclear. The purpose of this study was to employ T2-weighted imaging (T2WI) to establish controlled criteria for AM treatment and to examine neuroregenerative effects in both cortices after stroke. Adult rats were anesthetized, and the right middle cerebral artery was ligated for 90 min to generate lesions in the ipislateral cortex. Animals were separated into two equal treatment groups (AM or saline) according to the size of infarction, measured by T2WI at 2 days after stroke. AM or saline was administered to stroke rats every third day starting on day 3 for four weeks. AM treatment significantly reduced neurological deficits, as measured by body asymmetry and Bederson’s score. T2WI and diffusion tensor imaging (DTI) were used to examine the size of infarction and axonal reinnervation, respectively, before and following treatment on days 2, 10 and 25 after stroke. AM treatment reduced the volume of tissue loss on days 10 and 25. A significant increase in fractional anisotropy ratio was found in the ipislateral cortex after repeated AM administration, suggesting a possible increase in axonal outgrowth in the lesioned side cortex. Western analysis indicated that AM significantly increased the expression of synaptophysin ipsilaterally and neurofilament bilaterally. AM also enhanced matrix metalloproteinase (MMP) enzymatic activity, determined by MMP zymography in the lesioned side cortex. qRT-PCR was used to examine the expression of trophic

  6. Neural Representations of Natural and Scrambled Movies Progressively Change from Rat Striate to Temporal Cortex

    PubMed Central

    Vinken, Kasper; Van den Bergh, Gert; Vermaercke, Ben; Op de Beeck, Hans P.

    2016-01-01

    In recent years, the rodent has come forward as a candidate model for investigating higher level visual abilities such as object vision. This view has been backed up substantially by evidence from behavioral studies that show rats can be trained to express visual object recognition and categorization capabilities. However, almost no studies have investigated the functional properties of rodent extrastriate visual cortex using stimuli that target object vision, leaving a gap compared with the primate literature. Therefore, we recorded single-neuron responses along a proposed ventral pathway in rat visual cortex to investigate hallmarks of primate neural object representations such as preference for intact versus scrambled stimuli and category-selectivity. We presented natural movies containing a rat or no rat as well as their phase-scrambled versions. Population analyses showed increased dissociation in representations of natural versus scrambled stimuli along the targeted stream, but without a clear preference for natural stimuli. Along the measured cortical hierarchy the neural response seemed to be driven increasingly by features that are not V1-like and destroyed by phase-scrambling. However, there was no evidence for category selectivity for the rat versus nonrat distinction. Together, these findings provide insights about differences and commonalities between rodent and primate visual cortex. PMID:27146315

  7. Localization of Sonic hedgehog secreting and receiving cells in the developing and adult rat adrenal cortex.

    PubMed

    Guasti, Leonardo; Paul, Alex; Laufer, Ed; King, Peter

    2011-04-10

    Sonic hedgehog signaling was recently demonstrated to play an important role in murine adrenal cortex development. The organization of the rat adrenal differs from that of the mouse, with the zona glomerulosa and zona fasciculata separated by an undifferentiated zone in the rat, but not in the mouse. In the present study we aimed to determine the mRNA expression patterns of Sonic hedgehog and the hedgehog signaling pathway components Patched-1 and Gli1 in the developing and adult rat adrenal. Sonic hedgehog expression was detected at the periphery of the cortex in cells lacking CYP11B1 and CYP11B2 expression, while signal-receiving cells were localized in the overlying capsule mesenchyme. Using combined in situ hybridization and immunohistochemistry we found that the cells expressing Sonic hedgehog lie between the CYP11B2 and CYP11B1 layers, and thus Sonic hedgehog expression defines one cell population of the undifferentiated zone.

  8. Enhanced synaptic responses in the piriform cortex associated with sexual stimulation in the male rat.

    PubMed

    Pfaus, J G; Tse, T L M; Werk, C M; Chanda, M L; Leblonde, A; Harbour, V L; Chapman, C A

    2009-12-29

    Male rats that copulate to ejaculation with female rats bearing an odor show a learned preference to ejaculate selectively with females that bear the odor. This conditioned ejaculatory preference reflects an association between the odor and the reward state induced by ejaculation. Although little is known about the neuronal mechanisms that mediate this form of learning, convergence of genitosensory and olfactory inputs occurs in both hypothalamic and cortical regions, notably within primary olfactory (piriform) cortex, which may be involved in the encoding or storage of the association. The present study contrasted the ability of genital investigations, mounts, intromissions, ejaculations, and a sexually conditioned olfactory stimulus, to enhance evoked synaptic field potentials in the piriform cortex. Rats in the Paired group underwent conditioning trials in which they copulated with sexually receptive females bearing an almond odor. Rats in the Unpaired control group copulated with receptive females bearing no odor. Responses in the piriform cortex evoked by electrical stimulation of the olfactory bulb were recorded in male rats as they engaged in different aspects of sexual behavior, and were also recorded after conditioning, during exposure to cotton swabs bearing the almond odor. The monosynaptic component of responses was increased during intromission and ejaculation, and the late component of responses was increased during anogenital sniffing and mounting (with or without intromission). However, no differences in the amplitudes of evoked responses were found between the Paired and Unpaired groups, and no differences in synaptic responses were found during presentation of the odor after conditioning. These data indicate that short-term alterations in synaptic responsiveness occur in piriform cortex as a function of sexual stimulation in the male rat, but that responses are not significantly altered by a conditioned odor.

  9. Coenzyme Q10 Abrogated the 28 Days Aluminium Chloride Induced Oxidative Changes in Rat Cerebral Cortex

    PubMed Central

    Majumdar, Anuradha S.; Nirwane, Abhijit; Kamble, Rahul

    2014-01-01

    Objective: The present study was designed to elucidate the impact of oral administration of aluminium chloride for 28 days with respect to oxidative stress in the cerebral cortex of female rats. Further, to investigate the potentials of Coenzyme (Co) Q10 (4, 8, and 12 mg/kg, i.p.) in mitigating the detrimental changes. Materials and Methods: Biochemical estimations of cerebral lipid peroxidation (LPO), reduced glutathione (GSH), vitamin E and activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were carried out after 28 days of aluminium chloride (AlCl3) and Co Q10 exposures along with histopathological examination of cerebral cortex of the rats. Results: Subacute exposure to AlCl3(5 mg/kg) led to significant decrease in levels of GSH, vitamin E and activities of SOD, CAT, GPx, and an increase in LPO of cerebral cortex. These aberrations were restored by Co Q10 (12 mg/kg, i.p.). This protection offered was comparable to that of L-deprenyl (1 mg/kg, i.p.) which served as a reference standard. Histopathological evaluations confirmed that the normal cerebral morphology was maintained by Co Q10. Conclusion: Thus, AlCl3 exposure hampers the activities of various antioxidant enzymes and induces oxidative stress in cerebral cortex of female Wistar rats. Supplementation with intraperitoneal Co Q10 abrogated these deleterious effects of AlCl3. PMID:25253934

  10. Coenzyme q10 abrogated the 28 days aluminium chloride induced oxidative changes in rat cerebral cortex.

    PubMed

    Majumdar, Anuradha S; Nirwane, Abhijit; Kamble, Rahul

    2014-05-01

    The present study was designed to elucidate the impact of oral administration of aluminium chloride for 28 days with respect to oxidative stress in the cerebral cortex of female rats. Further, to investigate the potentials of Coenzyme (Co) Q10 (4, 8, and 12 mg/kg, i.p.) in mitigating the detrimental changes. Biochemical estimations of cerebral lipid peroxidation (LPO), reduced glutathione (GSH), vitamin E and activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were carried out after 28 days of aluminium chloride (AlCl3) and Co Q10 exposures along with histopathological examination of cerebral cortex of the rats. Subacute exposure to AlCl3(5 mg/kg) led to significant decrease in levels of GSH, vitamin E and activities of SOD, CAT, GPx, and an increase in LPO of cerebral cortex. These aberrations were restored by Co Q10 (12 mg/kg, i.p.). This protection offered was comparable to that of L-deprenyl (1 mg/kg, i.p.) which served as a reference standard. Histopathological evaluations confirmed that the normal cerebral morphology was maintained by Co Q10. Thus, AlCl3 exposure hampers the activities of various antioxidant enzymes and induces oxidative stress in cerebral cortex of female Wistar rats. Supplementation with intraperitoneal Co Q10 abrogated these deleterious effects of AlCl3.

  11. Contralateral somatosensory neglect in unrestrained rats after lesion of the parietal cortex of the left hemisphere.

    PubMed

    Holm, S; Mogensen, J

    1993-01-01

    Three groups of rats were studied: a sham operated control group and two groups in which the parietal "association" cortex had been ablated in the left and right hemispheres respectively. Twenty-four hours and 8 days postoperatively the animals were subjected to a test in which their responsiveness to lateralized somatosensory stimuli was measured while the rats were left unrestrained. Additionally, an activity cage locomotion test followed immediately upon both tests of somatosensory responsiveness. Twenty-four hours postoperatively the animals in which the parietal cortex of the left hemisphere had been ablated demonstrated a significant contralateral neglect of somatosensory stimuli while the group in which the right parietal cortex had been ablated only exhibited a non-significant tendency to a contralateral neglect. While the activity cage test did not reveal an overall difference in the activity level of the three groups the latency to initiate locomotion in the activity cage was found to be significantly decreased in both ablated groups. Eight days postoperatively both ablated groups appeared fully recovered. It is concluded that ablations of the parietal "association" cortex of the rat are associated with a syndrome of contralateral somatosensory neglect that can even be demonstrated if the animals are left unrestrained during testing.

  12. Identified circuit in rat postrhinal cortex encodes essential information for performing specific visual shape discriminations.

    PubMed

    Zhang, Guo-rong; Cao, Haiyan; Kong, Lingxin; O'Brien, Jennifer; Baughns, Andrew; Jan, Mary; Zhao, Hua; Wang, Xiaodan; Lu, Xiu-gui; Cook, Robert G; Geller, Alfred I

    2010-08-10

    Learning theories hypothesize specific circuits encode essential information for performance. For simple tasks in invertebrates and mammals, the essential circuits are known, but for cognitive functions, the essential circuits remain unidentified. Here, we show that some essential information for performing a choice task is encoded in a specific circuit in a neocortical area. Rat postrhinal (POR) cortex is required for visual shape discriminations, protein kinase C (PKC) pathways mediate changes in neuronal physiology that support learning, and specific PKC genes are required for multiple learning tasks. We used direct gene transfer of a constitutively active PKC to prime a specific POR cortex circuit for learning visual shape discriminations. In the experiment, rats learned a discrimination, received gene transfer, learned new discriminations, received a small lesion that ablated approximately 21% of POR cortex surrounding the gene transfer site, and were tested for performance for discriminations learned either before or after gene transfer. Lesions of the genetically targeted circuit selectively interfered with performance for discriminations learned after gene transfer. Activity-dependent gene imaging confirmed increased activity in the genetically targeted circuit during learning and showed the essential information was sparse-coded in approximately 500 neurons in the lesioned area. Wild-type rats contained circuits with similar increases in activity during learning, but these circuits were located at unpredictable, different positions in POR cortex. These results establish that some essential information for performing specific visual discriminations can be encoded in a small, identified, neocortical circuit and provide a foundation for characterizing the circuit and essential information.

  13. Effects of Dimethyl Sulfoxide on Neuronal Response Characteristics in Deep Layers of Rat Barrel Cortex

    PubMed Central

    Soltani, Narjes; Mohammadi, Elham; Allahtavakoli, Mohammad; Shamsizadeh, Ali; Roohbakhsh, Ali; Haghparast, Abbas

    2016-01-01

    Introduction: Dimethyl sulfoxide (DMSO) is a chemical often used as a solvent for water-insoluble drugs. In this study, we evaluated the effect of intracerebroventricular (ICV) administration of DMSO on neural response characteristics (in 1200–1500 μm depth) of the rat barrel cortex. Methods: DMSO solution was prepared in 10% v/v concentration and injected into the lateral ventricle of rats. Neuronal spontaneous activity and neuronal responses to deflection of the principal whisker (PW) and adjacent whisker (AW) were recorded in barrel cortex. A condition test ratio (CTR) was used to measure inhibitory receptive fields in barrel cortex. Results: The results showed that both PW and AW evoked ON and OFF responses, neuronal spontaneous activity and inhibitory receptive fields did not change following ICV administration of DMSO. Conclusion: Results of this study suggest that acute ICV administration of 10% DMSO did not modulate the electrophysiological characteristics of neurons in the l deep ayers of rat barrel cortex. PMID:27563414

  14. From visual affordances in monkey parietal cortex to hippocampo-parietal interactions underlying rat navigation.

    PubMed Central

    Arbib, M A

    1997-01-01

    This paper explores the hypothesis that various subregions (but by no means all) of the posterior parietal cortex are specialized to process visual information to extract a variety of affordances for behaviour. Two biologically based models of regions of the posterior parietal cortex of the monkey are introduced. The model of the lateral intraparietal area (LIP) emphasizes its roles in dynamic remapping of the representation of targets during a double saccade task, and in combining stored, updated input with current visual input. The model of the anterior intraparietal area (AIP) addresses parietal-premotor interactions involved in grasping, and analyses the interaction between the AIP and premotor area F5. The model represents the role of other intraparietal areas working in concert with the inferotemporal cortex as well as with corollary discharge from F5 to provide and augment the affordance information in the AIP, and suggests how various constraints may resolve the action opportunities provided by multiple affordances. Finally, a systems-level model of hippocampo parietal interactions underlying rat navigation is developed, motivated by the monkey data used in developing the above two models as well as by data on neurones in the posterior parietal cortex of the monkey that are sensitive to visual motion. The formal similarity between dynamic remapping (primate saccades) and path integration (rat navigation) is noted, and certain available data on rat posterior parietal cortex in terms of affordances for locomotion are explained. The utility of further modelling, linking the World Graph model of cognitive maps for motivated behaviour with hippocampal-parietal interactions involved in navigation, is also suggested. These models demonstrate that posterior parietal cortex is not only itself a network of interacting subsystems, but functions through cooperative computation with many other brain regions. PMID:9368931

  15. Regional variability in age-related loss of neurons from the primary visual cortex and medial prefrontal cortex of male and female rats

    PubMed Central

    Yates, M.A.; Markham, J.A.; Anderson, S.E.; Morris, J.R.; Juraska, J.M.

    2008-01-01

    During aging, changes in the structure of the cerebral cortex of the rat have been seen, but potential changes in neuron number remain largely unexplored. In the present study, stereological methods were used to examine neuron number in the medial prefrontal cortex and primary visual cortex of young adult (85–90 days of age) and aged (19–22 months old) male and female rats in order to investigate any age-related losses. Possible sex differences in aging were also examined since sexually dimorphic patterns of aging have been seen in other measures. An age-related loss of neurons (18–20%), which was mirrored in volume losses, was found to occur in the primary visual cortex in both sexes in all layers except IV. Males, but not females, also lost neurons (15 %) from layer V/VI of the ventral medial prefrontal cortex and showed an overall decrease in volume of this region. In contrast, dorsal medial prefrontal cortex showed no age-related changes. The effects of aging clearly differ among regions of the rat brain and to some degree, between the sexes. PMID:18513705

  16. Electrophysiological and morphological properties of neurons in layer 5 of the rat postrhinal cortex.

    PubMed

    Sills, Joseph B; Connors, Barry W; Burwell, Rebecca D

    2012-09-01

    The postrhinal (POR) cortex of the rat is homologous to the parahippocampal cortex of the primate based on connections and other criteria. POR provides the major visual and visuospatial input to the hippocampal formation, both directly to CA1 and indirectly through connections with the medial entorhinal cortex. Although the cortical and hippocampal connections of the POR cortex are well described, the physiology of POR neurons has not been studied. Here, we examined the electrical and morphological characteristics of layer 5 neurons from POR cortex of 14- to 16-day-old rats using an in vitro slice preparation. Neurons were subjectively classified as regular-spiking (RS), fast-spiking (FS), or low-threshold spiking (LTS) based on their electrophysiological properties and similarities with neurons in other regions of neocortex. Cells stained with biocytin included pyramidal cells and interneurons with bitufted or multipolar dendritic patterns. Similarity analysis using only physiological data yielded three clusters that corresponded to FS, LTS, and RS classes. The cluster corresponding to the FS class was composed entirely of multipolar nonpyramidal cells, and the cluster corresponding to the RS class was composed entirely of pyramidal cells. The third cluster, corresponding to the LTS class, was heterogeneous and included both multipolar and bitufted dendritic arbors as well as one pyramidal cell. We did not observe any intrinsically bursting pyramidal cells, which is similar to entorhinal cortex but unlike perirhinal cortex. We conclude that POR includes at least two major classes of neocortical inhibitory interneurons, but has a functionally restricted cohort of pyramidal cells.

  17. Evidence That Primary Visual Cortex Is Required for Image, Orientation, and Motion Discrimination by Rats

    PubMed Central

    Petruno, Sarah K.; Clark, Robert E.; Reinagel, Pamela

    2013-01-01

    The pigmented Long-Evans rat has proven to be an excellent subject for studying visually guided behavior including quantitative visual psychophysics. This observation, together with its experimental accessibility and its close homology to the mouse, has made it an attractive model system in which to dissect the thalamic and cortical circuits underlying visual perception. Given that visually guided behavior in the absence of primary visual cortex has been described in the literature, however, it is an empirical question whether specific visual behaviors will depend on primary visual cortex in the rat. Here we tested the effects of cortical lesions on performance of two-alternative forced-choice visual discriminations by Long-Evans rats. We present data from one highly informative subject that learned several visual tasks and then received a bilateral lesion ablating >90% of primary visual cortex. After the lesion, this subject had a profound and persistent deficit in complex image discrimination, orientation discrimination, and full-field optic flow motion discrimination, compared with both pre-lesion performance and sham-lesion controls. Performance was intact, however, on another visual two-alternative forced-choice task that required approaching a salient visual target. A second highly informative subject learned several visual tasks prior to receiving a lesion ablating >90% of medial extrastriate cortex. This subject showed no impairment on any of the four task categories. Taken together, our data provide evidence that these image, orientation, and motion discrimination tasks require primary visual cortex in the Long-Evans rat, whereas approaching a salient visual target does not. PMID:23441202

  18. Effects of naltrexone on firing activity of rat cortex neurons and its interactions with ethanol.

    PubMed

    Kozhechkin, S N; Mednikova, Yu S; Kolik, L G

    2013-09-01

    Naltrexone dose-dependently decreased neuron firing rate in the rat frontal cortex after intravenous (1-20 mg/kg) and microelectrophoretic administration. Microelectrophoretic applications of naltrexone reduced the excitatory neuronal response of neurons to low doses of ethanol (electroosmotic application) and potentiated depression of firing activity induced by ethanol in high doses. We concluded that opioid peptides take part in generation of spontaneous neuronal activity in the frontal cortex and neuronal excitation caused by ethanol in low doses. Naltrexone acts as a synergist of ethanol in its depressive effect on cortical neurons.

  19. Neonatal ethanol exposure results in dose-dependent impairments in the acquisition and timing of the conditioned eyeblink response and altered cerebellar interpositus nucleus and hippocampal CA1 unit activity in adult rats

    PubMed Central

    Lindquist, Derick H.; Sokoloff, Greta; Milner, Eric; Steinmetz, Joseph E.

    2013-01-01

    Exposure to ethanol in neonatal rats results in reduced neuronal numbers in the cerebellar cortex and deep nuclei of juvenile and adult animals. This reduction in cell numbers is correlated with impaired delay eyeblink conditioning (EBC), a simple motor learning task in which a neutral conditioned stimulus (CS; tone) is repeatedly paired with a co-terminating unconditioned stimulus (US; periorbital shock). Across training, cell populations in the interpositus (IP) nucleus model the temporal form of the eyeblink conditioned response (CR). The hippocampus, though not required for delay EBC, also shows learning-dependent increases in CA1 and CA3 unit activity. In the present study, rat pups were exposed to 0, 3, 4, or 5 mg/kg/day of ethanol during postnatal days (PD) 4–9. As adults, CR acquisition and timing were assessed during 6 training sessions of delay EBC with a short (280 msec) interstimulus interval (ISI; time from CS onset to US onset) followed by another 6 sessions with a long (880 msec) ISI. Neuronal activity was recorded in the IP and area CA1 during all 12 sessions. The high-dose rats learned the most slowly and, with the moderate-dose rats, produced the longest CR peak latencies over training to the short ISI. The low dose of alcohol impaired CR performance to the long ISI only. The 3E (3 mg/kg/day of ethanol) and 5E (5 mg/kg/day of ethanol) rats also showed slower-than-normal increases in learning-dependent excitatory unit activity in the IP and CA1. The 4E (4 mg/kg/day of ethanol) rats showed a higher rate of CR production to the long ISI and enhanced IP and CA1 activation when compared to the 3E and 5E rats. The results indicate that binge-like ethanol exposure in neonatal rats induces long-lasting, dose-dependent deficits in CR acquisition and timing and diminishes conditioning-related neuronal excitation in both the cerebellum and hippocampus. PMID:23871534

  20. Neonatal ethanol exposure results in dose-dependent impairments in the acquisition and timing of the conditioned eyeblink response and altered cerebellar interpositus nucleus and hippocampal CA1 unit activity in adult rats.

    PubMed

    Lindquist, Derick H; Sokoloff, Greta; Milner, Eric; Steinmetz, Joseph E

    2013-09-01

    Exposure to ethanol in neonatal rats results in reduced neuronal numbers in the cerebellar cortex and deep nuclei of juvenile and adult animals. This reduction in cell numbers is correlated with impaired delay eyeblink conditioning (EBC), a simple motor learning task in which a neutral conditioned stimulus (CS; tone) is repeatedly paired with a co-terminating unconditioned stimulus (US; periorbital shock). Across training, cell populations in the interpositus (IP) nucleus model the temporal form of the eyeblink-conditioned response (CR). The hippocampus, though not required for delay EBC, also shows learning-dependent increases in CA1 and CA3 unit activity. In the present study, rat pups were exposed to 0, 3, 4, or 5 mg/kg/day of ethanol during postnatal days (PD) 4-9. As adults, CR acquisition and timing were assessed during 6 training sessions of delay EBC with a short (280 ms) interstimulus interval (ISI; time from CS onset to US onset) followed by another 6 sessions with a long (880 ms) ISI. Neuronal activity was recorded in the IP and area CA1 during all 12 sessions. The high-dose rats learned the most slowly and, with the moderate-dose rats, produced the longest CR peak latencies over training to the short ISI. The low dose of alcohol impaired CR performance to the long ISI only. The 3E (3 mg/kg/day of ethanol) and 5E (5 mg/kg/day of ethanol) rats also showed slower-than-normal increases in learning-dependent excitatory unit activity in the IP and CA1. The 4E (4 mg/kg/day of ethanol) rats showed a higher rate of CR production to the long ISI and enhanced IP and CA1 activation when compared to the 3E and 5E rats. The results indicate that binge-like ethanol exposure in neonatal rats induces long-lasting, dose-dependent deficits in CR acquisition and timing and diminishes conditioning-related neuronal excitation in both the cerebellum and hippocampus.

  1. Cognitive control and the anterior cingulate cortex: how conflicting stimuli affect attentional control in the rat

    PubMed Central

    Newman, Lori A.; Creer, David J.; McGaughy, Jill A.

    2014-01-01

    Converging evidence supports the hypothesis that the prefrontal cortex is critical for cognitive control. One prefrontal subregion, the anterior cingulate cortex, is hypothesized to be necessary to resolve response conflicts, disregard salient distractors and alter behavior in response to the generation of an error. These situations all involve goal-oriented monitoring of performance in order to effectively adjust cognitive processes. Several neuropsychological disorders, e.g., schizophrenia, attention deficit hyperactivity and obsessive compulsive disorder, are accompanied by morphological changes in the anterior cingulate cortex. These changes are hypothesized to underlie the impairments on tasks that require cognitive control found in these subjects. A novel conflict monitoring task was used to assess the effects on cognitive control of excitotoxic lesions to anterior cingulate cortex in rats. Prior to surgery all subjects showed improved accuracy on the second of two consecutive, incongruent trials. Lesions to the anterior cingulate cortex abolished this. Lesioned animals had difficulty in adjusting cognitive control on a trial-by-trial basis regardless of whether cognitive changes were increased or decreased. These results support a role for the anterior cingulate cortex in adjustments in cognitive control. PMID:25051488

  2. Neuroanatomical study on the tecto-suprageniculate-dorsal auditory cortex pathway in the rat.

    PubMed

    Horie, M; Meguro, R; Hoshino, K; Ishida, N; Norita, M

    2013-01-03

    Previous anatomical and physiological studies suggest that the superior colliculus sends integrated sensory information to the multimodal cortical areas via the thalamic suprageniculate nucleus (SG). However, the detailed distribution of rat tecto-SG axon terminals and SG neurons projecting to the multimodal cortex, as well as synaptic connections between these tectal axons and SG neurons, remains unclear. In this study, the organization of the tecto-thalamo-cortical pathway was investigated via combined injections of anterograde and retrograde tracers followed by light and electron microscopic observations. Injections of a retrograde tracer, cholera toxin B subunit (CTB), into the temporal cortex, area 2, dorsal part (Te2D), and injections of an anterograde tracer, biotinylated dextran amine (BDA), into the deep layers of the superior colliculus produced the following results: (1) Retrogradely CTB-labeled neurons were found throughout SG, predominantly in its rostral part. CTB-labeled neurons were also found in other cortical areas such as the visual cortex, the auditory cortex, the parietal association cortex, and the perirhinal cortex. (2) Anterogradely BDA-labeled axons and their terminals were also observed throughout SG. Dual visualization of BDA and CTB showed that retrogradely labeled SG neurons and anterogradely labeled tectal axon terminal boutons overlapped considerably in the rostral part of SG, and their direct synaptic contacts were also confirmed via electron microscopy. These findings suggest that multimodal information from the superior colliculus can be processed directly in SG neurons projecting to Te2D.

  3. [Memory transfer in cerebellar motor learning].

    PubMed

    Nagao, Soichi

    2012-01-01

    Most of our motor skills are acquired through learning. Experiments of gain adaptation of ocular reflexes have consistently suggested that the memory of adaptation is initially formed in the cerebellar cortex, and is transferred to the cerebellar (vestibular) nuclei for consolidation to long-term memory after repetitions of training. We have recently developed a new system to evaluate the motor learning in human subjects using prism adaptation of hand reaching movement, by referring to the prism adaptation of dart throwing of Martin et al. (1996). In our system, the subject views the small target presented in the touch-panel screen, and touches it with his/her finger without direct visual feedback. After 15-30 trials of touching wearing prisms, an adaptation occurs in healthy subjects: they became able to touch the target correctly. Meanwhile, such an adaptation was impaired in patients of cerebellar disease. We have proposed a model of human prism adaptation that the memory of adaptation is initially encoded in the cerebellar cortex, and is later transferred to the cerebellar nuclei after repetitions of training. The memory in the cerebellar cortex may be formed and extinguished independently of the memory maintained in the cerebellar nuclei, and these two memories work cooperatively.

  4. FOCAL EXPRESSION OF MUTATED TAU IN ENTORHINAL CORTEX NEURONS OF RATS IMPAIRS SPATIAL WORKING MEMORY

    PubMed Central

    Ramirez, Julio J.; Poulton, Winona E.; Knelson, Erik; Barton, Cole; King, Michael A.; Klein, Ronald L.

    2010-01-01

    Entorhinal cortex neuropathology begins very early in Alzheimer's disease (AD), a disorder characterized by severe memory disruption. Indeed, loss of entorhinal volume is predictive of AD and two of the hallmark neuroanatomical markers of AD, amyloid plaques and neurofibrillary tangles (NFTs), are particularly prevalent in the entorhinal area of AD-afflicted brains. Gene transfer techniques were used to create a model neurofibrillary tauopathy by injecting a recombinant adeno-associated viral vector with a mutated human tau gene (P301L) into the entorhinal cortex of adult rats. The objective of the present investigation was to determine whether adult onset, spatially restricted tauopathy could be sufficient to reproduce progressive deficits in mnemonic function. Spatial memory on a Y-maze was tested for approximately three months post-surgery. Upon completion of behavioral testing the brains were assessed for expression of human tau and evidence of tauopathy. Rats injected with the tau vector became persistently impaired on the task after about six weeks of postoperative testing, whereas the control rats injected with a green fluorescent protein vector performed at criterion levels during that period. Histological analysis confirmed the presence of hyperphosphorylated tau and NFTs in the entorhinal cortex and neighboring retrohippocampal areas as well as limited synaptic degeneration of the perforant path. Thus, highly restricted vector-induced tauopathy in retrohippocampal areas is sufficient for producing progressive impairment in mnemonic ability in rats, successfully mimicking a key aspect of tauopathies such as AD. PMID:20727915

  5. Low-threshold Ca2+ currents in dendritic recordings from Purkinje cells in rat cerebellar slice cultures.

    PubMed

    Mouginot, D; Bossu, J L; Gähwiler, B H

    1997-01-01

    Voltage-dependent Ca2+ conductances were investigated in Purkinje cells in rat cerebellar slice cultures using the whole-cell and cell-attached configurations of the patch-clamp technique. In the presence of 0.5 mM Ca2+ in the extracellular solution, the inward current activated with a threshold of -55 +/- 1.5 mV and reached a maximal amplitude of 2.3 +/- 0.4 nA at -31 +/- 2 mV. Decay kinetics revealed three distinct components: a fast (24.6 +/- 2 msec time constant), a slow (304 +/- 46 msec time constant), and a nondecaying component. Rundown of the slow and sustained components of the current, or application of antagonists for the P/Q-type Ca2+ channels, allowed isolation of the fast-inactivating Ca2+ current, which had a threshold for activation of -60 mV and reached a maximal amplitude of 0.7 nA at a membrane potential of -33 mV. Both activation and steady-state inactivation of this fast-inactivating Ca2+ current were described with Boltzmann equations, with half-activation and inactivation at -51 mV and -86 mV, respectively. This Ca2+ current was nifedipine-insensitive, but its amplitude was reduced reversibly by bath-application of NiCl2 and amiloride, thus allowing its identification as a T-type Ca2+ current. Channels with a conductance of 7 pS giving rise to a fast T-type ensemble current (insensitive to omega-Aga-IVA) were localized with a high density on the dendritic membrane. Channel activity responsible for the ensemble current sensitive to omega-Aga-IVA was detected with 10 mM Ba2+ as the charge carrier. These channels were distributed with a high density on dendritic membranes and in rare cases were also seen in somatic membrane patches.

  6. Adverse effects of 2,4-dichlorophenoxyacetic acid on rat cerebellar granule cell cultures were attenuated by amphetamine.

    PubMed

    Bongiovanni, B; Ferri, A; Brusco, A; Rassetto, M; Lopez, L M; Evangelista de Duffard, A M; Duffard, R

    2011-05-01

    2,4-Dichlorophenoxyacetic acid (2,4-D), a worldwide-used herbicide, has been shown to produce a wide range of adverse effects in the health--from embryotoxicity and teratogenicity to neurotoxicity--of animals and humans. In this study, neuronal morphology and biochemical events in rat cerebellar granule cell (CGC) cultures have been analyzed to define some of the possible mechanisms involved in 2,4-D-induced cell death. For that purpose, amphetamine (AMPH) that has been shown to accelerate the recovery of several functions in animals with brain injury has been used as a pharmacologycal tool and was also investigated as a possible protecting agent. Addition of 2,4-D to CGC cultures produced a drastic decrease in cell viability, in association with an increased incidence of necrosis and apoptosis, and an increased level of reactive oxygen species, a decrease in glutathione content, and an abnormal activity of some enzymes with respect to the control group. The adverse effects of 2,4-D were partly attenuated in presence of AMPH. Some deleterious effects on several ultrastructural features of the cells, as well as the enhanced incidence of apoptosis, were partially preserved in AMPH-protected cultures as compared with those which were exposed to 2,4-D alone. The collected evidences (1) confirms the previously observed, deleterious effects of 2.4D on the same or a similar model; (2) suggests that the 2,4-D-induced apoptosis could have been mediated by or associated to an oxidative imbalance in the affected cells, and (3) shows some evidence of a protective effect of AMPH on 2,4-D-induced cell death, which could have been exerted through a reduction in the oxidative stress.

  7. Modified neocortical and cerebellar protein expression and morphology in adult rats following prenatal inhibition of the kynurenine pathway.

    PubMed

    Pisar, Mazura; Forrest, Caroline M; Khalil, Omari S; McNair, Kara; Vincenten, Maria C J; Qasem, Susana; Darlington, L Gail; Stone, Trevor W

    2014-08-12

    Inhibition of the kynurenine pathway of tryptophan metabolism during gestation can lead to changes in synaptic transmission, neuronal morphology and plasticity in the rat hippocampus. This suggests a role for the kynurenine pathway in early brain development, probably caused by kynurenine modulation of N-methyl-d-aspartate (NMDA) glutamate receptors which are activated by the tryptophan metabolite quinolinic acid and blocked by kynurenic acid. We have now examined samples of neocortex and cerebellum of adult animals to assess the effects of a prenatally administered kynurenine-3-monoxygenase inhibitor (Ro61-8048) on protein and mRNA expression, dendritic structure and immuno-histochemistry. No changes were seen in mRNA expression using quantitative real-time polymerase chain reaction. Changes were detected in the expression of several proteins including the GluN2A subunit, unco-ordinated-5H3 (unc5H3), doublecortin, cyclo-oxygenase, sonic hedgehog and Disrupted in schizophrenia-1 (DISC1), although no differences in immunoreactive cell numbers were observed. In the midbrain, dependence receptor expression was also changed. The numbers and lengths of individual dendritic regions were not changed but there were significant increases in the overall complexity values of apical and basal dendritic trees. The data support the hypothesis that constitutive kynurenine metabolism plays a critical role in early, embryonic brain development, although fewer effects are produced in the neocortex and cerebellum than in the hippocampus and the nature of the changes seen are qualitatively different. The significant changes in DISC1 and unc5H3 may be relevant to cerebellar dysfunction and schizophrenia respectively, in which these proteins have been previously implicated. Copyright © 2014. Published by Elsevier B.V.

  8. Redox signal regulation via nNOS phosphorylation at Ser847 in PC12 cells and rat cerebellar granule neurons.

    PubMed

    Kasamatsu, Shingo; Watanabe, Yasuo; Sawa, Tomohiro; Akaike, Takaaki; Ihara, Hideshi

    2014-04-15

    Phosphorylation is considered a main mechanism modulating nNOS (neuronal nitric oxide synthase) function to reduce NO production. In the present study, the effects of nNOS phosphorylation on redox signalling, including that of NO, ROS (reactive oxygen species), and 8-nitro-cGMP (8-nitroguanosine 3',5'-cyclic monophosphate), a downstream messenger of redox signalling, were investigated. In vitro experiments revealed that a phosphorylation-mimic mutant of nNOS (Ser847 replaced with aspartic acid, 847D) increased uncoupling to produce a superoxide. In addition, nicotine, which triggers an influx of Ca2+, induced more ROS and 8-nitro-cGMP production in 847D-expressing PC12 cells than WT (wild-type)-expressing cells. Additionally, nicotine-induced phosphorylation of nNOS at Ser847 and increased ROS and 8-nitro-cGMP production in rat CGNs (cerebellar granule neurons). In CGNs, the NOS (nitric oxide synthase) inhibitor L-NAME (NG-nitro-L-arginine methyl ester) and superoxide dismutase completely inhibited ROS and 8-nitro-cGMP production, whereas the CaMK (Ca2+/calmodulin-dependent protein kinase) inhibitor KN93 mildly reduced this effect. Nicotine induced HO-1 (haem oxygenase 1) expression in CGNs and showed cytoprotective effects against apoptosis. Moreover, 8-nitro-cGMP treatment showed identical effects that were attenuated by KN93 pre-treatment. The present paper provides the first substantial corroboration for the biological effects of nNOS phosphorylation at Ser847 on redox signalling, including ROS and intracellular 8-nitro-cGMP generation in neurons, which possibly play roles in neuroprotection.

  9. GDF-15 enhances intracellular Ca2+ by increasing Cav1.3 expression in rat cerebellar granule neurons

    PubMed Central

    Lu, Jun-Mei; Wang, Chang-Ying; Hu, Changlong; Fang, Yan-Jia; Mei, Yan-Ai

    2016-01-01

    GDF-15 (growth/differentiation factor 15) is a novel member of the TGF (transforming growth factor)-β superfamily that has critical roles in the central and peripheral nervous systems. We reported previously that GDF-15 increased delayed rectifier outward K+ currents and Kv2.1 α subunit expression through TβRII (TGF-β receptor II) to activate Src kinase and Akt/mTOR (mammalian target of rapamycin) signalling in rat CGNs (cerebellar granule neurons). In the present study, we found that treatment of CGNs with GDF-15 for 24 h increased the intracellular Ca2+ concentration ([Ca2+]i) in response to membrane depolarization, as determined by Ca2+ imaging. Whole-cell current recordings indicated that GDF-15 increased the inward Ca2+ current (ICa) without altering steady-state activation of Ca2+ channels. Treatment with nifedipine, an inhibitor of L-type Ca2+ channels, abrogated GDF-15-induced increases in [Ca2+]i and ICa. The GDF-15-induced increase in ICa was mediated via up-regulation of the Cav1.3 α subunit, which was attenuated by inhibiting Akt/mTOR and ERK (extracellular-signal-regulated kinase) pathways and by pharmacological inhibition of Src-mediated TβRII phosphorylation. Given that Cav1.3 is not only a channel for Ca2+ influx, but also a transcriptional regulator, our data confirm that GDF-15 induces protein expression via TβRII and activation of a non-Smad pathway, and provide novel insight into the mechanism of GDF-15 function in neurons. PMID:27114559

  10. Mefenamic acid bi-directionally modulates the transient outward K{sup +} current in rat cerebellar granule cells

    SciTech Connect

    Zhang Man; Shi Wenjie; Fei Xiaowei; Liu Yarong; Zeng Ximin; Mei Yanai

    2008-02-01

    The effect of non-steroidal anti-inflammatory drugs (NSAIDs) on ion channels has been widely studied in several cell models, but less is known about their modulatory mechanisms. In this report, the effect of mefenamic acid on voltage-activated transient outward K{sup +} current (I{sub A}) in cultured rat cerebellar granule cells was investigated. At a concentration of 5 {mu}M to 100 {mu}M, mefenamic acid reversibly inhibited I{sub A} in a dose-dependent manner. However, mefenamic acid at a concentration of 1 {mu}M significantly increased the amplitude of I{sub A} to 113 {+-} 1.5% of the control. At more than 10 {mu}M, mefenamic acid inhibited the amplitude of I{sub A} without any effect on activation or inactivation. In addition, a higher concentration of mefenamic acid induced a significant acceleration of recovery from inactivation with an increase of the peak amplitude elicited by the second test pulse. Intracellular application of mefenamic acid could significantly increase the amplitude of I{sub A}, but had no effect on the inhibition induced by extracellular mefenamic acid, implying that mefenamic acid may exert its effect from both inside and outside the ion channel. Furthermore, the activation of current induced by intracellular application of mefenamic acid was mimicked by other cyclooxygenase inhibitors and arachidonic acid. Our data demonstrate that mefenamic acid is able to bi-directionally modulate I{sub A} channels in neurons at different concentrations and by different methods of application, and two different mechanisms may be involved.

  11. Involvement of glutamate and gamma-aminobutyric acid (GABA)-ergic systems in thyrotropin-releasing hormone-induced rat cerebellar cGMP formation.

    PubMed

    Nakayama, T; Hashimoto, T; Nagai, Y

    1996-12-05

    The increase in cyclic guanosine 3',5'-monophosphate (cGMP) caused by subcutaneous injection of thyrotropin-releasing hormone (TRH) tartrate was observed in a region-specific manner in the rat cerebellum. TRH tartrate (TRH-T) (2.8, 7.0 and 17 mg/kg as free TRH, s.c.) produced dose-dependent increases in cGMP levels markedly in the cerebellar superior and inferior vermis, and a smaller but still significant increase in the cerebellar hemispheres and brainstem but no significant increases in other brain regions. The TRH-induced increase in the cGMP level in the cerebellum was suppressed by pretreatment with muscimol, THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3(2H)-one) or MK-801 (dizocilpine maleate) and partially suppressed by atropine but was not suppressed by chlordiazepoxide, oxazepam, phentolamine, propranolol, cyproheptadine, haloperidol, baclofen or DNQX (6,7-dinitroquinoxaline-2,3-dione), suggesting the possible involvement of GABA (gamma-aminobutyric acid)(A)-ergic, N-methyl-D-aspartate (NMDA)-type glutamatergic and cholinergic systems. These results suggest that excitatory amino acids may be involved in the cGMP formation caused by TRH in the cerebellar areas, and that cGMP formation is inhibited by enhancement of GABAA receptor function.

  12. Developmental hypothyroxinaemia and hypothyroidism limit dendritic growth of cerebellar Purkinje cells in rat offspring: involvement of microtubule-associated protein 2 (MAP2) and stathmin.

    PubMed

    Wang, Yuan; Wang, Yi; Dong, Jing; Wei, Wei; Song, Binbin; Min, Hui; Teng, Weiping; Chen, Jie

    2014-06-01

    Iodine is essential for the synthesis of thyroid hormone. Iodine deficiency (ID)-induced hypothyroxinaemia and hypothyroidism during developmental period contribute to impairments of function in the brain, such as psychomotor and motor alterations. However, the mechanisms are still unclear. Therefore, the present research is to study the effects of developmental hypothyroxinaemia caused by mild ID and developmental hypothyroidism caused by severe ID or methimazole (MMZ) on dendritic growth in filial cerebellar Purkinje cells (PCs) and the underlying mechanisms. A maternal hypothyroxinaemia model was established in Wistar rats using a mild ID diet, and two maternal hypothyroidism models were developed with either severe ID diet or MMZ water. We examined the total dendritic length using immunofluorescence, and Western blot analysis was conducted to investigate the activity of microtubule-associated protein 2 (MAP2), stathmin and calcium/calmodulin-dependent protein kinase II (CaMKII). Hypothyroxinaemia and hypothyroidism reduced the total dendritic length of cerebellar PCs, decreased MAP2 and its phosphorylation, increased stathmin but reduced its phosphorylation and down-regulated the activity of CaMKII and its phosphorylation in cerebellar PCs on postnatal day (PN) 7, PN14 and PN21. Developmental hypothyroxinaemia induced by mild ID and hypothyroidism induced by severe ID or MMZ limit PCs dendritic growth, which may involve in the disturbance of MAP2 and stathmin in a CaMKII-dependent manner. It suggests a potential mechanism of motor coordination impairments caused by developmental hypothyroxinaemia and hypothyroidism. © 2013 British Neuropathological Society.

  13. Cerebellar Insulin/IGF-1 signaling in diabetic rats: Effects of exercise training.

    PubMed

    Borges, Mariana Eiras; Ribeiro, Alessandra Mussi; Pauli, José Rodrigo; Arantes, Luciana Mendonça; Luciano, Eliete; de Moura, Leandro Pereira; de Almeida Leme, José Alexandre Curiacos; Medeiros, Alessandra; Bertolini, Natália Oliveira; Sibuya, Clarice Yoshiko; Gomes, Ricardo José

    2017-02-03

    The Diabetes Mellitus (DM) is a chronic disease associated with loss of brain regions such as the cerebellum, increasing the risk of developing neurodegenerative diseases such as Parkinson's disease (PD). In the brain of diabetic and PD organisms the insulin/IGF-1 signaling is altered. Exercise training is an effective intervention for the prevention of neurodegerative diseases since it release neurotrophic factors and regulating insulin/IGF-1 signaling in the brain. This study aimed to evaluate the proteins involved in the insulin/IGF-1 pathway in the cerebellum of diabetic rats subjected to exercise training protocol. Wistar rats were distributed in four groups: sedentary control (SC), trained control (TC), sedentary diabetic (SD) and trained diabetic (TD). Diabetes was induced by Alloxan (ALX) (32mg/kgb.w.). The training program consisted in swimming 5days/week, 1h/day, during 6 weeks, supporting an overload corresponding to 90% of the anaerobic threshold. At the end, cerebellum was extracted to determinate the protein expression of GSK-3β, IRβ and IGF-1R and the phosphorylation of β-amyloid, Tau, ERK1+ERK2 by Western Blot analysis. All dependent variables were analyzed by one-way analysis of variance with significance level of 5%. Diabetes causes hyperglycemia in both diabetic groups; however, in TD, there was a reduction in hyperglycemia compared to SD. Diabetes increased Tau and β-amyloid phosphorylation in both SD and TD groups. Furthermore, aerobic exercise increased ERK1+ERK2 expression in TC. The data showed that in cerebellum of diabetic rats induced by alloxan there are some proteins expression like Parkinson cerebellum increased, and the exercise training was not able to modulate the expression of these proteins.

  14. Decreased norepinephrine (NE) uptake in cerebral cortex and inferior colliculus of genetically epilepsy prone (GEP) rats

    SciTech Connect

    Browning, R.A.; Rigler-Daugherty, S.K.; Long, G.; Jobe, P.C.; Wade, D.R.

    1986-03-01

    GEP rats are characterized by an enhanced susceptibility to seizures caused by a variety of stimuli, most notably sound. Pharmacological treatments that reduce the synaptic concentration of NE increase seizure severity in GEP rats while elevations in NE have the opposite effect. GEP rats also display a widespread deficit in brain NE concentration suggesting that their increased seizure susceptibility is related to a deficit in noradrenergic transmission. The authors have compared the kinetics of /sup 3/H-NE uptake in the P/sub 2/ synaptosomal fraction isolated from the cerebral cortex of normal and GEP-rats. Although the apparent Kms were not significantly different (Normal +/- SEM:0.37 +/- 0.13..mu..M; GEP +/- SEM: 0.29 +/- 0.07..mu..M), the Vmax for GEP rats was 48% lower than that of normal rats (Normal +/- SEM: 474 +/- 45 fmole/mg/4min; GEP +/- SEM: 248 +/- 16 fmole/mg/4min). Because of the possible role of the inferior colliculus (IC) in the initiation of sound-induced seizures in GEP rats, the authors measured synaptosomal NE uptake in the IC using a NE concentration of 50 nM. The IC synaptosomal NE uptake was found to be 35% lower in GEP than in normal rats. These findings are consistent with the hypothesis that a deficit in noradrenergic transmission is related to the increased seizure susceptibility of GEP rats.

  15. Down-regulation of cerebellar 5-HT(2C) receptors in pilocarpine-induced epilepsy in rats: therapeutic role of Bacopa monnieri extract.

    PubMed

    Krishnakumar, Amee; Abraham, Pretty Mary; Paul, Jes; Paulose, C S

    2009-09-15

    Epilepsy is a syndrome of episodic brain dysfunction characterized by recurrent unpredictable, spontaneous seizures. Cerebellar dysfunction is a recognized complication of temporal lobe epilepsy and it is associated with seizure generation, motor deficits and memory impairment. Serotonin is known to exert a modulatory action on cerebellar function through 5HT(2C) receptors. 5-HT(2C) receptors are novel targets for developing anti-convulsant drugs. In the present study, we investigated the changes in the 5-HT(2C) receptors binding and gene expression in the cerebellum of control, epileptic and Bacopa monnieri treated epileptic rats. There was a significant down regulation of the 5-HT content (p<0.001), 5-HT(2C) gene expression (p<0.001) and 5-HT(2C) receptor binding (p<0.001) with an increased affinity (p<0.001). Carbamazepine and B. monnieri treatments to epileptic rats reversed the down regulated 5-HT content (p<0.01), 5-HT(2C) receptor binding (p<0.001) and gene expression (p<0.01) to near control level. Also, the Rotarod test confirms the motor dysfunction and recovery by B. monnieri treatment. These data suggest the neuroprotective role of B. monnieri through the upregulation of 5-HT(2C) receptor in epileptic rats. This has clinical significance in the management of epilepsy.

  16. Ethanol intake-induced apoptosis in glial cells and axonal disorders in the cerebellar white matter of UChA rats (voluntary ethanol consumers).

    PubMed

    Martinez, Marcelo; Sauce, Rafael; Oliveira, Suelen Alves; de Almeida Chuffa, Luiz Gustavo; Stefanini, Maíra Aparecida; Lizarte Neto, Fermino Sanches; Takase, Luiz Fernando; Tirapelli, Luiz Fernando; Martinez, Francisco Eduardo

    2015-08-01

    Ethanol intake may cause alterations in cellular metabolism altering motricity, learning and cognition. The cerebellum is one of the most susceptible organs to ethanol-related disorders during development, and is associated with oxidative stress-induced apoptosis being crucial for pathogenic consequences. The UChA variety is a special strain of Wistar rat genetically selected and represents a rare model for the studies related to genetic, biochemical, physiological, nutritional, and pharmacological effects of ethanol. We evaluated the structure and apoptosis in the cerebellar white matter of UChA rats. There were two groups of 09 rats: a control group that did not consume ethanol, and an experimental group of UChA rats that consumed ethanol at 10% (v/v) (<2 g ethanol/kg body weight/day). At 120 days old, rats were anaesthetized followed by decapitation, and their cerebella were collected and fixed. Cerebellar sections were subjected to immunohistochemistry for Caspase-3 and XIAP and transmission electron microscopy (TEM). The UChA group showed more glial cells immunoreactive for caspase-3 and less for XIAP than control group. Alcohol consumption affected myelin integrity. Severe ultrastructural damages in UChA group were observed such as disruption of the myelin sheath, disorganization and deformation of its components, and an increase in the interaxonal spaces. In conclusion, our data demonstrated that ethanol induced apoptosis in the glial cells and promoted an intense change in the myelin sheath of UChA rats, which may cause functional disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Enhanced Behavioral Recovery from Sensorimotor Cortex Lesions After Pyramidotomy in Adult Rats

    PubMed Central

    Fanardjian, V. V.; Gevorkyan, O. V.; Mallina, R. K.; Melik-Moussian, A. B.; Meliksetyan, I. B.

    2000-01-01

    Unilateral transection of the bulbar pyramid, performed before the ablation of the ipsilateral sensorimotor cortex, has been shown to facilitate the recovery of operantly conditioned reflexes and compensatory processes in rats. Such enhanced behaviorai recovery was absent when only the sensorimotor cortex was ablated. This phenomenon is explained by the switching of motor activity under the control of the cortico-rubrospinal system. Switching of the descending influences is accomplished through the following loop: cortico-rubrai projectionred nucleus-inferior olive-cerebellum-thalamuscerebral cortex. This suggests that a preliminary lesion of the peripheral part of the system, represented by a descending spinal projection, facilitates the recovery processes to develop during the subsequent destruction of its central part. PMID:11486486

  18. A radial map of multi-whisker correlation selectivity in the rat barrel cortex.

    PubMed

    Estebanez, Luc; Bertherat, Julien; Shulz, Daniel E; Bourdieu, Laurent; Léger, Jean-François

    2016-11-21

    In the barrel cortex, several features of single-whisker stimuli are organized in functional maps. The barrel cortex also encodes spatio-temporal correlation patterns of multi-whisker inputs, but so far the cortical mapping of neurons tuned to such input statistics is unknown. Here we report that layer 2/3 of the rat barrel cortex contains an additional functional map based on neuronal tuning to correlated versus uncorrelated multi-whisker stimuli: neuron responses to uncorrelated multi-whisker stimulation are strongest above barrel centres, whereas neuron responses to correlated and anti-correlated multi-whisker stimulation peak above the barrel-septal borders, forming rings of multi-whisker synchrony-preferring cells.

  19. A radial map of multi-whisker correlation selectivity in the rat barrel cortex

    PubMed Central

    Estebanez, Luc; Bertherat, Julien; Shulz, Daniel E.; Bourdieu, Laurent; Léger, Jean- François

    2016-01-01

    In the barrel cortex, several features of single-whisker stimuli are organized in functional maps. The barrel cortex also encodes spatio-temporal correlation patterns of multi-whisker inputs, but so far the cortical mapping of neurons tuned to such input statistics is unknown. Here we report that layer 2/3 of the rat barrel cortex contains an additional functional map based on neuronal tuning to correlated versus uncorrelated multi-whisker stimuli: neuron responses to uncorrelated multi-whisker stimulation are strongest above barrel centres, whereas neuron responses to correlated and anti-correlated multi-whisker stimulation peak above the barrel–septal borders, forming rings of multi-whisker synchrony-preferring cells. PMID:27869114

  20. Beta 2-adrenergic receptors are colocalized and coregulated with whisker barrels in rat somatosensory cortex

    SciTech Connect

    Vos, P.; Kaufmann, D.; Hand, P.J.; Wolfe, B.B. )

    1990-07-01

    Autoradiography has been used to visualize independently the subtypes of beta-adrenergic receptors in rat somatosensory cortex. Beta 2-adrenergic receptors, but not beta 1-adrenergic receptors colocalize with whisker barrels in this tissue. Thus, each whisker sends a specific multisynaptic pathway to the somatosensory cortex that can be histochemically visualized and only one subtype of beta-adrenergic receptor is specifically associated with this cortical representation. Additionally, neonatal lesion of any or all of the whisker follicles results in loss of the corresponding barrel(s) as shown by histochemical markers. This loss is paralleled by a similar loss in the organization of beta 2-adrenergic receptors in the somatosensory cortex. Other results indicate that these beta 2-adrenergic receptors are not involved in moment-to-moment signal transmission in this pathway and, additionally, are not involved in a gross way in the development of whisker-barrel array.

  1. Decrease in doublecortin expression without neuronal cell death in rat retrosplenial cortex after stress exposure.

    PubMed

    Kutsuna, Nobuo; Suma, Takeshi; Takada, Yoshiyuki; Yamashita, Akiko; Oshima, Hideki; Sakatani, Kaoru; Yamamoto, Takamitsu; Katayama, Yoichi

    2012-03-07

    Exposure to acute stress by forced swim impairs spatial learning and memory in rats. The retrosplenial cortex plays an important role in spatial learning and memory. A cell population that expresses immature neuronal markers, including doublecortin (DCX), plays a key role in plasticity of the adult brain through formation of new neurons. Here, we aimed to determine whether rats exposed to acute stress showed changes in DCX expression in retrosplenial cortex cells. Twelve male Sprague-Dawley rats were used. Six were subjected to acute stress by forced swim (group S), and the remaining six served as controls (group C). Immunohistochemical staining was performed for DCX, neuron-specific nuclear protein, parvalbumin, calbindin, calretinin, and somatostatin. Newly generated cells were immunohistochemically detected by daily administration of 5-bromo-2'-deoxyuridine for 1 week. Fluoro-Jade B staining was performed to detect cell death. Group S showed lower number of DCX-expressing cells than group C (P<0.001). The proportion of DCX-expressing cells showing neuron-specific nuclear protein co-localization (24% in group S; 27% in group C) or parvalbumin co-localization (65% in group S; 61% in group C) remained unchanged after acute stress exposure. Neither 5-bromo-2'-deoxyuridine-positive nor Fluoro-Jade B-positive cells were found in the retrosplenial cortex of groups S and C. DCX-expressing cells in the retrosplenial cortex decreases markedly without cell death after acute stress exposure. Neuronal differentiation of these cells toward gamma aminobutyric acidergic interneurons appears to be unaltered. The decrease in DCX expression may reduce plasticity potential within the retrosplenial cortex and attenuate spatial learning and memory function.

  2. Gene expression in the rat cerebral cortex: comparison of recovery sleep and hypnotic-induced sleep.

    PubMed

    Wisor, J P; Morairty, S R; Huynh, N T; Steininger, T L; Kilduff, T S

    2006-08-11

    Most hypnotic medications currently on the market target some aspect of GABAergic neurotransmission. Although all such compounds increase sleep, these drugs differentially affect the activity of the cerebral cortex as measured by the electroencephalogram. Whereas benzodiazepine medications such as triazolam tend to suppress slow wave activity in the cortex, the GABA(B) ligand gamma-hydroxybutyrate greatly enhances slow wave activity and the non-benzodiazepine, zolpidem, which binds to the omega1 site on the GABA(A) receptor/Cl(-) ionophore complex, is intermediate in this regard. Our previous studies have demonstrated that a small number of genes exhibit increased expression in the cerebral cortex of the mouse and rat during recovery sleep after sleep deprivation: egr-3, fra-2, grp78, grp94, ngfi-b, and nr4a3. Using these genes as a panel of biomarkers associated with sleep, we asked whether hypnotic medications induce similar molecular changes in the rat cerebral cortex to those observed when both sleep continuity and slow wave activity are enhanced during recovery sleep. We find that, although each drug increases the expression of a subset of genes in the panel of biomarkers, no drug fully replicates the molecular changes in the cortex associated with recovery sleep. Furthermore, high levels of slow wave activity in the cortex are correlated with increased expression of fra-2 whereas the expression of grp94 is correlated with body temperature. These results demonstrate that sleep-related changes in gene expression may be affected by physiological covariates of sleep and wakefulness rather than by vigilance state per se.

  3. Repeated administration of imipramine modifies GABAergic transmission in rat frontal cortex.

    PubMed

    Wabno, Joanna; Hess, Grzegorz

    2013-05-01

    Alterations in the functions of brain gamma-aminobutyric acid (GABA) inhibitory system and a distortion in the balance between excitatory and inhibitory synaptic transmission have been hypothesized to be possible causes of mood disorders. Experimental evidence points to modifications of GABAergic transmission as a result of prolonged treatment with antidepressant drugs, however, the influence of the tricyclic antidepressant imipramine on inhibitory synaptic transmission in the rat cerebral cortex has not yet been investigated. Therefore, in the present study the effects of single and repeated administration of imipramine were evaluated ex vivo in slices of the rat frontal cortex using electrophysiological approach. In slices prepared 2 days after the last drug administration from animals receiving imipramine for 14 days (dose 10 mg/kg p.o., twice daily) the mean frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded from layer II/III pyramidal neurons was decreased, while the mean amplitude of sIPSCs was increased. These effects were absent in slices obtained from rats which received imipramine once. Application of N,N'-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN 082), a selective mGluR7 allosteric agonist, to the slice incubation medium resulted in a decrease in the mean frequency of sIPSCs in preparations obtained from repeated imipramine-treated animals, in contrast to slices originating from control rats where no AMN 082-induced effects were observed. Repeated imipramine treatment reduced protein density levels of the three tested GABAA receptor subunits: α 1, β 2 and γ 2. These data indicate that repeated treatment of normal rats with imipramine results in a modification of the release mechanism of GABA from presynaptic terminals and its modulation by mGluR7 receptors as well as in an alteration in GABAA receptor subunit protein levels in the rat cerebral cortex.

  4. Lesions of the Orbitofrontal but Not Medial Prefrontal Cortex Affect Cognitive Judgment Bias in Rats

    PubMed Central

    Golebiowska, Joanna; Rygula, Rafal

    2017-01-01

    Neuroimaging studies in humans have recently shown that the prefrontal cortex (PFC) and orbitofrontal cortex (OFC) mediate bias in the judgment of forthcoming events. In the present study, we sought to determine whether cognitive judgment bias (CJB) is also dependent on these prefrontal regions in non-human animals. For this, we trained a cohort of rats in the ambiguous-cue interpretation (ACI) paradigm, subjected them to excitotoxic lesions in the medial PFC (mPFC) and OFC, and tested the effects of neuronal loss within these regions on CJB. Comparison of the lesions’ behavioral effects in the ACI paradigm revealed that neuronal loss within the OFC but not within the mPFC influences the interpretation of ambiguous cues by animals. Our findings demonstrate the specific involvement of the OFC in CJB in rats. PMID:28377703

  5. Emergence of transformation-tolerant representations of visual objects in rat lateral extrastriate cortex.

    PubMed

    Tafazoli, Sina; Safaai, Houman; De Franceschi, Gioia; Rosselli, Federica Bianca; Vanzella, Walter; Riggi, Margherita; Buffolo, Federica; Panzeri, Stefano; Zoccolan, Davide

    2017-04-11

    Rodents are emerging as increasingly popular models of visual functions. Yet, evidence that rodent visual cortex is capable of advanced visual processing, such as object recognition, is limited. Here we investigate how neurons located along the progression of extrastriate areas that, in the rat brain, run laterally to primary visual cortex, encode object information. We found a progressive functional specialization of neural responses along these areas, with: (1) a sharp reduction of the amount of low-level, energy-related visual information encoded by neuronal firing; and (2) a substantial increase in the ability of both single neurons and neuronal populations to support discrimination of visual objects under identity-preserving transformations (e.g., position and size changes). These findings strongly argue for the existence of a rat object-processing pathway, and point to the rodents as promising models to dissect the neuronal circuitry underlying transformation-tolerant recognition of visual objects.

  6. Late emergence of the vibrissa direction selectivity map in the rat barrel cortex.

    PubMed

    Kremer, Yves; Léger, Jean-François; Goodman, Dan; Brette, Romain; Bourdieu, Laurent

    2011-07-20

    In the neocortex, neuronal selectivities for multiple sensorimotor modalities are often distributed in topographical maps thought to emerge during a restricted period in early postnatal development. Rodent barrel cortex contains a somatotopic map for vibrissa identity, but the existence of maps representing other tactile features has not been clearly demonstrated. We addressed the issue of the existence in the rat cortex of an intrabarrel map for vibrissa movement direction using in vivo two-photon imaging. We discovered that the emergence of a direction map in rat barrel cortex occurs long after all known critical periods in the somatosensory system. This map is remarkably specific, taking a pinwheel-like form centered near the barrel center and aligned to the barrel cortex somatotopy. We suggest that this map may arise from intracortical mechanisms and demonstrate by simulation that the combination of spike-timing-dependent plasticity at synapses between layer 4 and layer 2/3 and realistic pad stimulation is sufficient to produce such a map. Its late emergence long after other classical maps suggests that experience-dependent map formation and refinement continue throughout adult life.

  7. Impaired executive function following ischemic stroke in the rat medial prefrontal cortex.

    PubMed

    Cordova, Chris A; Jackson, Danielle; Langdon, Kristopher D; Hewlett, Krista A; Corbett, Dale

    2014-01-01

    Small (lacunar) infarcts frequently arise in frontal and midline thalamic regions in the absence of major stroke. Damage to these areas often leads to impairment of executive function likely as a result of interrupting connections of the prefrontal cortex. Thus, patients experience frontal-like symptoms such as impaired ability to shift ongoing behavior and attention. In contrast, executive dysfunction has not been demonstrated in rodent models of stroke, thereby limiting the development of potential therapies for human executive dysfunction. Male Sprague-Dawley rats (n=40) underwent either sham surgery or bilateral endothelin-1 injections in the mediodorsal nucleus of the thalamus or in the medial prefrontal cortex. Executive function was assessed using a rodent attention set shifting test that requires animals to shift attention to stimuli in different stimulus dimensions. Medial prefrontal cortex ischemia impaired attention shift performance between different stimulus dimensions while sparing stimulus discrimination and attention shifts within a stimulus dimension, indicating a selective attention set-shift deficit. Rats with mediodorsal thalamic lacunar damage did not exhibit a cognitive impairment relative to sham controls. The selective attention set shift impairment observed in this study is consistent with clinical data demonstrating selective executive disorders following stroke within specific sub-regions of frontal cortex. These data contribute to the development and validation of a preclinical animal model of executive dysfunction, that can be employed to identify potential therapies for ameliorating cognitive deficits following stroke.

  8. Propofol inhibits ketamine-induced c-fos expression in the rat posterior cingulate cortex.

    PubMed

    Nagata, A; Nakao, S; Miyamoto, E; Inada, T; Tooyama, I; Kimura, H; Shingu, K

    1998-12-01

    Ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, has psychotomimetic activity. NMDA receptor antagonists cause morphological damage in the posterior cingulate cortex, which may be the brain region responsible for their psychotomimetic effects. Benzodiazepines are effective in preventing these effects through gamma-aminobutyric acid A (GABA(A)) receptor activation. We investigated the effect of propofol, which has both GABAA receptor-activating and NMDA receptor-suppressing activity, on ketamine-induced c-fos expression in the rat posterior cingulate cortex. Propofol or vehicle was continuously infused IV. Fifteen minutes later, 100 mg/kg ketamine or isotonic sodium chloride solution was injected intraperitoneally. Two hours later, brain sections were prepared, and c-fos expression was detected using immunohistochemical methods. Propofol significantly inhibited ketamine-induced c-fos expression in the posterior cingulate cortex. Propofol itself did not induce c-fos expression in this brain region. We conclude that propofol may be able to inhibit ketamine-induced psychotomimetic activity and neuronal damage. In the present study, we demonstrated that the clinically relevant dose of propofol significantly inhibited ketamine-induced c-fos expression in the rat posterior cingulate cortex. This finding implies that propofol may inhibit ketamine-induced psychotomimetic activity and neuronal damage.

  9. Adaptive categorization of sound frequency does not require the auditory cortex in rats.

    PubMed

    Gimenez, Tyler L; Lorenc, Maja; Jaramillo, Santiago

    2015-08-01

    A defining feature of adaptive behavior is our ability to change the way we interpret sensory stimuli depending on context. Rapid adaptation in behavior has been attributed to frontal cortical circuits, but it is not clear if sensory cortexes also play an essential role in such tasks. In this study we tested whether the auditory cortex was necessary for rapid adaptation in the interpretation of sounds. We used a two-alternative choice sound-categorization task for rats in which the boundary that separated two acoustic categories changed several times within a behavioral session. These shifts in the boundary resulted in changes in the rewarded action for a subset of stimuli. We found that extensive lesions of the auditory cortex did not impair the ability of rats to switch between categorization contingencies and sound discrimination performance was minimally impaired. Similar results were obtained after reversible inactivation of the auditory cortex with muscimol. In contrast, lesions of the auditory thalamus largely impaired discrimination performance and, as a result, the ability to modify behavior across contingencies. Thalamic lesions did not impair performance of a visual discrimination task, indicating that the effects were specific to audition and not to motor preparation or execution. These results suggest that subcortical outputs of the auditory thalamus can mediate rapid adaptation in the interpretation of sounds. Copyright © 2015 the American Physiological Society.

  10. Taste-potentiated odor aversion learning in rats with lesions of the insular cortex.

    PubMed

    Lin, Jian-You; Roman, Christopher; Reilly, Steve

    2009-11-10

    The current study assessed the influence of excitotoxic lesions of the insular cortex (IC) on taste-potentiated odor aversion (TPOA) learning. Water-deprived rats initially received a single odor-toxicosis or odor/taste-toxicosis pairing and were subsequently tested, in separate trials, with the odor and the taste stimulus. Indicating TPOA, neurologically intact rats conditioned with the odor/taste compound stimulus acquired significantly stronger odor aversions than normal rats conditioned with the odor stimulus. IC lesions disrupted TPOA, conditioned taste aversion and taste neophobia. The finding that taste did not potentiate odor aversion learning in the IC-lesioned rats provides support for the "within-compound association" analysis but is inconsistent with the "sensory-and-gate" account of TPOA learning.

  11. Increased activity and expression of Ca2+-dependent NOS in renal cortex of ANG II-infused hypertensive rats

    PubMed Central

    CHIN, SO YEON; PANDEY, KAILASH N.; SHI, SHANG-JIN; KOBORI, HIROYUKI; MORENO, CAROL; NAVAR, L. GABRIEL

    2008-01-01

    We have previously demonstrated that nitric oxide (NO) exerts a greater modulatory influence on renal cortical blood flow in ANG II-infused hypertensive rats compared with normotensive rats. In the present study, we determined nitric oxide synthase (NOS) activities and protein levels in the renal cortex and medulla of normotensive and ANG II-infused hypertensive rats. Enzyme activity was determined by measuring the rate of formation of l-[14C]citrulline from l-[14C]arginine. Western blot analysis was performed to determine the regional expression of endothelial (eNOS), neuronal (nNOS), and inducible (iNOS) isoforms in the renal cortex and medulla of control and ANG II-infused rats. Male Sprague-Dawley rats were prepared by the infusion of ANG II at a rate of 65 ng/min via osmotic minipumps implanted subcutaneously for 13 days and compared with sham-operated rats. Systolic arterial pressures were 127 ± 2 and 182 ± 3 mmHg in control (n = 13) and ANG II-infused rats (n = 13), respectively. The Ca2+-dependent NOS activity, expressed as picomoles of citrulline formed per minute per gram wet weight, was higher in the renal cortex of ANG II-infused rats (91 ± 11) than in control rats (42 ± 12). Likewise, both eNOS and nNOS were markedly elevated in the renal cortex of the ANG II-treated rats. In both groups of rats, Ca2+-dependent NOS activity was higher in the renal medulla than in the cortex; however, no differences in medullary NOS activity were observed between the groups. Also, no differences in medullary eNOS levels were observed between the groups; however, medullary nNOS was decreased by 45% in the ANG II-infused rats. For the Ca2+-independent NOS activities, the renal cortex exhibited a greater activity in the control rats (174 ± 23) than in ANG II-infused rats (101 ± 10). Similarly, cortical iNOS was greater by 47% in the control rats than in ANG II-treated rats. No differences in the activity were found for the renal medulla between the groups. There was

  12. Chromaffin cell grafts to rat cerebral cortex reverse lesion-induced memory deficits.

    PubMed

    Welner, S A; Koty, Z C; Boksa, P

    1990-09-10

    Adrenal chromaffin cells were isolated from donor adult rats and transplanted to the cerebral cortex of bilaterally nucleus basalis magnocellularis-lesioned rats. Chromaffin cell grafts to lesioned animals completely reversed the spatial memory deficit seen in lesioned alone animals on a T-maze alternation task. Although chromaffin cell grafts have been used previously to reverse motor abnormalities arising from defective nigro-striatal aminergic transmission, the present report is the first evidence that chromaffin cell transplants can reverse deficits in memory function. Grafts also enhanced cortical acetylcholinesterase staining.

  13. EM colocalization of AMPA and NMDA receptor subunits at synapses in rat cerebral cortex.

    PubMed

    Kharazia, V N; Phend, K D; Rustioni, A; Weinberg, R J

    1996-05-24

    Electrophysiology and light microscopy suggest that a single excitatory synapse may use both amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors. Using immunogold electron microscopy, we here provide direct evidence for colocalization at individual synapses in sensorimotor cortex of adult rats. Colocalization was most commonly observed on dendritic spines; subunits of the two classes of receptors seemed to be independently distributed within the synaptic active zone.

  14. Binding properties of alpha-1 adrenergic receptors in rat cerebral cortex: similarity to smooth muscle

    SciTech Connect

    Minneman, K.P.

    1983-12-01

    The characteristics of alpha-1 adrenergic receptors in rat cerebral cortex were examined using the radioiodinated alpha-1 adrenergic receptor antagonist ((/sup 125/I)BE). (/sup 125/I)BE labeled a single class of high-affinity binding sites in a particulate fraction of rat cerebral cortex with mass action kinetics and a KD of 57 pM. The binding of (/sup 125/I)BE was inhibited by various alpha adrenergic receptor antagonists, partial agonists and full agonists. The potency of these compounds in competing for the (/sup 125/I)BE binding sites suggested that (/sup 125/I)BE was labeling alpha-1 adrenergic receptors in rat cerebral cortex. In the absence of a physiological concentration of NaCl in the assay medium there was a small (20%) decrease in the density of (/sup 125/I)BE binding sites with no effect on the KD value. The absence of NaCl also caused a 4-fold increase in the potency of norepinephrine in competing for (/sup 125/I)BE binding sites. All drugs competed for (/sup 125/I) BE binding sites with Hill coefficients greater than 0.86, except for oxymetazoline which had a Hill coefficient of 0.77. Scatchard analysis of specific (/sup 125/I)BE binding in the presence of various competing drugs showed that the inhibition by both agonists and antagonists was purely competitive, but the inhibition by oxymetazoline was complex. Treatment of the particulate fraction of rat cerebral cortex with 0.2 to 200 nM phenoxybenzamine for 10 min caused a dose-dependent decrease in the density of (/sup 125/I) BE binding sites which could be mostly blocked by the presence of norepinephrine during the phenoxybenzamine exposure.

  15. Cross-sectional imaging of functional activation in the rat somatosensory cortex with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Aguirre, A. D.; Chen, Y.; Ruvinskaya, L.; Devor, A.; Boas, D. A.; Fujimoto, J. G.

    2005-08-01

    Simultaneous optical coherence tomography (OCT) and video microscopy were performed on the rat somatosensory cortex through a thinned skull during forepaw stimulation. Fractional change measurements in OCT images reveal a functional signal timecourse similar to well understood hemodynamic signal timecourses measured with video microscopy. The precise etiology of the observed OCT functional signal is still under investigation, but these results suggest that OCT can provide high-resolution cross-sectional images of functional neuro-vascular activation.

  16. Rapid plasticity follows whisker pairing in barrel cortex of the awake rat.

    PubMed

    Sellien, Heike; Ebner, Ford F

    2007-02-01

    Synaptic plasticity can be induced easily throughout life in the rodent somatic sensory cortex. Trimming all but two whiskers on one side of an adult rat's face, called 'whisker pairing', causes the active (intact) whiskers to develop a stronger drive on cortical cells in their respective barrel columns, while inactive (trimmed) whisker efficacy is down-regulated. To date, this type of activity-dependent plasticity has been induced by trimming all but two whiskers, letting the rats explore their environment from 1 day to 1 month, after which cortical responses were analyzed physiologically under anesthesia. Such studies have enhanced our understanding of cortical plasticity, but the anesthesia complicates the examination of changes that occur in the first few hours after whisker trimming. Here we assayed the short-term changes that occur in alert, active animals over a period of hours after whisker trimming. The magnitude of barrel cortex evoked responses was measured in response to stimulation of the cut and paired whiskers of rats under several conditions: (a) whisking in air (control), (b) active whisking of an object by the rat, and (c) epochs of passive whisker stimulation to identify the onset of whisker pairing plasticity changes in cortex. The main difference between whisking in air without contact and passive whisker stimulation is that the former condition induces an increased response to stimulation of inactive cut whiskers, while the latter condition increases the responses to the stimulated whiskers. The results support the conclusion that whisker pairing plasticity in barrel cortex occurs within 4 h after whisker trimming in an awake, alert animal.

  17. The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning.

    PubMed

    Nelson, A J D; Hindley, E L; Pearce, J M; Vann, S D; Aggleton, J P

    2015-01-01

    The study examined the importance of the retrosplenial cortex for the incidental learning of the spatial arrangement of distinctive features within a scene. In a modified Morris water-maze, rats spontaneously learnt the location of an escape platform prior to swimming to that location. For this, rats were repeatedly placed on a submerged platform in one corner of either a rectangular (Experiment 1) or square (Experiments 2, 3) pool with walls of different appearance. The rats were then released in the center of the pool for their first test trial. In Experiment 1, the correct corner and its diagonally opposite partner (also correct) were specified by the geometric properties of the pool. Rats with retrosplenial lesions took longer to first reach a correct corner, subsequently showing an attenuated preference for the correct corners. A reduced preference for the correct corner was also found in Experiment 2, when platform location was determined by the juxtaposition of highly salient visual cues (black vs. white walls). In Experiment 3, less salient visual cues (striped vs. white walls) led to a robust lesion impairment, as the retrosplenial lesioned rats showed no preference for the correct corner. When subsequently trained actively to swim to the correct corner over successive trials, retrosplenial lesions spared performance on all three discriminations. The findings not only reveal the importance of the retrosplenial cortex for processing various classes of visuospatial information but also highlight a broader role in the incidental learning of the features of a spatial array, consistent with the translation of scene information.

  18. A dynamical system view of cerebellar function

    NASA Astrophysics Data System (ADS)

    Keeler, James D.

    1990-06-01

    First some previous theories of cerebellar function are reviewed, and deficiencies in how they map onto the neurophysiological structure are pointed out. I hypothesize that the cerebellar cortex builds an internal model, or prediction, of the dynamics of the animal. A class of algorithms for doing prediction based on local reconstruction of attractors are described, and it is shown how this class maps very well onto the structure of the cerebellar cortex. I hypothesize that the climbing fibers multiplex between different trajectories corresponding to different modes of operation. Then the vestibulo-ocular reflex is examined, and experiments to test the proposed model are suggested. The purpose of the presentation here is twofold: (1) To enlighten physiologists to the mathematics of a class of prediction algorithms that map well onto cerebellar architecture. (2) To enlighten dynamical system theorists to the physiological and anatomical details of the cerebellum.

  19. Schizophrenia-like GABAergic gene expression deficits in cerebellar Golgi cells from rats chronically exposed to low-dose phencyclidine.

    PubMed

    Bullock, W Michael; Bolognani, Federico; Botta, Paolo; Valenzuela, C Fernando; Perrone-Bizzozero, Nora I

    2009-12-01

    One of the most consistent findings in schizophrenia is the decreased expression of the GABA synthesizing enzymes GAD(67) and GAD(65) in specific interneuron populations. This dysfunction is observed in distributed brain regions including the prefrontal cortex, hippocampus, and cerebellum. In an effort to understand the mechanisms for this GABA deficit, we investigated the effect of the N-methyl-D-aspartate receptor (NMDAR) antagonist phencyclidine (PCP), which elicits schizophrenia-like symptoms in both humans and animal models, in a chronic, low-dose exposure paradigm. Adult rats were given PCP at a dose of 2.58 mg/kg/day i.p. for a month, after which levels of various GABAergic cell mRNAs and other neuromodulators were examined in the cerebellum by qRT-PCR. Administration of PCP decreased the expression of GAD(67), GAD(65), and the presynaptic GABA transporter GAT-1, and increased GABA(A) receptor subunits similar to those seen in patients with schizophrenia. Additionally, we found that the mRNA levels of two Golgi cell selective NMDAR subunits, NR2B and NR2D, were decreased in PCP-treated rats. Furthermore, we localized the deficits in GAD(67) expression solely to these interneurons. Slice electrophysiological studies showed that spontaneous firing of Golgi cells was reduced by acute exposure to low-dose PCP, suggesting that these neurons are particularly vulnerable to NMDA receptor antagonism. In conclusion, our results demonstrate that chronic exposure to low levels of PCP in rats mimics the GABAergic alterations reported in the cerebellum of patients with schizophrenia (Bullock et al., 2008. Am. J. Psychiatry 165, 1594-1603), further supporting the validity of this animal model.

  20. Cerebellar Ataxia.

    PubMed

    Perlman

    2000-05-01

    There is nothing more discouraging than for a patient to be given a specific diagnosis, then to be told that there is nothing that can be done. Physicians are equally disheartened to see exponential progress being made in the understanding of the pathophysiology of a complex disorder but few direct benefits resulting for their patients. Over the past 5 years, molecular genetic research has completely revolutionized the way in which the progressive cerebellar ataxias are classified and diagnosed, but it has yet to produce effective gene-based, neuroprotective, or neurorestorative therapies. The treatment of cerebellar ataxia remains primarily a neurorehabilitation challenge, employing physical, occupational, speech, and swallowing therapy; adaptive equipment; driver safety training; and nutritional counseling. Modest additional gains are seen with the use of medications that can improve imbalance, incoordination, or dysarthria (amantadine, buspirone, acetazolamide); cerebellar tremor (clonazepam, propranolol); and cerebellar or central vestibular nystagmus (gabapentin, baclofen, clonazepam). Many of the progressive cerebellar syndromes have associated features involving other neurologic systems (eg, spasticity, dystonia or rigidity, resting or rubral tremor, chorea, motor unit weakness or fatigue, autonomic dysfunction, peripheral or posterior column sensory loss, neuropathic pain or cramping, double vision, vision and hearing loss, dementia, and bowel, bladder, and sexual dysfunction), which can impede the treatment of the ataxic symptoms or can worsen with the use of certain drugs. Treatment of the associated features themselves may in turn worsen the ataxia either directly (as side effects of medication) or indirectly (eg, relaxation of lower limb spasticity that was acting as a stabilizer for an ataxic gait). Secondary complications of progressive ataxia can include deconditioning or immobility, weight loss or gain, skin breakdown, recurrent pulmonary and

  1. Functional zonation of the rat adrenal cortex: the development and maintenance.

    PubMed

    Mitani, Fumiko

    2014-01-01

    The adrenal cortex of mammals consists of three concentric zones, i.e., the zona glomerulosa (zG), the zona fasciculata (zF), and the zona reticularis (zR), which secrete mineralocorticoids, glucocorticoids, and adrenal androgens, respectively. In 1994, we identified immunohistochemically a new zone between zG and zF of the rat adrenal gland. The zone appeared to be devoid of any significant endocrine functions specific to adrenocortical zones, therefore, we designated the zone as "undifferentiated cell zone (zU)". Further, BrdU (5-bromo-2'-deoxyuridine)-incorporating cells (cells in S-phase) were concentrated at the outer region and the inner region of zU, and these cells proliferated and migrated bidirectionally: toward zG centrifugally and toward zF centripetally. We proposed that cells in and around zU are stem/progenitor cells of the rat adrenal cortex, maintaining functional zonation of the adrenal cortex. The view is consistent with observations reported recently that Sonic hedgehog (Shh), an important factor in embryonic development and adult stem cell maintenance, exists in zU of the rat adrenal gland and the Shh-containing cells seem to migrate bidirectionally.

  2. Hippocampus, perirhinal cortex, and complex visual discriminations in rats and humans

    PubMed Central

    Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.

    2015-01-01

    Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with perirhinal lesions were impaired and did not exhibit the normal preference for exploring the odd object. Notably, rats with hippocampal lesions exhibited the same impairment. Thus, the deficit is unlikely to illuminate functions attributed specifically to perirhinal cortex. Both lesion groups were able to acquire visual discriminations involving the same objects used in the oddity task. Patients with hippocampal damage or larger medial temporal lobe lesions were intact in a similar oddity task that allowed participants to explore objects quickly using eye movements. We suggest that humans were able to rely on an intact working memory capacity to perform this task, whereas rats (who moved slowly among the objects) needed to rely on long-term memory. PMID:25593294

  3. Cerebellar Stroke-manifesting as Mania

    PubMed Central

    Jagadesan, Venkatesan; Thiruvengadam, Kannapiran R.; Muralidharan, Rengarajalu

    2014-01-01

    Secondary mania resulting from cerebral Cortex are described commonly. But secondary mania produced by cerebellar lesions are relatively uncommon. This case report describes a patient who developed cerebellar stoke and manic features simultaneously. 28 years old male developed giddiness and projectile vomiting. Then he would lie down for about an hour only to find that he could not walk. He became quarrelsome. His Psycho motor activities and speech were increased. He was euphoric and was expressing grandiose ideas. Bender Gestalt Test showed signs of organicity. Score in Young mania relating scale was 32; productivity was low in Rorschach. Neurological examination revealed left cerebellar signs like ataxia and slurring of speech. Computed tomography of brain showed left cerebellar infarct. Relationship between Psychiatric manifestations and cerebellar lesion are discussed. PMID:25035567

  4. [Histostructural changes of rat cerebral cortex during hemorrhagic stroke modeling].

    PubMed

    Savos'ko, S I; Chaĭkovs'kyĭ, Iu B; Pogoriela, N Kh; Makarenko, O M

    2012-01-01

    Pathological changes during modeling of primary and secondary acute hemorrhagic stroke were studied in rats. We revealed differences in the activity of pharmacological action of medications under condition of acute stroke. The action of medications increased viability of neurons in both hemispheres of rat cerebrum at a right-side primary and secondary hemorrhagic stroke. Following secondary stroke, the amount of degenerative neurons amounted 25.5 +/- 0.8 cells/mm2, following the action ofcerebrolysin this value was 17.6 +/- 1.7 cells/ mm2 and after the action of cortexine and cerebral this value amounted 18.0 +/- 0.9 cells/mm2 and 10.7 +/- 0.4 cells/ mm2, respectively. In control animals the number of degenerative neurons did not exceed 2% and averaged 1.5 +/- 0.1 cells/mm2. Analysis of the morphological and statistical data showed that the most effective remedies under the primary and secondary hemorrhagic insult are cortexine and cerebral. Cerebral was found to be more effective.

  5. Mitochondrial dysfunction in brain cortex mitochondria of STZ-diabetic rats: effect of l-Arginine.

    PubMed

    Ortiz, M Del Carmen; Lores-Arnaiz, Silvia; Albertoni Borghese, M Florencia; Balonga, Sabrina; Lavagna, Agustina; Filipuzzi, Ana Laura; Cicerchia, Daniela; Majowicz, Monica; Bustamante, Juanita

    2013-12-01

    Mitochondrial dysfunction has been implicated in many diseases, including diabetes. It is well known that oxygen free radical species are produced endogenously by mitochondria, and also nitric oxide (NO) by nitric oxide synthases (NOS) associated to mitochondrial membranes, in consequence these organelles constitute main targets for oxidative damage. The aim of this study was to analyze mitochondrial physiology and NO production in brain cortex mitochondria of streptozotocin (STZ) diabetic rats in an early stage of diabetes and the potential effect of L-arginine administration. The diabetic condition was characterized by a clear hyperglycaemic state with loose of body weight after 4 days of STZ injection. This hyperglycaemic state was associated with mitochondrial dysfunction that was evident by an impairment of the respiratory activity, increased production of superoxide anion and a clear mitochondrial depolarization. In addition, the alteration in mitochondrial physiology was associated with a significant decrease in both NO production and nitric oxide synthase type I (NOS I) expression associated to the mitochondrial membranes. An increased level of thiobarbituric acid-reactive substances (TBARS) in brain cortex homogenates from STZ-diabetic rats indicated the presence of lipid peroxidation. L-arginine treatment to diabetic rats did not change blood glucose levels but significantly ameliorated the oxidative stress evidenced by lower TBARS and a lower level of superoxide anion. This effect was paralleled by improvement of mitochondrial respiratory function and a partial mitochondrial repolarization.In addition, the administration of L-arginine to diabetic rats prevented the decrease in NO production and NOSI expression. These results could indicate that exogenously administered L-arginine may have beneficial effects on mitochondrial function, oxidative stress and NO production in brain cortex mitochondria of STZ-diabetic rats.

  6. Dopamine in the prefrontal cortex regulates rats behavioral flexibility to changing reward value.

    PubMed

    Winter, Sabrina; Dieckmann, Marco; Schwabe, Kerstin

    2009-03-02

    Prefrontocortical dopamine (DA) plays an essential role in the representation of reward value and is implicated in behavioral flexibility. We here tested the effect of systemic and local blockade of DA D1- and D2-receptors in the medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC) by using an operant paradigm, where rats have to adjust their behavior to changing reward value. Rats were trained in a Skinner box, where different numbers of lever-presses for pellet-rewards were assigned to and switched between two levers. After rats commit to the efficient lever the lever-occupancy reversed and rats had to switch to the now efficient one. Rats were either intraperitoneally injected with the DA D1-receptor antagonist SCH23390 (40 microg/kg), the DA D2-receptor antagonist sulpiride (10mg/kg), or phosphate buffered saline (PBS). Two other groups received bilateral local mPFC- or OFC-infusions of SCH23390, sulpiride (both 3 microg/0.5 microl), or PBS (0.5 microl) through previously implanted cannulae. After initial detection of reverse of lever-occupancy, systemic and local blockade of D1-receptors increased the number of switches back to the previously efficient lever, thus reducing the total number of reverses completed. D2-receptor blockade deteriorated this measure after local mPFC-infusion. Notably, initial detection of reverse of lever-occupancy was not affected. Blockade of DA receptors within the prefrontal cortex do not deteriorate the detection of changes in reward value, whereas maintenance of behavioral adaptation is disturbed. Interestingly, blockade of DA receptors in the mPFC and OFC had similar effects, i.e., these regions apparently act in a cooperative manner.

  7. Linking oscillations in cerebellar circuits

    PubMed Central

    Courtemanche, Richard; Robinson, Jennifer C.; Aponte, Daniel I.

    2013-01-01

    In many neuroscience fields, the study of local and global rhythmicity has been receiving increasing attention. These network influences could directly impact on how neuronal groups interact together, organizing for different contexts. The cerebellar cortex harbors a variety of such local circuit rhythms, from the rhythms in the cerebellar cortex per se, or those dictated from important afferents. We present here certain cerebellar oscillatory phenomena that have been recorded in rodents and primates. Those take place in a range of frequencies: from the more known oscillations in the 4–25 Hz band, such as the olivocerebellar oscillatory activity and the granule cell layer oscillations, to the more recently reported slow (<1 Hz oscillations), and the fast (>150 Hz) activity in the Purkinje cell layer. Many of these oscillations appear spontaneously in the circuits, and are modulated by behavioral imperatives. We review here how those oscillations are recorded, some of their modulatory mechanisms, and also identify some of the cerebellar nodes where they could interact. A particular emphasis has been placed on how these oscillations could be modulated by movement and certain neuropathological manifestations. Many of those oscillations could have a definite impact on the way information is processed in the cerebellum and how it interacts with other structures in a variety of contexts. PMID:23908606

  8. Effects of static magnetic field and cadmium on oxidative stress and DNA damage in rat cortex brain and hippocampus.

    PubMed

    Amara, Salem; Douki, Thierry; Garrel, Catherine; Favier, Alain; Ben Rhouma, Khémais; Sakly, Mohsen; Abdelmelek, Hafedh

    2011-03-01

    The present study was undertaken to determine the effect of co-exposure to static magnetic field (SMF) and cadmium (Cd) on the antioxidant enzymes activity and DNA integrity in rat brain. Sub-chronic exposure to CdCl (CdCl(2), 40 mg/L, per os) for 30 days resulted in a significant reduction in antioxidant enzyme activity such as the glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) in frontal cortex and hippocampus. Total GSH were decreased in the frontal cortex of the Cd-exposed group. Cd exposure induced an increase in malondialdehyde (MDA) concentration in the frontal cortex and hippocampus. Moreover, the same exposure increased 8-oxo-7,8-dihydro-2-desoxyguanosine (8-oxodGuo) level in rat brain. Interestingly, the combined effect of SMF (128 mT, 1 hour/day for 30 consecutive days) and CdCl (40 mg/L, per os) decreased the SOD activity and glutathione level in frontal cortex as compared with the Cd group. Moreover, the association between SMF and Cd increased MDA concentration in frontal cortex as compared with Cd-exposed rats. DNA analysis revealed that SMF exposure failed to alter 8-oxodGuo concentration in Cd-exposed rats. Our data showed that Cd exposure altered the antioxidant enzymes activity and induced oxidative DNA lesions in rat brain. The combined effect of SMF and Cd increased oxidative damage in rat brain as compared with Cd-exposed rats.

  9. Expression of Phospho-MeCP2s in the Developing Rat Brain and Function of Postnatal MeCP2 in Cerebellar Neural Cell Development.

    PubMed

    Liu, Fang; Ni, Jing-Jing; Sun, Feng-Yan

    2017-02-01

    Abnormal expression and dysfunction of methyl-CpG binding protein 2 (MeCP2) cause Rett syndrome (RTT). The diverse phosphorylation modifications modulate MeCP2 function in neural cells. Using western blot and immunohistochemistry, we examined the expression patterns of MeCP2 and three phospho-MeCP2s (pMeCP2s) in the developing rat brain. The expression of MeCP2 and phospho-S80 (pS80) MeCP2 increased while pS421 MeCP2 and pS292 MeCP2 decreased with brain maturation. In contrast to the nuclear localization of MeCP2 and pS80 MeCP2, pS421 MeCP2 and pS292 MeCP2 were mainly expressed in the cytoplasmic compartment. Apart from their distribution in neurons, they were also detected at a low level in astrocytes. Postnatally-initiated MeCP2 deficiency affected cerebellar neural cell development, as determined by the abnormal expression of GFAP, DCX, Tuj1, MAP-2, and calbindin-D28k. Together, these results demonstrate that MeCP2 and diverse pMeCP2s have distinct features of spatio-temporal expression in the rat brain, and that the precise levels of MeCP2 in the postnatal period are vital to cerebellar neural cell development.

  10. Chronic stress affects the number of GABAergic neurons in the orbitofrontal cortex of rats.

    PubMed

    Varga, Zsófia; Csabai, Dávid; Miseta, Attila; Wiborg, Ove; Czéh, Boldizsár

    2017-01-01

    Cortical GABAergic dysfunctions have been documented by clinical studies in major depression. We used here an animal model for depression and investigated whether long-term stress exposure can affect the number of GABAergic neurons in the orbitofrontal cortex (OFC). Adult male rats were subjected to 7-weeks of daily stress exposure and behaviorally phenotyped as anhedonic or stress-resilient animals. GABAergic interneurons were identified by immunohistochemistry and systematically quantified. We analyzed calbindin-(CB), calretinin-(CR), cholecystokinin-(CCK), parvalbumin-(PV), neuropeptide Y-(NPY) and somatostatin-positive (SST+) neurons in the following specific subareas of the OFC: medial orbital (MO), ventral orbital (VO), lateral orbital (LO) and dorsolateral orbital (DLO) cortex. For comparison, we also analyzed the primary motor cortex (M1) as a non-limbic cortical area. Stress had a pronounced effect on CB+ neurons and reduced their densities by 40-50% in the MO, VO and DLO. Stress had no effect on CCK+, CR+, PV+, NPY+ and SST+ neurons in any cortical areas. None of the investigated GABAergic neurons were affected by stress in the primary motor cortex. Interestingly, in the stress-resilient animals, we observed a significantly increased density of CCK+ neurons in the VO. NPY+ neuron densities were also significantly different between the anhedonic and stress-resilient rats, but only in the LO. Our present data demonstrate that chronic stress can specifically reduce the density of calbindin-positive GABAergic neurons in the orbitofrontal cortex and suggest that NPY and CCK expression in the OFC may relate to the stress resilience of the animals. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Chronic Ritalin administration during adulthood increases serotonin pool in rat medial frontal cortex.

    PubMed

    Daniali, Samira; Madjd, Zahra; Shahbazi, Ali; Niknazar, Somayeh; Shahbazzadeh, Delavar

    2013-01-01

    Ritalin has high tendency to be abused. It has been the main indication to control attention deficit hyperactivity disorder. The college students may seek for it to improve their memory, decrease the need for sleep (especially during exams), which at least partially, can be related to serotonergic system. Therefore, it seems worthy to evaluate the effect of Ritalin intake on mature brain. There are many studies on Ritalin effect on developing brain, but only few studies on adults are available. This study was undertaken to find Ritalin effect on serotonin transporter (SERT) density in medial frontal cortex (MFC) of mature rat. Thirty male Wistar rats were used in the study. Rats were assigned into five groups (n = 6 per group): one control, two Ritalin and two vehicle groups. Twelve rats received Ritalin (20 mg/kg/twice a day) orally for eleven continuous days. After one week of withdrawal and another two weeks of rest, in order to evaluate short-term effects of Ritalin, six rats were sacrificed. Another six rats were studied to detect the long-term effects of Ritalin; therefore, they were sacrificed 12 weeks after the previous group. The immunohistochemistry was performed to evaluate the results. Immunohistochemistry studies showed a higher density of SERT in both 2 and 12 weeks after withdrawal from Ritalin intake in MFC of rat and there was no significant difference between these two groups. Our findings demonstrated both short- and long-term effects of Ritalin on frontal serotonergic system after withdrawal period.

  12. Hypocretin and nicotine excite the same thalamocortical synapses in prefrontal cortex: correlation with improved attention in rat.

    PubMed

    Lambe, Evelyn K; Olausson, Peter; Horst, Nicole K; Taylor, Jane R; Aghajanian, George K

    2005-05-25

    Thalamic projections to prefrontal cortex are important for executive aspects of attention. Using two-photon imaging in prefrontal brain slices, we show that nicotine and the wakefulness neuropeptide hypocretin (orexin) excite the same identified synapses of the thalamocortical arousal pathway within the prefrontal cortex. Although it is known that attention can be improved when nicotine is infused directly into the midlayer of the prefrontal cortex in the rat, the effects of hypocretin on attention are not known. The overlap in thalamocortical synapses excited by hypocretin and nicotine and the lack of direct postsynaptic effects prompted us to compare their effects on a sustained and divided attention task in the rat. Similar to nicotine, infusions of hypocretin-2 peptide into the prefrontal cortex significantly improved accuracy under high attentional demand without effects on other performance measures. We show for the first time that hypocretin can improve attentional processes relevant to executive functions of the prefrontal cortex.

  13. Striatal dysfunction increases basal ganglia output during motor cortex activation in parkinsonian rats.

    PubMed

    Belluscio, Mariano A; Riquelme, Luis A; Murer, M Gustavo

    2007-05-01

    During movement, inhibitory neurons in the basal ganglia output nuclei show complex modulations of firing, which are presumptively driven by corticostriatal and corticosubthalamic input. Reductions in discharge should facilitate movement by disinhibiting thalamic and brain stem nuclei while increases would do the opposite. A proposal that nigrostriatal dopamine pathway degeneration disrupts trans-striatal pathways' balance resulting in sustained overactivity of basal ganglia output nuclei neurons and Parkinson's disease clinical signs is not fully supported by experimental evidence, which instead shows abnormal synchronous oscillatory activity in animal models and patients. Yet, the possibility that variation in motor cortex activity drives transient overactivity in output nuclei neurons in parkinsonism has not been explored. In Sprague-Dawley rats with 6-hydroxydopamine (6-OHDA)-induced nigrostriatal lesions, approximately 50% substantia nigra pars reticulata (SNpr) units show abnormal cortically driven slow oscillations of discharge. Moreover, these units selectively show abnormal responses to motor cortex stimulation consisting in augmented excitations of an odd latency, which overlapped that of inhibitory responses presumptively mediated by the trans-striatal direct pathway in control rats. Delivering D1 or D2 dopamine agonists into the striatum of parkinsonian rats by reverse microdialysis reduced these abnormal excitations but had no effect on pathological oscillations. The present study establishes that dopamine-deficiency related changes of striatal function contribute to producing abnormally augmented excitatory responses to motor cortex stimulation in the SNpr. If a similar transient overactivity of basal ganglia output were driven by motor cortex input during movement, it could contribute to impeding movement initiation or execution in Parkinson's disease.

  14. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise

    PubMed Central

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Holschneider, Daniel P.

    2015-01-01

    Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson’s disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4 weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [14C]-iodoantipyrine 1 week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function. PMID:25747184

  15. Dysgranular retrosplenial cortex lesions in rats disrupt cross-modal object recognition

    PubMed Central

    Hindley, Emma L.; Nelson, Andrew J.D.; Aggleton, John P.; Vann, Seralynne D.

    2014-01-01

    The retrosplenial cortex supports navigation, with one role thought to be the integration of different spatial cue types. This hypothesis was extended by examining the integration of nonspatial cues. Rats with lesions in either the dysgranular subregion of retrosplenial cortex (area 30) or lesions in both the granular and dysgranular subregions (areas 29 and 30) were tested on cross-modal object recognition (Experiment 1). In these tests, rats used different sensory modalities when exploring and subsequently recognizing the same test objects. The objects were first presented either in the dark, i.e., giving tactile and olfactory cues, or in the light behind a clear Perspex barrier, i.e., giving visual cues. Animals were then tested with either constant combinations of sample and test conditions (light to light, dark to dark), or changed “cross-modal” combinations (light to dark, dark to light). In Experiment 2, visual object recognition was tested without Perspex barriers, but using objects that could not be distinguished in the dark. The dysgranular retrosplenial cortex lesions selectively impaired cross-modal recognition when cue conditions switched from dark to light between initial sampling and subsequent object recognition, but no impairment was seen when the cue conditions remained constant, whether dark or light. The combined (areas 29 and 30) lesioned rats also failed the dark to light cross-modal problem but this impairment was less selective. The present findings suggest a role for the dysgranular retrosplenial cortex in mediating the integration of information across multiple cue types, a role that potentially applies to both spatial and nonspatial domains. PMID:24554671

  16. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise.

    PubMed

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G; Heintz, Ryan; Holschneider, Daniel P

    2015-05-01

    Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson's disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [(14)C]-iodoantipyrine 1week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function.

  17. Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings

    PubMed Central

    Roth, Arnd; Häusser, Michael

    2001-01-01

    Simultaneous dendritic and somatic patch-clamp recordings were made from Purkinje cells in cerebellar slices from 12- to 21-day-old rats. Voltage responses to current impulses injected via either the dendritic or the somatic pipette were obtained in the presence of the selective Ih blocker ZD 7288 and blockers of spontaneous synaptic input. Neurons were filled with biocytin for subsequent morphological reconstruction. Four neurons were reconstructed and converted into detailed compartmental models. The specific membrane capacitance (Cm), specific membrane resistance (Rm) and intracellular resistivity (Ri) were optimized by direct fitting of the model responses to the electrophysiological data from the same cell. Mean values were: Cm, 0.77 ± 0.17 μF cm−2 (mean ±s.d.; range, 0.64-1.00 μF cm−2), Rm, 122 ± 18 kΩ cm2 (98-141 kΩ cm2) and Ri, 115 ± 20 Ω cm (93-142 Ω cm). The steady-state electrotonic architecture of these cells was compact under the experimental conditions used. However, somatic voltage-clamp recordings of parallel fibre and climbing fibre synaptic currents were substantially filtered and attenuated. The detailed models were compared with a two-compartment model of Purkinje cells. The range of synaptic current kinetics that can be faithfully recorded using somatic voltage clamp is predicted fairly well by the two-compartment model, even though some of its underlying assumptions are violated. A model of Ih was constructed based on voltage-clamp data, and inserted into the passive compartmental models. Somatic EPSP amplitude was substantially attenuated compared to the amplitude of dendritic EPSPs at their site of generation. However, synaptic efficacy of the same quantal synaptic conductance, as measured by the somatic EPSP amplitude, was only weakly dependent on synaptic location on spiny branchlets. The passive electrotonic structure of Purkinje cells is unusual in that the steady-state architecture is very compact, while voltage transients

  18. Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors.

    PubMed Central

    D'Angelo, E; De Filippi, G; Rossi, P; Taglietti, V

    1995-01-01

    1. Current-clamp recordings were made in whole-cell patch-clamp configuration from ninety-one granule cells in parasagittal cerebellar slices obtained from 21- to 31-day-old rats. Recordings were performed at 30 degrees C. 2. Resting membrane potential was -58 +/- 6 mV (n = 43). The membrane voltage response to step current injection showed inward rectification consistent with increasing input resistance during membrane depolarization. Over -35 +/- 7 mV (n = 14) repetitive firing with little or no adaptation was activated. Spike frequency increased nearly linearly with injected current. 3. Unitary EPSPs obtained by stimulating the mossy fibre bundle had an amplitude of 11.4 +/- 2.1 mV (n = 22, holding potential = -75 mV). Synchronous activation of greater than one to two mossy fibres was needed to elicit action potentials. Antidromic stimulation elicited antidromic spikes and also EPSPs, presumably through a mossy fibre 'axon reflex'. 4. EPSPs were brought about by NMDA and non-NMDA receptor activation, accounting for about 70 and 30%, respectively, of peak amplitude at the holding potential of -70 mV. The EPSP decay conformed to passive membrane discharge after blocking the NMDA receptors. 5. No appreciable correlation was found between the time-to-peak and decay time constant of the EPSPs, consistent with the compact electrotonic structure of these neurons. 6. During membrane depolarization EPSP amplitude increased transiently, due to both a voltage-dependent increase of the NMDA component and inward rectification. In addition, EPSPs slowed down due to a slowdown of the NMDA component. 7. Temporal summation during high-frequency stimulation was sustained by NMDA receptors, whose contribution to depolarization tended to prevail over that of non-NMDA receptors during the trains. A block of the NMDA receptors resulted in reduced depolarization and output spike frequency. 8. This study, as well as extending previous knowledge to the intracellular level in vivo

  19. Nitrergic neurons during early postnatal development of the prefrontal cortex in the rat: histochemical study.

    PubMed

    Hvizdosova, Natalia; Tomasova, Lenka; Bolekova, Adriana; Kolesar, Dalibor; Kluchova, Darina

    2014-06-01

    The presence of nitrergic cells in the prefrontal cortex has been confirmed, however little is known about the postnatal development of these cells. Nitrergic neurons were studied histochemically by using NADPH-diaphorase staining in the prefrontal cortex of male Wistar rats from postnatal day 7-21 (P7-21). Neuronal NADPH-diaphorase is a nitric oxide synthase that provides a specific histochemical marker for neurons producing nitric oxide (NO). NO acts as a neurotransmitter and intracellular signaling molecule in the nervous system. We observed in 7 day old rats NADPH-d containing neurons that were intensely stained. These neurons were bipolar with a short dendrite with average length of 23 μm. During the second postnatal week, the neurons were mainly bipolar and were rarely multipolar. By P14 the cells were located primarily in cortical layers III-VI. Nitrergic neurons of the 21 day old rats were histochemically identified as multipolar cells with long radial extending dendrites. Dendrites of neurons in 14 and 21 day old rats were a similar length with an average of 57 μm. These results suggest that nitrergic neurons differentiate during a relatively short period of time and reach their structural maturity by the end of the second week of postnatal development.

  20. Involvement of the rostral agranular insular cortex in nicotine self-administration in rats.

    PubMed

    Pushparaj, Abhiram; Kim, Aaron S; Musiol, Martin; Trigo, Jose M; Le Foll, Bernard

    2015-09-01

    Our prior work demonstrated the involvement of the caudal granular subregion of the insular cortex in a rat model of nicotine self-administration. Recent studies in various animal models of addiction for nicotine and other drugs have identified a role for the rostral agranular subregion (RAIC). The current research was undertaken to examine the involvement of the RAIC in a rat model of nicotine self-administration. We investigated the inactivating effects of local infusions of a γ-aminobutyric acid agonist mixture (baclofen/muscimol) into the RAIC on nicotine self-administration under a fixed-ratio 5 (FR-5) schedule and on reinstatement of nicotine seeking induced by nicotine-associated cues in rats. We also evaluated the effects of RAIC inactivation on food self-administration under an FR5 schedule as a control. Inactivation of the RAIC decreased nicotine, but not food, self-administration. RAIC inactivation also prevented the reinstatement, after extinction, of nicotine seeking induced by nicotine-associated cues. Our study indicates that the RAIC is involved in nicotine-taking and nicotine-seeking in rats. Modulating insular cortex function appears to be a promising approach for nicotine dependence treatment.

  1. Output of Neurogliaform Cells to Various Neuron Types in the Human and Rat Cerebral Cortex

    PubMed Central

    Oláh, Szabolcs; Komlósi, Gergely; Szabadics, János; Varga, Csaba; Tóth, Éva; Barzó, Pál; Tamás, Gábor

    2007-01-01

    Neurogliaform cells in the rat elicit combined GABAA and GABAB receptor-mediated postsynaptic responses on cortical pyramidal cells and establish electrical synapses with various interneuron types. However, the involvement of GABAB receptors in postsynaptic effects of neurogliaform cells on other GABAergic interneurons is not clear. We measured the postsynaptic effects of neurogliaform cells in vitro applying simultaneous whole-cell recordings in human and rat cortex. Single action potentials of human neurogliaform cells evoked unitary IPSPs composed of GABAA and GABAB receptor-mediated components in various types of inteneuron and in pyramidal cells. Slow IPSPs were combined with homologous and heterologous electrical coupling between neurogliaform cells and several human interneuron types. In the rat, single action potentials in neurogliaform cells elicited GABAB receptor-mediated component in responses of neurogliaform, regular spiking, and fast spiking interneurons following the GABAA receptor-mediated component in postsynaptic responses. In conclusion, human and rat neurogliaform cells elicit slow IPSPs and reach GABAA and GABAB receptors on several interneuron types with a connection-specific involvement of GABAB receptors. The electrical synapses recorded between human neurogliaform cells and various interneuron types represent the first electrical synapses recorded in the human cortex. PMID:18946546

  2. Quantitative analysis of somatosensory cortex development in metatherians and monotremes, with comparison to the laboratory rat.

    PubMed

    Ashwell, Ken W S

    2015-01-01

    Metatherians and monotremes are born in an immature state, followed by prolonged nurturing by maternal lactation. Quantitative analysis of isocortical sections held in the collections at the Museum für Naturkunde, Berlin was used to compare the pace of somatosensory cortex development relative to body size and pallial thickness between metatherian groups, monotremes, and the laboratory rat. Analysis indicated that the pace of pallial growth in the monotremes is much lower than that in the metatherians or laboratory rat, with an estimated 8.6-fold increase in parietal cortex thickness between 10 and 100 mm body length, compared to a 10- to 20-fold increase among the metatherians and the rat. It was found that aggregation of cortical plate neurons occurs at similar embryo size in the mammals studied (around 8-14 mm body length) and a similar pallial thickness (around 200 µm), but that proliferative zone involution occurs at a much higher body size and pallial thickness in the monotremes compared to the metatherians and the laboratory rat. The observations suggest that cortical development in the monotremes is slower and subject to different regulatory signals to the therians studied. The slow pace may be related to either generally slower metabolism in monotremes or less efficient nutrient supply to the offspring due to the lack of teats.

  3. Lithium/pilocarpine status epilepticus-induced neuropathology of piriform cortex and adjoining structures in rats is age-dependent.

    PubMed

    Druga, R; Kubová, H; Suchomelová, L; Haugvicová, R

    2003-01-01

    Distribution of LiCl/pilocarpine status epilepticus-induced neuronal damage was studied in the piriform cortex and in adjoining structures in 12-day-old, 25-day-old and adult rats. No distinct structural and neuronal alterations were detected in the basal telencephalon in 12-day-old rats surviving status epilepticus (SE) for one week or two months. In 25-day-old rats a decrease in Nissl staining was evident. There was also cell loss and gliosis in the caudal 2/3 of the piriform cortex, in the superficial amygdaloid nuclei, in the dorsal and ventral endopiriform nucleus and in the rostrolateral part of the entorhinal cortical area. In adult animals, the topography of neuropathological changes in the basal telencephalon was comparable to those in 25-day-old rats. The damage in the caudal 2/3 or caudal half of the piriform cortex in adult rats with survival times one week or two months was characterized by a marked loss of neurons and striking glial infiltration. The thickness of the piriform cortex and superficial amygdaloid nuclei was significantly reduced. In 25-day-old and in adult animals the sublayer IIb and layer III of the piriform cortex was more affected, while sublayer IIa was less damaged. Parvalbumin (PV) immunocytochemistry revealed a significant decrease in the number of PV-immunoreactive neurons in the rostral piriform cortex and in the dorsal claustrum in animals surviving for two months.

  4. Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei

    PubMed Central

    Hoebeek, Freek E.; Witter, Laurens; Ruigrok, Tom J. H.; De Zeeuw, Chris I.

    2010-01-01

    The output of the cerebellar cortex is controlled by two main inputs, (i.e., the climbing fiber and mossy fiber-parallel fiber pathway) and activations of these inputs elicit characteristic effects in its Purkinje cells: that is, the so-called complex spikes and simple spikes. Target neurons of the Purkinje cells in the cerebellar nuclei show rebound firing, which has been implicated in the processing and storage of motor coordination signals. Yet, it is not known to what extent these rebound phenomena depend on different modes of Purkinje cell activation. Using extracellular as well as patch-clamp recordings, we show here in both anesthetized and awake rodents that simple and complex spike-like train stimuli to the cerebellar cortex, as well as direct activation of the inferior olive, all result in rebound increases of the firing frequencies of cerebellar nuclei neurons for up to 250 ms, whereas single-pulse stimuli to the cerebellar cortex predominantly elicit well-timed spiking activity without changing the firing frequency of cerebellar nuclei neurons. We conclude that the rebound phenomenon offers a rich and powerful mechanism for cerebellar nuclei neurons, which should allow them to differentially process the climbing fiber and mossy fiber inputs in a physiologically operating cerebellum. PMID:20395550

  5. Kinetic and functional analysis of transient, persistent and resurgent sodium currents in rat cerebellar granule cells in situ: an electrophysiological and modelling study

    PubMed Central

    Magistretti, Jacopo; Castelli, Loretta; Forti, Lia; D'Angelo, Egidio

    2006-01-01

    Cerebellar neurones show complex and differentiated mechanisms of action potential generation that have been proposed to depend on peculiar properties of their voltage-dependent Na+ currents. In this study we analysed voltage-dependent Na+ currents of rat cerebellar granule cells (GCs) by performing whole-cell, patch-clamp experiments in acute rat cerebellar slices. A transient Na+ current (INaT) was always present and had the properties of a typical fast-activating/inactivating Na+ current. In addition to INaT, robust persistent (INaP) and resurgent (INaR) Na+ currents were observed. INaP peaked at ∼−40 mV, showed half-maximal activation at ∼−55 mV, and its maximal amplitude was about 1.5% of that of INaT. INaR was elicited by repolarizing pulses applied following step depolarizations able to activate/inactivate INaT, and showed voltage- and time-dependent activation and voltage-dependent decay kinetics. The conductance underlying INaR showed a bell-shaped voltage dependence, with peak at −35 mV. A significant correlation was found between GC INaR and INaT peak amplitudes; however, GCs expressing INaT of similar size showed marked variability in terms of INaR amplitude, and in a fraction of cells INaR was undetectable. INaT, INaP and INaR could be accounted for by a 13-state kinetic scheme comprising closed, open, inactivated and blocked states. Current-clamp experiments carried out to identify possible functional correlates of INaP and/or INaR revealed that in GCs single action potentials were followed by depolarizing afterpotentials (DAPs). In a majority of cells, DAPs showed properties consistent with INaR playing a role in their generation. Computer modelling showed that INaR promotes DAP generation and enhances high-frequency firing, whereas INaP boosts near-threshold firing activity. Our findings suggest that special properties of voltage-dependent Na+ currents provides GCs with mechanisms suitable for shaping activity patterns, with potentially

  6. Bilateral Entorhinal Cortex Lesions Impair Acquisition of Delayed Spatial Alternation in Rats.

    PubMed Central

    Ramirez, Julio J.; Campbell, David; Poulton, Nona; Barton, Cole; Swails, Jennifer; Geghman, Kindiya; Courchesne, Stephanie L.; Wentworth, Sean

    2007-01-01

    Entorhinal cortex lesions induce significant reorganization of several homotypic and heterotypic inputs to the hippocampus. This investigation determined whether surviving heterotypic inputs after bilateral entorhinal lesions would support the acquisition of a learned alternation task. Rats with entorhinal lesions or sham operations were trained to acquire a spatial alternation task. Although the sham-operated rats acquired the task within about three weeks postsurgery, rats with bilateral entorhinal lesions failed to learn the task after 12 consecutive weeks of training despite heterotypic sprouting of the cholinergic septodentate pathway and the expansion of the commissural/associational fiber plexus within the dentate gyrus. Thus, heterotypic sprouting failed to ameliorate significantly the effects of bilateral entorhinal lesions. Rather, entorhinal lesions produce a persistent impairment of spatial memory, characterized by a mixture of random error production and perseverative responding. PMID:17049284

  7. Sound Sequence Discrimination Learning Motivated by Reward Requires Dopaminergic D2 Receptor Activation in the Rat Auditory Cortex

    ERIC Educational Resources Information Center

    Kudoh, Masaharu; Shibuki, Katsuei

    2006-01-01

    We have previously reported that sound sequence discrimination learning requires cholinergic inputs to the auditory cortex (AC) in rats. In that study, reward was used for motivating discrimination behavior in rats. Therefore, dopaminergic inputs mediating reward signals may have an important role in the learning. We tested the possibility in the…

  8. Sound Sequence Discrimination Learning Motivated by Reward Requires Dopaminergic D2 Receptor Activation in the Rat Auditory Cortex

    ERIC Educational Resources Information Center

    Kudoh, Masaharu; Shibuki, Katsuei

    2006-01-01

    We have previously reported that sound sequence discrimination learning requires cholinergic inputs to the auditory cortex (AC) in rats. In that study, reward was used for motivating discrimination behavior in rats. Therefore, dopaminergic inputs mediating reward signals may have an important role in the learning. We tested the possibility in the…

  9. Genomic responses in rat cerebral cortex after traumatic brain injury

    PubMed Central

    von Gertten, Christina; Morales, Amilcar Flores; Holmin, Staffan; Mathiesen, Tiit; Nordqvist, Ann-Christin Sandberg

    2005-01-01

    Background Traumatic brain injury (TBI) initiates a complex sequence of destructive and neuroprotective cellular responses. The initial mechanical injury is followed by an extended time period of secondary brain damage. Due to the complicated pathological picture a better understanding of the molecular events occurring during this secondary phase of injury is needed. This study was aimed at analysing gene expression patterns following cerebral cortical contusion in rat using high throughput microarray technology with the goal of identifying genes involved in an early and in a more delayed phase of trauma, as genomic responses behind secondary mechanisms likely are time-dependent. Results Among the upregulated genes 1 day post injury, were transcription factors and genes involved in metabolism, e.g. STAT-3, C/EBP-δ and cytochrome p450. At 4 days post injury we observed increased gene expression of inflammatory factors, proteases and their inhibitors, like cathepsins, α-2-macroglobulin and C1q. Notably, genes with biological function clustered to immune response were significantly upregulated 4 days after injury, which was not found following 1 day. Osteopontin and one of its receptors, CD-44, were both upregulated showing a local mRNA- and immunoreactivity pattern in and around the injury site. Fewer genes had decreased expression both 1 and 4 days post injury and included genes implicated in transport, metabolism, signalling, and extra cellular matrix formation, e.g. vitronectin, neuroserpin and angiotensinogen. Conclusion The different patterns of gene expression, with little overlap in genes, 1 and 4 days post injury showed time dependence in genomic responses to trauma. An early induction of factors involved in transcription could lead to the later inflammatory response with strongly upregulated CD-44 and osteopontin expression. An increased knowledge of genes regulating the pathological mechanisms in trauma will help to find future treatment targets. Since

  10. Role of serotonin transporter function in rat orbitofrontal cortex in impulsive choice.

    PubMed

    Darna, Mahesh; Chow, Jonathan J; Yates, Justin R; Charnigo, Richard J; Beckmann, Joshua S; Bardo, Michael T; Dwoskin, Linda P

    2015-10-15

    Impulsivity is a multi-faceted personality construct that plays a prominent role in drug abuse vulnerability. Dysregulation of 5-hydroxytryptamine (serotonin, 5-HT) systems in subregions of the prefrontal cortex has been implicated in impulsivity. Extracellular 5-HT concentrations are regulated by 5-HT transporters (SERTs), indicating that these transporters may be important molecular targets underlying individual differences in impulsivity and drug abuse vulnerability. The present study evaluated the role of SERT in mediating individual differences in impulsivity. Rats were tested for both impulsive action using the cued go/no-go task and for impulsive choice using a delay discounting task in a counterbalanced design. Following behavioral evaluation, Km and Vmax were obtained from kinetic analysis of [(3)H]5-HT uptake by SERT using synaptosomes prepared from both orbitofrontal cortex (OFC) and medial prefrontal cortex (mPFC) obtained from each individual rat. Vmax for SERT in OFC, but not mPFC, was negatively correlated with mean adjusted delay scores in the delay discounting task. In contrast, Vmax for SERT in OFC and mPFC was not correlated with performance in the cued go/no-go task. To further evaluate the relationship between SERT function and impulsive choice, a selective SERT inhibitor, fluoxetine (0, 15, 50 and 150pmol/side) was microinjected bilaterally into OFC and effects on the delay discounting task determined. Following stabilization of behavior, fluoxetine increased mean adjusted delay scores (decreased impulsivity) in high impulsive rats compared to saline microinjection, but had no effect in low impulsive rats. These ex vivo and in vivo results suggest that enhanced SERT function in OFC underlies high impulsive choice behavior.

  11. Altered cerebellar feedback projections in Asperger syndrome.

    PubMed

    Catani, Marco; Jones, Derek K; Daly, Eileen; Embiricos, Nitzia; Deeley, Quinton; Pugliese, Luca; Curran, Sarah; Robertson, Dene; Murphy, Declan G M

    2008-07-15

    It has been proposed that the biological basis of autism spectrum disorder includes cerebellar 'disconnection'. However, direct in vivo evidence in support of this is lacking. Here, the microstructural integrity of cerebellar white matter in adults with Asperger syndrome was studied using diffusion tensor magnetic resonance tractography. Fifteen adults with Asperger syndrome and 16 age-IQ-gender-matched healthy controls underwent diffusion tensor magnetic resonance imaging. For each subject, tract-specific measurements of mean diffusivity and fractional anisotropy were made within the inferior, middle, superior cerebellar peduncles and short intracerebellar fibres. No group differences were observed in mean diffusivity. However, people with Asperger syndrome had significantly lower fractional anisotropy in the short intracerebellar fibres (p<0.001) and right superior cerebellar (output) peduncle (p<0.001) compared to controls; but no difference in the input tracts. Severity of social impairment, as measured by the Autistic Diagnostic Interview, was negatively correlated with diffusion anisotropy in the fibres of the left superior cerebellar peduncle. These findings suggest a vulnerability of specific cerebellar neural pathways in people with Asperger syndrome. The localised abnormalities in the main cerebellar outflow pathway may prevent the cerebral cortex from receiving those cerebellar feedback inputs necessary for a successful adaptive social behaviour.

  12. Separate but interacting recognition memory systems for different senses: The role of the rat perirhinal cortex

    PubMed Central

    Albasser, Mathieu M.; Amin, Eman; Iordanova, Mihaela D.; Brown, Malcolm W.; Pearce, John M.; Aggleton, John P.

    2011-01-01

    Two different models (convergent and parallel) potentially describe how recognition memory, the ability to detect the re-occurrence of a stimulus, is organized across different senses. To contrast these two models, rats with or without perirhinal cortex lesions were compared across various conditions that controlled available information from specific sensory modalities. Intact rats not only showed visual, tactile, and olfactory recognition, but also overcame changes in the types of sensory information available between object sampling and subsequent object recognition, e.g., between sampling in the light and recognition in the dark, or vice versa. Perirhinal lesions severely impaired object recognition whenever visual cues were available, but spared olfactory recognition and tactile-based object recognition when tested in the dark. The perirhinal lesions also blocked the ability to recognize an object sampled in the light and then tested for recognition in the dark, or vice versa. The findings reveal parallel recognition systems for different senses reliant on distinct brain areas, e.g., perirhinal cortex for vision, but also show that: (1) recognition memory for multisensory stimuli involves competition between sensory systems and (2) perirhinal cortex lesions produce a bias to rely on vision, despite the presence of intact recognition memory systems serving other senses. PMID:21685150

  13. Number and laminar distribution of neurons in a thalamocortical projection column of rat vibrissal cortex.

    PubMed

    Meyer, Hanno S; Wimmer, Verena C; Oberlaender, M; de Kock, Christiaan P J; Sakmann, Bert; Helmstaedter, Moritz

    2010-10-01

    This is the second article in a series of three studies that investigate the anatomical determinants of thalamocortical (TC) input to excitatory neurons in a cortical column of rat primary somatosensory cortex (S1). Here, we report the number and distribution of NeuN-positive neurons within the C2, D2, and D3 TC projection columns in P27 rat somatosensory barrel cortex based on an exhaustive identification of 89,834 somata in a 1.15 mm(3) volume of cortex. A single column contained 19,109 ± 444 neurons (17,560 ± 399 when normalized to a standard-size projection column). Neuron density differences along the vertical column axis delineated "cytoarchitectonic" layers. The resulting neuron numbers per layer in the average column were 63 ± 10 (L1), 2039 ± 524 (L2), 3735 ± 905 (L3), 4447 ± 439 (L4), 1737 ± 251 (L5A), 2235 ± 99 (L5B), 3786 ± 168 (L6A), and 1066 ± 170 (L6B). These data were then used to derive the layer-specific action potential (AP) output of a projection column. The estimates confirmed previous reports suggesting that the ensembles of spiny L4 and thick-tufted pyramidal neurons emit the major fraction of APs of a column. The number of APs evoked in a column by a sensory stimulus (principal whisker deflection) was estimated as 4441 within 100 ms post-stimulus.

  14. Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex.

    PubMed

    Rubino, Tiziana; Prini, Pamela; Piscitelli, Fabiana; Zamberletti, Erica; Trusel, Massimo; Melis, Miriam; Sagheddu, Claudia; Ligresti, Alessia; Tonini, Raffaella; Di Marzo, Vincenzo; Parolaro, Daniela

    2015-01-01

    Current concepts suggest that exposure to THC during adolescence may act as a risk factor for the development of psychiatric disorders later in life. However, the molecular underpinnings of this vulnerability are still poorly understood. To analyze this, we investigated whether and how THC exposure in female rats interferes with different maturational events occurring in the prefrontal cortex during adolescence through biochemical, pharmacological and electrophysiological means. We found that the endocannabinoid system undergoes maturational processes during adolescence and that THC exposure disrupts them, leading to impairment of both endocannabinoid signaling and endocannabinoid-mediated LTD in the adult prefrontal cortex. THC also altered the maturational fluctuations of NMDA subunits, leading to larger amounts of gluN2B at adulthood. Adult animals exposed to THC during adolescence also showed increased AMPA gluA1 with no changes in gluA2 subunits. Finally, adolescent THC exposure altered cognition at adulthood. All these effects seem to be triggered by the disruption of the physiological role played by the endocannabinoid system during adolescence. Indeed, blockade of CB1 receptors from early to late adolescence seems to prevent the occurrence of pruning at glutamatergic synapses. These results suggest that vulnerability of adolescent female rats to long-lasting THC adverse effects might partly reside in disruption of the pivotal role played by the endocannabinoid system in the prefrontal cortex maturation.

  15. Maturational alterations in constitutive activity of medial prefrontal cortex kappa-opioid receptors in Wistar rats.

    PubMed

    Sirohi, Sunil; Walker, Brendan M

    2015-11-01

    Opioid receptors can display spontaneous agonist-independent G-protein signaling (basal signaling/constitutive activity). While constitutive κ-opioid receptor (KOR) activity has been documented in vitro, it remains unknown if KORs are constitutively active in native systems. Using [(35) S] guanosine 5'-O-[gamma-thio] triphosphate coupling assay that measures receptor functional state, we identified the presence of medial prefrontal cortex KOR constitutive activity in young rats that declined with age. Furthermore, basal signaling showed an age-related decline and was insensitive to neutral opioid antagonist challenge. Collectively, the present data are first to demonstrate age-dependent alterations in the medial prefrontal cortex KOR constitutive activity in rats and changes in the constitutive activity of KORs can differentially impact KOR ligand efficacy. These data provide novel insights into the functional properties of the KOR system and warrant further consideration of KOR constitutive activity in normal and pathophysiological behavior. Opioid receptors exhibit agonist-independent constitutive activity; however, kappa-opioid receptor (KOR) constitutive activity has not been demonstrated in native systems. Our results confirm KOR constitutive activity in the medial prefrontal cortex (mPFC) that declines with age. With the ability to presynaptically inhibit multiple neurotransmitter systems in the mPFC, maturational or patho-logical alterations in constitutive activity could disrupt corticofugal glutamatergic pyramidal projection neurons mediating executive function. Regulation of KOR constitutive activity could serve as a therapeutic target to treat compromised executive function.

  16. Enhanced stress-induced dopamine release in the prefrontal cortex of amphetamine-sensitized rats.

    PubMed

    Hamamura, T; Fibiger, H C

    1993-06-11

    This study examined the extent to which chronic d-amphetamine administration sensitizes animals to some behavioral and neurochemical effects of foot shock stress. Rats received daily injections of saline for 14 days or d-amphetamine (2 mg/kg 7 days and 4 mg/kg 7 days). After a 7 day drug abstinent period, extracellular dopamine, 3,4-dihydroxyphenylacetic acid and homovanillic acid concentrations were measured in the medial prefrontal cortex using in vivo microdialysis in freely moving rats. The behavioral responses to mild foot shock stress were enhanced in the d-amphetamine-pretreated subjects. Concomitant with this behavioral sensitization, d-amphetamine-pretreated subjects showed greater stress-induced increases in extracellular dopamine in the medial prefrontal cortex than in controls. d-Amphetamine (2 mg/kg)-induced stereotyped behavior was also enhanced in the amphetamine-pretreated animals compared to controls; however, d-amphetamine-induced increases in extracellular dopamine in the medial prefrontal cortex were not enhanced in the amphetamine-pretreated group. These results suggest that the mesocortical dopaminergic system is involved in cross-sensitization between d-amphetamine and stress, but not in d-amphetamine-induced behavioral sensitization.

  17. Embryonic amygdalar transplants in adult rats with motor cortex lesions: a molecular and electrophysiological analysis.

    PubMed

    Jiménez-Díaz, Lydia; Nava-Mesa, Mauricio O; Heredia, Margarita; Riolobos, Adelaida S; Gómez-Álvarez, Marcelo; Criado, José María; de la Fuente, Antonio; Yajeya, Javier; Navarro-López, Juan D

    2011-01-01

    Transplants of embryonic nervous tissue ameliorate motor deficits induced by motor cortex lesions in adult animals. Restoration of lost brain functions has been recently shown in grafts of homotopic cortical origin, to be associated with a functional integration of the transplant after development of reciprocal host-graft connections. Nevertheless little is known about physiological properties or gene expression profiles of cortical implants with functional restorative capacity but no cortical origin. In this study, we show molecular and electrophysiological evidence supporting the functional development and integration of heterotopic transplants of embryonic amygdalar tissue placed into pre-lesioned motor cortex of adult rats. Grafts were analyzed 3 months post-transplantation. Using reverse transcriptase quantitative polymerase chain reaction, we found that key glutamatergic, GABAergic, and muscarinic receptors transcripts were expressed at different quantitative levels both in grafted and host tissues, but were all continuously present in the graft. Parallel sharp electrode recordings of grafted neurons in brain slices showed a regular firing pattern of transplanted neurons similar to host amygdalar pyramidal neurons. Synaptic connections from the adjacent host cortex on grafted neurons were electrophysiologically investigated and confirmed our molecular results. Taken together, our findings indicate that grafted neurons from a non-cortical, non-motor-related, but ontogenetical similar source, not only received functionally effective contacts from the adjacent motor cortex, but also developed electrophysiological and gene expression patterns comparable to host pyramidal neurons; suggesting an interesting tool for the field of neural repair and donor tissue in adults.

  18. Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex

    PubMed Central

    Tolner, Else A.; Sheikh, Aminah; Yukin, Alexey Y.; Kaila, Kai; Kanold, Patrick

    2012-01-01

    Patterned neuronal activity such as spindle bursts in the neonatal cortex is likely to promote the maturation of cortical synapses and neuronal circuits. Previous work on cats has shown that removal of subplate neurons, a transient neuronal population in the immature cortex, prevents the functional maturation of thalamocortical and intracortical connectivity. Here we studied the effect of subplate removal in the neonatal rat somatosensory cortex (S1). Using intracortical EEG we show that after selective removal of subplate neurons in the limb region of S1, endogenous and sensory evoked spindle burst activity is largely abolished. Consistent with the reduced in vivo activity in the S1 limb region, we find by in vitro recordings that thalamocortical inputs to layer 4 neurons are weak. In addition, we find that removal of subplate neurons in the S1 barrel region prevents the development of the characteristic histological barrel-like appearance. Thus, subplate neurons are crucially involved in the generation of particular types of early network activity in the neonatal cortex, which are an important feature of cortical development. The altered EEG pattern following subplate damage could be applicable in the neurological assessment of human neonates. PMID:22238105

  19. Vocalization-whisking coordination and multisensory integration of social signals in rat auditory cortex.

    PubMed

    Rao, Rajnish P; Mielke, Falk; Bobrov, Evgeny; Brecht, Michael

    2014-12-08

    Social interactions involve multi-modal signaling. Here, we study interacting rats to investigate audio-haptic coordination and multisensory integration in the auditory cortex. We find that facial touch is associated with an increased rate of ultrasonic vocalizations, which are emitted at the whisking rate (∼8 Hz) and preferentially initiated in the retraction phase of whisking. In a small subset of auditory cortex regular-spiking neurons, we observed excitatory and heterogeneous responses to ultrasonic vocalizations. Most fast-spiking neurons showed a stronger response to calls. Interestingly, facial touch-induced inhibition in the primary auditory cortex and off-responses after termination of touch were twofold stronger than responses to vocalizations. Further, touch modulated the responsiveness of auditory cortex neurons to ultrasonic vocalizations. In summary, facial touch during social interactions involves precisely orchestrated calling-whisking patterns. While ultrasonic vocalizations elicited a rather weak population response from the regular spikers, the modulation of neuronal responses by facial touch was remarkably strong.

  20. Effects of oxotremorine on local glucose utilization in the rat cerebral cortex

    SciTech Connect

    Dam, M.; Wamsley, J.K.; Rapoport, S.I.; London, E.D.

    1982-08-01

    The (/sup 14/C)2-deoxy-D-glucose technique was used to examine the effects of central muscarinic stimulation on local cerebral glucose utilization (LCGU) in the cerebral cortex of the unanesthetized rat. Systemic administration of the muscarinic agonist oxotremorine (OXO, 0.1 to 1.0 mg/kg, i.p.) increased LCGU in the neocortex, mesocortex, and paleocortex. In the neocortex, OXO was more potent in elevating LCGU of the auditory, frontal, and sensorimotor regions compared with the visual cortex. Within these neocortical regions, OXO effects were greatest in cortical layers IV and V. OXO effects were more dramatic in the neocortex than in the meso- or paleocortex, and no significant effect occurred in the perirhinal and pyriform cortices. OXO-induced LCGU increases were not influenced by methylatropine (1 mg/kg, s.c.) but were antagonized completely by scopolamine (2.5 mg/kg, i.p.). Scopolamine reduced LCGU in layer IV of the auditory cortex and in the retrosplenial cortex. The distribution and magnitude of the cortical LCGU response to OXO apparently were related to the distributions of cholinergic neurochemical markers, especially high affinity muscarinic binding sites.

  1. Organization of projections of rat retrosplenial cortex to the anterior thalamic nuclei.

    PubMed

    Shibata, H

    1998-10-01

    The organization of the projections from the retrosplenial cortex (Brodmann's area 29) to the anterior thalamic nuclei was examined in the rat with retrograde transport of the cholera toxin B subunit and anterograde transport of biotinylated dextran amine. Areas 29a and 29b project mainly ipsilaterally to the rostral two-thirds of the anteroventral nucleus, with area 29a projecting more rostrodorsally than area 29b. Area 29c projects bilaterally to the ventromedial part of the anteroventral nucleus. The projections from area 29c are organized in a topographic pattern such that the rostral area 29c projects to the caudoventral part of the anteroventral nucleus, whereas the caudal area 29c projects to the more rostrodorsal parts. Caudal area 29d projects mainly ipsilaterally to the rostrodorsal part of the anteromedial nucleus, and the rostral and dorsal parts of the anteroventral nucleus, whereas rostral area 29d projects bilaterally to the caudodorsal part of the anteromedial nucleus and the caudolateral part of the anteroventral nucleus. All the areas of the retrosplenial cortex provide sparse projections, mainly ipsilateral, to the anterodorsal nucleus, with a crude topographic pattern such that the rostrocaudal axis of the retrosplenial cortex corresponds to the caudorostral axis of the anterodorsal nucleus. The results indicate that each area of the retrosplenial cortex has a distinct projection field within the anterior thalamic nuclei. This suggests that each of these projections transmits distinct information that is important for complex memory and learning functions, e.g. discriminative avoidance learning and spatial memory.

  2. Vocalization–whisking coordination and multisensory integration of social signals in rat auditory cortex

    PubMed Central

    Rao, Rajnish P; Mielke, Falk; Bobrov, Evgeny; Brecht, Michael

    2014-01-01

    Social interactions involve multi-modal signaling. Here, we study interacting rats to investigate audio-haptic coordination and multisensory integration in the auditory cortex. We find that facial touch is associated with an increased rate of ultrasonic vocalizations, which are emitted at the whisking rate (∼8 Hz) and preferentially initiated in the retraction phase of whisking. In a small subset of auditory cortex regular-spiking neurons, we observed excitatory and heterogeneous responses to ultrasonic vocalizations. Most fast-spiking neurons showed a stronger response to calls. Interestingly, facial touch-induced inhibition in the primary auditory cortex and off-responses after termination of touch were twofold stronger than responses to vocalizations. Further, touch modulated the responsiveness of auditory cortex neurons to ultrasonic vocalizations. In summary, facial touch during social interactions involves precisely orchestrated calling-whisking patterns. While ultrasonic vocalizations elicited a rather weak population response from the regular spikers, the modulation of neuronal responses by facial touch was remarkably strong. DOI: http://dx.doi.org/10.7554/eLife.03185.001 PMID:25485525

  3. A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex

    PubMed Central

    Wang, Huaixing; Stradtman, George G.; Wang, Xiao-Jing; Gao, Wen-Jun

    2008-01-01

    In the prefrontal cortex, NMDA receptors are important for normal prefrontal functions such as working memory, and their dysfunction plays a key role in the pathological processes of psychiatric disorders such as schizophrenia. Little is known, however, about the synaptic properties of NMDA receptors in the local circuits of recurrent excitation, a leading candidate mechanism underlying working memory. We investigated the NMDA receptor-mediated currents at monosynaptic connections between pairs of layer 5 pyramidal neurons. We found that NMDA receptor-mediated currents at prefrontal synapses in the adult, but not young, rats exhibit a twofold longer decay time-constant and temporally summate a train of stimuli more effectively, compared to those in the primary visual cortex. Experiments with pharmacological, immunocytochemical, and biochemical approaches further suggest that, in the adult animals, neurons express significantly more NR2B subunits in the prefrontal cortex than the visual cortex. The NR2B-rich synapses in the prefrontal circuitry may be critically implicated in online cognitive computations and plasticity in learning, as well as psychiatric disorders. PMID:18922773

  4. Respective implications of glutamate decarboxylase antibodies in stiff person syndrome and cerebellar ataxia.

    PubMed

    Manto, Mario U; Hampe, Christiane S; Rogemond, Véronique; Honnorat, Jérome

    2011-02-04

    To investigate whether Stiff-person syndrome (SPS) and cerebellar ataxia (CA) are associated with distinct GAD65-Ab epitope specificities and neuronal effects. Purified GAD65-Ab from neurological patients and monoclonal GAD65-Ab with distinct epitope specificities (b78 and b96.11) were administered in vivo to rat cerebellum. Effects of intra-cerebellar administration of GAD65-Ab were determined using neurophysiological and neurochemical methods. Intra-cerebellar administration of GAD65-Ab from a SPS patient (Ab SPS) impaired the NMDA-mediated turnover of glutamate, but had no effect on NMDA-mediated turnover of glycerol. By contrast, GAD65-Ab from a patient with cerebellar ataxia (Ab CA) markedly decreased the NMDA-mediated turnover of glycerol. Both GAD65-Ab increased the excitability of the spinal cord, as assessed by the F wave/M wave ratios. The administration of BFA, an inhibitor of the recycling of vesicles, followed by high-frequency stimulation of the cerebellum, severely impaired the cerebello-cortical inhibition only when Ab CA was used. Moreover, administration of transcranial direct current stimulation (tDCS) of the motor cortex revealed a strong disinhibition of the motor cortex with Ab CA. Monoclonal antibodies b78 and b96.11 showed distinct effects, with greater effects of b78 in terms of increase of glutamate concentrations, impairment of the adaptation of the motor cortex to repetitive peripheral stimulation, disinhibition of the motor cortex following tDCS, and increase of the F/M ratios. Ab SPS shared antibody characteristics with b78, both in epitope recognition and ability to inhibit enzyme activity, while Ab CA had no effect on GAD65 enzyme activity. These results suggest that, in vivo, neurological impairments caused by GAD65-Ab could vary according to epitope specificities. These results could explain the different neurological syndromes observed in patients with GAD65-Ab.

  5. Respective implications of glutamate decarboxylase antibodies in stiff person syndrome and cerebellar ataxia

    PubMed Central

    2011-01-01

    Background To investigate whether Stiff-person syndrome (SPS) and cerebellar ataxia (CA) are associated with distinct GAD65-Ab epitope specificities and neuronal effects. Methods Purified GAD65-Ab from neurological patients and monoclonal GAD65-Ab with distinct epitope specificities (b78 and b96.11) were administered in vivo to rat cerebellum. Effects of intra-cerebellar administration of GAD65-Ab were determined using neurophysiological and neurochemical methods. Results Intra-cerebellar administration of GAD65-Ab from a SPS patient (Ab SPS) impaired the NMDA-mediated turnover of glutamate, but had no effect on NMDA-mediated turnover of glycerol. By contrast, GAD65-Ab from a patient with cerebellar ataxia (Ab CA) markedly decreased the NMDA-mediated turnover of glycerol. Both GAD65-Ab increased the excitability of the spinal cord, as assessed by the F wave/M wave ratios. The administration of BFA, an inhibitor of the recycling of vesicles, followed by high-frequency stimulation of the cerebellum, severely impaired the cerebello-cortical inhibition only when Ab CA was used. Moreover, administration of transcranial direct current stimulation (tDCS) of the motor cortex revealed a strong disinhibition of the motor cortex with Ab CA. Monoclonal antibodies b78 and b96.11 showed distinct effects, with greater effects of b78 in terms of increase of glutamate concentrations, impairment of the adaptation of the motor cortex to repetitive peripheral stimulation, disinhibition of the motor cortex following tDCS, and increase of the F/M ratios. Ab SPS shared antibody characteristics with b78, both in epitope recognition and ability to inhibit enzyme activity, while Ab CA had no effect on GAD65 enzyme activity. Conclusions These results suggest that, in vivo, neurological impairments caused by GAD65-Ab could vary according to epitope specificities. These results could explain the different neurological syndromes observed in patients with GAD65-Ab. PMID:21294897

  6. Enhanced responses of the anterior cingulate cortex neurones to colonic distension in viscerally hypersensitive rats

    PubMed Central

    Gao, Jun; Wu, Xiaoyin; Owyang, Chung; Li, Ying

    2006-01-01

    The anterior cingulate cortex (ACC) is critically involved in processing the affective component of pain sensation. Visceral hypersensitivity is a characteristic of irritable bowel syndrome. Electrophysiological activity of the ACC with regard to visceral sensitization has not been characterized. Single ACC neuronal activities in response to colorectal distension (CRD) were recorded in control, sham-treated rats and viscerally hypersensitive (EA) rats (induced by chicken egg albumin injection, i.p). The ACC neurones of controls failed to respond to 10 or 30 mmHg CRD; only 22% were activated by 50 mmHg CRD. Among the latter, 16.4% exhibited an excitatory response to CRD and were labelled ‘CRD-excited’ neurones. In contrast, CRD (10, 30 and 50 mmHg) markedly increased ACC neuronal responses of EA rats (10%, 28% and 47%, respectively). CRD produced greater pressure-dependent increases in ACC spike firing rates in EA rats compared with controls. Splanchnicectomy combined with pelvic nerve section abolished ACC responses to CRD in EA rats. Spontaneous activity in CRD-excited ACC neurones was significantly higher in EA rats than in controls. CRD-excited ACC neurones in control and EA rats (7 of 16 (42%) and 8 of 20 (40%), respectively) were activated by transcutaneous electrical and thermal stimuli. However, ACC neuronal activity evoked by noxious cutaneous stimuli did not change significantly in EA rats. This study identifies CRD-responsive neurones in the ACC and establishes for the first time that persistence of a heightened visceral afferent nociceptive input to the ACC induces ACC sensitization, characterized by increased spontaneous activity of CRD-excited neurones, decreased CRD pressure threshold, and increased response magnitude. Enhanced ACC nociceptive transmission in viscerally hypersensitive rats is restricted to visceral afferent input. PMID:16239277

  7. Selective regulation of spontaneous activity of neurons of the deep cerebellar nuclei by N-type calcium channels in juvenile rats.

    PubMed

    Alviña, Karina; Khodakhah, Kamran

    2008-05-15

    The cerebellum coordinates movement and maintains body posture. The main output of the cerebellum is formed by three deep nuclei, which receive direct inhibitory inputs from cerebellar Purkinje cells, and excitatory collaterals from mossy and climbing fibres. Neurons of deep cerebellar nuclei (DCN) are spontaneously active, and disrupting their activity results in severe cerebellar ataxia. It is suggested that voltage-gated calcium channels make a significant contribution to the spontaneous activity of DCN neurons, although the exact identity of these channels is not known. We sought to delineate the functional role and identity of calcium channels that contribute to pacemaking in DCN neurons of juvenile rats. We found that in the majority of cells blockade of calcium currents results in avid high-frequency bursting, consistent with the notion that the net calcium-dependent current in DCN neurons is outward. We showed that the bursting seen in these neurons after block of calcium channels is the consequence of reduced activation of small-conductance calcium-activated (SK) potassium channels. With the use of selective pharmacological blockers we showed that L-, P/Q-, R- and T-type calcium channels do not contribute to the spontaneous activity of DCN neurons. In contrast, blockade of high-threshold N-type calcium channels increased the firing rate and caused the cells to burst. Our results thus suggest a selective coupling of N-type voltage-gated calcium channels with calcium-activated potassium channels in DCN neurons. In addition, we demonstrate the presence of a cadmium-sensitive calcium conductance coupled with SK channels, that is pharmacologically distinct from L-, N-, P/Q-, R- and T-type calcium channels.

  8. Decoding of the sound frequency from the steady-state neural activities in rat auditory cortex.

    PubMed

    Shiramatsu, Tomoyo I; Noda, Takahiro; Kanzaki, Ryohei; Takahashi, Hirokazu

    2013-01-01

    In the auditory cortex, onset activities have been extensively investigated as a cortical representation of sound information such as sound frequency. Yet, less attention has been paid to date to steady-state activities following the onset activities. In this study, we used machine learning to investigate whether steady-state activities in the presence of continuous sounds represent the sound frequency. Sparse Logistic Regression (SLR) decoded the sound frequency from band specific power or phase locking value (PLV) of local field potentials (LFP) from the fourth layer of the auditory cortex of anesthetized rats. Consequently, we found that SLR was able to decode the sound frequency from steady-state neural activities as well as onset activities. This result demonstrates that the steady-state activities contain information about the sound such as sound frequency.

  9. Enhanced Extinction of Aversive Memories by High-Frequency Stimulation of the Rat Infralimbic Cortex

    PubMed Central

    Maroun, Mouna; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara; Motanis, Helen

    2012-01-01

    Electrical stimulation of the rodent medial prefrontal cortex (mPFC), including the infralimbic cortex (IL), immediately prior to or during fear extinction training facilitates extinction memory. Here we examined the effects of high-frequency stimulation (HFS) of the rat IL either prior to conditioning or following retrieval of the conditioned memory, on extinction of Pavlovian fear and conditioned taste aversion (CTA). IL-HFS applied immediately after fear memory retrieval, but not three hours after retrieval or prior to conditioning, subsequently reduced freezing during fear extinction. Similarly, IL-HFS given immediately, but not three hours after, retrieval of a CTA memory reduced aversion during extinction. These data indicate that HFS of the IL may be an effective method for reducing both learned fear and learned aversion. PMID:22586453

  10. [Properties of spontaneous and miniature excitatory postsynaptic currents of rat prefrontal cortex neurons].

    PubMed

    Malkin, S L; Kim, K Kh; Tikhonov, D B; Zaitsev, A V

    2014-01-01

    Quantum analysis of postsynaptic currents is important for fundamental and applied studies of synaptic transmission. In the present work, we investigated the possibility of using the characteristics of spontaneous excitatory postsynaptic currents (EPSCs) for estimation of quantum parameters of excitatory synaptic transmission in different types of neurons from rat prefrontal cortex slices. By blocking spontaneous spiking activity in slices by tetrodotoxin, we showed that spontaneous and miniature EPSCs in prefrontal cortex neurons did not differ by their properties. Thereby, both spontaneous and miniature responses can be used for estimation of quantum parameters of excitatory synaptic transmission in this preparation. We also revealed that excitatory spontaneous responses of pyramidal cells were 2 times lower by amplitude, had twice lower the coefficient of variation and exhibited much slower kinetics than responses of the fast-spiking and regular-spiking interneurons. Possible mechanisms of these differences are considered.

  11. Alteration of Rat Fetal Cerebral Cortex Development after Prenatal Exposure to Polychlorinated Biphenyls

    PubMed Central

    Naveau, Elise; Pinson, Anneline; Gérard, Arlette; Nguyen, Laurent; Charlier, Corinne; Thomé, Jean-Pierre; Zoeller, R. Thomas; Bourguignon, Jean-Pierre; Parent, Anne-Simone

    2014-01-01

    Polychlorinated biphenyls (PCBs) are environmental contaminants that persist in environment and human tissues. Perinatal exposure to these endocrine disruptors causes cognitive deficits and learning disabilities in children. These effects may involve their ability to interfere with thyroid hormone (TH) action. We tested the hypothesis that developmental exposure to PCBs can concomitantly alter TH levels and TH-regulated events during cerebral cortex development: progenitor proliferation, cell cycle exit and neuron migration. Pregnant rats exposed to the commercial PCB mixture Aroclor 1254 ended gestation with reduced total and free serum thyroxine levels. Exposure to Aroclor 1254 increased cell cycle exit of the neuronal progenitors and delayed radial neuronal migration in the fetal cortex. Progenitor cell proliferation, cell death and differentiation rate were not altered by prenatal exposure to PCBs. Given that PCBs remain ubiquitous, though diminishing, contaminants in human systems, it is important that we further understand their deleterious effects in the brain. PMID:24642964

  12. Alteration of rat fetal cerebral cortex development after prenatal exposure to polychlorinated biphenyls.

    PubMed

    Naveau, Elise; Pinson, Anneline; Gérard, Arlette; Nguyen, Laurent; Charlier, Corinne; Thomé, Jean-Pierre; Zoeller, R Thomas; Bourguignon, Jean-Pierre; Parent, Anne-Simone

    2014-01-01

    Polychlorinated biphenyls (PCBs) are environmental contaminants that persist in environment and human tissues. Perinatal exposure to these endocrine disruptors causes cognitive deficits and learning disabilities in children. These effects may involve their ability to interfere with thyroid hormone (TH) action. We tested the hypothesis that developmental exposure to PCBs can concomitantly alter TH levels and TH-regulated events during cerebral cortex development: progenitor proliferation, cell cycle exit and neuron migration. Pregnant rats exposed to the commercial PCB mixture Aroclor 1254 ended gestation with reduced total and free serum thyroxine levels. Exposure to Aroclor 1254 increased cell cycle exit of the neuronal progenitors and delayed radial neuronal migration in the fetal cortex. Progenitor cell proliferation, cell death and differentiation rate were not altered by prenatal exposure to PCBs. Given that PCBs remain ubiquitous, though diminishing, contaminants in human systems, it is important that we further understand their deleterious effects in the brain.

  13. The metabolism of histamine in rat hypothalamus and cortex after reserpine treatment.

    PubMed

    Maldonado, Martin; Maeyama, Kazutaka

    2015-01-01

    The effect of reserpine on histamine (HA) and tele-methylhistamine (N(τ)-MHA) in hypothalamus and cortex of rats was analyzed and compared to catecholamines. IP injection of reserpine (5 mg/kg) confirmed the effectiveness of reserpine treatment on noradrenaline and dopamine levels. Our in-vitro experiment with synaptosomal/crude mitochondrial fraction from hypothalamus and cortex confirmed that while mono amine oxidase (MAO) is an efficient metabolic enzyme for catecholamines, HA is not significantly affected by its enzymatic action. HMT activity after reserpine, pargyline and L-histidine treatment showed no differences compared to the control values. However HDC was significantly increased in both hypothalamus and cortex. In this study, Ws/Ws rats with deficiency of mast cells were used to clarify aspects of HA metabolism in HAergic neurons by eliminating the contribution of mast cells. The irreversible MAO-B inhibitor Pargyline (65 mg/kg) failed to accumulate N(τ)-MHA in the hypothalamus. However, when animals treated with reserpine and pargyline/reserpine were compared, the last group showed higher N(τ)-MHA values (p < 0.01). Moreover, the precursor of HA, L-histidine (1 g/kg), produced an increase of HA in the hypothalamus to 166% and the cortex to 348%. In conclusion, our results suggest that the effect of reserpine on the HA pools in the brain might be different. The neuronal HA pools are more resistant to reserpine as compared to those of catecholamine. Moreover, the HAergic pool appears to be more resistant to depletion than mast cells' pool, and thus HDC/HMT activity and its localization may play a key role in the understanding of HA metabolism in brain after reserpine treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Fulminant hepatic failure in rats induces oxidative stress differentially in cerebral cortex, cerebellum and pons medulla.

    PubMed

    Sathyasaikumar, K V; Swapna, I; Reddy, P V B; Murthy, Ch R K; Dutta Gupta, A; Senthilkumaran, B; Reddanna, P

    2007-03-01

    Hepatic Encephalopathy (HE) is one of the most common complications of acute liver diseases and is known to have profound influence on the brain. Most of the studies, available from the literature are pertaining to whole brain homogenates or mitochondria. Since brain is highly heterogeneous with functions localized in specific areas, the present study was aimed to assess the oxidative stress in different regions of brain-cerebral cortex, cerebellum and pons medulla during acute HE. Acute liver failure was induced in 3-month old adult male Wistar rats by intraperitoneal injection of thioacetamide (300 mg/kg body weight for two days), a well known hepatotoxin. Oxidative stress conditions were assessed by free radical production, lipid peroxidation, nitric oxide levels, GSH/GSSG ratio and antioxidant enzyme machinery in three distinct structures of rat braincerebral cortex, cerebellum and pons medulla. Results of the present study indicate a significant increase in malondialdehyde (MDA) levels, reactive oxygen species (ROS), total nitric oxide levels [(NO) estimated by measuring (nitrites + nitrates)] and a decrease in GSH/GSSG ratio in all the regions of brain. There was also a marked decrease in the activity of the antioxidant enzymes-glutathione peroxidase, glutathione reductase and catalase while the super oxide dismutase activity (SOD) increased. However, the present study also revealed that pons medulla and cerebral cortex were more susceptible to oxidative stress than cerebellum. The increased vulnerability to oxidative stress in pons medulla could be due to the increased NO levels and increased activity of SOD and decreased glutathione peroxidase and glutathione reductase activities. In summary, the present study revealed that oxidative stress prevails in different cerebral regions analyzed during thioacetamide-induced acute liver failure with more pronounced effects on pons medulla and cerebral cortex.

  15. Hormetic Effects of Acute Methylmercury Exposure on Grp78 Expression in Rat Brain Cortex

    PubMed Central

    Zhang, Ye; Lu, Rongzhu; Liu, Wenshuai; Wu, Ying; Qian, Hai; Zhao, Xiaowu; Wang, Suhua; Xing, Guangwei; Yu, Feng; Aschner, Michael

    2013-01-01

    This study aims to explore the expression of GRP78, a marker of endoplasmic reticulum (ER) stress, in the cortex of rat brains acutely exposed to methylmercury (MeHg). Thirty Sprague-Dawley (SD) rats were randomly divided into six groups, and decapitated 6 hours (h) after intraperitoneal (i.p.) injection of MeHg (2, 4, 6, 8 or 10 mg/kg body weight) or normal saline. Protein and mRNA expression of Grp78 were detected by western blotting and real-time PCR, respectively. The results showed that a gradual increase in GRP78 protein expression was observed in the cortex of rats acutely exposed to MeHg (2, 4 or 6 mg/kg). Protein levels peaked in the 6 mg/kg group (p < 0.05 vs. controls), decreased in the 8 mg/kg group, and bottomed below the control level in the 10 mg/kg group. Parallel changes were noted for Grp78 mRNA expression. It may be implied that acute exposure to MeHg induced hormetic dose-dependent changes in Grp78 mR